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Abstract

Cardiac auscultation is one of the oldest examination methods. Despite the

development of modern imaging techniques the stethoscope is still considered

a symbol of the doctor’s profession. At the beginning of the 21th century

auscultation has found its main role in primary and in home health care when

decisions have to be made about any further, more extensive examinations or

special care. However, it seems that the real potential of heart sound analysis

is still not exploited, especially in the field of fetal-neonatal examinations.

The aim of this thesis work has been twofold. First, recent studies showed that

the fetal heart sound signal contains much more information than currently

utilized in routine cardiotocographic examinations. Although a multitude of

tools have been developed in the recent decades for the analysis of phonocar-

diographic (PCG) signals, their adaptation to fetal PCG is not straightforward

because of differences in the cardiac anatomy, physiology and in the proper-

ties of the recorded signal (for instance bandwidth). Another major issue is

the high level of noise. In this dissertation I present results on improved fetal

heart rate calculation based on a method in the time-frequency domain. Fur-

thermore, I describe a heart sound model which can be applied for parameter

estimation of the first heart sound. The most important result outlined is the

investigation of fetal heart murmurs, which could be a tool contributing to the

widespread screening for congenital heart diseases prenatally.

A second aim of this work has been the application of phonocardiography

to preterm infants with patent ductus arteriosus (PDA). I investigated the

possibility of monitoring the state of the PDA through parameters of the heart

sound signal. For this reason I introduced a method for sensitive detection of

the murmur produced by turbulent blood flow through the ductus arteriosus

and extracted parameters of the murmur which showed a relationship with

important medical parameters. Another approach was the examination of

the separation of the aortic and pulmonary components of the second heart

sound (splitting). I applied a heuristic decomposition method and verified this

procedure on an adapted heart sound model for preterm neonates. Based on

this analysis I found that there is an increased splitting around the time of

the closure of the PDA in the case of preterm infants receiving medication for

closure.
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Chapter 1

Introduction

“Itt nem vagyok idegen

Fekszem a sźıveden

és hallom, hogy dobog.”

Ákos – Adj hitet!

“And the sound of your heart,” he continued.

“It’s the most significant sound in my world.”

Stephenie Meyer – Eclipse

1.1 Preface

Phonocardiography (PCG) deals with processing of the acoustic signals produced by the

mechanical actions of the heart resulting in the vibration of the valves, heart muscle tissues

and great vessels [13]. One of the central issues is to extract the different heart sounds

from a noisy recording and relate them to the corresponding cardiac event. Moreover,

heart sounds can be further analysed and certain features can be extracted for estimating

the underlying cardiac parameters.

The importance of the heart was already realized in the fourth century B.C., although

with some misconceptions: Aristotle argued that it was the seat of intelligence, motion

and sensation [14]. From the medical perspective, Hippocrates noted already an early form

of auscultation by holding an ear against the chest, but in his works he described only

breathing sounds. Blood circulation was first described by William Harvey, an English

Physician in 1628. In the same century, the polymath Robert Hooke (1635-1703) described

1
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2 1. INTRODUCTION

the diagnostic potential of heart sounds [15]:

“I have been able to hear very plainly the beating of a Man’s Heart . . . Who

knows, I say, but that it may be possible to discover the Motions of the hemal

Parts of Bodies . . . by the sound they make, that one may discover the Works

performed in the several Offices and Shops of a Man’s Body, and thereby dis-

cover what Instrument or Engine is out of order.”

These investigations lead to the invention of the stethoscope in 1816 by R. T. H.

Laennec, and a century later the fetoscope for fetal heart sound examination. Nowadays,

because of new advances in cardiac imaging, cardiac auscultation has become a preliminary

test in the primary health care. On the other hand, due to the limited financial and

human expert resources and the development of modern low cost computational devices

in information technology, phonocardiography emerges also as a topic of current research

and a possible tool aiding clinical decision making.

When describing the state of the art of PCG it is often compared to electrocardiogra-

phy (ECG), a similar noninvasive examination method, so to say the electronic counterpart

of PCG. A main difference is that greater success was achieved in standardizing ECG in

contrast to classical PCG [13]. However, due to improvements in sensor technology and the

availability of inexpensive computing devices, the concept of intelligent stethoscope gains

importance, especially in telemedical applications [10,16–18], screening of children [19–23]

or even in anesthesiology [24]. The engineering part of these tasks motivates also the

development of methods for phonocardiographic signal processing using approaches in the

time domain [25–27], in the frequency and in the time-frequency domains [28–32], or in

the field of nonlinear dynamics [33–35]. PCG is regarded also as a promising tool for early

identification of coronary artery disease [36, 37]. Another current research topic, where

PCG comes into view, is the assessment of malfunctioning prosthetic heart valves [38,39].

All these current examples show the potential of PCG in present healthcare.

That phonocardiography offers unexplored possibilities is especially valid for the ex-

amination of fetuses because of their hidden position enabling the usage of only a limited

number of monitoring techniques. Furthermore, due to its passive nature causing no ir-

radiation at all, fetal phonocardiography can be applied for long-term monitoring. The

development of adequate methods, which are certainly needed because of the great amount

of data, could enable nearly continuous monitoring of the wellbeing of the fetus. Further-

more, the detection of abnormal heart sounds could contribute to the early diagnosis of

cardiac anomalies.

Computerized phonocardiography is also a tool for quantitative and objective anal-

ysis which is missing in classical auscultation. This can be exploited, for instance for

the monitoring of certain cardiac diseases by assessing the underlying cardiac dynamics.
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Nonetheless, for achievements in PCG the knowledge of the cardiologists, electric, com-

puter and mechanical engineer has to be combined, making it an exciting and difficult

multidisciplinary field of science.

1.1.1 Motivations and aims

Phonocardiography is not only the computerized form of auscultation. It opens new

possibilities for the noninvasive examination of the functioning of the heart because, for

instance, an important part of the intensity and frequency distribution of the heart sounds

and murmurs is out of the human hearing range (Fig. 1.1), especially in the case of noise-

contaminated fetal or preterm heart sound recordings.

Figure 1.1: Intensity of heart sounds and murmurs in correspondence with the threshold
of audibility and speech. Figure redrawn from Leatham [40].

Some other advantages of PCG have been already mentioned earlier and will also be

highlighted in the following sections. There is a great variety of questions in this field

which can be addressed from both a medical and an engineering point of view. The focus

of my research can be summarized as follows: Investigation of methods for the comput-

erized analysis of phonocardiographic recordings from fetuses and preterms for aiding the

diagnosis and monitoring of cardiac anomalies and diseases, with special attention to the

extraction of parameters from the heart sounds and murmurs.

In the following sections an introduction is given to the application of phonocardiog-

raphy in the case of fetuses and preterm neonates.

1.1.2 Phonocardiography in the case of fetuses

Fetal examinations are an important field of healthcare, but due to the hidden position

of the fetus, special measuring problems appear. It is a somewhat surprising that the

DOI:10.15774/PPKE.ITK.2012.001



4 1. INTRODUCTION

observation of fetal heart sounds – despite its quite obvious medical significance – has not

been described before the 17th century. The first note on fetal heart tones is a poetry from

a french man, Phillipe LeGaust, who was a colleague of a physician, Marsac, credited with

first having heard the fetal heart. Nonetheless, this observation remained unnoticed until

around 1820 when a Swiss and a French obstetrician, independent from each other, de-

scribed the potential diagnostic significance of fetal heart sounds, but listening to the fetal

heart tone became clinical practice only after 1833 when Evory Kennedy of Dublin pub-

lished an extensive book in order to convince clinicians of the value of the aforementioned

findings [41].

The first fetal heart sound examinations were performed by placing the ear on the

maternal abdomen. Later, much attention was paid to whether auscultation with Laen-

nec’s instrument, the stethoscope, is more appropriate than auscultation with direct ear

contact. In 1917, David Hillis, an American obstetrician described an instrument called

head stethoscope or fetoscope, which is a stethoscope attached to the head of the obste-

trician keeping his hand free during the auscultation. Because DeLee, chief of staff at

the same institute, claimed the innovation to be his idea, this instrument subsequently

came to be known as the DeLee-Hillis stethoscope, and has changed little since its early

development [42].

Figure 1.2: The DeLee-Hillis stethoscope (fetoscope) for fetal auscultation, keeping the
hands of the obstetrician free during the examination.

The first commercially available electronic fetal heart rate monitor was developed by

Konrad Hammacher and Hewlett-Packard in 1968, using external tocography and phono-
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cardiography. Subsequent improvements allowed the addition of external ultrasound and

intravaginal fetal electrocardiographic monitoring. After several decades of improvement,

the most widely used noninvasive method for cardiotocography (CTG), which focuses

on measuring the fetal heart rate and on simultaneous indication of the womb contrac-

tions (TOCO), is the ultrasound Doppler CTG. The measurement is based on the Doppler

principle detecting the movement of the heart wall by the frequency change of the reflected

ultrasound beam [43].

From the 1970s on ultrasound-based equipment became one of the most important

tools for obstetrician examinations. At present, ultrasound echocardiography is the most

informative noninvasive method providing reliable data about the morphology of the heart

with possible malformations, furthermore about blood flow velocities. The disadvantage

of this examination is that the equipment is expensive and well-skilled expertise is needed

for obtaining and evaluating the data, which limits its usability for widespread screening.

The more simple measurement of cardiotocography is the traditional nonstress test (NST)

in the third trimester by which some basic fetal parameters may be obtained reflecting

the actual status of the fetus. These parameters are derived from a 20-minute long record

producing the fetal heart rate (FHR)-diagram (Fig. 1.3.). Among the main features are the

visually well observable accelerations of the heart rate. A further characteristic feature of

the diagram is the fluctuation from which the heart rate variability (HRV) is calculated,

which is related to the neuronal control of the heart rate. The third parameter is the

mean value (baseline) of the heart rate calculated as the average value but ignoring the

outstanding sections (such as the accelerations) of the diagram. The abrupt decrease of

the FHR (deceleration) might indicates an abnormal situation of the pregnancy, especially

when it follows a womb contraction in a given delay [42]. All these parameters have official

definitions [44], but there is still much research and controversy on the significance of FHR.

Figure 1.3: Fetal heart rate (FHR) diagram from a 10-min long recording. Three acceler-
ations are observable.

Although the ultrasound Doppler CTG is a robust method, it has some limitations. It
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6 1. INTRODUCTION

is still a topic of scientific debate whether ultrasound exposure has an adverse effect on the

developing fetus [45–48], which should also be taken into account in the case of echocar-

diographic examinations. Furthermore, when compared with direct fetal ECG – the most

accurate method for FHR determination – the beat-to-beat time (Tbb) values show an

average absolute error of ∆TRR=2.98 ms with a standard deviation of σTRR =4.18 ms,

and a significant decrease in the short term HRV parameters of even 40 % [49]. It should

be also mentioned that this method does not provide any information about the inner

part of the heart, for instance about the operation of the valves or about the presence of

a septum defect or other abnormality.

There are three other methods to carry out CTG measurements, namely electrocardio-

graphy (ECG), magnetocardiography (MCG) and phonocardiography, which are described

in turn below.

Fetal electrocardiography (fECG) is one of the gold standards for determining the

fetal heart rate and thus obtaining fetal HRV parameters. A disadvantage is that in the

noninvasive scenario the electrodes are attached to the maternal abdomen which introduces

heavy signal processing requirements for extracting the weak fetal ECG signal from the

noisy recordings containing also the strong maternal ECG signal and electromyographic

signals [50, 51]. Furthermore, in the last month and in the 28th to 34th weeks of the

pregnancy the reliability of this fECG decreases to 60 % due to the presence of the vernix

caseosa1 [52–56]. However, its passive nature enables very long measurements, which can

be utilized for studying the FHR variability [57], and the analysis of ST segments enables

the more reliable diagnosis of perinatal fetal hypoxia [58].

Magnetocardiography can also be used for noninvasive CTG measurements. The prob-

lems with this method are the expensive equipment and the skilled personnel required, but

the obtained R-R time intervals and the corresponding FHR values are very accurate and

suitable for deriving further parameters. As an example, maternal-fetal heart rate syn-

chronization has been investigated with fMCG [59]. In another study the changes in the

low frequency bands of the spectral density of the R-R interval function with gestational

age were examined in order to find relations to the development of the fetus [60].

The three formerly mentioned methods for CTG measurements, perhaps except fECG,

have some limitations regarding the following aspects:

• long-term measurements,

• widespread screening of pregnant women,

• evaluation of further features, for example heart murmur.

Regarding long-term measurements it should be noted that a 20-minute measurement is

1The vernix caseosa is a waxy or cheese-like white substance found coating the skin of newborn human
babies
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rather short to get a true information about the fetal status. This is partly because the fetal

status is dependent on the current environment, such as time of day, state of the mother,

and so on. Because of ultrasound irradiation on the intrauterine environment long-term

ultrasound-based CTG measurement, including its home monitoring application, is not

preferred. The long-term application of MCG is safe and suitable, the only obstacle is the

very complex measuring scenario. Fetal ECG fulfils most of the requirements, although

the low SNR, especially in the presence of the vernix caseosa, limits the capability of

identifying the effect of cardiac abnormalities on the electric waveform.

A re-emerging method for CTG measurements is fetal phonocardiography (fPCG).

This is a simple technique for recording transabdominally the acoustic signal of the fetal

cardiac system. The signal is usually corrupted by noise originating from fetal motions and

from the maternal heart and digestive system, however, new advance in signal processing

show a promise for identifying significant features of the fPCG signal related to the fetal

wellbeing.

There are relatively few scientific contributions to fPCG. In one of the earliest con-

tributions to fetal PCG, patterns of the fetal phonocardiogram were correlated with fetal

breathing movements and other fetal movements [61]. For denoising the fPCG signal

several methods were investigated, for example the wavelet transform [62] or adaptive

filtering [63].

The beat-to-beat time (Tbb) measured simultaneously with fPCG and fetal ECG was

compared by Ortiz et al. [64]. They found that the average Tbb time correlated well, and

heart rate variability measures in the very low and low frequency range agreed between

the two methods. On the other hand, the power spectral density of the HRV differed in

the high frequency range (above 0.3 Hz), which was attributed to physiological differences

between the two measured phenomena and to possible errors resulting from the signal

processing. The first one is not completely justified, in the case of the latter there is a

possibility for improvement, attempted also in the present work.

Screening for congenital heart diseases

A further important topic in obstetrics is the detection of diseases, in particular cardiac

diseases because any abnormality in the fetal circulation might have serious consequences,

for instance the injury of the brain [65]. Comprehensive echocardiographic examination

is the most accurate method for detecting cardiac malformations during pregnancy, but

it is expensive and needs skilled expertise. Since the prevalence of congenital heart dis-

eases (CHD) is estimated to be around 8/1000 live births [66, 67], there is a necessity for

examination methods which can be used for widespread screening. A detailed echocar-

diography examination is usually suggested based on risk factors or on an abnormal four-
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chamber view, and some reports suggest that the inclusion of the three-vessel view in the

screening would also increase the detection rate [68]. Risk factors, such as advanced ma-

ternal age, family history of genetic disorders, gestational diabetes or multiple pregnancy

define the high-risk population, whose screening is worldwide more or less solved [69].

On the other hand, detection of CHDs in the low-risk population, where most fetal

cardiac malformation cases occur and only routine screening is performed with greatly

varying training of the operator, remains still a challenge [69,70]. It is problematic because

moderate symptoms of anomalies remain usually unnoticed. Based on present screening

methods the rate of prenatally identified cardiac abnormalities is still only around 50 % or

even less [71], whereas recent studies indicate that prenatal diagnosis of congenital cardiac

defects is important during delivery [72], and improves outcome, for instance in the case of

duct-dependent heart defects [73,74]. These studies underline the importance of widening

the possible techniques for fetal heart examinations in order to minimize the number of

unforeseen cases requiring urgent treatment after delivery.

Echocardiography, being expensive, is not a suitable tool for prenatal screening of

the low-risk population, but is unconditionally necessary for the detailed examination

of the patients found positive by some screening. The capability of Doppler CTG for

discovering additional features is limited to the investigations based on the time- and

frequency-analysis of the FHR data, which is useful for assessing intrauterine growth re-

striction (IUGR) and the neural development of the fetus. However, cardiac anomalies

usually do not manifest themselves in the FHR and a further problem is that FHR variabil-

ity measures calculated from Tbbs of the Doppler CTG proved of decreased accuracy [49].

As already mentioned, fetal ECG and MCG methods are much more reliable concerning

the timings and the signal shapes, they are also a topic of current research, but some

major limitations are present, for instance due to the measuring scenario and the vernix

caseosa.

It appeared based on the analysis of the recordings of the high-volume CTG mea-

surements from the last ten years that the PCG method is capable of detecting some

additional features of the fetal heart as well, such as the splitting of heart sounds – related

to abnormal pressure ratios – and murmur – originating form a turbulent blood flow –,

which may be used for indications of some CHDs.

1.1.3 Phonocardiography in the case of preterm infants

Phonocardiography can be applied also in other fields of healthcare. One of them, in-

vestigated in this work, is the examination of preterm neonates, in particular preterms

with a certain congenital heart disease called patent ductus arteriosus (PDA). This dis-

ease affects a certain essential fetal vessel, the ductus arteriosus, which should close after
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birth (Fig. 1.4). The vital decision a physician faces is whether and how to treat this

disease. Unfortunately there are only a limited number of possibilities for clinical assess-

ment for aiding this decision. However, the application of phonocardiography is still not

exploited in this field.

Figure 1.4: The difference between normal circulation and abnormal circulation due to
patent ductus arteriosus. This essential fetal vascular structure has to close after birth
otherwise allowing harmful systematic-to-pulmonary communication. Reprinted from [75].

In general the prevalence of PDA is around 2 per 1000 births, but in the case of

preterms there is an increased risk for PDA which is due to physiological factors related to

prematurity [76]. Some studies show that 65 % of preterm neonates with birth weight ≤
1000 g will have PDA and a gestation of ≤ 30 weeks is also a recognized risk factor [77,78].

PDA is about twice as common in girls than in boys.

The main diagnosis is done with echocardiography, which needs expertise, and so-

phisticated and expensive equipment. Furthermore, the assessment of hemodynamical

significance is still not obvious [77, 79], which means that the type and the timing of the

treatment is also ambiguous [78,80,81]. These aspects underline the need for simple tools

helping the diagnosis and the monitoring of the PDA in preterms.

Recent advances in neonatal monitoring provide new tools and equipment for the

surveillance of preterm newborns [82, 83], however, these studies usually deal with body

temperature, electro-cardiogram, respiration and the degree of blood oxygen saturation

monitoring. Although PDA may influence these values, its effect is rather indirect. Skin

reflectance has also been suggested as a more direct examination for diagnosing hemody-

namical significance [84], and pulse wave analysis possesses also diagnostic value not yet

exploited [85,86]. Phonocardiography comes into view based on the observation that one

of the fundamental symptoms is murmur. It could help in the quantitative assessment of

murmur parameters since the murmur is often difficult to hear in the noisy environment

of the neonatal intensive care unit. Although earlier studies investigated the murmurs
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related to PDA in preterm infants [87], none of them tried to find a relationship between

various parameters of the heart sound and of the patent ductus arteriosus in the case of

preterm neonates.

Some recent works investigated also the application of biomarkers for diagnosing hemo-

dynamically significant PDA [88]. Although echocardiography probably will remain the

gold standard for the assessment of PDA, an appropriate combination of ultrasound,

biomarkers, and clinical signs might improve the outcome [89], since the underlying main

problem is that there is still a lack of understanding of neonatal circulation, and there is

a “need to move the research beyond simply showing change in a physiological variable in

response to a treatment” [90].

The main idea behind investigating murmurs is to access the blood flow dynamics

through analysis of the generated sound, which is also referred as phonoangiography [91].

However, it is a very difficult problem to relate acoustic parameters with parameters of a

turbulent fluid flow, not to mention the noise which affects the measurements.

Another feature is the investigation of the heart sounds. Normally, these are made up

of the closure sounds of the valves on the left and right side of the heart. In the case of

the second heart sound these are the aortic and the pulmonary valves. The pressure ratios

between the arteries and the ventricles determine the exact closure time of these valves.

Because the patent ductus arteriosus connects the two main arteries, its will have an influ-

ence on the pressure ratios between the arteries and the ventricles, thus also on the second

heart sound. During the closure of the PDA the pressure rates will apparently change,

which could be reflected in the time interval between aortic and pulmonary components

of the second heart sound.

1.2 Methods

All fetal phonocardiographic (fPCG) data was recorded with a phonocardiographic car-

diotocographic (CTG) device (Fetaphon-2000
TM

, Pentavox Ltd.) domiciliary or in clinical

environment, in the case of the latter one mostly at the Hungarian Institute of Cardiology,

Budapest. The length of these recordings was usually 20 minutes corresponding to the

length of conventional CTG examinations. The fPCG device uses a sampling frequency of

333 Hz and a resolution of 8 bits. The recorded data was transferred via a mobile network

and stored on an evaluation centre.

Phonocardiographic data of preterm infants was recorded using a self-made electronic

stethoscope at the 1st Department of Paediatrics, Semmelweis University of Medicine,

Budapest. After preprocessing, the data was archived for further analysis with a sampling

frequency of 3000 Hz and a resolution of 16 bits. The length of the measurements was

usually 30 seconds long. Informed consent was obtained in all cases.
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The difficulty in phonocardiographic signal processing arises from the nonstationarity

of the signals, often resulting in very short transients, and a low signal-to-noise ratio.

Some of the noise can be filtered out using traditional linear filters, but noise components

often overlap with heart sound components not only in the time, but also in the frequency

domain. I applied a wide variety of tools for biomedical signal processing, not all of

them producing acceptable outcomes. In this work I present the results of the following

approaches:

• Time domain methods: linear filtering, improved ensemble averaging [92], heuris-

tic methods

• Time-frequency domain methods: short time Fourier transform [93], wavelet

transform [94], Wigner-Ville distribution [95]

• Signal modelling and model fitting: linear and nonlinear chirp models [28, 96],

time-frequency domain based parameter estimations [97], Monte Carlo method [98]

A more detailed description of the aforementioned methods can be found in Chapter 3.

There are several important phonocardiographic features which have to be assessed.

In the case of fetal CTG measurements the fetal heart rate (FHR) is one of the most

important ones, which can be calculated based on the cyclostationary period of the fPCG

signal. Moreover, recent studies suggest that based on the variability of the beat-to-beat

times the development of the fetal nervous system can be assessed [99] and further details

of the fetal wellbeing (e.g. detection of IUGR) can be monitored [100], emphasizing the

importance of exact FHR determination.

Splitting, that is the temporal separation of different heart sound components, is often

one symptom of cardiac anomalies [101]. Quantitative analysis is very difficult because

of the overlapping components. Approaches based on models of the heart sounds show

a possibility of estimating not only the splitting but also other parameters of the heart

sounds.

The detection of murmurs is crucial for early diagnosis of cardiac diseases, but it is

also a difficult task due to the presence of noise, especially in the case of the PCG signals

of fetuses and preterm infants. Nevertheless the detection is only the first step in clini-

cal applications because based on extracted parameters of the underlying cardiovascular

phenomena can be monitored or classification of the heart diseases is possible in some

cases.

In this dissertation I present novel results for investigating these aspects based on the

methodology mentioned above.

For processing and analysis of the data and visualisation of the results I implemented

all algorithms in different versions of Matlab (The MathWorks Inc., Natick, MA, USA).
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1.3 Framework of the dissertation

Except the chapters describing the biological and methodological background, this work is

divided into two major parts. The first one explains the application of phonocardiography

in the case of fetuses, the second one deals with PCG results in the case of preterm infants.

These two parts can be read separately; in the one or two cases it is needed, reference to

corresponding sections is given.

The chapters are organized as follows: Chapter 2 gives a detailed description of the

anatomy and physiology of the human cardiovascular system, of possible cardiac abnor-

malities and diseases and of the generation of heart sounds and murmurs.

In Chapter 3 the theory and methods are introduced for the analysis of nonstationary

signals, such as phonocardiographic signals.

Chapter 4 deals with phonocardiography of fetuses, starting with the determination of

the heart rate, followed by the investigation of heart sound models, and ending with the

detection of fetal heart murmur.

In Chapter 5 the heart sounds of preterm infants having a certain congenital heart

disease, called patent ductus arteriosus, are analysed. The focus is on investigating heart

murmur and heart sound splitting related to PDA.

Finally, in Chapter 6 conclusions are drawn and possible further work is addressed. A

summary of the achieved results in form of theses is also given in this chapter, concluded

with the delineation of possible applications.

1.3.1 General notes

Because most of the work was carried in out in collaboration, in the rest of the dis-

sertation – except in the summary in Chapter 6 – I will use “we” instead of “I”. My

contributions are enumerated in Chapter 6 in a rigorous manner. The results of the work

of the other members of the research group can be found in [102–109].
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Chapter 2

Origin of Heart Sounds &

Murmurs

In order to fully understand the genesis and significance of heart sounds some biological

knowledge is required. The following sections try to give a short introduction on the

anatomy and development of the human heart and on cardiovascular dynamics including

the genesis of heart sounds. Furthermore, possible malformations and abnormalities will

be discussed, with special attention on the resulting acoustic manifestations.

2.1 The anatomy of the human heart

The heart is one of the most important organs in the human body; it is the pump of life,

providing nutrients and oxygen for the tissues and organs through continuous blood flow

while removing carbon dioxide and other by-products. Cardiac arrest without emergency

treatment will result in death after a couple of minutes. This is why early diagnosis of

cardiovascular diseases is so important.

The human heart is essentially a muscle, in adults somewhat larger than a fist. It

consists of four main parts, the so called chambers: two upper atria and two lower ventri-

cles. The septum divides it into a larger and stronger left and a smaller and weaker right

side. This partition is essential for the effective circulation of the blood. The pulmonary

vein, returning oxygenated blood from the lungs, empties into the left atrium. The atria

act as a collecting reservoir, making faster filling of the ventricles possible. The ventri-

cles act as pumps pushing out the blood into the great arteries. In the case of the left

ventricle, the receiving great artery is called the aorta, which forwards the oxygen-rich

blood to the body. The pulmonary artery, emanating from the right ventricle, transports

de-oxygenated blood to the lungs again. A schematic drawing of the human heart is shown

in Fig. 2.1.

13

DOI:10.15774/PPKE.ITK.2012.001



14 2. ORIGIN OF HEART SOUNDS & MURMURS

Figure 2.1: The schematic representation of the human heart. The white arrows show the
flow direction of the blood. Figure reprinted from [110].

2.1.1 Heart valves

Heart valves are passive elements consisting of connective tissue, responsible for the uni-

directional blood flow. The atrioventricular valves, that is the mitral and tricuspid valves

separate the atria and ventricles, whereas the semilunar valves, called the aortic and pul-

monary valves are located at the outflow of the ventricles. There is a single fibrous ring

around each of the heart valves, and these rings are connected forming a fibrous skele-

ton. This framework has several physiological functions: it is the base to which the heart

valves and great arteries attach, and it protects the valves from overstretching as the blood

passes through them; furthermore, it behaves as an isolating layer between the atria and

ventricles preventing them from simultaneous contraction (the heart has its own electric

circuit, responsible for the appropriate timing of the electric signals) [111].

All four valves consist of so called leaflets or cusps (Fig. 2.2). Except the mitral valve,

all other valves have three cusps. The main difference between the atrioventricular and

semilunar valves is that the atrioventricular valves are connected to the ventricular wall

via the chordae tendineae. These tendons prevent the valves from turning over into the

atria when the ventricles contract to push the blood out into the great arteries. There is

less danger of prolapse in the case of the semilunar valves since they have to resist much

smaller pressure gradients.

DOI:10.15774/PPKE.ITK.2012.001



2.1 The anatomy of the human heart 15

Figure 2.2: The cross-section of the heart showing the four heart valves (left) and an
atrioventricular valve with the attached chordae tendineae connecting the valve leaflets to
the papillary muscles and the ventricle wall (right). Taken from [112].

2.1.2 The fetal and neonatal circulation

The development of the fetal heart begins during the third week of gestation. In the

beginning, the cardiac precursor cells form a single tube. The beating of the fetal heart,

which happens based on the intrinsic spontaneous contraction of the myocardium, i.e. the

heart muscle, starts around day 21 of gestation, however, blood circulation starts only

a week later [113]. During the 4th week of gestation constriction of the tube define the

separate components of the hearts, which will develop later on as the atria and ventricles.

The looping of the heart tube initiates the final development of the normal heart structure.

The 4-chamber heart evolves by the end of week 7. This is also about the first time when

a heartbeat can be detected and viability can be assessed. The development of the heart is

extremely sensitive during weeks 4-7 of gestation. This is why certain maternal infections,

medication or metabolic diseases in this period can contribute to the development of

congenital heart diseases.

In contrast to the human adult circulation, where oxygenated and de-oxygenated blood

is well separated, in the case of the developed fetal circulation this is not the situa-

tion (Fig. 2.3). This is necessary because the fetal lungs are in a collapsed state and

the reoxygenation of the blood occurs in the placenta. The umbilical arteries, emanating

from the descending aorta just after the bifurcation, transport deoxygenated blood to the

placenta. Most of the returning oxygen-rich blood is emptied into the inferior vena cava

through the ductus venosus from the umbilical vein. As the inferior vena cava enters the

right atrium, the blood is guided toward the oval foramen – an opening between the two

atria, vital before birth – by the valve of the inferior vena cava, and most of the blood

passes directly into the left atrium. This is needed because this way it is possible to supply

the fetal brain with as much oxygenated blood as possible, since from the left atrium the

blood travels directly to the head and arms via the left ventricle and arteries arising at
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the top of the aortic arch [114].

The fetal pulmonary circulation has a high resistance to flow, therefore the blood

pumped out of the right ventricle travels through an additional vessel, the ductus arterio-

sus, which closes after birth, into the aorta. It is noteworthy that the ductus arteriosus

connects to the aorta just after the aortic arch. This is important since – as already men-

tioned – arteries arising from the top of the arch transport blood to the brain. The blood

coming through the ductus arteriosus is less oxygenated than the blood coming from the

left ventricle. In such a way the fetal brain receives as much oxygen as possible (note

the color coding for blood oxygen level in the schematic Fig. 2.3), which is clearly an

evolutionary advantage.

Figure 2.3: Fetal circulation. Arrows show the direction of blood flow. Note the locations
where oxygenated blood mixes with deoxygenated blood: the liver (I), the inferior vena
cava (II), the right atrium (III), the left atrium (IV), and at the entrance of the ductus
arteriosus into the descending aorta (V). Taken from [114].

After birth, the transition to adult circulation is usually surprisingly rapid. The first

intake of breath forces the lungs to expand, resulting in normal pulmonary circulation.

Due to the changed blood pressure ratios and some other physiological factors the oval

foramen and the ductus arteriosus functionally closes during the first day of life.
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2.2 The dynamics of the heart

In order to maintain continuous blood flow in the circulatory system, the heart contracts

periodically, on average 72 times per minute in the case of adults. However, the heart

muscles of the human heart do not contract simultaneously, the contractions occur in two

main phases, which are called systole and diastole. At the beginning of the heart cycle, as

the ventricles contract, the pressure inside these lower heart chambers increase exceeding

the atrial pressure which produces the closing of the atrioventricular valves, marking the

beginning of the systole. Slightly later the semilunar valves open, allowing the ventricular

blood to enter the great arteries. As the ventricles relax at the end of the systole, the

pressure gradient between the great arteries and the ventricles becomes negative, which

would cause the arterial blood to flow back into the ventricles. This is prevented by the

closing of the aortic and pulmonary valves, which is the beginning of the diastole. As the

pressure inside the ventricles decreases further, the atrioventricular valves fall open, which

makes the refilling of the ventricles possible (see Fig. 2.4). At the end of the diastole the

atria contract pushing even more blood into the ventricles before the cycle starts all over

again [115].

Figure 2.4: The pressure-volume curve of the left ventricle. Point A marks the beginning
of the systole (the closing of the mitral valve), point B corresponds to the opening of the
aortic valve. Point C denotes the end of the systole and beginning of the diastole (closure
of the aortic valve) and point D indicates the opening of the mitral atrioventricular valve.
Figure reprinted from [116].
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2.3 Heart sounds & murmurs – terminology and definitions

Mechanical actions of the heart produce audible noises. These noises are called heart

sounds, and are produced by vibration of the valves, heart muscle tissues and great ves-

sels [117]. The cardiovascular sounds are weak compared to other physiological sounds,

such as speech, stomach rumbling and breathing noise. They produce frequencies in the

range of 1-1000 Hz, however the main components lie in the lower part of this bandwidth,

which is also around the lower limit of the human hearing (Fig. 1.1).

2.3.1 Heart sounds

There are two major heart sounds, which are always present, and two less dominant heart

sounds, which can be observed only in a restricted group of people. As shown in Fig. 2.5,

the first heart sound (S1) is produced at the beginning of the systole, and is caused by the

closing of the atrioventricular valves and vibration of the ventricle walls. The second heart

sound (S2) coincides with the end of the systole and beginning of the diastole, and it is

generated by the closing of the aortic and pulmonary valves and by the fast deceleration of

the arterial blood. The third (S3) and forth (S4) heart sounds occur during the diastole.

The S3 sound is believed to be initiated by the sudden deceleration of atrioventricular

blood flow when the ventricle reaches its limit of distensibility, causing vibrations of the

ventricular wall. Finally, the S4 sound is produced by the end-diastolic atrial contractions,

resulting in vibrations of the ventricle wall like in the case of the S3 sound [13].

The S3 and S4 are rarely observed in the neonatal period. In the case of fetal and

preterm heart sound recordings only the S1 and S2 sounds can be detected, due to the

low signal-to-noise ratio. Segments of typical fetal and neonatal recordings are shown in

Fig. 2.6.

The origin of heart sounds

In general there are two main theories regarding the generation of heart sounds, but it

is still a topic of scientific debate [118]. The first one argues that the closing of heart

valves generates vibrations similarly to the closing of a door, which can be perceived at

the thorax. This is called the valvular theory, meaning that the vibrations of the valves

are dominant, and it is supported by the echocardiographic findings demonstrating the

coincidence between the timing of the valve vibrations and the heart sounds [119]. On

the other hand, the cardiohemic theory states that no cardiac structure can vibrate on

its own, because the blood is an incompressible fluid coupling the different cardiovascular

structures. According to this theory not only the vibration of the valves is important, but

the thoracic heart sound is a result of vibrations of the entire cardiohemic system: the

heart cavities, the valves and the blood [118].
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Figure 2.5: The Wiggers diagram: a comprehensive representation of the dynamics of a
single heart cycle. Note the temporal synchronisation between the different signals. Taken
from [35].
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Figure 2.6: Three heart cycles of typical (A) fetal and (B) preterm neonatal heart sound
recordings. See Sections 4.1 and 5.2.1 for for further details regarding the equipment and
methods employed in acquisition.
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Splitting of heart sounds

A feature which has clinical significance is the splitting of heart sounds. As described

earlier, the S1 and S2 sounds are the result of valve closure and vibration occurring at

both sides of the heart, which yield two components for both heart sounds. There is

usually just a very short delay between the timing of these components producing in

general a single heart sound. Nevertheless, if – due to some reason – the closing of the

valves happens significantly earlier or later on one side, then this single heart sound will

change into two sounds – a split heart sound.

The genesis of the S1 is surrounded by some controversy [120,121], however, the closing

of the atrioventricular valves is beyond all doubt involved in the generation of the first

heart sound. The mitral valve closes usually slightly earlier than the tricuspid valve on

the right side, but in general they cannot be separated. Splitting of the S1 sound has also

important clinical implications, such as left or right bundle brunch block. An example of

fetal S1 split is shown in Fig. 2.7.

It is well supported that the S2 sound is composed of a component produced by the

closure and vibration of the aortic valve and surrounding tissues (A2), followed by a

sound resulting from the closure and vibration of the pulmonary valve and surrounding

tissues (P2). The A2 component usually precedes the P2 component; their temporal sepa-

ration is denominated as the S2 split. In adults, the separation increases during inspiration

up to 80 ms, known as physiological split, due to an increased amount of blood returning

to the right ventricle and a decreased amount of blood returning to the left ventricle,

which results in a delayed P2 component and an earlier A2 component, respectively. Dur-

ing expiration the splitting decreases again, resulting in the sensation of a single sound.

Reversed splitting, that is splitting only during expiration might indicate aortic stenosis

or left bundle branch block. On the other hand, splitting during inspiration and expira-

tion is often a symptom of pulmonary stenosis, atrial septal defect or ventricular septal

defect (cardiovascular diseases are described in more detail in section 2.4).

2.3.2 Heart murmur

Murmur arises from the acoustic radiation of turbulent blood flow caused, for instance,

by a constriction in the artery or an insufficiently functioning heart valve (Fig. 2.8). Sec-

tion 5.1.1 describes the generation of heart murmur in more detail. Since turbulence

is a chaotic dynamic state, the resulting heart murmur differs greatly from the heart

sounds which have “only” an oscillating background. Although simulation of flows in

cylindrical tubes with certain constrictions give new insight into the dynamics behind

heart murmur (see Fig. 2.9), there is still a great lack of understanding, which hinders the

exploitation of the diagnostic value of heart murmur.
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Figure 2.7: Fetal heart sound record with 60 ms S1 split, separating the mitral (M) and
tricuspid (T) component of the first heart sound.
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Figure 2.8: Fetal heart sound record with a significant systolic murmur due to turbulent
blood flow through collateral arteries.

Figure 2.9: Sequence of normalized averaged vorticity magnitude contours for pulsatile
flow through the 75 % eccentric stenosis. Taken from [122].
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Although the presence of murmur is always related to some deviation resulting in turbu-

lent blood flow, if the real cause is hemodynamically insignificant, it is regarded as innocent

murmur. In contrast, murmur related to some cardiovascular disease is called pathological

murmur [117].

Usually five properties of heart murmur are assessed during auscultation in clinical

practice [123]:

• Timing and duration: murmurs should be identified as being systolic or dias-

tolic (or rarely, continuous). The duration can then be subdivided into further

subcategories, such as early, mid, late systolic or even holosystolic.

• Intensity: the intensity of a murmur is graded on a scale of 1-6, where grade 1 is a

quiet murmur that can be heard only after careful auscultation over a localised area

and grade 6 is a murmur sufficiently loud to be heard with the stethoscope raised

just off the chest surface.

• Point of maximal intensity and radiation: point of maximum refers to where

the murmur can be heard best. Several locations on the chest are defined which

correspond to specific parts of the heart. Regarding the radiation, a general rule of

thumb is that the sound radiates in the direction of the blood flow.

• Shape: the shape describes the intensity change of the murmur during the cardiac

cycle and it is related to the corresponding flow velocities. It is described by musical

notions, for example crescendo or decrescendo, but the intensity can also remain

fairly constant.

• Character: it is described by the pitch of the murmur and based on the spectral

configuration. For example, in the case of a musical murmur typically a dominant

tone is present, but usually many frequencies build up the murmur, making it blow-

ing, harsh, or rumbling.

2.4 Heart diseases

The anatomy and functioning of normal fetal, neonatal and adult circulation have been

described in the previous sections, but a great part of this work deals with heart sounds re-

lated to different pathological cases. This necessitates an introductory section on different

cardiovascular diseases.
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2.4.1 Heart valve diseases

Heart valves have the two major functionalities of blocking the back flow and enabling

the forward flow of the blood in the different phases of the heart cycle. Consequently

it is not surprising that there are two major abnormalities which affect heart valves:

stenosis, which is abnormal narrowing, hindering normal forward flow, and insufficiency,

which corresponds to the insufficient closing of the heart valve enabling back flow [124].

Although abnormalities of all for heart valves are possible, the valves on the left side of the

heart are more frequently affected by valvular diseases, since the left side has to support

the continuous blood flow in the greater systematic circulation.

Stenosis

Heart valve stenosis is an abnormal narrowing of the valvular orifice due the thickening

or calcification. Formerly it was often caused by rheumatic fever, but it has become a

rare disease nowadays in the western world, except in early life. The stenosis of the aortic

valve increases the workload of the left ventricle since the muscles have to push with a

greater force to maintain cardiac output. This will result in the thickening of the left

ventricle wall, called hypertrophy. In serious cases, with no surgical replacement of the

valve it may lead sudden cardiac arrest. Since the blood flow velocities are high during

the systole when the blood flows through the aortic valve, the flow becomes turbulent,

and a strong systolic crescendo-decrescendo murmur develops, which is a usual symptom

of aortic stenosis.

Mitral stenosis hinders the normal filling of the left ventricle during the diastole. It

is caused by scarring of rheumatic fever, causing the valve flaps getting stuck together by

adhesions. This causes the blood being backed up in the lungs, resulting in congestive

heart failure, which is a condition in which the heart cannot supply the body’s need. The

only treatment of mitral stenosis is surgical opening of the valve. Similar to aortic stenosis,

murmur may arise as a physical symptom, but in this case at the end of the diastole when

the atrium contracts. Another sign is an unusually loud S1 sound because of increased

force in closing the mitral valve.

Pulmonary and tricuspid stenosis is a rare, congenital phenomenon that often requires

surgery.

Heart valve insufficiency

During aortic insufficiency, or regurgitation, when the aortic valve leaks blood back into

the left ventricle, the chamber has to work harder than normal. It has to pump the

blood that leaked back out again together with the usual volume of blood it would have
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pumped anyway. It may become serious if the amount of blood leaking back is significant,

overloading the left ventricle. If the valve is not replaced early enough, the ventricle

wall may be stretched past the point of no return, meaning that the heart muscles can not

recover even after surgery and progressive heart failure may develop. A common symptom

is early, decrescendo diastolic murmur, resulting from the turbulent blood flow through

the insufficiency.

Mitral Regurgitation causes similarly the stretching of the left atrium, thus timing of

the surgical replacement is crucial. A further problem is that muscles of the left ventricle

become weakened since they pump great amount back into the lower pressure system of

the atrium. This may have as a result that after surgery the ventricle simply can’t handle

the load introduced by the greater pressure in the aorta. Since the blood is backed up

in the lungs, similarly to the mitral stenosis, congestive heart failure may develop. A

high-pitched holosystolic murmur is a major sign of mitral insufficiency.

Tricuspid and pulmonary insufficiency are usual consequences of other cardiac abnor-

malities, for instance increased pulmonary arterial pressure from patent ductus arteriosus

may induce pulmonary insufficiency.

Mitral valve prolapse Mitral valve prolapse is characterized by the displacement of

a weakened mitral valve leaflets into the left atrium. At the peak of systolic pressure,

a weakened mitral valve may pop back into the atrium a little, which may produce an

acoustic sign, named systolic click. If the prolapse is larger, there may be late-systolic

murmur as a little blood leaks back into the atrium. Severe mitral valve prolapse, with

further risk of complications is rare.

2.4.2 Congenital heart diseases

A congenital heart disease (CHD), also known as congenital heart defects, are structural

problems arising from abnormal formation of the heart or major blood vessels. The inci-

dence is around 8 per 1000 live birth, but this measure includes some defects that resolve

spontaneously or do not require treatment [67]. Some of the diseases mentioned in the

previous section may present as being congenital, for instance aortic valve stenosis with

a bicuspid aortic valve, that is having only two flaps. A short description of some of the

most frequent severe CHDs is presented hereunder. For more details the reader is referred

to [101,125].

Septal defects

In a healthy adult heart there is no communication between the two sides of the heart. In

contrast, in the case of septal defects due to some reason (e.g. genetic) there is a failure of
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closure of the septum between the two sides of the heart during fetal development. This

defect, i.e. hole, may lie between the atria or ventricles, the latter is more frequent.

Ventricular septal defect The pressure in the left ventricle is about five times higher

than the pressure in the right ventricle throughout systole. If there is a hole in the septum

between the ventricles, blood will flow from the left ventricle to the right, into the lungs,

and back around to the left ventricle. If the defect is small the ventricle can compensate

the little amount of leaking blood, furthermore small congenital VSDs often close on their

own. However, if the ventricular septal defect (VSD) produces a significant left-to-right

shunt, the small pulmonary arteries may be overloaded and the pulmonary flow velocity

increases, even becomes turbulent, resulting in the thickening of the pulmonary vessel

walls. This in turn increases the pulmonary pressure in such a way that the flow through

the septal defect reverses, that is it becomes right-to-left, which will cause cyanosis of the

patient, since deoxygenated blood circulates throughout the body (this process is called

the Eisenmenger syndrome). Nevertheless, if a severe VSD is diagnosed early enough,

surgical treatment is a safe remedy. A frequent symptom is holosystolic murmur arising

from the turbulent flow through the septal hole.

Atrial septal defect A similar disease to the previously mentioned VSD is the atrial

septal defect (ASD), but it is usually less dangerous. In the case of this defect there is

a communication between the two atria. Since on the left, systematic side the pressure

is normally greater than on the right, pulmonary side, a left-to-right shunt evolves in

this situation, which means that a certain amount of reoxygenated blood arriving from

the lungs into the left atrium flows back through the atrial hole to the lungs via the right

atrium and ventricle. This results in a similarly increased pulmonary blood volume, which,

however, produces rarely the thickening of the small pulmonary arteries, like in the case

of severe VSD. The main reason is that even if the ASD is significant, it increases only the

blood volume in the pulmonary circulation, in contrast to the VSD where the blood flow

is also increased, which can become even turbulent. Even though an ASD can produce

complications, especially in elderly people. Fortunately it is easy to close an atrial septal

defect surgically. Physical symptoms may include a systolic ejection murmur due to the

increased flow of blood through the pulmonary valve. A frequent sign is the fixed splitting

of the S2 sound.

Patent ductus arteriosus

As already described, the ductus arteriosus itself is an essential fetal vascular struc-

ture (Fig. 2.3, 1.4). It connects the main pulmonary artery with the descending aorta
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and shunts 90 % of the blood coming from the right ventricle into the aorta due to the

high resistance of the pulmonary circulation. Closure during pregnancy is a very rare

phenomena with adverse effects and may lead even to right heart failure [126]. In the case

of normal neonates, with the first intake of breath the lungs expand and the resistance of

the pulmonary circulation decreases greatly allowing the development of the normal hu-

man circulation. Under normal conditions functional complete closure occurs within the

first day after birth [127]. The functional closure is an active process caused by smooth

muscle constriction since the ductus arteriosus has a predominantly muscular media with

circumferential fibres [128]. The increased level of oxygenated blood and the decreased

level of prostaglandins are two main factors contributing to this process [129, 130]. The

anatomical closure due to remodeling makes these changes irreversible.

The persistence of the ductal patency is abnormal and is regarded as a congenital heart

disease called patent ductus arteriosus (PDA). In this respect, it differs from the other

congenital defects because there is no abnormal formation of the heart structure before

birth, there is only an abnormality in the final stage of cardiovascular development, i.e. at

birth. If the ductus arteriosus remains open after birth a left-to-right shunt evolves due to

the higher pressure in the aorta. This means an increased pulmonary fluid volume which

may cause respiratory problems. Also the left atrium and ventricle have to compensate

the increased fluid volume returning from the lungs and the “pressure leakage” in the

aorta which may cause hypertrophy of the left atrium and ventricle. Nevertheless the

physiological impact and clinical significance of a PDA depends above all on its size and

the state of the underlying cardiovascular system.

A typical symptom is machinery continuous, systolic-diastolic murmur, best heard

at the upper left sternal border, furthermore an overactive precordium, tachycardia and

bounding peripheral pulses due to the rapid decrease of the diastolic pressure through the

ductus. That means that there is an increased difference between the systolic and diastolic

blood pressures compared to healthy individuals, for instance in the case of neonates 2:1

ratio instead of 3:2).

The closure of the PDA may occur spontaneously or due to a surgical or transcatheter

intervention. In the case of preterm infants pharmacological closure is also possible [131].

In Chapter 5 we describe in more detail the phonocardiographic analysis of preterm

infants with PDA.

Tetralogy of Fallot

Tetralogy of Fallot (TOF) is a combination of four different defects: pulmonary stenosis,

overriding aorta, ventricular septal defect and hypertrophy of the right ventricle. The

pulmonary stenosis is regarded as the major cause of the malformations, with the other
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associated malformations acting as compensatory mechanisms. An overriding aorta is a

malposition of the aortic valve with a connection to both ventricles. This means in more

detail that as the right ventricle contracts the deoxygenated blood is pushed back into the

systematic circulation through the aorta due to the high resistance of the pulmonary artery

caused by the stenosis. This right-to-left shunt is more enforced due to the ventricular

septal defect. A further consequence is right ventricular hypertrophy, in other words the

thickening of the right ventricle wall, as this chamber tries to maintain sufficient pulmonary

blood volume. A systolic murmur might present due to the turbulent flow through the

pulmonary stenosis or the VSD. Usually surgical reconstruction is required.

In the most severe form of TOF the pulmonary outflow is not only stenosed but

completely missing, which is called pulmonary atresia. Although usually collateral arteries

develop emanating from the aorta to the pulmonary artery and lungs, enabling certain

degree of reoxygenation of the blood, reconstruction of a viable circulation is not always

possible.
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Chapter 3

Methods for Phonocardiographic

Signal Analysis

In this chapter the theory of methods for the analysis of phonocardiographic signals is

described.

3.1 Cyclostationary processes

Phonocardiographic (PCG) signals, similarly to most of the biomedical signals, are non-

stationary signals meaning that their spectral content changes rapidly over time. They

can be regarded as stationary only in a short time window [132]. On the other hand, due

to the cyclic work of the heart, PCG signals exhibit also a sort of periodic property called

cyclostationarity.

A time series x(n) with mean µx(n) and covariance cxx(n, τ) is wide-sense cyclosta-

tionary if and only if there exists an integer P such that µx(n) = µx(n + l ·P ) and

cxx(n, τ) = cxx(n+ l·P, τ), ∀n, l ∈ Z. The smallest of all such P s is called the period [133].

It can be explained the following way: heart valves repeat their actions in each cycle,

and the heart rate generally does not change abruptly. Thus heart cycles are quasi-

periodic. It means that heart sounds are quasi-cyclic stationary.

It should be noted that due to the nonstationarity the covariance function has not only

a time-lag variable (τ) but depends also on the time variable (n). Obviously this is valid

also for the normalized covariance function, the autocorrelation function which is defined

29

DOI:10.15774/PPKE.ITK.2012.001



30 3. METHODS FOR PHONOCARDIOGRAPHIC SIGNAL ANALYSIS

according to the Pearson formula for the time instant n as follows:

CP [n, k] =

n+N−1∑

i=n

x[i] · x[i+ k]

√√√√
n+N−1∑

i=n

(x[i])2 ·

√√√√
n+N−1∑

i=n

(x[i+ k])2

, (3.1)

where x[n] is the zero-mean signal, k is the time-lag and N is the size of the correlation

time window. Note that CP [n, k] ∈ [0, 1],∀n, k ∈ Z, and it can also be regarded as the

cosine of the angle between the vectors x = [x[n], x[n+ 1] . . . x[n+N − 1] ] and y =

[x[n+ k], x[n+ k + 1] . . . x[n+ k +N − 1] ].

The period of the autocorrelation function is equal to the cyclostationary period. It

can usually calculated by calculating the time-lag difference between the local maxima.

In general, the complexity of the computation of the autocorrelation function for one

time instant is O(n2), but relying on the Wiener–Khinchin theorem an efficient way with

O(n log(n)) exists by applying the Fast Fourier Transformation (FFT) [134]:

1. X = FFT{x}, (3.2)

2. S = X ·X∗,

3. c = IFFT{S},

where x = [x[n], x[n+ 1] . . . x[n+N − 1] ], ∗ denotes the complex conjugate, IFFT is the

inverse transform and c is the vector of correlation values at different time lags without

normalization.

Another correlation measure is the modulus difference, which has the advantage that

its calculation involves practically only additions and just a very few multiplications which

might be preferable in the case of certain computing architectures. The modulus difference

is another approach to calculating the period of a cyclostationary process [135]. It is

defined for the time instant n as follows:

∆[n, k] =

n+N−1∑

i=n

|x[i]− x[i+ k]|

n+N−1∑

i=n

|x[i]|+
n+N−1∑

i=n

|x[i+ k]|

, (3.3)

where x[n] is the zero-mean signal, k is the time-lag and N is the size of the time window.

Note that ∆[n, k] ∈ [0, 1], ∀n, k ∈ Z and it is an inverse correlation measure. For better
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comparison with CP [n, k], usually

C∆[n, k] = 1−∆[n, k] (3.4)

is applied, where again the time-lag difference between local maxima have to be regarded

when estimating the cyclostationary period.

Ensemble averaging

If several recordings of the same event can be performed then averaging of the signals

often improves the signal-to-noise ratio (SNR). The technique, which is based on this

assumption, is called ensemble averaging. It is often applied in the case of biomedical

signals, such as evoked potentials [92]. In the case of cyclostationary signals it is also

possible to form an ensemble. This is accomplished by selecting segments of length N ,

N < P , from every cycle, where P is the cyclostationary period. This could be the first

heart sound in the case of phonocardiographic signals. Let us assume that in this window

the signal s[n] remains very similar from cycle to cycle and the recorded data x[n] is only

affected by additive noise ν[n]:

xi[n] = s[n] + νi[n], (3.5)

where i = 1, 2, . . .M denotes the different cycles of the cyclostationary signal and n =

0, 1, . . . N−1. By assuming ν[n] ∼ N(0, σ) averaging will obviously suppress the additive

noise:

ŝ[n] =
1

M

∑

i

xi[n] ≈ s[n] +
1

M

∑

i

νi[n] ≈ s[n]. (3.6)

Further improvements of this method will be described in Section 4.4.2.

3.2 Spectral analysis of nonstationary signals

Spectrum calculation and analysis is one of the most important cornerstones in signal

processing. Unfortunately in the case of nonstationary signals, classical Fourier analysis

becomes a cumbersome tool and fails in representing the underlying characteristics in an

appropriate form. For instance, to represent a transient phenomenon, such as a heart

sound, the Fourier transform would require many coefficients to represent this localized

event. An answer to the need for more useful tools in the field of nonstationary signal

processing is the development of a multitude of different transforms, such as the short time

Fourier transform, wavelet transform or Wigner-Ville distribution. A short introduction

to the theory of these methods is given below.
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3.2.1 The short time Fourier transform

For better understanding let us start with the conventional Fourier transform of an x(t)

real-valued signal

F {x(t)} (f) =

∫ ∞

−∞
x(t)e−i2πftdt, (3.7)

where e−i2πft is the Fourier basis.

Since in the case of nonstationary signals the frequency content changes over time, it

seems reasonable to investigate the Fourier transform of a nonstationary signal only in

a short time segment. This is the idea of windowed Fourier transformation, which was

introduced by Dennis Gabor1 in 1946 by defining time-frequency atoms, which are signals

localized in time and in frequency [93]:

gu,f (t) = g(t− u)ei2πft. (3.8)

By decomposing a x(t) ∈ L2(R) signal into such time-frequency atoms one arrives

at the 2D representation of the signal, the windowed, or short time Fourier trans-

form (STFT):

S {x(t)} (u, f) = 〈x(t), gu,f (t)〉 =

∫ ∞

−∞
x(t)g(t− u)e−i2πftdt. (3.9)

One can also define the energy density of the given x(t) signal by considering the

squared magnitude of the STFT. This is called the spectrogram:

PS {x(t)} (u, f) = |S {x(t)} (u, f)|2 =

∣∣∣∣
∫ ∞

−∞
x(t)g(t− u)e−i2πftdt

∣∣∣∣
2

. (3.10)

The spectrogram shows how much energy the time-frequency atom centred around

(u, f) takes out of x(t), making the spectral changes of a nonstationary signal observable

in a quite straightforward way. However, it should be noted that this enhanced represen-

tation comes at some expense: the increased temporal resolution decreases the frequency

resolution. This is explained by the Heisenberg uncertainty principle, which states that

the temporal spread of a function and its frequency spread in the Fourier domain cannot

be simultaneously arbitrarily small [94]. More precisely this means that the gu,f time-

frequency atom cannot have an arbitrarily small temporal width, σt, and frequency width,

σf , at the same time. The area of the non-zero time-frequency domain of gu,f , the so

1Original name: Gábor Dénes, born 5 June 1900 in Budapest, Hungary, died 9 February 1979 in
London, United Kingdom
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called Heisenberg rectangle has a lower bound:

σtσf ≥
1

2
. (3.11)

The above area is minimum when g(t) in Eq.(3.8) is a Gaussian, in which case the atoms

gu,f are called Gabor functions. In the case of heart sounds, Jamous et al. showed that the

optimal range of time-window duration for analysing PCG signal with STFT is between

16 and 32 ms [132]. For fetuses and neonates due to the smaller sizes of the cardiac

structures, it is probable at the lower limit of this interval. However, in general it is a

difficult task to select the appropriate time window.

3.2.2 The wavelet transform

Another approach for arriving at the time-frequency domain is the wavelet transform.

This transform is very useful in large number of applications, including the current one of

fetal PCG signal processing, as we shall see in Section 4.2.3.

The wavelet transform is a very similar approach to the short time Fourier transform.

It is similarly a linear transform, however, there are two main differences: first of all the

wavelet transform may use a different basis function than the windowed sinusoids and

secondly, the temporal width and frequency width of the analysing window varies with

frequency.

In the case of the STFT the analysing functions are windowed complex exponentials,

i.e. g(t−u)e−i2πft, in the case of the wavelet transform they are called wavelets. A wavelet

is a Ψ ∈ L2(R) function with zero average, concentrated around t = 0 and its square norm

is equal to 1:

∫ ∞

−∞
Ψ(t)dt = 0, (3.12)

||Ψ|| = 1. (3.13)

There are several functions which satisfy the conditions above, a good example is the

second derivative of a Gaussian, called Mexican hat. Other wavelets can be easily found

in the rich literature of wavelet transforms [94,136].

The different time-frequency atoms are obtained by translating Ψ, the mother wavelet,

by u ∈ R and scaling it by s ∈ R+:

Ψu,s(t) =
1√
s

Ψ

(
t− u
s

)
. (3.14)
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Finally, the wavelet transform takes the following form:

W {x(t)} (u, s) = 〈x(t),Ψu,s(t)〉 =

∫ ∞

−∞
x(t)

1√
s

Ψ

(
t− u
s

)
dt. (3.15)

As already mentioned, in contrast to the Gabor functions the temporal and frequency

widths of the wavelets depends on the scale parameter. In particular, the temporal width

increases and the frequency width decreases with increasing scale. This is reasonable since

for observing fast variation obviously a smaller temporal window is more appropriate than

for observing slow oscillations.

The signal can be reconstructed from its wavelet transform if the applied wavelet

satisfies a weak admissibility condition, even when the wavelet basis functions are not

orthonormal. The reconstruction is possible using the following formula:

x(t) =
1

CΨ

∫ ∞

0

∫ ∞

−∞
W {x(t)} (u, s)

1√
s

Ψ

(
t− u
s

)
du

ds

s2
, (3.16)

where CΨ is a constant that depends on the wavelet used. It has to satisfy the admissibility

condition, that is it has to be finite, and it is defined as follows:

CΨ =

∫ ∞

0

∣∣∣Ψ̂(ω)
∣∣∣
2

ω
dω < +∞, (3.17)

where Ψ̂ is the Fourier transform of Ψ. This conditions implies that Ψ̂(0) = 0, which

explains why wavelets must have a zero average.

As in the case of most real world signals, such as a fetal PCG signal, we usually have to

operate with digital samples. The discretized version of the continuous wavelet transform

enables the computation of the continuous wavelet transform by computers, but it is not

a true discrete transform, it is only a sampling of the time-scale plane [94].

The continuous wavelet transform, even when sampled to a certain degree, yields a

very redundant representation of the investigated signal. The discrete wavelet trans-

form (DWT) computes the time-scale plane sampled on a dyadic grid, which is still enough

for the reconstruction of the original discrete signal, and it can be implemented in a very

efficient way with a complexity of only O(n). Since this is not the major topic of this

work, for further details the reader is referred to the explanation in [137].

3.2.3 Overcomplete representations

In the previous sections we defined two time-frequency representation of the signal x.

These approaches can be written in more general as the decomposition of x into the linear

combination of so called atoms γi of a dictionary Γ. Because in this section the emphasis
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is on the realization, the following definitions and calculations are shown in discrete time:

x[n] =
∑

γi∈Γ

aiγi[n], (3.18)

where ai is the coefficient of the atom γi.

The atoms γ are the sinusoids in the case of the Fourier transform and wavelets in the

case of the wavelet transform. In those scenarios the atoms form a basis. However, the

dictionary can also be overcomplete, meaning that the atoms are not linearly independent

and hence the decomposition is non-unique. For instance, an overcomplete dictionary can

be defined by combining Gabor atoms and a certain wavelet family. Overcompleteness

gives the possibility of adaptation because we can choose among many representations the

one that is best suited to our purpose [138].

Here we show only two principles for resolving the non-uniqueness. The first is the

Methods of Frames which minimizes the l2 norm of the coefficients ai:

min ||a||2 subject to
∑

γi∈Γ

aiγi[n] = x[n], (3.19)

where a is a vector containing the coefficients ai. This is a quadratic optimization problem

and can be solved using linear algebra.

The second approach is called Basis Pursuit. In this case the minimization is performed

with respect to the l1 norm:

min ||a||1 subject to
∑

γi∈Γ

aiγi[n] = x[n]. (3.20)

Changing from the l2 norm to the l1 norm has major consequences. The Basis Pursuit

method involves nonlinear, convex optimization. Fortunately it can be reformulated as a

linear program, and due to advances in the last decades, efficient interior point algorithms

exist for solving large scale linear programs [138].

Optimization with respect to the l1 norm has the major advantage that it leads to a

sparse representation of the signal of investigation. This can be exploited for example for

compression but it is also the basis of compressed sensing [139].

3.2.4 Quadratic time-frequency distributions

Quadratic time-frequency distributions describe the energy distribution of the signal in

the time-frequency domain. One of such distributions have already been introduced: the

spectrogram. In the section below we will see how all these distribution are related to

each other through the Wigner-Ville distribution.
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The analytic signal and the Hilbert transform

In order to give a constructive introduction to the Wigner-Ville distribution based on [140]

let us start with defining the analytical signal. A signal z(t) is analytic if and only if:

Z(f) = 0 for f < 0 (3.21)

where Z(f) is the Fourier transform of z(t). It can be easily shown that a signal z(t) =

x(t) + jy(t) is analytic if and only if:

Y (f) = jX(f) for f < 0, (3.22)

Y (0) = 0 for f = 0,

Y (f) = −jX(f) for f > 0.

The real signal y(t) is called the Hilbert transform of x(t), meaning that “a signal is analytic

with a real DC component if and only if its imaginary part is the Hilbert transform of its

real part” [140]. Consequently the Hilbert transform is defined as:

H {x(t)} = x̂(t) = F−1 {−j sgn(f)F {x(t)}} , (3.23)

where sgn(f)

sgn(f) = −1 for f < 0,

sgn(f) = 0 for f = 0,

sgn(f) = +1 for f > 0.

Similarly, the Hilbert transform can be defined also in the time domain using:

H {x(t)} = x̂(t) =
1

π

∫ ∞

−∞

x(τ)

t− τ
dτ = x(t) ∗ 1

πt
, (3.24)

where ∗ denotes the convolution. In fact, the Hilbert transformed signal is a version of

the original signal with a 90◦ phase shift.

Equation (3.23) is exploited for calculating the Hilbert transform by using the Fast

Fourier transform. For further details the reader is referred to the work of Oppenheim et

al. [141].

The Hilbert transform is useful for calculating instantaneous attributes of a time se-

ries because the complexed valued analytic signal z(t) = x(t) + jx̂(t) can be expressed,
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according to the Euler’s formula, also in the following form:

z(t) = a(t)ejφ(t), (3.25)

where a(t) = |z(t)| is the instantaneous amplitude and φ(t) = arctan(z(t)) is the instan-

taneous phase. The instantaneous frequency can be calculated by taking the derivative

of φ(t):

f(t) =
1

2π
φ′(t). (3.26)

In this work the Hilbert transform is applied several times for calculating the envelope

of the phonocardiographic signal.

The Wigner-Ville distribution

Let us now consider a simple signal z(t) = ejφ(t). An optimal time-frequency representation

of this monocomponent, nonstationary signal should have non-zero components only at

positions defined by the instantaneous frequency f(t):

ρ(t, f) = δ(f − f(t)). (3.27)

Because ρ(t, f) is a kind of spectrum, it is reasonable to assume that it is the Fourier

transform of a function related to the signal. Based on this assumption, by taking the

inverse Fourier transform of ρ(t, f) with respect to the frequency variable f we arrive at

the so called kernel function:

K(t, τ) = F−1
f→τ {δ(f − f(t))} = ej2πf(t)τ = ejφ

′(t)τ . (3.28)

By considering the approximation φ′(t) = 1
τ [φ(t+ τ

2 )− φ(t− τ
2 )] we find that:

K(t, τ) = ejφ(t+ τ
2

)e−jφ(t− τ
2

) = z
(
t+

τ

2

)
z∗
(
t+

τ

2

)
, (3.29)

where ∗ denotes the complex conjugate.

By combining Eqs.(3.27)-(3.29) we conclude that the optimal time-frequency represen-

tation for the signal z(t) = ejφ(t) can be calculated by taking the Fourier transform of the

kernel function defined in Eq.(3.29):

ρ(t, f) = Fτ→f

{
z
(
t+

τ

2

)
z∗
(
t+

τ

2

)}
. (3.30)

This relation can be generally applied and leads to the definition of the Wigner-Ville
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distribution. The Wigner-Ville distribution of a signal x(t) is [95, 142]:

Wx(t, f) =

∫ ∞

−∞
z(t+ τ/2) z∗(t− τ/2) e−j2πfτdτ, (3.31)

where z(t) = x(t) + jH{x(t)} is the analytic signal associated with x(t).

The Wx(t, f) is an optimal a quadratic energy representation of a signal in the time-

frequency domain satisfying a number of desired properties, such as being always real

valued. It can be shown that it produces the highest resolution among all energy distri-

butions, however in the case of multicomponent signals, such as the heart sounds, cross

terms corrupt the recognizability of the components in the time-frequency plane. Further

details can be found in [140].

The transform of the Wigner-Ville distribution can also be regarded as a generalization

of the Wiener-Khinchin theorem for nonstationary signals, as the Fourier-transform of the

time-dependant instantaneous autocorrelation function K(t, τ) = z
(
t+ τ

2

)
z∗
(
t− τ

2

)
. The

FFT can be applied for its efficient computation [143].

Furthermore, it can be shown that every quadratic time-frequency representation can

be derived by taking the Fourier transform of the smoothed instantaneous autocorrelation

function [140]. For example, in the case of the Wigner-Ville distribution the smoothing

function is the δ(t) function, whereas in the case of the spectrogram one has to apply

G(t, τ)∗K(t, τ), where G(t, τ) = g∗
(
t+ τ

2

)
g
(
t− τ

2

)
and g(t) being the windowing function

applied in the STFT calculation. The smoothing of the instantaneous autocorrelation

function reduces the effect of cross terms, but on the other hand decreases also the time-

frequency resolution.
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Chapter 4

Phonocardiography for Fetuses

Section 1.1.2 introduced the importance of the phonocardiographic analysis of fetuses.

In this chapter methods and results are described in more detail for phonocardiographic

assessment of features related to the state and the wellbeing of the fetus, including the

fetal heart rate (Section 4.2), the decomposition of the heart sounds (Section 4.3) and the

investigation of fetal murmur (Section 4.4).

4.1 Recording of the fetal heart sound signal

Some earlier work suggested different technical solutions for recording the fetal heart

sound, for example by the development of a piezopolymer pressure sensor [144], by ap-

plication of compliance-matched inductive transducers [145] or by using simple electret

microphones [146].

The investigations of our research group on fetal phonocardiography (PCG) began

almost two decades ago1 [147, 148]. During a project [149], supported by the National

Innovation Office through the National Research and Development Program 2004, a tele-

metric fetal surveillance system was developed, enabling the home monitoring of the fe-

tus (Fig. 4.1).

In the following years, in the course of high-volume cardiotocographic (CTG) mea-

surements with the phonocardiographic CTG device type Fetaphon-2000
TM

(Fig. 4.2),

thousands of phonocardiographic records were collected. In this device, the signals are

bandpass filtered (25-100 Hz) with an active filter and digitized on 8 bits with a sampling

frequency of 333 Hz.

Although the special design of the recording head enables sensitive recording of the fe-

tal heart sound, in most cases the ideal form of the heart sound signal cannot be measured

due to disturbances (Fig. 4.3). One part of these disturbances stems from the fetus due to

1The author of this work is involved in this research group only since 2007
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Figure 4.1: Fetal monitoring telemedicine system. The recorded heart sound signal is
transferred to an information centre, where the evaluation is performed off-line.

Figure 4.2: Phonocardiographic CTG device type Fetaphon-2000
TM

enabling the home
surveillance of the fetus.

the movement of his or her limbs or the rotation of body, or even its hiccups. Breathing

movements of the fetus also produces noise, making heart sound identifications difficult.

The second source of disturbances stems from the mother due to her heart sound, breath-

ing, digestive organs and muscular movements. Furthermore, some environmental noise is

always present (Fig. 4.4).

0 0.2 0.4 0.6 0.8 1 1.2
Time [s]

S2 S2S2
S1S1 S1

S1S2S1 S2 S1 S2

Figure 4.3: Noiseless (top) and noisy (bottom) fetal phonocardiographic signals. Note the
difficulty in visually identifying the S1 and S2 heart sounds on the bottom trace.
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4.1 Recording of the fetal heart sound signal 41

Figure 4.4: Sources of noise corrupting the low intensity fetal heart sound signal: noise from
the mother (maternal heart and digestive sounds), noise from the fetus (hiccup, movements
of the limbs) and noise from the environment. Courtesy of Julianna Ottlik.
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42 4. PHONOCARDIOGRAPHY FOR FETUSES

4.2 Fetal heart rate

4.2.1 Importance of the fetal heart rate

In everyday use, and mostly in the case of normal gestations, the evaluation of the fetal

heart rate (FHR) diagram happens visually by the obstetrician observing the baseline, the

number of accelerations and the variability. Nonetheless, the detailed analysis of the FHR

diagram has shown that further important parameters can be assessed in addition to the

usual CTG data, namely:

1. Intrauterine growth restriction (IUGR) can be identified by investigating different

measures of the short-term variability (STV) [100,150,151].

2. The variability in the case of nonreassuring fetal status was discussed in [152, 153].

The evaluation of the low-frequency range (LF: 0.03-0.15 Hz) was improved in [154]

by filtering out the accelerations and decelerations from the FHR curve. Using the

frequency bands MF (0.15-0.5 Hz) and HF (0.5-1 Hz), the LF/(MF + HF) frequency

band power ratio was studied to quantify the autonomic balance between the sympa-

thetic and parasympathetic neural control. The maturation of the fetal autonomic

nervous system has been assessed also based on this ratio in [99].

3. Finally, the high-frequency content of the FHR gives information on the fetal breath-

ing [155].

Since all the fetal parameters above are basically calculated from the STV, the inaccu-

racy of the traditional Doppler ultrasound based CTG limits their reliability. Fetal ECG

is an adequate approach, only periods of the pregnancy when the vernix caseosa corrupts

the signal are difficult to monitor. In contrast, fetal phonocardiography with its enhanced

accuracy offers new possibilities in this field.

All these studies imply that more features related to the fetal status can be assessed

based on PCG measurements. To achieve this the very sophisticated analysis of the fetal

heart sound signals and the very accurate determination of the beat-to-beat times (Tbb)

and their variability is needed. In this way fPCG based CTG measurements do not only

yield conventional fetal parameters, but also additional features can be acquired related

to the well-being of the fetus.

4.2.2 Calculation of the fetal heart rate in the time domain

For calculating the FHR from cardiotocographic data usually one of the two approaches,

which are described below, is applied. The first one relies on the intensity of the heart

sounds and calculates the FHR from the detected heart sounds. Several methods have
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been utilized for robust envelope calculation and heart sound detection, such as using the

Hilbert transform [156,157], Shannon energy and homomorphic filtering [158], the Teager

operator [159], and rule-based [148,160] or model based methods [27]. The Shannon energy

and Teager energy functions of a fetal PCG segment are shown in Fig. 4.5.
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Fetal PCG signal

Shannon energy

Teager energy

S1 S2 S1 S2 S1 S2

Figure 4.5: Three heart cycles of a fetal heart sound recording and the corresponding
Shannon energy function (dash-dot line) and the envelope calculated using the Teager op-
erator (dashed line). These method produce reliable results if the heart sounds are well
distinguishable.

Unfortunately, in the case of fetal phonocardiographic recordings the SNR is usually

low, and impulsive noise corrupts the week intensity fetal heart sound signal, thus relying

on only the envelope of the data, even when using a priori knowledge could be misleading

in identifying heart sounds and calculating the heart rate.

The second approach for FHR calculation is exploiting the cyclostationarity (Sec-

tion 3.1) of the phonocardiographic signal, meaning that the estimated cyclostationary

period is regarded as the actual beat-to-beat time.

The cyclostationary of heart sounds is supported by previous studies showing that

consecutive heart sounds remain very similar, correlation coefficients even greater than

0.99 were consistently observed [31, 120]. Although these works have been carried out on

dogs and adults, according also to our investigations, it can be applied also for fetal heart

sounds (Fig. 4.6).

In practice, the heart rate calculation is performed as follows: the frequency of the

autocorrelation function is equal to the heart rate when the heart rate is constant for

the time window of investigation. However, the Tbb changes slightly from beat to beat,

thus only the length of the first period of the correlation function, C[n, k], is regarded as

actual beat-to-beat time, and this can be determined by calculating the distance between

the first two peaks of C[n, k] for every n time instant. As the first peak is always at
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Figure 4.6: Consecutive 9 fetal S1 sounds time aligned by maximizing the cross-correlation
between them which was in all cases above 0.9.

zero-lag, only the position of the next peak has to specified which can be accomplished

by finding the local maximum in a given frame of C[n, k], where the frame limits are

calculated according to the extrema of the fetal heart rate, that is 80 and 200 beats per

minute (BPM) (Fig. 4.7-4.8).

Both the autocorrelation, CP [n, k] (Eq.(3.1)), and the modulus difference,

C∆[n, k] (Eq.(3.4)), can be reliable applied to fPCG signals, as shown in Figs. 4.7-4.8,

thus for the sake of simplicity the lower index ∆ and P is omitted in this chapter where

both measures perform similarly.

The determination of the length of the time window, N , for calculating C[n, k] is of

crucial importance. A shorter window, with the length of at least one heart sound or one

heart cycle would be optimal for determining the exact Tbb, on the other hand a longer

window, such as one covering several heart cycles is more robust against noise bursts that

may be mistaken for a heart sound. Based on empirical observations by investigating a

large number of fetal PCG records, a window length of 3 heart cycles proved to be a good

trade-off (Fig. 4.9). In certain cases, further methods can be applied for refining these

values.

The Tbb has to be determined only once for each heart cycle thus it is unnecessary to

calculate the correlation function for every sample. We developed an adaptive predictive

method, where the next position for calculating C[n, k] is estimated according to the
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Figure 4.7: A noiseless fetal PCG segment and the corresponding Pearson correlation (solid
line) and modulus difference (dashed line) values calculated by correlating the segment
marked by the dash-dotted rectangle with the following heart cycles. Note the local maxima
of the correlation data corresponding to length of multiple heart cycles, i.e. harmonics.
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Figure 4.8: A noisy fetal PCG segment and the corresponding Pearson correlation (solid
line) and modulus difference (dashed line) values calculated by correlating the segment
marked by the dash-dotted rectangle with the following heart cycles. Note that although
local maxima mark the beginning of the heart cycles, the S1-S2 or S2-S1 distances cannot
be calculated from the correlation data contrary to Fig. 4.7.
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Figure 4.9: The correlation data (A) of the noiseless segment shown in Fig. 4.7 and (B) of
the noisy segment shown in Fig. 4.8, in both cases calculated with correlation window sizes
of 1, 3 and 6 heart cycles, respectively. Note that while in the case of the noiseless segment
different window sizes result in very similar results, for the noisy segment the 3 heart cycles
long correlation window produces the highest peak at time-lag of the S1-S1 time delay.

weighted average of previous K beat-to-beat times:

Texp
bb [n] =

K−1∑

k=0

w[n− k] · Tbb[n− k]

K−1∑

k=0

w[n− k]

(4.1)

where w[n] is the C[n, k] value at that lag k from which the actual Tbb was determined.

In Figs. 4.7-4.8 this is the value of the local maximum labelled TS1-S1.

To increase the reliability of the prediction we introduced a confidence factor (CF),

which is calculated from previous heart cycles:

CF[n] =
2

3
w[n] +

1

3

(
CF[n− 1] + CF[n− 2]

2

)
. (4.2)

Prediction for the next heart cycle is allowed based on whether the CF value is above

a given threshold, usually 0.7. If it is not, then the next position for calculating C[n, k] is

based on the highest physiologically possible fetal heart rate.

In addition to the above, there is one more practical comment: the robustness of the

methods above can be increased by relying on the envelope of the heart sound signal
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calculated by applying the Hilbert transform, H{·} (Section 3.2.4), which is useful for

calculating instantaneous attributes of a time series, such as the instantaneous amplitude.

The calculation of C[n, k] performed on the envelope signal |x[n] + iH{x[n]}| is in

general more robust against noise than the calculations on the heart sound signal.

Unfortunately at the time of this work we had no reference FHR signal with high

resolution, for example from simultaneous fECG measurements, to compare the results of

the different approaches with. This is why we had to introduce two measures:

• Noise level (NL): this is calculated as the ratio of the average median-amplitude

of the noise to the average median-amplitude of the heart sounds calculated only on

segments where the heart rate calculation yielded CF values (Eq.(4.2)) higher than

a given threshold:

NL =
mean(Nmed[i])

mean(Smed[i])
, (4.3)

where Nmed[i] is the median systolic-diastolic, and Smed[i] is the median S1-S2

envelope value of heart cycle i.

• Hit rate (HiR): this is the ratio of the number of detected heart cycles and the

number of estimated heart cycles in the record. The latter estimation is performed

based on the baseline. The HiR reflects the percentage of heart cycles which were

identified with high reliability:

HiR =
# {heart cycles with CF > threshold}

|recording|/(60/BL)
, (4.4)

where |recording| is the length of the given recording in seconds and BL is the

baseline in BPM.

Although these metrics are heuristic and they may not be accurate but they should

certainly reflect the accuracy of the investigated methods. They proved to be adequate

for a basic comparison and the identification of pros and cons of the different approaches.

Regarding the time domain based correlations it can be shown (Fig. 4.10) that as the NL

increases the achieved HiR decreases in the case of many recordings, meaning that in the

case of a recording with a higher noise level the number and length of segments, where

reliable FHR calculation can be achieved, decreases.

The exploitation of cyclostationarity is a very robust way of determining the fetal

heart rate and the introduction of the CF value (Eq.(4.2)) is a very important way of

discriminating reliably determined FHR segments from unreliable segments. Nonetheless,

further methods are needed for FHR determination, especially in the case of low SNR

recordings with long unreliable segments. In the next section a procedure is introduced
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Figure 4.10: Possible range of HiR values for different level of noise in the case of the time
domain based correlation calculated from analysing more than 500 recordings. Note that
for an increased NL value often only a lower HiR can be achieved.

where the time-frequency distribution of the heart sounds is also considered in addition

to the cyclostationarity for calculating the exact fetal heart rate.

4.2.3 Application of the wavelet transform to fetal heart rate calculation

The wavelet transform, as already mentioned in Section 3.2.2, is a highly valuable tool

for the processing of nonstationary signals, especially for biomedical signals [161]. In

the case of fetal PCG signals it seemed a promising approach to extend the calculations

into the time-frequency domain for determining the heart rate. A motivating example is

demonstrated in Fig. 4.11, where it can be observed that an approach based on the wavelet

transform would clearly achieve better in identifying the heart cycles and calculate the

fetal heart rate than a time domain method. It should be noted that high-pass filtering

would enhance the S2 sound based heart cycle detection in the case of this segment.

However, other examples could be shown where the presence of high frequency noise

would have just the opposite effect. By applying a time-frequency/time-scale approach

this is circumvented by considering the whole frequency scale of interest but including also

temporal information in the analysis for a better differentiation between heart sounds and

noise bursts.

The wavelet transform was selected among the time-frequency approaches because it

can be implemented in an efficient way and it is free of the effect of cross terms, in con-

trast to the Wigner-Ville distribution. Moreover, because of the variable window size

it produces a better resolution than the STFT. However, the selection of the mother

wavelet is of importance. Several wavelets can be used as a mother wavelet, such as
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Figure 4.11: A segment of fetal PCG recording (top trace), the corresponding instanta-
neous amplitude (middle trace) and the same segment in the time-scale domain transformed
with the wavelet transform (bottom trace). On the left the templates of the heart cycle
are shown, which are correlated to the segment for determining the heart rate. Note the
difficulty in identifying the heart cycles in the interval starting from 1.7 s in the top and
middle trace, whereas in the case of the wavelet transformed signal the heart sounds can be
clearly easier identified, especially the S2 sounds (marked with arrows).

Daubechies, Morlet or Gaussian, which show smooth oscillating behaviour similarly to the

heart sounds (Fig. 4.12). On the other hand, the Daubechies wavelets show an increasing

instantaneous frequency in contrast to the heart sounds. Based on empirical observations

the 8th order Gaussian mother wavelet, which is the 8th derivative of the Gaussian ex-

ponential, produces good result in capturing the characteristics of the slower oscillating

S1 sounds and the faster oscillating, short S2 sounds. An even order in the case of the

Gaussian wavelet guarantees the symmetry of the wavelet and the relatively high order is

needed to have a similar number of cycles than in the case of typical fetal heart sounds.

In the case of the 8th order Gaussian mother wavelet, there are approximately four cycles.
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Figure 4.12: Three possible mother wavelets for fetal PCG analysis and a fetal S1 sound.
Note the oscillating behaviour of these mother wavelets, resembling the heart sounds.

For calculating the fetal heart rate in the time-scale domain we introduced a similar
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correlation method to the multibeat autocorrelation. This extension increases the relia-

bility of the correlation, which is extremely important in the case of unreliable segments

with noise bursts.

The 2D correlation formula in the time-scale domain is defined as follows for the time

instant n:

CWP [n, k] =

sm∑

s=s1

n+N−1∑

u=n

Wx[u, s] ·Wx[u+ k, s]

√√√√
sm∑

s=s1

n+N−1∑

u=n

(Wx[u, s])2 ·

√√√√
sm∑

s=s1

n+N−1∑

u=n

(Wx[u+ k, s])2

, (4.5)

where Wx[u, s] is the wavelet transform of the x[n] fetal PCG signal and s1, . . . sm are

the selected scale bands. Once again the cyclostationarity of the heart sound signal is

exploited, but here the cyclostationary period is calculated based one the time-scale dis-

tribution of the PCG signal, although the length of the first period of CWP is equal to the

actual Tbb.

As already mentioned in section 3.1, the modulus difference can be similarly applied

in this scenario:

∆W [n, k] =

sm∑

s=s1

n+N−1∑

u=n

|Wx[u, s]−Wx[u+ k, s]|

sm∑

s=s1

n+N−1∑

u=n

|Wx[u, s]|+
sm∑

s=s1

n+N−1∑

u=n

|Wx[u+ k, s]|

, (4.6)

CW∆ [n, k] = 1−∆W [n, k]. (4.7)

It should be noted that in the case of FHR estimation based on the wavelet transform

the modulus difference yields better results in some cases than the correlation, which can

be exploited. Furthermore, since each scale of the wavelet transform corresponds to a

bandpass filtered version of the original signal, the Hilbert transform based enveloped

calculation can be applied also in this scenario for every scale, increasing the robustness

of the method (Fig. 4.13).

4.2.4 Results

Although the time domain based correlation is a fast and reliable method for FHR calcula-

tion, in some cases, especially for noisy fPCG signals with murmur, the wavelet transform

based approach proves to be more robust. Some of these advantages are demonstrated on

a noisy segment of a record of a fetus with grade III-IV tricuspid insufficiency producing
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Figure 4.13: (A) A fPCG segment and the corresponding (B) time-scale representation
using an 8th order Gaussian mother wavelet. (C) The 2D envelope of the time-scale repre-
sentation calculated using the Hilbert transform of the scales.

systolic murmur (Fig. 4.14). As shown in the exaggeration, the strong noise bursts corrupt

the processing, and these noise bursts overlap with the heart sounds which makes the FHR

determination extremely difficult.
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Figure 4.14: An approximately 1-minute long fPCG segment of a fetus with grade III-
IV tricuspid insufficiency producing fetal heart murmur. Note the high amplitude noise
burst (marked in the enlargement of the boxed area).

The segment from Fig. 4.14 is analysed using time domain and wavelet transform based
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correlation methods for the determination of the FHR. Comparing the two results based

on a manually determined FHR the effect of the noise bursts and the murmur on the

time domain autocorrelation method is apparent (Fig. 4.15(B)). In contrast, the wavelet

transform based method is much less affected by these kind of disturbances (Fig. 4.15(A)).
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Figure 4.15: FHR calculated using (A) the wavelet transform based approach and (B) the
time domain correlation. The manually determined FHR (red line) is calculated from the
distances between the manually marked S1 sounds. However, due to the high noise level
even the manual determination of the S1 sounds was not always possible. Note the increased
occurrence of false excursions of the time domain method from the baseline (e.g. the interval
after 36 s) compared to the result of the wavelet transform based approach.

For a more detailed comparison of the approaches based on time domain and the time-

scale domain correlation we processed more than 500 fetal phonocardiographic recordings

with different amounts of disturbances. All recordings were from the third trimester of the

pregnancies and were collected during routine CTG examinations of average population.

Regarding the fetal heart rate calculation the most important parameter is the amount

of noise present in the recordings. Figure 4.16 shows the difference between the HiR of

the wavelet transform based method and the time domain based method with respect to

the noise level (NL) of the respective recording. Although the wavelet transform based

method yields only a modest improvement on average, more precisely less than 5 %, the

distribution of improvement values is very encouraging because improvement up to 18 %

could be achieved and the amount of decrement is rarely greater than 5 %.

As also observable in Fig. 4.16, the best improvement can be achieved in the case

of records with a NL between 20 and 30 %, meaning that the wavelet transform based

method is more robust against the level of noise in the recording. This property is further
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Figure 4.16: The difference between the HiR of the wavelet transform based method
and the time domain based method with respect to the noise level of the given fetal PCG
recording. All values above the black dashed line correspond to improvement, which is the
case in 85 % of the recordings.

supported when investigating the range of possible HiR values for noise levels in the range

of typical fPCG records. As shown in Fig. 4.17, for noise levels less than 20 % both

methods perform fairly well. As the noise level increases the range of possible HiR values

widens because in some cases the different methods achieve only lower HiRs. However, for

NL in the range of 20-35 %, the time domain based method has a lower limit of possible

worst HiR values than the wavelet transform based approach. In other words, the worst

HiR that the wavelet transform based method can achieve in this range of NLs is always

better than the worst performance of the time domain based correlation, at least in the

case of these records. In the case of higher NL the performance of both methods degrades

similarly.

We made also a further interesting observation: as already mentioned the modulus

difference based approach performs in general similar to the autocorrelation based ap-

proach (Fig. 4.18), but in some cases it is better. Out of the 15 % of records where the

wavelet based autocorrelation method achieved lower HiRs than the time domain method,

in the case of nearly 40 % the 2D modulus difference based approach improved the HiR

of the time domain algorithm, meaning that processing in the time-scale domain caused

degradation in the case of only 9 % of the records. In practice one could use the following

strategy: if the wavelet transform based autocorrelation cannot gain improvement then

apply the 2D modulus difference based method.
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Figure 4.17: Possible range of HiR values for different level of noise in the case of the
time domain based correlation and the wavelet transform based method calculated from
analysing more than 500 recordings. Note that in the case of NL in the range of 20-35 % the
worst performance of the wavelet transform based method is always better than the worst
achievement of the time domain method.
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Figure 4.18: The difference between the HiR of the wavelet transform based method
using 2D modulus difference and the time domain based correlation method with respect
to the noise level of the given fetal PCG recording. All values above the black dashed line
correspond to improvement, which is the case in 77 % of the recordings.
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Conclusions of fetal heart rate calculations using the wavelet transform
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Figure 4.19: Block diagram of
a possible realization of a FHR
calculation algorithm including
the wavelet transform based ap-
proach. Note the dashed blocks
for possible extensions.

Since the wavelet transform based method performs

better in the case of the overwhelming majority of

the recordings, more precisely 85 %, and also due to

the aspects highlighted in the previous paragraphs

it can be used as a reliable substitute or extension

of the time domain method. There is no guarantee

that this time-frequency domain based approach is

always better than the time domain approach, but

in the vast majority of cases it will perform better.

This is especially true for noisier records. Another

strategy would be to apply it only on records where

the time domain based approach achieved a HiR less

than a given threshold. Similarly, this decision can

be based also on the NL of the given record or a

given segment of the record. The block diagram of

a possible realization is shown in Fig. 4.19.

As demonstrated also in Fig. 4.15, the improved

hit rate is not the only advantage of the wavelet

transform based method. In that example both

methods yield a similar HiR whereas the time do-

main based autocorrelation introduces an increased amount of error, especially important

when calculating heart rate variability measures. Unfortunately the exact comparison

from this aspect is not possible without, for instance, simultaneous fECG-fPCG measure-

ments, which could not be realized at the time of this study, thus we have to rely on our

empirical observation of selected segments, such as the one presented in Fig. 4.15.

A further next step of this analysis would be the calculation of different heart rate

variability measures from the reliably estimated FHR segments. This could be included

into the routine phonocardiographic CTG examinations, for example for the early identi-

fication of intrauterine growth restriction [100,150,151].

4.3 Components of the heart sounds

As already mentioned in the section 2.3.1, the S1 and S2 heart sounds consist of two major

components, one due the closure of a valve on the left side, and the other due to the closure

of a valve on the right side of the heart. In recent years special attention was given to the

analysis and synthesis of the main heart sounds. The majority of these studies describe
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the decomposition of the S2 heart sound because the explanation for origin of the S2 sound

is more widely accepted and the splitting of the S2 sound is a more frequent symptom of

cardiovascular diseases in the case of adults [162].

Certain parameters of the S2 sound are related to important hemodynamic parameters.

For instance, the resonant frequency of the P2 component is proportional to the pulmonary

arterial pressure [163], as are other spectral features of the S2 sound [164], and spectral

features from the beginning of the S2 sound can be related to the systematic arterial

pressure [165]. These findings are based on Laplace’s law which states that the tension

of the blood vessel wall is proportional to the pressure inside the vessel, and the tension

is related to the resonant frequency, like in the case of a drumhead. Since the splitting

interval has also important implications, this has been investigated as well and it has been

found that it correlates also well with the pulmonary arterial pressure [166].

The fetal circulation has some important differences compared to the developed human

circulation (Section 2.1.2): the lungs are in a collapsed state thus the pulmonary circulation

is not functioning and the blood from the pulmonary artery is shunted into the aorta

through ductus arteriosus. This differences obviously change the meaning and significance

of the S2 splitting. On the other hand, in the case of fetal PCG recordings, we observed in

certain cases the splitting of the first heart sound, and assume that the assessment could

contribute to the classification of congenital heart diseases.

Although several techniques have been suggested for the determination of the heart

sound split, especially in the case of the S2 sound [167–169], a model based approach has

several advantages:

• for the short and low bandwidth fetal heart sound signal a model based approach

proved to be more reliable for the exact determination of the splitting interval,

• although the exact splitting interval is usually the most important parameter, other

heart sound parameters have also discriminating value,

• model based heart sound detection can be applied for very precise Tbb determination.

Several heart sound models have been suggested not only for the analysis, but also

for the synthesis of heart sounds, for example for educational purposes [96]. Previous

attempts can be classified into three main groups [28]:

• The exponentially damped sinusoid models [170–174]: The heart sound is modelled

as the sum of exponentially decaying sines associated with the constant resonant

frequencies of the production and transmission system, that is the heart-thorax

system. From this point of view, this signal model has a clear physical meaning,

but it usually requires more than a few components to accurately model the heart

sounds. Another major disadvantage is that the different valve components, e.g. A2
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and P2, cannot be separated, thus the splitting interval cannot be determined using

this approach.

• Models based on Gaussian sinusoids [175,176]: In the case of this model the matching

pursuit method can be applied which decomposes the heart sound signal into a set of

Gaussian sinusoids, i.e. time-frequency atoms, which yields a precise time-frequency

representation. Using this approach in some cases it is possible to determine the

splitting interval [177], but usually more than just a few components are needed also

in this scenario. True physical meaning is also lost. It can be applied effectively for

denoising purposes, nonetheless [31,32].

• The linear and nonlinear chirp model [28, 96, 97, 178]: This approach relies on the

experience gained by performing time-frequency analyses of heart sounds and on

the physical interpretation that the closing sound of the valve produces decaying

oscillations with decreasing frequency since the blood volume in the heart changes

rapidly after valve closure. Although in adults the instantaneous frequencies of S1

and S2, as well as of the components, e.g. A2 and P2, have generally a nonlinear

relationship with time, in the case of fetuses a linear relationship is often adequate.

Although these models are mostly applied for the decomposition of the S2 heart sound,

motivated by aspects mentioned above and due to the fact the S1 sound is similarly

a multicomponent signal [174], we investigated the application of such models on the

analysis of fetal heart sounds.

4.3.1 Fetal heart sound model and parameter estimation

By investigating the heart sounds of pigs and humans with wide S2 split Xu et al. suggested

a dechirping method and the following nonlinear heart sound model for the second heart

sound [28,97]:

A(t) = c3 ·
(

1− exp

(
−t
c4

))
· exp

(
−t
c5

)
· sin

(
πt

c6

)
, (4.8)

f(t) = c1 + c2(t+ 1)−0.5, (4.9)

sS2(t) = AA(t) sin (ϕA(t)) +AP (t− t0) sin (ϕP (t− t0)) , (4.10)

where c1, c2, c3, c4, c5, c6 are constants, different for the aortic, A, and pulmonary, P ,

components, and t0 is the splitting interval. ϕA(t) and ϕP (t) are the phase func-

tions, calculated by integrating the different instantaneous frequency functions, that is

ϕ(t) = 2π
∫ t
−∞ f(τ)dτ .

Based mainly the above model and the analysis of fetal heart sounds, we suggested the
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following chirp model for fetal heart sound modelling, presented here for the S1 sound:

sM (t) = AM sin(ϕM (t)) · e−t/τM , (4.11)

sT (t) = AT sin(ϕT (t− td)) · e−(t−td)/τT , (4.12)

sS1(t) = sM (t) + sT (t), (4.13)

where AM and AT are the initial amplitudes, ϕM and ϕT the phase functions, and τM and

τT are the time constants of the damping of the sinusoidal mitral and tricuspid components,

respectively. Finally, td is the delay between the above two components, that is the

splitting interval.

As already noted, a linear frequency decrease often proved to be sufficient, meaning

that the phase functions can be defined as follows:

ϕM (t) = 2π

∫ t

−∞
fM (τ)dτ = 2π

∫ t

−∞
FM −∆fM · τ dτ, (4.14)

ϕT (t) = 2π

∫ t

−∞
fT (τ)dτ = 2π

∫ t

−∞
FT −∆fT · τ dτ, (4.15)

where fT (t) and fM (t) are the instantaneous frequency functions with an initial frequency

of FM and FT and a negative slope of ∆fM and ∆fT for the mitral and tricuspid compo-

nents, respectively.

This two-component model contains altogether nine parameters (p1 − p9). It has the

main advantage that it is rather simple compared to the model of Xu et al. but has

still physical meaning. The simplicity is important because of the efficient parameter

estimation from the noise-contaminated recordings. In case the beginning of the heart

sound cannot be identified reliably and offset parameter can be easily included into the

model. Several methods exist for the assessment of parameters of the heart sound model.

In the following section a short introduction of possible approaches is presented.

Time-Frequency Approach

Xu et al. [28, 97] developed their heart sound model and their dechirping method based

on the time-frequency analysis of the heart sounds. They applied the Wigner-Ville distri-

bution (Section 3.2.4).

If the frequency decay of the heart sound components is great enough than the ap-

plication of such a transform makes the separation of the components possible in the

time-frequency plain even if they are overlapping in the time domain. Furthermore the

parameter values can be estimated from the Wigner-Ville distribution.

The main disadvantage of this approach is that masking is needed in the time-frequency
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plane for suppressing the effect of the cross terms. This is not always possible in an

automatic way, although recent results using compressed sensing could be utilized in this

field [179]. However, the high level of noise and the low bandwidth of fetal heart sounds

makes this approach usually not feasible.

The Monte Carlo Method

A rather brute force approach is the application of the Monte Carlo method [98]. The

main idea is to apply gambling for the determination of some unknown values. Consider

as an example a circle and a circumscribed square. The ratio of the area of the circle and

the square is π/4, and it is reasonable to believe that if one would pick points at random

from the square, the fraction π/4 would lie also inside the circle [180]. Picking points at

random this way for characterising the area of the circle is also known as random sampling.

The Monte Carlo method can be applied for determining the parameters of the model

by taking enough random parameters and calculating the error between the measured

heart sound and the synthesized signal based on the different parameter values. It is

believed that the set of parameters with the smallest error is the real solution, or at least

it is near the real solution of the model-fitting problem. Obviously this presumes that

i) the model is valid, ii) the intervals, i.e. the square in the case of the example above, for

picking the random parameters is known, iii) the error surface is “nice”, and iv) sufficient

number of random parameters have been investigated.

Our suggested model is a simplified one, thus it cannot be always valid. Nature usually

cannot be unveiled in such a simple way. Nonetheless according to our experiences, and

based on the analysis of selected fetal heart sounds we have found that this model is

capable of capturing important characteristics of the heart sound, such as splitting. The

limits of the interval for valid parameters have been determined empirically based on the

time-frequency analysis of selected heart sounds and the model fitting of a great number

of heart sounds (Table 4.1). Regarding the error surface, unfortunately a rigorous proof

is missing, and in the case of greatly overlapping components, an increased number of

local minima exists often without a definitive global minimum. Fortunately heart sound

parameter estimation becomes more important in the case of increased splitting which

might be related to some cardiac abnormality. This increase is often still not enough for

separation in the time domain, however our model-based approach becomes more reliable

due to the decreased number of local minima. The number of selected random parameters

is usually regarded as 106, on special computing architectures even more. This threshold

is the result of empirical observations.

Further methods, such as simulated annealing [181, 182], or global optimization [183],

have been also applied with success, however, the basic Monte Carlo method has the main
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Table 4.1: Parameter intervals for heart sound modelling

# Parameter Limits

p1 AM -1-1 (normalized)
p2 FM 20-70 Hz
p3 ∆fM 0.2-0.8 Hz/ms
p4 τM 10-150 ms
p5 AT -1-1 (normalized)
p6 FT 30-90 Hz
p7 ∆fT 0.3-1 Hz/ms
p8 τT 10-100 ms
p9 td 0-60 ms

advantage of simplicity, although it is resource demanding. The latter can be bypassed

by implementations on manycore architectures, such as GPUs. In this field preliminary

results have been achieved with a running time of 300 ms for a single heart sound, which

is equal to a decrease of more than two order of magnitudes [108].

The solution of the Monte Carlo method can be refined using a local optimization

algorithm, which yields the local minimum near the guessed solution of the Monte Carlo

process.

As an example, in Fig. 4.20 and 4.21 a fetal S1 sound is shown together with the result

of the Monte Carlo based model fitting approach. With random simulation of 106 heart

sounds and local optimization of the best fitting signal a normalized root mean square

error (NRMSE) of 24 % was achieved. NRMSE is defined as

NRMSE =

√∑N
i=1 e[i]

2

∑N
i=1 x[i]2

, (4.16)

where e[n] is the error between the original heart sound sound (x[n]) and the synthesized

signal (s[n]). The time delay between the two components, that is the splitting interval,

was found to be 12 ms. Based on the modelling of more than one hundred fetal S1

heart sounds on average a NRMSE of around 30 % was achieved (Fig. 4.22), which is

possibly sufficient for reliable parameter estimation in this low SNR scenario (consider

Figs. 4.20-4.21 as a point of reference).

Conclusions of fetal heart sound modelling

Using a valid fetal heart sound model it is possible to perform fetal PCG examinations

in a more objective manner because the characterization of the the measurements can be

accomplished from a basic level of the data, namely from the level of the heart sounds.
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Figure 4.20: (A) A fetal S1 sound (blue) and the result of the Monte Carlo based model
fitting (red). The normalized root mean square error between the measured and synthesized
S1 sound is 24 %. (B) The mitral component and (C) the tricuspid component of the
synthesized S1 sound.

F
re

q
u

e
n

c
y
 [

H
z
]

Time [s]

A

0 0.05 0.1
0

20

40

60

80

100

F
re

q
u

e
n

c
y
 [

H
z
]

Time [s]

B

0 0.05 0.1
0

20

40

60

80

100

Figure 4.21: The time-frequency distribution of (A) the fetal S1 sound from Fig. 4.20 and
(B) the corresponding synthesized heart sound superimposed by the instantaneous frequency
function of the model (the color of the line corresponds to the instantaneous amplitude).
Note the linear frequency decrease, especially observable of the component with higher
frequencies. The time-frequency representations were calculated using the Wigner-Ville
distribution.
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Figure 4.22: The histogram of the
achieved NRMSEs of the modelling of more
than one hundred fetal S1 heart sounds.

It has been demonstrated that heart sound

parameters in the case of adults have clini-

cal significance [163–166], this should also,

at least partly, apply to fetuses. However,

the validation is much more difficult in the

case of fetuses. This is why the the real sig-

nificance of the above presented results can

only be established based on clinical inves-

tigations of a great number of fetuses with

possibly echocardiographically verified di-

agnosis of different states and diseases.

4.4 Fetal heart murmur and congenital heart diseases

The presence of murmur is a warning sign for a possible underlying heart disease. Several

studies investigated murmurs related to congenital heart defects (CHD) using PCG for

children and adults, for instance [167,184]. For children an automatic cardiac examination

has been also suggested [20]. It should be noted that these results can be only partly

adapted to fetal PCG, nonetheless, fetal murmur seems still to of significance. This is also

demonstrated by preliminary results in [185].

4.4.1 Principles of fetal murmur detection

As already explained in Section 2.3.2, normally the fetal heart exhibits only two well dis-

tinguishable valve sounds (S1 and S2). In the case of certain morphological abnormalities

murmurs also appear, which is the result of turbulent blood flow. The detection of mur-

mur is often very difficult since noise from multiple sources corrupts the low intensity fetal

heart sound signal. Furthermore, long records have to be processed, thus sophisticated

signal processing methods are needed. The automated murmur detection method relies

on the fact that if a murmur is present then it appears in nearly all heart cycles, usually

with a similar envelope, duration and timing whereas noise does not correlate with the

heart rate.

In recent years several methods have been investigated for heart murmur detection

and classification, such as artificial neural networks [186], detection based on dynamic

parameters of different time-frequency representations [187, 188] or detection based on

fractal features [189–191]. All these studies deal with PCG recordings form children and

adults. Although these techniques might be at least partly applicable for fetal heart

sound data, major differences between fetal and postnatal PCG signals introduce some
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limitations. Among these dissimilarities are the much lower bandwidth of the fetal PCG

signal due to the attenuation caused by the maternal tissues and the lower signal-to-noise

ratio with more sources of noise (e.g. maternal heart and digestive sounds). There is

also an important empirical observation, namely dominant low-frequency components of

fetal heart murmur can be recorded on the maternal abdomen. In contrast, the murmur

of children and adults has usually higher dominant frequency components than the main

heart sounds (Fig. 4.23). In addition, it might be the corollary of the previous phenomenon

that the recorded fetal heart murmurs exhibit in some cases a rather cyclostationary

property despite the certainly turbulent origin of the murmur signal (Fig 4.26). Ongoing

investigations are trying to find a confirmed explanation for this observation.
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Figure 4.23: Heart murmur of an infant with pulmonary atresia before birth (left) and after
birth (right). Although similar dominant frequency components are present in the low fre-
quency range (<100 Hz), the postnatal segment exhibits strong high frequency components,
which are filtered out by the different maternal tissue in the fetal recording.

The aforementioned aspects are one of the main reasons why we apply other techniques

for murmur detection compared to studies on children and adults. For example a higher

heart rate, the increased level of noise and the only low-frequency components of the mur-

mur pose constraints on the mentioned approaches which are based on a time-frequency

representation. Likewise, the rather cyclostationary nature of the murmur limits the pos-

sibility of fractal feature based classification. Our suggested method tries to exploit these

differences and exploits the cyclostationarity of the signal by calculating a characteristic

heart sound for a given record.

4.4.2 Characteristic heart sounds by improved ensemble averaging

The techniques of ensemble averaging was introduced in Section 3.1, which is a useful

method for investigating also cyclostationary signals, such as PCG signals. In this scenario

the different heart cycles are regarded as the elements of the ensemble. However, some

limitations have to be taken into account. First, different level of noise is present in
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different heart cycles and the noise is often non-Gaussian. Second, the heart sound signal

might not remain the same over all the heart cycles, due to factors such as variable

splitting. Third, there is no compensation for the misalignment of the window containing

the heart sound or heart cycle caused by heart rate variability and the inaccuracy of the

heart sound detection method.

The first two obstacles are tackled by defining weights for the averaging and introduc-

ing the concept of element specific ensemble averaging. The weights are defined in the

following way: we start with a segment xi[n]. Because we want to enhance the heart sound

signal underlying this segment, we need to take into account those other segments with

great weights which are similar to and those segments with lower weight which differ from

the selected ith segment. A simple similarity measure, which proved to be useful in this

scenario, is the normalized correlation value. Ensemble averaging even in a weighted man-

ner is a linear technique and, as such, performs well only if the noise is Gaussian. However,

noise bursts with large amplitudes will decrease the performance of this averaging method,

thus a similarity condition is included into the calculation: if the normalized correlation

coefficient is less than a given threshold, the corresponding heart cycle is rejected from

the ensemble taking advantage of the great number of available heart cycles. This way

the calculated ensemble average will be specific for the selected initial ith segment.

The last difficulty is resolved by calculating the Pearson correlation coeffi-

cients (Eq.(3.1)) between the segments, and define the offset parameter as the time-lag

with maximal normalized correlation value, which latter is regarded as the actual weight

for the averaging. In summary, the improved ensemble average ŝi is calculated from the

different heart cycles xj as weighted sum in the following way:

ŝi[n] =
1∑

j

wij

∑

j

wij · xj [n− oij ], (4.17)

where ŝi is the ensemble average for segment i and wij is the maximal normalized corre-

lation coefficient between segment i and j, producing the offset oij .

In order to increase robustness against noise bursts a selection criterion can be included

meaning that only those segments are involved in the averaging which have a normalized

correlation coefficient greater than a given threshold rthres.

After performing the calculations described above we end up with a set of heart cycle

segments for every heart cycle segment, denoted as correlation groups. Each of this groups

contains segments which are similar to the initial segment of the group with a correlation

coefficient greater than the given threshold rthres. A natural question arising is which

group to choose for characterizing the given record. A trivial answer is to select the group

containing the largest number of segments. This approach is in most cases appropriate
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since the heart sound dynamics usually do not change significantly during a 20-minute

record. Yet in some cases some major differences can be observed, for example between

the heart sounds in the first and second half of the record. In such a case obviously further

analysis should be carried out on correlation groups from both parts of the recording. The

number of analysed correlation groups can be controlled by investigating the temporal

distribution of the segments of the groups in the given recording. This, however, is a field

of possible further work.

Heart sound

recording

Segmentation and

heart sound detection

Correlation of the

heart sounds

Correlation

values

Defining correlation

groups

Size of correlation

groups appropriate?

Lowering the

correlation

threshold

Selection of one/more

correlation group(s)

Characteristic heart

sound calculation

no

yes

Figure 4.24: Block diagram
of the characteristic heart sound
calculation algorithm.

It should be noted that this algorithm is a brute

force approach, and compares every heart cycle,

which means a complexity of O(n!). In practice,

however, this is not a crucial disadvantage because

due to the low-frequency content a low sampling fre-

quency can be used and the length of the recordings

is limited, enabling the presentation of results af-

ter a couple of minutes after the end of the PCG

recordings in the present realization. However, in

the case of other applications, such as continuous

monitoring, central evaluation of many recordings

in a telemetric system or analysis of other biomedi-

cal signals, with increased data length and sampling

frequency run time improvement could be realized

by dividing the data of interest into multiple parts

and applying kilocore computing architectures, for

instance FPGAs or GPUs, for parallel processing.

Some examples for fetal heart sound enhance-

ment using ensemble averaging are presented in the

following section. In this scenario, the resulting en-

semble averaged heart sound from the greatest cor-

relation group is denoted as the characteristic heart

sound or cycle for the given record. The block di-

agram of the characteristic heart sound calculation

algorithm is shown in Fig. 4.24.

4.4.3 Characteristic heart sound calcula-

tion for murmur detection

The technique introduced in the previous section is not only interesting for the analysis of

the first and second fetal heart sounds. As already remarked fetal heart murmurs exhibit
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surprisingly cyclostationary properties enabling the calculation of a “characteristic heart

murmur” (Fig. 4.25). Based on this observation a straightforward idea arises: apply

the characteristic heart sound calculation technique on the systolic or diastolic segments

and if a correlation group of acceptable size and a characteristic sound of acceptable

average energy can be determined then the record can be marked as possibly containing

murmur. In practice, however, usually the characteristic heart cycle is calculated based on

correlating only the first heart sound, or the S1 sound and the systolic segment in order

to increase robustness. The acceptable size of a correlation group is regarded as around

5% of the number of detected heart cycles in the record, depending on the quality of the

signal. Because in a 20-minute recording usually around 2000 heart cycles of acceptable

quality are present, the aforementioned threshold leaves us still with around 100 cycles,

which is in most of the cases sufficient to decide whether a systematic extra component,

i.e. a murmur, is present or not.

Examples for characteristic heart cycles in the case of recordings with and without

murmur are shown in Fig. 4.26 and Fig. 4.27, respectively.
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Figure 4.25: The characteristic murmur (thick line in bottom trace) of a record from a
fetus with Tetralogy of Fallot calculated from 127 heart cycles (thin lines in bottom trace)
and one heart cycle from the ensemble (top trace). A component of around 30 Hz is present
in the systole. The systolic timing of this murmur component varies from cycle to cycle.

Decision about the presence of murmur can be performed by visual examination of

the characteristic heart cycle because it is a comprehensive form of the typical heart

sound dynamics in the given recording. On the other hand automatic algorithms can

also be applied. We have developed a heuristic method which calculates an envelope of

the systolic segment based on the local extrema. By analysing certain properties of the

envelope (maximal and average value, maximal and average rate of change, . . . ) a murmur

is suspected and localized [12,109].
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Figure 4.26: (A) The characteristic heart cycle (thick line) of a fetus with a ventricular
septal defect and the corresponding 84 heart cycles (thin lines). Note the cyclostationary
nature of the heart murmur with a very similar waveform from cycle to cycle observable also
on a segment of the record (B) showing three consecutive heart cycles.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−0.2

0

0.2

0.4

0.6
A

Time [s]

0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

B

Time [s]

S2

S1
S2

S1

S2

S1

S1
S2

Figure 4.27: (A) The characteristic heart cycle (thick line) of a healthy fetus and the
corresponding 89 heart cycles (thin lines). Note the low variability of the length of the
systole. (B) A segment showing three consecutive heart cycles of the same recording.
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Parameters of the fetal heart murmur

In cardiac auscultation heart murmur is usually characterized by five properties as already

explained in Section 2.3.2. In the case of fetal heart murmur not all of them can be

determined (e.g. point of maximal intensity or radiation). However, in order to be be

consistent with the aforementioned medical murmur parameters, and in this way facilitate

the acceptance of fetal murmur analysis in the medical community we defined the following

parameters:

• Length: is calculated as the length of the time window containing the murmur

relative to the length of the cardiac cycle.

• Timing: at present we discriminate between systolic, diastolic and murmur with

components in the systole and diastole.

• Intensity: is the average ratio of the maximal murmur intensity to the maximal S1

sound intensity.

• Dominant frequency: is determined based on the average zero-crossing rate or

frequency of the maximal spectral component.

• Shape of the envelope: is classified into crescendo (positive derivative above a

given threshold during the whole murmur), decrescendo (negative derivative above a

given threshold during the whole murmur), band-type (absolute value of the deriva-

tive below a threshold) or crescendo-decrescendo (positive derivative at the beginning

and negative at the end of the murmur).

It is important to note that during our investigations we found that these parameters

can be calculated in an automatic way and have possible high discriminative value.

4.4.4 Significance of fetal murmur detection

For demonstrating the clinical significance of fetal murmur detection we present selected

cases because at the time of this work sufficient amount of records with verified clinical

diagnosis was still not available.

Table 4.2 summarizes the cases where the clinical diagnosis was established based

on detailed echocardiographic examinations. As observable also in this table, serious

congenital heart diseases produce often detectable fetal heart murmur. However, in some

cases no murmur can be detected although a congenital heart disease can be diagnosed. It

should be noted that these results are based on single phonocardiographic measurements

whereas some malformation might produce murmur only at a later stage of pregnancy

because of the increase in the fetal blood pressure during pregnancy [192]. Since fetal

phonocardiographic measurements can be used for routine CTG examinations even on a

daily basis in home environment, CHDs which produce heart murmur only at a later stage
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Table 4.2: Fetuses with verified clinical diagnosis and the parameters of detected fetal
heart murmur

ID Diagnosis* Murmur Length Timing Intensity
Dominant Shape
Frequency of the

[Hz] Envelope

P1 ASD X 24% systolic 46% 36 band-type

P2
TI,

Ebstein’s
anomaly

X 23% systolic 76% 45
crescendo-

decrescendo

P3 VSD X 17% systolic 120% 41
crescendo-

decrescendo
P4 VSD X 21% systolic 107% 26 decrescendo

P5 VSD X 15% systolic 60% 30
crescendo-

decrescendo
P6 VSD – – – – – –

P7 VSD X 13% systolic 22% 27
crescendo-

decrescendo

P8
TOF,

MAPCA
X 55%

systolic-
diastolic

38% 30 band-type

P9
PA,

MAPCA
X 25% systolic 125% 27

crescendo-
decrescendo

P10 – X 29% systolic 39% 32
crescendo-

decrescendo
*ASD - Atrial septum defect, TI - Tricuspid insufficiency, VSD - Ventricular septum defect, TOF -

Tetralogy of Fallott, MAPCA - Major aorto-pulmonary collateral arteries, PA - Pulmonary atresia
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of the pregnancy might be still assessable. On the other hand, there are also cases where

a fetal murmur can be detected but no underlying cardiac abnormality can identified.

The cause of these so called innocent murmurs is also a turbulent blood flow but with

no associated hemodynamically significant malformation. Innocent murmur often even

disappears over time or during childhood. The discrimination of innocent murmurs is still

an important open question, even in the case of children and adults. Here again, the

possibility of daily fetal measurements could be advantageous.

In Appendix A two selected cases with serious congenital heart diseases are presented

with detailed clinical descriptions, where in the first case prospective and in the second

case retrospective analysis of the fetal phonocardiographic records revealed fetal heart

murmur. The latter case is an important example because the CHD of that fetus became

evident only after birth, whereas it might have been already indicated earlier based on

the fetal heart murmur. However, the automatic murmur detection method is not yet

included into the routine CTG examination thus the fetal murmur analysis was performed

only after birth. Although in this way the significance of fetal murmur detection is not

fully established we believe that these results support the feasibility of our new method,

which could contribute to the prenatal detection of CHDs, as a pre-screening method for

a comprehensive echocardiographic examination, especially in the low risk population.
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Figure 4.28: (A) The characteristic heart cycle (thick line) and the corresponding heart
cycles (thin lines) of the fetus with Tetralogy of Fallot, pulmonary insufficiency and and
aorta-pulmonary vessels producing fetal heart murmur (Case I). (B) Three consecutive heart
cycles from the same recording.
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Figure 4.29: Segments of the phonocardiographic recordings of a fetus with pulmonary
atresia combined with a ventricular septal defect and major aorto-pulmonary collateral ar-
teries producing heart murmur (Case II). (A) Fetal and (B) postnatal heart sound recordings
are both filtered to the frequency band of 30-100 Hz.

The detection of fetal heart murmur is of great importance because it might open new

possibilities for prenatal screening of CHDs. The required equipment for fetal phonocar-

diography is of low cost and automatic methods help in the analysis. In this way fetal

PCG could assist the prenatal detection of CHDs as a pre-screening method for a compre-

hensive echocardiographic examination, especially in the low risk population. Although

it can be applied at the earliest in the second half of the second trimester, it could con-

tribute to an appropriately prepared delivery and early postnatal treatment. There are

also other factors, such as allowing parents time to adjust to their unborn child’s diagnosis,

blunting postnatal psychological stress [193]. Further research is needed for quantitative

verification of the sensitivity and specificity of the suggested method.

A possible expert system

One could go a step even further, if the significance of fetal heart murmur is more sup-

ported, by trying to differentiate between different CHDs. Automated murmur classifica-

tion is a difficult task, although in the case of children and adults promising results can be

found, e.g. [194]. Because of the differences of the fetal circulation and the low intensity

and bandwidth of the fPCG signal not all knowledge of adult murmur classification can
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be adapted. Nevertheless, our observations so far support the possibility of finding ade-

quate features for discriminating different CHDs. This, on the other hand would also help

in separating innocent murmurs from murmurs related to severe cardiac abnormalities.

Unfortunately, at present, we have not enough data available for verifying parameters for

reliable classification thus only some preliminary results can be demonstrated.

As an example a record of detected fetal heart murmur originating from a tricuspid

valve insufficiency (TI) related to the Ebstein syndrome is shown in Fig. 4.30. This murmur

exhibits fairly high frequency components, which has, for instance, a surely discriminative

value.

Figure 4.30: (A) A segment of the phonocardiographic recording of the fetus with tricus-
pid insufficiency related to Ebstein syndrome. (B) The time-frequency distribution of the
segment above. Note the high frequency components of the murmur.

Analysis of ten records from fetuses with four different CHDs and an innocent murmur

substantiate also the possibility of murmur classification. For each record we extracted

parameters from six heart cycles taking into account the deviations of the dynamics,

producing altogether more than 50 points in the feature space. As observable in Fig. 4.31,

although there is some overlap, different domains that correspond to different CHDs can

possibly be defined. Note also that not all parameters have been used because of limitation

of the visualisation. A quantitative classification method has not been applied on this data

because of the low number of cases.

Fortunately, using the telemetric system there is hope to collect sufficient amount of

data for verification of an appropriate classification method, such as different types of

clustering, or application of a naive Bayes classifier or a support vector machine. This

way it would be possible to build-up a knowledge base for the development of a fetal

phonocardiographic expert system, which could serve the increased safety of the fetus

during the pregnancy and the birth.
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Chapter 5

Phonocardiography for Preterm

Infants with Patent Ductus

Arteriosus

A persistent patent ductus arteriosus (PDA) may have serious complications, such as

pulmonary hypertension, heart failure, an infection of the heart (endocarditis) or irregular

heartbeat (arrhythmia) [76]. The prevalence of PDA is especially high in the case of

low-birth-weight premature neonates, however the rate of spontaneous closure during the

first two years is also high in the case of these patients. Furthermore, the role of PDA

in causing associated morbidities in the case of preterms is still in question [195]. Due to

these factors the major question a pediatrician faces when a patent ductus arteriosus is

diagnosed is whether the infant needs treatment and if yes, then which treatment should

be administered. The diagnosis is usually based on an echocardiographic examination

which is a snapshot of the infant’s current cardiovascular status, but there are no tools for

continuous monitoring of any parameter of the PDA which could help in decision making

and better understanding of the closure process.

Phonocardiography might open new possibilities for assessing and monitoring the PDA.

There are two main features which are in relation with the PDA and can be investigated:

heart murmur and the splitting of the S2 heart sound. Some related biological and theo-

retical background is presented in the following section.

75
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5.1 Biophysical background

5.1.1 Short theoretical summary on the generation of murmurs

In order to deeper understand the relation of certain parameters of the murmur and

important clinical parameters in the following short excursion some of the physical laws

governing the generation of vibrations by a fluid flows are presented.

Normally the blood flow in the blood vessels remains laminar, meaning that the blood

flows in parallel layers, with no disruption between the layers. The flow rate in such a

scenario was described by Jean Louis Marie Poiseuille in the 19th century and is defined

through the Hagen-Poiseuille equation [196]:

Q =
∆Pπr4

8µL
, (5.1)

where Q is the volumetric flow rate of a Newtonian fluid with dynamic viscosity µ, ∆P

is the pressure drop over the distance L in a cylindrical tube of diameter r. This means

that to maintain a particular flow rate on a narrowed (i.e. stenosed) segment, where r

is decreased, the pressure drop will increase. As the pressure gradient increases, the flow

velocity will also increase because blood is an incompressible fluid. However, at some

point the rate of flow will not increase further with increasing pressure and the blood

flow becomes turbulent, meaning that the flow becomes irregular. When laminar flow

transitions to turbulent flow depends on the Reynolds number defined as

Re =
ρuL

µ
, (5.2)

where ρ is the density of the fluid, u is the fluid velocity, L is the characteristic length (i.e.

the diameter of the vessel) and µ is the dynamic viscosity. The geometry of the vessel also

affects the transition to turbulence.

Figure 5.1 shows a schematic illustration of a vessel segment with stenosis, where D

denotes the vessel diameter and d the diameter of the stenosis. At low rates corresponding

to a very low Reynolds number the flow will be completely laminar and the blood will

follow the boundaries of the obstruction. At flow velocities corresponding to Re ≈ 20 a jet

will be formed at the orifice of the stenosis due to separation of the layers and introducing

eddies just behind the stenosis, as shown in the figure. As the flow, and equivalently the

Re increases even more, the generated vortices start to detach and the post stenotic flow

becomes more and more irregular and chaotic, that is turbulent [197].

Turbulent blood flow causes pressure fluctuations which causes vibration of the post
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Figure 5.1: Schematic illustration of the flow through a stenosed segment. Taken from
Schmidt et al. [196].

stenotic vessel wall. Some of these vibrations can be sensed as murmur, although the

frequency dependant damping of the surrounding tissues has to be taken into account [198]

and the post stenotic segment can behave as a resonant chamber introducing frequency

peaks in the spectrum of the recorded murmur [199,200].

Nonetheless, the genesis of murmurs is still not completely understood. The mathe-

matical theory behind this question is described by the laws of fluid dynamics, namely

by the Navier-Stokes equations [197]. Although these equations were written down in the

19th century, the understanding of the mathematics behind them is still minimal. For

instance, it is still not proven that in three dimensions solutions always exist, or if they

exist, then they do not contain any singularity. It was also recognized as one of seven most

important mathematical problems by the Clay Mathematics Institute in 2000, known as

Millennium Prize Problems [201].

Turbulence is a time dependent chaotic behaviour of fluid flow, and it is believed that

the Navier–Stokes equations describe turbulence properly. Numerical simulation of the

Navier-Stokes equations for turbulent flow is extremely difficult, since for a stable solu-

tion a very fine mesh is required which makes the computations often infeasible. These

attempts are referred as direct numerical simulations (DNS), and with the growth of so-

lutions on kilocore processor architectures these approaches might produce simulations

of increased accuracy. In the case of computational fluid dynamics (CFD) simulations

of lower computational need time-averaging of the equations is applied based on statis-

tical assumptions and a turbulence model (e.g. k-ε) is used to close the equations. The

large eddy simulation (LES) is another, computationally demanding but more accurate

approach. Further details can be found in the rich literature of CFD, e.g. [202].

Several works have been published in the recent decades on experimentally validated,

model based calculations [199, 203, 204] and blood flow simulations [122, 205, 206]. Un-

fortunately nearly all of them deal only with investigating the effect of a stenosed artery

on the blood flow, which is probably the simplest turbulence producing scenario in the

circulatory system. Even in this situation not all questions are answered (for example the

effect of surrounding human tissues). Another important topic of blood flow simulations
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are studies on the effect of a prosthetic heart valve [207–209], but also here the geometries

are different than in the case of the ductus arteriosus. These aspects also underline the

difficulty of investigating a more complicated situation of turbulent blood flow, such as in

the case of the ductus arteriosus where scientists have to deal with interconnected vessels

with flows coming from different directions.

Some results of these studies can be adapted. For example several of them suggest a

wide band spectrum of the acoustic energy radiated by the turbulence [199, 200, 204]. In

particular, Yazicioglu et al. [203] defined, based on the work of Tobin and Chang [210], an

explicit formula for calculating the power spectral density of the wall pressure fluctuations

of a steady flow of water in a straight, compliant, cylindrical tube with a constricted region

of various diameters:

PSD(f) = ρ2Du3

(
d

D

)2

Fn2

(
fD

u

)
, (5.3)

Fn2

(
fD

u

)
=

0.00208

1 + 20 · (fD/u)5.3
.

The wideband spectrum estimated by using the Eq.(5.3) is depicted in Fig. 5.2. The

independent variables have been set to match parameters typical for a preterm with PDA.

Note the relatively high power of frequencies below approximately 200 Hz, where the

power rolls of. This point is regarded as the break frequency and studies have shown that

is related to the rate of vortex shedding [211].

The measured spectrum of the murmur of PDA is also of a wideband nature, as

observable in Fig. 5.3, although the transfer function of the vessels and tissues is unknown.

Some of these works investigate also the propagation of the pressure fluctuations

through the surrounding tissues [200, 203, 204, 212, 213]. For instance the study by

Wang et al. [199] describes the wideband wall pressure fluctuations as an input signal

for the stenotic or poststenotic vessel segment, which is regarded as a resonator in the

case of coronary artery stenosis. They also suggested a lumped model for the segments

and found good agreement between theoretic and measured data. As already mentioned,

in the case of the PDA the vessel structure is much more complex compared to a single

vessel and a stenosis, consequently such a simple model is surely not valid. However, the

estimation of an appropriate model is beyond the scope of this work.

Studying the noise generated by a turbulent blood flow for diagnostic purposes, as

already mentioned, is also referred as phonoangiography [91, 214], and has been regarded

as a possible tool for noninvasive diagnostic examination of coronary artery disease (CAD).

As already described above, the extraction of parameters from the acoustic signal which
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Figure 5.2: Theoretical wideband spectrum of the wall pressure fluctuations generated by
stenosis with a diameter of 3.3 mm in a tube with a diameter of 5 mm. The flow velocity
in the constriction zone was set to 2 m/s. These parameters correspond to a Re = 1749 in
the constriction zone in the case of blood (ρ = 1060 kg/m3, µ = 4 · 10−3 Pa·s). Based on the
work of Yazicioglu et al. [203].
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Figure 5.3: Average spectrum of the systolic (blue) and diastolic (red) segments of a
preterm infant with PDA. The diameter of the PDA was estimated to be 3.3 mm, and the
maximal blood flow was measured to be 2 m/s. The gray dotted line is the scaled theoretical
wideband spectrum of Fig. 5.2.
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can be related to important medical parameters is extremely difficult, although promising

results have been achieved [215], also for aortic valve stenosis [34] and for urinary bladder

outlet obstruction [216]. However, it should be noted that until a deep understanding of

turbulent flows, acoustic sound generation and propagation through human body tissues

is not achieved, the correlation of sound parameters and important medical parameters is

of rather phenomenological nature, which is also one weakness of this work. . .

5.1.2 Splitting of the S2 heart sound in the case of PDA

The splitting of the S2 sound in the case of preterms was first observed during the visual

examination of the recordings (Fig. 5.4) but there are biological factors which support this

concept: normally the two main arteries are not connected directly. In contrast, when the

ductus arteriosus is patent, there is a direct linkage between them not very far away from

the aorto-pulmonary valves (Fig. 5.5). This will obviously affect the closure of these valves

and hence the splitting of the second heart sound [217]. If the overload on the left ventricle

is large then even a reversed split can develop, meaning that the pulmonary component

precedes the aortic component. Based on the observations and this reasoning it seemed a

promising idea to investigate this feature in a more rigorous manner.

−0.2

0

0.2

A

B

Time [s]

F
re

q
u

e
n

c
y
 [

H
z
]

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

50

100

150

200

250

300

Figure 5.4: A split S2 sound of preterm treated pharmacologically in the time (A) and
in the time-frequency (B) domain. The time-frequency representation was calculated using
the Wigner-Ville distribution. Note that the nonlinearly decreasing frequency components.

5.2 Measurements

In this study 25 preterm newborns have been examined (Table 5.1), with an average of 3

measurements per infant, but with large deviations: only those newborns were examined
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Figure 5.5: The direct connection between the main arteries via the ductus arteriosus.
This has a direct effect on the aortic and pulmonary pressures which govern the closure of
the aorto-pulmonary valves. Figure reprinted from [218].

several times which were diagnosed with PDA, those without PDA or with other cardiac

malformation only once. Preterms without PDA were measured as a control group. Hemo-

dynamically significant PDA was verified by echocardiography in the case of 15 infants

but only 8 of those were examined over several days because the others had either also

some other malformation or some other circumstances made further measurements not

possible. The diagnostic parameters of the PDA acquired with echocardiography (diame-

ter of the ductus, maximal velocity through the ductus, the left atrial to aortic root ratio)

were all collected for later comparison with phonocardiographic parameters. In the case

of the 8 newborns mentioned above, the PDA was closed by means of pharmacological

treatment (4 infants) or surgical intervention (4 infants).

These infants, except one, all weighed less than 2300 g at birth, with an average weight

of 1400 g. Except one, all of them were less than 33 weeks of gestation, with an average

of 29. They were examined on average on their 6th day after birth and those with PDA

then every day until the closure of the PDA, which was verified by echocardiography (the

maximum was 9 measurements on one infant). Three measurements had to be posteriorly

excluded from the study because of the poor quality of the records due to the fact that

the measuring equipment was also developed during the study.

Each measurement consisted of about three 30 seconds long phonocardiographic

records which were recorded at 48 kHz, with a resolution of 16 bits. The components

of the heart sounds lie in the low frequency range (<1000 Hz), thus after prefiltering the

data was resampled at 3000 Hz and only the useful part of the record (at least 10 secs)

was kept for further analysis.
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Table 5.1: Parameters of the examined preterm neonates

ID Diagnosis* Treatment Number Weeks Birth
of of weight [g]

Measure- Gesta-
ments tions

P1 2 28 990
P2 1 27 1050
P3 1 27 1000
P4 2 26,5 1100
P5 PDA, PS 1 35 2400
P6 PDA 1 26 500
P7 PDA Surgical 2 32 1830
P8 PDA 1 33 1800
P9 1 33 1340
P10 1 34 1800
P11 2 31 2230
P12 PDA, TI Pharmacological 5 31 1490
P13 PDA, TI, ASD 1 40 3380
P14 3 29 1240
P15 2 26 1500
P16 1 31 1290
P17 PDA Pharmacological 4 27 985
P18 PDA Pharmacological 7 28 1150
P19 PDA Pharmacological 4 27 1200
P20 PDA Surgical 9 27 600
P21 ASD 1 28 970
P22 2 27 1120
P23 PDA Surgical 8 27 990
P24 PDA Surgical 2 24 700
P25 PDA Surgical 2 29 1530
*PDA - Patent ductus arteriosus, TI - Tricuspid insufficiency, ASD - Atrial septum defect
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5.2.1 Recording equipment

The measurements were made with a self-made electronic stethoscope: an electret micro-

phone cartridge (MCE-4000, Panasonic), connected to a laptop, was joined together with

a commercial stethoscope head for neonates, see Fig. 5.6. The applied microphone had

a flat frequency response between 20 − 20 000 Hz. Some further improvement could be

achieved by designing a stethoscope head where the microphone is fitted inside the head

piece (Fig. 5.7).

Figure 5.6: The self assembled electronic stethoscope for neonates with an electret micro-
phone connected to the outlet of the stethoscope head.

Figure 5.7: The design of the stethoscope head with space for the microphone to fit inside
the head (left) and the manufactured stethoscope (right).

Figure 5.8 shows some comparison of the equipments. The frequency characteristics

are very similar but the self-designed head produces an increased sensitivity which can be

attributed to the fact that the microphone is fitted inside the head piece. Nonetheless, the

quality of the recordings performed with the commercial head piece were usually also of

appropriate quality. The self-designed head weighed only 10 g because it was manufactured

of plastic compared to the metal commercial head with a weight of 40 g. The lighter weight

has the advantage that it is less disturbing for the infants because the neonates are in a

lying position.

It should be noted that the clinical environment introduces a lot of noise in the record-

ings, such as alarm sound of monitoring equipment, friction noise in the case of body move-

ment, the crying and the babble of the newborn and the sound of the ventilator (Fig. 5.9).

DOI:10.15774/PPKE.ITK.2012.001



84 5. PHONOCARDIOGRAPHY FOR PRETERM INFANTS WITH PDA

0 0.5 1

−0.5

0

0.5

Time [s]

Commercial Stethoscope Head

0 0.5 1

−0.5

0

0.5

Time [s]

Designed Stethoscope Head

0 50 100 150 200 250 300 350 400
−50

0

50

100

150

Freqeuncy [Hz]

P
o
w

e
r 

[d
B

]

 

 
Commercial Stethoscope Head

Designed Stethoscope Head

Figure 5.8: Two heart cycles recorded with the commercial stethoscope head (Fig. 5.6)
and the designed stethoscope head (Fig. 5.7), and the corresponding power spectral densi-
ties. Note the increased sensitivity in the case of the self-designed head resulting from the
microphone to be located inside the head piece in contrast to the commercial stethoscope
head.

Many of the disturbances can be filtered out by simple bandpass filtering. The most se-

rious problem is the noise coming from the breathing machine because this noise lies in

the same frequency bands than the heart sounds. Furthermore it comes from inside of the

chest similarly to the heart sounds, and because of that it cannot be filter out even with

a specially designed stethoscope head. Unfortunately practically all of the preterms need

breathing aid.

5.3 Methods

One of the main goals was to investigate certain parameters of the heart sounds and, if

present, of murmurs which could be related to some attributes of the ductus arteriosus (for

example diameter, velocity of blood flowing through it, etc.). Although there are differ-

ences between fetal and preterm PCG recordings, the high level of noise introduces similar

problems. A 1-min preterm phonocardiographic record contains around 140 heart cycles,

some of them disturbed by impulsive noise, thus it might be misleading to analyse the

heart cycles separately. This is why the technique of improved ensemble averaging (sec-

tion 4.4.2) was applied also in this scenario, assuming the following:

• preterm heart sounds exhibit cyclostationary properties,

• murmur caused by PDA will appear in most of the heart cycles with similar envelope,
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Figure 5.9: Segments of two recordings of a preterm neonate with breathing aid before (A)
and after (B) the condense water was emptied form the breathing tube. Note that in the
upper trace the heart sounds are barely identifiable, unfortunately valid for the complete
recording.

• according to these measurements averaging will suppress the usually occurring

noise (e.g. from breathing machines) since their periodicity does not correlate with

the heart rate.

The basic steps of the method are outlined in Fig. 5.10.

Heartbeat Detection

Improved Ensemble Averaging

Time and Time-Frequency Analysis

of Characteristic Heart Sounds and Murmurs

Figure 5.10: General scheme of the analysing method.

5.3.1 Heartbeat detection

In Section 4.2 a robust method was introduced for fetal heart rate estimation and the

confidence factor (CF) for identifying reliable segments. These results can be also applied

in the case of preterm PCG recordings because of the similarly low signal-to-noise ratio.

However, for identifying the PDA related heart murmur not only the heart rate has to be
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determined but also the heart sounds have to be detected. For this reason and because of

the much shorter length of the recordings compared to the fetal ones, the detection of the

heart cycles and heartbeats was done with a heuristic decomposition method with a very

good timing accuracy and robustness against noisy bursts, such as the one produced by

the breathing machine [9]. The outline of this heartbeat detection algorithm is as follows:

For a given phonocardiographic signal x[n] lets define a kind of contrast enhancement

by summing up the signal on a short time window of length N1 and taking the difference

of neighbouring windows:

I1[n] =

n+N1∑

i=n

x[i]−
n∑

j=n−N1

x[j]. (5.4)

Preprocessing with high-pass filtering slightly improves the performance of the method,

but this is not essential. Contrast enhancement is achieved by adding this local intensity

difference I1[n] to the phonocardiographic signal x[n], and a secondary local intensity

difference is calculated based on this result, like in Eq.(5.4) but with a greater time window

of length N2:

I2[n] =

n+N2∑

i=n

(x[i] + I1[i])−
n∑

j=n−N2

(x[j] + I1[j]). (5.5)

Finally, the differences of the signal I2[n] have to be computed in a similar way once

more as in Eq.(5.4), with the slight extension that the whole expression has to be negated

and the negative values set to zero:

V [n] =





−(

n+N2∑

i=n

I2[i]−
n∑

j=n−N2

I2[j]) if > 0,

0 otherwise

. (5.6)

Based on the values N1 and N2, the local maxima of the signal V [n] show the heart

sounds or the cardiac cycles.

5.3.2 Improved ensemble averaging revisited

In this scenario, because the murmur of PDA is late systolic, cross-correlation of the S2

sound was most often applied to compare the different heart cycles. According to our

measurements this was calculated with a 50 ms window for S2 heart sounds, and if needed

– because the murmur overlapped the S2 sound – with a 100 ms long time window for

S1 heart sounds (Fig. 5.11). A threshold for the normalized cross-correlation coefficient

of 0.9 (in case of poorer quality data 0.8 or 0.85) was used for the selection of the most
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typical heartbeat for the given record: the heart sound was selected which had normalized

correlation coefficients greater than the mentioned threshold with the greatest number of

other heart sounds. From these heart sounds a characteristic heart sound was calculated

using Eq.(4.17) of improved ensemble averaging. The thresholds have been determined

empirically based on the records.
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Figure 5.11: Time windows used for extracting heart sounds for cross-correlation.

The analysis of the characteristic heartbeats for a given record was done in the time

and in the time-frequency domain due to the nonstationary nature of heart sounds. The

Short time Fourier transform with a 27 ms long Hamming window was used to compute

the time-frequency representation. Window shifting was 1 ms.

For the investigation in the time domain linear filtering was applied with different

bandwidths. To avoid the phase distortion of IIR filters zero phase filtering was used:

after filtering the data in the forward direction, the data was reversed and run back

through the filter [219].

The analysis focused on looking for components which could be related to some at-

tributes of the PDA. This means that the length, the envelope and the frequency com-

ponents of the heartbeats, and the splitting of the S2 heart sounds, and the presence of

murmurs and their frequency relationship were investigated.

5.3.3 Detection of murmur related to PDA

The characteristic heart sound calculation revealed that even in case of short and

noisy (breathing machine) records, the improved ensemble averaging achieves the a ex-

traction of heart sound waveforms. As an example average S1 and S2 sounds are shown

in Fig. 5.12.

By observing not only the selected heart sound but also the complete heart cycle

murmurs can be identified (Fig. 5.13). Because murmurs lie usually in higher frequency
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Figure 5.12: (A) Characteristic S1 sound and (B) characteristic S2 sound of a preterm after
the closure of PDA. The average S1 sound (thick line) was calculated from 43 consecutive
S1 sounds (thin lines). In case of the average S2 sound 25 sounds were used. The records
were bandpass filtered (bandwidth from 30 to 400 Hz).

bands than the main components of the heart sounds we applied high-pass filtering.
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Figure 5.13: Characteristic S2 sound of a preterm with PDA. The murmur can be identified
by plotting on each other the complete heart cycles (in this case 17 heart cycles). The records
were bandpass filtered (bandwidth from 75 to 250 Hz).

Heart murmur of preterms displays chaotic behaviour, cyclostationary components are

usually not present. This is a major difference compared to fetal murmurs which affects

also the detection of murmurs.

We used the average maximal late systolic envelope value (LSEVmax ) as a simple

parameter for the assessment of murmur:

LSEVmax =
K∑

i=1

max{li[n]} / K, (5.7)
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li[n] =





|x[n] + jx̂[n]| if PS2[i]− sys
3 ≤ n ≤ PS2[i]− sys

10

0 otherwise

,

where x[n] is the heart sound signal, x̂[n] is the Hilbert transform of x[n] (Section 3.2.4),

K is the number of S2 heart sounds and li[n] is the windowed late systolic envelope

function for the heart cycle i, which is defined according to the position of the ith S2 heart

sound, PS2[i], and the average length of the systoles in the recording, sys.

Due to the continuous noise coming from the breathing machine the envelope had a

positive baseline shift (Fig. 5.14-A). This was corrected by estimating the baseline for each

heart cycle based on the histogram of the envelope values (Fig. 5.14-B). Those envelope

values were set to zero which were smaller than a scalar times the baseline value. In

the case of records with murmur the average envelope had still non-zero values in the

systolic segment after the baseline correction (Fig. 5.14-C). In this way the murmur was

detected using adaptive thresholding of the systolic segment. It is based also on the

observation that PDA related murmur in the case of preterms was found to be always late

systolic, meaning that the end of the murmur was regarded as the beginning of the S2

sound. The beginning of the murmur was regarded as the beginning of the interval with

non-zero corrected envelope starting after the S1 sound. Simple rules, such as looking

for intermediate segments with zero envelope value or using the morphological closing

operation help in avoiding noise bursts to be regarded as murmur (Fig. 5.14-D).

.

5.3.4 Parameter extraction of the murmur

As mentioned in Section 5.1.1, certain parameters of the acoustic vibrations caused by

a turbulent fluid can be related to the underlying geometry or fluid dynamics in some

cases [34, 91, 215, 216]. Because in the case of the patent ductus arteriosus the vessel

geometry is more difficult compared to a single stenosed vessel, we applied a sort of “top-

down” or data-based approach and investigated parameters of the recorded murmur for

finding any relationship with the underlying cardiac disease.

Using the time window for extracting the murmur mentioned in the previous section

the murmur was analysed in all heart cycles from which the characteristic heart sound

was calculated. During the analysis the following parameters were extracted:

1. Length of the murmur : length relatively to the length of the heart cycle

2. Average maximal murmur amplitude: this is equal to the LSEVmax parameter

3. Average maximal S2 amplitude: the average over the record
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Figure 5.14: Steps of murmur detection using adaptive thresholding of the envelope of
the systolic segment. (A) One heart cycle with late systolic murmur related to PDA and
the envelope (dashed line). (B) The histogram of the envelope values where the maximum
corresponds to the baseline. (C) The thresholded envelope of this heart cycle where the
threshold is calculated based on the baseline. (D) Closing of intermediate segments with
zero envelope values and the detection of the murmur.

4. Average ratio of the maximal murmur to the maximal S2 amplitude: the average

over the record

5. Average instantaneous frequency of the murmur

6. Maximal instantaneous frequency of the murmur

7. Minimal instantaneous frequency of the murmur

8. Frequency limits of the murmur : maximal and minimal frequencies of the thresh-

olded spectrogram

The amplitude parameters were investigated because according to Eq.(5.3) for a certain

frequency range the amplitude of the power spectral density of the murmur is related to

the third power of the flow velocity in the constriction and to the second power of the

degree of the constriction.

The spectrum was analysed because several frequency parameters showed good correla-

tion with important medical parameters in aforementioned studies, for example [199,216].

The instantaneous frequency for a given time instance was estimated by calculating the

first moment of the Fourier transform in a 20 ms time window as follows:

IF[n] =

F2∑

f=F1

(S[f ])2 · f /

F2∑

f=F1

(S[f ])2, (5.8)
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where IF[n] is the instantaneous frequency at the time instance n, S[f ] is the Fourier

transform of the 20 ms long heart sound signal segment at the frequency f , and F1 and

F2 are the limits of the investigated frequency interval. In [216] this is called weighted

average frequency and was found to be related to the degree of the obstruction in the case

of urinary bladder obstruction.

Frequency limits are estimated by finding the maximal and minimal frequencies of

the thresholded spectrogram, in this study a threshold of -50 dB was employed. This

parameter is related to the break frequency (Section 5.1.1) and to the standard deviation

of the instantaneous frequency [216].

5.3.5 Heuristic method for estimating the S2 splitting

Although several methods have been introduced for the estimation of splitting interval (SI)

this problem is not solved for very short ones and for noisy signals like in case of recordings

from preterm infants in clinical environment [28, 97, 169]. The solution for fetal heart

sounds which is based on Monte Carlo simulation (Section 4.3.1) presumes a valid heart

sound model which was unknown for preterm infants. Even though it was possible to adapt

a previously suggested heart sound model [28], it contains significantly more parameters

than the model valid for fetuses which introduces many more local minima on the error

surface and increased computing time. This makes the selection of the real parameters in

most cases infeasible. Thus we had to suggest other ways of SI estimation. One of them

is the application of the heuristic method described in section 5.3.1. The estimation of

the split was achieved by using this heuristic method on S2 signals and by decreasing the

length of the time windows N1 and N2. In this manner a heuristic decomposition of the

heart sounds is performed into an estimate of the aortic and pulmonary components.

Because the estimated SI cannot be verified in case of most of the records, a model-

based validation was performed. In some of the measurements the splitting of the S2

sound could be assessed by visual inspection and the two components of the S2 sound

could be separated in the time-frequency domain (Fig. 5.15). These records were selected

and the method similar to a study of Xu et al. [28] was applied for obtaining a S2 sound

model valid for preterm neonates. This involved the following steps:

1. Estimation of the instantaneous frequency function of the aortic component (A2) of

the S2 sound.

2. Estimation of the instantaneous amplitude function of the aortic component of the

S2 sound.

3. Subtraction of the synthesized aortic component from the original S2 sound. The

synthesized aortic sound is computed form the above two estimates.
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4. Estimation of the instantaneous frequency function of the pulmonary compo-

nent (P2) of the S2 sound.

5. Estimation of the instantaneous amplitude function of the pulmonary component of

the S2 sound.

All estimation of the time-frequency characteristics was performed based on the Wigner-

Ville distribution of the selected S2 signals.
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Figure 5.15: Original S2 sound (solid line) of a preterm and the synthesized S2 sound
based on a model described in this work (dashed line). Normalized root means square error
is 16 %.

The analysis revealed that a slightly different model should be used than in the study

of Xu et al. (Section 4.3.1), which might be explained by the smaller size of the preterm

heart, great vessels and thorax. We made two modifications to the aforementioned model.

First of all, the instantaneous frequency (f [n]) was found to be an exponentially decreasing

function for both the aortic and the pulmonary component. The second modification was

the k1 and k2 exponents in the instantaneous amplitude functions (A[n]) of both of the

components:

f [n] = F1 · exp

(
− n

τ1 · fs

)
+ F2, (5.9)

A[n] = a ·
(

1− exp

(
− nk1

τ2 · fs

))
· sin

(
πn

τ3 · fs

)
· exp

(
− nk2

τ4 · fs

)
, (5.10)

where F1, F2 are frequencies, τ1, τ2, τ3, τ4, a, k1 and k2 are free parameters and fs is the

sampling frequency.

The final parametric signal model is:

S2[n] = AA[n] · sin(ϕA[n]) +AP [n− ns]·, sin(ϕP [n− ns]), (5.11)
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where AA[n], ϕA[n] and AP [n], ϕP [n] are the instantaneous envelope and the phase func-

tions of the aortic and the pulmonary component of the second heart sound, respectively.

The SI is defined by ns.

The calculation of the phase functions, i.e. ϕ(t) = 2π
∫
f(τ)dτ , was achieved by using

trapezoidal numerical integration:

ϕA[n] =
2π

fs
·

(
1

2
fA[1] +

n−1∑

i=2

fA[i] +
1

2
fA[n]

)
, (5.12)

ϕP [n] =
2π

fs
·

(
1

2
fP [1] +

n−1∑

i=2

fP [i] +
1

2
fP [n]

)
, (5.13)

where fA[i] and fP [i] are the instantaneous frequency functions of the aortic and the

pulmonary components, respectively, and fs is the sampling frequency.

Using this model original S2 sounds could be approximated even with 16 % normalized

root mean square error, see Fig. 5.15.

Motivated by the fact that at the start of the A2 and the P2 components their frequency

is the greatest we investigated also the high-pass filtered version of the original signal. Since

the initial instantaneous frequency of the components is unknown, and its value can vary

greatly, filtering was performed with low order FIR filters (Fig. 5.16).
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Figure 5.16: (A) A synthesized S2 sound and (B-F) its high-passed filtered versions,
filtered with FIR filters of order one to five. The cutoff frequencies were 345, 414, 455, 476
and 488 Hz, respectively. High-pass filtering emphasizes the beginning of the aortic and
pulmonary components.

Although with high-pass filtering the model data, the beginning of the components

can be emphasized, the assessment of these beginnings could also be achieved with the

presented heuristic decomposition applied even to the unfiltered S2 sound (Fig. 5.17). This

is important because by high-pass filtering real, clinical data, the usually high frequency

noise is also accentuated.
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Figure 5.17: (A) A synthesized S2 sound with an SI of 7 ms, (B) the aortic and (C)
pulmonary components and (D) V [n] (dashed). V [n] was calculated by applying the heuristic
method to synthesized S2 signal. The local maxima of V [n] correlate well with the beginnings
of the components.

5.4 Results

5.4.1 Heart sound detection

Using the method introduced in Section 5.3.1 the detection of the heart sounds was

achieved reliably even in the presence of clinical noise and murmur (Fig. 5.18). Due

to the short length of the recordings this could be manually verified in the many cases.

Furthermore, the improved ensemble averaging method (Section 5.3.2) was another fil-

tering step, because it selected only those heart cycles which where characteristic for the

recording.
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Figure 5.18: Results of the heuristic heartbeat detection method with different resolutions.

Classification of S1 and S2 sounds was based on the observation that S2 heart sounds

have higher frequency components than S1 heart sounds, the systole is usually shorter than
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the diastole and that these heart sounds alternate. Because the S1 and S2 heart sounds

differ also in their waveform, the application of improved ensemble averaging guaranteed

also that indeed only one type of heart sound was analysed.

5.4.2 Detected murmur related to PDA

The presence of murmur could be justified even by investigating its amplitude: the

LSEVmax to average maximal S2 envelope value ratio was significantly greater in the

case of preterm infants with PDA (p < 0.05).

Further investigations have been carried out regarding the length of time window

containing the detected murmur. Figure 5.19 shows a detected murmur related to PDA

with the time window of the detection. Using a threshold of 7 % of the length of the systole

for classification based on the length of the detection window, 90 % sensitivity and 60 %

specificity could be achieved. Although the specificity is quite low, these are promising

results, since the major goal is not a diagnosing but a monitoring application. In that

case obviously the sensitivity is more important because in order to extract parameters

of the murmur first it has to be identified. The low specificity means that a low intensity

late systolic component can be detected in the case of many preterms without PDA as

well. Due to adaptive thresholding all late systolic components with significantly greater

amplitude than the baseline will be included in the detection window. Nonetheless, a high

intensity late systolic component is specific for preterms with PDA as has been shown

earlier based on the LSEVmax parameter. Thus the specificity might be increased by

including a fix threshold into the adaptive thresholding procedure ensuring that very low

intensity components, which are still significantly greater than the baseline, are rejected

from the detection window. This, however, would certainly decrease the sensitivity, which

would not be beneficial in the case of a monitoring application.

The low specificity also means that some other CHDs produce systolic murmur as well.

Preterm neonates with other malformations producing systolic murmur could be classified

based on other modalities. However, neonates with PDA and another cardiac disease

producing systolic murmur at the same time could be a major problem. These cases

obviously need not only a more complex treatment but also a more complex monitoring

approach. Fortunately this is not very frequent (Table 5.1).

5.4.3 Relation of murmur parameters and parameters of the PDA

All the measured parameters, enumerated in Section 5.3.4, were correlated with the med-

ical parameters of the PDA, that is with the diameter of the PDA (DPDA), the maximal

blood velocity through the PDA (vmax) and the left atrial to aortic root ratio (LA/Ao).

A regression curve was fitted to each of the investigated data point sets.
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Figure 5.19: Detected heart murmur related to PDA of a preterm infant. Detection was
accomplished based on nonzero envelope (dashed line) values after baseline correction

Based on the NRMSE of the fitted regression curves the average mean, maximal and

minimal instantaneous frequency parameters correlate the most with the medical param-

eters. These relationships are shown in Fig. 5.20.
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Figure 5.20: Extracted murmur parameters vs. medical parameters of the PDA: diam-
eter of the PDA (top) and maximal blood flow velocity through the PDA (bottom). The
frequency parameters are calculated from the instantaneous frequency of the murmur. The
fitted regression curves are quadratic functions. As observable the frequency parameters of
the murmur decrease substantially with DPDA and increase with vmax.

Although these results are promising it should be noted that much improvement is still

necessary since the fitted regression curves have a NRMSE > 20 %. Unfortunately the

medical parameters assessed with echocardiography were not measured simultaneously

with the PCG examination. This may account for one part of the error, because the

parameters of the PDA change rather dynamically. In further studies this should be also
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taken into account. A further possibility is to develop a PDA model and apply CFD

simulations for a better understanding of the blood dynamics.

5.4.4 Analysis of the S2 split of preterms with PDA

The application the heuristic method described in Section 5.3.5 showed promising results.

Based on the derived model (Eqs.(5.9)-(5.11)) 1000 simulated S2 sounds were generated

with random parameter values in the range of real S2 sound parameters. Average error

was 4.46 ms, with a standard deviation of 3.82 for unfiltered S2 signals. With high-pass

filtering the average error could decreased to 3.06 ms, standard deviation was 3.01. The

error was significantly higher for small SI values, and the method showed to be reliable

for SI values greater than 7 ms.

The heuristic decomposition method was applied to phonocardiographic records of

preterm newborns with PDA to estimate the S2 splitting. Due to the inherent noise

in real, clinical data, high-pass filtering not always improved the recognizability of the

splitting. Even though promising results were achieved (Fig. 5.21).
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Figure 5.21: (A) The S2 sound of a preterm infant recorded after the closure of the
PDA (solid line) and the result of the heuristic method, V [n] (dashed line). The estimated
SI is the time difference between the local maxima of V [n]. (B-F) The high-passed filtered
versions of the signal (solid lines), filtered with FIR filters of order one to five, and the the
calculated V [n] signals (dashed lines), respectively.

An SI estimate for a given S2 sound was assumed to be the time difference between

the two greatest local maxima of V [n] in a 33 ms long time window fitted to the S2

sound. Only those maxima were taken into consideration which were greater than a given
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threshold (in this study 10 % of the maximum of V [n] in the recording was used). If only

one maximum was found in the time window, then the split was regarded as zero. V [n]

was calculated with N1 = 1 ms and N2 = 5 ms.

For a given record the SI estimates were computed for each S2 sound belonging to

the set from which the characteristic heart sound was calculated. From these values the

mean value (m(ns)) and the standard deviation (std(ns)) was calculated. Those values

were rejected, which were outside the interval of [m(ns)− std(ns),m(ns) + std(ns)]. The

mean, the standard deviation and the median was computed from the remaining values.

The median value was regarded as an estimated SI value for a given record. The standard

deviation was used as a simple measure of the reliability of the estimated SI for the given

record.

In Fig. 5.23 the estimated splitting times of the infants can be observed who were

treated pharmacologically. In the case of those neonates who needed surgical intervention

the splitting time estimation proved not to be reliable enough because the amplitude of

their S2 sounds decreased greatly after the ligature (Fig. 5.22). Surgical intervention is

needed in the case of those preterms whose ductus arteriosus is too wide, and the shunt

through it too great for a possibly successful pharmacological closure. It follows that the

operation causes a significant change in the hemodynamical system: the blood load on the

left ventricle will be significantly decreased, which affects the pressure ratios between the

two sides of the valves. This directly influences the amplitude of the closure sounds.
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Figure 5.22: Two cardiac cycles of a preterm with PDA before the surgical intervention
(A) and after the surgical intervention (B). As observable, the murmur disappeared since
it was related to the turbulent blood flow through the PDA, and the amplitude of the S2
sound decreased in a great manner making the SI estimation not reliable.

In the case of the pharmacologically treated infants, the median of the estimated SI

values always increased around the time of the closure of the ductus arteriosus, except

in one case. In that case it was unfortunately not possible to make measurements earlier

than one day before the closure and four days after the closure. Consequently earlier
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changes and possible changes one or two days after the closure could not be assessed. The

estimated SI increased in average with 11 ms in case of the other three preterms, which

is an average change of 85 %. This was computed by calculating the average relative

difference between the first estimated SI value after the closure and the local minimum

estimated SI before the closure (one or at most two days before the closure). Regarding

all measurements this means an average increase of 30 %. In the case of one infant the

estimated SI increased already one day before the clinically verified closure. This might be

explained with the dynamical nature of the closing process. The estimated SI decreased

after the closure in three cases, in average after 3.7 days (Fig. 5.23).
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Figure 5.23: Box plot of the estimated SI over several days of four preterm infant with
PDA treated pharmacologically. All four figures are drawn in a way that the closure of the
PDA lies on Day 0. The dashed line shows the change of the median. An increase of the
estimated SI around the time of the closure is observable.

5.5 Conclusions of the phonocardiographic investigations of

preterms with PDA

Nevertheless preterms with PDA develop murmur usually only from the third day after

birth [220], decision to treat PDA should be based also on clinical signs [77]. Thus a

robust and sensitive heart sound and murmur inspection method would be of great im-

portance since there is an extremely noisy auscultation environment in the clinical set-up.

Furthermore, continuous monitoring of the PDA is not possible currently. A PCG based

approach might open new possibilities in this respect.

Characteristic heart sound calculation showed promising results for sensitive identifi-
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cation of murmurs even in case of noisy records. This is important, because the detection

of murmur is crucial in the assessment and possible monitoring of the blood flow through

the PDA. Furthermore, we have found that the relative maximal envelope value of the

systolic period and the length of the murmur detection window are significant features for

automated murmur detection. By simple parameter extraction of the murmur related to

the PDA some relations to medical parameters could be revealed. Although these results

are promising further improvement is needed for clinical application. Reliable estimation

of PDA related parameters would be of great importance.

Another interesting approach of preterm neonates with PDA was the investigation of

S2 splitting. As described earlier, the SI depends on the pressure relations between the

left and the right side of the heart and great arteries. These are obviously affected by

the state of the PDA but other factors influence also these circumstances, thus for using

the estimated SI for diagnostic purposes it is reasonable to take into account also other

easily measurable parameters, such as the systolic-diastolic pressure ratio, the presence and

some parameters of murmur, etc. Nevertheless, it is worth mentioning that the proposed

SI estimation method could be applied also in other fields of phonocardiography.
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Chapter 6

Conclusions

The starting question of the dissertation was in what way clinically important information

can be gained by using an old examination technique combined with present information

technology. It has been shown that different signal processing techniques can be success-

fully applied, which are especially important in dealing with the low signal-to-noise ratio

and in the detection of abnormal signals, such as murmur. A remaining open question

is whether using certain nonlinear techniques, for example [25, 35], can result in further

improvement because the level of noise and the low bandwidth might pose limitations to

their successful application.

The investigation of heart sound models is surely a possible way to arrive at more

quantitative results. I suppose that the presented fetal heart sound model can be further

improved resulting in even more parameters, which would necessitate more sophisticated

methods for nonlinear parameter estimation. The deep understanding of heart sound

generation and propagation, especially important in the case of the fetal heart sounds,

should be more involved in this analysis.

Methods for parameter extraction are especially important in diagnosing and mon-

itoring cardiac diseases, the presented results support this concept. Developments in

computational fluid dynamics could aid this analysis. With a sufficiently accurate model

important clinical parameters, for instance the amount of blood flowing through the PDA,

could be assessed by reverse engineering the generated murmur. Although this approach

needs hard work, possibly this one could result in identifying the real potential of phono-

cardiography.

101
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Summary

6.1 New scientific results

The results of this dissertation can be summarized in two main parts: the first one dealing

with the results on fetal phonocardiography and the second one describing achievements

in investigating preterm neonates with patent ductus arteriosus.

Thesis I: Analysis of fetal heart sounds and murmurs

I.1. Based on the analysis of fetal phonocardiographic records I have

found that different levels of accuracy are needed for the determina-

tion of Tbb beat-to-beat times in the case of conventional obstetri-

cian fetal heart rate (FHR) analysis (e.g. NST) than in the case of

profound FHR analysis for the assessment of fetal wellbeing (IUGR,

fetal breathing, . . . ), where the starting point is the variability of the

Tbb, thus, by introducing NL, as a metric for the level of noise, and

HiR, as a metric for the rate of beat detection, I have shown that the

HiR of FHR calculation based on conventional time-domain auto-

correlation can be improved by applying a wavelet transform based,

time-frequency domain autocorrelation, where prediction based on

preceding beat-to-beat times further improves the reliability.

Related publications: [1]

In the case of conventional FHR calculation of CTG data often the autocorrelation

of the time-domain signal or envelogram is used. However, with noisy signals, such as

fPCG, noise bursts and in some cases even murmur corrupts the determination of the

cyclostationary period, i.e. the heart rate. I introduced a method which exploits the

specific time-frequency signature of the heart sounds, thus not only the periodicity of high

intensity pulses, that is heart sounds, is taken into account for determining the heart rate,

but also the time varying spectra of the heart sounds.

For comparison with conventional time-domain autocorrelation more than 500 fetal

phonocardiographic records with different amounts of disturbances were processed. Al-

though the wavelet transform based method yields only a modest improvement on average,
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more precisely less than 5 %, the distribution of improvement values is very encouraging

because improvement up to 18 % could be achieved and the amount of decrement is rarely

greater than 5 %.

Further analysis revealed that for noise levels less than 20 % both methods perform

fairly well. As the noise level increases the range of possible HiR values widens because

in some cases the different methods achieve only lower HiR-s. However, for NL in the

range of 20-35 %, the time domain based method has a lower limit of possible worst HiR

values than the wavelet transform based approach. In other words, the worst HiR that the

wavelet transform based method can achieve for increased level of noise is always better

than the worst performance of the time domain based correlation, at least in the case

of these records. In the case of higher NL the performance of both methods degrades

similarly.

I.2. I have shown that by modifying the amplitude and frequency

characteristics of an existing heart sound model – which assumes the

heart sounds as the superposition of two components, one from each

side of the heart – it can be applied for modelling fetal first heart

sounds; furthermore, the nine parameters of this model can be in

general estimated using Monte Carlo simulation.

Related publications: [1]

Based mainly on the work of Xu et al. on S2 sound modelling of adults [28, 97], the

following chirp model has been adapted for fetal heart sound modelling, presented here

for the S1 sound:

sM (t) = AM sin(ϕM (t)) · e−t/τM , (6.1)

sT (t) = AT sin(ϕT (t− td)) · e−(t−td)/τT , (6.2)

sS1(t) = sM (t) + sT (t), (6.3)

where AM and AT are the initial amplitudes, ϕM and ϕT the phase functions, and τM and

τT are the time constants of the damping of the sinusoidal mitral and tricuspid components,

respectively. Finally, td is the delay between the above two components, that is the

splitting interval.

A linear frequency decrease often proved to be sufficient, meaning that the phase

functions can be defined as follows:

ϕM (t) = 2π

∫ t

−∞
fM (τ)dτ = 2π

∫ t

−∞
FM −∆fM · τ dτ, (6.4)
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ϕT (t) = 2π

∫ t

−∞
fT (τ)dτ = 2π

∫ t

−∞
FT −∆fT · τ dτ, (6.5)

where fT (t) and fM (t) are the instantaneous frequency functions with an initial frequency

of FM and FT and a negative slope of ∆fM and ∆fT for the mitral and tricuspid compo-

nents, respectively.

This two-component model contains altogether nine parameters. The estimation of

these parameters can be performed by using the Monte Carlo method [98]. In the case

of this analysis the number of random simulated heart sounds was in the order of 106.

Although the error surface of this optimization contains a great number of local minima,

which may result in false parameter values, in the case of increased splitting – which may be

a symptom of a cardiac anomaly – the method becomes more reliable. Furthermore, pre-

liminary results achieved with an implementation on manycore computing architectures,

namely GPUs, show a running time improvement of more than two orders of magnitude.

This makes an increased number of simulations possible, resulting in increased reliability.

As an example, one fetal S1 sound and the corresponding synthesized signal is presented

in Figs. 4.20 and 4.21 together with the time-frequency representations of both signals.

I.3. Based on the analysis of a great number of fetal PCG record-

ings I have revealed that certain congenital heart diseases can be

suspected based on the presence of fetal heart murmur, and that

five parameters characterising fetal heart murmur are the length,

the intensity, the timing, the dominant frequency and the shape of

the envelope. Furthermore, the determination of these parameters

is crucial for finding a possible relationship between heart murmurs

and different heart defects.

Related publications: [2, 8, 12]

The detection of fetal murmurs is extremely difficult due to the attenuation caused

by the maternal tissues and the low signal-to-noise ratio with many sources of noise (for

example maternal heart and digestive sounds). There is also an important empirical

observation, namely dominant low-frequency components of fetal heart murmur can be

recorded on the maternal abdomen. In contrast, the murmur of children and adults has

usually higher dominant frequency components than the main heart sounds. In addition,

the recorded fetal heart murmurs exhibit in some cases a rather cyclostationary property

despite the certainly turbulent origin of the murmur signal.

The suggested method tries to exploit these differences and applies an improved version

of ensemble averaging for heart sound signal enhancement and heart cycle comparison.
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In order to be be consistent with medical murmur parameters, and in this way facilitate

the acceptance of fetal murmur analysis in the medical community we defined the following

aforementioned five parameters. It is important to note that during the investigations it

has been found that these five parameters can be calculated in an automatic way and

have possible high discriminative value. For demonstrating the clinical significance of

fetal murmur detection a case of congenital heart disease is presented hereunder where

fetal phonocardiographic records revealed fetal heart murmur (Fig. 4.28). Although this

is not a verified clinical trial these results support the feasibility of this new method,

which could contribute to the prenatal detection of CHDs, as a pre-screening method for

a comprehensive echocardiographic examination, especially in the low risk populatio

— • —
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Thesis II: Phonocardiographic analysis of preterm neonates with patent ductus arterio-

sus (PDA) with special attention on the detection of heart murmur related to PDA and the

relationship between parameters of the heart sounds and murmur and clinical parameters.

II.1. I have worked out a method for the detection of murmur orig-

inating from the turbulent blood flow through the ductus arteriosus

that achieves 90 % reliability, hereby opening possibilities for moni-

toring the disease through murmur analysis. This was confirmed by

preliminary results from the correlation of certain murmur parame-

ters with important medical parameters, in particular the diameter

of the PDA and the maximal blood flow velocity through the PDA.

Related publications: [3, 6, 7]

The first step towards a PCG based PDA monitoring framework is the detection of

the murmur related to the turbulent blood flow through the ductus arteriosus. Although

methods have been suggested for murmur detection [188, 191], it is an especially difficult

task for preterm neonates due to the high level of noise (e.g. breathing machine) and the

low intensity of the murmur.

The introduced characteristic heart sound calculation method provides a way for ob-

serving typical heart cycle dynamics. Furthermore, the set of heart cycles used for the

characteristic sound calculation can be used for automated processing, applied also for

murmur detection. Due to the presence of wide band noise I introduced a signal envelope

based detection algorithm using baseline correction, which can be regarded as a form of

adaptive thresholding. Heuristic rules based on a priori knowledge are also incorporated

in the method for increased robustness.

When classifying preterms with and without PDA based on the length of detected late

systolic sound components, and using a threshold of 7 % of the length of the systole, 90 %

sensitivity and 60 % specificity could be achieved. Although the specificity is quite low,

these are promising results, since the major goal is not a diagnosing but a monitoring

application.

A second step of the development of a possible PDA monitor is to select appropri-

ate parameters and find the relationship with important medical parameters. This is

an even more challenging problem because the generation of murmur in such a complex

scenario is still not completely understood. Nonetheless results exist on the relationship

between frequency parameters of the murmur and important parameters of a stenosis pro-

ducing heart murmur [199,203]. During my investigations I also performed measurements

analysing this aspect. I found a weak relationship between the frequency parameters of
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the murmur and the diameter of the PDA (DPDA) and the maximal blood flow though

the PDA (vmax), shown in Fig. 5.20. Unfortunately, due to the lack of reference data with

sufficient accuracy, these results are of a preliminary nature.

II.2. I have observed the temporal separation (split) of the aor-

tic and pulmonary components of the second heart sound (S2) of

preterm neonates with PDA, and I have introduced a heuristic

method for estimating the splitting interval (SI) making the quanti-

tative analysis possible and finding a 30 % average increase of the SI

around the time of the closure of the PDA in the case of preterms

under pharmacological treatment.

Related publications: [3]

The closure of the patent ductus arteriosus is a dynamic process that is still not

completely understood. Clearly, this process also affects the pressure ratios between the

left and right side of the heart which can be assessed based on the splitting of the S2

sound. This phenomenon was also visually observed in the case of some of the recordings.

Unfortunately the two components of the S2 sound usually overlap even in the time-

frequency domain in a great manner, making separation very difficult. I introduced a

solution for estimating the SI by applying a heuristic method which exploits the fact that

the aortic and pulmonary components have an exponentially decreasing instantaneous

frequency function resulting in high frequency oscillations only at the beginning of the

components.

Since the exact accuracy of this method could not be verified because invasive measure-

ments would have been needed, I applied a model-based approach. I adapted an existing

heart sound model [28] to the characteristics of S2 sounds of preterm neonates, and veri-

fied the suggested SI estimation method on synthesised S2 sounds. This analysis revealed

that reliable splitting interval estimation can be performed in the case of SI > 7 ms.

I applied the introduced algorithm on the PCG data from preterm infants with PDA

and found that in the case of pharmacologically treated infants the SI increased signifi-

cantly around the time of the closure of the ductus arteriosus with respect to the period

before the closure (Fig. 5.23). This result could also contribute to a possible PDA monitor

although long term measurements on more patients are needed for better investigation of

the SI dynamics.
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6.2 Possible Applications

Most of the application possibilities of the presented results are rather evident because

in most of the cases practical motivations were behind the investigations. The results of

Thesis I are mostly specific to the analysis of fetal heart sounds, however the improved

ensemble averaging could be utilized also for the heart sound analysis of preterm neonates,

because a low signal to noise ratio was present also in that scenario. Improved fetal

heart rate determination is an important step towards extending monitoring capabilities

of the fetal wellbeing, namely based on heart rate variability analysis. This would be

especially beneficial in the case of the telemetric system where surveillance is possible on

a daily basis. Regarding the fetal heart sound model there is a possibility for further

parameter extraction. For instance, it might be possible to track the blood pressure

changes of the fetus in a throughout the pregnancy because some heart sound parameters

correlate with certain blood pressure values. This is not possible with any other present

technology. One of the most important findings is the observation of fetal heart murmurs

in the case of certain congenital heart diseases (CHD). Although the significance of this

result depends on the incidence of innocent murmurs and “silent” CHDs, having obtained

the preliminary results it may be established that murmur detection and analysis can

contribute to the widespread screening of cardiac abnormalities, especially in the low risk

population. Furthermore, all these findings could assist in the development of a fetal

expert system for automated surveillance or clinical decision support (Fig. 4.31).

The major motivation behind the analysis of the heart sounds of preterm infants

with patent ductus arteriosus (PDA) was the investigation of a possible PCG-based PDA

monitor, which is also the most important possible application. It should be mentioned

that continuous monitoring of important medical parameters of the PDA is not possible at

present. Although a difficult step is still ahead, namely to relate extracted heart murmur

parameters reliably with medical parameters, the presented results support this concept.

The method for splitting interval estimation serves the same issue, but it could be also

applied in other fields of phonocardiography because the separation of the heart sound

components is an important symptom in the case of other cardiovascular diseases as well.

It should be noted, however, that in order to achieve the accurate and reliable tracking

of important parameters of the ductus arteriosus, a multimodal approach is needed, since

the hemodynamic significance of the PDA also depends on several parameters. These

multimodal measurements could consist of the analysis of the murmur, estimation of the

SI, analysis of the pulse wave, and monitoring of the blood oxygen level as well as some

further parameters. The above envisaged system would improve the monitoring of patients

with heart diseases such as PDA as well as lead to an increased understanding of the process

of the PDA closing and its response to medication.
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Appendix A

Significance of Fetal Heart

Murmur Detection

In order to estimate the contribution of fetal heart murmur detection to the screening

for congenital heart diseases a large number of fetuses with and without congenital heart

diseases (CHD) have to be examined. This is left for further work. However, in order

to give some quantitative support to this concept we present two cases of serious CHDs

where in the first case prospective and in the second case retrospective analysis of the fetal

phonocardiographic records revealed fetal heart murmur.

A.1 Case reports

Case I A 28-year woman presented for echocardiographic screening in the 21 weeks’ ges-

tation at the Institute of Cardiology because of history of complex pulmonary atresia in

the case of a previous pregnancy. The 2D and color Doppler examination revealed Tetral-

ogy of Fallot with systemic-to-pulmonary collateral shunting and pulmonary insufficiency.

The mother decided to continue her pregnancy, thus a control examination was recom-

mended for the 27 weeks’ of gestation when also the fetal phonocardiographic data was

recorded. Cesarean delivery of a neonate weighing 3620 g occurred at 39 weeks and 4 days.

The Apgar score1 was 8/8, and the infant showed moderate cyanosis, thus prostin infusion

was performed for several hours until satisfactory antegrade pulmonary blood flow. Post-

natal echocardiographic examination verified Tetralogy of Fallot, aorta-pulmonary vessels

and pulmonary valve agenesis2 producing a grade III pulmonary insufficiency. Cardiac

catheterization also confirmed these findings. Due to balanced pulmonary circulation sur-

1The Apgar score is the result of a simple and repeatable examination method to quickly and summarily
assess the health of newborn children immediately after birth. A low score is a sign of a critical status

2Insufficient development of the pulmonary valve
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gical intervention was performed at the age of two. The reconstructive surgical procedure

closed the ventricular septal defect using patch and reconstructed the pulmonary outflow

with homograft1 valve replacement. Control examination at an age of 3 years showed

normal development and good postoperative results.

Case II A 4 days old neonate delivered at 38 weeks’ of gestation with cesarean section

(Apgar score was 9/10) was admitted to the Institute of Cardiology due to diagnosis of

pulmonary atresia2 indicated by mild cyanosis observed on the second day of life. Echocar-

diographic examination verified pulmonary atresia combined with a ventricular septal de-

fect and Major Aorto-Pulmonary Collateral Arteries. Cardiac catheterization revealed 4

collateral arteries. The collateral circulation ensured satisfactory pulmonary flow. The

infant was discharged until the next control examination. Fetal phonocardiographic mea-

surements were performed daily from the 35 weeks’ gestation until birth, and postnatal

heart sound was also recorded one week after birth. At the time of the fetal phonocardio-

graphic measurements only conventional CTG examination was performed. The analysis

of murmur detection is not yet included in the routine examination thus it was carried out

only after birth when the CHD was already evident.

Despite the different congenital heart diseases described above the development of

aorto-pulmonary collateral arteries is a common point in these two cases. In both cases

the fetal phonocardiogram showed well identifiable murmur (Fig. 4.28-4.29). Murmur

originating from collateral arteries is usually continuous, but it should be noted that

the flow dynamics in fetuses and neonates is different, thus turbulent blood flow causing

murmur might evolve only during the systole when the blood pressure is greater. The

murmur in case I has also an early diastolic component, whereas in case II it is only

systolic. A possible reason is that the diastolic component of case I originates from the

pulmonary valve insufficiency, which is not present in case II and the collateral arteries

produce the systolic murmur component. In case II the murmur was also verified after

birth. It should be mentioned that in this case the fetal and neonatal circulation remained

very similar, which is also reflected by the similar parameters of the detected murmur.

1A tissue graft obtained from an organism of the same species as the recipient
2Pulmonary atresia is a serious congenital malformation of the pulmonary valve in which the valve

orifice fails to develop, thus there is no outflow from the right ventricle to the lungs at all
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Budapest, 2011, p. 438–441. 106
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