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Abstract 

Apoplast acidification associated with growth is well-documented in roots, coleoptiles 

and internodes but not in leaves. In the present project on barley (Hordeum vulgare L.) 

advantage was taken of the high cuticle permeability in the elongation zone of leaves to 

measure apoplast pH and growth in response to application of test reagents. The role of 

the plasma membrane H+-ATPase (PM-H+-ATPase) and K+ in this process was of 

particular interest. An in vitro gel system with bromocresol purple as pH indicator, pH 

microelectrodes and pH-sensitive fluorescence dye combined with confocal microscopy 

were used to monitor apoplast pH. Growth was measured in parallel or in separate 

experiments using a linear variable differential transformer (LVDT). Test reagents which 

blocked (vanadate) or stimulated (fusicoccin) PM-H+-ATPase, or which reduced (NH4
+, 

Cs+, tetraethylammonium) K+ uptake were applied. Plasma membranes were isolated 

from growing and mature leaf tissue and used to determine the activity (ATPase assay) 

and abundance (Western blotting) of PM-H+-ATPase protein. Protein localisation was 

studied by immunohistochemistry and expression of mRNA quantified using real time 

PCR (qPCR). Apoplast pH was by up to 1.0 pH unit lower in growing compared to non-

growing leaf tissue. Depending on the K+ concentration in the bathing medium used 

during electrophysiological analyses, apoplast pH in the elongation zone ranged from 

pH 4.8 (0.1 mM K+) to pH 5.8 (10 mM K+). In the emerged blade, apoplast pH remained 

at about pH 5.8 irrespective of the K+ concentration in the bathing medium Growth was 

more responsive to test reagents than to changes in apoplast pH. Expression of PM-H+-

ATPase was comparable between growing and non-growing leaf regions when 

expression was related to per unit extracted RNA or cell number. However, when 

expression was related to per unit surface area of plasma membrane, expression of 

PM-H+-ATPase was about twice as high in growing compared to non-growing leaf 

tissue. The same applied to the protein level and activity of PM-H+-ATPase. 

Immunohistochemical analyses showed that PM-H+-ATPase was present in all living 

leaf tissues, particular in those (guard cells, phloem, and xylem parenchyma) 

associated with high rates of trans-membrane solute transport. It is concluded that leaf 

cell expansion in barley depends on the activity of the PM-H+-ATPase and K+ transport 

processes. The higher surface density of PM-H+-ATPase activity in growing barley leaf 

tissue aids apoplast acidification and growth. A H+ / K+ co-transport system may play a 

key role in linking growth with apoplast pH, H+ pump activity and K+-uptake. 
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1 General Introduction  

 

1.1 Plant growth 

Plant growth can be defined as an irreversible increase in the size of cells, tissues, 

organs or whole plants (Csiszár et al., 2004). Cell expansion is generally considered 

to be caused by wall loosening and driven by turgor pressure (Christian et al., 2006). 

The term ‘cell growth’ mainly refers to the increase in size of proliferating cells in the 

cell cycle (meristematic cells), with increase in the total nucleic acid and protein 

content without vacuolization of the protoplast. In contrast, the term ‘cell expansion’ 

refers to the manifold increase in size of newly produced cells that is associated with 

the formation of a large central vacuole and finally leads to cell differentiation (Perrot-

Rechenmann, 2010). While plants need to produce new cells to grow, it is cell 

expansion which leads to the physical increase in plant size and biomass. 

 

1.1.1 Plant cell expansion 

The enlargement of cells reflects increase in water content of cells. Irreversibility of 

this process is guaranteed by the plastic properties of the cell wall. From the 

biophysical view, plant cells need a wall which gives in to turgor pressure 

(mechanical driving force) and solutes which drive water uptake through osmosis. 

Therefore, cell expansion may be limited by the mechanical (yielding and 

extensibility) properties of the cell wall and the rate at which water and solutes are 

taken up or produced (solutes) by cells internally (Fricke & Flowers, 1998; Fricke & 

Peters, 2002).  

 

1.1.1.1 Cell wall 

It is a popular theory that expansion of leaf and root cells is controlled by cell wall 

properties. Based on the work of Green et al. (1971) on giant algae cells (Nitella sp.) 

and Lockhart’s (1965) theoretical considerations, a growth model was developed 

which relates the growth rate (GR) to extensibility properties (m), yield threshold of 

cell wall where no cell expansion occurs (Y) and cell turgor (P): 

GR = m · (P-Y) 

The impact of the mechanical properties of the cell wall for plant growth was found in 

many studies both in roots and shoots (Cosgrove, 1993; Pritchard, 1994; Cosgrove, 
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1998; Hsiao & Xu, 2000). The implication of these studies is that the rate of cell 

expansion, and therefore plant growth, may be regulated by altering the mechanical 

properties of the wall, making it ‘softer’ (more growth) or ‘harder’ (less growth). One 

way to alter wall properties is through changes in wall (apoplast) pH. 

Acidification can affect growth through cell wall loosening (Rayle & Cleland, 

1970) and different theories have been proposed to explain this phenomenon. One 

hypothesis suggested that H+ directly affects non-covalent bonds between β-glucan 

within the cell wall, causing wall loosening (Hohl et al., 1991). Another hypothesis 

suggested that due to H+ excretion Ca2+ ions are displaced in the cell wall and that 

this leads to a more flexible cell wall (Arif & Newman, 1993). A breakthrough in our 

understanding of pH-related wall loosening came in 1992 when two proteins were 

extracted from cucumber hypocotyls which were capable of inducing extension in 

isolated, heat-inactivated cell walls of several plant species. These ‘wall loosening’ 

proteins were termed ‘expansins’. The pH optimum of these proteins was pH3.5 - 4.5 

(McQueen-Mason et al., 1992) and this may explain at least in part why apoplast 

acidification increases the growth rate of plant organs. 

 Expansins are specifically expressed in growing tissues of monocotyledons 

and dicotyledonous plants. They are highly conserved in size and amino acid 

sequence (Cosgrove, 1996). However, studies on fescue suggest that another group 

of wall proteins, xyloglucan endotransglycosylases, may be more involved in 

regulation of cell expansion than expansins (Reidy et al., 2001).  

Expansins do not induce wall extension through simple polymer hydrolysis. 

They mainly disrupt hydrogen bonding not just in-vivo, in a paper sheet as well and 

reengineering the cell wall structure facilitating plant growth (McQueen-Mason, 

1995). Promoting cell wall relaxation is necessary for expansion of plant cells 

(Cosgrove, 1993). An overview of expansin action is given in Fig. 1.1.  
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Figure 1.1 Model how expansins might interact with other wall components 

Expansins might cause a transient release of short segments of matrix 
hemicelluloses glycans attached to cellulose microfibrils. Wall hydrolyses cut matrix 
glucans into shorter segments leading to weakening but not to creep of the cell wall. 
Transglycosylases are recombining glycans into shorter or longer pieces. PM-H+-
ATPases may lower the wall pH and control enzymes by their pH optima. Reprint 
from Cosgrove (1998) based on open access policy of www.plantphysiology.org with 
copyright American Society of Plant Biologists. 
 

1.1.1.2 Solutes 

Based on the original growth model described above (Lockhart, 1965; Green et al., 

1971), turgor pressure and solute uptake should have significant impact on cell 

expansion and growth. The availability of solutes seems to co-limit growth especially 

under water (Frensch, 1997; Hsiao et al., 1998) and salt stress (Fricke & Peters, 

2002). 

 Osmolality and turgor pressure change little along the elongation zone of 

cereal leaves (Fricke et al., 1997; Fricke & Flowers, 1998; Martre et al., 1999; Fricke, 

2002a) and roots (Pritchard, 1994). The implication of a constant turgor pressure in 

expanding cells might be that cells instantly deposit solutes to maintain osmolality as 

the osmotic force driving water uptake while they expand and cell contents become 

diluted (Fricke, 2002a). 
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1.1.1.3 Water 

In barley, it has been suggested that the rate of tissue-water transport might limit cell 

expansion in leaves (Fricke, 2002b). Similar conclusions have been made for 

soybean hypocotyls and maize leaves by the work of Boyer and colleagues who 

coined the term ‘growth-induced water potentials’ (Boyer, 2001; Tang & Boyer 2008). 

The mere existance of significant gradients in water potential between growing tissue 

and water source suggests that the conductance of the pathway between the two is 

limiting water transport. In a multi-layered tissue e.g. in roots, the radial hydraulic 

conductance can be one to three orders of magnitude larger under transpirating than 

under non-transpirating conditions (Steudle, 2000). Recent studies showed that in 

barley roots water uptake occurred along a pathway which involved crossing of 

membranes. It was not clear whether osmotic forces were sufficient to support water 

uptake (Knipfer & Fricke, 2011). Aquaporins have an essential role in the water 

transport at cellular level (Hachez et al. 2008). Aquaporins also may play essential 

role in elongation growth of barley leaves (Besse at al., 2011).  

 

1.1.2 pH conditions in the apoplast 

The present analyses did not, or did little distinguish between cell wall space and 

apoplast. The latter also comprises intercellular spaces and middle lamellae. 

Therefore, and for simplicity, it is referred to ‘apoplast’ throughout the present work. 

The apoplast of higher plants occupies typically 5 % or less of the total tissue 

volume. This applies in particular to living tissues. The apoplast determines ionic 

conditions around the cells; it affects transport solutes into and out of cells, provides 

a diffusion barrier in speciliased cases (e.g. Casparian bands) and defines 

mechanical and osmotic conditions – conditions which may be or may not be 

compatible with cell expansion. The latter applies in particular to the pH of the 

apoplast. Using different methods (pH indicators in agar, microelectrodes and 

fluorescence probes) a huge variety in apoplast pH has been reported for roots of 

different plant species. Values ranged from pH 4.0 to pH 7.0 with most values being 

in the region pH 5.0 to pH 6.5 (Grignon & Sentenac, 1991). Dicotyledonous plants 

have generally a higher (less acidic) pH than monocotyledonous plants have, and 

apoplast pH is lower in gymno- compared to angiosperms (Grignon & Sentenac, 

1991). 

In fully developed barley leaves an apoplast pH of pH 5.0 was measured using 

microelectrodes (Felle, 2006). The pH varied in dependence of oxygen availability 
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(anoxia) (Felle, 2005; Felle et al., 2005; Felle, 2006). Similar pH values have been 

reported for maize leaves using microelectrodes and fluorescence probes (Pitann et 

al., 2009a; Ehlert et al., 2011). 

 

1.1.3 ‘Acid growth’ theory 

‘Acid growth’ originally was discovered by Bonner in 1934 when he described that the 

growth rate of Avena coleoptiles in pH 4.1 buffer was significantly higher than in pH 

7.2 buffer (Kutschera, 1994). Later this effect was re-discovered and characterised in 

more detail by Rayle & Cleland (1970) and Hager et al., (1971). Although in the 

literature ‘acid growth’ is mainly mentioned in relation to growth effects caused by the 

phytohormone auxin and the fungal toxin fusicoccin, which permanently activates 

PM-H+-ATPase, linked plant growth, acid growth is a more general phenomenon and 

can be induced by other factors (Vesper & Evans, 1979). In ‘acid growth’, acid 

related cell ‘wall-loosening’ may constitute the initial event (Rayle & Cleland, 1970; 

Cosgrove, 1993). During the past decades, the ‘acid growth’ theory, or parts of the 

underlying mechanistic model, has been questioned repeatedly (Kutschera & 

Schopfer, 1985a; Kutschera, 1994; Grebe, 2005), However, with some limitation it is 

‘alive and well’ (Lüthen et al., 1990; Hager et al., 1991; Rayle & Cleland, 1992; 

Kutschera, 2006). An alternative theory for ‘acid growth’ is the ‘facilitated solute 

uptake’ theory. This theory states that it is not the secreted H+ which are causing 

directly the increased growth rate through alteration of wall properties, but that a 

proton-coupled transport mechanism across the plasma membrane is stimulated 

(Brummer et al., 1984). 

 

1.1.3.1 ‘Acid growth’ and effect of auxin and fusiccoccin on growth 

Almost at the same time, Darwin and Sachs proposed the theory that growth and 

development of plants is controlled by hormones (Darwin, 1880; Kutschera 1994). 

Using Avena sativa coleoptiles, Darwin, in 1880, showed that coleoptiles were 

bending towards the light source and once the tip of the coleoptiles was covered or 

cut, the coleoptiles were unable to produce this bending effect. In 1909, Fitting 

showed that coleoptile bending was a result of the non-homogeneous distribution of 

some factor, possibly a hormone (Katsumi, 2007). With gelatine cubes and glass 

pieces Boysen-Jensen (1913) proofed that this factor was transported from the tip to 

basal end of the coleoptile (Csiszár et al., 2004). Paál (1918) could induce coleoptile 

bending without light, changing the orientation of coleotile tips (Paál, 1918; Csiszár et 
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al., 2004). Finally, in 1937, Went discovered the hormone (auxin) and showed that if 

the hormone was in gelatine cubes the tip was not necessary for coleoptile bending 

(Kutschera 1994). Heyn in 1940 proposed that auxin (in its physiological form indol 

acetic acid - IAA) promotes growth by enhancing cell wall extensibility. In 1934 and 

1970 the ‘acid growth’ theory was born to explain auxin related plant growth 

(Kutschera, 1994). Fusicoccin, a phytotoxin of the fungus Fusicoccum amygdale, 

was discovered as ‘super-auxin’ a few years latter (Marré, 1979) and is still used 

today in many plant growth studies. 

 

1.1.3.2 Experimental systems using coleoptiles 

Coleoptiles of monocotyledon plants have widely been used as a model system to 

study plant growth. Coleptiles can be obtained on plants which need to grow for only 

a few days, are well characterised in terms of their phototropic or gravitropic 

response, show defined regions of growth and auxin production, are simple in 

anatomy and are easy to handle and cut. The main disadvantage, however, of 

coleoptiles is that their cuticle provides a permeance barrier to applied test reagents 

and diffusion barrier for protons and that this causes difficulties for applying 

treatments and measuring apoplastic pH (changes). In different laboratories this 

problem has been solved in different ways by peeling off part of the outer epidermis 

(Rayle, 1973), abrasion of coleoptiles with wet emery cloth prior to cutting (Kutschera 

& Schopfer, 1985a), abrasion with distilled water and SiC powder (Lüthen et al., 

1990) or using dry polishing cloth for abrasion of coleoptiles before excision of 

segments (Schopfer, 1989). None of these methods were free from artefacts; 

however the results have been informative.  

In most experiments, the incubation medium in which pH measurements were 

conducted was slightly buffered to prevent pH changes as a result of changes in CO2 

content of the atmosphere e.g. Rayle (1973); Stahlberg & Van Volkenburgh (1999) 

and Felle (2006). At the same time, the buffer capacity of the medium may affect pH 

measurements. Probably the best system for pH measurement was the method of 

ionostat (Döring et al., 1996), because the incubation medium was not buffered and 

changes in H+ efflux were measured rather than pH.  

 

1.1.3.3 Acid growth of coleoptiles 

Using maize coleoptiles, which were SiC-abraded in water and analysed using a 

computer controlled pH stat, both auxin and fusicoccin treatments affected growth in 
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a way which supported the ‘acid growth’ theory (Fig. 1.2). Neutral and alkaline 

solutions partly inhibited auxin- and fusicoccin-induced growth, whereas fusicoccin-

induced growth under constant pH conditions. Fusicoccin and auxin did not show any 

additive effect (Lüthen et al., 1990). Cell wall pH and growth rate were in close 

temporal correlation indicating co-regulation of apoplast solute composition (Peters et 

al., 1998). 

 

 

Figure 1.2 Fusicoccin and auxin effect on maize col eoptiles 

Typical trace of fusicoccin (A) and auxin (IAA) effect (B). Dots represent the proton 
secretion while asterisks the coleoptiles growth rate. Experiments were carried out 
using SiC abraded maize coleoptile segments and a pH stat to maintain pH. Reprint 
from Lüthen et al. (1990) based on open access policy of www.plantphysiology.org 
with copyright American Society of Plant Biologists. 
 

 Other studies suggested that fusicoccin, but not auxin, caused ‘acid growth’. 

Using the wet emery cloth abrading technique and buffered incubation medium, 

fusicoccin-induced growth was totally inhibited by alkaline solutions (Kutschera & 

Schopfer, 1985b) while auxin-induced growth was not affected (Kutschera & 

Schopfer, 1985a). The difference between these and the above-mentioned results 

might have been caused by the experimental set ups. The abrading technique was 

different and the solution was buffered in case of Kutschera & Schopfer (1985ab), 

while Lüthen at al. (1990) could use unbuffered solutions. Difference in cation 

composition might have impacted too, with 10 mM KCl and 1 mM Ca2+ used by 

Lüthen et al. 1990), while Kutschera & Schopfer (1985ab) used Ca2+ in the incubation 

medium and K+ at minimal concentrations (discussed in Lüthen et al., 1990). 

 It is possible that extension growth of multi-tissue organs such as roots, 

coleoptiles and leaves is limited mechanically by the extension of one component 

tissue. This idea, which dates back to the 19th century (Kutschera, 1994), is proposed 

in particular for the epidermis of round, compact organs (containing little intercellular 
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air space) such as hypocotyls and coleoptiles. Therfore the wall of the epidermis may 

be important for growth, and it is possible that ‘acid growth’ may occur in all tissues of 

an organ or only in the epidermis or in all tissue but the epidermis. This could explain 

discrepancies in results obtained between researchers and for different organs and 

species. Peeling off just part of the epidermis of coleoptiles might cause immediately 

changes in growth conditions but also experimental artefacts (Kutschera, 1994). It 

was assumed that fusicoccin may interact with proton pumps of inner coleoptile 

tissues whereas auxin affects H+ secretion of epidermal cells. Peeling off the 

epidermis caused 80 % less proton excretion of coleoptiles compared when 

coleoptiles were abraded with wet emery cloth (Kutschera et al., 1987). These results 

are supported by immunolocalisation results. Fusicoccin sensitive plasma membrane 

H+-ATPase (PM-H+-ATPase) proton pumps were found mainly in mesophyll cells 

rather than in the epidermis (Villalba et al., 1991); other authors, using 

electrophysiology, showed that auxin-induced H+ pump activity did not depend on the 

presence of epidermal cells in maize coleoptiles (Peters et al., 1992). 

 

1.1.3.4 Acid growth of dicotyledonous leaves 

The ‘acid growth’ theory has been tested much less in detail on dicotyledonous 

compared to monocotyledonous plants (coleoptiles) and the results in the literature 

are in part confusing. The validity of the acid growth theory appears to depend on the 

species tested. Light-induced leaf expansion of bean (Phaseolus vulgaris) and silver 

birch (Betula pendula) clearly showed an ‘acid growth’ type response. Apoplast pH 

decreased within 5 - 15 min of illumination, parallel to an increase in growth. 

Exogenous acidic buffer induced loosening of the cell wall and stimulated leaf growth 

whereas buffer at neutral pH inhibited growth. Fusicoccin stimulated both leaf growth 

and apoplast acidification (Van Volkenburgh & Cleland, 1980; Taylor & Davies, 1985; 

Cosgrove, 1996). In contrast, leaf expansion of sycamore (Acer pseudoplatanus) and 

tobacco (Nicotiana tabacum) could not be explained through ‘acid growth’. Apoplast 

acidification was not related to auxin-induced growth, yet fusicoccin-related ‘acid 

growth’ was present in tobacco leaves and independently of any auxin effect (Taylor 

& Davies, 1985; Keller & Van Volkenburgh, 1998). Growth related acidification in 

dicotyledonous leaves seems controlled by light and follows a partially independent 

pathway from photosynthesis as experiments with pea (Pisum sativum) leaves 

showed (Stahlberg & Van Volkenburgh, 1999). In tobacco leaves, some mechanistic 

link between light-stimulated leaf growth, H+ excretion and K+ uptake (Stiles et al., 
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2003; Stiles & Van Volkenburgh, 2004) was observed. The role of K+ could be to 

provide electrical counterbalance of H+ rather than to provide an osmolyte for uptake 

(Stiles & Van Volkenburgh, 2004). 

 

1.1.3.5 Acid growth of roots 

Early results suggested auxin linked ‘acid growth’ in roots (Moloney et al., 1981). 

However, more recent data showed that auxin increased growth of shoot and 

coleoptiles yet equally rapidly inhibited root growth (Christian et al., 2006). Positive 

‘acid (pH 4.0) growth’ has been not recorded in root elongation and at pH 3.5 organ 

elongation is reduced (Kutschera, 2006). In contrast with these results correlation 

was found between cell wall acidity and root elongation. Fusicoccin-induced H+ efflux 

and growth rate of maize roots rather than auxin that reduced both H+ efflux and root 

elongation (Lüthen & Böttger, 1988). 

 Using pH microelectrodes in the elongation zone of 4 day old maize primary 

roots a lower pH was recorded than in the non-growing zone when the pH was higher 

than pH 5.0 of the incubation medium (Fig. 1.3 and Fig. 1.4). Relative elemental 

growth rate and surface acidity were eliminated by auxin and cyanide treatments, 

respectively (Fig. 1.3) (Peters & Felle, 1999; Peters, 2004).  

 

 

Figure 1.3 Root elongation growth rate (REGR) and a poplast pH changes 

Profile of surface pH (�) and REGR (�) along the apical 12 mm of a growing maize 
root measured in pH 6.75 medium (A) and after 10 µM IAA treatment (B) or 3 mM 
KCN treatment (C). Position 0 refers to the tip of the root cap. Reprint from Peters & 
Felle (1999) based on open access policy of www.plantphysiology.org with copyright 
American Society of Plant Biologists. 
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Figure 1.4 Trajectory of a root element 

The figure shows the relation of the parameter time, position on the root, relative 
elemental growth rate (REGR) and surface pH (colour-coded) in growing maize root. 
The element considered is located at 0.2 mm above root apex at 0 time point. Reprint 
from Peters (2004) with the permission of the publisher (Licence No: 
2693010825600, ’John Wiley and Sons’) 
 

 Amtmann et al., (1999) using different experimental systems had similar 

results on barley roots. They found that H+ excretion could have crucial role in 

activation of inward K+ channels. Changes in cytosolic pH and K+ might be significant 

factors which contribute to the root growth response to changes in K+ supply.  

 

1.1.4 Potassium uptake and ‘acid growth’ 

Potassium is the main inorganic solute used by most plant cells to generate osmotic 

pressure. Its cytosolic concentration is tightly regulated. Therefore, one would expect 

that changes in the PM-H+-ATPase pump activity affect growth not only through 

changes in wall properties, but also through changes in K+ uptake. Recent data show 

that ‘acid growth’ and K+ uptake are related processes. Auxin and fusicoccin-induced 

growth was not present in absence of K+ (Claussen et al., 1997; Tode & Lüthen, 

2001). 

Claussen et al. in 1997 observed for abraded maize coleoptiles that auxin-

induced growth and K+ uptake were related processes. For auxin-induced growth the 

K+ concentration in the medium was essential. In absence of K+ an effect of auxin on 

growth was not observed, whereas when K+ was added to the medium, auxin-related 

growth was immediately measured. The K+ channel blocker triethylammonium (TEA) 
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also suppressed the growth response to auxin, and when the blocker was removed, 

growth recovered as shown in Fig. 1.5 (Claussen et al., 1997). In a related study, a 

similar K+-dependency was observed for fusicoccin-induced growth (Tode & Lüthen, 

2001). 

 

 

Figure 1.5 Potassium transport dependency of abrade d maize coleoptiles 

Potassium dependency of growth of coleoptiles was tested using a medium which 
contained 10 mM K+ or no added K+ (A). TEA, a K+ channel blocker, inhibited auxin-
induced growth; the blockage was completely reversible (B). When TEA was 
removed and replaced by incubation medium containing 10 mM K+ and NAA, the 
growth rate recovered at the level before TEA treatment. Reprint from Claussen et al. 
(1997) with the permission of the publisher (Licence No: 2693030934022, ‘Springer’) 
 

ZMK1 and ZMK2 K+ channels genes from maize were tested from the 

viewpoint of coleoptile growth. ZMK1 seemed to be growth related, acidification 

immediately increased channel activity and auxin increased its expression but acidic 

pH did not changed the expression pattern (Philippar et al., 1999). Over- expression 

of ZMK1 leads to K+ independent growth (Philippar et al., 2006). Similar results have 

been obtained for the Arabidopsis K+ channel AtKAT1 in growing hypocotyl and 

flower stalk (Philippar et al., 2004).  

 

1.2 Plasma membrane H +-ATPase 

Plasma membrane H+-ATPase (PM-H+-ATPase) was first discovered in 1946 when 

acid dependent glucose transport was described during the fermentation of the yeast 

Saccharomyces cerevisiae (Conway & O’Malley, 1946). Cyanide and sodium azide 

caused plasma membrane potential decreases in Neurospora crassa within seconds, 

which also suggested an ATP-dependent H+ pump activity (Slayman, 1965). The 

enzyme from fungi Schizosaccharomyces pombe and S. cerevisiae was isolated and 

shown to be a proton-pumping ATPase creating -150 to -300 mV plasma membrane 

potential in plants and fungi (Morth et al., 2011). 
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PM-H+-ATPase is a single polypeptide with a molecular mass of ~ 100kDa 

(Michelet & Boutry, 1995). ATPase activity is usually between 1 - 2 µmol Pi min-1 mg-1 

in purified plasma membrane (Morsomme & Boutry, 2000). The enzyme is essential 

for living plant cells as it constitutes, to the best of our current knowledge, the primary 

ion pump which generates the electrochemical potential across the plasma 

membrane. This electrochemical gradient is responsible for ionotropic signalling, 

secondary transport, nutrient uptake, pH homeostasis, salt tolerance, stomatal and 

leaf movements and cell growth (Palmgren, 2001; Moran, 2007; Duby & Boutry, 

2009). The PM-H+-ATPase protein is a member of the family of P-type ATPases. 

Other members of this family include the Na+,K+-ATPase, the principal ion pump in 

animals and humans (Morth et al., 2011). 

 

1.2.1 Isoforms of PM-H+-ATPase 

Using the model plant Arabidopsis thaliana twelve PM-H+-ATPase isoforms were 

identified from the genome (AHA1-12). The AHA12 isoforms carries two large 

deletions and is possibly a pseudogene (Palmgren, 2001). AHA1 and AHA2 are 

virtually expressed in all tissues and organs and function as housekeeping gene 

(Gaxiola et al., 2007) while other PM-H+-ATPase isoforms show some tissue 

specificity of expression (Morsomme & Boutry, 2000; Palmgren, 2001; Gaxiola et al., 

2007). Tissue-specific localization of PM-H+-ATPase is summarised in Table 1.1, 

based on information provided in (Palmgren, 2001). 

There is only one isoform of PM-H+-ATPase known in full detail for barley 

(Hordeum vulgare) based on nucleotide and protein data bases (NCBI, 

http://www.ncbi.nlm.nih.gov/ and UniProt http://www.uniprot.org/). However, MS / MS 

results suggest that there exist at least two different PM-H+-ATPase isoforms in 

barley (Hynek et al., 2006). 
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Table 1.1 Localisation of specific PM-H +-ATPase isoforms in plant body 

(Palmgren, 2001) 

Tissue PM-ATPase protein Plant 
Seedlings :   
Cotyledon PMA1, PMA2, PMA4 N. plumbaginifolia 
Primary root PMA1, PMA4 N. plumbaginifolia 
Root:    
Cortex parenchyma PMA2, PMA3, PMA4 N. plumbaginifolia 
Extension zone PMA4 N. plumbaginifolia 
Lateral root initials PMA2, PMA4 N. plumbaginifolia 
Lateral roots PMA4, PMA9 N. plumbaginifolia 
Root hair and epidermis PMA1, PMA3, PMA4 N. plumbaginifolia 
 MHA2 Zea mays 
Root cap PMA2, PMA4 N. plumbaginifolia 
Stele (central cylinder) PMA2, PMA3, PMA4 N. plumbaginifolia 
Stem:    
Axillary buds PMA2, PMA4, PMA9 N. plumbaginifolia 
Cortex parenchyma PMA1, PMA2, PMA4 N. plumbaginifolia 
Pith PMA4 N. plumbaginifolia 
Vascular tissue PMA2, PMA3, PMA4, PMA9 N. plumbaginifolia 
 MHA2 Zea mays 
 AHA3 A. thaliana 
Leaf:    
Guard cells PMA2, PMA4 N. plumbaginifolia 
 VHA1, VHA2 Vicia faba 
 MHA2 Zea mays 
Mesophyll PMA2, PMA4 N. plumbaginifolia 
 VHA1, VHA2 Vicia faba 
Trichomes (long) PMA4 N. plumbaginifolia 
Trichomes (short) PMA6 N. plumbaginifolia 
Vascular tissue PMA2, PMA3, PMA4 N. plumbaginifolia 

 MHA2 Zea mays 
 AHA3 A. thaliana 
Flower:    
Carpel PMA2 N. plumbaginifolia 
Ovules PMA1, PMA2, PMA3, PMA4, 

PMA6, PMA9 
N. plumbaginifolia 

 AHA3, AHA10 A. thaliana 
Nectaries PMA2 N. plumbaginifolia 
Stamen; pollen PMA1, PMA2, PMA3, PMA4, 

PMA6, PMA6 
N. plumbaginifolia 

 AHA3, AHA9 A. thaliana 
Style PMA1, PMA3, PMA4 N. plumbaginifolia 
Vascular tissue PMA1, PMA2, PMA3, PMA4, 

PMA6 
N. plumbaginifolia 

 AHA3 A. thaliana 
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1.2.2 Structure of PM-H+-ATPase 

The crystal structure of AHA2, a PM-H+-ATPase from Ababidopsis thaliana, has 

recently been described (Fig. 1.6). The protein contains a transmembrane domain 

with ten helices (M1-10) and three cytosolic domains: a nucleotide-binding domain 

(N), a phosphorylation domain (P) and an actuator domain (A). ATP is bound with the 

adenosine part at the N domain and its triphosphate group protruded towards the P 

domain. ATPase binding site was determined using 5’-(β,γ-methlene)-triphosphate 

(AMPPCP) a non-hydrolysable analogue of ATP (Pedersen et al., 2007).  

 

 

Figure 1.6 Structure of AHA2 without auto-inhibitor y domain 

AHA2 contains ten transmembrane helices (orange, green and brown); a nucleotide 
binding domain (N), red; a phosphorylation domain (P), blue; and an actuator domain 
(A); yellow. AMPPCP is shown as ball-and stick representation. The grey box 
represents the location of the plasma membrane; reprinted from Pedersen et al. 
(2007) with the permission of the publisher (Licence No: 2693040963163, ’Nature 
Publishing Group’). 
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1.2.3 Catalytic cycle of P-type ATPase and H+ transport mechanism 

PM-H+-ATPase undergoes conformational changes during each catalytic cycle. The 

enzyme has two distinct conformational states termed E1 and E2. The two 

conformation states differ in reactivity at the nucleotide binding site, which can be 

phosphorylated by ATP in the E1 form or by free Pi in the E2 form. E1 is the form that 

binds ATP and H+. The catalytic cycle is shown in details in Fig 1.7 (Morsomme & 

Boutry, 2000; Pedersen et al., 2007). 

 

 

Figure 1.7 Catalytic cycle and H + transport of PM-H +-ATPase 

Originally the catalytic cycle was proposed for Ca2+ ATPase (subfigure A) E1 form 
binding ATP and H+ (1), then a high energy intermediate is formed while ADP is 
released (2). Conformation of the enzyme is changing from E1 to E2 (3). Proton 
release to cell exterior (4), finally Pi is released (5) and conformation of the enzyme 
returning to form E1 (Morsomme & Boutry, 2000). The E1 form binds H+ and ATP 
better than the E2 binds these substances, as subfigure B shows; reprinted from 
Pedersen et al. (2007) with the permission of the publisher (Licence No: 
2693040963163, ’Nature Publishing Group’). 
 

1.2.4 Control of PM-H+-ATPase 

Activity of PM-H+-ATPase is modulated by several physiological signals (such as 

temperature and salt stress). In comparison, there exists little evidence of a 

regulation of PM-H+-ATPase activity through changes at the transcriptional or protein 

level. Moderate PM-H+-ATPase expression changes have been describe for high 

aluminium treatment, (Shen et al., 2005), iron deficiency (Santi et al., 2005), in 

presence of high sugar concentration (Mito et al., 1996) and high salt treatment 

(Maathuis et al., 2003) . 

Higher (compared to the ‘average’ tissue) PM-H+-ATPase protein 

concentrations have been found in  guard cells, root epidermis, phloem xylem 

parenchymas (Bouche-Pillon et al., 1994; Michelet & Boutry, 1995; Morsomme & 

Boutry, 2000; Palmgren, 2001; Gaxiola et al., 2007) and motor organs of 

seismonastic plants (Fleurat-Lessard et al., 1997; Moran, 2007). 

Regulated exocytosis of vesicles that contains PM-H+-ATPase molecules 

constitutes an alternative regulation pathway (Hager et al., 1991), yet post-
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translational modification of the enzyme seem the most common control mechanism 

for causing changes in PM-H+-ATPase activity (Gaxiola et al., 2007). 

 Phosphorylation / dephosphorylation are further mechanisms through which 

PM-H+-ATPase can be regulated. Elicitor-induced dephosphorylation in tomato plants 

(Lycopersicon esculentum) resulted in an increase in PM-H+-ATPase activity (Vera-

Estrella et al., 1994) while subsequent phosphorylation of the enzyme reduced its 

activity; although Ca2+-dependent phosphorylation caused decreased H+ pumping 

activity. Phosphorylation also activates PM-H+-ATPase activity through the fusicoccin 

(and 14-3-3 protein) activation pathway (Morsomme & Boutry, 2000). 

 The C-terminal auto-inhibitor regulation domain (R) could be mainly 

responsible for rapid activity changes of PM-H+-ATPase. Removal of the R domain 

from the enzyme by trypsin digestion activated PM-H+-ATPase (Palmgren et al., 

1991). Structural information of molecular mechanism of the auto-inhibition is not 

available yet. In AHA2 neutralisation of the auto-inhibitory R domain by binding of 14-

3-3 protein results in pump activation. Before the activation process, the penultimate 

Thr947 needs to be phosphorylated by a protein kinase which is induced by 

environmental factors such as light, nutrient status and pathogens. This 

phosphorylation can lead to the binding of 14-3-3 protein on the R domain complex. 

The Thr947 is not freely accessible to protein kinase activity, structural modification is 

necessary by ligand binding or kinase docking. Phosphorylation of Ser931 inhibits 

PM-H+-ATPase and destroys the 14-3-3 protein binding site (Sze et al., 1999; Morth 

et al., 2011). It seems that phosphorylation of most residues within the C-terminal 

domain impacts on 14-3-3 binding. The enzyme regulation is controlled by distinct 

protein kinases and phosphatases allowing gradual increase and decrease of the 

activity of PM-H+-ATPase (Speth et al., 2010). More details are provided in Fig. 1.8. 
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Figure 1.8 Auto-inhibition of PM-H +-ATPase 

On subfigure A residues are highlighted on the PM-H+-ATPase (AHA2) that interact 
with the regulatory domain. Blue: present in yeast; red: present in plant; yellow: 
present in plant Ca2+-ATPase.; green: 13 residue carboxy-terminal extension. Plant 
and fungal sites do not overlap, and it is likely that their pumps are inhibited by 
different mechanisms (Morth et al., 2011). B: schematic summary of protein 
kinase/phosphatise-dependent and fusicoccin-dependent activation pathway of PM-
H+-ATPase. Subfigure C shows the ribbon plot of different orientation of dimeric 
tobacco 14-3-3c protein (green) bound to the C-terminal end (yellow) of PMA2 
(tobacco PM-H+-ATPase) (Würtele et al., 2003). Figures are reprint from Morth et al. 
(2011) with the permission of the publisher, Licence No: 2693050346303, ‘Nature 
Publishing Group’ (A); Sze et al. (1999) based on open access policy of 
www.plantcell.org with copyright American Society of Plant Biologists (B) and Würtele 
et al. (2003) with the permission of the publisher, Licence No: 2693070537163, 
‘Nature Publishing Group’ (C). 
 

1.2.5 Fusicoccin-dependent PM-H+-ATPase activation 

Fusicoccin (a diterpene glycoside) is a phytotoxin, produced by the fungus 

Fusicoccum amygdali. The fungus is host specific, but isolated fusicoccin causes 

higher H+ efflux in any higher plant tested so far (Marré, 1979). Recent structural 

studies show that fusicoccin is increasing H+ pump activity by stabilising the 

interaction between 14-3-3 protein and auto-inhibitor R domain of PM-H+-ATPase. 

Fusicoccin effective due binding its plasma membrane receptor (Olivari et al., 1998) 

that is on the C-terminal of the R-domain of the PM-H+-ATPase (Johansson et al., 

1993). This results in permanent binding of 14-3-3 protein to the regulation domain 

(Oecking et al., 1994) and activates PM-H+-ATPase permanently as shown in Fig. 

1.8. 

 The toxin causes no major conformation changes; it fills a cavity between 

14-3-3 protein and PM-H+-ATPase (Fig. 1.9) and increases the stability of the 

complex about 90-fold (Würtele et al., 2003). 
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Figure 1.9 14-3-3 protein-fusicoccin-PM-H +-ATPase complex 

Ribbon diagram of a 14-3-3 protein monomer (green) with PM-H+-ATPase peptide 
(yellow) and fusicoccin (orange). Blue represent the Van der Waals space of 
fusicoccin and PM-H+-ATPase peptide (reprint from Würtele et al. (2003) with the 
permission of the publisher, Licence No: 2693070537163, ’Nature Publishing Group’) 
 

1.3 Barley 

Barley (Hordeum vulgare) was domesticated 10,000 years ago and ranks fourth 

among cereals after maize (Zea mays), rice (Oryza sativa) and wheat (Triticum 

aestivium) in terms of global production. About two-thirds of the annual global barley 

production is used for animal feeding and the remaining third covers the needs of 

malting, brewing (beer) and distilling (whiskey) industries (Schulte et al., 2009). The 

average annual production of barley in the world is about 1.24·1011 kg and 62 % of 

this is harvested in Europe. The highest yield per hectar occurs in Ireland with 5.7 Mg 

ha-1 (Kim & Dale, 2004). In Ireland and Scotland brewing and distilling has a 

particularly big economic impact, not least because of the whiskey industry.  

 

1.3.1 The two weeks old barley seedlings and their advantage 

Barley seedlings at a developmental stage of two weeks old (between 14 - 17 days) 

present ideal research objects for leaf growth studies. At this stage leaf three is the 

main growing leaf and shows maximum or near-maximum growth rate (2 - 3 mm h-1). 

Older leaves, which cause self-shading and reduce the potential biomass increase 

have not developed yet and younger seedlings are not yet fully dependent on the 

external medium for supply of mineral nutrients but still receive a considerable 

portion through seed reserves. The base 40 mm of leaf three that contains the leaf 
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elongation zone  is enclosed by the sheath of the older leaves one and two (Fricke & 

Flowers, 1998; Fricke, 2002a). There are small quantities of cuticle waxes deposited 

on the epidermal surface along the base 20 - 30 mm of the elongation zone. This 

means that the permeance of the cuticle is much higher in the elongation zone 

compared to the emerged blade, which makes external application of test reagents to 

measurements of proton extrusion from the leaf apoplast comparatively easy without 

having to mechanically remove the cuticle (Richardson et al., 2007). 

 

1.3.1.1 Morphology of developing barley leaves 

Barley leaves consist of two parts, the basal sheath and the leaf blade, separated by 

ligule and auricle. The sheath at the leaf base mechanically supports the blade which 

is the photosynthetic and transpirating active part of the leaf. The sheath also 

encloses the basal apical meristem, and any younger leaves emerge from within 

sheaths of older leaves. Leaves develop from the main meristem, which is located at 

the base. As a consequence, oldest tissues are at the leaf tip and youngest ones 

near the leaf base. The elongation zone of leaf three stretches to about 40 mm from 

the point of leaf insertion (‘leaf base’), with highest relative elemental growth rates 

between 10 - 30 mm (Fricke & Peters, 2002). In the elongation zone cells are 

elongating manyfold in size. Above the elongation zone is a zone which can be 

referred to as ‘non-elongation zone’. This zone extends to the point of emergence of 

the developing leaf from the sheath of leaf two and contains cells which are not 

elongating any more but can show some lateral expansion. The fully emerged leaf 

blade contains fully-differentiated cells, which are not dividing or expanding any 

more. Details are provided in Fig. 1.10. 
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Figure 1.10 Two-week old barley seedling 

The two-weeks old barley seedling has three leaves. Leaf one is the oldest leaf and 
leaf three is the youngest and main developing leaf. EZ: elongation zone; NEZ: non-
elongation zone; EB: emerged leaf blade 
 

1.3.1.2 Anatomy of developing barley leaf 

Anatomical changes during leaf development can be visualised on cross sections of 

different parts of the leaf (Fig. 1.11). Cell size is increased manyfold in mature 

compared to immature tissue, although it is difficult to see this on cross sections, 

particularly in the epidermis, where elongation growth contributes most to cell 

enlargment. The most conspicuous difference between the different developmental 

stages is the specialisation of mesophyll cells for photosynthesis (chloroplast 

development), xylem (conductance of water and dissolved solutes) and increased 

intercellular spaces.  
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Figure 1.11 Toluidine blue stained cross section of  barley leaves from different 

developmental stage 

Cross sections from elongation zone (A) non-elongation zone (B) and fully emerged 
blade (C) of leaf three. Ep: epidermis; M: mesophyll cells; VB: vascular bundle. 
 

1.3.2 Growth and potassium uptake of barley 

The classical dual K+ uptake mechanism has first been described for roots of barley 

(Epstein et al., 1963). Further studies proofed the relevance of high affinity K+ 

transporters for K+ uptake; also H+ / K+ co-transport has a high significance in K+ 

uptake of roots (Glass et al., 1981; Amtmann et al., 1999). For barley, four HAK 

genes have been described (HvHAK1-4). HvHAK1 was mainly expressed in roots, 

HvHAK3 in both shoots and roots while HvHAK4 was mainly expressed in shoots 

(Rubio et al., 2000). HvHAK4 had significantly higher expression in the elongation 

zone of leaves compare with parts of barley seedlings (Boscari et al., 2009). HvHAK1 

is very similar to AtHAK5 and seems to be a high affinity K+ transporters in contrast 

with HvHAK2, which facilitates K+ uptake in a range of low or medium affinity (KM of 

about 5 mM comparing with KM of about10 µM for HvHAK1 (Rubio et al., 2000; Senn 

et al., 2001; Ashley et al., 2006). 

 In previous studies on K+ transport in barley it was concluded that apoplast K+ 

must exceed 3 - 5 mM to allow growing leaf cells to take up K+ through channels 

(Boscari et al., 2009; Volkov et al., 2009). Calculations showed that at 10 mM 

apoplast K+, about 50 % of K+ uptake was facilitated by time-dependent inward-

rectifying currents typical of Shaker K+ channels such as AKT1 or AKT2. The 

remaining 50 % was facilitated by instantaneous currents, which includes either or 

both, K+ high-affinity transporters such as HAK / KUP / KT type K+ / H+ symporters or 

non-selective cation channels. 

Potassium channels and transporters might study using different blockers of 

these proteins. Tetraethylammonia (TEA) inhibits K+ transport through channels 

reversibly as K+ analogue at the dehydration transition step (Lenaeus et al., 2005). 
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Cs+ ions as huge K+ analogue block both channels and transporters (Rodriguez-

Navarro & Rubio, 2006; Szczerba et al., 2009) and NH4
+ ions with competitive 

manner inhibit high affinity K+ transporters (Spalding et al., 1999; Kronzucker et al., 

2003; Rodriguez-Navarro & Rubio, 2006; Szczerba et al., 2006; Britto & Kronzucker, 

2008; Szczerba et al., 2009; Britto et al., 2010; Hoopen et al., 2010) 

 

1.4 Technical approaches 

(i) Cell wall acidification was measured using three independent methods (pH 

sensitive fluorescence probe, micro pH electrode technique and in-vitro agarose gel 

system with bromocresol purple pH indicator. During these experiments leaf 

elongation was measured with a ruler (micro pH measurements) or image analysis 

tools (in-vitro gel experiments).  

 

(ii) A linear variable differential transformer (LVDT) was used to determine the 

growth rate continuously and at micrometer resolution. This made it possible to 

record any rapid and short term response of leaf growth to application of test 

reagents to the apoplast of the leaf elongation zone.  

 

(iii) Expression of PM-H+-ATPase was determined by absolute qPCR technique 

and the PM-H+-ATPase enzyme ratio in total purified plasma membrane protein was 

measured using Western blot analysis and densitometry on Coomassie Brilliant Blue 

stained SDS polyacrylamide gels. Activity of the enzyme was determined as 

vanadate sensitive ATPase hydrolysis activity of inside-out plasma membrane 

vesicles. 

 

(iv) PM-H+-ATPase tissue specific distribution was studied using 

immunolocalisation on paraffin embedded section and a commercially-available 

antibody of PM-H+-ATPase isoforms.  
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1.5 Objectives of the present study 

The aim of this project was to test whether apoplast pH differs between growing and 

non-growing leaf tissue of barley, how this acidification relates to growth and to which 

degree apoplast acidification relies on the activity, transcription and occurrence of 

PM-H+-ATPase. The developing leaf three of barley was studied. Apoplastic pH and 

leaf elongation was measured together in the same experiments or in separate 

experiments. Differences in pH and leaf growth were followed using three 

independent techniques. Treatments affecting PM-H+-ATPase activity (increase or 

decrease) or blockers of different type of K+ transport (channel, transporter) were 

used to determine the physiological background of leaf elongation. Expression and 

activity of PM-H+-ATPase was measured to test whether any higher acidity in the 

apoplast of the elongation zone originated from a higher expression of the enzyme or 

any other control mechanism, in particular post-translational modification. Finally 

tissue specific distribution of PM-H+-ATPase was determined at different leaf 

developmental stages on cross sections.  
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2 Materials and Methods 

 

2.1 Plant material 

2.1.1 Plant growth for study of leaves 

Barley seeds (Hordeum vulgare L. cv. Golf; and Hordeum vulgare L. cv. Jersey) were 

imbibed overnight in water, germinated in dark on approx. 0.5 mM CaSO4 for 3 days and 

exposed to light for a further 3 days while remaining on CaSO4 solution. On day seven, 

four seedlings were transferred into 1 l borosilicate glass beakers wrapped in tin foil 

(containing 0.8 - 0.9 l nutrient solution) on aerated ½ strength Hoagland solution (Table 

2.1) and grown for a further 7 - 11 days at 70 - 80 % relative humidity and 300 – 350 

µmol m–2 s–1 photosynthetically active radiation at third-leaf level, during a 16 h / 8 h, 21 

°C / 15 °C day / night cycle in a growth chamber (I MAGO F3000, Snijders Scientific). 

Nutrient solution was not replaced during plant growth. These were the growth conditions 

at University College Dublin, where most experiments were carried out. Some 

experiments, including plant growth, were also carried out at Rothamsted Research (UK) 

and Eötvös University (Hungary). Plants were analysed when they were 14 - 18 d old. 

At Rothamsted Research (pH microelectrode measurements) the growth 

temperature was different (constantly 20 °C during day / night). At Eötvös University 

(plasma membrane isolation) plants were grown under a 14 h / 10 h day / night period 

(150 µmol m–2 s–1) with 20 / 18 °C day / night temperature. These al terations in growth 

conditions were due to local availability of growth facilities and the seedlings achieved 

the leaf three development stage about 2 - 3 d later at Eötvös University and 1 - 2 earlier 

at Rothamsted Research compared with Dublin. 

The barley Golf cultivar was used for most experiments. Towards the end of the 

study, the availability of Golf seeds became limited due to vast demand by the laboratory 

in general, no further commercial (breeder) availability of this cultivar and due to limited 

availability of growth space at UCD to grow plants to the seeding stage. Therefore, 

experiments which were carried out towards the end of the study, in particular plasma 

membrane isolation, were performed on the barley cultivar Jersey. Both, Golf and Jersey 

are spring barleys. 
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Table 2.1 Composition of the ½ strength Hoagland so lution for barley seedlings 

Macronutrients  
(1 l each) 

Stock  
(mM) 

Amount for 
1 l stock  (g) 

Final concentration 
(mM) 

Dilution 

(1) NH4H2PO4 100 11.5g 0.5 200x 
      + (NH4)2HPO4 100 13.2 0.5 200x 
(2) KNO3 400 40.4 2.0 200x 
(3) MgSO4x7H2O 100 24.7 0.5 200x 
      + NaCl 100 5.84 0.5 200x 
(4) 
Ca(NO3)2x4H2O 

400 94,4 2.0 200x 

     
Micronutrients  
(0.5 l each) 

Stock  
(mM) 

Amount for 
0.5l stock (g) 

Final concentration  
(µM) 

Dilution 

(a) H3BO3 25 0.775 6.25 4000x 
(b) CuSO4x5H2O 0.5 0.0625 0.125 4000x 
(c) MnSO4xH2O 2 0.169 0.5 4000x 
(d) 
Na2MoO4x2H2O 

0.76 0.092 0.19 4000x 

(e) ZnCl2 (or 
ZnSO4) 

2 0.136 0.5 4000x 

(f) FeIIINaEDTA 36 6.606 27 1333x 
 

2.1.2 Plant growth for study of coleoptiles 

To grow coleoptiles for auxin sensitivity test Golf barley seeds were imbibed 

overnight in water and were germinated in the dark for 5 d in the growth chamber 

under the same temperature settings (16 h at 21 °C,  8 h at 15 °C) as described for 

seedlings. The apical 10 mm of the coleoptile tip was used and the first leaf 

developing inside the coleoptiles was removed (compare Sakurai & Masuda, 1978). 

 

2.2 Apoplast pH measurements 

Cell wall pH was measured through three independent approaches: an in-vitro gel 

system, electrophysiology and confocal microscopy. The in-vitro gel system involved 

incubating leaf segments in agarose which contained the pH indicator bromocresol 

purple. The advantage of this system was that it was easy to use. This made it 

possible to test many treatments and to directly relate changes in wall acidity to 

changes in growth rate. The pH microelectrode technique was used to obtain precise 

values of apoplast pH in growing and non-growing leaf regions. This technique, 

which was carried out at Rothamsted Research, required the most experimental 

effort and was used to a limited extent, due to limited funding for travel. Therefore 

only selected treatments were tested. Finally, intact plants were studied using 
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confocal microscopy, by loading plants with pH fluorescence probes added to the 

root medium. Epidermal peels were also studied as control material. 

 

2.2.1 In-vitro gel system 

The base 70 mm of leaf three was placed into a Petri dish which had been filled with 

agarose medium containing the pH indicator bromocresol purple (Tang et al., 2004; 

Li et al., 2007). The younger fourth leaf was removed from inside leaf three prior to 

experiments.  

 The agarose medium contained 10 mM, 1 mM CaCl2, 0.5 % agarose (gelling 

temperature 38.3 °C) and 90 mg l -1 bromocresol purple. Any additional test reagents 

were added to the medium while it was fluid and the pH was adjusted to 7.0 using     

3 mM KOH. The amount of K+ added through this pH adjustment was negligible 

compared to the amount of K+ added through 10 mM K+. Leaf pieces were placed 

into the medium when it was almost semi rigid and had a temperature of between 28 

- 32 °C. Petri dishes were incubated under the same  conditions under which the 

plants had grown, except for cold-treatments, where dishes were incubated in the 

dark in a cold room (5 °C). At regular time interva ls (every hour for the first 10 h of 

incubation), Petri dishes were photographed with a Canon EOS 350D digital camera. 

Two replicate pictures were made every hour. Final pictures were made after 24 h. 

Digital photographs were used to assess acidification of the medium and measure 

elongation growth of leaf pieces. ImageJ 1.41o software (http://rsbweb.nih.gov/ij) was 

used to measure the length of leaf pieces. Values were calibrated with the aid of 

graph paper which had been fixed to Petri dishes prior to the start of experiment. Due 

to the alkaline pH of the graph paper, the paper served as sort of an internal pH 

control as well since it gave the colour (bluish) of bromocresol purple in non-acidified 

medium. Acidic areas, which showed up as yellow in the purple-stained medium (see 

Fig. 2.1), were selected on pictures using the magic wand of Adobe® Photoshop® 

7.0.1 (tolerance factor 10) and measured using Scion Image for Windows 4.0.3.2 

(http://www.scioncorp.com, O'Neal et al., 2002). 

Preparation of leaf pieces and transfer to agarose medium resulted in an 

immediate, non-specific acidification of the medium, most likely as a result of 

unpeeling leaf three from the sheaths of leaves one and two. This non-specific 

acidification levelled off within 4 - 5 h. Preliminary experiments showed that the acid 

area value obtained after 1 h of incubation reflected the size of the exposed leaf 

surface of the individual plants therefore it was used as the reference point for the 
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start of experiment (A1). Any areas measured at further time points ‘t’ (At) were 

related to this reference point according to ‘At / A1’. Areas were expressed in mm2. 

 

 

Figure 2.1 Leaf pieces in pH sensitive agarose gel medium  

Agarose gels contained the pH indicator bromocresol purple pH. This pH indicator 
shows yellowish colour at acidic, purple at neutral and blueish colour at alkaline pH 
(see right column). Basal leaf segments were 70 mm long at the beginning of the 
experiments, and their tip end was sticking out from the medium. Graph paper was 
used as an internal alkaline control and to calibrate length of leaf segments to 
measure growth during the incubation period. 
 

2.2.2 Microelectrode measurements 

Apoplastic pH was measured with the aid of pH-sensitive microelectrodes. The 

elongation zone and emerged, mature portion of the developing leaf three of barley 

were analysed. The older leaves one and two were peeled back to expose the 

abaxial surface of the basal elongation zone of leaf three. The elongation zone was 

covered with wet tissue paper which had been soaked for the previous 24 h in 

distilled water. The latter was done to guarantee pH neutrality (which is not the case 

for tissue paper which is used ‘fresh’). During experiments, the tissue paper was 

soaked in bath solutions, as specified in results, to alter the apoplastic environment 

of the leaf elongation zone. Due to the absence of a major permeability barrier 

(cuticle) in the elongation zone (Richardson et al., 2007), apoplastic pH could be 

measured directly by bringing the microelectrode in close contact with the epidermal 

surface. Measurements were carried out at 20 - 30 mm from the base. In the fully-
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cutinised emerged-blade portion of the developing leaf three, apoplastic pH was 

measured by inserting the microelectrode through stomatal pores (compare Fricke et 

al., 1994; Felle 2005;). Double-barrelled pH sensitive microelectrodes were prepared 

as described in Miller & Smith (1992) using the same setup and microelectrode 

cocktail as described in Dennis et al. (2009). The only difference was that in the 

present study a pH 5.0 rather than pH 3.0 calibration buffer was used and that an 

additional pH 8.5 calibration buffer was included. Calibration was performed before 

and after readings. The composition of the pH sensitive cocktail and calibration 

buffers is given in Table 2.2 and Table 2.3. Microelectrode outputs were analysed 

with Origin® 6.1 (OriginLab Corporation) software. 

 Analysis of one leaf region of one plant typically lasted between 2 - 6 hours, 

and between 1 - 6 pH recordings were taken for each leaf region under room 

temperature and humidity in the dark. To avoid too long exposure of plants on the 

microelectrode rig, recordings for elongation zone and emerged blade were obtained 

from different plants. Elongation growth of leaf three of plants mounted on the rig was 

measured by measuring the length of leaf three at the beginning and end of 

experiments using a ruler. Preparation of plants reduced leaf elongation growth by 

about 50-60 % compared to elongation growth of undisturbed plants in the growth 

chamber. 

 

Table 2.2 Composition of the pH sensor for microele ctrodes 

Component of pH sensor Amount of the component 
Hydrogen Ionophore II Cocktail A 35 mg 
High molecular weight PVC 16 mg 
Nitrocellulose 6 mg 
Tetrahydrofuran (THF) Dissolve the other components  
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Table 2.3 Composition of the buffer solutions used for calibrating pH 

microelectrodes 

pH Composition of buffer 
4.0 20 mM KHC8H4O4 (potassium hydrogen phthalate) 

120 mM KCl 
10 mM NaH2PO4x2H2O 
Adjust pH using 1 N NaOH  

5.0 and 6.0 20 mM MES (2-[N-Morpholino]ethanesulfonic acid) 
120 mM KCl 
10 mM NaH2PO4x2H2O 
Adjust pH using 1 N NaOH 

7.0 20 mM MOPS (3-[N-Morpholino]propanesulfonic acid) 
120 mM KCl 
10 mM NaH2PO4x2H2O 
Adjust pH using 1 N NaOH 

8.5 20 mM TAPS (N-tris[Hydroxymethyl]methyl-3-amino-
propanesulfonic acis) 
120mM KCl 
10 mM NaH2PO4x2H2O 
Adjust pH using 1 N NaOH 

 

2.3 Confocal microscopy 

The pH sensitive fluorochromes 5(6)carboxyfluorescein (10 µM) and acridine orange 

(2.5 µM) were used. In contrast to carboxyfluorescein, acridine orange can be taken 

up into cells and has been widely used to monitor pH inside animal (Wieczorek et al., 

1991; Zoccarato et al., 1999; Malnic & Geibel, 2000) and plant cells (Pope & Leigh, 

1988; DuPont, 1989). Carboxyfluorescein is a large double-negative charged anion 

that can permeate the plasma membrane only in its non-fluorescing diacetate form 

(Babcock, 1983; Graber et al., 1986). By using its anionic form, its presence in the 

apoplast and absence in the symplast was guaranteed. The application of acridine 

orange has some limitations (Palmgren, 1991) but with adequate controls these 

limitations can be overcome (Clerc & Barenholz, 1998; Manente et al., 2008). The 

fluorescence intensity of carboxyfluorescein between pH 4.5 and 6.5 can be used to 

reflect changes in pH conditions in this pH range (Babcock, 1983; Graber et al., 

1986). 

Dyes were added to the root medium of intact plants in the growth chamber. 

Plants were allowed to take up dyes into the apoplastic space of both roots and 

leaves and analysed after an incubation period of 24 h (carboxyfluorescein) and      

48 - 72 h (acridine orange). Detached leaves, epidermal peels or leaves still attached 

to the remainder of the plant were examined with an Olympus FV1000 confocal 

microscope. Dyes were excited at 488 nm and fluorescence was detected between 
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500 - 550 nm (carboxyfluorescein) and 516 - 536 nm (acridine orange). To test how 

effective the uptake of dye into the leaf apoplast had been during the incubation 

period and how pH sensitive the approach was, epidermal strips were peeled from 

first leaves of incubated barley plants or from the elongation zone and emerged 

blade of leaf three. The strips were placed into buffers of specified pH for 30 min, 

before being examined under the confocal microscope. Calibration of fluorochromes 

was carried out with a Leica DMIL fluorescence microscope. The microscope’s 

excitation filter was cut between 450 - 490 nm and the suppression filter at 515 nm. 

For pH calibration, 50 mM phthalate buffer (pH 4.0), 100 mM MES / KOH (pH 5.5,  

pH 6.5) and 100 mM TRIS-HCl (pH 7.5) was used. Digital images were analysed with 

ImageJ 1.41o software (http://rsbweb.nih.gov/ij) and Adobe® Photoshop® 7.0.1. 

The pH dependence of fluorescence of 5(6)carboxyfluorescein and acridine 

orange were examined by recording fluorescence spectra at different pH using a 

FluoraMax-2® (Instruments S.A.) (pH 5.0; pH 5.5; pH 6.0 – 50 mM MES-KOH; pH 6.5 

– 50 mM MES-BisTRIS and pH 7.0; pH 7.5 – 50 mM HEPES-HCl).  

 

2.3 LVDT measurements 

A linear variable differential transformer (LVDT) was used to measure changes in leaf 

length continuously and at micrometer resolution in response to treatments (compare 

Fricke, 2004; Fricke et al., 2004). The setup could also be used to determine 

changes in cell wall properties. 

 

2.3.1 Leaf growth measurements 

Plants were prepared in the same way as for electrophysiological analyses to be able 

to relate the results from both types of experiments to each other. Leaves one and 

two were peeled back and the exposed elongation zone of leaf three was wrapped in 

washed (24 h in distilled water) tissue paper which was soaked in the respective test 

solution. The wet tissue paper guaranteed a humid microclimate and prevented the 

elongation zone from drying out; it also allowed application of test reagents to the 

apoplast of elongating tissue. The base 40 - 50 mm of leaf three was wrapped to 

provide sufficient mechanical support to allow the leaf to remain in an upright 

position. Above 50 mm from the leaf base, the cuticle is sufficiently developed 

preventing the leaf tissue from drying out (Richardson et al., 2007). Roots were left in 

the same medium in which the particular plant had grown. The tip of leaf three was 

attached to fishing line and connected through cellotape to a LVDT (DFG 5.0; RS 
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Components, Corby, UK). A counterweight of 2 g was applied. The LVDT signal was 

digitalised with a Burster 92101 data logger module with ICP 100 software. Changes 

in voltage output were recorded on PC using Pfloek 1.09 software (LS 

Pflanzenökologie, Universität Bayreuth, Germany). The system was calibrated by 

replacing the plant with a micrometer screw. The rate of growth was calculated from 

LVDT outputs using Origin® 6.1 software (OriginLab Corporation) and Microsoft® 

Excel. Although leaf elongation rate was comparable between replicate plants and 

batches, values for treatments were expressed as percentage of the control to further 

minimise any plant-to-plant variation. The control value was the elongation rate of a 

particular plant attached to the LVDT before a treatment was applied. Typically, 

control plants had the elongation zone of leaf three wrapped with tissue paper 

soaked in either 1 or 0.1 mM KCl. It took up to 1 h for elongation rate to reach a 

steady level following attachment of plants to the LVDT. Application of vanadate and 

CsCl treatments required a similar period of stabilisation (about 1 h), while 

application of fusicoccin and ammonium treatments required leaf elongation rate to 

stabilise for up to 2 - 3 h. LVDT experiments were carried out at room temperature 

and humidity under ambient laboratory light. 

 To assess how much plant preparation affected the elongation rate of leaf 

three, intact plants which did not have leaves one and two peeled back, were 

attached to the LVDT. In addition, leaf elongation rate was determined for 

undisturbed plants in the growth chamber by measuring twice daily the increment in 

leaf length with a ruler.  

 

2.3.2 Analysis of cell wall properties 

Cell wall elasticity and plasticity was measured with the same LVDT system as 

described above by applying an additional 3 g counterweight for 10 min following the 

approach taken by Neumann (1993) (see also Chazen & Neumann (1994) and 

Sabrizhanova et al. (2005)). Plants were prepared and chemical treatments applied 

in the same way as for growth analyses. When the growth rate had stabilised 

(control, treatment), the additional 3 g counterweight was applied to the LVDT for 10 

min and then removed; 30 - 40 min later, when growth rate had stabilised again, the 

experiment was repeated, and the average of these two measurements was used for 

calculations of wall properties. Elasticity and plasticity of walls and growth rate with 

and without the applied force (additional 3 g counterweight) was calculated from 

LVDT traces as detailed in Fig. 2.2. 



 - 32 - 

 

 

Figure 2.2 Measurement of cell wall properties 

LVDT traces show the change in leaf length with time. LVDT traces before and after 
application of an additional 3 g counterweight (0.03 N of applied force), growth rates 
were calculated from the slope of the lines fitted to the stabilised part of traces (v1 
and v2). The applied force caused an extension, part of which was reversible 
(elasticity, E) of wall) and part of which was irreversible (plasticity, P of wall). 
 

2.4 Expression analyses 

The aim of expression analyses was to test whether any elevated proton efflux in the 

leaf elongation zone was due to higher PM-H+-ATPase expression. 

 

2.4.1 Plant harvest 

Plants were harvested 2 - 6 h into the photoperiod. Samples from the elongation 

zone were about 1 cm long and were cut from the mid-portion of the elongation zone 

(between 20 - 30 mm from the leaf base). Samples of the emerged blade were          

1 - 2 cm long and taken from the mid-portion of the part of leaf three that had 

emerged from the sheath of leaf two. The leaf segments were weighed on a digital 

balance (Mettler Toledo, Sweden), immediately frozen in liquid nitrogen and stored at 

-80 °C until they were used for RNA extraction.  
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2.4.2 RNA extraction and cDNA synthesis 

For RNA extraction, corresponding leaf segments from 3 - 4 plants were pooled; their 

combined fresh weight was between 0.04 - 0.07 g (Besse et al., 2011) Total RNA 

was extracted using a QUIAGEN RNeasy kit following the manufacturer’s 

instructions. RNA was eluted into 50 µl RNase free water. The concentration and 

quality of RNA was determined with Nanodrop® (ThermoFisher Scientific Inc., 

Waltham, USA).  

 After DNase treatment, following the manufacturer’s instructions 

(Deoxyribonuclease I, Amplification Grade; Invitrogen Corporation, Carlsbad, 

California, USA), 1 µg RNA was used for cDNA synthesis. cDNA synthesis was 

performed as recommended by the manufacturer (SuperScriptTM II Reverse 

Transcriptase; Invitrogen Corporation, Carlsbad, California, USA) using anchor 

oligodT16 primer. The final volume of cDNA was 20 µl. Details of the procedure and 

reagents used are provided in Table 2.4. 

In some experiments, RNA was also extracted from protoplasts. RNA 

extraction from a protoplast suspension was carried out in a way similar to the one 

described above, with minor modifications. RNeasy lysis buffer (300 - 1000 µl) was 

added to 300 - 1000 µl protoplast suspension (~ 0.5 – 7 million protoplasts) or to 1 ml 

cell-free protoplast isolation medium. The latter was used as background control to 

reflect RNA released from broken cells or protoplasts into the isolation medium and 

was prepared by centrifuging the protoplast suspension at 30 g for 1 min and taking 

the supernatant and centrifuging it again at 12,000 g for 5 min. The final volume of 

RNA extract for protoplasts or isolation medium was 30 µl rather than 50 µl as 

obtained for leaf extracts. 
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Table 2.4 DNase treatment and reverse transcription  

DNase treatment  Total volume 
 1 µg (8 µl) RNA 

1 µl 10x DNaseI Reaction buffer 
1 µl (1 U) DNaseI Ampl. Grade enzyme 

 
 
10 µl 

 Incubation 15 min 25 °C  
   
 1 ml EDTA (25 µM) 11 µl 
 Incubation 10 min 65 °C  
   
Reverse transcription   
 11 µl sample from DNase treatment 

1 µl anchor oligo-dT primer (100 µM) 
1 µl dNTP (10 mM) 

 
 
13 µl 

 Incubation 5 min 65 °C   
   
 4 µl 5x First-Strand Buffer 

2 µl DTT (0.1 M) 
 
19 µl 

 Incubation 2 min 42 °C  
   
 1 µl SuperSriptTM RT Enzyme (200U) 20 µl 
 Incubation 50 min 42 °C then 70 °C 15 

min 
 

 

2.4.3 PCR 

Before cDNA samples were used for qPCR analysis, which required expensive 

reagents, the quality of cDNA, suitability of designed primers and optimum PCR 

conditions was tested through conventional PCR (G-Storm 482 thermocycler, Gene 

Technology). A GoTaq® Flexi DNA Polymerase (Promega Corporation, Madison, 

USA) kit was used in 25 µl total volume with 1 µl 200x diluted cDNA as template. A 

precise protocol of the PCR reaction is given in Table 2.5. Primers are listed in Table 

2.6. The PCR was run in amplification two steps; after initial step (95 °C; 30 s) 

through 35 cycle step one (95 °C, 30 s) and step tw o (60 °C, 60 s) were repeated 

and then a final step (72 °C, 120 s) was used as Fi g. 2.3 shows. 

 PCR products were separated on 1 % agarose gels in 0.5 strength TRIS 

base boric acid EDTA (TBA, see Table 2.7) buffer containing 1 µg ml-1 ethidium 

bromide and viewed under UV light (Image Master® VDS, Pharmacia Biotech, USA). 
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Table 2.5 Components of PCR reactions 

Component Volume Final concentration 
5x Green GoTaq® Flexi Buffer 5 µl 1x 
MgCl Solution (25 mM) 2 µl 2 µM 
dNTP (10 mM) 0.5 µl 0.2 µM each nucleotide 
Forward primer (10 mM) 0.5 µl 0.2 µM 
Reverse primer (10 mM) 0.5 µl 0.2 µM 
GoTaq® DNA Polymerase (5 U / ml) 0.125 µl 0.625 U 
Template cDNA (200x diluted) 1 µl 5000x diluted 
Nuclease-Fee Water 15.375 µl N/A 
Total volume 25 µl  
 

Table 2.6 PCR primers 

Primer name Primer sequence 
Anchor oligodT16 5’NVTTTTTTTTTTTTTTT3’ 
ATPase forward 5’ACATCGACACCATCAACCAA3’ 
ATPase reverse 5’ACAACTAGGGGCTGGTCAGA3’ 
 

 

Figure 2.3 Thermal profile of the two step PCR reac tions 

Two step PCR protocol was used when quality of cDNA or primers were tested. This 
protocol was as similar as possible to the protocol used for qPCR analyses. 
 

Table 2.7 Composition of the stock solution (5x con centrated) of TRIS base 

boric acid EDTA buffer (TBA) 

Component Amount for 1 l 
TRIS base 53 g 
Boric acid 27.5 g 
EDTA (0.5 M, pH 8.0) 20 ml 
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2.4.4 qPCR 

qPCR expression analysis was carried out on a real time thermal cycler 

STRATAGENE Mx3000P (Agilent Technologies, Inc., Santa Clara, USA), using a 

SYBRgreen master mix and following the supplier’s instructions (SYBR®Premix Ex 

Taq™, Takara Bio Inc, Otsu, Japan) (see Table 2.8). The reaction mix was loaded 

onto 96-well plates (96 Multiply PCR plate natural, SARSTEDT AG & Co., 

Nümbrecht, Germany). Three technical and biological (independent batches of 

plants) replicates were run together with external standards (purified PM-H+-ATPase 

PCR product; see below) on the same plate. Samples were maintained for 10 s at  

95 °C as initial step, then 5 s at 95 °C and 30 s a t 60 °C through 45 cycles. After 

amplification, melting curves were recorded (95 °C 1 min then temperature gradient 

from 55 °C to 95 °C in 81 steps) to check product s ize and homogeneity, see also 

Fig. 2.4.  

 

Table 2.8 Components of qPCR reaction 

Component Final Volume Final concentration 
SYBR®Premix Ex TaqTM 6.25 µl 1x 
Forward primer (10 mM) 0.25 µl 0.2 µM 
Reverse primer (10 mM) 0.25 µl 0.2 µM 
Rox Dye II 0.25 µl N/A 
Template cDNA (200x diluted) 1 µl 2500x diluted 
Nuclease-Free Water 4.5 µl N/A 
Total volume 12.5 µl  
 

 

Figure 2.4 Thermal profile of qPCR reactions 

Magnifying glass symbols indicate detection sites of SYBR Green fluorescence  
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 To quantify the number of mRNA transcripts of the target gene (PM-H+-

ATPase), cDNA samples which contained known copy numbers of PM-H+-ATPase 

cDNA molecules were required. This external standard was obtained by purifying 

PM-H+-ATPase PCR product and a pCR®8/GW/TOPO construct that contained the 

ATPase PCR product as insert. Initially, the plasmids were used as an alternative 

external standard in addition to purified PM-H+-ATPase. However, preliminary 

experiments showed that purification of plasmids from E. coli cells did not yield 

sufficiently pure product to use it as external standards. 

 To obtain purified ATPase PCR product, PCR was performed in 50 µl 

volume as described above using colourless reaction buffer. After the quality of PCR 

product was checked by running the samples on an agarose gel, the PCR product 

was cleaned with a NucleaSpin®Extract II PCR clean-up / Gel extraction kit 

(Macherey-Nagel GmbH & Co. KG, Germany) following the manufacturer’s 

instructions. The purified DNA was eluted from the NucleaSpin®Extract II Column 

with nuclease free water. The DNA content was measured with Nanodrop® 

(ThermoFisher Scientific Inc., Waltham, USA) and the concentration / copy number of 

cDNA molecules was calculated from the expected molecular weight of the cDNA 

product for PM-H+-ATPase (100,587 g mol-1). From this purified stock, dilutions of 

0.5, 5, 50, 5·102, 5·103, 5·104 and 5·105 copy µl-1 were prepared. 

 

2.4.5 Analysis of qPCR data 

An absolute quantification method was used to compare the PM-H+-ATPase 

expression between elongation zone and fully developed emerged blade. This 

approach was chosen in favour of the conventional ∆-Ct approach (Pfaffl, 2001) 

because the generally most suitable reference gene of expression e.g. ubiquitin, 

gave more than one PCR product due to the existence of poly-ubiquitins. Using the 

Genevestigator (http://genevestigator.com) online application this problem (Hruz et 

al., 2011) could not be solved. 

 To further relate the copy number of transcripts to a biologically relevant 

size, qPCR results were expressed per cell or per mm2 plasma membrane surface. 

The total number of cells and plasma membrane surface contained in the plant 

material which was used for extraction was calculated based on the water content of 

leaf tissue, protoplast number and stereological electron and light microscopic 

analyses as detailed in section 2.5. 
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2.5 Cell size and tissue ratio measurements 

Cell size and tissue ratio in different leaf regions (elongation zone and emerged leaf 

blade) were determined and data combined with published data to calculate the total 

number of cells which were contained in samples used for qPCR analysis. 

 

2.5.1 Mesophyll and epidermis cell size 

The diameter of mesophyll cells was measured on living protoplasts with the help of 

Scion Image for Windows 4.0.3.2 (http://www.scioncorp.com) software. The data 

were then combined with data obtained by Volkov et al. (2007, 2009) for the same 

barley cultivar (Golf) and data obtained by Kavanagh (2010) through stereological 

electron-microscopic analyses. Epidermal cell size was calculated based on 

stereological results of Kavanagh (2010) and a light-microscopic study of Fricke & 

Flowers (1998) on the same barley cultivar (Golf) studied. 

 

2.5.2 Tissue ratio calculation in elongation zone and emerged blade 

The percentage of cross-sectional leaf volume occupied by leaf tissues (epidermis; 

mesophyll including vascular parenchymateous bundle sheath; vascular bundles 

except parenchymateous bundle sheath) and intercellular air space was determined 

on paraffin-embedded toluidine blue-stained cross sections (few micrometers thick) 

with the help of Adobe® Photoshop® 7.0.1 and Scion Image for Windows 4.0.3.2 

software. By assuming that intercellular air spaces did not contain any significant 

amount of liquid, but that almost all liquid was contained within tissues, it was 

possible to calculated the total water content (and approximate) volume of each 

tissue used for RNA extraction since the water content of leaf samples had been 

determined. 

 

2.5.3 Cell size and plasma membrane surface estimation for qPCR 

analysis 

Mesophyll cells volume and surface were calculated as they were spheres using the 

equation of (π/6)d3 for volume and πd2 for surface. Epidermis cells were treated as 

long rods. In the total cell volume different cell types were present as their corrected 

tissue share. Corrected tissue share was calculated as dividing the tissue share by 

(1-share of air space) because air space did not contains any living plant cell. The 
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whole calculation and data can find in the Results at section 3.3.2 and in the 

Appendix. 

 

2.6 Plasma membrane isolation 

Plasma membranes were isolated from barley seedlings following the approach 

developed by Kjellbom & Larsson (1984) and Yan et al., (1998). All steps were 

performed under cold conditions. For each plasma membrane isolation between 1.5 

– 6 g of plant material was required (elongation zone; emerged blade). Between   

200 - 400 barley seedlings had to be grown and harvested in each experiment.  

 

2.6.1 Plant harvest 

Plant tissues, elongation zone (basal 40 mm without the lower 1 - 2 mm, containing 

meristematic zone) and emerged blade (leaf blade without the lower and upper 1 cm) 

of barley (cv Jersey) leaf three were harvested into 50 ml ice cold homogenisation 

buffer (all components are listed in Table 2.9). The tissues were gently vacuum 

infiltrated (3 times using a laboratory water jet vacuum pump) and used immediately 

for plasma membrane isolation.  

 

Table 2.9 Composition of the homogenisation buffer used for membrane 

isolation 

Component Final concentration 
Sucrose 500 mM 
EDTA 2 mM (from 200 mM stock) 
Glycerol 10 % (v/v) 
BSA 0.5 % (w/v) 
DTT 2 mM 
PMSF 1 mM (prepared freshly from 12 mg ml-1 EtOH stock) 
β-mercaptoethanol 5 mM 
Non-soluble PVP 1 % (w/v) 
Na-ascorbate 0.1 % (w/v) prepared freshly 
HEPES-KOH 50 mM set to pH 7.8 
 

2.6.2 Preparation of microsomal fraction 

Tissues were homogenised in the homogenisation buffer with a razor blender          

(3 times 25 sec). The homogenate was filtered through four layers of gauze and one 

layer of Miracloths (Fisher Scientific). The filtrate was centrifuged at 11,500 g for 10 

min at 4 °C (Sigma 3K15 and 3K10 bench top centrifu ge, fixed angle rotor). The 

supernatant was collected and centrifuged at 30,000 rpm (~82,000 g) in a     
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Beckman L7-65 ultracentrifuge for 40 min with a SW40Ti swinging bucket rotor. The 

resulting microsomal pellet was resuspended in phase buffer (Table 2.10). 

 

Table 2.10 Composition of the phase buffer used for  membrane isolation 

Component Final concentration 
Sucrose 330 mM 
KCl 3 mM 
KH2PO4 5 mM 
K2HPO4 5 mM 
KOH To adjust buffer to pH 7.8 
 

2.6.3 Purification of plasma membrane vesicles 

The microsomal fraction was further fractioned by a two-phase aqueous dextran      

T-500 and PEG-3350 system. From the polymers, 20 % (w/w) (dextran) and 40 % 

(w/w) (PEG) stock solutions were made in phase buffer. The final concentration of 

both polymers was 6.1 % (w/w) in the start tube, taking into account dilution through 

addition of phase buffer and resuspended microsomal fraction. The final weight of the 

tube was 12 g. The tube was mixed by inversion 30 times and the phase separation 

was carried out by centrifugation at 1,500 g at 4 °C (Sigma 3K15 and 3K10 bench top 

centrifuge with swinging bucket rotor) for 25 min. The upper phase was transferred 

into a new tube and completed to 12 g with fresh lower phase (prepared separately 

with the help of extraction funnel). The separation was done as before but for 15 min, 

and this purification step was repeated 3 - 4 times until the upper phase became 

clear and did not show any green colour (which would have been indicative of 

contamination with chloroplast membranes) (Fig. 2.5). The final upper phase was 

diluted 3 - 4x with phase buffer and ultracentrifuged (35,000 rpm, 1 h). The pellet was 

resuspended in resuspension buffer (Table 2.11) and washed by ultracentrifugation 

(35,000 rpm, 1 h) two times in resuspension solution. The final purified pellet was 

resuspended in 50 - 150 µl resuspension buffer and divided into aliquots, frozen in 

liquid nitrogen and stored at -80 °C.  

Table 2.11 Composition of the resuspension buffer u sed for membrane 

isolation 

Component Final concentration 
Sucrose 330 mM 
KCl 3 mM 
KOH To set pH 7.8 
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Figure 2.5 Five purification steps during plasma me mbrane isolation.  

The upper phase becomes less and less green (indicative of thylakoid 
contamination). After the 5th step the upper phase is clear, no green colour is seen. 
 

2.7 Determination of the total protein content of p lasma 

membrane vesicles 

2.7.1 Bradford method 

The protein content of plasma membrane preparation was estimated using the 

method of Bradford (Kruger, 2002). The reagent was prepared and filtered through 

Whatman no. 1 filter paper. It was stored at room temperature in an amber bottle and 

used within weeks. The composition of the reagent is given in Table 2.12. The 

assays were carried out in duplicates in 1.1 ml final volume. For the calibration curve 

0, 1, 2, 4, 6 and 8 µg bovine serum albumin (BSA) was used as standards. 

Absorbance was measured at 595 nm between 5 to 15 min following addition of 

Bradford reagent to samples (PerkinElmer Lambda25 UV/VIS Spectrophotometer) 

 

Table 2.12 Composition of Bradford reagent 

Component Amount of the component 
Coomassie Brilliant Blue G250 100 mg dissolved in 50 ml 95 % ethanol 
Phosphoric acid 85 % 100 ml 
Distilled water Made up to 1 l 
 

2.7.2 Densitometric analysis of Laemmli gels 

The final values of protein concentration (used for ATPase assay, densitometry on 

polyacrylamide gels and Western blot analysis) were calculated from Laemmli gels 

(Sárvári et al, unpublished) using the modified protein solubilisation described below. 

Known volume of membrane vesicle sample (determined based on protein 

measurement using Bradford method, usually between 5 - 30 µl) were run on a 

gradient SDS polyacrylamid gel together with protein standards (Sigma). The amount 
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of total membrane protein was calculating by densitometry by Phoretix 4.01 software 

(Phoretix International). A typical gel photo is shown in Fig. 2.6. 

 

 

Figure 2.6 Typical gel for the measurement of prote in content of plasma 

membrane samples 

Coomassie Brilliant Blue R250 stained SDS gels were used to determine the total 
membrane protein content of different samples through a densitometric approach. EB 
– emerged leaf blade of leaf three; EZ – elongation zone of leaf three; L2 – mature 
blade of leaf two; S – Sigma protein standard, with a total protein content of 17.5 µg 
(2.5 µg each band) and proteins of molecular weights 66 (uppermost band), 45, 36, 
29, 24, 20.1 and 14.2 kDa (lowermost band). 
 

2.8 Polyacrylamide gel electrophoresis (PAGE) 

Qualitative and quantitative analyses were carried out on isolated plasma membrane 

vesicles using polyacrylamide gel electrophoresis (PAGE). 

2.8.1 Gradient polyacrylamide gel electrophoresis (PAGE) 

A gradient polyacrylamide gel electrophoresis was performed based on (Laemmli, 

1970), with some modification in the solubilisation of membrane protein, to check the 

quality of isolated plasma membrane fraction and quantify its (total) protein content. 

 

2.8.1.1 Solubilisation of membrane protein 

To optimise the solubilisation of plasma membrane protein, the approach taken by 

Kjellbom & Larsson (1984) was followed. TritonX®-100 detergent was added to the 

Laemmli buffer. Equal volumes of 0.1 % TritonX®-100 and plasma membrane 

suspension were mixed and vortexed. The mixture was then combined with an equal 

volume of Laemmli buffer (Table 2.13), incubated at room temperature for 30 min 
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and heated (90 °C) three times for 10 s each follow ed by vortexing. Non-solubilised 

protein was removed by centrifugation (5 min at 10,000 g) and the supernatant used 

for PAGE. With this modified solubilisation procedure, almost all protein was 

solubilised and no pellet was observed after centrifugation. In addition, gel bands 

stained with Coomassie Brilliant Blue R250 were much sharper and distinct (Fig. 2.7). 

Table 2.13 Composition of Laemmli buffer used for P AGE 

Component Concentration in the agent Final concentr ation 
TRIS-HCl pH 6.8 2.3 % (w/v) 0.76 % (w/v) 
SDS 7.15 % (w/v) 2.38 % (w/v) 
Glycerol 30 % (v/v) 10 % (v/v) 
DTT 5.5 % (w/v) 1.83 % (w/v) 
Bromophenol blue 0,003 % (w/v) 0.001 % (w/v) 

 

 

Figure 2.7 Coomassie Brilliant Blue R250 stained gr adient PAGE gels which 

were loaded with plasma membrane protein solubilise d in two different ways 

Plasma membrane protein was solubilised using the conventional Laemmli 
solubilisation method (A) or a modification involving TritonX®-100 (B). The bands are 
sharper and more distinct using the modified solubilisation method. Samples were 
derived from the elongation zone (EZ) and emerged blade (EB) of leaf three of 
barley. 
 

2.8.1.2 Gradient PAGE gel system 

Solubilised proteins were separated on 7 cm long 10 - 18 % gradient gels in a 

MiniProtean (BioRad Laboratories, Inc.) gel running system based on Laemmli 

(1970) under 20 mA / gel at 4 °C until the bromphen ol blue front exited the gel (after 

about 2 h). The components of the gel are listed in Table 2.14. The acrylamide / bis-

acrylamide ratio was 30:0.8. 
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Table 2.14 Components of the gradient PAGE system 

Stacking gel     
 Component Concentration in the gel 
 Acrylamide 5 % (w/v) 
 TRIS-HCl, pH 6.8 125 mM 
 SDS 0.1 % (w/v) 
 TEMED 0.01 % (v/v) 
 APS (ammonium persulfate) 0.1 % (v/v) 
 

Separation gel     
 Component Concentration in the gel 
 Acrylamide 10 - 18 % (w/v) linear gradient 
 TRIS-HCl, pH 6.8 375 mM 
 SDS 0.1 % (w/v) 
 TEMED 0.013 - 0.017 % (v/v) gradient 
 APS 0.04 % (v/v) 
 

Gel running buffer     
 Component Concentration in the buffer 
 TRIS, pH 8.3 25 mM 
 Glycine 192 mM 
 SDS 0.1 % (w/v) 
 

The polyacrylamide gel was stained overnight with Coomassie Brilliant Blue R-250 

and washed 3 - 4 times with washing solution (Table 2.15) on a horizontal swinging 

table (BIOSAN Multi MR-12). After the final washing step the gel was placed into 

distilled water for 20 min and then scanned with an UMAX Aster-1220S gel scanner. 

Each gel was stored for longer-term use in 7 % acetic acid solution.  

 

Table 2.15 Components of the solutions for Coomassi e Brilliant Blue gel 

staining 

Coomassie brilliant blue stain  
 Component Concentration  
 Coomassie brilliant blue R-250 1 % (w/v) 
 Methanol 41.67 % (v/v) 
 Acetic acid 16.66 % (v/v) 
 Distilled water 41.67 % (v/v) 
 

Washing buffer  
 Component Concentration  
 Methanol 30 % (v/v) 
 Acetic acid 10 % (v/v) 
 Distilled water 60 % (v/v) 
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2.8.2 Linear (12 %) PAGE 

For Western blotting at UCD, Dublin, linear (12 %) polyacrylamide gels were 

used for protein separation. Purified and solubilised plasma membrane samples were 

run on the polyacrylamide gels using a HoeferTM SE260 gel running system (Hoefer 

Inc, USA) at 240 V and 80 mA for 1.5 h using the same gel running buffer as 

described before (Table 2.14). For gel electrophoresis a 12 % separation and 4 % 

stacking gel were prepared following the instructions of the manufacturer (ProtoGel® 

30 % Kit, National Diagnostics, U.S.A.). Each well was loaded with 5 µg total 

membrane protein. Gels were not stained, but separated proteins were blotted to 

nitrocellulose membrane to quantify PM-H+-ATPase content of the samples by 

Western blot analysis.  

 

2.9 ATPase assay 

The ATPase assay was designed based on the method described by Sarkadi et al. 

(1992) and Pitann et al. (2009b). The ATP-dependent release of inorganic phosphate 

was followed. Precisely 3 µg total membrane protein was incubated in 100 µl reaction 

buffer (Table 2.16) at 28 °C for 60 min in a BIOSAN  TS-100 Thermo Shaker. The 

reaction was stopped through addition of 50 µl 10 % (w/v) phosphate free SDS. For 

colour development, 400 µl colour developing reagent (Table 2.16), 1 ml ultra-pure 

water and 200 µl 1 % freshly made ascorbic acid solution were added in succession 

to each reaction tube. Colour development occurred at 37 °C and was completed 

within 20 - 30 min. Within 1 min following the end of colour development, the 

absorbance of samples was read at 880 nm using a PerkinElmer Lambda25 UV/VIS 

Spectrophotometer. Appropriate standards (0, 10, 20, 40, 60 nmol Pi per sample of 

K2HPO4) were always run in parallel to samples and used to convert absorbance 

readings into nmol Pi generated. 
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Table 2.16 ATPase reaction buffer and colour develo pment reagent 

ATPase reaction buffer  
 Component Concentration  
 MES-KOH, pH 6.5 10 mM 
 MgSO4 5 mM 
 Sodium ATP 5 mM 
 KCl 50 mM 
 KNO3 50 mM 
 Brij58 0.02 % (w/v) 
 NaN3 10m M 
 

Colour developing reagent for ATPase reaction  
 Component Concentration  
 H2SO4 2.5 M 
 Ammonium molybdate 1 % (v/w) 
 Potassium antimony (III) oxid tartrate 0.014 % (v/w) 
 

2.10 Approach for light microscopy 

2.10.1 Fixation of leaf tissue 

Leaf pieces (1 cm in length) from the elongation zone and emerged blade were fixed 

in 4 % formalin (overnight, 4 °C). To facilitate th e penetration of the fixative, samples 

were vacuum infiltrated (3 times for 10 sec) using a Millipore WP6122050 vacuum 

pump (Millipore, USA).  

 

2.10.2 Dehydration and embedding 

Dehydration of leaf tissue was achieved through an ethanol series, and tissues were 

cleared with Neo-clear® and embedded into paraffin wax. Details of the protocol are 

given in Table 2.17. Sections of 5 µm thickness were cut using a MicroTec® 4060 

rotary microtome (MicroTec Laborgeräte GmbH, Germany). Sections were mounted 

on slides and dried at 37 °C (overnight) and staine d. For immunostaining, samples 

were mounted on APTES (3-aminopropyltriethoxysilane) coated slides, prepared 

based on the instruction of the supplier (Sigma-Aldrich), to prevent tissue damage 

during the overnight staining procedure. Slides were washed in absolute ethanol 

before coating and were immersed into 2 % APTES (dissolved in absolute ethanol) 

for 5 s, briefly rinsed in ethanol, washed in running tap water (5 min), rinsed in 

distilled water and dried overnight at 55 - 60 °C. 
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Table 2.17 Fixation and embedding of leaf samples f or immunohistochemistry 

Fixation  
 Solution Duration 
 4 % Formalin Overnight, 4 °C  
Dehydration  
 Solution Duration 
 30 % Ethanol 1 h 
 50 % Ethanol 1 h 
 70 % Ethanol 1 h 
 90 % Ethanol 1 h 
 96 % Ethanol 1 h 
 Absolute Ethanol 2x 1 h 
Clearing  
 50 - 50 % Ethanol Neo-clear® Overnight, 4 °C  
 Neo-clear® 2x1 h 
Infiltration  
 Neo-clear®-wax 30 min 
 50 - 50 % Nea-clear®-wax 1 h, 65 °C  
 100 % wax 2x 1 h, 65 °C  
 

2.10.3 Staining with toluidine blue 

Paraffin-embedded sections were rehydrated, stained with 1 % (w/v) aqueous 

toluidine blue, washed, dehydrated, cleared and mounted in Entellan® mountant 

(Table 2.18). Sections were examined with a Leica DMIL and Olympus BX60 

microscope. 

Table 2.18 Staining embedded leaf sections with tol uidine blue 

Rehydration  
 Solutions Duration 
 Neo-Clear® A 10 min 
 Neo-Clear® B 10 min 
 Absolute ethanol 5 min 
 96 % ethanol 5 min 
 70 % ethanol 2 min 
 Running water 5 min 
Staining  
 1 % aqueous toluidine blue 10 min 
 Running water 5 min 
Dehydration  
 70 % ethanol Dip twice 
 96 % ethanol Dip four times 
 Absolute ethanol 1 5 min 
 Absolute ethanol 2 5 min 
 Neo-clear® C 5 min 
 Neo-clear® D 5 min 
Mounting  
 Entellan® Mount under cover slip 
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2.11 Immunological methods for PM-H +-ATPase detection 

2.11.1 Qualitative Western blot analysis 

At Eötvös University the PM-H+-ATPase content of the isolated membrane vesicles 

and identity and molecular weight of PM-H+-ATPase protein was determined using 

Western blotting. Gradient SDS polyacrylamide gels were run as described above. 

Separated proteins were transferred onto nitrocellulose membrane (HyboundTM-C 

Extra, Amesham-Pharmacia, USA) using the Mini Transfer Blot (BioRad 

Laboratories, Inc.) system. The composition of blotting buffer is given in Table 2.19. 

Protein transfer was carried out in an ice-cold buffer tank (4 °C) at 90 V constant 

voltage (I < 0.4 A) for 2 - 3 h. 

 

Table 2.19 Composition of blotting buffer used for Western analyses 

Component Concentration  
TRIS-HCl, pH 8.3 25 mM 
Glycine 192 mM 
Methanol 10 % (v/v) 
SDS 0.01 % (w/v) 
 

 The blotted and washed nitrocellulose membrane was blocked with 3 % 

(w/v) gelatine in TRIS buffer saline (TBS) for 1h (composition is given in Table 2.20). 

As primary antibody, plant PM-H+-ATPase specific polyclonal rabbit IgG (Agrisera, 

Uppsala, Sweden) was used  at 1,000x dilution in TBS buffer containing 1 % gelatine 

(overnight; room temperature). Non-bound antibody was removed by washing the 

membrane in Tween®20 TRIS buffer saline (TTBS) (Table 2.21), twice for 20 min, 

followed by two washes for 20 min each in TBS. Horseradish peroxidase (HRP)-

labelled anti rabbit IgG produced in goat (BioRad Laboratories, Inc.) was used as 

secondary antibody. It was used at 3,000x dilution in TBS buffer (2 h). The 

membrane was washed in the same way as described for primary antibody and was 

then developed in developing solution (0.06 % (w/v) HRP Colour Development 

ReagentTM (BioRad Laboratories, Inc.)). The colour development reagent contained 

4-Cl-1-naftol as active component and was dissolved in -20 °C methanol and     

0.015 % H2O2 in TBS. The bands were digitalized (HP Scanjet) before the membrane 

had dried out. 
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Table 2.20 Composition of TRIS buffer saline buffer  (TBS) 

Component Concentration  
TRIS-HCl, pH 7.5 20 mM 
NaCl 150 mM 
 

Table 2.21 Composition of Tween ®20 TRIS buffer saline buffer (TTBS) 

Component Concentration  
TRIS-HCl, pH 7.5 20 mM 
NaCl 150 mM 
Tween®20 0.005 % (w/v) 
 

2.11.2 Quantitative Western blot analysis 

Plasma membranes could only be isolated at Eötvös University, yet the more 

sensitive Western blot system was available at UCD, Dublin. Therefore, Western 

analyses of plasma membrane fractions were carried out not only at Eötvös 

University but also at UCD using plasma membrane vesicle samples which had been 

brought back (flight back from Hungary) on dry ice. The Western analyses system at 

UCD was the same one as described by Collins et al. (2011). 

The separated proteins were blotted onto nitrocellulose membrane (Whatman® 

PROTRAN BA 85) using a HoeferTM TE22 blotting system, at 40 V and 120 mA 

overnight at room temperature. The gel running buffer contained 20 % (v/v) 

methanol. Blotted nitrocellulose membranes were stained with Ponceau S stain 

(Sigma) and washed with washing buffer (0.2 % Tween®20 containing gel running 

buffer). Thereafter, membranes were blocked with 5 % skimmed milk powder in 

washing buffer for 1 h, at 30 rpm on a horizontal shaker. Primary antibody (PM-H+-

ATPase specific polyclonal rabbit IgG antibody; Agrisera, Sweden) was applied 

overnight at 2,500x dilution in washing buffer containing 5 % milk powder, at 30 rpm 

shaking. Non-bound primary antibody was removed through washing three times   

(10 min each; 70 rpm) in washing buffer. Peroxidase-labelled anti rabbit IgG 

produced in goat (Invitrogen Corporation, Carlsbad, California USA) was applied as 

secondary antibody at 10,000 x dilution in washing buffer containing 5 % milk powder 

(2 h; 70 rpm). After three final washes (10 min each) in washing buffer, bound 

secondary antibody was visualised through an EZ-ECL Chemiluminescence 

Detection Kit for HRP (Biologica Industries, Israel) and LAS-4000 Luminescence 

Image Analyser (Fujifilm, USA). 
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2.11.3 Immunostaining of paraffin-embedded sections 

PM-H+-ATPase tissue specific localisation was determined on paraffin-embedded 

samples using immunohistochemistry. The same PM-H+-ATPase specific primary 

antibody was used as for Western blotting. Anti rabbit IgG alkaline phosphatase- 

labelled antibody, produced in goat (Sigma), was applied as secondary antibody as 

detailed in Table 2.22. Colour development was carried out with SIGMAFAST™ Fast 

Red TR / Naphthol AS-MX Tablets (Sigma) following the instructions of the 

manufacturer. Colour development was stopped with 7 % acetic acid. After a 5 min 

washing in running tap water, samples were mounted in 80 % glycerol in phosphate 

buffered saline (PBS, its composition is given in Table 2.23) under a cover slip. 

 

Table 2.22 Protocol for immunostaining of embedded leaf sections 

Rehydration  
 Solutions Duration 
 Neo-Clear® A 10 min 
 Neo-Clear® B 10 min 
 Absolute ethanol 5 min 
 96 % ethanol 5 min 
 70 % ethanol 2 min 
 Running water 5 min 
Blocking  
 5 % (v/v) goat serum in PBS 10 min 
Staining  
 Primary antibody (100x diluted) in   

2.5 % (v/v) goat serum in PBS 
Overnight, 4 °C  

 Washing with PBS 3x 5 min 
 Secondary antibody (30x diluted) in 

2.5 % (v/v) goat serum in PBS 
2 h 

 Washing with PBS 4x 5 min 
Colour development  
 SIGMAFAST™ Fast Red 2 - 10 min 
 5 %  (v/v) acetic acid 1 - 5 min 
 Running water 5 min 
Mounting  
 80 % glycerol in PBS Mount under cover slip 
 

Table 2.23 Composition of phosphate buffer saline ( PBS; pH 7.4) 

Component Concentration (mM) Concentration (g / l) 
NaCl 137 8.00 
KCl 2.7 0.20 
Na2HPO4x2H2O 8.1 1.44 
KH2PO4 1.76 0.24 
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2.11.4 Densitometric analysis of Western blots 

Densitometric analysis of Coomassie-stained polyacrylamide gels and Western blots 

was carried out with a Photetix 1D Advanced 4.01 system (Phoretix International, 

Newcastle, UK). Raw data were processed using Microsoft® Office Excel 2003 

(Microsoft Corporation, USA) and Origin®6.1 (OrigiLab Corporation, USA) statistical 

software.  

 

2.12 Protoplast experiments 

2.12.1 Protoplast isolation 

Protoplasts were isolated according to Volkov et al. (2007), with some modifications. 

 Osmolality of the isolation buffer, incubation time and shaking frequency were 

optimised. Cell walls and middle lamellae from tissue of the elongation zone were 

digested in 500 mOsm kg-1 isolation buffer with 90 rpm shaking frequency over a 

period of 2 - 3 hours in the dark, while pieces of the emerged blade were incubated in 

isolation buffer of 600 mOsm kg-1 osmolalility, over a 1 h period and at 160 rpm 

shaking frequency in the dark.  

 Cell wall digestive enzymes (Table 2.24) were dissolved in isolation medium 

(components are in Table 2.25) overnight, at 4 °C, without any shaking or vortexing. 

Prior to use, enzyme solutions were centrifuged (5 min, 10,000 g, mini Spin plus, 

Eppendorf AG, Hamburg, Germany) and the supernatant was used for cell wall 

digestion. 

 

Table 2.24 Composition of protoplast isolation buff er 

Component Concentration  
Murashige and Skoog salt 4 g l-1 
MES 10 mM 
Sorbitol 500 - 600 mOsm kg-1 
PVP K30 0.025 % (w/v) 
BSA 0.1 % (w/v) 
KOH Used to adjust to pH 5.7 
 

Table 2.25 Enzyme concentrations in protoplast isol ation buffer 

Enzyme Concentration  
Cellulase 1 % (w/v) 
Driselase 0.5 % (w/v) 
Pectolyase 0.05 % (w/v) 
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2.12.2 Purification of protoplasts 

After enzymatic digestion of the cell wall, protoplast were passed through a 100 µm 

mesh and washed with 4 - 5 volume isolation buffer. Protoplasts were collected by 

centrifugation (30 g, 2 min; Eppendorf 5810 R, swinging bucket rotor) and 

resuspended in 0.3 – 1 ml volume using isolation buffer. Viability of protoplasts was 

tested using 0.001 % (w/v) fluorescein diacate (Larkin, 1976), which was prepared 

from a 0.1 % (w/v) acetone stock. Protoplasts were viewed with a Leica DMIL 

fluorescence microscope equipped with an excitation filter (450 - 490 nm) and 

suppression filter (515 nm). 

 Protoplasts were counted with a Neubauer ultra plane counting chamber 

(Hausser Scientific) under a Leica DMIL microscope. These data were used to relate 

expression values obtained through qPCR experiments to protoplast number. 

 

2.12.3 Calculation of size and surface of the protoplast 

The diameter of protoplasts was measured on micrographs taken with a Leica DMIL 

microscope with the help of Scion Image for Windows 4.0.3.2 software. From the 

diameter (d), the protoplast volume, ((π/6)d3) and surface (πd2) could be 

calculated,due to the almost perfectly spherical shape of protoplasts.  

 

2.13 Statistical analysis 

Statistical analysis was carried out with Origin® 6.1 (OriginLab Corporation) software, 

using paired and independent Student’s t test and one-way ANOVA. 
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3 Results 

 

3.1 Apoplastic pH measurements 

Apoplast pH was measured through three independent approaches: in-vitro gel 

system, electrophysiology and confocal microscopy. The in-vitro gel system involved 

incubating leaf segments in agarose containing a pH indicator that made it possible 

to directly relate changes in apoplast acidity to changes in growth. With pH 

microelectrodes precise values of apoplast pH in growing and non-growing leaf 

regions could be obtained. Finally, confocal microscopy involved loading plants with 

pH fluorescence probes and had the advantage that intact plants could be studied. 

 

3.1.1 In-vitro agarose gel system 

The base 70 mm of leaf three was placed in agarose gel medium containing the pH 

indicator bromocresol purple. Growth was monitored parallel to acidification of the 

medium. The basic assumption underlying this experiment was that any changes in 

the extent of acidity of the medium adjacent to leaf tissue reflected similar changes in 

the net H+ production rate (due to PM-H+-ATPase activity) in the tissue’s apoplast. 

‘Extent’ of acidity can refer to either or both, changes in pH and changes in the area 

of medium which was acidic. Gel images of a typical set of experiments, involving 

application of fusicoccin and vanadate, are shown in Fig. 3.1 A-C.  

There was a non-specific acidification of medium with a maximum acidification 

at the first hour following the placement of unpeeled leaf segments into the agarose. 

This acidification, which most likely reflected changes in apoplast pH caused by the 

unpeeling and which was not restricted to the base 40 mm (leaf elongation zone), 

disappeared within 4 - 5 h and then reappeared in a growth-dependent manner (Fig. 

3.2 A and B). Growth dependency of acidification was also tested by applying an 

initial (0 - 24 h) cold treatment. There was no acidification of medium and no growth 

either during the cold treatment (Fig. 3.3). As soon as the cold treatment finished, 

growth resumed parallel to the acidification of medium (Fig. 3.3). 
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Figure 3.1 Leaf growth and apoplast acidification a s analysed through the 

agarose gel system 

Typical images of an experiment involving control leaves (A) and leaves which were 
placed in agarose containing 5 µM fusicoccin (B) and 500 µM vanadate (C). Scale 
bar is 1 cm long. 
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Figure 3.2 Time course of growth and acidification of in-vitro gel experiments 

Typical time course of changes in leaf length (A) and medium acidification (B) in 
response to treatments are shown. Values are averages and standard deviations 
(error bars) of 27 (control) and 10 (treatments) plants. 
 

 

Figure 3.3 Leaf growth and acidification in agarose  gel under cold treatment 

Typical images of an experiment involving cold treated leaves 0–24 h and under 
control condition 24 - 48 h (A). Scale bar represents 1 cm. Response of medium 
acidification and change in leaf length (growth) to cold treatment and subsequent 
incubation in the growth chamber (B); values are averages and standard deviations 
(error bars) of 10 plants. 
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A range of treatments was tested for their effect on medium acidification and 

leaf growth (Fig. 3.4). Fusicoccin increased significantly leaf elongation rate and 

medium acidity. Vanadate caused the opposite effect, as did caesium, which inhibits 

K+ channels (Szczerba et al., 2009; Volkov et al., 2009). 

 

Figure 3.4 Average rate of leaf elongation (A) and medium acidification (B) in 

leaves exposed to fusicoccin, vanadate and caesium treatments as tested 

through the agarose gel system 

All media contained 10 mM KCl and test reagents were applied at 5 µM (fusicoccin), 
500 µM (vandate) or 5 mM (CsCl). Values are averages and standard deviations of 
20 (control), 9 (fusicoccin), 7 (vanadate) and 14 (CsCl) plants. Different letters show 
a statistically significant difference at p < 0.05 (Student’s t-test and ANOVA). 
 

Although auxin-induced growth is often related to cell wall acidification and 

referred to as ‘acid growth’, no such stimulation of either growth or acidification was 

observed in the present study. Using in-vitro gel system and applying the artificial 

auxin, α-Naphthaleneacetic acid (NAA), growth did not change and acidification was 

similar to control. If anything, acidification of NAA treated plants continuously 

decreased whereas control plants started to slightly decrease after 5 h (Fig. 3.5). 

Auxin-induced growth was not detected either when the experiment was 

carried out in liquid medium (10 mM KCl and 1 mM CaCl2 without agarose and 

bromocresol purple) to check whether the absence of any auxin effect was due to 

conditions associated with the agarose gel. To check whether it was possible to 

induce any auxin-specific effects, coleoptiles were tested since these represent the 

classical ‘acid growth’ system. A significant increase in growth was measured      

(Fig. 3.6). 
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Figure 3.5 Effect of auxin on leaf growth and mediu m acidification using the   

in-vitro gel system 

Difference in growth (A) was not found between 5 µM NAA treated and control plants. 
Medium acidification was similar in auxin-treated and non-treated (control) leaves (B). 
Traces are average of 10 - 27 plants, error bars represent standard errors. 
 

 

Figure 3.6 Growth effect of auxin when applied in l iquid medium  

NAA (5 µM) effect on growth was tested in liquid medium on leaf (A) and coleoptile 
pieces (B). Measurements were carried out at 5 h and 24 h of incubation. Values are 
averages and standard deviations (error bars) of 4 leaf pieces and 40 coleoptile 
segments. Different letters show a statistically significant difference at p < 0.05 using 
Student’s t-test and ANOVA. 
 

3.1.2 Microelectrode measurements 

Microelectrode measurements of apoplastic pH in the growing leaf three showed that 

the pH in the elongation zone was by up to one pH unit lower than the pH in the 

emerged blade (Fig. 3.7 A). Apoplastic pH in the elongation zone depended on the 

K+ concentration in the bathing medium which was in direct contact with the leaf 

surface during measurements. At the lowest K+ concentration tested (0.1 mM), 

apoplast pH was 4.8. Apoplast pH increased with the K+ concentration of the 

medium. At 10 mM K+, apoplast pH in the elongation zone was 5.8 and 
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indistinguishable from the value in the emerged blade. In contrast to apoplast pH in 

the elongation zone, apoplast pH of the emerged blade did not change with bathing 

medium K+. When the pH of the bathing medium was adjusted to pH 7.0 using KOH 

(final K concentration of 0.3 - 0.5 mM) apoplastic pH in the elongation zone was 

between 4.8 and 5.2. This proved that the lower apoplastic pH measured in the 

elongation zone was independent from the pH of the bulk (bathing) solution which 

was in direct contact with the apoplast, when the solution did not contain any buffer 

component. When the pH of the bathing solution was adjusted to pH 7.0 using 100 

mM TRIS-HCl, including 0.1 mM KCl, the pH of the apoplast was 6.1 - 6.2 in both 

elongation zone and emerged blade (Fig. 3.7 B). Although this pH was lower by 

almost one pH unit than the pH of the bathing medium, this experiment showed that 

apoplast pH of the emerged blade was responsive to changes in the composition of 

the bathing medium and that the two were in direct contact. Bathing medium must 

have bypassed the cuticle and entered leaves through stomata. Growth of leaves on 

the microelectrode stage was not affected by K+ treatments, despite the K+-

dependency of apoplast pH (Fig. 3.8). 

 

Figure 3.7 Microelectrode analyses of apoplast pH i n the elongation zone and 

emerged blade-portion of leaf three of barley.  

Apoplast pH was measured in dependence of the K+ concentration (added as KCl) of 
the electrode bathing medium which was in direct contact with the leaf tissue 
analysed (A). Apoplast pH measured when buffered solutions were applied as 
bathing medium (B). Values are averages ±SD of 7 - 15 measurements obtained on 
3 - 6 plants of each treatment. Different letters show a statistically significant 
difference at p < 0.05 (Student’s t-test and ANOVA). 
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Figure 3.8 Growth rate of leaf three in response to  K+-treatments during micro 

pH measurements.  

Values are averages ±SD of 7 - 15 measurements obtained on 3 - 6 plants of each 
treatment. Different letters show a statistically significant difference at p < 0.05 
(ANOVA). 
 

Vanadate (Na3VO4) and fusicoccin were added to the bathing medium to test 

whether the lower pH in the apoplast of the elongation zone was dependent on the 

activity of the PM-H+-ATPase. Vanadate, which inhibits the PM-H+-ATPase, was 

tested at a concentration of 500 µM in presence of 0.1 mM KCl. Apoplast pH in the 

elongation zone increased from pH 4.8 to pH 5.8, precisely the pH value observed in 

the emerged blade (Fig. 3.9). Fusicoccin, which stimulates the PM-H+-ATPase 

(Marré, 1979; Würtele et al., 2003), was tested at a concentration of 5 µM in 

presence of 1 mM KCl. Apoplast pH was 5.2 and identical to the pH measured in 

absence of fusiccocin at 1 mM KCl in the bathing medium (Fig. 3.9). The rate of leaf 

elongation decreased in response to vanadate and increased in response to 

fusicoccin treatments (Fig. 3.10). This was observed for all experimental setups (Fig. 

3.10).  
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Figure 3.9 Microelectrode pH analyses in the leaf e longation zone of barley in 

response to sodium orthovanadate and fusicoccin tre atments 

The KCl concentration in the bathing medium was as indicated. Values are averages 
and standard deviations (error bars) of 12 (controls of 0.1 mM and 1 mM KCl), 4  
(500 µM vanadate) and 4 (5 µM fusicoccin) datasets of between 3 - 6 different plants 
each. Different letters show a statistically significant difference at p < 0.05 (Student’s 
t-test and ANOVA). 
 

 

Figure 3.10 Growth rate of leaf three of barley in response to vanadate and 

fusicoccin treatments as analysed through different  approaches 

Values are averages and standard deviations (error bars) of 13 - 60 (control), 3 - 8 
(vanadate) and 3 - 10 (fusicoccin) replicates. Different letters show a statistically 
significant difference at p < 0.05 (Student’s t-test and ANOVA). 
 

3.1.1 Confocal microscopy 

Acridine orange and 5(6)carboxyfluorescein are pH sensitive fluorescence dyes. 

They were used to test whether the apoplastic pH was lower in the elongation zone 

compared with emerged blade in intact barley plants. First, the system had to be 

calibrated. This was achieved by peeling epidermal strips from plants which had 

been grown for 24 h in the presence of 5(6)carboxyfluorescein and 48 h in presence 
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of acridine orange in the root medium to allow sufficient uptake of dye into leaf tissue. 

Exposure of epidermal strips to solutions of different pH showed (i) that dye had been 

taken up into the leaf apoplast and (ii) that the fluorescence intensity of dye in the 

apoplast changed in the physiological pH range, in the same manner as observed for 

dye in free solution (Fig. 3.11 A, B for acridine orange and Fig. 3.12 A, B for 

carboxyfluorescein). Fluorescence decreased with pH. Optical sections from the 

epidermis of intact third leaves showed that the fluorescence intensity, and by 

implication pH, were considerably lower in the apoplast of the elongation zone than in 

the apoplast of the emerged blade (Fig. 3.11 C-F for acridine orange and Fig. 3.12 C-

F for carboxyfluorescein). 

 It is possible that the difference in fluorescence intensity between leaf 

regions resulted not from differences in apoplast pH but from differences in the 

concentration of dye accumulated during the uptake period. This was tested by 

peeling epidermis strips from the elongation zone and emerged blade (leaf three) of 

dye-loaded plants and incubating the peels in pH 7.5 buffer solution. Peels were 

examined after a 30 min incubation period using a Leica epifluorescence microscope. 

The fluorescence intensity and by implication carboxyfluorescein and acridine orange 

concentration was similar in the epidermis of the two leaf regions; if anything, it was  

higher in the elongation zone (Fig. 3.13). This experiment showed that the lower 

apoplast pH in the epidermis of the elongation zone of intact, dye-loaded plants, was 

not the result of a lower fluorochrome concentration but reflected most likely a true 

difference in apoplast pH between the two leaf regions. Uptake of dyes through roots 

and accumulation in leaf tissue did not cause changes in leaf growth (Fig. 3.14 A, B). 
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Figure 3.11 Confocal microscopic analysis of apopla stic pH using acridine orange fluoresce pH 

sensitive fluorescence dye 

The pH sensitivity of fluorescence of dye as tested on sample droplets which contained 2.5 µM acridine 
orange and were buffered at the pH indicated (A). Confocal images of epidermal peels of the mature leaf 
one; following incubation of peels for 30 min in the solutions as shown in (B). Typical confocal images (C, 
E) and their heat map (D, F). Elongation (C, D) and emerged (E, F) region of leaf three of intact plants. 
Images containing scale bars show the original fluorescence image, while corresponding images without 
scale bars represent heat maps of images. 
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Figure 3.12 Confocal microscopic analysis of apopla stic pH using 5(6)carboxyfluorescein fluoresce 

pH sensitive fluorescence dye 

The pH sensitivity of fluorescence of dye as tested on sample droplets which contained 10 µM 
carboxyfluorescein and were buffered at the pH indicated (A). Confocal images of epidermal peels of the 
mature leaf one; following incubation of peels for 30 min in the solutions as shown in (B). Typical confocal 
images (C, E) and their heat map (D, F). Elongation (C, D) and emerged (E, F) region of leaf three of intact 
plants. Images containing scale bars show the original fluorescence image, while corresponding images 
without scale bars represent heat maps of images. 
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Figure 3.13 Carboxyfluorescein and acridine orange accumulation pattern in 

elongation zone and emerged blade 

The distribution of the pH sensitive probes (5(6)carboxyfluorecein, A, C and acridine 
orange, B, D) appears to be similar in the elongation zone (A, C) and emerged leaf 
blade (B, D). The dye was taken up through the roots of intact plants and the 
epidermal strips of leaf three were incubated (30 min) in pH 7.5 buffer prior to be 
viewed under the microscope (Leica DMIL; 450 - 490 nm excitation filter and 515 nm 
suppression filter). 
 

 

Figure 3.14 Effect of pH sensitive dyes on leaf gro wth rate 

Growth, as measured with the LVDT on intact plants (unpeeled leaf three) did not 
change after 48 h incubation of plants in nutrient solution containing 2.5 µM acridine 
orange (A); the same was observed for plants after 24 h incubation in nutrient 
solution containing 10 µM carboxyfluorescein. Values are averages of 3 replicates, 
and error bars represent standard errors. 
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 The pH sensitivity of fluorochrome 5(6)carboxyfluorescein and acridine 

orange was determined by fluorescence spectroscopy. Both fluorescein probes 

showed pH-sensitivity in the physiological pH range and had single peak spectra. 

Carboxyfluorescein showed a larger pH sensitivity in the pH range of interest 

compared with acridine orange (Fig. 3.15). 

 

Figure 3.15 pH sensitivity of fluorochromes 

Fluorescence spectra and pH sensitivity of 5(6)carboxyfluorescein (A) and acridine 
orange (B) was recorded. Both fluorochromes had pH sensitivity although 
carboxyfluorescein gave more explicit signal and better pH fidelity in the physiological 
pH range. 
 

3.2 LVDT analyses of growth responses to treatments  

3.2.1 Leaf elongation under different treatments 

The basic assumption underlying LVDT experiments was that the wet tissue paper 

which was soaked in test solution and in direct contact with the surface of the 

elongation zone of leaf three allowed the test solution to diffuse into the apoplast. 

The responsiveness of setup to treatments was tested through two types of 

experiment, one designed to increase (37 °C) and on e designed to reduce growth (1 

M NaCl). Elongation growth of grass leaves responds little to changes in ambient 

temperature but to the temperature close to the basal meristem (Stoddart & Lloyd, 

1986). Therefore, parts of a potato which had been heated to 37 °C in an incubator 

were placed round the leaf elongation zone without any direct contact between the 

potato and the barley seedling. Growth started to increase within minutes (Fig. 3.16 

A, B). With time, the potato cooled down and leaf elongation rate decreased. When 

finally 1 M NaCl was added to impose a severe osmotic stress, growth stopped 

instantly and remained zero or close to zero (Fig. 3.16 A, B).  
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Figure 3.16 Testing the responsiveness of the LVDT setup to treatments which 

were expected to increase (37 °C) or stop growth (1  M NaCl) 

Average values (three plants) and standard deviations (error bars) (A) and a typical 
trace (B) are shown. The apoplastic bathing medium always contained 1 mM KCl. 
Different letters show a statistically significant difference at p < 0.001 (Student’s t-
test). 
 

Having tested the responsiveness of the LVDT setup, treatments were 

applied. In presence of 1 mM KCl in the test solution fusicoccin (5 µM) increased leaf 

elongation rate to 160 % the rate observed in control plants. Vanadate, CsCl and 

CsCl–vanadate double treatments caused a 50 % decrease in growth rate (Fig. 

3.17). The same was observed for the K+ channel blocker tetraethylammonium (TEA) 

and ammonium, which blocks high-affinity K+ transporters (NH4
+; HAK-type 

transporters (Kronzucker et al., 2003; Rodriguez-Navarro & Rubio, 2006; Szczerba et 

al., 2006).  
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Figure 3.17 The effect of test reagents in the apop lastic bathing medium on leaf 

growth as measured with the LVDT setup 

Average values and standard deviations of experiments (A) involving application of 
test reagents are shown (fusicoccin (5 µM, n = 3 plants), vanadate (VAN, 500 µM, 6 
plants), tetraethylammonium chloride (TEA, 50 mM, 6 plants), CsCl (40 mM, 4 
plants), CsCl+VAN double-treatment (40 mM / 500 µM, 3 plants), and (NH4)2SO4 (20 
mM, 3 plants)). Media always contained 1 mM KCl. Typical traces of experiments (B). 
Growth rates are expressed as percent of the respective KCl control, which 
contained only KCl but no test reagents in the apoplastic bathing medium. Different 
letters show a statistically significant difference at p < 0.05 (Student’s t-test and 
ANOVA). 

 

The effect of fusicoccin on elongation growth was dependent on the K+ 

concentration in the bathing medium which was in direct contact with the leaf 

elongation zone (Fig. 3.18). The higher the K+ concentration was, the larger was the 

stimulation of growth. In contrast, the inhibitory effect of vanadate on leaf elongation 

growth did not depend on the K+ concentration in the bathing medium (Fig. 3.18). 

This experiment showed that changes in the K+ concentration per se did not affect 

growth but required a functional PM-H+-ATPase to affect growth. 
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Figure 3.18 Potassium dependency of the leaf growth  response to fusicoccin (5 

µM) and vanadate (500 µµµµM) 

Values are averages and standard deviations (error bars) of 3 - 6 plants, and the K+ 
concentration of apoplastic bathing medium was as indicated. Growth rates are 
expressed as percent of the respective KCl control, which contained only KCl and no 
test reagents in the apoplastic bathing medium. Different letters show a statistically 
significant difference at p < 0.05 (Student’s t-test and ANOVA). 
 

Short term (1 - 4 h) auxin-induced leaf growth was measured with the same 

LVDT set up. Treatments (5 µM NAA with 1 mM KCl) did not caused any significant 

increase in growth rate, moreover the leaf elongation rate slightly (but not 

significantly) decreased rather than increased (Fig. 3.19). These results suggested 

that leaf elongation can not be further increased by auxin treatments.  

 

 

Figure 3.19 Auxin effect on leaf elongation growth 

Elongation growth was monitored using the LVDT system. Growth in control (1 mM 
KCl) and NAA treated plants (1 mM KCl and 5 µM NAA) did not significantly differ 
from each other. Values are averages and standard deviations (error bars) of 3 
replicates. The difference in growth between control and NAA treatment is 
statistically not significant (Student’s t-test). 
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3.2.2 Cell wall changes in response to treatments 

Changes in cell wall properties were tested for 500 µM vanadate, 40 mM CsCl and 5 

µM fusicoccin treatments by applying an additional 3 g counterweight on the LVDT 

system. Control plants had 1 mM KCl in the apoplast bathing medium of the 

elongation zone. The elastic growth component significantly changed only in 

response to the fusicoccin treatment, whereas plasticity was affected significantly in 

response to CsCl (Fig. 3.20 A). Additional stress (0.03 N) on the cell wall did not 

change the relative growth rate compared with control (1 mM KCl, ∆∆v), except in 

fusicoccin-treated leaves. Fusicoccin treatment caused a 50 % increase in ∆∆v 

compared with all other treatments and the control (Fig. 3.20 B). 

 

 

Figure 3.20 Cell wall changes under different treat ments 

Elastic and plastic growth (A) and 0.03 N stress caused growth rate (B) was 
measured on 3 independent plants in two replicates each. ∆∆v means the difference 
between ∆vcontrol and ∆vtreatment where ∆v is the difference in growth rate before and 
under the applied additional stress (v2-v1 on Fig. 3.2). Different letters show 
statistically different values at p < 0.05 level with Student’s t-test and ANOVA. 
 

Growth rate before (v1) and under (v2) applied 0.03 N force was in agreement 

with previous effect of test reagents on growth (compare Fig. 3.17 and Fig. 3.21). 

The fusicoccin treatment caused a large increase in growth, although the increase 

was statistically not significant.  
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Figure 3.21 Growth rate before and in response to a n additional applied force 

(0.03 N)  

Growth rate before (v1) and under (v2) applied force (3 g) using different treatments 
as vanadate (500 µM), CsCl (40 mM) or fusicoccin (5 µM). Bath medium of control 
plants contained 1 mM KCl. Values are averages of 3 - 3 replicates. Different letters 
shows statistically different values at p < 0.05 level with Student’s t-test and ANOVA. 
 

3.3 Expression analysis of PM-H +-ATPase using qPCR 

PM-H+-ATPase expression was analysed using qPCR. Altogether five reference 

genes (GADPH, cyclophilin, ubiquitin, HSP70 and PM-H+-ATPase) were tested in the 

experimental system. Only ubiquitin and the two PM-H+-ATPase (Ha1 and ATPase) 

primer pairs showed similar expression in the elongation zone and emerged blade 

(Fig. 3.22 A). Other, commonly used reference genes such as actin, tubulin, EF1, 

LHC were not suited because growing and non-growing leaf regions had to be 

compared (see Besse et al., 2011; Volkov et al., 2009). Ubiquitin could not be used 

as reference gene because the PCR product was not homogenous but produced 

more than one band as agarose gel analysis showed (Fig. 3.22 B). Applying 

Genevestigator bioinformatics application (www.genevestigator.com) could not solve 

the problem. Therefore, it was decided to carry out absolute qPCR quantification to 

determine PM-H+-ATPase expression levels in the leaf elongation zone and emerged 

blade. 
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Figure 3.22 reference genes for qPCR experiments 

500 pg total RNA-equivalent cDNA was used in each reaction well to check the 
qPCR profile of candidate reference genes. Expression, as shown as Ct-value, of the 
two PM-H+-ATPase PCR primer pair (Ha1 and ATPase) and ubiquitin (UBQ) was 
similar between the two leaf regions, effectively qualifying them as reference genes 
of expression. In contrast, expression of glyceraldehyde-3-phosphate dehydrogenase 
(GADPH), heat shock protein 70 kDa (HSP70) and cyclophylin (Cyclo) differed 
significantly between leaf regions (A). Values are averages of 3 replicates and error 
bars represent SD. Different letters show significantly different values at p < 0.05 
level using Student’s t-test and ANOVA. Agarose gel picture of PM-H+-ATPase 
(ATPase) and ubiquitin (UBQ) show that that ubiquitin shows more than one PCR 
product (B). 
 

3.3.1 Quality control of the standard required for absolute qPCR 

Quality of reference DNA (purified PM-H+-ATPase PCR fragments) was validated 

using end point detection digital PCR technique (Vogelstein & Kinzler, 1999). The 

concentration of fragments was calculated as 0.5 copy µl-1 based on Nanodrop® 

measurements. From 40 PCR reactions 21 were PCR positive and 19 negative (Fig. 

3.23). This suggested a concentration of 0.525 DNA copy µl-1 in the external 

standard and was just 2.5 % higher compared with the calculated copy concentration 

(0.5 copy µl-1). 
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Figure 3.23 Digital PCR pattern of external standar d DNA  

Using digital PCR technique the concentration of the external standard for PM-H+-
ATPase expression was verified. The PCR positive / negative ratio was 21 / 19, 
which suggests a concentration of 0.525 copy of ATPase DNA in 1 µl of standard 
compared with the calculated 0.5. Therefore, the reliability of the standard was higher 
than 95%. 
 

3.3.2 Calculation of cell number and membrane surface 

Total cell volume of the leaf regions was calculated for the two barley cultivars using 

the water content of the plant material, cell dimensions and contribution of each 

tissue to total leaf symplast volume (Table 3.1). The water content differed 

significantly between the two leaf regions but not between the two cultivars. 

 

Table 3.1 Water content of two different regions of  leaf three in two cultivars of 

barley  

Cultivar Leaf part No replicates Water content (%) SD 
Golf Elongation zone 3 92.06 1.57 
 Emerge blade 3 86.78 2.25 
Jersey Elongation zone 7 93.78 3.12 
 Emerge blade 7 87.78 1.07 
 

 The tissue volume ratio was measured on cross sections using light 

microscopy (Table 3..2 and Fig. 3.24) and average cell size was estimated from the 

present protoplast measurements and data published for Golf (Fricke & Flowers, 

1998; Volkov et al., 2007; Volkov et al., 2009, Kavanagh, 2010) (Table 3.3). 

Mesophyll and epidermis cell size and surface area was calculated separately and 

the total number of cells and surface area was calculated from data on the 

contribution of each tissue to total leaf symplastic volume (not considering 

intercellular air space). Mesophyll cell size differed between growing and mature, 

emerged tissues around 2.2-fold and epidermis cells differed 4.6-fold, in each case 

being larger in emerged tissue. The surface was about 2.6-fold and 1.9-fold higher in 

the emerged blade for epidermis and mesophyll, respectively.  
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Table 3.2 The contribution of different tissues to total leaf volume in the 

elongation zone (EZ) and emerged blade (EB) of leaf  three of barley. Values are 

given as % of the total leaf volume and are either not corrected or corrected for 

intercellular air space, effectively giving a contribution to total leaf symplastic volume. 

 EZ EB 
Epidermis (%) 24.85 ± 1.54 23.37 ± 2.94 
Mesophyll (%) 61.75 ± 1.93 51.61 ± 4.36 
Vascular bundle (%) 8.99 ± 1.97 4.01 ± 0.93 
Intercellular air space (%) 4.40 ± 1.32 21.01 ± 4.29 
Epidermis corrected (%) 26.00 ± 1.28 29.59 ± 3.72 
Mesophyll corrected (%) 64.60 ± 1.96 65.34 ± 5.52 
Vascular bundle corrected (%) 9.41 ± 1.80 5.08 ± 1.18 
 

 

Figure 3.24 Representative cross sections used for determination of the 

contribution of different tissues and air space to total leaf volume 

Toluidine blue stained cross sections were used to calculate the percentage of 
different tissues to total leaf and symplastic volume in the elongation zone (A) and 
emerged blade (B) of leaf three of barley. 
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Table 3.3 Cell size calculation based on the presen t and literature data. Values 

shown in bold were used for to relate ATPase expression and activity data to cell 

volume and surface area 

 EZ EB 
Cell volume Average SD Average SD 
Epidermis cell size (Fricke & Flowers, 
1998) 

99.4  461  

Epidermis cell size average (pl) 99.4  461  
Mesophyll cell size (my protoplast results) 3.7  9.4  
Mesophyll cell size (Volkov et al., 2007) 8.9  24.4  
Mesophyll cell size (Volkov et al., 2009) 11.8  17.4  
Mesophyll cell size (Kavanagh, 2010) 2.08  8.11  
Mesophyll cell size average (pl) 6.62 ± 4.52 14.83 ± 7.59 
Cell surface     
Surface of epidermis cell (Fricke & 
Flowers, 1998) 

27100  65200  

Surface of epidermis cell (Kavanagh, 
2010) 

12308  34809  

Surface of epidermis cell average (µm2) 19,707 ± 10,459 50,004 ±21,490 
Mesophyll cell size (my protoplast results) 1,157  2,154  
Mesophyll cell size (Volkov et al., 2007) 2,077  4,068  
Mesophyll cell size (Volkov et al., 2009) 2,506  3,247  
Mesophyll cell size (Kavanagh, 2010) 788  1,952  
Surface of mesophyll cell (µm2) 1,632 ± 796 2,855 ± 988 
 

3.3.3 Gene expression data based on absolute qPCR method 

Using the absolute qPCR method, together with cell size and tissue volume 

contributions it was found that PM-H+-ATPase had a constant expression pattern in 

both elongation zone and emerged leaf blade; it was deemed to be a perfect 

reference gene in both Golf and Jersey cultivars (Fig. 3.25 and Table 3.4). The total 

RNA content was similar in the elongating zone and emerge leaf blade. This applied 

to both Golf and Jersey cultivars (Table 3.4). 

Results expessed per plasma membrane surface unit were significant, being 

around 2 times higher PM-H+-ATPase protein concentration as might be presumed in 

elongation zone compare with emerge blade in both barley cultivars. Absolute 

expression was 3 times higher in Golf compare to Jersey cultivar (Fig. 3.26). The 

calculation here presumed that protein translation from mRNA was linear and had 

equal probability in elongation zone and emerge blade. More details of the 

calculation can be found in the Appendix. 
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Figure 3.25 Expression of PM-H +-ATPase using absolute qPCR  

Using absolute qPCR, the total number of mRNA transcripts was determined for each 
cDNA sample. The amount of cDNA obtained from a given amount of leaf region 
(elongation zone, EZ; emerged blade, EB) was known, as was the number of cells for 
each region. This made it possible to express qPCR data as mRNA copy number per 
cell. Results are shown for the barley cultivars Golf (A) and Jersey (B) and represent 
averages and standard deviation (error bars) of three independent experiments 
(batches of plants). PM-H+-ATPase expression (copyRNA cell-1) did not differ 
significantly between elongation zone (EZ) and emerged blade (EB) in either Golf or 
Jersey (Student’s t-test). 
 

Table 3.4 Ct values of PM-H +-ATPase expression together with RNA content per 

cell in the elongation zone (EZ) and emerged blade (EB) of leaf three of barley. 

Two barley cultivars were studied, Golf and Jersey, and three independent 

experiments were carried out. 

 Ct SD RNA content (pg cell -1) SD 
EZ (Golf) 23.8 0.2 22.3 1.5 
EB (Golf) 24.2 0.5 25.9 4.0 
EZ (Jersey) 22.7 0.2 22.8 1.7 
EB (Jersey) 22.8 0.2 18.5 15.6 
 

Since the determination of cell number in a given leaf region involved large 

errors, an additional control experiment was conducted in which RNA was extracted 

from protoplast suspension of the Jersey cultivar. The number of protoplasts could 

easily be calculated. RNA yield of 300 - 1000 µl protoplast suspension (about 0.5 - 7 

million cells) was 250 - 2,000 ng µl-1 and the ‘background’ protoplast medium which 

was taken as supernatant folowed gentle centrifugation of protoplasts, yielded 

virtually no extractable RNA (less than 1 - 10 ng µl-1, which was below the measuring 

range of the Nanodrop® equipment). Results for protoplasts were expressed in copy 

number of PM-H+-ATPase transcript protoplast-1 and in copy number of PM-H+-

ATPase transcript mm-2 protoplast plasma membrane surface area. These figures 
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were in the same range as results obtained for the Jersey cultivar when calculated 

cell number was used as reference system (see Fig. 2.25).  

 

 

Figure 3.26 PM-H +-ATPase expression using absolute qPCR and relating  

expression data to total plasma membrane surface ar ea 

PM-H+-ATPase gene shows significantly (around 2 times) higher expression in the 
elongation zone (EZ) compared with emerged leaf blade (EB). Values for the Golf 
barley cultivar (A) were 3 fold higher than values for the Jersey barley cultivar (B). 
Results are averages and standard deviations (error bars) of three 3 independent 
experiments. Different letters shows statistically different values between leaf regions 
(student’s t-test, p < 0.05). 
 

Table 3.5 RNA content and PM-H +-ATPase expression in the elongation zone 

(EZ) and emerged blade (EB) of leaf three of barley  (Golf, Jersey). Different 

reference systems were used. Results are averages and SD of 3 - 6 independent 

experiments. Protoplasts were isolated only from the Jersey barley cultivar. PM, 

plasma membrane; protopl., protoplast. 

 RNA (pg cell -1) ATPase copy cell -1 ATPase copy mm -2 
PM (x 103) 

EZ (Golf) 22.3 ± 1.5 300 ± 60 142 ± 28 
EB (Golf) 25.9 ± 4.0 260 ± 70 73 ± 20 
EZ (Jersey) 22.8 ± 1.7 120 ± 30 55 ± 12 
EB (Jersey 18.5 ± 15.6 80 ± 60 23 ± 17 
EZ protopl. 18.7 ± 17.5 50 ± 30 38 ± 23 
EB protopl. 20.7 ± 19.2 50 ± 40 12 ± 7 
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Figure 3.27 Comparison of molecular biological data  using leaf tissues or 

mesophyll protoplasts 

Ct values (A), PM-H+-ATPase copy in a cell (B), per mm2 plasma membrane (C) and 
total RNA content in a cell (D) was compared between experiments where RNA was 
isolated from whole leaf segments of the elongation zone (EZ) and emerged blade 
(EB) and from isolated mesophyll protoplasts of the elongation zone (Proto EZ) and 
emerged blade (Proto EB). Values are averages of 3 - 6 batches of plants. Different 
letters show statistically significant differences at p < 0.05 using Student’s t-test and 
ANOVA. All experiments were conducted on the barley cultivar Jersey 
 

3.4 PM-H+-ATPase activity and expression at protein level 

Data from qPCR experiments showed that the copy number of PM-H+-ATPase 

transcripts per unit plasma membrane surface area was significantly higher in 

growing compared with non-growing leaf tissue. This could partially explain the lower 

apoplast pH in elongating tissue. To test to which degree changes in the activity of 

the PM-H+-ATPase protein also contributed to the lower pH, plasma membrane 

fractions were isolated from growing and non-growing part of barley leaves and used 

to determine the activity of PM-H+-ATPase. Due to the lack of availability of Golf 

seeds towards the end of this project, these experiments were carried out on the 

spring barley cultivar Jersey. 
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3.4.1 Optimization of membrane isolation and ATPase assay 

Membrane isolation and ATPase assay had to be optimized. The original method had 

been described for a large amount of plant tissue (125 g) (Kjellbom & Larsson, 1984) 

however previous studies showed that with the method plasma membrane fraction 

might be purified from lower amout of plant material (Wei et al., 2007). The Pi 

determination assay had been designed originally for animal membranes (Sarkadi et 

al., 1992), with animal cells notably lacking any vacuolar ATPases. 

 

3.4.1.1 Plasma membrane isolation 

It was impossible to harvest more than 6 g leaf material from the elongation zone and 

emerged blade portion of leaf three, given the growth constraints (growth chamber, 

laboratory space) since this required already between 200 - 400 barley seedlings. 

Preliminary experiments were carried out to find the minimum amount of leaf tissue 

which was required for a two-phase separation system with 12 g final separation 

weight. These experiments showed that below 1 g initial leaf tissue virtually no 

membrane fraction could be obtained and above 10 g the plasma membrane fraction 

could not be separated from chloroplast membranes using 5 - 6 purification steps. 

 One washing step of the membrane fraction as recommended by Pitann et 

al. (2009b) was not enough to fully eliminate the rest of the polymers (dextran and 

PEG) from the purified membrane fraction. In the presence of one or both of these 

polymers PAGE could not be carried out properly and protein bands appeared 

blurred on the gel (Fig. 3.28). 

 

Figure 3.28 Impact on the quality of PAGE separatio n of washing steps during 

plasma membrane isolation 

Residues of the polymers in plasma membrane fractions caused proteins to appear 
blurred on the polyacrylamide gel. One washing step was not enough to completely 
eliminate the polymers (A) while applying two steps (B) the blurring effect was not 
found on Coomassie stained gels. EZ – elongation zone, EB – emerged leaf blade 
and L2 – leaf blade of second leaf. 
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3.4.1.2 Determination of total protein content in plasma membrane 

vesicles 

In studies where plasma membranes have been isolated, protein concentration has 

typically been quantified with the Bradford method or a modification of it (Yan et al., 

1998; Yan et al., 2002; Zörb et al., 2005; Pitann et al., 2009b; Zhu et al., 2009; Hatzig 

et al., 2010; Wakeel et al., 2010). Using this approach, it was found in the present 

study that protein concentration was grossly underestimated, compared to 

quantification of proteins through densitometry by Phoretix 4.01 software (Phoretix 

International) on Coomassie stained PAGE gels and calibration with protein 

standards (Sigma) of known protein content. (Fig. 3.29). 

 

Figure 3.29 Protein measurement in plasma membrane vesicles using two 

different methods 

The protein concentration of the plasma membrane vesicles was significantly lower 
when determined with the Bradford method than when determined through 
densitometry of samples run on PAGE gels. The difference in protein concentration 
between the two methods was statistically significant at p < 0.05 (Student’s t-test). 
 

3.4.1.3 ATPase assay 

Optimization of ATPase assay was carried out to find the optimal reaction volume, 

detection method and membrane protein amount for the assay. Preliminary 

experiments showed that colour development was more reproducible in 1750 µl 

compared with 200 µl (microtiter plate). The optical density of the samples had to be 

measured within a minute of completion of colour development, together with the 

calibration curve. If this was not considered, the absorbance changed rapidly (Fig. 

3.31). When 3 µg total membrane protein were used and the assay was run for 60 

min at 28 °C reproducible and easy to measure amoun t of released (from ATP) 

amount of Pi could be measured A typical ATPase assay is shown in Fig. 3. 30. 

 



 - 80 - 

 

Figure 3.30 Typical ATPase assay 

The concentration of Pi was determined by a blue colour reaction (detecting the 
absorbance at 880 nm) using calibration curve standards (1 - 4; with 0, 10, 30 and 60 
nmol Pi per reaction. Without blocking bacterial and vacuolar type of ATPases (5) 
slightly more Pi could be measured compared with a reaction where these ATPase 
were blocked with 10 mM NaN3 and 100 mM KNO3 (6); 500 µM vanadate (7) blocked 
ATPase activity almost to the same extent as when total protein was denatured using 
SDS (8). Values below the tubes show the absorbance at 880 nm. 
 

To determine the optimal detection time of the colour development reaction 

kinetics was recorded (Fig. 3.31). Between 20 - 30 min the absorbance was between 

0.1 - 0.6 (arbitrary units) and could be measured with high reproducibility. In addition, 

the calibration curve was linear in this time range.  

 

 

Figure 3.31 Kinetics of P i detection assay 

Kinetics of the Pi detection assay was recorded at 10, 30 and 60 nmol Pi 
concentration (A) and calibration curve at the time point 10, 25 and 40 min (B). 
Before 20 min the absorbance values were too low to be use reliably for 
measurements and the absorbance changed quickly. Between 20 to 30 min the 
reaction was slower and the values ideal for measurements whereas past 40 min of 
colour development absorbance values became too high and higher Pi 
concentrations resulted in errors.  
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3.4.2 Quality of plasma membrane fractions 

The quality of plasma membrane fractions was checked on SDS PAGE gradient gels 

stained with Coomassie Brilliant Blue and on Western blots. Based on SDS gels the 

plasma membrane protein pattern of the emerged leaf blade (leaf three) and fully 

expanded blade (leaf two) was comparable whereas the elongation zone of leaf three 

and microsomal fraction (no plasma membrane purification) of emerged blade of leaf 

three differ from the other two (Figure 3.32 A). Western blot analysis confirmed the 

presence of PM-H+-ATPase in the isolates (Figure 3.32 B), although based on these 

Western blots quantitative analysis of PM-H+-ATPase density in the plasma 

membrane of different leaf regions could not be achieved. Subsequently, a more 

sensitive Western blot system (at UCD) was used to compare PM-H+-ATPase 

content of plasma membranes between elongation zone and emerged blade. 

 

 

Figure 3.32 Coomassie stained SDS polyacrylamide ge l and Western blot of 

plasma membrane proteins from different leaf region s 

Gradient SDS polyacrylamide gel stained Coomassie Brilliant Blue R250 (A) shows 
the difference or similarity in membrane protein pattern of emerged leaf blade three 
(EB), elongation zone of leaf three (EZ), fully expanded leaf blade from leaf two (L2) 
and microsomal fraction from emerged leaf blade two (MS). Western blot (B) analysis 
demonstrated the presence of PM-H+-ATPase in the isolates and also that the 
commercially available antibody recognised barley PM-H+-ATPase (expected 
molecular weight of about 105 kDa). The band intensity was too weak to allow 
densitometric analyses of bands. This had to be done subsequently using a more 
sensitive detection system for the secondary antibody employed 
 



 - 82 - 

3.4.3 Quantitative analysis of PM-H+-ATPase protein 

Sensitivity of the Western blot detection system at Eötvös University, where plasma 

membrane isolations and ATPase enzyme assays were carried out, was not enough 

to perform quantitative analysis on blots. Using the same samples in Dublin (having 

transported the samples on dry ice from Budapest) on thinner gels and 

chemiluminescence detection the proportion of PM-H+-ATPase in total membrane 

protein was measured using a densitometric approach. The same amount of total 

membrane protein (5 µg) from the elongation zone contained 2.33 times higher 

concentration of PM-H+-ATPase protein than non-growing leaf blade (Fig. 3.33 A). 

Densitometry of Coomassie stained gradient gels supported Western blot data. A 

higher PM-H+-ATPase protein expression was measured in the elongation zone (Fig. 

3.33 B) although the difference using the PM-H+-ATPase band on SDS gels 

(identified based on molecular weight and Western blots) was lower with the ratio 

between the two leaf regions being 1.5 fold compared with 2.33-fold above. 

The higher sensitivity of the second Western blot approach made it possible to 

detect a second band on the blot, at around 70 kDa. This might represents a 

fragment of the PM-H+-ATPase enzyme (Fig. 3.33 C) 

 

 

Figure 3.33 PM-H +-ATPase ratio in total membrane protein 

PM-H+-ATPase protein, expressed on the basis of total plasma membrane protein 
applied onto gels (and entered into Western blots) was significantly higher in the 
elongation zone (EZ) compare with emerged blade (EB) (A); the same applied to 
densitometric analyses of Coomassie Brilliant Blue stained polyacrylamide gels (B). 
Results are significant using Student’s t-test (p < 0.05). Using higher sensitivity on 
Western blots a second band was found which respresents most likely a 70 kDa 
fragment of the PM-H+-ATPase (C). 
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3.4.4 Activity of PM-H+-ATPase  

Vandate-sensitive ATPase activity of membrane fractions was measured using 

inside-out plasma membrane vesicles and an ATP hydrolysis assay. Results were 

expressed in nmolPi h
-1 µg-1 total membrane protein at 28 °C. As Fig. 3.34 show s 

plasma membrane vesicles of the elongation zone had more than 2 times higher 

vanadate-sensitive ATPase activity compared with vesicles prepared from the 

emerged blade. Vacuolar and prokaryotic types of ATPases were blocked using high 

azide and nitrate concentration in the reaction mixture, and data were validated with 

vanadate sensitivity. The resulting enzyme activity represented PM-H+-ATPase 

activity and this was two fold higher in the plasma membrane of the elongation zone 

compare with membranes prepared from the emerged leaf blade. 

 

 

Figure 3.34 ATPase activity of inside-out plasma me mbrane vesicles 

Vanadate-sensitive ATP hydrolysis activity of inside-out plasma membrane vesicles 
of the elongation zone (EZ) was more than two times higher than activity in the 
emerged blade of leaf three of barley (EB). Results are averages of four independent 
batches of membranes and 9 - 10 replicate activity determinations. Differences were 
statistically significant (p < 0.05) using Student’s t-test. 
 

3.4.5 Immunolocalisation of PM-H+-ATPase 

Paraffin-embedded sections were used to localise the tissue-specific distribution of 

PM-H+-ATPase protein. Alkaline phosphatase-labelled secondary antibody with fast 

red detection was used. Reddish colour showed the location of PM-H+-ATPase 

protein. There was no difference in PM-H+-ATPase distribution between the 

elongation zone (Fig. 3.35 A) and emerged blade (Fig. 3.35 B). Higher expression of 

PM-H+-ATPase was found in guard cells (Fig. 3.35 E), phloem, and xylem 

parenchyma. PM-H+-ATPase was detected virtually on the plasma membrane of 

every living cell. Longitudinal sections of the elongation zone (Fig. 3.35 D) provided 
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further detail. Guard cells were easily identifiable. Dead parts of xylem tubes were 

free from red colour, whereas phloem and xylem parenchyma cells contained large 

amount of PM-H+-ATPase. Negative control (Fig. 3.35 C), where primary PM-H+-

ATPase specific antibody was not applied, verified the selectivity of the assay as 

immunospecific staining was not present. 

 

 

Figure 3.35 PM-H +-ATPase immunolocalisation on leaf cross and longit udinal 

sections 

PM-H+-ATPase expression was detectable on all plasma membranes, both in the 
elongation zone (A) and emerged blade (B). Higher expression was present in guard 
cells (E), phloem and xylem and phloem subsidiary cells. Differences between 
elongation zone and emerged blade were not visible. Negative control (primary 
antibody was not applied) was free from immunolabelling (C). Longitudinal sections 
of elongation zones (D) were supporting observations from cross sections, stomata 
guard cells and vascular elements and subsidiary cells being heavily stained. Ep: 
epidermis; St: stomata; MX: metaxylem; PX: protoxylem; Ph: phloem; Ms: mesophyll 
cells; PBD: parenchymateous bundle sheath. 
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4 Discussion 

 

4.1 Growth-associated apoplast acidification 

Using different methods to measure or visualise apoplastic pH or H+ transport activity 

into the intercellular space, a lower pH was recorded in the elongation zone 

compared with emerged blade of barley leaves. This observation is in agreement 

with the ‘acid growth theory’ which would predict a more acid apoplast pH in growing 

tissue. 

 

4.1.1 Apoplast pH difference between growing and non-growing leaf 

tissue  

Three independent approaches were used to analyse apoplast pH. Microelectrode 

pH measurements provided the most quantitative data. Also, similar to confocal 

analyses and contrary to the in-vitro gel system, microelectrode analyses measured 

pH in the actual wall or apoplast space. These measurements showed that the pH in 

the apoplast was by up to 1 pH unit lower and, therefore, the H+ concentration up to 

10-fold higher in elongating tissue. There do not exist any directly comparable 

studies on other grass leaves, although slightly different approaches have been 

taken for some species. When pH was measured in droplets placed on the exposed 

elongation zone of maize leaves a lower apoplastic pH compared with the emerged 

blade or elongation zone under non-growing conditions was measured; the absolute 

pH values in these droplets were significantly higher than the ones measured here, 

and the pH reading was not stable but drifted during recordings (Van Volkenburgh & 

Boyer, 1985; Neves-Piestun & Bernstein, 2001). Using 0.5 g of growing maize leaf 

segments in 2 ml unbuffered bathing medium, Neves-Piestun & Bernstein (2001) 

measured a pH of 4.8, a value which is very similar to the value recorded here for 

barley leaves.  

 

4.1.2 Reliability of pH values measured in elongation zone and 

emerged blade 

Microelectrode measurements revealed that apoplast pH in the leaf elongation zone 

depended on the bathing medium concentration of K+. At the lowest K+ concentration 

tested (0.1 mM) apoplast pH was 4.8, yet at 10 mM K+, apoplast pH increased to 5.8 
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and was identical to the value in emerged tissue (Fig. 3.7). Since the emerged leaf 

contains at its surface a major permeance barrier (cuticle) to externally applied 

solution, this could mean that the difference in pH observed between leaf regions 

was an artefact and reflected differences in the access of bath solution between leaf 

regions. If, by chance, the K+ concentration in the apoplast of the emerged blade of 

intact plants had been 10 mM, or at least higher than 1 mM, and if none of the 

external bathing solution had reached the apoplast, one would have predicted an 

apoplast pH of 5.8 based on measurements for elongating tissue at 10 mM K+. Felle 

(2006) measured an apoplastic K+ concentration of 2.6 mM in mature barley leaves. 

Also, if the apoplast K+ concentration in the leaf elongation zone in-planta was close 

to 10 mM, one would not expect to find a difference in apoplast pH between the two 

leaf regions in intact, undisturbed plants. Recently, Ehlert et al. (2011) reported 

apoplast pH between 4.1 and 5.9 with average mean of 5.1 for elongating maize leaf 

tissue as analysed through pH microelectrodes. 

Felle (2006) inserted pH microelectrodes through stomatal pores of mature 

barley leaves and measured a pH of 4.88. This pH is significantly lower than the pH 

reported here (pH 5.8) for emerged blade tissue. Possibly, the difference in results is 

due to use of 2 mM MES / TRIS buffer (pH 5.0) in the bathing medium in the study by 

Felle (2006). Also, measurements by Felle (2006) were carried out under illumination, 

stimulating PM-H+-ATPase pump activity (Stahlberg & Van Volkenburgh, 1999), 

whereas the present measurements were carried out in the dark. In a natural setting, 

the mature blade is exposed to full, ambient light whereas the elongation zone 

receives less light, and this light is green-filtered due to subtending sheaths. 

Therefore, it is possible that the difference in apoplast pH between leaf regions in 

field-grown and -analysed plants is considerably smaller than the difference 

measured here with the microelectrode setup in a darkened laboratory environment 

or through confocal analyses on intact leaves. Vanadate experiments on detached 

leaves clearly showed that the lower apoplast pH in the barley leaf elongation zone 

depended on the activity of the PM-H+-ATPase.  

 

4.1.3 Relation between apoplast acidification and leaf growth 

Acidification of the apoplast in the elongation zone of barley leaves generally 

coincided with growth, but there were notable exceptions. A positive relation was 

best visualised by cold treatment in the in-vitro gel system (Fig. 3.3). In the same 

system vanadate and fusicoccin treatments caused parallel changes in the growth 
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rate of leaves and acidification of medium adjacent to leaf apoplast (Fig. 3.1). Also, 

vanadate treatment in the microelectrode setup reduced growth and increased 

apoplast pH in the elongation zone to a value usually observed for mature tissue. 

However, when fusicoccin was applied in the pH microelectrode setup, growth 

increased while apoplast pH remained unchanged (Fig. 3.9 and 3.10). Also, changing 

the apoplast K+ concentration from 0.1 to 1 or 10 mM significantly increased apoplast 

pH in the elongation zone, yet growth did not change (Fig. 3.7 and 3.8). Irrespective 

of the underlying mechanisms, these data show that there does not exist a simple, 

single relation of how apoplast pH relates to growth in the leaf elongation zone. The 

seemingly contradictory fusicoccin data obtained through the microelectrode and    

in-vitro gel setup could be explained through differences in what these two setups 

measured. The in-vitro gel system measured bulk effects on pH further away from the 

leaf surface and showed an increase in the acidified area and corresponding net 

production rate of H+, and H+ was titrated by the pH indicator bromocresol purple. In 

contrast, the microelectrode setup provided a point measurement of pH closer to the 

cell surface, irrespective of the rate at which H+ diffused into surrounding bathing 

medium or was consumed through transport processes involving K+. Thus, while 

fusicoccin will have stimulated H+ pumping in both setups and led to increased 

diffusion, apoplast pH may not have changed in either setup. 

 

4.2 K+ and apoplast acidification 

Potassium uptake coupled to H+ uptake (symport) has been discussed as an 

alternative explanation for some of the effects associated with the ‘acid growth’ 

theory. For example, K+ uptake and apoplast acidification were linked to growth in 

roots (Glass et al., 1981; Ullrich & Novacky, 1990; Amtmann et al., 1999) and 

coleoptiles (Claussen et al., 1997; Tode & Lüthen, 2001; Christian et al., 2006). The 

present data also suggest that K+ transport and apoplast acidification are linked with 

each other in some way during elongation of barley leaf cells. 

 

4.2.1 Potassium uptake and leaf growth 

A previous patch-clamp study on K+ transport in barley concluded that apoplast K+ 

must exceed 3 - 5 mM to allow growing leaf cells to take up K+ through channels 

(Boscari et al., 2009; Volkov et al., 2009). Calculations showed that at 10 mM 

apoplast K+, about 50 % of K+ uptake was facilitated by time-dependent inward-

rectifying currents typical of Shaker K+ channels such as AKT1 or AKT2. The 
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remaining 50 % was facilitated by instantaneous currents, which includes either or 

both, K+ high-affinity transporters such as HAK / KUP / KT type K+ / H+ symporters 

(for historical reasons, these three abbreviations denote the same type of 

symporters; for details see e.g. Ashley et al. (2006) and Szczerba et al. (2009)) or 

non-selective cation channels. At apoplast concentrations below 3 - 5 mM, uptake of 

K+ would have to occur through high-affinity uptake mechanisms. The K+ 

concentrations tested in the present study covered the range 0.1 to 10 mM. 

Therefore, it is possible that different K+ uptake mechanisms contributed to the 

growth and pH response of leaves depending on the K+ concentration of bathing 

medium. When K+ uptake was blocked through application of inhibitors (Cs+, TEA) of 

K+ inward-rectifying Shaker-type channels, or at least reduced significantly, growth 

was reduced by 50 %. A similar reduction in growth was observed in response to 

vanadate and CsCl-vanadate double treatments (applied at 10 mM bathing medium 

K+; Fig. 3.17). The latter observation excludes the possibility that Cs+ (K+ channels) 

and vanadate (PM-H+-ATPase) inhibited ‘different’ 50 % of growth and were additive. 

Instead, growth was reduced through some common mechanism. Membrane 

potential was not measured in response to the above treatments, but the most likely 

scenario is that inhibition of PM-H+-ATPase through vanadate depolarised membrane 

potential to such an extent that uptake of K+ through channels was 

thermodynamically not possible. This would explain why direct blockage of channels 

through Cs+ caused the same growth reduction as blockage of PM-H+-ATPase. 

Similarly, Tode & Lüthen (2001) concluded from experiments involving TEA that the 

acid-growth type response of maize coleoptiles required the activity of inward-

rectifying K+ channels. Linkage of K+ transport, leaf growth and cell wall acidification 

was found in light-induced growth of tobacco leaves (Stiles et al., 2003), yet K+ 

uptake was required for H+ efflux and growth without any noticeable accumulation of 

solutes (Stiles & Van Volkenburgh, 2004). This would exclude a primarily osmotic 

requirement for K+. 

 

4.2.2 High affinity potassium transporters and leaf growth  

High affinity K+ transporters, but not K+ selective channels, are reduced in  transport 

activity by ammonium (Kronzucker et al., 2003; Rodriguez-Navarro & Rubio, 2006; 

Szczerba et al., 2009; Hoopen et al., 2010). Application of 20 mM NH4
+ during LVDT 

experiments reduced growth by as much as Cs+, TEA and vanadate treatments did. 

This shows that high affinity K+ uptake systems were involved in K+ uptake and 
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growth response of elongating barley leaf cells. The results also show that the three 

components, apoplast pH, high-affinity and channel-mediated K+ uptake were related 

to each other in some way that prevented inhibition of each component from being 

additive.  

Boscari et al. (2009) observed that HvHAK4 was expressed particularly in the 

elongation zone of barley leaves. It is not known whether HvHAK4 functions as       

K+ / H+ symporter as thought for other HAK family members (Britto & Kronzucker, 

2008; Szczerba et al., 2009). If it does, HvHAK4 may not only provide a major route 

for K+ entry into growing barley leaf cells, but also present a key mechanism through 

which the pump activity of the PM-H+-ATPase can be linked to osmotically-driven 

water uptake and apoplast acidification in growing leaf tissues. This needs to be 

studied further. 

 

4.3 PM-H+-ATPase expression and leaf elongation 

Using four independent techniques (qPCR, ATPase assay and densitometry on SDS 

PAGE and Western blot) it was found that the expression, activity and protein level of 

PM-H+-ATPase when related to the surface area of plasma membrane, was between 

1.5 - 3.5 times higher in the elongation zone compared with the emerged blade 

(Table 4.1). The similarity in results for expression, protein level and activity may be a 

coincidence, but more likely reflects a true difference between growing and non-

growing barley leaf tissues. 

 

Table 4.1 Summary of data for PM-H +-ATPase when related to surface area of 

plasma membrane.  Ratio and standard deviation (SD) was calculated in two ways 

(a: averages of elongation zone (EZ) were divided by averages of emerged blade 

(EB) or i: average of ratio of paired EZ and EB). SDs in bracket are estimated SDs. 

Experiment type Ratio EZ : EB  SD 
qPCR (Golf, a)  1.96 ± (0.47) 
qPCR (Golf, i) 1.99 ± 0.28 
qPCR (Jersey, a)  2.36 ± (0.91) 
qPCR (Jersey, i) 3.53 ± 2.88 
qPCR (Jersey protoplasts, a) 2.13 ± (0.70) 
qPCR (Jersey protoplasts, i) 2.35 ± 0.49 
Vanadate sensitive ATPase activity (Jersey, a) 2.22 ± (0.55) 
Coomassie stained SDS PAGE (Jersey, a) 1.50 ± (0.35) 
Western Blot (Jersey, a) 2.33 ± (0.72) 
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Quantification of PM-H+-ATPase protein level using Coomassie stained 

PAGE gels gave the lowest difference between elongation zone and emerged blade. 

This may result from individual bands, such as the band of the PM-H+-ATPase, 

containing numerous different proteins. For example, Hynek et al. (2006) concluded 

from MS / MS analyses of the PM-H+-ATPase band of plasma membrane vesicles 

prepared from barley aleurone layer that the band contained 22 different peptides. 

Together, the data suggest that the density at which functional PM-H+-ATPase is 

localised in the plasma membrane, or at which PM-H+-ATPase is expressed per unit 

plasma membrane surface area of cells is about twice as high in growing as in non-

growing leaf regions. Also, expression and protein data suggest that the efficiency of 

translation of PM-H+-ATPase mRNA is similar in the two leaf regions.  

 

4.3.1 PM-H+-ATPase density in plasma membrane and leaf growth 

The higher plasma membrane density of PM-H+-ATPase in the elongation zone will 

aid the energisation required for continuous solute uptake, in particular uptake of K+, 

in growing leaf cells. It will also aid acidification of the apoplast as measured through 

pH microlelectrodes in the barley leaf elongation zone. Depending on the apoplast K+ 

concentration, the pH in the elongation zone was by up to 1.0 pH unit lower (pH 

micro electrode measurements; Fig. 3.7) in the elongation zone compared with 

emerged blade. This corresponds to a 10-fold difference in apoplast H+ concentration 

and suggests that there exist post-translational modifications which further increase 

the PM-H+ATPase pump activity in growing barley leaf cells. Having said this, the 

wall space of growing cells is smaller (thinner walls) and this will aid apoplast 

acidification for a given pump activity. Apoplast acidification also depends on factors 

which are not related directly to the protein level and activity of PM-H+-ATPase such 

as apoplast K+ concentration (Claussen et al., 1997;Tode & Lüthen, 2001), 

temperature (Stoddart & Lloyd, 1986; Pollock et al., 1990) hormones (especially 

auxin, e.g.: Rayle & Cleland, 1970; Hager et al., 1971; Rayle & Cleland, 1992; 

Claussen et al., 1997; Tode & Lüthen, 2001; Hager, 2003; Grebe, 2005; Kutschera, 

2006) and light (Van Volkenburgh & Cleland, 1980; Stahlberg & Van Volkenburgh, 

1999). 
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4.3.2 qPCR data  

Determination of cell size and cell number can involve comparably large errors, due 

to the variation in size between populations and types of cell and due to small 

difference in cell radius (protoplasts) causing large differences in calculated cell 

volumes. Despite these intrinsic uncertainties, the present calculations showed that 

the PM-H+-ATPase expression per cell is very similar in growing and non-growing 

leaf tissue. Due to the lower surface area of the plasma membrane in growing cells 

(always assuming that there are no major invaginations of the plasma membrane, or 

that these would not differ between leaf regions), the density of PM-H+-ATPase is 

higher than the density in non-growing cells. As growing cells reach their full size, 

plasma membrane surface area increases leading to a continuous ‘dilution’ of PM-

H+-ATPase molecules. In such a scenario, the amount of PM-H+-ATPase per cell 

seems to be a fixed size, and cessation of growth seems to coincide with a 

continuous dilution of PM-H+-ATPas activity, resulting in decreasing rates of apoplast 

acidification (see also Fig. 3.25, Fig. 3.26 and Fig. 3.27). qPCR analysis of mesophyll 

protoplasts isolated from the elongation zone and emerged blade of the barley 

cultivar Jersey further supported the reliability of the calculated cell numbers of qPCR 

samples. Total RNA content of Golf and Jersey tissues per cell was very similar to 

total RNA content per protoplast. PM-H+-ATPase expression data obtained for 

protoplasts, when expressed per protoplast number or total plasma membrane 

surface were lower but not significantly different to the other qPCR data for Jersey 

where expression was related to the calculated cell number or total membrane 

surface (see Table 3.5 and Fig. 3.27). The lower expression values are in agreement 

with immuno localisation results on leaf cross-sections which showed that mesophyll 

cells have a comparatively (to other leaf tissues) lower PM-H+-ATPase expression. 

For RNA extraction from leaf segments, all types of cells were homogenised and 

accordingly averaged. In contrast, protoplasts were islolated only from mesophyll. 

 qPCR expression analyses also showed that the Ct value of PM-H+-ATPase 

expression was almost identical in growing and non-growing leaf regions using the 

same amount of total RNA (250 - 500 pg). Therefore, when expression data are 

related to unit of extracted RNA, PM-H+-ATPase (Ha1 AY136627; GI:23306665) is 

an ideal reference gene for expression analysis when comparing growing and non-

growing leaf regions, in agreement with Boscari et al. (2009) and Besse et al. (2011) 

(see Table 3.5 and Fig. 3.27). The same applies to the PM-H+-ATPase isoforms 

AHA1 and AHA2 in Arabidopsis (Gaxiola et al., 2007). 
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4.3.4 Immunolocalisation of PM-H+-ATPase 

Immunohistological analyses provided results which are in agreement with previous 

studies on the tissue localisation of PM-H+-ATPase protein (Villalba et al., 1991; 

Bouche-Pillon et al., 1994; Michelet & Boutry, 1995; Morsomme & Boutry, 2000; 

Palmgren, 2001; Gaxiola et al., 2007). Most staining, and by implication, PM-H+-

ATPase protein, was observed in those leaf tissues which are characterised by high 

rates of solute exchange across the plasma membrane (guard cells) or high rates of 

solute loading / unloading associated with long-distance transport pathways (phloem; 

xylem parenchyma). Interestingly, but in agreement with previous studies, epidermis 

cells were not enriched in PM-H+-ATPase (Villalba et al., 1991). This was observed in 

elongation zone and emerged blade and shows that there exists a cell-type-specific 

control of PM-H+-ATPase protein level which is superimposed on any developmental 

gradient.  

 

4.4 Leaf growth and changes in cell wall properties  

The effect of chemical treatments (vanadate, CsCl, fusicoccin) on cell wall properties 

was followed with the LVDT system. Fusicoccin increased the elasticity without 

affecting the plasticity of walls. In contrast, CsCl decreased the plastic component yet 

did not alter the elastic component of cell wall. Vanadate did not modify either 

component. From these results it can be concluded that PM-H+-ATPase activity, 

which is inhibited by vandate, is not required to maintain wall elasticity or plasticity. 

The fusicoccin treatment did not cause changes in the plastic component of the cell 

wall. Since plasticity is the relevant size for growth (irreversible expansion), and since 

plasticity is thought to change with apoplast pH through action of expansions 

(Cosgrove, 1996), fusicoccin probably did not decrease the apoplast pH (in 

agreement with the microelectrode measurements where fusicoccin failed to cause 

apoplast acidification) or it facilitated leaf elongation through a mechanism other than 

‘acid growth’. The increased ∆∆v suggests that in the background of fusicoccin-

related growth facilitated K+ uptake may be found (both v1 and v2 were higher than in 

the control). The increased elasticity of the cell wall may be caused by a cell wall 

modifying protein or enzyme activated by increased H+ transport acrosss the plasma 

membrane into the cell wall space as the experiments with the agarose gel system 

showed. If fusicoccin increased the H+ excretion through plasma membrane and the 

H+ returned into the cell through H+ / K+ symport, then micro pH measurements,       
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in-vitro gel records and cell wall property data would support each other. However, 

this would require that the change in H+ concentration close to the site where 

proteins act in the wall was either so small or so inaccessible that it could not be 

measured with the microelectrodes. 

 

4.5 ‘Acid growth’ in barley leaves? 

Auxin is one of the most important hormones in plants and its involvement in growth 

is unquestionable, at least in coleoptiles (Rayle & Cleland, 1970; Lüthen et al., 1990; 

Rayle & Cleland, 1992; Kutschera, 1994) or roots (Christian et al., 2006; Kutschera, 

2006).  

 Surprisingly, in the present study the artificial auxin NAA did not cause any 

effect on leaf growth or apoplast acidification as tested through the in-vitro gel system 

(Fig. 3.6) or LVDT measurements (Fig. 3.19). In a related study on the barley cultivar 

investigated here, the elongation zone was not exposed by peeling back the sheath 

of leaves one and two but, instead, a small window was cut into these sheaths, 

causing less physical damage to the plant. Even in this system, application of 5 and 

10 µM indole acetic acid (IAA) to the apoplast of the elongation zone did not increase 

the growth rate of leaves (Touati et al., unpublished). For some reason, the barley 

leaves tested here seem not to be sensitive to externally-applied auxin. A possible 

interpretation could be that the third leaf, when measured in this project was in the 

development stage of maximum growth, and the internal auxin concentration might 

have been so high that any auxin-dependent growth mechanisms was saturated and 

externally applied auxin could not cause any further increase in growth. The 

elongation zone of leaf one of wheat has been reported to contain IAA at                 

500 - 600 ng g-1 fresh weight (Vysotskaya et al., 2003) and this would mean that IAA 

oocurs naturally in the µM range. 

 

4.6 Model of leaf growth in barley 

Under different treatments the role of PM-H+-ATPase and high or low affinity K+ 

uptake system was tested in relation to elongation growth and apoplast acidification 

in leaf three of barley. The predicted effects of test reagents on growth and 

acidification are summarised in Fig. 4.1. The results partly support the classical ‘acid 

growth’ theory and partly the ‘facilitated solute uptake’ theory. PM-H+-ATPase 

dependent H+ excretion is essential for at least 50 % of leaf growth. However, the 

equilibrium pH is not necessarily reflecting changes in transmembrane H+ pumping 
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because H+ / K+ symport might transport protons back into the cell as Fig. 4.1 shows. 

Treatments with different K+ transport blockers (TEA, CsCl, NH4
+) and their double 

treatments with sodium-orthovanadate, the PM-H+-ATPase blocker, suggested that in 

the background of the ‘acid growth’ of barley leaves an active HAK type K+ uptake 

system might play a key role in facilitating a H+ / K+ symport mechanism (Bañuelos et 

al., 2002; Bucker et al., 2006; Britto & Kronzucker, 2008; Szczerba et al., 2009). 

Acidification of the cell wall or protonation of some enzymes in the cell wall might 

have additional important role in growth as cell wall property measurements showed. 

HvHAK4, a member of the family of K+ transporters, is mainly present in barley 

shoots (Rubio et al., 2000) and it has significantly higher expression in the leaf 

elongation zone (Boscari et al., 2009), further supporting the idea of a combined ‘acid 

growth’ and ‘facilitated solute uptake’.  

 Based on qPCR, enzyme activity and Western blot result, PM-H+-ATPase 

expression in the plasma membrane might be controlled by a simple mechanism. 

The enzyme density in the plasma membrane can be diluted by cell growth; its 

density in the plasma membrane changes with cell size. The total number of PM-H+-

ATPase molecules was constant at cellular level while the total membrane surface 

increasing more than two-fold during cell development (Fig. 3.25 and Fig. 3.26). 

Taking into consideration all of the present results (expression analysis and 

physiological measurements with pH, H+ transport activity and K+ uptake during the 

leaf development) and published information about expression of HvHAK4 (Rubio et 

al., 2000; Boscari et al., 2009) leads to the model shown on Fig. 4.2. The 50 % of leaf 

growth that was sensitive to inhibition of PM-H+-ATPase requires high expression of 

HvHAK4 in the elongation zone (Boscari et al., 2009) and a high plasma membrane 

density of PM-H+-ATPase molecules. 
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Figure 4.1 Supposed effect of the treatments on bar ley leaf cells 

On the sketches cell wall (apoplast, CW) is labelled with yellow colour, cytoplasm (CP) is green and black lines refer to plasma membrane 
(PM). Orange balls symbolise PM-H+-ATPase and blue balls are high affinity H+ / K+ symporters. Under control conditions PM-H+-
ATPases pump out the H+ and K+ are taken up into the cell through high affinity K+ transporters (A). Fusicoccin (purple dots) permanently 
activate all the proton pumps and this massive H+ efflux is short cut by K+ transporter activity, causing higher turgor pressure in the cells 
and accelerates leaf growth (B). Vanadate (green dots) permanently blocks PM-H+-ATPase and without H+ transport K+ uptake and 
growth are inhibited (C). Caesium ions blocks (deep red dots) K+ transporters and reduce leaf growth (D) and ammonium ions (NH4

+) 
reduce active K+ accumulation through a competitive way and reduce growth (E). 
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Figure 4.2 Model of leaf elongation in barley leave s 

Cell size and membrane surface are increased 2 - 3 fold during cell development, as 
cells expand in the elongation zone (EZ) and finally reach full maturity in the emerged 
blade (EB). The number of PM-H+-ATPase molecules (orange balls) per cell is 
constant where as HvHAK4 (blue balls) expression (and presumably protein level) 
per cell decreases significantly during cell development. Therefore, both the 
maximum proton transport and K+ accumulation capacity are significantly higher in 
the elongation zone than in the emerged blade cell and can facilitate elongation 
growth through ‘acid growth’ and ‘solute accumulation’. On the figure light green 
colour represents the cell wall and the black line the plasma membrane. 
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5 Conclusions and future work 

 

5.1 Conclusions 

(i)  In this study the pH and H+ transport activity were examined in the 

elongation zone and the non-growing emerged blade portion of leaf three of barley, 

using three independent approaches - an in-vitro gel system with bromochresol 

purple as pH indicator, confocal microscopy combined with pH sensitive 

fluoresceince probes and microelectrode technique. All techniques show a lower    

pH / higher proton efflux in the elongation zone compared with emerged blade and 

support the classical ‘acid growth’ theory for the elongation growth of plant organs. 

(ii) Experiments with K+ channel and transporter blockers, and with PM-H+-

ATPase activator and blocker point to new aspects of the acid growth theory when 

applied to barley leaves. LVDT measurements, analyses of cell wall property and 

microelectrode pH results suggest that a lower or higher H+ transport activity is not 

linked directly to leaf growth, but linked through a H+ / K+ symport system which 

facilitates solute (especially K+) uptake into growing cells. Changes in cell wall 

properties suggest that elongation of barley leaves can be described with a 

combination of the classical ‘acid growth’ and the ‘facilitated solute uptake’ theory. 

(iii) In expression studies, both at the gene and protein level, a two fold higher 

PM-H+-ATPase density per unit plasma membrane surface area is found in growing 

compared with non-growing leaf tissue. PM-H+-ATPase seems an ideal reference 

gene in studies where growing and non-growing barley leaf tissues need to be 

compared. The copy number of the enzyme in the plasma membrane might be 

controlled by a simple mechanism of growth-dilution: the total amount of PM-H+-

ATPase is constant in the cells and the plasma membrane surface increases during 

cell and tissue development. 

(iv) Immunohistological analyses show that PM-H+-ATPase protein is present 

mainly in those leaf tissues which are characterised by high rates of solute exchange 

across the plasma membrane (guard cells) or high rates of solute loading / unloading 

associated with long-distance transport pathways (phloem; xylem parenchyma). This 

applies to both elongation zone and emerged blade and shows that there exists a 

cell-type-specific control of PM-H+-ATPase protein level which is superimposed on 

any developmental gradient. 
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5.2 Future works 

(i) Due to limited financial resources only some pH micro electrode 

measurements could be carried out. It would be interesting to further study the 

relation between apoplastic K+ concentration and cell wall acidification applying 10 

mM KCl treatment togheter with 5 µM fucicoccin and K+ transporter blockers e.g. 

CsCl, TEA or NH4
+. 

(ii) Using inside-out plasma membrane vesicles and fluorimetric approach 

proton pumping activity could be monitored. Within this project preliminary 

experiments were carried out and 5(6)carboxyfluorescein seem a good candidate for 

these probes (better for this purpose than acridine orange that was used by many 

previous studies e.g. Yan et al. (1998); Yan et al. (2002); Zörb et al. (2005); Pitann et 

al. (2009b); Zhu et al. (2009); Wakeel et al. (2010). Due to time constraints, these 

experiments could not be finished. Results of these vesicular transport assays could 

further support PM-H+-ATPase activity data. 

(iii) Most of the present data point to HvHAK4 playing a key role in leaf cell 

elongation growth in barley. HvHAK4 is a putative K+ / H+ symporter, yet the precise 

function and characteristics of this transporter remain unknown. It would be good to 

carry out functionality tests of HvHAK4 and its regulation through test reagents which 

also impact on growth and PM-H+-ATPase.  
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7 Appendix 

 

7.1 Processing of qPCR data 

(i) Total cell volume was considered to equal the total water content of plant 

tissue (neglecting any water in intercellular space). The water content was calculated 

from the fresh weight of the samples: 

%wmm FWw ⋅=  [g] 

1210⋅= wcell mV  [µm3] 

where: mw: amount of water in the tissue (g); mFW: fresh weight of tissue (g) and w%: 

percentage water content of the tissue, 






 −
⋅

FW

DWFW

m

mm
100 ; mDW, dry weight); Vcell: total 

cell volume (µm3). 

 

(ii) From water content, from the proportion of leaf volume occupied by 

epidermis (0.26) and mesophyll (0.646) and from the cell sizes (99,372 µm3 for 

epidermis cells in elongation zone; 461,552 µm3 for epidermis cells in emerged 

blade; 6,620 µm3 for mesophyll cells in elongation zone and 14,830 for mesophyll 

cells in emerged leaf blade) the number of epidermal cells, mesophyll cells and total 

number of the cells were calculated: 

Elongation zone:  
372,99

260.0⋅
= cell

Epcell

V
N  ; 

620,6

646.0⋅
= cell

Mcell

V
N  [piece] 

Emerged Blade:  
552,461

296.0⋅
= cell

Epcell

V
N  ; 

830,14

653.0⋅
= cell

Mcell

V
N  [piece] 

Total cell number: McellEpcellcell NNN +=  [piece] 

where: NEpcell: number of epidermal cells; NMcell: number of mesophyll cells and Ncell: 

total cell number. 

 

(iii) Plasma membrane surface was calculated as: 

Elongation zone:  632,1704,19 ⋅+⋅= McellEpcell NNA  [µm2] 

Emerge blade:  855,2004,50 ⋅+⋅= McellEpcell NNA  [µm2] 

where: A: plasma membrane surface of the sample (µm2). 
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(iv) Calculation of the PM-H+-ATPase copy number in the sample was carried 

out with the help of calibration curve using PM-H+-ATPase DNA standard. This 

calibration curve was different for each qPCR measurement. An example of this 

calculation may be found in Fig. 7.1. 

 

 

Figure 7.1 Typical calibration curve for converting  Ct values into transcript 

copy number 

For calibration three replicates were used and r2 of the fitted line was always higher 
than 0.98. 

 

From the calibration curve Ct values were converted into copy number of PM-H+-

ATPase transcript. For example, using the above calibration curve resulted in the 

following: 

75.3

45.36

10
Ct

ATPaseHPM
N

−

−− =+  [copy] 

where: 
ATPaseHPM

N
−− + : copy number of PM-H+-ATPase in the PCR sample (typically 

250 pg); Ct : average Ct values of 3 technical replicates. 

 

(v) From the copy number of PCR reaction the total copy number in 1 µg RNA 

could easily be calculated through multiplying the results with respective dilution 

factors; these were typically 4,000 using 250 pg template in each reaction: 

000,41 ⋅=
−− + ATPaseHPMgcopy NN µ  [copy] 

where: gcopyN µ1  is the PM-H+-ATPase copy number in 1 µg RNA 
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(vi) The copy number of transcript in 1 µg RNA could then be multiplied by the 

total RNA content of the leaf sample used for extraction of RNA: 

RNAgcopytotalcopy mNN ⋅= µ1  [copy] 

where: Ntotalcopy: the total PM-H+-ATPase mRNA copy in the sample; mRNA is amount of 

total RNA (µg) in the sample. 

(vii) Finally, this total copy number of PM-H+-ATPase transcripts could then be 

realted to the total number of cells or the total plasma membrane surface area in the 

leaf sample: 

cell

totalcopy

cellcopy N

N
c =−⋅ 1  [copy cell-1] 

6101 ⋅=−⋅ A

N
c totalcopy

Acopy
 [copy mm-2] 

where: 1−⋅cellcopy
c : PM-H+-ATPase copy number in a single cell; 1−⋅Acopy

c : PM-H+-ATPase 

copy number in 1 mm2 plasma membrane. 

 

Example for these calculations can be found on Table 7.1 for Golf and Table 7.2 for 

Jersey barley cultivar. 
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Table 7.1 Example for qPCR calculation of Golf cult ivar. S1 - 3 label different 

batches 

 Elongation zone Emerged blade 

 S1 S2 S3 S1 S2 S3 

Fresh weight (mg) 56.6 57.7 50.0 53.5 50.7 48.7 

Water content (mg) 52.1 51.3 46.0 46.4 44.0 42.3 

Number of epidermis cells (x 104) 13.6 13.4 12.0 2.98 2.82 2.71 

Number of mesophyll cells (x 106) 5.08 5.00 4.49 2.04 1.94 1.86 

Total number of cells (x 106) 5.22 5.14 4.61 2.07 1.97 1.87 

       

Total membrane surface of 

epidermis cells (mm2 x 103) 2.69 2.64 2.37 1.49 1.41 1.36 

Total membrane surface of 

mesophyll cells (mm2 x 103) 8.30 8.17 7.33 5.84 5.53 5.31 

Total membrane surface of the 

sample (mm2 x 103) 10.9 10.8 9.70 7.32 6.94 6.67 

       

Total RNA in the sample (µg) 123 106 105 61.3 51.9 40.9 

PM-H+-ATPase copy in 1 µg RNA 

(x 106) 14.8 11.5 13.7 9.91 6.63 14.1 

PM-H+-ATPase copy in the 

sample (x 109) 1.83 1.21 1.43 0.607 0.344 0.577 

PM-H+-ATPase copy in a cell 350 236 312 293 175 306 

PM-H+-ATPase copy per mm2 

plasma membrane (x 104) 166 112 148 83.0 49.6 86.6 
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Table 7.2 Example for qPCR calculation of Jersey cu ltivar. S1 - 3 label different 

batches 

 Elongation zone Emerged blade 

 S1 S2 S3 S1 S2 S3 

Fresh weight (mg) 69.2 57.6 58.7 77.1 74.9 62.2 

Water content (mg) 64.9 54.0 55.1 68.5 66.5 55.2 

Number of epidermis cells (x 104) 17.0 14.1 14.4 4.39 4.27 3.54 

Number of mesophyll cells (x 106) 6.33 5.27 5.37 3.01 2.93 2.43 

Total number of cells (x 106) 6.50 5.41 5.52 3.06 2.97 2.47 

       

Total membrane surface of 

epidermis cells (mm2 x 103) 3.35 2.79 2.84 2.20 2.13 1.77 

Total membrane surface of 

mesophyll cells (mm2 x 103) 10.3 8.60 8.77 8.61 8.36 6.94 

Total membrane surface of the 

sample (mm2 x 103) 13.7 11.4 11.6 10.8 10.5 8.71 

       

Total RNA in the sample (µg) 161 119 121 24.7 108 26.8 

PM-H+-ATPase copy in 1 µg RNA 

(x 106) 5.90 4.76 4.45 4.52 4.13 5.56 

PM-H+-ATPase copy in the 

sample (x 109) 9.49 5.65 5.34 1.11 4.47 1.49 

PM-H+-ATPase copy in a cell 146 104 97 36 150 60 

PM-H+-ATPase copy per mm2 

plasma membrane (x 104) 6.94 4.97 4.60 1.03 4.26 1.71 
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Table 7.3 Example for qPCR calculation of Jersey pr otoplasts. S1 - 3 label 

different batches 

 Elongation zone Emerged blade 

 S1 S2 S3 S1 S2 S3 

Protoplast No (x 106) 5.13 5.05 5.51 5.57 3.84 7.85 

Surface (mm2 x 1010) 8.37  8.24  9.00  1.59 1.10 2.24 

Total RNA(�g) 26.5 28.2 37.9 31.6 29.2 65.3 

PM-H+-ATPase copy in 1 µg RNA 

(x 106) 

5.34 3.95 7.02 3.09 2.06 5.60 

PM-H+-ATPase copy in the 

sample 

(x 107) 

14.1 11.1 26.6 9.75 6.00 36.6 

PM-H+-ATPase copy in a cell 27.6 22.0 48.3 17.5 15.6 46.6 

PM-H+-ATPase copy in 1 mm2 

plasma membrane (x 104) 

1.69  1.35 2.96 0.613 0.548 1.63 
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7.2 List of chemicals 

(NH4)2HPO4 M&B 

5(6)carboxyfluorescein Sigma 

Acetic acid Reanal, BDH 

Acridine orange BDH 

Acylamide (C3H5NO) Sigma-Aldrich 

Agarose Bioline 

Ammonium molibdate M&B 

APS (ammonium persulfate; (NH4)2S2O8) Sigma-Aldrich 

APTES (3-aminopropyltriethoxysilane) Sigma-Aldrich 

Ascorbic acid Szkarabeusz 

ATP (adenosine 5′-triphosphate disodium salt hydrate) Sigma 

Bis acrylamide (N,N′-methylenebis(acrylamide), C7H10N2O2) Sigma 

BIS-TRIS propane (CH2[CH2NHC(CH2OH)3]2) Sigma 

Boric acid BDH 

BrijTM58 Sigma 

Bromocresol purple  DIFCO 

Bromophenol blue (C19H10Br4O5S) Reanal 

BSA (bovine serum albumin fraction V) Sigma-Aldrich 

Ca(NO3)2x4H2O Reanal, BDH 

CaCl2 Reanal, BDH 

CaSO4  BDH 

Cellulase Worthington 

Coomassie brilliant blue R-250 (C45H44N3NaO7S2) Reanal 

CsCl  Gibco BLR 

CuSO4x5H2O BDH 

Dextran T-500 Sigma-Aldrich 

Driselase Sigma 

DTT (dithiothreitol, C4H10O2S2) Sigma, Fluka 

EDTA Reanal, BDH 

Entellan® Merck 

Ethanol Merck 

Ethidium bromide Sigma 

FeIIINaEDTA BDH 

Formalin BDH 
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Fusicoccin Sigma 

Glycerol Reanal, Fluka 

Glycine Reanal 

H2SO4 Molar 

H3BO3 BDH 

HCl BDH 

HEPES (C8H18N2O4S) Sigma 

Hydrogen Ionophore II Cocktail A Fluka 

K2HPO4 Reanal, BDH 

KCl Reanal, BDH 

KH2PO4 Reanal, BDH 

KNO3 Reanal, BDH 

KOH Reanal, BDH 

MES (2-[N-morpholino]ethanesulfonic acid, C6H13NO4S) Sigma 

Methanol Reanal, BDH 

MgSO4x7H2O Reanal, BDH 

MnSO4xH2O BDH 

MOPS (3-[N-morpholino]propanesulfonic acid, C7H15NO4S) Sigma 

Na2HPO4x2H2O BDH 

Na2MoO4x2H2O BDH 

Na3VO4 Sigma 

NAA (1-naphthaleneacetic acid, C12H10O2) Sigma 

Na-ascorbate Fluka 

NaCl BDH 

NaH2PO4x2H2O BDH 

NaN3 Sigma 

NaOH BDH 

Neo-clear® Merck 

NH4H2PO4 M&B 

Nitrocellulose Sigma 

Non soluble PVP (polyvinylpyrrolidone) Serva 

Paraffin wax BDH 

Pectolyase Sigma 

PEG-3350 Sigma 

Phtalate buffer Sigma 
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PMSF (phenylmethylsulfonyl fluoride, C7H7FO2S) Sigma 

Potassium antimony (III) oxid tartrate BDH 

Potassium hydrogen phthalate (KHC8H4O4) Sigma-Aldrich 

PVC (high molecular weight polyvinyl chloride) Fluka 

PVP K30 (polyvinylpyrrolidone) Sigma 

SDS (Sodium dodecyl sulfate, CH3(CH2)11OSO3Na) Sigma 

Sorbitol Sigma 

Sucrose (C12H22O11) Reanal, Sigma 

TAPS (N-tris[Hydroxymethyl]methyl-3-amino-propanesulfonic acis) Sigma 

TEMED (N,N,N′,N′-tetramethylethylenediamine, C6H16N2) Fluka 

THF (tetrahydrofuran, C4H8O) Sigma-Aldrich 

Toluidine blue Sigma 

TRIS (tris(hydroxymethyl)aminomethane, NH2C(CH2OH)3) Reanal, IBI 

Triton®X-100 Reanal, Sigma 

Tween®20 Sigma 

ZnCl2 BDH 

β-mercapto ethanol (HSCH2CH2OH) Sigma 

α-Naphthaleneacetic acid (NAA) Sigma 
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Abstract 

Apoplast acidification associated with growth is well-documented in roots, coleoptiles 

and internodes but not in leaves. In the present project on barley (Hordeum vulgare L.) 

advantage was taken of the high cuticle permeability in the elongation zone of leaves to 

measure apoplast pH and growth in response to application of test reagents. The role of 

the plasma membrane H+-ATPase (PM-H+-ATPase) and K+ in this process was of 

particular interest. An in vitro gel system with bromocresol purple as pH indicator, pH 

microelectrodes and pH-sensitive fluorescence dye combined with confocal microscopy 

were used to monitor apoplast pH. Growth was measured in parallel or in separate 

experiments using a linear variable differential transformer (LVDT). Test reagents which 

blocked (vanadate) or stimulated (fusicoccin) PM-H+-ATPase, or which reduced (NH4
+, 

Cs+, tetraethylammonium) K+ uptake were applied. Plasma membranes were isolated 

from growing and mature leaf tissue and used to determine the activity (ATPase assay) 

and abundance (Western blotting) of PM-H+-ATPase protein. Protein localisation was 

studied by immunohistochemistry and expression of mRNA quantified using real time 

PCR (qPCR). Apoplast pH was by up to 1.0 pH unit lower in growing compared to non-

growing leaf tissue. Depending on the K+ concentration in the bathing medium used 

during electrophysiological analyses, apoplast pH in the elongation zone ranged from 

pH 4.8 (0.1 mM K+) to pH 5.8 (10 mM K+). In the emerged blade, apoplast pH remained 

at about pH 5.8 irrespective of the K+ concentration in the bathing medium Growth was 

more responsive to test reagents than to changes in apoplast pH. Expression of PM-H+-

ATPase was comparable between growing and non-growing leaf regions when 

expression was related to per unit extracted RNA or cell number. However, when 

expression was related to per unit surface area of plasma membrane, expression of 

PM-H+-ATPase was about twice as high in growing compared to non-growing leaf 

tissue. The same applied to the protein level and activity of PM-H+-ATPase. 

Immunohistochemical analyses showed that PM-H+-ATPase was present in all living 

leaf tissues, particular in those (guard cells, phloem, and xylem parenchyma) 

associated with high rates of trans-membrane solute transport. It is concluded that leaf 

cell expansion in barley depends on the activity of the PM-H+-ATPase and K+ transport 

processes. The higher surface density of PM-H+-ATPase activity in growing barley leaf 

tissue aids apoplast acidification and growth. A H+ / K+ co-transport system may play a 

key role in linking growth with apoplast pH, H+ pump activity and K+-uptake. 
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1 General Introduction  

 

1.1 Plant growth 

Plant growth can be defined as an irreversible increase in the size of cells, tissues, 

organs or whole plants (Csiszár et al., 2004). Cell expansion is generally considered 

to be caused by wall loosening and driven by turgor pressure (Christian et al., 2006). 

The term ‘cell growth’ mainly refers to the increase in size of proliferating cells in the 

cell cycle (meristematic cells), with increase in the total nucleic acid and protein 

content without vacuolization of the protoplast. In contrast, the term ‘cell expansion’ 

refers to the manifold increase in size of newly produced cells that is associated with 

the formation of a large central vacuole and finally leads to cell differentiation (Perrot-

Rechenmann, 2010). While plants need to produce new cells to grow, it is cell 

expansion which leads to the physical increase in plant size and biomass. 

 

1.1.1 Plant cell expansion 

The enlargement of cells reflects increase in water content of cells. Irreversibility of 

this process is guaranteed by the plastic properties of the cell wall. From the 

biophysical view, plant cells need a wall which gives in to turgor pressure 

(mechanical driving force) and solutes which drive water uptake through osmosis. 

Therefore, cell expansion may be limited by the mechanical (yielding and 

extensibility) properties of the cell wall and the rate at which water and solutes are 

taken up or produced (solutes) by cells internally (Fricke & Flowers, 1998; Fricke & 

Peters, 2002).  

 

1.1.1.1 Cell wall 

It is a popular theory that expansion of leaf and root cells is controlled by cell wall 

properties. Based on the work of Green et al. (1971) on giant algae cells (Nitella sp.) 

and Lockhart’s (1965) theoretical considerations, a growth model was developed 

which relates the growth rate (GR) to extensibility properties (m), yield threshold of 

cell wall where no cell expansion occurs (Y) and cell turgor (P): 

GR = m · (P-Y) 

The impact of the mechanical properties of the cell wall for plant growth was found in 

many studies both in roots and shoots (Cosgrove, 1993; Pritchard, 1994; Cosgrove, 
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1998; Hsiao & Xu, 2000). The implication of these studies is that the rate of cell 

expansion, and therefore plant growth, may be regulated by altering the mechanical 

properties of the wall, making it ‘softer’ (more growth) or ‘harder’ (less growth). One 

way to alter wall properties is through changes in wall (apoplast) pH. 

Acidification can affect growth through cell wall loosening (Rayle & Cleland, 

1970) and different theories have been proposed to explain this phenomenon. One 

hypothesis suggested that H+ directly affects non-covalent bonds between β-glucan 

within the cell wall, causing wall loosening (Hohl et al., 1991). Another hypothesis 

suggested that due to H+ excretion Ca2+ ions are displaced in the cell wall and that 

this leads to a more flexible cell wall (Arif & Newman, 1993). A breakthrough in our 

understanding of pH-related wall loosening came in 1992 when two proteins were 

extracted from cucumber hypocotyls which were capable of inducing extension in 

isolated, heat-inactivated cell walls of several plant species. These ‘wall loosening’ 

proteins were termed ‘expansins’. The pH optimum of these proteins was pH3.5 - 4.5 

(McQueen-Mason et al., 1992) and this may explain at least in part why apoplast 

acidification increases the growth rate of plant organs. 

 Expansins are specifically expressed in growing tissues of monocotyledons 

and dicotyledonous plants. They are highly conserved in size and amino acid 

sequence (Cosgrove, 1996). However, studies on fescue suggest that another group 

of wall proteins, xyloglucan endotransglycosylases, may be more involved in 

regulation of cell expansion than expansins (Reidy et al., 2001).  

Expansins do not induce wall extension through simple polymer hydrolysis. 

They mainly disrupt hydrogen bonding not just in-vivo, in a paper sheet as well and 

reengineering the cell wall structure facilitating plant growth (McQueen-Mason, 

1995). Promoting cell wall relaxation is necessary for expansion of plant cells 

(Cosgrove, 1993). An overview of expansin action is given in Fig. 1.1.  
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Figure 1.1 Model how expansins might interact with other wall components 

Expansins might cause a transient release of short segments of matrix 
hemicelluloses glycans attached to cellulose microfibrils. Wall hydrolyses cut matrix 
glucans into shorter segments leading to weakening but not to creep of the cell wall. 
Transglycosylases are recombining glycans into shorter or longer pieces. PM-H+-
ATPases may lower the wall pH and control enzymes by their pH optima. Reprint 
from Cosgrove (1998) based on open access policy of www.plantphysiology.org with 
copyright American Society of Plant Biologists. 
 

1.1.1.2 Solutes 

Based on the original growth model described above (Lockhart, 1965; Green et al., 

1971), turgor pressure and solute uptake should have significant impact on cell 

expansion and growth. The availability of solutes seems to co-limit growth especially 

under water (Frensch, 1997; Hsiao et al., 1998) and salt stress (Fricke & Peters, 

2002). 

 Osmolality and turgor pressure change little along the elongation zone of 

cereal leaves (Fricke et al., 1997; Fricke & Flowers, 1998; Martre et al., 1999; Fricke, 

2002a) and roots (Pritchard, 1994). The implication of a constant turgor pressure in 

expanding cells might be that cells instantly deposit solutes to maintain osmolality as 

the osmotic force driving water uptake while they expand and cell contents become 

diluted (Fricke, 2002a). 
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1.1.1.3 Water 

In barley, it has been suggested that the rate of tissue-water transport might limit cell 

expansion in leaves (Fricke, 2002b). Similar conclusions have been made for 

soybean hypocotyls and maize leaves by the work of Boyer and colleagues who 

coined the term ‘growth-induced water potentials’ (Boyer, 2001; Tang & Boyer 2008). 

The mere existance of significant gradients in water potential between growing tissue 

and water source suggests that the conductance of the pathway between the two is 

limiting water transport. In a multi-layered tissue e.g. in roots, the radial hydraulic 

conductance can be one to three orders of magnitude larger under transpirating than 

under non-transpirating conditions (Steudle, 2000). Recent studies showed that in 

barley roots water uptake occurred along a pathway which involved crossing of 

membranes. It was not clear whether osmotic forces were sufficient to support water 

uptake (Knipfer & Fricke, 2011). Aquaporins have an essential role in the water 

transport at cellular level (Hachez et al. 2008). Aquaporins also may play essential 

role in elongation growth of barley leaves (Besse at al., 2011).  

 

1.1.2 pH conditions in the apoplast 

The present analyses did not, or did little distinguish between cell wall space and 

apoplast. The latter also comprises intercellular spaces and middle lamellae. 

Therefore, and for simplicity, it is referred to ‘apoplast’ throughout the present work. 

The apoplast of higher plants occupies typically 5 % or less of the total tissue 

volume. This applies in particular to living tissues. The apoplast determines ionic 

conditions around the cells; it affects transport solutes into and out of cells, provides 

a diffusion barrier in speciliased cases (e.g. Casparian bands) and defines 

mechanical and osmotic conditions – conditions which may be or may not be 

compatible with cell expansion. The latter applies in particular to the pH of the 

apoplast. Using different methods (pH indicators in agar, microelectrodes and 

fluorescence probes) a huge variety in apoplast pH has been reported for roots of 

different plant species. Values ranged from pH 4.0 to pH 7.0 with most values being 

in the region pH 5.0 to pH 6.5 (Grignon & Sentenac, 1991). Dicotyledonous plants 

have generally a higher (less acidic) pH than monocotyledonous plants have, and 

apoplast pH is lower in gymno- compared to angiosperms (Grignon & Sentenac, 

1991). 

In fully developed barley leaves an apoplast pH of pH 5.0 was measured using 

microelectrodes (Felle, 2006). The pH varied in dependence of oxygen availability 
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(anoxia) (Felle, 2005; Felle et al., 2005; Felle, 2006). Similar pH values have been 

reported for maize leaves using microelectrodes and fluorescence probes (Pitann et 

al., 2009a; Ehlert et al., 2011). 

 

1.1.3 ‘Acid growth’ theory 

‘Acid growth’ originally was discovered by Bonner in 1934 when he described that the 

growth rate of Avena coleoptiles in pH 4.1 buffer was significantly higher than in pH 

7.2 buffer (Kutschera, 1994). Later this effect was re-discovered and characterised in 

more detail by Rayle & Cleland (1970) and Hager et al., (1971). Although in the 

literature ‘acid growth’ is mainly mentioned in relation to growth effects caused by the 

phytohormone auxin and the fungal toxin fusicoccin, which permanently activates 

PM-H+-ATPase, linked plant growth, acid growth is a more general phenomenon and 

can be induced by other factors (Vesper & Evans, 1979). In ‘acid growth’, acid 

related cell ‘wall-loosening’ may constitute the initial event (Rayle & Cleland, 1970; 

Cosgrove, 1993). During the past decades, the ‘acid growth’ theory, or parts of the 

underlying mechanistic model, has been questioned repeatedly (Kutschera & 

Schopfer, 1985a; Kutschera, 1994; Grebe, 2005), However, with some limitation it is 

‘alive and well’ (Lüthen et al., 1990; Hager et al., 1991; Rayle & Cleland, 1992; 

Kutschera, 2006). An alternative theory for ‘acid growth’ is the ‘facilitated solute 

uptake’ theory. This theory states that it is not the secreted H+ which are causing 

directly the increased growth rate through alteration of wall properties, but that a 

proton-coupled transport mechanism across the plasma membrane is stimulated 

(Brummer et al., 1984). 

 

1.1.3.1 ‘Acid growth’ and effect of auxin and fusiccoccin on growth 

Almost at the same time, Darwin and Sachs proposed the theory that growth and 

development of plants is controlled by hormones (Darwin, 1880; Kutschera 1994). 

Using Avena sativa coleoptiles, Darwin, in 1880, showed that coleoptiles were 

bending towards the light source and once the tip of the coleoptiles was covered or 

cut, the coleoptiles were unable to produce this bending effect. In 1909, Fitting 

showed that coleoptile bending was a result of the non-homogeneous distribution of 

some factor, possibly a hormone (Katsumi, 2007). With gelatine cubes and glass 

pieces Boysen-Jensen (1913) proofed that this factor was transported from the tip to 

basal end of the coleoptile (Csiszár et al., 2004). Paál (1918) could induce coleoptile 

bending without light, changing the orientation of coleotile tips (Paál, 1918; Csiszár et 
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al., 2004). Finally, in 1937, Went discovered the hormone (auxin) and showed that if 

the hormone was in gelatine cubes the tip was not necessary for coleoptile bending 

(Kutschera 1994). Heyn in 1940 proposed that auxin (in its physiological form indol 

acetic acid - IAA) promotes growth by enhancing cell wall extensibility. In 1934 and 

1970 the ‘acid growth’ theory was born to explain auxin related plant growth 

(Kutschera, 1994). Fusicoccin, a phytotoxin of the fungus Fusicoccum amygdale, 

was discovered as ‘super-auxin’ a few years latter (Marré, 1979) and is still used 

today in many plant growth studies. 

 

1.1.3.2 Experimental systems using coleoptiles 

Coleoptiles of monocotyledon plants have widely been used as a model system to 

study plant growth. Coleptiles can be obtained on plants which need to grow for only 

a few days, are well characterised in terms of their phototropic or gravitropic 

response, show defined regions of growth and auxin production, are simple in 

anatomy and are easy to handle and cut. The main disadvantage, however, of 

coleoptiles is that their cuticle provides a permeance barrier to applied test reagents 

and diffusion barrier for protons and that this causes difficulties for applying 

treatments and measuring apoplastic pH (changes). In different laboratories this 

problem has been solved in different ways by peeling off part of the outer epidermis 

(Rayle, 1973), abrasion of coleoptiles with wet emery cloth prior to cutting (Kutschera 

& Schopfer, 1985a), abrasion with distilled water and SiC powder (Lüthen et al., 

1990) or using dry polishing cloth for abrasion of coleoptiles before excision of 

segments (Schopfer, 1989). None of these methods were free from artefacts; 

however the results have been informative.  

In most experiments, the incubation medium in which pH measurements were 

conducted was slightly buffered to prevent pH changes as a result of changes in CO2 

content of the atmosphere e.g. Rayle (1973); Stahlberg & Van Volkenburgh (1999) 

and Felle (2006). At the same time, the buffer capacity of the medium may affect pH 

measurements. Probably the best system for pH measurement was the method of 

ionostat (Döring et al., 1996), because the incubation medium was not buffered and 

changes in H+ efflux were measured rather than pH.  

 

1.1.3.3 Acid growth of coleoptiles 

Using maize coleoptiles, which were SiC-abraded in water and analysed using a 

computer controlled pH stat, both auxin and fusicoccin treatments affected growth in 
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a way which supported the ‘acid growth’ theory (Fig. 1.2). Neutral and alkaline 

solutions partly inhibited auxin- and fusicoccin-induced growth, whereas fusicoccin-

induced growth under constant pH conditions. Fusicoccin and auxin did not show any 

additive effect (Lüthen et al., 1990). Cell wall pH and growth rate were in close 

temporal correlation indicating co-regulation of apoplast solute composition (Peters et 

al., 1998). 

 

 

Figure 1.2 Fusicoccin and auxin effect on maize col eoptiles 

Typical trace of fusicoccin (A) and auxin (IAA) effect (B). Dots represent the proton 
secretion while asterisks the coleoptiles growth rate. Experiments were carried out 
using SiC abraded maize coleoptile segments and a pH stat to maintain pH. Reprint 
from Lüthen et al. (1990) based on open access policy of www.plantphysiology.org 
with copyright American Society of Plant Biologists. 
 

 Other studies suggested that fusicoccin, but not auxin, caused ‘acid growth’. 

Using the wet emery cloth abrading technique and buffered incubation medium, 

fusicoccin-induced growth was totally inhibited by alkaline solutions (Kutschera & 

Schopfer, 1985b) while auxin-induced growth was not affected (Kutschera & 

Schopfer, 1985a). The difference between these and the above-mentioned results 

might have been caused by the experimental set ups. The abrading technique was 

different and the solution was buffered in case of Kutschera & Schopfer (1985ab), 

while Lüthen at al. (1990) could use unbuffered solutions. Difference in cation 

composition might have impacted too, with 10 mM KCl and 1 mM Ca2+ used by 

Lüthen et al. 1990), while Kutschera & Schopfer (1985ab) used Ca2+ in the incubation 

medium and K+ at minimal concentrations (discussed in Lüthen et al., 1990). 

 It is possible that extension growth of multi-tissue organs such as roots, 

coleoptiles and leaves is limited mechanically by the extension of one component 

tissue. This idea, which dates back to the 19th century (Kutschera, 1994), is proposed 

in particular for the epidermis of round, compact organs (containing little intercellular 
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air space) such as hypocotyls and coleoptiles. Therfore the wall of the epidermis may 

be important for growth, and it is possible that ‘acid growth’ may occur in all tissues of 

an organ or only in the epidermis or in all tissue but the epidermis. This could explain 

discrepancies in results obtained between researchers and for different organs and 

species. Peeling off just part of the epidermis of coleoptiles might cause immediately 

changes in growth conditions but also experimental artefacts (Kutschera, 1994). It 

was assumed that fusicoccin may interact with proton pumps of inner coleoptile 

tissues whereas auxin affects H+ secretion of epidermal cells. Peeling off the 

epidermis caused 80 % less proton excretion of coleoptiles compared when 

coleoptiles were abraded with wet emery cloth (Kutschera et al., 1987). These results 

are supported by immunolocalisation results. Fusicoccin sensitive plasma membrane 

H+-ATPase (PM-H+-ATPase) proton pumps were found mainly in mesophyll cells 

rather than in the epidermis (Villalba et al., 1991); other authors, using 

electrophysiology, showed that auxin-induced H+ pump activity did not depend on the 

presence of epidermal cells in maize coleoptiles (Peters et al., 1992). 

 

1.1.3.4 Acid growth of dicotyledonous leaves 

The ‘acid growth’ theory has been tested much less in detail on dicotyledonous 

compared to monocotyledonous plants (coleoptiles) and the results in the literature 

are in part confusing. The validity of the acid growth theory appears to depend on the 

species tested. Light-induced leaf expansion of bean (Phaseolus vulgaris) and silver 

birch (Betula pendula) clearly showed an ‘acid growth’ type response. Apoplast pH 

decreased within 5 - 15 min of illumination, parallel to an increase in growth. 

Exogenous acidic buffer induced loosening of the cell wall and stimulated leaf growth 

whereas buffer at neutral pH inhibited growth. Fusicoccin stimulated both leaf growth 

and apoplast acidification (Van Volkenburgh & Cleland, 1980; Taylor & Davies, 1985; 

Cosgrove, 1996). In contrast, leaf expansion of sycamore (Acer pseudoplatanus) and 

tobacco (Nicotiana tabacum) could not be explained through ‘acid growth’. Apoplast 

acidification was not related to auxin-induced growth, yet fusicoccin-related ‘acid 

growth’ was present in tobacco leaves and independently of any auxin effect (Taylor 

& Davies, 1985; Keller & Van Volkenburgh, 1998). Growth related acidification in 

dicotyledonous leaves seems controlled by light and follows a partially independent 

pathway from photosynthesis as experiments with pea (Pisum sativum) leaves 

showed (Stahlberg & Van Volkenburgh, 1999). In tobacco leaves, some mechanistic 

link between light-stimulated leaf growth, H+ excretion and K+ uptake (Stiles et al., 
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2003; Stiles & Van Volkenburgh, 2004) was observed. The role of K+ could be to 

provide electrical counterbalance of H+ rather than to provide an osmolyte for uptake 

(Stiles & Van Volkenburgh, 2004). 

 

1.1.3.5 Acid growth of roots 

Early results suggested auxin linked ‘acid growth’ in roots (Moloney et al., 1981). 

However, more recent data showed that auxin increased growth of shoot and 

coleoptiles yet equally rapidly inhibited root growth (Christian et al., 2006). Positive 

‘acid (pH 4.0) growth’ has been not recorded in root elongation and at pH 3.5 organ 

elongation is reduced (Kutschera, 2006). In contrast with these results correlation 

was found between cell wall acidity and root elongation. Fusicoccin-induced H+ efflux 

and growth rate of maize roots rather than auxin that reduced both H+ efflux and root 

elongation (Lüthen & Böttger, 1988). 

 Using pH microelectrodes in the elongation zone of 4 day old maize primary 

roots a lower pH was recorded than in the non-growing zone when the pH was higher 

than pH 5.0 of the incubation medium (Fig. 1.3 and Fig. 1.4). Relative elemental 

growth rate and surface acidity were eliminated by auxin and cyanide treatments, 

respectively (Fig. 1.3) (Peters & Felle, 1999; Peters, 2004).  

 

 

Figure 1.3 Root elongation growth rate (REGR) and a poplast pH changes 

Profile of surface pH (�) and REGR (�) along the apical 12 mm of a growing maize 
root measured in pH 6.75 medium (A) and after 10 µM IAA treatment (B) or 3 mM 
KCN treatment (C). Position 0 refers to the tip of the root cap. Reprint from Peters & 
Felle (1999) based on open access policy of www.plantphysiology.org with copyright 
American Society of Plant Biologists. 
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Figure 1.4 Trajectory of a root element 

The figure shows the relation of the parameter time, position on the root, relative 
elemental growth rate (REGR) and surface pH (colour-coded) in growing maize root. 
The element considered is located at 0.2 mm above root apex at 0 time point. Reprint 
from Peters (2004) with the permission of the publisher (Licence No: 
2693010825600, ’John Wiley and Sons’) 
 

 Amtmann et al., (1999) using different experimental systems had similar 

results on barley roots. They found that H+ excretion could have crucial role in 

activation of inward K+ channels. Changes in cytosolic pH and K+ might be significant 

factors which contribute to the root growth response to changes in K+ supply.  

 

1.1.4 Potassium uptake and ‘acid growth’ 

Potassium is the main inorganic solute used by most plant cells to generate osmotic 

pressure. Its cytosolic concentration is tightly regulated. Therefore, one would expect 

that changes in the PM-H+-ATPase pump activity affect growth not only through 

changes in wall properties, but also through changes in K+ uptake. Recent data show 

that ‘acid growth’ and K+ uptake are related processes. Auxin and fusicoccin-induced 

growth was not present in absence of K+ (Claussen et al., 1997; Tode & Lüthen, 

2001). 

Claussen et al. in 1997 observed for abraded maize coleoptiles that auxin-

induced growth and K+ uptake were related processes. For auxin-induced growth the 

K+ concentration in the medium was essential. In absence of K+ an effect of auxin on 

growth was not observed, whereas when K+ was added to the medium, auxin-related 

growth was immediately measured. The K+ channel blocker triethylammonium (TEA) 
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also suppressed the growth response to auxin, and when the blocker was removed, 

growth recovered as shown in Fig. 1.5 (Claussen et al., 1997). In a related study, a 

similar K+-dependency was observed for fusicoccin-induced growth (Tode & Lüthen, 

2001). 

 

 

Figure 1.5 Potassium transport dependency of abrade d maize coleoptiles 

Potassium dependency of growth of coleoptiles was tested using a medium which 
contained 10 mM K+ or no added K+ (A). TEA, a K+ channel blocker, inhibited auxin-
induced growth; the blockage was completely reversible (B). When TEA was 
removed and replaced by incubation medium containing 10 mM K+ and NAA, the 
growth rate recovered at the level before TEA treatment. Reprint from Claussen et al. 
(1997) with the permission of the publisher (Licence No: 2693030934022, ‘Springer’) 
 

ZMK1 and ZMK2 K+ channels genes from maize were tested from the 

viewpoint of coleoptile growth. ZMK1 seemed to be growth related, acidification 

immediately increased channel activity and auxin increased its expression but acidic 

pH did not changed the expression pattern (Philippar et al., 1999). Over- expression 

of ZMK1 leads to K+ independent growth (Philippar et al., 2006). Similar results have 

been obtained for the Arabidopsis K+ channel AtKAT1 in growing hypocotyl and 

flower stalk (Philippar et al., 2004).  

 

1.2 Plasma membrane H +-ATPase 

Plasma membrane H+-ATPase (PM-H+-ATPase) was first discovered in 1946 when 

acid dependent glucose transport was described during the fermentation of the yeast 

Saccharomyces cerevisiae (Conway & O’Malley, 1946). Cyanide and sodium azide 

caused plasma membrane potential decreases in Neurospora crassa within seconds, 

which also suggested an ATP-dependent H+ pump activity (Slayman, 1965). The 

enzyme from fungi Schizosaccharomyces pombe and S. cerevisiae was isolated and 

shown to be a proton-pumping ATPase creating -150 to -300 mV plasma membrane 

potential in plants and fungi (Morth et al., 2011). 
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PM-H+-ATPase is a single polypeptide with a molecular mass of ~ 100kDa 

(Michelet & Boutry, 1995). ATPase activity is usually between 1 - 2 µmol Pi min-1 mg-1 

in purified plasma membrane (Morsomme & Boutry, 2000). The enzyme is essential 

for living plant cells as it constitutes, to the best of our current knowledge, the primary 

ion pump which generates the electrochemical potential across the plasma 

membrane. This electrochemical gradient is responsible for ionotropic signalling, 

secondary transport, nutrient uptake, pH homeostasis, salt tolerance, stomatal and 

leaf movements and cell growth (Palmgren, 2001; Moran, 2007; Duby & Boutry, 

2009). The PM-H+-ATPase protein is a member of the family of P-type ATPases. 

Other members of this family include the Na+,K+-ATPase, the principal ion pump in 

animals and humans (Morth et al., 2011). 

 

1.2.1 Isoforms of PM-H+-ATPase 

Using the model plant Arabidopsis thaliana twelve PM-H+-ATPase isoforms were 

identified from the genome (AHA1-12). The AHA12 isoforms carries two large 

deletions and is possibly a pseudogene (Palmgren, 2001). AHA1 and AHA2 are 

virtually expressed in all tissues and organs and function as housekeeping gene 

(Gaxiola et al., 2007) while other PM-H+-ATPase isoforms show some tissue 

specificity of expression (Morsomme & Boutry, 2000; Palmgren, 2001; Gaxiola et al., 

2007). Tissue-specific localization of PM-H+-ATPase is summarised in Table 1.1, 

based on information provided in (Palmgren, 2001). 

There is only one isoform of PM-H+-ATPase known in full detail for barley 

(Hordeum vulgare) based on nucleotide and protein data bases (NCBI, 

http://www.ncbi.nlm.nih.gov/ and UniProt http://www.uniprot.org/). However, MS / MS 

results suggest that there exist at least two different PM-H+-ATPase isoforms in 

barley (Hynek et al., 2006). 
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Table 1.1 Localisation of specific PM-H +-ATPase isoforms in plant body 

(Palmgren, 2001) 

Tissue PM-ATPase protein Plant 
Seedlings :   
Cotyledon PMA1, PMA2, PMA4 N. plumbaginifolia 
Primary root PMA1, PMA4 N. plumbaginifolia 
Root:    
Cortex parenchyma PMA2, PMA3, PMA4 N. plumbaginifolia 
Extension zone PMA4 N. plumbaginifolia 
Lateral root initials PMA2, PMA4 N. plumbaginifolia 
Lateral roots PMA4, PMA9 N. plumbaginifolia 
Root hair and epidermis PMA1, PMA3, PMA4 N. plumbaginifolia 
 MHA2 Zea mays 
Root cap PMA2, PMA4 N. plumbaginifolia 
Stele (central cylinder) PMA2, PMA3, PMA4 N. plumbaginifolia 
Stem:    
Axillary buds PMA2, PMA4, PMA9 N. plumbaginifolia 
Cortex parenchyma PMA1, PMA2, PMA4 N. plumbaginifolia 
Pith PMA4 N. plumbaginifolia 
Vascular tissue PMA2, PMA3, PMA4, PMA9 N. plumbaginifolia 
 MHA2 Zea mays 
 AHA3 A. thaliana 
Leaf:    
Guard cells PMA2, PMA4 N. plumbaginifolia 
 VHA1, VHA2 Vicia faba 
 MHA2 Zea mays 
Mesophyll PMA2, PMA4 N. plumbaginifolia 
 VHA1, VHA2 Vicia faba 
Trichomes (long) PMA4 N. plumbaginifolia 
Trichomes (short) PMA6 N. plumbaginifolia 
Vascular tissue PMA2, PMA3, PMA4 N. plumbaginifolia 

 MHA2 Zea mays 
 AHA3 A. thaliana 
Flower:    
Carpel PMA2 N. plumbaginifolia 
Ovules PMA1, PMA2, PMA3, PMA4, 

PMA6, PMA9 
N. plumbaginifolia 

 AHA3, AHA10 A. thaliana 
Nectaries PMA2 N. plumbaginifolia 
Stamen; pollen PMA1, PMA2, PMA3, PMA4, 

PMA6, PMA6 
N. plumbaginifolia 

 AHA3, AHA9 A. thaliana 
Style PMA1, PMA3, PMA4 N. plumbaginifolia 
Vascular tissue PMA1, PMA2, PMA3, PMA4, 

PMA6 
N. plumbaginifolia 

 AHA3 A. thaliana 
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1.2.2 Structure of PM-H+-ATPase 

The crystal structure of AHA2, a PM-H+-ATPase from Ababidopsis thaliana, has 

recently been described (Fig. 1.6). The protein contains a transmembrane domain 

with ten helices (M1-10) and three cytosolic domains: a nucleotide-binding domain 

(N), a phosphorylation domain (P) and an actuator domain (A). ATP is bound with the 

adenosine part at the N domain and its triphosphate group protruded towards the P 

domain. ATPase binding site was determined using 5’-(β,γ-methlene)-triphosphate 

(AMPPCP) a non-hydrolysable analogue of ATP (Pedersen et al., 2007).  

 

 

Figure 1.6 Structure of AHA2 without auto-inhibitor y domain 

AHA2 contains ten transmembrane helices (orange, green and brown); a nucleotide 
binding domain (N), red; a phosphorylation domain (P), blue; and an actuator domain 
(A); yellow. AMPPCP is shown as ball-and stick representation. The grey box 
represents the location of the plasma membrane; reprinted from Pedersen et al. 
(2007) with the permission of the publisher (Licence No: 2693040963163, ’Nature 
Publishing Group’). 
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1.2.3 Catalytic cycle of P-type ATPase and H+ transport mechanism 

PM-H+-ATPase undergoes conformational changes during each catalytic cycle. The 

enzyme has two distinct conformational states termed E1 and E2. The two 

conformation states differ in reactivity at the nucleotide binding site, which can be 

phosphorylated by ATP in the E1 form or by free Pi in the E2 form. E1 is the form that 

binds ATP and H+. The catalytic cycle is shown in details in Fig 1.7 (Morsomme & 

Boutry, 2000; Pedersen et al., 2007). 

 

 

Figure 1.7 Catalytic cycle and H + transport of PM-H +-ATPase 

Originally the catalytic cycle was proposed for Ca2+ ATPase (subfigure A) E1 form 
binding ATP and H+ (1), then a high energy intermediate is formed while ADP is 
released (2). Conformation of the enzyme is changing from E1 to E2 (3). Proton 
release to cell exterior (4), finally Pi is released (5) and conformation of the enzyme 
returning to form E1 (Morsomme & Boutry, 2000). The E1 form binds H+ and ATP 
better than the E2 binds these substances, as subfigure B shows; reprinted from 
Pedersen et al. (2007) with the permission of the publisher (Licence No: 
2693040963163, ’Nature Publishing Group’). 
 

1.2.4 Control of PM-H+-ATPase 

Activity of PM-H+-ATPase is modulated by several physiological signals (such as 

temperature and salt stress). In comparison, there exists little evidence of a 

regulation of PM-H+-ATPase activity through changes at the transcriptional or protein 

level. Moderate PM-H+-ATPase expression changes have been describe for high 

aluminium treatment, (Shen et al., 2005), iron deficiency (Santi et al., 2005), in 

presence of high sugar concentration (Mito et al., 1996) and high salt treatment 

(Maathuis et al., 2003) . 

Higher (compared to the ‘average’ tissue) PM-H+-ATPase protein 

concentrations have been found in  guard cells, root epidermis, phloem xylem 

parenchymas (Bouche-Pillon et al., 1994; Michelet & Boutry, 1995; Morsomme & 

Boutry, 2000; Palmgren, 2001; Gaxiola et al., 2007) and motor organs of 

seismonastic plants (Fleurat-Lessard et al., 1997; Moran, 2007). 

Regulated exocytosis of vesicles that contains PM-H+-ATPase molecules 

constitutes an alternative regulation pathway (Hager et al., 1991), yet post-
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translational modification of the enzyme seem the most common control mechanism 

for causing changes in PM-H+-ATPase activity (Gaxiola et al., 2007). 

 Phosphorylation / dephosphorylation are further mechanisms through which 

PM-H+-ATPase can be regulated. Elicitor-induced dephosphorylation in tomato plants 

(Lycopersicon esculentum) resulted in an increase in PM-H+-ATPase activity (Vera-

Estrella et al., 1994) while subsequent phosphorylation of the enzyme reduced its 

activity; although Ca2+-dependent phosphorylation caused decreased H+ pumping 

activity. Phosphorylation also activates PM-H+-ATPase activity through the fusicoccin 

(and 14-3-3 protein) activation pathway (Morsomme & Boutry, 2000). 

 The C-terminal auto-inhibitor regulation domain (R) could be mainly 

responsible for rapid activity changes of PM-H+-ATPase. Removal of the R domain 

from the enzyme by trypsin digestion activated PM-H+-ATPase (Palmgren et al., 

1991). Structural information of molecular mechanism of the auto-inhibition is not 

available yet. In AHA2 neutralisation of the auto-inhibitory R domain by binding of 14-

3-3 protein results in pump activation. Before the activation process, the penultimate 

Thr947 needs to be phosphorylated by a protein kinase which is induced by 

environmental factors such as light, nutrient status and pathogens. This 

phosphorylation can lead to the binding of 14-3-3 protein on the R domain complex. 

The Thr947 is not freely accessible to protein kinase activity, structural modification is 

necessary by ligand binding or kinase docking. Phosphorylation of Ser931 inhibits 

PM-H+-ATPase and destroys the 14-3-3 protein binding site (Sze et al., 1999; Morth 

et al., 2011). It seems that phosphorylation of most residues within the C-terminal 

domain impacts on 14-3-3 binding. The enzyme regulation is controlled by distinct 

protein kinases and phosphatases allowing gradual increase and decrease of the 

activity of PM-H+-ATPase (Speth et al., 2010). More details are provided in Fig. 1.8. 
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Figure 1.8 Auto-inhibition of PM-H +-ATPase 

On subfigure A residues are highlighted on the PM-H+-ATPase (AHA2) that interact 
with the regulatory domain. Blue: present in yeast; red: present in plant; yellow: 
present in plant Ca2+-ATPase.; green: 13 residue carboxy-terminal extension. Plant 
and fungal sites do not overlap, and it is likely that their pumps are inhibited by 
different mechanisms (Morth et al., 2011). B: schematic summary of protein 
kinase/phosphatise-dependent and fusicoccin-dependent activation pathway of PM-
H+-ATPase. Subfigure C shows the ribbon plot of different orientation of dimeric 
tobacco 14-3-3c protein (green) bound to the C-terminal end (yellow) of PMA2 
(tobacco PM-H+-ATPase) (Würtele et al., 2003). Figures are reprint from Morth et al. 
(2011) with the permission of the publisher, Licence No: 2693050346303, ‘Nature 
Publishing Group’ (A); Sze et al. (1999) based on open access policy of 
www.plantcell.org with copyright American Society of Plant Biologists (B) and Würtele 
et al. (2003) with the permission of the publisher, Licence No: 2693070537163, 
‘Nature Publishing Group’ (C). 
 

1.2.5 Fusicoccin-dependent PM-H+-ATPase activation 

Fusicoccin (a diterpene glycoside) is a phytotoxin, produced by the fungus 

Fusicoccum amygdali. The fungus is host specific, but isolated fusicoccin causes 

higher H+ efflux in any higher plant tested so far (Marré, 1979). Recent structural 

studies show that fusicoccin is increasing H+ pump activity by stabilising the 

interaction between 14-3-3 protein and auto-inhibitor R domain of PM-H+-ATPase. 

Fusicoccin effective due binding its plasma membrane receptor (Olivari et al., 1998) 

that is on the C-terminal of the R-domain of the PM-H+-ATPase (Johansson et al., 

1993). This results in permanent binding of 14-3-3 protein to the regulation domain 

(Oecking et al., 1994) and activates PM-H+-ATPase permanently as shown in Fig. 

1.8. 

 The toxin causes no major conformation changes; it fills a cavity between 

14-3-3 protein and PM-H+-ATPase (Fig. 1.9) and increases the stability of the 

complex about 90-fold (Würtele et al., 2003). 

 



 - 18 - 

 

Figure 1.9 14-3-3 protein-fusicoccin-PM-H +-ATPase complex 

Ribbon diagram of a 14-3-3 protein monomer (green) with PM-H+-ATPase peptide 
(yellow) and fusicoccin (orange). Blue represent the Van der Waals space of 
fusicoccin and PM-H+-ATPase peptide (reprint from Würtele et al. (2003) with the 
permission of the publisher, Licence No: 2693070537163, ’Nature Publishing Group’) 
 

1.3 Barley 

Barley (Hordeum vulgare) was domesticated 10,000 years ago and ranks fourth 

among cereals after maize (Zea mays), rice (Oryza sativa) and wheat (Triticum 

aestivium) in terms of global production. About two-thirds of the annual global barley 

production is used for animal feeding and the remaining third covers the needs of 

malting, brewing (beer) and distilling (whiskey) industries (Schulte et al., 2009). The 

average annual production of barley in the world is about 1.24·1011 kg and 62 % of 

this is harvested in Europe. The highest yield per hectar occurs in Ireland with 5.7 Mg 

ha-1 (Kim & Dale, 2004). In Ireland and Scotland brewing and distilling has a 

particularly big economic impact, not least because of the whiskey industry.  

 

1.3.1 The two weeks old barley seedlings and their advantage 

Barley seedlings at a developmental stage of two weeks old (between 14 - 17 days) 

present ideal research objects for leaf growth studies. At this stage leaf three is the 

main growing leaf and shows maximum or near-maximum growth rate (2 - 3 mm h-1). 

Older leaves, which cause self-shading and reduce the potential biomass increase 

have not developed yet and younger seedlings are not yet fully dependent on the 

external medium for supply of mineral nutrients but still receive a considerable 

portion through seed reserves. The base 40 mm of leaf three that contains the leaf 



 - 19 - 

elongation zone  is enclosed by the sheath of the older leaves one and two (Fricke & 

Flowers, 1998; Fricke, 2002a). There are small quantities of cuticle waxes deposited 

on the epidermal surface along the base 20 - 30 mm of the elongation zone. This 

means that the permeance of the cuticle is much higher in the elongation zone 

compared to the emerged blade, which makes external application of test reagents to 

measurements of proton extrusion from the leaf apoplast comparatively easy without 

having to mechanically remove the cuticle (Richardson et al., 2007). 

 

1.3.1.1 Morphology of developing barley leaves 

Barley leaves consist of two parts, the basal sheath and the leaf blade, separated by 

ligule and auricle. The sheath at the leaf base mechanically supports the blade which 

is the photosynthetic and transpirating active part of the leaf. The sheath also 

encloses the basal apical meristem, and any younger leaves emerge from within 

sheaths of older leaves. Leaves develop from the main meristem, which is located at 

the base. As a consequence, oldest tissues are at the leaf tip and youngest ones 

near the leaf base. The elongation zone of leaf three stretches to about 40 mm from 

the point of leaf insertion (‘leaf base’), with highest relative elemental growth rates 

between 10 - 30 mm (Fricke & Peters, 2002). In the elongation zone cells are 

elongating manyfold in size. Above the elongation zone is a zone which can be 

referred to as ‘non-elongation zone’. This zone extends to the point of emergence of 

the developing leaf from the sheath of leaf two and contains cells which are not 

elongating any more but can show some lateral expansion. The fully emerged leaf 

blade contains fully-differentiated cells, which are not dividing or expanding any 

more. Details are provided in Fig. 1.10. 
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Figure 1.10 Two-week old barley seedling 

The two-weeks old barley seedling has three leaves. Leaf one is the oldest leaf and 
leaf three is the youngest and main developing leaf. EZ: elongation zone; NEZ: non-
elongation zone; EB: emerged leaf blade 
 

1.3.1.2 Anatomy of developing barley leaf 

Anatomical changes during leaf development can be visualised on cross sections of 

different parts of the leaf (Fig. 1.11). Cell size is increased manyfold in mature 

compared to immature tissue, although it is difficult to see this on cross sections, 

particularly in the epidermis, where elongation growth contributes most to cell 

enlargment. The most conspicuous difference between the different developmental 

stages is the specialisation of mesophyll cells for photosynthesis (chloroplast 

development), xylem (conductance of water and dissolved solutes) and increased 

intercellular spaces.  
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Figure 1.11 Toluidine blue stained cross section of  barley leaves from different 

developmental stage 

Cross sections from elongation zone (A) non-elongation zone (B) and fully emerged 
blade (C) of leaf three. Ep: epidermis; M: mesophyll cells; VB: vascular bundle. 
 

1.3.2 Growth and potassium uptake of barley 

The classical dual K+ uptake mechanism has first been described for roots of barley 

(Epstein et al., 1963). Further studies proofed the relevance of high affinity K+ 

transporters for K+ uptake; also H+ / K+ co-transport has a high significance in K+ 

uptake of roots (Glass et al., 1981; Amtmann et al., 1999). For barley, four HAK 

genes have been described (HvHAK1-4). HvHAK1 was mainly expressed in roots, 

HvHAK3 in both shoots and roots while HvHAK4 was mainly expressed in shoots 

(Rubio et al., 2000). HvHAK4 had significantly higher expression in the elongation 

zone of leaves compare with parts of barley seedlings (Boscari et al., 2009). HvHAK1 

is very similar to AtHAK5 and seems to be a high affinity K+ transporters in contrast 

with HvHAK2, which facilitates K+ uptake in a range of low or medium affinity (KM of 

about 5 mM comparing with KM of about10 µM for HvHAK1 (Rubio et al., 2000; Senn 

et al., 2001; Ashley et al., 2006). 

 In previous studies on K+ transport in barley it was concluded that apoplast K+ 

must exceed 3 - 5 mM to allow growing leaf cells to take up K+ through channels 

(Boscari et al., 2009; Volkov et al., 2009). Calculations showed that at 10 mM 

apoplast K+, about 50 % of K+ uptake was facilitated by time-dependent inward-

rectifying currents typical of Shaker K+ channels such as AKT1 or AKT2. The 

remaining 50 % was facilitated by instantaneous currents, which includes either or 

both, K+ high-affinity transporters such as HAK / KUP / KT type K+ / H+ symporters or 

non-selective cation channels. 

Potassium channels and transporters might study using different blockers of 

these proteins. Tetraethylammonia (TEA) inhibits K+ transport through channels 

reversibly as K+ analogue at the dehydration transition step (Lenaeus et al., 2005). 



 - 22 - 

Cs+ ions as huge K+ analogue block both channels and transporters (Rodriguez-

Navarro & Rubio, 2006; Szczerba et al., 2009) and NH4
+ ions with competitive 

manner inhibit high affinity K+ transporters (Spalding et al., 1999; Kronzucker et al., 

2003; Rodriguez-Navarro & Rubio, 2006; Szczerba et al., 2006; Britto & Kronzucker, 

2008; Szczerba et al., 2009; Britto et al., 2010; Hoopen et al., 2010) 

 

1.4 Technical approaches 

(i) Cell wall acidification was measured using three independent methods (pH 

sensitive fluorescence probe, micro pH electrode technique and in-vitro agarose gel 

system with bromocresol purple pH indicator. During these experiments leaf 

elongation was measured with a ruler (micro pH measurements) or image analysis 

tools (in-vitro gel experiments).  

 

(ii) A linear variable differential transformer (LVDT) was used to determine the 

growth rate continuously and at micrometer resolution. This made it possible to 

record any rapid and short term response of leaf growth to application of test 

reagents to the apoplast of the leaf elongation zone.  

 

(iii) Expression of PM-H+-ATPase was determined by absolute qPCR technique 

and the PM-H+-ATPase enzyme ratio in total purified plasma membrane protein was 

measured using Western blot analysis and densitometry on Coomassie Brilliant Blue 

stained SDS polyacrylamide gels. Activity of the enzyme was determined as 

vanadate sensitive ATPase hydrolysis activity of inside-out plasma membrane 

vesicles. 

 

(iv) PM-H+-ATPase tissue specific distribution was studied using 

immunolocalisation on paraffin embedded section and a commercially-available 

antibody of PM-H+-ATPase isoforms.  
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1.5 Objectives of the present study 

The aim of this project was to test whether apoplast pH differs between growing and 

non-growing leaf tissue of barley, how this acidification relates to growth and to which 

degree apoplast acidification relies on the activity, transcription and occurrence of 

PM-H+-ATPase. The developing leaf three of barley was studied. Apoplastic pH and 

leaf elongation was measured together in the same experiments or in separate 

experiments. Differences in pH and leaf growth were followed using three 

independent techniques. Treatments affecting PM-H+-ATPase activity (increase or 

decrease) or blockers of different type of K+ transport (channel, transporter) were 

used to determine the physiological background of leaf elongation. Expression and 

activity of PM-H+-ATPase was measured to test whether any higher acidity in the 

apoplast of the elongation zone originated from a higher expression of the enzyme or 

any other control mechanism, in particular post-translational modification. Finally 

tissue specific distribution of PM-H+-ATPase was determined at different leaf 

developmental stages on cross sections.  
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2 Materials and Methods 

 

2.1 Plant material 

2.1.1 Plant growth for study of leaves 

Barley seeds (Hordeum vulgare L. cv. Golf; and Hordeum vulgare L. cv. Jersey) were 

imbibed overnight in water, germinated in dark on approx. 0.5 mM CaSO4 for 3 days and 

exposed to light for a further 3 days while remaining on CaSO4 solution. On day seven, 

four seedlings were transferred into 1 l borosilicate glass beakers wrapped in tin foil 

(containing 0.8 - 0.9 l nutrient solution) on aerated ½ strength Hoagland solution (Table 

2.1) and grown for a further 7 - 11 days at 70 - 80 % relative humidity and 300 – 350 

µmol m–2 s–1 photosynthetically active radiation at third-leaf level, during a 16 h / 8 h, 21 

°C / 15 °C day / night cycle in a growth chamber (I MAGO F3000, Snijders Scientific). 

Nutrient solution was not replaced during plant growth. These were the growth conditions 

at University College Dublin, where most experiments were carried out. Some 

experiments, including plant growth, were also carried out at Rothamsted Research (UK) 

and Eötvös University (Hungary). Plants were analysed when they were 14 - 18 d old. 

At Rothamsted Research (pH microelectrode measurements) the growth 

temperature was different (constantly 20 °C during day / night). At Eötvös University 

(plasma membrane isolation) plants were grown under a 14 h / 10 h day / night period 

(150 µmol m–2 s–1) with 20 / 18 °C day / night temperature. These al terations in growth 

conditions were due to local availability of growth facilities and the seedlings achieved 

the leaf three development stage about 2 - 3 d later at Eötvös University and 1 - 2 earlier 

at Rothamsted Research compared with Dublin. 

The barley Golf cultivar was used for most experiments. Towards the end of the 

study, the availability of Golf seeds became limited due to vast demand by the laboratory 

in general, no further commercial (breeder) availability of this cultivar and due to limited 

availability of growth space at UCD to grow plants to the seeding stage. Therefore, 

experiments which were carried out towards the end of the study, in particular plasma 

membrane isolation, were performed on the barley cultivar Jersey. Both, Golf and Jersey 

are spring barleys. 
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Table 2.1 Composition of the ½ strength Hoagland so lution for barley seedlings 

Macronutrients  
(1 l each) 

Stock  
(mM) 

Amount for 
1 l stock  (g) 

Final concentration 
(mM) 

Dilution 

(1) NH4H2PO4 100 11.5g 0.5 200x 
      + (NH4)2HPO4 100 13.2 0.5 200x 
(2) KNO3 400 40.4 2.0 200x 
(3) MgSO4x7H2O 100 24.7 0.5 200x 
      + NaCl 100 5.84 0.5 200x 
(4) 
Ca(NO3)2x4H2O 

400 94,4 2.0 200x 

     
Micronutrients  
(0.5 l each) 

Stock  
(mM) 

Amount for 
0.5l stock (g) 

Final concentration  
(µM) 

Dilution 

(a) H3BO3 25 0.775 6.25 4000x 
(b) CuSO4x5H2O 0.5 0.0625 0.125 4000x 
(c) MnSO4xH2O 2 0.169 0.5 4000x 
(d) 
Na2MoO4x2H2O 

0.76 0.092 0.19 4000x 

(e) ZnCl2 (or 
ZnSO4) 

2 0.136 0.5 4000x 

(f) FeIIINaEDTA 36 6.606 27 1333x 
 

2.1.2 Plant growth for study of coleoptiles 

To grow coleoptiles for auxin sensitivity test Golf barley seeds were imbibed 

overnight in water and were germinated in the dark for 5 d in the growth chamber 

under the same temperature settings (16 h at 21 °C,  8 h at 15 °C) as described for 

seedlings. The apical 10 mm of the coleoptile tip was used and the first leaf 

developing inside the coleoptiles was removed (compare Sakurai & Masuda, 1978). 

 

2.2 Apoplast pH measurements 

Cell wall pH was measured through three independent approaches: an in-vitro gel 

system, electrophysiology and confocal microscopy. The in-vitro gel system involved 

incubating leaf segments in agarose which contained the pH indicator bromocresol 

purple. The advantage of this system was that it was easy to use. This made it 

possible to test many treatments and to directly relate changes in wall acidity to 

changes in growth rate. The pH microelectrode technique was used to obtain precise 

values of apoplast pH in growing and non-growing leaf regions. This technique, 

which was carried out at Rothamsted Research, required the most experimental 

effort and was used to a limited extent, due to limited funding for travel. Therefore 

only selected treatments were tested. Finally, intact plants were studied using 
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confocal microscopy, by loading plants with pH fluorescence probes added to the 

root medium. Epidermal peels were also studied as control material. 

 

2.2.1 In-vitro gel system 

The base 70 mm of leaf three was placed into a Petri dish which had been filled with 

agarose medium containing the pH indicator bromocresol purple (Tang et al., 2004; 

Li et al., 2007). The younger fourth leaf was removed from inside leaf three prior to 

experiments.  

 The agarose medium contained 10 mM, 1 mM CaCl2, 0.5 % agarose (gelling 

temperature 38.3 °C) and 90 mg l -1 bromocresol purple. Any additional test reagents 

were added to the medium while it was fluid and the pH was adjusted to 7.0 using     

3 mM KOH. The amount of K+ added through this pH adjustment was negligible 

compared to the amount of K+ added through 10 mM K+. Leaf pieces were placed 

into the medium when it was almost semi rigid and had a temperature of between   

28 - 32 °C. Petri dishes were incubated under the s ame conditions under which the 

plants had grown, except for cold-treatments, where dishes were incubated in the 

dark in a cold room (5 °C). At regular time interva ls (every hour for the first 10 h of 

incubation), Petri dishes were photographed with a Canon EOS 350D digital camera. 

Two replicate pictures were made every hour. Final pictures were made after 24 h. 

Digital photographs were used to assess acidification of the medium and measure 

elongation growth of leaf pieces. ImageJ 1.41o software (http://rsbweb.nih.gov/ij) was 

used to measure the length of leaf pieces. Values were calibrated with the aid of 

graph paper which had been fixed to Petri dishes prior to the start of experiment. Due 

to the alkaline pH of the graph paper, the paper served as sort of an internal pH 

control as well since it gave the colour (bluish) of bromocresol purple in non-acidified 

medium. Acidic areas, which showed up as yellow in the purple-stained medium (see 

Fig. 2.1), were selected on pictures using the magic wand of Adobe® Photoshop® 

7.0.1 (tolerance factor 10) and measured using Scion Image for Windows 4.0.3.2 

(http://www.scioncorp.com, O'Neal et al., 2002). 

Preparation of leaf pieces and transfer to agarose medium resulted in an 

immediate, non-specific acidification of the medium, most likely as a result of 

unpeeling leaf three from the sheaths of leaves one and two. This non-specific 

acidification levelled off within 4 - 5 h. Preliminary experiments showed that the acid 

area value obtained after 1 h of incubation reflected the size of the exposed leaf 

surface of the individual plants therefore it was used as the reference point for the 
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start of experiment (A1). Any areas measured at further time points ‘t’ (At) were 

related to this reference point according to ‘At / A1’. Areas were expressed in mm2. 

 

 

Figure 2.1 Leaf pieces in pH sensitive agarose gel medium  

Agarose gels contained the pH indicator bromocresol purple pH. This pH indicator 
shows yellowish colour at acidic, purple at neutral and blueish colour at alkaline pH 
(see right column). Basal leaf segments were 70 mm long at the beginning of the 
experiments, and their tip end was sticking out from the medium. Graph paper was 
used as an internal alkaline control and to calibrate length of leaf segments to 
measure growth during the incubation period. 
 

2.2.2 Microelectrode measurements 

Apoplastic pH was measured with the aid of pH-sensitive microelectrodes. The 

elongation zone and emerged, mature portion of the developing leaf three of barley 

were analysed. The older leaves one and two were peeled back to expose the 

abaxial surface of the basal elongation zone of leaf three. The elongation zone was 

covered with wet tissue paper which had been soaked for the previous 24 h in 

distilled water. The latter was done to guarantee pH neutrality (which is not the case 

for tissue paper which is used ‘fresh’). During experiments, the tissue paper was 

soaked in bath solutions, as specified in results, to alter the apoplastic environment 

of the leaf elongation zone. Due to the absence of a major permeability barrier 

(cuticle) in the elongation zone (Richardson et al., 2007), apoplastic pH could be 

measured directly by bringing the microelectrode in close contact with the epidermal 

surface. Measurements were carried out at 20 - 30 mm from the base. In the fully-
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cutinised emerged-blade portion of the developing leaf three, apoplastic pH was 

measured by inserting the microelectrode through stomatal pores (compare Fricke et 

al., 1994; Felle 2005;). Double-barrelled pH sensitive microelectrodes were prepared 

as described in Miller & Smith (1992) using the same setup and microelectrode 

cocktail as described in Dennis et al. (2009). The only difference was that in the 

present study a pH 5.0 rather than pH 3.0 calibration buffer was used and that an 

additional pH 8.5 calibration buffer was included. Calibration was performed before 

and after readings. The composition of the pH sensitive cocktail and calibration 

buffers is given in Table 2.2 and Table 2.3. Microelectrode outputs were analysed 

with Origin® 6.1 (OriginLab Corporation) software. 

 Analysis of one leaf region of one plant typically lasted between 2 - 6 hours, 

and between 1 - 6 pH recordings were taken for each leaf region under room 

temperature and humidity in the dark. To avoid too long exposure of plants on the 

microelectrode rig, recordings for elongation zone and emerged blade were obtained 

from different plants. Elongation growth of leaf three of plants mounted on the rig was 

measured by measuring the length of leaf three at the beginning and end of 

experiments using a ruler. Preparation of plants reduced leaf elongation growth by 

about 50-60 % compared to elongation growth of undisturbed plants in the growth 

chamber. 

 

Table 2.2 Composition of the pH sensor for microele ctrodes 

Component of pH sensor Amount of the component 
Hydrogen Ionophore II Cocktail A 35 mg 
High molecular weight PVC 16 mg 
Nitrocellulose 6 mg 
Tetrahydrofuran (THF) Dissolve the other components  
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Table 2.3 Composition of the buffer solutions used for calibrating pH 

microelectrodes 

pH Composition of buffer 
4.0 20 mM KHC8H4O4 (potassium hydrogen phthalate) 

120 mM KCl 
10 mM NaH2PO4x2H2O 
Adjust pH using 1 N NaOH  

5.0 and 6.0 20 mM MES (2-[N-Morpholino]ethanesulfonic acid) 
120 mM KCl 
10 mM NaH2PO4x2H2O 
Adjust pH using 1 N NaOH 

7.0 20 mM MOPS (3-[N-Morpholino]propanesulfonic acid) 
120 mM KCl 
10 mM NaH2PO4x2H2O 
Adjust pH using 1 N NaOH 

8.5 20 mM TAPS (N-tris[Hydroxymethyl]methyl-3-amino-
propanesulfonic acis) 
120mM KCl 
10 mM NaH2PO4x2H2O 
Adjust pH using 1 N NaOH 

 

2.3 Confocal microscopy 

The pH sensitive fluorochromes 5(6)carboxyfluorescein (10 µM) and acridine orange 

(2.5 µM) were used. In contrast to carboxyfluorescein, acridine orange can be taken 

up into cells and has been widely used to monitor pH inside animal (Wieczorek et al., 

1991; Zoccarato et al., 1999; Malnic & Geibel, 2000) and plant cells (Pope & Leigh, 

1988; DuPont, 1989). Carboxyfluorescein is a large double-negative charged anion 

that can permeate the plasma membrane only in its non-fluorescing diacetate form 

(Babcock, 1983; Graber et al., 1986). By using its anionic form, its presence in the 

apoplast and absence in the symplast was guaranteed. The application of acridine 

orange has some limitations (Palmgren, 1991) but with adequate controls these 

limitations can be overcome (Clerc & Barenholz, 1998; Manente et al., 2008). The 

fluorescence intensity of carboxyfluorescein between pH 4.5 and 6.5 can be used to 

reflect changes in pH conditions in this pH range (Babcock, 1983; Graber et al., 

1986). 

Dyes were added to the root medium of intact plants in the growth chamber. 

Plants were allowed to take up dyes into the apoplastic space of both roots and 

leaves and analysed after an incubation period of 24 h (carboxyfluorescein) and      

48 - 72 h (acridine orange). Detached leaves, epidermal peels or leaves still attached 

to the remainder of the plant were examined with an Olympus FV1000 confocal 

microscope. Dyes were excited at 488 nm and fluorescence was detected between 
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500 - 550 nm (carboxyfluorescein) and 516 - 536 nm (acridine orange). To test how 

effective the uptake of dye into the leaf apoplast had been during the incubation 

period and how pH sensitive the approach was, epidermal strips were peeled from 

first leaves of incubated barley plants or from the elongation zone and emerged 

blade of leaf three. The strips were placed into buffers of specified pH for 30 min, 

before being examined under the confocal microscope. Calibration of fluorochromes 

was carried out with a Leica DMIL fluorescence microscope. The microscope’s 

excitation filter was cut between 450 - 490 nm and the suppression filter at 515 nm. 

For pH calibration, 50 mM phthalate buffer (pH 4.0), 100 mM MES / KOH (pH 5.5,  

pH 6.5) and 100 mM TRIS-HCl (pH 7.5) was used. Digital images were analysed with 

ImageJ 1.41o software (http://rsbweb.nih.gov/ij) and Adobe® Photoshop® 7.0.1. 

The pH dependence of fluorescence of 5(6)carboxyfluorescein and acridine 

orange were examined by recording fluorescence spectra at different pH using a 

FluoraMax-2® (Instruments S.A.) (pH 5.0; pH 5.5; pH 6.0 – 50 mM MES-KOH; pH 6.5 

– 50 mM MES-BisTRIS and pH 7.0; pH 7.5 – 50 mM HEPES-HCl).  

 

2.3 LVDT measurements 

A linear variable differential transformer (LVDT) was used to measure changes in leaf 

length continuously and at micrometer resolution in response to treatments (compare 

Fricke, 2004; Fricke et al., 2004). The setup could also be used to determine 

changes in cell wall properties. 

 

2.3.1 Leaf growth measurements 

Plants were prepared in the same way as for electrophysiological analyses to be able 

to relate the results from both types of experiments to each other. Leaves one and 

two were peeled back and the exposed elongation zone of leaf three was wrapped in 

washed (24 h in distilled water) tissue paper which was soaked in the respective test 

solution. The wet tissue paper guaranteed a humid microclimate and prevented the 

elongation zone from drying out; it also allowed application of test reagents to the 

apoplast of elongating tissue. The base 40 - 50 mm of leaf three was wrapped to 

provide sufficient mechanical support to allow the leaf to remain in an upright 

position. Above 50 mm from the leaf base, the cuticle is sufficiently developed 

preventing the leaf tissue from drying out (Richardson et al., 2007). Roots were left in 

the same medium in which the particular plant had grown. The tip of leaf three was 

attached to fishing line and connected through cellotape to a LVDT (DFG 5.0; RS 
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Components, Corby, UK). A counterweight of 2 g was applied. The LVDT signal was 

digitalised with a Burster 92101 data logger module with ICP 100 software. Changes 

in voltage output were recorded on PC using Pfloek 1.09 software (LS 

Pflanzenökologie, Universität Bayreuth, Germany). The system was calibrated by 

replacing the plant with a micrometer screw. The rate of growth was calculated from 

LVDT outputs using Origin® 6.1 software (OriginLab Corporation) and Microsoft® 

Excel. Although leaf elongation rate was comparable between replicate plants and 

batches, values for treatments were expressed as percentage of the control to further 

minimise any plant-to-plant variation. The control value was the elongation rate of a 

particular plant attached to the LVDT before a treatment was applied. Typically, 

control plants had the elongation zone of leaf three wrapped with tissue paper 

soaked in either 1 or 0.1 mM KCl. It took up to 1 h for elongation rate to reach a 

steady level following attachment of plants to the LVDT. Application of vanadate and 

CsCl treatments required a similar period of stabilisation (about 1 h), while 

application of fusicoccin and ammonium treatments required leaf elongation rate to 

stabilise for up to 2 - 3 h. LVDT experiments were carried out at room temperature 

and humidity under ambient laboratory light. 

 To assess how much plant preparation affected the elongation rate of leaf 

three, intact plants which did not have leaves one and two peeled back, were 

attached to the LVDT. In addition, leaf elongation rate was determined for 

undisturbed plants in the growth chamber by measuring twice daily the increment in 

leaf length with a ruler.  

 

2.3.2 Analysis of cell wall properties 

Cell wall elasticity and plasticity was measured with the same LVDT system as 

described above by applying an additional 3 g counterweight for 10 min following the 

approach taken by Neumann (1993) (see also Chazen & Neumann (1994) and 

Sabrizhanova et al. (2005)). Plants were prepared and chemical treatments applied 

in the same way as for growth analyses. When the growth rate had stabilised 

(control, treatment), the additional 3 g counterweight was applied to the LVDT for 10 

min and then removed; 30 - 40 min later, when growth rate had stabilised again, the 

experiment was repeated, and the average of these two measurements was used for 

calculations of wall properties. Elasticity and plasticity of walls and growth rate with 

and without the applied force (additional 3 g counterweight) was calculated from 

LVDT traces as detailed in Fig. 2.2. 
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Figure 2.2 Measurement of cell wall properties 

LVDT traces show the change in leaf length with time. LVDT traces before and after 
application of an additional 3 g counterweight (0.03 N of applied force), growth rates 
were calculated from the slope of the lines fitted to the stabilised part of traces (v1 
and v2). The applied force caused an extension, part of which was reversible 
(elasticity, E) of wall) and part of which was irreversible (plasticity, P of wall). 
 

2.4 Expression analyses 

The aim of expression analyses was to test whether any elevated proton efflux in the 

leaf elongation zone was due to higher PM-H+-ATPase expression. 

 

2.4.1 Plant harvest 

Plants were harvested 2 - 6 h into the photoperiod. Samples from the elongation 

zone were about 1 cm long and were cut from the mid-portion of the elongation zone 

(between 20 - 30 mm from the leaf base). Samples of the emerged blade were          

1 - 2 cm long and taken from the mid-portion of the part of leaf three that had 

emerged from the sheath of leaf two. The leaf segments were weighed on a digital 

balance (Mettler Toledo, Sweden), immediately frozen in liquid nitrogen and stored at 

-80 °C until they were used for RNA extraction.  

 



 - 33 - 

2.4.2 RNA extraction and cDNA synthesis 

For RNA extraction, corresponding leaf segments from 3 - 4 plants were pooled; their 

combined fresh weight was between 0.04 - 0.07 g (Besse et al., 2011) Total RNA 

was extracted using a QUIAGEN RNeasy kit following the manufacturer’s 

instructions. RNA was eluted into 50 µl RNase free water. The concentration and 

quality of RNA was determined with Nanodrop® (ThermoFisher Scientific Inc., 

Waltham, USA).  

 After DNase treatment, following the manufacturer’s instructions 

(Deoxyribonuclease I, Amplification Grade; Invitrogen Corporation, Carlsbad, 

California, USA), 1 µg RNA was used for cDNA synthesis. cDNA synthesis was 

performed as recommended by the manufacturer (SuperScriptTM II Reverse 

Transcriptase; Invitrogen Corporation, Carlsbad, California, USA) using anchor 

oligodT16 primer. The final volume of cDNA was 20 µl. Details of the procedure and 

reagents used are provided in Table 2.4. 

In some experiments, RNA was also extracted from protoplasts. RNA 

extraction from a protoplast suspension was carried out in a way similar to the one 

described above, with minor modifications. RNeasy lysis buffer (300 - 1000 µl) was 

added to 300 - 1000 µl protoplast suspension (~ 0.5 – 7 million protoplasts) or to 1 ml 

cell-free protoplast isolation medium. The latter was used as background control to 

reflect RNA released from broken cells or protoplasts into the isolation medium and 

was prepared by centrifuging the protoplast suspension at 30 g for 1 min and taking 

the supernatant and centrifuging it again at 12,000 g for 5 min. The final volume of 

RNA extract for protoplasts or isolation medium was 30 µl rather than 50 µl as 

obtained for leaf extracts. 
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Table 2.4 DNase treatment and reverse transcription  

DNase treatment  Total volume 
 1 µg (8 µl) RNA 

1 µl 10x DNaseI Reaction buffer 
1 µl (1 U) DNaseI Ampl. Grade enzyme 

 
 
10 µl 

 Incubation 15 min 25 °C  
   
 1 ml EDTA (25 µM) 11 µl 
 Incubation 10 min 65 °C  
   
Reverse transcription   
 11 µl sample from DNase treatment 

1 µl anchor oligo-dT primer (100 µM) 
1 µl dNTP (10 mM) 

 
 
13 µl 

 Incubation 5 min 65 °C   
   
 4 µl 5x First-Strand Buffer 

2 µl DTT (0.1 M) 
 
19 µl 

 Incubation 2 min 42 °C  
   
 1 µl SuperSriptTM RT Enzyme (200U) 20 µl 
 Incubation 50 min 42 °C then 70 °C 15 

min 
 

 

2.4.3 PCR 

Before cDNA samples were used for qPCR analysis, which required expensive 

reagents, the quality of cDNA, suitability of designed primers and optimum PCR 

conditions was tested through conventional PCR (G-Storm 482 thermocycler, Gene 

Technology). A GoTaq® Flexi DNA Polymerase (Promega Corporation, Madison, 

USA) kit was used in 25 µl total volume with 1 µl 200x diluted cDNA as template. A 

precise protocol of the PCR reaction is given in Table 2.5. Primers are listed in Table 

2.6. The PCR was run in amplification two steps; after initial step (95 °C; 30 s) 

through 35 cycle step one (95 °C, 30 s) and step tw o (60 °C, 60 s) were repeated 

and then a final step (72 °C, 120 s) was used as Fi g. 2.3 shows. 

 PCR products were separated on 1 % agarose gels in 0.5 strength TRIS 

base boric acid EDTA (TBA, see Table 2.7) buffer containing 1 µg ml-1 ethidium 

bromide and viewed under UV light (Image Master® VDS, Pharmacia Biotech, USA). 
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Table 2.5 Components of PCR reactions 

Component Volume Final concentration 
5x Green GoTaq® Flexi Buffer 5 µl 1x 
MgCl Solution (25 mM) 2 µl 2 µM 
dNTP (10 mM) 0.5 µl 0.2 µM each nucleotide 
Forward primer (10 mM) 0.5 µl 0.2 µM 
Reverse primer (10 mM) 0.5 µl 0.2 µM 
GoTaq® DNA Polymerase (5 U / ml) 0.125 µl 0.625 U 
Template cDNA (200x diluted) 1 µl 5000x diluted 
Nuclease-Fee Water 15.375 µl N/A 
Total volume 25 µl  
 

Table 2.6 PCR primers 

Primer name Primer sequence 
Anchor oligodT16 5’NVTTTTTTTTTTTTTTT3’ 
ATPase forward 5’ACATCGACACCATCAACCAA3’ 
ATPase reverse 5’ACAACTAGGGGCTGGTCAGA3’ 
 

 

Figure 2.3 Thermal profile of the two step PCR reac tions 

Two step PCR protocol was used when quality of cDNA or primers were tested. This 
protocol was as similar as possible to the protocol used for qPCR analyses. 
 

Table 2.7 Composition of the stock solution (5x con centrated) of TRIS base 

boric acid EDTA buffer (TBA) 

Component Amount for 1 l 
TRIS base 53 g 
Boric acid 27.5 g 
EDTA (0.5 M, pH 8.0) 20 ml 
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2.4.4 qPCR 

qPCR expression analysis was carried out on a real time thermal cycler 

STRATAGENE Mx3000P (Agilent Technologies, Inc., Santa Clara, USA), using a 

SYBRgreen master mix and following the supplier’s instructions (SYBR®Premix Ex 

Taq™, Takara Bio Inc, Otsu, Japan) (see Table 2.8). The reaction mix was loaded 

onto 96-well plates (96 Multiply PCR plate natural, SARSTEDT AG & Co., 

Nümbrecht, Germany). Three technical and biological (independent batches of 

plants) replicates were run together with external standards (purified PM-H+-ATPase 

PCR product; see below) on the same plate. Samples were maintained for 10 s at  

95 °C as initial step, then 5 s at 95 °C and 30 s a t 60 °C through 45 cycles. After 

amplification, melting curves were recorded (95 °C 1 min then temperature gradient 

from 55 °C to 95 °C in 81 steps) to check product s ize and homogeneity, see also 

Fig. 2.4.  

 

Table 2.8 Components of qPCR reaction 

Component Final Volume Final concentration 
SYBR®Premix Ex TaqTM 6.25 µl 1x 
Forward primer (10 mM) 0.25 µl 0.2 µM 
Reverse primer (10 mM) 0.25 µl 0.2 µM 
Rox Dye II 0.25 µl N/A 
Template cDNA (200x diluted) 1 µl 2500x diluted 
Nuclease-Free Water 4.5 µl N/A 
Total volume 12.5 µl  
 

 

Figure 2.4 Thermal profile of qPCR reactions 

Magnifying glass symbols indicate detection sites of SYBR Green fluorescence  
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 To quantify the number of mRNA transcripts of the target gene (PM-H+-

ATPase), cDNA samples which contained known copy numbers of PM-H+-ATPase 

cDNA molecules were required. This external standard was obtained by purifying 

PM-H+-ATPase PCR product and a pCR®8/GW/TOPO construct that contained the 

ATPase PCR product as insert. Initially, the plasmids were used as an alternative 

external standard in addition to purified PM-H+-ATPase. However, preliminary 

experiments showed that purification of plasmids from E. coli cells did not yield 

sufficiently pure product to use it as external standards. 

 To obtain purified ATPase PCR product, PCR was performed in 50 µl 

volume as described above using colourless reaction buffer. After the quality of PCR 

product was checked by running the samples on an agarose gel, the PCR product 

was cleaned with a NucleaSpin®Extract II PCR clean-up / Gel extraction kit 

(Macherey-Nagel GmbH & Co. KG, Germany) following the manufacturer’s 

instructions. The purified DNA was eluted from the NucleaSpin®Extract II Column 

with nuclease free water. The DNA content was measured with Nanodrop® 

(ThermoFisher Scientific Inc., Waltham, USA) and the concentration / copy number of 

cDNA molecules was calculated from the expected molecular weight of the cDNA 

product for PM-H+-ATPase (100,587 g mol-1). From this purified stock, dilutions of 

0.5, 5, 50, 5·102, 5·103, 5·104 and 5·105 copy µl-1 were prepared. 

 

2.4.5 Analysis of qPCR data 

An absolute quantification method was used to compare the PM-H+-ATPase 

expression between elongation zone and fully developed emerged blade. This 

approach was chosen in favour of the conventional ∆-Ct approach (Pfaffl, 2001) 

because the generally most suitable reference gene of expression e.g. ubiquitin, 

gave more than one PCR product due to the existence of poly-ubiquitins. Using the 

Genevestigator (http://genevestigator.com) online application this problem (Hruz et 

al., 2011) could not be solved. 

 To further relate the copy number of transcripts to a biologically relevant 

size, qPCR results were expressed per cell or per mm2 plasma membrane surface. 

The total number of cells and plasma membrane surface contained in the plant 

material which was used for extraction was calculated based on the water content of 

leaf tissue, protoplast number and stereological electron and light microscopic 

analyses as detailed in section 2.5. 
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2.5 Cell size and tissue ratio measurements 

Cell size and tissue ratio in different leaf regions (elongation zone and emerged leaf 

blade) were determined and data combined with published data to calculate the total 

number of cells which were contained in samples used for qPCR analysis. 

 

2.5.1 Mesophyll and epidermis cell size 

The diameter of mesophyll cells was measured on living protoplasts with the help of 

Scion Image for Windows 4.0.3.2 (http://www.scioncorp.com) software. The data 

were then combined with data obtained by Volkov et al. (2007, 2009) for the same 

barley cultivar (Golf) and data obtained by Kavanagh (2010) through stereological 

electron-microscopic analyses. Epidermal cell size was calculated based on 

stereological results of Kavanagh (2010) and a light-microscopic study of Fricke & 

Flowers (1998) on the same barley cultivar (Golf) studied. 

 

2.5.2 Tissue ratio calculation in elongation zone and emerged blade 

The percentage of cross-sectional leaf volume occupied by leaf tissues (epidermis; 

mesophyll including vascular parenchymateous bundle sheath; vascular bundles 

except parenchymateous bundle sheath) and intercellular air space was determined 

on paraffin-embedded toluidine blue-stained cross sections (few micrometers thick) 

with the help of Adobe® Photoshop® 7.0.1 and Scion Image for Windows 4.0.3.2 

software. By assuming that intercellular air spaces did not contain any significant 

amount of liquid, but that almost all liquid was contained within tissues, it was 

possible to calculated the total water content (and approximate) volume of each 

tissue used for RNA extraction since the water content of leaf samples had been 

determined. 

 

2.5.3 Cell size and plasma membrane surface estimation for qPCR 

analysis 

Mesophyll cells volume and surface were calculated as they were spheres using the 

equation of (π/6)d3 for volume and πd2 for surface. Epidermis cells were treated as 

long rods. In the total cell volume different cell types were present as their corrected 

tissue share. Corrected tissue share was calculated as dividing the tissue share by 

(1-share of air space) because air space did not contains any living plant cell. The 
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whole calculation and data can find in the Results at section 3.3.2 and in the 

Appendix. 

 

2.6 Plasma membrane isolation 

Plasma membranes were isolated from barley seedlings following the approach 

developed by Kjellbom & Larsson (1984) and Yan et al., (1998). All steps were 

performed under cold conditions. For each plasma membrane isolation between 1.5 

– 6 g of plant material was required (elongation zone; emerged blade). Between   

200 - 400 barley seedlings had to be grown and harvested in each experiment.  

 

2.6.1 Plant harvest 

Plant tissues, elongation zone (basal 40 mm without the lower 1 - 2 mm, containing 

meristematic zone) and emerged blade (leaf blade without the lower and upper 1 cm) 

of barley (cv Jersey) leaf three were harvested into 50 ml ice cold homogenisation 

buffer (all components are listed in Table 2.9). The tissues were gently vacuum 

infiltrated (3 times using a laboratory water jet vacuum pump) and used immediately 

for plasma membrane isolation.  

 

Table 2.9 Composition of the homogenisation buffer used for membrane 

isolation 

Component Final concentration 
Sucrose 500 mM 
EDTA 2 mM (from 200 mM stock) 
Glycerol 10 % (v/v) 
BSA 0.5 % (w/v) 
DTT 2 mM 
PMSF 1 mM (prepared freshly from 12 mg ml-1 EtOH stock) 
β-mercaptoethanol 5 mM 
Non-soluble PVP 1 % (w/v) 
Na-ascorbate 0.1 % (w/v) prepared freshly 
HEPES-KOH 50 mM set to pH 7.8 
 

2.6.2 Preparation of microsomal fraction 

Tissues were homogenised in the homogenisation buffer with a razor blender          

(3 times 25 sec). The homogenate was filtered through four layers of gauze and one 

layer of Miracloths (Fisher Scientific). The filtrate was centrifuged at 11,500 g for 10 

min at 4 °C (Sigma 3K15 and 3K10 bench top centrifu ge, fixed angle rotor). The 

supernatant was collected and centrifuged at 30,000 rpm (~82,000 g) in a     
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Beckman L7-65 ultracentrifuge for 40 min with a SW40Ti swinging bucket rotor. The 

resulting microsomal pellet was resuspended in phase buffer (Table 2.10). 

 

Table 2.10 Composition of the phase buffer used for  membrane isolation 

Component Final concentration 
Sucrose 330 mM 
KCl 3 mM 
KH2PO4 5 mM 
K2HPO4 5 mM 
KOH To adjust buffer to pH 7.8 
 

2.6.3 Purification of plasma membrane vesicles 

The microsomal fraction was further fractioned by a two-phase aqueous dextran      

T-500 and PEG-3350 system. From the polymers, 20 % (w/w) (dextran) and 40 % 

(w/w) (PEG) stock solutions were made in phase buffer. The final concentration of 

both polymers was 6.1 % (w/w) in the start tube, taking into account dilution through 

addition of phase buffer and resuspended microsomal fraction. The final weight of the 

tube was 12 g. The tube was mixed by inversion 30 times and the phase separation 

was carried out by centrifugation at 1,500 g at 4 °C (Sigma 3K15 and 3K10 bench top 

centrifuge with swinging bucket rotor) for 25 min. The upper phase was transferred 

into a new tube and completed to 12 g with fresh lower phase (prepared separately 

with the help of extraction funnel). The separation was done as before but for 15 min, 

and this purification step was repeated 3 - 4 times until the upper phase became 

clear and did not show any green colour (which would have been indicative of 

contamination with chloroplast membranes) (Fig. 2.5). The final upper phase was 

diluted 3 - 4x with phase buffer and ultracentrifuged (35,000 rpm, 1 h). The pellet was 

resuspended in resuspension buffer (Table 2.11) and washed by ultracentrifugation 

(35,000 rpm, 1 h) two times in resuspension solution. The final purified pellet was 

resuspended in 50 - 150 µl resuspension buffer and divided into aliquots, frozen in 

liquid nitrogen and stored at -80 °C.  

Table 2.11 Composition of the resuspension buffer u sed for membrane 

isolation 

Component Final concentration 
Sucrose 330 mM 
KCl 3 mM 
KOH To set pH 7.8 
 



 - 41 - 

 

Figure 2.5 Five purification steps during plasma me mbrane isolation.  

The upper phase becomes less and less green (indicative of thylakoid 
contamination). After the 5th step the upper phase is clear, no green colour is seen. 
 

2.7 Determination of the total protein content of p lasma 

membrane vesicles 

2.7.1 Bradford method 

The protein content of plasma membrane preparation was estimated using the 

method of Bradford (Kruger, 2002). The reagent was prepared and filtered through 

Whatman no. 1 filter paper. It was stored at room temperature in an amber bottle and 

used within weeks. The composition of the reagent is given in Table 2.12. The 

assays were carried out in duplicates in 1.1 ml final volume. For the calibration curve 

0, 1, 2, 4, 6 and 8 µg bovine serum albumin (BSA) was used as standards. 

Absorbance was measured at 595 nm between 5 to 15 min following addition of 

Bradford reagent to samples (PerkinElmer Lambda25 UV/VIS Spectrophotometer) 

 

Table 2.12 Composition of Bradford reagent 

Component Amount of the component 
Coomassie Brilliant Blue G250 100 mg dissolved in 50 ml 95 % ethanol 
Phosphoric acid 85 % 100 ml 
Distilled water Made up to 1 l 
 

2.7.2 Densitometric analysis of Laemmli gels 

The final values of protein concentration (used for ATPase assay, densitometry on 

polyacrylamide gels and Western blot analysis) were calculated from Laemmli gels 

(Sárvári et al, unpublished) using the modified protein solubilisation described below. 

Known volume of membrane vesicle sample (determined based on protein 

measurement using Bradford method, usually between 5 - 30 µl) were run on a 

gradient SDS polyacrylamid gel together with protein standards (Sigma). The amount 
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of total membrane protein was calculating by densitometry by Phoretix 4.01 software 

(Phoretix International). A typical gel photo is shown in Fig. 2.6. 

 

 

Figure 2.6 Typical gel for the measurement of prote in content of plasma 

membrane samples 

Coomassie Brilliant Blue R250 stained SDS gels were used to determine the total 
membrane protein content of different samples through a densitometric approach. EB 
– emerged leaf blade of leaf three; EZ – elongation zone of leaf three; L2 – mature 
blade of leaf two; S – Sigma protein standard, with a total protein content of 17.5 µg 
(2.5 µg each band) and proteins of molecular weights 66 (uppermost band), 45, 36, 
29, 24, 20.1 and 14.2 kDa (lowermost band). 
 

2.8 Polyacrylamide gel electrophoresis (PAGE) 

Qualitative and quantitative analyses were carried out on isolated plasma membrane 

vesicles using polyacrylamide gel electrophoresis (PAGE). 

2.8.1 Gradient polyacrylamide gel electrophoresis (PAGE) 

A gradient polyacrylamide gel electrophoresis was performed based on (Laemmli, 

1970), with some modification in the solubilisation of membrane protein, to check the 

quality of isolated plasma membrane fraction and quantify its (total) protein content. 

 

2.8.1.1 Solubilisation of membrane protein 

To optimise the solubilisation of plasma membrane protein, the approach taken by 

Kjellbom & Larsson (1984) was followed. TritonX®-100 detergent was added to the 

Laemmli buffer. Equal volumes of 0.1 % TritonX®-100 and plasma membrane 

suspension were mixed and vortexed. The mixture was then combined with an equal 

volume of Laemmli buffer (Table 2.13), incubated at room temperature for 30 min 
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and heated (90 °C) three times for 10 s each follow ed by vortexing. Non-solubilised 

protein was removed by centrifugation (5 min at 10,000 g) and the supernatant used 

for PAGE. With this modified solubilisation procedure, almost all protein was 

solubilised and no pellet was observed after centrifugation. In addition, gel bands 

stained with Coomassie Brilliant Blue R250 were much sharper and distinct (Fig. 2.7). 

Table 2.13 Composition of Laemmli buffer used for P AGE 

Component Concentration in the agent Final concentr ation 
TRIS-HCl pH 6.8 2.3 % (w/v) 0.76 % (w/v) 
SDS 7.15 % (w/v) 2.38 % (w/v) 
Glycerol 30 % (v/v) 10 % (v/v) 
DTT 5.5 % (w/v) 1.83 % (w/v) 
Bromophenol blue 0,003 % (w/v) 0.001 % (w/v) 

 

 

Figure 2.7 Coomassie Brilliant Blue R250 stained gr adient PAGE gels which 

were loaded with plasma membrane protein solubilise d in two different ways 

Plasma membrane protein was solubilised using the conventional Laemmli 
solubilisation method (A) or a modification involving TritonX®-100 (B). The bands are 
sharper and more distinct using the modified solubilisation method. Samples were 
derived from the elongation zone (EZ) and emerged blade (EB) of leaf three of 
barley. 
 

2.8.1.2 Gradient PAGE gel system 

Solubilised proteins were separated on 7 cm long 10 - 18 % gradient gels in a 

MiniProtean (BioRad Laboratories, Inc.) gel running system based on Laemmli 

(1970) under 20 mA / gel at 4 °C until the bromphen ol blue front exited the gel (after 

about 2 h). The components of the gel are listed in Table 2.14. The acrylamide / bis-

acrylamide ratio was 30:0.8. 
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Table 2.14 Components of the gradient PAGE system 

Stacking gel     
 Component Concentration in the gel 
 Acrylamide 5 % (w/v) 
 TRIS-HCl, pH 6.8 125 mM 
 SDS 0.1 % (w/v) 
 TEMED 0.01 % (v/v) 
 APS (ammonium persulfate) 0.1 % (v/v) 
 

Separation gel     
 Component Concentration in the gel 
 Acrylamide 10 - 18 % (w/v) linear gradient 
 TRIS-HCl, pH 6.8 375 mM 
 SDS 0.1 % (w/v) 
 TEMED 0.013 - 0.017 % (v/v) gradient 
 APS 0.04 % (v/v) 
 

Gel running buffer     
 Component Concentration in the buffer 
 TRIS, pH 8.3 25 mM 
 Glycine 192 mM 
 SDS 0.1 % (w/v) 
 

The polyacrylamide gel was stained overnight with Coomassie Brilliant Blue R-250 

and washed 3 - 4 times with washing solution (Table 2.15) on a horizontal swinging 

table (BIOSAN Multi MR-12). After the final washing step the gel was placed into 

distilled water for 20 min and then scanned with an UMAX Aster-1220S gel scanner. 

Each gel was stored for longer-term use in 7 % acetic acid solution.  

 

Table 2.15 Components of the solutions for Coomassi e Brilliant Blue gel 

staining 

Coomassie brilliant blue stain  
 Component Concentration  
 Coomassie brilliant blue R-250 1 % (w/v) 
 Methanol 41.67 % (v/v) 
 Acetic acid 16.66 % (v/v) 
 Distilled water 41.67 % (v/v) 
 

Washing buffer  
 Component Concentration  
 Methanol 30 % (v/v) 
 Acetic acid 10 % (v/v) 
 Distilled water 60 % (v/v) 
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2.8.2 Linear (12 %) PAGE 

For Western blotting at UCD, Dublin, linear (12 %) polyacrylamide gels were 

used for protein separation. Purified and solubilised plasma membrane samples were 

run on the polyacrylamide gels using a HoeferTM SE260 gel running system (Hoefer 

Inc, USA) at 240 V and 80 mA for 1.5 h using the same gel running buffer as 

described before (Table 2.14). For gel electrophoresis a 12 % separation and 4 % 

stacking gel were prepared following the instructions of the manufacturer (ProtoGel® 

30 % Kit, National Diagnostics, U.S.A.). Each well was loaded with 5 µg total 

membrane protein. Gels were not stained, but separated proteins were blotted to 

nitrocellulose membrane to quantify PM-H+-ATPase content of the samples by 

Western blot analysis.  

 

2.9 ATPase assay 

The ATPase assay was designed based on the method described by Sarkadi et al. 

(1992) and Pitann et al. (2009b). The ATP-dependent release of inorganic phosphate 

was followed. Precisely 3 µg total membrane protein was incubated in 100 µl reaction 

buffer (Table 2.16) at 28 °C for 60 min in a BIOSAN  TS-100 Thermo Shaker. The 

reaction was stopped through addition of 50 µl 10 % (w/v) phosphate free SDS. For 

colour development, 400 µl colour developing reagent (Table 2.16), 1 ml ultra-pure 

water and 200 µl 1 % freshly made ascorbic acid solution were added in succession 

to each reaction tube. Colour development occurred at 37 °C and was completed 

within 20 - 30 min. Within 1 min following the end of colour development, the 

absorbance of samples was read at 880 nm using a PerkinElmer Lambda25 UV/VIS 

Spectrophotometer. Appropriate standards (0, 10, 20, 40, 60 nmol Pi per sample of 

K2HPO4) were always run in parallel to samples and used to convert absorbance 

readings into nmol Pi generated. 



 - 46 - 

 

Table 2.16 ATPase reaction buffer and colour develo pment reagent 

ATPase reaction buffer  
 Component Concentration  
 MES-KOH, pH 6.5 10 mM 
 MgSO4 5 mM 
 Sodium ATP 5 mM 
 KCl 50 mM 
 KNO3 50 mM 
 Brij58 0.02 % (w/v) 
 NaN3 10m M 
 

Colour developing reagent for ATPase reaction  
 Component Concentration  
 H2SO4 2.5 M 
 Ammonium molybdate 1 % (v/w) 
 Potassium antimony (III) oxid tartrate 0.014 % (v/w) 
 

2.10 Approach for light microscopy 

2.10.1 Fixation of leaf tissue 

Leaf pieces (1 cm in length) from the elongation zone and emerged blade were fixed 

in 4 % formalin (overnight, 4 °C). To facilitate th e penetration of the fixative, samples 

were vacuum infiltrated (3 times for 10 sec) using a Millipore WP6122050 vacuum 

pump (Millipore, USA).  

 

2.10.2 Dehydration and embedding 

Dehydration of leaf tissue was achieved through an ethanol series, and tissues were 

cleared with Neo-clear® and embedded into paraffin wax. Details of the protocol are 

given in Table 2.17. Sections of 5 µm thickness were cut using a MicroTec® 4060 

rotary microtome (MicroTec Laborgeräte GmbH, Germany). Sections were mounted 

on slides and dried at 37 °C (overnight) and staine d. For immunostaining, samples 

were mounted on APTES (3-aminopropyltriethoxysilane) coated slides, prepared 

based on the instruction of the supplier (Sigma-Aldrich), to prevent tissue damage 

during the overnight staining procedure. Slides were washed in absolute ethanol 

before coating and were immersed into 2 % APTES (dissolved in absolute ethanol) 

for 5 s, briefly rinsed in ethanol, washed in running tap water (5 min), rinsed in 

distilled water and dried overnight at 55 - 60 °C. 
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Table 2.17 Fixation and embedding of leaf samples f or immunohistochemistry 

Fixation  
 Solution Duration 
 4 % Formalin Overnight, 4 °C  
Dehydration  
 Solution Duration 
 30 % Ethanol 1 h 
 50 % Ethanol 1 h 
 70 % Ethanol 1 h 
 90 % Ethanol 1 h 
 96 % Ethanol 1 h 
 Absolute Ethanol 2x 1 h 
Clearing  
 50 - 50 % Ethanol Neo-clear® Overnight, 4 °C  
 Neo-clear® 2x1 h 
Infiltration  
 Neo-clear®-wax 30 min 
 50 - 50 % Nea-clear®-wax 1 h, 65 °C  
 100 % wax 2x 1 h, 65 °C  
 

2.10.3 Staining with toluidine blue 

Paraffin-embedded sections were rehydrated, stained with 1 % (w/v) aqueous 

toluidine blue, washed, dehydrated, cleared and mounted in Entellan® mountant 

(Table 2.18). Sections were examined with a Leica DMIL and Olympus BX60 

microscope. 

Table 2.18 Staining embedded leaf sections with tol uidine blue 

Rehydration  
 Solutions Duration 
 Neo-Clear® A 10 min 
 Neo-Clear® B 10 min 
 Absolute ethanol 5 min 
 96 % ethanol 5 min 
 70 % ethanol 2 min 
 Running water 5 min 
Staining  
 1 % aqueous toluidine blue 10 min 
 Running water 5 min 
Dehydration  
 70 % ethanol Dip twice 
 96 % ethanol Dip four times 
 Absolute ethanol 1 5 min 
 Absolute ethanol 2 5 min 
 Neo-clear® C 5 min 
 Neo-clear® D 5 min 
Mounting  
 Entellan® Mount under cover slip 
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2.11 Immunological methods for PM-H +-ATPase detection 

2.11.1 Qualitative Western blot analysis 

At Eötvös University the PM-H+-ATPase content of the isolated membrane vesicles 

and identity and molecular weight of PM-H+-ATPase protein was determined using 

Western blotting. Gradient SDS polyacrylamide gels were run as described above. 

Separated proteins were transferred onto nitrocellulose membrane (HyboundTM-C 

Extra, Amesham-Pharmacia, USA) using the Mini Transfer Blot (BioRad 

Laboratories, Inc.) system. The composition of blotting buffer is given in Table 2.19. 

Protein transfer was carried out in an ice-cold buffer tank (4 °C) at 90 V constant 

voltage (I < 0.4 A) for 2 - 3 h. 

 

Table 2.19 Composition of blotting buffer used for Western analyses 

Component Concentration  
TRIS-HCl, pH 8.3 25 mM 
Glycine 192 mM 
Methanol 10 % (v/v) 
SDS 0.01 % (w/v) 
 

 The blotted and washed nitrocellulose membrane was blocked with 3 % 

(w/v) gelatine in TRIS buffer saline (TBS) for 1h (composition is given in Table 2.20). 

As primary antibody, plant PM-H+-ATPase specific polyclonal rabbit IgG (Agrisera, 

Uppsala, Sweden) was used  at 1,000x dilution in TBS buffer containing 1 % gelatine 

(overnight; room temperature). Non-bound antibody was removed by washing the 

membrane in Tween®20 TRIS buffer saline (TTBS) (Table 2.21), twice for 20 min, 

followed by two washes for 20 min each in TBS. Horseradish peroxidase (HRP)-

labelled anti rabbit IgG produced in goat (BioRad Laboratories, Inc.) was used as 

secondary antibody. It was used at 3,000x dilution in TBS buffer (2 h). The 

membrane was washed in the same way as described for primary antibody and was 

then developed in developing solution (0.06 % (w/v) HRP Colour Development 

ReagentTM (BioRad Laboratories, Inc.)). The colour development reagent contained 

4-Cl-1-naftol as active component and was dissolved in -20 °C methanol and     

0.015 % H2O2 in TBS. The bands were digitalized (HP Scanjet) before the membrane 

had dried out. 
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Table 2.20 Composition of TRIS buffer saline buffer  (TBS) 

Component Concentration  
TRIS-HCl, pH 7.5 20 mM 
NaCl 150 mM 
 

Table 2.21 Composition of Tween ®20 TRIS buffer saline buffer (TTBS) 

Component Concentration  
TRIS-HCl, pH 7.5 20 mM 
NaCl 150 mM 
Tween®20 0.005 % (w/v) 
 

2.11.2 Quantitative Western blot analysis 

Plasma membranes could only be isolated at Eötvös University, yet the more 

sensitive Western blot system was available at UCD, Dublin. Therefore, Western 

analyses of plasma membrane fractions were carried out not only at Eötvös 

University but also at UCD using plasma membrane vesicle samples which had been 

brought back (flight back from Hungary) on dry ice. The Western analyses system at 

UCD was the same one as described by Collins et al. (2011). 

The separated proteins were blotted onto nitrocellulose membrane (Whatman® 

PROTRAN BA 85) using a HoeferTM TE22 blotting system, at 40 V and 120 mA 

overnight at room temperature. The gel running buffer contained 20 % (v/v) 

methanol. Blotted nitrocellulose membranes were stained with Ponceau S stain 

(Sigma) and washed with washing buffer (0.2 % Tween®20 containing gel running 

buffer). Thereafter, membranes were blocked with 5 % skimmed milk powder in 

washing buffer for 1 h, at 30 rpm on a horizontal shaker. Primary antibody (PM-H+-

ATPase specific polyclonal rabbit IgG antibody; Agrisera, Sweden) was applied 

overnight at 2,500x dilution in washing buffer containing 5 % milk powder, at 30 rpm 

shaking. Non-bound primary antibody was removed through washing three times   

(10 min each; 70 rpm) in washing buffer. Peroxidase-labelled anti rabbit IgG 

produced in goat (Invitrogen Corporation, Carlsbad, California USA) was applied as 

secondary antibody at 10,000 x dilution in washing buffer containing 5 % milk powder 

(2 h; 70 rpm). After three final washes (10 min each) in washing buffer, bound 

secondary antibody was visualised through an EZ-ECL Chemiluminescence 

Detection Kit for HRP (Biologica Industries, Israel) and LAS-4000 Luminescence 

Image Analyser (Fujifilm, USA). 
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2.11.3 Immunostaining of paraffin-embedded sections 

PM-H+-ATPase tissue specific localisation was determined on paraffin-embedded 

samples using immunohistochemistry. The same PM-H+-ATPase specific primary 

antibody was used as for Western blotting. Anti rabbit IgG alkaline phosphatase- 

labelled antibody, produced in goat (Sigma), was applied as secondary antibody as 

detailed in Table 2.22. Colour development was carried out with SIGMAFAST™ Fast 

Red TR / Naphthol AS-MX Tablets (Sigma) following the instructions of the 

manufacturer. Colour development was stopped with 7 % acetic acid. After a 5 min 

washing in running tap water, samples were mounted in 80 % glycerol in phosphate 

buffered saline (PBS, its composition is given in Table 2.23) under a cover slip. 

 

Table 2.22 Protocol for immunostaining of embedded leaf sections 

Rehydration  
 Solutions Duration 
 Neo-Clear® A 10 min 
 Neo-Clear® B 10 min 
 Absolute ethanol 5 min 
 96 % ethanol 5 min 
 70 % ethanol 2 min 
 Running water 5 min 
Blocking  
 5 % (v/v) goat serum in PBS 10 min 
Staining  
 Primary antibody (100x diluted) in   

2.5 % (v/v) goat serum in PBS 
Overnight, 4 °C  

 Washing with PBS 3x 5 min 
 Secondary antibody (30x diluted) in 

2.5 % (v/v) goat serum in PBS 
2 h 

 Washing with PBS 4x 5 min 
Colour development  
 SIGMAFAST™ Fast Red 2 - 10 min 
 5 %  (v/v) acetic acid 1 - 5 min 
 Running water 5 min 
Mounting  
 80 % glycerol in PBS Mount under cover slip 
 

Table 2.23 Composition of phosphate buffer saline ( PBS; pH 7.4) 

Component Concentration (mM) Concentration (g / l) 
NaCl 137 8.00 
KCl 2.7 0.20 
Na2HPO4x2H2O 8.1 1.44 
KH2PO4 1.76 0.24 
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2.11.4 Densitometric analysis of Western blots 

Densitometric analysis of Coomassie-stained polyacrylamide gels and Western blots 

was carried out with a Photetix 1D Advanced 4.01 system (Phoretix International, 

Newcastle, UK). Raw data were processed using Microsoft® Office Excel 2003 

(Microsoft Corporation, USA) and Origin®6.1 (OrigiLab Corporation, USA) statistical 

software.  

 

2.12 Protoplast experiments 

2.12.1 Protoplast isolation 

Protoplasts were isolated according to Volkov et al. (2007), with some modifications. 

 Osmolality of the isolation buffer, incubation time and shaking frequency were 

optimised. Cell walls and middle lamellae from tissue of the elongation zone were 

digested in 500 mOsm kg-1 isolation buffer with 90 rpm shaking frequency over a 

period of 2 - 3 hours in the dark, while pieces of the emerged blade were incubated in 

isolation buffer of 600 mOsm kg-1 osmolalility, over a 1 h period and at 160 rpm 

shaking frequency in the dark.  

 Cell wall digestive enzymes (Table 2.24) were dissolved in isolation medium 

(components are in Table 2.25) overnight, at 4 °C, without any shaking or vortexing. 

Prior to use, enzyme solutions were centrifuged (5 min, 10,000 g, mini Spin plus, 

Eppendorf AG, Hamburg, Germany) and the supernatant was used for cell wall 

digestion. 

 

Table 2.24 Composition of protoplast isolation buff er 

Component Concentration  
Murashige and Skoog salt 4 g l-1 
MES 10 mM 
Sorbitol 500 - 600 mOsm kg-1 
PVP K30 0.025 % (w/v) 
BSA 0.1 % (w/v) 
KOH Used to adjust to pH 5.7 
 

Table 2.25 Enzyme concentrations in protoplast isol ation buffer 

Enzyme Concentration  
Cellulase 1 % (w/v) 
Driselase 0.5 % (w/v) 
Pectolyase 0.05 % (w/v) 
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2.12.2 Purification of protoplasts 

After enzymatic digestion of the cell wall, protoplast were passed through a 100 µm 

mesh and washed with 4 - 5 volume isolation buffer. Protoplasts were collected by 

centrifugation (30 g, 2 min; Eppendorf 5810 R, swinging bucket rotor) and 

resuspended in 0.3 – 1 ml volume using isolation buffer. Viability of protoplasts was 

tested using 0.001 % (w/v) fluorescein diacate (Larkin, 1976), which was prepared 

from a 0.1 % (w/v) acetone stock. Protoplasts were viewed with a Leica DMIL 

fluorescence microscope equipped with an excitation filter (450 - 490 nm) and 

suppression filter (515 nm). 

 Protoplasts were counted with a Neubauer ultra plane counting chamber 

(Hausser Scientific) under a Leica DMIL microscope. These data were used to relate 

expression values obtained through qPCR experiments to protoplast number. 

 

2.12.3 Calculation of size and surface of the protoplast 

The diameter of protoplasts was measured on micrographs taken with a Leica DMIL 

microscope with the help of Scion Image for Windows 4.0.3.2 software. From the 

diameter (d), the protoplast volume, ((π/6)d3) and surface (πd2) could be 

calculated,due to the almost perfectly spherical shape of protoplasts.  

 

2.13 Statistical analysis 

Statistical analysis was carried out with Origin® 6.1 (OriginLab Corporation) software, 

using paired and independent Student’s t test and one-way ANOVA. 
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3 Results 

 

3.1 Apoplastic pH measurements 

Apoplast pH was measured through three independent approaches: in-vitro gel 

system, electrophysiology and confocal microscopy. The in-vitro gel system involved 

incubating leaf segments in agarose containing a pH indicator that made it possible 

to directly relate changes in apoplast acidity to changes in growth. With pH 

microelectrodes precise values of apoplast pH in growing and non-growing leaf 

regions could be obtained. Finally, confocal microscopy involved loading plants with 

pH fluorescence probes and had the advantage that intact plants could be studied. 

 

3.1.1 In-vitro agarose gel system 

The base 70 mm of leaf three was placed in agarose gel medium containing the pH 

indicator bromocresol purple. Growth was monitored parallel to acidification of the 

medium. The basic assumption underlying this experiment was that any changes in 

the extent of acidity of the medium adjacent to leaf tissue reflected similar changes in 

the net H+ production rate (due to PM-H+-ATPase activity) in the tissue’s apoplast. 

‘Extent’ of acidity can refer to either or both, changes in pH and changes in the area 

of medium which was acidic. Gel images of a typical set of experiments, involving 

application of fusicoccin and vanadate, are shown in Fig. 3.1 A-C.  

There was a non-specific acidification of medium with a maximum acidification 

at the first hour following the placement of unpeeled leaf segments into the agarose. 

This acidification, which most likely reflected changes in apoplast pH caused by the 

unpeeling and which was not restricted to the base 40 mm (leaf elongation zone), 

disappeared within 4 - 5 h and then reappeared in a growth-dependent manner (Fig. 

3.2 A and B). Growth dependency of acidification was also tested by applying an 

initial (0 - 24 h) cold treatment. There was no acidification of medium and no growth 

either during the cold treatment (Fig. 3.3). As soon as the cold treatment finished, 

growth resumed parallel to the acidification of medium (Fig. 3.3). 
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Figure 3.1 Leaf growth and apoplast acidification a s analysed through the 

agarose gel system 

Typical images of an experiment involving control leaves (A) and leaves which were 
placed in agarose containing 5 µM fusicoccin (B) and 500 µM vanadate (C). Scale 
bar is 1 cm long. 
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Figure 3.2 Time course of growth and acidification of in-vitro gel experiments 

Typical time course of changes in leaf length (A) and medium acidification (B) in 
response to treatments are shown. Values are averages and standard deviations 
(error bars) of 27 (control) and 10 (treatments) plants. 
 

 

Figure 3.3 Leaf growth and acidification in agarose  gel under cold treatment 

Typical images of an experiment involving cold treated leaves 0–24 h and under 
control condition 24 - 48 h (A). Scale bar represents 1 cm. Response of medium 
acidification and change in leaf length (growth) to cold treatment and subsequent 
incubation in the growth chamber (B); values are averages and standard deviations 
(error bars) of 10 plants. 
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A range of treatments was tested for their effect on medium acidification and 

leaf growth (Fig. 3.4). Fusicoccin increased significantly leaf elongation rate and 

medium acidity. Vanadate caused the opposite effect, as did caesium, which inhibits 

K+ channels (Szczerba et al., 2009; Volkov et al., 2009). 

 

Figure 3.4 Average rate of leaf elongation (A) and medium acidification (B) in 

leaves exposed to fusicoccin, vanadate and caesium treatments as tested 

through the agarose gel system 

All media contained 10 mM KCl and test reagents were applied at 5 µM (fusicoccin), 
500 µM (vandate) or 5 mM (CsCl). Values are averages and standard deviations of 
20 (control), 9 (fusicoccin), 7 (vanadate) and 14 (CsCl) plants. Different letters show 
a statistically significant difference at p < 0.05 (Student’s t-test and ANOVA). 
 

Although auxin-induced growth is often related to cell wall acidification and 

referred to as ‘acid growth’, no such stimulation of either growth or acidification was 

observed in the present study. Using in-vitro gel system and applying the artificial 

auxin, α-Naphthaleneacetic acid (NAA), growth did not change and acidification was 

similar to control. If anything, acidification of NAA treated plants continuously 

decreased whereas control plants started to slightly decrease after 5 h (Fig. 3.5). 

Auxin-induced growth was not detected either when the experiment was 

carried out in liquid medium (10 mM KCl and 1 mM CaCl2 without agarose and 

bromocresol purple) to check whether the absence of any auxin effect was due to 

conditions associated with the agarose gel. To check whether it was possible to 

induce any auxin-specific effects, coleoptiles were tested since these represent the 

classical ‘acid growth’ system. A significant increase in growth was measured      

(Fig. 3.6). 
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Figure 3.5 Effect of auxin on leaf growth and mediu m acidification using the   

in-vitro gel system 

Difference in growth (A) was not found between 5 µM NAA treated and control plants. 
Medium acidification was similar in auxin-treated and non-treated (control) leaves (B). 
Traces are average of 10 - 27 plants, error bars represent standard errors. 
 

 

Figure 3.6 Growth effect of auxin when applied in l iquid medium  

NAA (5 µM) effect on growth was tested in liquid medium on leaf (A) and coleoptile 
pieces (B). Measurements were carried out at 5 h and 24 h of incubation. Values are 
averages and standard deviations (error bars) of 4 leaf pieces and 40 coleoptile 
segments. Different letters show a statistically significant difference at p < 0.05 using 
Student’s t-test and ANOVA. 
 

3.1.2 Microelectrode measurements 

Microelectrode measurements of apoplastic pH in the growing leaf three showed that 

the pH in the elongation zone was by up to one pH unit lower than the pH in the 

emerged blade (Fig. 3.7 A). Apoplastic pH in the elongation zone depended on the 

K+ concentration in the bathing medium which was in direct contact with the leaf 

surface during measurements. At the lowest K+ concentration tested (0.1 mM), 

apoplast pH was 4.8. Apoplast pH increased with the K+ concentration of the 

medium. At 10 mM K+, apoplast pH in the elongation zone was 5.8 and 
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indistinguishable from the value in the emerged blade. In contrast to apoplast pH in 

the elongation zone, apoplast pH of the emerged blade did not change with bathing 

medium K+. When the pH of the bathing medium was adjusted to pH 7.0 using KOH 

(final K concentration of 0.3 - 0.5 mM) apoplastic pH in the elongation zone was 

between 4.8 and 5.2. This proved that the lower apoplastic pH measured in the 

elongation zone was independent from the pH of the bulk (bathing) solution which 

was in direct contact with the apoplast, when the solution did not contain any buffer 

component. When the pH of the bathing solution was adjusted to pH 7.0 using 100 

mM TRIS-HCl, including 0.1 mM KCl, the pH of the apoplast was 6.1 - 6.2 in both 

elongation zone and emerged blade (Fig. 3.7 B). Although this pH was lower by 

almost one pH unit than the pH of the bathing medium, this experiment showed that 

apoplast pH of the emerged blade was responsive to changes in the composition of 

the bathing medium and that the two were in direct contact. Bathing medium must 

have bypassed the cuticle and entered leaves through stomata. Growth of leaves on 

the microelectrode stage was not affected by K+ treatments, despite the K+-

dependency of apoplast pH (Fig. 3.8). 

 

Figure 3.7 Microelectrode analyses of apoplast pH i n the elongation zone and 

emerged blade-portion of leaf three of barley.  

Apoplast pH was measured in dependence of the K+ concentration (added as KCl) of 
the electrode bathing medium which was in direct contact with the leaf tissue 
analysed (A). Apoplast pH measured when buffered solutions were applied as 
bathing medium (B). Values are averages ±SD of 7 - 15 measurements obtained on 
3 - 6 plants of each treatment. Different letters show a statistically significant 
difference at p < 0.05 (Student’s t-test and ANOVA). 
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Figure 3.8 Growth rate of leaf three in response to  K+-treatments during micro 

pH measurements.  

Values are averages ±SD of 7 - 15 measurements obtained on 3 - 6 plants of each 
treatment. Different letters show a statistically significant difference at p < 0.05 
(ANOVA). 
 

Vanadate (Na3VO4) and fusicoccin were added to the bathing medium to test 

whether the lower pH in the apoplast of the elongation zone was dependent on the 

activity of the PM-H+-ATPase. Vanadate, which inhibits the PM-H+-ATPase, was 

tested at a concentration of 500 µM in presence of 0.1 mM KCl. Apoplast pH in the 

elongation zone increased from pH 4.8 to pH 5.8, precisely the pH value observed in 

the emerged blade (Fig. 3.9). Fusicoccin, which stimulates the PM-H+-ATPase 

(Marré, 1979; Würtele et al., 2003), was tested at a concentration of 5 µM in 

presence of 1 mM KCl. Apoplast pH was 5.2 and identical to the pH measured in 

absence of fusiccocin at 1 mM KCl in the bathing medium (Fig. 3.9). The rate of leaf 

elongation decreased in response to vanadate and increased in response to 

fusicoccin treatments (Fig. 3.10). This was observed for all experimental setups (Fig. 

3.10).  
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Figure 3.9 Microelectrode pH analyses in the leaf e longation zone of barley in 

response to sodium orthovanadate and fusicoccin tre atments 

The KCl concentration in the bathing medium was as indicated. Values are averages 
and standard deviations (error bars) of 12 (controls of 0.1 mM and 1 mM KCl), 4  
(500 µM vanadate) and 4 (5 µM fusicoccin) datasets of between 3 - 6 different plants 
each. Different letters show a statistically significant difference at p < 0.05 (Student’s 
t-test and ANOVA). 
 

 

Figure 3.10 Growth rate of leaf three of barley in response to vanadate and 

fusicoccin treatments as analysed through different  approaches 

Values are averages and standard deviations (error bars) of 13 - 60 (control), 3 - 8 
(vanadate) and 3 - 10 (fusicoccin) replicates. Different letters show a statistically 
significant difference at p < 0.05 (Student’s t-test and ANOVA). 
 

3.1.1 Confocal microscopy 

Acridine orange and 5(6)carboxyfluorescein are pH sensitive fluorescence dyes. 

They were used to test whether the apoplastic pH was lower in the elongation zone 

compared with emerged blade in intact barley plants. First, the system had to be 

calibrated. This was achieved by peeling epidermal strips from plants which had 

been grown for 24 h in the presence of 5(6)carboxyfluorescein and 48 h in presence 
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of acridine orange in the root medium to allow sufficient uptake of dye into leaf tissue. 

Exposure of epidermal strips to solutions of different pH showed (i) that dye had been 

taken up into the leaf apoplast and (ii) that the fluorescence intensity of dye in the 

apoplast changed in the physiological pH range, in the same manner as observed for 

dye in free solution (Fig. 3.11 A, B for acridine orange and Fig. 3.12 A, B for 

carboxyfluorescein). Fluorescence decreased with pH. Optical sections from the 

epidermis of intact third leaves showed that the fluorescence intensity, and by 

implication pH, were considerably lower in the apoplast of the elongation zone than in 

the apoplast of the emerged blade (Fig. 3.11 C-F for acridine orange and Fig. 3.12 C-

F for carboxyfluorescein). 

 It is possible that the difference in fluorescence intensity between leaf 

regions resulted not from differences in apoplast pH but from differences in the 

concentration of dye accumulated during the uptake period. This was tested by 

peeling epidermis strips from the elongation zone and emerged blade (leaf three) of 

dye-loaded plants and incubating the peels in pH 7.5 buffer solution. Peels were 

examined after a 30 min incubation period using a Leica epifluorescence microscope. 

The fluorescence intensity and by implication carboxyfluorescein and acridine orange 

concentration was similar in the epidermis of the two leaf regions; if anything, it was  

higher in the elongation zone (Fig. 3.13). This experiment showed that the lower 

apoplast pH in the epidermis of the elongation zone of intact, dye-loaded plants, was 

not the result of a lower fluorochrome concentration but reflected most likely a true 

difference in apoplast pH between the two leaf regions. Uptake of dyes through roots 

and accumulation in leaf tissue did not cause changes in leaf growth (Fig. 3.14 A, B). 
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Figure 3.11 Confocal microscopic analysis of apopla stic pH using acridine orange fluoresce pH 

sensitive fluorescence dye 

The pH sensitivity of fluorescence of dye as tested on sample droplets which contained 2.5 µM acridine 
orange and were buffered at the pH indicated (A). Confocal images of epidermal peels of the mature leaf 
one; following incubation of peels for 30 min in the solutions as shown in (B). Typical confocal images (C, 
E) and their heat map (D, F). Elongation (C, D) and emerged (E, F) region of leaf three of intact plants. 
Images containing scale bars show the original fluorescence image, while corresponding images without 
scale bars represent heat maps of images. 
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Figure 3.12 Confocal microscopic analysis of apopla stic pH using 5(6)carboxyfluorescein fluoresce 

pH sensitive fluorescence dye 

The pH sensitivity of fluorescence of dye as tested on sample droplets which contained 10 µM 
carboxyfluorescein and were buffered at the pH indicated (A). Confocal images of epidermal peels of the 
mature leaf one; following incubation of peels for 30 min in the solutions as shown in (B). Typical confocal 
images (C, E) and their heat map (D, F). Elongation (C, D) and emerged (E, F) region of leaf three of intact 
plants. Images containing scale bars show the original fluorescence image, while corresponding images 
without scale bars represent heat maps of images. 
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Figure 3.13 Carboxyfluorescein and acridine orange accumulation pattern in 

elongation zone and emerged blade 

The distribution of the pH sensitive probes (5(6)carboxyfluorecein, A, C and acridine 
orange, B, D) appears to be similar in the elongation zone (A, C) and emerged leaf 
blade (B, D). The dye was taken up through the roots of intact plants and the 
epidermal strips of leaf three were incubated (30 min) in pH 7.5 buffer prior to be 
viewed under the microscope (Leica DMIL; 450 - 490 nm excitation filter and 515 nm 
suppression filter). 
 

 

Figure 3.14 Effect of pH sensitive dyes on leaf gro wth rate 

Growth, as measured with the LVDT on intact plants (unpeeled leaf three) did not 
change after 48 h incubation of plants in nutrient solution containing 2.5 µM acridine 
orange (A); the same was observed for plants after 24 h incubation in nutrient 
solution containing 10 µM carboxyfluorescein. Values are averages of 3 replicates, 
and error bars represent standard errors. 
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 The pH sensitivity of fluorochrome 5(6)carboxyfluorescein and acridine 

orange was determined by fluorescence spectroscopy. Both fluorescein probes 

showed pH-sensitivity in the physiological pH range and had single peak spectra. 

Carboxyfluorescein showed a larger pH sensitivity in the pH range of interest 

compared with acridine orange (Fig. 3.15). 

 

Figure 3.15 pH sensitivity of fluorochromes 

Fluorescence spectra and pH sensitivity of 5(6)carboxyfluorescein (A) and acridine 
orange (B) was recorded. Both fluorochromes had pH sensitivity although 
carboxyfluorescein gave more explicit signal and better pH fidelity in the physiological 
pH range. 
 

3.2 LVDT analyses of growth responses to treatments  

3.2.1 Leaf elongation under different treatments 

The basic assumption underlying LVDT experiments was that the wet tissue paper 

which was soaked in test solution and in direct contact with the surface of the 

elongation zone of leaf three allowed the test solution to diffuse into the apoplast. 

The responsiveness of setup to treatments was tested through two types of 

experiment, one designed to increase (37 °C) and on e designed to reduce growth (1 

M NaCl). Elongation growth of grass leaves responds little to changes in ambient 

temperature but to the temperature close to the basal meristem (Stoddart & Lloyd, 

1986). Therefore, parts of a potato which had been heated to 37 °C in an incubator 

were placed round the leaf elongation zone without any direct contact between the 

potato and the barley seedling. Growth started to increase within minutes (Fig. 3.16 

A, B). With time, the potato cooled down and leaf elongation rate decreased. When 

finally 1 M NaCl was added to impose a severe osmotic stress, growth stopped 

instantly and remained zero or close to zero (Fig. 3.16 A, B).  

 



 - 66 - 

 

Figure 3.16 Testing the responsiveness of the LVDT setup to treatments which 

were expected to increase (37 °C) or stop growth (1  M NaCl) 

Average values (three plants) and standard deviations (error bars) (A) and a typical 
trace (B) are shown. The apoplastic bathing medium always contained 1 mM KCl. 
Different letters show a statistically significant difference at p < 0.001 (Student’s t-
test). 
 

Having tested the responsiveness of the LVDT setup, treatments were 

applied. In presence of 1 mM KCl in the test solution fusicoccin (5 µM) increased leaf 

elongation rate to 160 % the rate observed in control plants. Vanadate, CsCl and 

CsCl–vanadate double treatments caused a 50 % decrease in growth rate (Fig. 

3.17). The same was observed for the K+ channel blocker tetraethylammonium (TEA) 

and ammonium, which blocks high-affinity K+ transporters (NH4
+; HAK-type 

transporters (Kronzucker et al., 2003; Rodriguez-Navarro & Rubio, 2006; Szczerba et 

al., 2006).  
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Figure 3.17 The effect of test reagents in the apop lastic bathing medium on leaf 

growth as measured with the LVDT setup 

Average values and standard deviations of experiments (A) involving application of 
test reagents are shown (fusicoccin (5 µM, n = 3 plants), vanadate (VAN, 500 µM, 6 
plants), tetraethylammonium chloride (TEA, 50 mM, 6 plants), CsCl (40 mM, 4 
plants), CsCl+VAN double-treatment (40 mM / 500 µM, 3 plants), and (NH4)2SO4 (20 
mM, 3 plants)). Media always contained 1 mM KCl. Typical traces of experiments (B). 
Growth rates are expressed as percent of the respective KCl control, which 
contained only KCl but no test reagents in the apoplastic bathing medium. Different 
letters show a statistically significant difference at p < 0.05 (Student’s t-test and 
ANOVA). 

 

The effect of fusicoccin on elongation growth was dependent on the K+ 

concentration in the bathing medium which was in direct contact with the leaf 

elongation zone (Fig. 3.18). The higher the K+ concentration was, the larger was the 

stimulation of growth. In contrast, the inhibitory effect of vanadate on leaf elongation 

growth did not depend on the K+ concentration in the bathing medium (Fig. 3.18). 

This experiment showed that changes in the K+ concentration per se did not affect 

growth but required a functional PM-H+-ATPase to affect growth. 
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Figure 3.18 Potassium dependency of the leaf growth  response to fusicoccin (5 

µM) and vanadate (500 µµµµM) 

Values are averages and standard deviations (error bars) of 3 - 6 plants, and the K+ 
concentration of apoplastic bathing medium was as indicated. Growth rates are 
expressed as percent of the respective KCl control, which contained only KCl and no 
test reagents in the apoplastic bathing medium. Different letters show a statistically 
significant difference at p < 0.05 (Student’s t-test and ANOVA). 
 

Short term (1 - 4 h) auxin-induced leaf growth was measured with the same 

LVDT set up. Treatments (5 µM NAA with 1 mM KCl) did not caused any significant 

increase in growth rate, moreover the leaf elongation rate slightly (but not 

significantly) decreased rather than increased (Fig. 3.19). These results suggested 

that leaf elongation can not be further increased by auxin treatments.  

 

 

Figure 3.19 Auxin effect on leaf elongation growth 

Elongation growth was monitored using the LVDT system. Growth in control (1 mM 
KCl) and NAA treated plants (1 mM KCl and 5 µM NAA) did not significantly differ 
from each other. Values are averages and standard deviations (error bars) of 3 
replicates. The difference in growth between control and NAA treatment is 
statistically not significant (Student’s t-test). 
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3.2.2 Cell wall changes in response to treatments 

Changes in cell wall properties were tested for 500 µM vanadate, 40 mM CsCl and 5 

µM fusicoccin treatments by applying an additional 3 g counterweight on the LVDT 

system. Control plants had 1 mM KCl in the apoplast bathing medium of the 

elongation zone. The elastic growth component significantly changed only in 

response to the fusicoccin treatment, whereas plasticity was affected significantly in 

response to CsCl (Fig. 3.20 A). Additional stress (0.03 N) on the cell wall did not 

change the relative growth rate compared with control (1 mM KCl, ∆∆v), except in 

fusicoccin-treated leaves. Fusicoccin treatment caused a 50 % increase in ∆∆v 

compared with all other treatments and the control (Fig. 3.20 B). 

 

 

Figure 3.20 Cell wall changes under different treat ments 

Elastic and plastic growth (A) and 0.03 N stress caused growth rate (B) was 
measured on 3 independent plants in two replicates each. ∆∆v means the difference 
between ∆vcontrol and ∆vtreatment where ∆v is the difference in growth rate before and 
under the applied additional stress (v2-v1 on Fig. 3.2). Different letters show 
statistically different values at p < 0.05 level with Student’s t-test and ANOVA. 
 

Growth rate before (v1) and under (v2) applied 0.03 N force was in agreement 

with previous effect of test reagents on growth (compare Fig. 3.17 and Fig. 3.21). 

The fusicoccin treatment caused a large increase in growth, although the increase 

was statistically not significant.  
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Figure 3.21 Growth rate before and in response to a n additional applied force 

(0.03 N)  

Growth rate before (v1) and under (v2) applied force (3 g) using different treatments 
as vanadate (500 µM), CsCl (40 mM) or fusicoccin (5 µM). Bath medium of control 
plants contained 1 mM KCl. Values are averages of 3 - 3 replicates. Different letters 
shows statistically different values at p < 0.05 level with Student’s t-test and ANOVA. 
 

3.3 Expression analysis of PM-H +-ATPase using qPCR 

PM-H+-ATPase expression was analysed using qPCR. Altogether five reference 

genes (GADPH, cyclophilin, ubiquitin, HSP70 and PM-H+-ATPase) were tested in the 

experimental system. Only ubiquitin and the two PM-H+-ATPase (Ha1 and ATPase) 

primer pairs showed similar expression in the elongation zone and emerged blade 

(Fig. 3.22 A). Other, commonly used reference genes such as actin, tubulin, EF1, 

LHC were not suited because growing and non-growing leaf regions had to be 

compared (see Besse et al., 2011; Volkov et al., 2009). Ubiquitin could not be used 

as reference gene because the PCR product was not homogenous but produced 

more than one band as agarose gel analysis showed (Fig. 3.22 B). Applying 

Genevestigator bioinformatics application (www.genevestigator.com) could not solve 

the problem. Therefore, it was decided to carry out absolute qPCR quantification to 

determine PM-H+-ATPase expression levels in the leaf elongation zone and emerged 

blade. 
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Figure 3.22 reference genes for qPCR experiments 

500 pg total RNA-equivalent cDNA was used in each reaction well to check the 
qPCR profile of candidate reference genes. Expression, as shown as Ct-value, of the 
two PM-H+-ATPase PCR primer pair (Ha1 and ATPase) and ubiquitin (UBQ) was 
similar between the two leaf regions, effectively qualifying them as reference genes 
of expression. In contrast, expression of glyceraldehyde-3-phosphate dehydrogenase 
(GADPH), heat shock protein 70 kDa (HSP70) and cyclophylin (Cyclo) differed 
significantly between leaf regions (A). Values are averages of 3 replicates and error 
bars represent SD. Different letters show significantly different values at p < 0.05 
level using Student’s t-test and ANOVA. Agarose gel picture of PM-H+-ATPase 
(ATPase) and ubiquitin (UBQ) show that that ubiquitin shows more than one PCR 
product (B). 
 

3.3.1 Quality control of the standard required for absolute qPCR 

Quality of reference DNA (purified PM-H+-ATPase PCR fragments) was validated 

using end point detection digital PCR technique (Vogelstein & Kinzler, 1999). The 

concentration of fragments was calculated as 0.5 copy µl-1 based on Nanodrop® 

measurements. From 40 PCR reactions 21 were PCR positive and 19 negative (Fig. 

3.23). This suggested a concentration of 0.525 DNA copy µl-1 in the external 

standard and was just 2.5 % higher compared with the calculated copy concentration 

(0.5 copy µl-1). 
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Figure 3.23 Digital PCR pattern of external standar d DNA  

Using digital PCR technique the concentration of the external standard for PM-H+-
ATPase expression was verified. The PCR positive / negative ratio was 21 / 19, 
which suggests a concentration of 0.525 copy of ATPase DNA in 1 µl of standard 
compared with the calculated 0.5. Therefore, the reliability of the standard was higher 
than 95%. 
 

3.3.2 Calculation of cell number and membrane surface 

Total cell volume of the leaf regions was calculated for the two barley cultivars using 

the water content of the plant material, cell dimensions and contribution of each 

tissue to total leaf symplast volume (Table 3.1). The water content differed 

significantly between the two leaf regions but not between the two cultivars. 

 

Table 3.1 Water content of two different regions of  leaf three in two cultivars of 

barley  

Cultivar Leaf part No replicates Water content (%) SD 
Golf Elongation zone 3 92.06 1.57 
 Emerge blade 3 86.78 2.25 
Jersey Elongation zone 7 93.78 3.12 
 Emerge blade 7 87.78 1.07 
 

 The tissue volume ratio was measured on cross sections using light 

microscopy (Table 3..2 and Fig. 3.24) and average cell size was estimated from the 

present protoplast measurements and data published for Golf (Fricke & Flowers, 

1998; Volkov et al., 2007; Volkov et al., 2009, Kavanagh, 2010) (Table 3.3). 

Mesophyll and epidermis cell size and surface area was calculated separately and 

the total number of cells and surface area was calculated from data on the 

contribution of each tissue to total leaf symplastic volume (not considering 

intercellular air space). Mesophyll cell size differed between growing and mature, 

emerged tissues around 2.2-fold and epidermis cells differed 4.6-fold, in each case 

being larger in emerged tissue. The surface was about 2.6-fold and 1.9-fold higher in 

the emerged blade for epidermis and mesophyll, respectively.  
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Table 3.2 The contribution of different tissues to total leaf volume in the 

elongation zone (EZ) and emerged blade (EB) of leaf  three of barley. Values are 

given as % of the total leaf volume and are either not corrected or corrected for 

intercellular air space, effectively giving a contribution to total leaf symplastic volume. 

 EZ EB 
Epidermis (%) 24.85 ± 1.54 23.37 ± 2.94 
Mesophyll (%) 61.75 ± 1.93 51.61 ± 4.36 
Vascular bundle (%) 8.99 ± 1.97 4.01 ± 0.93 
Intercellular air space (%) 4.40 ± 1.32 21.01 ± 4.29 
Epidermis corrected (%) 26.00 ± 1.28 29.59 ± 3.72 
Mesophyll corrected (%) 64.60 ± 1.96 65.34 ± 5.52 
Vascular bundle corrected (%) 9.41 ± 1.80 5.08 ± 1.18 
 

 

Figure 3.24 Representative cross sections used for determination of the 

contribution of different tissues and air space to total leaf volume 

Toluidine blue stained cross sections were used to calculate the percentage of 
different tissues to total leaf and symplastic volume in the elongation zone (A) and 
emerged blade (B) of leaf three of barley. 
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Table 3.3 Cell size calculation based on the presen t and literature data. Values 

shown in bold were used for to relate ATPase expression and activity data to cell 

volume and surface area 

 EZ EB 
Cell volume Average SD Average SD 
Epidermis cell size (Fricke & Flowers, 
1998) 

99.4  461  

Epidermis cell size average (pl) 99.4  461  
Mesophyll cell size (my protoplast results) 3.7  9.4  
Mesophyll cell size (Volkov et al., 2007) 8.9  24.4  
Mesophyll cell size (Volkov et al., 2009) 11.8  17.4  
Mesophyll cell size (Kavanagh, 2010) 2.08  8.11  
Mesophyll cell size average (pl) 6.62 ± 4.52 14.83 ± 7.59 
Cell surface     
Surface of epidermis cell (Fricke & 
Flowers, 1998) 

27100  65200  

Surface of epidermis cell (Kavanagh, 
2010) 

12308  34809  

Surface of epidermis cell average (µm2) 19,707 ± 10,459 50,004 ±21,490 
Mesophyll cell size (my protoplast results) 1,157  2,154  
Mesophyll cell size (Volkov et al., 2007) 2,077  4,068  
Mesophyll cell size (Volkov et al., 2009) 2,506  3,247  
Mesophyll cell size (Kavanagh, 2010) 788  1,952  
Surface of mesophyll cell (µm2) 1,632 ± 796 2,855 ± 988 
 

3.3.3 Gene expression data based on absolute qPCR method 

Using the absolute qPCR method, together with cell size and tissue volume 

contributions it was found that PM-H+-ATPase had a constant expression pattern in 

both elongation zone and emerged leaf blade; it was deemed to be a perfect 

reference gene in both Golf and Jersey cultivars (Fig. 3.25 and Table 3.4). The total 

RNA content was similar in the elongating zone and emerge leaf blade. This applied 

to both Golf and Jersey cultivars (Table 3.4). 

Results expessed per plasma membrane surface unit were significant, being 

around 2 times higher PM-H+-ATPase protein concentration as might be presumed in 

elongation zone compare with emerge blade in both barley cultivars. Absolute 

expression was 3 times higher in Golf compare to Jersey cultivar (Fig. 3.26). The 

calculation here presumed that protein translation from mRNA was linear and had 

equal probability in elongation zone and emerge blade. More details of the 

calculation can be found in the Appendix. 
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Figure 3.25 Expression of PM-H +-ATPase using absolute qPCR  

Using absolute qPCR, the total number of mRNA transcripts was determined for each 
cDNA sample. The amount of cDNA obtained from a given amount of leaf region 
(elongation zone, EZ; emerged blade, EB) was known, as was the number of cells for 
each region. This made it possible to express qPCR data as mRNA copy number per 
cell. Results are shown for the barley cultivars Golf (A) and Jersey (B) and represent 
averages and standard deviation (error bars) of three independent experiments 
(batches of plants). PM-H+-ATPase expression (copyRNA cell-1) did not differ 
significantly between elongation zone (EZ) and emerged blade (EB) in either Golf or 
Jersey (Student’s t-test). 
 

Table 3.4 Ct values of PM-H +-ATPase expression together with RNA content per 

cell in the elongation zone (EZ) and emerged blade (EB) of leaf three of barley. 

Two barley cultivars were studied, Golf and Jersey, and three independent 

experiments were carried out. 

 Ct SD RNA content (pg cell -1) SD 
EZ (Golf) 23.8 0.2 22.3 1.5 
EB (Golf) 24.2 0.5 25.9 4.0 
EZ (Jersey) 22.7 0.2 22.8 1.7 
EB (Jersey) 22.8 0.2 18.5 15.6 
 

Since the determination of cell number in a given leaf region involved large 

errors, an additional control experiment was conducted in which RNA was extracted 

from protoplast suspension of the Jersey cultivar. The number of protoplasts could 

easily be calculated. RNA yield of 300 - 1000 µl protoplast suspension (about 0.5 - 7 

million cells) was 250 - 2,000 ng µl-1 and the ‘background’ protoplast medium which 

was taken as supernatant folowed gentle centrifugation of protoplasts, yielded 

virtually no extractable RNA (less than 1 - 10 ng µl-1, which was below the measuring 

range of the Nanodrop® equipment). Results for protoplasts were expressed in copy 

number of PM-H+-ATPase transcript protoplast-1 and in copy number of PM-H+-

ATPase transcript mm-2 protoplast plasma membrane surface area. These figures 
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were in the same range as results obtained for the Jersey cultivar when calculated 

cell number was used as reference system (see Fig. 2.25).  

 

 

Figure 3.26 PM-H +-ATPase expression using absolute qPCR and relating  

expression data to total plasma membrane surface ar ea 

PM-H+-ATPase gene shows significantly (around 2 times) higher expression in the 
elongation zone (EZ) compared with emerged leaf blade (EB). Values for the Golf 
barley cultivar (A) were 3 fold higher than values for the Jersey barley cultivar (B). 
Results are averages and standard deviations (error bars) of three 3 independent 
experiments. Different letters shows statistically different values between leaf regions 
(student’s t-test, p < 0.05). 
 

Table 3.5 RNA content and PM-H +-ATPase expression in the elongation zone 

(EZ) and emerged blade (EB) of leaf three of barley  (Golf, Jersey). Different 

reference systems were used. Results are averages and SD of 3 - 6 independent 

experiments. Protoplasts were isolated only from the Jersey barley cultivar. PM, 

plasma membrane; protopl., protoplast. 

 RNA (pg cell -1) ATPase copy cell -1 ATPase copy mm -2 
PM (x 103) 

EZ (Golf) 22.3 ± 1.5 300 ± 60 142 ± 28 
EB (Golf) 25.9 ± 4.0 260 ± 70 73 ± 20 
EZ (Jersey) 22.8 ± 1.7 120 ± 30 55 ± 12 
EB (Jersey 18.5 ± 15.6 80 ± 60 23 ± 17 
EZ protopl. 18.7 ± 17.5 50 ± 30 38 ± 23 
EB protopl. 20.7 ± 19.2 50 ± 40 12 ± 7 
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Figure 3.27 Comparison of molecular biological data  using leaf tissues or 

mesophyll protoplasts 

Ct values (A), PM-H+-ATPase copy in a cell (B), per mm2 plasma membrane (C) and 
total RNA content in a cell (D) was compared between experiments where RNA was 
isolated from whole leaf segments of the elongation zone (EZ) and emerged blade 
(EB) and from isolated mesophyll protoplasts of the elongation zone (Proto EZ) and 
emerged blade (Proto EB). Values are averages of 3 - 6 batches of plants. Different 
letters show statistically significant differences at p < 0.05 using Student’s t-test and 
ANOVA. All experiments were conducted on the barley cultivar Jersey 
 

3.4 PM-H+-ATPase activity and expression at protein level 

Data from qPCR experiments showed that the copy number of PM-H+-ATPase 

transcripts per unit plasma membrane surface area was significantly higher in 

growing compared with non-growing leaf tissue. This could partially explain the lower 

apoplast pH in elongating tissue. To test to which degree changes in the activity of 

the PM-H+-ATPase protein also contributed to the lower pH, plasma membrane 

fractions were isolated from growing and non-growing part of barley leaves and used 

to determine the activity of PM-H+-ATPase. Due to the lack of availability of Golf 

seeds towards the end of this project, these experiments were carried out on the 

spring barley cultivar Jersey. 
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3.4.1 Optimization of membrane isolation and ATPase assay 

Membrane isolation and ATPase assay had to be optimized. The original method had 

been described for a large amount of plant tissue (125 g) (Kjellbom & Larsson, 1984) 

however previous studies showed that with the method plasma membrane fraction 

might be purified from lower amout of plant material (Wei et al., 2007). The Pi 

determination assay had been designed originally for animal membranes (Sarkadi et 

al., 1992), with animal cells notably lacking any vacuolar ATPases. 

 

3.4.1.1 Plasma membrane isolation 

It was impossible to harvest more than 6 g leaf material from the elongation zone and 

emerged blade portion of leaf three, given the growth constraints (growth chamber, 

laboratory space) since this required already between 200 - 400 barley seedlings. 

Preliminary experiments were carried out to find the minimum amount of leaf tissue 

which was required for a two-phase separation system with 12 g final separation 

weight. These experiments showed that below 1 g initial leaf tissue virtually no 

membrane fraction could be obtained and above 10 g the plasma membrane fraction 

could not be separated from chloroplast membranes using 5 - 6 purification steps. 

 One washing step of the membrane fraction as recommended by Pitann et 

al. (2009b) was not enough to fully eliminate the rest of the polymers (dextran and 

PEG) from the purified membrane fraction. In the presence of one or both of these 

polymers PAGE could not be carried out properly and protein bands appeared 

blurred on the gel (Fig. 3.28). 

 

Figure 3.28 Impact on the quality of PAGE separatio n of washing steps during 

plasma membrane isolation 

Residues of the polymers in plasma membrane fractions caused proteins to appear 
blurred on the polyacrylamide gel. One washing step was not enough to completely 
eliminate the polymers (A) while applying two steps (B) the blurring effect was not 
found on Coomassie stained gels. EZ – elongation zone, EB – emerged leaf blade 
and L2 – leaf blade of second leaf. 
 



 - 79 - 

3.4.1.2 Determination of total protein content in plasma membrane 

vesicles 

In studies where plasma membranes have been isolated, protein concentration has 

typically been quantified with the Bradford method or a modification of it (Yan et al., 

1998; Yan et al., 2002; Zörb et al., 2005; Pitann et al., 2009b; Zhu et al., 2009; Hatzig 

et al., 2010; Wakeel et al., 2010). Using this approach, it was found in the present 

study that protein concentration was grossly underestimated, compared to 

quantification of proteins through densitometry by Phoretix 4.01 software (Phoretix 

International) on Coomassie stained PAGE gels and calibration with protein 

standards (Sigma) of known protein content. (Fig. 3.29). 

 

Figure 3.29 Protein measurement in plasma membrane vesicles using two 

different methods 

The protein concentration of the plasma membrane vesicles was significantly lower 
when determined with the Bradford method than when determined through 
densitometry of samples run on PAGE gels. The difference in protein concentration 
between the two methods was statistically significant at p < 0.05 (Student’s t-test). 
 

3.4.1.3 ATPase assay 

Optimization of ATPase assay was carried out to find the optimal reaction volume, 

detection method and membrane protein amount for the assay. Preliminary 

experiments showed that colour development was more reproducible in 1750 µl 

compared with 200 µl (microtiter plate). The optical density of the samples had to be 

measured within a minute of completion of colour development, together with the 

calibration curve. If this was not considered, the absorbance changed rapidly (Fig. 

3.31). When 3 µg total membrane protein were used and the assay was run for 60 

min at 28 °C reproducible and easy to measure amoun t of released (from ATP) 

amount of Pi could be measured A typical ATPase assay is shown in Fig. 3. 30. 
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Figure 3.30 Typical ATPase assay 

The concentration of Pi was determined by a blue colour reaction (detecting the 
absorbance at 880 nm) using calibration curve standards (1 - 4; with 0, 10, 30 and 60 
nmol Pi per reaction. Without blocking bacterial and vacuolar type of ATPases (5) 
slightly more Pi could be measured compared with a reaction where these ATPase 
were blocked with 10 mM NaN3 and 100 mM KNO3 (6); 500 µM vanadate (7) blocked 
ATPase activity almost to the same extent as when total protein was denatured using 
SDS (8). Values below the tubes show the absorbance at 880 nm. 
 

To determine the optimal detection time of the colour development reaction 

kinetics was recorded (Fig. 3.31). Between 20 - 30 min the absorbance was between 

0.1 - 0.6 (arbitrary units) and could be measured with high reproducibility. In addition, 

the calibration curve was linear in this time range.  

 

 

Figure 3.31 Kinetics of P i detection assay 

Kinetics of the Pi detection assay was recorded at 10, 30 and 60 nmol Pi 
concentration (A) and calibration curve at the time point 10, 25 and 40 min (B). 
Before 20 min the absorbance values were too low to be use reliably for 
measurements and the absorbance changed quickly. Between 20 to 30 min the 
reaction was slower and the values ideal for measurements whereas past 40 min of 
colour development absorbance values became too high and higher Pi 
concentrations resulted in errors.  
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3.4.2 Quality of plasma membrane fractions 

The quality of plasma membrane fractions was checked on SDS PAGE gradient gels 

stained with Coomassie Brilliant Blue and on Western blots. Based on SDS gels the 

plasma membrane protein pattern of the emerged leaf blade (leaf three) and fully 

expanded blade (leaf two) was comparable whereas the elongation zone of leaf three 

and microsomal fraction (no plasma membrane purification) of emerged blade of leaf 

three differ from the other two (Figure 3.32 A). Western blot analysis confirmed the 

presence of PM-H+-ATPase in the isolates (Figure 3.32 B), although based on these 

Western blots quantitative analysis of PM-H+-ATPase density in the plasma 

membrane of different leaf regions could not be achieved. Subsequently, a more 

sensitive Western blot system (at UCD) was used to compare PM-H+-ATPase 

content of plasma membranes between elongation zone and emerged blade. 

 

 

Figure 3.32 Coomassie stained SDS polyacrylamide ge l and Western blot of 

plasma membrane proteins from different leaf region s 

Gradient SDS polyacrylamide gel stained Coomassie Brilliant Blue R250 (A) shows 
the difference or similarity in membrane protein pattern of emerged leaf blade three 
(EB), elongation zone of leaf three (EZ), fully expanded leaf blade from leaf two (L2) 
and microsomal fraction from emerged leaf blade two (MS). Western blot (B) analysis 
demonstrated the presence of PM-H+-ATPase in the isolates and also that the 
commercially available antibody recognised barley PM-H+-ATPase (expected 
molecular weight of about 105 kDa). The band intensity was too weak to allow 
densitometric analyses of bands. This had to be done subsequently using a more 
sensitive detection system for the secondary antibody employed 
 



 - 82 - 

3.4.3 Quantitative analysis of PM-H+-ATPase protein 

Sensitivity of the Western blot detection system at Eötvös University, where plasma 

membrane isolations and ATPase enzyme assays were carried out, was not enough 

to perform quantitative analysis on blots. Using the same samples in Dublin (having 

transported the samples on dry ice from Budapest) on thinner gels and 

chemiluminescence detection the proportion of PM-H+-ATPase in total membrane 

protein was measured using a densitometric approach. The same amount of total 

membrane protein (5 µg) from the elongation zone contained 2.33 times higher 

concentration of PM-H+-ATPase protein than non-growing leaf blade (Fig. 3.33 A). 

Densitometry of Coomassie stained gradient gels supported Western blot data. A 

higher PM-H+-ATPase protein expression was measured in the elongation zone (Fig. 

3.33 B) although the difference using the PM-H+-ATPase band on SDS gels 

(identified based on molecular weight and Western blots) was lower with the ratio 

between the two leaf regions being 1.5 fold compared with 2.33-fold above. 

The higher sensitivity of the second Western blot approach made it possible to 

detect a second band on the blot, at around 70 kDa. This might represents a 

fragment of the PM-H+-ATPase enzyme (Fig. 3.33 C) 

 

 

Figure 3.33 PM-H +-ATPase ratio in total membrane protein 

PM-H+-ATPase protein, expressed on the basis of total plasma membrane protein 
applied onto gels (and entered into Western blots) was significantly higher in the 
elongation zone (EZ) compare with emerged blade (EB) (A); the same applied to 
densitometric analyses of Coomassie Brilliant Blue stained polyacrylamide gels (B). 
Results are significant using Student’s t-test (p < 0.05). Using higher sensitivity on 
Western blots a second band was found which respresents most likely a 70 kDa 
fragment of the PM-H+-ATPase (C). 
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3.4.4 Activity of PM-H+-ATPase  

Vandate-sensitive ATPase activity of membrane fractions was measured using 

inside-out plasma membrane vesicles and an ATP hydrolysis assay. Results were 

expressed in nmolPi h
-1 µg-1 total membrane protein at 28 °C. As Fig. 3.34 show s 

plasma membrane vesicles of the elongation zone had more than 2 times higher 

vanadate-sensitive ATPase activity compared with vesicles prepared from the 

emerged blade. Vacuolar and prokaryotic types of ATPases were blocked using high 

azide and nitrate concentration in the reaction mixture, and data were validated with 

vanadate sensitivity. The resulting enzyme activity represented PM-H+-ATPase 

activity and this was two fold higher in the plasma membrane of the elongation zone 

compare with membranes prepared from the emerged leaf blade. 

 

 

Figure 3.34 ATPase activity of inside-out plasma me mbrane vesicles 

Vanadate-sensitive ATP hydrolysis activity of inside-out plasma membrane vesicles 
of the elongation zone (EZ) was more than two times higher than activity in the 
emerged blade of leaf three of barley (EB). Results are averages of four independent 
batches of membranes and 9 - 10 replicate activity determinations. Differences were 
statistically significant (p < 0.05) using Student’s t-test. 
 

3.4.5 Immunolocalisation of PM-H+-ATPase 

Paraffin-embedded sections were used to localise the tissue-specific distribution of 

PM-H+-ATPase protein. Alkaline phosphatase-labelled secondary antibody with fast 

red detection was used. Reddish colour showed the location of PM-H+-ATPase 

protein. There was no difference in PM-H+-ATPase distribution between the 

elongation zone (Fig. 3.35 A) and emerged blade (Fig. 3.35 B). Higher expression of 

PM-H+-ATPase was found in guard cells (Fig. 3.35 E), phloem, and xylem 

parenchyma. PM-H+-ATPase was detected virtually on the plasma membrane of 

every living cell. Longitudinal sections of the elongation zone (Fig. 3.35 D) provided 
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further detail. Guard cells were easily identifiable. Dead parts of xylem tubes were 

free from red colour, whereas phloem and xylem parenchyma cells contained large 

amount of PM-H+-ATPase. Negative control (Fig. 3.35 C), where primary PM-H+-

ATPase specific antibody was not applied, verified the selectivity of the assay as 

immunospecific staining was not present. 

 

 

Figure 3.35 PM-H +-ATPase immunolocalisation on leaf cross and longit udinal 

sections 

PM-H+-ATPase expression was detectable on all plasma membranes, both in the 
elongation zone (A) and emerged blade (B). Higher expression was present in guard 
cells (E), phloem and xylem and phloem subsidiary cells. Differences between 
elongation zone and emerged blade were not visible. Negative control (primary 
antibody was not applied) was free from immunolabelling (C). Longitudinal sections 
of elongation zones (D) were supporting observations from cross sections, stomata 
guard cells and vascular elements and subsidiary cells being heavily stained. Ep: 
epidermis; St: stomata; MX: metaxylem; PX: protoxylem; Ph: phloem; Ms: mesophyll 
cells; PBD: parenchymateous bundle sheath. 
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4 Discussion 

 

4.1 Growth-associated apoplast acidification 

Using different methods to measure or visualise apoplastic pH or H+ transport activity 

into the intercellular space, a lower pH was recorded in the elongation zone 

compared with emerged blade of barley leaves. This observation is in agreement 

with the ‘acid growth theory’ which would predict a more acid apoplast pH in growing 

tissue. 

 

4.1.1 Apoplast pH difference between growing and non-growing leaf 

tissue  

Three independent approaches were used to analyse apoplast pH. Microelectrode 

pH measurements provided the most quantitative data. Also, similar to confocal 

analyses and contrary to the in-vitro gel system, microelectrode analyses measured 

pH in the actual wall or apoplast space. These measurements showed that the pH in 

the apoplast was by up to 1 pH unit lower and, therefore, the H+ concentration up to 

10-fold higher in elongating tissue. There do not exist any directly comparable 

studies on other grass leaves, although slightly different approaches have been 

taken for some species. When pH was measured in droplets placed on the exposed 

elongation zone of maize leaves a lower apoplastic pH compared with the emerged 

blade or elongation zone under non-growing conditions was measured; the absolute 

pH values in these droplets were significantly higher than the ones measured here, 

and the pH reading was not stable but drifted during recordings (Van Volkenburgh & 

Boyer, 1985; Neves-Piestun & Bernstein, 2001). Using 0.5 g of growing maize leaf 

segments in 2 ml unbuffered bathing medium, Neves-Piestun & Bernstein (2001) 

measured a pH of 4.8, a value which is very similar to the value recorded here for 

barley leaves.  

 

4.1.2 Reliability of pH values measured in elongation zone and 

emerged blade 

Microelectrode measurements revealed that apoplast pH in the leaf elongation zone 

depended on the bathing medium concentration of K+. At the lowest K+ concentration 

tested (0.1 mM) apoplast pH was 4.8, yet at 10 mM K+, apoplast pH increased to 5.8 
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and was identical to the value in emerged tissue (Fig. 3.7). Since the emerged leaf 

contains at its surface a major permeance barrier (cuticle) to externally applied 

solution, this could mean that the difference in pH observed between leaf regions 

was an artefact and reflected differences in the access of bath solution between leaf 

regions. If, by chance, the K+ concentration in the apoplast of the emerged blade of 

intact plants had been 10 mM, or at least higher than 1 mM, and if none of the 

external bathing solution had reached the apoplast, one would have predicted an 

apoplast pH of 5.8 based on measurements for elongating tissue at 10 mM K+. Felle 

(2006) measured an apoplastic K+ concentration of 2.6 mM in mature barley leaves. 

Also, if the apoplast K+ concentration in the leaf elongation zone in-planta was close 

to 10 mM, one would not expect to find a difference in apoplast pH between the two 

leaf regions in intact, undisturbed plants. Recently, Ehlert et al. (2011) reported 

apoplast pH between 4.1 and 5.9 with average mean of 5.1 for elongating maize leaf 

tissue as analysed through pH microelectrodes. 

Felle (2006) inserted pH microelectrodes through stomatal pores of mature 

barley leaves and measured a pH of 4.88. This pH is significantly lower than the pH 

reported here (pH 5.8) for emerged blade tissue. Possibly, the difference in results is 

due to use of 2 mM MES / TRIS buffer (pH 5.0) in the bathing medium in the study by 

Felle (2006). Also, measurements by Felle (2006) were carried out under illumination, 

stimulating PM-H+-ATPase pump activity (Stahlberg & Van Volkenburgh, 1999), 

whereas the present measurements were carried out in the dark. In a natural setting, 

the mature blade is exposed to full, ambient light whereas the elongation zone 

receives less light, and this light is green-filtered due to subtending sheaths. 

Therefore, it is possible that the difference in apoplast pH between leaf regions in 

field-grown and -analysed plants is considerably smaller than the difference 

measured here with the microelectrode setup in a darkened laboratory environment 

or through confocal analyses on intact leaves. Vanadate experiments on detached 

leaves clearly showed that the lower apoplast pH in the barley leaf elongation zone 

depended on the activity of the PM-H+-ATPase.  

 

4.1.3 Relation between apoplast acidification and leaf growth 

Acidification of the apoplast in the elongation zone of barley leaves generally 

coincided with growth, but there were notable exceptions. A positive relation was 

best visualised by cold treatment in the in-vitro gel system (Fig. 3.3). In the same 

system vanadate and fusicoccin treatments caused parallel changes in the growth 
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rate of leaves and acidification of medium adjacent to leaf apoplast (Fig. 3.1). Also, 

vanadate treatment in the microelectrode setup reduced growth and increased 

apoplast pH in the elongation zone to a value usually observed for mature tissue. 

However, when fusicoccin was applied in the pH microelectrode setup, growth 

increased while apoplast pH remained unchanged (Fig. 3.9 and 3.10). Also, changing 

the apoplast K+ concentration from 0.1 to 1 or 10 mM significantly increased apoplast 

pH in the elongation zone, yet growth did not change (Fig. 3.7 and 3.8). Irrespective 

of the underlying mechanisms, these data show that there does not exist a simple, 

single relation of how apoplast pH relates to growth in the leaf elongation zone. The 

seemingly contradictory fusicoccin data obtained through the microelectrode and    

in-vitro gel setup could be explained through differences in what these two setups 

measured. The in-vitro gel system measured bulk effects on pH further away from the 

leaf surface and showed an increase in the acidified area and corresponding net 

production rate of H+, and H+ was titrated by the pH indicator bromocresol purple. In 

contrast, the microelectrode setup provided a point measurement of pH closer to the 

cell surface, irrespective of the rate at which H+ diffused into surrounding bathing 

medium or was consumed through transport processes involving K+. Thus, while 

fusicoccin will have stimulated H+ pumping in both setups and led to increased 

diffusion, apoplast pH may not have changed in either setup. 

 

4.2 K+ and apoplast acidification 

Potassium uptake coupled to H+ uptake (symport) has been discussed as an 

alternative explanation for some of the effects associated with the ‘acid growth’ 

theory. For example, K+ uptake and apoplast acidification were linked to growth in 

roots (Glass et al., 1981; Ullrich & Novacky, 1990; Amtmann et al., 1999) and 

coleoptiles (Claussen et al., 1997; Tode & Lüthen, 2001; Christian et al., 2006). The 

present data also suggest that K+ transport and apoplast acidification are linked with 

each other in some way during elongation of barley leaf cells. 

 

4.2.1 Potassium uptake and leaf growth 

A previous patch-clamp study on K+ transport in barley concluded that apoplast K+ 

must exceed 3 - 5 mM to allow growing leaf cells to take up K+ through channels 

(Boscari et al., 2009; Volkov et al., 2009). Calculations showed that at 10 mM 

apoplast K+, about 50 % of K+ uptake was facilitated by time-dependent inward-

rectifying currents typical of Shaker K+ channels such as AKT1 or AKT2. The 
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remaining 50 % was facilitated by instantaneous currents, which includes either or 

both, K+ high-affinity transporters such as HAK / KUP / KT type K+ / H+ symporters 

(for historical reasons, these three abbreviations denote the same type of 

symporters; for details see e.g. Ashley et al. (2006) and Szczerba et al. (2009)) or 

non-selective cation channels. At apoplast concentrations below 3 - 5 mM, uptake of 

K+ would have to occur through high-affinity uptake mechanisms. The K+ 

concentrations tested in the present study covered the range 0.1 to 10 mM. 

Therefore, it is possible that different K+ uptake mechanisms contributed to the 

growth and pH response of leaves depending on the K+ concentration of bathing 

medium. When K+ uptake was blocked through application of inhibitors (Cs+, TEA) of 

K+ inward-rectifying Shaker-type channels, or at least reduced significantly, growth 

was reduced by 50 %. A similar reduction in growth was observed in response to 

vanadate and CsCl-vanadate double treatments (applied at 10 mM bathing medium 

K+; Fig. 3.17). The latter observation excludes the possibility that Cs+ (K+ channels) 

and vanadate (PM-H+-ATPase) inhibited ‘different’ 50 % of growth and were additive. 

Instead, growth was reduced through some common mechanism. Membrane 

potential was not measured in response to the above treatments, but the most likely 

scenario is that inhibition of PM-H+-ATPase through vanadate depolarised membrane 

potential to such an extent that uptake of K+ through channels was 

thermodynamically not possible. This would explain why direct blockage of channels 

through Cs+ caused the same growth reduction as blockage of PM-H+-ATPase. 

Similarly, Tode & Lüthen (2001) concluded from experiments involving TEA that the 

acid-growth type response of maize coleoptiles required the activity of inward-

rectifying K+ channels. Linkage of K+ transport, leaf growth and cell wall acidification 

was found in light-induced growth of tobacco leaves (Stiles et al., 2003), yet K+ 

uptake was required for H+ efflux and growth without any noticeable accumulation of 

solutes (Stiles & Van Volkenburgh, 2004). This would exclude a primarily osmotic 

requirement for K+. 

 

4.2.2 High affinity potassium transporters and leaf growth  

High affinity K+ transporters, but not K+ selective channels, are reduced in  transport 

activity by ammonium (Kronzucker et al., 2003; Rodriguez-Navarro & Rubio, 2006; 

Szczerba et al., 2009; Hoopen et al., 2010). Application of 20 mM NH4
+ during LVDT 

experiments reduced growth by as much as Cs+, TEA and vanadate treatments did. 

This shows that high affinity K+ uptake systems were involved in K+ uptake and 



 - 89 - 

growth response of elongating barley leaf cells. The results also show that the three 

components, apoplast pH, high-affinity and channel-mediated K+ uptake were related 

to each other in some way that prevented inhibition of each component from being 

additive.  

Boscari et al. (2009) observed that HvHAK4 was expressed particularly in the 

elongation zone of barley leaves. It is not known whether HvHAK4 functions as       

K+ / H+ symporter as thought for other HAK family members (Britto & Kronzucker, 

2008; Szczerba et al., 2009). If it does, HvHAK4 may not only provide a major route 

for K+ entry into growing barley leaf cells, but also present a key mechanism through 

which the pump activity of the PM-H+-ATPase can be linked to osmotically-driven 

water uptake and apoplast acidification in growing leaf tissues. This needs to be 

studied further. 

 

4.3 PM-H+-ATPase expression and leaf elongation 

Using four independent techniques (qPCR, ATPase assay and densitometry on SDS 

PAGE and Western blot) it was found that the expression, activity and protein level of 

PM-H+-ATPase when related to the surface area of plasma membrane, was between 

1.5 - 3.5 times higher in the elongation zone compared with the emerged blade 

(Table 4.1). The similarity in results for expression, protein level and activity may be a 

coincidence, but more likely reflects a true difference between growing and non-

growing barley leaf tissues. 

 

Table 4.1 Summary of data for PM-H +-ATPase when related to surface area of 

plasma membrane.  Ratio and standard deviation (SD) was calculated in two ways 

(a: averages of elongation zone (EZ) were divided by averages of emerged blade 

(EB) or i: average of ratio of paired EZ and EB). SDs in bracket are estimated SDs. 

Experiment type Ratio EZ : EB  SD 
qPCR (Golf, a)  1.96 ± (0.47) 
qPCR (Golf, i) 1.99 ± 0.28 
qPCR (Jersey, a)  2.36 ± (0.91) 
qPCR (Jersey, i) 3.53 ± 2.88 
qPCR (Jersey protoplasts, a) 2.13 ± (0.70) 
qPCR (Jersey protoplasts, i) 2.35 ± 0.49 
Vanadate sensitive ATPase activity (Jersey, a) 2.22 ± (0.55) 
Coomassie stained SDS PAGE (Jersey, a) 1.50 ± (0.35) 
Western Blot (Jersey, a) 2.33 ± (0.72) 
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Quantification of PM-H+-ATPase protein level using Coomassie stained 

PAGE gels gave the lowest difference between elongation zone and emerged blade. 

This may result from individual bands, such as the band of the PM-H+-ATPase, 

containing numerous different proteins. For example, Hynek et al. (2006) concluded 

from MS / MS analyses of the PM-H+-ATPase band of plasma membrane vesicles 

prepared from barley aleurone layer that the band contained 22 different peptides. 

Together, the data suggest that the density at which functional PM-H+-ATPase is 

localised in the plasma membrane, or at which PM-H+-ATPase is expressed per unit 

plasma membrane surface area of cells is about twice as high in growing as in non-

growing leaf regions. Also, expression and protein data suggest that the efficiency of 

translation of PM-H+-ATPase mRNA is similar in the two leaf regions.  

 

4.3.1 PM-H+-ATPase density in plasma membrane and leaf growth 

The higher plasma membrane density of PM-H+-ATPase in the elongation zone will 

aid the energisation required for continuous solute uptake, in particular uptake of K+, 

in growing leaf cells. It will also aid acidification of the apoplast as measured through 

pH microlelectrodes in the barley leaf elongation zone. Depending on the apoplast K+ 

concentration, the pH in the elongation zone was by up to 1.0 pH unit lower (pH 

micro electrode measurements; Fig. 3.7) in the elongation zone compared with 

emerged blade. This corresponds to a 10-fold difference in apoplast H+ concentration 

and suggests that there exist post-translational modifications which further increase 

the PM-H+ATPase pump activity in growing barley leaf cells. Having said this, the 

wall space of growing cells is smaller (thinner walls) and this will aid apoplast 

acidification for a given pump activity. Apoplast acidification also depends on factors 

which are not related directly to the protein level and activity of PM-H+-ATPase such 

as apoplast K+ concentration (Claussen et al., 1997;Tode & Lüthen, 2001), 

temperature (Stoddart & Lloyd, 1986; Pollock et al., 1990) hormones (especially 

auxin, e.g.: Rayle & Cleland, 1970; Hager et al., 1971; Rayle & Cleland, 1992; 

Claussen et al., 1997; Tode & Lüthen, 2001; Hager, 2003; Grebe, 2005; Kutschera, 

2006) and light (Van Volkenburgh & Cleland, 1980; Stahlberg & Van Volkenburgh, 

1999). 
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4.3.2 qPCR data  

Determination of cell size and cell number can involve comparably large errors, due 

to the variation in size between populations and types of cell and due to small 

difference in cell radius (protoplasts) causing large differences in calculated cell 

volumes. Despite these intrinsic uncertainties, the present calculations showed that 

the PM-H+-ATPase expression per cell is very similar in growing and non-growing 

leaf tissue. Due to the lower surface area of the plasma membrane in growing cells 

(always assuming that there are no major invaginations of the plasma membrane, or 

that these would not differ between leaf regions), the density of PM-H+-ATPase is 

higher than the density in non-growing cells. As growing cells reach their full size, 

plasma membrane surface area increases leading to a continuous ‘dilution’ of PM-

H+-ATPase molecules. In such a scenario, the amount of PM-H+-ATPase per cell 

seems to be a fixed size, and cessation of growth seems to coincide with a 

continuous dilution of PM-H+-ATPas activity, resulting in decreasing rates of apoplast 

acidification (see also Fig. 3.25, Fig. 3.26 and Fig. 3.27). qPCR analysis of mesophyll 

protoplasts isolated from the elongation zone and emerged blade of the barley 

cultivar Jersey further supported the reliability of the calculated cell numbers of qPCR 

samples. Total RNA content of Golf and Jersey tissues per cell was very similar to 

total RNA content per protoplast. PM-H+-ATPase expression data obtained for 

protoplasts, when expressed per protoplast number or total plasma membrane 

surface were lower but not significantly different to the other qPCR data for Jersey 

where expression was related to the calculated cell number or total membrane 

surface (see Table 3.5 and Fig. 3.27). The lower expression values are in agreement 

with immuno localisation results on leaf cross-sections which showed that mesophyll 

cells have a comparatively (to other leaf tissues) lower PM-H+-ATPase expression. 

For RNA extraction from leaf segments, all types of cells were homogenised and 

accordingly averaged. In contrast, protoplasts were islolated only from mesophyll. 

 qPCR expression analyses also showed that the Ct value of PM-H+-ATPase 

expression was almost identical in growing and non-growing leaf regions using the 

same amount of total RNA (250 - 500 pg). Therefore, when expression data are 

related to unit of extracted RNA, PM-H+-ATPase (Ha1 AY136627; GI:23306665) is 

an ideal reference gene for expression analysis when comparing growing and non-

growing leaf regions, in agreement with Boscari et al. (2009) and Besse et al. (2011) 

(see Table 3.5 and Fig. 3.27). The same applies to the PM-H+-ATPase isoforms 

AHA1 and AHA2 in Arabidopsis (Gaxiola et al., 2007). 
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4.3.4 Immunolocalisation of PM-H+-ATPase 

Immunohistological analyses provided results which are in agreement with previous 

studies on the tissue localisation of PM-H+-ATPase protein (Villalba et al., 1991; 

Bouche-Pillon et al., 1994; Michelet & Boutry, 1995; Morsomme & Boutry, 2000; 

Palmgren, 2001; Gaxiola et al., 2007). Most staining, and by implication, PM-H+-

ATPase protein, was observed in those leaf tissues which are characterised by high 

rates of solute exchange across the plasma membrane (guard cells) or high rates of 

solute loading / unloading associated with long-distance transport pathways (phloem; 

xylem parenchyma). Interestingly, but in agreement with previous studies, epidermis 

cells were not enriched in PM-H+-ATPase (Villalba et al., 1991). This was observed in 

elongation zone and emerged blade and shows that there exists a cell-type-specific 

control of PM-H+-ATPase protein level which is superimposed on any developmental 

gradient.  

 

4.4 Leaf growth and changes in cell wall properties  

The effect of chemical treatments (vanadate, CsCl, fusicoccin) on cell wall properties 

was followed with the LVDT system. Fusicoccin increased the elasticity without 

affecting the plasticity of walls. In contrast, CsCl decreased the plastic component yet 

did not alter the elastic component of cell wall. Vanadate did not modify either 

component. From these results it can be concluded that PM-H+-ATPase activity, 

which is inhibited by vandate, is not required to maintain wall elasticity or plasticity. 

The fusicoccin treatment did not cause changes in the plastic component of the cell 

wall. Since plasticity is the relevant size for growth (irreversible expansion), and since 

plasticity is thought to change with apoplast pH through action of expansions 

(Cosgrove, 1996), fusicoccin probably did not decrease the apoplast pH (in 

agreement with the microelectrode measurements where fusicoccin failed to cause 

apoplast acidification) or it facilitated leaf elongation through a mechanism other than 

‘acid growth’. The increased ∆∆v suggests that in the background of fusicoccin-

related growth facilitated K+ uptake may be found (both v1 and v2 were higher than in 

the control). The increased elasticity of the cell wall may be caused by a cell wall 

modifying protein or enzyme activated by increased H+ transport acrosss the plasma 

membrane into the cell wall space as the experiments with the agarose gel system 

showed. If fusicoccin increased the H+ excretion through plasma membrane and the 

H+ returned into the cell through H+ / K+ symport, then micro pH measurements,       
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in-vitro gel records and cell wall property data would support each other. However, 

this would require that the change in H+ concentration close to the site where 

proteins act in the wall was either so small or so inaccessible that it could not be 

measured with the microelectrodes. 

 

4.5 ‘Acid growth’ in barley leaves? 

Auxin is one of the most important hormones in plants and its involvement in growth 

is unquestionable, at least in coleoptiles (Rayle & Cleland, 1970; Lüthen et al., 1990; 

Rayle & Cleland, 1992; Kutschera, 1994) or roots (Christian et al., 2006; Kutschera, 

2006).  

 Surprisingly, in the present study the artificial auxin NAA did not cause any 

effect on leaf growth or apoplast acidification as tested through the in-vitro gel system 

(Fig. 3.6) or LVDT measurements (Fig. 3.19). In a related study on the barley cultivar 

investigated here, the elongation zone was not exposed by peeling back the sheath 

of leaves one and two but, instead, a small window was cut into these sheaths, 

causing less physical damage to the plant. Even in this system, application of 5 and 

10 µM indole acetic acid (IAA) to the apoplast of the elongation zone did not increase 

the growth rate of leaves (Touati et al., unpublished). For some reason, the barley 

leaves tested here seem not to be sensitive to externally-applied auxin. A possible 

interpretation could be that the third leaf, when measured in this project was in the 

development stage of maximum growth, and the internal auxin concentration might 

have been so high that any auxin-dependent growth mechanisms was saturated and 

externally applied auxin could not cause any further increase in growth. The 

elongation zone of leaf one of wheat has been reported to contain IAA at                 

500 - 600 ng g-1 fresh weight (Vysotskaya et al., 2003) and this would mean that IAA 

oocurs naturally in the µM range. 

 

4.6 Model of leaf growth in barley 

Under different treatments the role of PM-H+-ATPase and high or low affinity K+ 

uptake system was tested in relation to elongation growth and apoplast acidification 

in leaf three of barley. The predicted effects of test reagents on growth and 

acidification are summarised in Fig. 4.1. The results partly support the classical ‘acid 

growth’ theory and partly the ‘facilitated solute uptake’ theory. PM-H+-ATPase 

dependent H+ excretion is essential for at least 50 % of leaf growth. However, the 

equilibrium pH is not necessarily reflecting changes in transmembrane H+ pumping 
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because H+ / K+ symport might transport protons back into the cell as Fig. 4.1 shows. 

Treatments with different K+ transport blockers (TEA, CsCl, NH4
+) and their double 

treatments with sodium-orthovanadate, the PM-H+-ATPase blocker, suggested that in 

the background of the ‘acid growth’ of barley leaves an active HAK type K+ uptake 

system might play a key role in facilitating a H+ / K+ symport mechanism (Bañuelos et 

al., 2002; Bucker et al., 2006; Britto & Kronzucker, 2008; Szczerba et al., 2009). 

Acidification of the cell wall or protonation of some enzymes in the cell wall might 

have additional important role in growth as cell wall property measurements showed. 

HvHAK4, a member of the family of K+ transporters, is mainly present in barley 

shoots (Rubio et al., 2000) and it has significantly higher expression in the leaf 

elongation zone (Boscari et al., 2009), further supporting the idea of a combined ‘acid 

growth’ and ‘facilitated solute uptake’.  

 Based on qPCR, enzyme activity and Western blot result, PM-H+-ATPase 

expression in the plasma membrane might be controlled by a simple mechanism. 

The enzyme density in the plasma membrane can be diluted by cell growth; its 

density in the plasma membrane changes with cell size. The total number of PM-H+-

ATPase molecules was constant at cellular level while the total membrane surface 

increasing more than two-fold during cell development (Fig. 3.25 and Fig. 3.26). 

Taking into consideration all of the present results (expression analysis and 

physiological measurements with pH, H+ transport activity and K+ uptake during the 

leaf development) and published information about expression of HvHAK4 (Rubio et 

al., 2000; Boscari et al., 2009) leads to the model shown on Fig. 4.2. The 50 % of leaf 

growth that was sensitive to inhibition of PM-H+-ATPase requires high expression of 

HvHAK4 in the elongation zone (Boscari et al., 2009) and a high plasma membrane 

density of PM-H+-ATPase molecules. 
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Figure 4.1 Supposed effect of the treatments on bar ley leaf cells 

On the sketches cell wall (apoplast, CW) is labelled with yellow colour, cytoplasm (CP) is green and black lines refer to plasma membrane 
(PM). Orange balls symbolise PM-H+-ATPase and blue balls are high affinity H+ / K+ symporters. Under control conditions PM-H+-
ATPases pump out the H+ and K+ are taken up into the cell through high affinity K+ transporters (A). Fusicoccin (purple dots) permanently 
activate all the proton pumps and this massive H+ efflux is short cut by K+ transporter activity, causing higher turgor pressure in the cells 
and accelerates leaf growth (B). Vanadate (green dots) permanently blocks PM-H+-ATPase and without H+ transport K+ uptake and 
growth are inhibited (C). Caesium ions blocks (deep red dots) K+ transporters and reduce leaf growth (D) and ammonium ions (NH4

+) 
reduce active K+ accumulation through a competitive way and reduce growth (E). 
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Figure 4.2 Model of leaf elongation in barley leave s 

Cell size and membrane surface are increased 2 - 3 fold during cell development, as 
cells expand in the elongation zone (EZ) and finally reach full maturity in the emerged 
blade (EB). The number of PM-H+-ATPase molecules (orange balls) per cell is 
constant where as HvHAK4 (blue balls) expression (and presumably protein level) 
per cell decreases significantly during cell development. Therefore, both the 
maximum proton transport and K+ accumulation capacity are significantly higher in 
the elongation zone than in the emerged blade cell and can facilitate elongation 
growth through ‘acid growth’ and ‘solute accumulation’. On the figure light green 
colour represents the cell wall and the black line the plasma membrane. 
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5 Conclusions and future work 

 

5.1 Conclusions 

(i)  In this study the pH and H+ transport activity were examined in the 

elongation zone and the non-growing emerged blade portion of leaf three of barley, 

using three independent approaches - an in-vitro gel system with bromochresol 

purple as pH indicator, confocal microscopy combined with pH sensitive 

fluoresceince probes and microelectrode technique. All techniques show a lower    

pH / higher proton efflux in the elongation zone compared with emerged blade and 

support the classical ‘acid growth’ theory for the elongation growth of plant organs. 

(ii) Experiments with K+ channel and transporter blockers, and with PM-H+-

ATPase activator and blocker point to new aspects of the acid growth theory when 

applied to barley leaves. LVDT measurements, analyses of cell wall property and 

microelectrode pH results suggest that a lower or higher H+ transport activity is not 

linked directly to leaf growth, but linked through a H+ / K+ symport system which 

facilitates solute (especially K+) uptake into growing cells. Changes in cell wall 

properties suggest that elongation of barley leaves can be described with a 

combination of the classical ‘acid growth’ and the ‘facilitated solute uptake’ theory. 

(iii) In expression studies, both at the gene and protein level, a two fold higher 

PM-H+-ATPase density per unit plasma membrane surface area is found in growing 

compared with non-growing leaf tissue. PM-H+-ATPase seems an ideal reference 

gene in studies where growing and non-growing barley leaf tissues need to be 

compared. The copy number of the enzyme in the plasma membrane might be 

controlled by a simple mechanism of growth-dilution: the total amount of PM-H+-

ATPase is constant in the cells and the plasma membrane surface increases during 

cell and tissue development. 

(iv) Immunohistological analyses show that PM-H+-ATPase protein is present 

mainly in those leaf tissues which are characterised by high rates of solute exchange 

across the plasma membrane (guard cells) or high rates of solute loading / unloading 

associated with long-distance transport pathways (phloem; xylem parenchyma). This 

applies to both elongation zone and emerged blade and shows that there exists a 

cell-type-specific control of PM-H+-ATPase protein level which is superimposed on 

any developmental gradient. 
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5.2 Future works 

(i) Due to limited financial resources only some pH micro electrode 

measurements could be carried out. It would be interesting to further study the 

relation between apoplastic K+ concentration and cell wall acidification applying 10 

mM KCl treatment togheter with 5 µM fucicoccin and K+ transporter blockers e.g. 

CsCl, TEA or NH4
+. 

(ii) Using inside-out plasma membrane vesicles and fluorimetric approach 

proton pumping activity could be monitored. Within this project preliminary 

experiments were carried out and 5(6)carboxyfluorescein seem a good candidate for 

these probes (better for this purpose than acridine orange that was used by many 

previous studies e.g. Yan et al. (1998); Yan et al. (2002); Zörb et al. (2005); Pitann et 

al. (2009b); Zhu et al. (2009); Wakeel et al. (2010). Due to time constraints, these 

experiments could not be finished. Results of these vesicular transport assays could 

further support PM-H+-ATPase activity data. 

(iii) Most of the present data point to HvHAK4 playing a key role in leaf cell 

elongation growth in barley. HvHAK4 is a putative K+ / H+ symporter, yet the precise 

function and characteristics of this transporter remain unknown. It would be good to 

carry out functionality tests of HvHAK4 and its regulation through test reagents which 

also impact on growth and PM-H+-ATPase.  
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7 Appendix 

 

7.1 Processing of qPCR data 

(i) Total cell volume was considered to equal the total water content of plant 

tissue (neglecting any water in intercellular space). The water content was calculated 

from the fresh weight of the samples: 

%wmm FWw ⋅=  [g] 

1210⋅= wcell mV  [µm3] 

where: mw: amount of water in the tissue (g); mFW: fresh weight of tissue (g) and w%: 

percentage water content of the tissue, 






 −
⋅

FW

DWFW

m

mm
100 ; mDW, dry weight); Vcell: total 

cell volume (µm3). 

 

(ii) From water content, from the proportion of leaf volume occupied by 

epidermis (0.26) and mesophyll (0.646) and from the cell sizes (99,372 µm3 for 

epidermis cells in elongation zone; 461,552 µm3 for epidermis cells in emerged 

blade; 6,620 µm3 for mesophyll cells in elongation zone and 14,830 for mesophyll 

cells in emerged leaf blade) the number of epidermal cells, mesophyll cells and total 

number of the cells were calculated: 

Elongation zone:  
372,99

260.0⋅
= cell

Epcell

V
N  ; 

620,6

646.0⋅
= cell

Mcell

V
N  [piece] 

Emerged Blade:  
552,461

296.0⋅
= cell

Epcell

V
N  ; 

830,14

653.0⋅
= cell

Mcell

V
N  [piece] 

Total cell number: McellEpcellcell NNN +=  [piece] 

where: NEpcell: number of epidermal cells; NMcell: number of mesophyll cells and Ncell: 

total cell number. 

 

(iii) Plasma membrane surface was calculated as: 

Elongation zone:  632,1704,19 ⋅+⋅= McellEpcell NNA  [µm2] 

Emerge blade:  855,2004,50 ⋅+⋅= McellEpcell NNA  [µm2] 

where: A: plasma membrane surface of the sample (µm2). 
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(iv) Calculation of the PM-H+-ATPase copy number in the sample was carried 

out with the help of calibration curve using PM-H+-ATPase DNA standard. This 

calibration curve was different for each qPCR measurement. An example of this 

calculation may be found in Fig. 7.1. 

 

 

Figure 7.1 Typical calibration curve for converting  Ct values into transcript 

copy number 

For calibration three replicates were used and r2 of the fitted line was always higher 
than 0.98. 

 

From the calibration curve Ct values were converted into copy number of PM-H+-

ATPase transcript. For example, using the above calibration curve resulted in the 

following: 

75.3

45.36

10
Ct

ATPaseHPM
N

−

−− =+  [copy] 

where: 
ATPaseHPM

N
−− + : copy number of PM-H+-ATPase in the PCR sample (typically 

250 pg); Ct : average Ct values of 3 technical replicates. 

 

(v) From the copy number of PCR reaction the total copy number in 1 µg RNA 

could easily be calculated through multiplying the results with respective dilution 

factors; these were typically 4,000 using 250 pg template in each reaction: 

000,41 ⋅=
−− + ATPaseHPMgcopy NN µ  [copy] 

where: gcopyN µ1  is the PM-H+-ATPase copy number in 1 µg RNA 
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(vi) The copy number of transcript in 1 µg RNA could then be multiplied by the 

total RNA content of the leaf sample used for extraction of RNA: 

RNAgcopytotalcopy mNN ⋅= µ1  [copy] 

where: Ntotalcopy: the total PM-H+-ATPase mRNA copy in the sample; mRNA is amount of 

total RNA (µg) in the sample. 

(vii) Finally, this total copy number of PM-H+-ATPase transcripts could then be 

realted to the total number of cells or the total plasma membrane surface area in the 

leaf sample: 

cell

totalcopy

cellcopy N

N
c =−⋅ 1  [copy cell-1] 

6101 ⋅=−⋅ A

N
c totalcopy

Acopy
 [copy mm-2] 

where: 1−⋅cellcopy
c : PM-H+-ATPase copy number in a single cell; 1−⋅Acopy

c : PM-H+-ATPase 

copy number in 1 mm2 plasma membrane. 

 

Example for these calculations can be found on Table 7.1 for Golf and Table 7.2 for 

Jersey barley cultivar. 
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Table 7.1 Example for qPCR calculation of Golf cult ivar. S1 - 3 label different 

batches 

 Elongation zone Emerged blade 

 S1 S2 S3 S1 S2 S3 

Fresh weight (mg) 56.6 57.7 50.0 53.5 50.7 48.7 

Water content (mg) 52.1 51.3 46.0 46.4 44.0 42.3 

Number of epidermis cells (x 104) 13.6 13.4 12.0 2.98 2.82 2.71 

Number of mesophyll cells (x 106) 5.08 5.00 4.49 2.04 1.94 1.86 

Total number of cells (x 106) 5.22 5.14 4.61 2.07 1.97 1.87 

       

Total membrane surface of 

epidermis cells (mm2 x 103) 2.69 2.64 2.37 1.49 1.41 1.36 

Total membrane surface of 

mesophyll cells (mm2 x 103) 8.30 8.17 7.33 5.84 5.53 5.31 

Total membrane surface of the 

sample (mm2 x 103) 10.9 10.8 9.70 7.32 6.94 6.67 

       

Total RNA in the sample (µg) 123 106 105 61.3 51.9 40.9 

PM-H+-ATPase copy in 1 µg RNA 

(x 106) 14.8 11.5 13.7 9.91 6.63 14.1 

PM-H+-ATPase copy in the 

sample (x 109) 1.83 1.21 1.43 0.607 0.344 0.577 

PM-H+-ATPase copy in a cell 350 236 312 293 175 306 

PM-H+-ATPase copy per mm2 

plasma membrane (x 104) 166 112 148 83.0 49.6 86.6 
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Table 7.2 Example for qPCR calculation of Jersey cu ltivar. S1 - 3 label different 

batches 

 Elongation zone Emerged blade 

 S1 S2 S3 S1 S2 S3 

Fresh weight (mg) 69.2 57.6 58.7 77.1 74.9 62.2 

Water content (mg) 64.9 54.0 55.1 68.5 66.5 55.2 

Number of epidermis cells (x 104) 17.0 14.1 14.4 4.39 4.27 3.54 

Number of mesophyll cells (x 106) 6.33 5.27 5.37 3.01 2.93 2.43 

Total number of cells (x 106) 6.50 5.41 5.52 3.06 2.97 2.47 

       

Total membrane surface of 

epidermis cells (mm2 x 103) 3.35 2.79 2.84 2.20 2.13 1.77 

Total membrane surface of 

mesophyll cells (mm2 x 103) 10.3 8.60 8.77 8.61 8.36 6.94 

Total membrane surface of the 

sample (mm2 x 103) 13.7 11.4 11.6 10.8 10.5 8.71 

       

Total RNA in the sample (µg) 161 119 121 24.7 108 26.8 

PM-H+-ATPase copy in 1 µg RNA 

(x 106) 5.90 4.76 4.45 4.52 4.13 5.56 

PM-H+-ATPase copy in the 

sample (x 109) 9.49 5.65 5.34 1.11 4.47 1.49 

PM-H+-ATPase copy in a cell 146 104 97 36 150 60 

PM-H+-ATPase copy per mm2 

plasma membrane (x 104) 6.94 4.97 4.60 1.03 4.26 1.71 
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Table 7.3 Example for qPCR calculation of Jersey pr otoplasts. S1 - 3 label 

different batches 

 Elongation zone Emerged blade 

 S1 S2 S3 S1 S2 S3 

Protoplast No (x 106) 5.13 5.05 5.51 5.57 3.84 7.85 

Surface (mm2 x 1010) 8.37  8.24  9.00  1.59 1.10 2.24 

Total RNA(�g) 26.5 28.2 37.9 31.6 29.2 65.3 

PM-H+-ATPase copy in 1 µg RNA 

(x 106) 

5.34 3.95 7.02 3.09 2.06 5.60 

PM-H+-ATPase copy in the 

sample 

(x 107) 

14.1 11.1 26.6 9.75 6.00 36.6 

PM-H+-ATPase copy in a cell 27.6 22.0 48.3 17.5 15.6 46.6 

PM-H+-ATPase copy in 1 mm2 

plasma membrane (x 104) 

1.69  1.35 2.96 0.613 0.548 1.63 
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7.2 List of chemicals 

(NH4)2HPO4 M&B 

5(6)carboxyfluorescein Sigma 

Acetic acid Reanal, BDH 

Acridine orange BDH 

Acylamide (C3H5NO) Sigma-Aldrich 

Agarose Bioline 

Ammonium molibdate M&B 

APS (ammonium persulfate; (NH4)2S2O8) Sigma-Aldrich 

APTES (3-aminopropyltriethoxysilane) Sigma-Aldrich 

Ascorbic acid Szkarabeusz 

ATP (adenosine 5′-triphosphate disodium salt hydrate) Sigma 

Bis acrylamide (N,N′-methylenebis(acrylamide), C7H10N2O2) Sigma 

BIS-TRIS propane (CH2[CH2NHC(CH2OH)3]2) Sigma 

Boric acid BDH 

BrijTM58 Sigma 

Bromocresol purple  DIFCO 

Bromophenol blue (C19H10Br4O5S) Reanal 

BSA (bovine serum albumin fraction V) Sigma-Aldrich 

Ca(NO3)2x4H2O Reanal, BDH 

CaCl2 Reanal, BDH 

CaSO4  BDH 

Cellulase Worthington 

Coomassie brilliant blue R-250 (C45H44N3NaO7S2) Reanal 

CsCl  Gibco BLR 

CuSO4x5H2O BDH 

Dextran T-500 Sigma-Aldrich 

Driselase Sigma 

DTT (dithiothreitol, C4H10O2S2) Sigma, Fluka 

EDTA Reanal, BDH 

Entellan® Merck 

Ethanol Merck 

Ethidium bromide Sigma 

FeIIINaEDTA BDH 

Formalin BDH 
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Fusicoccin Sigma 

Glycerol Reanal, Fluka 

Glycine Reanal 

H2SO4 Molar 

H3BO3 BDH 

HCl BDH 

HEPES (C8H18N2O4S) Sigma 

Hydrogen Ionophore II Cocktail A Fluka 

K2HPO4 Reanal, BDH 

KCl Reanal, BDH 

KH2PO4 Reanal, BDH 

KNO3 Reanal, BDH 

KOH Reanal, BDH 

MES (2-[N-morpholino]ethanesulfonic acid, C6H13NO4S) Sigma 

Methanol Reanal, BDH 

MgSO4x7H2O Reanal, BDH 

MnSO4xH2O BDH 

MOPS (3-[N-morpholino]propanesulfonic acid, C7H15NO4S) Sigma 

Na2HPO4x2H2O BDH 

Na2MoO4x2H2O BDH 

Na3VO4 Sigma 

NAA (1-naphthaleneacetic acid, C12H10O2) Sigma 

Na-ascorbate Fluka 

NaCl BDH 

NaH2PO4x2H2O BDH 

NaN3 Sigma 

NaOH BDH 

Neo-clear® Merck 

NH4H2PO4 M&B 

Nitrocellulose Sigma 

Non soluble PVP (polyvinylpyrrolidone) Serva 

Paraffin wax BDH 

Pectolyase Sigma 

PEG-3350 Sigma 

Phtalate buffer Sigma 
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PMSF (phenylmethylsulfonyl fluoride, C7H7FO2S) Sigma 

Potassium antimony (III) oxid tartrate BDH 

Potassium hydrogen phthalate (KHC8H4O4) Sigma-Aldrich 

PVC (high molecular weight polyvinyl chloride) Fluka 

PVP K30 (polyvinylpyrrolidone) Sigma 

SDS (Sodium dodecyl sulfate, CH3(CH2)11OSO3Na) Sigma 

Sorbitol Sigma 

Sucrose (C12H22O11) Reanal, Sigma 

TAPS (N-tris[Hydroxymethyl]methyl-3-amino-propanesulfonic acis) Sigma 

TEMED (N,N,N′,N′-tetramethylethylenediamine, C6H16N2) Fluka 

THF (tetrahydrofuran, C4H8O) Sigma-Aldrich 

Toluidine blue Sigma 

TRIS (tris(hydroxymethyl)aminomethane, NH2C(CH2OH)3) Reanal, IBI 

Triton®X-100 Reanal, Sigma 

Tween®20 Sigma 

ZnCl2 BDH 

β-mercapto ethanol (HSCH2CH2OH) Sigma 

α-Naphthaleneacetic acid (NAA) Sigma 

 

 


