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Abstract

Common parallel processor microarchitectures offer a wide variety of solutions to imple-

ment numerical algorithms. The efficiency of different algorithms applied to the same

problem vary with the underlying architecture which can be a multi-core CPU (Cen-

tral Processing Unit), many-core GPU (Graphics Processing Unit), Intel’s MIC (Many

Integrated Core) or FPGA (Field Programmable Gate Array) architecture. Significant

differences between these architectures exist in the ISA (Instruction Set Architecture)

and the way the compute flow is executed. The way parallelism is expressed changes

with the ISA, thread management and customization available on the device. These

differences pose restrictions for the efficiency of the algorithm to be implemented. The

aim of the doctoral work is to analyze the efficiency of the algorithms through the archi-

tectural differences and find efficient ways and new efficient algorithms to map problems

to the selected parallel processor architectures. The problems selected for the study are

numerical algorithms from three problem classes of the 13 Berkeley ”dwarves” [1].

Engineering, scientific and financial applications often require the simultaneous solution

of a large number of independent tridiagonal systems of equations with varying coeffi-

cients. The dissertation investigates the optimal choice of tridiagonal algorithm for CPU,

Intel MIC and NVIDIA GPU with a focus on minimizing the amount of data transfer

to and from the main memory using novel algorithms and register blocking mechanism,

and maximizing the achieved bandwidth. It also considers block tridiagonal solutions

which are sometimes required in CFD (Computational Fluid Dynamic) applications. A

novel work-sharing and register blocking based Thomas solver is also presented.

Structured grid problems, like the ADI (Alternating Direction Implicit) method which

boils down the solution of PDEs (Partial Differential Equation) into a number of solu-

tions of tridiagonal system of equations is shown to improve performance by utilizing

new, efficient tridiagonal solvers. Also, solving the one-factor Black-Scholes option pric-

ing PDE with explicit and implicit time-marching algorithms on FPGA solution with

the Xilinx Vivado HLS (High Level Synthesis) is presented. Performance of the FPGA

solver is analyzed and efficiency is discussed. A GPU based implementation of a CNN

(Cellular Neural Network) simulator using NVIDIA’s Fermi architecture is presented.

The OP2 project at the University of Oxford aims to help CFD domain scientists to

decrease their effort to write efficient, parallel CFD code. In order to increase the effi-

ciency of parallel incrementation on unstructured grids OP2 utilizes a mini-partitioning

and a two level coloring scheme to identify parallelism during run-time. The use of the

GPS (Gibbs-Poole-Stockmeyer) matrix bandwidth minimization algorithm is proposed

to help create better mini-partitioning and block coloring by improving the locality of

neighboring blocks (also known as mini-paritions) of the original mesh. Exploiting the

capabilities of OpenCL for achieving better SIMD (Single Instruction Multiple Data)

vectorization on CPU and MIC architectures throught the use of the SIMT (Single

Instruction Multiple Thread) programming approach in OP2 is also discussed.
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Chapter 1

Introduction

Limits of physics Today the development of every scientific, engineering and finan-

cial field that rely on computational methods is severely limited by the stagnation of

computational performance caused by the physical limits in the VLSI (Very Large Scale

Integration) technology. This is caused by the single processor performance of the CPU

(Central Processing Unit) due to vast heat dissipation that can not be increased. Around

2004 this physical limit made it necessary to apply more processors onto a silicon die

and so the problem of efficient parallelization of numerical methods and algorithms on

a processor with multiple cores was born.

The primary aim of my thesis work is to take advantage of the computational power of

various modern parallel processor architectures to accelerate the computational speed

of some of the scientific, engineering and financial problems by giving new algorithms

and solutions.

After the introduction of the problems and limits behind this paradigm shift in the

current section, a more detailed explanation of the classification and complexity of par-

allelization is presented in Section 1.1. Section 1.2 introduces the numerical problems

on which the new scientific results of Section 8.1 rely.

Gordon Moore in the 1960’s studied the development of the CMOS (Complementary

Metal-Oxide-Semiconductor) manufacturing process of integrated circuits (IC). In 1965

he concluded from five manufactured ICs, that the number of transistors on a given

silicon area will double every year. This finding is still valid after half a century with

1
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Chapter 1. Introduction 2

a major modification: the number of transistors on a chip doubles every two years (as

opposed to the original year).

This law is especially interesting since around 2004 the manufacturing process reached

a technological limit, which prevents us from increasing the clock rate of the digital

circuitry. This limit is due to the heat dissipation. The amount of heat dissipated on

the surface of a silicon die of size of a few square centimetres is in the order 100s of

Watts. This is the absolute upper limit of the TDP (Thermal Design Power) that a

processor can have. The ever shrinking VLSI feature sizes cause: 1) the resistance (and

impedance) of conductors to increase; 2) the parasitic capacitance to increase; 3) leakage

current on insulators like the MOS transistor gate oxide to increase. These increasing

resistance and capacitance related parameters limit the clock rate of the circuitry. In

order to increase the clock rate with these parameters the current needs to be increased

and that leads to increased power dissipation. Besides limiting the clock rate the data

transfer rate is also limited by the same physical facts.

The TDP of a digital circuit is composed in the following way: PTDP = PDYN +PSC +

PLEAK , where PDYN is the dynamic switching, PSC is the instantaneous short circuit

(due to non-zero rise or fall times) and PLEAK is the leakage current induced power

dissipation. The most dominant power dissipation is due to the dynamic switching

PDYN ∝ CV 2f , where ∝ indicates proportionality, f is the clock rate, C is the capaci-

tance arising in the circuitry and V is the voltage applied to the capacitances.

Temporary solution to avoid the limits of physics – Parallelisation Earlier,

the continuous development of computer engineering meant increasing the clock rate

and the number of transistors on a silicon die, as it directly increased the computational

power. Today, the strict focus is on increasing the computational capacity with new

solutions rather than increasing the clock rate on the chip. One solution is to parallelise

on all levels of a processor architecture with the cost of cramming more processors and

transistors on a single die. The parallelisation and specialization of hardware necessarily

increases the hardware, algorithmic and software complexity. Therefore, since 2004 new

processor architectures appeared with multiple processor cores on a single silicon die.

Also, more and more emphasise is put to increase the parallelism on the lowest levels of

the architecture. As there are many levels of parallelism built into the systems today,
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Chapter 1. Introduction 3

the classification of these levels is important to understand what algorithmic features

can be exploited during the development of an algorithm.

Amdahl’s law Gene Amdahl at a conference in 1967 [2] gave a talk on the achievable

scaling of single processor performance to multiple processors assuming a fixed amount

of work to be performed. Later, this has been formulated as Eq. (1.1) and now it is

know as Amdahl’s law. Amdahl’s law states that the speedup due to putting the P

part of the workload of a single processor onto N identical processors results in S(N)

speedup compared to single processor.

S(N) =
1

(1− P ) + P
N

(1.1)

One may think of the proportion P as the workload that has been parallelized by an

algorithm (and implementation). The larger this proportion, the better the scaling

of the implementation will be. This setup is also known as strong scaling. This is a

highly important concept that is implicitly used in the arguments when parallelization

is discussed.

Gustafson’s law John Gustafson in 1988 reevaluated Amdahl’s law [3] and stated

that in the framework of weak scaling the speedup is given by Eq. (1.2). Weak scaling

measures the execution time when the problem size is increased N fold when the prob-

lem is scheduled onto N parallel processors. Eq. (1.2) states that the execution time

(Slatency(s)) decreases when the latency due to the P proportion - which benefits from

the parallelization - speeds up by a factor of s.

Slatency(s) = 1− P + sP (1.2)

1.1 Classification of Parallelism

The graph presented on Figure 1.1. shows the logical classification of parallelism on

all levels. Leaves of the graph show the processor features and software components

that implement the parallelism. Processor and software features highlighted as GPU
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Chapter 1. Introduction 4

(Graphics Processing Unit) and CPU/MIC (MIC - Many Integrated Core) features are

key components used in the work.

Parallelism

Data Level Parallelism Function Level Parallelism

Neural Architecture
(CNN, MLP etc.)

SIMD, vector

Instruction Level Parallelism Thread Level Parallelism Process Level Parallelism

Distributed Memory MIMD
(multi-computer)

Shared Memory MIMD
(multi-processor)

SIMT Pipeline, VLIW, 
Superscalar

GPU CPU/MIC

Figure 1.1: Classification of parallelism along with parallel computer and processor architec-
tures that implement them.

Architecture dependent performance bounds Depending on the design aims of

a parallel processor architecture the computational performance of these architectures

vary with the problem. The performance can be bound by the lack of some resources

needed for that particular problem, eg. more floating point units, greater memory

bandwidth etc. Therefore it is common to refer to an implementation being: 1) compute

bound if further performance gain would only be possible with more compute capability

or 2) memory bandwidth bound if the problem would gain performance from higher

memory bandwidth. The roofline model [4] helps identifying whether the computational

performance of the processor on a given algorithm or implementation is bounded by the

available computational or memory controller resources and also helps approximating

the extent of the utilization of a certain architecture. See Figure 1.2 for comparing

parallel processor architectures used in the dissertation. Processor architectures that

were recently introduced to the marker and which are to be announced are also noted

on the figure.

On Figure 1.2 the graphs were constructed based on the maximum theoretical computa-

tional capacity (GFLOP/s) and data bandwidth (GB/s) metrics. In the case of FPGAs

the number of implementable multipliers and the number of implementable memory

interfaces working at the maximum clock rate gives the base for the calculation of the

graphs. The exact processor architectures behind the labels are the following: 1) GPU-

K40: NVIDIA Tesla K40m card with Kepler GK110B microarchitecture working with
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Chapter 1. Introduction 5

“Boost” clock rate; 2) GPU-K80: NVIDIA Tesla K80 card with Kepler GK210 microar-

chitecture working with “Boost” clock rate; 3) CPU-SB: Intel Xeon E5-2680 CPU with

Sandy Bridge microarchitecture; 4) CPU-HW: Intel Xeon E5-2699v3 CPU with Haswell

microarchitecture; 5) MIC-KNC: Intel Xeon Phi 5110P co-processor card with Knights

Corner microarchitecture; 6) MIC-KNL: Intel Xeon Phi co-processor with Knights Land-

ing microarchitecture - the exact product signature is yet to be announced; 7) FPGA-V7:

Xilinx Virtex-7 XC7VX690T; 8) FPGA-VUSP: Xilinx Virtex UltraScale+ VU13P.

As the aim of my work was achieving the fastest execution time by parallelization the

roofline model is used to study the computational performance of the selected problems

where applicable.
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Figure 1.2: Roofline model for comparing parallel processor architectures. Note: SP stands
for Single Precision and DP stands for Double Precision.

Parallel Processor Architectures and Languages A vast variety of parallel archi-

tectures are used and experimented in HPC (High Performance Computing) to compute

scientific problems. Multi-core Xeon class server CPU by Intel is the leading architecture

used nowadays in HPC. GPUs (Graphics Processing Unit) originally used for graphics-

only computing has become a widely used architecture to solve certain problems. In

recent years Intel introduced the MIC (Many Integrated Core) architecture in the Xeon

Phi coprocessor family. IBM with the POWER and Fujitsu with the SPARC processor

families are focusing on HPC. FPGAs (Field Programmable Gate Array) by Xilinx and

Altera are also used for the solution of some special problems. ARM as an IP (Intellec-

tual Property) provider is also making new designs for x86 CPU processors which find

application in certain areas of HPC. Also, research is conducted to create new heteroge-

nous computing architectures to solve the power efficiency and programmability issues

of CPUs and accelerators.
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Programming languages like FORTRAN, C/C++ or Python are no longer enough to

exploit the parallelism of these multi- and many-core architectures in a productive way.

Therefore, new languages, language extensions, libraries, frameworks and DSLs (Domain

Specific Language) appeared in recent years, see Figure 1.3. Without completeness the

most important of these are: 1) CUDA (Compute Unified Device Architecture) C for

programming NVIDIA GPUs; 2) OpenMP (Open Multi Processing) directive based lan-

guages extension for programming multi-core CPU or many-core MIC architectures; 3)

OpenCL (Open Compute Language) for code portable, highly parallel abstraction; 4)

AVX (Advanced Vector eXtension) and IMCI (Initial Many Core Instruction) vector-

ized, SIMD (Single Instruction Multiple Data) ISA (Instruction Set Architecture) and

intrinsic instructions for increased ILP (Instruction Level Parallelism) in CPU and MIC;

5) OpenACC (Open Accelerators) directive based language extension for accelerator ar-

chitectures; 6) HLS (High Level Synthesis) by Xilinx for improved code productivity on

FPGAs.

All these new architectural and programming features raise new ways to solve existing

parallelisation problems, but non of them provide high development productivity, code-

and performance portability as one solution. Therefore, these problems are the topic of

many ongoing research in the HPC community.

CPU x86 NVIDIA GPUIntel MIC AMD GPU FPGA

MPI OpenMP OpenACCOpenCL CUDA
ASM

intrinsic
VHDL

Verilog HLS

Figure 1.3: Relations between processor architectures, languages and language extensions.

Classification of problem classes according to parallelization Classification of

the selected problems is based on the 13 “dwarves” of “A view of the parallel computing

landscape” [1]. My results are related to the dwarves highlighted with bold fonts:

1. Dense Linear Algebra

2. Sparse Linear Algebra

3. Spectral Methods

4. N-Body Methods

5. Structured Grids

6. Unstructured Grids

7. MapReduce

8. Combinational Logic

9. Graph Traversal

10. Dynamic Programming
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Chapter 1. Introduction 7

11. Backtrack and Branch-and-Bound

12. Graphical Models

13. Finite State Machines

1.2 Selected and Parallelized Numerical Problems

The selected numerical algorithms cover the fields of numerical mathematics that aim

for the solution of PDEs (Partial Differential Equation) in different engineering ap-

plication areas, such as CFD (Computational Fluid Dynamics), financial engineering,

electromagnetic simulation or image processing.

1.2.1 Tridiagonal System of Equations

Engineering, scientific and financial applications often require the simultaneous solution

of a large number of independent tridiagonal systems of equations with varying coef-

ficients [5, 6, 7, 8, 9, 10]. The solution of tridiagonal systems also arises when using

line-implicit smoothers as part of a multi-grid solver [11], and when using high-order

compact differencing [12, 13]. Since the number of systems is large enough to offer

considerable parallelism on many-core systems, the choice between different tridiagonal

solution algorithms, such as Thomas, CR (Cyclic Reduction) or PCR (Parallel Cyclic

Reduction) needs to be re-examined. In my work I developed and implemented near

optimal scalar and block tridiagonal algorithms for CPU, Intel MIC and NVIDIA GPU

with a focus on minimizing the amount of data transfer to and from the main memory

using novel algorithms and register blocking mechanism, and maximizing the achieved

bandwidth. The latter means that the achieved computational performance is also max-

imized (see Figure 1.4) as the solution of tridiagonal system of equations is bandwidth

limited due to the operation intensity.

On Figure 1.4 the computational upper limits on the graphs were constructed based

on the maximum theoretical computational capacity (GFLOP/s) and data bandwidth

(GB/s) metrics of the three processors. The operation intensity is calculated from the

amount of data that is moved through the memory bus and the amount of floating point

operations performed on this data. The total amount of floating point operations is

calculated and divided by the execution time to get the performance in GFLOP/s. The
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Chapter 1. Introduction 8

operation intensity and GFLOP/s performance metrics are calculated for each solver

and they are represented with stars on the figures.

In most cases the tridiagonal systems are scalar, with one unknown per grid point, but

this is not always the case. For example, computational fluid dynamics applications

often have systems with block-tridiagonal structure up to 8 unknowns per grid point

[7]. The solution of block tridiagonal system of equations are also considered which

are sometimes required in CFD (Computational Fluid Dynamic) applications. A novel

work-sharing and register blocking based Thomas solver for GPUs is also created.

GPU: NVIDIA Tesla K40
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CPU: Intel Xeon E5-2680
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MIC: Intel Xeon Phi 5110P
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Figure 1.4: Roofline model applied to the implemented scalar tridiagonal solvers on GPU,
CPU and MIC processor architectures. The proximity of stars to the upper computational

limits shows the optimality of the implementation on the architecture.
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1.2.2 Alternating Directions Implicit Method

The numerical approximation of multi-dimensional PDE problems on regular grids of-

ten requires the solution of multiple tridiagonal systems of equations. In engineering

applications and computational finance such problems arise frequently as part of the

ADI (Alternating Direction Implicit) time discretization favored by many in the com-

munity, see [10]. The ADI method requires the solution of multiple tridiagonal systems

of equations in each dimension of a multi-dimensional problem, see [14, 9, 15, 16].

1.2.3 Cellular Neural Network

The CNN (Cellular Neural Network) [17] is a powerful image processing architecture

whose hardware implementation is extremely fast [18, 19]. The lack of such hardware

device in a development process can be substituted by using an efficient simulator im-

plementation. A GPU based implementation of a CNN simulator using NVIDIA’s Fermi

architecture provides a good alternative. Different implementation approaches are con-

sidered and compared to a multi-core, multi-threaded CPU and some earlier GPU im-

plementations. A detailed analysis of the introduced GPU implementation is presented.

1.2.4 Computational Fluid Dynamics

Achieving optimal performance on the latest multi-core and many- core architectures

depends more and more on making efficient use of the hardware’s vector processing ca-

pabilities. While auto-vectorizing compilers do not require the use of vector processing

constructs, they are only effective on a few classes of applications with regular memory

access and computational patterns. Other application classes require the use of parallel

programming models, and while CUDA and OpenCL are well established for program-

ming GPUs, it is not obvious what model to use to exploit vector units on architectures

such as CPUs or the MIC. Therefore it is of growing interest to understand how well

the Single Instruction Multiple Threads (SIMT) programming model performs on a an

architecture primarily designed with Single Instruction Multiple Data (SIMD) ILP par-

allelism in head. In many applications the OpenCL SIMT model does not map efficiently

to CPU vector units. In my dissertation I give solutions to achieve vectorization and

avoid synchronization - where possible - using OpenCL on real-world CFD simulations
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and improve the block coloring in higher level parallelization using matrix bandwidth

minization reordering.

1.3 Parallel Processor Architectures

A variety of parallel processor architectures appeared since the power wall became un-

avoidable in 2004 and older processor architectures were also redesigned to fit general

computing aims. CPUs operate with fast, heavy-weight cores, with large cache, out-of-

order execution and branch prediction. GPUs and MICs on the other hand use light

weight, in-order, hardware threads with moderate, but programmable caching capabil-

ities and without branch prediction. FPGAs provide full digital circuit customization

capabilities with low power consumption. A detailed technical comparison or bench-

marking is not topic of the thesis, but the in-depth knowledge of these architectures is

a key to understanding the theses. The reader is suggested to study the cited manuals

and whitepapers for more details on the specific architecture. The list of architectures

tackled in the thesis is the following:

1. CPU/MIC architectures: conventional, x86 architectures – with CISC and RISC

instruction sets augmented with SIMD vector instructions – like the high-end,

dual socket Intel Xeon server CPU and the Intel Xeon Phi MIC coprocessors,

more specifically:

(a) Intel Sandy-Bridge (E5-2680) CPU architecture

(b) Intel Knights Corner (5110P) MIC architecture

2. GPU architectures: generalized for general purpose scientific computing, specifi-

cally from vendor NVIDIA:

(a) NVIDIA Fermi (GF114) GPU architecture

(b) NVIDIA Kepler (GK110b) GPU architecture

3. FPGA architecture: fully customizable, specifically form vendor Xilinx:

(a) Xilinx Virtex-7 (VX690T) FPGA architecture

All processor specifications are listed in the Appendix A and Section 5.
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1.3.1 GPU: NVIDIA GPU architectures

The use of GPU platforms is getting more and more general in the field of HPC and in

real-time systems as well. The dominancy of these architectures versus the conventional

CPUs are shown on Figure 1.5 and 1.6. In the beginning only the game and CAD

industry was driving the chip manufacturers to develop more sophisticated devices for

their needs. Recently, as these platforms have gotten more and more general to satisfy

the need of different type of users, the GPGPU (General Purpose GPU) computing has

evolved. Now the scientific community is benefiting from these result as well.

Figure 1.5: The increase in computation power. A comparison of NVIDIA GPUs and Intel
CPUs. [20]

1.3.1.1 The NVIDIA CUDA architecture

CUDA is a combination of hardware and software technology [20] to provide program-

mers the capabilities to create well optimized code for a specific GPU architecture that is

general within all CUDA enabled graphics cards. The CUDA architecture is designed to

provide a platform for massively parallel, data parallel, compute intensive applications.

The hardware side of the architecture is supported by NVIDIA GPUs, whereas the soft-

ware side is supported by drivers for GPUs, C/C++ and Fortran compilers and the
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Figure 1.6: The increase in memory bandwidth. A comparison of NVIDIA GPUs and Intel
CPUs. [20]

necessary API libraries for controlling these devices. As CUDA handles specialised key-

words within the C/C++ source code, this modified programming language is referred

to as the CUDA language.

The programming model, along with the thread organisation and hierarchy and mem-

ory hierarchy is described in [20]. A thread in the CUDA architecture is the smallest

computing unit. Threads are grouped into thread blocks. Currently, in the Fermi and

Kepler architectures maximum 1024 threads can be allocated within a thread block.

Thousands of thread blocks are organized into a block grid and many block grids form

a CUDA application. This thread hierarchy with thread blocks and block grids make

the thread organisation simpler. Thread blocks in a grid are executed sequentially. At

a time all the Streaming Multiprocessors (SM or SMX) are executing a certain number

of thread blocks (a portion of a block grid). The execution and scheduling unit within

an SM (or SMX) is a warp. A warp consists of 32 threads. Thus the scheduler issues

an instruction for a warp and that same instruction is executed on each thread. This

procedure is similar to SIMD (Single Instruction Multiple Data) instruction execution

and is called SIMT (Single Instruction Multiple Threads).
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The memory hierarchy of the CUDA programming model can be seen in Fig. 1.7. Within

a block each thread has its own register, can access the shared memory that is common

to every thread within a block, has access to the global (graphics card RAM) memory

and has a local memory that is allocated in the global memory but private for each

thread. Usually the latter memory is used to handle register spill. Threads can also

read data through the Read-Only Cache (on Kepler architecture) or Texture Cache (on

Fermi architecture).

1.3.1.2 The Fermi hardware architecture

The CUDA programming architecture is used to implement algorithms above NVIDIA’s

hardware architectures such as the Fermi. The Fermi architecture is realized in chips

of the GF100 series. Capabilities of the Fermi architecture are summarized in [21].

The base Fermi architecture is implemented using 3 billion transistors, features up to

512 CUDA cores which are organized in 16 SMs each encapsulating 32 CUDA cores.

Compared to the earlier G80 architecture along with others a 10 times faster context

switching circuitry, a configurable L1 cache (16 KB or 48 KB) and unified L2 cache

(768 KB) is implemented. In earlier architectures the shared memory could be used as

programmer handled cache memory. The L1 cache and the shared memory is allocated

within the same 64 KB memory segment. The ratio of these two memories can be chosen

as 16/48 KB or as 48/16 KB.

Just like the previous NVIDIA architectures, a read-only texture cache is implemented

in the Fermi architecture. This cache is embedded between the L2 cache and ALU, see

Fig. 1.7. Size of the texture cache is device dependent and varies between 6 KB and 8

KB per multiprocessor. This type of cache has many advantages in image processing.

During a cache fetch, based on the given coordinates, the cache circuitry calculates the

memory location of the data in the global memory, if a miss is detected the geometric

neighbourhood of that data point is fetched. Using normalized floating point coordinates

(instead of integer coordinates) the intermediate points can be interpolated. All these

arithmetic operations are for free.

Beside the texture cache the Fermi architecture has a constant memory cache (prior

architectures had it as well). This memory is globally accessible and its size is 64 KB.

Constant data are stored in the global memory and cached through a dedicated circuitry.
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It is designed for use when the same data is accessed by many threads in the GPU. If

many threads want to access the same data but a cache miss happens, only one global

read operation is issued. This type of cache is useful if the same, small amount of data is

accessed repeatedly by many threads. If one would like to store this data in the shared

memory and every thread in the same block wanted to access the same memory location,

that would lead to a bank conflict. This conflict is resolved by serializing the memory

access, which leads to a serious performance fall.

In Fermi NVIDIA introduced the FMA (Fused Multiply and Add) [21] operation using

subnormal floating point numbers. Earlier a MAD (Multiply and Add) operation is

performed by executing a multiplication. The intermediate result is truncated finally the

addition is performed. FMA performs the multiplication, and all the extra digits of the

intermediate result are retained. Then the addition is performed on the denormalised

floating number. Truncation is performed in the last step. This highly improves the

precision of iterative algorithms.

1.3.1.3 The Kepler hardware architecture

The Kepler generation [22] of NVIDIA GPUs has essentially the same functionality as

the previous Fermi architectures with some minor differences. Kepler GPUs have a

number of SMX (Streaming Multiprocessor – eXtended) functional units. Each SMX

has 192 relatively simple in-order execution cores. These operate effectively in warps of

32 threads, so they can be thought of as vector processors with a vector length of 32. To

avoid poor performance due to the delays associated with accessing the graphics memory,

the GPU design is heavily multi-threaded, with up to 2048 threads (or 64 warps) running

on each SMX simultaneously; while one thread in a warp waits for the completion of an

instruction, execution can switch to a different thread in the warp which has the data it

requires for its computation. Each thread has its own share (up to 255 32 bit registers)

of the SMX’s registers (65536 32 bit registers) to avoid the context-switching overhead

usually associated with multi-threading on a single core. Each SMX has a local L1

cache, and also a shared memory which enables different threads to exchange data. The

combined size of these is 64kB, with the relative split controlled by the programmer.

There is also a relatively small 1.5MB global L2 cache which is shared by all SMX units.
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Figure 1.7: Kepler and Fermi memory hierarchy according to [22]. The general purpose
read-only data cache is known on Fermi architectures as texture cache, as historically it was

only used to read textures from global memory.

1.3.2 CPU: The Intel Sandy Bridge architecture

The Intel Sandy Bridge [23, 24] CPU cores are very complex out-of-order, shallow-

pipelined, low latency execution cores, in which operations can be performed in a dif-

ferent order to that specified by the executable code. This on-the-fly re-ordering is

performed by the hardware to avoid delays due to waiting for data from the main mem-

ory, but is done in a way that guarantees the correct results are computed. Each CPU

core also has an AVX [25] vector unit. This 256-bit unit can process 8 single precision or

4 double precision operations at the same time, using vector registers for the inputs and

output. For example, it can add or multiply the corresponding elements of two vectors

of 8 single precision variables. To achieve the highest performance from the CPU it is

important to exploit the capabilities of this vector unit, but there is a cost associated

with gathering data into the vector registers to be worked on. Each cores owns an L1

(32KB) and an L2 (256KB) level cache and they also own a portion of the distributed

L3 cache. These distributed L3 caches are connected with a special ring bus to form a

large, usually 15-35 MB L3 or LLC (Last Level Cache). Cores can fetch data from the

cache of another core.
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1.3.3 MIC: The Intel Knights Corner architecture

The Intel Knights Corner [26] MIC architecture on the Intel Xeon Phi card is Intel’s

HPC coprocessor aimed to accelerate compute intensive problems. The architecture is

composed of 60 individual simple, in-order, deep-pipelined, high latency, high through-

put CPU cores equipped with 512-bit wide floating point vector units which can process

16 single precision or 8 double precision operations at the same time, using vector regis-

ters for inputs and output. Low level programming is done through the KNC (or IMCI)

instruction set in assembly. This architecture faces mostly the same programmability

issues as the Xeon CPU, although due to the in-order execution the consequences of

inefficiencies in the code can result in more server performance deficit. The MIC copro-

cessor uses a similar caching architecture as the Sandy Bridge Xeon CPU but has only

two levels: L1 with 32KB and the distributed L2 with 512KB/core.

1.3.4 FPGA: The Xilinx Virtex-7 architecture

FPGA (Field Programmable Gate Array) devices have a long history stemming from the

need to customize the functionality of the IC design on demand according to the needs of

a customer, as opposed to ASIC (Application Specific Integrated Circuit) design where

the functionality is fixed in the IC. An FPGA holds an array of CLB (Configurable Logic

Block), block memories, customized digital circuitry for arithmetic operations (eg. DSP

slices) and reconfigurable interconnect, which connects all these units. The function-

ality (ie. the digital circuit design) of the FPGA is defined using the HDL (Hardware

Description Language) languages like VHDL or Verilog. After the synthetization of

the circuit from the HDL description the FPGA is configured using an external smart

source. FPGAs come in different flavours according to the application area, such as

network routers, consumer devices, automotive applications etc. The Xilinx Virtex-7

FPGA family [27] is optimized for high performance, therefore it has a large number

of DSP slices and a significant amount of block RAM which makes it suitable for HPC

applications.
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Alternating Directions Implicit

solver

2.1 Introduction

Let us start the discussion of the ADI solvers with the numerical solution of the heat

equation on a regular 3D grid of size 2563 – the detailed solution is discussed in Section

2.2. An ADI time-marching algorithm will require the solution of a tridiagonal system

of equations along each line in the first coordinate direction, then along each line in the

second direction, and then along each line in the third direction. There are two important

observations to make here. The first is that there are 2562 separate tridiagonal solutions

in each phase, and these can be performed independently and in parallel, ie. there is

plenty of natural parallelism to exploit on many core processors. The second is that

a data layout which is optimal for the solution in one particular direction, might be

far from optimal for another direction. This will lead us to consider using different

algorithms and implementations for different directions. Due to this natural parallelism

in batch problems, the improved parallelism of CR (Cyclic Reduction) and PCR (Parallel

Cyclic Reduction) are not necessarily advantageous and the increased work-load of these

methods might not necessarily pay off. If we take the example of one of the most

modern accelerator cards, the NVIDIA Tesla K40 GPU, we may conclude that the 12GB

device memory is suitable to accommodate a Nd multidimensional problem domain with

Nd = 12 GB/4 arrays = 0.75×109 single precision grid points – assuming 4 arrays (a,b,c

17
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and d) are necessary to store and perform in-place computation of tridiagonal system

of equations as in Algorithm 1. This means that the length N along each dimension is

N = d
√

0.75× 109 for dimensions d = 2− 4 as shown on Table 2.1.

d N # parallel systems

2 27386 27386
3 908 824464
4 165 4492125

Table 2.1: Number of parallel systems increases rapidly as dimension d is increased. N is
chosen to accommodate an Nd single precision problem domain on the available 12 GB of an

NVIDIA Tesla K40 GPU.

The ADI (Alternating Direction Implicit) method is a finite difference scheme and has

long been used to solve PDEs in higher dimension. Originally it was introduced by

Peaceman and Rachford [14], but many variant have been invented throughout the years

[15, 16, 9]. The method relies on factorization of the spatial operators: approximate

factorization is applied to the Crank-Nicolson scheme. The error introduced by the

factorization is second order accurate in both space (O(∆x2) and time (∆t2)). Since the

Crank-Nicolson is also second order accurate, the factorization conserves the accuracy.

The benefit of using ADI instead of other (implicit) methods is the better performance.

Splitting the problem this way changes the sparse matrix memory access pattern into a

well defined, structured access pattern. In case of the Crank-Nicolson method a sparse

matrix with high (matrix) bandwidth has to be handled.

Solving the tridiagonal systems can be performed either with the Thomas (aka. TDMA

- Tridiagonal Matrix Algorithm) 3.2.1, Cyclic Reduction (CR) 3.2.2, Parallel Cyclic

Reduction (PCR) 3.2.3, Recursive Doubling (RD) [28] etc. In engineering and financial

applications the problem size is usually confined in a Nd hypercubic domain, where N

is typically in the order of hundreds.

2.2 Solving the 3D linear diffusion PDE with ADI

The exact formulation of the ADI method used in the dissertation is discussed through

the solution of a three dimensional linear diffusion PDE, ie. the heat diffusion equation
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with α = 1 thermal diffusivity, see Eq.(2.1).

∂u

∂t
= ∇2u (2.1)

or
∂u

∂t
=

(
∂2

∂2
x

+
∂2

∂2
y

+
∂2

∂2
z

)
u (2.2)

where u = u(x, y, z, t) and u is a scalar function u : R4 7→ R, x, y, z ∈ R are the free

spatial domain variables and t ∈ R free time domain variable.

In brief: splitting the spatial, Laplace operator is feasible with approximate factorization.

The result is a chain of three systems of tridiagonal equations along the three spatial

dimensions X,Y and Z. The partial solution of the PDE along the dimension X is used

to compute the next partial solution of the PDE along the Y dimension and then the

solution of Y is used to solve the partial solution in Z dimension. The formulation of the

solution presented here computes the contribution ∆u which in the last step is added

to the dependent varaible u.

The formulation starts with the Crank-Nicolson discretization, where a backward and

forward Euler discretization is combined with the trapezoidal formula with equal 1/2

weights, see Eq.(2.3). Due to the backward Euler discretization ADI is an implicit

method central difference spatial discretizations (Crank-Nicolson discretization):

un+1
ijk − u

n
ijk

∆t
=

1

2

(
1

h

(
δ2
x + δ2

y + δ2
z

)
un+1
ijk +

1

h

(
δ2
x + δ2

y + δ2
z

)
unijk

)
(2.3)

here (x, y, z) ∈ Ω = {(i ∗∆x, j ∗∆y, k ∗∆z) | i, j, k = 0, .., N − 1;h = ∆x = ∆y = ∆z},

t = n ∗∆t and δ2
xu

n
ijk = uni−1jk − 2unijk + uni+1jk is the central difference operator.

From un+1
ijk = unijk + ∆uijk and Eq.(2.3) it follows that

∆uijk = λ
(
δ2
x + δ2

y + δ2
z

) (
2unijk + ∆uijk

)
(2.4)

where λ = ∆t
h .

∆uijk − λ
(
δ2
x + δ2

y + δ2
z

)
∆uijk = 2λ

(
δ2
x + δ2

y + δ2
z

)
unijk (2.5)
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(
1− λδ2

x − λδ2
y − λδ2

z

)
∆uijk = 2λ

(
δ2
x + δ2

y + δ2
z

)
unijk (2.6)

Eq.(2.6) is transformed into Eq.(2.7) by approximate factorization. One may verify the

second order accuracy of Eq.(2.7) by performing the multiplication on the LHS.

(
1− λδ2

x

) (
1− λδ2

y

) (
1− λδ2

z

)
∆uijk = 2λ

(
δ2
x + δ2

y + δ2
z

)
unijk (2.7)

The solution of Eq.(2.7) above boils down to performing a preprocessing stencil operation

Eq.(2.8), solving three tridiagonal system of equations Eqs. (2.9),(2.10) and (2.11) and

finally adding the contribution ∆u to the dependent variable in Eq.(2.12).

u(0) = 2λ
(
δ2
x + δ2

y + δ2
z

)
unijk (2.8)(

1− λδ2
x

)
u(1) = u(0) (2.9)(

1− λδ2
y

)
u(2) = u(1) (2.10)(

1− λδ2
z

)
∆uijk = u(2) (2.11)

un+1
ijk = unijk + ∆uijk (2.12)

where u(0),u(1),u(2) denote the intermediate values and not time instance. Eq.(2.13)

represents the solution with tridiagonal system of equations.

u
(0)
ijk =2λ

(
uni−1jk + uni+1jk+

unij−1k + unij+1k+

unijk−1 + unijk+1

− 6unijk

)
axijku

(1)
i−1jk + bxijku

(1)
ijk + cxijku

(1)
i+1jk =u

(0)
ijk

ayijku
(2)
ij−1k + byijku

(2)
ijk + cyijku

(2)
ij+1k =u

(1)
ijk

azijk∆uijk−1 + bzijk∆uijk + czijk∆uijk+1 =u
(2)
ijk

un+1
ijk =unijk + ∆uijk

(2.13)
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Note that the super and subscript indices of coefficients a, b and c mean that the coef-

ficients are stored in a cubic datastructure.
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Chapter 3

Scalar Tridiagonal Solvers on

Multi and Many Core

Architectures

3.1 Introduction

Scalar tridiagonal solvers are used in many applications in science, engineering and

finance, usually as part of more complex solvers like implicit line smoothers or ADI

solvers etc. Application cases are detailed in Section 1.2.1. Before discussing the specific

implementations on different architectures, we review a number of different algorithms

for solving tridiagonal systems, and discuss their properties in terms of the number of

floating point operations and the amount of memory traffic generated. Research has

been conducted by [29, 30] to solve tridiagonal system of equations on GPUs. The

Recursive Doubling algorithm has been developed by [31]. Earlier work by [32, 33, 34,

35, 36] has decomposed a larger tridiagonal system into smaller ones that can be solved

independently, in parallel. The algorithms described in the following subsections are the

key building blocks of a high performance implementation of a tridiagonal solver. We

introduce the tridiagonal system of equations as shown on Eq. (3.1) or in its matrix

form shown on Eq. (3.2) and Eq. (3.3).

aiui−1 + biui + ciui+1 = di, i = 0, 1, . . . , N−1 (3.1)

22
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

b0 c0 0 0 · · · 0

a1 b1 c1 0 · · · 0

0 a2 b2 c2 · · · 0
...

...
...

...
. . .

...

0 0 0 · · · aN−1 bN−1





u0

u1

u2

...

uN−1


=



d0

d1

d2

...

dN−1


(3.2)

Au = d (3.3)

where a0 = cN−1 = 0, A is called the tridiagonal matrix, u is the unknown and d is the

RHS (Right Hand Side).

3.2 Tridiagonal algorithms

In this section the standard algorithms like Thomas, PCR (Parallel Cyclic Reduction)

and CR (Cyclic Reduction) are presented along with a new hybrid Thomas-PCR algo-

rithm which is the combination of the Thomas and the PCR algorithms.

3.2.1 Thomas algorithm

The Thomas algorithm [37] is a sequential algorithm which is described in [38]. It is a

specialized version of Gaussian elimination to the case in which the matrix is tridiagonal.

The algorithm has a forward pass in which the lower diagonal elements ai are eliminated

by adding a multiple of the row above. This is then followed by a reverse pass to compute

the final solution using the modified ci values. In both passes the di is also modified

according to the row operations.

The derivation of the Thomas algorithm is the following. Suppose Gaussian elimination

of ai-s is already done and the equations are normalized with bi, then we have Eq.(3.4).

ui + c∗iui+1 = d∗i i = 0, ..., N − 1 (3.4)

where c∗i and d∗i are assumed to be unknowns for now. Substituting Eqs. (3.5) into the

original equation Eq. (3.1) we get Eq. (3.6).
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ui =− c∗iui+1 + d∗i

ui−1 =− c∗i−1ui + d∗i−1

i =0, ..., N − 1

(3.5)

ai(−c∗i−1ui + d∗i−1) + biui + ciui+1 =di

(bi − aic∗i−1)ui + ciui+1 =di − aid∗i−1

ui +
ci

bi − aic∗i−1

ui+1 =
di − aid∗i−1

bi − aic∗i−1

u

(3.6)

ALGORITHM 1: Thomas algorithm

Require: thomas(a,b, c,d)

1: d∗0 := d0/b0

2: c∗0 := c0/b0

3: for i = 1, . . . , N−1 do

4: r := 1 / (bi − ai ci−1)

5: d∗i := r (di − ai di−1)

6: c∗i := r ci

7: end for

8: dK−1 := d∗K−1

9: for i = N−2, . . . , 0 do

10: di := d∗i − c∗i di+1

11: end for

12: return d

The full Thomas algorithm with in-place solution (RHS vector is overwritten) is given

in Algorithm 1. Note that this does not perform any pivoting; it is assumed the ma-

trix is diagonally dominant, or at least sufficiently close to diagonal dominance so that

the solution is well-conditioned. Floating point multiplication and addition, as well as

FMA (Fused Multiply and Add) have the same instruction throughput on almost every

hardware. Also, the use of FMA is considered to be a compiler optimization feature and

therefore optimistic calculations based on this instruction give a good lower estimate on

the number of actual instruction uses. In the following discussion the FMA instruction
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is used as the basis of estimating the work complexity of the algorithm. The compu-

tational cost per row is approximately three FMA operations, one reciprocal and two

multiplications. If we treat the cost of the reciprocal as being equivalent to five FMAs

(which is the approximate cost on a GPU for a double precision reciprocal), then the

total cost is equivalent to 10 FMAs per grid point.

On the other hand, the algorithm requires at the minimum the loading of ai, bi, ci, di,

and the storing of the final answer di. Worse still, it may be necessary to store the

c∗i , d
∗
i computed in the forward pass, and then read them back during the reverse pass.

This shows that the implementation of the algorithm is likely to be memory-bandwidth

limited, because there are very few operations per memory reference. Thus, when us-

ing the Thomas algorithm it will be critical to ensure the maximum possible memory

bandwidth.

3.2.2 Cyclic Reduction

Buneman descibed first the the cyclic even-odd algorithm [39] (also known as cyclic

reduction) for the solution of tridiagonal system of equations. A comparison on the

arithmetic complexity of the cyclic reduction and other algorithms is studied in [40].

Consider the algebraic formulation of the system of tridiagonal system of equations as

Eq. (3.7), which assumes that the equation is normalized by bn and coefficients an and

cn are negated.

− anun−1 + un − cnun+1 = dn n = 0, ..., N − 1 (3.7)

CR has two phases, a forward and a backward pass. Each pass takes O(log(N)) steps to

perform. Alltogether the CR algorithm takes 2×O(log(N)) steps to finish. The forward

pass is performed the following way: for each even n row (equation) add an times row

n− 1 and cn times row n+ 1, see Eq.(3.8).

− anan−1un−2 + (1− ancn−1 − cnan+1)un − cncn+1un+2 = dn + andn−1 + cndn+1

n = 0, 2, 4, ...

(3.8)
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Once the constant terms of the expression in Eq.(3.8) is normalized, we get a new

tridiagonal system of equation Eq.(3.9) with new constant coefficients.

−a∗nun−2 + un − c∗nun+2 = d∗n

a∗n =
anan−1

(1− ancn−1 − cnan+1)

c∗n =
anan+1

(1− ancn−1 − cnan+1)

n = 2, 4, ...

(3.9)

The steps of the forward pass are repeated until the resulting system size reduces to a

single expression. In the backward pass the known values are back-substituted to the

equations and the results are acquired. Due to the lack of pivoting diagonal dominance

is a strict criteria of the algorithm for stability.

3.2.3 Parallel Cyclic Reduction

Historically the PCR algorithm stems from the CR algorithm, but it has a higher par-

allel efficiency. In each of the O(log(N)) steps the CR algorithm creates a single new

tridiagonal system that is two times smaller than the previous one. The PCR on the

other hand creates two new tridiagonal systems (both for odd and even indices of un-

knowns) in each of the O(log(N)) steps that is two times smaller than the previous one.

The main difference is that by the end of the forward sweep the PCR is done with the

computation, whereas the CR still has to use the computed values to solve the system

in the backward sweep. The overall advantage of the PCR algorithm is that all the

processors computing the solution are active in each of the O(log(N)) steps as opposed

to the CR algorithm.

PCR [41] is an inherently parallel algorithm which is ideal when using multiple execution

threads to solve each tridiagonal system.
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ALGORITHM 2: PCR algorithm

Require: pcr(a,b, c,d)

1: for p = 1, . . . , P do

2: s := 2p−1

3: for i = 0, . . . , N−1 do

4: r := 1 / (1− a(p−1)
i c

(p−1)
i−s − c(p−1)

i a
(p−1)
i+s )

5: a
(p)
i := −r a(p−1)

i a
(p−1)
i−s

6: c
(p)
i := −r c(p−1)

i c
(p−1)
i+s

7: d
(p)
i := r (d

(p−1)
i − a(p−1)

i d
(p−1)
i−s − c(p−1)

i d
(p−1)
i+s )

8: end for

9: end for

10: return d(P )

If we start with the same tridiagonal system of equations, but normalized so that bi = 1,

aiui−1 + ui + ciui+1 = di, i = 0, 1, . . . , N−1,

with a0 = cN−1 = 0, then subtracting the appropriate multiples of rows i ± 1, and

re-normalising, gives

a′iui−2 + ui + c′iui+2 = d′i, i = 0, 1, . . . , N−1,

with a′0 = a′1 = c′N−2 = c′N−1 = 0. Repeating this by subtracting the appropriate

multiples of rows i± 2 gives

a′′i ui−4 + ui + c′′i ui+4 = d′′i , i = 1, 2, . . . , N,

with a′′j = c′′N−1−j = 0 for 0 ≤ j < 4.

After P such steps, where P is the smallest integer such that 2P ≥ N , then all of the

modified a and c coefficients are zero (since otherwise the value of ui would be coupled

to the non-existent values of ui±2P ) and so we have the value of ui.

The PCR algorithm is given in Algorithm 2. Note that any reference to a value with

index j outside the range 0 ≤ j < N can be taken to be zero; it is multiplied by a

zero coefficient so as long as it is not an IEEE exception value (such as a NaN) then

any valid floating point value can be used. If the computations within each step are

performed simultaneously for all i, then it is possible to reuse the storage so that a(p+1)
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and c(p+1) are held in the same storage (e.g. the same registers) as a(p) and c(p). The

computational cost per row is approximately equivalent to 14 FMAs in each step, so the

total cost per grid point is 14 log2N . This is clearly much greater than the cost of the

Thomas algorithm with 10 FMA, but the data transfer to/from the main memory may

be lower if there is no need to store and read back the various intermediate values of the

a and c coefficients.

3.2.4 Hybrid Thomas-PCR Algorithm

As noted earlier CR is a slightly different algorithm from PCR in which the pth pass of

the Algorithm 2 is performed only for those i for which i mod 2p = 0. This gives the

forward pass of the PCR algorithm; there is then a corresponding reverse pass which

performs the back solve. This involves fewer floating point operations overall, but there

is less parallelism on average and it requires twice as many steps so it is slower than

PCR when there are many active threads. Hence, the PCR algorithm is used in the

hybrid method.

The hybrid algorithm – developed specifically for GPU architectures – is a combination of

a modified Thomas and PCR algorithms. Some hybrid algorithms have been developed

over the years with different application aims, like [32] who decomposed tridiagonal

systems in an upper tridiagonal form to be solved multiple RHS. The slides of [42] show

that the PCR algorithm can be used to divide a larger system into smaller ones which can

be solved using the Thomas algorithm. It is shown that a larger system can be divided

into smaller ones using a modified Thomas algorithm and the warp level PCR can be used

to solve the remaining system. The complete computation with the presented algorithms

can be done in registers using the shfl() instructions introduced in the NVIDIA Kepler

GPU architecture. In the case of the Thomas solver intermediate values c∗i and d∗i had

to be stored and loaded in main memory. With the hybrid algorithm the input data is

read once and output is written once without the need to move intermediate values in

global memory. Therefore this algorithm allows an optimal implementation.
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ALGORITHM 3: First phase of hybrid algorithm

Require: hybridFW (a,b, c,d)

1: d0 := d0/b0

2: a0 := a0/b0

3: c0 := c0/b0

4: for i = 1, . . . ,M−2 do

5: r := 1 / (bi − ai ci−1)

6: di := r (di − ai di−1)

7: ai := −r ai ai−1

8: ci := r ci

9: end for

10: for i = M−3, . . . , 1 do

11: di := di − ci ui+1

12: ai := ai − ci ai+1

13: ci := −ci ci+1

14: end for

ALGORITHM 4: Middle phase: modified PCR algorithm.

Require: pcr2(a,b, c,d)

1: for i = 1 : 2 : N−1 do

2: r = 1/(1− a(0)i c
(0)
i−1 − c

(0)
i a

(0)
i+1)

3: d
(1)
i = r (d

(0)
i − a

(0)
i d

(0)
i−1 − c

(0)
i d

(0)
i+1)

4: a
(1)
i = −r a(0)i a

(0)
i−1

5: c
(1)
i = −r c(0)i c

(0)
i+1

6: end for

7: for p = 1, . . . , P do

8: s := 2p

9: for i = 1 : 2 : N−1 do

10: r = 1/(1− a(p−1)
i c

(p−1)
i−s − c(p−1)

i a
(p−1)
i+s )

11: d
(p)
i = r (d

(p−1)
i − a(p−1)

i d
(p−1)
i−s − c(p−1)

i d
(p−1)
i+s )

12: a
(p)
i = −r a(p−1)

i a
(p−1)
i−s

13: c
(p)
i = −r c(p−1)

i c
(p−1)
i+s

14: end for

15: end for

16: for i = 1 : 1 : N−1 do

17: d
(P )
i = d

(P−1)
i − a(P−1)

i d
(P−1)
i − c(P−1)

i d
(P−1)
i+1

18: end for

19: return d(P )
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ALGORITHM 5: Last phase: solve for the remaining unknowns.

Require: hybrid1b(a,b, c,d)

1: for i = 1, . . . ,M−1 do

2: di := di − ai r d0 − ci dM−1

3: end for

Suppose the tridiagonal system is broken into a number of sections of size M (show in

Figure 3.1), each of which will be handled by a separate thread. Within each of these

pieces, using local indices ranging from 0 to M−1, a slight modification to the Thomas

algorithm (shown in Algorithm 3) operating on rows 1 to M−2 enables one to obtain

an equation of the form

ai u0 + ui + ci uM−1 = di, i = 1, 2, . . . ,M−2 (3.10)

expressing the central values as a linear function of the two end values, u0 and uM−1. The

forward and backward phases of the modified Thomas algorithm are shown on Figure

3.2 and 3.3. Using equation 3.10 for i = 1,M − 2 to eliminate the u1 and uM−2 entries

in the equations for rows 0 and M−1, leads to a reduced tridiagonal system (shown

in Figure 3.3) of equations involving the first and last variables within each section.

This reduced tridiagonal system can be solved using PCR using Algorithm 4, and then

Algorithm 5 gives the interior values.

In the last phase the solution of the interior unknowns using the outer i = 0 and i = M−1

values needs to be completed with Algorithm 5.

When there are 32 CUDA threads and 8 unknowns per thread the cost is approximately

14 FMAs per point, about 40% more than the cost of the Thomas algorithm. The

data transfer cost depends on whether these intermediate coefficients ai, ci, di need to

be stored in the main memory. If they do, then it is again more costly than the Thomas

algorithm, but if not then it is less costly. We need to add this to the cost of the PCR

solution. The relative size of this depends on the ratio (log2N)/M . We will discuss this

in more detail later.

The hybrid Thomas-PCR solver is validated against the Thomas solver by computing

the MSE (Mean Square Error) between the two solutions. The results show MSE error

in the order of 10−9 in single precision and 10−18 in double precision.
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Figure 3.1: Starting state of the equation system. 0 values outside the bar are part of the
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Figure 3.2: State of the equation system after the forward sweep of the modified Thomas
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Figure 3.3: State of the equation system after the backward sweep of the modified Thomas
algorithm. Bold variables show the elements of the reduced system which is to be solved with

the PCR algorithm.
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Figure 3.4: Data layout of 3D cube data-structure.

3.3 Data layout in memory

Knowledge of the data layout and the access patterns of the executed code with various

algorithms is essential to understand the achieved performance. Taking the example of

a 3D application shown on Figure 3.4, each of the coefficients arrays is a 3D indexed

array which is mathematically of the form ui,j,k. Ie. each arrays a, b, c, d and u are

stored in a separate cubic data array.

However this is stored in memory as a linear array and so we require a mapping from

the index set (i, j, k) to a location in memory. If the array has dimensions (Nx, Ny, Nz),

we choose to use the mapping:

index = i+ j Nx + kNxNy.

This means that if we perform a Thomas algorithm solution in the first coordinate

direction, then consecutive elements of the same tridiagonal system are contiguous in

memory. On the other hand, in the second coordinate direction they are accessed with

a stride of Nx, and in the third direction the stride is NxNy. This data layout extends

naturally to applications with higher number of dimensions.

To understand the consequences of this layout and access pattern, it is also necessary

to understand the operation of the cache memory hierarchy. The memory bus which

transfers data from the main memory (or graphics memory) to the CPU (or GPU) does
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so in cache lines which have a size usually in the range of 32-128 bytes. These cache

lines are held in the cache hierarchy until they are displaced to make room for a new

cache line. One difference between CPUs and GPUs is that CPUs have a lot more cache

memory per thread, and so cache lines are usually resident for longer.

The effectiveness of caches depends on two kinds of locality: 1) temporal locality, which

means that a data item which has been loaded into the cache is likely to be used again

in the near future; 2) spatial locality, which means that when a cache line is loaded to

provide one particular piece of data, then it is likely that other data items in the same

cache line will be used in the near future. An extreme example of spatial locality can

occur in a GPU when a set of 32 threads (known as a warp) each load one data item. If

these 32 items form a contiguous block of data consisting of one or more cache lines then

there is perfect spatial locality, with the entire line of data being used. This is referred

to as a coalesced read or write. See [20] for further details.

Aligned memory access for efficient data transfer [43], [26], [20], TLB (Translation Looka-

side Buffer) [43], [44] hit rate reduction for lower cache latency are among the techniques

used to reduce execution time. Avoiding cache and TLB cache thrashing [43] can be

done by proper padding which is the responsibility of the user of the library.

3.4 Notable hardware characteristics for tridiagonal solvers

Processors used in the present study include a high-end, dual socket Intel Xeon server

CPU, Intel Xeon Phi coprocessor and NVIDIA K40m GPU. Processor specifications

are listed in the Appendix A.1. CPUs operate with fast, heavy-weight cores, with

large cache, out-of-order execution and branch prediction. GPUs on the other hand

use light weight, in-order, hardware threads with moderate, but programmable caching

capabilities and without branch prediction.

The CPU cores are very complex out-of-order, shallow-pipelined, low latency execution

cores, in which operations can be performed in a different order to that specified by the

executable code. This on-the-fly re-ordering is performed by the hardware to avoid delays

due to waiting for data from the main memory, but is done in a way that guarantees the

correct results are computed. Each CPU core also has an AVX vector unit. This 256-bit

unit can process 8 single precision or 4 double precision operations at the same time,
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using vector registers for the inputs and output. For example, it can add or multiply

the corresponding elements of two vectors of 8 single precision variables. To achieve

the highest performance from the CPU it is important to exploit the capabilities of this

vector unit, but there is a cost associated with gathering data into the vector registers

to be worked on. Each cores owns an L1 (32KB) and an L2 (256KB) level cache and

they also own a portion of the distributed L3 cache. These distributed L3 caches are

connected with a special ring bus to form a large, usually 15-35 MB L3 or LLC (Last

Level Cache). Cores can fetch data from the cache of another core.

The Xeon Phi or MIC (Many Integrated Core) is Intel’s HPC coprocessor aimed to

accelerate compute intensive problems. The architecture is composed of 60 individual

simple, in-order, deep-pipelined, high latency, high throughput CPU cores equipped

with 512-bit wide floating point vector units which can process 16 single precision or

8 double precision operations at the same time, using vector registers for inputs and

output. This architecture faces mostly the same programmability issues as the Xeon

CPU, although due to the in-order execution the consequences of inefficiencies in the

code can result in more server performance deficit. The MIC coprocessor uses a similar

caching architecture as the Xeon CPU but has only two levels: L1 with 32KB and the

distributed L2 with 512KB/core. The IMCI ISA used on the MIC is equipped with FMA

instruction which is beneficial for tridiagonal solvers as well as many other applications.

The Kepler generation of NVIDIA GPUs have a number of SMX (Streaming Multi-

processor – eXtended) functional units. Each SMX has 192 relatively simple in-order

execution cores. These operate effectively in warps of 32 threads, so they can be thought

of as vector processors with a vector length of 32. To avoid poor performance due to

the delays associated with accessing the graphics memory, the GPU design is heavily

multi-threaded, with up to 2048 threads (or 64 warps) running on each SMX simulta-

neously; while one thread in a warp waits for data, execution can switch to a different

thread in the warp which has the data it requires for its computation. Each thread has

its own share (up to 255 32 bit registers) of the SMX’s registers (65536 32 bit registers)

to avoid the context-switching overhead usually associated with multi-threading on a

single core. Each SMX has a local L1 cache, and also a shared memory which enables

different threads to exchange data. The combined size of these is 64kB, with the relative

split controlled by the programmer. There is also a relatively small 1.5MB global L2

cache which is shared by all SMX units.
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3.5 CPU and MIC solution

In the present section the CPU and MIC solutions are described. The MIC implemen-

tation is essentially the same as the CPU implementation with some minor differences

in terms of the available ISA (Instruction Set Architecture). The ZMM (512 bits wide

Multi Media register) vector registers are 512 bit wide therefore they allow handling 8x8

double precision or 16x16 single precision data transposition.

To have an efficient implementation of the Thomas algorithm running on a CPU, com-

piler auto-vectorization and single thread, sequential execution is not sufficient. To

exploit the power of a multi-core CPU the vector instruction set together with the

multi-threaded execution needs to be fully utilized. Unfortunately, compilers today are

not always capable of making full use of the vector units of a CPU even though the

instruction set would make it feasible. Often, algorithmic data dependencies and execu-

tion flow can prevent the vectorization of a loop. Usually these conditions are related to

the data alignment, layout and data dependencies in the control flow graph. Such con-

ditions are live-out variables, inter-loop dependency, non-aligned array, non-contiguous

data-access pattern, array aliasing, etc. If the alignment of arrays cannot be proven

at compile time, then special vector instructions with unaligned access will be used in

the executable code, and this leads to a significant performance deficit. In general, the

largest difference between the vector level parallelism of the CPU and GPU are the dif-

ferences how the actual parallelism is executed. In the case of the CPU and MIC code

the compiler decides how a code segment can be vectorized with the available instruction

set – this is called SIMD (Single Instruction Multiple Data) parallelism. The capabilities

of the ISA influences the efficiency of the compiler to accomplish this task. GPUs on the

other hand leave the vector level parallelization for the hardware – this is SIMT (Single

Instruction Multiple Threads). It is decided in run-time by the scheduling unit whether

an instruction can be executed in parallel or not. If not, than the threads working in a

group (called a warp in CUDA terms) are divided into a set of idle and active threads.

When the active threads complete the task, another set of idle threads are selected for

execution. This sequential scheduling goes on while there are unaccomplished threads

left. A more detailed study on this topic in the case of unstructured grids can be found

in [45].
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Since the Thomas algorithm needs huge data traffic due to the varying coefficients, one

would expect the implementation of the algorithm to be limited by memory bandwidth.

If an implementation is bandwidth limited and can be implemented with a non-branching

computation stream the GPU is supposed to be more efficient than the CPU due to the

2-4 times larger memory bandwidth. But, this is not true for CPUs with out-of-order

execution, large cache and sophisticated caching capabilities. A single socket CPU in

Appendix A.1 has 20 MB of LLC/L3 (Last Level Cache) per socket, 8 x 256 KB L2 and

8 x 32KB L1 Cache per socket, which is in total 40 MB L3, 4 MB L2 and 512 KB L1

cache total. This caching/execution mechanism makes the CPU efficient when solving

a tridiagonal algorithm with the Thomas algorithm. The two temporary arrays (c∗ and

d∗) can be held in this cache hierarchy and reused in the backward sweep. Therefore

input data (a, b, c and d) only passes through the DDR3 memory interface once when

it is loaded and result array (u) passes once when it is stored.

This means that a system in single precision with 3 coefficient arrays (a RHS array and 2

temporary arrays) can stay in L1 cache up to system length 1365 if no hardware hyper-

threading (HTT) is used or half the size, namely 682 if HTT is used. The efficiency of

the solver still remains very good above this level and a gradual decrease can be observed

as L2 and L3 get more significant role in caching.

Thomas solver in X dimension The data layout described in Section 3.3 doesn’t

allow for natural parallelism available with AVX vector instructions. The loading of an 8-

wide SP (Single Precision) or 4-wide DP (Double Precision) chunk of array into a register

can be accomplished with the use of mm256 load p{s,d} intrinsic or the vmovap{s,d}

assembly instruction if the first element of the register is on an aligned address, otherwise

a mm256 loadu p{s,d} intrinsic or the vmovup{s,d} assembly instruction needs to be

used.

Unfortunately, since the data in the vector register belongs to one tridagonal system, it

needs to be processed sequentially. When the algorithm acquires a value of a coefficient

array, the consecutive 7 SP (or 3 DP) values will also be loaded into the L1 cache. The

L1 cache line size is the same as the vector register width and therefore no saving on

the efficiency of the main memory traffic can be achieved. According to Appendix A.1

this memory can be accessed with 4 clock cycle latency. On a Xeon server processor this

latency is hidden by the out-of-order execution unit if data dependencies allow it. When
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the instructions following the memory load instruction are independent from the loaded

value – eg. the instructions to calculate the index of the next value to be read – the

processor can skip waiting for the data to arrive and continue on with the independent

computations. When the data arrives or the execution flow reaches an instruction that

depends on the loaded value, the processor enters in idle state until the data arrives. L1

caching and out-of-order execution on the CPU therefore enables the Thomas algorithm

in the X dimension to run with high efficiency, although some performance is still lost

due to non-vectorized code.

Vectorization and efficient data reuse can be achieved by applying local data transposi-

tion. This local transposition combines the register or cache blocking optimization with

butterfly transposition. Butterfly or XOR matrix transposition used in the dissertation

is similar to that detailed in Section 4. “The Butterfly Algorithm” of [46]. Historically

the butterfly transposition was first implemented on the Connection Machine and today

it is used on distributed memory systems implemented with the MPI (Message Passing

Interface) All-to-all communication pattern. If the code is written using intrinsic oper-

ations, the compiler decides where the temporary data is stored, either in registers or

cache. The advantage of this approach is that it allows for the use of vector load/store

and arithmetic instructions and vector registers (or L1 cache) which leads to highly

efficient execution.

The process in the case in double precision coefficient arrays is depicted on Figure 3.6.

As the AVX YMM (256 bits wide Multi Media register) registers are capable holding

4 DP values, 4 tridiagonal systems can be solved in parallel. The first 4 values of the

4 systems are loaded and stored in 4 separate vector registers for each coefficient array

a,b etc. This procedure allows for perfect cache line utilization and it is depicted on

Figure 3.6 for the first 4x4 array case. The same procedure is applied for the 8x8 single

precision case with one additional transposition of 4x4 blocks. The process in the case

of 4x4 of array a is the following. Load the first 4 values of the first tridiagonal system

into YMM0 register, load the first 4 values of the second tridiagonal system into YMM1

register etc. Once data is in the register perform transposition according to Figure 3.6

and perform 4 steps of the Thomas algorithm. Do the same for the next 4 values of the

system. Repeat this procedure until the end of the systems are reached.
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Figure 3.5: Vectorized Thomas solver on CPU and MIC architectures. Data is loaded into
M wide vector registers in M steps. On AVX M = 4 for double precision and M = 8 for single
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transposed within registers as described in Figure 3.6 and after that M number of iterations
of the Thomas algorithm is performed. When this is done the procedure repeats until the and

of the systems is reached.
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Figure 3.6: Local data transposition of an M ×M two dimensional array of M consecutive
values of M systems, where ati is the ith coefficient of tridiagonal system t. Transposition can
be performed with M× log2 M AVX or IMCI shuffle type instructions such as swizzle, permute
and align or their masked counter part. On AVX M = 4 for double precision and M = 8 for

single precision. On IMCI M = 8 for double precision and M = 16 for single precision.

Thomas solver in Y and Z dimension The data layout described in Section 3.3

suggests natural parallel execution with mm256 load{u} p{s,d} loads. Unfortunately,

the compiler is not able to determine how to vectorize along these dimensions, since it

can not prove that the neighboring solves will access neighboring elements in the nested

for loops of the forward and backward phases. Not even Intel’s elemental function and

array notation is capable of handling this case correctly.

Since solving tridiagonal problems is inherently data parallel and data reads fit the

AVX load instructions, manual vectorization with AVX intrinsic functions are used to

vectorize the method. Compared to a scalar, multi-threaded implementation, using the

explicit vectorization gives a 2.5 times speedup in dimension Y in single precision.

The vectorized code reads 8/4 consecutive SP/DP scalar elements into YMM regis-

ters ( m256 or m256d) from the multidimensional coefficient array. The implemen-

tation is straightforward with mm256 load p{s,d} intrinsic and the vmovap{s,d} as-

sembly instruction if the first element of the register is on aligned address or with
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mm256 loadu p{s,d} intrinsic and the vmovup{s,d} assembly instruction when data is

not aligned. In case the length along the X dimension is not a multiple of 8/4 padding

is used to achieve maximum performance. Arithmetic operations are carried out using

mm256 {add,sub,mul,div} p{s,d} intrinsics.

When stepping in the Z dimension to solve a system, one may hit the NUMA (Non-

Uniform Memory Access) penalty. The NUMA penalty is the consequence of threads

accessing data in a memory domain which is not attached to their CPU [47, 48]. The

consequences of ccNUMA (cache coherent NUMA) are two-fold. First, the LLC miss

rate increases since the values of d are still in the cache where they have been used the

last time. The coherent cache is implemented through the QPI bus which introduces an

extra access latency when the cache line needs to be fetched from a different socket. LLC

cache miss rate can go up to a level of 84.7% of all LLC-cache access in the Z dimension.

The second consequence is the TLB (Translation Lookaside Buffer) miss penalty which

occurs when elements in an array are accessed with large stride. A TLB page only

covers a 4KB range of the dynamically allocated memory. Once the data acquired is

outside this range, a new page frame pointer needs to be loaded into the TLB cache.

The latency of doing this is the time taken to access the main memory and time taken

by the Linux kernel to give the pointer and permission to access that particular page.

3.6 GPU solution

The GPU implementation of the tridiagonal solver is not as straightforward as the CPU

solver with the Thomas algorithm. Regardless of the underlying algorithms (Thomas

or Thomas-PCR hybrid), solving tridiagonal systems is usually considered to be mem-

ory bandwidth limited, since the ratio of the minimal amount of data that needs to be

loaded (4N) and stored (N) and the minimal amount of FLOPs need to be carried out

is 9NFLOP
(4+1)N values . 9N FLOP is the total amount of addition, multiplication and division

within the two for loops of the Thomas algorithm. This figure is called the compute ratio

and implies that for every loaded value this amount of compute needs to be performed.

This figure also depends on the SP/DP floating point data and processing unit through-

put. Thus the required compute ratio for single and double precision is 0.45FLOP
byte and

0.225FLOP
byte respectively. An algorithm is theoretically expected to be memory bandwidth
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limited if the compute ratio capability of the specific hardware exceeds the compute ra-

tio of the algorithm. For the K40 GPU these figures are 16.92FLOP
byte and 14.89FLOP

byte

respectively which suggest that solving the problem with the most compute-efficient

algorithm – the Thomas algorithm – is memory bound. In the forthcoming discussion

the aim is to improve this bottleneck and achieve high memory utilization with suitable

access patterns and reduced memory traffic.

Global memory load on the GPU poses strict constraints on the access patterns used to

solve systems of equations on a multidimensional domain. The difference with regards

to CPUs comes from the way SIMT thread level parallelism provides access to data in

the memory. Solvers using unit-stride access pattern (along the X dimension) and the

long-strided access pattern (along Y and higher dimensions) need to be distinguished.

The former is explained in Section 3.6.1 while the latter is explained in Section 3.6.2.

The memory load instructions are issued by threads within the same warp. In order

to utilize the whole 32 (or 128) byte cache line threads need to use all the data loaded

by that line. At this point we need to distinguish between the two efficient algorithms

discussed in the dissertation for solving tridiagonal problems along the X dimension,

because the two needs different optimization strategies. These algorithms are

1. Thomas algorithm with optimized memory access pattern, detailed in Sections

3.6.1

2. Thomas-PCR hybrid algorithm, detailed in Section 3.6.3

3.6.1 Thomas algorithm with optimized memory access pattern

The optimization is performed on the Thomas algorithm, which is detailed in Section

3.2.1. The problem with the presented solver is two-fold: 1) the access pattern along

dimension X is different from the pattern along dimensions Y and higher ; 2) in X

dimension the actual data transfer is more than the theoretically required lower limit.

In this section it is shown how to overcome problem 1) and how to optimize the effect of

2) on a GPU. In order to make the discussion unambiguous, the focus of the following

discussion is put on the single precision algorithm. The same argument applies for the

access pattern of double precision.
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Figure 3.7: ADI kernel execution times on K40m GPU, and corresponding bandwidth figures
for X, Y and Z dimensional solves based on the Thomas algorithm. Single precision X
dimensional solve is slower ×16.75 than the Y dimensional solve. Bandwidth is calculated
from the amount of data that supposed to loaded and stored and the elapsed time. High
bandwidth in the case of Y and Z dimensional solve is reached due to local memory caching

and read-only (texture) caching.

The first problem becomes obvious when one considers execution time along the three

dimensions of and ADI solution step, see Figure 3.7. The X dimensional execution

time is more than one order of magnitude lower than the solution along the Y and Z

dimension. This is due to two factors: 1) high cache under-utilization and 2) high TLB

thrashing.

The high cache line underutilization can be explained with the access pattern of coeffi-

cient ai in Algorithm 1. A whole 32 byte cache line with 8 SP values is loaded into the

L2/L1 or non-coherent cache, but temporarily only one value is used by the algorithm

before the cache line is subsequently evicted – this results in poor cache line utilization.

The other values within the cache line are used in a different time instance of the solution

process, but at that point the cache line will already be flushed from the cache. The

same applies to arrays b, c,d,u as well. To overcome this issue one needs to do local

data transposition with cache or register blocking similar to that discussed in Section

3.5. Two solutions to perform this optimization are introduced in Section 3.6.1.1 and

Section 3.6.1.2. The idea of these optimizations is to increase cache line utilization by

reading consecutive memory locations with consecutive threads into a scratch memory

(shared memory or registers) and then redistributing them as needed.

The issue with TLB thrashing in the X dimensional solution relates to the mapping of

threads to the problem. One might map a 2 dimensional thread block on the Y-Z plane
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of the 3 dimensional ADI problem, and process the systems along the X dimension. In

this case the start index (ind in a[ind]) calculation is easy, according to the following

formula:

ALGORITHM 6: The common way of mapping CUDA threads on a 3D problem.

1: y = threadIdx.x

2: z = threadIdx.y

3: ind = z*NX*NY + y*NX

The problem with this mapping is that it introduces significant TLB (Translation Looka-

side Buffer) thrashing. TLB is an important part of the cache hierarchy in every proces-

sor with virtual memory. A virtual memory page covers a certain section of the memory,

usually 4 kB in the case of systems with relatively low memory and 2 MB ”huge memory

page” on systems with large memory. Since NVIDIA does not reveal the details of its

cache and TLB memory subsystem, further details on the supposed TLB structure for

the older GT200 architecture can be found in [44]. Note that significant architecture

changes have been made since GT200, but the latency is expected to be dominated by

DRAM access latency, which did not change significantly in the last few years. The

problem with TLB thrashing arises as z changes and when the different coefficient ar-

rays are accessed. This access pattern induces reads from NX ×NY × 4 bytes distance

and even larger when reading different arrays, which are NX × NY × NZ apart. For

sufficiently large domain this requires the load of a new TLB page table pointer for every

z. The TLB cache can only handle a handful of page pointers, thus in such a situation

thrashing is more significant. Depending on the level of TLB page misses the introduced

latency further increases. Explaining the in-depth effects of TLB is out of the scope of

the dissertation and the reader is suggested to read [44] for more details.

The solution for this problem is simple. One needs to preserve data locality when

accessing the coefficients of the systems, by mapping the threads to always solve the

closest neighboring system. One may map the threads with a 1 dimensional thread

block according to:

ALGORITHM 7: Mapping threads to neighboring systems.

1: tid = threadIdx.x + blockIdx.x*blockDim.x

2: ind = tid*NX
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The inefficiency due to non-coalesced memory access has also been shown on the slides of

[49] and a global transposition solution has been given. This essentially means that the

data has been transposed before performing the execution of the tridiagonal solve and

therefore data is read and written unnecessarily during the transposition. In the disser-

tation two local data transposition solutions are given, both which keep the data in reg-

isters for the time of the tridiagonal solution. These solutions work in a register-blocking

manner and therefore avoid the need of the load and store of the global transposition

resulting in much higher efficiency.

3.6.1.1 Thomas algorithm with local transpose in shared memory

Local data transpose can be performed in shared memory available on most GPU devices.

The optimization is based on warp-synchronous execution, therefore there is no need for

explicit synchronization. Although a warp size of 32 is assumed in the following, the

implementation uses macros to define warp size and thus it allows for changes in the

future. Threads within a warp cooperate to read data into shared memory. The data is

then transposed via shared memory and stored back in registers. The threads perform

8 steps of the Thomas algorithm with the data in registers and then read the next 8

values, and so on. Meanwhile the updated coefficients and intermediate values c∗,d∗ are

stored in the local memory, which automatically creates coalesced and cached load/store

memory transactions. The algorithm is shown in Algorithm 8 and further detailed in

Figure 3.8.

ALGORITHM 8: Thomas algorithm with shared memory transpose

Forward pass:

1: Wrap a warp (32 threads) into 4× 8 blocks to perform non-caching (32byte) loads

2: Load 32× 8 size tiles into shared memory: in 8 steps of 4× 8 block loads

3: Transpose data by putting values into float a[8] register arrays;

4: Perform Thomas calculation with the 8 values along the X dimension

5: Repeat from step 2 until end of X dimension is reached

Backward pass:

1: Compute backward stage of Thomas in chunks of 8

2: Transpose results and store in global memory

The shared memory on an NVIDIA GPU can be accessed through 32 banks of width

32 or 64 bits – latter only applicable from NVIDIA Compute Capability 3.0 and higher.
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Figure 3.8: Local transpose with shared memory.

Since the width of the block that is stored in shared memory is 8, this leads to shared

memory bank conflicts in the 3rd step of Algorithm 8. In the first iteration the first 4

threads will access banks 0,8,16,24, the next 4 threads will again access 0,8,16,24 and so

on. To overcome this problem the leading dimension (stride) in shared memory block

is padded to 9 instead of 8. This common trick helps to get rid of most of the bank

conflicts. The first 4 threads will access banks 0,9,18,27, the next 4 threads will access

banks 1,10,19,28 and so on. The amount of shared memory utilized for the 4 register

arrays is 9 ∗ 32 ∗ 4 ∗ 4 bytes/warp = 4608 bytes/warp.

3.6.1.2 Thomas algorithm with local transpose using register shuffle

Local data transposition can also be performed in registers exclusively. This solution fits

recent NVIDIA GPU architectures, starting with the Kepler architecture with Compute

Capability 3.0. The optimization is again based on warp-synchronous execution with

the use of shfl() register shuffle intrinsic instructions. Although a warp size of 32 is

assumed in the following, the implementation uses C macros definitions to set warp size

and thus it allows for future architecture change. Threads within a warp cooperate to

read a 32 × 16 SP block or 32 × 8 DP block of the x-y plane, ie. threads cooperate to

read 16 SP or 8 DP values of 32 neighboring systems. Every 16 or 8 threads within the

warp initiate a read of two cache-lines (2 × 32 bytes). They store the data into their

register arrays of size 16 for SP and 8 for DP. These local arrays will be kept in registers

for the same reasons that are discussed in Section 3.6.1.1. Once data is read, threads

cooperatively distribute values with the XOR (Butterfly) transpose algorithm using the
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shfl xor() intrinsic in two steps. Once every thread has the data they perform 16 SP

or 8 DP steps of the Thomas algorithm with the data in registers and then read the

next 16 SP or 8 DP long array, and so on. Meanwhile the updated coefficients and

intermediate values c∗,d∗ are stored in the local memory, which automatically creates

coalesced, cached load/store memory transactions. The algorithm is shown in Algorithm

9 and further detailed in Figure 3.9.

ALGORITHM 9: Thomas algorithm with register shuffle transpose

Forward pass:

1: Wrap 32 threads into 8× 4 blocks to perform 4× float4 vector loads

2: Load 32× 16 size tiles into registers:

3: 4 threads read 4 consecutive float4 vectors = 64 bytes

4: Do this 4 times for rows under each other

5: Transpose data within 4 threads:

6: 4 threads exchange data on a 4× 4 2D array with shfl(float4)

7: Each element in the 2D array is a float4 vector

8: Perform Thomas calculation with the 16 values along X dimension

9: Repeat from 2 until end of X dimension is reached

Backward pass:

1: Compute backward stage of Thomas in chunks of 8

2: Transpose results and store in global memory
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Figure 3.9: Local transpose with registers.

The use of the register shuffle instruction increases the register pressure compared to the

shared memory version, but since the data is kept in registers, all the operations within
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a 16 SP or 8 DP solve are performed in the fastest possible way, thus the overall gain is

significant.

3.6.2 Thomas algorithm in higher dimensions

The Thomas algorithm gives itself to natural parallelization and efficient access pattern

in the dimensions Y and above. The memory access patterns fit the coalesced way of

reading and storing data. Therefore, the Thomas algorithm is efficient in these directions

and the only limiting factor is the bandwidth throughput requirement posed by reading

3 coefficients and 1 RHS arrays, writing and later reading the 2 temporary arrays and

finally writing out the solution array.

3.6.3 Thomas-PCR hybrid algorithm

The Thomas-PCR hybrid algorithm introduced in Section 3.2.4 is implemented using

either shared memory or register shuffle instructions. The advantage of the hybrid

algorithm is that it allows for storing the entire system in the registers of a warp. Every

thread in the warp is responsible for part of the system of size M , eg. if the system size

is 256, then M = 8 and each thread stores an 8 long chunk of the 3 coefficients, the

RHS and the solution vector in its registers. This storage method puts a high pressure

on register allocation, and it stays efficient only up to a system size which allows the

sub-arrays to be stored in registers. Every thread individually performs the first phase

of the modified Thomas algorithm and then switches to PCR to cooperatively solve the

second phase of the hybrid algorithm. Meanwhile the intermediate, modified coefficients

and RHS values are kept in registers. Once the PCR finished, its solution can be used

to solve the subsystems with the recently computed boundary values. Then follows the

third phase where the back-substitution of the modified Thomas algorithm is performed.

In the case of the X dimensional solve, threads of a warp need contiguous chunks of size

M of the whole array. This poses the same need for reading and transposing data in the

X dimension, just like in Section 3.6.1.1 and 3.6.1.2.

Data transposition can be performed both using shared memory or register shuffles. To

achieve good efficiency warp-synchronous implementation is used in the solver. Threads

of a warp read consecutive values in a coalesced way, in multiple steps of 32 values and
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store data in shared memory. Then each thread reads its own M values from shared

memory.

ALGORITHM 10: Thomas-PCR hybrid in X dimension

1: Read N values with 32 threads in a coalesced way
2: Transpose array data so that every thread has its own M interior values
3: For each thread, compute interior M elements in terms of outer 2
4: The new tridiagonal system of size 2*32 is solved by PCR, using shuffles or data exchange

through shared memory
5: Perform back-substitution for interior elements in terms of outer 2 values

In Y and higher dimensions the access pattern fits the algorithm better, just like in the

case of the standard Thomas algorithm. In this case there is no need for data trans-

position, but there is need for thread block synchronization. The solution along these

dimensions is the most efficient with few restrictions. Algorithm 11 is similar to Algo-

rithm 10 in terms of the underlying hybrid algorithm, with the significant difference that

warps cooperate to solve multiple systems. Each thread within a warp solves an M size

chunk. The chunks within a warp don’t necessarily contribute to the same system. At a

certain phase warps share the necessary information to connect the matching systems.

Sharing data is done through shared memory with thread block synchronization, but

the solution of the reduced system is done with PCR the same way as in Algorithm 10.

ALGORITHM 11: Thomas-PCR hybrid in dimension Y and above

1: Threads within a warp are grouped into (W/G)×G blocks, where G is the number of
systems solved by a warp.

2: The first G threads read the first M values of G systems, second G threads read the second
M values and so on.

3: Data of G systems are now loaded into registers
4: Every thread computes an independent M size system: thread 0 computes the first M

values of problem 0, thread G computes the second M values, thread 2G computes the
second M values etc.

5: Threads cooperate through shared memory to each reduced system into one warp.
6: Every warp computes an independent reduced system independently.
7: Reduced solution is propagated back to threads to solve interior systems.
8: Data is stored the same way as it was read.

3.7 Performance comparison

The performance of the solvers presented are discussed in terms of scalability on different

system sizes and along different dimensions on all three architectures – namely on an

NVIDIA GPU, Intel Xeon CPU and Xeon Phi coprocessor. Further in the disseration the
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GPU will also be referred as SIMT (Single Instruction Multiple Thread) architecture and

the CPU and Xeon Phi collectively will also be referred to as SIMD (Single Instruction

Multiple Data) architecture.

SIMD (CPU and Xeon Phi) measurement results are heavily contaminated with system

noise. Therefore significantly longer integration time had to be used for averaging exe-

cution time. There is however a significant recurring spike in the execution time of the

Xeon Phi results, that is worth discussing. In single precision almost every system size

with a multiple of 128 and almost every system size in double precision with a multi-

ple of 64 results in a significant, more than ×2 slowdown. This is the consequence of

cache-thrashing. Cache-thrashing happens when cache-lines on 2n bytes boundaries with

same n are accessed frequently. These memory addresses have different tag ID-s, but the

same address within a tag. This means that threads accessing the two cache-lines of such

boundaries contaminate the shared L3 (or LLC) level cache, ie. they thrash the shared

cache. This problem can be overcome if the cache architecture uses set-associative cache

with high associativity – at least as many threads are sharing the cache. This is true in

the case of a modern processor. The size of L2 cache is so low in the case of the Xeon Phi

coprocessor, that only 512KB/4threads = 128KB/thread is available and that might

not allow for an efficient set-associativity.

The presented scaling measurements in the following subsections are run with fixed,

2562 = 65536 number of systems. The large number of systems ensures enough par-

allelism even for the Thomas solver – which by nature contains the most sequential

computations – in the case of the GPU. Since GPUs need a tremendous amount of work

to be done in parallel to hide memory latency, the 65536 parallel work units are enough

to saturate the CUDA cores and more importantly the memory controllers. The length

of the systems along the different dimensions are changed by extruding the dimension

under investigation from 64 up to 1024 with steps of size 4. The resulting execution

times are averaged over 100-200 iterations to integrate out system noise. The execution

time reported is the proportion of the total execution time to one element of the three

dimensional cube and does not include the data transfer to the accelerator card. This

gives good reference to compare the different solvers, since it is independent of the num-

ber and the length of the systems to be solved. It is expected that the execution time

per element be constant for a solver, since the execution time is limited by the memory

transfer bottleneck. The execution time differences of the algorithms presented in this
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section only relate to the memory transfer and memory access pattern of the particular

algorithm. All implementations presented here utilize a whole cache line except the

SIMD X solvers and the näıve GPU solver. The dependence on system size relates to

running out of scratch memory (registers caching, L1/L2/L3 cache, TLB cache) for large

systems and having enough workload for efficiency in the case of small systems. These

dependences are discussed in the following in the discussion of the corresponding solver.

The results are also compared against the dtsvb() function of the Intel Math Kernel

Library 11.2 Update 2 for Linux library [50] and the gtsv() function of the NVIDIA’s

cuSPARSE library [51]. The dtsvb() solver is a diagonally dominant solver which ac-

cording to the Intel documentation is two times faster than the partial pivoting based

gtsv() solver. The execution of multiple dtsvb() solvers is done using OpenMP. Details

of the hardware used are discussed in Appendix A.1. Since the implementations for X

and higher dimensions differ we also need separate discussion for these cases.

In a realistic scenario in high dimensions the data transfer between the NUMA nodes

is unavoidable since an NUMA-efficient layout for the X dimensional solve is not effi-

cient for the Y dimensional solve and vice versa. Therefore no special attention was

made to handle any NUMA related issues in the 2 socket CPU implementation for any

dimensions.

3.7.1 Scaling in the X dimension

Figures 3.10 and 3.11 show the performance scaling in the X dimension for single and

double precision for all the architectures studied in the dissertation. Figure 3.13 com-

pares the solvers for a specific setup.

3.7.1.1 SIMD solvers

The SIMD solvers rely on the regular Thomas algorithm with or without local data

transposition. The detailed description of these solvers is in Section 3.5. The MKL

dtsvb() solver for diagonally dominant tridiagonal systems was chosen as the baseline

solver. In the following comparison all the presented SIMD implementations take advan-

tage of multithreading with OpenMP. Threads using KMP AFFINITY=compact were

pinned to the CPU and MIC cores to avoid unnecessary cache reload when threads are
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Figure 3.10: Single precision execution time per grid element. 65536 tridiagonal systems
with varying NX length along the X dimension are solved. CPU, MIC and GPU execution

times along with the comparison of the best solver on all three architectures are show.

scheduled to another core. Other run-time optimization approaches using numactl and

membind were also considered, but they did not provide any significant speedup.

As seen in Figure 3.10 and 3.11 the näıve Thomas algorithm with OpenMP outperforms

the MKL dtsvb() solver and the transposition based Thomas solver further increases the

speedup on a 2 socket Xeon processor. The näıve Thomas solver in the X dimension is

not capable of utilizing any AVX instruction due to the inherent nature of vector units

on CPUs, however the transposition based solvers are capable of taking advantage of the

vector units as it is described in Section 3.5. The execution time declines and saturates

in both single and double precision as the system size increases, due to the workload

necessary to keep threads busy on the CPU. Forking new threads with OpenMP has a

constant overhead which becomes less significant when threads have more work. Above
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Figure 3.11: Double precision execution time per grid element. 65536 tridiagonal systems
with varying NX length along the X dimension are solved. CPU, MIC and GPU execution

times along with the comparison of the best solver on all three architectures are show.

a certain system size the CPU provides stable execution time. The efficiency of the CPU

relies on the cache and out-of-order execution performance of the architecture. The size

of the temporary arrays during the solution is small enough to fit into the L1 cache. The

out-of-order execution is capable of hiding some of the 4 clock cycle latency of accessing

these temporary, cached values which in total results in high efficiency.

The performance of the näıve Thomas algorithm on the Xeon Phi coprocessor is far from

the expected. Due to the difficulty in vectorizing in the X dimension described in Section

3.5, the coprocessor needs to process the data with a scalar code. Since the scalar code

is more compute limited than a vectorized code, and since the clock rate of the Xeon

Phi is almost a third of the Xeon processor, the efficiency of the code drops to about the

third of the vectorized code. However significant x2 increase in speedup is reached on
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the MIC architecture both in single and double precision when using the transposition

based Thomas solver. The performance increase due to vectorization would imply a

8 or 16 times speedup in single or double precision respectively, but the underlying

execution architecture, compiler and caching mechanism is not capable of providing this

speedup. The overall performance of the Xeon Phi with the transposition based Thomas

algorithm is comparable to the CPU for small system size and becomes slower than the

CPU as the system size increases above 200-300. Significant spikes in execution time

of the näıve solver can be seen in both single and double precision on almost every 512

byte steps, either in steps of 128 in single precision or in steps of 64 in double precision.

Thread pining with KMP AFFINITY=compact option prevents thread migration and

improves the performance on the coprocessor significantly. To understand the difference

between the CPU and the MIC architecture the reader is suggested to study the ISA

manuals [43] and [26] of the two architectures. The two architectures are radically

different. The CPU works at high clock rates with complex control logic, out-of-order

execution, branch prediction, low latency instructions and large, low latency distributed

cache per thread. The MIC (Knights Corner) architecture is the opposite in many of

these properties. It works at low clock rate, has simple control logic, in-order execution,

no branch prediction, higher latency instructions and small, higher latency cache per

thread. These fact suggest that when the input data is fetched into the cache, the

heavy weight CPU cores utilize these data much efficiently than the light weight MIC

cores. One may note that the upcoming Intel Knights Landing architecture with its

out-of-order execution unit may significantly improve the MIC performance.

3.7.1.2 SIMT solvers

One may notice that the worst performance is achieved by the näıve GPU solver – even

worse than any SIMD implementation. The inefficiency comes from the poor cache line

utilizations discussed in Section 3.6. The measurements are contaminated with deter-

ministic, non-stochastic noise that may come from cache efficiency and cache thrashing

etc. This noise can not be attenuated by longer integration time. Due to the low cache

line utilization the implementation is fundamentally latency limited. This is supported

by the fact that the execution time is almost the same for the single and double precision

cases. Every step of the solver requires the load of a new cache line and since cache lines
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on GPU architectures are not prefetched, both single and double precision versions move

the same amount of data (32 byte cache line) through the memory bus.

The cuSPARSE v7.0 solver provides better performance than the näıve solver, but it also

has a significant recurring dependence on system size. The cusparse{S,D}gtsvStridedBatch()

solver performs the best when the system size is a power of two in both single and double

precision cases. The performance can vary approximately by two times speed difference

in both single and double precision. This dependence is due to the internal imple-

mentation of the hybrid CR/PCR algorithm that is used inside the solver [51]. The

performance of this solver is even worse than the MKL dtsvb()library function on the

CPU in both single and double precision. The slowdown of cuSPARSE versus the MKL

solver is only valid for the regime of short systems in the order of thousands of length.

For larger systems this tendency changes for the advantage of the cuSPRASE library.

Since the practical applications detailed in the introductory Section 1.2.1 involves the

solution of systems below the thousand size regime, systems above this limit are not the

scope of the dissertation.

The transposition based Thomas solvers perform better than cuSPARSE by a factor of

2.5 − 3.1 in the case of transposition in shared memory and by 4.3 − 3.3 in the case of

register shuffle depending on floating point precision and system size. The advantage

of making extra effort for improving the cache line utilization is obvious. The achieved

speedup compared to the näıve Thomas solver is 6.1 − 7.2 in the case of single and

double precision respectively. The efficiency of the Thomas solver with transposition

remains constant as the system size increases, ie. there is no significant fluctuation in

performance.

One may notice that the padding is important for the register transposition so that

aligned float4 or double2 loads may be done, which can not always be ensured. There

is a factor 2 speed difference between the shared memory transposition and the register

shuffle transposition in single precision. This difference is negligible in double precision

since 64bit wide shared memory bank access is used to access the scratch memory instead

of 32bit in the case of single precision. The wider bank access has been introduced in

the Kepler architectures and it effectively doubles the bandwidth of the shared memory

when 64bit access can be ensured. In case of shared memory a read throughput of

1211 GB/s and store throughput of 570 GB/s is measured with NVVP (NVIDIA Visual
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Profiler) on a 2563 single precision cube domain. Also, the transposition using shared

memory happens by reading 32bytes at a time, whereas in the case of the register shuffle

based transposition 64 bytes are read from the global memory at a time.

The hybrid Thomas-PCR algorithm outperforms every solver in the X dimension in

single precision. In double precision however the performance drops significantly beyond

system size 512. The efficiency is due to the register blocking nature of the algorithm.

Each system that is solved is completely resident in registers and therefore only the

input data is read once and the output is stored once. This results in the minimum

amount of data transfers and leads to the best possible performance.

3.7.2 Scaling in higher dimensions

Figure 3.12 shows the performance scaling in the Y dimension for single and double

precision for all the architectures studied. Since the solution of tridiagonal systems with

non-unit stride is not implemented in any library up to date, the higher dimensional

execution time benchmarks do not contain any standard library execution times. Trans-

posing the data structure would allow for the use of the standard solvers, but it has

not been done for two reasons: 1) the efficiency of transposing the whole data structure

would involve further optimization of implementations attached to standard library code

and the overall performance would be influenced by the extra programming effort; 2)

even with a highly optimized transposition the overall execution time would be higher

then in the X dimension.

3.7.2.1 SIMD solvers

The SIMD solvers rely on the regular Thomas algorithm. The detailed description is

in Section 3.5. Both the CPU and the MIC SIMD architectures are able to utilize the

256 bits and 512 bits wide AVX and IMCI vector units to solve a tridiagonal system.

This means that 8(4) and 16(8) systems can be solved by a single thread in parallel in

single(double) precision on CPU and MIC respectively. The efficiency of the CPU relies

on the cache and out-of-order execution performance of the architecture. The size of

the temporary arrays for the systems solved in parallel is small enough to fit into the

L1 cache and the L2 cache. The out-of-order execution is capable of hiding some of
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Figure 3.12: Single and double precision execution time per grid element. 65536 tridiagonal
systems with varying NY length along the Y dimension are solved. CPU, MIC and GPU
execution times along with the comparison of the best solver on all three architectures are

show.

the 4 clock cycle latency of accessing these temporary in the L1 cache. On Figure 3.12

it can be seen that the CPU and MIC performance changes in parallel. Although the

scaling should be constant, it is changing almost linearly in the case of single precision

and super linearly in double precision. The reason for the latter is that the cores are

running out of L1 cache and the L2 cache performance starts to dominate. Two arrays

(c∗ and d∗) need to be cached for good performance. For instance, system size N = 1024

needs 1024element∗8bytes/element∗2arrays∗4parallelsystems = 64KB to be cached,

which is twice the size of the L1 cache. The single precision solver remains linear in this

regime, because even 1024 long system fits into the L1 cache. The order of the two for

loops (X and Z) iterating on the 65526 systems have set so that better data locality

is achieved and thus better TLB hit rate is reached. The Thomas solver on the dual

socket Xeon CPU is the slowest among all the solvers. The MIC architecture is by a

factor 1.8 − 2 faster then the CPU. The SIMD architectures require aligned loads for

best performance which can be ensured with padding otherwise the performance is hit

by unaligned data loads and stores. The vector operations can still be performed, the

non-alignment only hits data transfer.

3.7.2.2 SIMT solvers

The näıve GPU solver provides stable execution time and it is up to 3.6(3.8) times

faster than the dual socket Xeon CPU and 2.1(2.5) times faster then the Xeon Phi in
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single(double) precision. The GPU implementation is capable of solving 32 systems

within a warp using coalesced memory access. The performance is therefore predictable

and very efficient. The only drawback of the solver is that it is moving more data than the

Thomas-PCR hybrid solver (detailed in Section 3.2.4) which caches the data in registers.

Therefore the Thomas-PCR hybrid algorithm is up to 1.5(1.8) faster than the näıve

GPU solver in case of single(double) precision. Compared to the highly optimized two

socket CPU solver the Thomas-PCR solver is 4.3(4.6) faster in single(double) precision.

Compared to the highly optimized MIC the speedup is 2.2− (2.5). These are significant

differences which can be maintained until there is enough register to hold the values of

the processed systems. Once the compiled code runs out of register, the effect of register

spill becomes obvious, since the execution time jumps by more the 50% – this happens

with system size 320 in single precision and 384 in double precision. In case of register

spill the advantage of the Thomas-PCR over the näıve solver is negligible and above

certain system size it is even worse.

3.8 Conclusion

In the past many algorithms have been introduced to solve a system of tridiagonal

equations, but only a few of them took advantage of the fact that in certain cases (eg.

an ADI solver) the problem to be solved contains a large number of small systems to

solve and the access pattern of the system elements might change in data structures

with 2 dimensions and above. It has been shown that in the X dimension the standard

Thomas algorithm with modified access pattern using local data transposition on both

CPU, MIC and GPU can outperform library quality, highly optimized code, such as: 1)

dtsvb() MKL diagonally dominant solver running on multiple threads on a dual socket

Xeon processor and 2) the PCR-CR hybrid algorithm implemented in the cuSPARSE

library provided by NVIDIA. If the system size allows caching in registers, then a new

proposed Thomas-PCR hybrid algorithm on the GPU can be used to solve the problem

even more efficiently with a speedup of about 2 compared to the Thomas algorithm

with local data transposition. It has been shown that in higher dimensions (Y , Z etc.)

the näıve solver allows for coalesced (or almost coalesced) access pattern and therefore

there is no need for transposition and the performance is high. The Thomas-PCR for X

dimension is modified to handle systems in higher dimensions by using more warps to
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load and store the data required in the computation. The register and shared memory

pressure is higher in these cases and register spills occur above system size 320 in single

and 384 in double precision. The Thomas algorithm performs better for above these

system sizes. Figure 3.13 summarizes the exection times for the X and Y dimensions in

the case of a 240× 256× 256 domain.

GPU Naïve GPU Shared GPU Register
GPU

ThomasPCR
GPU

cuSPARSE
CPU CPU MKL MIC MIC MKL

Trid-X SP 2,81 0,39 0,23 0,11 0,99 0,34 0,51 0,42 0,81

Trid-X DP 3,02 0,49 0,47 0,21 1,54 0,67 0,95 0,62 1,15

Trid-Y SP 0,16 0,11 0,47 0,24

Trid-Y DP 0,34 0,19 0,87 0,47
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Figure 3.13: Grid element execution times per grid element on a 240 × 256 × 256 cube
domain. X dimension is chosen to be 240 to alleviate the effect of caching and algorithmic
inefficiencies which occurs on sizes of power of 2 as it can be seen on Figures 3.10,3.11,3.12.
Missing bars and n/a values are due to non-feasible or non-advantagous implementations in

the Y dimension.

The conclusion is, that the Thomas algorithm with modified access pattern is advanta-

geous up to relatively large system sizes in the order of thousands. The Thomas-PCR

hybrid gives better performance in the X dimension in this regime. In the Y dimen-

sions and above the Thomas-PCR is the best performing up to system size 320(384) in

single(double) precision, but above this size the Thomas regains its advantage due to its

simplicity.
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Chapter 4

Block Tridiagonal Solvers on

Multi and Many Core

Architectures

4.1 Introduction

In many real-world CFD and financial applications the multidimensional PDEs have

interdependent state variables. The state variable dependence creates a block structure

in the matrix used in the implicit solution of the PDE. In certain cases these matrices

are formed to be tridiagonal with block matrices in the diagonal and off-diagonals. The

M2 block sizes are usually in the range of M = 2, .., 8 and therefore the tridiagonal

matrix takes the forms shown in Equation 4.1 and 4.2.

Aiui−1 + Biui + Ciui+1 = di (4.1)



B0 C0 0 0 · · · 0

A1 B1 C1 0 · · · 0

0 A2 B2 C2 · · · 0
...

...
...

...
. . .

...

0 0 0 · · · AN−1 BN−1





u0

u1

u2

...

uN−1


=



d0

d1

d2

...

dN−1


(4.2)

58
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where Ai,Bi,Ci ∈ RMxM , ui,di ∈ RM and M ∈ [2, 8].

4.2 Block-Thomas algorithm

ALGORITHM 12: Block Thomas algorithm

Require: block thomas(A,B,C,d)

Forward pass

1: C0
∗ = B−1

0 C0

2: d0
∗ = B−1

0 d0

3: for i = 1, . . . , N−1 do

4: Ci
∗ = (Bi −AiC

∗
i−1)−1Ci

5: di
∗ = (Bi −AiC

∗
i−1)−1(di −Aid

∗
i−1)

6: end for

Backward pass

7: uN−1 = d∗
i

8: for i = N−2, . . . , 0 do

9: ui = d∗
i −C∗

i ui+1

10: end for

11: return u

The block Thomas algorithm is essentially the same as the scalar algorithm, assuming

that scalar operations are exchanged with matrix operations. The lack of commutative

property of the matrix multiplication, the order of these matrix operations have to be

maintained throughout the implementation. See Algorithm 12 for details. The block

structure introduces matrix operations such as 1) block matrix inversion with O(M3);

2) block matrix-matrix multiplication with O(M3) and addition with O(M2); 3) block

matrix-vector multiplication with O(M2). On the other hand the data transfer is only

O(M2) per block matrix. As the matrix operations are dominated by O(M3) versus

the O(M2) data transfer, the solution of the block tridiagonal system becomes compute

limited as the block size increases. Once the data is read and stored in scratch memory,

the cost of making the matrix operations is the bottleneck, both because arithmetic

complexity and control flow complexity are significant. Let us define the O complexity in

terms of block matrix operations with the arithmetic complexity states above, and define

the total work as the complexity of solving a single system times the number of systems
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to be solved on a given number of parallel processors. When solving N long systems

on N processors the Thomas algorithm has N O(N) total work complexity versus the

N O(N logN) total work complexity of the PCR algorithm. This significant difference

establishes the use of the Thomas algorithm over the PCR in the block tridiagonal case.

Algorithms for solving block-tridiagonal system of equations have been previously de-

veloped in [52, 53, 33]. [54] gave a GPU based solution using the block PCR algorithm

motivating their choice by the inherent parallelism given by the algorithm and the de-

mand for high parallelism by the GPU. The overall arithmetic complexity of the PCR is

known to be higher than that of the Thomas algorithm as it is detailed in Section 4.2.

As many CFD applications consider block sizes of M = 2, .., 8 the motivation is to make

use of the computationally less expensive algorithm, namely the Thomas algorithm and

exploit parallelism in the block-matrix operations. In other words, the overall arithmetic

complexity is kept low by the Thomas algorithm and the parallelism is increased by the

work-sharing threads which solve the block-matrix operations.

[54] used a highly interleaved SOA (Structure of Arrays) storage format to store the

coefficients of the systems in order to achieve coalesced memory access pattern suitable

for the GPU. In that approach the data on the host is stored in AOS (Array of Structures)

format which had to be converted into SOA format to suit the needs of the GPU. In

our approach the work-sharing and register blocking solution alleviates the need for

AOS-SOA conversion, ie. the data access efficiency remains high.

4.3 Data layout for SIMT architecture

The data layout is a critical point of the solver, since this influences the effectiveness of

the memory access pattern. Coalesced memory access is needed to achieve the best theo-

retical performance, therefore SOA data structures are used in many GPU applications.

In this section an AOS data storage is presented in which blocks of distinct tridiagonal

system are interleaved. Block coefficients Ap
n,B

p
n,C

p
n,d

p
n are stored in separate arrays.

The data layout of A, B, C and C∗ coefficient block arrays are the same. Within the

array of blocks the leading dimension is the row of a block, ie. blocks are stored in row

major format. The block of system p is followed by the block of system block p + 1 in
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the array, ie. the blocks in array A are stored by interleaving the nth blocks of problems

p = 0, .., P − 1 in the way shown on Figure 4.1.

A0
0 A1

0 A2
0 · · · AP−1

0

Blocks of p = 0..(P − 1)

A0
1 A1

1 A2
1 · · · AP−1

1

Blocks of p = 0..(P − 1)

A0
2 A1

2 A2
2 · · · AP−1

2

Blocks of p = 0..(P − 1)

· · ·

a
(0,0)
00 a

(0,0)
01 a

(0,0)
02

1st row

a
(0,0)
10 a

(0,0)
11 a

(0,0)
12

2nd row

a
(0,0)
20 a

(0,0)
21 a

(0,0)
22

3rd row

a
(0,1)
00 a

(0,1)
01 · · ·

1st row

Blocks mapped to linear memory

Figure 4.1: Data layout within coefficient array A. This layout allows nearly coalesced access
pattern and high cache hit rate when coalescence criteria is not met. Here Ap

n is the nth block
(ie. nth block-row in the coefficient matrix) of problem p and p ∈ [0, P − 1], n ∈ [0, N − 1].
Notation for the scalar elements in the nth block of problem p are shown on Eq. (4.3). Bottom

part of the figure shows the mapping of scalar values to the linear main memory.

Ap
n =


a

(n,p)
00 a

(n,p)
01 a

(n,p)
02

a
(n,p)
10 a

(n,p)
11 a

(n,p)
12

a
(n,p)
20 a

(n,p)
21 a

(n,p)
22

 (4.3)

Vectors d, d∗ and u are stored in a similar, interleaved fashion as depicted on Figure

4.1. Subvectors in array d are stored by interleaving the nth subvector of problems

p = 0, .., P − 1 in the way shown on Figure 4.2. The notation of the scalar values of dp
n

can be seen on Eq. (4.4).

d0
0 d1

0 d2
0 · · · dP−1

0

Blocks of p = 0..(P − 1)

d0
1 d1

1 d2
1 · · · dP−1

1

Blocks of p = 0..(P − 1)

d0
2 d1

2 d2
2 · · · dP−1

2

Blocks of p = 0..(P − 1)

· · ·

d
(0,0)
0 d

(0,0)
1 d

(0,0)
2

1st row

d
(0,1)
0 d

(0,1)
1 d

(0,1)
2

2nd row

d
(0,2)
0 d

(0,2)
1 d

(0,2)
2

3rd row

· · ·

Block vectors mapped to linear memory

Figure 4.2: Data layout of d as block vectors. This layout allows nearly coalesced access
pattern and high cache hit rate when coalescence criteria is not met. Here dp

n is the nth block
(ie. nth block-row in the coefficient matrix) of problem p and p ∈ [0, P − 1], n ∈ [0, N − 1].
Notation for the scalar elements in the nth block of problem p are shown on Eq. (4.4). Bottom

part of the figure shows the mapping of scalar values to the linear main memory.

dp
n =

(
d

(n,p)
0 d

(n,p)
1 d

(n,p)
2

)T
(4.4)
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This data layout allows the threads to load data through texture cache from global

memory with efficient access pattern and cache line utilization. A block is read in M

steps. In each step a row of the block is read. The scalar values are stored in the

registers as shown of Figure 4.3. In the second step threads read the second row in the

same manner, and so on.

This storage format allows for high texture cache hit rate by assuring that most of the

data that is read in within a 32 bytes cache line. Let us take the case of M = 3 in single

precision when reading A0
0. In the first step only the first row of the block is read, ie. 12

bytes of the 32 bytes cache line is utilized. Once a texture cache line is loaded it will be

reused immediately in the following few instructions or by the neighboring thread. In

the next step, when the second row of the block is read, the cache line is already in the

texture cache and this time 12 bytes are directly read from the texture cache. In the

third step, when the third row is read, the 12 bytes are again in the cache, since 8 bytes

out of the 12 bytes are in the same cache line as the first two rows, and the remaining 4

bytes are in the cache line read by the next group of 3 threads which read the block A1
0.

All this is done in parallel by b32/3c = 30 threads. The total amount of data that is

read by the warp is 32 scalars
block × 4 blocks

system × 10 systems = 360bytes, which fits into 12 cache

lines. Only 3 × 10 = 30 threads are active in the warp (which has 32 threads). The

probability of a cache line being evicted is low, since the cache lines are reused by the

threads in the same warp. Since the sequence of instructions of loading a block doesn’t

contain data dependency, there is no reason for the scheduler to idle the active threads

which started loading the data.

4.4 Cooperating threads for increased parallelism on SIMT

architecture

SIMT architectures are inherently sensitive to parallelism, ie. they need enough run-

ning threads to hide the latency of accessing the memory and filling up the arithmetic

pipelines efficiently. Also, the implemented solver has to consider the constraints of the

processor architecture being used. The Kepler GK110b architecture has 48KiB shared
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memory and 64K 32bit registers available for use within a thread block with up to 255

registers/thread. Computing block matrix operations with a single thread is not effi-

cient due to the following reasons: 1) the limited number of registers and shared memory

doesn’t allow for temporary storage of block matrices and reloading data from global

memory is costly; 2) in order to utilize coalesced memory access a high level of input

data interleaving would be required, which is not useful in real application environment.

As a consequence the problem would become memory bandwidth limited rather than

compute limited. The workload of computing a single systems therefore needs to be

shared among threads, so that block matrix data is distributively stored in the registers

(and shared memory) of threads. This means that both workload and data storage is

distributed among the cooperating threads.

We propose to use M number of threads to solve the M dimensional block matrix

operations, so that every thread stores one column of a block and one scalar value of

a vector that is being processed, see Figure 4.3 for details. Subsequent M threads are

computing a system and a warp computes b32/Mc number of systems. This means that

b32/Mc ∗M threads are active during the computation. The rest are idle. With this

work distribution in the M = 2, .., 8 range the worst case is M = 7 when 4 out of 32

threads are inactive and thus 87.5% is the actual computation performance that can be

reached.
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a
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10 a
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( )
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Figure 4.3: Shared storage of blocks in registers. Arrows show load order. Thread T0,T1 and
T2 stores the first, second and third columns of block Ap

n and first, second and third values
of dp

n.

The communication to perform matrix operations is carried out using either shared

memory or register shuffles ( shfl() intrinsic). Just like in the case of the scalar solver,

register and shared memory is not enough to store the intermediate C∗,d∗ block arrays
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and for this purpose local memory is used – this is an elegant way of getting coalesced

memory access.

In the following the essential block matrix operations are discussed using Figure 4.3.

Important to notice that all the implementation with register shuffle is written in a way

that the local arrays storing block columns are held in registers. Two criteria need to

be satisfied to achieve this, 1) local array indexing needs to be known at compile time

and 2) local array size can not exceed a certain size defined internally in the compiler.

Matrix-vector multiplication

When performing matrix-vector multiplication, threads have the column of a block and

the corresponding scalar value to perform the first step of matrix-vector multiplica-

tion, namely scalar-vector multiplication – this is done in parallel, independently by the

threads. The second step is to add up the result vectors of the previous step. In this case

threads need to share data, which can either be done through shared memory or using

register shuffle instructions. In the case of shared memory the result is stored in shared

memory. It is initialized to 0. In the mth step (where m = 0, ..,M−1) thread m adds its

vector to the shared vector and thread block synchronizes. In the case of register shuffle

the multiplication is also done in M steps. In the mth step the M threads compute a

scalar product of the mth row and shuffle the computed values around (in round-robin)

to accumulate these values. The actual addition of the accumulation is done by the mth

thread.

Matrix-matrix multiplication

Matrix-matrix multiplication needs to communicate the M ×M values of one of the

blocks. This can either be done through shared memory or register shuffle. In the case

of shared memory this approach uses M2 number of syncthreads() which would suggest

heavy impact on performance, but the results are still satisfying. The register shuffle

approach doesn’t require synchronization, thus it is expected to work faster then the

shared memory approach.
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Gauss-Jordan elimination

The solution of block systems in line 4 and 5 in Algorithm 12 is done by immediately

solving these systems when performing a Gauss-Jordan elimination, ie. the systems

are solved without composing the explicit inverse of matrix Bi −AiC
∗
i−1. The Gauss-

Jordan elimination is computed cooperatively by using either shared memory of register

shuffle instructions. Both versions have high compute throughput.

4.5 Optimization on SIMD architecture

The approach for efficient solution in the case of SIMD architectures is different in terms

of data storage and execution flow. The data layout needs to be changed to get better

data locality (for better cache performance) and second, each individual HT (Hyper

Thread) thread computes an independent system without sharing the workload of the

solution of one system. The latter consideration is the natural way of doing computation

on multi-core systems. As each thread solves an independent system, best cache locality

is reached when the blocks of array A are reordered to store the blocks Ap
0, Ap

1, ..., Ap
N

next to each other. Figure 4.4 depicts this in more details.

A0
0 A0

1 A0
2 · · · A0

N−1

Blocks of problem p = 0

A1
0 A1

1 A1
2 · · · A1

N−1

Blocks of problem p = 1

A2
0 A2

1 A2
2 · · · A2

N−1

Blocks of problem p = 2

· · ·

Figure 4.4: Data layout within coefficient array A suited for better data locality on CPU
and MIC. Here Ap

n is the nth block (ie. nth block-row in the coefficient matrix) of problem p
and p ∈ [0, P − 1], n ∈ [0, N − 1]. Notation for the scalar elements in the nth block of problem

p are shown on Eq. (4.3).

On these systems threads are heavy weight with out-of-order execution and have enough

L1 cache to efficiently solve a block tridiagonal system. The C++ code is optimized to

take advantage of the vector units. Loops are written so that the requirements for

auto-vectorization are satisfied. Where needed #pragma ivdep or #pragma simd is

used to help and force the compiler to vectorize loops. Dimension sizes are passed

through template variables to make better use of compile time optimizations such as

loop unrolling, vectorization and static indexing. Thread level parallelism is provided by

OpenMP and threads solving independent systems are scheduled with guided scheduling

to balance work load and give an overall better performance.
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4.6 Performance comparison and analysis

Performances of the implemented solvers are compared in terms of memory bandwidth,

computation throughput in the case of GPUs and speedups of GPU and CPU implemen-

tations compared to the banded solver gbsv(). The size of the problem is always chosen

to be such that it saturates both the CPU and the GPU with enough work, so that these

architectures can provide the best performance, ie. as the block size is increased the

length of the system to be solved is decreased so that the use of the available memory is

kept close to maximum. Table A.2. and A.3. show the selected length of a system (N)

and the number of systems to be solved (P ) respectively.

The Intel Math Kernel Library 11.2 Update 2 library [50] was chosen with its LA-

PACKE {s,d}gbsv work() function to perform the banded solution. The library function

was deploy using OpenMP to achieve the best performance MKL can provide. Accord-

ing to the MKL manual [50] this routine solves for X the linear equations AX = B,

where A ∈ Rn×n band matrix with kl subdiagonals and ku superdiagonals. The columns

of matrix B are individual right-hand sides (RHS), and the columns of X are the cor-

responding solutions. This function is based on LU decomposition with partial pivoting

and row interchanges. The factored form of A is then used to solve the system of equa-

tions AX = B. The solution of a system is done in two steps. First, a partial solve

is done with the upper-triangular U matrix and then a solve with the lower-triangular

L matrix is performed. This is an efficient approach when many right hand side exist.

In the present case there is always one RHS, ie. X ∈ Rn×1 and B ∈ Rn×1. As the

systems which are solved are defined with diagonally dominant matrices, pivoting is not

performed during execution time. Moreover, the work version of the solver neglects

any data validity check and thus provides a fair comparison. The scalar elements of

diagonal block matrix arrays Ap
n, Bp

n and Cp
n are mapped to band matrix A and the

scalar elements of diagonal block vector arrays of dpn and upn are mapped to X and B

accordingly. The performance of the routine is expected to be high as the triangular

sub-matrices are small enough to reside in L1, L2 or L3 cache. Comparing the solutions

of the banded solver with the block tridiagonal solver by taking the differences between

the corresponding scalar values shows MSE (Mean Square Error) in the order of 10−4.

MSE does varies but stays in the order of 10−4 as floating point precision, block size,

system size or the number of systems is changed.
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Figure 4.5 and Figure 4.6 show the effective bandwidth and computation throughput.

The term effective is used to emphasize the fact that these performance figures are com-

puted on basis of the actual data needed to be transferred and actual floating point

arithmetic needed to be performed. Any caching and FMA influencing these figures are

therefore implicitly included. In general the register shuffle based GPU solver outper-

forms the shared memory version, with one major exception in double precision with

M = 8 block size. In this case the register pressure is too high and registers get spilled

into local memory.

One may notice that, as the block size increases the effective bandwidth decreases on

Figure 4.5 and the effective compute throughput increases at the same time on Fig-

ure 4.6. Therefore it is implied that the problem is becoming compute limited rather

than bandwidth limited as it is discussed in Section 4.2 due to the increasing difference

between the O(M3) compute and O(M2) memory complexity of a single block.

0

50

100

150

200

250

2 3 4 5 6 7 8

G
B

/s

M - block size

CPU MIC GPU Shared GPU Shuffle

0

50

100

150

200

250

2 3 4 5 6 7 8

G
B

/s

M - block size

CPU MIC GPU Shared GPU Shuffle

Figure 4.5: Single (left) and double (right) precision effective bandwidth when solving block
tridiagonal systems with varying M block sizes. Bandwidth is computed based on the amount
of data to be transfered. Caching in L1 and registers can make this figure higher then the

achievable bandwidth with a bandwidth test.

Execution time per block row are shown of Figure 4.7. The relative execution time

measures the efficiency which is independent of problem size. The total execution time

of the solver is divided by NP , where N is the length of a system and P is the number

system that are solved. Due to alignment effects the performance for M = 4 and

M = 8 is significantly better than for sizes that don’t allow perfect alignment. The only

exception is the M = 8 case where execution time drastically increases for the double

precision shuffle version. This is due to register spilling and local memory allocation, ie.

data can no longer fit into registers, therefore it is put into local memory, also the small
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Figure 4.6: Single (left) and double (right) precision effective computational throughput
when solving block tridiagonal systems with varying M block sizes. GFLOPS is computed
based on the amount of floating point arithmetic operations needed to accomplish the task.
Addition, multiplication and division is considered as floating point arithmetic operations, ie.

FMA (Fused Multiply and Add) is considered as two floating point instructions.

local arrays that supposed to be allocated in registers due to compiler considerations

are put into local memory as well. This shows that the presented GPU approaches have

very high efficiency for M = 2, .., 8 block sizes.

An NVIDIA Tesla C2070 GPU card has been used to compare the results against the

PCR solver presented in [54] where an NVIDIA Tesla C2050 was used. The two cards

contain identical GPUs with different amount of global memory, see [55]. 3GB is avail-

able on the C2050 and 6 GB is available on the C2070. The execution times were

measured for the single precision case on block size M = 4, on P = 512 number of prob-

lems each of which is N = 128 long. The block PCR based solver completes in 10.5ms

and the (shared memory based) block Thomas solver completes in 2.42ms. This is a

×4.3 speed difference for the sake of the Thomas solver. ×8.3 and ×9.8 improvement

is achieved if the execution time per block metrics are compared and the number of

systems to be solved is increased to P = 4096 or P = 32768.

The SIMD solution presented performs well on the CPU, but performs poorly on the

MIC architecture. On both architectures the compute intensive loops were vectorized

as it is reported by the Intel compiler. Both the MKL banded solver and the presented

block tridiagonal solver run more efficiently on the CPU.

Figure 4.8 presents the speedup of the block-tridiagonal solvers on GPU over the MKL

banded solvers and the CPU and MIC based block tridiagonal solvers. This proves the
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Figure 4.7: Single (left) and double (right) precision block-tridiagonal solver execution time
per block matrix row for varying block sizes.

benefit of the presented GPU based solutions. Also, the highly efficient CPU and MIC

implementations show the benefit of using a block tridiagonal solver over a banded solver

for the range of block sizes M = 2, .., 8.
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Figure 4.8: Single (left) and double (right) precision block tridiagonal solver speedup over
the CPU MKL banded solver.

Significant speedup against the CPU MKL banded solver is reached with the GPU-

based solver, up to ×27 in single and ×12 in double precision. The multi-threaded CPU

code provides ×2− 6 speedup in single and ×1.5− 3 speedup in double precision. The

multi-threaded MIC performance of the block solver is better than the CPU MKL, but

the MKL banded solver perform poorly on the MIC. The efficiency of the CPU relies

on the cache and out-of-order execution performance of the architecture. The size of

the temporary blocks and arrays of blocks is small enough to fit into the L1 and L2

cache. The out-of-order execution is capable of hiding some of the 4 clock cycle latency
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of accessing these temporary data structures in the L1 cache. As the MIC lacks the

out-of-order execution and the cache size per thread is much smaller the performance is

also worse than the CPU. Moreover, the gbsv() banded solver of the MKL library does

not perform well on the MIC architecture as it shows 3 times lower performance than

the CPU MKL version.

The advantage of doing block tridiagonal solve in the range of M = 2, .., 8 instead of

a banded solve is obvious. It is important to note that, as the block size M increases,

the computations involved in performing block-matrix operations make the problem

compute limited instead of memory bandwidth limited. The total execution time of

computing a system is composed of loading the blocks of data and performing matrix

linear algebra on the blocks. The former one scales as O(NM2) and the latter one as

O(NM3), where N is the system size and M is the block size. As the block size increases

the computational part becomes more dominant in the execution time and the memory

access time becomes less significant. This can be read from the Figures 4.5 and 4.6 – as

M increases, the bandwidth decreases and the GFLOPS increases.

4.7 Conclusion

In the dissertation it has been shown that solving block-tridiagonal systems with M =

2, .., 8 block sizes with the Thomas algorithm pays off over the Intel MKL banded solver.

It has been shown that the advantage of the block Thomas algorithm is the computa-

tional complexity over the CR or PCR algorithm and that parallelism can be increased

by exploiting the properties of the block matrix operations. The superior performance

of the GPU relies on the low arithmetic complexity of the Thomas algorithm and the

efficiency of the parallel block matrix operations allowed by the work sharing and the

register blocking capabilities of the GPU threads. Since the work complexity (ie. num-

ber of block-matrix operations) of the CR/PCR algorithms are significantly higher than

the Thomas algorithm, the CR/PCR has no advantage in block-tridiagonal solvers. Sig-

nificant speedup is reached with the GPU-based solver with up to ×27 in single and ×12

in double precision. The multi-threaded CPU code provides ×2 − 6 speedup in single

and ×1.5− 3 times speedup in double precision against the MKL banded solver.
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Chapter 5

Solving the Black-Scholes PDE

with FPGA

5.1 Introduction

The aim is to further examine the architectural, programmability and development issues

regarding novel CPU, GPU and FPGA architectures in the case of one dimensional

finite difference problem like the one-factor Black-Scholes (BS) PDE. The BS PDE is a

parabolic type defined with Dirichlet boundary conditions. Therefore the solution of this

problem is similar to the solution of the heat equation in one dimension. The problem

can be solved using explicit and implicit time marching. Although the explicit solution

is programmatically much simpler, it requires significantly more time step computations

than the implicit method, due to stability limit of the explicit method. Besides, the

implicit method doesn’t pose such restrictions on the grid resolution which is defined by

the convergence criteria of the explicit method.

The balance of computational speed, programming effort and power efficiency are the key

factors that decide where a certain architecture will be used in the engineering and re-

search practice. Therefore, in the current study the following architecture-parallelisation

tool combinations were chosen:

• Intel Xeon 2 socket server CPU with Sandy Bridge architecture: algorithms im-

plemented using AVX ISA (Instruction Set Architecture) intrinsics in C/C++.

71
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• NVIDIA Tesla K40 GPU with Kepler architecture: algorithms implemented with

CUDA C programming language

• Xilinx Virtex-7 FPGA: algorithms implemented with Vivado HLS (High Level

Synthesis) C/C++ language.

The way parallelism is executed and implemented on these hardware platforms is usually

very diverse. This is especially true in the case of the FPGA where the implementation

of parallelism uniquely depends on the problem at hand and the effort of the developer.

Although the standard way of FPGA development is through the use of VHDL or Verilog

hardware description languages, the development effort with these approaches are not

comparable with the C/C++ and CUDA C development efforts, as hardware description

languages are more fine-grained. Therefore, Vivado HLS (High Level Synthesis) has been

chosen to create a high performing FPGA implementation from C/C++ source code.

The literature on the finite difference solution of the Black Scholes PDE is abundant,

but only a few papers provide a thorough comparison of solvers on novel CPU, GPU

and FPGA architectures. See [56] for efficient algorithms on CPUs and GPUs, [57] for

comparison between GPU and FPGA implementations. FPGA implementations of the

explicit solver are studied in [58] and [59], while implicit solution is considered in [60].

5.2 Black-Scholes equation and its numerical solution

The Black-Scholes (BS) PDE for derivative security pricing is a celebrated tool of the

Black-Scholes theory [61]. The one-factor BS in the case of European call options is

shown on Eq. (5.1).

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0 (5.1)

The BS equation is a second order, parabolic, convection-diffusion type PDE sharing

common numerical features with the heat equation. Solving these equations with ex-

plicit or implicit time-marching is feasible in 1 dimension (one-factor form). In higher

dimensions the cost of the implicit solution increases greatly which can be avoided by
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more sophisticated numerical methods. Such methods are not the scope of the disserta-

tion. Both explicit and implicit solutions iterate in time backwards, since the problem

is a final value problem rather than an initial value problem. After explicit (backward

time differentiation) discretization of Eq. (5.1) the BS PDE boils down to the algebraic

expression shown in Eq. (5.2). Evaluating this expression gives the price curve in the

next time-step.

V
(n+1)
k = akV

(n)
k−1 + bkV

(n)
k + ckV

(n)
k+1 (5.2)

with coefficients

ak = 1
2σ

2k2∆t− 1
2rk∆t

bk = 1− σ2k2∆t− r∆t

ck = 1
2σ

2k2∆t+ 1
2rk∆t

where (n) = 0, ..., N − 1 superscript is the time coordinate with ∆t time step, k =

0, ...,K − 1 subscript is the price coordinate with ∆S price step (price step is factorized

out), σ is the volatility of the underlying (risky) asset, r is the risk-free interest rate.

Eq. (5.3) shows the implicit form of the solution of BS PDE, which requires the solution

of a tridiagonal system of equations.

akV
(n+1)
k−1 + bkV

(n+1)
k + ckV

(n+1)
k+1 = V

(n)
k (5.3)

where

ak = −1
2σ

2k2∆t+ 1
2rk∆t

bk = 1 + σ2k2∆t+ r∆t

ck = −1
2σ

2k2∆t− 1
2rk∆t

Since many options need to be calculated in a real-world scenario, a natural parallelism

arises in computing these options in parallel.
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5.3 Multi and manycore algorithms

The problem of solving the explicit and implicit time-marching is done using stencil

operations in the explicit case and using the Thomas algorithm for solving the tridiagonal

system of equations arising in the implicit case. The use of stencil operation avoids the

explicit construction of a matrix, therefore it is a commonly used matrix-free method

for calculating explicit Euler solution of PDEs, see Section 5.4.1 for details. In depth

details and comparison of the CPU and GPU implementations can be found in [56].

5.3.1 Stencil operations for explicit time-marching

The one dimensional, stencil-based computations required for the one-factor application

can be efficiently implemented on both CPUs and GPUs.

The system specification of the CPU system used in our work consists of a two socket

Intel Xeon E5-2690 (Sandy Bridge) 8 core/socket server processors. Each core has 32KB

L1 and 256KB L2 cache and all the cores in a socket share a 20MB of L3 shared cache.

Each socket has a 51.2GB/s bandwidth to RAM memory and a total 66GB/s bandwidth

is measured for the two sockets by the STREAM benchmark [62]. The theoretical

maximal floating point computational limit of a single socket is 318 GFLOPS for single

and 171 GFLOPS for double precision. The total maximal dissipated power of the two

socket is 270 W.

The GPU used in the current comparison is an NVIDIA Tesla K40 card with the GK110b

micro architecture. The theoretical maximal bandwidth of the system towards the main

memory is 288 GB/s. The maximum bandwidth achieved with the CUDA toolkit’s

memory bandwidth test program is 229 GB/s. The theoretical maximal floating point

computational limit 5.04 TFLOPS for single and 1.68 TFLOPS for double precision.

The total maximal dissipated power of the GPU card is 235 W.

CPU implementation

Stencil based computations can be efficiently implemented on CPUs equipped with vec-

tor instructions sets such as AVX or AVX2. Due to the efficient and large L1 cache

(32KB) these problems on CPUs tend to be compute limited rather than bandwidth
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limited. On a typical CPU implementation the computations are parallelized over the

set of options. Smaller subsets of options are solved using multithreading with OpenMP

and options within a subset are solved within the lanes of CPU vectors.

GPU implementation

GPUs, due to the implemented thread level parallelism and compile-time register al-

location give more freedom for better vectorization and optimization and therefore the

achievable computational efficiency is very high. Among the many possible efficient algo-

rithms discussed in [56] the best performing utilizes the new register shuffle instructions

to share the work-load of computing a single timestep. The shuffle instruction (intro-

duced in the Kepler architecture) makes communication possible between the threads

inside a warp, ie. shuffle allows data to be passed between lanes (threads) in a vector

(warp).

5.3.2 Thomas algorithm for implicit time-marching

The solution of the implicit form of the discretized BS equation requires the solution of

a tridiagonal system of equations. The solution of the system is essentially the Gauss-

Jordan elimination process detailed in 3.2.1.

CPU implementation

The CPU implementation relies on L1 cache performance and vectorization over options

with either auto vectorization or explicit vectorization with instrinsic functions. Due

to vectorization, 4 options with double precision or 8 options with single precision are

solved in parallel with AVX or AVX2 instructions. The workload of the complete set of

options is then parallelised using multithreading with OpenMP.

GPU implementation

Just as in the case of the explicit solver, the GPU solver allows for more optimiza-

tion. The discussion of these novel, optimized algorithms can be found in [56]. Be-

side the Thomas and the PCR (Parallel Cyclic Reduction) algorithms, a new hybrid
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Thomas/PCR algorithm is also introduced in [56]. The efficiency of the latter algorithm

relies on the aforementioned register shuffle instruction and compile-time register allo-

cation. The algorithm works on a work-sharing basis in three steps: 1) the system of

size N is split into 32 pieces which are partially solved and results in a reduced system

of size 64; 2) threads cooperate to solve the 64 size system with PCR; 3) the solution of

the reduced system is used to solve the partially computed systems in step 1).

5.4 FPGA implementation with Vivado HLS

For many years there has been no breakthrough for FPGAs in the field of HPC (High

Performance Computing). Over the years, research has been carried out to create tools to

support development for FPGAs in C language. Recently syntheser tools with OpenCL

(Open Computing Language) support appeared for Altera and Xilinx FPGAs. Xilinx in

its Vivado HLS (High Level Synthesis) suite started a new software-based syntheser for

the C,C++ and System C languages. These tools appeared as a response to the need of

faster system realization. The Vivado HLS support for C with its customized support

for the Xilinx FPGA is a potentially efficient solution.

5.4.1 Stencil operations for explicit time-marching

Stencil operations are a widely studied area of FPGA algorithms, see [63]. Many signal

and image processing algorithms implemented on FPGAs utilize similar solutions to that

used in explicit solution of one dimensional PDEs with stencil operations.

One of the key optimizations in FPGA circuit design is the maximization of the uti-

lization of processing elements. This involves careful implementation that allows for

pipelining computations to keep the largest possible hardware area busy. In HPC ter-

minology this optimization is similar to cache-blocking, although the problem is not the

data movement but rather keeping the system busy.

One way to create such a (systolic) circuitry is to create multiple interleaved processing

elements with simple structure to allow low latency and high throughput. Each process-

ing element is capable of handling the computation associated with three neighboring

elements f(u
(n)
k−1, u

(n)
k , u

(n)
k+1) within a single timestep n, where f is the stencil operation.
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One may stack a number of such processing elements to perform consecutive timestep

computations by feeding the result of processor p = 1 to p = 2 as shown on Figure

5.1. The result u
(1)
k+1 of f(u

(0)
k , u

(0)
k+1, u

(0)
k+2) is fed into the third input of the element

processing element p = 2. This way the processing elements stay busy until they reach

the end of the system. There are a number of warm-up cycles until all the processors

get the data on which they can operate. This introduces an insignificant run-up delay if

the size of the system to be calculated is larger than the number of the processors. Each

processing element needs 2 clock cycles to feed in the necessary 2 elements in their FIFO.

For the third clock cycle the third element is also available and the computation can be

executed. Since there are P number of processing elements that need to be initialized

to perform the lock-step time iteration on a given system, the total delay of the system

is 2P , ie. the P th processor starts executing a stencil operation after 2 ∗ P clock cycles

of the start of the simulation.

Larger units, called processors are composed of 80 and 85 processing elements in the case

of single and double precision solutions. Resource requirements of these processors are

shown in Table 5.1. For single and double precision respectively 3 and 1 such processors

can be crammed onto the FPGA used in the study.
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Figure 5.1: Stacked FPGA processing elements to pipeline stencil operations in a systolic
fashion. The initial system variables u

(0)
0 , ..., u

(0)
K−1 are swept by the first processing element.

The result u
(1)
k+1 is fed into the second processing element.
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Table 5.1: FPGA Resource statistics for a single processor. The final number of imple-
mentable explicit solvers is bounded by the 3600 DSP slices, while the number of implicit
solvers is bounded by the 2940 Block RAM Blocks on the Xilinx Virtex-7 XC7V690T proces-

sor.

# BRAM # DSP slice Clock [ns] ×106 Ticks

SP DP SP DP SP DP SP DP

Explicit 24 64 1200 3570 4.09 4.01 334 315

Implicit 256 512 37 94 4.26 4.3 14.2 12.6

Note: SP - Single Precision, DP - Double Precision

5.4.2 Thomas algorithm for implicit time-marching

The optimization of the implicit solver relies on the principle of creating independent

processors to perform the calculation of independent options. The calculation is based

on the Thomas algorithm detailed in Section 3.2.1. Each of these processors is capable of

pipelining the computation of more options into the same processor with the associated

cost of storing the temporary (c∗, d∗) arrays of each option. c∗, d∗ arrays are calculated

according to Algorithm 1. The number of options that can be pipelined is defined by

the depth of the forward sweep of the Thomas algorithm, which is 67 clock cycles in

the present case. The temporary storage is implemented in the available Block RAM

memories, but due to the deep pipeline the BRAM memory requirement limits the

number of deployable processors.

The current HLS compiler fails to recognize that no data hazard exist between c∗i and

c∗i−1 in the two consecutive iterations of the forward pass in the tridiagonal algorithm

and therefore refuses to properly pipeline the loop. A secondary temporary array is

used to store a copy of the temporary arrays – this changes the data flow and guides

the compiler towards pipelining.

A single processor unit for the implicit solver has resource requirements specified on

Table 5.1. For single and double precision respectively 11 and 5 of these units can be

crammed onto the utilized FPGA.

5.5 Performance comparison

FPGA performance is compared to highly optimized CPU and GPU code. Estimations

based on the Xilinx Vivado toolset are made to predict the achievable clock frequency on

DOI:10.15774/PPKE.ITK.2016.002



Chapter 5. Solving the Black-Scholes PDE with FPGA 79

Table 5.2: Performance - Single Precision

ps/element GFLOPS GFLOPS/W

C G F C G F C G F

Explicit 15.2 2 17.4 394 3029 344 1.46 12.9 8.6

Implicit 142.7 14.5 766 139 1849 26 0.51 7.9 0.65

Note: C - 2 Xeon CPUs, G - Tesla K40 GPU, F - Virtex-7 FPGA

Table 5.3: Performance - Double Precision

ps/element GFLOPS GFLOPS/W

C G F C G F C G F

Explicit 29.8 4.1 48.2 201 1463 124 0.74 6.2 3.1

Implicit 358.8 43.5 1748 48 892 9.8 0.18 3.8 0.24

Note: C - 2 Xeon CPUs, G - Tesla K40 GPU, F - Virtex-7 FPGA

a Xilinx Virtex-7 VX690T. Performance metric is calculated on a grid element basis to

eliminate the effects of architectural differences, ie. the total execution time is divided by

the number of system elements K and total N time steps made. To mimic a real-world

scenario the ak, bk, ck coefficients of the explicit and implicit methods are set up in the

first phase of the computation and stored in a,b, c arrays for each option independently.

Every implementation uses these arrays to perform the computation.

The chosen FPGA is equiped with 108k slices, 3600 DPS slices and 3000 BRAM of size

18Kb. The total maximal power dissipation allowed by the packaging is expected to be

less then 40 W.

The results of measurements are present on Table 5.2 and 5.3. Based on the figures it can

be stated that the proposed FPGA implementation is slower than the highly optimized

CPU implementation, but it is significantly more power efficient. Compared to the GPU

version the FPGA is significantly slower and even if the power dissipation of the GPU

is higher than the FPGA the overall power efficiency is higher for the sake of the GPU.

5.6 Conclusion

A well studied finite difference problem – the solution of the Black-Scholes PDE – is

chosen to compare novel CPU, GPU and FPGA architectures. Efficient FPGA based

implementation of the explicit and implicit BS solvers have been created using Vivado
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HLS. The relatively low programming effort and the achieved efficiency of the resulting

circuitry shows a promising step towards the applicability of FPGAs in an HPC en-

vironment and more specifically in finite difference calculations. Although the overall

performance is not significantly higher than the CPU, the higher power efficiency makes

this approach viable in power constrained system and solutions. The results on the other

hand clearly show the superior performance of GPUs both in terms of computational

efficiency and power efficiency.
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Chapter 6

GPU based CNN simulator with

double buffering

6.1 Introduction

The bare computing power of GPU devices is tremendous compared to the conventional

CPUs, see Fig. 1.5. At this point it is worth noting that the memory wall in this

computing environment is the most problematic bottleneck. Usually the data is stored

in the main memory of the system. A CPU can access this memory through a cache

hierarchy (with a maximum 21 GB/s bandwidth), which is quite fast compared to the

a GPU that can access this data only through a PCIe (PCI Express) bus (with 4 GB/s

aggregated speed through a 16 lane PCIe connector). On the other hand when the

data is on the device (GPU) memory it can be accessed by the GPU with 128 GB/s

through a 256 bit width GDDR5 memory interface (according to the specification of

nVidia GeForce GTX 560 - Asus DCII Top graphics card).

The computing power of these devices is given by the large amount of computing units,

the cores. Different GPU manufacturers construct their cores differently. But it is com-

mon that each core contains pipelined ALU (Arithmetic Logic Unit) that implements

the most essential arithmetic functions. These units have smaller instruction set imple-

mented than CPUs have. The GeForce GTX 560 GPU has 336 CUDA (Compute Unified

Device Architecture) cores in it, for which 1.95 billion transistors have been used. An

Intel i5 660 CPU has two computing units that are implemented using only 380 million

81
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transistors (without the integrated GPU unit). These two units are used as 4 cores by

the help of a hardware implemented Hyper-Threading Technology developed by Intel.

6.2 The CNN model

During the analisys the conventional CNN model introduced in [64, 17] is used. Briefly

describing the Cellular Neural Network is locally connected recurrent neural network,

as shown on Figure 6.1.

Figure 6.1: Left: standard CNN (Cellular Neural Network) architecture. Right: CNN local
connectivity to neighbor cells. Source: [64]

The local connectivity is defined by a radius of neighbourhood. The original model is

an analogue one defined by the differential equation Eq. (6.1).

ẋi,j(t) = −xi,j(t) +
∑

C(k,l)∈Sr(i,j)

A(i, j, k, l)yk,l(t) +
∑

C(k,l)∈Sr(i,j)

B(i, j, k, l)uk,l(t) + zi,j

(6.1)

where x(t) is the state variable, C(k, l) is an element in the Sr(i, j) neighbourhood,

A(i, j, k, l) and B(i, j, k, l) are the feed-back and feed-forward templates, uk,l(t) is the

input, zi,j is the offset and yk,l(t) is the output that is calculated according to the formula

on Eq. (6.2) and shown on Figure 6.2.

yk,l(t) = f(xk,l) = 0.5(|xk,l + 1| − |xk,l − 1|) (6.2)
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Figure 6.2: Piecewise linear output function defined in Eq. (6.2). Source: [64]

The solution of this state equation is approximated using the forward-Euler method

shown in Eq. (6.3).

xi,j(k + 1) = xi,j(k) + h

− xi,j(k)+
∑

C(k,l)∈Sr(i,j)

A(i, j, k, l)yk,l(k)+

∑
C(k,l)∈Sr(i,j)

B(i, j, k, l)uk,l(k) + zi,j

 (6.3)

If one assumes that the input image is permanent during the solution (i.e. uk,l(k) = uk,l)

of the state equation, the calculation can be divided into two parts: the feed-forward

and the feed-back part. The feed-forward part (Eq. (6.4)) contains all the calculations

that has to be done only once, at the beginning of the calculation.

gi,j =
∑

C(k,l)∈Sr(i,j)

B(i, j, k, l)uk,l + zi,j (6.4)

The feed-back (Eq. (6.5)) uses the results of the feed-forward part to perform the given

number of iterations:

xi,j(k + 1) = xi,j(k) + h

− xi,j(k)+
∑

C(k,l)∈Sr(i,j)

A(i, j, k, l)yk,l(k) + gi,j

 (6.5)

This way unnecessary calculations can be avoided.

The diffusion template (Eq. (6.6)) with h = 0.2 step size has been used to measure

the performance of the presented implementations. The result of the template on a
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grey-scale image is shown in Fig. 6.3.

A =


0 0 0

0 1 0

0 0 0

B =


0.1 0.15 0.1

0.15 0 0.15

0.1 0.15 0.1

 z = 0 (6.6)

Figure 6.3: Example of diffuson template. Original image on the left, diffused image on the
right.

6.3 GPU based CNN implementation

Earlier different implementations of CNN using GPU were reported [18, 65, 66]. In this

dissertation a different approach is presented.

At first sight the spatial organization of the cores of the GPU makes the architecture the

perfect choice for implementation of a CNN. The memory access pattern of the CNN

simulation makes this problem a memory-bandwidth bounded problem. Fortunately,

the introduced memory caching structure perfectly fits the problem and hides most of

the latency and bandwidth limitations.

The following discussion details the use of texture and constant caching methods, see

Fig. 6.4 for the code snippets. The array containing the image data is allocated in the

main function. A texture array reference is defined in the code as global variable. The

reference is bounded to the float array using the cudaBindTexture2D() function. In this

way the array can be written using global memory access (through L2/L1 cache) and

read as read-only memory through the texture cache. After the texture cache is defined

it can be read using the tex2D() function. Similarly to the previous texture definition,

the constant memory definition works in the following way. The array containing the

template values is stored in a float array. A global constant memory reference is defined.
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This reference is bounded to the float array using the cudaMemcpyToSymbol() function.

After the constant cache is defined it can be used as a conventional array using square

brackets.

__constant__ float templateA_cf[9];

texture<float,2, ...> state_tex;

...

__global__ void CNNfeedback(...) {

...

temp += activate(tex2D(state_tex, x,y)) * templateA_cf[4];

...

}

...

int main() {

...

float *dev_state_f;

cudaMalloc(&dev_state_f, allocSize);

cudaBindTexture2D(state_tex, dev_state_f, channel, 512, 512, allocSize);

...

float templateA_f[]={0.1, ... };

cudaMemcpyToSymbol("templateA_cf", templateA_f, size);

...

CNNfeedback<<<blockD,gridD>>>>(...);

...

}

Figure 6.4: The use of texture and constant caching - code snippets from source code.

Using these techniques the CNN state equation can be solved easily. If the input im-

age considered static, the feed-forward part of the equation has to be calculated only

once. This result can be reused in every iteration of the feed-back part of the equation.

The equation is solved with the conventional forward (explicit) Euler method discussed

earlier.

Two kernels are implemented to solve the state equation. One that calculates the feed-

forward part and one that performs 50 iterations.

Every thread that realizes the kernel calculates one pixel of the state equation. Threads

are organized in 32x32 sized blocks, and the grid size is calculated according to the size

of the image. The block size has been obtained by trial and error method.

One iteration of the state equation is calculated in each kernel invocation. Thus 50+1

(feed-backs+feed-forward) kernel invocations are necessary to perform the calculations.

This is an important fact, because kernel invocations are OS dependent. Under Windows
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each kernel invocation takes 36µs. This value is significantly lower under Linux. The

overall time saved by running the entire simulation under Linux is nearly 0.9ms.

The available computing power is not utilised perfectly. The memory wall problem can

not be avoided even with these techniques. Using texture and constant cache the code

becomes clear and efficient.

6.4 CPU based CNN implementation

For the sake of comparison an optimized CPU code has been produced. During the tests

an Intel i5 600 is used with 2 cores at 3.33 GHz clock rate, 4 MB L3, 256 KB/core L2

and 64 KB/core L1 cache. The latter is subdivided to data and instruction cache, in

32 KB and 32 KB partitions. The processor has hardware support for multi threaded

applications, called Hyper-Threading Technology (HTT), which is Intel’s implementa-

tion of SMT (Simulatanious MultiThreading). This processor is based on the Westmere

architecture.

The optimized CNN simulator code exploits the benefits of the SSE4.2 (Streaming SIMD

Extension 4, subset 2) instruction set. These instructions are operating on the 128

bit wide specialized registers and 4 single precision floating point operations can be

performed in each clock cycle.

For the implementation the Intel Integrated Performance Primitives (IPP) library was

used. This library contains highly optimized image and signal processing functions

for Intel CPUs. It takes advantage of the SSE 4.2 instruction set and the HTT, thus

providing an easy to use yet efficient tool for solving the state equation of CNN.

First, the forward part is calculated using a 2 dimensional convolution with the ippi-

ConvValid 32f C1R() function. Then 50 iterations are performed using the same convo-

lution function and ippsSub 32f I, ippsMulC 32f I, ippsAdd 32f I functions for imagewise

subtraction, multiplication and addition. The for loop is initiated using multithreading.

With the help of HTT and openmp the speed of the calculation can be increased sig-

nificantly. Interprocedural optimization and level 2 optimization is used with the Intel

compiler (switches used: -openmp -O2 -ipo -xSSE4.2 ).
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6.5 Comparison of implementations

Exhaustive comparison of the presented implementations together with the previous

FPGA and GPU implementations is detailed in this section. First, the presented GPU

and CPU implementation is discussed. Then these results are compared to prior imple-

mentations created by different authors.

In order to compare the two devices the theoretical FLOPS (single precision) rates

provide a good basis. The test system was a desktop machine with an Intel Core i5 660

processor, 4GB of RAMs, an Intel motherboard and Asus graphics card with nVidia

GeForce GTX 560 DCII Top (over-clocked by Asus to 925MHz engine and 1850 MHz

shader frequency). The operating sytem was a 64bit Ubuntu 11.10 with kernel version 3,

nVidia driver version 285.05.33 and CUDA 4.1 toolkit was used. According to Intel [67]

the performance of the processor is 26.664 GFLOPS (at 3.33 GHz) and 29 GFLOPS (at

3.6 GHz Single Core Max Turbo). According to [68] the dual warp scheduler in the Fermi

architecture is capable of issuing 2 instructions per clock cycle, thus the total number

of instructions issued per second is the product of clock cycles per second and the n

number of CUDA cores times the 2 instruction issued per second: f ×n×2 = 1850Hz×

336cores×2 = 1243.2GFLOPS. However there are only n number of cores, the graphics

processor is capable of performing only f × n = 1850Hz × 336cores = 621.6GFLOPS,

i.e. each core can initiate one floating point operation (Addition, Multiplication or

FMA - Fused Multiply and Add) per clock cycle [21]. FMA instructions are counted as

2 instructions, therfore theoretical peak performance is 1243.2GFLOPS. Performance

metrics of the different architectures are compared on Table 6.1.

Table 6.1: Comparison table

CPU Intel GPU NVIDIA CPU IBM GPU NVIDIA FPGA Xilinx

i5 660 GTX560 CELL [69] 8800GT [18] XC5VSX240T [19]

Clock rate [MHz] 3330 1850 3200 1350/1500 550

Cores [pcs] 2(4threads) 336 8 120/112 117

GFLOPS 26.664 1243.2(FMA) 25.6 504 -

TDP [W] 73 150 86 160 25

Cell iter. / s [106] 397 4397 3627 590 64350

Comm. time [ms] 0 1.56 - - 4.48

Speedup 1 11.07 9.13 1.49 162.1

Results of the presented GPU and CPU implementations on 512x512 sized image com-

pared to the previous results [18, 19, 70, 69] are summarized on Table 6.1.

DOI:10.15774/PPKE.ITK.2016.002



Chapter 6. GPU based CNN simulator with double buffering 88

Using the presented GPU and CPU implementations 4397 and 397 cell iteration per

second was achieved respectively. The results show that the Xilinx Virtex-5 FPGA

implementation is the fastest during the solution of the CNN state equation. Taking

into account that the first CELL processor was introduced in 2005, this solution has

a remarkable performance even nowadays. The presented solution using the GTX560

GPU outperformed the previous GPU implementation reported by Soos et al. [18].

The current implementation is 7.45 times faster than the 8800GT implementation, if

the memory transfer time is not considered. This factor is reduced to 5 if the data

transfer overhead is taken into account. Partially this is explained by the facts that

the number of cores, the frequency, the context switching, the FMA instructions and

other minor developments have been introduced in the Fermi architecture. The main

difference between the previous and the current implementations is the way state image

is accessed and stored. In a previous work [18] the shared memory is used to store parts

of the state image, whereas in the present case texture cache has been used for this

purpose.

It has to be noted that the conversion of the 8 bit integer pixel values to 32 bit floating

point values could be done on GPU after transferring the integer data to the device

memory. Thus significant (factor 4) transfer time could be saved, while the conversion

could be performed within microseconds.

6.6 Conclusion

A novel GPU implementation of 3x3 template sized CNN simulator together with a

CPU implementation has been introduced in this chapter. A comparison with the so

far published results has been discussed. The presented GPU implementation is signif-

icantly 11.07 times faster than the near optimal CPU implementation and 7.45 times

an earlier 8800GT GPU implementation. It is even faster than the CELL processor

implementation. The FPGA implementation is the fastest but developing proper cir-

cuitry for an FPGA takes much more effort than to prepare a GPU code. The presented

GPU solution is simple and effective, thus it is a good choice for simulation of the CNN

dynamics.
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Chapter 7

Unstructured Grid Computations

7.1 Introduction

Scientific and engineering applications require the use of parallel programming mod-

els on novel massively parallel processor architecures. Such models and programming

languages are for instance CUDA, OpenCL, OpenMP, OpenACC etc., which are well

established for programming multi and many-core architectures such as GPU and MIC.

It is not obvious what model to use to exploit vector units of these architectures. There-

fore, it is important to understand the programming models available for vectorizing

codes. Single Instruction Multiple Threads (SIMT) and Single Instruction Multiple

Data (SIMD) are closely related but significantly different abstractions when it comes

to vectorization.

Unstructured grid applications are a key class of scientific and engineering disciplines.

Therefore, understanding how the SIMT and SIMD programming abstraction map to

a CPU or a MIC architecture is of high interest in the community. OpenCL is a pro-

gramming language that supports the SIMT abstraction and high performance compiler

from CPU and MIC vendor Intel is available.

OP2 [71] is a domain specific abstraction framework for unstructured grid applications.

The reader is suggested to study [72, 73] for the details of parallelization of the OP2

framework. An OpenCL extension for OP2 was developed to benchmark the perfor-

mance of OpenCL on many-core architectures like the Intel Xeon server CPU and Xeon

Phi co-processor. The applications implemented with OP2 are real-world representative

89
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CFD codes: 1) Airfoil [74] - two dimensional finite volume simulation code for sim-

ulating airflow around an airfoil; 2) Volna [75] - tsunami simulation code where the

geometry of the bathymetry is described by a two dimensional grid and water column

hight is defined by dependent variables of a PDE above the grid points. These OpenCL

implementations are compared with other (non-vectorized) parallelizations previously

developed with OP2 for the same application.

Many-core co-processors such as GPUs have required new programming approaches for

general purpose software development. The new languages for GPUs stem from the

SIMT abstraction. NVIDIA’s CUDA programming language has gained widespread

popularity and has developed a large software ecosystem. However it is restricted to

NVIDIA GPUs only. OpenCL, based on a very similar SIMT model, supports a wider

range of hardware, but has not developed an ecosystem comparable to that of CUDA

- in part because it struggles with the performance portability of OpenCL codes and

the lack of proactive support from some hardware vendors. At the same time, larger

vector units are being designed into CPUs, and at the lowest level they require a very

explicit SIMD programming abstraction. In a SIMD abstraction, operations are carried

out on a packed vector (64-512 bits) of values as opposed to scalar values, and it is

more restrictive than the SIMT model. For example in the case of data-driven random

memory access patterns that arise in key classes of applications, computations require

explicit handling of aligned, unaligned, scatter and gather type accesses in the machine

code. In contrast, in the SIMT model this is carried out implicitly by the hardware.

The shared memory parallel programming model for multi-threading has been the dom-

inant model for programming traditional CPU based systems, where task or thread level

parallelism is used for multi-threading (OpenMP, POSIX threads). But the emergence

of accelerators such as GPUs (e.g. NVIDIA GPUs [22]), the Intel Xeon Phi [76] and sim-

ilar co-processors (DSPs [77], FPGAs [78]) have complicated the way in which parallel

programs are written to utilize these systems. Even traditional x86 based processor cores

now have increasingly larger vector units (e.g. AVX), and require special programming

techniques in order to get the best performance.

In previous generations of CPUs vectorization of computations was of lesser importance,

due to the shorter vector units, however the 256 bit and 512 bit long vectors have be-

come key features in the latest architectures, their utilization is increasingly necessary to
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achieve high performance. This has drawn the auto-vectorization capabilities of modern

compilers into focus; such compilers at best could only vectorize a few classes of appli-

cations with regular memory access and computation patterns, such as structured grids

or multimedia. While the Xeon Phi is designed as an accelerator with processor cores

based on a simpler x86 architecture it has the largest vector lengths currently found on

any processor core. However, it requires very explicit programming techniques specific

to the hardware to gain maximum performance.

To make efficient use of today’s heterogeneous architectures, a number of parallelization

strategies have to be employed, often combined with each other to enable execution in

different systems utilizing multiple levels of parallelism. It has been shown that very low

level assembly implementations of algorithms can deliver performance on the Xeon Phi,

usually as part of software packages such as MKL [50] or Linpack [79]. Several studies

have been published that discuss porting existing applications to the Phi by relying

on higher-level language features, usually compiler auto-vectorization, and have shown

success in the fields of structured grid computations [80, 81] molecular dynamics [82, 83]

and finance [84]. Most of the computations in these applications were engineered to lend

themselves easily to auto-vectorization due to the structure of the underlying problems.

Even then, the use of low level vector programming was still required in many cases.

Irregular computations have been notoriously hard to vectorize, due to dependencies

driven by data [85].

The focus of this chapter is to present research into gaining higher performance through

OpenCL-based vectorization on CPUs and the Xeon Phi and using GPS minimal ma-

trix bandwidth reordering to improve mini-partitioning in real-world applications. The

domain of unstructured mesh based applications are targeted, a key class of applica-

tions that have very irregular access patterns. The OP2 [71] domain specific abstraction

framework was used to develop specific vectorizing implementations. OP2 is an “active”

library framework for the solution of unstructured mesh applications.

7.2 The OP2 Library

Recently, domain specific languages (DSLs) and similar high-level abstraction frame-

works have been utilized to reduce the complexity of programming parallel applications.

DOI:10.15774/PPKE.ITK.2016.002



Chapter 7. Unstructured Grid Computations 92

With DSLs, the application programmer describes the problem at a higher level and

leaves the details of the implementation to the library developer. Given the right ab-

straction, this enables high productivity, easy maintenance and code longevity for the

domain scientist, permitting them to focus on the problem at hand. At the same time, it

enables the library developers to apply radical and platform-specific optimizations that

help deliver near-optimal performance.

OP2 is such a high-level framework for the solution of unstructured mesh applications

[71]. Its abstraction involves breaking up the problem into four distinct parts: (1) sets,

such as vertices or edges, (2) data on sets, such as coordinates and flow variables, (3)

connectivity between sets and (4) operations over sets. These form the OP2 API that

can be used to fully and abstractly define any unstructured mesh. Unstructured grid

algorithms tend to iterate over different sets, accessing and modifying data indirectly on

other sets via mappings; for example flux computations often loop over edges accessing

data on edges and neighboring cells, updating flow variables indirectly on these cells. In

a parallel setting this leads to data races, the efficient handling of which is paramount

for high performance.

//in main program file 
op_par_loop(res_calc,“res_calc",edges, 
   op_arg_dat(p_x,   0,edge2node, 2,"double",OP_READ), 
   op_arg_dat(p_x,   1,edge2node, 2,"double",OP_READ), 
   op_arg_dat(p_q,  -1,OP_ID,     4,"double",OP_READ), 
   op_arg_dat(p_res, 0,edge2cell, 4,”double”,OP_INC ), 
   op_arg_dat(p_res, 1,edge2cell, 4,”double”,OP_INC)); 

Indirection 
index 

Mapping Data 
arity 

Data 
type 

Access 
type 

//in res_calc.h 
void res_calc(const double *x1, const double *x2, 
              const double *q, 
              double *res1, double *res2 ){ 
  //Computations, such as: 
  res1[0] += q[0]*(x1[0]-x2[0]); 
} 

Dataset 
name 

Figure 7.1: Demonstrative example of the OP2 API in Airfoil: parallel execution of the
res calc kernel function by the op par loop for each elements in the edges set.

The OP2 abstraction is designed to implicitly describe parallelism; the basic assumption

is that the order in which elements are processed does not affect the final result, to within

the limits of finite precision floating point arithmetic. This allows for parallelization

of the execution over different set elements, however, potential data races have to be

recognized and dealt with. Therefore the API is designed to explicitly express access

types and patterns, based on the following building blocks:

1. op set: basic components of the mesh, such as edges and cells
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2. op dat: data on each element of a set, with a given arity (number of components)

3. op map: connectivity from one set to an other, with a given arity, e.g. each edge

connects to to vertices

4. op par loop: a parallel loop over a given set, executing an elementary kernel

function on each element of the set passing in pointers to data based on arguments

described as follows:

op arg dat(op dat,idx,op map,dim,"typ",access),

where a given dataset with dim arity and type datatype is to be accessed through

a specific index in a mapping to another set (or no mapping if it is defined on

the same dataset), describing the type of access, which can be either read, write,

increment or read-write.

This API allows OP2 to use a combination of code generation and run-time execution

planning in order to support a wide range of contrasting hardware platforms, using

a number of parallel execution models. For multi-threading on a pre-processing step

is used to split up the computational domain into mini-partitions, or blocks, that are

colored based on potential data races [86]. See Figure 7.2 for a demonstrative example

on block coloring. Blocks of the same color can then be executed by different threads

concurrently without any need for synchronization. The same technique is used to assign

work to OpenMP threads, CUDA thread blocks or OpenCL work-groups.

5	 8	 2	 3	 …	13	…	 7	 …	 6	4	 1	 9	10	

Figure 7.2: Demonstrative example of block coloring: edges are partitioned into three blocks
colors. Indices of edges belonging to different colors are shuffled in the linear memory.
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7.3 Mini-partitioning and coloring

In unstructured grid computations such as CFD simulations the low level parallelization

of computation is a critical issue to improving performance and especially important to

improving parallel scalability of the simulation. The OP2 [71] framework uses a näıve

coloring method (see Section 3.3 of [73] for details) to resolve conflicting computational

regions in the mesh by identify potential WAR (Write After Read) hazards. Using graph

coloring the mesh is partitioned into independent set of elements which are executed

independently and therefore the WAR operations can be performed safely.

In addition to the two level coloring in OP2 blocks (in [73] it is also called mini-partition)

are also created. These blocks represent a coarser level of parallelism and they are colored

in the second level of the coloring mechanism. The blocks are created by grouping a

pre-defined number of consecutive elements. In the example on Figure 7.3 the block

size is 20, which creates blocks with elements 0-19, 20-39, 40-59 etc. As the mesh

elements are connected, blocks have neigboring elements in other blocks. In the case of

an improperly ordered mesh these connections establish too many connections between

blocks which lead to high number of colors in the the second level of coloring and results

in high number of block colors. Therefore, meshes are reordered using a minimum

bandwidth reordering such as the Reverse Cuthill-McKee [87, 88] or the GPS [89, 88]

matrix bandwidth minimization algorithms. The reordered mesh lends itself to mini-

partitioning with better locality and less connections to neighboring blocks, see Figure

7.3. This has a significant positive direct effect on block coloring as it decreases the

number of block colors. Moreover, Figure 7.3 also shows, that if the block size is larger

than the bandwidth of the adjacency matrix describing the connectivity of the mesh,

than two colors are sufficient to color the blocks. The bandwidth B of a matrix A ∈ Rn×n

is defined as B = 2k + 1, where k = max{|i − j| : aij 6= 0}. This criteria provides

extremely good parallel scalability for such applications, that allow block sizes in the

order of the bandwidth of the adjacency matrix.

7.3.1 Mesh reordering in Volna OP2

As part of an unpublished research the Volna [75] tsunami simulation code was ported to

the OP2 framework. Volna is a representative simulation code for simulating real-world
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Figure 7.3: Example of sparse symmetric matrix or adjacency matrix representing an un-
structured mesh (left) and the same matrix after matrix bandwidth minimization reordering
(right). Elements connecting the vertices of the first block (elements 0-19) of the mesh with
other blocks of the mesh (20-39, 40-59, etc.) are denoted with red color. On the left matrix
the first block of the mesh is connected to other blocks. On the right matrix the first block is

only connected to the second block.

tsunami wave propagation and inundation to existing geographical terrain. The simu-

lation uses geometries, meshes and initialization data from measurements and therefore

it is a good representative case to demonstrate the effectivity of GPS reordering for

improved mini-partitioning and coloring on real-world unstructured grid applications.

See Figure 7.4a for a representative test case and Figure 7.4b for a validation test case.

(a) Real-world bathymetry for the simu-
lation of a potential tsunami near Rat Is-
lands, Alaska, US. Blue - deep ocean floor,

red - shallow ocean floor.

(b) Artificial bathymetry for studying
tsunami initiated by a gaussian-shaped
landslide in the bathymetry. Grey - ocean
floor, light blue - water level, dark blue -

shore.

Figure 7.4: Demonstrative examples of the Volna OP2 test cases.

In the Volna OP2 code the Scotch [90] implementation of the GPS bandwidth minimiza-

tion algorithm is used and the reordering is done based on the adjacency matrix of cells

created from the cells-to-cells, cells-to-edges or cells-to-nodes connectivity data defined

by the Volna meshes. The cell adjacency matrix created from the:
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• cells-to-cells mapping considers two cells adjacent if they are indeed next to each

other;

• cells-to-edges mapping considers two cells adjacent if they have common edges;

• cells-to-nodes mapping considers two cells adjacent if they have common nodes.

Cells were chosen as the set for reordering since every time consuming computation in

the finite volume numerical method is based data associated to cells, edges bounding

the cell or nodes defining the cell geometry. As a consequence all mesh components such

as the cells, edges and nodes as well as their mapping and associated data need to be

separately reordered. See Figure 7.5 for the details.

// Stage 1: Reorder cells and associated data 
// Obtain new permutation (GPS ordering) of cells based on cells-to-cells connectivity 
// Invers permutation of cell reordering is also retrieved 
op_get_permutation(&cells_perm, &cells_iperm, cellsToCells, cells); 
// Reorder op_maps according to direct or inverse permutation 
op_reorder_map(cellsToCells, cells_perm,  cells_iperm, cells); 
op_reorder_map(cellsToNodes, cells_perm,  cells_iperm, cells); 
op_reorder_map(cellsToEdges, cells_perm,  cells_iperm, cells); 
op_reorder_map(edgesToCells, cells_perm,  cells_iperm, cells); 
// Reorder op_dats according to inverse permutation 
op_reorder_dat(cellCenters,  cells_iperm, cells); 
op_reorder_dat(cellVolumes,  cells_iperm, cells); 
op_reorder_dat(values,       cells_iperm, cells); 
op_reorder_dat(initial_z,    cells_iperm, cells); 
op_reorder_dat(initEtadat,   cells_iperm, cells); 
 
// Stage 2: Reorder edges and associated data 
// Obtain new permutation (GPS ordering) of edges based on cells-to-edges connectivity 
// Invers permutation of edge reordering is also retrieved 
op_get_permutation(&edges_perm, &edges_iperm, cellsToEdges, edges); 
// Reorder op_maps according to direct or inverse permutation 
op_reorder_map(cellsToEdges, edges_perm, edges_iperm, edges); 
op_reorder_map(edgesToCells, edges_perm, edges_iperm, edges); 
// Reorder op_dats according to inverse permutation 
op_reorder_dat(edgeNormals, edges_iperm, edges); 
op_reorder_dat(edgeLength,  edges_iperm, edges); 
op_reorder_dat(isBoundary,  edges_iperm, edges); 
op_reorder_dat(edgeCenters, edges_iperm, edges); 
 
// Stage 3: Reorder nodes and associated data 
// Obtain new permutation (GPS ordering) of nodes based on cells-to-nodes connectivity 
// Invers permutation of node reordering is also retrieved 
op_get_permutation(&nodes_perm, &nodes_iperm, cellsToNodes, nodes); 
// Reorder op_maps according to direct or inverse permutation 
op_reorder_map(cellsToNodes, nodes_perm,  nodes_iperm, nodes); 
// Reorder op_dats according to inverse permutation 
op_reorder_dat(nodeCoords,   nodes_iperm, nodes); 
 
 Figure 7.5: Reordering the mesh and associated data of Volna OP2 based on GPS reorder-

ing. Mesh component such as the cells, edges and nodes as well as their associated data are
separately reorder. op get permutation internally creates an adjacency matrix of cells based

on the cells-to-cells, cells-to-edges or cells-to-nodes connectivity.
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7.3.2 Benchmark

The effect of mesh reordering on the block colors and the execution time is benchmarked

in this section. Three representative test cases were chosen for benchmarking the per-

formance:

1. bump: The seashore geometry is based on the Molène archipelago (ie. island group)

in Brittany, France. The simulation start with a cylinder shaped elevated column

above the resting sea level. As the water column spreads it initiates tsunami waves.

2. gaussian: A theoretical benchmark setup where a gaussian-shaped landslide in the

bathymetry initiates the tsunami wave, see Figure 7.4b.

3. catalina: The mesh and bathymetry data is based on the geometry of Santa

Catalina Island, California, US.

4. matane: The mesh and bathymetry data is based on the geometry of Matane,

Quebec, Canada.

5. rat : The mesh and bathymetry data is based on the geometry of Rat Islands,

Alaska, US, see Figure 7.4a. The tsunami is initiated with the elevation of the

water level according to a gaussian shape.

Details on the size of the mesh and the bandwidth of the adjacency matrix created from

cell-to-cell mapping is shown on Table 7.1. Simulations are executed on a dual socket

Intel Xeon server processor using the OpenMP backend of OP2. The OpenMP threads

were pinned to the CPU cores using the KMP AFFINITY=compact,0 environment variable

to avoid the caching and NUMA effects of thread relocation among CPU cores. The

block size was chosen to be 2048, which allows enough parallelism and cache reuse on

the CPU for efficient execution for these mesh sizes. The particular system used for the

benchmark is detailed in Appendix A.3.

Table 7.1: Details of the representative tsunami test cases. BW - Bandwidth

Name Location No. nodes No. cells No. edges Orig. BW BW after GPS

bump Molène archipelago, France 12828 23873 36709 46877 467
gaussian Gaussian landslide 1002001 2000000 3002000 3999 2001
catalina Catalina Island, CA, US 49456 98198 147653 196295 723
matane Matane, Quebec, Canada 117555 232992 350547 465935 1149
rat Rat Islands, AK, US 87946 171289 259254 342531 1329
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Figure 7.6 shows the effect of reordering the mesh based on the connectivity data. The

original Volna code used single precision arithmetics, therefore the simulations are only

performed for single precision. One may note that the predefined block size of 2048 is

sufficient to color the mesh with only two colors for all five test cases. As the gaussian

example is an artificially generated mesh, even the initial block coloring was significantly

better that in the rest of the test cases, which is also true for the execution time. One

may note that the overall speedup only due to the mesh reordering is significant, as it

is shown on Figure 7.6b. For real-world geometries ×2.9− 7.4 speedup is reached.
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Figure 7.6: The effect of mesh reordering on the block colors and execution time.

7.4 Vectorization with OpenCL

Recently, many-core processors and co-processors gained widespread popularity. These

consist of a large number of low power, low frequency compute cores and rely on high

throughput to achieve performance by allowing to execute a massive number of threads

in parallel. This is in contrast to speeding up execution of a few threads on traditional

CPUs. For many-core processors and co-processors a popular programming model is

the Single Instruction Multiple Thread (SIMT) model, where a number of lightweight

threads execute the same instructions at the same time. From a programming per-

spective, one implements code for a single thread, where data or control flow usually

depends on a thread index, and then this code is executed by different threads concur-

rently. While it is possible for different threads to have divergent flow paths, in these

cases the execution is serialized because there is only a single instruction being executed

at the same time; threads not active in the currently executed branch are deactivated
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by the hardware. Threads may also access different memory addresses when executing

the same instruction; the hardware is responsible for collecting data and feeding it to

the threads. The relative position of these memory addresses between adjacent threads

has an important impact on performance: addresses packed next to each other may be

accessed with a single memory transaction, while gather and scatter type accesses may

require multiple transactions. This, combined with the comparatively small amount of

cache per thread often has a non-trivial effect on performance that is difficult to predict.

CUDA and OpenCL are based on the SIMT model, and the latter maps to both CPU

vector units and GPUs.

Finally, the Single Instruction Multiple Data (SIMD) execution and programming model

is used by the vector units on Intel CPUs and the Xeon Phi. While some programming

models (such as OpenCL) do support a SIMT programming model and compilation for

these architectures, the hardware and therefore the generated assembly code has to use

SIMD. Vector instructions operate on vector registers that are 256 bits (AVX) or 512

bits (IMCI) long; they can contain 8 or 16 integers/floats, or 4 or 8 doubles. There is

also support for masked instructions, where specific vector lanes can be excluded from

an instruction, thereby facilitating branching. This execution model implies that data

has to be explicitly packed into vector registers that can then be passed as arguments to

an operation. Explicit management of data movement requires differentiation between

loading a contiguous chunk of data from memory that is (1) aligned, (2) not aligned to

the vector length, or (3) that has to be collected from different addresses and packed;

the same patterns apply for store operations.

While many structured grid computations are amenable to pragma-driven compiler auto-

parallelization, most unstructured grid computations require a lot of additional effort

to parallelize. Developing and maintaining large-scale codes with multiple different

combinations of parallel programming approaches in order to support today’s diverse

hardware landscape is clearly not feasible; doing so would reduce the productivity of

application developers and would also require intimate knowledge of different hardware.

When using a SIMT programming model, adjacent set elements are assigned to adjacent

threads, gather operations and potential branching is automatically handled by the pro-

gramming model and the hardware, and in case of indirect writes data access is serialized

based on the second level of coloring and block-level synchronization constructs.
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__kernel void op_opencl_res_calc( 
  __global const double* restrict arg0, 
  __global const double* restrict arg2, 
  __global       double* restrict arg3, 
  __global const int* restrict arg0_map, 
  __global const int* restrict arg2_map 
  /*other indexing structures*/){ 
  double arg3_l[4] = {0.0,0.0,0.0,0.0}; 
  double arg4_l[4] = {0.0,0.0,0.0,0.0}; 
  //current index 
  int n=block_offset+get_local_id(0); 
  int map0idx = arg0_map[n+set_size*0]; 
  int map1idx = arg0_map[n+set_size*1]; 
  int map2idx = arg3_map[n+set_size*0]; 
  int map3idx = arg3_map[n+set_size*1]; 
  res_calc( 
    &arg0[2 * map0idx],  
    &arg0[2 * map1idx],  
    &arg2[4 * n],  
    arg3_l, 
    arg4_l); 
  int color = colors[n]; 
  for ( int col=0; col<ncolor; col++ ) 
    if (col2==col) 
      for ( int d=0; d<4; d++ ){ 
        arg3[d+map2idx*4] += arg3_l[d]; 
        arg3[d+map3idx*4] += arg4_l[d]; 
      } 
} 

Pointers to 
datasets, 
mappings, 
index data  

Prepare 
indirect 
accesses 

Set up 
pointers, 
call kernel 

Indirect 
increments 

Colored 
increment 

Figure 7.7: Simplified example of code generated for the OpenCL vectorized backend.

OpenCL is an open standard language based on the SIMT abstraction, targeting a wide

variety of heterogeneous computing platforms, including CPUs, GPUs, DSPs, FPGAs

etc. Since OpenCL is a standard, the implementation of the driver and the runtime

environment relies on the support of the hardware manufacturers. Following the SIMT

abstraction, the workload is broken up into a number of work-groups, each consisting

of a number of work-items. The exact mapping of these is influenced by the parallel

capabilities of the device and the possible optimizations that can be carried out by the

compiler or synthesizer. As with most portable programming abstractions, performance

portability is an issue, therefore we first have to understand how it maps to the target

hardware.

The OpenCL abstraction fully describes any concurrency issues that may arise, there-

fore vectorization of work-items would always be valid. However similar to the case of

compiler auto-vectorization of conventional C/C++ code, this can be prevented by a

number of factors: control flow branching, irregular memory access patterns etc. Since

Intel’s IMCI instruction set is more extensive than AVX it gives more flexibility for the

compiler to produce vector code.

Spreading the work-load on CPUs is done by mapping work-groups onto CPU hardware
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// Divide for loop of work-groups across CPU hardware threads equivalent to  
// #pragma omp parallel for 
for(wg=0; wg < get_num_groups(2)*get_num_groups(1)*get_num_groups(0); wg++)  
  for(k=0; k < get_local_size(2); k++)  
    for(j=0; j < get_local_size(1); j++)  
      // Run vectorized for loop equivalent to  
      // #pragma simd 
      for(i=0; i < get_local_size(0); i+=SIMD_LENGTH) 
        // Execute work-item 
        kernel(...); 

Figure 7.8: Pseudo-code for OpenCL work distribution and vectorization.

threads. Each work-group then is executed sequentially by mapping the 3D work-group

to three nested loops over the length in the different dimensions. If possible, the inner-

most loop is then vectorized. A pseudo-code on Figure 7.8 explains the implementation

in more details.

Task parallelism at the level of the work-groups in Intel OpenCL is implemented using

Intel’s TBB (Thread Building Blocks) library [91]. Although TBB offers an efficient

solution for multi-threading, the overall overhead of scheduling work-groups is larger

in OpenCL than that of static OpenMP parallel loops; however this keeps improving.

Since CPUs - as opposed to GPUs - don’t have dedicated local and private memory

units, using these memory spaces introduces unnecessary data movement and may lead

to serious performance degradation. Thus in the OpenCL based CPU implementation

OP2 does not use local memory. OpenCL distinguishes between global, local and private

address spaces.

A key observation when optimizing code for the CPU is that work-groups are executed

sequentially. One can be certain that there are no data-races between work-items in a

work-group if the compiled code is scalar. Even if the code is implicitly vectorized the

bundled work-items execute in lock-step; synchronization between them is implicit, and

these bundles are still executed sequentially. Recognizing this, it is possible to remove

work-group level synchronizations which would otherwise be very expensive. This of

course is a platform-specific optimization that violates the OpenCL programming model,

but it is necessary to obtain good performance. It is possible to remove barriers from

the following operations:

• Sharing information specific to a block: since every work-group processes one

block (mini partition) of the whole domain, some information about the block

data structure can be shared amongst the work-items of the work-group. Either
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this data is read by one work-item and shared with other work-items through a

local variable or every work-item reads the same data and then no local memory

is necessary. The barrier is not necessary in the first case, because work-item 0

reads the data and stores it in local memory, and it will be available to every other

work-item, since work-item 0 is executed before any other work-item in the group,

due to the sequential execution model.

• Reductions: doing a reduction is straightforward due to the sequential execution

even in the case of vectorized kernels, first the reduction is carried out on vectors

and at the end values of the accumulator vector are added up.

• Indirect increments (or indirect scatter): use of barriers is not needed here either,

since 1) the work-group is executed sequentially and 2) even if the kernel is vec-

torized, a sequential colored increment is used to handle WAR (Write After Read)

conflicts.

Figure 7.7 shows a simplified example of the code generated for the loop in Figure 7.1, the

“host-side” setup of parameters and the kernel launch are omitted for brevity. This code

is very similar to the CUDA code generated for GPU execution, except for CPU-specific

optimizations as discussed above.

7.5 Performance analysis

7.5.1 Experimental setup

The goal is to benchmark the performance characteristics of OpenCL on a multi-core

Xeon server CPU and a many-core Xeon Phi (also known as Intel MIC) coprocessor

[76], both relative to each other and in absolute terms, calculating computational per-

formance and memory throughput. Details of test hardware can be found in Table A.5.

In addition to the theoretical performance figures, as advertised by the vendors results

of standard benchmarks (STREAM for memory bandwidth and generic matrix-matrix

multiply, GEMM for arithmetic throughput) are shown. These figures serve to illustrate

how much of the theoretical peak can be realistically achieved. It is clear that achieving

anything close to the theoretical peak - especially on accelerators - is quite difficult, and

often requires low-level optimizations and parameter tuning. The FLOP/byte metric of

processors is depicted in Table A.5 in Appendix A.4, which is essentially a metric for the
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Table 7.2: Properties of Airfoil and Volna kernels; number of floating point operations and

numbers transfers

Kernel Direct Direct Indirect Indirect FLOP FLOP/byte Description
read write read write SP(DP)

save soln 4 4 0 0 4 0.08(0.04) Direct copy
adt calc 4 1 8 0 64 1.14(0.57) Gather, direct write
res calc 0 0 22 8 73 0.6(0.3) Gather, colored scatter
bres calc 1 0 13 4 73 1.01(0.5) Boundary
update 9 8 0 0 17 0.2(0.1) Direct, reduction

RK 1 8 12 0 0 12 0.6 Direct
RK 2 12 8 0 0 16 0.8 Direct
sim 1 4 4 0 0 0 0 Direct copy
compute flux 4 6 8 0 154 8.5 Gather, direct write
numerical flux 1 4 6 0 9 0.81 Gather, reduction
space disc 8 0 10 8 23 0.88 Gather, scatter

balance of computational throughput and memory bandwidth on different architectures.

A higher figure means that the architecture is more suited for computationally expensive

applications, while a smaller figure means that the architecture is more suited for mem-

ory intensive applications. This is especially important for generally bandwidth-bound

applications, such as the ones being investigated, because if their FLOP/byte ratio is

much lower than that of the hardware, then a lot of computational power will be wasted.

For benchmarking two applications are chosen, both implemented in OP2; the first is

Airfoil, a non-linear 2D inviscid airfoil code that uses an unstructured grid [74], imple-

mented in both single and double precision, and the second is Volna, a shallow-water

tsunami simulation code [75], implemented only in single precision. Both simulations

use a finite volume numerical algorithm, which is generally considered bandwidth-bound.

Table 7.2 details the communication and computational requirements of individual par-

allel loops in Airfoil and Volna, in terms of useful data transferred (ignoring e.g. mapping

tables) as number of floating-point values and useful computations (ignoring e.g. index-

ing arithmetic) for each grid point during execution. Transcendental operations (sin,

cos, exp, sqrt) are counted as one, these are present in adt calc and compute flux.

Note, that these figures do not account for caching, therefore, in case of indirectly ac-

cessed data, off-chip transfers are reduced by data reuse, and the FLOP to byte ratio

goes up.

Comparing the ratio of floating point operations per bytes transferred to those in Table

A.5 it is clear that most of these kernels are theoretically bandwidth-bound, however, we

have to account for the fact that several kernels may not be auto-vectorizing, therefore,

for a fair comparison, the FLOP/byte ratios of CPU architectures have to be divided
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by the vector length (4 in double and 8 in single precision with 256 bit vectors). This

pushes several kernels much closer to being compute-limited, which suggests that by

applying vectorization, the code can be potentially further accelerated to the point

where its entirely bandwidth-limited, eliminating any computational bottlenecks. In the

following analysis the primary focus is on the achieved bandwidth, calculated based on

the minimal (useful) amount of data moved; this assumes an infinite cache size for the

duration of a single loop, which is of course unrealistic, but it gives a good idea of the

efficiency of execution.

Table 7.3: Test mesh sizes and memory footprint in double(single) precision

Mesh cells nodes edges memory

Airfoil small 720000 721801 1438600 94(47) MB
Airfoil large 2880000 2883601 5757200 373(186) MB
Volna 2392352 1197384 3589735 n/a(355) MB

For Airfoil, performance is evaluated on two problem sizes; a 720k cell mesh and its

quadrupled version, a 2.8M cell mesh, to investigate the sensitivity of the hardware to

load-balancing issues. For Volna, a real-world mesh with 2.5M cells is used, describing

the north-western coast of North America and the strait leading to Vancouver and

Seattle, simulating a hypothetical tsunami originating in the Pacific Ocean. Mesh sizes

and memory footprints are detailed in Table 7.3. These meshes are halved for OpenCL

benchmarks on CPU, because execution is restricted to a single socket due to limitations

in the runtime discussed in Section 7.5.2.

7.5.2 OpenCL performance on CPU and the Xeon Phi

Due to a limitation on the tested Intel CPUs, neither AMD’s nor Intel’s OpenCL 1.2

driver (both support compilation for Intel CPUs) is currently able to select - using the

device fission feature - a subset of processor cores to execute on a single NUMA socket.

Since a fully operational MPI+OpenCL back-end is not yet available, the presented

benchmark is limited to single socket performance comparisons. Scheduling threads to

a single socket is enforced by the numactl utility. Based on the first touch memory

allocation policy in the Linux kernel, it is certain that the master thread and the child

threads - placed on the same socket - get memory allocated to the same NUMA memory

region.
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In the presented performance measurements the one-time cost of run-time compilation

is not counted. Only the time spent on effective computation and synchronization is

shown. Figure 7.9 shows that OpenCL execution time in the CPU case is close to the

plain OpenMP time. As opposed to conventional auto-vectorization, where segments of

a code can be vectorized, OpenCL either vectorizes a whole kernel or none of it. Even

though adt calc, bres calc, compute flux and numerical flux kernels are vectorized,

the overall performance of the OpenCL implementation is not significantly better.

The Intel Offline Compiler [91] has been used to test whether kernels have been vector-

ized or not. Results are shown in Table 7.5. The extended capabilities of the instruction

set on the Xeon Phi, including the gather and scatter instructions, allow the compiler to

vectorize more complex code. The AVX instruction set is more restrictive and although

the compiler could produce vector code, it refuses to do so if the heuristics predict worse

performance. Even though the Intel OpenCL compiler can handle some branching in

the control flow, optimization decisions may override these.

Table 7.4: Useful bandwidth (BW - GB/s) and computational (Comp - GFLOP/s) through-

put baseline implementations on Airfoil (double precision) and Volna (single precision) on

CPU 1 and the K40 GPU

Kernel
MPI CPU

Time BW Comp

save soln 4 46 3.2
adt calc 24.6 13 14.6
res calc 25.2 27 32
bres calc 0.09 29 12
update 14.05 56 8

RK 1 3.24 53 4
RK 2 2.88 59 5
compute flux 23.34 14 42
numerical flux 4.68 29 4
space disc 16.86 21 9

The kernel level breakdown of OpenCL in Table 7.5 shows that the largest difference

between the OpenMP and implicitly vectorized OpenCL comes from the adt calc and

res calc kernels in Airfoil and from the compute flux and numerical flux in Volna.

Even though adt calc is vectorized by OpenCL, and is indeed faster than the non-

vectorized version shown in Table 7.4. The same is true for compute flux. In the

case of numerical flux, the kernel was vectorized but the performance degraded. On

the other hand space disc was not vectorized by OpenCL but the performance still

increased.
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The OpenCL performance on the Xeon processors is satisfying compared to the non-

vectorized OpenMP performance and even better in the case of the Xeon Phi coprocessor.

The results achieved with the coprocessor are shown on Figure 7.10. Thus OpenCL, as

an environment implementing SIMT programming model that is amenable to vectorized

execution, does deliver some performance improvement over previous non-vectorized im-

plementations, but profiling shows that significant performance is lost due to scheduling.

Furthermore, in comparison to results in the next section, we see that while some vec-

torization is achieved, especially on the Xeon Phi, it is currently not capable of creating

efficient vector code.

Table 7.5: Timing and bandwidth breakdowns for the Airfoil benchmarks in double(single)

precision on the 2.8M cell mesh and Volna using the OpenCL backend on a single socket of

CPU and Xeon Phi. Also, kernels with implicit OpenCL vectorization are marked in the right

columns.

Kernel
CPU Xeon Phi OpenCL vec

Time BW Time BW CPU Phi

save soln 4.15(2.18) 44(42) 2.6(1.57) 71(59) – 4

adt calc 18.27(13.23) 17.7(12.2) 12.1(7.2) 27(22) 4 4

res calc 31.43(29.91) 22(11.6) 46(29.76) 15(12) – 4

update 14.65(7.34) 53.5(53.4) 12(6.5) 65(60) – 4

RK 1 1.37 42 0.89 64 – 4

RK 2 1.18 49 0.76 75 – 4

compute flux 6.4 51 4.91 67 4 4

numerical flux 7.48 18 3.28 42 4 4

space disc 9.24 40 7.95 45 – 4
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Figure 7.9: Vectorization with OpenCL compared to previous implementations. Per-

formance results from Airfoil in single (SP) and double (DP) precision on the 2.8M cell

mesh and from Volna in single precision on CPU.

DOI:10.15774/PPKE.ITK.2016.002



Chapter 7. Unstructured Grid Computations 107

0

20

40

60

80

100

120

Airfoil SP Airfoil DP Volna SP

Scalar MPI Scalar MPI+OpenMP Auto-vectorized MPI+OpenMP

OpenCL Vectorized MPI Vectorized MPI+OpenMP

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

Figure 7.10: Performance of OpenCL compared to non-vectorized, auto-vectorized and

explicitly vectorized (using intrinsic instructions) versions on the Xeon Phi using Airfoil

(2.8M cell mesh) and Volna test cases.

7.6 Conclusion

The efficiency of the parallel colored indirect incrementation in real-world unstructured

grid computations can be significantly improved by reordering the elements of the mesh

in OP2 using the GPS minimal bandwidth reordering algorithm. This approach dra-

matically decreases the connectivity between the blocks and allows the mini-partitioning

and näıve coloring method for decreasing the number of block colors. The fewer colors

means less sequential execution and leads to better parallel execution performance and

better parallel scalability.

In this chapter OpenCL vectorization capabilities were also evaluated to achieving ef-

ficient vectorized execution on modern Intel CPUs and the Xeon Phi. A key question

is whether OpenCL SIMT model for expressing parallelism is sufficient for achieving

good performance on multi- and many-core architectures. It has been shown how OP2

can map execution to multi-level parallel (multi-threading and vectorzation) setting us-

ing OpenCL. It is shown that the OpenCL extension developed for OP2 is capable of

vectorizing certain kernels for unstructured grid computations on architectures based

on SIMD type ISA. The SIMT parallel programming paradigm can be used to create

vectorized SIMD machine code through Intel’s support for the OpenCL language. The

results show that OpenCL is adequately portable, but at the time of writing the driver

and the runtime are not very efficient. When compared to the simple (non-vectorized)
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OpenMP execution, runtime is only slightly better; even though some degree of vector-

ization is carried out, there is a large overhead coming from the runtime system. This

is expected to improve with time and with the introduction of new instruction sets.
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Chapter 8

Conclusion

Each chapter describing the particular problem that is solved is concluded with its own

conclusion section. In this chapter the new scientific results are highlighted.

8.1 New scientific results

The new scientific results are grouped into thesis groups according to their classification

among the 13 dwarves. Results regarding the new solutions proposed for solving tridi-

agonal system of equations can be categorized as the ”Sparse Linear Algebra” dwarf

which are detailed in Thesis group I. Image processing and PDE solution using the ADI

method is categorized as the ”Structured Grid” dwarf which is detailed in Thesis group

II. Finally, results regarding CFD computations are categorized as the ”Unstructured

Grid” dwarf which is detailed in Thesis group III. The relations between thesis groups,

parallel problem classification and parallel processor architectures are summarized in

Figure 8.1.

New scientific results are published in journals(marked as [J]), conference (marked as

[C]) proceedings and conference talks (marked as [CT]). Publications corresponding to

the thesis groups are noted below.
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Figure 8.1: Thesis groups: relation between thesis groups, parallel problem classification
and parallel processor architectures. Colored vertical bars right to thesis number denote the
processor architecture that is used in that thesis. Dashed grey arrow represent relation between

theses.

Thesis Group I. Efficient algorithms for sparse linear algebra

Many times PDEs arising in the scientific, engineering and financial applications re-

quire an extensive use of sparse linear algebra which needs to be efficiently parallelised

for current and upcoming parallel processor architectures. In particular, the numerical

solution of some special parabolic, diffusion type PDEs with implicit solvers boil down

to the solution of tridiagonal system of equations where the elements of the tridiagonal

matrix are either scalar values or blocks with size M×M , where M ∈ [2, 8]. New parallel

algorithms for the acceleration of such tridiagonal solvers is therefore essential to these

scientific, engineering and financial communities to accelerate research and innovation.

Theses in this group contribute to the parallelisation and acceleration of such methods

on CPU, GPU and MIC architectures.

Corresponding publications: [J1], [C1], [CT1], [C2], [C3]
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Thesis I.a I have developed new register blocking based local data transposition algo-

rithms for multi- and many-core parallel processor architectures to improve the memory

access pattern of the Thomas algorithm when solving tridiagonal system of equations

where the coefficients are stored in consecutive order in the memory. The overall perfor-

mance gain is: 1) up to ×4.3 on the GPU compared to the NVIDIA cuSPRASE library;

2) up to ×1.5 on the CPU compared to the Intel MKL library and 3) up to ×1.9 on the

MIC compared to the Intel MKL library.

A tridiagonal system of equation is composed of three coeffcient vectors a, b and c, one

unknown vector u and the right hand side vector d. All these vectors are element of RN

and they have identical data layout in the memory. The data layout of the coefficients

of a tridiagonal system of equations may depend on the grid and the numerical method

where it is applied, this can be consecutive or stride-N. Consecutive or stride-1 means

that elements ak and a(k+1) of vector a are at consecutive memory addresses in the

linear memory, ie. at address k and (k + 1). Stride-N means that elements ak and

a(k+1) of vector a are at address k ×N and (k + 1)×N in the linear memory. In many

cases the consecutive data layout is used which results in poor cache-line utilization and

therefore requires memory access pattern optimization. I have developed two algorithms

for GPUs, to perform data load (and store) of multiple values at once and transpose

these data for calculation. I have also developed similar transposition based solvers for

the CPU and MIC architectures. My solutions allow the transposition to be done using

registers and the use of data directly from registers.

Thesis I.b I have developed an efficient implementation of a new hybrid algorithm for

the solution of tridiagonal system of equations on GPU architectures using the conven-

tional Thomas and PCR algorithms in the case when the varying coefficients are stored

in the main memory of the GPU. This GPU specific solution allows the utilization of

the large number of registers on GPU architectures and local transposition of data when

reading the coefficients are done in registers. The resulting solver is up to ×9 times

faster than the solver in the NVIDIA cuSPARSE library and up to ×2.1 times faster

than the transposition based GPU solver introduced in Thesis I.a.

I have created the implementation of a new hybrid algorithm which is a combination

of the Thomas and the PCR algorithms, which is optimal in the sense that is limited

DOI:10.15774/PPKE.ITK.2016.002



Chapter 8. Conclusion 112

either by the memory bandwidth or the compute capacity of the GPU, depending on

the floating point precision. This hybrid GPU specific algorithm allows the utilization

of registers which leads to extreme efficiency when the system size is sufficiently small

to fit into the registers of the GPU. Consecutive or stride-N data layout can both be

handled with this algorithm. When needed transposition in register can be performed

without the use of shared memory. As there is no need for storing intermediate values

in global or local memory as in the case of the regular Thomas algorithm the ratio of

floating point operations per byte is much higher for the new hybrid algorithm which

results in better performance on a high compute intensity architecture like the GPU.

Thesis I.c I have developed a new algorithm for the solution of block tridiagonal system

of equations on GPU using a new thread work sharing and register blocking approach,

when the block sizes are M × M with M =∈ 2, 8]. The achieved computational per-

formance of this GPU specific work sharing approach is superior compared to the know

algorithms and their implementation. I have experimentally showed that it is up to ×27

times faster than the Intel MKL banded solver and up to ×9.8 faster than the PCR-based

GPU solver proposed by [54].

Block tridiagonal system of equations arise in CFD (Computational Fluid Dynamic)

applications [8, 7], where block sizes vary according to the multi-variable PDE. I gave

a new thread work-sharing algorithm to parallelise the Thomas algorithm. I have also

shown that this approach is computationally more efficient than the CR or PCR algo-

rithms and that sufficient parallelism can be exploited with work-sharing to exceed the

performance of the CR and PCR algorithms when block size is in the range M =∈ 2, 8].

Thesis I.d I have developed a new implementation for the solution of block tridiagonal

system of equations on multi-core CPU and many-core MIC with vector instructions,

which outperforms the banded solver of the Intel MKL library in terms of computational

performance by a factor of ×6.5 and ×5 in the case of the CPU and MIC repectively.

I have restructured the code and data of the standard block Thomas algorithm with

C++ templates and code transformation to achieve better data locality and guide the

compiler in the vectorization procedure. The result is a highly efficient SIMD based

CPU and MIC implementation of the block Thomas algorithm.
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Thesis Group II. Efficient algorithms for strucutred grid computations

The solution of parabolic, diffusion type PDEs on a structured grid domain can be effi-

ciently solved using the ADI (Alternating Direction Implicit) method which – in higher

dimensions – boils down to the solution of multiple tridiagonal system of equations. The

memory access pattern of the tridiagonal solves along different dimensions varies and

results in significant performance loss if conventional multi- and many core implemen-

tations of numerical library functions are used. Therefore new efficient algorithms are

needed. Also, the solution of diffusion type PDEs like the Black-Scholes PDE arising

in financial applications and other PDEs related to CNN based image processing re-

quire efficient parallelization solutions for parallel processor architectures like FPGAs

and GPUs.

Corresponding publications: [J1], [CT1], [C3], [C6]

Thesis II.a I have elaborated and implemented new parallel algorithms to accelerate

the calculation of the ADI (Alternating Direction Implicit) method for the solution of

PDEs in higher spatial dimensions on CPU, MIC and GPU. The resulting ADI solver

utilizes new solvers of tridiagonal system of equations with stride-1 and stride-N access

patterns.

When solving parabolic, diffusion type multi-dimensional PDEs many times it is possible

to decouple the solution of the higher spatial N dimensions into N number of one-

dimensional problems. I have developed ways to optimize the efficiency of the solution in

each dimension as the memory access pattern changes significantly along each dimension

for arbitrary dimensions. This result is also a representative use case for the tridiagonal

solvers of Thesis I.a and Thesis I.b.

Thesis II.b I have developed a power-efficient parallel FPGA based solver in HLS

(High Level Synthesis) to accelerate the numerical solution of the 1-factor Black-Scholes

PDE. The resulting FPGA solver is on par with the CPU solver in terms of compu-

tational performance, but it outperforms the CPU in terms of computational efficiency

(GFLOPS/W) by a factor of 4 in the case of the explicit solution and by a factor of 1.3

when solving the implicit problem.
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Solving the 1-factor Black-Scholes PDE for pricing financial derivatives with one un-

derlying asset requires an explicit or implicit solution of the PDE. I have proposed an

efficient stencil operation type solutions for the explicit method and an efficient Thomas

algorithm implementation for the implicit method.

Thesis II.c I have experimentally proven that the utilization of the texture cache by a

double buffer approach is an efficient way to implement a GPU based accelerator for the

solution of the CNN state equation as it increases the cache hit rate of the two dimen-

sional texture cache due to spatial locality and reduces the number of integer operation

involved during the memory index calculations through the built in functionality of the

texture cache.

When solving the CNN state equation to perform a diffusion operation on an image, a

heat diffusion PDE is solved. The solution of such a PDE is memory bandwidth limited.

As such, a tiling or cache blocking optimizations amortize the data transfer and allow

good performance. I have shown that this performance can be overcome by utilizing the

built-in texture cache capability of the GPU. With this approach the solution of the two

dimensional CNN state equation can take advantage of the significant cache reuse of the

texture cache when fetching data. Also, significant integer operations and latency can

be saved by utilizing the built-in coordinate calculation units of the GPU.

Thesis Group III. Efficient algorithms for unstructured grid computa-

tions

Increasing the efficiency of parallel computations on unstructured grid applications in the

OP2 framework is of high importance to the scientific community. Improving the single

node scalability of the indirect increment of values in the OP2 framework is of great

importance for performance. One component of the scalability is the mini-partitioning.

The current naive mini-partitioning solution can be improved by exploiting the use min-

imal matrix bandwidth reordering techniques. New methods for an OpenCL backend of

the OP2 framework can improve the performance of unstructured grid applications on

CPU and MIC, and provide code portability.

Corresponding publications: [C4], [J2], [C5]
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Thesis III.a I have experimentally proven that the efficiency of the parallel colored in-

direct incrementation in unstructured grid computations can be improved by extending the

mini-partitioning in OP2 using the GPS (Gibbs-Poole-Stockmeyer) minimal bandwidth

reordering algorithm on real-world CFD simulation problems. This approach dramati-

cally decreases the number of block colors used in the parallel increment and therefore

increases the number of blocks within a color which can be incremented in parallel. The

reduction in the number of block colors is up to ×37.5 for real-world test cases and the

speedup resulting from this improvement is ×7.4.

In order to increase the efficiency of parallel incrementation on unstructured grids OP2

utilizes a two level coloring scheme to identify the set of elements and blocks which can be

incremented in parallel. The number of colors determines the number of sequential steps

during the incrementation process. In real world applications the number of block colors

can be high due to excessive number of connections between the mini-partitions. I have

proposed the use of the GPS bandwidth minimization algorithm to reorder meshes so

that the näıve mini-partitioning creates blocks with less neighboring connections which

helps the two level coloring algorithm to get better block coloring.

Thesis III.b I have analysed and proposed new heuristic code transformation tech-

niques to improve the vectorization capabilities of OpenCL on CPU and MIC architec-

tures. The resulting OpenCL kernels within OP2 lend themselves to better parallelization

properties on real world simulation codes. In case of the CPU the achieved performance

is on par with the OpenMP and MPI parallelization. However, the OpenCL implemen-

tation is ×1.5 faster on the MIC compared to the MPI+OpenMP solution.

I have exploited the capabilities of the Intel OpenCL implementation for CPU and

MIC to increase their performance by implementing the OpenCL backend of the OP2

framework. The key to this improvement is the matching of multi-threading and SIMD

vectorization features of the CPU (or MIC) to the SIMT type kernel abstraction of the

OpenCL standard.
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8.2 Application of the results

As noted in the Section 1.2 the problems selected for parallelization originate from the

scientific, engineering and financial disciplines and therefore they have a direct appli-

cation in these fields. The results concerning scalar and block tridiagonal solvers were

presented at the GPU Technology Conference in San Jose in 2014, the largest GPU

conference by today and on conferences and journal papers..

The integration of the results from the research of scalar tridiagonal solver to atmo-

spheric simulations is an ongoing work by Eike Mueller and his collegues at the Depart-

ment of Mathematical Sciences at the University of Bath, UK. In atmospheric modelling

due to the structured meshing of the atmosphere the cell geometries are too distorted

which results in numerical stability problems, also known as highly anisotropic problem.

Line-smoother in the multigrid preconditioner requires the frequent inversion of a tridi-

agonal matrix and therefore the Thomas-PCR algorithm may have a high impact on the

performance.

My results are used to improve the performance of a Navier-Stokes CFD solver called

Turbostream. Turbostream is developed by Dr. Tobias Brandvik and Dr. Graham Pul-

lan in the Whittle Laboratory at the University of Cambridge, UK. It is aimed at solving

CFD problems arising in the design of turbomachinery where the numerical solution of

the Navier-Stokes equations are done using a line-implicit or semi-implicit Runge-Kutta

method on an unstructured grid with stretched regions. Along these stretched regions

an (block tridiagonal) implicit solution is required for unconditional stability, as the grid

cells are highly anisotropic.

Dr. Serge Guillas and his colleagues at the University College London, UK used the Vol-

naOP2 tsunami simulation code – written by István Reguly and me – to perform mea-

surements for the papers [92] and [93]. This implementation make large scale tsunami

simulations feasible which result in statistically relevant results.
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Appendix

A.1 Hardware and Software for Scalar and Block Tridiag-

onal Solvers

The most salient properties of the CPU, MIC and GPU used in the present study are

shown in Table A.1. The Intel Composer XE Suite 2015.2.164 with compiler version

15.0.2 compiler and Intel Math Kernel Library version 11.2 Update 2 for Linux was used

to perform the benchmarks. For the NVIDIA GPU benchmark the CUDA 7.0 runtime

and driver version 346.46 was used.
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Table A.1: Details of Intel Xeon Sandy Bridge server processor, Intel Xeon Phi coprocessor
and the NVIDIA Tesla GPU card. *Estimates are based on [23], [44] and [94]. Both Intel
architectures have 8-way, shared LLC with ring-bus topology. HT - Hyper Thread, MM -

Multi Media, RO - Read Only

Intel Xeon E5-2680 Intel Xeon Phi 5110P NVIDIA K40m

Microarchitecture Sandy Bridge Knights Corner GK110b
No. sockets 2 1 1
CPU core / SMX unit 2x8 59 (+1 for OS) 15
HT / core or CUDA core/SMX 2 4 192
MM register width 256 bits 512 bits 32 bits
Registers / thread 16 YMM 32 ZMM 255
L1 data cache / core 32 KB 32 KB 64 KB + 48 KB RO
L2 data cache / core 256 KB 30 MB 1.5 MB
L3 data cache / socket 2x20 MB - -
Cache line 64 bytes 64 bytes 32 bytes
Cache latency L1/L2/L3* 4/11/21* 3/22/-* 38/-/- *
Virtual page size 4KB-2MB 2MB 4KB*
Clock rate 2.7 (3.5 Turbo) GHz 1053 MHz 745 MHz
fp32 perf. 2x172.8 GFLOPS 2.022 TFLOPS 4.29 TFLOPS
fp64 perf. 2x86.4 GFLOPS 1.011 TFLOP 1.43 TFLOPS
Installed memory 64 GB DDR3 8 GB GDDR5 12 GB GDDR5
Memory bandwidth 2x51.2 GB/s 320 GB/s 288 GB/s
PCI bus PCI-E x40 Gen3 PCI-E x16 Gen2 PCI-E x16 Gen3
TDP / Cooling 2x130 W / Active 225W / Passive 235 W / Passive
Recommended price 2x1727 USD 2649 USD 5499 USD
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A.2 System size configuration for benchmarking block tridi-

agonal solvers.

Table A.2: Parameter N - Length of a system used for benchmarking a processor architecture
and solver. The length of the system is chosen such that the problem fits into the memory of

the selected architecture.

Block size 2 3 4 5 6 7 8

SP

CPU 128 128 128 128 128 96 96
CPU MKL 11.2.2 128 128 128 128 128 96 96
MIC 128 128 128 128 128 96 96
MIC MKL 11.2.2 128 128 128 128 128 96 96
GPU Shuffle 128 128 128 128 128 96 96
GPU Shared 128 128 128 128 128 96 96

DP

CPU 128 128 128 128 128 96 96
CPU MKL 11.2.2 128 128 128 128 128 96 96
MIC 128 128 128 128 128 64 64
MIC MKL 11.2.2 64 64 64 64 64 48 48
GPU Shuffle 128 128 128 128 128 96 96
GPU Shared 128 128 128 128 128 96 96

Table A.3: Parameter P - Number of systems used for benchmarking a processor architecture
and solver. The number of systems is chosen such that the problem fits into the memory of

the selected architecture.

Block size 2 3 4 5 6 7 8

SP

CPU 65536 65536 65536 65536 65536 32768 32768
CPU MKL 11.2.2 65536 65536 65536 65536 65536 32768 32768
MIC 32768 32768 32768 32768 32768 16384 16384
MIC MKL 11.2.2 32768 32768 32768 32768 32768 16384 16384
GPU Shuffle 65536 65536 65536 65536 65536 32768 32768
GPU Shared 65536 65536 65536 65536 65536 32768 32768

DP

CPU 65536 65536 65536 65536 65536 32768 32768
CPU MKL 11.2.2 65536 65536 65536 65536 65536 32768 32768
MIC 32768 32768 32768 32768 32768 16384 16384
MIC MKL 11.2.2 32768 32768 32768 32768 32768 16384 16384
GPU Shuffle 65536 65536 65536 65536 65536 32768 32768
GPU Shared 65536 65536 65536 65536 65536 32768 32768
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A.3 Volna OP2 benchmark setup

The system used for benchmarking Volna OP2 is based on a dual socket Intel Xeon server

processor. Ubuntu 14.04 LTS server edition operating system with Intel Composer XE

2015.3.187 and compiler version 15.0.3 was used. Software threads are pinned to CPU

cores using the KMP AFFINITY=compact,0 environment variable.

Table A.4: Details of Intel Xeon Haswell server processor used in the benchmarks of Volna
OP2. HT - Hyper Thread, MM - Multi Media

Intel Xeon E5-2695v3

Microarchitecture Haswell
ISA AVX2
No. sockets 2
CPU core 2x14
Threads / core 2
MM register width 256 bits
Registers / thread 16 YMM
L1 data cache / core 32 KB
L2 data cache / core 256 KB
L3 data cache / socket 2x35 MB
Cache line 64 bytes
Clock rate 2.3 (3.3 Turbo) GHz
fp32 perf. 2x512.2 GFLOPS
fp64 perf. 2x257.6 GFLOPS
Installed memory 64 GB DDR4
Memory bandwidth 2x68 GB/s
TDP / Cooling 2x120 W / Active
Recommended price 2x2424 USD

A.4 OpenCL benchmark setup

Table A.5: Benchmark systems specifications

System CPU Xeon Phi
Architecture 2×Xeon E5-2640 Xeon Phi 5110P
Clock frequency 2.4 GHz 1.053 GHz
Core count 2×6 61 (60 used)
Last level cache 2×15MB 30MB
Peak bandwidth 2×42.6 GB/s 320 GB/s
Peak GFLOPS DP(SP) 2×120(240) 1010 (2020)
Stream bandwidth 66.8 GB/s 171 GB/s
D/SGEMM GFLOPS 229(433) 833(1729)
FLOP/byte DP(SP) 3.42(6.48) 4.87(10.1)
Recommended price 2x889 USD 2649 USD
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[C6] Endre László, Péter Szolgay, and Zoltán Nagy. “Analysis of a GPU based

CNN implementation”. In: Cellular Nanoscale Networks and Their Applications

(CNNA), 2012 13th International Workshop on. IEEE. 2012, pp. 1–5.
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