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1 Introduction 
 

Epilepsies are one of the most common neurological disorders in humans. According to 

the definition of the WHO, epilepsy is a chronic brain disorder, with different etiology, 

characterized by spontaneous recurrent seizures emerging from the excessive and pathologically 

hypersynchronous firing of a large amount of neurons [1] [2]. 

Though a large variety of antiepileptic drugs are available nowadays, a significant 

number ofpatients are pharmacoresistant [3]. In those cases, where the epileptic focus can be 

precisely localized epilepsy surgery is a possible solution for blocking seizures [4]. 

Healthy neocortical tissue is also routinely removed due to surgical technical reasons 

from patients with tumor but without epilepsy, when the pathological mass is localized in the 

subcortical areas. Comparing the morphology and activity of epileptic and non-epileptic human 

brain tissue offers an excellent possibility to investigate the normal and impaired neuronal 

mechanisms at the network, single cell and subcellular levels [5] [6] [7] [8]. 

Spontaneous synchronous population activity (SPA) can be observed in vitro during 

extracellular electrophysiological recording of local field potentials (LFP) in epileptic human 

neocortical slice preparations in physiological bathing medium (according to our unpublished 

observations, [6] [9] [10]). These synchronous population bursts consist of rhythmically 

recurring extracellular LFP deflections associated with high frequency oscillations and an 

increased neuronal firing [6]. Both glutamatergic excitatory and GABAergic inhibitory 

signaling is involved, pyramidal cells show either depolarizing or hyperpolarizing and even 

mixed responses during SPA (according to our unpublished observations).  

Calcium imaging of neurons is widely used to monitor cellular activity in animal slice 

preparations (for review see [11] however, we have only limited knowledge about Ca2+ 

concentration changes in human neurons. Calcium imaging of human neurons was investigated 

in cells differentiated from induced pluripotent stem cell lines [12], and in cultured neurons of 

the enteric nervous system [13]. Furthermore, a recent study shows spontaneous Ca2+ elevations 

in human neocortical and hippocampal astrocytes [14], but nothing is known about the 

intracellular Ca2+ properties of neurons derived from native human tissue of the central nervous 

system.  

While two-photon Ca2+ imaging technique has high spatial resolution (<1 µm), it can 

cover only a relatively small area of interest (<1x1 mm). On the other hand, multiple channel 

extracellular electrophysiology can cover large cortical areas (3-4 mm) at the expense of its low 

spatial resolution (100 µm). The activity of neurons restricted to one or two cortical layers (<1 
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mm) can be monitored with two-photon imaging, whereas multiple channel extracellular 

electrophysiology is needed to record the activity of neurons in the entire depth (3-4 mm) of the 

human neocortex. The temporal resolution of the two techniques is also different: 

electrophysiological changes reflecting neuronal activity are considerably faster (<1 ms) than 

changes in intracellular Ca2+ (usually more than 100 ms). Combining these two methods has 

several advantages. First, it helps us to gain more information on the role of different neurons 

in the emergence of population activity. Recording with the aid of the linear multielectrode gives 

information about the fast electrophysiological properties of SPA, detected in all neocortical 

layers, whereas Ca2+ imaging reveals the activity of a relatively large group of neighboring 

neurons (tens of bulk loaded cells), and their contribution to the generation of SPA. In addition, 

two-photon microscopy can detect inactive neurons, which are unnoticed in extracellular 

electrophysiological recordings. Second, the simultaneous use of Ca2+ imaging and whole cell 

patch clamp recording helps us to correlate electrophysiological activity and Ca2+ signals in 

human neurons. One can simultaneously observe and manipulate the membrane potential 

fluctuations of neurons with intracellular patch clamp recordings and relate to changes in their 

Ca2+ concentrations. Completing these measurements with the detection of extracellular activity 

we can relate electrophysiological and Ca2+ signals of neurons active during SPA. In addition to 

Ca2+ imaging, two-photon uncaging can be used to investigate neuronal input-output functions 

and postsynaptic signal integration. Cell filling and anatomical reconstruction at the light and 

electron microscopic level may add important morphological information about the subcellular, 

cellular and network properties of human neocortical neurons. 
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2 Main goals 
 

SPA can be detected with electrophysiological methods in cortical slices of epileptic 

patients, maintained in physiological medium in vitro. With EEG, and LFP measurements we 

can only have informations about the summarized activity of a group of neurons. We can’t show 

how many of the neurons (and which type) were active, and especially how many weren’t even 

involved in the discharge in the LFP. We wanted to gain additional spatial information about 

the network mechanisms, and the cells which are involved in the SPA generation, so we needed 

a new methodology. 

The aim of the thesis was to develop a method combining multiple channel extracellular 

electrophysiology, simultaneous intracellular recording, and two-photon Ca2+ imaging or 

uncaging supplemented by fine scale morphological analysis, to make it possible to understand 

what is going on in the individual cells behind the LFP. 

Here we report for the first time the two-photon Ca2+ imaging of human neocortical 

neurons derived from epileptic and non-epileptic brain tissue. 

Neocortical slices prepared from postoperative tissue of epileptic and tumor patients 

were maintained in a dual perfusion chamber in physiological incubation medium. SPA was 

recorded with a 24 channel extracellular linear microelectrode covering all neocortical layers. 

After identifying the electrophysiologically active regions of the slice, bulk loading of neuronal 

and glial markers was applied on the tissue. SPA related Ca2+ transients were detected in a large 

population of neighboring neurons with two-photon microscopy, simultaneously with 

extracellular SPA and intracellular whole cell patch clamp recordings. The intracellularly 

recorded cells were filled for subsequent anatomy. The cells were reconstructed in three 

dimensions and examined with light- and transmission electron microscopy.  

This complex method -combining high spatial resolution two-photon Ca2+ imaging 

techniques and high temporal resolution extra- and intracellular electrophysiology with cellular 

anatomy- is suitable to reveal subcellular, cellular and network properties of human neocortical 

neurons engaged in spontaneous population activity and may permit a deeper understanding of 

the structural and functional properties of the human neocortex. The methodological difficulties 

we faced during the experiments will also be described. 

This work is structured around the following theses on the basis of the above-mentioned 

aims. 

Thesis I: A method has been developed for the two-photon Ca2+ imaging of human 

neocortical tissue (see in the Materials and methods section). 

Thesis II: The extracellular recording system was successfully combined with the two-

photon microscope system. This way the epileptic and non-epileptic human neocortical neurons 

Calcium responses during SPA was compared. 
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Thesis III: The functional coupling of LFP, Calcium responses and intracellular activity 

in human neocortical interneurons and pyramidal cells during SPA will be demonstrated. 

Thesis IV: The electrophysiological and imaging measurements were succesfully 

combined with anatomical reconstruction of the intracellularly loaded cells, to gain more 

information of the morphology of the loaded cells. 

Thesis V: The electron microscopic ultrastructure of the filled and reconstructed 

pyramidal cell will be described at electron microscopic level. 
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3 Brief overview  
 

There will be an overview of the fields necessary to understand the research.  

The anatomy and physiology of the cerebral cortex will be presented.  

The electrical properties of the brain and the different electrophysiological measurement 

types will be introduced.  

We will present the necessary informations about epilepsy and some pathophysiology, 

which were involved in this study.  

We will provide the LFP signals which upon this study is started, and the principles of 

Spontaneous synchronous Population Activity. How the LFP signal was defined first, and how 

its understanding developed. Based on these foundations the importance of the method 

described in the “Materials and methods” section will be discussed.  

We will discuss the field of two-photon microscopy, its phenomenon, and the calcium 

imaging’s significance in this study. 

 

3.1 The Cerebral Cortex 
 

In this chapter, there will be an overview of the structure and function of the cerebral 

cortex, because in this research we focus mostly to this part of the brain. The basic cell types, 

and their role in the system will be also presented.  

The cerebrum is covered by the cortex which is the largest portion of the brain. The cortex width 

is between 2-4 mm in humans, (depending on which area we take). The cortex takes a key part 

in many higher order processes, like remembering, attention, speaking, learning, and so on. Its 

surface is around 220.000 mm2, 560 cm3 volume, and 581 g weight in humans [15] [16]. 

The cortex contains around 14-16 billion neurons, and each of them can connect to more 

than 10.000 neurons. The phylogenetically older part of the cortex cerebri called allocortex, it 

contains the archicortex (hippocampus and dentate gyrus) and paleocortex (parahippocampal 

gyrus, olfactory cortex), the other part called isocortex (neocortex). 

There are two distinct compartments of the brain, one is the white matter which contains 

mostly long myelinated fibers, the other is the gray matter, which contains the cell bodies, a 

high amount of short fibers, and most of the synapses [17]. 

In the brain development the cortex grows quicker than the white matter, this is how its 

fissures (deep ditches), sulcuses (shallow ditches) and gyruses (bossings between the grooves) 

are formed, and this is how the skull can contain this huge amount. However, this gyrification 

brings more than functional advantages, for instance, the connection between areas are much 

shorter. The two hemispheres of the cerebrum are severed by the fissure longitudinalis [18].  
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In the cortex, we can differentiate 4 major lobes, the frontal, the parietal, the occipital, 

the temporal lobes, and there are a little part in the lateral cerebral sulcus, the insular cortex.  

The frontal lobe is bordered by the lateral cerebral sulcus, and the sulcus centralis. In the frontal 

lobe, we can find the area of voluntary movement, higher intellectual functions, pain, Broca-s 

motor speech, and well-being.  

The parietal lobe is bordered by the sulcus centralis in the front, the parietooccipital fissure in 

the back, and the lateral cerebral sulcus in the lower side. The parietal lobe integrates sensory 

information among various modalities.  

The occipital lobe is bordered by the parietooccipital fissure in the front, in the convex, and the 

basal surface, the occipital lobe is not separated harshly by the parietal, and the temporal lobes. 

The occipital lobe is the primer visual area of the brain. 

The temporal lobe is severed from the frontal, and parietal lobes by the lateral cerebral sulcus. 

Its major role is auditory, but has other functions as well, like process sensory input into derived 

meanings, the retention of visual memories, language comprehension, and emotion association 

[19]. 

We can part the cortex based on cytoarchitectural differences into 52 areas [20]. There 

was a more detailed division some years after Brodman’s work [15] which made 109 different 

area, and there are some newer detailed division novadays (see in [21] [22] [23] ), but the 

Brodman nomenclature is the most commonly used by scientists.  

In the depth of the neocortex the neural cells forms 6 layers (Figure 1.): 

Layer I. stratum zonale (plexiform): mostly fibers, stellate cells 

Layer II. stratum granulosum externum: small granule cells, small pyramidal cells 

Layer III. stratum pyramidale: small pyramidal cells 

Layer IV. stratum granulosum internum: granule cells 

Layer V. stratum gangliosum (stratum pyramidale internum): big pyramidal cells 

Layer VI. stratum multiforme: spindle-, pyramidal cells 

It is suggested [19] that the basic structural and functional component of the neocortex 

is the cortical column, which extends the whole cortical depth and 200-300 μm in diameter.  

The cortex has 2 millions of these columns or modules, each contains 5000 cells. All of the 

modules sends axons to 50-100 other modules, and receives the same amount of afferents, which 

shows us the complexity of the neocortex [19].  

Every region of the cortex has the same types of neurons, and in the connections between the 

different types of neurons are alike.  

The neurons in the cortex can be separated by many aspects, like neurochemical and 

electrophysiological nature, or morphology. There are cells which use γ-amino-butyric acid 

(GABA) neurotransmitter molecules for inhibition, or others which use glutamate for excitation 

[24].  
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Based on morphological classifications, the pyramidal cell got its name from the shape 

of the soma. The pyramidal cells are responsible to form the most of the associational, 

commissural and projection pathways. The stellate (granular) cells, which makes short local 

networks. The basket cells axons go around the pyramidal cells bodies, while the chandelier 

cells connect mostly the axon initial segment of the pyramidal cells, and they make a local 

network. The disinhibitory cells axons go through all the layers of the cortex to cause inhibition 

on inhibitory cells. 

 

 

Figure 1. A schematic of a cortical column. How the cells are arranged in the depth of the 6 layer (roman numerals 

refer to the layers), how the afferent and efferent connections are, and how the disinhibitory network is arranged. The 

red cells are pyramidal cells, black cells are inhibitory neurons, the green is a cortico cortical afferent fiber, blue lines 

are specific sensory afferents, (DN = disinhibitory neuron (axon reaches through all the layers), SN = spiny neuron 

(transmits excitatory nerve impulses)) [19]. 

 

A third partition can be made based on the spines (spines are the dendrite buttons, where 

the synapses are). Pyramidal cells and spiny stellate cells have a lot (mostly communicate via 

glutamate), but smooth stellate cells (mostly communicates via GABA) have few of the spines.  

We can separate the cells by their electrophysiological properties as well. With 

intracellular current injections we can depolarize the cells in vitro or in vivo and they show 

different kinds of responses. [25] [26] [27] [28]. Some are fast spiking (FS) some regular spiking 

(RS), intrinsic burst (IB), and fast rhythmic bursting (FRB) neurons. [28] [29]. The firing can 
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be adapting, then the firing rate changes by the continuous excitation, or non-adapting, then the 

firing rate does not change. 

The FS neurons can hold a high firing rate (tonic firing) without frequency adaptation, and the 

action potentials (AP) are short (~0.3 ms). There are inhibitory cells mostly in FS type. 

The RS neurons respond quickly or slowly adapting AP sequences to the excitation (most of the 

pyramidal cells are RS type). 

The IB cells respond with bursts for threshold current excitation, and they are followed by 

relatively long after hyperpolarization (these cells have many spines on their apical dendrites, 

and they can be found in each layer, except the first) [30] [31].  

The FRB cells respond with frequently emerging (30-50 Hz) high frequency bursts (300-600 

Hz) for depolarizing current. A portion of these cells are in the deep layers of the cortex, other 

types are local network making and have a lot or few spines [29]. 

The classification of the cells by firing rate can be problematic, because by the change of the 

membrane potential, the modulatory systems activity or the level of alertness can change from 

one firing type to another [32].  

 

3.2 Cell types 

3.2.1 Excitatory cells 

 
The most commonly known cell type in the neocortex is the pyramidal cell, it is easily 

detectable in Nissl-stained slices.  From the cone like soma’s tip (tip points to the surface, bottom 

to the white matter) one big dendrite goes towards the cortex surface (apical dendrite), there are 

some dendrites all around their base.  

Almost every pyramidal cell’s apical dendrite reaches the layer I. Only exceptions are 

the pyramidal cells in layer VI. they reach just to layer IV. [33]. The basal dendrites of the layer 

III. pyramidal cells go towards the layer IV., where they get thalamocortical synaptic inputs. In 

layer IV. the pyramidal cells have diverse morphology: pyramidal cells with horizontal dendrite 

tree, bipolar pyramidal cells (they got a main dendrite to towards the surface of the cortex, and 

one towards the white matter), upside-down pyramidal cells (the tip of their soma looks in the 

direction of the white matter) [33]. The apical dendrite have many branches in the layer I. called 

dendritic tuft. The dendrites of the pyramidal cells have many spines. The axon starts from the 

base of the cell, with only a few collaterals in the beginning till the white matter.  

By the electron microscopy terminology there are asymmetrical and symmetrical 

synapses. Symmetrical synapses are mostly inhibitory, asymmetric synapses are excitatory. 

Synapses of the pyramidal cells are mostly asymmetric, but on their soma, axon initial 

segment, and proximal dendrites they get symmetrical synapses from inhibitory neurons. On the 
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distal dendrites the synapses are mostly on the spines, and they are asymmetrical, and both types 

can be found on the dendrite body. This gives rise to the opinion that the main role of inhibition 

of the pyramidal cell is total inactivation, and AP-s can only occur by a sum of many excitatory 

synaptic inputs [33]. 

There are 4 different sizes of pyramidal cells, small (1-12 μm), medium (20-25 μm), big 

(45-50 μm) and giant (70-100 μm) (for example Betz cells in the layer V.) [33]. The pyramidal 

cells are either RB or IB type firing. The RS type pyramids in layer V. are slender tufted, with 

little branching in layer I., the IB cells on the other hand are thick tufted, and have a large 

branching near the surface of the cortex [30] [34]. Star pyramidal cells are in between pyramidal 

cells and stellate cells. They have an apical dendrite (they do not reach to layer I., and just a few 

branches), and the basal dendrites are symmetrical [35]. Their soma are not pyramid like. The 

axon of the star pyramidal cell goes to layer II., III., and IV. of the cortex, some branches reach 

layer V., VI. 

Stellate cells (SC) are separable by spine density in two distinct group: smooth, and spiny.  

The spiny stellate cells have multipolar star-like cell body (mostly in layer IV.), the dendrites 

go from that in each direction, and the branching starts quite close to the soma, and densely 

spined [33].Their axon reaches towards the white matter, but branches the close to the soma 

(sometimes it gives a collateral which ends in the upper layers). They give excitatory 

asymmetrical synapses. The spiny SC-s get symmetrical synapses to their soma, and proximal 

dendrites. On the distal dendrite tree, they get a few symmetrical synapses, but mostly excitatory 

asymmetrical presynaptic connections to the spines. There are big and small sized spiny SC-s 

[36]. The axon goes through the white matter to other cortical areas in case of the big size Spiny 

SC-s, the small type has only local branches. In some cortical areas, where there are minimal 

Spiny SC, this way there is no real layer IV. (like in motor cortex) [19]. 

 

3.2.2 Inhibitory cells 

 

The smooth stellate cells and the spiny SC-s have a morphological similarity in soma 

(10-30 μm diameter), and dendrite tree. Smooth SC’s axon branches locally in the cortex, it uses 

symmetrical GABA synapses. Smooth SC get different pattern input from those of pyramidal, 

and spiny SC. On the soma they have some excitatory, and mostly symmetric inhibitory 

synapses. On the distal dendrites it is almost the same, but the synapses are mostly asymmetrical. 

Due their locality, they are often called interneurons. Smooth SC-s are the most heterogeneous 

group of the above cell types. There are at least 7-8 or even more different inhibitory cell groups 

by morphology [37]. According to dendrite morphology, there are bipolar, and bitufted. The 

axon endpoint also can be a basis for classification.  
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Chandelier cells axons go to the axon initial segment of pyramidal cells. Basket cells 

make synapses on pyramidal cell somas (with big or small basket). The others innervates mostly 

the dendrites [37] [38] [39]. The Martinotti cells which are multipolar interneurons with short 

branching dendrites, with an axon going to the cortex surface. The Cajal-Retzius cells, which 

are small neurons, the axon goes parallel with the surface (the Cajal-Retzius cells are rare in 

adults, if there are any).  

By staining immunohystochemical agents the different cells stains differently, by these 

markers the inhibitory cells can be differentiated as well: by calcium-binding proteins 

(calbindin, calretinin, parvalbumin), or by neuropeptides (vazointestinal peptide, 

cholecystokinin, and somatostatin). For communication with other interneurons, they use gap 

junctions as well. 

The electrophysiological properties of the interneurons are very diverse too. In general, 

they are non-adaptable FS cells, or low threshold firing adaptables, but there are more than 10 

other type as well according to their spontaneous, and evoked firing pattern [40]. 

In the cortex, 85-90% of the cells are excitatory (75% pyramidal, 10% stellate cell), and 10-15% 

inhibitory [33].  

3.3 Electrophysiology 
 

In this chapter, we will introduce the principles of the bioelectric signals in the brain, 

and the electrophysiological measuring methods. Biological information is processed and 

communicated by various physical modalities, but the electrical behavior e.g. action potentials, 

synaptic and intrinsic membrane currents and underlying mechanisms of cells and tissues are 

studied by electrophysiology. 

It is well known that the electrophysiological signals are based on the ion composition 

(and its alteration) of the two sides of the cell membrane. Inside the cell the concentration of K+ 

and negatively charged proteins are higher, outside the Na+, and Cl- concentration is higher. The 

transport of the ions are made by ion channels, and transporter proteins. The ion channels current 

state (open-closed), the permeability and the concentration gradients of the different ions can 

alter the membrane potential. The membrane potential can be calculated by the following 

equation in a steady state (Hodgkin-Katz-Goldman) [41]: 

𝑈 =
𝑅𝑇

𝐹
𝑙𝑛

𝑃𝐾[𝐾]𝑘 + 𝑃𝑁𝑎[𝑁𝑎]𝑘 + 𝑃𝐶𝑙[𝐶𝑙]𝑏

𝑃𝐾[𝐾]𝑏 + 𝑃𝑁𝑎[𝑁𝑎]𝑏 + 𝑃𝐶𝑙[𝐶𝑙]𝑘
 

R is the gas constant [8.413 J/ (mol*K)], T is the absolute temperature (310 K), F is the Faraday 

constant (9.649*104 C/mol), P is the permeability of the fitting ion. Typically the resting 

membrane potential of a neocortical pyramidal neuron is ~-65mV. 
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If the membrane potential (by some stimuli or by the effect of some presynaptic cell) 

moves in the positive direction, it is called depolarization, if it goes more into the negative than 

the process is called hyperpolarization. Chemical or electrical signaling between cells are made 

by synapses. If some information (for example action potential) comes from the presynaptic cell 

then Ca2+ flows into the presynaptic terminal and neurotransmitters are released to the synaptic 

gap, then the neurotransmitters connects to the receptors of the postsynaptic cell. If it is an 

excitatory neurotransmitter like glutamate, then the postsynaptic cell depolarizes (Excitatory 

postsynaptic potential occurs (EPSP)) by the Na+ inflow, if it is an inhibitory neurotransmitter 

like GABA then it hyperpolarizes (Inhibitory postsynaptic potential occurs (IPSP)) by the Cl- 

channels opening. If these potentials reach the soma, and the summarized EPSP-s and the IPSP-

s go beyond a threshold depolarization level, then action potential (AP) occurs, and thereafter 

the AP is transmitted towards the axon terminal [19] [42] [43] [44]. The axon initial segment is 

the place of the AP initiation, because of the vast amount of voltage dependent Na+ channels. 

The AP conduction on the axon is described by the Hodgkin Huxley equation:  

𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
+ 𝐼𝑖𝑜𝑛 = 𝐼𝑒𝑥𝑡 

 

Cm is the membrane capacitance, Vm is the intracellular potential, t is time, Iion is the current 

going through the membrane, Iext is the external current applied. The ion current which goes 

through the membrane channels consist of the Na, K, and leaking currents (Figure 2.).  

𝐶𝑚

𝑑𝑉𝑚

𝑑𝑡
= 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝑙 + 𝐼𝑒𝑥𝑡 

The membrane can be modeled by a circuit. In this model there are some conductances which 

should be the result of open membrane channels. Many ion channel has gates which can block 

the ion flow through. If these gates are open then by the in- or outflow of the corresponding ion 

(depending on the concentration gradient) the membrane potential alters closer to the 

corresponding ions equilibrium potential. 

 

Figure 2. Left) The different channel conductance changes during the action potential. Right) The axon’s (membrane, 

channels) replacement wiring diagram. G = conductance, I = ioncurrent, E = reverse potential, L = leaking [41] [45]. 
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3.3.1 Electrical properties of the brain 

 

In this chapter the basic properties of bioelectric field potentials and characteristic brain 

rhythms emerging during different vigilance states in humans will be described. The electric 

fields generated by neuronal activity can be measured with various electrophysiological 

methods. Electroencephalography (EEG), which is one of the most widely used techniques to 

record the potential changes in the brain, will be the main method through which the features of 

the different neuronal oscillations are demonstrated in this chapter.  

Field potentials recorded with the EEG on the scalp represent the summation of the 

synchronous synaptic activity of a myriad of cortical neurons which have similar spatial 

orientation. On the level of the single neuron, excitatory postsynaptic activity originating on the 

dendrites generates an inward current flow into the cell (active sink) at the site of the origin, 

with a simultaneous outward current on the soma (passive source), latter acting as a return 

current [46]. The electric field generated by this current dipole can be detected with voltage 

recording electrodes. In a simplistic view, the field potentials registered with the EEG are the 

resultant of thousands of spatially and temporally superponed dipoles. If the activity of the 

neurons is temporally synchronized, then the recorded EEG signal contains high amplitude 

waves with low frequency (synchronized activity). On the other hand, if the activity is 

temporally asynchronous, low amplitude waves with high frequency can be detected 

(desynchronized activity). However, the amplitude and frequency content of the EEG signals 

depends on various factors: e.g. the age of the patient, the vigilance state, and certain diseases 

can alter these properties as well.  

Based on the frequency of the recorded bioelectric field potentials, we can characterize 

different brain rhythms or oscillations, including the first-discovered and well-known alpha 

waves [43].  

1. Delta (1-4 Hz): Delta waves belong to the brain rhythms with the lowest frequency. 

The activity of neuronal populations is highly synchronized during delta oscillations, 

therefore high amplitude waves can be recorded on the entire scalp. This particular 

brain rhythm arises in the thalamus and neocortex during the deepest stage (slow-wave 

sleep) of the non-rapid eye movement (NREM) sleep in adults. High amount of delta 

waves recorded in the awake state usually refers to pathological conditions (e.g. brain 

tumor). 

2. Theta (4-8 Hz): Theta waves are faster compared to the delta rhythm. In humans theta 

rhythm can be recorded with the EEG during stage 2 of the NREM sleep, but it can 

occur in meditation in the limbic cortical areas as well [43]. There is another type of 

theta rhythm which was observed in the hippocampus of rodents during exploration of 

their environment and during rapid eye movement (REM) sleep [46]. 
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3. Alpha (8-13 Hz): The alpha waves were discovered by Hans Berger, the inventor of 

the EEG. This brain rhythm can be recorded on the occipital sites of the EEG during 

periods of eyes closed, but they are present during stage 1 of the NREM sleep as well 

[46]. 

4. Beta (13-30): Desynchronized activity with higher frequency oscillations (>13), such 

as beta and gamma rhythms are the characteristic features of the awake state. Beta 

waves are present in adults on the frontal and central cortical areas and are associated 

with active thinking, attention, focusing and problem solving [46].  

5. Gamma (30-80 Hz): The neuronal mechanism underlying the gamma waves is actively 

researched, and this phenomenon may have a major role in the conscious perception 

(e.g. the binding problem, see ref. [32] [46] [47] [48] [49]. These waves are the 

hallmark of the awake and attentive brain, where desynchronized activity with low 

amplitude EEG signals can be observed. 

 

3.3.2 Brain electric recording techniques 

 

Measurements of brain electrical properties require a connective medium between the 

tissue and the recording device. The connective medium is called electrode, which is formed by 

an electron conductor placed in an electrolyte [50] [51]. In order to measure potential 

differences, such as brain electric potentials, at least two electrodes are needed. One electrode 

is always placed over active tissue. Placement of the other electrode can be also over active 

tissue, in which case the recording is bipolar. When the second electrode is placed over a zero 

potential area as a reference electrode, the recording is called monopolar. Both arrangements 

are widely used in research, so several different properties should be carefully taken into account 

when choosing one of them for a specific experiment [50]. 

Brain electric potentials can be both recorded from outside and from inside the brain 

(Figure 3.). EEG recorded from the scalp and ECoG recorded from the brain surface are the two 

typical recording techniques for measuring potentials outside the brain. Extracellular and 

intracellular recordings are the two main types of electric potential measurements performed in 

the brain.  

Extracellular recordings are carried out by placement of a recording electrode in the 

extracellular medium. Recording electrodes can be metal wires, silicon microprobes with metal 

recording contacts or glass micropipettes filled with electrolyte solution and connected to an 

Ag/AgCl electrode. Extracellularly, local field potentials (LFP), multiunit (MUA) and single 

unit activity (SUA) can be measured. SUA is obtained from MUA recordings when the electrode 

arrangement, such as tetrode configuration, allows for sorting of recorded spikes based on their 
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waveform characteristics [50]. MUA and SUA are only recorded from neurons in close 

proximity of the electrode, since action potential waveforms quickly vanish in the highly 

conductive extracellular medium [50] [52]. Using multichannel extracellular electrodes enables 

recording activity from larger brain areas, such as several cortical layers or multiple subcortical 

nuclei simultaneously. Extracellular recordings can be performed both in vitro in prepared brain 

slices or tissue cultures and in vivo in anesthetized or freely moving subjects. Potentials recorded 

extracellularly are in the µV range.  

Intracellular recordings are performed inside a single cell.  For this purpose glass 

micropipettes are always used. The two main types of intracellular recording electrodes are 

sharp and patch electrodes. A sharp electrode has a tip less than 1 µm thick which can easily 

penetrate the cell membrane [53] [54]. Sharp recordings are mostly performed in brain slices 

and carried out in current clamp mode. Current clamp mode means injecting constant current 

into the cell and measuring resulting membrane potential changes, which are in the mV range. 

Sharp recordings are used to measure whole-cell membrane potential dynamics but are not able 

to record single channel potential changes [53] [54]. For this purpose the patch recording 

technique is widely used. Patch electrode tips are thicker than the tips of sharp electrodes; their 

thickness is about 1 µm [53] [54]. In contrast to the sharp electrode technique, patch electrodes 

do not penetrate the cell membrane but form a tight seal on a small patch of the membrane. 

There are four different types of patch recording [53] [54]. Firstly, cell attached technique means 

that the patch pipette is tightly attached to the intact cell membrane with negative pressure. In 

contrast, whole-cell patch recordings are carried out by attaching the recording micropipette to 

the cell membrane and then ripping the membrane patch inside the micropipette. The other two 

patch clamp techniques, inside-out and outside-out patch clamp, are performed on membrane 

patches ripped off the cell. The difference between the two techniques is the side of membrane 

facing the electrolyte solution in the micropipette. In patch clamp recordings, both current and 

voltage clamp modes are used. Opposed to current clamp mode, in voltage clamp mode the 

amount of injected current required for keeping the voltage of the membrane patch at a constant 

level is measured [53] [54]. Single cell recordings during hippocampal SPA described in this 

dissertation were made using whole-cell patch clamp in current clamp mode. 
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Figure 3. Recording techniques (EEG: Electroencephalogram, AEP: Auditory Evoked Potential, EcoG: 

Electrocorticogram, EP: Evoked Potential, FP: Field Potential, RP: Resting Potential, PSP: Post-synaptic Potential 

[51]  

 

3.3.3 In vitro and in vivo human brain tissue preparations for 
electrical recordings 

 

Electrical recordings from human brain tissue can be either made from different tissue 

preparations or from the brain of a living patient. In vitro preparations have the advantage of 

easy manipulation but provide limited access to mechanisms in an intact brain [53]. The easiest 

way to measure electrical potentials from brain cells is the recording from isolated brain cell 

cultures. These cultures can be tested in many different conditions by just changing the 

ingredients of their bathing solution. Heterologous expression systems are cell cultures that 

express a foreign gene coding for example an ion channel [53]. These systems allow for easy 

testing of different ion channels in a controlled way. However, in vitro tissue preparations 

closest to the intact brain are acute brain slices. These slices are kept in a solution called ACSF, 

which closely resembles the cerebrospinal fluid in the brain. Acute brain slices contain small 

networks of neurons so that measurements of these slices can reveal valuable information about 

functions of neuronal networks in the brain [53]. Results of this dissertation were obtained from 

recordings performed on human acute brain slices.  

While all of the previously described extracellular and intracellular recording 

techniques can easily be used in in vitro tissue preparations, in humans in vivo only extracellular 

recordings can be performed. However, in vivo recordings have the great advantage of recording 

from a tissue in its whole physiological environment. Human in vivo recordings are always 

carried out in subjects undergoing therapeutic brain surgery [55] [56]. Brain surgeries are 
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preceded by simultaneous video and EEG recordings and also by different brain imaging 

sessions to localize the area for surgery. During surgery, different recording electrodes are 

implanted onto the surface of the brain, such as grid and strip electrodes, or into the brain, such 

as the thumbtack electrode [55] [56](Figure 4.). Recordings by such electrodes are of great value 

since they are obtained from tissue that is later removed and used in in vitro recordings. This 

allows for direct comparison of data recorded from different tissue preparations [55] [56]. 

 

Figure 4. Subdurally implantable thumbtack- (A and C), and grid electrode (B) [55]. 

 

3.3.4 EEG graphoelements 

 

EEG graphoelements are manifestations of brain electrical activity recorded on the 

scalp. These elements are results of both spontaneous and evoked potential changes in the brain. 

Graphoelements help in categorizing and describing EEG recordings, thus providing a powerful 

tool for both researchers and clinicians. In 1924, Hans Berger described the first EEG 

graphoelement as the alpha wave, which is measured from occipital areas during wakefulness 

with eyes closed [57] [58]. As such, the definition of alpha wave is as old as the EEG recording 

technique itself. Since then, several different EEG graphoelements were introduced.  
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From a healthy brain, various categories of graphoelements can be recorded [48]. 

Regular rhythmical oscillations are mostly recorded during slow wave sleep and characterized 

by low frequency and high amplitude waves. Certain frequency sinusoidal waves are 

characterized by a single frequency and appear as a sinusoid-like wave on the recording. One of 

the most easily recognized certain frequency sinusoidal wave is the alpha wave. In many cases, 

certain frequency waves do not appear and disappear instantly but form waxing and waning 

oscillation snippets, called spindles. These spindles can be observed in many cases, such as sleep 

spindles during the deepening phase of slow wave sleep or alpha spindles during eyes closing 

in wakefulness. The most prevalent EEG graphoelements during a resting wakefulness with 

open eyes are the irregular arhythmical EEG waves. These consist of various frequencies and 

reflect the ongoing activity of the wake brain. More complicated graphoelements which consist 

of many different frequency waves are called complexes. The most well-known complex in the 

EEG is the so called K-complex which can be observed during stage-2 non-REM sleep in 

humans [48].  

In addition to the graphoelements recorded from a healthy brain, several EEG 

graphoelements can be indicative of pathological phenomena (Figure 5.). The most prevalent 

pathological graphoelements are the sharp waves, spikes, spike and wave complexes, polyspikes 

and polyspike and wave complexes [48]. These elements play a key role in diagnosing and 

localizing pathologies such as epilepsy. 

 

Figure 5. Examples of the above mentioned EEG graphoelements [48]  
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3.4 Epilepsy 
  

Epilepsy is one of the earliest recognized neurological disorders. The Babylonians wrote 

down most of the seizure types, but they thought that it is some kind of evil spirit taking 

possession of the body.  

The first person to claim that epilepsy is a kind of brain disorder was Robert Bentley 

Todd in 1849: he suggested that the seizures were electrical discharges from the brain. 

John Hughlings Jackson was the one who had made this approach popular among the public at 

large, and with his guidance Victor Horsley was the first who performed craniotomy to cure 

epilepsy. This was the beginning of the discipline of epilepsy surgery. 

The first antiepileptic medication -phenobarbital- was invented in 1912, and till now 

this is the most widely used medicine in the pharmacological treatment of epilepsy [3] [59] [60] 

[61] [62]. 

In 1935 Wilder Penfield and Herbert Jasper were the first who made awake EEG 

assisted surgeries in the Montreal Neurological Institute [63]. They stimulated different cortical 

areas during the surgeries and mapped the evoked responses (like movement of the mouth etc.), 

or what sensations the patients experienced.  

Epilepsy is a frequent neurological disorder; approximately 65 million people suffer 

from epilepsy worldwide. Epilepsy affects seriously the quality of life of the patients and their 

families. Epilepsy is not curable, but large scale of antiepileptic drugs are available, which can 

attenuate or stop the seizures. Epilepsy is frequently accompanied by other psychiatric disease 

patterns like depression, psychotic symptoms, personality disorder, anxiety, cognitive failures 

and a higher suicide rate compared to the non-epileptic population [59] [60] [61] [62]. This can 

be explained either by the disease itself or by the side effects of the different antiepileptic drugs. 

There is an increased mortality (2-10 times higher) in the case of epileptic patients. However, 

this is not the consequence of the brain disorder, but the injuries connected to the seizures [64] 

[65]. 

It is important to be mentioned that an epileptic seizure is not equal to epilepsy. On one 

hand, a seizure can be a symptom or a momentary signal. It can be synchronous or excessive, 

but it is always the consequence of some pathologic activity of the brain. On the other hand, 

epilepsy is a long lasting susceptibility to seizures by the dysfunctional behavior of the brain. 

On the neuronal network level epileptic seizures manifest as states of pathological 

hyperexcitability and hypersynchronous activity of large populations of neurons with 

concomitant synaptic reorganization of the affected brain region [2] [66]. 

The epileptogenecity of the different brain regions are diverse. Neocortical neuron 

populations are especially capable to produce excessive, synchronous firing during 

physiological conditions which is indispensable in several processes like formation of memory. 
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Therefore, they have the potential to display extensive hypersynchronous firing under 

pathological conditions [67]. 

According to the most well-known hypothesis, epilepsy is linked to an impaired balance 

of excitation and inhibition in the affected brain region [2]. The role of an altered GABA-

mediated inhibition in epileptogenesis and seizure activity has been studied for decades, as well 

as the sprouting of certain excitatory pathways [8] [68]. 

There are a lot of syndromes of epilepsy, and the International League Against Epilepsy 

tried to distinguish the different types. There are two main categories: they are either separable 

by the seizure focus, or by the etiology of the seizures/epilepsy.  

When separating by the focus, there are focal/partial seizures (the epileptogenic zone is 

well localized), and there are generalized seizures (both of the hemispheres are involved in the 

emergence). Regarding etiology, there are idiopathic, or symptomatic epilepsies. Symptomatic 

epilepsies occur along with other disorders of the central nervous system. There is not any other 

disease before the occurrence of idiopathic epilepsies; they are the result of some kind of 

heritable susceptibility.  

The seizures which are connected to a specific brain region are called partial seizures. 

Partial seizures which do not involve disturbance of the consciousness are the simplex partial 

seizures. Seizures involving the frontal and temporal lobe are the complex seizures (mostly with 

loss of consciousness). If the motor cortex of both hemispheres are involved, than grand mal 

seizure occurs (generalized tonic-clonic-seizure). When the area of the epileptic seizure is not 

definable then it’s a generalized seizure, with symmetrical motoric phenomenons appearing in 

the EEG signal, the seizure appears on systems which innervates areas on both hemispheres.  

There are some generalized seizures during which no or only a few excitation signs 

appear (petit mal). These seizures cut off extensive areas for a few seconds with cortical spike 

trains [3] [59] [60] [61] [62]. Focal seizures are most often of temporal lobe origin [3] [69], but 

frontal, occipital or parietal lobes are also frequently the focus of the seizures. 

Despite the large variety of antiepileptic drugs available, a considerable part of the 

patients are resistant to pharmacological treatment. In case of temporal lobe epilepsy, the 

percentage of drug resistant patients is extremely high [70] [71].  

Nowadays, the surgical treatment emerges in some type of epilepsy. The progression of 

the surgeries is due to the advances of imaging techniques. With the ever growing influence and 

quality of the imaging techniques, there is a possibility now to gain much more insight into the 

localization, extension, and pathological nature of the epileptogenic brain disorder in a variety 

of lesion types. The vascular malformations diagnostics have improved greatly in recent years, 

and by the characteristic MR signals of an epileptogenic cavernome gives us the opportunity to 

surgically treat it. MR is good for recognizing epileptogenic sub-acute, or chronic encephalitis. 
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Some of the newest application of fMRI is that it can localize the motoric and speaking functions 

areas, so it gives the opportunity to make a surgery close to these areas. 

The development of subdural electrodes allows a much better localization of the seizure 

onset zone, where the scalp electrodes are not sufficient enough. Using the two techniques 

together the seizure onset zone can be connected to a specific anatomical structure in the brain. 

Since the majority of partial epilepsies are of temporal lobe origin, temporal lobectomy is 

performed most often, during which the parts of the hippocampus and the temporal lobe are 

removed [3] [4] [72] [73]. After the surgery the majority of the patients is seizure free, or has 

seizures less frequently. 

 

3.4.1 Tumor based epilepsies 

 

20-45%of tumor patients have some kind of epileptic event. The age, the place of the lesion, 

the pathology of the tissue can all influence the seizure’s appearance. The etiology of the tumor 

caused epilepsies are quite diverse [3] [59] [60] [61] [62] [74] [75]. 

- Central nervous systems disorders 

o Primary brain tumor: glial, neuronal 

o Increase in the number of excitatory neurotransmitters, increase of the pH  

o Morphological alterations in the tissue (abnormal neuronal migration), receptor 

binding site alteration 

o Brain metastasis (lung-, breast melanoma) 

- Toxic, metabolic effects 

o Medicine side effect 

o Liver- or renal failure 

o Non-central nervous system infection 

o Electrolyte disorder  

- Treatment caused seizures 

o Chemotherapy 

o Other agents 

[3] [59] [60] [61] [62] [74] [75] [76]. 

The tumor caused epilepsy treatment needs to be cautious, because the treatment can 

cause seizure as well, or the different agents can effect each other. Yet, antiepileptics are often 

used in case of these patients (mostly monotherapy to eliminate interactions). Surgery comes 

only after unsuccessful medical treatments. First, the primary brain tumor or metastasis is 

removed and after this the epileptogenic zone. Sometimes the chemotherapy and radiotherapy 

can offer solution for some of the problems. 
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3.4.2 Cortical dysgenesis 

 

Cortical dysgenesis derives from a disorder in the brain’s development. These 

alterations are hard to detect without a high-resolution MRI. 24% of the epilepsies are due to 

cortical dysgenesis [77] [78] [79]. 

The cortical cells are developed from the neuroblasts of the ventricular zone near the 

developing brain’s midline.  These cells divide, differentiate and migrate continuously before 

birth. More than 25% of the primer neurons will die by programmed cell death. Cortical 

dysgenesis is a disorder that can occur in the whole pregnancy but mostly between the 7-16th 

week. The pathology depends more on the occurring time of the defect, than its cause. MRI can 

be used for the detection of the structural difference, but not the etiology of it [77] [79]. 

A useable classification of the dysgenesis caused epilepsies was based on MRI, which 

takes into account the histological properties (many times the cause is a subependymal or 

subcortical heterotopy). Misplaced cell groups can be formed by abnormal migrating endpoint, 

excessive migrating, or the absence of the programmed cell death before birth.  

3.4.3 SPA and interictal activity 
 

For patients with pharmacoresistant focal epilepsy, resective surgery provides a good 

treatment alternative. The possibility of examining the removed epileptogenic zone 

revolutionized epilepsy research, as it raised the opportunity of measuring the activity of single 

neurons in a physiological or quasi-physiological state. In the experiment described in this 

manuscript, this is important, because our aim was not just to record and analyze LFP changes 

caused by the cells, we also wanted to know the underlying mechanisms involved in SPA 

generation. For this purpose, it was examined how all the separate cells are responding to the 

activity that is recorded using a laminar microelectrode. It has been shown that interictal spikes 

don’t depend on age, gender, pathology, histology, or used antiepileptics [6]. 

Distinct from these pathologic interictal events, spontaneously occurring synchronous 

population activity could be detected in vitro in brain slices obtained from resected human 

epileptic neocortices, subiculum, and hippocampus [6] [80] [81] [82] [83].The emergence of 

synchronized events in the neocortex is probably based on the complex interactions between 

and within the neural network’s inhibitory and excitatory components.  

The work of Köhling et al. [6] involved the investigation of human neocortical tissues 

resected during epilepsy surgery. They investigated the role of glutamatergic and GABAergic 

synaptic transmission, as well as the role of voltage gated calcium channels in the generation of 

the spontaneous activity they describe [6]. In their work, the extracellular field potential gradient 
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was measured in the cortical layers II and V. However, Köhling et.al. measured this activity 

only in tissue obtained from epilepsy patients. Their characteristics of the spontaneous field 

potentials were:  

- amplitude 20-323 μV (72+-13 μV) 

- duration 20-200ms (151+-18ms) 

- repetition rate 4-108 per minute (43+-4 per minute) 

- monophasic [6] 

 

While some have argued that SPA is distinct from the pathologic interictal events 

occurring in epilepsy patients [84], it is still controversial whether SPA is epileptic, or whether 

it can be found in physiological conditions. 

Many studies demonstrated the importance of transmembrane calcium currents and the 

effects of glutamate, and GABA during spontaneous field potential transients [82] [83] [85]. It 

has been shown, that an increase in the Mg2+ concentration reduces the recurrence frequency of 

spontaneous population activity, but application of APV does not, which points to a calcium-

antagonistic effect of Mg2+. Calcium currents play a crucial role in the generation of spontaneous 

activity, and epileptiform activity induced in experimental models and in seizures in epilepsy 

patients [6]. Blocking the non-NMDA type glutamate receptors, the GABAA receptors, or 

calcium channels can suppress this type of activity, but blocking the NMDA type or GABAB 

receptors does not have any effect on these field potential transients [6] [80] [86] [87].  

Our group’s preliminary results [83] [85] [88] indicate that an activity similar to 

interictal spikes (as in Köhling et. al. [6]) is detectable in non-epileptic tissue (derived from deep 

brain tumor patients, non-epileptic part not infiltrated by the tumor (Figure 6.)). 

Using current source density (CSD) analysis the flowing currents between cell 

compartments can be estimated. Using CSD analysis, it is possible to evaluate which neuronal 

populations generate the changes in the field potential. During spontaneous interictal discharges 

in vitro, the current sinks are mostly located in layers II. and III. (positive charges flowing into 

the cells) even after Mg2+ withdrawal. However, where spontaneous activity did not occur, the 

Mg2+ withdrawal, or Bicuculline (GABAA receptor antagonist) application caused the sinks to 

spread over the whole extent of the cortex, especially in layer V. [87].  
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Figure 6. Example recording of SPA from an epileptic (A), and from a tumor (B) patient. The SPA discharges are 

marked with an asterisk (*).  SPA is mostly generated in the supragranular layers, shows increased cell firing 

(indicated by an increase in MUA), and the occurrence of High frequency oscillations during the LFP discharge 

[83] [85] [88]. 

 

In the present study, we want to further investigate the origins of this SPA. 

Measurements performed with an extracellular laminar multielectrode provide the desired 

spatial information on how the different cortical layers respond.  

However, this approach does not yield extensive information on single cell activity. 

Thus, it is difficult to address the question of cellular mechanisms, as it is not feasible to patch 

each of the cells to obtain cell specific information. Question addressed in the present study are: 

How are the cells involved in the generation of SPA? What proportion of cells is active during 

SPA? Which types of cells are active (neurons, interneurons, glial cells) during SPA? When are 

they most active (before/during/after the LFP transient)? 

Since SPA can occur both in epileptic and in healthy tissues, we decided to investigate 

the differences in how the healthy and versus the pathological tissue generate a very similar 

activity. To be able to answer the questions stated above, our research group used 2-photon 

microscopy. In addition, histological analysis of the tissue is included (cell labeling and staining, 

followed by light and electron microscopy and 3D reconstruction) to address the question of 

morphological differences between epileptic and non-epileptic tissue. 

 

3.5 Two-photon microscopy 
 

Neuroscientists have become more and more interested in two-photon microscopy over 

the last decades because of the numerous advantages. Two-photon microscopy allows high 

resolution imaging in living tissue compared to confocal microscopy. Another great advantage 
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of this method is that it makes achievable to image even in great depths (several hundred microns 

1 millimeter compared to 30-50 um) by, solving the light scattering problem causing 

deterioration of optical signals. The improvements of the fluorescent staining and marking 

techniques in the last few years allowed the functional exploration of neuronal activity from 

single cell (or subcellular) activity, through cellular networks, to even the  measurement of a 

cortical column (with 3D scanning technology).  In this chapter the principles of two photon 

microscopy will be introduced and its application in the field of neuroimaging will also be 

discussed.  

 

3.5.1 Theoretical background of two-photon microscopy 

 

In 1931 Maria Göppert-Mayer set the theorem of two-photon absorption [89]. However, 

because of technological reasons it was experimentally confirmed in the 1960s. With the 

production of ultra-short pulsed lasers, two-photon microscopes became designable [90]. 

Fluorescence techniques addressed the problems of neurobiology. Currently, two-

photon microscopy became an essential tool for the examination of biological tissues (living or 

fixed), because the fluorescent objects can be visualized selectively (even with small 

fluorophore concentration) with good signal-to-noise ratio. Light microscopy is able to track 

spatially complex dynamics [91] over a great depth, and can resolve single synapses [17] [92]. 

For light microscopy intact cortical tissue is challenging, but if it is possible neurons should be 

studied in their natural domain. 

The drawback of conventional fluorescent microscopy is that in thick (over 100 μm) 

samples contrast and resolution are degraded because of the scattering of the tissue [93] [94]. 

By confocal microscopy some of the scattering effects were overcame by the pinhole detectors, 

because it rejects fluorescence from off-focus locations [93] [94]. However, scanning a section 

excites the whole specimen, and thus could damage it. Furthermore, pinhole rejects the scattered 

signal photons emerging from the focus. In great depth confocal microscopy loses untolerably 

high amount of signal photons by the scattering [93] [95]. Signal loss can be compensated by 

increased fluorescence excitation, but it can lead to photobleaching and phototoxicity. 

The theory of two-photon excitation is based on the concept when two low-energy photons hits 

a fluorescent molecule causing an electronic transition to a higher-energy state. Each photon 

carries the half of the energy necessary to the excitation, and results in the emission of a 

fluorescent photon (the photon is at a higher energy than either of the excitatory ones (Figure 
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7.)). 

 

Figure 7. Left: Single and two-photon excitation of a fluorescent molecule (from the excitation it goes up to an excited 

energy state, and when it descends back to the original a photon is emitted). Right: the focus of the laser beam by 

confocal or two-photon (marked with white arrow) technology [96]. 

 

In a focused laser, the intensity is highest in the focus, and degrades quadratically by the 

distance. A fluorescent molecules excitation probability has a quadratic dependence on light 

intensity, resulting in an excitation exclusively only a small diffraction-limited focal volume 

(Figure 7.). If the objective (used to focus the beam) has a high numerical aperture (NA), most 

of the fluorescence excitation occurs in a focal volume of ~0.1 mm3 [97]. This way the point 

spread function’s axial spread is significantly lower than for single-photon excitation. 

Photobleaching and photodamage are greatly reduced to the tissue, and no fluorescence is 

emitted from out of focus locations (automatic optical sectioning), so there is no need for out of 

focus rejection strategy (like in confocal microscopy). The signal to noise ratio (SNR) is greatly 

increased by the collection of scattered photons, in contrast to confocal microscopy where they 

are rejected. 

The most commonly used fluorophores have excitation spectra in the 400–500 nm 

range, whereas the laser used to excite the two-photon fluorescence lies in the ~700–1000 nm 

(infrared) range. The living tissue scatters light more in the visible wavelengths than in the 

infrared, thus fluorescent objects in living tissue can be examined in greater depth [98] [99]. 

Nowadays it ranges from hundreds of micrometers to a millimeter. 
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For its above mentioned advantages two-photon microscopy became a unique tool for 

imaging samples in depth (especially in vivo), or in local photochemistry. However, on 

transparent or very thin slices two-photon microscopy is not as effective as confocal or wide 

field fluorescence microscopy since the achievable spatial resolution is reduced by the longer 

wavelengths. 

Two-photon functional imaging, and calcium imaging have an extensive background 

[100], either focusing on its technical aspects [97] [99] [101] [102], on its applications [103] 

[104] [105] [106], or on its place in the wider context of the various recent technological 

developments, which provide tools for the "reverse engineering" of the brain [107]. 

 

3.5.2 Hardware of a two photon microscope 

 
Two-photon microscopy is typically implemented in a simple laser scanning 

microscope. The setup consist of the following main elements: laser source, scanner, objective 

and detectors (Figure 8.).  

.  

Figure 8. Schematic drawing showing the optical design and modular nature of the 2P microscope used. Modules: 1 

- Dispersion compensation. 2 – Laser beam positioning. 3 – CCD/2P switcher. 4 – CCD camera. 5 – Upper detectors 

(PMT – photomultiplier; Dic. - dichroic mirror). 6 – Perfusion chamber and focusing. 7 – Lower detectors. 8 – 

Infrared lamp (IR). 9 – Transmission infrared detector (TIR). Dic: Dichroic mirror. Source: [108]. 
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The typical differences between two-photon and confocal microscopes are the laser (see 

below) and the fluorescence detection path. In two-photon microscopy, all useful fluorescence 

photon collected by the objective. The optimal solution is to project the objective back-aperture 

onto the photosensitive area of the photodetector [109] [110]. Fluorescence photons can appear 

to originate from a large effective field of view because the multiple scattering before exiting 

the tissue [108]. In confocal microscopy, the epifluorescent light passes back through the scan 

mirrors and through a pinhole before detection [93]. 

In two-photon microscopy the laser beam is directed into the microscope through an 

epifluorescent light path. To focus in the specimen, the excitation light is passed through a 

dichroic mirror to the microscope objective. Two-photon induced fluorescence occurs only at 

the focal spot. By scanning the fluorescent volume with a galvanometer-driven scanner, the 

images can be constructed. The emission signal is collected by the same objective and reflected 

to the detector by the dichroic mirror. A barrier filter is also needed to attenuate the scattered 

excitation light. To ensure maximal detection efficiency high-sensitivity detectors and 

electronics are used. 

 

3.5.3 Laser Sources  

 

Opposed to confocal microscopy (continuous wave emitting lasers) two photon 

microscopy requires pulsed lasers (for precise technical details see the corresponding part of the 

methods section). 

Two-photon excitation efficiency increases with the inverse of the pulse duration, if the 

average pulse repetition rate, and power are constant. The most commonly employed lasers for 

two photon microscopy are mode-locked Ti:sapphire lasers. Mostly the excitation light is 

tunable between 700-1000nm [112].  

Pulse rates should balance the onset of saturation and the fluorophore’s excitation 

efficiency. This criterion is met by the used laser for most common molecules (e.g. Ti:sapphire 

laser), that is fortunate because mode-locked lasers pulse rate is difficult to change. For stable 

excitation rate, it is essential that a constant number of pulses arrives on a pixel. More than 100 

pulses arrive on a pixel, assuming a pulse rate of 100 MHz and 1 μs dwell time, so the number 

of pulses per pixel will be stable at the 1% level [112]. 

The imaging depth is determined by scattering: with increasing depth, a smaller fraction 

of the incident photons are delivered to the focus. Since rays entering the brain at higher angles 

have longer paths to reach the focus they are more likely to be scattered, causing a loss of 

resolution with imaging depth [105]. SNR is also worsened with depth, because extensive 

scattering and absorption occurs on the lower wavelength emitted light. 
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The contrast and the localized excitation worsen with increasing depth. Because of the 

out of focus fluorescence generated on the surface, a depth limit is imposed on imaging. In gray 

matter it is ~ 1mm [112].  

 

3.5.4 Scanning Methods (x-y plane) 

 

The most widespread solution is the use of mirrors moved by galvanometers. 

Galvanometric mirrors allow rapid, arbitrary positioning of the focus in the focal plane (x-y) 

[113] [114]. In raster scanning application, galvanometric mirrors, allow zooming, image 

rotation and have excellent optical properties. Their major drawback is their relatively slow 

speed (>1 ms per line); raster scanning of a typical image requires ~1 s. Speed can only be 

increased at the cost of the spatial resolution and the extent of covered area [113] [114]. Since 

many neurophysiological processes take place on the millisecond time scale, faster scanning 

methods are required.  

 “Line scan” is an alternative scanning method. The laser does not scan through the 

whole 2D plane (like in raster scan), instead the laser scans only the lines which were specified 

by the user on the structure of interest. For example multiple dendritic spines can be imaged 

within 1 ms [115]. However, it has to be mentioned that the cost of scanning speed is the loss 

of spatial information. During the experiment the selection and adjustment of the trajectories 

should efficiently be made. This can be problematic, because only one fixed z plane at a time 

can be used, while the neural structures do not necessarily fall in the same plane. Another way 

to accelerate the scanning is to jump between regions of interests (ROIs) by maximal scanning 

speed between ROIs of the mirrors. With this method no time is wasted for the extracellular 

structures. Still line scans can be wasteful when the ROIs are sparsely distributed. The scanning 

speed depends on the acceleration/deceleration rate of the motors. All ROI based scanning 

method, such as line scan, need extensive software support which is not always provided by the 

microscope manufacturer. 

An attractive alternative is presented by acousto-optic (AO) deflector. AO scanning 

technology is another solution for rapidly change beam focusing excluding mechanical 

movement, and AO technology is adapted in many two-photon applications [116] [117] [118] 

[119] [120] [121] [122] [123]. Acousto-optic deflectors are transparent crystals, in which an 

optical grating is created by applying sound waves to them. Periodic change in the refractive 

index of the medium is caused by sound-generated pressure fluctuations, and the changes 

behaves like optical grating (the light diffracts according to the period-and the wavelength of 

the light). The frequency of the sound wave determines the spacing of the grating, and thus the 

angle of diffraction of the laser beam. Since the laser beam can be diverted without mechanical 
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movements, speed of the positioning is vastly enhanced compared to the galvanometric 

approach. These optical materials are dispersive, leading to temporal and angular dispersion, 

which, worsens the excitation efficiency, point spread function and image quality for typical 

pulse durations (< 1 ps) [118]. With gratings, prisms and/or additional acousto-optic devices the 

compensation can be made [124] [125] [126]. Acousto-optic deflectors have also been proposed 

[117] for tackling scanning also along the z axis [102] [121] [122] [123] [127]. 

 

3.5.5 Objectives 

 

The objective is a very important part of the microscope, because it generates the laser 

focus required for localization of excitation. There is a wide range of available choices from 

objectives in the market which are suitable for a two-photon microscope.  

Important criterias are:  

1. Numerical aperture, has to be large because it determines the resolution and the angle 

for fluorescence light collection  

2. Magnification, according to the desired field of view;  

3. Large working distance (2 mm is ideal), especially in in vivo applications and 

simultaneous electrophysiology measurements;  

4. Excellent transmission efficiency in visible wavelengths and the near-infrared. 

 

The laser beam should expand to “fill” the microscope objective’s back aperture, this 

way it focuses the light into the sample. Since the laser beam has a Gaussian radial intensity 

profile, laser beam is said to “overfill” the back aperture of the objective when the latter accepts 

the central part of the beam up to the radius at which its intensity decays to 13.7% (1/e2). In this 

case, 84% of the beam’s power is transmitted and lateral and axial resolution [97] are nearly as 

good as with a uniform excitation beam (92 and 96%, respectively). Using a narrower beam 

increases the amount of power transmitted, but reduce the effective numerical aperture (NA) 

leading to a loss of resolution [97] [99]. 

It is important to note that increasing depth leads to reduced effective NA: large angle 

photons travel longer distances than those near to the optical axis and often they are scattered or 

absorbed. Underfilling the objective might be a good solution, if the observed objects are large 

enough and their detectability does not suffer by the reduced accuracy. As the size of the focal 

volume grows with decreasing effective NA, the peak intensity decreases, resulting a decrease 

in photobleaching and photodamage. 

3.5.6 Detectors 
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Two-photon microscopy demands large photosensitive areas (can be millimeters) [111], 

so avalanche photodiodes are excluded. Important factors are gain, quantum efficiency, dark 

noise, absorption spectra, and absorption angle of the detector. Photomultiplier tubes (PMTs) 

are the best for two-photon microscope applications (the different type’s performance 

comparison can be found in [97]).  

In two-photon microscopy, with spatially ultra-selective excitation, optical partitioning 

can be achieved. So all photons should be collected, even the scattered ones, emitted by an 

excited fluorescent molecule. The excitation light has larger wavelength than the fluorescence, 

so from lower depths the fluorescent photons are greatly scattered thus photons appearing on 

the surface are negligible below several hundred μm. Thus, large NA and low magnification 

objectives (for example 20x at a NA of 1.0) are the best choice to catch as many photons as 

possible. Moreover, large sensitive area photomultipliers (PMTs) are positioned to detect as 

much as possible. In our in vitro experiments all excited photons can be useful (and can be 

detected) either scattered in the backward (“epi”- collection geometry) or forwards (“trans”- 

collection geometry) direction. 

 

3.6 Neuronal calcium signals 
 

Tissues can be considered as semi-infinite by in vivo imaging, therefore forward-

collection blocked, which makes an effective backward-detection really important. “Whole-

area” configuration is used in most cases. It means that to the PMT’s sensitive area the 

objective’s back is projected and this way it allows all objective collected photons to end up on 

a detector [128]. 

The role of Ca2+ dynamics in neuronal signaling has ever growing interest by 

neuroscientists during the last decade. There are basically two types of Ca2+ imaging techniques. 

One there are the classical chemical fluorescent Ca2+ indicators, the other is the genetically 

encoded protein-based Ca2+ indicators. In this study (in human) only the Ca2+ indicators can be 

used in vitro [11].  

  Calcium ions generate versatile intracellular signals for many functions in almost every 

cell type [129]. Intracellular calcium signals (in the nervous system) regulate processes from the 

time scale of neurotransmitter release (microsecond) to gene transcription, (minutes/ hours) 

[130]. For the function of these signals the amplitude, the time course, and the local action site 

are essential.  There are many types of neuronal Ca2+  signaling, sources of Ca2+ influx are Ca2+-

permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-

aspartate (NMDA) glutamate- type receptors, voltage-gated Ca2+  channels (VGCC), nicotinic 

acetylcholine receptors (nAChR), and transient receptor potential type C (TRPC) channels [11]. 
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Ryanodine receptors (RyR) and inositol trisphosphate receptors (IP3R) mediates the Ca2+ 

release from internal stores is mediated. Metabotropic glutamate receptors (mGluR) can 

generate inositol trisphosphate [11]. Sodium-calcium exchanger (NCX), plasma membrane 

calcium ATPase (PMCA) and sarco-/endoplasmic reticulum calcium ATPase (SERCA) can 

mediate Ca2+ efflux. Mitochondria is important for neuronal Ca2+ homeostasis [11].  

In this research understanding the connection between the AP and the Ca2+ is very 

important the theoretical background will be shortly summarized in this paragraph. There are 

many researches, showing the connection between the AP and the Ca2+ inflow, especially in the 

neurotransmitter release to the synaptic cleft, the dendritic Ca2+ transients, backpropagating AP, 

etc… [131] [132] [133] [134] [135] [136].  

When we speak about the importance of Ca2+ dynamics in the neuronal signals we 

should speak about axonal- somatic-, and dendritic Ca2+ response. 

Neurotransmitter molecules are stored in vesicles in the presynaptic terminal of neurons. 

Ca2+ inflow plays a key role in neurotransmitter release. It is inhibited when Ca2+ channels are 

blocked. Upon the arrival of AP to the axon terminal voltage dependent Ca2+ channels open and 

Ca2+ flows from the extracellular fluid into the presynaptic neuron’s cytosol via the 

concentration gradient this sudden Ca2+ influx is followed by the docking and fusion of 

neurotransmitter vesicles to the presynaptic neuron’s cell membrane through SNARE proteins 

resulting in a rapid neurotransmitter release. So it can be said that in the axon when there is an 

action potential, then an inward Ca2+ concentration change follows it [131]. 

We need to speak about dendritic Ca2+ transients, because in two-photon microscopy 

the cells soma, and the dendritic tree is what can be easily imaged by scanning methods (like it 

was described before in the scanning methods). Dendritic Ca2+ transients can be related to 

passive somatic depolarization propagation or active AP propagation.  

By somatic voltage-clamp, dendritic Ca2+ imaging and somatic excitation experiments, high 

Ca2+ transients were detected in both the initial, and the distal dendrites (backpropagating action 

potential). But when the Na+-dependent AP propagation was blocked, then the Ca2+ transients 

degraded in the initial and vanished in the distal dendrites. So the local Ca2+ entry mediated by 

action potentials was reflected in the Ca2+ transients  [131] [132] [133] [134] [135].  

It was also shown, that the intracellular dendritic Ca2+ rise could influence the synaptic 

integration by the downreguation of the NMDA receptor-mediated responses [133].  

Based on the literature it can be assumed, that whenever there is a Ca2+ response in the cell: if it 

is measured from the soma it probably reports an AP, if it measured in the dendrites then it refers 

to a postsynaptic response or an AP [131] [132] [133] [134] [135] [136] (Figure 9.).  
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Figure 9. Representative Ca2+ responses recorded by two-photon Ca2+ imaging. 16 bulk loaded (OGB-1-AM, SR101) 

human neocortical neuron/interneuron were selected by line scan for spontaneous recording, the scanning time were 

20 s. The vertical axis is time, the horizontal is how the laser go through the placed lines in the line-scan, and the 

more red the color is, the higher the Ca2+ fluorescence response. Two of the cells responded in this case (two of the 

ROI-s are marked by purple and blue).  

 

3.6.1 Calcium indicators 

 
The first generation of fluorescent calcium indicators consisted of quin-2, fura-2, indo-

1, and fluo-3. Quin-2 can be excited by ultraviolet light (339 nm). Quin-2 was the first of this 

group to be used in biological experiments [137] [138]. However, to overcome cellular 

autofluorescence, Quin-2 needs to be used at high intracellular concentrations [139]. Fura-2 

became very popular among neuroscientists [140], is in many ways superior to quin-2 and Fura-

2 is excited at ~350 - 380 nm and shows significantly larger calcium-dependent fluorescence 

than quin-2. Furthermore, fura-2 allows more quantitative calcium measurements [141]. 

Nowadays Oregon Green BAPTA and fluo-4 dye families [142] are widely used in 

neuroscience. They provide a large signal-to-noise ratio and are relatively easy to implement. 

The introduction of protein-based genetically encoded calcium indicators (GECIs) was the next 

great breakthrough [143].  

3.6.2 Calcium Imaging 

 

Two-photon imaging started after the bulk loading, and/or whole cell configuration achieved on 

the two-photon laser scanning system. Spatially normalized and projected Ca2+ response can be 

calculated by the raw line-scan, F(d,t) using the 
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∆𝐹

𝐹
=

(𝐹(𝑑, 𝑡) − 𝐹0(𝑑))

𝐹0(𝑑)
 

formula where d denote to the distance along the curve and t to time. F0(d) is the average/ 

background-corrected prestimulus fluorescence as a function of distance along the curve. Ca2+ 

responses are projected as function of t and d and Kd color coded (yellow to red show increasing 

Ca2+ responses, 0–63 % ∆F/F).  In the experiments the relative fluorescence value was converted 

to Ca2+ concentration [144] [145] [146] 

∆[𝐶𝑎2+]

𝐾𝑑
=  

𝑓𝑚𝑎𝑥

𝑓0
(1 −

1

𝑅𝑓
)

𝛿𝑓

(𝛿𝑓𝑚𝑎𝑥 − 𝛿𝑓)𝛿𝑓𝑚𝑎𝑥
 

[147], where ∆[Ca2+] is the change in the intracellular calcium concentration, δƒ denotes ∆F/F, 

Rf ( = ƒmax/ ƒ min) is the dynamic range of the dye and KD is the affinity of the indicator. 
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4 Materials and methods 
 
 

First of the main goals (and Thesis I.: A method has been developed for the two-photon 

Ca2+ imaging of human neocortical tissue) of this research was to make the methodology that 

permits the deeper understanding of the events behind SPA. This was not an easy task, because 

not just the methodology should be made, but organizing the teamwork of the different research 

groups, and the surgeons, were a big portion of the work.  

First the contact with the surgeons and the ever refreshing information of the surgeries (of the 

National Institute of Clinical Neuroscience, Budapest, Hungary) and the patient’s approval of 

the research should be organized. Then the preparing the solutions, and the experimental design 

should be made for every experiment.  

The experimental work with the Two-photon microscope should be learned (from the 

research group of the Femtonics Ltd (Budapest Hungary) lab in the Pázmány Péter Catholic 

University, Budapest, Hungary), the experimental time of the different groups in the same lab 

were organized. The preparation of the two-photon microscope for the experiment were made 

(the set-up of the laser, the preparation of the ACSF circulation system (with a double flow 

chamber) in the two-photon microscope, the setup of the laminar electrode recording system 

(the data transmission system, and the recoding electrode integration to the two-photon 

microscope), the preparation of the micropipettes, and the imaging dyes). And all the used 

programs should be learned, not just for the experiments, but for the analysis as well. 

The preparation of the slices for histological analyses were included, too. The possibility 

of the microscope usage for light- transmission electron microscopy, and 3D reconstruction 

were organized.  

Organizing all these people and all these pre setting should be together to make the 

preparation of this methodology possible.  

The training of our research group (Hungarian Academy of Sciences, Research Centre 

for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, research group of 

Comparative Psychophysiology, Budapest Hungary) for the experiment were prepared and 

made for the future work as well. 

From now on this methodology will be described. 
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4.1 Patients 
 

In the present study – investigating human neocortical tissue slices – we included 3 

patients with therapy resistant focal epilepsy (Pts 4, 5, 7, age: 26-52 years) and 3 patients with 

brain tumor but without epilepsy (Pts 1, 2, 6, age: 64-78 years). Additionally, there were two 

patients who had tumor associated epilepsy (Pt 3, 8, age: 27, 71 years). Tissue samples derived 

from the temporal (Pts 2, 4, 5, 6, 7, 8), parietal (Pt 1) and frontal (Pt 3) lobes [148]. The seizure 

focus was identified by multimodal studies including video-EEG monitoring, magnetic 

resonance imaging. Brain tumor was diagnosed by computed tomography and/or magnetic 

resonance imaging. The patients had subcortical tumors. We examined the neocortex above the 

tumor, which needed to be removed for surgical technical reasons. Patients underwent their 

surgery in the National Institute of Clinical Neuroscience in Budapest, Hungary. All patients 

gave written consent approved by the Regional and Institutional Committee of Science and 

Research Ethics of Scientific Council of Health (ETT TUKEB 20680-4/2012/EKU) in 

accordance with the Declaration of Helsinki. 

Neocortical samples were obtained from a total of 45 patients (age range: 19-83 years 

mean±SD: 53±17 years; n=9 epileptic patients, age range: 19-53 years, mean±standard 

deviation (SD): 32±10 years; n=8 tumor associated epileptic patients, age range: 27-71 years, 

mean±standard deviation (SD): 48±18 years; and n=28 tumor patients, age range: 27-83 years, 

mean±SD: 60±14 years) [148].  

We could not achieve satisfactory recordings in several cases (in n=17 cases the slices 

seemed dead, and there was no activity in any type of recording, n=6 the cells looked intact, but 

after the bulk loading they seemed dead, in n=6 cases some SUA, or MUA were detectable in 

the laminar recordings, but in the two-photon there was not any detectable Ca2+ response from 

the cells)(n=2 epileptic, n=6 tumor associated epileptic and n=21 tumor patients), and therefore 

these patients were excluded from the data analysis. We always followed our standardized 

protocol (see below) but the tissue quality was unacceptable in these latter cases [148].  

Criteria for acceptable tissue quality were the following 1) cellular and/or population activity 

on the LFPg or LFP recordings, 2) at least 25% of the cells looked healthy on the picture 

acquired with the transmission infrared mode of the two-photon microscope [148].  

 

  

DOI:10.15774/PPKE.ITK.2016.001



4.2 Tissue preparation 
 

Tissue was transported from the operating room to the laboratory in a cold, oxygenated 

solution containing (in mM) 248 D-sucrose, 26 NaHCO3, 1 KCl, 1 CaCl2, 10 MgCl2, 10 D-

glucose and 1 phenol red, equilibrated with 5% CO2 in 95% O2. Neocortical slices of 500 µm 

thickness were cut with a vibratome (Leica 1000 S). They were transferred into a dual perfusion 

chamber mounted (Figure 10.) on a two-photon microscope. In this type of chamber artificial 

cerebrospinal fluid (ACSF) is allowed to flow both above and below the slice, resulting in a 

better oxygen supply, and in a better maintained network oscillations (Hájos et al., 2009; 

Chiovini et al., 2010; Chiovini et al., 2014). Slices were perfused with a warm (36°C) ACSF 

containing (in mM) 124 NaCl, 26 NaHCO3, 3.5 KCl, 1 MgCl2, 1 CaCl2, and 10 D-glucose, 

equilibrated with 5% CO2 in 95% O2. High flow rate of the bathing medium was used to 

maintain the optimal oxygenation level of the tissue [108] [148] [149]. 

Figure 10. A) The schematic of the double perfusion chamber. B) The bubble catcher’s schematic (it is connected in 

the tubes between the oxygenated ACSF bottle, and the double flow chamber). C) The sectional picture of the double 

perfusion system, and how it fit in to the two-photon microscope system [105]. 

 

Bulk loading of 1.75 mM Oregon Green 488 BAPTA-1 AM (OGB-AM), 350 μM 

sulforhodamine 101 (SR-101) and 20% Pluronic F-127 in DMSO was applied on the tissue 

(Invitrogen, Carlsbad, CA) to visualize neurons and glial cells, respectively [148] [150] [151] 

[152] (Figure 11.). 
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Figure 11. Two-photon image of bulk loaded human tissue. OGB-1-AM (green), SR-101 (red) were applied into the 

tissue. The neurons, and interneurons take up the OGB-1-AM, the glial cells (mostly astrocytes) take up the SR-101 

(the dead cells are red as well). 

4.3 Electrophysiology recordings  

4.3.1 Laminar recordings 
The extracellular local field potential gradient (LFPg) was recorded with a laminar 

multielectrode array (24 channels, distance between contacts: 100 or 150 µm, [56] [83] [153] 

[154] using a custom made voltage gradient amplifier (pass-band 0.01 Hz to 10 kHz). The 24 

channel laminar probe was connected to the data transmission system’s head stage. The 

electrode was fixed to the 2-photon microscopes built-in micromanipulator, to maneuver the 

probe above the slice (Figure 12.) [148]. 

 

Figure 12. An example of how the laminar electrode is placed on a slice (this slice is just for the example from a rat). 

A) the objective, B) 24 channel laminar electrode, C) the suction of the ASCF circulation, the double flow chamber 

is visible too and on the slice there is a holder grid preventing the slice from floating away, D) the 24 contact of the 
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laminar eletctrode, E) the scematic of the electrode design (http://www.neuronelektrod.hu/elektrod-

tipusok/acelcso-alapu-elektrodok/agyszelet-elektrod-hajlitott.html).  

 

The laminar multielectrode was placed on the surface of the neocortical slice, 

perpendicularly to the pial surface. This way, the whole extent of the examined region was 

covered by the array, so that extracellular recordings were made from each neocortical layer. 

4.3.2 Data transmission systems 

 
In the experiments two types of data transmission systems were used, which both 

fulfilled the necessary requirements for the measurements.  

In the beginning of the experiments a National Instruments (NI) device based data 

transmission system were used. The signals were digitized with a 32 channel, 16-bit resolution 

analog-to-digital converter (National Instruments, Austin, TX) at 20 kHz sampling rate (using 

home made routines for Lab View7 (National Instruments, Austin, TX))(Figure 13.) [148].  

  

Figure 13. Left NI usb-6353 X series data acquisition device. Right. Gefen USB 400 FO (Gefen, LLC, Chatsworth, 

CA).  

 

The data transmission system (Figure 14.) consists of a Head Stage (Gain 10x, Dc, 24 

channel + reference), that connects with the Main Amplifier through ribbon cable (Gain 100x, 

0.1 Hz-6kHz band, ±3.2 V Lithium battery). After the amplification the next step is the A/D 

conversion with the above mentioned NI device (24 channel, 16 bit/ 20-40kHz/ channel), the 

A/D converter is supplied by a +14.4 V Lithium battery. The A/D converter sends a +5 V power 

supply and the digital signals to the Gefen USB 400 FO Optical USB links sender side (Figure 

13.) (USB to optical conversion in the sender side, send the data through fiber optic cables and 

its back conversion happened on the receiver side). The optical USB receiver sends the signals 

to a computers USB port, and we can save the signals with a home made LabWiev software 

(.cnt format) [148].  

In the second half of the experiments an Intan RHD2000 Evaluation System (Figure 

14.) was used. The Intan RHD2000 Evaluation System has open-source hardware and software 

to record biopotential signals from up to 256 low-noise amplifier channels using RHD2000 

series of digital electrophysiology chips (for detailed information check 
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http://www.intantech.com/). Here we use only 24 channel because of the electrodes, and the 

system fulfills the expectations for this research.  

Head Stage Main Amplifier
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USB port
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link reciever
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link sender

Fiber optic 
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Figure 14. Left) The sketch of the NI data transmission system. Right) The Intan RHD2000 evaluation system, the 

interface cable, and the 2132 amplifier board (Intan Technologies, LLC., Los Angeles, California). 

4.4 Micropipettes 

4.4.1 Local field potential 

 
Local field potential (LFP) signals were recorded with an additional glass patch clamp 

electrode (Sutter Instruments BF120-69-10) filled with ACSF on the sites where the largest SPA 

was detected with the laminar multielectrode (Figure 15.) [148]. 

Figure 15. An example of SPA in a LFP extracellular micropipette recording (bottom zoomed in to a 10s section).  
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4.4.2 Intracellular 

 
Intracellular recording in human tissue is not an easy task. Compared to the yung (some 

days old) rodents, which are usually used in in vitro measurement, in human tissue it is much 

harder to make a good patch. Beacause the wide wariety of age (26-78 year old), the glial cells 

around the neurons which are not visible on the camera pictures, etc… 

Intracellular patch-clamp recordings were made with glass electrodes (5-9 MΩ) (Sutter 

Instruments BF120-69-10) filled with (in mM) 125 potassium gluconate, 20 KCl, 10 Hepes, 10 

Di-Tris-salt phosphocreatine, 0.3 Na-GTP, 4 Mg-ATP, 10 NaCl, 0.008 biocytin, completed with 

0.06 Oregon green BAPTA-1 (OGB-1) and 0.1 Alexa594 (Invitrogen, Carlsbad, CA). 

Electrophysiological recordings were made using a MultiClamp 700B Amplifier (Axon 

Instruments, Foster City, CA), and Digidata 1440 digitizer (Axon Instruments, Foster City, CA). 

Data acquisition was performed by using pClamp8 (Axon Instruments, Foster City, CA) and a 

custom made program written in MATLAB (The MathWorks, Natick, MA). Cells were held at 

-65 mV in current clamp recordings. Ramp test was made of the patched cells (Figure 16.) [148]. 

The LFP, LFPg and whole cell current clamp recording was simultaneously registered with Ca2+ 

line scans (Figure 17.) [148]. 

 

 

Figure 16. After a successful patch there were a ramp test to see whether the cell is active, and if so then what type 

of cell we have. A,B) two typical pyramidal cells. C) bursting pyramidal cell. D) interneuron.  
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Figure 17. A) Simultaneous recording of LFP, Ca2+ imaging, and IC from the same slice and time. * marks the SPA. 

B) The bulk loaded slice and the patched cell. 

4.5 Multiphoton imaging 
 

Two-photon imaging was performed using a laser scanning system Femto2D-uncage 

(Femtonics, Budapest, Hungary). The imaging laser wavelength was set to 800 nm and to 840 

nm in the uncaging experiments (Mai Tai HP Deep See, SpectraPhysics, Santa Clara, CA or 

Chameleon, Coherent, Santa Clara, CA). To minimize photodamage, the laser intensity was 

always kept at the minimum required to attain sufficient signal-to-noise ratio [145]. We injected 

bulk loading of OGB-1-AM (green) and sulforodamine-101 in the tissue, for differentiating the 

neuron and interneurons from the glial cells, and in half an hour the cells have taken up the cell 

permeable dyes. Free line scans were placed on the somas to check whether the cells have Ca2+ 

responses, or later following the curvature of long dendritic segments to monitor the 

backpropagating action potentials (AP) and uncaging induced Ca2+ signals [127] (Figure 18.). 

To measure population activity, neuronal somata were scanned with constant speed using lines 

which slightly extended the somata to decrease scanning-induced noise artifacts, while 

intermediate sections were jumped over within 100 µs using a spline interpolated path [155]. As 

all unnecessary background areas were avoided in this way, the method provided an increased 

signal-to-noise ratio and higher measurement speed. The scanning time of about 6 ms allowed 

us to analyze the spatiotemporal properties of Ca2+ compartments along long dendritic segments 

[148].  

For single cell recordings we used additional OGB-1 (green) and Alexa594 (red) in the 

patch pipette for several reasons. First, the amount of OGB-1 taken by the cells is usually enough 

to mark only the cell body. Therefore, additional OGB-1 was injected through the pipette which 

is diffused into the dendrites within a few minutes. This allowed us to perform dendritic Ca2+ 

recordings. Second, transmission infrared mode of the microscope is usually used to perform 

patch clamp recordings in slice preparations, which has its visibility limits around 50 µm from 
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the surface of the slice. The fluorescent mode of the two-photon microscope was used to reach 

the bulk loaded cells located in deeper regions of the slice, which does not allow seeing unfilled 

electrodes. Alexa594 is used for further technical reasons. The green detector is usually earlier 

saturated than the red detector. Our recording system has its own safety switch shutting down 

the detector before getting damaged, which results in the loss of the picture in the green channel, 

while the red is still available. Furthermore, in some cases, we increased the signal-to-noise ratio 

of our recordings by subtracting the red channel signal from the green channel signal. At the 

end of each experiment, z-stack images of the area of interest were taken. To monitor recording 

conditions and the potential photodamage we repetitively measured Ca2+ responses induced by 

a burst of five action potentials (900 pA, 5ms, 50Hz) (Figure 19.) [148].  

We used a Femto2D microscope in a combination with Axon amplifiers (see above). 

Both the microscope and the electrophysiological equipment were shielded, therefore no electric 

artifact was observed during scanning. We used an external shutter to switch on and off the laser 

which generated a small artifact at the beginning and at the end of the imaging and lines 

scanning. These artifacts could be easily recognized and were removed from the recordings. 

 

Figure 18. A) Maximum intensity z-projection of a neuronal population from a human neocortical slice loaded with 

OGB-1-AM Ca2+ indicator and sulforhodamine. White lines and numbers indicate regions of interest selected for 

multiple line scanning, and are covering nine neurons. B) Ca2+ response of 9 out of 13 cells recorded along the white 

lines, in top panel. C) Spatial average of Ca2+ response in region (=cell) #6. D) Ca2+ response in region #6 as in A, 

but recorded with a higher spatial discretization. 
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Figure 19. Ca2+ response in the dendrite for a BP5AP excitation protocol (the picture shows the MES software line-

scan viewer window, the two-photon image and the scanning line in the right top, the Ca2+ response in the left, and 

the different ROIs on Ca2+ responses in the right bottom). 
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4.6 Multiphoton glutamate uncaging 
 

In uncaging experiments the bath solution was exchanged to ACSF containing 4-

Methoxy-7-Nitroindolinyl (MNI)-caged L-glutamate trifluoroacetate (MNI-glutamate TFA; 2.5 

mM; Femtonics, Budapest, Hungary). Fast photolysis of caged glutamate was performed with 

ultrafast, pulsed lasers at 720 nm. Laser intensity was controlled with an electro-optical 

modulator in the Femto2D-uncage microscope. A motorized beam stabilization unit provided 

100 nm radial and 300 nm axial overlap of the imaging and uncaging point spread functions. 

The overlap was monitored by the transmitted infrared detector. Chromatic aberration was 

compensated for at the focal plane. Free line scanning of the dendritic segments was interleaved 

with uncaging periods when galvano mirrors jumped to the pre-selected locations (within 60-80 

µs jump time) and returned back to the scanning trajectory thereafter (Figure 20.). The distance 

of uncaging locations from the activated dendritic segments was also monitored by measuring 

the fluorescence artifact and keeping it below a given critical value (~2000 analog-to-digital 

converter unit at 90% photomultiplier (PMT) saturation) during photostimulations. The 

uncaging evoked artifact was relatively small due to the strong infrared filtering before detectors 

and we also used the motion artifact correction program module of the Femto2D microscope. 

With the use of this program module we were able to correct for the sample drift during 

measurements as well as to keep the relative distance between dendrite and uncaging locations 

[148]. Therefore the overlap between uncaging locations and the dendritic segment was minimal 

which decreased the fluorescent artifact. In the uncaging measurements we used BPAP or 

BP5AP protocols:  

- At 1000ms the shutter of the uncaging laser opens for 0.1-1ms. The laser goes through 

each uncaging point with ~100 Hz, but this is based on ROI-s in the process, because 

we need an EPSP excitation not an AP. With an EPSP it is easier to quantify the Ca2+ 

response, by deleting the uncage excitation points one by one. 

- At 2500ms one or five (depends on the protocoll) action potential evoked by somatic 

current injection through the micropipette (900 pA, 5ms, 50Hz) (see in Figure 27.).  
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Figure 20. A) Dendritic segment with the uncaging locations (white spots). Blue line indicates the scanning path of 

free line scanning. B) Dendritic Ca2+ response, recorded along the blue line in the middle, was normalized to the 

background fluorescence level and plotted as a function of dendritic distance and time. Ca2+ response was evoked by 

two-photon glutamate uncaging in the white points. Uncaging time is indicated by black arrowhead. 

4.7 Data analysis 
 

LFPg data analysis was performed with Neuroscan Edit 4.5 program (Compumedics 

Neuroscan, Charlotte, NC), LFP and patch clamp recordings were analyzed using the pClamp 

8, or MES (Femtonics) program. Home written programs for Matlab were used to analyze data 

of two-photon imaging (MES (Femtonics)). MES program was written to control the two-

photon microscope in the measurement, and has lots of features for that (camera mode two-

photon mode, linescan, z-stack, etc…) [96] [119], but on top of that it has an analysis program 

part as well. MES analysis handle well the Ca2+ imaging data and the recordings from the 

micropipettes (extracellular, or intracellular) can be imported. 

The MES analysis software is very good in event related studies, like uncaging 

experiments, or episodic stimulation, they are easy to handle (for example: all of the episodes 

can be loaded, and preprocessed at the same time with one command, because one can set the 

event time, and on these signals, use a loads of built in filtering, averaging, etc…) [148].  

The spontaneous recordings are a little bit harder to handle, because you need to search 

your signal for each event to preprocess (like in this research for the average of the signals one 

need to search for every event (SPA peak), and set a new window for it (and on all the connected 
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Ca2+ signals or patch) to prepare it for further analysis), but one can easily get the amplitudes, 

and the latencies of the events. 

The LFP signal was band pass filtered between 1 and 30 Hz to determine the peak of 

the SPA. The peak of the SPA was set as time zero for further event related analyses. 

During intracellular Ca2+ signal detection, the baseline was set for each cell at 120-80 

ms before the peak of each SPA. The Ca2+ transient was considered to be significantly increased 

when it passed two times the standard deviation (SD) of the baseline interval. We determined 

for each cell, during each SPA event, whether its Ca2+ signal passed this significance level. 

So to summarize the steps of the signal preprocessing: 

- import the LFP signal from the .abf files to the Ca2+ responses in MES program 

- low pass filter the LFP recording (Bessel 30Hz)  

- filter the Ca2+ signals (Gaussian filtering) 

- SPA peakdetection 

- windowing the signals (around the SPA events) and aligning the SPA peaks  

- baselining the Ca2+ responses 

- gathering the amplitudes, and the latencies of the events 

- defining the 2SD threshold 

- separating the cells which datakluster (see below in Table 1.) it fits 

After these steps the more complex analyses can take place (averaging, comparisons, 

statistics, etc…). 

4.8 Cell morphology 
 

Biocytin was passively diffused into the cell through the patch pipette, during 

intracellular recording. After recording, slices were maintained for at least 30 minutes in the 

recording chamber, and then fixed overnight in 4% paraformaldehyde with 15% picric acid in 

0.1 M phosphate buffer (PB, pH 7.4) at 4°C. The slices were resectioned (Leica 1200 S) at 60 

µm and freeze-thawed above liquid N2 in 0.1 M PB containing 30% sucrose. Endogenous 

peroxidase activity was blocked by 1% H2O2 in Tris-buffered saline for 10 min. Cells containing 

biocytin were revealed with the ABC reaction (avidin-biotinylated horseradish complex, Vector, 

1.5 h, 1:250) using 3,3’-diaminobenzidine-tetrahydrochloride (DAB, Sigma, St. Louis, MO, 

0.05 M in Tris-buffer pH 7.6) as the chromogen. Sections were osmicated (20 min, 0.5% OsO4), 

dehydrated in ethanol, and mounted in Durcupan (ACM; Fluka, Buchs, Switzerland).  

One biocytin-filled neuron was chosen to be digitally reconstructed in three dimensions 

using the NeuroLucida system (MicroBrightField Inc. Williston, VT). Shrinkage correction 

factor of 1.33 was used in x and y dimensions [156]. Shrinkage in z dimension was measured in 

10 randomly chosen points in the section containing the cell body, and was averaged. A 

shrinkage correction factor of 1.41 was applied in z dimension [148].  
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4.9 Electron microscopy 
 

After light microscopic examination (and three dimensional reconstruction of the 

chosen filled cell) areas of interest were re-embedded and sectioned for electron microscopy 

with a Leica ultramicrotome (Leica EM UT7). Ultrathin (~60 nm) serial sections were collected 

on Formvar-coated single slot grids, stained with lead citrate, and examined with a Hitachi 7100 

(Hitachi, Tokyo, Japan) transmission electron microscope [148].  
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5 Results 
 

 

In the following the new scientific results will be presented. Let there be a summary of 

the theses again, but the results will be shown in an arrangement of the steps of the measurement, 

because it is easier to describe the results by that way.  

Thesis I: A method has been developed for the two-photon Ca2+ imaging of human 

neocortical tissue (see in the Materials and methods section). 

Thesis II: The extracellular recording system was successfully combined with the two-

photon microscope system. This way the epileptic and non-epileptic human neocortical neurons 

Calcium responses during SPA was compared. 

Thesis III: The functional coupling of LFP, Calcium responses and intracellular activity 

in human neocortical interneurons and pyramidal cells during SPA will be demonstrated. 

Thesis IV: The electrophysiological and imaging measurements were succesfully 

combined with anatomical reconstruction of the intracellularly loaded cells, to gain more 

information of the morphology of the loaded cells. 

Thesis V: The electron microscopic ultrastructure of the filled and reconstructed 

pyramidal cell will be described at electron microscopic level. 

5.1 Recording the spontaneous network activity by 

simultaneous Ca2+ imaging and field-potential 

measurements 
 

The local field potential (LFP) was recorded in 69 human neocortical slices from 17 

patients (32 slices from 8 tumor patients, 17 slices from 5 epileptic patients, and 20 from 4 tumor 

associated epileptic patients). SPA was detected in 15 slices (9 slices from 4 tumor patients, 4 

slices from 3 epileptic patients, and 2 slices from 1 tumor associated epileptic patient) by using 

the following procedure. The multielectrode was placed on the surface of the slice, 

perpendicular to the pial surface, allowing electrophysiological recording from all neocortical 

layers. The slices were mapped to localize the areas generating SPA by recording every 300-

400 µm from one end of the slice to the other end (Figure 21.) [148].  
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Figure 21. Laminar recordings were made in the human neocortex in vitro. The 24 channel multielectrode array was 

placed perpendicularly to the pial surface and covered the whole width of the neocortex, permitting recordings from 

each layer. LFPg recordings from 8 channels are shown on this figure. Spontaneous population activity (SPA, marked 

with black triangles) emerged in layer I-III in the neocortex of Pt 1. 

 

After mapping the neocortical slices with the laminar multielectrode, regions where 

SPA could be detected with LFPg recording were chosen for further two-photon Ca2+ imaging 

and intracellular patch clamp recordings. Bulk loading was performed on the sites where SPA 

had the largest LFPg amplitude, and additional extracellular local field potential (LFP) signals 

were recorded with a glass patch pipette filled with ACSF at the site of the bulk loaded cells. 

This way we could effectively record the SPA generation associated Ca2+ signals with two-

photon imaging in human neuronal populations (Figure 22.). The multielectrode array measured 

neuronal activity in the entire width of the examined neocortical region, near the site of the bulk 

loading. We simultaneously recorded the LFP signal of SPAs and the Ca2+ signals of the loaded 

neurons in 6 slices. In the remaining 4 slices SPA could not be detected after bulk loading. In 

the slices with detectable SPA a frame scan was taken after bulk loading, then cells were selected 

for fast measurement (Figure 23.) and were measured using the multiple line scanning method 

[127] [148]. 
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Figure 22. A) Average of LFP from a whole measurement of a tumor patient. B) The connected cells Ca2+ responses, 

from a whole measurement of a tumor patient. There are two of the cells that had good responses in the whole 

experiment. The LFP is filtered (Bessel 30 Hz low pass), and the Ca2+ responses are smoothed (Gaussian average). 

Dashed orange line is the 2SD. Because of the averaging the second cell seems here not to pass the 2SD limit, but by 

the reliably responding cell definition below, the cell was in this group. 

C) Average of LFP from a whole measurement of an epileptic patient. D) The connected cells Ca2+ responses, from 

a whole measurement of an epileptic patient. There are 3 cells that had good responses in the whole experiment. The 

LFP is filtered (Bessel 30 Hz low pass), and the Ca2+ responses are smoothed (Gaussian average). Dashed orange 

line is the 2SD. Because of the averaging the third cell seems here not to pass the 2SD limit, but by the reliably 

responding cell definition below, the cell was in this group. 

 

Figure 23. Two-photon image of a human neuronal population loaded with OGB-1-AM Ca2+ dye for population 

imaging. A pyramidal neuron was patch-clamped (IC, intracellular recording) and filled with OGB-1 (60 µM) and 

Alexa594 (100 µM) through the recording pipette. Neuronal somata were scanned with constant speed along the 

white lines while intermediate sections were jumped over within 100 µs using a spline interpolated path (multiple 

line scanning). 
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The advantage of this method is that it increases the product of measurement speed and 

signal collection efficiency [119] resulting in high measurement speed an increased signal-to-

noise ratio (Figure 23, 24). We simultaneously recorded the LFP signal of SPAs and the somatic 

Ca2+ signal of 31 neurons in 2 slices from tumor patients, and 55 neurons in 4 slices from 

epileptic patients (Table 1).  

A relative increase in Ca2+ signal from the baseline larger than 2x standard deviation 

(SD) of the baseline was taken as significant Ca2+ response. Baseline was measured from -120 

to -80 ms before the peak of every SPA event. The neurons showing at least one significant Ca2+ 

response were taken as responding cells. Occasionally responding cells showed increased Ca2+ 

signal during <20% of the SPA events, non-reliably responding cells responded to 20-40% of 

the SPA events, whereas reliably responding cells showed Ca2+ responses to >40% of the SPA 

events. With this method, we identified 21 silent cell (68%), 4 occasionally (13%), 1 non-

reliably (3%) and 5 reliably responding (16%) cells in the tumor tissue. The distribution of the 

responding cells was considerably different in epileptic tissue: we found 19 silent cells (35%), 

20 occasionally (36%), 11 non-reliably (20%) and 5 reliably (9%) responding cells (Table 1) 

[148]. 
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Table 1. 

Examination of cellular activity during SPA with two-photon Ca2+ imaging in epileptic and non-epileptic tissue. 

Patient/Slice Number 

of SPAs 

Number 

of 

recorded 

cells 

Number 

of silent 

cells 

(0%) 

Number of 

occasionally 

responding 

cells (<20%) 

Number of 

non-

reliably 

responding 

cells (20-

40%) 

Number of 

reliably 

responding 

cells 

(≥40%) 

Pt 1 (tumor) 

slice 1 

8 13 7 2 1 3 

Pt 2 (tumor) 

slice 1 

15 18 14 2 0 2 

Pt 4 (epileptic) 

slice 2 

79 26 4 16 3 3 

Pt 4 (epileptic) 

slice 3 

13 15 5 3 6 1 

Pt 5 (epileptic) 

slice 1 

15 4 2 0 2 0 

Pt 5 (epileptic) 

slice 2 

12 10 8 1 0 1 

Pt 8 (t 

associated e) 

slice 4 

7 23 11 6 3 3 

Tumor  31 21 (68%) 4 (13%) 1 (3%) 5 (16%) 

Epileptic  55 19 (35%) 20 (36%) 11 (20%) 5 (9%) 

T associated E  23 11 (48%) 6 (26%) 3 (13%) 3 (13%) 
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5.2 Intracellular recordings 
 

Based on the Ca2+ responses of the cells within region of interest, we chose non-reliably 

or reliably responding neurons for further intracellular recording. Whole cell (n=7 neurons) or 

loose patch clamp (n=2 neurons) recordings were made to reveal the electrophysiological 

activity of the given cell. In these cases LFP, intracellular recordings and Ca2+ signals of the 

patched and the neighboring cells were simultaneously detected (Figure 21, 23, 24). Based on 

the morphology revealed by the fluorescent dyes, electrophysiological recording was made from 

3 pyramidal cells and 6 interneurons. 

We examined the somatic and dendritic Ca2+ responses of both interneurons (n=4, 

Figure 25.) and pyramidal cells (n=3, Figure 26.), together with their somatic 

electrophysiological activity [148].  

 

 

Figure 24. Left) Simultaneous LFP, Ca2+ signal (Ca2+) and loose patch clamp recording during three successive 

spontaneous SPA events (black triangles). Ca2+ transients show the responses of eight neurons from the eighteen 

recorded shown Figure 23. Different colors of the Ca2+ signals represent different cells. Note that three cells were 

responding to SPAs, but the other cells did not show increased Ca2+ levels. The intracellularly recorded cell (IC), 

shown in Figure 23 was burst firing during SPA, which is also reflected in a simultaneous increase in the intracellular 

Ca2+ level (green line). Note the trial-to-trial variability in relative Ca2+ responses between neurons.  

Right) LFP signal of a SPA event (black triangle) on an enlarged view with the corresponding Ca2+ responses 

recorded from the neuronal population shown in Figure 23. and the simultaneously recorded loose-patch signal. Note 

the large Ca2+ signal during the somatic AP burst associated to the SPA event (green line in the middle). 

 

As it has been described in animal tissue [157] [158] positive correlation between the 

number of somatic action potentials and the amplitude of the dendritic Ca2+ signal was observed. 

Briefly, bursts of action potentials generated in pyramidal cells (n=2 cells) and multiple action 

potentials detected in interneurons (n=2 cells) resulted in larger dendritic Ca2+ increase than 

single action potentials. A detailed future study is needed to exactly correlate somatic 

electrophysiological recording with the somatic and dendritic Ca2+ signal of both human 

pyramidal cells and interneurons (Figure 25, 26). 
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Figure 25. A) Maximum intensity z-projection image of a human aspiny neocortical interneuron with a dendritic 

segment selected for free line scanning (white dashed line). Only the red PMT channel data are shown. B) Ca2+ 

response measured along the white dashed line plotted as a function of distance along the dendrite and time. 

Responses were spatially normalized to the background fluorescence level.  

C) Spatial integral of the dendritic Ca2+ response shown B. D) Simultaneously recorded somatic membrane potential. 

Dashed gray lines mark the initiation and termination of short temporal intervals with high AP number and dotted 

lines mark single APs. Note the synchronous increase in average dendritic Ca2+ response during the multiple APs.  

 

 

Figure 26. A) Maximum intensity z-projection image of a human neocortical pyramidal cell, red channel data. B) 

Enlarged view of the dendritic segment shown in the white box in Left. Blue line indicates free line scan. C) Dendritic 

Ca2+ responses (cyan line) averaged along the blue line in B. Simultaneously recorded somatic membrane potential 

responses. Enlarged view of AP bursts (blue). The amplitude of the Ca2+ signal shows correspondence to the number 

of APs recorded in the cell body. Note, that the rising phase of the pyramidal cell dendritic Ca2+ signal is steeper than 

that of the interneuron shown on Figure 25.  

 

Measurement of input-output functions of cortical pyramidal cells and interneurons is 

important to understand dendritic integration and neuronal computation [115] [127] [159] [160] 

[161]. As human neurons have more complex dendritic branching compared to animals, (see the 

dendritic length of our reconstructed pyramidal cell, [162], we expect a more complex human 

dendritic arithmetic. Two-photon uncaging is widely used to investigate neuronal input-output 

functions and postsynaptic signal integration. As in animal models [127] [163], we could use 
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spatially and temporally clustered input pattern to activate short dendritic segments via 

glutamate uncaging and measured the postsynaptic Ca2+ response using free line scanning and 

somatic whole cell recording (Figure 27) [148].  

 

Figure 27. A Maximum intensity z-projection image of a human neocortical interneuron. Only the red channel data 

are shown. B) Dendritic segment with the uncaging locations (white spots). Blue line indicates the scanning path of 

free line scanning. C) Dendritic Ca2+ response, recorded along the blue line in the middle, was normalized to the 

background fluorescence level and plotted as a function of dendritic distance and time. Ca2+ response was evoked by 

two-photon glutamate uncaging in the white points. Uncaging time is indicated by black arrowhead.   

D) Spatial average of five Ca2+ responses detected in the dendrite shown in C. E) Simultaneously recorded somatic 

membrane potential. Note that both the uncaging evoked EPSP (black arrowhead) and the somatic current injection 

induced AP was associated with an increase in dendritic Ca2+ level.  

5.3 Anatomy 
 

Intracellularly recorded cells were filled with biocytin (n=6) and were processed for 

anatomy. The successfully filled neurons showed the morphology of either pyramidal cells 

(n=2) or interneurons (n=2). The pyramidal cells displayed a long and thick apical dendrite and 

numerous thin basal dendrites (Figure 28), the interneurons appeared as small multipolar cells 

with shorter smooth dendrites (Figure 30). The whole dendritic and axonal arbor of one well 

filled neocortical layer III. pyramidal cell was chosen to be reconstructed in three dimensions 

(from Pt 7, Figure 29.). Out of the 4 filled cells, this was the only neuron having an apparently 

complete (and well filled) dendritic arbor, as well as filled axons. Two other cells were not 

completely filled, i.e. they possessed pale dendritic segments and had no filled axons. The cell 

body of one neuron was close to the surface of the slice (within 50 µm) and part of its dendritic 

tree was cut during slice preparation.  
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The apical dendrite of the reconstructed cell was 4310 µm long, the sum of the length 

of its basal dendrites was 13478 µm and the length of all the axonal segments was 3875 µm 

long. It far exceeds the dendritic length of pyramidal cells in monkey temporal cortex, even 

though they were labelled in vivo [148] [164]. Pyramidal cells of the rodent neocortex also 

possess considerably shorter dendritic lengths (see www.neuromorpho.org, [165] [166] [167]).  

 

 

Figure 28. A) Maximum intensity z-projection of a population of human neurons loaded with OGB-1-AM dye. The 

neuron corresponding to region #6 (also shown in Figure 18) was whole-cell recorded and loaded through the 

recording pipette with the green Ca2+ dye OGB-1, the red Alexa594 and biocytin.  

B) Light micrograph of the cell #6 shown left, processed for anatomy. The axon initial segment is marked with arrow.  

50 µm

  

Figure 29. The dendritic (blue) and axonal (pink) arbor of the pyramidal cell #6 in Figure 28 was reconstructed in 

three dimensions. 
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Figure 30. Light microscopy image of an interneuron shown in Figure 25. The cell was filled with biocytin and was 

processed for anatomy following the two-photon experiment. 

 

5.4 Electron microscopy 
 

We examined the filled and reconstructed pyramidal cell at electron microscopic level. 

Large vacuoles were found in the cell body and the dendrites of the cell (Figure 31), while 

outside these areas mitochondria and other organelles such as endoplasmic reticulum seemed to 

be intact. We found numerous axon terminals forming either asymmetrical (presumably 

excitatory) or symmetrical (presumably inhibitory) synapses on the dendrites of the filled cell. 

We could not find synapses innervating the cell body of this pyramidal cell, but we observed 

several symmetrical synapses terminating on its axon initial segment. The axon terminals of the 

filled cell formed asymmetrical synapses with non-stained dendrites and spines [148]. 
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Figure 31. The electron microscopic investigation of the same cell (Figure 18, 28 #6) showed large empty spaces 

(vacuoles) in the cell body. The neighboring neuron (identified on Figure 18 as #9) is a healthy pyramidal cell without 

large somatic vacuoles. 

 

We hypothesized that the presence of vacuoles is the result of our methodological 

procedure. First, applying OGB-AM and SR-101 for bulk loading may change the structure of 

the neurons. Second, the long time (several hours) spent in the recording chamber might also 

affect the survival of the cells. And third, patch clamp procedure (mechanical damage caused 

by the pipette, as well as the intracellular use of a high concentration of the fluorophores 

Alexa594 and OGB-AM) might also trigger changes in cellular ultrastructure. To test these 

hypotheses we made further electron microscopic examinations. First, we examined 62 non-

filled cells (45 neurons and 17 glial cells) in the vicinity of the biocytin-filled cell. Based on the 

low magnification frame scan taken during the two-photon experiment, these cells were located 

within the region of bulk loading. We could not see large vacuoles in any of the bulk loaded 

cells. Next, we checked 61 cells (43 neurons and 18 glial cells) in the same slice, in a region 

where bulk loading was not performed. Both blocks were re-embedded from neocortical layer 

III. of Pt. 7, with a distance of ~5mm between them. None of the non-loaded cells displayed 

similar vacuoles in their somata. We made further experiments to test the hypothesis that several 
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hours of in vitro conditions might induce the formation of somatic vacuoles. We therefore re-

embedded one block from Pt. 4, from a slice which spent 6 hours in the recording chamber and 

an other block from the same tissue sample (from the same part of the gyrus) which was fixed 

immediately after the cutting procedure. We examined 35 neurons and 22 glial cells from the 

recorded tissue slice and 43 neurons and 25 glial cells from the immediately fixed tissue sample. 

Large vacuoles were not observed in these cells [148].  
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6 Conclusion 
 

Two-photon Ca2+ imaging is widely used to reveal sub- and suprathreshold neuronal 

activity in rodent neocortical and hippocampal slice preparations [11]. Somatic, dendritic and 

axonal Ca2+ signals were also correlated with somatic electrophysiological and local field 

potential recordings in these animal models [108] [168], but nothing is known about the 

intracellular Ca2+ signaling of single human neurons and neuronal populations. The aim of the 

present technical report is to demonstrate that these fundamental measurements can be achieved 

in human neurons following similar methodological procedures to those used in animals. 

Furthermore, we wished to show that combining different electrophysiological and optical 

methods in human neocortical slice preparations can give valuable information about cellular 

and network properties of cortical synchronization processes. 

Recording in human brain tissue is very valuable in order to gain information about 

characteristics of human neurons and relate it to animal models. The present study is the first to 

show that Ca2+ dynamics of human neurons is comparable to those found in animals. We 

demonstrate that the use of appropriate methodological procedures provide high quality data 

about the somatic and dendritic Ca2+ signals of individual neurons and populations of human 

neocortical cells. During our experiments we noticed the high variability of tissue quality, even 

though we followed our standardized protocol. Several reasons might account for this 

phenomenon, usually not reported in studies using animals. The age of the patients varied from 

young adults to elderly (19 to 83 years), while research groups working on animal models 

usually use young animals of the same age group. Furthermore, we cannot exclude the 

possibility that differences in the pathology and in surgery conditions of our patients might also 

account for the considerable variance of tissue quality. We concluded that valuable 

electrophysiological, two-photon Ca2+ imaging and anatomical results could be obtained if the 

tissue quality was acceptable. Here we have adopted and used an improved version of dual 

perfusion chamber [108] [149], which provided excellent tissue oxygenation to maintain 

network activity and allowed simultaneous imaging and two-photon uncaging experiments 

during population activity. The high signal-to-noise ratio obtained in our measurements has not 

only been enhanced by the high numerical aperture of the water-immersion objectives but also 

by the use of our multiple line scanning method.  

The techniques used in our study are complementary in several ways: two-photon Ca2+ 

imaging records the activity of large populations of neighboring neurons although at low 

temporal scale, whereas multiple channel electrophysiology records the activity of a few cells 

distributed along the entire width of the cortex and at high temporal scale. This allows us to 

examine larger and more complex neuronal populations than any of the mentioned technique 

alone. In summary, one of the main advantages of our combined method is that it allows 
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simultaneous optical and electrophysiological examination of human neurons and neuronal 

assemblies with high spatial and temporal resolution. Subsequent anatomy is a useful tool to 

reveal differences in the fine structure of the human cortex related to the pathology of the patient, 

or to the capability of SPA generation. Anatomical examination of intracellularly filled human 

neurons could reveal possible differences between cells participating vs. not participating in the 

generation of SPA, between cells located in regions where SPA is present vs. regions outside of 

SPA, as well as between cells derived from epileptic vs. tumor patients. 

Our study reported a technical difficulty associated to Ca2+ imaging of living cells. 

Although our intracellularly labeled cells looked healthy under light microscope, we observed 

large autophagic vacuoles in the somatodendritic compartment of the examined neuron at 

electron microscopic level (see also supplementary material of [169]). Our electron microscopic 

studies suggest that this phenomenon is attributed to photodamage. Oxygen radicals generated 

during illumination and photobleaching of intracellular fluorophores [170] [171] induce 

ultrastructural changes in the cell, such as inactivation of proteins [170] [172] [173] and 

formation of autophagic vacuoles [174]. This phenomenon is exploited in a developing powerful 

technique called Chromophore-Assisted Laser Inactivation (CALI), used as a potent cell biology 

technique and as a therapeutic tool in cancer research (for review see [173]). At the same time, 

Ca2+ imaging caused photodamage has never been directly addressed in neuronal tissue. We 

tried to minimize photodamage by using line scans and by keeping laser intensity at the 

minimum required to attain sufficient signal-to-noise ratio. We could not see changes in the 

physiology of the neurons during recordings, neither signs of cell degeneration at the light 

microscope, but photodamage became evident when examined with electron microscopy. 

We performed simultaneous correlated somatic whole-cell, local field potential and 

intracellular Ca2+ measurements during conditions when the network of human neurons showed 

synchronous discharges. Electrophysiological recordings of synchronous population events in 

the human neocortex were already performed in vitro, describing the responses of single neurons 

[6]. Our multimodal approach allows us to record the simultaneous activity of large neuronal 

populations together with the intracellular response of selected single neurons. In addition, Ca2+ 

imaging of neuronal populations revealed the relatively high percentage of silent cells (35% of 

the cells in epileptic and 67% in tumor tissue) which were unnoticeable in electrophysiological 

recordings. We demonstrated that higher proportions of neurons participate in the generation of 

SPA in slices from epileptic (65% of the cells) than from tumor (32% of the cells) patients 

(Table 1). The ratio of cells responding to >20% of the SPA events is also higher in epileptic 

tissue (29% vs. 19% in epileptic vs. tumor tissue), even if the proportion of reliably responding 

cells was lower in epileptic tissue. This suggests that in the human epileptic neocortex more 

neurons are contributing to network synchrony, although with a lower precision. This network 

phenomenon is similar to the cellular properties observed in epileptic rats [175], where an 
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enhanced synaptic activity and a lower spike-timing reliability have been shown to induce 

synchronies related to epilepsy (fast ripples). 

The epilepsies are a serious health problem affecting large percentage of human 

populations during their lifetime. Our multi-modal and multi-scale approach could help to 

clarify the abnormalities in cellular and network properties that underlie this pathology, 

providing both a better understanding of the disease and, eventually, contributing to better 

therapeutic approaches to the treatment of neocortical epilepsies. Future therapeutic strategies 

that consider data from human neural tissue will better facilitate the development of new, more 

efficient drugs or other treatments that prevent epileptic seizures and/or alleviate epilepsy 

caused damage. The detailed analysis of human epileptic tissue is required to promote 

pharmaceutical research, but also crucial for the development of new, more realistic animal 

models. Animal models are necessary to better understand the mechanisms, causes and 

consequences of epilepsy. However, results derived from animal models must be compared and 

contrasted with human data if they are to provide valuable information about human disease. 
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7 Future plans 
 
 

We want to move forward with these experiments and have more informations of the 

mechanisms behind SPA. For this we need more successful simultaneous LFP, Ca2+ imaging, 

and intracellular recordings.  

There are two ways we are developing the laminar electrode: - polyimid based, and silicon 

based. We want to tets and use these newer versions of the electrode in our future experiments. 

For the exact and precise statistics we need more simultaneous recordings (and enough 

events) from each patient groups (we think that at least 5-5 patient from each group will be 

enough but 10-10 would be much more precise), avoiding the misinterpretation of the statistical 

results. We want to make correlation from the Ca2+ signals and the SPA events between the 

different patiet groups, coherence, and causality investigation, and some statistical tests. 

We want to further investigate the above mentioned vacuoles detected with Transmission 

Electron Microscopy, and how they occurred. We will study the different parts of our 

experimental methodology which is the responsible for it. We will investigate lasser effect on 

simple tissue, on bulk loaded tissue, and on filled cells, on different laser energy levels, and on 

different laser exposure times. With this investigation we want to know if there is a limit of the 

laser energy and exposure time for our research. 

We want to have more informations of the morphologyical differences of the cells of 

different patients groups (if there are any) so we need more filled cells to reconstruct, 

andinvestigated under Transmission Electron Micrscope. 

For more informations from the human neurons behaviour, we want to investigate the 

dendritic integration of the spontaneous, and induced (uncaging, or electrical stimulated) 

signals. 
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