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Abstract

Dynamical models play an important role in many fields of science and engineering. The

aim of applying these models is to solve real-life problems, using that they are able to

reproduce the important observed phenomena as accurately as required. Nonnegative

systems form a special class of dynamical systems where all the state variables remain in

the positive orthant, if the states start there. Kinetic dynamical models originate from

chemistry as descriptors of chemical processes, but their range of applicability reaches

far beyond (bio)chemical models as they are suitable to describe all important dynamical

phenomena.

It is possible to associate a directed graph structure to a kinetic system which enables

us to investigate not only the graph theoretic properties, but the dynamical properties

of the kinetic system as well. The theory to investigate these properties has existed for

decades but a set of optimization based approaches—exploiting that the graph structure

corresponding to a given kinetic dynamics is non-unique—have been developed relatively

recently. Building upon these, this thesis presents two new algorithms utilizing mathe-

matical optimization.

It has been known that the sparse directed graph structure is not necessarily unique

which is in contrast with the unique dense structure. This non-uniqueness may hamper

the successful identification of a kinetic system because a unique sparse structure is often

implicitly assumed. The first algorithm shows an efficient way to calculate all sparse

directed graph structures of a kinetic system.

The second algorithm is developed in the newly introduced class of uncertain kinetic

systems. This procedure computes the core reactions of the uncertain kinetic system

and it has polynomial time complexity. The uncertainty is represented in the form of

parameter intervals which makes it suitable to accommodate uncertainties ranging from

temperature change to different operating regimes.

The applicability of the algorithms is illustrated by a series of examples. First, the

well-known Lorenz system is transformed into kinetic form to calculate all the sparse

structures. Second, a network reconstruction benchmark is used to show the computa-

tion of the core reaction set of an uncertain kinetic system. Third, it is shown that the

sparse structure of a kinetic system with predetermined uncertainty may be non-unique,

too.

The last part of this thesis is focusing on the modeling process of an in vitro system.

The work starts with a list of molecular laboratory protocols to prepare the different

molecular probes. Then, a series of experiments is designed to collect data about the

in vitro system. A first principle model is developed to capture the transient behavior

of the gene expression and it is shown that the model is structurally identifiable using

the applied measurement setup. Finally, the quality of the time series data enables us

to estimate and validate the parameters of the developed kinetic model.
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ance and endless support. I’m also grateful for Katalin Hangos who advised me during
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Nc number of core complexes in a kinetic system

[M ]ij the entry in the ith row and jth column of the matrix M

Yi,· ith row of matrix Y

M·,j jth column of matrix M

col(Q) column expansion of matrix Q ∈ Rn×m into a vector col(Q) ∈ Rn·m×1

row(Q) row expansion of matrix Q ∈ Rn×m into a vector row(Q) ∈ R1×n·m

1m m×m matrix with all entries equal to one

Im m×m unit matrix
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Chapter 1

Introduction

1.1 The notion and significance of dynamical and nonneg-

ative models

Dynamical models play an important role in many fields of science and engineering such

as in physics, mathematics or control theory. Basically, these models are fundamental

in every field where the main interest lays in the description of the time and/or space

evolution of the modeled quantities. The time evolution of the modeled quantities is

often described by (non)linear ordinary differential equations (ODEs). If the space

evolution is also an important aspect of the model, then partial differential equations

(PDEs) are used [10].

Over the years different powerful mathematical tools emerged to comprehensively ana-

lyze the properties of dynamical models, e.g. whether certain states can be achieved,

observed or the state itself is stable, robust to external disturbances [35]. More impor-

tantly, input functions can be designed to alter the dynamics of the model and drive

these dynamical models to certain states and maintain them at that state over time

[106].

Dynamical models can be classified either by the possible values of the state variables or

by the structure of the model or both. For example, the defining property of the class

of nonnegative systems is that all state variables remain nonnegative if the trajectories

start in the nonnegative orthant [53]. Some notable examples of nonnegative systems

1
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Chapter 1. Introduction 2

are transportation models, population dynamics, ecological, certain type of economical

models and (bio)chemical models. Clearly, the state variables in these examples are

nonnegative by definition.

There are distinguished system classes of the nonnegative models which are general

enough to include a wide range of smooth nonnegative systems. For example, in the

case of quasi-polynomial (QP) systems, the model is composed of quasi-monomial func-

tions where the exponents of the quasi-monomials are real numbers [19, 20]. Another

formalism, called S-systems can be reformulated as a QP system. The S-system is a

popular platform for modeling biochemical metabolism, because the model explicitly

accounts for the influxes and outfluxes of each state variable, although this limits the

types of nonnegative systems which can be modeled with S-systems [95, 123].

Also, rational functions can be the building blocks of a nonnegative model, e.g. in case

of Michaelis-Menten or Hill-function kinetics [3, 120]. Rational function modeling is

frequently used for model reduction of monomial systems, (e.g. with Michaelis-Menten

kinetics [85]), since in this case the model with rational functions is often able to describe

more realistic dynamical features with less state variables than a polynomial model [92].

1.2 Kinetic systems

A widely used class within nonnegative systems is the class of kinetic systems which

is a subclass of the quasi-polynomial systems, where the exponents of the monomials

are nonnegative integers. Kinetic dynamical models originate from chemistry, but their

range of applicability reaches far beyond (bio)chemical models as they are suitable to de-

scribe all important dynamical phenomena such as stability/instability and multiplicity

of equilibria [28], bifurcation [81], oscillatory and even chaotic behavior [37, 38]. Many

of these phenomena have actually been observed in real chemical experiments where

the practical constraints are much more severe than in the case of pure mathematical

models [73, 80].

Furthermore, kinetic models can effectively be used in the description of numerous nat-

ural processes such as disease dynamics, population dynamics, compartmental models,

or certain transportation phenomena. On the top of that, kinetic systems can be used

to describe pure chemical reactions or the complex dynamics of intracellular processes,
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Chapter 1. Introduction 3

metabolic or cell signaling pathways [51]. Kinetic models have also been useful in per-

forming complex non-conventional computation tasks [1, 2, 34]. Moreover, their simple

algebraic structure make these models attractive both for rigorous mathematical analysis

and for efficient computational techniques [40, 59], as well as certain strong statements

of the structural and dynamical properties of the model can be made about kinetic sys-

tems using Chemical Reaction Network Theory, even without knowing the parameters

of the kinetic model [30, 103].

Necessary and sufficient conditions for a regular polynomial system to be kinetic were

first reported in [56], where a constructive proof was given to build the so-called “canonic

mechanism” of kinetic polynomial models. Furthermore, transformation of non-kinetic

systems into a polynomial kinetic form is also possible using the so called X-factorable

systems and a state-dependent time-rescaling, as shown in Chapter 3.

The directed graph structure assigned to the kinetic system gives us important informa-

tion about the qualitative dynamical properties of the system. Although it was known

since at least the 1970’s that multiple different directed graph structures/parametriza-

tions can describe exactly the same dynamics of the concentrations [38, 59]. This phe-

nomenon is called macro-equivalence or dynamical equivalence. However, the exact ge-

ometric conditions of macro-equivalence were not studied until recently in [29]. The

first optimization-based numerical procedures for generating macro-equivalent struc-

tures with prescribed (dynamically relevant) properties were reported in, e.g. [113, 114,

115, 116].

Dynamical equivalence enables us to compute directed graph structures with maximum

or minimum number of edges. It has been shown that the dynamically equivalent di-

rected graph with maximum number of edges defines a unique structure [113]. Further-

more, Chapter 3 illustrates the result from [113] on the non-uniqueness of a dynamically

equivalent directed graph with minimal number of edges.

Besides the maximum or minimum number of reactions, other properties can also char-

acterize these directed graphs; e.g. structural invariance of certain directed edges (called

core reactions). If such edges do exist, then these are present in each dynamically equiva-

lent directed graphs. An optimization method for computing such structurally invariant

edges was reported in [114]. Core reactions and their properties will be utilized exten-

sively in Chapters 3 and 4.
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Chapter 1. Introduction 4

Kinetic systems can be extended to accommodate parametric uncertainty, where the

uncertainty is represented as a multi-dimensional interval in the space of monomial

coefficients. Therefore, one can immediately represent the measurement uncertainty in

the model or incorporate the effect of e.g. temperature change or machine wear off. In

the case of metabolic networks a similar model has been suggested, e.g. in [71].

Core reactions can be easily defined within the class of uncertain kinetic systems. Thus,

they can be utilized as ‘certain’ structural elements of uncertain systems, as shown in

Chapter 4. One of the possible applications of uncertain kinetic systems with core reac-

tion is (bio)chemical network reconstruction, which gained significant interest recently

[12, 107].

All these advantageous properties of kinetic models and the associated graph structure

explain the recent raising interest of mathematicians and engineers towards (bio)chemical

reaction networks [5, 25, 105].

Dynamical modeling in the field of systems biology and synthetic biology are good

examples where nonnegative, especially, kinetic systems are typically applied [122]. In

systems biology the aim is to understand and eventually control biomolecular processes

such as signal transduction or metabolism. Thus, dynamical models can support this

process by accurately describing the observed phenomena and the inherent properties

of the biological system [3]. On the other hand, in synthetic biology rational designing

and creating novel interaction networks, e.g. gene regulatory networks is the main aim

[69]. If these interaction networks or so called biocircuits are successfully designed and

tested they may be capable of sensing external or internal signals, compute the necessary

response and actuate the molecular system accordingly. Meanwhile, all of these steps

are based on molecular computation [64].

Therefore, in both fields, but especially in synthetic biology dynamical models are be-

coming essential tools to carefully investigate and understand the biological processes,

to predict the possible dynamical properties and to support the rational design process

with appropriate feedback. Consequently, in these fields kinetic models with monomial

or rational reaction rates are frequently applied [84]. Also, the underlying processes can

be modeled using stochastic approaches [45]. Besides deterministic kinetic or stochastic

models, other model types do exist as well such as Petri nets [77], probabilistic graphical

models [43], and some other model structures are reviewed in [62].
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Chapter 1. Introduction 5

In many fields of engineering there exists some type of test bed for rapid assembly of

components and test out the proof-of-concepts; such as the breadboard of electrical en-

gineers or the wind tunnel for aerospace engineers. These test beds are usually well

characterized, e.g. all the physical dimensions or electrical properties are known in ad-

vance. Hence, it is easy to carry out controlled experiments and determine the properties

of the proof-of-concepts system.

Recently, a similar breadboarding concept was developed for synthetic biology, where

the DNA segments or whole biocircuits can be rapidly assembled and tested [101, 110,

111]. The components of such a system are DNA segments, which are assembled to-

gether with standard molecular biology techniques, and a host environment, typically

some type of crude cell-extract. Due to this molecular breadboarding environment there

has been a significant decrease in the amount of time required for biocircuit assembly

and subsequent testing. Despite of these developments, exploring the dynamical prop-

erties of biocircuits is still resource and time consuming. Therefore a software toolbox

was developed to simulate the dynamics of breadboarding environment, to explore the

possible operation regimes and to make predictions about the performance of biocircuits

before implementing them in in vitro experiments [119, C4].

This software toolbox gives insight into the dynamics of unmeasured states of the molec-

ular breadboard, especially accounts for resource usage. It is important, because at the

current state of this particular molecular breadboard, it only allows for a single dose of

resources, i.e. limits the time of the operation. The toolbox provides a general mod-

eling framework for planning circuit layouts and gives predictive models for synthetic

biomolecular circuits. A major benefit of the toolbox is that it gives feedback to the

rational design step, and thus it increases our capacity to rationally design biomolecular

circuits. The kinetic model developed for this software toolbox is introduced in Chapter

5.

Recent advances in measurement technology provide us a rich source of data for revealing

the structure and behavior of biochemical processes which became the integral part of the

software toolbox. Using real time measurements of both transcriptional and translational

stages of gene expression give us the necessary insight to determine the parameters of

the kinetic model.
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Chapter 1. Introduction 6

1.3 Challenges of structure and parameter estimation of

kinetic systems

For simulations of kinetic systems or biochemical processes accurate model parameters

are needed, e.g. initial concentrations or reaction rate coefficients. Usually, unit values or

previously published figures from the literature are used, these numbers are aggregated

in the BioNumber database [17], but there can be multiple parameter values for the

same process and these values can show great variability. This may due to the fact

they were measured or calculated under different conditions, e.g. with different type of

equipment or protocol, not to mention the diversity of bacterial strains and available

chemical compounds.

In another approach the parameters of the system can be determined from measurement

data, but the process of parameter estimation is often challenging. Generally, these

challenges can be classified into two main categories. First, the selected process model

may have structural identifiability issues, namely the model structure is capable to

produce exactly the same output for different sets of parameters [6, 126]. The second

challenge stems from the poor excitation of the dynamics or by the poor quality of the

available measurements, which is often labeled as practical identifiability problem [74].

Although these challenges are linked to either the model or the measured data, the

concepts of structural and practical identifiability are sometimes mixed together [39, 50,

87].

Structural identifiability depends only on the structure of the model including the out-

put functions. Therefore, structural identifiability analysis can be carried out before

collecting the data, if the model structure is known. Unfortunately, this analysis is often

neglected and still not a standard practice of modelers. On the other hand, several

approaches and software tools exist for structural identifiability analysis and they are

suitable for many different model structures [7, 26, 33].

If one of these approaches show that the model has structural identifiability problems,

then generally, there are two ways to solve it. We can either try to change the output

function, e.g. by making more states observable or change the structure of the model,

e.g. by reducing the model.
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If the first approach is unsuccessful, i.e. all states are already observed or the output

function can not be changed anymore, then the model structure has to be modified to

achieve a structurally identifiable model. For example the first principle models—which

tend to yield many parameters—can be restructured and simplified by normalization of

the parameters. Besides that, model reduction is commonly executed to restructure or

reduce the number of states and parameters of the model [55, 85, 125].

For kinetic systems dynamical equivalence may also hamper the structural identification

process [114]. In essence, many different parameter sets can describe equally well the

observed dynamics. By assuming the minimum number of edges in the reaction graph

one could potentially alleviate this problem [12], however as we will see in Chapter 3 the

minimal (sparse) structure may be non-unique.

Even if a model is structurally identifiable, the quality and the information content of

the measured data has a huge impact on the parameter estimation process, i.e. there

are practical identifiability issues with the dynamical model. Poor excitation of the

dynamics often manifests in highly correlated parameters, large confidence intervals,

which severely limit the usability of the model. Local parameter sensitivity analysis

[134] or sample based global parameter sensitivity analysis [93] is commonly used to

determine the parameters’ influence on the dynamics of the model [82]. Parameter

sensitivity is a good metric for experiment design or input design. Various optimization

techniques exist to maximize the information content of the measured data by efficiently

excite the dynamical model, i.e. this maximizes the parameter sensitivity and improves

the quality of the parameter estimation [23, 42, 90, 124].

The input or experiment design was developed by the system and control theory commu-

nity, where the technological processes or the electrical systems can be relatively easily

manipulated by input functions, e.g. by changing the temperature or electrical current

[70]. On the other hand, in the case of a biomolecular breadboarding system, most of

the changes in the experiment conditions require re-optimization of the experiment pro-

tocol (e.g. restore pH or optimize salt content), which can be tedious work and it might

unintentionally change other parameters of the system [110]. Therefore, it is still an

open question how to efficiently do an experiment design for molecular breadboarding

and ultimately do complete system identification on biocircuits.
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Chapter 1. Introduction 8

Finally, the last step of the system identification process is the evaluation of the estimated

parameters [70]. This analysis can be carried out either in the space of parameters or in

the space of cost functions. In the space of the parameters, usually statistical aspects of

the parameters are investigated such as calculation of confidence intervals, coefficients

of variations or p-value [9]. In the space of cost functions, generally, the shape of the

cost function, curvature of the cost function or the value of residuals around the optimal

values of the parameter set are the target of analysis [97]. Validation can also be used

for testing the performance of the estimated parameter set with a different set of data

which was used for the parameter estimation.

In conclusion, the above mentioned tools, techniques and the highlighted issues show

that a successful parameter estimation for identifying the kinetic systems involves a

complex set of procedures starting from structural identification, through experiment

design, until the evaluation of the result of the parameter estimations [13, 89]. Given

the complex nature of the identification process, software tools have emerged that can

assist the users from the beginning of the modeling process till the end of the evaluation.

These softwares can effectively explore the different aspects of the process model, the

measured data as well as the estimated parameters [14, 27, C4].

1.4 Structure and objectives of the thesis

Most of the results in this thesis are built upon linear programing, modeling and pa-

rameter estimation of kinetic systems. Therefore, the necessary tools and techniques for

mathematical optimization and kinetic systems along with selected references for further

details are introduced in Chapter 2.

New scientific contributions about the class of kinetic systems are presented in three

chapters. In Chapter 3 and 4, I present how to use Linear Programming and Mixed In-

teger Linear Programming to calculate different structural elements of chemical reaction

networks. While in Chapter 5, I describe the construction and parameter estimation of

the kinetic model.

Chapter 3 outlines how to develop an algorithm in order to find all dynamically equiv-

alent reaction graphs with minimal number of reactions (sparse reaction graphs) using

optimization techniques.
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In Chapter 4, I extend the previous results on structurally invariant reactions to uncer-

tain kinetic systems. Here, I also define uncertain polynomial kinetic systems and show

the development of a polynomial time algorithm which can be used to find a structurally

invariant reactions of this system.

Chapter 5 presents an application oriented modeling method and the parameter estima-

tion of an in vitro gene expression system. In this chapter, I introduce the measurement

framework and the methods were performed in a molecular biology laboratory. Thanks

to the high resolution measurements this model was populated with parameters esti-

mated from time series measurement data.

Finally, the conclusion is drawn in Chapter 6 which also highlights some future directions

of researches based on the presented results of this thesis. Moreover, this chapter contains

a list of new scientific results with the corresponding peer-reviewed publications as well.
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Chapter 2

Background and Basic Notations

The objectives of this chapter are to introduce the mathematical tools and techniques

which will serve as the foundation of the results presented in this thesis. These results

in the later chapters highly rely on linear programming and least squares optimization,

which belong to convex optimization. Therefore, the chapter starts with a brief sum-

mary of convex optimization along with an introduction to linear programming and

least squares optimization. The latter one is used for parameter estimation of dynam-

ical systems in this thesis. As the introduction highlighted the challenges associated

with system identification of kinetic systems, one part of this chapter introduce the

concept and the latest developments of structural identifiability. Finally, since majority

of the results in this thesis are related to the class of kinetic systems, a comprehensive

introduction to kinetic system modeling and its properties is given.

2.1 Convex Optimization

Convex optimization is an important area of mathematical optimization and used widely

in engineering and in other fields. Just to give some examples: optimization of circuits

design, portfolio optimization in finance, route or production planning or optimal re-

source allocation [31, 32].

For a proper introduction, we need to define the convex set and convex function.

Definition 2.1. A set C is convex if for any x1, x2 ∈ C and any θ defined as 0 ≤ θ ≤ 1,

we have θx1 + (1− θ)x2 ∈ C [18].

10
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Definition 2.2. A function f : Rn → R is convex if domf is a convex set and if for all

x, y ∈ domf and θ with 0 ≤ θ ≤ 1, we have f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) [18].

Based on the above definitions we can write a convex optimization problem as

min
x

f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m, (2.1)

where the functions f0, . . . , fm : Rn → R are convex. The variable x ∈ Rn is the

optimization or decision variable of the problem. The convex function f0 : Rn → R

is the objective or cost function. The convex functions fi : Rn → R, i = 1, . . . ,m

are the constraints associated with the problem and vector b ∈ Rm is the bound for

the constraints. The goal of the optimization problem is to find vector x∗ ∈ Rn which

satisfies the following: for any z ∈ Rn with fi(z) ≤ bi, i = 1, . . . ,m and f0(z) ≥ f0(x∗),

i.e. there is no other vector in Rn which satisfies all the constraints and the cost function

at that point has lower value than x∗ has [18].

The linear programming and least squares covered in the next subsections are both

special cases of convex optimization.

2.1.1 Linear Programming

Linear programing (LP) is a constrained convex optimization technique, where a linear

objective function of the real-valued optimization variables is minimized (or maximized)

with respect to linear equality and inequality constraints.

The linear programming problems that will be used in this thesis can be written in the

following form

min
x
cTx

subject to:

Ax ≤ b

Gx = d (2.2)
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where x ∈ Rn is the vector of decision variables, c ∈ Rn, A ∈ Rp×n and b ∈ Rp are known

vectors and matrices and they encode the inequality constraints on x, the symbol ’≤‘

means element-wise non-strict inequality. The matrix G ∈ Rq×n and d ∈ Rq are also

known and they accommodate the equality constraints on x.

It should be noted that there exist many definitions of the linear programming problem

and they are all equivalent to each other [31]. We choose the above definition because

the type of problems we want solve can be easily encoded into this formulation.

Each equality and inequality constraint defines a hyperplane or a halfspace, respectively.

The intersection of these hyperplanes and halfspace defines a polyhedron. The goal of a

LP optimization is to minimize the cost function cTx over the polyhedron defined by the

solution set of the constraints. The points where the cost function takes its minimum

are on the boundary of the polyhedron, but depending on the type of the cost function

a face of the polyhedron can contain the point where the minimum of the cost function

is reached.

The existence of a feasible solution of the optimization problem defined in Equation (2.2)

can be checked by applying the following optimization model

min
z

∑p
i=0 zi

subject to:

Ax+ z = b

x ≥ 0, z ≥ 0 (2.3)

where vector z ∈ Rp represents the so called auxiliary variables. The LP problem

defined in Equation (2.2) has a feasible solution if and only if the LP in Equation (2.3)

has minimal value 0 with zi = 0 for i = 1, . . . , p [31].

The linear programming framework is very versatile, thus the practical applications are

ranging from engineering to social sciences, e.g. production optimization, transportation

and assignment problems, etc [18]. Moreover, many efficient solvers are available to solve

linear programming problems even with millions of decision variables and hundreds of

thousands constraints enable us to solve large problems efficiently. These solvers are

based on the simplex method or lately on the interior point method, reviewed in e.g.

[31].
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2.1.2 Mixed Integer Linear Programming

Some problems require decision variables with integer values. This constraint makes

the optimization problem NP-hard, although thanks to efficient solvers many practical

problems can be solved. A mixed integer linear programming (MILP) problem can be

written as

min
x
cTx

Ax ≤ b (2.4)

where xi ∈ R for i = 1, . . . , l, c ∈ Rl and xj ∈ Z for j = l + 1, . . . , n. The vector x

represents the decision variables and for some elements accepted the optimal value is

integer, these elements called integrality constraints. The matrix A ∈ Rp×n and b ∈ Rp

are the inequality constraints on x [31].

Linear programs with integrality constraints arise in many fields, e.g. in transportation,

scheduling, etc. For example, the number of rail cars assigned to a train to transport

certain amounts of goods or optimal allocation of people or machinery to perform certain

tasks. Clearly, some of the resources in these problems have to have integer values.

Propositional Calculus and Linear Integer Programming A connection be-

tween linear integer programming and propositional calculus can be made [127]. Logical

literals which are either true (T) or false (F) denoted by Xi represent certain facts, e.g.

x ≥ 0 or the sky is clear. Boolean algebra makes possible to connect these literals into

compound statements with the so called connectives. The connectives and their truth

table is given in Table 2.1. In addition, it is possible to transform compound statements

into different connectives or give a simple form for a complex statement.

A propositional logic problem, where a statement X1 must be proved to be true given a

set of (compound) statements involving literals X1, X2 . . . , Xn can be solved by means

of a linear program with integrality constraints, by translating the original compound

statements into linear inequalities involving logical variables [16, 127]. These logical

variables, denoted by δi ∈ {0, 1} are associated with the corresponding literals Xi, i =

1, . . . , n. Based on that, a list of equivalent compound statements and linear equalities

or inequalities is given in Table 2.2.
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Table 2.1: Truth table of the possible connectives

Literals Connectives

NOT OR AND Implies If and only if Exclusive or

X1 X2 ∼ X1 X1 ∨X2 X1 ∧X2 X1 → X2 X1 ⇐⇒ X2 X1 ⊕X2

F F T F F T T F

F T T T F T F T

T F F T F F F T

T T F T T T T F

Table 2.2: List of equivalent compound statements and linear equalities or inequali-
ties, taken from [127]

Compound statements linear equalities or inequalities

X1 ∨X2 δ1 + δ2 ≥ 1

X1 ∧X2 δ1 = 1, δ2 = 1

∼ X1 δ1 = 0

X1 → X2 δ1 − δ2 ≤ 0

X1 ⇐⇒ X2 δ1 − δ2 = 0

X1 ⊕X2 δ1 + δ2

2.1.3 Least Squares Optimization

Least squares optimization is a special case of convex optimization, where the cost

function is

min
x

f0(x) = ||Ax− b||22 =
∑k

i=1(〈aTi x〉 − bi)2 (2.5)

where A ∈ Rk×n, aTi is the ith row of A and vector x ∈ Rn is the optimization variable.

The least squares problem originates from solving the system of equations denoted as

Ax = b, where A ∈ Rk×n and b ∈ Rk, but it has no exact solution, typically because

k > n. Roughly speaking, there are more equations then variables. But we can still

search for an approximate solution, where the difference r = b − Ax is minimal. This

difference is called the residual vector or the residual, the goal of the optimizations is

to find a parameter vector x which minimizes the residual. A commonly used metric

to measure the size of the residual is the 2-norm, and a parameter vector minimize the

2-norm of the residual is called the least squares solution [9, 70].
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The least squares optimization problem has many interpretations in engineering, statis-

tics, astrophysics and in many other fields [18]. One reason for that, if there is no

constraints on the optimization variable x, then this optimization problem has a closed

form solution as

x = (ATA)−1(AT )b. (2.6)

Equation (2.6) is called the normal equation and this 2-norm solution is a special in-

terest because this is statistically the most likely solution if the data error are normally

distributed [9].

Even though the optimization problem in Equation (2.5) has a closed form solution, it

can be ill-posed, i.e. the column rank of A is less than n. In this case we are facing a

rank deficient or ill-posed problem [9]. A solution of this problem is called regularization,

where additional constraints are introduced on the optimization variable to improve the

solution. Among many regularization techniques the notable examples are Tikhonov

regularization and L1 regularization [44].

Further aspects of the least squares optimization and its application to parameter esti-

mation of kinetic models will be explored in Section 2.4.

2.2 Introduction to modeling of Kinetic Systems

(Bio)chemical systems obeying the mass action law can be described by nonlinear poly-

nomial ODEs where there are strict relations between the monomial exponents and

coefficients guaranteeing nonnegativity of the solutions (in case of nonnegative initial

conditions), and giving rise to a weighted directed graph structure called reaction graph

[38, 41]. In this graph, the participating chemical complexes are the nodes in the network

and the reactions which transform complexes into each other are represented by weighted

directed edges. The reaction rates are directly proportional to the edge weights.

Linear programming based optimization techniques exist to calculate certain graph

structures. Some of these structural properties are directly connected to the dynam-

ical behavior of the kinetic system. Therefore, based on the structure of the graph some

dynamical properties, e.g. stability can be determined.
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Since most of the contribution reported in this thesis are related to the class of kinetic

systems, a thorough introduction of notations, definitions and key features of kinetic

systems are presented in this section.

2.2.1 ODE description

The kinetic models studied in this thesis are given in the following polynomial form:

ẋ = M · ψ(x), (2.7)

where x ∈ Rn+, M ∈ Rn×p and ψ(x) is a monomial-type vector mapping which is defined

as

ψj(x) =

n∏
i=1

x
αij

i , j = 1, . . . , p (2.8)

with αij ∈ N. In order to define a kinetic system, the following relation has to be fulfilled

between M and α [38]:

αij ≥ 1 for any i, j for which Mij < 0. (2.9)

For computation purposes, we will use an appropriate factorization of Equation (2.7)

as follows. Let us define Y ∈ Nn×m as the complex composition matrix of the system.

Additionally, Ak ∈ Rm×m is a special compartmental matrix, the so-called Kirchhoff

matrix belonging to the system. Ak is defined as:

[Ak]ij =


kji if i 6= j

−
m∑

l=1,l 6=i
kil if i = j,

(2.10)

where kij ≥ 0 ∀i, j. With the help of these two matrices, we can write Equation (2.7) as

ẋ = Y ·Ak · ϕ(x), (2.11)

where

ϕj(x) =

n∏
i=1

x
Yij
i j = 1, . . . ,m. (2.12)
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Note that the monomials in functions ψ and ϕ are not necessarily identical, although

the right hand sides of Equations (2.7) and (2.11) determine the same dynamics.

2.2.2 Directed graph structure

We can associate a graph representation to kinetic models. A kinetic system equipped

with this graph structure will be called a Chemical Reaction Network (CRN) as it is

described in e.g. [41]. In this representation, a CRN is characterized by three sets:

1. S = {X1, . . . , Xn} is the set of species or chemical substances.

2. C = {C1, . . . , Cm} is the set of complexes. Formally, the complexes are represented

as linear combinations of the species, i.e.

Ci =

n∑
j=1

βijXj , i = 1, . . . ,m, (2.13)

where βij are nonnegative integers and are called the stoichiometric coefficients.

3. R = {(Ci, Cj) | Ci, Cj ∈ C, i 6= j, and Ci is transformed to Cj in the CRN} is the

set of reactions.

The reaction (Ci, Cj) ∈ R will be denoted as Ci → Cj . Moreover, a positive weight,

the reaction rate coefficient denoted by kij is assigned to each reaction Ci → Cj .

According to our convention, kij = 0 indicates that the reaction Ci → Cj is not

present in the CRN.

Given the sets S, C and R, a weighted directed graph (called the reaction graph) G =

(R, C) can be constructed, where the set C contains the vertices that represent the

complexes of the reaction network, i.e. C = {C1, C2, . . . , Cm}. The set R contains the

directed edges representing the reactions between the complexes and the corresponding

reaction rate coefficient is assigned as weight to each edges. It is important to remark

that loops and multiple edges with the same direction are not allowed in the reaction

graph.

The relationship between the ODE model of a kinetic system in Equation (2.11) and its

reaction graph is the following. The state vector x contains the species concentrations.

The entries of matrix Y ∈ Nn×m are Yij = βji for i = 1, . . . , n and j = 1, . . . ,m,
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and [Ak]ij = kji is the reaction rate coefficient corresponding to the reaction Cj → Ci.

[Ak]ij = 0 means that the reaction Cj → Ci does not occur in the CRN. It is clear that

matrices Y and Ak encode the stoichiometric composition and the weighted directed

graph of a CRN, respectively, and these matrices are sufficient to completely characterize

the kinetic dynamics described in Equation (2.7).

Now we briefly define the notions and properties of CRNs that will be used in the later

chapters. More details can be found in [40], while basic notions of directed graphs are

discussed in e.g. [15]. First of all, linkage classes are the maximal connected subgraphs

(i.e. components) of G. That is, complexes Ci and Cj belong to the same linkage class

if and only if there exists a path from Ci to Cj in G. Throughout this thesis, we do not

treat isolated vertexes (complexes without reactions) as separate linkage classes, and

we simply omit them from the CRN model (although we depict them in the figures for

the sake of completeness). We call a reaction graph weakly reversible, if there exists a

directed path from Ci to Cj whenever there is a directed path from Cj to Ci in the

reaction graph.

We have to briefly discuss the usage of the so-called zero complex in our models. The

zero complex is formally represented by a zero column vector in Y , i.e. it is a special

complex containing no species. Similarly to [40], we can use it to uniformly represent

the environment, i.e. a CRN containing a (non-removable) zero complex is actually an

open system. Therefore, the reactions of the type that are commonly written in the

literature as S → X and X → P , where S is a species of constant concentration and P

is an unreactive product (the concentration of which is not included into the dynamic

model), will be written as 0 → X and X → 0, respectively, where ‘0’ denotes the zero

complex. Similarly, reactions like X + S → 2X will be simply written as X → 2X. It

is emphasized that this is only a notational convention simplifying the description of

CRNs. The resulting kinetic dynamics describing the concentrations of the species in S

are the same in both cases, and the two ways of representation can be easily transformed

to each other, if necessary.

To each reaction Ci → Cj , we can associate a reaction vector denoted by eij as

eij = [Y ]·,j − [Y ]·,i, (Ci, Cj) ∈ R, (2.14)
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where [Y ]·,i denotes the ith column of Y . The rank of a network is the dimension of

span{eij}, i = 1, . . . ,m, j = 1, . . . ,m.

The structure of the reaction graph is directly connected to certain important dynamical

properties of a kinetic system. The deficiency (a nonnegative integer number depending

on the structure of the reaction graph and on complex composition but not on the

particular values of reaction rate coefficients) is a good example for this [40]. The

deficiency d of a CRN is given by the simple formula

d = m− l − s, (2.15)

where m is the number of (non-isolated) complexes in the network, l is the number

of linkage classes and s is the rank of the network. Roughly speaking, lower deficien-

cies (particularly 0 and 1) with certain structural properties like weak reversibility can

guarantee an ‘ordered’ behavior of kinetic dynamics without ‘exotic’ phenomena such

as periodic solutions or chaos. Some examples of the direct consequences related to de-

ficiency number such as the Deficiency One and Deficiency Zero Theorems can be found

in [40].

The concept of complex balance is offering a way to check stability properties of kinetic

systems. A kinetic system realization, defined by (Y ,Ak), is complex balanced at x∗ ∈ Rn+
if

Akϕ(x∗) = 0. (2.16)

The implication of the complex balanced property of kinetic systems can be found in

[58].

Section 2.3.4 will illustrate the above defined CRN properties through a biomolecular

example.

It is important to remark that similarly to [40], the class of deterministic kinetic systems

is considered here as a general nonlinear system class, and it is much wider than the

family of chemically actually meaningful kinetic systems. Therefore, we do not study the

practical realizability of the obtained CRNs in this thesis. We note that the existence of

thermodynamically feasible CRN structures can be examined in the same optimization

framework that we use in this thesis by adding extra linear constraints (see, e.g. [115]).
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Moreover, the realization computation techniques that are summarized in subsection

2.3, were successfully applied to biochemical models known from the literature in [114].

2.2.3 Assigning the canonical CRN to a kinetic system

It is important to summarize when it is possible to assign a mass-action type CRN to

a general polynomial dynamical system. If it is possible, we call it a dynamical system

kinetic. There exists a necessary and sufficient condition to check this and it was first

published in [56]. Consider an autonomous nonlinear system

ẋ = F (x), x ∈ Rn (2.17)

with polynomial right hand side. The system in Equation (2.17) is kinetic if and only if

the coordinate functions fi of F fulfill

fi(x) = −xig(x) + h(x), i = 1, . . . , n, (2.18)

where g and h are polynomial functions with nonnegative coefficients. This means that

all the negative monomial terms in the ith coordinate function of f must contain xi, i.e.

negative cross-effects are not allowed in kinetic models.

A constructive proof for the above condition can be found in [56], along a simple proce-

dure is to build the so-called “canonical” CRN realization of a kinetic ODE. We briefly

summarize this algorithm for convenience, because it is needed for the algorithm will be

presented in Section 3.1.

Let us assume that the polynomial coordinates functions of the right hand side of Equa-

tion (2.17) is given in the following form

fi(x) =

ri∑
j=1

mij

n∏
k=1

x
bjk
k , i = 1, . . . , n, (2.19)

where ri is the number of monomial terms in function fi. Let us denote the transpose

of the ith standard basis vector in Rn as ei and let Bj,· = [bj1 . . . bjn]. Then, the steps

necessary to construct the canonical CRN realization are the following.
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ALGORITHM 1: Algorithm for building a canonical realization a kinetic system from [56].

Input : A non-negative polynomial system encoded by matrices M,B
Output: Y , Ak

1 Y := 0n×1 // n× 1 zero matrix;
2 Ak := 0 ;
3 for each i = 1, . . . , n do
4 for each j = 1, . . . , ri do
5 Qj,· := Bj,· + sign(mij) · ei ;

6 m := FindVector(BT
j,·, Y ) ;

7 z := FindVector(QT
j,·, Y ) ;

8 Ak := AddEntry(Ak, z,m, |mij | // Adds |mij | to zth row mth column by

adjusting the size of Ak, if necessary ;

9 endfor

10 endfor
11 Ak := Kirchhoff(Ak) // restores the Kirchhoff property of Ak by adjusting the

diagonals ;
12 return Y , Ak ;

1 FindVector(V, Y )
// columns(Y ) gives the number of columns in Y ;

2 for each p = 1, . . . , columns(Y ) do
3 if V = Yp,· then
4 k := p;
5 else
6 Y := Y ∪ V // add vector V as the last column of Y ;
7 k = columns(Y );

8 end

9 endfor
10 return k;

2.2.4 Dynamical equivalence of kinetic systems

It has been known since at least the 1970’s that multiple different structures (parametriza-

tions) of a CRN can generate exactly the same dynamics of the concentrations [38, 59].

This phenomenon is called macro-equivalence or dynamical equivalence. However, the

exact geometric conditions of macro-equivalence were not studied until relatively recently

in [29]. Naturally, the phenomenon of dynamical equivalence may hamper the param-

eter identification process, since multiple structures can explain the modeled dynamics

equally well [114].

Mathematically, dynamical equivalence means that the factorization in Equation (2.11)

is non-unique. Therefore, the matrix pair (Y,Ak), where Y is a complex composition

matrix and Ak is a Kirchhoff matrix, is called a dynamically equivalent realization of the

kinetic system in Equation (2.7), if M · ψ(x) = Y · Ak · ϕ(x) ∀x ∈ Rn+. We note that a
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given kinetic dynamics can generally be represented using different complex sets. How-

ever, there exists a simple procedure described in Section 3.2 that generates a possible

dynamically equivalent realization called the canonical structure for any kinetic poly-

nomial model. From now on, we assume that the set of complexes is known and fixed,

therefore, all dynamical equivalent realizations can be characterized by the equation

Y ·Ak = M. (2.20)

Clearly, if A
(1)
k and A

(2)
k give dynamically equivalent realizations with fixed Y and

[A
(1)
k ] 6= [A

(2)
k ], then A

(3)
k =

A
(1)
k +A

(2)
k

2 also gives a valid dynamically equivalent real-

ization with Y which is different from A
(1)
k and A

(2)
k . In general, we can define a series

A
(n+1)
k =

A
(1)
k +A

(n)
k

2 , where each element of the series is a dynamical equivalent realiza-

tion. Therefore, a kinetic system with different dynamically equivalent realizations has

infinitely many dynamically equivalent realizations.

From an optimization point of view the dynamical equivalence defines a polyhedron

which contains all dynamically equivalent realizations. Therefore, we can define a linear

programming problem where the constraint set contains the definition of dynamical

equivalence, then we can search for realizations with special properties such as maximal

or minimal number of edges in the reaction graph, weakly reversible realization, etc.

2.3 Known optimization methods for computing certain

CRN realizations

We briefly recall the computation framework first described in [113] and some related

results to lay the foundation of Chapter 3 and 4.

2.3.1 Computing Sparse and Dense Realizations

For a fixed complex composition matrix Y , sparse realizations contain the minimum

number of nonzero off-diagonal elements (i.e. reactions) in the matrix Ak. Throughout

the thesis, the set of reactions in a particular sparse realization is denoted as R(Y,Ask).

Conversely, dense realizations contain the maximal number of nonzero off-diagonal ele-

ments in Ak. Similarly, the set of reactions in a dense realization is denoted as R(Y,Adk).
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The search for these matrices (graph) structures can be formulated as mixed integer lin-

ear programing (MILP) problems, where we assume that we have a canonical CRN and

its parameters are known. Solving the MILP optimization, we want to find valid Ak

Kirchhoff matrices that fulfill the given requirements with minimal (maximal) number

of reactions.

The mass-action dynamics can be expressed as equality and inequality constraints as

Y ·Ak = M (2.21)
m∑
i=1

[Ak]ij = 0, j = 1, . . . ,m (2.22)

[Ak]ij ≥ 0 i, j = 1, . . . ,m i 6= j (2.23)

where the elements of Ak are the decision variables. We also put lower and upper bound

constraints on the decision variables to make the optimization problem computationally

tractable and to avoid unbounded feasible solutions

0 ≤ [Ak]ij ≤ lij , i, j = 1, . . . ,m, i 6= j (2.24)

lii ≤ [Ak]ii, i = 1, . . . ,m. (2.25)

Using these constraints we can find such Ak matrices where the number of nonzero off-

diagonal elements are minimal or maximal. To achieve this, we utilized the connection

between proposition logic and linear integer programming (see Section 2.1.2 for details),

and introduce logical variables denoted by δ and construct the following compound

statements.

δij = 1⇔ [Ak]ij > ε, i, j = 1, . . . ,m, i 6= j (2.26)

where ‘⇔’ encodes the if and only if logical statement and ε is a sufficiently small

positive value (i.e. solutions below ε are treated as zero). The inequalities in (2.24) and

(2.26) can be combined into the following form [86]

0 ≤ [Ak]ij − εδij i, j = 1, . . . ,m, i 6= j (2.27)

0 ≤ −[Ak]ij + lijδij , i, j = 1, . . . ,m, i 6= j. (2.28)
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The function summing the nonzero reaction rate coefficients is:

h(δ) =

m∑
i,j=1i6=j

δij . (2.29)

By maximizing (minimizing) h(δ), we are able to compute realizations with maximal

(minimal) number of reactions, i.e. the dense (sparse) realizations of a canonical CRN.

As Section 3.3 will illustrate that sparse realizations are structurally non-unique, mean-

while with a fixed complex and constraint set, the dense realization is unique and de-

termines a superstructure of all possible realizations [114]. In one hand, it is important

to note that the computation of constrained dense realizations can be traced back to a

series of pure LP steps [114] therefore it can be performed in polynomial time. On the

other hand, the computation of a sparse realization without any prior knowledge about

maximal and minimal number of reaction in the reaction graph still requires integer

variables and MILP computations.

From now on, we will denote the number of reactions in the dense and sparse realizations

with Rd and Rs, respectively.

2.3.2 Computing Constrained Realizations

We remark that it is straightforward to extend the notions of dense and sparse realiza-

tions to the constrained case, when some of the mathematically possible reactions are a

priori excluded from the reaction network by setting the appropriate elements of Ak to

zero. The simple constraint set denoted by K used for the exclusion of selected reactions

from the CRN is given by:

K = {[Ak]i1,j1 = 0, . . . , [Ak]is,js = 0}, (2.30)

where s is the number of individual constraints, and ik 6= jk for k = 1, . . . , s. Then, a

dynamically equivalent K-constrained realization of a CRN (Y,Ak) is a reaction network

(Y,AKk ) such that Y · Ak = Y · AKk and the prescribed constraints K in the form of

Equation (2.30) are fulfilled for AKk . A dynamically equivalent K-constrained dense

realization of a chemical reaction network (Y,Ak) is a K-constrained realization that

contains the maximal number of nonzero elements in AKk .
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Similarly, a K-constrained sparse realization is a K-constrained realization with the min-

imal number of nonzeros in AKk . Naturally, a dynamically equivalent constrained realiza-

tion may not exist for certain constraint sets, therefore the existence of such realizations

must be checked through the feasibility of the corresponding optimization problem.

2.3.3 Computing Core Reactions and Core Complexes

Besides maximal (minimal) number of positive off-diagonal elements in matrix Ak, the

dynamically equivalent realizations share some other common structural elements that

are structurally invariant. The so-called core complexes and core reactions are examples

of such elements [114].

The core complexes are those vertices of the reaction graph that are present as reac-

tants or products in any dynamically equivalent realization of a given CRN. It is easy

to see that a complex is non-reacting (or isolated) in a CRN realization, if both the

corresponding row and column of Ak contains only zeros (i.e. there are no incoming or

outgoing directed edges to/from that complex in the reaction graph). Based on this, we

can formulate a simple test to find core complexes.

The complex Cz is a core complex if and only if the constraint

m∑
i = 1

i 6= z

[Ak]zi +
m∑

j = 1

j 6= z

[Ak]jz = 0 (2.31)

together with Equations (2.21)-(2.23) is infeasible. Since no integer variable is involved

in this constraint, core complexes can be found by using linear programming (LP).

A reaction Ci → Cj of a CRN is called a core reaction, if it is present—possibly with

different rate coefficients—in any dynamically equivalent realization of a kinetic system.

Whether a reaction belongs to the set of core reactions or not, can be tested with simple

linear programming, too. Therefore, the reaction Ci → Cj is a core reaction if and only

if Equations (2.21)-(2.23) with

[Ak]ji = 0 (2.32)
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yields an infeasible LP problem. The Algorithm 2 establishes core reaction set (RC) by

testing the feasibility of a series of K-constrained realizations defined by the off-diagonal

elements of Ak.

ALGORITHM 2: The Algorithm computes the set of core reactions, Rc, in a kinetic

system defined by Y,Ak.

Input : Y , Ak

Output: RC

1 RC := ∅ ;
2 for each (i, j) ∈ OffDiagonal(Ak) do
3 K := {[Ak]ij = 0} ;

4 R(Y,AKk ) := ComputeKconstrainedReal(R(Y,Ak), K) // Procedure from Section

2.3.2 ;

5 if |R(Y,AKk )| > 0 then
6 RC := RC ∪ (Cj → Ci) ;
7 end

8 endfor
9 return RC

In Algorithm 2, the procedure OffDiagonal finds the nonzero off-diagonal elements of

the argument and gives back their indexes as a set.

Finally, we introduce some notation that we will use in the later chapters. Let us denote

the number of core reactions and core complexes with Rc and Nc, respectively.

2.3.4 Introductory example

To give an example of a polynomial kinetic system we use a biomolecular model re-

ported in [76]. In this example a dynamical model of positive feedback motif is used,

the biomolecular mechanism behind the model and the detailed explanation for the

dynamical behavior can be found in the original paper [76].

This model tracks the concentrations of a monomer protein (x1), its dimer form (x2),

also its mRNA (x5). The promoter which regulates the production of the protein is also

included in the model (x3 is the unoccupied promoter and x4 is the occupied promoter).

The protein (x1) is made at a basal rate given by the concentration of x4 then, this pro-

tein forms a dimer (x2) and binds back to the promoter, forming an occupied promoter

(x4). This loop acts as a positive feedback and accelerates the production of the protein.
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The kinetic polynomial system representing this dynamics is given as

ẋ1 = −2k1x
2
1 + 2k2x2 + k9x5 − k8x1

ẋ2 = k1x
2
1 − k2x2 − k3x2x3 + k4x4

ẋ3 = −k3x2x3 + k4x4

ẋ4 = k3x2x3 − k4x4

ẋ5 = k5x4 + k6x3 − k7x5. (2.33)

The following parameter values were used for the numerical computations

k1 = 1, k2 = 1, k3 = 1, k4 = 1, k5 = 1,

k6 = 0.025, k7 = 0.1, k8 = 0.05, k9 = 0.5. (2.34)

Using Algorithm 1, we can build the so-called canonical realization of the kinetic system

in Equation (2.33). Then, using the procedures presented in Section 2.3, we can calculate

realizations with prescribed properties.

Figure 2.1 shows two dynamically equivalent realizations of Equation (2.33), the reaction

graph on the right panel shows the dense realization of the kinetic system. The core

reactions which are structurally invariant under dynamical equivalence are shown in blue

while non-core reactions are shown in black.

Moreover, we can calculate the linkage classes and deficiency of the two CRNs and

demonstrate that they are realization properties of a kinetic system. The graph in

Figure 2.1a has 4 linkage classes and its deficiency is 3, whereas the dense realization

depicted in Figure 2.1b has 3 linkage classes and the deficiency is 4.

As we can see from this example, we can apply computational methods to calculate

those realizations that fulfill predefined properties such as density or sparsity, weak

reversibility, etc. Further details of these methods can be found in [113, 114, 116].
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(a) A graph representation of the positive feed-
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(b) This graph shows the dense realization of the
positive feedback motif. The graph was calcu-
lated via MILP optimization introduced in Sec-

tion 2.3.1

Figure 2.1: Two dynamically equivalent realizations of the positive feedback motif.
The blue edges represent the core reactions which are structurally invariant under
dynamical equivalence. The black edges are the non-core reactions. The reader can
notice that the graph on panel (a) is a subgraph of the graph on panel (b), this property

was proven in [61].

2.4 Estimating Parameters of Kinetic Systems

One of the objectives of this thesis is to construct and validate a kinetic model for an

in vitro transcription/translation system based on laboratory measurements which is

introduced in Chapter 5. Parameter estimation of this kinetic system is a fundamental

part of this task, therefore the essentials of this technique are summarized in this Section.

Let us assume we have a general nonlinear state space model where we can measure a

projection (usually a subset) of the state variables denoted by ym(t, θ) ∈ Rr

ẋ = f(x(t), θ) (2.35)

x0 = x(0, θ)

where f : Rn × Rp → Rn, θ ∈ Rp. The parameter vector θ may not only include the

dynamical parameters but also the unknown initial conditions, x(0, θ).

Often, not all state variables can be measured directly; therefore an observation function

h : Rn → Rr defines which properties of the system are possible to measure. Moreover,

the output of the systems can be measured at a certain frequency, thus we have the
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output of the system at discrete time instance.

ym(k, θ) = h(x(k), θ), k = 1, . . . , N (2.36)

where k is time instance of the output observation and N denotes the number of mea-

surements.

Moreover, measurements have additive noise

y(k) = ym(k, θ∗) + εk, k = 1, . . . , N (2.37)

where θ∗ ∈ Rp is the true parameter vector.

It is commonly assumed that the measurement error has Gaussian distribution with zero

mean and σk is the variance

εk ∼ N (0, σk), k = 1, . . . , N. (2.38)

The goal of the parameter estimation is to find a suitable vector of parameters that

generates the minimal distance between the model output and the measurements

e(k, θ) := ym(k, θ)− y(k), k = 1, . . . , N. (2.39)

Multiple metrics exist to measure the distance between the model output and the mea-

surements, for example quadratic or absolute distance can be used [70]. The most

commonly used one is the quadratic distance.

Once we have a way to measure the distance between the model output and the mea-

surements at each time instance, we can define a function that gives a real number to

each parameter vector

C(θ) = e(θ)TQe(θ) (2.40)

where e(θ) ∈ RN and Q ∈ RN×N is the weight matrix. Through the weight matrix, it is

possible to assign different weight to each time instance. Often, the standard deviation
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of the measurements is used as weights

Q =



1
σ2
1

0 0 0

0 1
σ2
2

0 0

...
...

. . . 0

0 0 0 1
σ2
N


. (2.41)

If we use the weight matrix defined in Equation (2.41) and quadratic distance for Equa-

tion (2.39), then the cost function can be defined as

C(θ) =
N∑
k=1

r∑
j=1

(yj(k)− ymj (k, θ))2

σ2
kj

(2.42)

where yj(k) is the jth element of the measurement vector at time instance k. With all

these assumptions, this is called the least squares optimization problem for dynamical

systems.

In case of a kinetics system, the general state space model gets the following form

ẋ = M · ψ(x) (2.43)

ym(k, θ) = h(x(k), θ), k = 1, . . . , N.

The vector θ ∈ Rp denotes the parameters of the model. Usually, among other case

specific parameters, the parameter vector includes the kinetic rate coefficients and the

unknown initial concentrations of the species in the model.

Let assume that h(x, θ) = x, i.e. all the state variables are directly measured. Then,

the last step in this process is to classify the model structure regarding the linearity of

the parameters.

Definition 2.3. A model structure is linear in its parameters if its outputs satisfy the

superposition principle with respect to its parameters [126]:

∀(λ, µ) ∈ R2, ∀t ∈ R+, ym(t, λθ1 + µθ2) = λym(t, θ1) + µym(t, θ2). (2.44)

According to this definition the model structure in Equation (2.43) with observation

function h(x, θ) = x is linear in the coefficients contained in M , hence many standard
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parameter estimation techniques can be used [126]. However, the inference often remains

a challenging task because of poor excitation of the dynamics, bad measurement quality

or the lack of structural identifiability as it was detailed in Section 1.3.

In addition to these challenges, numerical issues may arise when minimizing Equation

(2.42), this is due to the fact that the evaluation of the cost function requires simulation

of the dynamical system in each step. Namely, the ODE defined in Equation (2.43) is

solved numerically with relative and absolute tolerances on the integration error. At

the same time the cost function defined in Equation (2.42) is usually part of a gradient

based algorithm. When the gradient is calculated with finite differences, the gradient

calculation may interfere with the integration error from the ODE solver and cause

convergence problems.

A number of solutions exist to this problem, the first one is setting the ODE error

tolerance and the finite difference step size apart by several order of magnitude, although

this might lead to significant slow down on the solution of the ODE. The second one

is the analytical calculation of the gradients by an automatic differentiation package,

e.g. with CASAdi [4]. The third possibility is using gradient-free optimization methods,

such as pattern search [11].

2.5 Structural Identifiability Analysis of Mathematical Mod-

els

Once we have selected a model structure like the one in Equation (2.35), the question of

parameter identifiability has to be considered, too, i.e. whether it is theoretically possible

to determine the model parameters based on the model structure and the observables

(h(x, θ)).

Definition 2.4. A parameterized model in Equation (2.35) is called structurally globally

identifiable if

h(x, θ′) = h(x, θ′′) ∀t =⇒ θ′ = θ′′, (2.45)

where h(x, θ) is the observed output with parameter vector θ.
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Roughly speaking, a structurally non-identifiable system may produce exactly the same

output for different parameterizations. Definition 2.4 has a local version where structural

identifiability is only fulfilled for a neighborhood of θ in the parameter space, hence the

name structurally locally identifiable.

There are many approaches to check structural identifiability of a nonlinear system and

[26] contains a comprehensive survey of them. Recently, in [7] a different approach to

structural identifiability was reported which is suitable for moderate sized problems as

well, but this approach only gives local identifiability of the parameters. Also, procedures

have been developed to check identifiability of certain type of kinetic systems [29, 33,

78].

In this thesis the generation series approach combined with identifiability tableau is

used, which are fully implemented in the GenSSI software toolbox [27].

The generating series can be written where the observables are expanded in a series

w.r.t inputs and time. The coefficients of the series are h(x0, θ) and Lie derivatives of

the observables along f evaluated at the initial time instance.

The Lie derivative of h along the vector field f is given by

Lfh(x, θ) =
n∑
j=1

∂h(x, θ)

∂xj
fj(x(t), θ) (2.46)

where n is the number of states. If we have input to our system, then the Lie deriva-

tives of the input function must be calculated as well [33]. Generally, if the number of

parameters are larger than the number of first order Lie derivatives, then we need to

calculate higher orders Lie derivatives as well

Lkfh(x, θ) =
n∑
j=1

∂(Lk−1
f h(x, θ))

∂xj
fj(x(t), θ). (2.47)

Let us denote by d the maximum order of the Lie derivatives. A disadvantage of the

generating series approach is that there is no upper bound on d to determine structural

identifiability. The lack of such a bound offers only sufficient, but not necessary condition

to identifiability [26].
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A vector, denoted as s(θ), consists the Lie derivatives calculated up to dth order eval-

uated at the initial time instance and h(x0, θ) can be formulated. The length of this

vector is given by n× d where n is the number of state variables.

Based on Definition 2.4, one can try to solve the s(θ′) = s(θ′′) symbolic equation for the

parameters of the system. However, it is sufficient to solve only for s(θ′) = c where c is

an arbitrary constant vector (check [33] for the proof). Thus, we end up with a system

of nonlinear algebraic equations. If this system of nonlinear equations has a unique

solution then the model is structurally globally identifiable. If many distinct solutions

exist the model is only structurally locally identifiable. Finally, if there is no solution,

the model is structurally unidentifiable.

The identifiability tableau is a graphical representation of the non-zero elements of the

Jacobian of the series coefficients with respect to the parameters. This representation

gives us a graphical aid to determine structural identifiability and also the underlying

system of nonlinear equations (s(θ) = c) can be further reduced before solving it. The

couple of these features are listed below.

If a column for the corresponding parameter is empty, then this tells us a parameter

may not be identifiable. Since there is no upper bound for the order of the required

Lie derivatives for identifiability, the number of non-zero coefficients are, in theory,

infinite. Hence, in this setup a parameter is only non-identifiable if the higher order

series coefficients are demonstrated to be zero [13].

If the rank of the Jacobian is equal to the number of parameters, then at least the model is

structurally locally identifiable. Further reduction techniques exist for the identifiability

tableau, thus for the underlying system of equations, which help the solvability of the

system of nonlinear equations defined by the coefficients of the generating series. These

techniques reported in [26] and fully implemented in the GenSSI Matlab toolbox [27].

It should be noted that calculating the generating series and solving the system of

nonlinear equations formulated from the coefficients is computationally intensive, and

the computation time rapidly grows with the increasing number of parameters checked by

the algorithm. Hence, this method is limited to models with low number of parameters

(generally less then about 20).
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Computing All Dynamically

Equivalent Sparse Chemical

Reaction Network Structures

It is known that the state-variables of kinetic systems are always nonnegative valued,

since they commonly describe the evolution of species concentrations in time. It is

straightforward to show therefore that kinetic models mathematically belong to the fam-

ily of nonnegative systems for which the nonnegative orthant is dynamically invariant

[53]. However, this important property is not necessarily an obstacle to the kinetic de-

scription of e.g. electric or mechanical systems: Firstly, in [94], the so-called X-factorable

transformation is introduced that (together with an appropriate coordinates-translation)

allows the kinetic representation of a wide class of dynamical systems. The second pos-

sibility is a coordinates-translation followed by a state-dependent time-rescaling, that

is also suitable to transform originally non-kinetic models into kinetic form [54, 117].

Both of these approaches will be applied in this chapter for the kinetic representation

of general nonlinear systems.

The main purpose of this chapter is to study the structural non-uniqueness of the kinetic

realizations of dynamical systems using the example of the well-known Lorenz system.

For this, an optimization-based approach is proposed for effectively computing all dy-

namically equivalent sparse structures. These structures contain minimum number of

reactions and thus provide a minimal parametrization of the system in terms of the

34
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reaction rate coefficients. Generally, minimal parametrization is often goal of the model

building, because it can describe the dynamics with minimum number of parameters.

Specifically in molecular biology it is often assumed the reaction network behind the

observed phenomenon is ‘sparse’ [12, 21].

The kinetic realizations of certain chaotic systems have been studied previously in the

literature. In [83], a kinetic model of the Lorenz system was given by applying variable-

translation and the assumption of slow reaction steps and constant concentrations of

certain species. The nuclear spin generator (NSG) system is examined and transformed

into chemical forms in [128] using the methods published in [94] and [83], respectively.

The first deterministic kinetic models of Chua’s circuit were presented in [67] and [129],

while a stochastic simulator was described in [68].

The structure of this chapter is the following. In Section 3.2, the notations and com-

putational background for kinetic realizations of nonlinear systems are given. The new

contributions related to the applied methodology and the computational results can be

found in Sections 3.1 and 3.3, respectively, while Section 3.4 contains the conclusions of

this chapter.

3.1 Computation of all possible sparse structures

In this Section, we present a new computational approach to calculate all possible dy-

namically equivalent sparse CRN structures. As a reminder, a sparse realization of a

CRN means that the reaction graph has the minimum number of edges (reactions) while

dynamically equivalent to the canonical CRN. Conversely, the dense realization has the

maximum number of edges in the graph and also dynamically equivalent to the canonical

CRN.

Firstly, we describe the main ideas behind the applied computation method. We take

advantage of the fact that the reaction graph of the dense realization of a CRN is unique,

and it contains the structures of all possible dynamically equivalent realizations as sub-

graphs (see Section 2.3.1). The first step is the computation of a sparse and the dense

realization of the studied kinetic system to determine Rs and Rd, namely the number of

reactions in the sparse and dense realizations, respectively. Then, we extract all possible

sparse structures by ‘pulling down’ the dense one. For this, it is clear that we have

DOI:10.15774/PPKE.ITK.2015.008



Chapter 3. Computing All Dynamically Equivalent Sparse CRN structures 36

to remove as many reactions from the dense realization (if possible) as the difference

between the number of reactions in the dense and sparse realizations, i.e. Rd − Rs.

By ‘removing’ a reaction from a CRN, we mean that the corresponding reaction rate

coefficient in Ak is made zero while maintaining dynamical equivalence with the initial

kinetic system, i.e. we calculate a K-constrained realization of a CRN.

We recall that, the core reactions are structurally invariant reactions in the dynamically

equivalent Kinetic Systems (see Section 2.3.1 for details). Hence, the core reactions are

not removable from any realization, then the maximal theoretical number of possibilities

to be checked is

Nmax =

 Rd −Rc

Rd −Rs

 =
(Rd −Rc)!

(Rd −Rs)!(Rs −Rc)!
. (3.1)

This means that in the worst case, we have to check Nmax possibilities for dynamical

equivalence, where each checking requires the solution of an LP problem with constraints

(2.21)-(2.25) and (2.30). As we will see later even in the case of the Kinetic Lorenz

system, which is a small reaction network, it might be computationally intractable to

check all possibilities individually. To ease the computational burden, we identify the

set of reaction pairs (denoted by R2
e ⊂ (R(Y,Adk) \ Rc) × (R(Y,Adk) \ Rc)) which are

not part of the core reaction set, but if any reaction pair from R2
e is not present in a

given reaction graph, then the corresponding dynamically equivalent realization cannot

be sparse. In other words, the exclusion of any reaction pair from R2
e always implies

the inclusion of more than 2 other reactions in the reaction graph, and this clearly

violates the sparsity constraint. Based on that, we can omit those realizations from

the systematic search that do not contain any pair from R2
e, and this can drastically

reduce the overall computation time. The computational background for determining

R2
e is simple: any pair of distinct reactions Rp = (Ci → Cj , Ck → Cl) belongs to R2

e if

and only if the constrained sparse realization not containing the elements of Rp contains

more reactions than the original unconstrained sparse realization. This means that

determining R2
e requires

 Rd −Rc

2

 MILP optimizations steps.

Generally, we can investigate what would be the largest set of reactions which would

help to reduce the search space for a given network size. For that we need to solve the

following equation for K:
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 Rd −Rc

Rd −Rs

 =

 Rd −Rc

K

 . (3.2)

After simplification and rearrangements this leads to

K! =
(Rd −Rs)!(Rs −Rc)!

(Rd −Rc −K)!
, K < Rd −Rc. (3.3)

Using Stirling’s approximation, we can rewrite the factorials as log(n!) ≈ n log(n)−n+

O(log(n)) where log(n) is the natural logarithm of n and O() is the Big O notation. In

above equations we did not consider the computation time difference between one LP

and one MILP problem for the given network size. Later on, we will check the crossing

point for specific examples and compare the required computation time to establish

Rj , j = 2, . . . ,K.

Let us introduce the following additional notations. Let P(S) denote the power set of

an arbitrary set S, and let |S| be the cardinality of set S. Let R(Y,Ak) denote the set

of reactions of a CRN with complex composition matrix Y and Kirchhoff matrix Ak.

Furthermore, let Pk(S) denote the elements (sets) of P(S) containing k elements, i.e.

Pk(S) = {A ∈ P(S) | |A| = k}. Now we can summarize the computation steps for

determining all sparse realization structures with Algorithm 3. The sparse realizations

with different structures are collected into the set called Sparse structs.

For the generation of Rz, we applied the fast algorithm described in Section 7.2.1.3

of [66]. We emphasize again that integer variables are required only in lines 3 and 11

of the above algorithm, and all other realizations can be computed by standard linear

programming. We remark that after the initialization steps between line 1 and line 9,

the necessary time for the subsequent computations can be pre-estimated quite precisely,

knowing the average time required for a MILP or LP realization computation step.

3.2 Transformation of polynomial models into kinetic form

We address the transformation of general polynomial ODEs that are not in the form

described in Equation (2.18) into kinetic form using two different methods. Namely, the

state-dependent time-rescaling and the so called X-factorable transformation.
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ALGORITHM 3: Algorithm for computing all sparse dynamically equivalent realizations

of a kinetic system.

Input : A non-negative polynomial system encoded by matrices M,B
Output: Sparse structs

1 R(Y,Ac
k) := BuildCanonicalReal(M,B) // calling Algorithm 1 ;

2 R(Y,Ad
k) := ComputeDenseReal(R(Y,Ac

k)) // Procedure from Section 2.3.1 ;
3 R(Y,As

k) := ComputeSparseReal(R(Y,Ac
k)) // Procedure from Section 2.3.1 ;

4 Rd := |R(Y,Ad
k)| ;

5 Rs := |R(Y,As
k)| ;

6 Rc := ComputeCoreReactions(R(Y,Ac
k)) // Procedure from Section 2.3.3;

7 Rc := |Rc| ;
8 R2

e := ∅ ;
9 Sparse structs:= ∅ ;

10 for each {Ci → Cj , Ck → Cl} ⊆ R(Y,Ad
k) \ Rc do

11 K1 := {[Ak]ji = 0, [Ak]lk = 0} ;

12 R(Y,AK1

k ) := ComputeKconstrainedSparseReal(R(Y,Ad
k), K1) // Procedure from

Section 2.3.2 ;

13 if |R(Y,AK1

k )| > Rs then
14 R2

e := R2
e ∪ (Ci → Cj , Ck → Cl) ;

15 end

16 endfor
17 z := Rd −Rs ;

18 Rz := Pz(R(Y,Ad
k) \ Rc) ;

19 for each Ri = {Ci1 → Cj1 , . . . , Ciz → Cjz} ∈ Rz do
20 if Ri ∩ R2

e = ∅ then
21 K2 := {[Ak]j1i1 = 0, . . . , [Ak]jziz = 0} ;

22 R(Y,AK2

k ) := ComputeKconstrainedReal(R(Y,Ad
k), K2) ;

23 if |R(Y,AK2

k )| > 0 then

24 Sparse structs:=Sparse structs ∪ R(Y,AK2

k ) ;
25 end

26 end

27 endfor
28 return Sparse structs

First of all, we have to ensure that the operating domain of the system’s trajectories

remain in the positive orthant. For this, the following simple translation of the state

variables is used, if the positive orthant is not invariant for the original system’s dynam-

ics:

x̄ = x+ w, (3.4)

where the coordinates of w =
[
w1 w2 . . . wn

]T
∈ Rn are sufficiently large so that

all trajectories of the translated system remain in the positive orthant if started from

the studied initial conditions.
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Figure 3.1: Phase-plane plot of the kinetic Lorenz system obtained via state-
dependent time-rescaling.

3.2.1 State-dependent time-rescaling

Time-rescaling is a common operation in physical sciences. Its particular form depending

on the positive state variables can be used e.g. for stability analysis of nonlinear systems

(see [46, 117]) or for motion control [112]. In our case, the relationship between the

original and transformed time-scales is defined by

dt =

n∏
i=1

xi
χidτ, (3.5)

where t and τ are the time variables of the original and rescaled systems, respectively,

and χi ∈ {0, 1} for i = 1, . . . , n. It is important to stress that the positivity of the state

variables implies that τ is a strictly monotonously increasing (and therefore invertible)

function of t, and the phase-portraits of the original and rescaled models are identical.

We will use the following notations for the derivative of x with respect to t and τ ,

respectively: ẋ = dx
dt , x

′ = dx
dτ .

Clearly, the ODEs in Equation (2.17) corresponding to the new time-scale have the

following form:

x′ = F (x)
n∏
i=1

xi
χi , (3.6)

from which it is easy to see that χi can always be chosen in such a way that the negative

cross-effects are eliminated in the time-rescaled system.

DOI:10.15774/PPKE.ITK.2015.008



Chapter 3. Computing All Dynamically Equivalent Sparse CRN structures 40

3.2.2 X-factorable transformation

Another method for transforming a polynomial system into kinetic form was proposed

in [94]. A polynomial system given in Equation (2.17) is called X-factorable if its the

right hand side can be factorized as

F (x) = D(x)G(x) (3.7)

where G ∈ Rn → Rn is a polynomial vector field and D(x) = diag{x1, x2, . . . , xn} ∈

Rn×n is a diagonal matrix. It can be shown that the positive orthant for any X-factorable

system is invariant for the dynamics [53], and any X-factorable system is kinetic. Well-

known examples of X-factorable systems are classical Lotka-Volterra models [118].

Let us suppose that the solutions of Equation (2.17) from a given set of initial conditions

are strictly positive (possibly after a variable translation like in Equation (3.4)) but the

model itself is not X-factorable. Then, we assign the following transformed X-factorable

model to the original one given by Equation (2.17):

˙̃x = D(x̃)F (x̃), (3.8)

where again, D(x̃) = diag{x̃1, x̃2, . . . , x̃n}. It is obvious that the phase-portraits of the

two systems in Equations (2.17) and (3.8) are not identical in this case. However, under

mild conditions, the system trajectories in the interior of the positive orthant are ‘suf-

ficiently similar’ in the sense that the “distortion is weak or negligible for trajectories

far from the boundary” of the positive orthant, while “a substantial compression of tra-

jectories occurs close to the boundary” [94]. Moreover, the behavior of the dynamical

system defined in Equation (3.8) around the strictly positive equilibrium points is quali-

tatively dynamically equivalent to that of Equation (2.17) as it is described in [94]. The

dynamics of the Lorenz system after the translation and X-factorable transformation

can be seen in Figure 3.2.
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Figure 3.2: Phase-plane plot of the Kinetic Lorenz system obtained using the X-
factorable transformation. The inset shows the local behavior of the Lorenz attractor.

3.3 Results: sparse kinetic realizations of the Lorenz sys-

tem

The starting point is the classical set of equations corresponding to the Lorenz system:

ẋ1 = σ(x2 − x1)

ẋ2 = ρx1 − x2 − x1x3 (3.9)

ẋ3 = x1x2 − βx3

with parameter values σ = 10, ρ = 28, β = 8/3 that are known to lead to chaotic

behavior. It is also known that the nonnegative orthant is not invariant for the original

dynamics described in Equation (3.9), therefore as a first step a coordinates-translation

was applied with w =
[
24 25 26

]T
. The principles for selecting the elements of w

were the following. First, the numbers should be as small as possible while allowing

the shift of the studied operating domain to the strictly positive orthant. Second, these

numbers should be different in order to avoid any monomial cancellations later in the
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kinetic models. The translated model reads:

˙̄x1 = σx̄2 − σx̄1 + σ(w1 − w2)

˙̄x2 = (ρ+ w3)x̄1 − x̄2 + w1x̄3 − x̄1x̄3 − ρw1 + w2 − w1w3

˙̄x3 = x̄1x̄2 − w2x̄1 − w1x̄2 + w1w2 − βx̄3 + βw3 (3.10)

3.3.1 State-dependent time-rescaling

It is easy to see that the set of ODEs in Equation (3.10) is generally not kinetic. There-

fore, we apply the most general time-scaling which contains all 3 state variables, namely

dt = x̄1x̄2x̄3dτ . The rescaled kinetic equations are written as

x̄′1 = σx̄1x̄
2
2x̄3 − σx̄2

1x̄2x̄3 + σ(w1 − w2)x̄1x̄2x̄3

x̄′2 = (ρ+ c3)x̄2
1x̄2x̄3 + (w2 − w1ρ− w1w3)x̄1x̄2x̄3 − x̄1x̄

2
2x̄3 − x̄2

1x̄2x̄
2
3 + w1x̄1x̄2x̄

2
3

x̄′3 = x̄2
1x̄

2
2x̄3 − w2x̄

2
1x̄2x̄3 − w1x̄1x̄

2
2x̄3 + (w1w2 + βw3)x̄1x̄2x̄3 − βx̄1x̄2x̄

2
3. (3.11)

The simulated system trajectories of Equtation (3.11) are shown in Figure 3.1. Let us

denote the species corresponding to the concentrations x̄1, x̄2 and x̄3 by X1, X2 and

X3, respectively. Then, Algorithm 1 for building the canonical structure (described in

Subsection 2.2.3) generates the following set complexes for the canonical realization of

Equation (3.11)

C1 = X1 +X2 +X3, C2 = X2 +X3, C3 = 2X1 +X2 +X3, C4 = X1 + 2X2 +X3,

C5 = 2X1 + 2X2 +X3, C6 = X1 +X3, C7 = X1 +X2 + 2X3, C8 = X1 + 2X2 + 2X3,

C9 = 2X1 +X2 + 2X3, C10 = 2X1 + 2X3, C11 = 2X1 +X2, C12 = X1 + 2X2,

C13 = 2X1 + 2X2 + 2X3. (3.12)

The canonical reaction network corresponding to Equation (3.11) can be seen in Figure

3.3, which shows the reaction rate coefficients on the directed edges. In this chapter

all figures showing CRN structures, the core reactions and core complexes are indicated

by blue dashed arrows and gray rectangles, respectively. The six core reactions of the
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Figure 3.3: The canonical realization of the Lorenz system with state-dependent time-
scaling. In this case, the canonical realization is also a sparse one. The parameters are:
k3,1 = σ, k4,1 = 1, k7,1 = β, k1,2 = σ, k3,5 = ρ+w3, k4,5 = σ, k1,6 = |w2−w1ρ−w1w3|,

k1,7 = w1w2 + βw3, k7,8 = w1, k9,10 = σ, k3,11 = w2, k4,12 = w1, k5,13 = σ.

Kinetic Lorenz system are the following:

C1 → C2, C3 → C11, C4 → C12, C5 → C13, C7 → C8, C9 → C10.

Moreover, all complexes in Equation (3.12) are core complexes, except C6 = X1 +

X3. We remark that the canonical realization can be computed symbolically, but the

optimization techniques for computing the forthcoming dense and sparse realizations are

numerical, and they use the previously described model parameter values.

To compute all possible sparse structures of this CRN, we need the possible minimal

(Rs) and maximal number (Rd) of reactions, the number of core reactions (Rc) and

the number of core complexes (Nc), these are calculated with optimization methods

described in Section 2.3.

In the case of the time-rescaled model, the Kinetic Lorenz System is characterized by

Rd = 51, Rs = 13, Rc = 6, and Nc = 12. The value of Nmax (i.e. the maximal number of

required LP steps to check all possibilities) is 45, 379, 620. This would require about 630

hours of computation time on a high-end desktop PC that we used in 2011, assuming

approximately 0.05 sec for one LP step.

DOI:10.15774/PPKE.ITK.2015.008



Chapter 3. Computing All Dynamically Equivalent Sparse CRN structures 44

X1 +X3

X1 +X2 +X3

X2 +X3

2X1 +X2 +X3

X1 + 2X2 +X3

2X1 + 2X2 +X3

X1 +X2 + 2X3

X1 + 2X2 + 2X3

2X1 +X2 + 2X3

2X1 + 2X3

2X1 +X2 X1 + 2X2

2X1 + 2X2 + 2X3

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11 C12

C13
k

1
,2k

7
,8

k1,10

k
9
,1

0

k 1,
11k 3

,1
1

k3,12
k
4,12k

3,13

k
4
,1

3

k
5,13

k
7,4

k
4,7

Deficiency: 8

Linkage Classes: 1

# of Complexes: 12

# of Reactions: 13

#527

Figure 3.4: Sparse realization of the model in Equation (3.11) that contains only
the core complexes. The reaction rate coefficients are: k1,2 = 1882.7, k7,4 = 2.6667,
k4,7 = 1, k7,8 = 21.333, k1,10 = 1271, k9,10 = 1, k1,11 = 601.67, k3,11 = 59, k3,12 = 10,

k4,12 = 35, k3,13 = 44, k4,13 = 10, k5,13 = 1.

In the case of the time-rescaled model in Equation (3.11), after the solution of 706 MILP

optimization problems, which took approximately 1.2 hours, the set R2
e is the following:

R2
e = {(C3 → C5, C3 → C13), (C4 → C5, C4 → C13),

(C1 → C6, C1 → C10), (C1 → C6, C1 → C11)}. (3.13)

Using R2
e, the search space was reduced to 442, 454 possibilities, that is a huge reduction

compared to the initial which is more than 45 million.

We can investigate, if RKe with K > 2 would further reduce the computational burden.

From Equation (3.3) we conclude that the upper bound for K in this example is around

8, but even K = 3 would require the solution of 8436 MILP optimization problems,

which would take approximately 14 hours. Therefore, K = 2 is the optimal value for

this network.

After checking the realization candidates with Algorithm 3, we found that 5376 different

structures are valid dynamically equivalent sparse realizations, this procedure took about

6 hours on a desktop PC. Out of these, 504 are such that they contain only the 11 core

complexes.
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3.3.2 X-factorable transformation

Besides the state-dependent time-scaling, we also investigated the 3-dimensional Lorenz

system with the X-factorable transformation. Firstly, we performed a coordinates shift

on the model in Equation (3.9) and then applied the X-factorable transformation. The

resulting equations are

˙̃x1 = σx̃1x̃2 − σx̃2
1 − σ(w1 − w2)x̃1

˙̃x2 = (w3 + ρ)x̃1x̃2 − x̃2
2 + w1x̃2x̃3 − x̃1x̃2x̃3 + (w2 − w1ρ− c1c3)x̃2 (3.14)

˙̃x3 = x̃1x̃2x̃3 − w1x̃2x̃3 − w2x̃1x̃3 + (w1w2 + βw3)x̃3 − βx̃2
3,

where w =
[
100 101 1

]T
, which is basically taken from [94], but w2 is modified from

100 to 101 to avoid cancellation of the last monomial in the first equation.

Again, using Algorithm 1, the complexes of the canonical realization are given as

C1 = X1, C2 = 0, C3 = 2X1, C4 = X1 +X2, C5 = 2X1 +X2, C6 = X2,

C7 = 2X2, C8 = X1 + 2X2, C9 = X2 +X3, C10 = 2X2 +X3, C11 = X1 +X2 +X3,

C12 = X1 +X3, C13 = X3, C14 = 2X3, C15 = X1 +X2 + 2X3, (3.15)

where the species X1, X2 and X3 correspond to the state variables x̃1, x̃2 and x̃3 of

Equation (3.14), respectively. The reaction graph of the canonical realization is shown

in Figure 3.5.

The list of core reactions is

C1 → C2, C6 → C2, C11 → C15, C13 → C14, (3.16)

while the core complexes are C1, C2, C4, C6, C13, C14 and C15. The characteristic

parameter values for this network—obtained via X-factorable transformation—are Rs =

12, Rd = 44, Rc = 4. and Nc = 7.

The value of Nmax is 76, 904, 685 that would require about 1068 hours of computation

time to check each possible combination. To establish R2
e, we evaluated all the 780
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Figure 3.5: Canonical realization of the Lorenz system transformed with X-factorable
transformation. This realization is sparse as well. The values of the rate coefficients
are: k1,2 = σ, k3,1 = σ, k4,7 = ρ + w3, k4,5 = σ, k6,2 = w1ρ + (w1w3 − w2), k7,6 = 1,

k9,7 = 1, k11,15 = 1, k11,12 = 1, k12,1 = w2, k13,14 = w1w2 + βw3, k14,13 = β.

possibilities, which took 1.3 hours, and obtained the following set of reaction pairs:

R2
e = {(C3 → C1, C3 → C2), (C12 → C1, C12 → C3), (C7 → C2, C7 → C6),

(C14 → C2, C14 → C13), (C4 → C3, C4 → C5), (C4 → C5, C4 → C8),

(C4 → C7, C4 → C8), (C9 → C7, C9 → C10)}. (3.17)

After checking the possible sparse graph structures, we found that only 2864 do not

contain any pair from R2
e, which is only 0.0037% of the original nearly 77 million pos-

sibilities. It was computationally tractable to check the remaining 2864 candidates,

among which we found only 48 valid dynamically equivalent sparse realization struc-

tures in about 3 min on a desktop PC. In this case, there was no such realization that

only contained the core complexes.

We also checked that, if we increase K in RKe , then we can find all sparse solutions with

fewer LP iterations. The upper bound for K is around 7, according to Equation (3.3).

But similarly to the previous case, even K = 3 would require the solution of 9880 MILP

optimization problems, which would take 16 hours. Therefore, we conclude that K = 2

is the optimal value for this network.

Finally, we can compare the computational time needed to compute all sparse structures

for the two version of the kinetic Lorenz systems in Table 3.1.

DOI:10.15774/PPKE.ITK.2015.008



Chapter 3. Computing All Dynamically Equivalent Sparse CRN structures 47

2X12X1 +X2

2X2

X1 + 2X2

X2 +X3 2X2 +X3

X1 +X3

X1

0

X1 +X2

X2

X1 +X2 +X3X32X3 X1 +X2 + 2X3

C1

C2

C3

C4

C5

C6C7

C8

C9 C10

C11

C12

C13C14 C15

k
1
2
,1

k
1
,2

k 3,
2

k6,2

k4,3

k7,6

k
9,7

k
4,8

k
1
1
,1

2

k11,15

k14,13

k13,14

Deficiency: 8

Linkage Classes: 2

# of Complexes: 13

# of Reactions: 12

#3

Figure 3.6: One of the 48 possible sparse realizations of Equation (3.14) that contains
13 complexes. The parameters are: k12,1 = 101, k1,2 = 10, k3,2 = 5, k6,2 = 2799,
k4,3 = 10, k7,6 = 1, k9,7 = 100, k4,8 = 39, k11,12 = 1, k14,13 = 2.6667, k13,14 = 10103,

k11,15 = 1.

Property SD-TS X-factorable

Nmax 45,379,620 76,904,685

Time to check Nmax 630 hours 1068 hours

|R2| 706 780

Time to compute R2 1.2 hours 1.3 hours

Reduced search space 442,454 2864

Time to check the remaining 6 hours 5 min

Total Computation Time 7.2 hours 1.3 hours

Table 3.1: Comparing the computational time required to compute all different sparse
realizations for the kinetic Lorenz systems given by the two transformations. The time
required to solve one LP and one MILP problem with the gives network size on our
desktop PC is 0.05 sec and 6 sec, respectively. The ‘SD-TS’ and ‘X-factorable’ denote

state-dependent time-scaling and X-factorable transformation, respectively.

Due to the large number of dynamically equivalent structures, the reaction graphs for

all sparse realizations from both methods are provided in an electronic supplement that

can be downloaded1. Therefore, only a few characteristic examples are included in this

Chapter. The core reactions and core complexes are indicated by dashed arrows and gray

boxes, respectively in the figures. The numbers of the complexes are written above the

boxes containing the complexes. The unique identification numbers (serial numbers) of

the sparse structures are indicated at the top of the figures. The isolated (unconnected)

complexes are omitted from the models but they are drawn in the figures for easier

comparison. The superstructure (i.e. the dense realization) for the time-scaling case is

1http://daedalus.scl.sztaki.hu/PCRG/works/Suppl2012_001.pdf
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Figure 3.7: Sparse realization of the model in Equation (3.11) with 3 linkage classes.
The reaction rate coefficients are: k7,1 = 2.6667, k1,2 = 10, k4,3 = 1, k3,4 = 10,
k1,6 = 1271, k1,7 = 699.33, k7,8 = 24, k9,10 = 1, k3,11 = 69, k4,12 = 33, k3,13 = 44,

k4,13 = 9, k5,13 = 1.

shown in Figure 3.8 and for the X-factorable case is shown in Figure 3.9. Figure 3.7

shows a sparse realization of (3.11) with the maximal number of linkage classes (three),

while a sparse realization of (3.11) containing only the 12 core complexes can be seen

in Figure 3.4. From the 48 sparse realizations of (3.14), Figure 3.6 shows one with

the minimal number of complexes (13). The brief comparison of the time-rescaling and

X-factorable transformation cases can be found in Table 3.2. As the table shows, we

haven’t found any weakly reversible realizations among the sparse ones. Moreover, the

deficiencies of all obtained sparse CRNs are high (between 7 and 9) that is related to

the dynamical complexity of the network.

3.4 Summary

This chapter have presented an algorithmic approach to calculate all distinct dynami-

cally equivalent sparse realization structures of a kinetic system, the process has been

illustrated with the well-known Lorenz System. The optimization-based computational

framework proposed originally in [113] was successfully used to develop the proposed al-

gorithm. The set of complexes for the kinetic Lorenz system realizations was generated

using the procedure published in [56]. The original Lorenz system was transformed into

a kinetic form using two different approaches known from literature: the state-dependent

DOI:10.15774/PPKE.ITK.2015.008



Chapter 3. Computing All Dynamically Equivalent Sparse CRN structures 49

Feature SD-TS X-factorable

Rd 51 44

Rs 13 12

Rc 6 4

Cc 12 8

no. of complexes in the canonical realization 13 15

no. of valid sparse realizations 5376 48

no. of realizations containing only core complexes 504 0

minimal no. of linkage classes 1 1

maximal no. of linkage classes 3 3

no. of weakly reversible realizations 0 0

minimal deficiency 7 8

maximal deficiency 9 9

Table 3.2: Comparison table of the two approaches for transforming the Lorenz system
into kinetic form. In the header line, ‘SD-TS’ and ‘X-factorable’ denote state-dependent

time-scaling and X-factorable transformation, respectively.

time-rescaling that completely preserves the structure of the phase-space, and the X-

factorable transformation. As a first step in the algorithm the structurally invariant

components (i.e. the core reactions and core complexes) of the kinetic system have been

determined. The studied realization computation problem is clearly of combinatorial

nature, therefore an effective reduction of the search space was proposed based on the

core reactions and the uniqueness of the dense realization. All different sparse structures

are listed in an electronic supplement. The large number of valid solutions clearly illus-

trate the possible high degree of structural non-uniqueness of sparse chemical reaction

networks. To the best of my knowledge, it has been the first attempt to enumerate all

dynamically equivalent structures of a kinetic dynamical system with a given property.
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Figure 3.8: Dense realization of Equation (3.11) containing 51 reactions. The re-
action rate coefficients are k1,2 = 679.63, k1,3 = 0.1, k1,4 = 0.1, k1,5 = 0.1, k1,6 =
602.37, k1,7 = 0.1, k1,8 = 0.1, k1,9 = 0.1, k1,10 = 669.13, k1,11 = 0.1, k1,12 = 0.1, k1,13 =
0.1, k3,1 = 0.1, k3,2 = 0.1, k3,4 = 0.1, k3,5 = 44.6, k3,6 = 0.1, k3,7 = 0.1, k3,8 = 0.1, k3,9 =
0.1, k3,10 = 0.1, k3,11 = 16.2, k3,12 = 9.3, k3,13 = 0.1, k4,1 = 0.1, k4,2 = 0.1, k4,3 =
0.1, k4,5 = 9.6, k4,6 = 0.1, k4,7 = 0.1, k4,8 = 0.1, k4,9 = 0.1, k4,10 = 0.1, k4,11 =
0.1, k4,12 = 24.4, k4,13 = 0.1, k5,13 = 1, k7,1 = 0.1, k7,2 = 1.1833, k7,3 = 0.1, k7,4 =
0.1, k7,5 = 0.68335, k7,6 = 0.1, k7,8 = 23.217, k7,9 = 0.1, k7,10 = 0.1, k7,11 = 0.1, k7,12 =

0.1, k7,13 = 0.1, k9,10 = 1.1, k9,13 = 0.1.
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Figure 3.9: Dense realization of Equation (3.14) with 44 reactions. The parameter
values are the following: k1,2 = 10.1, k1,3 = 0.1, k3,1 = 0.1, k3,2 = 4.95, k4,1 = 0.1, k4,2 =
0.1, k4,3 = 0.1, k4,5 = 10.2, k4,6 = 0.1, k4,7 = 0.1, k4,8 = 29.2, k6,2 = 2799.1, k6,7 =
0.1, k7,2 = 0.45, k7,6 = 0.1, k9,2 = 0.1, k9,6 = 0.1, k9,7 = 99.9, k9,10 = 0.4, k9,13 =
0.1, k9,14 = 0.1, k11,1 = 0.1, k11,2 = 0.1, k11,3 = 0.7, k11,4 = 0.1, k11,5 = 0.1, k11,6 =
0.1, k11,7 = 0.1, k11,8 = 0.1, k11,9 = 0.1, k11,10 = 0.1, k11,12 = 0.1, k11,13 = 0.1, k11,14 =
0.2, k11,15 = 2.2, k12,1 = 100.7, k12,2 = 0.1, k12,3 = 0.3, k12,13 = 0.1, k12,14 = 0.1, k13,2 =

0.1, k13,14 = 10103, k14,2 = 1.2833, k14,13 = 0.1.
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Chapter 4

Computing Structural Properties

of Uncertain Kinetic Polynomial

Systems

The reconstruction of reaction network structure from measurement data and prior

information is an important and intensively studied area [126, 133]. In certain chemical

and biological problem statements it is generally assumed that the participating chemical

species and the possible chemical complexes, i.e. the node set of the reaction graph

is fixed [12]. Hence, an important remaining task is to determine the existence and

the rate coefficients of the reactions between the participating complexes. This task

unfortunately turns out to be computationally intractable as the number of complexes

increase. The problem is well studied in the field of model and parameter estimation,

often called as network reconstruction or inference.

As it was shown in the previous chapter, different reaction network structures (weighted

directed graphs) may belong to exactly the same dynamics, therefore, the structural and

parametric identification problem is generally not uniquely solvable without additional

prior knowledge on the network structure, even if we have full and perfect measurements

[29, 114]. In certain applications, the assumption of network sparsity may improve the

solvability of the inference problem [12, 133]. However, in general, sparse structures

corresponding to a given kinetic dynamics are not unique as it was illustrated in the

previous chapter and in [113]. Therefore, we would like to further analyze the most

52

DOI:10.15774/PPKE.ITK.2015.008



Chapter 4. Computing Structural Properties of Uncertain Kinetic Polynomial Systems53

“certain” structural elements of the network. These are called core reactions [114], and

have the property that they are present in any reaction graph structure (realization)

that is compatible with a given kinetic dynamics. The goal of this chapter is to extend

the previous results in [114] on computing structural properties of kinetic systems to the

case when there are uncertainties in the model. These uncertainties will be modeled as

intervals for the coefficients of the monomials in the ODEs, similarly to the approach

that was used for the estimation of fluxes of metabolic networks in [71]. We show that

the computation of core reactions can be put into the framework of linear programming.

Similarly, we show that sparse or dense realization of an uncertain kinetics system can

be computed using mixed integer linear programming. Using illustrative examples we

demonstrate the properties of the computed structures and the potential application of

the method in the support of structural identification of biochemical networks.

4.1 Uncertain polynomial kinetic systems

We can extend the kinetic system model defined in Equation (2.7) to the uncertain case

where the uncertainty will be modeled by intervals of the monomial coefficients. In this

way, a family of kinetic systems is obtained that can be represented as

ẋ = M · ψ(x) (4.1)

[Ml]ij ≤ [M ]ij ≤ [Mu]ij i = 1, . . . , n, j = 1, . . . ,m

where matrices Ml ∈ Rn×m, Mu ∈ Rn×m and M ∈ Rn×m are kinetic matrices as defined

in Equation (2.9).

It should be noted that just like in the regular case where a kinetic system is completely

characterized by the matrix pair (Y,Ak), an uncertain polynomial kinetic system is

completely described by the matrix triplet (Y,Ml,Mu).

With these upper and lower bounds we can represent the uncertainty of parameters

individually. These bounds can represent the uncertainty of the parameters due to

temperature change, measurement error, poor excitation of the dynamics. Also, it can

DOI:10.15774/PPKE.ITK.2015.008



Chapter 4. Computing Structural Properties of Uncertain Kinetic Polynomial Systems54

represent operation regimes. In case of parameter estimation it can represent the pa-

rameter uncertainty, hence the quality of parameter estimation can be calculated via

confidence intervals which are directly applicable to Algorithm 4.

Thanks to this representation we can calculate structural properties of an uncertain

kinetic system that are valid for the whole family of kinetics systems. For example, a

sparse realization will be a reaction graph that contains the least amount of reactions

that are needed to generate all possible dynamics within the boundaries of Ml and Mu

in Equation (4.1).

4.2 Computing Core reactions of Uncertain Polynomial

Kinetic systems

We can take advantage of the fact that if core reactions exist, then they are present

in any dynamically equivalent realization. Therefore, they are an essential part of the

system’s structure to produce the dynamics described by matrix pair (Y,Ak).

Formally, a reaction (Ci, Cj) ∈ R, i, j ∈ {1, . . . ,m} is a core reaction if and only if for

any dynamically equivalent realization (Y,Ak), [Ak]ji > 0 holds. This condition can be

translated as a constraint set in a linear program as it was introduced in [114].

4.2.1 Algorithm for computing core reactions

Let us assume that we have an uncertain kinetic system characterized by matrix triplet

(Y,Ml,Mu), then the following linear program (LP) can be formulated

min
∑

ij Eij [Ak]ij (4.2)

s.t.∑m
i=1 [Ak]ij = 0, j = 1, . . . ,m (4.3)

[Ak]ij ≥ 0, i, j = 1, . . . ,m, i 6= j (4.4)

Y ·Ak −M = 0 (4.5)

[Ml]ij ≤ [M ]ij ≤ [Mu]ij (4.6)
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where entries of matrices Ak and M are both variables of the optimization problem.

The binary matrix E ∈ {0, 1}m×m selects the elements of Ak that are considered in the

cost function.

The first two constraints (Equations 4.3 and 4.4) force Ak to be a Kirchhoff matrix

(as defined in Equation (2.10)). The constraint in Equation 4.5 enforces dynamical

equivalence ( see Equation (2.20) for the definition). Finally, the last type of constraints

(Equation 4.6) set up element-wise the lower and upper bounds for all entries of the

kinetic matrix M .

The LP defined in Equation (4.2) is called as DynEqLP in the pseudo code below and this

LP needs 4 inputs for operation, such as Y , Ml, Mu and E and calculates a realization

characterized by matrices Ak and M .

ALGORITHM 4: The goal of the algorithm is to find core reactions of an Uncertain Kinetic

System characterized by matrix triplet (Y ,Ml,Mu). The Algorithm returns with the set of

core reactions, Rc.

Input : Y , Ml, Mu

Output: RC

1 D := 0m // empty matrix;
2 E := 1m − Im // only off-diagonals are non-zero ;
3 Ak := 0m // empty matrix ;
4 while true do
5 Ak := DynEqLP(Y ,Ml,Mu,E);
6 D := E;
7 E := (PositiveElements(Ak) & D) // & is an element-wise logical AND ;
8 if D = E then
9 break;

10 end

11 end
12 RC := ∅ ;
13 for each (i, j) ∈ PositiveElements(E) do
14 Z := 0m×m;
15 [Z]i,j := 1 ;
16 Ak := DynEqLP(Y ,Ml,Mu,Z) ;
17 if [Ak]i,j > 0 then
18 RC := RC ∪ (Cj → Ci) ;
19 end

20 endfor
21 return RC

In Algorithm 4, the procedure PositiveElements finds the nonzero elements of the argu-

ment and gives back a binary matrix containing ones where the original matrix elements

are larger then zero.
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Algorithm 4 starts with binary matrix E where the off-diagonal elements are ones and the

rest are zero. In the first iteration the DynEqLP tries to minimize the sum of off-diagonal

elements of Ak. After that, in each iteration the zero off-diagonal elements are excluded

from the cost function until no more off-diagonal elements can be excluded, i.e. matrix

E remains the same between two iterations. In the final stage of the Algorithm, for each

of the remaining non-zero off-diagonal elements (encoded in matrix E) the DynEqLP is

executed where only one element from matrix E is minimized. If this element remains

non-zero after the optimization, then this reaction (edge) is part of the core reaction set.

Property Algorithm 2 Algorithm 4

maximum of LP iterations (m2 −m) 2 + (m2 −m)

minimum of LP iterations (m2 −m) 2

LP variables m2 −m︸ ︷︷ ︸
offdiag(Ak)

nm︸︷︷︸
M

+ m2 −m︸ ︷︷ ︸
offdiag(Ak)

Inequality Constraints m2 −m︸ ︷︷ ︸
offdiag(Ak)

+ m︸︷︷︸
diag(Ak)

2nm︸︷︷︸
Ml,Mu

+ m2 −m︸ ︷︷ ︸
offdiag(Ak)

+ m︸︷︷︸
diag(Ak)

Equality Constraints m︸︷︷︸
Kirchhoff

+ m︸︷︷︸
DynEq

+ 1︸︷︷︸
K

m︸︷︷︸
Kirchhoff

+ m︸︷︷︸
DynEq

Table 4.1: Comparison of the main properties of two algorithms for core reaction
set computation. Keywords: offdiag(Ak)—number of off-diagonal entries of Ak,
diag(Ak)—number of diagonal entries of Ak, Kirchhoff—Equation (4.3), DynEq—

Equation (4.5).

Finally, we can compare the main properties of Algorithm 2 and Algorithm 4 using

Table 4.1. By comparing the minimum and maximum number of iterations required by

the two algorithms we can clearly see that the newly proposed algorithm for calculation

of core reactions usually outperforms the Algorithm 2, except for the theoretical worst

case. Furthermore, the previous algorithm is based on systematic exclusion of reactions

and testing for the feasibility of the resulting linear program, which might take place for

different reasons than exclusion of a reaction. It should be noted that the size of the LP

in Algorithm 4 is larger than the one in Algorithm 2, but this comes from the fact that

Algorithm 4 is designed for uncertain kinetic systems and it can also operate with zero

uncertainty as well (M = Ml = Mu).
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4.3 Examples

4.3.1 Example of an Uncertain Kinetic System

In this example, we revisit the positive feedback motif from Section 2.3.4 and investigate

that how increasing intervals around matrix M affect the core reaction set, RC .

The positive feedback motif model is encoded with matrix pair (Y ,Ak) as

Y =



2 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0

0 1 0 0 0 1 0 1 0 1 0


(4.7)

and the only non-zero off-diagonal elements of Ak are

[Ak]5,1 = k1, [Ak]1,5 = k2, [Ak]9,4 = k3,

[Ak]4,9 = k4, [Ak]8,9 = k5, [Ak]6,7 = k6,

[Ak]11,10 = k7, [Ak]11,3 = k8, [Ak]2,10 = k9. (4.8)

First, the lower and upper bounds are set as Ml = Mu = M (i.e. there is no parametric

uncertainty in the system) and with Algorithm 4 we calculated that this system has

|RC | = 8 core reactions and these are

C1 → C5, C3 → C11, C4 → C9, C5 → C1

C7 → C6, C9 → C4, C9 → C8, C10 → C2 (4.9)

and they are shown as blue dashed edges in Figure 2.1.

The matrix M defined by Equations (4.7) and (4.8) has 5×11 elements. In each step we

symmetrically increase the interval around one element of M , then the invariant reaction

set is calculated with the help of Algorithm 4. Meanwhile the kinetic property of matrix

M is ensured by checking the sign constraints of M , defined by Equation (2.9). The

result is summarized in Figure 4.1, in the top left corner there are 8 core reactions in the
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Figure 4.1: Figure shows how the increasing intervals around M is affecting the
number of core reactions inside the interval. The vertical axis lists the elements of M
and the horizontal axis shows the accumulation of the interval size around the values
of M . The calculation start at the top left corner and goes down along the horizontal
axis, then current interval gets increased and the calculation start at the top in the
next column along the vertical axis. Each color represents the size of the core reaction

set within the interval. In each iteration, the applied step size was 0.1.

system (dark red area) as we increase the bounding box around M the number of core

reactions gradually decrease. Finally, the core reaction set becomes empty (dark blue

area). It should be noted that in each step the current interval contains the previous

interval as a subset, hence the core reaction set can either remains the same or become

a subset of the previous one.

4.3.2 Network reconstruction example

Using a chemical reaction network example, we highlight a possible field of application of

the algorithm presented in Section 4.2. In (bio)chemical modeling and many other fields,

it is often the goal of the network reconstruction to find the sparsest network describing

the measured dynamics which might be not a unique structure. Therefore, our goal is

to find the structurally invariant elements that are characteristic for the dynamics while

the parameters of the network are uncertain.
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Figure 4.2: Comparison of the original network from [12] (left) and the network given
by parameter estimation (right). The core reactions in each case are shown with blue

dashed edges.

First, let us investigate a benchmark example from the literature which is based on

Figure 2 in [12] and encoded as

Y =



1 0 1 0 0

0 2 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(4.10)

and

Ak =



−1.163 0 0 0 0.8492

0.3386 0 0 0 0.4290

0.8244 0 −0.7364 0.5631 0

0 0 0 −0.5631 0

0 0 0.7364 0 −1.2782


. (4.11)

As a first step we establish the core reaction set for the dynamics represented by (Y ,Ak).

Algorithm 4 with boundary matrices Mu = Ml = Y · Ak tells us that all six reactions

in the original network are core reactions (blue dashed edges on the left panel of Figure

4.2), hence this is the sparsest and also the only sparse realization of the given dynamics.

The goal of the parameter estimation is to obtain an interval model in the form of

Equation (4.1) from time series measurements of the species concentration. During

the parameter estimation procedure, we will exploit the fact that the type of kinetic

systems we use in this thesis is linear in parameters. Finally, the parametric uncertainty

in matrix M will be characterized by the covariance matrix of the estimator. Then, the
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core reaction set of the interval model will be calculated using the confidence intervals

of the estimated parameters.

4.3.2.1 Parameter Estimation Procedure

We utilize the discrete Least Squares framework and for that we discretize Equation (2.7).

Taking sufficiently small intervals between samples we apply the forward Euler method

xi(k) = xi(k − 1) + hMi,·ψi(x(k − 1)) k = 2...Tend, i = 1, . . . , n (4.12)

where xi is the ith state variable from Equation (2.7), ψi(x) is the ith element of vector

mapping ψ and vector Mi,· is the ith row of matrix M . Finally, h is the sampling time,

which is h = 0.1 sec in our case.

We assume that we can measure all state variables, then let us define the artificial

outputs for the regressor model used for parameter estimation as

yi(k) := xi(k)− xi(k − 1), i = 1, . . . , n

and the model, which is used for the parameter estimation reads

yi(k, θ) = θTi,·ϕ(k)

where θi,· is the ith row of M and

ϕ(k) =
[
ψ1(x(k − 1)) ψ2(x(k − 1)) ψm(x(k − 1))

]T
.

Further, let us define matrix R ∈ Rm×m and vector di ∈ Rm

R =
1

N

N∑
k=2

ϕ(k)ϕ(k)T (4.13)

di =
1

N

N∑
k=2

ϕ(k)yi(k). (4.14)
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Then, the estimate for the parameter vector θi can be calculated using the well-known

formula as

θ̂i = R−1di. (4.15)

which is the same as Equation (2.6).

The regression matrix R depends on all of the state variables, hence each row of M can

be calculated in one step. By defining

C = diag(R, . . . , R) (4.16)

where C ∈ Rn·m×n·m is block diagonal matrix and

d =
[
d1 · · · di · · · dn

]T
(4.17)

we can calculate all the elements of M in one optimization step. Let us define parameter

vector θ = row(M)T which is the transpose of the row expansion of M . The row

expansion of M is defined as row(M) =
[
M1,·,M2,·, . . . ,Mn,·

]
where Mi,· denotes the

ith row of matrix M .

Then, the estimate for the parameter vector θ can be calculated as

θ̂ = argmin
θ∈Θ

1

2
||Cθ − d||22. (4.18)

To ensure that θ̂ represents a proper kinetic matrix, the set Θ denotes the possible

parameter vectors where the sign condition of M is fulfilled (see Equation (2.9) for

details). Finally, the estimated matrix M is given as θ̂/h.

4.3.2.2 Estimation of matrix Ak

It is possible to improve the parameter estimation by exploiting the fact that with fixed

matrix Y , the matrix M can be written as Y ·Ak. Hence, we can estimate Ak directly.
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For that, we define

Ȳ =



Y1,· 0 · · · 0

0 Y1,· · · · 0

0 0 · · · Y1,·

Y2,· 0 · · · 0

0 Y2,· · · · 0

0 0 · · · Y2,·
...

...
...

...

Yn,· 0 · · · 0

0 Yn,· · · · 0

0 0 · · · Yn,·



Āk =



[Ak]
T
1,·

...

[Ak]
T
i,·

...

[Ak]
T
m,·


. (4.19)

where Yi,· denotes the ith row of matrix Y and vector [Ak]j,· is the jth row of matrix

Ak.

Then, we formulate the following constrained Least Squares optimization problem [126]

minĀk

1
2 ||CȲ Āk − d||

2
2 (4.20)

s.t.∑m
i=1 [Ak]ij = 0, j = 1, . . . ,m

[Ak]ij ≥ 0, i, j = 1, . . . ,m, i 6= j.

Finally, the estimated value of Āk is denoted as ˆ̄Ak. In this way we can have an estimate

matrix M as Ȳ ˆ̄Ak/h, but imposing a set of constraints on the elements of Ak.

4.3.2.3 Results

Now, we attempt to (partially) restore the entries of matrix Ak which was defined

in Equation (4.11) by applying the discrete Least Squares framework from Subsection

4.3.2.1. For this, we assume that we can measure all state variables of the kinetic

system and to each state variable 5% additive Gaussian noise is added. A dataset with

25 different initial vectors is generated with uniform Latin hypercube sampling. Using

the optimization defined in Equation (4.20), we calculate the graph structure from the
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noisy dataset as follows

Aestk =



−2.3 0 0.46 1.51 0.07

1.1 0 0.06 0 0.09

0.92 0 −0.58 0 0

0.26 0 0.065 −1.51 0.047

0 0 0 0 −0.21


. (4.21)

The graph encoded by Equation (4.21) can be seen on the right panel of Figure 4.2.

Thanks to the factorization of M in Equation (4.20), we have an estimate of matrix M

as

M̂ = Ȳ ˆ̄Ak/h. (4.22)

The parametric uncertainty around matrix M is extracted from the estimator’s covari-

ance matrix. It is calculated as Cov(θ̂) = C−1 ·σ2 where σ2 is the standard deviation of

the measurement noise. Then, for each element of the estimated matrix M , we establish

the 95% confidence interval and cut off intervals that contradict the sign constraints of

matrix M as follows

Ml = M̂ − 1.96

√
diag(Cov(θ̂)) (4.23)

[Ml]i =


max([Ml]i, 0) if [row(Y )]i > 0

[Ml]i otherwsie

i = 1, . . . , n ·m (4.24)

Mu = M̂ + 1.96

√
diag(Cov(θ̂)) (4.25)

where diag(Cov(θ̂)) selects the diagonal elements of the covariance matrix Cov(θ̂).

These modified confidence intervals define the interval model as it was introduced in

Equation (4.1), then we execute Algorithm 4 with input matrices (Y ,Ml,Mu). The

result shows that 3 reactions are in the core reaction set, namely C1 → C2, C1 → C3

and C5 → C2 (blue dashed edges on the right panel of Figure 4.2).
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This information can be utilized during the further refinement of the network recon-

struction, e.g. in case of a new dataset, these reactions can be constrained as fixed

parts of the graph. Even though the Least Squares approach performed poorly on the

reconstruction of the original network structure, this performance was enough to recover

a subset of the original core reaction set. This shows an important feature of this ap-

proach, namely it is capable of recovering the core reaction set of an uncertain model,

even if the original network is only partially restored, which is often the case with other

network reconstruction approaches [12, 132]

We can briefly comment on the performance on Algorithm 4. It took only 6 iterations

for the algorithm to establish the core reaction set, compared to the previous algorithm,

this network would require 20 iteration, so it means that in this case, Algorithm 4 is

more than three times faster than Algorithm 2.

In this example, we used the simplest possible method to show how our methods can

support the network reconstruction procedure. Any other type of network reconstitution

can be used as long as some form of parameter uncertainty is available from the applied

method or from a priori information.

4.4 Computing Sparse and Dense Realizations of Uncer-

tain Kinetic Systems

In this section we want to investigate the question of non-uniqueness of the sparse

realization in case of uncertain models. For that reason we revisit the positive feedback

motif introduced in Section 2.3.4. Examples of multiple dynamically equivalent sparse

realizations of the positive feedback motif was reported in [114] (see Figure 2 in [114]).

In this model, there are 8 core reactions and a sparse structure has 9 reactions, this

difference is a necessary condition to have more than one sparse structure.

Since we do not have measurement, we add roughly 10% uncertainty to each parameter.

By applying Algorithm 4 on the positive feedback motif with [Ml]ij = [M ]ij − 0.1 and

[Mu]ij = [M ]ij +0.1 where M = Y ·Ak yields a core reaction set with 5 elements (yellow

region in Figure 4.1) and shown with blue dashed edges in Figure 4.3.
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Again, we can compare the performance of the two algorithms for computation of the

core reactions on this example. Algorithm 4 calculated the core reaction set in 10 itera-

tions, which is only 9% of the number of iterations would be required by the Algorithm

2.

To calculate the sparse structure of an uncertain kinetic polynomial system we need

to formulate a MILP optimization based on a method described in Section 2.3.1 and

Equation (4.2)

minimize
∑m

i,j=1,i6=j δij

Y ·Ak −M = 0∑m
i=1[Ak]ij = 0, j = 1, . . . ,m

[Ak]ij ≥ ε i, j = 1, . . . ,m i 6= j

0 ≤ [Ak]ij − εδij i, j = 1, . . . ,m, i 6= j

0 ≤ −[Ak]ij + lijδij , i, j = 1, . . . ,m, i 6= j

[Ml]ij ≤ [M ]ij ≤ [Mu]ij i, j = 1, . . . ,m. (4.26)

We calculate a sparse realization of the positive feedback motif by applying optimization

problem defined in Equation (4.26). The resulting realization can be seen on the left

panel of Figure 4.3.

The sparse realization on the left panel in Figure 4.3 has only one non-core reaction

(C10 → C2), thus we can search K-constrained sparse realization of an uncertain sparse

realization by modifying the cost function in Equation (4.26) as

m∑
i,j=1;i6=j;i,j /∈K

δij . (4.27)

Let us add reaction C10 → C2 to set K and calculate another sparse realization of the

uncertain positive feedback motif (depicted on the left panel of Figure 4.3). In this

realization only reaction C10 → C1 is not part of the core reaction set. Again, we

can redefine set K = [Ak]1,10 and calculate another uncertain sparse realization. The

realization is the same as the realization shown on the left panel of Figure 4.3, therefore

at this level of uncertainty only two sparse realizations exist for the positive feedback

motif model.
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Figure 4.3: Two sparse realizations of the positive feedback motif with [Ml]ij =
[M ]ij − 0.1 and [Mu]ij = [M ]ij + 0.1.

The reader can notice that by comparing Figures 2.1 and 4.3, in the later one some

complexes became isolated, i.e. a complex has no incoming or outgoing edges. Its

explanation lays in the bounds around M . By comparing the corresponding M matrix

of the sparse realization on the left panel of Figure 4.3, denoted by M bound, and the

current lower bound Ml, it can be seen that, the current lower bounds on matrix M

allows only the columns 2,3,6,7,8 and 11 to be zero (see matrix Ml in Equation (4.29)).

Since we try to minimize the number of reactions in the realization, the optimization

tries to push the values of matrix M toward the minimum bound (Ml). As a result of

that isolated complexes may emerge.

It should be noted that there exists another case when a column in M bound is zero,

but the corresponding complex is not isolated. In both sparse cases in Figure 4.3, the

complex C8 is not an isolated complex. It is explained by the fact, complex C8 is a

product complex, i.e. it has only ingoing edges, which causes the associated column in

the matrix M bound in Equation (4.28) to become zero.

M bound =



−1.9 0 0 0 1.9 0 0 0 0 0.4 0

0.95 0 0 −0.9 −0.95 0 0 0 0.9 0 0

0 0 0 −0.9 0 0 0 0 0.9 0 0

0 0 0 0.9 0 0 0 0 −0.9 0 0

0 0 0 0 0 0 0 0 0.9 0 0


(4.28)
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Ml =



−2.1 −0.1 −0.15 0 1.9 0 0 0 0 0.4 0

0.9 0 0 −1.1 −1.1 0 0 0 0.9 0 0

0 0 0 −1.1 0 −0.1 −0.1 0 0.9 0 0

0 0 0 0.9 0 0 0 −0.1 −1.1 0 0

0 −0.1 0 0 0 −0.1 0 −0.1 0.9 −0.2 0


(4.29)

This example shows that under parametric uncertainty the sparse realization is generally

non-unique, too, hence the core reactions are the only certain elements of the (uncertain)

kinetic model.

4.5 Summary

We have given an effective algorithm to compute the so-called core reactions of uncertain

kinetic polynomial models assuming a given complex set. The proposed method itera-

tively uses linear programming steps, and therefore it runs in polynomial time. Several

numerical examples have been given to illustrate the capability of the algorithm: First,

the effect of parametric uncertainty on the core reaction set was analyzed, then through

another example, we have highlighted how to utilize the core reaction calculation in a

simple network reconstruction problem. Second, we have shown that under parametric

uncertainty, the sparse network structure is generally non-unique for the studied kinetic

interval models. Finally, in these numerical examples we have shown that the proposed

algorithm, in terms of computation speed, outperforms the previously applied one.
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Chapter 5

Modeling and Parameter

Estimation of a Cell-free in vitro

System

While the use of quantitative models in molecular biology has become commonplace in

recent decades, the amount and types of experimental data suitable for model param-

eter estimation are often severely limited. In many cases, temporal resolution and/or

the sensitivity of the measurement technique present significant obstacles for effective

parameter estimation. Additionally, structural non-identifiability of the model is also a

real possibility [26, 29, 114]. However, recent developments in real-time mRNA reporter

technology have provided new, powerful tools, which together with fluorescent proteins

made the concurrent tracking of the concentrations of mRNA and protein species of

interest possible. As a result, we can now measure transcription and translation simul-

taneously with sufficiently high frequency and specificity to directly use the obtained

time series data for parameter estimation [88].

This is particularly useful in the rapidly expanding field of synthetic biology, wherein

biological ‘parts’ (e.g., promoters, terminators, genes) can be rapidly combined into ‘bio-

circuits’ [111] that may not otherwise exist. One of the major goals of synthetic biology

is to apply rational engineering design to create functioning novel biocircuits, operating

in vitro and in vivo [69]. This bottom-up approach represents a shift towards carrying

68
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out design in a systematic and hierarchical way using well characterized and reusable

biomolecular parts (DNA/plasmids, RNAs, enzymes, proteins, membranes) [36].

Even though many engineering methodologies and philosophies are being adopted by

synthetic biologists, modeling remains challenging due to the existence of a large number

of coupled (both known and unknown) mechanisms [22]. Furthermore, synthetic circuits

introduced into a host organism may interact with the existing reactions of the host in

complex and emergent ways.

In synthetic biology an in vitro environment is usually the place where biomolecular

breadboarding happens. One type of in vitro systems is called cell-free expression sys-

tem which consists of crude cell extracts supplemented with certain buffers and re-

sources [60, 102]. The crude cell extract contains functional transcription-translation

machinery, with the genetic material (and hence the regulatory circuits they encode)

from the host carefully removed. Therefore, cell-free extracts provide a platform for the

characterization of biomolecular parts and circuits in relative isolation, free from natural

regulation and “cross-talk” which is present in living cells [57]. A further advantage of

cell-free extracts is the significantly shorter characterization and design cycles compared

to in vivo approaches.

The cell-free system that we are modeling in this chapter was developed in [101]. This

versatile in vitro system supports multiple stage cascades and bistable biocircuits, as well

as the expression of the complete phage genome [100]. While elementary transcription

and translation steps as well as degradation steps have been successfully modeled in [63],

the previous work focused on the linear regime and the initial stage of protein expression

where the finite resources within the system are not limiting factors.

In this chapter, by explicitly considering transcription, translation, and degradation

machinery with energy sources, we show that it is possible to capture experimental

observations more quantitatively and beyond the initial stages of experiment. This ap-

proach also provides insight into possible underlying reasons, such as resource limitations

and enzyme loading [91, 96, 130], for previously unexplained behavior of the synthetic

circuits being tested.

Several examples for modeling of the transcription and translation processes can be

found in the literature, ranging from coarse grain [63],[109] to very detailed [49],[8],
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where they are focusing on different aspects of gene expression. Our aim here is to

develop and analyze a kinetic model describing transcription and translation in a cell-

free experimental environment using real measurement data.

The goal of this chapter to describe the construction and parameter estimation of a

kinetic model which became the core part of a Matlab software toolbox, called TXTL

toolbox and the toolbox was developed by the authors of paper [C4]. The toolbox is

freely available at [119] and designed as a modeling tool for synthetic biologists who

are interested in seeing the different dynamical behaviors of their biocircuit designs.

Furthermore, the data collection methodology and experiment design presented in this

chapter gives a procedure for the users to calibrate their copy of the TXTL toolbox.

The reported parameters provide a default set of parameters for the TXTL toolbox as

well.

This chapter is organized as follows: in Section 5.1 we briefly outline the biomolecular

breadboarding system and introduce the experimental setup for data collection. In

Section 5.2 we discuss the proposed nonlinear mathematical model that captures the

dynamics of the cell-free system. Section 5.3 carries out an analysis of the applied

model with time-scale separation and structural identifiability. Finally, the model which

is the result of model reduction and analysis is calibrated via parameter estimation in

Section 5.4.

5.1 Experimental background

5.1.1 Cell-free system

Cell-free gene expression systems are popular platforms for biocircuit design. A cell-free

biomolecular “breadboard” system is a collection of in vitro protocols that can be applied

for testing transcription and translation circuits in a set of systematically-constructed

environments that explore different elements of the external conditions in which the

biocircuits must operate [101].

The gene regulatory circuits or biocircuits expressed using this platform can be engi-

neered in a molecular biology laboratory using standard molecular cloning techniques
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to create ‘plasmid’ DNA, or may be produced using Polymerase Chain Reaction (PCR)

to create ‘linear’ DNA. The latter substantially decreasing the design cycle time.

These externally supplied genes are expressed in the host environment (in vitro or in

vivo) where they interact with each other and/or the host environment via protein-

protein, protein-DNA, etc interactions. With this interaction network, various tasks can

be performed such as computation, sensing, actuating, etc.

The in vitro cell-free system used here has certain advantages that make it desirable as

a tool for simplifying the study of biological circuit function. Due to the lack of back

regulation of the host environment, it is possible to design and operate a synthetic circuit

in different concentration regimes that may not be achievable in a living cell. This in

turn may allow us to explore a much larger parameter space to characterize the range

of dynamical behaviors that a circuit topology may be capable of producing.

On the other hand, the in vitro cell-free system also has some potential disadvantages

over living cells, such as lack of growth, lack of sophisticated organization, and limited re-

sources; though these do not necessarily pose a significant impediment to the prototyping

function of this type of breadboard systems as shown in a recent work [24]. The biggest

caveat is that the in vitro cell-free system has finite resources (e.g., RNA polymerase, Ri-

bosome, NTPs, AAs), and the loss of the energy source adenosine triphosphate (ATP) in

particular has a strong impact on the system performance [65]. Moreover, since resources

are limited in this environment, competition for the finite resources can arise [131]. The

second disadvantage of this type of cell-free system is that there is neither active growth

nor waste removal process in the system, leading to the accumulation of reaction by-

products such as non-functioning mRNA fragments and adenosine diphosphate (ADP),

which slow down reactions and eventually cause them to stop. The third difficulty is

lack of compartmentalization, because of that unintentional reactions (interactions) can

emerge.

The finite resource and waste management problem can be partially addressed by an

exchange dialysis system using membranes that allow exchange of fuel molecules and

small wastes [101]. Furthermore, it is possible to implement compartmentalization and

membranes in the form of tiny lipid vesicles in the cell free system [101]; however, the

control of localization within vesicle surface remains primitive.
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Figure 5.1: The cell-free in vitro system consists of three main components. Tube
1 has the extracted content of E. coli cells. Tube 2 contains all the amino acids and
nucleotides, among other chemicals. Our biocircuit is placed in Tube 3, hence different
DNA fragments. Finally, when each components are mixed together the gene expression

is initiated.

All the experiments reported in this chapter were performed in a cell-free environment

derived from Escherichia coli crude extract. This extract contains all the endogenous

system components necessary for transcription and translation (e.g., ribosomes, RNA

polymerase, translation initiation and elongation factors, etc.) but is free of structural

components (e.g, cell wall) and genomic DNA, this is represented as ‘Tube 1’ in Figure

5.1.

The processed extract is supplemented with molecular energy sources: nucleotides,

amino acids, and tRNAs, shown as ‘Tube 2’ in Figure 5.1. In this simple form the crude

extract plus energy source mixture is a fully functional cell-free expression system. The

detailed description of the system and the preparation steps of the crude extract can be

found in [110]. The last necessary component for the operation of the cell-free system is

the DNA itself, which contains the genetic code of the biocircuit subject to the testing

(‘Tube 3’ in Figure 5.1).

5.1.2 Measurements

Plasmids and Bacterial strains The plasmid pBEST-Luc (Promega) was used as

a template for the construct and was created using standard cloning methods. E. coli

strains KL740 (which contains lambda repressor to control for Pr promoter) or JM109

were used and Qiagen Plasmid Midi prep kits were used for the DNA extraction. LB

media with 100 µg/mL carbenicillin was used to culture cells. The genotype of the

plasmid is given in Table 5.1.

Reporters Radiolabeling of mRNA and subsequent gel analysis can provide limited

temporal resolution for mRNA dynamics [63]. Alternative methods using molecular
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Table 5.1: Genotype of the plasmid used in this study.

TU

Plasmid name Transcription unit (TU) size (bp) Backbone/resistance

pBEST-Pr-GFP PR:deGFP:T500 810 ColE1/AmpR

beacon and probes showed improved temporal resolution but the dynamic range was

limited [79, 109].

To determine mRNA dynamics at high sensitivity with high temporal resolution we used

real-time fluorescence monitoring of mRNA dynamics by utilizing an RNA aptamer with

a fluorescent dye, called malachite green (triphenylmethane) [48]. This aptamer contains

a binding pocket for the malachite green dye, but the pocket is very short (35 bases),

and thus, the presence of aptamer sequence does not affect the transcripiton of GFP

gene. The binding of the dye into the aptamer’s binding pocket enhances the dye’s

fluorescence, thus reports the presence of binding pockets, i.e. the concentration of

mRNA.

The mRNA aptamer (MGApt) was placed in the 3′ untranslated region (UTR) of a

gene encoding Green Fluorescent Protein (GFP) 15 bases downstream of the stop codon

(see panel A in Figure 5.2). The fluorescent protein GFP with T500 transcriptional

terminator were previously designed to be more translatable in the cell-free system [102]

and used as a reporter for the translational activities.

Production of the combined GFP-MGApt construct is driven by a strong constitutive

promoter.

Fluorescence was measured in every 3 minutes for both MGApt (excitation: 610 nm;

emission: 650 nm) and GFP (excitation: 485 nm; emission: 525 nm) in a Biotek plate

reader. All measurements were background corrected to account for the autofluorescence

of the malachite green dye. Further details of the measurements and sample preparation

can be found in [J1].

Cell-free system The cell extract is a crude cytoplasmic extract from E. coli which

contains soluble proteins, including the entire endogenous transcription-translation ma-

chinery, as well as mRNA and linear DNA degradation enzymes [101, 102]. Detailed
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Figure 5.2: The plasmid DNA contains a constitutive promoter, then an untranslated
region with aptamer and finally the GFP gene. After transcription, mRNA dynamics
were measured by utilizing an RNA aptamer for the fluorescent dye malachite green [48].
Finally, translation creates a fluorescent GFP protein. Readers should note that the
MGApt emission is in the far red region whereas the GFP emission is in the green

spectra.

instructions on the cell extract preparation can be found in [110].

Experiments took place in a 10 µl reaction volume at 29◦C over 14 hours, and each

experiment was repeated three times. The initial plasmid DNA concentration was varied

between 0.1 nM and 20 nM (see panel B and C in Figure 5.2 for MGApt and GFP

measurements, respectively).

5.2 Process Model

The process model tries to capture the dynamics of the gene expression system with

a set of mass action kinetic reactions. The process of gene expression consists of two

major steps. First, the RNA is transcribed from the DNA, then this RNA is translated

as an unfolded protein. Figure 5.3 shows that how this process model is built around

the “central dogma” of molecular biology.
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5.2.1 Initial modeling steps

We start the model building from the simplest model for gene expression which contains

only 4 reactions [122]

DNA
α−−→ DNA + mRNA

mRNA
β−−→ mRNA + Protein

mRNA
γ−−→ ∅

Protein
ρ−−→ ∅ ·

These four reactions facilitate the mRNA and protein production and also accounts for

the degradation of mRNA and protein.

A simple state space model can be formulated for this reaction network

ṁ = α− γm

Ṗ = βm− ρP

where m and P track the mRNA and protein concentrations in the system, respectively.

In this simple model the steady-state level for each state variables is dictated by the

balance between the production and degradation.

We will extend this model in two directions in order to accurately describe our in vitro

gene expression system. First, these reactions are facilitated by enzymes such as RNA

polymerase and Ribosome. In addition to that enzymes are finite and shared resources

in this system. Thus, modeling of the enzyme loading is an important as aspect of the

final model. Second, the building blocks of mRNAs and proteins (nucleotides and amino

acids) are also finite in the system. Both directions are equally important to accurately

characterize the main operation regimes of the in vitro system.

Finally, there are other specialties of the gene expression system that we are explain in

details at the corresponding step in the model building process.
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5.2.2 Transcription

Transcription, the process by which enzymes use nucleotide bases to create an RNA

transcript from DNA, is modeled using the following chemical equations:

RNAP + σ
p2−−⇀↽−−
p3

RNAP : σ (5.1)

DNA + RNAP : σ
p7−−⇀↽−−
p8

DNA : RNAP : σ

NTP + DNA : RNAP : σ
p9−−⇀↽−−
p10

NTP : DNA : RNAP : σ

NTP : DNA : RNAP : σ
p12−−→ DNA + RNAP : σ + mRNA ·

In the above equations the pi ∈ R+ are the kinetic rate coefficients of the reactions

and these equations describe transcription as a three step process: the activation of the

core RNA polymerase (RNAP) by a sigma factor protein (σ) to form the holoenzyme

(RNAP:σ); the binding of this activated RNAP to DNA to rapidly form a larger ‘enzyme-

template’ complex DNA:RNAP:σ; and the use of this complex with NTPs to produce

mRNA. When other σ factors are utilized for transcriptional control (e.g., [101]), our

approach can effectively capture the competition for core RNA polymerase (e.g., [104]).

We do not model initiation, elongation and termination separately, instead we simply

model the production of the whole mRNA transcript in a single enzymatic step, as shown

in the last reaction in the list above. (A more detailed model of mRNA production,

including competitive inhibition can be found in [8]). It should be noted that, as a

modeling assumption we do not distinguish between the functional segments of the

DNA (e.g, promoter, terminator, etc.), instead we model it just as a single species.

For a typical transcription reaction utilizing sigma factor σ70, the complex RNAP:σ will

effectively be at an equilibrium after an initial transient. Furthermore, the four RNA

nucleotides (ATP, GTP, CTP and UTP) are summed and lumped into a single species

(NTP,x5). The NTP concentrations are determined from the buffer preparation protocol

([ATP]=[GTP]=1.5 mM, [CTP]=[UTP]=0.9 mM) [110]. The stoichiometry of the NTP

usage in these reactions have numerical implementation issues, which are addressed in

Section A.2.1.

The cell extract also contains the machinery for mRNA degradation (presumably sev-

eral endonucleases and exonucleases remain active in cell-free extract), which has been
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studied in a previous work [63].

The degradation enzymes attack all the complexes containing mRNA, but we can only

measure the aggregated effect of these degradation pathways. Thus, a model with mul-

tiple degradation pathways for mRNA can lead to structural identifiability issues, since

many parameter combinations of the individually not measurable pathways can lead

to the same overall rate of mRNA degradation. Because of that, we model mRNA

degradation as a first order reaction:

mRNA
p17−−→ ∅ · (5.2)

Using purified mRNA, we have independently measured that the mRNA degradation in

the cell-free extract, which follows first-order kinetics with a half life in range of 12-16

minutes, as it can be seen in Figure A.1, the details can be found in [J1].

5.2.3 Translation

The transcribed messenger RNA (mRNA) is then used as a template to create protein

via translation. In detailed models, a ribosome (Ribo) sits on the mRNA transcript

and charged transfer RNA (tRNA) molecules are used to transport specific amino acids

to the Ribo:mRNA complex to initiate and elongate a polypeptide chain. The specific

tRNA that binds to the elongation site, and hence the amino acid incorporated, depends

on the nucleotide triplet (codon) on the mRNA being read. The endogenous enzyme,

aminoacyl-tRNA-synthetase, charges the tRNA molecules with amino acids; we add

8 µM of additional tRNA into the buffer to ensure that there are sufficient tRNAs in the

mixture. Furthermore, we ensure that there is an excess of AA in the mixture (1.5 mM

each), so that the various tRNAs can be assumed to be constantly charged by their

respective AAs. This assumption is valid till the concentrations of the AAs fall close to

that of the tRNAs (on the order of 10 µM); typically NTPs run out before AAs. Thus,

we approximate this saturation regime of tRNA-AA through a reaction where a single

species of AA binds to the ribosome-mRNA complex with the value binding constant

set close to total tRNA levels. The rate of this reaction lumps the time required for

tRNA charging and the transport of tRNA to the ribosome by diffusion. In all, we
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model translation as follows:

mRNA + Ribo
p5−−⇀↽−−
p6

mRNA : Ribo (5.3)

AA + mRNA : Ribo
p13−−⇀↽−−
p14

AA : mRNA : Ribo

AA : mRNA : Ribo
p16−−→ mRNA + Ribo + Protein ·

Here, we have lumped initiation, elongation, and termination into a single reaction of the

ribosome-mRNA-AA complex leading to protein production and the dissociation of the

complex. To avoid numerical issues and to keep track of material balance (stoichiome-

try), we also implemented an ‘AA consumption’ reaction (see A.2.1), whose rate depends

on the translation rate and the length of protein. The energy requirement of translation

is not modeled, and this is partially justified because ATP and GTP are provided in

excess of CTP and UTP in anticipation of the additional usage for translation (about

one ATP and one GTP are used for each amino acid incorporated). An explicit resource

usage model for keeping track of each NTP separately is planned to be explored in a

future work. The protein concentration does not achieve a steady state via balance of

production and degradation, which is contrast with the simple model in Equation (5.1).

Therefore, the final protein concentration—due to lack of protein degradation—remains

at a constant level when the system runs out of resources.

The variant of GFP (x7) that we used in the experiments requires 5-7 mins (p4) to de-

velop the fluorophore and become visible (x8) [102]. This maturation process is modeled

as a first order reaction: GFP
p4−−→ GFP*.

5.2.4 Resource degradation

The dynamics of in vitro systems are largely influenced by the finite amount of re-

sources and the change of conditions (e.g., waste accumulation, pH change, etc.) during

biocircuit operation. This has been known for some time; an early paper on cell-free

expression highlighted how ATP degradation leads to a decrease in protein production

[75]. Recent experimental and computational studies on resource effects have shown

that the operational lifetime of a system can be extended by maintaining optimal pH

and replenishing resources in such a way that enzymes in the system remain functional

over long periods of time [101, 102, 109]. These earlier findings led us to incorporate
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degradation of transcriptional and translational resources as necessary components of

our process model.

Based on that transcriptional resource (NTP) degradation modeled as a first order re-

action which is sufficient to capture the decay of transcriptional activity.

Similar modeling assumption can be made for the translational resources. In our pre-

vious work we showed that with additional nucleotides, transcription produces signifi-

cantly more mRNA, but translation output is roughly the same (Figure 3 in [J1] ). To

accommodate this observation in our model, we include a same type of degradation for

translational resources (AA).

Finally, the transcription reaction slows down and eventually stops because the NTP

levels become too low or the build up of ADP relative to ATP makes enzyme reactions

energetically unfavorable [65]. Instead of modeling the various NTPs or their phospho-

rylation states separately, we model the decrease in ATP usability in a lumped manner

through the first order degradation of NTP. This decrease in NTP concentration eventu-

ally leads to a point where the mRNA production rate falls below the mRNA degradation

rate, and eventually causing the mRNA concentration to drop to zero.

5.2.5 State-space model

We chose a mass action kinetics (MAK) framework for modeling transcription and trans-

lation in the in vitro system. Unlike many of the common models used in synthetic

biology, this model explicitly accounts for resource consumption in order to cover re-

source limits and resource sharing effects. Mass action–based modeling has a number

of advantages, including the ease with which stochastic solvers can be applied (e.g., to

investigate the dynamics in the non-deterministic regime [72]).

The model of transcription-translation is written in the following general non-linear

form:

ẋ = f(x, P ), (5.4)

x(0) = x0,
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Figure 5.3: Overview of the process model. The model is built around the central
dogma of molecular biology with additional step accounting for resource consumptions
and degradations. Forward and reverse reaction rate coefficients are denoted with green
and orange colors, respectively. The x1, . . . , x14 are the species concentrations. The

parameters p11 and p15 are not shown, see Appendix A.2.1 for details.

where x : R→ Rn+ is the state vector, P ∈ Rm+ denotes the vector of model parameters,

in our case n = 14 and m = 18. Table 5.2 lists the non-zero initial values used in this

chapter.

The dynamics of the transcription and translation described in Subsections 5.2.2 and

5.2.3 is given by the following system of ODEs:

ẋ1 = −F1 ẋ2 = −F1

ẋ3 = −F3 + F10 ẋ4 = F1 − F4 + F7

ẋ5 = −F5 − F12 ẋ6 = −F8 − F13

ẋ7 = −F2 + F10 ẋ8 = F2

ẋ9 = −F3 + F7 + F10 − F11 ẋ10 = F3 − F8 + F9

ẋ11 = −F4 + F7 ẋ12 = F4 − F5 + F6

ẋ13 = F5 − F6 − F7 ẋ14 = F8 − F9 − F10. (5.5)

The Fi, i = 1, . . . , 13 appearing in the above ODEs are the following:

F1 = p2x1x2 − p3x4, F2 = p4x7,

F3 = p5x3x9 − p6x10, F4 = p7x4x11 − p8x12,

F5 = p9x5x12 − p10x13, F6 = p11x13,

F7 = p12x13, F8 = p13x6x10 − p14x14,
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F9 = p15x14, F10 = p16x14,

F11 = p17x9, F12 = p18x5, (5.6)

F13 = p1x6,

where pi ∈ R+, i = 1, . . . , 18 are the positive model parameters (reaction rate coef-

ficients), i.e. P = [p1, . . . , p18]T . The elements of the state vector x are the species

concentrations and Table A.1 lists which species is corresponding to which state vari-

able.

Table 5.2: The table lists the species with non-zero initial concentrations in the model.
Resource (R) type species are established by the crude-cell extract protocol [110]. The
values in case of enzyme (E) type species are taken from the literature. We took the
average concentration of the nucleotides (ATP, CTP, GTP, UTP) and denoted the

average value as NTP. (The same goes for amino acids.)

Species State Initial value Type Source

[NTP] x5 1.2 mM R Protocol in [110]
[AA] x6 1.5 mM R Protocol in [110]

[RNAP] x1 100 nM E Table S5 in [101]
[Ribo] x3 1000 nM E Table S5 in [101]
[σ70] x2 35 nM E Table S5 in [101]

5.2.6 Measured outputs

The measured MGApt signal is the experimental measure of mRNA concentration and

thus the total concentration of mRNA within the system can be calculated via

[mRNA]tot = x9 + x10 + x14. (5.7)

The matured GFP protein is a final product in the system and its concentration is

represented with state variable x8. Thus, the observed outputs can be written as

h1(x) = S1[mRNA]tot, (5.8)

h2(x) = S2x8. (5.9)

Each output was measured in relative fluorescence (a.u.) and then converted to nM via

scaling factors S1 = 7.75 a.u./nM and S2 = 1.723 a.u./nM. These scaling factors were

determined in [J1]. We note that these values are highly machine specific and valid
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only in the concentration range considered in this Chapter. This means that, the same

calibration process has to be carried out as in [J1] to determine the scaling factors for the

actual machine. On the top of that these scaling factors should be reevaluated overtime

as the light intensity of the built in light source decreases.

5.3 Analysis of the Process Model

The goal of this section is twofold. First, we briefly examine the dynamics of the model

and draw some conclusions from it. Then, we check the model structure itself whether

it allows us (at least theoretically) to uniquely determine the model parameters.

5.3.1 mRNA dynamics

During the experiments we observed that a peak in mRNA production occurs around

150 min (see Figure 5.2, left panel). By doing simple calculations, we can find a relation

between reaction rates that is valid in that time instant. The total mRNA concentration

is given by Equation (5.7). From this, we can calculate that an extremum in mRNA

concentration may occur when ẋ9 + ẋ10 + ẋ14 = 0. Summing the corresponding right

hand sides in Equation (5.5) we obtain

p12x13 − p17x9 = 0. (5.10)

In Equation (5.10) the first term is the transcription rate and the second part is the

degradation rate of mRNA. On the other hand, the value of x13 depends on the con-

centration of NTP (x5), which decreases over time. Therefore, the maximum of mRNA

level occurs when the two terms in Equation (5.10) are equal as shown in Figure 5.4.

5.3.2 Steady state assumption

We can somewhat simplify the model by considering the fact that the sigma factor

(x2) binds with the RNAP (x1) on a time-scale that is much faster than those of other

reactions. Thus, we assume that ẋ1 = 0 and ẋ2 = 0, and then the differential equation
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Figure 5.4: Simulation of reaction rates for the mRNA dynamics and transcription
dynamics. The reaction rate for transcription (p12x13) decays over time and eventually
crosses the rate of mRNA degradation (p17x9) causing a peak in mRNA production.

for state x4 becomes

ẋ4 = −F4 + F7. (5.11)

This way, we do not have to consider the dynamics of x1 and x2 and estimate or find

values from literature for their parameters (p2, p3). However, we need to estimate the

initial value of x4 denoted by x4init.

5.3.3 Structural Identifiability

At this point we can check whether it is theoretically possible to determine the model

parameters based on the model structure and the observables (h1(t), h2(t)).

For the structural identifiability analysis we use the generating series approach (see

Section 2.5) and checked the model structure and its output with the GenSSI toolbox

[26].

Calculating the generating series is computationally intensive, and the computation time

rapidly grows with the increasing number of parameters checked by the algorithm. Thus,

we had to limit the number of parameters in the identifiability analysis by assuming that

the mRNA degradation (p17) is known from our independent measurement of mRNA

degradation (see Figure A.1 and [J1] for details). After that, we checked a model with 12

reaction rate coefficients and two initial value denoted by vector Pid ∈ R14
+ . According

DOI:10.15774/PPKE.ITK.2015.008



Chapter 5. Modeling and Parameter Estimation of a Cell-free in vitro System 84

First order reduced Identifiability tableau

Estimated Paramters

N
on

−
ze

ro
 G

en
er

at
in

g 
S

er
ie

s 
C

oe
ffi

ci
en

ts

p1 p5 p6 p7 p8 p9 p10 p12 p13 p14 p16 p18

1

2

3

4

5

6

7

8

9

10

11

12

Figure 5.5: Result of the structural identifiability which is called the identifiability
tableau. The Jacobian of generating series coefficient were calculated and the non-zero
elements of the Jacobian are shown. This helps to reduce and eventually solve the
underlying algebraic equations; see [26] for details. The GenSSI software does not show

the parameters for initial values of the system on the identifiability tableau.

to the report generated by the GenSSI toolbox the set of nonlinear equations had more

than one solution, we can thus conclude that our model is at least locally identifiable.

The graphical output of the structural identifiability analysis can be seen in Figure 5.5.

Each blue field in the matrix represents a non-zero element in the Jacobian of the non-

zero generating series coefficients, which is used to solve system of nonlinear equations,

see Section 2.5 for details.

5.4 Parameter Estimation

Our parameter estimation procedure is based on the commonly applied minimization

of the distance between the measured and model computed output. The statistical

evaluation and validation of the parameters is also carried out to investigate the quality

of the parameter estimation and to identify parameters where further experiments may

need to decrease uncertainty.

Figure 5.6 shows the mRNA and GFP measurements with four different initial DNA

concentrations between 1 nM and 10 nM. These measurements were taken according

to the procedure detailed in Section 5.1.2. For each measurement with different initial

DNA concentration, the mean and standard deviation were calculated and shown in

Figure 5.6 as colored solid lines and correspondingly colored shaded areas, respectively.
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5.4.1 Prediction error minimization

After model reduction and taking the parameter values from the literature into account

we can formulate the Pest ∈ R15
+ parameter vector, which consists of 13 reaction rate coef-

ficients [p1, p5, . . . , p10, p12, . . . , p14, p16, . . . , p18] and two initial values (x3init and x4init).

Since a kinetic system requires positive parameter values, we restrict the range of possi-

ble parameters onto the positive orthant with appropriate lower limits. Furthermore, we

utilize the measurement error from the independent measurement of the mRNA degra-

dation (see [J1] for details) to restrict the possible values for mRNA degradation rate

coefficient (p17). Different starting points for the parameter estimation were generated

with hypercube sampling from a uniform distribution [108].

The model has two measured outputs h1(t) and h2(t) for the mRNA and GFP concen-

trations, respectively. To incorporate the multiple outputs into the cost function we

normalize each term with the maximum of the corresponding time series data ȳk(t) =

y
(k)
i (t)/max(y

(k)
i (t)), where k is the index of consecutive experiments with different ini-

tial DNA concentrations and i denotes the measured outputs. We did the same normal-

ization with the model output h̄
(k)
i (t) = h

(k)
i (t)/max(y

(k)
i (t)). This leads to the following

cost function

C(Pest) =

M∑
k=1

T∑
t=1

[
ȳ

(k)
1 (t)− h̄(k)

1 (x(t), Pest)
]2

+
[
ȳ

(k)
2 (t)− h̄(k)

2 (x(t), Pest)
]2
, (5.12)

where M = 4 is the number of different experiments we consider and T=280 is the

number of samples and samples are taken in every 3 min. Then, we need to solve the

following constrained least squares optimization problem

argmin
Pest∈P

C(Pest) (5.13)

0 ≤ Pest ≤ UB,

where P is the set of feasible parameters and UB is the vector of upper bounds. The op-

timization problem stated in Equation (5.13) was performed with a gradient-free global

optimizer implemented as a pattern-search [11]. The gradient-free optimization ap-

proach was selected to avoid interference between the accuracy of the ODE solver and
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Figure 5.6: Simulations with the estimated parameter set is shown in red. The Figure
contains time series measurement for both channels with different initial concentration
DNA (1nM, 2nM, 5 nM and 10 nM plasmid DNA concentration, shown in green, red,
cyan and black respectively). The left panel shows the dynamics of MGApt, which
is proportional to the mRNA concentration. The GFP dynamics is shown on the
right panel. The fluorescent counts for each channel have been converted by applying

Equations (5.8) and (5.9) to nM and µM, respectively.

the finite differentiation for gradient calculation which commonly occur when gradient

based optimization is applied in this setup (see Subsection 2.4 for details on this issue).

During the parameter estimation we found numerous local minima, where the mRNA

degradation varied over several orders of magnitude. In our previous study [J1], we

conducted independent measurement of mRNA degradation in the in vitro system (see

Section 5.1 for the details). From that study, the measurement puts the mRNA half-life

in a range of 12–16 min [101]. Thus, we used that information to restrict the mRNA

degradation rate (p17) in the parameter estimation process.

The result of the parameter estimation is summarized in Table 5.3 and simulations of

the estimated parameter set (solid red lines) overlapped with the measurements is shown

in Figure 5.6.

Finally, we validated the estimated parameters over a different set of data. Originally,

we had measurements with different initial DNA concentrations between 0.1 nM and

20 nM. We divided this data set and used measurements from 1 nM to 10 nM for the

parameter estimation. For validation, we used the 0.1 nM to 0.5 nM concentration

range. We found that, on average we have 20% error in the final GFP production. This
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Table 5.3: Numerical result of the parameter estimation. The table has 13 reaction
rate coefficients and two initial concentrations.

Name Value Coefficient of variation Unit

1 p1 1.90× 10−4 9.88% 1/s
2 p5 6.94× 10−2 29.9% 1/(s·nM)

3 p6 8.43× 10−1 30.32% 1/s
4 p7 7.00× 10−3 29.93% 1/(s·nM)

5 p8 1.38× 102 79.52% 1/s
6 p9 6.20× 10−2 40.23% 1/(s·nM)

7 p10 3.55× 10−1 108.84% 1/s
8 p12 8.90× 10−3 6.34% 1/s

9 p13 5.95× 10−2 28.43 1/(s·nM)
10 p14 2.33× 105 75.21% 1/s

11 p16 3.02× 10−1 63.26% 1/s
12 p17 1.07× 10−3 6.56% 1/s

13 p18 2.98× 10−4 8.47% 1/s
14 x30 375.58 16.62% nM
15 x40 276.13 6.18% nM

is acceptable for three reasons. First, the qualitative features of the simulations are still

acceptable in comparison with the measurements. Second, this mount of steady-state

error is acceptable since most of the biocircuits are sensitive to fold-change [47]. Third,

the presence of malachite green aptamer affects the protein production rate, as it can be

seen in Figure A.2, so we can only have approximate figures for the parameters related

to the final protein concentration.

Numerical Implementation The simulated ODE model is stiff [99] — most likely

as a result of the NTP (x5) and AA (x6) consumption — thus we used the efficient

CVODES solver [98] to solve the model ODEs, also ODEmex software was applied for

further speed gain [121].

5.4.2 Statistical Analysis of the Parameter Estimation

To evaluate the quality of the parameter estimation we used a Markov-Chain Monte

Carlo (MCMC) implementation to generate the joint posterior distribution of the pa-

rameters. The MCMC procedure was initiated at the result of the point estimation with

uniform prior and with the same lower and upper bounds that was used in Equation

(5.13). The detailed version of the algorithm can be found in [52]. From the results
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Figure 5.7: Validation of the estimated parameter set over another set of data (0.1 nM,
0.2 nM, 0.5 nM of plasmid DNA). The red curves show the corresponding simulations
with the parameters from Table 5.3. On average there is 20% error in the final value of
GFP, the simulation qualitatively matches the time series data. The 1 nM data (black

curve) was used for estimation, shown here only for comparison.

of the MCMC algorithm, either through counting statistics or through the covariance

matrix we can establish the coefficient of variation for the parameters [9].

We ranked and listed the cross-correlations larger than 0.5 in Table 5.4. It shows three

groups of cross-correlations. In the first one, the translation rate (p16), the translational

resource binding (p14) and the Ribosome bindings (p5, p6) are highly correlated. This

may suggest that there is not enough information in the measurement data to determine

the correct parameters for all stages of translation. In the second group, there is a cross-

correlation between the promoter strength (p8) and translational reactions (p14, p16). In

the third group, the same translation reaction coefficients (p14, p16) are grouped with

the initial concentration of the sigma factor activated RNA polymerase (x4init).

The result of the cross-correlation analysis will certainly help in designing future ex-

periments to improve parameter estimations. Most of the parameters in Table 5.4 are

related to translation. In order to get a better estimate of these parameters, we have to

manipulate Ribosome binding strength and/or Ribosome concentration in the in vitro

system. These are possible future directions to design targeted experiments in order to

enhance the quality of the parameter estimation for some of the parameters. Consider-

ing the coefficient of variation of the parameters we can see that some of the parameters

are accurately estimated, e.g. p1, p18 (resource degradation), p12 (transcription rate).

This suggests that we have a good estimate for the resource degradation and some of
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Table 5.4: The table contains parameter pairs with the strongest cross-correlation.

Parameter Parameter Correlation

p14 p16 0.942
p5 p6 0.929

p8 p14 0.702
p8 p16 0.645

p14 x4init 0.574
p16 x4init 0.551

the transcription related parameters, e.g. p12, p7 and p9. On the other hand, coeffi-

cient of variation for p8 (promoter strength), p10 (NTP binding), p14 (AA binding) and

p16 (translation rate) are very large. Therefore, we need another way to decrease our

coefficient of variation in these parameters. One possibility was highlighted at the cross-

correlation analysis, but these resource binding related parameters can be measured with

tedious experiments (if measurement is possible at all). Therefore, it may be necessary

to do some level of model reduction to improve the estimation result.

Besides analyzing the coefficient of variation and evaluating the cross-correlation, we can

take advantage of the fact that we calculated the full joint posterior distribution of the

parameters. Hence, we can select regions from the parameter distribution (via confidence

intervals) and take all the parameters from a selected region and simulate them. Roughly

speaking, we can visualize how the dynamics is ’spreading’ by the variations of the

parameters. The results computed by using the parameters in Table 5.3 is shown in

Figure 5.8. where the general shape of the dynamics is the same over different confidence

intervals (99%, 95%, 90%, 50%). Although higher uncertainty arises around the mRNA

peak time and peak value and around the steady-state level of GFP.

5.5 Summary

We have demonstrated a reduced order model for our cell-free system, where the mod-

eled states captured the observable dynamics with low model complexity. The proposed

model is capable to simulate synthetic biocircuits. The model also has predictive capa-

bility due to the detailed modeling of the resources (NTP, AA). Finally, the experimental

setup enabled us to monitor the mRNA level in real time, this leads to a better estima-

tion of the model parameters.

DOI:10.15774/PPKE.ITK.2015.008



Chapter 5. Modeling and Parameter Estimation of a Cell-free in vitro System 90

MGApt

Time [min]

[n
M

]

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

GFP

Time [min]

[µ
M

]

0 100 200 300 400 500 600 700 800
0

5

10

15

20

DNA: 1nM

DNA: 2nM

DNA: 5nM

DNA: 10nM

Figure 5.8: Samples for the joint posterior distribution of the parameters were drawn
with different confidence intervals (99%, 95%, 90%, and 50%), we simulated the dy-

namics with these parameter sets.

The demonstrated model analysis has explained the observed mRNA dynamics and has

allowed the steady state assumption-based model reduction. To ensure proper model

structure, we checked—the often neglected—structural identifiability of the improved

model. This model turned out to be at least locally structurally identifiable, that pro-

vides a good foundation for parameter estimation. For the parameter estimation, we

applied a derivative-free pattern search method accommodating multi-channel multi-

experiments data. The resulting parameter set was statistically evaluated and validated

on a different data set. Statistical analysis revealed some uncertain parameters that we

attempted to explain from biochemical process and the experimental setup points of

view. Based on these results, we can focus our future work on improving the experiment

design and possibly further reducing the dynamical model itself.
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Chapter 6

Conclusions

Building upon a set of mathematical optimization based approaches to investigate prop-

erties of kinetics systems and the associated directed graph structures, this thesis has

presented two new optimization based algorithms.

It has been known that the sparse directed graph structure is not necessarily unique

which is in contrast with the unique dense structure. This non-uniqueness may hamper

the successful identification of a kinetic system because a unique sparse structure is often

implicitly assumed. The first algorithm shows an efficient way to calculate all sparse

directed graph structures of a kinetic system.

The second algorithm has been developed within the newly introduced class of uncertain

kinetic systems. This algorithm with polynomial time complexity computes the core

reactions of the uncertain kinetic system by applying linear programming. In these

kinetic systems the uncertainty is represented as a multi-dimensional interval in the

space of monomial coefficients. The versatility of this type of model makes it possible

to accommodate various types of parametric uncertainties such as temperature change

or different operation regimes.

Application examples have been demonstrated to show the operation of the algorithms.

The capability of the first procedure has been illustrated by a well-known nonlinear

system, the so-called Lorenz system. This system is suitable to exhibit chaotic behavior.

To show the non-unique sparse structures of the Lorenz system, it has been transformed

into a kinetic system with two different approaches in order to make it compatible with

the algorithm. In the case of the second algorithm, a simple network reconstruction
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benchmark example was used to illustrate the computation of the core reaction set of

an uncertain kinetic system. Moreover, it has been illustrated that the sparse structure

of a kinetic system with predetermined uncertainty may not be unique.

The last part of this thesis is focusing on the modeling process of an in vitro system. The

process has started with a list of molecular laboratory protocols to prepare the different

molecular probes. Then, series of experiments has been performed to collect data about

the cell-free gene expression system. From these experiments, a first principle model

has been developed to capture the transient behavior of the gene expression in the in

vitro the cell-free system. As a next step, the dynamical and structural properties of the

model has been investigated which includes a structural identifiability analysis. Finally,

the quality of the time series data enabled us to estimate and validate the parameters

of the developed kinetic model.

6.1 New scientific results

Thesis I. I have developed a mathematical optimization based efficient

algorithm to compute all dynamically equivalent sparse realizations of

a kinetic system.

Using combinatorial and mathematical optimization techniques, I have developed the first

algorithm in the literature to compute all sparse realizations of dynamically equivalent

kinetic systems. This algorithm uses mixed integer linear programming (MILP) and

linear programming (LP) steps to compute all the sparse realizations.

Corresponding publications: [J2], [C2].

Thesis I.a

I have proposed an effective reduction of the combinatorially possible search space by

using appropriate constraint-pairs and the properties of constrained sparse realizations.

The special properties of dense and sparse realizations made it possible to reduce the

original search space which consists of all directed graphs with fixed set of nodes to a

computationally tractable number of candidate structures.
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Thesis I.b

By applying state-dependent time-rescaling and X-factorable transformation, I have com-

puted all sparse CRN structures for two different kinetic models of the well-known Lorenz

system showing chaotic behavior. I have compared the obtained realizations from a struc-

tural point of view and determined the minimal and maximal number of linkage classes

and deficiencies corresponding to the sparse realizations. I have shown that the com-

plete search space was reduced to 0.01 and 0.0037 percents in the case of state-dependent

time-rescaling and X-factorable transformation, respectively.

The Lorenz system was a good candidate to show the application of the developed

algorithm. Two distinct approaches yielded different number of sparse structures in

each case, but with similar structural properties. It was computationally checked that,

the chaotic behavior of the system was preserved in all representations.

Thesis II. I have developed structural analysis tools for kinetic systems

with parametric uncertainty.

I have developed optimization based tools for the structural analysis of uncertain kinetic

systems. The uncertainty in these systems are represented as a multi-dimensional inter-

val in the space of monomial coefficients.

Corresponding publications: [C5], [C1].

Thesis II.a

I have proposed a new algorithm for the computation of dense and sparse reaction net-

work structures for kinetic polynomial models, where the uncertainties are represented

as parameter intervals. The problem is traced back to mixed integer linear programming

where the parameter uncertainties are given by linear inequalities.

The current computational framework has been extended to accommodate parametric

uncertainties while certain structural properties of the kinetic system—as well as the

associated directed graph structure—can be effectively calculated. This approach opens
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up the possibility to extend several previous optimization based results to uncertain

kinetic systems such as weak reversibility or complex balance.

Thesis II.b

I have developed an algorithm with polynomial time complexity to calculate the struc-

turally invariant elements, called core reactions that are present in any reaction network

belonging to the model set defined by the uncertainties. The proposed algorithm is based

on linear programming and incorporates the parametric uncertainty of the system as

element-wise boundary constraints.

The core reactions are one of the most important elements of the reaction graph, since

if the set of core reactions is non-empty, its elements are present in each dynamically

realization. Thus, the computation of distinct dynamically equivalent reaction network

structures satisfying a given property can effectively be supported by utilizing the core

reaction set.

Thesis III. I have built a kinetic model for an in vitro cell-free gene

expression system.

I have built a first principle kinetic model for an in vitro cell-free gene expression system

using a specific experimental setup. I have shown that with the estimated and validated

parameters the kinetic model effectively captures the dynamical features of the cell-free

system.

Corresponding publications: [C4], [J1], [C3].

Thesis III.a

I have built combinations of molecular probes containing RNA aptamer and fluorescent

proteins for the investigation of the cell-free system. I have designed and carried out

a comprehensive study of the cell-free system utilizing concurrent measurement of tran-

scription and translation.

DOI:10.15774/PPKE.ITK.2015.008



Chapter 6. Conclusions 95

Concurrent measurement of transcription and translation was important for the devel-

opment of a reliable kinetic model. The library of molecular probes made possible to

study the dynamical features of the cell-free system in detail. As a result of that, this

measurement set up serves as a benchmark for testing different versions of the cell-free

system.

Thesis III.b

Based on the observations from the experiments, I have built a kinetic model for the stud-

ied cell-free system, which is capable of capturing the transient behavior of the system

taking into consideration the finite resources. I have shown that the model is struc-

turally identifiable using the applied measurement setup. Finally, I have determined and

validated the parameters of the dynamical models using constrained least squares based

parameter estimation.

Utilizing the library of molecular probes and domain knowledge about the process of

gene expression, the resulting dynamical model is structurally identifiable. Also, the

fact that the developed model structure is linear in parameters and the quality of the

data enabled us to use the least squares based parameter estimation.
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6.2 Possible directions of future work

Given the broad topic of this thesis, several directions of future work are possible in

different fields. In Chapter 3, we investigated the non-uniqueness of the dynamically

equivalent sparse structure of a kinetic systems. The result illustrates that the sparse

structure of kinetic systems may be non-unique. Moreover, the Lorenz example has a

large number of sparse realizations. A possible direction of future work might be the

graph theoretical investigation of these sparse structures. That could include the average

incoming and outgoing connection of a complex in each realizations or the reaction

distribution considering a complex in all the realizations.

As another direction, we could extend the proposed algorithm in Chapter 3 to accom-

modate uncertain kinetic systems which were introduced in Chapter 4. This would offer

an algorithmic way to calculate all dynamically equivalent sparse realizations at a given

level of uncertainty. This algorithm would be a powerful tool for network reconstruction

where usually only noisy time series data and the set of vertices of the directed graph is

known.

In Chapter 4, we briefly investigated the application of the core-reactions in network

reconstruction. As a result of that, we have concluded that the core reaction set can

be at least partially restored from the time series data. On the other hand, we did not

extend the concept of core complexes to uncertain kinetic systems and did not include it

to the computation. Thus, the application of the core reactions and the core complexes in

an algorithm where they are calculated in an alternating fashion could be the backbone

of an improved method for network reconstruction within the class of kinetic systems.

The introduction elaborated on the challenges of kinetic system identification. Among

many important open questions, the relevance of optimization based experiment design

for a molecular breadboard was highlighted. Chapter 5 laid the foundation of that work

by introducing a dynamical model for the cell-free system on which the molecular bread-

board is built on. Utilizing this kinetic model, an optimization based framework could

be developed where the optimization task would consider all the physical limitations of

the molecular breadboard.
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A.1 Special measurements
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Figure A.1: Measurement of mRNA degradation in the gene expression system. The
figure shows that, within the measured rage, mRNA degradation follows first order

kinetics.
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Figure A.2: The experiment compares the two constructs with MGApt and without
it. The endpoint measurements (final concentrations level) show that the presence of

MGApt increases the overall protein production.

Table A.1: Species - state variables

Species State variables

[RNAP] x1

[σ] x2

[Ribo] x3

[RNAP:σ] x4

[NTP] x5

[AA] x6

[GFP] x7

[GFP∗] x8

[mRNA] x9

[mRNA:Ribo] x10

[DNA] x11

[DNA:RNAP:σ] x12

[NTP:DNA:RNAP:σ] x13

[AA:mRNA:Ribo] x14
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A.2 TXTL Software toolbox

A.2.1 Implementation considerations

Both transcription and translation are implemented by ignoring the individual stages

of initiation, elongation and termination. Under a näıve implementation scheme, tran-

scription, for instance, would look like:

n ·NTP + DNA : RNAP : σ −−⇀↽−− n ·NTP : DNA : RNAP : σ

n ·NTP : DNA : RNAP : σ −−→ DNA + RNAP : σ + mRNA

with a large stoichiometric coefficient n in front of the NTP (AA) term in the chemical

equation. This leads to numerical difficulties. First, the ODEs describing these reactions

become very stiff due to an extremely large exponent in the NTP term. Second, the

reaction order and hence rate depends on the length of the mRNA, because n is simply

this length in nucleotide bases (this would also not be an accurate model, since the whole

mRNA is not assembled instantaneously, like it would suggest).

We first alleviated these problems by lumping the NTP (AA) into units of 100, bringing

reaction orders down to 10 (most of our genes are on the order of a thousand base pairs).

We further implemented a heuristic approach whereby we used only one unit of NTP

(AA) for each transcription (translation) reaction and coupled this to a ‘consumption’

reaction. This reaction effectively consumes NTP (AA) at a rate of p11 = (n − 1)p12

where p12 is the original transcription rate, and n is the length of the RNA (protein)

sequence

NTP : DNA : RNAP : σ
p12−−→ DNA + RNAP : σ + mRNA

NTP : DNA : RNAP : σ
p11−−→ DNA + RNAP : σ ·

A similar an auxiliary reaction (F9) for AA consumption can be introduced with reaction

rate coefficients p15 = n/3p16

AA : mRNA : Ribo
p16−−→ mRNA + Ribo + Protein

AA : mRNA : Ribo
p15−−→ mRNA + Ribo ·
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[114] G. Szederkényi, J. R. Banga, and A. A. Alonso. “Inference of complex biological

networks: distinguishability issues and optimization-based solutions”. In: BMC

Systems Biology 5 (2011), p. 177. doi: 10.1186/1752-0509-5-177.
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