DOKTORI (PhD) ÉRTEKEZÉS

BIOMASSZA ALAPÚ HULLADÉKOK ÉRTÉKNÖVELT ÁTALAKÍTÁSA SZINTÉZISGÁZZÁ

Készült a Pannon Egyetem

Vegyészmérnöki- és Anyagtudományok Doktori Iskola

keretében

Készítette:

ZSINKA VIKTÓRIA

okleveles vegyészmérnök

DOI:10.18136/PE.2024.901

Témavezető: Dr. habil. Miskolczi Norbert okl. vegyészmérnök egyetemi docens

Pannon Egyetem

Mérnöki Kar

Bio-, Környezet- és Vegyészmérnöki Kutató-Fejlesztő Központ MOL Ásványolaj- és Széntechnológiai Intézeti Tanszék Veszprém

2024

BIOMASSZA ALAPÚ HULLADÉKOK ÉRTÉKNÖVELT ÁTALAKÍTÁSA SZINTÉZISGÁZZÁ

Az értekezés doktori (PhD) fokozat elnyerése érdekében készült a Pannon Egyetem Vegyészmérnöki- és Anyagtudományok Doktori Iskolája keretében BIO-, KÖRNYEZET- ÉS VEGYÉSZMÉRNÖKI TUDOMÁNYOK tudományágban

Írta: ZSINKA VIKTÓRIA Témavezető: Dr. habil. MISKOLCZI NORBERT

Elfogadásra javaslom (igen / nem)

Dr. habil. MISKOLCZI NORBERT

(témavezető)

Az értekezést bírálóként elfogadásra javaslom:

Bíráló neve: igen /nem

(bíráló)

Bíráló neve:	igen /nem
	-

(bíráló)

A jelölt az értekezés nyilvános vitáján%-ot ért el.

Veszprém, 2024...... (a Bíráló Bizottság elnöke) A doktori (PhD) oklevél minősítése..... Veszprém, 2024......

(az EDHT elnöke)

TARTALOMJEGYZÉK

BEVEZET	ES	
1.	IRODALMI ÖSSZEFOGLALÓ	
1.1. Bio	masszák csoportosítása	
1.2. Bio	masszák jellemzői, összetétele	6
1.3. Bio	massza hulladékok	7
1.3.1.	Mennyiségi adatok	8
1.3.2.	Jogszabályi környezet, CO ₂ emisszió	9
1.3.3.	A biomassza hulladékok kezelése és újrahasznosítási lehetőségei	10
1.3.3.1.	Biológiai eljárások	
1.3.3.2.	Fizikai-kémiai eljárások	
1.3.3.3.	Termokémiai módszerek	
1.3.3.4.	Energia előállítás	17
1.4. A b	iomassza elgázosítása	17
1.4.1.	A biomassza elgázosításnak mechanizmusa	17
1.4.2.	A biomassza elgázosítását befolyásoló tényezők	
1.4.3.	A szintézisgáz jellemzői, felhasználási lehetőségei	
1.4.4.	Ipari elgázosító eljárások	
1.4.5.	Alkalmazott katalizátorok	
1.4.5.1.	Alkáli- és alkáliföldfém katalizátorok	
1.4.5.2	Átmenetifém tartalmú katalizátorok	
1.4.5.3.	Széntartalmú katalizátorok	29
1454	Természetes agyagásványok zeolítok	29
1455	Alternatív katalizátorok	30
1.1.5.5.	Katalizátorok és CO ₂ szorbensek élettartalmi vizsgálata	30
1.4.0. 1.5. CO	- emisszió csökkentésére alkalmas eljárások és anvagok	
1.5. CO	irodalmi összefoglaló következtetései	
1.0. AZ		
2.		
3.	KÍSÉRLETI TEVÉKENYSÉG	40
3.1 Fel	nasznált anvagok	40
3 1 1	Alapanyagok	40- 40-
3.1.1.	Katalizátorok	
3.1.2.	A dezorbaneak	
3.1.3.	Auszorbensek	
2.2 Mis	acilati médazanal	
3.3. V12	Sgalau mouszerek	
3.3.1.	Szerves szen-, nio-, nedvesseg- es namutartatom megnatarozasa	
3.3.2.	Lignocelluloz tartalom megnatarozasa	
3.3.3.	l ermogravimetrias analizis Fourier transzformacios infravoros spektroszkoppal	
3.3.4.	Fajlagos felulet meghatarozasa	
3.3.5.	Hömerseklet-programozott ammonia deszorpció	
3.3.6.	Pásztázó és transzmissziós elektronmikroszkóp	
3.3.7.	Energiadiszperzív röntgen-fluoreszcens spektrometria	50
3.3.8.	FID és TCD detektorral ellátott gázkromatográf	50
3.3.9.	CHNS vizsgálat	51
3.3.10.	Röntgendiffrakciós fázisanalízis	51
3.3.11.	Modellmentes kinetikai módszerek	51
4.	KÍSÉRLETI EREDMÉNYEK ÉS ÉRTÉKELÉSÜK	53
/ 1 / 1a	nanyag vizegálat TG FTIR módszerrel	53
4.1. Ala	Termikus homlós	
4.1.1.	ETID vizzcálat	
4.1.2. 1 1 2	r int vizogatat Kinatikai és termodinamikai szémítésetk	
4.1.3.	Kinetikai es termoumannikai szamitasok	
4.2. Ala	panyag neuvessegtartalmanak vizsgalata	
4.2.1.	40% neuvessegtartaimu aiapanyag vizsgalata	
4.2.2.	20% nedvessegtartalmu alapanyag vizsgalata	
4.2.3.	0% nedvessegtartalmu alapanyag vizsgalata	
4.2.4.	Alapanyag es katalizator keverekenek vizsgálata vizsgálata	63
4.2.5.	Hoszükseglet számítása	64
4.2.6.	Osszegzés	65

II

4.3. Elg	ázosítási előkísérletek	66
4.3.1.	Első reaktorzóna hőmérsékletének meghatározása	66
4.3.2.	Második reaktorzóna hőmérsékletének meghatározása	
4.3.3.	Vízgőz:alapanyag arány meghatározása	
4.3.4.	Vízgőz:alapanyag arány meghatározása katalizátor jelenlétében	74
4.3.5.	Összegzés	
4.4. Elg	ázosítási kísérletek	77
4.4.1.	Alacsony hőmérsékletű katalitikus elgázosítás vízgőz nélkül	77
4.4.2.	Alacsony hőmérsékletű katalitikus elgázosítás vízgőz jelenlétében	83
4.4.3.	Magas hőmérsékletű katalitikus elgázosítás vízgőz nélkül	
4.4.4.	Magas hőmérsékletű katalitikus elgázosítás vízgőz jelenlétében	
4.4.5.	Összegzés	
4.5. Ads	zorpciós vizsgálatok modell gázeleggyel	
4.5.1.	Adszorpciós-deszorpciós vizsgálatok	101
4.5.2.	Különböző hőmérsékleten kezelt klinoptilolit ciklusvizsgálata	103
4.5.3.	Összegzés	105
4.6. Elg	ázosítási kísérletek post-situ adszorpcióval	106
4.6.1.	Ciklusvizsgálat vízgőz jelenlétében post-situ adszorpcióval	107
4.6.2.	Regenerálási ciklusvizsgálat és post-situ adszorpció során kapott eredmények	
	összehasonlítása az alap eredményekkel (vízgőz és katalizátor jelenlétében, illetve	
	termikus esetben)	112
4.6.3.	CO ₂ emisszió csökkentése	118
4.6.4.	Osszegzés	119
. 4.7. Az	eredmények ipari hasznosíthatósága	119
OSSZEFO	GLALAS	121
IRODALO	MJEGYZÉK	123
MELLÉKI	ETEK	
KÖSZÖNE	TNYÍLVÁNÍTÁS	

BIOMASSZA ALAPÚ HULLADÉKOK ÉRTÉKNÖVELT ÁTALAKÍTÁSA SZINTÉZISGÁZZÁ

ZSINKA VIKTÓRIA PANNON EGYETEM MOL ÁSVÁNYOLAJ- ÉS SZÉNTECHNOLÓGIAI INTÉZETI TANSZÉK

KIVONAT

Az éghajlatváltozás elleni küzdelem és a környezetterhelés csökkentésének érdekében a fenntartható és környezetbarát alternatív energiaforrások megoldásul szolgálhatnak. Ezen alternatívák számára a biomassza hulladék ígéretes alapanyag lehet megújuló természete és az üvegházhatást okozó gázok kibocsátásának jelentős csökkentése szempontjából. A biomassza termokémiai átalakítása, ezen belül is az elgázosítás, számos környezeti előnnyel, sokoldalúsággal és flexibilitással rendelkezik. Célterméke a szintézisgáz, mely értékes vegyipari intermedier, továbbá különböző, pl. Fischer-Tropsch, eljárások alapanyaga. A folyamat hatásfoka megfelelő katalizátorok és adszorbensek alkalmazásával növelhető. A biomassza katalitikus elgázosítása, illetve az adszorbensek folyamatba integrálása környezeti szempontból is innovatív megközelítést biztosíthat a fenntartható energiarendszerek fejlesztésében.

Doktori értekezésemben mezőgazdasági biomassza termikus és termo-katalitikus, vízgőzös és vízgőz mentes elgázosításával foglalkoztam, melynek célja a szintézisgáz hozam növelése és a szén-dioxid kibocsátás csökkentése volt. A kutatómunka során, a folyamathatékonyság növelése érdekében, az alkalmazott katalizátorok újrafelhasználási lehetőségeit, tíz regenerálási cikluson keresztül vizsgáltam. Emellett a szén-dioxid tartalom további csökkentése érdekében, különböző adszorbensek hosszú távú alkalmazhatóságát is analizáltam.

Kulcsszavak: biomassza, hulladék, elgázosítás, szintézisgáz, CO₂ csökkentés, adszorpció

VALUE-ADDED TRANSFORMATION OF BIOMASS-BASED WASTE INTO SYNTHESIS GAS

VIKTÓRIA ZSINKA UNIVERSITY OF PANNONIA DEPARTMENT OF MOL HYDROCARBON AND COAL PROCESSING

ABSTRACT

In order to declare the climate change and the reduction of its environmental impact, sustainable and environmental friendly alternatives for energy sources can provide a perspective solution. Among these alternatives, waste biomass has become a promising raw material due to its renewable nature and the possibility of a significant reduction in greenhouse gas emissions. The thermochemical conversion of biomass including gasification, has several environmental advantages, versatility and flexibility. The main product is synthesis gas, which is a valuable intermediate in the chemical industry and can be used as raw material in various, e.g. Fischer-Tropsch process. The efficiency of the process can be enhanced by the utilization of appropriate catalysts and adsorbents. The catalytic gasification of biomass with the integration of adsorbents into the process provides an innovative approach to the development of environmentally sustainable energy systems.

In the framework of the doctoral thesis, thermal and thermo-catalytic gasification of agricultural biomass waste, with and without steam was investigated. The main aim was to increase the synthesis gas yield with the reduction of carbon dioxide emission. During the research work, to increase the process efficiency, the possibilities of catalysts reusing through ten regeneration cycles were investigated. In addition, to further decrement of carbon dioxide content, different adsorbents were used and their long-term application and regeneration was also investigated.

Keywords: biomass, waste, gasification, synthesis gas, CO₂ reduction, adsorption

TRANSFORMACIÓN CON VALOR AÑADIDO DE RESIDUOS DE BIOMASA EN GAS DE SÍNTESIS

VIKTÓRIA ZSINKA UNIVERSIDAD PANNONIA MOL DEPARTAMENTO DEL INSTITUTIO DE TECNOLOGÍA DE CARBÓN Y PETRÓLEO MINERAL ABSTRACTO

Para desacelerar el cambio climático y reducir el impacto ambiental, las fuentes de energía alternativas sostenibles y respetuosas con el medio ambiente pueden proporcionar una solución prometedora. Entre estas alternativas, la biomasa residual se ha convertido en una solución prometedora debido a su carácter renovable y la posibilidad de reducir significativamente las emisiones de gases de efecto invernadero. La conversión termoquímica de biomasa, incluida la gasificación, tiene varias ventajas medioambientales, versatilidad y flexibilidad. Su producto objetivo es el gas de síntesis, que es un valioso intermedio en la industria química y un material básico para los procesos como Fischer-Tropsch síntesis. La eficiencia del proceso puede mejorarse mediante la utilización de catalizadores y adsorbentes apropiados, con la disminución del contenido de dióxido de carbono. La gasificación catalítica de biomasa con la integración de adsorbentes en el proceso proporciona un enfoque innovador para el desarrollo de sistemas energéticos ambientalmente sostenibles.

En el marco de la tesis doctoral se investigó la gasificación térmica y termo catalítica de biomasa agrícola, con y sin vapor, cuyo objetivo principal era aumentar el rendimiento del gas de síntesis con la reducción del contenido de dióxido de carbono. Durante el trabajo de investigación, para aumentar la eficiencia del proceso, se examinaron las posibilidades de reutilización de catalizadores a través de diez ciclos de regeneración. Además, para disminuir aún más el contenido de dióxido de carbono, se utilizaron diferentes adsorbentes, colocados al final del proceso con el fin de reutilizarlos y con evaluación de impacto durante los ciclos de regeneración.

Palabras clave: biomasa, desperdiciar, gasificación, gas de síntesis, reducción de CO₂, adsorción

RÖVIDÍTÉSJEGYZÉK

Aktív szén
Brunauer-Emmett-Teller
Buborékos fluidágy
Barrett-Joyner-Halenda
Tiofén alapú konjugált mikroporózus polimerek
Szén-dioxid megkötés, hasznosítás és tárolás
Cirkuláltatott fluidágy
Kombinált hő- és villamosenergia
Konjugált mikroporózus polimerek
Szén nanocső
Kettős fluidágyas
Dimetil-éter
Derivatív termogravimetria
Energiadiszperzív spektrometria
Energiadiszperzív röntgen-fluoreszcens spektrometria
Lángionizációs detektor
Fischer-Tropsch
Fourier transzformációs infravörös spektroszkópia
Gázkromatográfia
Porózus szerkezettel rendelkező, fémionokhoz kötött szerves molekulák
Települési szilárd hulladék
Metanolból benzin
Metanolból olefin
Hulladékból származó tüzelőanyag
Pásztázó elektronmikroszkóp
Helyettesítő földgáz
Szilárd visszanyert üzemanyag
Hővezető-detektor
Termogravimetria
Hőmérséklet-programozott ammónia deszorpció
Technológiai készenléti szint
Röntgendiffrakciós fázisanalízis

BEVEZETÉS

Az éghajlatváltozás elleni küzdelem és a környezetterhelés mérséklésének sürgető igénye jelentősen ösztönözi a fenntartható és környezetbarát alternatív energiaforrások feltárását. Megújuló volta és az üvegházhatású gázok kibocsátásának jelentős csökkentésére való képessége miatt a biomassza ígéretes alapanyag lehet ezen alternatívák számára.

A biomassza alapú energiarendszerek széles körű elterjedése számos kihívással rendelkezik. A biomassza-hulladék kulcsfontosságú szereppel rendelkezik, mivel megújuló energiaforrást biztosít, emellett csökkenti a fosszilis tüzelőanyagoktól való függőséget és az üvegházhatású gázok kibocsátását. A mezőgazdasági hulladékok, erdészeti melléktermékek és szerves hulladékok értéknövelt átalakítása segíti a hulladékkezelést, továbbá biztosítja a fenntartható mezőgazdasági eljárásokat, valamint előremozdítja a körkörös gazdaságot a hulladékok tüzelőanyaggá, hővé és villamos energiává történő átalakítása során. Míg a biomassza megújuló energiaforrást kínál, a termesztése, gyűjtése és feldolgozása azonban káros környezeti hatásokkal járhat. Emellett a biomassza égetése során szennyező-, és a környezetre káros anyagok, pl. szilárd részecskék, nitrogén-oxidok és illékony szerves vegyületek szabadulhatnak fel, melyek kezelése sürgető megoldást kíván. A biomassza elgázosítása ígéretes technológia annak energiává, vagy szintézisgázzá történő átalakításban. A tiszta szintézisgáz a földgázhoz hasonlóan elégethető, mely biztosítja az elgázosító üzemek áramellátását és a villamosenergia-termelés energiáját. Értékes alapanyagként szolgál vegyipari anyagok, például metanol és ammónia, valamint szintetikus üzemanyagok előállításában. Továbbá a szintézisgáz hidrogénné alakítható, hozzájárulva a tiszta energiaforrásokhoz, csökkentve a fosszilis tüzelőanyagoktól való függést. A biomassza környezetterhelés bruttó elgázosításának előnyei a csökkentése mellett, sokoldalúságában és rugalmasságában rejlik. Más részről a biomassza elgázosítás során alkalmazott katalizátorok és adszorbensek kritikus szereppel rendelkeznek a lejátszódó folyamatok hatékonyságának növelésében és a káros anyagok kibocsátásának csökkentésében. A katalizátorok megkönnyítik a kémiai reakciók lejátszódását, pl. reformálás, víz-gáz reakció, valamint elősegíthetik az előnyösebb reakcióutakat. Emellett a katalizátorok jelenléte segíti a nemkívánatos melléktermékek képződésének minimálását, növelve és javítva a szintézisgáz hozamát és összetételét.

A biomassza elgázosítása során keletkező szén-dioxid mennyiségének csökkentése érdekében szorbenseket célszerű alkalmazni. Az adszorbensek fizikai, vagy kémiai kölcsönhatások révén megkötik a szén-dioxid molekulákat, megakadályozva azok légkörbe jutását. A megfelelő adszorbens kiválasztása kulcsfontosságú, melyet számos tényező befolyásol, többek között az adszorpciós kapacitás, a szelektivitás, a stabilitás és a regenerálás hatékonysága.

Doktori értekezésemben mezőgazdasági biomassza termikus és termo-katalitikus, vízgőzös és vízgőz mentes elgázosításával foglalkoztam. A kutatómunka során az alkalmazott katalizátorok újrafelhasználási lehetőségeit, tíz regenerálási cikluson keresztül vizsgáltam. Emellett a szén-dioxid tartalom további csökkentése érdekében, különböző adszorbensek hosszú távú alkalmazhatóságát is analizáltam.

1. IRODALMI ÖSSZEFOGLALÓ

Napjainkban iparosodás és urbanizáció vezérelt az az által növekvő energiafogyasztás következtében a fenntartható energiaforrások iránti igény kiemelt fontosságúvá vált. A hagyományos, fosszilis tüzelőanyagokra való támaszkodás nemcsak az erőforrások kimerülését gyorsítja, hanem komoly környezetterhelést is okoz és súlyosbítja az éghajlatváltozást is. 2020-ban a globális primerenergia-szükséglet mintegy 81%-át a fosszilis tüzelőanyagok biztosították. Más részről, a globális energiaellátás 9,7%-a biomasszából származik, elsősorban etanol és biodízel formájában. Az atomenergia részaránya hozzávetőleg 4,9%-ot, míg a vízenergia 2,5%ot tett ki. A megújuló energiaforrások, köztük a geotermikus, nap- és szélenergia együttesen a globális energiaszükséglet mintegy 1,5%-át fedezik [1-3]. A felhasznált energiaforrások szerinti megoszlását és azok mennyiségét az 1. ábra szemlélteti 2000-2050 között [3].

1. ábra A globálisan felhasznált energiahordozók mennyisége (EJ/év)

A statisztikai előrejelzések alapján a felhasznált fosszilis energiahordozók mennyisége csökkenő, míg a megújulóké növekvő tendenciát mutat az évek előrehaladtával, ami az egyre szigorodó környezetvédelmi előírásokkal is magyarázható. Emellett a fosszilis energiahordozók éves felhasznált mennyisége stagnáló és/vagy minimálisan csökkenő tendenciát mutat az évek előrehaladtával. Fontos megemlíteni, hogy 2025-2050 között a megújuló energiaforrások részarányának 17-61%-os növekedését prognosztizálják, míg a fosszilis energiahordozóknál a felhasznált kőolaj 21%-os, míg a szén 31%-os csökkenésével számolnak [3]. A megújuló energiaforrások közül a biomasszából nyert bioüzemanyagok jelentős szereppel rendelkeznek, különösen a nagyléptékű megvalósításokban. Ilyen például a cukornádból, vagy a kukoricából történő etanol előállítása Brazíliában vagy az Egyesült

Államokban, ahol elsősorban közlekedési célokra alkalmazzák a termékeket. A bioüzemanyagok és a hulladékból energiát előállító technológiák együttesen a globális energiaellátás jelentős részét alkotják, mely gyors növekedést és fejlődést mutat [2,4].

A biomassza jelentősen hozzájárul a globális energiaszükséglet biztosításához, mert körülbelül 10%-át az а teljes primerenergia-ellátás teszi ki. Emiatt az energiadiverzifikációban és a fenntarthatósági kezdeményezésekben is jelentős szerepe van. A biomassza legfőbb előnye szén-dioxid-semleges tulajdonságaiban rejlik. Ellentétben a fosszilis tüzelőanyagokkal, amelyek égetése során szén-dioxid szabadul fel, a biomassza aktív ciklusaiban (fotoszintézis során) a szén-dioxid megkötődik, így életciklusa végére karbonsemlegesnek tekinthető. Emiatt a biomassza létfontosságú eszközként szolgál az éghajlatváltozás elleni küzdelemben, valamint a nettó széndioxid-kibocsátás visszaszorításában [5-7].

1.1. Biomasszák csoportosítása

Minden szerves anyag, amely közvetlenül, vagy közvetve a fotoszintézis folyamatából származik, biomasszának tekinthető. Az anyagok heterogenitása, eredete és a felhasználás célja miatt a biomassza definíciója változó. Mindazonáltal a biomassza természetes eredetű anyagok kombinációja, amelyek növényekből, például fákból, algákból, haszonnövényekből, valamint minden szerves mátrixból álló anyagból származhat, kivéve a petrolkémiai és a fosszilis anyagokból származó műanyagokat [8,9]. A legfontosabb biomassza forrásokat a **2.** *ábra* szemlélteti [8].

A biomassza különböző fajtái

Az erdei biomassza az egyik legszélesebb körben használt biomassza. Forrása az erdei fakitermelésből és fafeldolgozó iparból nyerhető. A fa biomasszát elsősorban

fűtésre, villamosenergia termelésre, valamint bioenergia előállítására használják. A biomassza átalakítási technológiák, mint az elgázosítás és a pirolízis, a fás biomassza hasznosításának hatékony folyamatai [8-10].

A mezőgazdasági maradványok a növénytermesztésből és feldolgozásból visszamaradt szerves melléktermékekre utalnak (pl. az aratás/betakarítás után a termőföldön maradt kukorica, rizshéj, búzaszalma vagy cukornád) [8-10].

Az energianövények speciálisan termesztett növények, amelyeket nagy energiapotenciáljuk miatt termesztenek, mint például a cseresznyefű, vagy a fűz. Ezeket a növényeket élelmiszer termesztésre alkalmatlan peremterületeken, bioüzemanyag előállítás céljából is termesztik. Az energianövények számos előnnyel rendelkeznek. Többek között a magas hozam, a karbonsemlegesség és a fosszilis anyagoktól való függőség csökkentése [8-10].

Az állati trágya és az állattenyésztésből származó egyéb szerves hulladék anaerob lebontással biogázzá alakítható. Elsősorban metánból álló biogáz villamosenergia termelésre, hőtermelésre, vagy alternatív üzemanyagként használható. Az algák és a vízinövények a bioüzemanyag előállítás ígéretes forrásai. Ezeket az organizmusokat tavakban, vagy ellenőrzött környezeti körülmények között termesztik, napfény és tápanyagok jelenlétében. Az algák biomasszája lipidek kinyerésére is felhasználható, vagy anaerob lebontással biogázzá alakítható [8-10].

A települési szilárd hulladék olyan szerves összetevőket tartalmaz, mint az élelmiszer-hulladék, a kerti hulladék, a papír, a különböző textíliák, a fémek (pl. alumínium, acél, nem vas tartalmú fémek), amelyek a szemétlerakókból, megfelelő válogatást követően komposztálással, vagy anaerob bontással energiává alakíthatók. A hulladékból energiát előállító technológiák fenntartható hulladékgazdálkodási gyakorlatokba történő integrálása segíthet csökkenteni a hulladéklerakókba kerülő anyagok mennyiségét, megőrizni az erőforrásokat, illetve előre mozdítani a körforgásos gazdaság elveit [8-10].

Az ipari folyamatok során szerves hulladékáramok keletkezhetnek, amelyek energiatermelésre használhatók. Ide sorolhatók az élelmiszer-feldolgozó iparból, a papírgyárakból, a sörfőzdékből és más ipari ágazatokból származó maradékok, melléktermékek [8-10].

A szennyvíziszap a szennyvízkezelési folyamatokból származó biomassza egyedülálló és potenciálisan értékes formája. A szennyvíziszap a szennyvíztisztító

telepek melléktermékeként keletkező hulladék, mely szerves anyagokban dús, de a víztisztítás során eltávolított egyéb szennyezőket (pl. fémsók) is tartalmaz [8-10].

1.2. Biomasszák jellemzői, összetétele

A biomassza összetételét tekintve igen változatos. A növényi eredetű biomasszák általánosan 35-50% cellulóz, 20-35% hemicellulóz és 10-25% lignin tartalommal rendelkeznek (*3. ábra*) [8]. A termikus degradáció során a lignin növeli a hidrogénhozamot, míg a cellulóz és a hemicellulóz 50-85% illékony szerves anyagot eredményez. Utóbbinál kondenzálható illékony anyagok főként ecetsavból és hangyasavból, tejsavból, metanolból, hidroxil-acetonból, furfurolból és fenolból állnak, míg a nem kondenzálódó anyagok többnyire a CO, CO₂, CH₄ alkotják. Az állati eredetű biomassza (pl. szarvasmarha trágya), fehérjében gazdag, bonyolult, háromdimenziós struktúrájú aminosav láncokat tartalmaz [8-10].

3. ábra A biomassza lignocellulóz tartalma

A gabonafélék egyedülálló összetétellel rendelkeznek, melyet elsősorban a keményítő, egy amilóz- és amilopektin frakciókban rendezett glükóz egységekből álló poliszacharid jellemez [8,10]. A cellulóz, a növényi sejtfalak elsődleges összetevője. Egy olyan összetett szénhidrát, amely β-1,4-glikozidos kötésekkel összekapcsolt, D-glükóz egységek lineáris polimerjeiből áll és a természetben legnagyobb mennyiségben előforduló szerves vegyület. A cellulóz reakciókészségét és morfológiáját az intermolekuláris hidrogénkötés befolyásolja, ami növeli a növényi szerkezet stabilitását és a merevségét. A cellulózon belüli kristályos és amorf egységek váltakozása jelentősen befolyásolja funkciós csoportjainak hozzáférhetőségét, így a különböző reakciókban eltérő reakcióképességgel rendelkezik. Az alacsonyabb sztérikus gátlás miatt az elsődleges hidroxil csoportok nagyobb reakciókészséget mutatnak, mint a szekunderek csoportok. A cellulóz bomlási tartománya jellemzően 300-400°C között található [8,10,11].

A hemicellulóz a növényi sejtfalak kulcsfontosságú komponense, amely elágazó poliszacharidok komplex sorozata. A cellulóz mikrofibrillákhoz szorosan kapcsolódó hemicellulóz döntő szerepet játszik a növényi biomassza szerkezeti tulajdonságaiban. A hemicellulóz túlnyomórészt pentóz cukrokból, például xilózból, valamint hexóz cukrokból, köztük glükózból, galaktózból és mannózból áll. Ezek a cukrok különböző mértékű elágazással bonyolult hálózatokat alkotnak, így egyedi tulajdonságokat kölcsönözve a hemicellulóznak. A hemicellulóz hőbomlása jellemzően 220-315°C közötti hőmérséklet-tartományban megy végbe, nem kondenzáló gázokat, szenet és szerves vegyületet, köztük ketonokat, aldehideket, savakat és furánokat eredményezve [8,10,11].

A lignin, szintén a növényi sejtfalak létfontosságú összetevője, mely döntő szerepet játszik a rostok összekötésében, növelve a szerkezeti tömörséget és rugalmasságot. Kérgesítőszerként is működik és hozzájárul a rostok tartósságához. A lignintartalom növényfajtánkként 25-50% között változik [8,10,11].

A komplex amorf aromás polimerként meghatározott lignin fenil-propán egységek háromdimenziós hálózatát alkotja, amelyek oxigénhidak, vagy szén-szén kötéseken keresztül kapcsolódnak egymáshoz. A lignin különféle elágazású aromás gyűrűket tartalmaz, továbbá kémiai kötéseinek aktivitása rendkívül széles tartományt fed le, és így a termikus degradációja széles hőmérsékleti tartományban (100-900°C) történik [8,10,11].

1.3. Biomassza hulladékok

A biomassza hulladék sokféleképpen definiálható. A Nemzetközi Energia Ügynökség definíciója szerint a biomassza hulladék biológiai eredetű szerves, nem fosszilis anyag, amely melléktermék vagy kiselejtezett termék lehet. A biomassza magában foglalja a fa és famaradványokat, az energianövényeket, a növényi maradványokat és az iparból, mezőgazdaságból, tájgazdálkodásból és háztartásokból származó szerves hulladékokat/maradékokat [14]. Míg az IECC szerint a biomassza hulladék magában foglalja a biogén forrásokból származó települési szilárd hulladékot, a depóniagázt, az szennyvíziszapot, a mezőgazdasági növények melléktermékeit, a szárait és más szilárd és folyékony biomasszákat és biogázokat [15].

1.3.1. Mennyiségi adatok

A World Bioenergy Association adatai alapján 2020-ban a globális biomassza hulladékmennyiség értéke 57,5 EJ volt, mely 2000 óta 28%-kal növekedett világszerte (4. ábra) [4].

■ MSW ■ Ipari hulladék ■ Szilárd biomassza ■ Biogáz ■ Folyékony bioüzemanyag

4. ábra Globális biomassza hulladék EJ-ban

A globális biomassza hulladék mennyiség 86%-a szilárd biomassza (beleértve a faaprítékot, és a hagyományos biomassza forrásokat is), mely az elmúlt 20 évben közel 21%-kal növekedett. 2000 óta a folyékony bioüzemanyagok mennyisége 89%-kal, a települési szilárd hulladékoké, valamint az ipari hulladékágazaté 50%-kal és 58%-kal, míg a biogázé 80%-kal növekedett [4].

2019-ben minden kontinensen az erdészeti ágazatból származó szilárd biomassza tette ki a biomassza ellátás legnagyobb részét (*5. ábra*) [4]. Európa a biogáz ellátásban rendelkezett vezető szereppel 2019-ben, míg Amerika esetében (kiváltképp az Egyesült Államok és Brazília) a folyékony bioüzemanyagok részaránya is számottevő volt. Utóbbi a globális kínálat 70%-a [4].

■MSW ■Ipari hulladék ■Szilárd biomassza ■Biogáz ■Folyékony bioüzemanyag

5. ábra Globális biomassza hulladék kontinensenként EJ-ban, 2019-ben

A mezőgazdaság kulcsfontosságú ágazat a bioenergia jövőbeni hasznosításának növelésében. Fontos megemlíteni, hogy az ágazat a globális biomassza ellátás közel 10%-át adja. A főbb termények hozamát jelentősen befolyásolja a különböző régiók terméshozama, a termőföldek területe és az éghajlati tényezők. Európát tekintve, az árpa, a kukorica, a búza, valamint a cukorrépa termelt mennyisége kiemelkedő [4].

1.3.2. Jogszabályi környezet, CO2 emisszió

A bioenergia jelentőségével mind a gazdasági, mind pedig a politikai szférában széles körben foglalkoznak. Az Európai Bizottság Biomassza Cselekvési Tervvel, az Egyesült Államok Energiaügyi Minisztériuma többéves tervekkel rendelkezik a biomassza alapú energia előállításra. Ezen kezdeményezések – a Kiotói Jegyzőkönyvben vállalt kötelezettségek teljesítése érdekében – a szén-dioxid kibocsátás csökkentésének fontosságát hangsúlyozzák. A klímaváltozás lassítása érdekében 1988ban megalakult a Nemzetközi Éghajlatváltozási Testület, mely fő célja az üvegházhatású gázok emissziójának csökkentése, a megújuló energiaforrások növelése, valamint a fosszilis tüzelőanyagok csökkentése [17].

A korábbiakban ismertetett negatív környezeti hatások miatt a tudományos közösség, valamint az Európai Unió egyre inkább az alternatív nyersanyagok, különösen a mezőgazdasági biomassza kutatását vizsgálják. A szerves anyagokból és hulladékból származó biomassza kulcsfontosságú megújuló energiaforrás az EU-ban, mivel az a megújuló energiaforrások közel 60%-át teszi ki. Az elsősorban energia visszanyerésre használt biomassza hozzájárul az energiadiverzifikációhoz, a munkahelyteremtéshez és az üvegházhatású gázok csökkentésére irányuló célok eléréséhez [18].

Az éghajlatváltozás mérséklésének és fenntartható energiaátállás a előremozdításának kényszerére válaszul az Európai Unió irányelveket hozott létre, amelyek célja a biomassza hasznosítás részarányának növelése. A biomassza EU-n belüli hasznosítását szabályozó tudományos alapok és szabályozási keretek a következőkre térnek ki. Az Európai Unió éghajlat- és energiastratégiája szerint, 2030-ig 27%-át fenntartható energiaforrásokból kell előállítani, az energia az energiahatékonyság 27%-kal történő növelése mellett. Emellett a Green Deal szerint az EU teljes társadalmának 2050-re klíma-semlegesnek kell lennie, továbbá 2030-ra az 1990-es szinthez viszonyítva a nettó üvegházhatású gázok kibocsátását minimum 55%kal szükséges csökkenteni [19,20].

Az átdolgozott, megújuló energiáról szóló 2018/2001, Megújuló Energia Irányelv (RED) fenntarthatósági kritériumokat ír elő a biomasszából származó megújuló energiákra vonatkozóan, kiterjesztve azt a hő- és villamosenergia-termelésre. Új kritériumokat vezet be a különféle biomassza-forrásokra, például a mezőgazdasági hulladékokra, a maradékanyagokra és az erdei biomasszára. Ezek a kritériumok magukban foglalják a talaj minőségének védelmét, a biodiverzitású erdőkből való származás elkerülését és a fenntartható fakitermelési gyakorlatokat [18]. Ezenkívül az irányelv előírja, hogy az új bioüzemanyag erőműveknél legalább 65%-kal csökkentsék az üvegházhatású gázok kibocsátását, míg a biomassza alapú hőerőműveknél, ezen értéknek legalább 70%-kal kell kevesebbnek lennie [20].

Ezek a kritériumok összhangban vannak a meglévő uniós éghajlat- és környezetvédelmi jogszabályokkal, különösen a földhasználatról, a földhasználat megváltoztatásáról, valamint az erdőgazdálkodásról szóló 2018/841 rendelettel, biztosítva, hogy minden ágazat hozzájáruljon az EU 2030-ra kitűzött kibocsátás csökkentési céljához [20].

A megújuló energiáról szóló irányelv felülvizsgálatával 2023 májusában jött létre egy ideiglenes megállapodás, mely hangsúlyozza a hagyományos bioüzemanyagokról az alternatív, megújuló üzemanyagokra (pl. e-üzemanyag) való áttérést. Az EU 2030-ig szóló biodiverzitási stratégiája az erdei és az élelmiszer-/takarmánynövények hagyományos módon történő energiatermelésre való felhasználásának minimalizálása mellett döntött [20,21].

Emellett a Horizont Európa program is szerves része az irányelveknek, mely kiemelt kutatási és innovációs keretként kulcsfontosságú a tudományos ismeretek és a technológiai innováció előmozdításában a biomassza-hasznosítás és a bioenergia területén. Végül fontos megemlíteni a körforgásos gazdaságra vonatkozó cselekvési tervet, mely az erőforrás-hatékonyságra, a hulladék-keletkezés megelőzésére, illetve az anyagok újrahasznosítására fókuszál. A biomassza integrálása a körkörös gazdaság stratégiáiba elősegíti az EU célját a hulladékkeletkezés minimalizálásában, illetve az erőforrások maximális kihasználásában, továbbá a fenntarthatóság előmozdításában [21,22].

1.3.3. A biomassza hulladékok kezelése és újrahasznosítási lehetőségei

A biomassza főbb kezelési/hasznosítási lehetőségeit a *6. ábra* szemlélteti [23]. A biokémiai utak magukban foglalják az élő szervezetek általi, bioüzemanyagok

előállítása céljából végzett enzimatikus lebontást is. Ezzel szemben a termokémiai folyamatok hő és/vagy nyomás alkalmazása mellett cseppfolyós és/vagy gázterméket, illetve szilárd anyagokat eredményeznek, melyek utólagos minőségjavítással a vegyiparban is felhasználhatók [23].

6. ábra A biomassza újrahasznosítási lehetőségei

A biomassza széleskörű elérhetősége, hozzáférhetősége miatt kiemelkedő alapanyaga a különböző termokémiai folyamatoknak. Becslések szerint körülbelül 1 kg biomassza nyersanyag termokémiai folyamatok révén 6 MJ energiát, vagy 800 g vegyipari intermediert eredményezhet.

1.3.3.1. Biológiai eljárások

A biokémiai folyamatok során a biomassza szénhidrátokká történő átalakítása történik, biológiai katalizátorok (pl. baktériumok és enzimek) jelenlétében. Ezen folyamatok legelterjedtebb változatai az anaerob rothasztás és fermentáció [24-26]. Az anaerob rothasztás során egymást követő biokémiai folyamatok váltakoznak (pl. hidrolízis, acidogenezis, acetogenezis vagy metanogenezis) anaerob környezetben, mely során az összetett szerves molekulák elsősorban metán és szén-dioxid keletkezése közben, egyszerűbb szubsztrátumokká bomlanak [24-26]. A keletkező biogáz energiatartalma jellemzően 20-40%-kal kisebb, mint az eredeti biomassza fűtőértéke, azonban az eljárás hatásfoka, nagy nedvességtartalmú (80-90%) alapanyag alkalmazásával növelhető. A keletkezett biogáz belső égésű motorokban, valamint turbinákban közvetlenül felhasználható energiatermelésre [29,30]. A fermentáció mikroorganizmusok által elősegített biokémiai folyamat, amelyben az egyszerű

cukrokat anaerob körülmények között etanollá és szén-dioxiddá alakítják át. A fermentáció hatékonysága számos tényezőtől függ; a nyersanyag összetétele, hőmérséklet, pH, oltóanyag, vagy a fermentáció időtartama [25,26].

1.3.3.2. Fizikai-kémiai eljárások

A biomassza fizikai-kémiai átalakítási folyamata növényi olajokból, állati zsírokból észterezési és/vagy átészterezési szintézissel előállított, nagy sűrűségű biodízelt eredményez. Az első generációs biodízel túlnyomórészt repceolaj (80-85%) és napraforgóolaj (10-15%) alapú, míg a második és harmadik generációs biodízel olyan hulladékolajokból nyerhető, mint a hulladék étolaj, vagy a mikrobiális olajok (pl. alga olaj) [8]. Az átészterezés, amely főként metil- vagy etil-alkohol jelenlétében, lúgos katalizátor (NaOH, KOH) mellett zajlik, a trigliceridmolekulákat metil- vagy etil-észterekre és glicerinre alakítja. Alacsony hőmérsékleten (50-70°C) és atmoszférikus nyomáson az átészterezés semlegesített és tisztított (pl. oldószeres mosás) biodízelt eredményez [8].

1.3.3.3. Termokémiai módszerek

A biomassza termikus átalakítása során termokémiai folyamatok segítségével energia, illetve értékes termékek (pl. bio-olaj, vagy a szintézisgáz) állíthatók elő. A termikus módszerek esetében megkülönböztetjük a pirolízist, az elgázosítást, az égetést, valamint a cseppfolyósítást. Az említett folyamatok főbb különbsége az alkalmazott hőmérséklet, a reaktor típusa, a céltermék, az alkalmazott nyomás, illetve az atmoszféra [25,26].

A 200-300°C közötti hőmérsékleten végzett szenesítés egy olyan pirolízis folyamat, amely javítja a biomassza energiasűrűségét. A folyamat során a nedvesség és az illékony anyagok eltávoznak, továbbá szerves illékony anyag felszabadulása mellett a cellulóz, a hemicellulóz és a lignin részbeni bontása is megtörténik [25,26].

A pirolízis egy olyan termokémia degradáció, mely inert atmoszférában megy végbe, jellemzően 500°C körüli hőmérsékleten és folyékony pirolízis olajat, szilárd kokszot és gázterméket eredményez. A pirolízisnek számos fajtája létezik, melyet az alkalmazott hőmérséklet, valamint a felfűtési sebesség határoz meg; gyors és lassú pirolízis (felfűtési sebesség határozza meg), magas és alacsony hőmérsékletű pirolízis, többlépcsős pirolízis (különböző hőmérséklet és hőntartás alkalmazása), hidrotermális pirolízis (magas nedvességtartalmú biomasszát forró, sűrített vízzel kezelik, alacsony hőmérsékleten), vagy mikrohullámú (nagyfrekvenciás mikrohullámok segítségével

hőgenerálás) pirolízis. Általános termékösszetételt tekintve 20-25% maradék, 25-35% gáztermék, 40-55% folyadéktermék keletkezik. A hőmérséklet növelése elősegíti az illékony termék hozamnövelését, míg alacsonyabb hőmérsékleteken a folyadéktermék a domináns. Az olajos magvak és állati zsírok pirolízise során keletkezett folyadéktermék, kis mennyiségben karbonsavakat, alkánokat, alkéneket, valamint aromás vegyületeket tartalmaz. A biomassza degradációja során keletkezett szerves termékek összetétele az alapanyagtól függően változhat. Az illékony szerves vegyületek közül megemlíthető a hangyasav, az ecetsav, valamint a cellulóz bomlása során kapott furánvegyületek, a levoglükozán, továbbá a lignin bontásából származó fenolok és azok oligomerjei [27]. A szervetlen vegyületek, például a szilikátok, a foszfátok, a kálium, a kalcium és az alkálifémek sói a maradékban dúsulnak fel [27-29,31].

A cseppfolyósítás során megkülönböztethető a direkt, illetve az indirekt módszer. A direkt módszernél vízben, mérsékelt hőmérsékleten (280-370°C), nagy nyomáson (10-25 MPa), folyékony termék állítható elő, mely egyéb eljárással, pl. fermentálással kombinálva is alkalmazható. Az indirekt eljárás két fő részre osztható, mely első lépése egy termokémiai folyamat (gázosítás), ahol a keletkezett gázterméket Fischer-Tropsch szintézis segítségével cseppfolyósítják (második lépés). A folyamat alapanyaga magas lignocellulóz tartalmú biomassza és alga biomassza lehet. A cseppfolyósítás termékeit tekintve CO₂ dús gáztermék, szilárd maradék, bio-olaj, valamint kevés vizes fázis keletkezik. A szilárd maradék műtrágyaként történő hasznosításra is alkalmas, míg a vizes fázis vízfüggő növényi folyamatokban, vagy anaerob rothasztásban alkalmazható. Az alacsony oxigéntartalmú bio-olaj további finomítást követően alternatív üzemanyagként is felhasználható [26,32].

Az elgázosítás, egy olyan termokémiai folyamat, mely a széntartalmú anyagok szintézisgázzá, azaz hidrogén és szén-monoxid keverékévé való átalakítására alkalmas. A gáztermék a hidrogén és a szén-monoxid mellett, különböző arányokban tartalmazhat szén-dioxidot, C₂.C₅ szénhidrogéneket, metánt, nitrogén- és kéntartalmú vegyületeket is. A szintézisgáz felhasználható alternatív üzemanyag előállító folyamatok alapanyagaként (pl. Fischer-Tropsch szintézis), villamosenergia előállítására, valamint vegyipari intermedierként, míg a szilárd maradék aktív szénként alkalmazható. Utóbbi a fűtőértékét tekintve jellemzően 4,5-6,0 MJ/m³ értékkel rendelkezik, ami a földgáz fűtőértékének 10-50%-a. Az elgázosítás hőmérsékleti tartománya a nyersanyagtól és a folyamat jellegétől függően változhat. Általánosan a termikus elgázosítás magas hőmérsékleten (800-1200°C) működik, elősegítve a szerves anyagok gáznemű

termékekké, illetve szilárd maradékká történő teljes átalakítását. Az elgázosítás során a gáznemű termék mellett vizet és szerves anyagokat tartalmazó, kondenzálható folyadék is keletkezik. A magas hőmérséklet miatt a kátrányképződés elenyésző, így a gáztisztítási folyamatok egyszerűbbé válnak. A magas hőmérséklet elősegíti az endoterm reakciók lejátszódását, mint például a víz-gáz shift reakciót, a metanizáció és a gőzreformálás folyamatát, melyek elősegítik a biomassza hatékony értékes gázokká történő átalakítását [33-35].

A biomassza alapú termikus módszerek főbb előnyeit és hátrányait az *1. táblázat* tartalmazza [2,36]. Mindegyik technológia rendelkezik előnyökkel és korlátokkal, melyek megértése a teljesítmény, a gazdasági szempontok, valamint a termékek piacképességének meghatározásához kritikus fontosságú [2,36].

A 2. táblázat a különböző termokémia módszerekkel előállított gáztermékek minőségeit tartalmazza [37-54]. Megfigyelhető, hogy az elgázosítás, valamint az égetés során a fő termék a gáztermék (>60%), azonban a keletkező komponensek összetétele jelentősen változik. Míg elgázosításnál a fő termék a hidrogén és a szén-monoxid, illetve bizonyos esetekben a szén-dioxid, az égetésnél többnyire szén-dioxid és egyéb üvegházhatású gázok, pl. nitrogén-oxidok keletkeznek. A pirolízis különböző eljárásváltozataiban a fő termék a pirolízis olaj (~30-70%), míg a gáztermék szén-dioxidban dús, általánosan 30% alatti hozammal. Az elszenesítést tekintve a fő termék a szilárd maradék, azonban a folyadék és a gáztermék hozama is meghatározó. Elszenesítés során a gáztermék, az alacsony hőmérséklet végett, szintén szén-dioxidban dús. Amennyiben a termokémia eljárás fő célja a szintézisgáz tartalom növelése, megfelelő minőségben, célszerű elgázosítást alkalmazni.

Technológia	Rövid leírás	Előnyök	Hátrányok
	A szenesítés a	Előkezelő és átalakító folyamatként is használható	Alacsony hatásfok
	pirolízis enyhe formája jellemzően 200-320°C közötti hőmérsékleten. A	Nagy energiatartalmú termék keletkezik Növeli a biomassza fűtőértékét	Reaktorok optimálása kiváltképp fontos, gazdasági és minőségi szempontokból Fenol, aceton, és egyéb szerves vegyületek szabadulnak fel, melyek megnehezítik a
Szenesítés	szenesítés célja a biomassza tulajdonságainak megváltoztatása, hogy jobb tüzelőanyag- minőséggel rendelkezzen.	A terméket pelletálva könnyebb a szállítása csökkenti a nedvességtartalmat Kis energiaszükséglet Csökkenti az üzemeltetési költséget Nem szükséges katalizátor alkalmazása Nagy hatásfok A termékek mindegyike felhasználható	gázok tisztítását
	Pirolízis során a	Csökkenti az üvegházhatású gázokat és a	Komplex termékskála
Pirolízis	többnyire folyékony termékké alakítják, amelyből alternatív bio- és oxigéntartalmú üzemanyagok, valamint adalékanyagok	Lassú pirolízisnél kisebb energiaszükséglet Kiterjed szakértelem	A gáztermék tisztítása elengedhetetlen Gyors pirolízisnél nagy energiaszükséglet A megvalósíthatóságot csak a nagyüzemekben állapítják meg Nem túl hatékony a szennyvíziszap esetében
	allithatok elo. A pirolízis inert atmoszférában, többnyire 300- 600°C zajlik.		Magas költségek
	A biomassza	Ígéretes módszer a nagy nedvességtartalmú biomasszák esetében	Korrózió léphet fel Sókiválás léphet fel a reaktorban
	során a biomassza bioolajjá alakítható direkt, vagy indirekt	Könnyű szervetlen tartalom visszanyerés	A homogén és szénalapú katalizátorok újrahasznosíthatóságával kapcsolatos problémák
Cseppfolyósítás	módon. Gyakorta alacsony hőmérsékleten (200- 400°C) és magas nyomáson (10-25	Jó minőségű bio-olaj Szárítás nem szükséges a folyamat előtt	Az alapanyag és az előállítás körülményei gyakran befolyásolják a bio-olaj kémiai és fizikai tulajdonságait Nehézségek a nehéz vegyületek eluálásában, amelyek az oszlopon
	MPa) zajlik.	NY 111 / .1	ismeretlenek maradhatnak
Gázosítás	szabályozott folyamat, mely hidrogént és más komponenseket eredményez, gázosító ágens	Nagy kiaknazatlán potencial A szintézisgáz közvetlenül tüzelőanyagként vagy értéknövelt termékek előállítására alkalmas, mint például szintetikus földgáz, vegyi anyagok, hidrogén, kerozin stb.	Magas uzemeitetesi koitsegek
	jelenlétében (O ₂ , vízgőz, levegő), magas hőmérsékleten (<800°C).	Nagyüzemi technológiák is lehetségesek	
Égetés	Az égetés magas hőmérsékleten (>1000°C) zajlik, levegő vagy oxigén jelenlétében, mely során többnyire üvepházbatású	Csökkenti a hulladék mennyiségét Hő- és villamos energia állítható elő	Nagy beruházási költség Nagy üzemeltetési költség Környezetkárosító komponensek keletkezése
	gázok és káros komponensek keletkeznek. Célja az energia- visszanyerés.		Nagy nedvességtartalmú anyagoknál növekszik a felhasznált energiamennyiség

 táblázat Különböző termikus módszerek előnyei és hátrányai

Elifada Kama	A 1	11 <i>″</i> (1-1-4 . 0 <i>C</i>	Hőmérséldet %C Hozamok, %			Gázösszetétel, %				Saannyaan	
Eljaras tipusa	Alapanyag	Homerseklet, *C	Szilárd	Folyadék	Gáz	H_2	СО	CO ₂	CH_4	C ₂ .C ₅	Szennyezok
Láng nélküli égetés	biomassza	1000	20-0	10-20	60-70						NOx
Lassú pirolízis/elszenesítés	általános összetétel	400	35	30	35						
Elszenestés	biomassza	400	35	30	35						
Lossý ninelízie	cukornád	480	38	26	25	9,6	60,1	11,7	17,6	1	
Lassu pirolizis	általános összetétel	400	35	30	35						
Közepes pirolízis	mezőgazdasági biomassza maradék	600	30	33	36	2,99	18,22	31,94	7,42	39,4	
	általános összetétel	500	20	50	30						
	cukornád	480	25	51	14	8,7	13,9	52,4	21,5	3,5	
Cuore nirolízie	általános összetétel	500	12	75	13						
Gyors pirolizis	biomassza	577-977	15-25	60-75	10-20,0						
	több alapanyag		29-44,84	35,72-55,54	16,03-20,1						
Flash pirolízis	alga	600	43	46	12	9,5	21	58	9,5	2	
	általános összetétel	800	10	5	85						
Gázosítás	biomassza	800-1300				14,5	21	9,7	1,6		vízgőz (4,8%), nitrogén (48,4%)
	biomassza + max 15% HDPE	800-1300				14	9-22,0	7-17,0			nitrogén: 50%
	biomassza	800-1300	10	5	85						

2. táblázat Különböző termokémia módszerekkel előállított gáztermékek minősége

1.3.3.4. Energia előállítás

A biomassza többek között átalakítható elektromos- vagy hőenergiává, illetve alternatív üzemanyaggá is. Az alapanyag nedvességtartalma, fűtőértéke és az összetétele jelentősen befolyásolják az átalakítás hatásfokát, valamint a nedvességtartalom és a cellulóz/lignin arány is fontos jellemző [8]. Az égetési folyamatok meghatározó szerepet játszanak a teljes biomassza hasznosításból származó, megújuló energiahozamban, mely annak közel 90%-át teszi ki. Különféle biomasszák, mint például fa, növényi héjak, rizshéjak és állati trágya, speciális üzemekben történő égetésre is alkalmazhatók. Az égetés magas, 1000°C feletti hőmérsékleten zajlik, oxidatív atmoszférában, szén-dioxid, vízgőz, valamint hő termelése mellett. A folyamat exoterm jellegű, 20 MJ/kg átlagos hőenergia tartalommal. Az alkalmazott magas hőmérséklet miatt az alapanyagként használt biomassza nedvességtartalmát alacsonyan kell tartani (<50%). A hagyományos biomassza égetők átlagos teljesítménye 20-50 MWe, 25-30%-os elektromos hatásfokkal [23,31].

1.4. A biomassza elgázosítása

1.4.1. A biomassza elgázosításnak mechanizmusa

A biomassza termikus elgázosítási folyamata négy fő szakaszból áll; szárítás, oxidáció, pirolízis és redukció. Az oxidáció kivételével mindegyik szakasz endoterm hőszinezetű, így a biomassza elgázosítása során fellépő reakciók eredője endoterm. Az oxidációs szakasz biztosítja a megfelelő hőmennyiséget az endoterm reakciókhoz, ahol a szén és a hidrogén égetése (1)-(2), valamint a parciális oxidáció (3) zajlik, CO, CO₂ és vízgőz képződése mellett [5,8,23].

$C + O_2 \rightarrow CO_2$	(1)
$2H_2 + O_2 \rightarrow 2H_2O$	(2)

$C + \frac{1}{2}O_2 \rightarrow CO$	(3)
	(3)

A szárítás során a biomassza nedvességtartalmának eltávolítása 150-200°C között zajlik. A pirolízis szakaszban (400-700°C) a széntartalmú anyagok szilárd, folyékony és gáznemű termékekké alakulnak, továbbá a nagyobb molekulatömegű molekulák C-C kötéseik felszakadása révén könnyebb molekulákat képeznek (4) [5,8,23]. Biomassza \leftrightarrow H₂ + CO + CO₂ + CH₄ + H₂O + maradék + koksz (4)

A redukciós szakaszban, többnyire gázfázisú reakciók történnek, ahol a pirolízisből és az oxidációs fázisokból származó keverékek szintézisgázzá alakulnak át. Ekkor elsősorban a Boudouard-reakció (5), a víz-gáz shift (6) és metánképződési (7)-(9), reformáló reakciók (10)-(13), oxidáló reakciók (1)-(3), (14), valamint karbonilező reakciók (15)-(17) játszódnak le. Az említett reakciók eredője endoterm, így többletenergia befektetésre van szükség [5,8,23].

(\mathbf{J})
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

A hőmérséklet jelentősen befolyásolja a szintézisgáz összetételét és jellemzőit, valamint a maradék mennyiségét [5,8,23].

Az elgázosítás során a szintézisgáz hozam vízgőz bevezetésével és/vagy katalizátorok alkalmazásával növelhető. A katalitikus CO₂ elgázosítás, vagy reformálás csökkenti a keletkezett CO₂ tartalmat, míg a vízgőzös elgázosítás általában nagyobb hidrogén hozamot eredményez. A szárazreformálás során a magas szén-dioxid tartalom a Boudouard-reakció révén elősegíti a CO hozam növelését és a CO₂ reformálást. Katalizátorok alkalmazása növeli a reakciósebességet, minimalizálja a kokszképződést és optimálisabb gázösszetételt eredményez. A leggyakrabban alkalmazott katalizátorok zeolit alapúak, melyek átmeneti fémeket, alkáli- és alkáliföldfémeket tartalmaznak [5,55].

1.4.2. A biomassza elgázosítását befolyásoló tényezők

A biomassza elgázosításának hatásfokát és eredményességét számos paraméter befolyásolja, ami az optimális működtetés átfogó megértését teszi szükségessé. Az alapanyag sűrűsége és mérete döntő szerepet játszik a biomassza elgázosításában, mivel a kisebb részecskeméret nagyobb hődiffúziót biztosít, állandósítva a hőmérsékletet, így elősegítve a hatékonyabb kémiai reakciókat. Emiatt a hidrogénhozam, a széntartalom konverziója, valamint a szintézisgáz hozama is növelhető. A kisebb szemcseméretű részecskék több hidrogént, szén-monoxidot és metánt eredményeznek, míg a CO₂ tartalom a szemcseméret növelésével nő [56,57].

A biomassza összetétele számos paramétert befolyásol, leginkább a bomlási sebességet és a gáztermékek összetételét. Az alapanyagok nagy lignintartalma általában lassabb bomlási sebességet és kevesebb gázhozamot eredményez. Más részről a cellulóz, hemicellulóz és lignin aránya is jelentősen befolyásolja a biomassza elgázosítását. Emellett a biomassza nedvességtartalma is döntő szerepet játszik az elgázosítási folyamatban, mivel a nagyobb nedvességtartalom kevesebb gázterméket, több maradékot és nagyobb energiaigényt eredményezhet. Pang és munkatársai megállapították, hogy az alapanyagok nagyobb cellulóztartalma növeli a folyadéktermék hozamát, míg a hemicellulóz tartalom a gáztermékét, a lignin tartalom pedig a koksztartalmat [56]. Zhang és munkatársai kutatómunkájuk során a biomassza összetételének hatását vizsgálták, mely során megállapították, hogy a magas lignin tartalom miatt az erdei biomassza elgázosítása több hidrogént és metánt eredményezett, míg a rizshéj esetében, a nagy hemicellulóz és cellulóz tartalom miatt a szén-monoxid mennyisége volt jelentős [57]. A kukorica elgázosításakor a CO₂, C₂H₄ és C₂H₆ tartalom volt jelentős, mely az alapanyag cellulózban dús összetételével magyarázható. A 3. táblázat különböző biomasszák összetételét foglalja össze [56]. Megfigyelhető, hogy az erdei és a fás biomasszák átlagos lignintartalma jelentősen nagyobb, mint a kukorica, vagy a szalma esetében, ahol a cellulóztartalom volt számottevő [56,57].

	Különbözö b	iomasszák ál	talános összetétele	e	
	Kukorica	Szalma	Napraforgóhéj	Fás biomassza	Erdei biomassza
С, %	36-46	39-45	40-45	48-52	47-50
Н, %	5-6	4-6	5-7	5-6	5-6
N, %	<2	<1	1-3	<1	<2
S, %	<1	<1	<1	<1	-
0, %	46-53	48-56	45-46	42-47	42-48
Nedvességtartalom, %	7-10	2-6	5-6,1	4,3-5,7	4-6
Illékonyanyag tartalom, %	75-80	64-72	68-78	80-83	72-75
Fix karbon, %	4-6	15-18	6-8	8-10	12-17
Hamutartalom, %	4-14	4-19	8-21	1-8	2-12
Lignin, %	17-32	15-20	13-15	25-30	25-30
Cellulóz, %	42-44	33-40	42-44	35-50	35-50
Hemicellulóz, %	23-25	20-25	29-32	20-30	20-30

3. táblázat	
Különböző biomasszák általános össze	tétele

A működési paraméterek közül, a felfűtési sebesség, a nyomás és a hőmérséklet a legfontosabbak. A lassú felfűtési sebesség általában kevesebb gázterméket és több maradékot eredményez. Másrészt, a gyors felfűtés nagy hőmérséklet-különbséghez vezethet a nyersanyag részecskéi között, ami befolyásolhatja az elgázosító reaktor kialakítását és a termékek hozamát. A nyomás jelentős szerepet játszik a "bioszén" reakcióképességében, míg a hőmérséklet növelése az általános elgázosítási reakciókat

befolyásolja. Az endoterm reakciók miatt, a Le Chatelier elv alapján a nagyobb hőmérséklet csökkenti a kokszképződést, a gáztermék és a hidrogén koncentráció növekedése mellett [56-58].

A szakirodalmi hivatkozások alapján a vízgőz/biomassza arány optimális értékének meghatározása elengedhetetlenül szükséges a megfelelő minőségű szintézisgáz előállításához, azonban egy bizonyos érték felett a megnövekedett vízgőz/biomassza arány túlzott vízgőz keletkezéséhez vezethet, mely entalpiaveszteséget és hatékonyság csökkenést eredményez. Az alkalmazott katalizátorok szintén kulcsfontosságúak az elgázosítás során, mivel alacsonyabb energiájú reakció utakat nyitnak meg az átalakításhoz. Az elgázosításban alkalmazott különféle katalizátorok javítják a folyamat hatékonyságát, elősegítik a reformáló és krakkoló reakciókat, csökkentik a kátránytermelést és növelik a szintézisgáz hozamot. Az alkalmazott atmoszféra, például vízgőz, oxigén, vagy levegő szintén befolyásolják a gáztermék összetételét, valamint a folyamat általános hatékonyságát. A vízgőz jelenléte hatékonyan növeli a hidrogén hozamát, azonban a reakciók endoterm hőszinezete miatt a felhasznált energia mennyisége is növekszik [5,8,56,58,59].

Összefoglalva a biomassza elgázosítását befolyásoló paraméterek átfogó ismerete elengedhetetlen a folyamat hatékonyságának optimálásához, valamint a szintézisgázhozam maximálásához. A részecskeméret, a működési paraméterek, a vízgőz/biomassza arány, a katalizátorok, az alapanyag összetétel, és az atmoszféra megfelelő megválasztása és optimálása révén a folyamat fenntartható technológiává válhat.

1.4.3. A szintézisgáz jellemzői, felhasználási lehetőségei

A szintézisgáz a biomassza elgázosítási folyamatok fontos terméke. Elsősorban hidrogénből és szén-monoxidból, valamint szén-dioxidból, metánból, könnyű szénhidrogénekből és egyéb szennyezőkből áll. A gázkeverék értékes alapanyagként szolgálhat különféle ipari alkalmazásokban (pl. kémiai szintézisek, bioüzemanyag előállítása és energiatermelés). A szennyező komponensek jelenléte jelentősen befolyásolhatja a szintézisgáz utóátalakító folyamatokban történő alkalmasságát. Emiatt a szennyeződések hatékony eltávolítása kulcsfontosságú a későbbi technológiák optimális teljesítményének és megbízhatóságának biztosításához [60,61].

A szintézisgázban az alapanyag összetételétől függően kátrány, nitrogénvegyületek (pl. ammónia, hidrogén-cianid), halogenidek (elsősorban hidrogén-klorid), szilárd részecskék (pl. hamu, korom, szén), kénvegyületek (pl. hidrogén-szulfid) és lúgos vegyületek is előfordulhatnak. A gáztisztítási folyamatok hatékonysága számos paramétertől függ, beleértve az elgázosítás körülményeit, a nyersanyag típusát, a reaktor kialakítását és a szintézisgáz kívánt tisztasági szintjét. A szennyeződések eltávolítása történhet katalitikus eljárásokkal, például savas katalizátorok jelenlétében, melyek elősegítik a krakkoló reakciók végbemenetelét. A gáztermék tisztításának gyakori módszerei a fizikai elválasztási technikák (pl. szűrés, gázmosás, adszorpció) [60,61]. A tisztított szintézisgáz különféle vegyipari eljárások alapanyaga lehet, mely értékláncait a **7.** *ábra* **szemlélteti [62]. A szintézisgáz alapul szolgálhat az ammónia, a metanol, az oxo-alkoholok, vagy a hidrogén szintézisében is, továbbá a gázból folyadékká történő átalakításokban, mint például a Fischer-Tropsch szintézis, a dimetil-éter előállítás, a helyettesítő földgáz előállítás, a metanolból olefinekké történő előállító folyamatok, vagy a metanolból benzint előállító folyamatok [60].**

A szintézisgáz hasznosítási lehetőségei

A *4. táblázat* a szintézisgáz jellemzőinek előírásait tartalmazza a különböző folyamatokban [60]. Az eljárástól függően a szintézisgáz összetételének más-más kritériumoknak kell megfelelnie.

Az alacsony hőmérsékletű Fischer-Tropsch szintézisnél, mely kobalt katalizátor jelenlétében megy végbe, a hidrogén:szén-monoxid arány értéke 2,0, míg a vas katalizátoron végzett magas hőmérsékletű eljárásnál, ez az érték 0,6-0,8 közötti. A szintézisgáz összetételét tekintve, szén-dioxid, vízgőz, nitrogén és szénhidrogén tartalmának minimálisnak kell lennie, kevesebb mint 1 ppm kéntaralommal [63,64]. A metanol szintézis során három főbb reakció zajlik, melyekhez a sztöchiometrikus H₂/CO arány 2, azonban a megfelelő katalizátor, hőmérséklet és nyomás alkalmazása mellett ez az arány 0,3-3,0 között változhat. Fontos megemlíteni, hogy az egyéb

komponensek, valamint a szennyezőanyagok tartalmát minimálni szükséges, továbbá célszerű vízgőzmentes gázkeveréket alkalmazni, mivel az a szén-dioxid és a hidrogén képződés irányába tolja el az egyensúlyi reakciókat [65]. Megfigyelhető, hogy a hőenergia és a villamosenergia előállításánál a szintézisgáz minőségi kritériumai sokkal rugalmasabbak. A szintézisgáz mellett az elgázosítás során szilárd maradék is keletkezik, mely katalizátorként is alkalmazható pl. reformáló reakciókban.

	Szintézisgáz jellemzőinek előírásai a főbb technológiai folyamatokban					
	Szintetikus üzemanyag	Metanol	Hidrogén	Energia visszanyerés		
	Fischer-Tropsch			Hőenergia	Villamosenergia	
H ₂ /CO arány	0,6 magas T, 2,0 alacsony T technológiához	2,0	Magas	Nem számottevő	Nem számottevő	
CO ₂ tartalom	Alacsonv	Alacsonv	Alacsonv	Nem számottevő	Nem számottevő	
Nitrogén tartalom	Alacsony	Alacsony	Alacsony	Nem számottevő, de csökkenti a fűtőértéket	Nem számottevő	
Szénhidrogén tartalom	Alacsony	Alacsony	Alacsony	Magas	Magas	
Vízgőz tartalom	Alacsony	Segíti a termékképződés t az egyensúlyi reakciókban	Magas	Alacsony	Nem számottevő	
Szennyezőanyag tartalom	< 1ppm S	Alacsony	Alacsony	Alacsony tartalom	Alacsony fémtartalom és szilárd komponens	
Fűtőérték	Nem számottevő	Nem számottevő	Nem számottevő	Magas	Magas	
Nyomás, bar	20-30	50 (folyadék); 140 (gáz)	30	Alacsony	400	
Hőmérséklet, °C	200-400	100-200	100-200	250	500-600	

4. táblázat						
	Szintézisgáz jellemzőinek előírásai a főbb technológiai folyamatokban					

Továbbá a bioszenet, az aktív szén költséghatékony helyettesítőjének tekintik, valamint a víz szerves és szervetlen szennyezőanyagainak eltávolítására is alkalmazzák. Egyedülálló fizikai-kémiai tulajdonságai miatt, nagy szorpciós kapacitásával, nagy fajlagos felületével, mikroporozitásával és ioncserélő képességével a bioszén sokoldalú felhasználási lehetőséggel rendelkezik (5. táblázat) [66,67].

5. táblázat
A bioszén felhasználási lehetőségei

Felhasználás Cél módja		Előny	Hátrány	
Katalizátor	Segíti a reakciókat	Olcsó, nagy fajlagos felület	Csökkenti a hatásfokot	
Energia tárolás	Elektródként történő használat	Gazdaságos, porózus, nagy fajlagos felület	Csökkenti a hatásfokot	
Talajjavítás Talajminőség javítása		Olcsó, csökkenti az üvegházhatású gázok emisszióját segíti a tápanyagok és a víz megtartását, szabályozza a tápanyagvesztést	Nem képes a nehézfém és a poliaromás szénhidrogén tartalom megkötésére	
Adszorbens	Szerves és szervetlen anyagok eltávolítása a talajból és vízből	Olcsó, segíti a szennyezők megkötését	Nem képes a nehézfém tartalom csökkentésére	
Komposzt	Mikrobák szerkezetének javítása és szén mineralizáció	Nagy fajlagos felület, csökkenti az üvegházhatású gázok emisszióját	Nehézfém tartalom és egyéb toxikus vegyületek a talajba kerülhetnek	

A víztisztításon túl a bioszén katalízisben, szennyvízkezelésben, komposztálásban, energiatárolásban, szén-dioxid megkötésben és talajjavításban is hasznosítható. A bioszén katalitikus aktivitással rendelkezik a kátránytartalom eltávolításában és/vagy átalakításában. A bioszén felülete többféle eljárással módosítható, továbbá a fizikai, vagy kémiai aktiválása tovább növeli a katalitikus hatásfokát [66,67].

1.4.4. Ipari elgázosító eljárások

A biomassza elgázosító technológiák fejlettségének meghatározását gyakorta a TRL (technológiai készenléti szint) segítségével értékelik. Ez segítséget nyújt az új technológiák értékelésében, valamint meglévő alternatívákkal való a összehasonlításban. A TRL szint meghatározásához először az új technológiák kritikusságán kell gondolkodnunk. Mankins által írt "Technology Need Values" mű alapján az egyes technológiák mérlegelése keretbe foglalható, emellett tartalmaz egy torzítást a rendkívül kritikus alaptechnológiák irányába. Ezt követően figyelembe kell venni, hogy hogy több technológia egyesül egy új terméket vagy innovációt létrehozva, melyhez a következő számítási módszer alkalmazható: az egyes részfolyamatok TRL szintje szorozva a megfelelő kritikussági szinttel, majd ezen érték szummáját az összes kritikussági értékkel elosztva kapjuk meg az új folyamat TRL szintjét [68,69].

Ezután foglalkoznunk kell azzal a problémával, hogy több technológia egyesül egy új terméket vagy innovációt létrehozva. Ehhez használhatjuk az alább felsorolt, ismét a papírból vett egyenletet, és alkalmazhatjuk a súlyozott kritikussági számot.

A biomassza termokémiai átalakítására alkalmas eljárások TRL értéke 4-9. A közelmúltban végzett kutatások alapján a biogázból történő szintézisgáz előállítás, valamint a formalinná történő közvetlen átalakítás elérte a 6-os szintet, míg a fás biomassza elgázosítása szintézisgáz kinyerése céljából 9-es szintű [68,69]. A *6. táblázat* a működő biomassza és hulladék elgázosító technológiákat, illetve azok TRL értékeit foglalja össze [70,71]. Általánosan, a legtöbb működő technológia még kutatási fázisban van, mely 4-5 TRL értékű, azonban pilot, illetve ipari mértékűek is megtalálhatók. A legmagasabb TRL értékkel rendelkező technológiák Németországban találhatók, melyek plazma elgázosítás során leginkább a szintézisgáz a céltermék, ugyanakkor megfelelő technológiai elrendezés esetében lehetőség van bioüzemanyagok és hidrogén előállítására is.

6. táblázat							
Biomassza és hulladék elgázosító j	projektek						

Tulajdonos	Technológia helyszíne	Technológia	Termék	TRL	Katalizátor	Melléklet	Hiv.
Advanced Biofuels Solutions	Swindon, UK	Üzemanyag szintézis	SNG, hidrogén	8	Nincs adat	1.	[72]
Cutec	Clausthal- Zellerfeld, Németország	Üzemanyag szintézis	FT termékek	4-5	Nincs adat	2.	[73]
Dillinger Saar GmbH	Premnitz, Németország	Plazma elgázosítás	Hidrogén	9	Nincs adat	3.	[74]
ECN	Petten, Hollandia	Indirekt elgázosítás	Tisztított szintézisgáz	4-5	olivin	4.	[75]
Enerkem	Varennes, Kanada	Üzemanyag szintézis	Bioüzemanyag és megújuló vegyszerek	6-7	Nincs adat	5.	[76]
Enerkem	Sherbrooke, Kanada	Üzemanyag szintézis	SNG, etanol, metanol	4-5	Nincs adat	5.	[76]
Enerkem	Westbury, Kanada	Üzemanyag szintézis	metanol, etanol és egyéb vegyipari termékek	6-7	Nincs adat	5.	[76]
Enerkem Alberta Biofuel LP	Edmonton, Kanada	Üzemanyag szintézis	Hidrogén	8	Nincs adat	5.	[76]
Neue Energy Premnitz	Premnitz, Németország	Plazma elgázosítás	Vegyipari termékek	9	Magas és alacsony hőmérsékleten alkalmazott, pelletált katalizátorok	6.	[77]
NREL	Golden, UK	Elgázosítás	Tisztított szintézisgáz	4-5	Nincs katalizátor	7.	[78]
RWE Power Ag	Bergheim- Niederaussem, Németország	Üzemanyag szintézis	Bioüzemanyag	4-5	Nincs katalizátor	-	[79]
TUBITAK	Kocaeli, Törökország	Üzemanyag szintézis	Tisztított szintézisgáz	4-5	Nincs adat	-	
Uni Stuttgart	Stuttgart, Németország	Elgázosítás	Szintézisgáz	4-5	Nincs adat	8.	[80]
WGS pilot plant	Oberwart, Ausztria	Elgázosítás	Szintézisgáz, energia	6-7	Vas/króm	9.	[81]

A 7. táblázat azokat a nagyüzemi technológiákat foglalja össze, melyek biomasszából és hulladékokból energiát állítanak elő és elgázosító egységet is tartalmaznak [82]. A bemutatott európai technológiák túlnyomó része különböző típusú reaktorokat alkalmazva faaprítékot, vagy faipari hulladékot hasznosít. A legtöbb, biomasszából és hulladékból energiát előállító üzem Finnországban, Németországban, illetve Hollandiában található. Fontos megemlíteni, hogy kisüzemű (<200 kW) technológiák a világ minden részén megtalálhatók, melyek többnyire faaprítékot, erdei biomasszát, vagy mezőgazdasági biomasszát alakítanak át hő-, és villamosenergiává [82,83,84].

7. táblázat
Biomasszából és hulladékból energiát előállító vállalatok (> 3MWth)

Cég	Technológia helyszíne	Reaktor típusa	Kapacitás	Alapanyag	Termék
Oberwart	Ausztria	DFB	9 MWth betáplálás 3 MWe villamosenergia 4 MWth hőenergia	Faapríték	СНР
Güssing	Ausztria	DFB	8 MWth betáplálás 3 MWe villamosenergia 4 MWth betáplálás	Faapríték	CHP
Harboore	Dánia	Felfelé áramló	2 MWth hőenergia 1 MWe villamosenergia	Faapríték	СНР
Sindal District Heating Company	Dánia	Felfelé áramló	9 MWth betáplálás 5 MWth hőenergia 1 MWe villamosenergia	Faipar hulladék	CHP
Skive	Dánia	BFB	20 MWth betáplálás 6 MWe villamosenergia 12 MWth hőenergia	Pelletált faipari hulladék	CHP
Kiteen Lampö Oy	Finnország	Felfelé áramló	6 MWth hőenergia	Faapríték	Hőenergia
Jalasjaerven Lampö Oy	Finnország	Felfelé áramló	6 MWth hőenergia	Faapríték	Hőenergia
Ilomantsin district heating	Finnország	Felfelé áramló	6 MWth hőenergia	Faapríték	Hőenergia
Varkaus Stora Enso	Finnország	CFB	12 MWth betáplálás	Faapríték	CHP
Kauhajoen Lampöhuolto Ov	Finnország	Felfelé áramló	13 MWth hőenergia	Faapríték	Hőenergia
Metsa Fibre Oy, Joutseno Mill	Finnország	Felfelé áramló	48 MWth betáplálás	Faapríték	CHP
Varkaus Corenso	Finnország	BFB	50 MWth h betáplálás	Műanyag hulladék	Szintézisgáz
Lahti Energia Kymijarvi I	Finnország	CFB	70 MWth betáplálás	Faapríték	CHP
Metsa Fibre Oy, Aanekoski Mill	Finnország	CFB	87 MWth energia	Faapríték	CHP
Lahti Energia Kymijarvi II	Finnország	CFB	160 MWth betáplálás 50 MWe villamosenergia 90 MWth hőenergia	SRF	CHP
Bioliq	Németország	Nyomás alatti	5 MWth betáplálás 608 t/év üzemanyag	Szalma	DME és gázolaj
RegaWatt Abensberg	Németország	Felfelé áramló	4 MWth hőenergia 2 MWe villamosenergia	Fás biomassza	CHP
Stadtwerke Ulm/Neu	Németország	DFB	15 MWth betáplálás 5 MWe villamosenergia	Faapríték	CHP
Muensterland Energy Gmbh	Németország	Lefelé áramló	8,6 MWth hőenergia 6 MWe villamosenergia	Pelletált faipari hulladék	CHP
Waermeversorgung Grossenhain	Németország	BFB	21 MWth hőenergia 6 MWe villamosenergia	Fás biomassza	CHP
Duchi Fratelli Societa Agricola	Olaszország	Lefelé áramló	1MWth betaplalas, 1MWe energia, 3 Mwth hő	Faapríték	CHP
Rossano Calabro	Olaszország	Specifikus	20 MWth betaplalas 4 MWe energia	Faapríték	Villamosenergia
Chalmers gasifier	Svédország	DFB Felfalá	4 MWth hőenergia	Fás biomassza	CHP
Charmey	Svájc	áramló	1 MWe villamosenergia 6 MWth betánlálás	Faapríték	CHP
Puidoux Woodgasifier	Svájc	Felfelé áramló	5 MWth hőenergia 1 MWe villamosenergia	Faapríték	СНР
Baas Energie BV	Hollandia	Felfelé áramló	3 MWth hőenergia	Faapríték	CHP
ESKA Waste Paper Rejects Gasification	Hollandia	CFB	5 MWth betáplálás 4 MWth hőenergia 0,5 MWe villamosenergia	Papír hulladék	CHP
VBioMCN Farmsum	Hollandia	CFB	15 MWth betaplalas 12 MWth hőenergia	Glicerin	Hőenergia
BioMCN Farmsum	Hollandia	Specifikus	200000 t/év metanolt	Faapríték	Metanol
BioMCN Groningen	Hollandia	Specifikus	413000 t/év metanol	Faapríték, RDF	Villamosenergia
GoGreenGas	UK	Fluidágyas	4 MWth betáplálás	Faapríték, RDF	SNG

1.4.5. Alkalmazott katalizátorok

A katalizátor jelenléte felgyorsítja és segíti a kémiai reakciókat, így fontos szerepet játszik az elgázosítási folyamatokban. A befektetett energia csökkentése mellett, a reakcióidőt is csökkenti, valamint növeli a degradáció mértékét is. Abedi és Dalai biomassza pellet katalitikus vígőzös elgázosítását vizsgálták. Megállapították, hogy a cérium promótort tartalmazó, Ni/Al₂O₃ jelentősen csökkentette a kokszképződést (10-22,5%-ról 2,1%-ra), a szintézisgáz hozamának növelése (2-8%-kal) mellett [85]. Tursun és munkatársai biomassza elgázosítását vizsgálták NiO/olivin jelenlétében, ahol hasonló kimagasló, 56%-os hidrogénhozamot és 0,6 g/Nm³ koksztartalmat értek el [86].

Katalizátorok alkalmazása során fontos szempont azok élettartama, melyet a mellékreakciók, illetve a lehetséges szerkezeti átalakulások is befolyásolnak. A katalizátorok dezaktiválódása főként az aktív helyeken történő kokszlerakódás miatt történhet, mely többnyire a krakkolási reakciókba keletkezik. Elbaba és Williams tanulmányozta a Ni/Al₂O₃ és Ni/dolomit katalizátorok dezaktiválódását a hulladék gumiabroncsok elgázosítása során, ahol megállapították, hogy a H₂ tartalom 7,2-ről 4,1%-ra csökkent a Ni/Al₂O₃ katalizátor, míg 11,4-ről 10,1%-ra csökkent a Ni/dolomit katalizátor esetében. [87,88].

Katalizátor típusa	Példa	Jellemzők	Előny	Hátrány
		Reaktív	Növeli a reaktivitást	K tartalmú vegyületek szabadulnak fel pl. KCl
Alkáli- és	K ₂ CO ₃ , KOH		Mikropórusos felületet alakít ki a maradékon	Kálium dezaktivitása
аткантонотетек			Csökkenti a koksztartalmat	800°C fok felett agglomerizáció Nehézségek a katalizátor regenerálása során
Átmenetifémek	Ni, Ce	Nagy aktivitás	Olcsó Hatékony Növeli a gázhozamot és a hidrogéntartalmat	Dezaktiválódás a szinterelés során
		Nagy fajlagos felület	Megbízható	Módosításra van szükség a hordozókénti használathoz
		Porózus	Olcsó	hordozokona husznatanoz
Széntartalmú anyagok	AC, Bioszén	Funkciós csoportok	Könnyű regenerálás	
		nagy katalitikus aktivitás	Hatékony	
	Dolomit	Előnyös aktivitás	Olcsó	Mechanikai stabilitása csökken
Természetes zeolitok	Mordenit		Elérhető	Tisztítást igényel
Termeszetes zeontok			Növeli a gázterméket Segíti a maradék átalakítását	
	CaCO ₃	Elérhető	Segíti a maradék	Agglomerizáció léphet fel, így
Alternatív kotolizátorok	tartalmú	Negy CoCO	átalakítását, CO ₂ megkötés	könnyen dezaktiválódik a katalizátor
Katalizatul OK	tojáshéj	tartalom	mennyiségét	

8. táblázat A leggyakrabban alkalmazott katalizátor típusok, azok előnyei és hátrányai

A megfelelő katalizátorok jelenlétében, in/ex/post-situ módon a szennyezőanyag tartalom is csökkenthető. A biomassza elgázosításakor a természetes (kalcinált kőzetek, agyagásványok) és szintetikus zeolitok, alkáli- és alkáliföldfémek, átmeneti fémtartalmú katalizátorok, valamint a nagy széntartalmú katalizátorok a leggyakrabban alkalmazott katalizátorok (*8. táblázat*) [89-92]. Továbbá, reaktivitásuk, újrafelhasználhatóságuk és költséghatékonyságuk miatt, hulladék melléktermékek is alkalmazhatók [87,88].

1.4.5.1. Alkáli- és alkáliföldfém katalizátorok

Jiang és munkatársai alkáli- és alkáliföldfém katalizátorok katalitikus hatását vizsgálták biomasszák elgázosításakor. A kísérleteket 900°C-on, vízgőz jelenlétében végezték, ahol megállapították, hogy az alkáli- és az alkáliföldfémek növelik a H₂ és CO₂ mennyiségét, a CO, CH₄, C₂H₄ és C₂H₆ koncentrációjának csökkentése mellett. Az alkáli- és alkáliföldfém tartalmú katalizátorok egyaránt elősegítik a heterogén és homogén reformálási, illetve a víz-gáz shift reakciókat [93,94]. Az alkáli- és alkáliföldfémek (pl. Na, K, Ca) hozzájárulnak a bioszén reakcióképességének növeléséhez is. A bioszénen lévő különböző fémnitrátok alkalmazása jelentős katalitikus hatással rendelkezik, növelve a degradáció hatásfokát. Elsősorban a nátrium tartalmú bioszén rendelkezett a nagy reaktivitással, melyet a Ca-, Fe-, K-, Mg- és a kezeletlen bioszén követett [95-97]. A biomassza elgázosításakor a Na és K tartalmú katalizátorok növelik a H₂ és CO hozamot, a CH₄ és a CO₂ mennyiségének csökkentése mellett [93,95].

1.4.5.2. Átmenetifém tartalmú katalizátorok

Az átmeneti fémek egyedülálló tulajdonságokkal rendelkeznek, képesek stabil ionokat képezni, valamint elektronátadási reakciókban részt venni, mely jellemzők hatékony katalizátorokká teszik őket a biomassza elgázosítása során. A leggyakrabban vas, kobalt, réz és nikkel tartalmú katalizátorokat alkalmaznak, azonban a koksz lerakódás és a katalizátor lehetséges szinterelése csökkenti a fajlagos felületüket és aktivitásukat. A nemesfémek, mint a Rh, Ru, Pd és Pt ígéretes katalizátorok, melyek növelik a hidrogénhozamot, azonban magas költségük és irreverzibilis szennyeződésük miatt leginkább tisztított gáz esetén alkalmasak katalizátorként [96,97].

Nagy nedvességtartalmú anyagok hidrotermikus elgázosítása során az átmenetifémoxid katalizátorok, mint a MnO₂, CuO és Co₃O₄ előnyösek a hidrogén hozamának növelésében. Ezenkívül a Ni alapú katalizátorok hatékonysága Fe, Mg, Mn, Ce, Pt, Pd és Ru elemek promótorként történő alkalmazásával javítható [96].
A nikkel alapú katalizátorok a közelmúltban a kutatások középpontjába kerültek, mert kiemelkedő tulajdonságaik mellett a hidrogén hozamának növelésében és víz-gáz shift reakciókban is előnyösek, továbbá nagy az aktivitásuk és alacsony a költségük. Fontos megemlíteni, hogy az említett tulajdonságokon túlmenően a koksz és a kéntartalom csökkenti a nikkel aktív helyeit, valamint a katalizátor dezaktiválódását okozza [96-98]. Peng és munkatársai fás biomassza levegő és vízgőz jelenlétében történő elgázosítását tanulmányozta különböző fémtartalmú katalizátor segítségével (Ni/CeO₂/Al₂O₃) [99]. A folyamat paramétereinek a katalitikus aktivitásra gyakorolt hatásvizsgálata során különböző tartózkodási időket (20, 40 és 60 perc) és elgázosítási hőmérsékleteket (750, 825 és 900°C) vizsgáltak. Eredményeik szerint a magas hőmérséklet (900°C), valamint a nagy katalizátor tartalom (40%) alkalmas a hidrogén és a szintézisgáz hozam növelésére [98,99].

A nagy fajlagos felület, valamint a nagy termikus stabilitás a Ni/Al₂O₃ katalizátorok kulcsfontosságú jellemzői, melyek mellett az aktív helyeken történő kokszlerakódás, illetve a szinterelés is előfordulhat. Artetxe különböző, Ni tartalommal (5–40%) rendelkező Ni/Al₂O₃ katalizátorokon, modell vegyületekkel tanulmányozta a biomassza maradékának katalitikus gőzreformálását [100]. Az eredmények alapján 20% Ni tartalom 90%-kal magasabb konverziót és 59% H₂ tartalmat eredményezett [100,101].

Li és munkatársai a kukoricaszár pirolízis-elgázosítását különféle kalcium alapú adszorbensek és NiO alapú katalizátorok alkalmazásával tanulmányozták. Az eredmények alapján megállapították, hogy a kalcinált CaCO₃ dolomit kulcsfontosságú a hidrogén hozam növelésében [102].

A nikkel tartalmú katalizátorok hatékonysága jelentősen függ a hordozó típusától és tulajdonságaitól, mely nagymértékben befolyásolja a katalitikus aktivitást, a kokszképződést, a szinterelést, illetve a katalizátor mérgezés mérséklését [102]. A zeolitok, különösen a ZSM-5, perspektivikus lehetőségeket kínálnak a biomassza elgázosításakor a szelektíven előállított H₂ tartalom növelésére. A ZSM-5 porózus szerkezete, nagy felülete, valamint savas helyeinek sűrűsége ideális a nikkel beépüléshez, a kokszlerakódás csökkentése mellett [103]. Az alumínium-oxid szintén előnyös hordozó, mely költséghatékony, nagy felülettel és mechanikai szilárdsággal rendelkezik [104]. A porózus Al₂O₃ csökkenti a Ni-részecskék szinterelését, megkönnyítve a reagensek diffúzióját, fokozva a katalitikus aktivitást [105].

1.4.5.3. Széntartalmú katalizátorok

A biomassza elgázosításakor keletkező bioszén, nagy fajlagos felülettel, porózus szerkezettel rendelkezik, megbízható, alacsony költségű, illetve regenerálása egyszerű. Az említett tulajdonságai miatt, számos alkalmazási terület ismert, melyek közül a legelterjedtebb a szilárd katalizátorként történő felhasználása bioüzemanyagok, termikus átalakítás módszerek (pl. elgázosítás, pirolízis) és értéknövelt termékek előállítására. A bioszén katalitikus aktivitását az elgázosítással történő előállítás során alkalmazott paraméterek, az elgázosító típusa, az alapanyag összetétele, a katalizátorok fajlagos felülete és porozitása, valamint funkciós csoportjai jelentősen befolyásolják [106,107].

Rizkiana és munkatársai különböző biomassza maradékok, a barnamoszat, az angolnafű és a rizsszalma hatását vizsgálták az elgázosítási folyamatokban. A barnamoszat és az angolnafű kiváló katalitikus aktivitással rendelkezett, mely nagyobb alkáli- és alkáliföldfém tartalmával magyarázható. A jelentős mennyiségű szilíciumdioxidot, vagy agglomerizálódott szilícium-dioxid tartalmazó hamuszemcsék az aktív felület és a reaktivitás csökkenését eredményezték [108].

1.4.5.4. Természetes agyagásványok, zeolitok

A kalcium-magnézium-karbonátból álló dolomitok magas hőmérsékleten oxidokká bomlanak, emellett nyomokban olyan ásványi anyagokat is tartalmazhatnak, mint a SiO₂, Fe₂O₃ és Al₂O₃, amelyek közül a vas-oxid jelentős szerepet játszik a katalitikus aktivitásban. Az olivin, egy természetes agyagásvány, amely magnézium-oxidot, vasoxidot és szilícium-dioxidot tartalmaz. Emellett a kalcinálást követően katalitikus aktivitással rendelkezik, mely átmeneti fémek, pl. Fe, Ni, Cu és Ce impregnálásával tovább javítható. Meng és munkatársai erdei biomassza elgázosítására során Ni-Fe tartalmú olivin katalizátort alkalmaztak. Az eredmények alapján megfigyelték, hogy a nyers olivin csökkentette a maradék mennyiségét, míg a kalcinálást követően növekedett a katalitikus aktivitása, így ekkor a maradék mennyisége közel 85%-kal csökkent [109]. A zeolitok, háromdimenziós porózus szerkezetű alumínium-szilikát vegyületek és nagy hatásfokkal rendelkeznek a szénhidrogének dehidrogéneződésében, illetve a krakkolási reakcióikban. A ZSM-5 alkalmas karbonsavak és oxigéntartalmú vegyületek előállítására, míg a ZSM-5 550°C-on történő kalcináláskor keletkező HZSM-5, az oxigéntartalmú komponensek átalakításának leghatékonyabb katalizátora [92].

1.4.5.5. Alternatív katalizátorok

A különböző hulladékok katalizátorként történő alkalmazása gazdaságilag és környezetileg is fenntartható megközelítést jelent. A katalizátorként alkalmazott hulladékok lehetnek ipari melléktermékek pl. vörösiszap, alumínium salak, pernye, vasgyártási salak, vagy mezőgazdasági hulladékok. Raheem az extrahált mikroalgák katalitikus elgázosítását vizsgálta tojáshéjból származó CaO felhasználásával, ahol megállapította, hogy a CaO adszorpciós képességének köszönhetően a hidrogén hozam növekedett, a szén-dioxid tartalom pedig csökkent [110]. A portlandcement feldolgozás mellékterméke, a cementégető por katalizátorként is használható a biomassza elgázosításában. Megfigyelték, hogy a cementkemencék kalcinált pora és a CaO az elgázosításkor növelte a gáztermékek mennyiségét és annak szintézisgáz tartalmát [111,112].

1.4.6. Katalizátorok és CO₂ szorbensek élettartalmi vizsgálata

A biomassza elgázosításakor alkalmazott katalizátoroknál, célszerű figyelembe venni a katalitikus aktivitás csökkenését, a katalizátor-dezaktiválási jelenséget. Ezek közé tartozik a fémszinterelés, ami elsősorban egy fizikai folyamat. Ekkor a fémrészecskék mérete megnő, vagy a reakció előrehaladtával agglomerálódnak. Emellett előfordulhat még kénmérgezés, ahol a keletkező H₂S reagál a katalizátor aktív helyeivel, csökkentve azok aktivitását. Végül megemlíthető a kokszosodás, mely a katalizátor felületére lerakódva elzárja az aktív helyeket, valamint eltömíti a pórusokat [87,114].

Elbaba és munkatársai az elgázosítás során a Ni/Al₂O₃ és Ni/dolomit kétlépcsős pirolízis-elgázosítását vizsgálták, négy használati cikluson keresztül. A két katalizátor közül a Ni/dolomit nagyobb hidrogénhozamot, valamint kisebb mértékű kokszosodást (2,8%) eredményezett, míg a Ni/Al₂O₃ katalizátoron több kokszlerakódást figyeltek meg (18,2%). Megállapították, hogy a Ni/Al₂O₃ katalizátorok nikkel tartalma a kénnel való reakciók, illetve a koksz lerakódás miatt dezaktiválódott [87].

Zhao és munkatársai a szalma kétlépcsős pirolízis-elgázosítását vizsgálták, Ni és Ca tartalmú Fe/Al₂O₃ katalizátorokon. Az eredmények alapján megállapították, hogy a nikkel és a kalcium tartalom jelentősen befolyásolta a katalizátor aktivitást és a regenerálás során mutatott stabilitását. A katalizátor aktivitása és stabilitása az újrafelhasználás során javuló tendenciát mutatott. A vizsgált katalizátorok közül a Fe-Ni-Ca/Al₂O₃ kedvező stabilitással és aktivitással rendelkezett, mely alkalmas a többszöri újrahasználatra. Érdemes azonban megjegyezni, hogy a regenerálás atmoszférája és hőmérséklete jelentősen befolyásolta a katalizátorok szerkezeti változásait [114].

Li és munkatársai Fe-Ni/ZSM-5 katalizátor dezaktiválási folyamatait és regenerálási ciklusokban mutatott tulajdonságait vizsgálták. A biomassza/katalizátor arány növelésével csökkenő aktivitást figyeltek meg, és a regenerálás utáni katalizátor aktivitása is jelentősen lecsökkent [115]. Shao és munkatársai különböző oxigén koncentrációk hatását vizsgálták a katalizátor regenerálási tulajdonságaira. Megállapították, hogy minimális koksztartalom növelte a szénhidrogének hozamát, mely arra utal, hogy a koksztartalom megváltoztathatta a pórusok, valamint savas centrumok eloszlását [116].

Magrini-Bair és munkatársai a fluidizálható NiMgK/Al₂O₃ katalizátorokat több reakciócikluson keresztül vizsgálták kis- és nagyipari léptékben. Megfigyelték, hogy a ciklusok előrehaladtával a katalizátor vesztett aktivitásából, mely a nikkel-aluminát képződése mellett a redukálható nikkel, különösen a NiO fázis elvesztésével lehet összefüggésben [117].

A kalcium-oxid perspektivikus megoldást kínál CO₂ adszorbensként való alkalmazásra. Ugyanakkor gyakorlati alkalmazását a részecskék regenerálása során bekövetkező erős szinterelése korlátozza. Ennek csökkentésére többek között a szol-gél eljárás is alkalmazható, melyben a cél a szén-dioxid kapacitás növelése a részecskeméret csökkentésén, vagy a fajlagos felület növelésén keresztül [118].

A CaO inert hordozókra (pl. Al, Ti, Mg, Ce, Zr) történő beépítése hatékony megoldásnak bizonyul a kalcinálási ciklusok során tapasztalt szintereléssel szembeni ellenállás javításában. Ezek az inert hordozók fizikai gátként működnek, gátolják, vagy késleltetik a CaO részecskék szinterelését és agglomerizációját. Szerves és ásványi savakkal végzett felületmódosítást is alkalmaztak az aktivitás csökkenés minimálása és a CO₂ megkötő képesség javítására. A CO₂ parciális nyomása, a karbonizációs hőmérséklet, az időtartam és a szennyeződések jelenléte is jelentősen befolyásolja a ciklikus adszorpciót. A természetes és szintetikus CaO alapú adszorbensek eltérően viselkednek a CO₂ parciális nyomásváltozására, ami az eltérő fizikai tulajdonságokkal rendelkező, CaCO₃ rétegek kialakulásának tulajdonítható. A magas reakcióhőmérséklet, valamint a hosszabb karbonizációs időtartam pozitívan befolyásolja a CO₂ kapacitás növelését [118].

de Oliveira és munkatársai 19,2% nedvességtartalmú, kristályos, rendezett szerkezetű, 0,43 nm mikropórusokkal és 247 m²/g fajlagos felülettel rendelkező NaA

zeolit CO₂ megkötő képességét vizsgálták. Megállapították, hogy a zeolit szerkezete 904°C-ig stabil marad, illetve a nyomás növelése pozitív hatással volt az adszorpciós izotermákra. Ugyanakkor a lefúvatási és az adszorpciós nyomás jelentősen befolyásolta az adszorpciós jellemzőket, mert az alacsonyabb lefúvatási nyomások (<2,5 bar) jelentős kapacitásnövekedést eredményeztek. A vákuumviszonyok lehetővé tették az adszorpciós rendszer teljes regenerálódását, míg a hőmérséklet változtatása minimálisan befolyásolta a NaA szén-dioxid adszorpcióját [119].

Davarpanah és munkatársai a klinoptilolit adszorpciós kapacitását vizsgálta. 20°C-on kapacitás az adszorpciós a következő sorrendet követte: Z13X>Na-Klinoptilolit>Klinoptilolit>Ca-Klinoptilolit, ami enyhe növekedést mutatott Na⁺ cseréjével, míg csökkenést Ca²⁺ esetében. A legnagyobb CO₂ kapacitása a tiszta klinoptilolitnak volt 65°C-on, mely közel 20%-kal haladta meg a 13X zeolit értékét. Ez az eredmény összefügg a CO₂ adszorpció alacsonyabb izoszterikus hőjével (32 kJ/mol). Az FTIR eredmények alapján megállapították, hogy a tiszta klinoptilolitban levő K⁺ és Mg²⁺ kationok a CO₂-dal lineáris adduktumokat képeznek, valamint a bázikus helyeken karbonátszerű formákat alakít ki. Ezzel szemben a Na-klinoptilolit a Na⁺ miatt csökkentett felületi bázikussággal rendelkezett, mely megkönnyítette az egyszeres (Na⁺···O- -C- -O) és a kettős (Na⁺···O- -C- -O···Na⁺) képződését. A klinoptilolit adszorpciós teljesítményét az ioncsere és a hőmérséklet is szignifikánsan befolyásolta, a Na⁺ ioncseréje pedig elősegítette a felületi reaktivitást és a CO₂ felvétel hatásfokát [120].

Brea és munkatársai 13X zeolit felhasználásával X-típusú zeolitokat állítottak elő kationcserével. A 13X zeolitban lévő Na⁺ kationokat Ca²⁺ és Mg²⁺ ionokra cserélték, így CaX és MgX zeolitok jöttek létre. Az összes vizsgált adszorbens esetén az adszorpciós affinitás sorrendje a H₂<CH₄<CO<CO₂ volt. A CaX zeolit a többi zeolithoz képest nagyobb adszorpciós kapacitást mutatott a CH₄ és a CO esetében, illetve szignifikánsan magasabb CO₂ diffúziós korlátokkal rendelkezett, mint a NaX és MgX zeolit [121].

1.5. CO₂ emisszió csökkentésére alkalmas eljárások és anyagok

Becslések szerint az emberi tevékenység körülbelül 1°C-kal emelte a globális hőmérsékletet az iparosodás előtti szinthez képest, míg 2020-ban a légkör átlagos, éves CO₂ szintje megközelítőleg 50%-kal volt több, mint a 18. században. A gyors gazdasági fejlődés és az iparosodás, valamint az exponenciális népességnövekedés a következő 30 évben 1,5°C-kal emelheti a globális hőmérsékletet. Az IPCC az éghajlatváltozás mérséklését tartja szem előtt, valamint annak mielőbbi megoldását sürgeti. Legutóbbi értékelésük szerint az üvegházhatású gázok kibocsátását 2030-ra 43%-kal kell csökkenteni, mivel ellenkező esetben a Föld átlaghőmérséklete 3,2°C-kal, a légkör CO₂ koncentrációja, mely az iparosodás előtt 280 ppm volt, jelenleg 421 ppm, akár 570 ppm-re is emelkedhet 2100-ra [122-124].

Az égetést követő CO2 megkötő technológiák (10. melléklet) célja, az ipari folyamatokban keletkezett, kiváltképp az erőművek által kibocsátott, füstgázok tisztítása. A kibocsátott CO2 csökkentésére elterjedten alkalmazzák a kémiai abszorpciót, mert annak nagy a hatásfoka, a szelektivitása, valamint alacsony az energiafogyasztása. Egyéb módszerek, mint például az adszorpció és a membránszeparáció is ígéretes megoldást kínálnak. A gáz előkezelési lépései, beleértve a vizes mosást, a hűtést, a dehidratálást, az elektrosztatikus porleválasztást, a kéntelenítést és a denitrifikációt, elengedhetetlenek a füstgázokban lévő nitrogén, oxigén és egyéb szennyeződések miatt. Fontos megemlíteni, hogy a nagyipari integritás érdekében a költségek és az energiafogyasztás csökkentése szükséges. Emellett beszélhetünk még égetést megelőző CO2 leválasztásról (10. melléklet) is, mely előnye a füstgázok magasabb CO2 koncentrációja, mely könnyebb elválasztást biztosít, azonban a folyamat bonyolult és költséges. Az előégetésénél az anyag egy elgázosítóban vízgőzzel és levegővel, vagy oxigénnel reagál. Ekkor a szén-dioxid mellett főként CO-ból és H2ből álló gázkeverék keletkezik. Az elválasztás során különféle eljárásokat alkalmazhatnak. Ilyen lehet többek között a nyomásváltoztatásos adszorpció, a kémiai és a fizikai abszorpció, vagy a membránszeparáció. Ezen technológia gyakori ipari alkalmazási területei a műtrágya- és a hidrogéngyártás. Továbbá megemlíthető az "oxyfuel" eljárás (10. melléklet), ahol tiszta oxigén, vagy oxigénnel dúsított levegő jelenlétében történik az égetés, melyből nagymennyiségű CO2 keletkezik. Ennek megkötési hatásfoka 80-98% közötti [125].

A CO₂ leválasztására alkalmas technológia megvalósítása jelentős beruházási költséggel rendelkezik, a megnövekedett energiafogyasztás, valamint a működési költségek miatt. A szén-dioxid megkötéssel kapcsolatos folyamatok, beleértve a szennyeződések eltávolítását, a szeparációt, az ab/adszorbens előállítását, regenerálását és hulladékkezelését, további energiabefektetést igényelnek. A CCS technológiát alkalmazó üzemek körülbelül 10-40%-kal több energiát használnak fel, mint

hagyományos üzemek [125]. A 9. táblázat néhány bioenergia szén-dioxid leválasztással és tárolással rendelkező üzem főbb információit tartalmazza [126-132].

Nenany bioenergia szen-dioxid levalasztassal és tarolassal rendelkező územ fobb informaciói								
Név	Iparág	Helyszín	Méret	Kapacitás, t/év	Melléklet	Hiv.		
Illinois Industrial Carbon Capture and Storage	etanol előállítás	Illinois, US	nagyipari	1.000.000	11.	[126]		
Norway Full Chain CCS	cementipar	Norvégia	nagyipari	800.000	12.	[127]		
Russel CO ₂ injection plant	etanol előállítás	Kansas, USA	demonstrációs és pilot	7700	-			
Arkalon CO ₂ Compression Facility	etanol előállítás	Kansas, USA	demonstrációs és pilot	290.000	-			
Bonanza BioEnergy CCUS EOR	etanol előállítás	Kansas, USA	demonstrációs és pilot	100.000	-			
Mikawa Post Combustion Capture Demonstration Plant	energiaelőállítás	Omuta City, Japán	demonstrációs	180.000	13.	[128]		
Biorecro/EERC project	biomassza gázosítás	Észak Dakota, USA	demonstrációs és pilot	1000-5000	14.	[129]		
OCAP Calgren Benewahle	etanol előállítás	Hollandia		400.000	-			
Fuel CO ₂ recovery	etanol előállítás	Kalifornia, USA		150.000	-			
Alco Bio Fuel bio- refinery CO ₂ recovery plant	etanol előállítás	Gent, Belgium		100.000	-			
processing CO ₂	etanol előállítás	Manchester, UK		100.000	-			
Saga City Wste Incineration Plant	hulladékból energia	Saga City, Japán		3000	-			
Saint-Felicien Pulp Mill and Greenhouse Carbon Capture Project	pép és papírgyártás	Quebec, Kanada		11.000	15.	[130]		

9. táblázat 1 11 // c//1.1 · c , .,.

A hatékony szén-dioxid csökkentési stratégiák célja a CO₂ emisszió csökkentése. A szén-dioxid megkötésére, hasznosítására és tárolására (CCUS) számos technológia érhető el, azonban ezen eljárások még fejlesztés alatt állnak. A megoldási lehetőségek közül a szilárd adszorbensek ígéretes megoldások lehetnek a CCUS folyamatokban. Ennek oka a nagy hatékonyságuk, a könnyű regenerálhatóságuk, a széles működési tartományuk és stabilitásuk. Ide sorolhatók a szilícium-dioxid, a zeolitok, az alumíniumoxid, az amin alapú anyagok, a fém-oxidok, a speciális polimerek, vagy különböző széntartalmú anyagok, vagy a MOF vegyületek. Utóbbi porózus vázát fémionokhoz kötött szerves molekulák alkotják, melyek háromdimenziós térhálót hoznak létre. Az amorf és kristályos szilárd anyagok mindegyike egyedi előnyökkel és jellemzőkkel rendelkezik (10. táblázat), amelyek jelentősen befolyásolják a CO2 megkötő kapacitásukat [123,124].

Az adszorbenseknek az elvárt hatékonyságuk miatt számos kritériumnak kell megfelelni. Többek között ilyen az egyensúlyi adszorpciós kapacitás, a CO2 szelektivitás, az adszorpció és deszorpció kedvező kinetikája, a kedvező mechanikai tulajdonságok és felületi kémia, a pórusok jellemzői, a kémiai és termikus stabilitás, a regenerálás kapacitása, az adszorpciós/deszorpciós stabilitás, a gazdaságosság, vagy a környezeti hatások. Az ipari méretű alkalmazások során ezen kritériumok optimálása kiemelten fontos [133].

A leggyakrabban alkalmazott adszorbens típusok, azok előnyei és hátrányai								
Adszorbens	Példa	Előny	Hátrány					
	MCM-41	Nagy felület	Korlátolt CO2 kapacitás					
Szilícium-dioxid	SBA-15	Elérhetőség	Érzékeny a termikus degradációra					
	HMS	Alacsony költség						
	NaX Természetes	Erősen porózus szerkezet	Korlátolt CO2 kapacitás					
Zeolit	zeolitok	Változtatható pórusméret	Póruseltömődés léphet fel					
	13X zeolit	Jó hőstabilitás						
		Kiváló CO ₂ szelektivitás						
	γ -Al ₂ O ₃	Nagy felület	Alacsony CO2 kapacitás					
Alumínium-oxid	α -Al ₂ O ₃	Nagy hőstabilitás						
		Nagy mechanikai stabilitás						
A min alanú	MEA	Magas CO2 kapacitás	Előállítása energiaigényes					
Amin alapu anyagok	DEA	Egyszerű regenerálhatóság	Amin elbomolhat					
,,	TETA		Oldószerveszteség					
	vas-oxidok	Jó hőstabilitás	Korlátolt CO2 kapacitás					
Fem-oxidok	Ca, Mg, Ce, Ti	Olosá	Szinterelésre és agglomerizációra					
	UNICE 177							
MOF	MOF-1//	Konnyen klaiaklinato szerkezet	Koriatozott termikus stabilitas					
MOL	MOF-210	Nagy lettlet						
	2D MOF	Magas CO ₂ szelektívitás	Konnyen összeomolnat a szerkezete					
Polimerek	BTCMP-1	Könnyen kıalakithato szerkezet	Alacsony CO ₂ kapacitas					
	CMPI	Sokoldalú kémiai tulajdonság	Korlátozott termikus stabilitás					
	AC	Nagy felület Könnvon kialakítható	Változó CO ₂ kapacitás					
Széntartalmú anyagok	Bioszén	pórusszerkezet	Magas előállítási költség					
		r	Kialakult szén formájától függően					
	CNT	Kémiai stabilitás	elzáródhatnak a pórusok					

10. táblázat

A szilícium-dioxid alapú adszorbensek nagy felületükről és könnyű elérhetőségükről ismertek, így CO₂ adszorbensként széles körben alkalmazzák. Viszonylag alacsony CO₂ kapacitásuk ellenére, a szilícium-dioxid adszorbensek költséghatékony megoldásokat kínálnak [134,135]. A porózus szerkezetű kristályos alumínium-szilikát zeolitok hatékony adszorbensek a CO2 megkötésében. Szabályozható pórusméretük és kiváló CO₂ szelektivitásuk miatt égetés előtti és utáni technológiákban egyaránt alkalmazhatók. A zeolitok a szén-dioxid molekulákat porózus szerkezetükben adszorbeálják, majd magasabb hőmérsékleten, deszorpció révén regenerálhatók. Annak ellenére, hogy korlátozott a kapacitásuk, a zeolitokat robusztusságuk és sokoldalúságuk miatt a különféle ipari eljárásokban előnyösen alkalmazzák [136-138]. Az alumínium-oxid alapú adszorbensek nagy fajlagos felülettel, jó termikus és mechanikai stabilitással rendelkeznek, továbbá tartóssága és kompatibilitása miatt a hosszú távú

megbízhatóságot igénylő alkalmazásokhoz is előnyös adszorbensek [139,140]. Az amin alapú adszorbensek nagy kapacitásuk és reverzibilis adszorpciós tulajdonságaik miatt kiváló szén-dioxid adszorbensek. Az égetés utáni technológiákban elterjedten használtak, ugyanis stabil komplexek képződése mellett kémiai reakcióba lépnek CO₂ molekulákkal. A regenerálás viszont energiaigényes, valamint az alkalmazott oldószer bomlásra hajlamos [140-141].

A fém-oxid adszorbensek nagy termikus stabilitással és többszöri újrahasználati lehetőségeiről ismertek. A fém-oxidokat jellemzően égetés előtti és utáni technológiákban alkalmazzák, ahol a CO2 molekulák fém-oxigén kötéseken keresztül kemiszorbeálódnak a felületen [137,143]. A MOF-ok erősen porózus anyagok, szabályozható szerkezettel és kiváló CO2 szelektivitással. Korlátozott termikus stabilitásuk és magas szintézisköltségük ellenére sokoldalúak, így perspektivikus megoldást kínálnak az ipari alkalmazásokban [144,145]. A polimer alapú adszorbenseket gyakorta csővégi technológiákban alkalmazzák, ahol a CO2 molekulákat gyenge kölcsönhatások révén fizikailag adszorbeálják a felületen. Míg a polimer adszorbensek előállítása egyszerűnek tekinthető, degradációra való hajlamuk, valamint korlátozott termikus stabilitásuk kihívásokat jelenthet a hosszú távú működés során [146,147]. A szénalapú adszorbensek az anyagok széles skáláját foglalják magukba, beleértve az aktív szenet, a grafitot, a grafént, a fullerént, a szén nanocsöveket, valamint a bioszenet. A gyakorta csővégi folyamatokban alkalmazott szénalapú adszorbensek fiziszorpció révén adszorbeálják a CO2-ot. Szén-dioxid kapacitásuk, gazdaságos előállításuk, valamint sokoldalúságuk végett értékes adszorbensek a különböző iparágakban [148,149].

A CO₂ leválasztás biomassza elgázosításába történő integrálása kulcsfontosságú a folyamatok optimálása, valamint a hatékonyság növelése érdekében. A CO₂ megkötés és hasznosítási (CCU) eljárások a megkötés és az átalakítás nagy hatékonyságát célozzák. Zhu és munkatársai a CO₂ leválasztással és hasznosítással egybekötött elgázosítást vizsgálták, amellyel nulla CO₂ emisszió érhető el. A kísérleti eredmények 5 ciklust követően, rögzített reakciókörülmények között (biomassza elgázosítási hőmérséklet 500°C, CCU hőmérséklet 400°C, hidrogénezési hőmérséklet 550°C), a CO szelektivitás enyhe 98,3%-ról 88,6%-ra csökkenése mellett 100% CO₂ konverziót mutattak. A szén-dioxid közvetlen megkötésére adszorbensként CaO-t alkalmaztak, majd a következő, hidrogénezési lépésben a CaO katalizálta a megkötött CO₂ szén-monoxiddá történő átalakulását. Emellett megfigyelték, hogy a Ni/Al₂O₃ történő

gázosítás során a CO hozama 0,95-ről 0,40 mmol g⁻¹ CaO g⁻¹ alapanyag értékre csökkent. Mivel a CaO reakciókörülményei konzisztensek maradnak, Ni/Al₂O₃ hiányában a biomassza elgázosítási folyamatban a CaO általi kevesebb CO₂ tartalmat tudott megkötni, így a szintézisgáz hozam csökkenő értéket mutatott [150].

1.6. Az irodalmi összefoglaló következtetései

Az áttekintett szakirodalmakban nagyszámú hivatkozás található a különböző eredetű biomasszák termikus és termo-katalitikus degradációja érdekében alkalmazott eljárásokról. Az elgázosítás számos kutatás alapját képezi, különböző katalizátorok és atmoszféra használata mellett. Fontos megemlíteni, hogy néhány nagyüzemi eljárás kivételével, az ipari megvalósításokat tekintve a biomassza elgázosítása még kezdeti fázisban van. Az ipari eljárások többnyire fás biomasszát, vagy faipari hulladékot hasznosítanak, hő- és villamosenergia előállítása céljából. A legtöbb kutatás a biomassza elgázosítása és/vagy katalitikus elgázosítása során kisméretű, TG és/vagy GC/GCMS, valamint laboratóriumi kisreaktor segítségével határozza meg a degradáció mechanizmusát, a termékek hozamát és összetételét.

A biomassza és a megújuló energiaforrások használata kiemelkedő gazdasági és politikai jelentőséggel bír, amit különböző kezdeményezések, például az Európai Bizottság biomassza cselekvési terve és az Egyesült Államok Energiaügyi Minisztériumának többéves terve is alátámaszt. Az éghajlatváltozás lassítása érdekében az IPCC létrehozásával, az üvegházhatású gázok kibocsátásának csökkentése és a megújuló energiaforrások előmozdítása a fő cél. Az Európai Unióban, csakúgy, mint Magyarországon, a mezőgazdasági hulladékok és melléktermékek mennyisége jelentős értékű, mely állandó, megbízható és elérhető alapanyagot biztosít a környezetvédelmi szempontból fentarthatóbb eljárásokban. A különböző eredetű biomasszák pirolízis és/vagy elgázosítás útján alkalmasak alternatív üzemanyag, szintézisgáz és egyéb vegyipari termékek előállítására. A szakirodalom elterjedten foglalkozik az alkalmazott katalizátorok tulajdonságaival, melyek gyakorta nikkellel módosított, zeolit típusú katalizátorok, továbbá a keletkező szennyezőanyagok, kiváltképp a szén-dioxid megkötése is a kutatások központi eleme. Fontos azonban megemlíteni, hogy az alkalmazott katalizátorok, valamint CO₂ szorbensek regenerálási ciklusvizsgálatával foglalkozó közlemények száma kevés. Továbbá a biomassza elgázosításába integrált CO₂ megkötés, illetve az alkalmazott katalizátorok és szorbensek regenerálási ciklusvizsgálata, illetve azok hatásfokának változása a paraméterek, valamint a

regenerálási ciklusok függvényében, kutatási hiányhelynek bizonyult. Emellett fontos megemlíteni, hogy a természetes zeolitok katalizátorként és/vagy adszorbensként történő hasznosítása során a szakirodalom nem foglalkozik a zeolit szerkezetek hőmérséklet hatására bekövetkező szerkezeti módosulataival. Ezen felül a szén-dioxid megkötése során alkalmazott adszorbensek ciklusvizsgálata leginkább modell gázelegyből (nitrogén és szén-dioxid) történik, azonban kutatási hiányhely a valós gázelegyből, egyéb szennyezőanyagok jelenlétében történő megkötés. Továbbá gazdasági szempontból a katalizátorok, valamint az adszorbensek újrahasználata, ciklikus vizsgálata kimondottan fontos.

2. A KUTATÓMUNKA CÉLKITŰZÉSEI

A kísérleti tevékenységem célja különböző eredetű hulladék biomasszák elgázosítása során keletkezett szintézisgáz összetételének vizsgálata és a szén-dioxid mennyiségének csökkentése volt. Ennek során öt különböző alapanyag termikus degradációját vizsgáltam 200-800°C között. Az alapanyag vizsgálat során egy olyan anyag kiválasztása volt a cél, mely széleskörűen elérhető, megfelelő lignocellulóz tartalommal rendelkezik, valamint a termikus degradációja során jelentős mennyiségű hidrogén és szén-monoxid keletkezik. Ezt követően, a kiválasztott alapanyag nedvességtartalmának (0%, 20%, 40%) termékösszetételre és energiaszükségletre gyakorolt hatását vizsgáltam.

További célom volt megvizsgálni az elgázosító folyamatok főbb paraméterinek (vízgőz:alapanyag arány, hőmérséklet, katalizátorok) termékösszetételre, illetve a szintézisgáz hozamra gyakorolt hatást. Kezdetben az alkalmazott csőreaktor első, majd második zónájának hőmérsékletét választottam meg, majd ezt követőn a vízgőz:alapanyag arány hatását vizsgáltam 0,2-1,8 közötti tartományban. Ezután kiválasztottam egy természetes, egy szintetikus, egy mezopórusos, valamint egy széndioxid megkötésére alkalmas hordozót, melyekre nedves impregnálással nikkelt vittem fel. Elsődleges célom az egyes katalizátorok hatás-, illetve regenerálási ciklusvizsgálata volt, így kutatómunkám nem fókuszál a katalitikus hatásmechanizmusokra.

A szén-dioxid megkötése érdekében négy különböző adszorbens szén-dioxid megkötő képességét követtem nyomon modell gázelegy (60,0% hidrogén, 17,5% metán, 22,5% szén-dioxid) alkalmazásával, 0°C, 30°C valamint 60°C hőmérsékleteken. Ezt követően kiválasztottam a leghatékonyabb adszorbenst, majd annak ciklikus szén-dioxid megkötő képességet követtem nyomon, a különböző hőmérsékleteken (200°C, 400°C, 600°C, 800°C) kezelt adszorbensnél.

A kísérletek során meghatároztam egy alacsony és egy magas hőmérsékletű mérési pontot, ahol vízgőz jelenlétében a szintézisgáz hozam kimagasló. A végső célom a kiválasztott, hatékony adszorbens elgázosítási technológiába post-situ módon történő elhelyezése, így az adszorbens szén-dioxid megkötő képességét valós gázelegy alkalmazása mellett is megvizsgáltam. Ekkor a leghatékonyabb katalizátorok, illetve a választott adszorbens regenerálási ciklusvizsgálatát követtem nyomon, tíz cikluson keresztül, a szén-dioxid tartalom csökkentése, valamint a szintézisgáz hozam növelése céljából.

3. KÍSÉRLETI TEVÉKENYSÉG

3.1. Felhasznált anyagok

A 3.1.1-3.1.3. alfejezetek a kísérleti munka során alkalmazott alapanyagokat, katalizátorokat, illetve adszorbenseket mutatja be.

3.1.1. Alapanyagok

A kísérleti munkám során kezdetben öt alapanyagot vizsgáltam, melyekből az elemösszetétel, illetve a termogravimetriás elemzést követően a további kísérletekhez egy alapanyag került kiválasztásra. A kísérleti elgázosítási folyamatokban felhasznált alapanyagokat a *8. ábra* szemlélteti. A kukorica biomassza (*8. (a) ábra*) Magyarország nyugati országrészéről származik, mely az aratás után a szántóföldön megmaradt hulladékból aprítottunk, hasonlóképp a búzaszalmához (*8. (b) ábra*). A faforgács (*8. (c) ábra*) magyar faipari hulladék eredetű, míg a napraforgóhéj (*8. (d) ábra*) dél-alföldi étolajgyártó cég hulladéka volt. Az erdei biomassza (*8. (e) ábra*) szintén nyugatmagyarországi erdős (tűlevelű – fatörzs, gallyak), területekről származik.

Az említett alapanyagokat felhasználás előtt szobahőmérsékleten 1 hónapig száradni hagytuk, majd apróbb szemcseméretűre (<5 mm) aprítottuk.

A felhasznált alapanyagok főbb tulajdonságait (három párhuzamos mérés átlaga) a 11. táblázat foglalja össze. A szerves szén, az illékonyanyag tartalom, a nedvességtartalom és a hamutartalom, az extraktív, lignin, hemicellulóz és cellulóz tartalom termogravimetriás eredmények és szakirodalom alapján került meghatározásra [151].

A felhasznált alapanyagok főbb jellemzői							
	Kukorica	Szalma	Faforgács	Napraforgóhéj	Erdei biomassza		
Szerves szén*,%	16,2	18,3	15,2	18,2	19,3		
Illékony tartalom, %	75,0	67,9	73,7	66,7	61,6		
Nedvességtartalom, %	6,5	4,6	8,1	11,2	13,2		
Hamutartalom, %	2,3	9,2	3,0	3,9	5,9		
C, %	48,5	46,9	48,8	52,3	45,1		
Н, %	6,3	6,1	5,9	5,9	5,6		
N, %	0,5	0,5	0,2	1,2	2,0		
S,%	<1,0	<1,0	<1,0	<1,0	<1,0		
O*, %	44,7	46,6	45,1	40,7	47,3		
H/C arány	0,1	0,1	0,1	0,1	0,1		
Extraktív tartalom, %	9,3	10,1	9,1	9,4	9,5		
Lignin tartalom, %	24,5	17,7	21,7	41,7	24,1		
Hemicellulóz tartalom, %	44,0	48,2	36,9	24,0	29,7		
Cellulóz tartalom*,%	22,2	24,0	32,3	22,2	36,6		

11. táblázat	
A felhasznált alapanyagok főbb jellen	n

*számított érték

Az eredmények alapján megállapítható, hogy az erdei biomassza nedvességtartalma volt a legnagyobb, ami csökkenti a fűtőértéket és negatívan befolyásolja az égést, illetve a hőbomlás sebességét. A legkisebb nedvességtartalma a búzaszalmának volt. A faforgács és a szalma tartalmazta a legtöbb illékony komponenst, ami befolyásolja a szenesedés mértékét, illetve a termikus degradáció folyamatát, így jelentős hatással van a keletkező gáznemű termékek mennyiségére is. A hamutartalom, a nem éghető ásványi anyagokat tartalmazza, például alumínium-oxid, vagy szilícium-dioxid, valamint alkáliföldfémekből származó oxidok. A szerves szén tartalom viszonylag magasnak mondható, mely a legtöbb alapanyag esetében, mivel hulladékokról beszélünk, földdel szennyezettséggel magyarázható. A CHNS eredményeit tekintve (nem hamumentes anyagra vonatkoztatott) a legtöbb alapanyag alacsony H/C aránnyal, magas szén- és oxigéntartalommal rendelkezett, míg kéntartalmuk elhanyagolható volt. A lignocellulóz tartalommal kapcsolatban az extraktív anyag tartalom a nem szerkezeti összetevőkről ad információt, mint például a zsírok, lipidek, vagy egyéb szennyeződések. A legtöbb alapanyagban a hemicellulóz tartalom volt a legtöbb (36,9-48,2%), kivéve a napraforgóhéjat és az erdei biomasszát, ahol a lignin- és a cellulóztartalom volt jelentős. A legmagasabb cellulóztartalma az erdei biomasszának (36,6%) volt, míg a többi anyagnál 22,2-32,3% közötti értékek adódtak. Az alapanyagokban kis mennyiségben fémek, alkálifémek és halogének is megtalálhatók voltak.

3.1.2. Katalizátorok

Az elgázosítási kísérletek során négy különböző típusú katalizátort használtam; Ni/ZSM-5, Ni/γ-Al₂O₃, Ni/CaO és Ni/Klinoptilolit. A hordozókat a savasság, a krakkolási reakciókban mutatott hatékonyság, illetve a lehetséges in-situ szén-dioxid megkötő/átalakító tulajdonság alapján választottam. A katalizátorok felületére a nikkel tartalmat nedves impregnálással vittem fel (szakirodalom alapján), mely során a katalizátorhordozókat 1 mólos Ni(NO₃)₂·6H₂O oldattal, 80°C-on, 3 órán keresztül impregnáltam. Ezt követően a szuszpenziót szűrtem, majd 110°C-on 10 óráig szárítottam. Végül a kezelt katalizátorokat 600°C-on 3 óráig kalcináltam [152]. A katalizátorokat a **9. ábra** szemlélteti.

Az elgázosítási kísérletek során felhasznált katalizátorok: (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit

A katalizátorok főbb morfológiai tulajdonságait Micromeritics 3Flex 3500 műszerrel BET módszer alapján határoztuk meg. A pórusméret-eloszlást és a pórustérfogatot a BJH modell segítségével számítottuk ki. A hőmérséklet programozott ammónia deszorpciót (NH₃-TPD) a szilárd katalizátorok saverősségének, illetve a savas helyek számának meghatározása érdekében vizsgáltuk Micromeritics AutoChem-2920 precíziós kemiszorpciós analizátorral. Az elkészített, felületmódosított katalizátorokat energiadiszperzív röntgenspektrométerrel (AMETEK, Octane Elect Plus), valamint pásztázó elektronmikroszkóppal (Apreo S LoVac instrument, FEI/ThermoFischer) is vizsgáltuk. A katalizátorok főbb tulajdonságait a *12. táblázat* foglalja össze.

A Ni/ZSM-5, Ni/Al₂O₃ és Ni/CaO katalizátorok 20 μm alatti átlagos átmérőjűek, finom por alakúak voltak. Ezzel szemben a Ni/Klinoptilolit katalizátor szemcsemérete 2,5 mm alatti. Jelentős különbséget tapasztaltunk a BET felületekben is, mivel a Ni/ZSM-5 katalizátor 335 m²/g, míg a többi katalizátor 60 m²/g alatti fajlagos felülettel rendelkezett. Fontos megemlíteni, hogy a Ni/ZSM-5 katalizátornak volt a legkisebb átlagos pórusátmérője, míg a Ni/Al₂O₃ katalizátornak a legnagyobb. A katalizátorok C-C kémiai kötéshasító tulajdonságát tekintve nem csak felületük, illetve Si/Al arányuk, hanem a savasságuk is döntő tulajdonságú. A savasság esetében a Ni/Al₂O₃ < Ni/ZSM-5 < Ni/Klinoptilolit sorrend volt megfigyelhető. Az EDAX eredmények alapján jól látható, hogy a klinoptilolit természetes forrása miatt a felsoroltakon kívül 8,0% egyéb elemet is (Fe, Ca, K, Na) tartalmazott. Érdemes azt is megemlíteni, hogy a katalizátorok nikkel tartalmában tapasztalt különbségek, az alkalmazott hordozók eltérő felületi tulajdonságaival (pl. mikro- és makroporozitás, felület nagysága) magyarázható.

	A felhasznált	12. táblázat katalizátorok	t főbb jellemző	ói
	Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/CaO	Ni/Klinoptilolit
Megjelenés	por	por	por	apró szemcsék
Si/Al	18,6	-	-	4,9
S _{BET} , m ² /g	335,0	0,6	55,2	18,5
S _{mikro} , m ² /g	209,1	-	-	5,2
V, cm ³ /g	0,1178	0,0087	0,1673	0,0972
V _{mikro} , cm ³ /g	0,0908	-	-	0,0022
Dav, nm	5,5	87	8,6	18,4
T _{max} NH ₃ -TPD, °C	155,1	220,1	308,2	170,4
Savasság, µmol/g	921,0	225,0	-	1953,0
		Elemösszetéte	l, %	
С	-	-	-	2,4
0	59,3	45,4	32,2	48,8
Na	-	-	-	0,1
Mg	-	-	-	0,5
Al	1,8	51,9	-	6,8
Si	34,9	-	-	33,1
K	-	-	-	4,0
Ca	-	-	58,6	1,4
Fe	-	-	-	1,0
Ni	4.0	2.7	9.2	1.9

Az ammónia deszorpcióját gyakran használják a savcentrumok erősségének, illetve azok mennyiségének meghatározására. A savcentrumok erőssége korrelál a deszorpciós hőmérséklettel. Az NH₃-TPD-t során a friss katalizátorokból deszorbeált ammónia TPD-grafikonjainak T_{max} értékei a következő sorrendben csökkentek: Ni/Al₂O₃ > Ni/Klinoptilolit > Ni/ZSM-5. A friss katalizátorok savas helyeinek száma azonban a Ni/Klinoptilolit > Ni/ZSM-5 > Ni/Al₂O₃ sorrendben változott. Fontos azonban megemlíteni, hogy a CaO esetén az ammónia TPD eredményei nem tekinthetők relevánsnak, mivel a CaO bázikus oxid.

A **10.** *ábra* a nikkellel impregnált katalizátorok felületét szemlélteti. A katalizátorok rácsszerkezete és póruscsatornái alapján a nikkeltartalmuk eltérően alakult. Széles csatornanyílásai és aktív helyei miatt a CaO rendelkezett a legnagyobb nikkeltartalommal (9,2%), míg a klinoptilolit a legkisebbel (1,9%), mert utóbbinak kisebb a fajlagos felülete, illetve a pórustérfogata. Emellett elmondható, hogy a nikkel eloszlása a katalizátorok felületén nem volt homogén, ami a különböző pórusméretekkel, és a nedves impregnálási módszerrel is magyarázható. Továbbá a Ni/Al₂O₃ felülete szignifikánsan kisebb volt a kiindulási Al₂O₃ felületéhez képest. Ez a nedves impregnálási módszerrel magyarázható, ahol a nikkel tartalom lefedhette a katalizátor aktív felületét, és eltömítette a hordozó pórusait.

10. ábra Az alkalmazott katalizátorok SEM felvételei: (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit

3.1.3. Adszorbensek

A kísérleti munkám során a szén-dioxid megkötését adszorpciós vizsgálatokkal, modell, illetve valós gázelegy segítségével követtem nyomon. Először négy különböző adszorbenst alkalmaztam; három zeolit típusút, illetve az aktív szenet. Az említett adszorbenseket a *11. ábra* szemlélteti sorrendben.

A felhasznált adszorbensek főbb jellemzőit a 13. táblázat foglalja össze. A NaX (Bayer) egy faujazit típusú zeolit, mely gyakorta ioncserélőként, adszorbensként, vagy katalizátorként kerül alkalmazásra [153]. A szintetikus NaX zeolit kristálymorfológiája alapján, az oktaédere nyolc egyenlő oldalú háromszögből áll, amelyek átlagos 25 Å [154]. NaX rácsállandója Emellett а zeolit bruttó képlete Na2O•Al2O3•xSiO2•yN2O, ahol "x" értéke 2,2-3,3 közötti [153]. A morfológiai analízis alapján az alkalmazott NaX 16 m²/g fajlagos felülettel, 31 nm-es átlagos pórusátmérővel, 0,03 értékű Si/Al tömegaránnyal, valamint 0,3% vas tartalommal rendelkezett.

A felhasznált adszorbensek: (a) NaX, (b) Zeosorb 5A, (c) aktív szén, (e) klinoptilolit

A Zeosorb 5A (Bayer) egy átlagosan 5 Å pórusátmérővel rendelkező molekulaszita típusú zeolit, mely a M_{2/n}O•Al₂O₃•x SiO₂•y H₂O formulával írható le, ahol az "M" az egy és a két vegyértékű fémeket, míg az "n" a vegyértéket jelenti [155]. A kutatómunka során alkalmazott Zeosorb 5A 448,2 m²/g fajlagos felülettel, 1,5 értékű Si/Al aránnyal, valamint 7,7 nm átlagos pórusátmérővel rendelkezett.

Az aktív szén a grafit véletlenszerű, vagy amorf szerkezetű nyers formájaként definiálható, illetve széles pórusméret tartománnyal rendelkezik. Gyakorta alkalmazzák adszorpciós folyamatokban, katalizátorként, illetve víztisztító eljárásokban [516]. Az általam vizsgált aktív szén (Reanal) fajlagos felülete 1072,4 m²/g, BJH felülete 629 m²/g volt. Összetételét tekintve 99,3% szenet, illetve 0,7% ként tartalmazott.

A klinoptilolit az egyik legelterjedtebb természetes zeolit, mely széles elérhetőséggel rendelkezik, tulajdonságai miatt szorbensként való alkalmazása elterjedt. A klinoptilolit a heulandit típusú zeolitok csoportjába tartozik, kristályszerkezete 3 dimenziós alumínium-szilikát vázzal rendelkezik, amely sajátos szerkezetű mikropórus csatornarendszert alkot. A főbb rácspontokat vízmolekulák, illetve cserélhető kationok foglalják el [157]. A kísérletek során felhasznált klinoptilolit (Zempléni-hegység) Ca típusú klinoptilolit volt, mely fajlagos felület 24,5 m²/g, átlagos pórusátmérője 19,8 nm, továbbá Si/Al aránya 3,9 volt.

13. táblázat A felhasznált adszorbensek főbb jellemzői							
	NaX	Zeosorb 5A	Aktív szén	Klinoptilolit			
Megjelenés	apró golyó	apró golyó	apró szemcsék	apró szemcsék			
Si/Al	0,03	1,5	-	4,9			
S _{BET} , m ² /g	16,0	448,2	1072,4	24,5			
S _{mikro} , m ² /g	8,1	462,0	629,0	5,8			
V, cm³/g	0,0766	0,5423	0,263	0,1188			
V _{mikro} , cm ³ /g	0,0034	0,2025	0,2738	0,0021			
D _{av} , nm	31,0	7,7	4,6	19,8			
		Elemösszetétel,	%				
С	-	-	99,3	-			
0	47,3	53,1	-	48,9			
Na	15,2	3,0	-	0,1			
Mg	15,8	0,6	-	1,3			
Al	20,8	14,2	-	8,0			
Si	0,6	20,6	-	31,2			
K	-	0,2	-	4,0			
Ca	-	8,2	-	5,5			
Ti	-	-	-	-			
Fe	0,3	-	-	1,0			
S	-	-	0,7	-			

3.2. Kísérleti módszerek és berendezések

A tudományos munkám során, három fő berendezéssel dolgoztam, melyek az értekezés alapjait képezik. Az alkalmazott berendezések sematikus vázlatát a *12-14*. *ábrák* szemléltetik, míg a *16-19. mellékletek* az elvégzett kísérletsorozatok részletes összefoglalását tartalmazzák.

Az elgázosítási kísérleteket a Carbolite Gero által forgalmazott egy, illetve háromzónás csőreaktorokban (12-13. ábrák) végeztem. Az egyzónás csőreaktort a nedvességtartalom hatásának vizsgálata során alkalmaztam. Mindegyik kísérletsorozatban a reaktorban inert atmoszféra volt (42 ml/perc nitrogén), 5g alapanyag, 5g/h vízgőz, illetve adott esetekben 2,5g katalizátor alkalmazása mellett. A gáztermék összetételét DANI típusú GC-FID/TCD (off-line) gázkromatográf segítségével követtem nyomon. A nedvességtartalom hatásvizsgálata során, 5 g/h vízgőzt alkalmaztam. Az alapanyagot az alkalmazott hőmérséklet elérése után összekeverve, illetve adott mérési sorozatokban elkülönítve (kvarcgyapot segítségével) helyeztem a reaktorba. A keletkezett folyadéktermék a reaktorból kilépő, valamint a szilikagélre belépő összekötő gumicsőben kondenzálódott, melyet a kísérlet végén mintatartóban gyűjtöttem össze.

Az elgázosítási kísérletsorozatot a *13. ábrán* bemutatott reaktor segítségével végeztem. Az előkísérletek során az alapanyag hőbomlását 200-800°C között 20 percen keresztül, 42 ml/perc nitrogén térfogatáram segítségével vizsgáltam, 5g alapanyag, 2,5g katalizátor, illetve adott esetekben 5g/h vízgőz alkalmazása mellett. Ezt követően az eredményekből egy alacsony (pirolízis), illetve egy magas (gázosítás) hőmérsékletet határoztam meg, majd katalizátor nélkül, illetve a *3.1.2. fejezetben* tárgyalt katalizátorok jelenlétében a második reaktorzóna hőmérsékletének hatásvizsgálatát 500-700°C között, 20 percen keresztül végzetem, azonos nitrogén térfogatárammal. Miután az eredmények alapján az első, illetve a második reaktorzóna hőmérséklet kiválasztása megtörtént, az alkalmazott katalizátorok regenerálási ciklusvizsgálatát 10 cikluson keresztül végeztem. A regenerálás minden esetben 800°C-on, 1 órán keresztül zajlott.

A gáztermékek összetételét DANI típusú GC-FID/TCD (off-line) gázkromatográf segítségével határoztam meg. A keletkezett folyadéktermék a reaktorból kilépő, valamint a szilikagélre/adszorbensre belépő összekötő gumicsőben kondenzálódott, melyet a kísérlet végén mintatartóban gyűjtöttem össze.

Csőreaktor alkalmazása során a hozamok számítása a következőképp zajlott. Adott a maradék tömege, melyet a bemért minta tömegével elosztva százalékos értékben megadható a maradék hozama, hasonlóképp a folyadéktermék esetében is. Fontos megemlíteni, hogy vízgőz alkalmazása mellett a keletkezett folyadéktermék tömegét a bemért minta plusz a bevezetett vízgőz tömegével osztottam. Ezt követően adott két, különböző termékhozam százaléka, melyből a gáztermék hozama 100-ból kivonva meghatározható. Vízgőz alkalmazása mellett a keletkező folyadék tartalmazza az alapanyag nedvességtartalmát, a keletkezett folyékony termékeket, illetve a bevezetett vízgőz el nem reagált részét is.

13. ábra A kétzónás csőreaktor sematikus vázlata

Az adszorpciós kísérletekben (14. ábra), a szén-dioxid megkötését modell gázelegyből (60% hidrogén, 15-25% metán és szén-dioxid), három különböző hőmérsékleten (10°C, 30°C, 60°C) vizsgáltam. Adszorbensként a 3.1.3. fejezetben említett anyagokat alkalmaztam. A vizsgálatok során egy U alakú, csiszolatos dugóval ellátott mintatartót használtam, melyet az adott kísérletnél a megfelelő adszorbenssel töltöttem fel (~28-30g), majd egy vizes fürdőbe helyeztem, melynek hőmérséklete a korábbiakban már említésre került. A modell gázkeverék térfogatárama 1,5 l/h volt. A vizsgálatok mindaddig tartottak, míg a kimerülés meg nem történt, mely nyomon követése GC-TCD vizsgálat (off-line) segítségével zajlott. A mintavétel a szén-dioxid adszorpció során (modell gázelegyből) kezdetben 3, majd 5 és 10 percenként zajlott, míg valós gázelegy mellett az elgázosítás végén, a 20. percben történt a mintavétel. Utóbbinál a cél az előzetes eredményekkel (post-situ adszorpció nélkül) történő összehasonlítás volt. Az adszorpciót követően deszorpciós vizsgálatokat is végeztem, ahol a vizes fürdő hőmérsékletétől indulva, a hőmérsékletet 30°C-ként emelve, 180°Cig vizsgáltam. A deszorpció során 42 ml/min nitrogént alkalmaztam, míg a mintavétel 7 percenként zajlott.

Az adszorpciós vizsgálatok során kiválasztottam a leghatékonyabb adszorbenst, majd annak regenerálási ciklusvizsgálatait 12 cikluson keresztül végeztem. A vizsgálatok kezdését megelőzően az adszorbenst különböző hőmérsékleteken kezeltem (200°C, 400°C, 600°C, 800°C), 1 órán keresztül. Az adszorpciós ciklusvizsgálatot 1 órás regenerálás követett az említett kezelési hőmérsékletek megfelelőjén. A vizsgálatok mindegyikét megelőzően, illetve követően meghatároztam a minta tömegét és szemcseméret eloszlását.

14. ábra Az adszorpciós berendezés sematikus vázlata

3.3. Vizsgálati módszerek

3.3.1. Szerves szén-, illó-, nedvesség- és hamutartalom meghatározása

Az illékonyanyag tartalom, valamint a nedvességtartalom a nitrogén atmoszférában mért TG görbe alapján, míg a hamutartalom az oxigén atmoszférában mért TG görbe alapján került meghatározásra. A szerves szén tartalom számított érték, mely az össz százalékból (100%) kivonva a korábbiakban említett szerves szén-, illó-, nedvesség- és hamutartalmat, került meghatározásra.

3.3.2. Lignocellulóz tartalom meghatározása

Extraktív tartalom meghatározása során 60 ml acetonhoz 1g biomassza mintát tettem (A), majd 90°C-on, 2 órán keresztül forraltam. 2 óra elteltével a mintát kemencében 105-110°C-on tömegállandóságig szárítottam (B). Az alábbi egyenlet felhasználásával meghatároztam az extraktumok tömegét: A-B [151].

A hemicellulóz tartalom meghatározásánál 1g extraktummentes mintához (B) 150 ml nátrium-hidroxid (0,5 M) oldatot adtam, majd 3,5 órán keresztül, 80°C-on melegítettem. Ezt követően a mintát ioncserélt vízzel pH=7-ig mostam, végül 105-110°C-on tömegállandóságig (C) szárítottam. A hemicellulóz mennyiségét az alábbi egyenlet segítségével határoztam meg: B-C [151].

A biomassza lignintartalmának meghatározásakor 1g extraktummentes biomasszához 30 ml 98%-os kénsavat, majd a mintát 24 órán át szobahőmérsékleten hagytam, végül 1 órán keresztül 100 °C-on forraltam. Az elegy leszűrését követően, a szilárd maradékot ioncserélt vízzel mostam, míg a szulfátion már nem volt kimutatható. A maradék tömege adta a lignintartalmat (*D*) [151].

A cellulóztartalmat a minta kezdeti tömege közötti különbségek számításával határoztam meg (A-B)+(B-C)+D+E = 1g [151].

3.3.3. Termogravimetriás analízis Fourier transzformációs infravörös spektroszkóppal

Az alapanyagok, illetve az alkalmazott katalizátorok termogravimetriás analízisét Netzsch TG 209 F1 Libra termogravimetriás készülékkel végeztem. A mérés során nitrogén atmoszférát és 5, 20, 50°C/perc fűtési sebességet alkalmaztam. A készülék közvetlen összeköttetésben állt egy Bruker INVENIO FTIR spektrométerrel. Így a termikus degradáció során keletkező gázok/illékony komponensek elemzésére is lehetőség van.

3.3.4. Fajlagos felület meghatározása

A katalizátorok és az adszorbensek fő felületi tulajdonságait BET módszerrel, Micromeritics 3Flex 3500 berendezés segítségével határoztuk meg. A pórusméretet és a pórustérfogat a N₂ deszorpciós izoterma alapján, a BJH modell segítségével számítottuk.

3.3.5. Hőmérséklet-programozott ammónia deszorpció

Az ammónia hőmérséklet-programozott deszorpcióját (NH₃-TPD) a szilárd katalizátorokon talált savas helyek számának és saverősségének mérésére (elsősorban a Brönsted-sav centrumok esetében) alkalmaztuk [157]. A vizsgálatokat Micromeritics AutoChem-2920 precíziós kemiszorpciós analizátorral végeztük, amely hővezetőképesség-detektorral rendelkezett.

3.3.6. Pásztázó és transzmissziós elektronmikroszkóp

Az alkalmazott katalizátorok. valamint adszorbensek morfológiáját FEI/ThermoFisher S LoVac elektronmikroszkóppal, illetve Apreo pásztázó elemösszetételét EDAX AMETEK Octane Elect Plus energiadiszperzív röntgenanalizátort végeztük.

3.3.7. Energiadiszperzív röntgen-fluoreszcens spektrometria

A biomassza maradékok, illetve a katalizátorok és az adszorbensek elemösszetételét energiadiszperzív röntgenfluoreszcencia spektrométerrel (Shimadzu EDX-8100) vizsgáltam, amely nagy teljesítményű SDD detektorral, optimalizált hardverrel, illetve nagy érzékenységgel rendelkezett. A berendezés ródium röntgencsővel rendelkezett, a vizsgálatokat hélium atmoszférában végeztem. Minden mérés 300 másodpercig, 15 kV feszültséggel történt.

3.3.8. FID és TCD detektorral ellátott gázkromatográf

A gáztermékek szénhidrogén összetételét programozott injektorral és lángionizációs detektorral (FID) felszerelt DANI típusú gázkromatográf segítségével vizsgáltam. A kromatográfba Rtx-1 PONA típusú, 100 m hosszú, 0,25 mm belső átmérőjű és 0,5 μm filmvastagságú oszlop került. Az analízist 35°C-on, izoterm körülmények között

végeztem. A detektor és az injektor hőmérséklete 230°C volt. A kromatogramokat Clarity szoftver segítségével értékeltem ki.

A gáztermékek hidrogéntartalmát szintén gázkromatográfiával határoztam meg. Az említett kromatográf CarboxenTM 1006 PLOT (30m×0,53mm) oszloppal, illetve hővezető-detektorral (TCD) is rendelkezett. A kísérletek során az oszloptér hőmérsékletét 18 percig 30°C-on tartottam, majd 15°C/perc fűtési sebességgel 120°C-ra emeltem, és ezt a hőmérsékletet 2 percig tartottam.

3.3.9. CHNS vizsgálat

A minták C, H, N és S tartalmát Carlo-Erba EA 1108 CHNS-O elemanalizátor (Erba Science GES M.B.H.) segítségével követtük nyomon. A mérésekben ónkapszulát, 1020°C-on működő kvarcégető reaktort, 10 ml-es oxigénhurokot, hélium vivőgázt a kalibráláshoz szulfanilamid standardot használtam. A keletkező gázokat rozsdamentes acél gázkromatográfiás oszlopon (2,5 m) szétválasztottuk és a CHNSO tartalmat hővezetőképesség-detektorral (TCD) határoztuk meg (mérési idő: 15 perc, tartomány: 100 ppm-100%).

3.3.10. Röntgendiffrakciós fázisanalízis

Az alkalmazott adszorbensek XRD vizsgálatát Philips PW3710 röntgendiffraktométerrel, a kiértékelést High Score Plus és X'Pert Data Viewer kiértékelő szoftverrel végeztük. A mennyiségi vizsgálatok során 10 m/m% ZnO belső standardot alkalmaztunk.

3.3.11. Modellmentes kinetikai módszerek

A biomassza termikus degradációja egy igen komplex folyamat, mely a változatos összetételével magyarázható. A termikus degradációban számos szimultán reakció zajlik egyszerre, emiatt a lejátszódó reakciók mechanizmusának pontos meghatározása igen nehézkes, ami általánosan a következőképp írható le [158]:

 $Biomassza \xrightarrow{k(t)} illékony komponensek (gáz+koksz szemcsék) + maradék (szilárd koksz)$

Fontos megemlíteni, hogy folyadéktermék is keletkezhet (kondenzáció során), mely értéke elhanyagolható, így a korábbi egyenletben nem került feltüntetésre. Amennyiben azt feltételezzük, hogy az alapanyag termékké történő átalakulása egylépéses folyamat, a reakciósebesség az Arrhenius-egyenlet alapján a következőképp írható fel [158-160]:

$$k = Ae^{-(\frac{E_a}{RT})} \tag{18}$$

ahol k a reakciósebességi állandó, A a preexponenciális tényező (1/min), E_a az aktiválási energia (kJ/mol), R az egyetemes gázállandó (8,314 J/molK), illetve T az abszolút hőmérséklet (K). A szilárd halmazállapotú biomassza illékony komponensé történő átalakulása a következőképp írható fel [158-160]:

$$\frac{dx}{dt} = kf(x) \tag{19}$$

ahol *x* a *t* reakcióidőn belüli konverzió. A konverzió a következőképp írható fel [158-160]:

$$x = \frac{m_i - m_t}{m_i - m_f} \tag{20}$$

ahol m_i a minta kezdeti tömege, m_t a minta adott pillanatban vett tömege, valamint m_f a minta tömege a reakció végén. Amennyiben a (18) és a (19) egyenleteket összevonjuk, az egyenlet a következőképp alakul [158]:

$$\frac{dx}{dt} = Ae^{-\left(\frac{E}{RT}\right)}f(x) \tag{21}$$

ahol az f(x) a következő:

$$f(x) = (1 - x)^n$$
(22)

A felfűtési sebességre (β) a következő egyenlet írható fel:

$$\beta = \frac{dT}{dt} = \frac{dT}{dx} \times \frac{dx}{dt}$$
(23)

A (21), (22) és (23) egyenleteket összevonva és egyszerűsítve, a konverzió a hőmérsékletváltozást figyelembe véve a következőképp írható fel [158]:

$$\frac{dx}{(1-x)^n} = \frac{A}{\beta} e^{-(\frac{E_a}{RT})} dT$$
(24)

A (24) egyenletet integrálva (25), majd egyszerűsítve (26) az alábbi kinetikai alapegyenlet írható fel, melyből a következőekben bemutatott kinetikai módszerek eredeztethetőek [158]:

$$g(x) = \int_{0}^{x} \frac{dx}{f(x)} = \int_{0}^{T} \frac{A}{\beta} e^{-(\frac{E_{a}}{RT})} dT$$
(25)

$$g(x) = \frac{AE_a}{\beta R} \int_0^x u^{-2} e^{-u} du = \frac{AE_a}{\beta R} p(x)$$
⁽²⁶⁾

ahol a g(x) a konverzió integrált alakja, azaz x=E_a/RT, illetve p(x) az alkalmazott módszerekben használt változó [158].

Az alkalmazott modellmentes kinetikai módszerek, illetve a termodinamikai jellemzők számítását a **20-24. mellékletek** tartalmazzák [158-164].

4. KÍSÉRLETI EREDMÉNYEK ÉS ÉRTÉKELÉSÜK

4.1. Alapanyag vizsgálat TG-FTIR módszerrel

4.1.1. Termikus bomlás

A kinetikai számításokat megelőzően az alapanyagok termikus degradációjának vizsgálata szükséges. A mérések során öt különböző hulladék biomassza termikus degradációját vizsgáltam (8. ábra, 3.1.1. fejezet), három különböző felfűtési sebességgel (5, 20, illetve 50°C/min), 800°C-ig. A vizsgált alapanyagok eredetüktől függően különböző mennyiségben tartalmaznak cellulózt, hemicellulózt, illetve lignint.

A termogravimetriás analízis a biomassza termikus degradációjáról ad információt. A DTG görbék alapján a bomlási lépcsőkre következtethetünk, ahol több csúcs több bontási lépésre utal. A szakirodalom alapján a nedvességtartalom eltávolítása 200°C alatt, az illékony komponensek távozása 600°C alatt, míg a koksz képződés, másodrendű reakciók magasabb hőmérsékleten, 600°C felett zajlanak [165, 166]. A kiindulási anyagok TG és DTG görbéit a **15. ábra** mutatja.

A felhasznált alapanyagok TG-DTG görbéi: (a) kukorica, (b) szalma, (c) faforgács, (d) napraforgóhéj, (e) erdei biomassza

Az ábrák alapján megállapítottam, hogy csak a kukorica és az erdei biomassza esetében jelent meg több bomlási lépcső. A felfűtési sebesség hatását vizsgálva, megállapítható, hogy az alacsonyabb felfűtési sebesség kevesebb maradékot eredményezett. A kevesebb maradék a hosszabb tartózkodási idővel magyarázható, ami hatékonyabb hőbontást eredményezett. Az eredmények alapján elmondható, hogy az erdei biomassza rendelkezett a legtöbb fiziszorbeált nedvességgel. Az illékony komponensek távozása, az alapanyagoktól függően, 167-615°C között ment végbe, ami a legnagyobb bomlási lépcsőként jelenik meg. A kukorica (15. ábra (a)) és az erdei biomassza (15. ábra (e)) esetében az első csúcs a hemicellulóz, a második pedig a cellulóztartalmat jelöli. Ennek oka az alapanyagok nagy cellulóz- és hemicellulóz tartalma volt. 600°C felett, az elszenesedéssel járó bomlási tartományban, az erdei biomasszánál (15. (e) ábra) a DTG görbén egy kisebb csúcs is megjelenik, amely a nagy molekulatömegű komponens bomlását jelzi, mely a lignintartalomból eredhet.

4.1.2. FTIR vizsgálat

A 20°C/min felfűtési sebességgel végzett TG vizsgálatkor kapott gáztermékek FTIR spektrumai a 16. ábrán, míg az 5, illetve az 50°C/min felfűtési sebességgel végzettek az 20-21. mellékleteken láthatók. Az FTIR spektrumok alapján megállapítható, hogy a fő degradáció 200-600°C között ment végbe, ami nagyszámú szerves illékony komponenst eredményezett. Az eredmények alapján a szén-dioxidnak volt a legnagyobb abszorbanciája, mely a C-O és C-H kémiai kötések felbomlásával, valamint a hemicellulóz egységek dekarboxilezésével és dekarbonilezésével magyarázható. A CO2 tekintetében a csúcsintenzitás megközelítőleg az alapanyagok hemicellulóz tartalmát követte: napraforgóhéj ~faforgács > szalma > kukorica > erdei biomassza. A vizsgált erdei biomasszánál és a napraforgóhéjnál magasabb hőmérsékleten is keletkezett széndioxid. Alacsonyabb hőmérsékleten a szén-monoxid éter- és karbonil csoportokból, míg magasabb hőmérsékleten a lignintartalom karboxil- és C-O csoportjaiból származhatott [167,168]. A 45-192°C közötti víz csúcsok a nedvességtartalomból, míg 205°C felett a hemicellulóz és cellulózegységek glikozidos hidroxil csoportjainak bontásából és egyéb hidroxil csoportok bomlásából is keletkezett. A termikus degradáció során a metán elsősorban a lignin oldallánc- és aromás gyűrűk felhasadásából, valamint a másodlagos reakciókból származhatott, ami az erdei biomassza esetében kiemelkedően nagy abszorbanciával rendelkezett [167,168]. Az aldehidek, ketonok és savak a cellulóz és hemicellulóz egységekből származhatnak, amelyek főképp az utóbbiból szabadulhattak fel. Irodalmi adatok alapján a hemicellulóz intramolekuláris dehidratációja után a monomer egységek közötti glikozidos kötésekből enol-keto tautomerizáció léphet fel, ami olyan intermediereket eredményezhet, melyek savakat, ketonokat és aldehideket képezhetnek az aromatizációs, illetve a dekarboxilezési reakciók, valamint az intramolekuláris kondenzáció során [167, 169]. Az alkoholok és az észterek elsősorban a cellulóz bomlásából származhattak, ahol a β-1,4-glikozidos kötések felhasadtak, így

alacsonyabb fokú polimerizáció lép fel, cellulóz és különböző monomerek keletkezése mellett. A keletkezett monomerek az átrendeződés után többnyire levoglükozánt, alkoholokat és észtereket képeznek, amelyek mindegyike azonos hullámszámtartományban (1131-1058 cm⁻¹) jelenik meg [167,169].

A (a) CO₂ (2361 cm⁻¹), (b) CO (2166 cm⁻¹), (c) H₂O (3663 cm⁻¹), (d) CH₄ (2865 cm⁻¹), (e) aldehidek és ketonok (1792 cm⁻¹), (f) alkoholok és észterek (1168 cm⁻¹) FTIR spektrumai a felhasznált alapanyagokban, 20°C/min felfűtési sebességnél

4.1.3. Kinetikai és termodinamikai számítások

A tömegcsökkenésből, illetve a felfűtési sebességből (5, 20 és 50°C/min) számíthatók a kinetikai paraméterek, ahol először a **17.** *ábrán* szereplő diagramokat ábrázoltam. A **17.** *ábra* alapján meghatározható az aktiválási energia, valamint a preexponenciális tényező, melyeket 0,1-0,9 konverziós értékek között vizsgáltam. Az aktiválási energia az egyenes meredekségekből, míg a preexponenciális tényező a metszéspontból a *3.3.9. fejezetben (22-26. mellékletek)* említett modellmentes módszerekkel számítható. A korrelációs együtthatók tekintetében megállapítottam, hogy a 0,1 (kukorica biomassza és faforgács) és a 0,9 (szalma, kukorica és erdei biomassza) konverziók kivételével azok értékei 0,95 felettiek voltak. Az eredmények alapján az alkalmazott módszerek megbízhatósága és összehasonlíthatósága a módszerek közötti elhanyagolható különbség miatt (aktiválási energia esetén 5%-nál kisebb eltérés) megfelelőnek tekinthető.

Paraméterillesztés a különböző, modellmentes módszereknél (sorrendben: KAS, FWO, Friedman), a vizsgált alapanyagoknál (a) kukorica, (b) szalma, (c) faforgács, (d) napraforgóhéj, (e) erdei biomassza

A bomlási folyamatok aktiválási energiája (**14.** *táblázat*), a konverzió növekedésével csökkent, kivéve azokat a konverziós értékeket, ahol a korreláció értéke 0,9 alatti volt. Az aktiválási energia átlaga az erdei biomassza < szalma < napraforgóhéj < kukorica < faforgács sorrendben változott. Az alacsonyabb aktiválási energia a szabad gyökök jelenléte miatt jelentkezhet, mint például a lignin aromás csoportjai. A preexponenciális tényező tartománya különböző konverziós értékeknél viszonylag széles volt (10^9-10^{30} s⁻¹), ami a biomassza összetett és bonyolult termikus bomlási reakcióival magyarázható.

Az aktivalasi energia ertekek (kJ/mol) a vizsgalt alapanyagoknal, kulonbozo modellmentes modszerekkel											
Konverzió	ió Kukorica				Szalma			Faforgács			
(α)	KAS	FWO	Friedman	KAS	FWO	Friedman	KAS	FWO	Friedman		
0,1	349,4	158,9	98,2	98,8	82,1	96,8	264,7	242,9	266,0		
0,2	269,1	144,1	141,4	245,7	223,0	244,8	288,6	283,3	288,1		
0,3	237,8	174,6	173,6	321,1	314,7	321,1	210,8	209,6	210,5		
0,4	184,7	221,6	223,1	234,3	232,0	234,0	233,5	231,4	233,5		
0,5	442,7	429,6	441,9	222,3	220,4	221,9	233,5	228,8	230,7		
0,6	223,9	184,9	192,2	213,8	212,2	213,3	211,3	210,7	211,5		
0,7	174,6	235,5	237,8	190,1	189,5	189,3	189,7	190,4	190,2		
0,8	142,8	265,5	268,7	144,5	145,8	143,3	172,9	174,5	173,5		
0,9	157,2	321,1	347,9	188,3	186,6	185,8	624,1	603,8	624,9		
Átlag	242,5	237,3	236,1	206,5	200,7	205,6	269,9	263,9	269,9		
Konverzió	Napraforgóhéj			Erdei biomassza							
(α)	KAS	FWO	Friedman	KAS	FWO	Friedman					
0,1	115,9	101,8	199,6	34,9	26,7	39,5					
0,2	287,6	282,3	286,2	72,1	67,5	73,4					
0,3	242,7	237,9	242,0	70,8	68,5	70,6					
0,4	184,5	184,6	184,1	68,4	66,6	68,3					
0,5	196,4	195,9	196,1	61,8	61,0	61,8					
0,6	193,9	193,7	193,8	89,6	89,6	89,4					
0,7	201,8	201,5	202,0	87,4	87,8	87,7					
0,8	286,7	264,5	285,8	125,3	121,3	125,5					
0,9	183,5	162,1	181,1	218,6	194,9	215,8					
Átlag	210,3	202,7	219,0	92,1	87,1	92,4					

 14. táblázat

 Az aktiválási energia értékek (kJ/mol) a vizsgált alapanyagoknál, különböző modellmentes módszerekkel

 X ví Kukorica

 Szalma

 Faforgács

A termodinamikai paramétereket (15. táblázat, 27-30. melléklet), mint az entalpiát, a Gibbs-szabadenergiát és az entrópiát, az aktiválási energiából és a preexponenciális tényezőkből határoztam meg. Az entalpiát tekintve megállapítottam, hogy az átlagos eltérés viszonylag alacsony volt, ami a könnyű termékképződéssel magyarázható. A Gibbs-szabadenergia az aktív komplex kialakulásáról ad információt, amely értéke átlagosan szűk tartományú, kivéve a 0,1 és 0,9 konverziós értékeket, ahol a korreláció nem volt megfelelő. Az entrópiát tekintve a negatív értékek különböző konverziós értékeknél is megjelentek, mely az eredeti molekulákhoz képest rendezettebb molekulaszerkezet kialakulásával magyarázható [165, 166].

modermentes modszerekkei									
Kukorica									
KAS FWO Friedman									
Konverzió (α)	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK
0,1	183,2	155,2	45,5	181,5	80,1	164,8	180,6	131,0	80,6
0,2	139,4	186,2	-76,2	140,7	113,0	45,0	138,2	158,7	-33,4
0,3	185,0	187,5	-4,1	184,4	112,0	117,5	184,2	208,5	-39,5
0,4	208,7	190,0	30,3	207,0	113,3	152,3	208,1	158,4	80,9
0,5	217,2	194,8	36,3	215,3	117,7	158,7	216,8	162,1	88,9
0,6	229,1	199,9	47,5	226,9	122,2	170,2	228,9	166,2	101,9
0,7	316,0	206,4	178,1	309,6	124,4	301,1	316,0	171,9	234,1
0,8	240,6	118,5	198,6	217,9	172,5	73,8	239,7	153,6	140,0
0,9	93,7	119,5	-42,0	77,0	180,7	-168,7	91,7	155,1	-103,1
Átlag	201,4	173,1	46,0	195,6	126,2	112,7	200,5	162,8	61,2

15. táblázat A termodinamikai paraméterek változása a vizsgált kukorica biomassza esetében, különböző modellmentes módszerekkel

A termodinamikai paramétereket tekintve, különböző modellmentes módszereket alkalmazva az entalpia értékek maximum 10%-os eltérést mutattak a vizsgált alapanyagoknál (0,1-0,9 konverziós értékeknél). A Gibbs-szabadenergia számításához azonban nemcsak az aktiválási energiára, hanem a preexponenciális tényezőre, a Planck- és a Boltzmann-állandóra is szükség van. Fontos megemlíteni, hogy a széles értéktartománnyal rendelkező preexponenciális tényező eltérő Gibbs-szabadenergiákat eredményez. Az entrópia az entalpiával és a Gibbs-szabadenergiával számítható, amelyek jelentősen eltérő entrópia értékeket adtak a különböző modellmentes módszerek esetén. A széles konverzió tartományban (0,1-0,9) vizsgált biomasszák kinetikai és termodinamikai adatai a termikus degradáció során végbemenő termokémiai folyamatokról, valamint a méretnövelési folyamatokról adnak információt [166,170].

Megállapítottam, hogy a fűtési sebesség növelésével a csúcsmaximumok közel 20°Ckal tolódtak el. A DTG görbéket tekintve a kukorica és az erdei biomassza bomlása is két lépcsőben zajlott, mely a nagy hemicellulóz, illetve utóbbinál a nagy cellulóz tartalommal magyarázható. Emellett az FTIR analízis során a vizsgált komponensek csúcsmaximumai 350-380°C között voltak megfigyelhetőek, míg a fő degradáció, illetve az illékony komponensek távozása 200-600°C között ment végbe. A *3.1.1 fejezetben* bemutatott CHNS és lignocellulóz tartalom, a TG-FTIR, valamint a vizsgált hulladék biomasszák mennyiségét összevetve magyarországi viszonylatokban, a kukorica biomasszát választottam a további kísérleteim alapanyagának.

4.2. Alapanyag nedvességtartalmának vizsgálata

A következő alfejezetek a kukorica biomassza alapanyag nedvességtartalmának hatását mutatják be 0-20-40% nedvességtartalommal, katalizátor és vízgőz jelenlétében, valamint, katalizátor nélkül, illetve katalizátort is tartalmazó az alapanyag esetében. Az ábrákon a "0-20-40%" azokat a mérési pontokat jelenti, ahol katalizátor és vízgőz nem, míg "0-20-40% katalizátor" esetén 2,5 g katalizátor és 5 g/h vízgőz került alkalmazásra. Az alkalmazott katalizátor minden esetben a Ni/ZSM-5 volt, mely főbb jellemzői a *3.2. alfejezetben* találhatóak. A vizsgálatokat 200-900°C között, 20 percig, 42 ml/perc nitrogén térfogatáram, valamint 5g alapanyag (kukorica biomassza, abszolút tömeg) alkalmazásával végeztem. A termékhozamok számítása a *3.2. fejezetben* leírtak szerint zajlott.

A 20% és 40% nedvességtartalmú minták esetében az alapanyag tömege abszolút tömeg, azaz annak mennyisége a nedvességtartalommal együttesen 5g. Ezen eredmények szárazanyagra történő átszámolása összetett folyamatok eredménye, hiszen adott egy állandó értékű termékhozam, mely független az alapanyag össztömegétől. Ennek elemzése érdekében, az eredményeket a nedvességet nem tartalmazó (0% nedv. tartalmú alapanyag – 4.2.3. fejezet) alapanyaggal végzett kísérletek során kapott eredményekkel célszerű összevetni.

4.2.1. 40% nedvességtartalmú alapanyag vizsgálata

A 18. (a) ábra a gáztermék, míg a 18. (b) ábra a maradék, és a 18. (c) ábra a folyadéktermék hozamát szemlélteti különböző hőmérsékleteken. Az eredmények alapján megfigyelhető, hogy a hőmérséklet emelésével a maradék hozama jelentősen csökkent, míg a gázterméké növekedett.

A hozamok változása, 40% nedvességtartalomnál katalizátorral (szeparálva, Ni/ZSM-5) és vízgőzzel a kukorica biomassza termikus degradációja során ((a) gázhozam változása, (b) maradék változása, (c) folyadéktermék változása)

Emellett katalizátor és vízgőz jelenlétében a maradék mennyisége tovább csökkent (2,6-14,5%-kal), míg a gáztermék mennyisége jelentős növekedést mutatott (6,6-23,8%) a katalizátor és vízgőz alkalmazása nélküli kísérletekben. A gázhozam 200°C-on elhanyagolhatóan alacsony volt, így a gáztermék összetételét nem lehetett pontosan meghatározni. A folyadéktermék hozama termikus esetben 32,8%, míg a katalizátor és vízgőz jelenlétében 28,5% volt. Az említett jelenségek a víz-gáz shift reakcióval magyarázhatók, amely nagyobb mennyiségű nedvességtartalmat használt el az elgázosítás során [167].

A gáztermék összetételét (**19.** (*a*)-(*b*) *ábra*) vizsgálva egyértelműen megfigyelhető, hogy a termikus bomlás során, alacsonyabb hőmérsékleten a szén-dioxid (33,6-78,2%), magasabb hőmérsékleten pedig a szén-monoxid (34,6-39,3%) volt a domináns komponens. A **19.**(*a*)-(*b*) *ábrák* alapján a főbb reakciók, a pirolízis, a termikus krakkolás, a Boudouard-, és a víz-gáz shift reakciók voltak. 700°C-on jól látható a Boudouard-reakció szén-monoxid képződés irányába történő eltolódása. A hidrogén- és metánhozamot tekintve legfeljebb 12% koncentráció volt megfigyelhető. Katalizátor és vízgőz alkalmazásával (**19.** (*b*) *ábra*) hasonló tendencia figyelhető meg a szén-monoxid és a szén-dioxid esetében is, azonban magasabb hőmérsékleten (600-900°C) a hidrogén hozam is jelentős volt (14,7-28,6%). Emellett a C₂.C₅ szénhidrogének és a metán mennyisége hasonló értéket mutatott (14,4-25,0%, illetve 3,7-6,2%) a termikus degradáció esetén tapasztalt eredményekkel. A szintézisgáz mennyisége a hőmérséklet emelésével növekvő tendenciát eredményezett, mely értéke 88,4 mmol/g alapanyag volt 900°C hőmérséklet, katalizátor és vízgőz alkalmazásával [167].

A gáztermék összetételének változása ((a)-40% nedvességtartalom, (b)-40% nedvességtartalom katalizátorral (szeparálva, Ni/ZSM-5) és vízgőzzel) a kukorica biomassza termikus degradációja során

A H₂/CO arány a további szintézisek szempontjából kiemelten fontos. Ez az arány jelentős hatással van a folyamat általános hatékonyságára. Amennyiben ez az érték 2 fölötti, az előállított gáz előnyös a Fischer-Tropsch és a metanol szintézis számára, míg az 1-nél nagyobb CO/CO₂ arány a metanol szintézisnek kedvez [171]. Megállapítottam

az is, hogy mind a H_2/CO , mind a CO/CO_2 arány a hőmérséklet emelésével növekedett. Katalizátor jelenlétében mindkét arány szinte minden esetben nagyobb volt (H_2/CO : 0,1-0,5, illetve CO/CO_2 :0,3-0,9), mint nélküle. Fontos megemlíteni, hogy a 40% nedvességtartalmú alapanyagból előállított gáz alacsony H_2/CO értéke miatt nem alkalmas a Fischer-Tropsch szintézisre, míg a 600-900°C-on keletkező gáztermék inkább a metanol szintézisre volt alkalmas.

4.2.2. 20% nedvességtartalmú alapanyag vizsgálata

A 20.(a)-(c) ábrák a 20% nedvességtartalmú alapanyagból kapott termékhozamokat szemléltetik. A termékösszetétel a 40% nedvességtartalmú alapanyag elgázosítása során megfigyelt termékösszetétellel volt hasonló, ugyanakkor a maradék hozama a hőmérséklet növelésével jelentősen csökkent (19,7-67,1%). Vízgőz és katalizátor jelenlétében több gáztermék keletkezett. Továbbá, magasabb hőmérsékleten, 20% nedvességtartalmú alapanyagnál kismértékben több gáztermék megfigyelhető a 40% nedvességtartalmú alapanyaghoz képest. Az alacsonyabb nedvességtartalom kevesebb folyadékterméket eredményezett, 21,4% (katalizátor és vízgőz) és 22,2% (katalizátor és vízgőz nélkül) átlagértékkel. Megfigyeltem, hogy a termikus és a termo-katalitikus vizsgálatok közötti különbségek a katalizátor nedvességtartalma miatt bekövetkező hatásfok csökkenéssel magyarázható [167].

A hozamok változása, 20% nedvességtartalomnál katalizátorral (szeparálva, Ni/ZSM-5) és vízgőzzel a kukorica biomassza termikus degradációja során ((a) gázhozam változása, (b) maradék változása, (c) folyadéktermék változása)

A 21.(a)-(b) ábrák adatai alapján megállapítottam, hogy a gáztermékben alacsonyabb hőmérsékleten a szén-dioxid volt a meghatározó komponens. A szénmonoxidnál katalizátor jelenlétében, illetve anélkül (27-36,5 és 19,1-35,6%) hasonló értékek figyelhetőek meg. A metán és a hidrogén esetében, a koncentrációjuk katalizátor és vízgőz nélkül minimális növekedést mutatott (0,8-2,4, illetve 1,0-2,9%). Emellett a C₂-C₅ szénhidrogének mennyisége közel 10%-kal növekedett katalizátor és vízgőz jelenlétében. A H₂/CO és CO/CO₂ arány a hőmérséklet növekedésével nagyobb értékeket eredményezett. A H₂/CO arány azonban jelentősen nagyobb volt katalizátor és vízgőz nélkül (0,1-0,4 értékkel), főleg 500-700°C között, mely arány megfelel az alacsony hőmérsékletű Fischer-Tropsch szintézis alapanyag követelményeinek. Ezzel ellentétes tendencia figyelhető meg a CO/CO₂ aránynál, ahol a termikus degradáció során csak 0,2-2,0, míg termo-katalitikus esetben 0,4-2,7 közötti értékeket kaptam [167].

A gáztermék (a) hozamának és a gáz összetételének változása ((b)-20% nedvességtartalom, (c)-20% nedvességtartalom katalizátorral (szeparálva, Ni/ZSM-5) és vízgőzzel) a kukorica biomassza termikus degradációja során

4.2.3. 0% nedvességtartalmú alapanyag vizsgálata

A 22.(*a*)-(*c*) *ábra* a termékek hozamát mutatja katalizátorral és vízgőzzel, illetve anélkül, 200-900°C között. Megállapítottam, hogy a katalizátor jelenléte szignifikánsan nem befolyásolta a gáztermék összetételét (korábbi eredményekhez viszonyítva), azonban a gáztermék abszolút hozama ebben az esetben kimagasló. Emellett esetben megfigyeltem, hogy katalizátor és vízgőz jelenlétében kevesebb gáztermék keletkezett.

A hozamok változása, 0% nedvességtartalomnál katalizátorral (szeparálva, Ni/ZSM-5) és vízgőzzel a kukorica biomassza termikus degradációja során ((a) gázhozam változása, (b) maradék változása, (c) folyadéktermék változása)

A gáztermék összetételét (23.(a)-(b) ábra) vizsgálva megállapítottam, hogy hasonlóan a 20 és 40% nedvességtartalmú alapanyagokhoz, alacsonyabb hőmérsékleten a szén-dioxid volt a meghatározó komponens (43,0-67,9%, illetve 41,4-65,9%).

Emellett a C_2 - C_5 szénhidrogének koncentrációja is több volt, mint a 20 és 40% nedvességtartalmú alapanyag elgázosítása esetén. Ugyanakkor a hidrogén és a metán részaránya is szignifikánsan kisebb volt, ami az alapanyag nedvességtartalmának hiányával magyarázható, mert az segíti a reformáló, illetve a víz-gáz shift reakciókat [167].

A gáztermék összetételének változása ((a)-0% nedvességtartalom, (b)-0% nedvességtartalom katalizátorral (szeparálva, Ni/ZSM-5) és vízgőzzel) a kukorica biomassza termikus degradációja során

A kevesebb hidrogén miatt a H₂/CO arány jelentősen kisebb volt, mint a 20% és 40% nedvességtartalmú alapanyagok esetében. Alacsonyabb hőmérsékleten (200-500°C között) az említett arány 0,2 alatti volt, míg 600-900°C között katalizátorral és vízgőzzel a H₂/CO arány 0,3-0,7 értékre emelkedett. A CO/CO₂ arány tekintetében a 20% és a 40% nedvességtartalomnál kapott eredményekhez hasonló értékek figyelhetőek meg (0, 1-2, 3).Továbbá megállapítható, hogy nagyobb а nedvességtartalom több folyadékterméket és maradékot eredményezett, és előnyös hatással volt a hidrogénhozamra, illetve a H2/CO arányra is. Utóbbi a nedvességtartalom víz-gáz shift, valamint a reformáló reakciókban mutatott előnyös hatásával magyarázható, ami elsősorban magasabb hőmérsékleteken volt megfigyelhető.

Emellett megállapítottam, hogy 0% nedvességtartalom mellett érhető el a legnagyobb abszolút gázhozam. Katalizátor jelenlétében, magasabb hőmérsékleteken (600-900°C) a hidrogéntartalom kimagasló (16-26 mmol/g alapanyag), melynél csak a 40% nedvességet tartalmazó, katalizátor jelenlétében, 900°C-on keletkezett gáztermék hidrogéntartalma magasabb, ~3 mmol/g alapanyag értékkel.

4.2.4. Alapanyag és katalizátor keverékének vizsgálata vizsgálata

A kukorica biomassza alapanyag nedvességtartalmának hatása mellett, a katalizátor (Ni/ZSM-5) alapanyaghoz történő közvetlen hozzákeverésének hatását is vizsgáltam. Fontos megjegyezni, hogy a katalizátor alapanyaggal történő közvetlen hozzákeverése pozitív hatást gyakorol a nyersanyag degradációjára, valamint több gáz- és kevesebb
folyadék-, valamint maradékhozamot eredményez (24. (a)-(c) ábra). A korábbi eredményekkel azonosan, a nedvességet nem tartalmazó alapanyagból keletkezett a legtöbb gáztermék (45,9-80,25%), illetve maradék (6,7-47,6%), és a legkevesebb folyadék (6,6-13,2%).

A hozamok változása, 0-20-40% nedvességtartalomnál katalizátorral (szeparálva, Ni/ZSM-5) és vízgőzzel a kukorica biomassza termikus degradációja során

A gázösszetétel alapján (25. ábra (a)-(c)) megállapítottam, hogy alacsonyabb hőmérsékleten a szén-dioxid és a C2-C5 szénhidrogének mennyisége volt a meghatározó (39,6-75,5% és 11,6-39,4%). 40% alapanyag nedvességtartalom mellett azonban lényegesen kevesebb kisebb molekulatömegű szénhidrogén keletkezett (4,8-27,8%-kal), mint 0% és 20% alapanyag nedvességtartalomnál. Nagyobb hőmérsékleten (500-900°C) a nedvességet nem tartalmazó alapanyagból keletkezett a legtöbb szén-monoxid (34,0-43,4%) és a legkevesebb metán (5,0-7,1%). A legtöbb hidrogén a 40% nedvességtartalmú alapanyagból keletkezett (9, 3-28, 8%),mert a nagy nedvességtartalom mellett a katalizátor nikkeltartalma elősegítette a víz-gáz shift reakciót [167].

A gáz összetételének változása ((b)-0% nedvességtartalom, (c)-20% nedvességtartalom, (d) 40% nedvességtartalom, keverve az alapanyag a katalizátorral, vízgőz jelenlétében)

4.2.5. Hőszükséglet számítása

A termikus és termo-katalitikus elgázosítás vizsgálata és összehasonlítása mellett a folyamatot gazdasági szempontból is elemeztem. A reaktor nettó hőigényét Aspen Plus

V11 szimulációs programcsomag segítségével határoztam meg. A szimuláció során a különböző nedvességtartalmú (0%, 20%, 40%) kukorica biomassza CHNS, szerves szén, hamutartalom, illékonyanyag tartalom, valamint nedvességtartalom értékeit vettem alapul. A nettó hőigény a bemenő hőáramok összegéből, valamint az alkalmazott berendezésben számított hőigény különbségéből számítható. Az eredmények a *26. ábrán* láthatók.

A szükséges hőmennyiség változása a reaktorban (a) vízgőz nélkül, illetve (b) vízgőzzel

Ahogy a 26. ábra szemlélteti, a szükséges nettó hőmennyiség a hőmérséklet, illetve az alkalmazott vízgőz, valamint az alapanyag nedvességtartalmának növekedésével növekszik. A katalizátort és vízgőzt nem alkalmazó degradációnál (26.(a) ábra) a nettó hőigény lényegesen alacsonyabb volt, mint katalizátor és vízgőz jelenlétében. A legnagyobb eltérés 0% és 40% nedvességtartalom között (<5,6 kJ/h) volt megfigyelhető, míg 0% és 20% nedvességtartalom között nem tapasztaltam ilyen jelentős változást. Vízgőz jelenlétében hasonló tendencia volt megfigyelhető, azonban az értékek jelentősen nagyobbak voltak, mert a nedvesség/vízgőz hőtani jellemzői miatt azok mennyiségének növelése jelentősen növeli a szükséges energia mennyiségét is.

4.2.6. Összegzés

Megállapítottam, hogy a vizsgált kukorica biomasszát és az alkalmazott Ni/ZSM-5 katalizátort összekeverve, vízgőz jelenlétében, alacsonyabb hőmérsékleten (200-500°C) végzett elgázosítás során, 0%, 20% és 40% nedvességtartalom mellett, a szén-dioxid és a C₂-C₅ szénhidrogének mennyisége volt a meghatározó. Továbbá megfigyeltem, hogy a legnagyobb hidrogén hozam 0% és 40% nedvességtartalmú alapanyagnál keletkezett, valamint 900°C-on a H₂/CO arány maximálható volt (0,72). Ugyanakkor 200-800°C között szignifikáns különbség nem volt megfigyelhető a különböző nedvességtartalmú mérési pontok között. Kimutattam, hogy azonos körülmények között, а nedvességtartalmat nem tartalmazó alapanyag és katalizátor összekeverése során keletkezett a legtöbb szintézisgáz (9,5-106,4 mmol/g alapanyag), illetve ebben az

esetben volt a legnagyobb a CO/CO₂ arány. Fontos azonban megemlíteni, hogy az alapanyagot a katalizátorral összekeverve előnyös hozam- és gázösszetétel érhető el, ugyanakkor a maradékot a katalizátor nehézfémtartalma miatt veszélyes anyagként kell kezelni.

4.3. Elgázosítási előkísérletek

4.3.1. Első reaktorzóna hőmérsékletének meghatározása

A megfelelő hőmérséklet, illetve vízgőz:alapanyag arány megválasztásához előkísérletekre volt szükség. Először az 1. reaktorzóna hőmérsékletét kellett meghatározni (katalizátor nélkül) a hozamok figyelembevételével. Minden további elgázosítási kísérletsorozatban 5g kukorica biomassza hulladék (0% nedvességtartalom) került felhasználásra, mint alapanyag, 42ml/perc nitrogén térfogatáram alkalmazása mellett. Amint a **27.** *ábra* szemlélteti, a hőmérséklet emelésével a gáztermék hozama nőtt, míg a maradéké csökkent. 500-700°C között a gázhozamban nem volt megfigyelhető szignifikáns különbség, azonban 800°C alkalmazásakor az 500°C hőmérsékleten kapott eredményekhez képest a gázhozam 18%-kal nőtt. Ennek oka az alapanyag ligninegységeinek bomlása volt [172, 166]. A biomassza degradációja során vízképződés is végbemegy. Kísérletem során kapott folyadéktermék a szénhidrogének mellett vizet is tartalmazott. A **27.** *ábra* adatai alapján a folyadéktermék 12-22% között változott.

A hozamok változása a hőmérséklet függvényében

A gáztermék összetételét a **28.** *ábra* szemlélteti. A gáztermékekben jelentős mennyiségű szén-dioxid, szén-monoxid és hidrogén volt kimutatható. A szénhidrogének mennyisége jelentősen kevesebb volt. A gáztermékeknél a hőmérséklet emelkedésével a hidrogén, a szén-monoxid és a metán hozama főként a következő reakciók miatt nőtt [173] (35)-(40):

 $C_nH_m \rightarrow (m/4)CH_4 + (n-m/4)C$

(35)

Az összetétel változása a hőmérséklet függvényében

A szén-dioxid és a C₂-C₅ szénhidrogének mennyisége a termikus krakkolás (35), a gőzreformálás (39), valamint a száraz reformálási reakciók (40) (szén-dioxid többlet) miatt csökkent [173,152]. A szén-monoxid mennyiségét a hőmérséklet növelése nem befolyásolta jelentősen, míg a hidrogén, a metán, illetve a szén-dioxid sorrendben 1,1-19%, 2,2-8,5%, valamint 8,0-28,8% koncentrációnövekedést mutatott. A kísérleti tevékenység során a célom, a felhasznált katalizátorok regenerálási ciklusvizsgálata volt, mely a szén-dioxid megkötésére és/vagy átalakítására, illetve a szintézisgáz hozam növelésére irányult. Emiatt az 1. reaktorzónában egy alacsonyabb és egy magasabb hőmérsékletet alkalmaztam (400°C és 800°C). Előbbinél (400°C) a széndioxid hozama ~55% volt, míg utóbbinál (800°C) ~33%. A hidrogén mennyisége 22%, a szén-monoxidé pedig 26% volt 800°C-on, így itt figyelhető meg a legmagasabb H₂/CO arány.

4.3.2. Második reaktorzóna hőmérsékletének meghatározása

Az 1. reaktorzóna hőmérsékletének meghatározása után (alacsony és magas hőmérsékletű elgázosítás - 400°C és 800°C) a 2. reaktorzóna hőmérsékletét, katalizátor jelenlétében (2,5g) és anélkül, szintén 500-700°C között vizsgáltam Minden további elgázosítási kísérletsorozatban 5g kukorica biomassza hulladék (0% nedvességtartalom) került felhasználásra, mint alapanyag, 42ml/perc nitrogén térfogatáram alkalmazása mellett. A termékhozamot **29. ábra** szemlélteti. A

szilikagélen megkötött nedvesség/folyadék tartalom 2% alatti értékekkel rendelkezik, míg a folyadéktermék 9-19% között változott.

A hozam változása a hőmérséklet és az alkalmazott katalizátor függvényében

Megfigyeltem, hogy a katalizátor nélküli és a termo-katalitikus termékhozamok között a különbség számottevő (a változás maximum 10%). A négy különböző katalizátor jelenlétében, a termékhozam mellett a gázösszetételt (**30.** *ábra*) is meghatároztam. A növekvő hőmérséklet hatására termikus esetben a hidrogén és a szén-monoxid részaránya a 2. reaktorzónában növekedett, míg a C_2 - C_5 2,6%-kal csökkent. Az eredményeket tekintve minden hőmérsékleten alapvetően hasonló a tendencia adódott.

A változás az egyes komponensek mennyiségében (a) termikus eset, (b) 500°C-on, (c) 600°C-on, (d) 700°C-on

A 30.(b)-(d) ábrák az egyes komponensek mennyiségének változását mutatják, míg a 16. táblázat a számszerű eltéréseket tartalmazza a gáztermék hozamában, a gázösszetételben, valamint a gázösszetétel hozamában a katalizátort nem tartalmazó termikus vizsgálatokhoz viszonyítva (**30.** *ábra* (*a*)). A változások mértékét az alábbi egyenlet segítségével számítottam ki (41) ettől a fejezettől kezdődően a 4.6.2 *fejezetekig*.

Változás mértéke = A vizsgált katalizátor jelenlétében keletkezett komponens mennyisége (mmol/g alapanyag)
(41)

- Katalizátor nélkül, termikus esetben keletkezett komponens mennyisége (mmol/g alapanyag)

			5	600°C	U
	•	Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/CaO	Ni/Klinoptilolit
	ີ້ຄ	14,5	14,5	14,5	17,0
	bar	, , , , , , , , , , , , , , , , , , ,	6	00°C	
	ě E	Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/CaO	Ni/Klinoptilolit
	0Z2 0Z2	16,5	16,5	18,5	21,0
	Z K		7	′00°C	
	29, 20,	Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/CaO	Ni/Klinoptilolit
		7,0	8,0	7,5	9,5
	Százalékok eltérései		5	600°C	
		Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/CaO	Ni/Klinoptilolit
	H ₂	0,6	2,9	9,6	8,9
	СО	7,5	21,2	9,7	18,2
%	CH ₄	0,1	2,0	3,8	2,9
'n	CO_2	5,6	-22,0	-19,0	-29,2
lbe	C ₂ -C ₅	-13,8	-4,1	-4,1	-0,8
étel			6	00°C	NY (771)
zet		N1/ZSM-5	N1/Al ₂ O ₃	Ni/CaO	Ni/Klinoptilolit
öss	H ₂	0,4	1,/	8,0	3,4
ázi	CU	10,3	10,/	16,0	10,5
8	CD4	0,1	1,0	-0,5	2,5
ég		1,1	-14,2	-20,8	-20,3
squ	62-63	-11,0	-5,5	'00°C	-2,0
ilöı		Ni/ZSM-5	Ni/Al2O2	Ni/CaO	Ni/Klinontilolit
Ki	H ₂	0.4	1.4	6.2	-1.0
	CO	8,9	9.3	13.5	15.0
	CH ₄	1,5	3,7	0,4	0,4
	CO ₂	-1,3	-12,2	-16,5	-12,5
	C2-C5	-9,5	-2,2	-3,6	-1,9
	mmol/g értékek eltérései		5	600°C	
	%-ban	Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/CaO	Ni/Klinoptilolit
	H ₂	157,0	373,0	995,1	992,1
	CO	138,2	177,5	148,5	200,9
	CH ₄	106,7	256,4	229,2	211,7
. ~	CO ₂	112,3	64,4	69,6	55,1
an	C_2 - C_5	8,6	80,7	74,9	103,0
ıáb	Szintezisgaz	139,1	186,9	189,5	239,2
can		NE/ZOM 5	NE/ALO	NHCOO	Ni /IZI:nontilolit
hoi	Ha	116.1	157.8	371.5	351.8
tel		148.8	176.2	181.0	193.2
eté	CH	107.4	140.1	99.9	210.0
ZS	CO ₂	107.1	78.0	68,6	58.1
żö	C ₂ -C ₅	14.6	64.4	86.7	99.6
66	Szintézisgáz	144,9	174,0	203,9	212,2
SS 8	5	,	7	'00°C	,
éré		Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/CaO	Ni/Klinoptilolit
Ξ					
E	H ₂	126,8	149,6	246,7	245,4
E	H ₂ CO	126,8 155,4	149,6 160,3	246,7 176,5	245,4 190,7
E	H ₂ CO CH ₄	126,8 155,4 172,2	149,6 160,3 259,9	246,7 176,5 133,6	245,4 190,7 138,5
E	H2 CO CH4 CO2	126,8 155,4 172,2 114,9	149,6 160,3 259,9 91,3	246,7 176,5 133,6 80,1	245,4 190,7 138,5 73,0
Ξ	H ₂ CO CH ₄ CO ₂ C ₂ -C ₅	126,8 155,4 172,2 114,9 28,3	149,6 160,3 259,9 91,3 99,3	246,7 176,5 133,6 80,1 84,9	245,4 190,7 138,5 73,0 63,6

16. táblázat Az eltérések számszerű adatai a második reaktorzóna hőmérsékletének meghatározása során

A hidrogén, a szén-monoxid és a szén-dioxid hozama mindegyik hőmérsékleten jelentősen változott. A hidrogénhozam 0,3-6,9 mmol/g alapanyag értékkel nőtt a magasabb hőmérséklet, valamint az alkalmazott katalizátor nikkeltartalma miatt, mely 700°C-on 126,8-246,7% növekedést *(16. táblázat)* eredményzett a termikus pontokhoz

viszonyítva. Katalizátorok jelenlétében a szén-monoxid hozamok 3,8-13,8 mmol/g alapanyag értékkel növekedtek, mely 138,2-200,9% növekedéssel egyenértékű (*16. táblázat*), ami a Boudouard-reakció (36), a vízgáz-shift (37) és a reformáló reakció (39) eltolódásával magyarázható. Ez utóbbi szinte minden esetben alacsonyabb metán- és magasabb hidrogénhozamot eredményezett. Továbbá a Boudouard-reakció (36) csak katalizátor jelenlétében volt megfigyelhető, ahol a katalizátor felületén lerakódott koksz magasabb hőmérsékleten pozitív hatása volt.

A szén-dioxid átalakítását/megkötését, illetve csökkentését Ni/Al₂O₃, Ni/CaO és Ni/Klinoptilolit jelenlétében (73,0-91,3%-a a termikus értékeknek *(16. táblázat)*) lehetett megfigyelni (-1,9 és -24,4 mmol/g alapanyag közötti értékek). Szakirodalmi adatok alapján, Ni/Al₂O₃ katalizátorral CO₂ hozamcsökkentés érhető el fajlagos felületének, valamint pórusméretének köszönhetően [174,175, 152].

Azonban a nedves impregnálás során az Al_2O_3 fajlagos felülete jelentősen lecsökkent a nikkeltartalom agglomerizációja miatt, így a CO_2 mennyiségének csökkenését elsősorban a magasabb hőmérséklet okozta. Emellett a Ni/CaO esetében megemlíthető a felületen lévő hidroxil- és oxidcsoportok jelenléte is, mely kémiai adszorpció létrejöttét is eredményezhette, karbonát vagy bikarbonát formában [174,175,152]. A Ni/Klinoptilolit katalizátor savas jellege elősegíti a CO_2 megkötődését, emellett a CO_2 tulajdonságainak köszönhetően (nagy dipólusmomentum) az könnyen adszorbeálható a klinoptilolit felületén [175,176,152].

Ahogy a **30.** (*b*)-(*d*). *ábrák* szemléltetik, a C₂.C₅ szénhidrogének mennyisége 1,1 mmol/g alapanyag és 10,9 mmol/g alapanyag értékkel csökkent, amelyből a legmagasabb érték a Ni/ZSM-5 (8,1-10,9 mmol/g alapanyag) jelenlétében volt megfigyelhető, mely a termikus eredmények 14,6%-val egyenértékű (*16. táblázat*). Az említett eredmény a Ni/ZSM-5 nagy Si/Al arányával, illetve jellemző pórusszerkezetével (szűk cikk-cakkos pórusszerkezet, korlátolt diffúzió), valamint kedvezőbb krakkolási funkciójával magyarázható. A *31. ábra* a szintézisgáz mennyiségének változását mutatja különböző hőmérsékleteken és katalizátorok jelenlétben.

Ahogy a *31. ábrán* is látható, a hőmérséklet növelésével a hidrogén és a szénmonoxid mennyiségének összege nőtt. Emellett nemcsak a katalizátor felületén lévő nikkeltartalom, hanem a szén-dioxid megkötése/átalakítása, valamint a hőmérséklet is pozitívan befolyásolta a szintézisgáz hozamát. A legnagyobb hidrogénhozam (8,9 mmol/g alapanyag és 11,1 mmol/g alapanyag) a Ni/CaO és a Ni/Klinoptilolit esetében, míg a legnagyobb szén-monoxid hozam a Ni/Klinoptilolit jelenlétében volt megfigyelhető. Az eredmények azt mutatták, hogy a hőmérséklettől függetlenül, a Ni/Klinoptilolit eredményezte a legtöbb szintézisgázt (42,4 mmol/g alapanyag (500°C), 47,7 mmol/g alapanyag (600°C) és 52,9 mmol/g alapanyag (700°C)). Megállapítottam, hogy a termikus mennyiségekhez viszonyítva a szintézisgáz hozamában szignifikáns különbség figyelhető meg (6,9-24,7 mmol/g alapanyag közötti növekedés).

A szintézisgáz hozam változása különböző második reaktorzóna hőmérsékletet alkalmazva (500°C, 600°C, 700°C), különböző katalizátorokkal (1. reaktorzóna hőmérséklete 400°C)

A **32.** *ábra* a szintézisgáz mennyiségét szemlélteti, termikus, illetve termo-katalitikus elgázosítás során, 800°C első reaktorzóna hőmérsékletet alkalmazva. Az eredmények alapján megfigyeltem, hogy a hőmérséklet növekedésével a szintézisgáz hozama is nő, továbbá a Ni/Al₂O₃, valamint a Ni/Klinoptilolit katalizátorok jelenlétében közel 80,2 mmol/g alapanyag szintézisgáz keletkezett. A termikus eredményekhez viszonyítva, katalizátor jelenlétében, 500°C-on 17,3%-kal, 600°C-on 22,6%-kal, míg 700°C-on akár 40%-kal volt növelhető a szintézisgáz mennyisége.

32. ábra

A szintézisgáz hozam alakulása (Ni/ZSM-5, Ni/Al₂O₃, Ni/CaO, Ni/Klinoptilolit), különböző második reaktorzóna hőmérsékletet alkalmazva (500°C, 600°C, 700°C)

A keletkezett szén-dioxid koncentrációja a 33. ábrán látható. Megfigyelhető, hogy magasabb hőmérsékleten, illetve a Ni/Al₂O₃, a Ni/CaO, valamint a Ni/Klinoptilolit

katalizátorok jelenlétében szignifikánsan csökkent a szén-dioxid mennyisége. Továbbá elmondható, hogy a Ni/ZSM-5, valamint a Ni/CaO kivételével, a hőmérséklet növelése nem befolyásolta jelentősen a termo-katalitikus eredményeket. Az eredmények alapján 500°C-on akár 49,2%-kal, 600°C-on 34,7%-kal, míg 700°C-on 23,3%-kal kevesebb szén-dioxid keletkezett. Az eredmények alapján a további kísérleteket 700°C 2. reaktorzóna hőmérsékleten végeztem.

33. ábra A szén-dioxid hozam alakulása (Ni/ZSM-5, Ni/Al2O3, Ni/CaO, Ni/Klinoptilolit), különböző második reaktorzóna hőmérsékletet alkalmazva (500°C, 600°C, 700°C)

4.3.3. Vízgőz: alapanyag arány meghatározása

A reaktorzónák hőmérsékletének meghatározását követően a vízgőz:alapanyag arányát vizsgáltam, melynek tartományát szakirodalmi adatok alapján 0,2-1,8 közöttinek választottam. Minden további elgázosítási kísérletsorozatban 5g kukorica biomassza hulladék (0% nedvességtartalom) került felhasználásra, mint alapanyag, 42ml/perc nitrogén térfogatáram alkalmazása mellett. Az első reaktorzónában 400°C és 800°C, míg a másodikra 700°C hőmérsékleteket alkalmaztam, katalizátor nélkül [152,177]. Az alacsony hőmérsékletű eredmények alapján (*34.(a) ábra)* megfigyelhető, hogy a folyadéktermék mennyisége 10,8-18,0%-kal nőtt a vízgőz:alapanyag arány növelésével, mely a reaktorba bevitt vízgőz mennyiségével, valamint a biomassza degradációja során felszabaduló víztartalommal magyarázható. Megállapítottam, hogy 0,6-1,8 vízgőz:alapanyag arány között, a gáztermékek hozama szignifikánsan különböztek (10-25%-os eltérés).

A 34.(b) ábra 800°C reaktorzóna esetében ábrázolja a termékhozamot a vízgőz:alapanyag arány növelésének függvényében. Megállapítottam, hogy ebben az esetben a biomasszából visszamaradt maradék mennyisége 10,5%-kal volt kevesebb, mint 400°C hőmérsékleten. A gáztermék hozama a vízgőz mennyiségének növelésével

csökkent. Továbbá megfigyeltem, hogy 1,4-1,8 értékű vízgőz:alapanyag arány mellett a folyadéktermék részaránya szignifikánsan növekszik (28,5%-ra és 40,5%-ra).

A termékhozam változása a vízgőz:alapanyag arány függvényében (a) 1. reaktorzóna hőmérséklete: 400°C, (b) 1. reaktorzóna hőmérséklete: 800°C

A **35.** (*a*) *ábra* a gáztermékek összetételét szemlélteti a különböző vízgőz:alapanyag arány mellett (1. reaktorzóna hőmérséklete: 400°C). A vízgőz:biomassza arány növelésével a szén-monoxid, illetve a C_2 - C_5 szénhidrogének mennyisége 9,1-11,3 mmol/g alapanyag értékkel, valamint 1,3-3,6 mmol/g alapanyag értékkel csökkent. A hidrogén koncentrációja kismértékű csökkenést mutatott (1,5 mmol/g alapanyag értékkel, valamint 2,9 mmol/g alapanyag értékkel nőtt az 1,8 vízgőz:alapanyag arány mellett. Az említett jelenségek a reformálási reakciókkal magyarázhatók. Emellett az 1. reaktorzónában az alkalmazott hőmérséklet meglehetősen alacsony (400°C) volt, ami nagy szén-dioxid-többletet (~55-60%) eredményezett, így a víz-gáz shift reakció a szén-monoxid képződés felé tolódott el. Az eredmények alapján az is jól látszik, hogy a szintézisgáz mennyisége 0,6-,1,8 vízgőz:alapanyag arány között számottevően nem változott [177].

A **35.** (b) ábra a gáztermékek összetételét ábrázolja különböző vízgőz:alapanyag arány mellett (1. reaktorzóna hőmérséklete: 800°C). Megállapítottam, hogy magasabb hőmérsékleten a vizsgált komponensek mindegyike szignifikánsan növekedett, mely a nagyobb gázhozammal magyarázható. Továbbá megfigyeltem, hogy az így keletkező gáztermék hidrogén:szén-monoxid aránya 0,20-0,25 értékkel volt növelhető. A vízgőz:alapanyag arány növelésével a szén-dioxid, valamint a C₂-C₅ szénhidrogének mennyisége nagymértékben csökkenthető, míg a szén-monoxid, illetve a hidrogén tartalom az 1,0 értékű vízgőz:alapanyag arányig mutatott növekvő tendenciát, mely a legjobb gázösszetételt adta.

35. ábra

A komponensek mennyiségi változása a vízgőz:alapanyag arány függvényében (a) 1. reaktorzóna hőmérséklete: 400°C, (b) 1. reaktorzóna hőmérséklete: 800°C

4.3.4. Vízgőz: alapanyag arány meghatározása katalizátor jelenlétében

A 36. ábrán a vízgőz:alapanyag arány változásának hatását vizsgáltam az egyes katalizátorok jelenlétében. Minden további elgázosítási kísérletsorozatban 5g kukorica biomassza hulladék (0% nedvességtartalom), illetve 2,5g katalizátor került felhasználásra, mint alapanyag, 42ml/perc nitrogén térfogatáram alkalmazása mellett. Az ábrákon szemléltetett eredmények a 35.(a) ábrához viszonyított eltéréseket szemléltetik (mmol/g alapanyag mértékegységben), míg a 17. táblázat a számszerű eltéréseket tartalmazza a gáztermék hozamában, a gázösszetételben, valamint a gázösszetétel hozamában. A Ni/ZSM-5 katalizátor esetében a szén-monoxid és a széndioxid mennyisége szignifikánsan csökkent (2,9-3,1 mmol/g alapanyag, illetve 2,4-5,3 mmol/g alapanyag) a vízgőz:alapanyag arány függvényében (a termikus eredményekhez 115,0% és 165,7% értékéről 93,5% és 105,0%-ra (17. táblázat)). Emellett a hidrogén, illetve a C2-C5 szénhidrogének részarányában enyhe növekedés volt megfigyelhető. Megállapítottam, hogy a gáztermék hozama csökkenő tendenciát mutatott a vízgőz:alapanyag arány függvényében (17. táblázat). Ni/Al₂O₃ jelenlétében a 0,2 vízgőz:alapanyag arány mellett a C2-C5 szénhidrogének voltak a domináns komponensek, mely a katalizátor kis fajlagos felületével, illetve a nikkellel tömített pórusokkal magyarázható. Utóbbi miatt ugyanis a nagyobb molekulaméretű szénhidrogének nem fértek el a katalizátor pórusaiban. Az 1,0 és 1,8 vízgőz:alapanyag aránynál ugyanez a tendencia figyelhető meg, azonban 1,8 arány mellett gáztermék hozama kisebb volt. Megfigyeltem, hogy a Ni/Al₂O₃ katalizátor kis fajlagos felülete miatt nem tudta elősegíteni az elgázosítási reakciókat. Ni/CaO alkalmazásával nagy mennyiségű szén-monoxid (14,6 mmol/g alapanyag a 0,2 vízgőz:alapanyag aránynál és 6,4 mmol/g alapanyag többlet (148,2%-a a termikus eredményeknek (17. táblázat)) az 1,0 vízgőz:alapanyag aránynál a termikus eredményekhez viszonyítva), valamint hidrogén keletkezett (0,9-4,3 mmol/g alapanyag többlet a termikus eredményekhez viszonyítva) [177].

			1	7. tábláz	at			
	Az eltérése	ek számsz	erű adatai a	vízgőz:al	apanyag arány	y meghatá	irozásánál	
	- É		Ni/ZSM-5	0	1 5 6 5	U	Ni/Al ₂ O ₃	
	ban ba	1g/h	5g/h	9g/h		1g/h	5g/h	9g/h
	∘ am	6,3	1,4	-4,8		19,4	13,2	-0,5
	, lön		Ni/CaO				Ni/Klinoptiloli	t
	Kü ázt	1g/h	5g/h	9g/h		1g/h	5g/h	9g/h
	50	19,3	9,5	-5,8		7,7	3,5	-12,7
	Százalékok		Ni/ZSM-5				Ni/Al ₂ O ₃	
%	eltérései	1g/h	5g/h	9g/h		1g/h	5g/h	9g/h
É	H_2	0,6	0,1	1,4	H_2	-2,6	0,8	1,2
lbe	CO	-4,4	-7,0	-1,6	CO	-22,8	-12,4	-4,4
éte	CH_4	-0,1	-0,4	0,6	CH_4	-3,1	-1,7	0,4
zet	CO_2	5,8	7,2	-1,6	CO_2	1,8	9,4	-1,8
öss	C2-C5	-1,9	0,2	1,2	C2-C5	26,7	4,0	4,6
gáz			Ni/CaO				Ni/Klinoptiloli	t
8		1g/h	5g/h	9g/h		1g/h	5g/h	9g/h
ség	H_2	1,4	1,0	4,0	H_2	2,8	3,6	3,9
qu	CO	1,5	-7,3	-2,1	CO	-6,0	-1,9	-12,6
älö	CH_4	0,9	-0,8	0,0	CH_4	-2,3	-0,8	0,7
×	CO_2	-8,3	5,2	-4,3	CO_2	9,2	-1,0	4,0
	C2-C5	4,5	2,0	2,4	C2-C5	-3,6	0,2	4,0
	mmol/g értékek		Ni/ZSM-5				Ni/Al ₂ O ₃	
%	eltérései %-ban	1g/h	5g/h	9g/h		1g/h	5g/h	9g/h
an,	H_2	144,3	110,4	150,9	H_2	47,8	260,9	172,2
áb	CO	115,0	93,5	107,2	CO	106,5	171,4	121,4
am	CH ₄	122,3	98,7	124,3	CH ₄	84,5	153,9	144,5
10Z	CO_2	165,7	141,7	105,0	CO_2	193,0	314,3	125,6
ell	C2-C5	108,2	108,7	123,7	C2-C5 Saintáain cáa	492,2	295,5	190,7
stét	Szintezisgaz	110,7	94,7 Ni/CaO	110,5	Szintezisgaz	105,1	1//,9 Ni/Klinontilolii	123,2
1ZS		1ơ/h	5g/h	9ơ/h		1ơ/h	5g/h	9σ/h
zös	H_2	332.3	4.5	161.7	H_2	229.4	214.7	138.0
60	cõ	148,2	21,9	77,1	cõ	116,5	114,1	51,9
s a	CH ₄	184,0	2,5	80,2	CH ₄	79,0	101,6	80,1
téré	CO_2	211,4	39,3	69,3	CO_2	198,6	112,7	78,6
ЕН	C2-C5	194,3	9,8	98,8	C2-C5	98,5	120,1	95,8
	Szintézisgáz	158,9	26,4	83,4	Szintézisgáz	123,1	121,4	58,3

Ni/Klinoptilolit jelenlétében azonban a gáztermék mennyisége minimális növekedést mutatott a termikus eredményekhez képest. 1,8 vízgőz:alapanyag arány mellett a szén-monoxid és a szén-dioxid mennyisége 9,1 mmol/g alapanyag értékkel, illetve 2,5 mmol/g alapanyag értékkel csökkent (a termikus eredmények 51,9%-a és 78,6%-a, (*17. táblázat*)), emellett a H₂/CO arány az említett katalizátor jelenlétében volt a legkedvezőbb. A korábbi, illetve a katalizátorok jelenlétében bemutatott eredmények alapján a további kísérletekhez az 1,0 vízgőz:alapanyag arányt választottam. Ennek az volt az oka, hogy ennél a vízgőz:alapanyag aránynál a katalizátorok jelenlétben a hidrogén, illetve a szén-monoxid részaránya előnyös növekedést mutatott és a C₂.C₅ szénhidrogének mennyisége is kevesebb volt. Továbbá a legtöbb katalizátornál ezen a vizsgálati ponton volt a legalacsonyabb a szén-dioxid mennyisége [177].

A vizsgált katalizátorok hatása eltérő vízgőz:alapanyag aránynál a gázösszetételre (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit (1. reaktorzóna hőmérséklete: 400°C)

4.3.5. Összegzés

Megállapítottam, hogy a vizsgált kukorica biomassza, 200-800°C közötti termikus degradációja során a hidrogén hozama közel 25%-kal növekedett a hőmérséklet növelésével. 400°C első reaktorzóna hőmérséklet mellett, Ni/CaO és Ni/Klinoptilolit katalizátorok jelenlétében (második reaktorzóna hőmérséklete 700°C, vízgőz alkalmazása nélkül) volt a legnagyobb a hidrogénhozam, míg a legtöbb szén-monoxid és szintézisgáz tartalom a Ni/Klinoptilolit jelenlétében adódott.

Kimutattam, hogy az alkalmazott mezőgazdasági biomassza alapanyag elgázosításakor vízgőz:alapanyag arány=1 értékig (első reaktorzóna hőmérséklete 400°C, második reaktorzóna hőmérséklete 800°C) a Ni/ZSM-5 mellett a szén-monoxid és a szén-dioxid mennyisége a vízgőz:alapanyag arány növelésével csökkent, míg a Ni/CaO alkalmazásával nagy mennyiségű szén-monoxid, valamint hidrogén keletkezett, a Ni/Klinoptilolit jelenlétében pedig a H₂/CO arány volt a legnagyobb.

4.4. Elgázosítási kísérletek

4.4.1. Alacsony hőmérsékletű katalitikus elgázosítás vízgőz nélkül

Az alacsony hőmérsékletű elgázosítás során, ahogy a korábbiakban ismertetésre került (4.4.1. és 4.4.2. fejezetek), az első reaktorzóna hőmérséklete 400°C, míg a második reaktorzónáé 700°C volt. A katalizátorok a második reaktorzónában kerültek elhelyezésre, majd minden kísérlet végét követően a regeneráció 1 órán keresztül, 800°C-on zajlott. A reakciókörülmények a korábbiakban említettek voltak, azaz 42 ml/perc nitrogén térfogatáram jelenlétében, 20 percig zajlottak a vizsgálatok, 5g kukorica biomassza hulladék (0% nedvességtartalom), illetve 2,5g katalizátor jelenlétében.

A termékek hozamát (**37.** *ábra*) tekintve megállapítható, hogy a regenerálási ciklusok függvényében a maradék mennyisége 20-25%, míg a gázhozam 50-55% között alakult. A folyadéktermék hozama minden mérés során kevesebb volt, mint 25%. Megállapítottam, hogy a termékhozamokat tekintve a vizsgált katalizátorok között nem volt megfigyelhető szignifikáns eltérés [152].

A termékhozam alakulása a regenerálási ciklusok függvényében a vizsgált katalizátorok mellett (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit

A 18. táblázat a számszerű eltéréseket tartalmazza a gáztermék hozamában, a gázösszetételben, valamint a gázösszetétel hozamában, míg a 39. ábra az egyes

komponensek mennyiségének különbségét mutatja az első (regenerálás előtti) mérés során kapott eredményekhez (*38. ábra*) viszonyítva, mmol/g alapanyagra számítva.

18. táblázat

Az eltérések (első mérési ponthoz képest) számszerű adatai az alacsony hőmérsékletű, vízgőzmentes elgázosításnál

	Százalékok eltérései			eiguz	obritabili	Ni/ZSI	M-5				
~	Reg Ciklus	1	2	3	4	5	6	7	8	9	10
an	rteg. entras	-10.0	-15.0	-10.0	-8.6	-9.0	-10.0	-10.0	-9.5	-9.2	-10.1
qu		10,0	10,0	10,0	0,0	Ni/Al-	0	10,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>,2	10,1
Za	Reg Ciklus	1	2	3	4	5	6	7	8	9	10
cho	rteg. ennus	-12.3	-114	-11.1	-10.8	-10.4	-94	-12.9	-97	-80	-7.6
gáz		12,0	,.	,.	10,0	Ni/Ca	n0 ⁽¹⁾	12,2	,,,	0,0	7,0
a	Reg Ciklus	1	2	3	4	5	6	7	8	9	10
ség	rteg. entras	-10.4	-12.2	-11.7	-9.5	-13.4	-9.5	-12.1	-9.0	-8.9	-8.9
qu			,_	,,	.,.	Ni/Klino	otilolit	,-	.,.		-,-
ilö	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
Ki	8	-6.5	-6.2	-5.3	-4.9	-4.7	-2.9	-8.0	-7.6	-8.5	-8.6
	Százalékok eltérései	- / -	- /	- /-	/-	Ni/ZSI	M-5	- / -		- /-	- / -
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H ₂	-2.2	-1.2	-0.5	3.5	4.1	4.9	3.2	3.4	1.0	-0.4
	CO	1,3	5,0	-3,3	-4,8	-4,9	-6,6	-7,1	-6,7	-7,9	-8,1
	CH4	-0,5	1,2	1,3	0,9	2,1	-0,2	0,2	0,2	-0,7	-0,5
	CO_2	-13,8	-6,5	-9,9	-8,9	-6,9	-6,5	-7,7	-7,0	-7,9	-6,9
	C2-C5	15,2	15,8	12,3	9,2	9,7	8,3	11,3	10,0	15,4	16,0
						Ni/Al:	203				
%	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
en,	H ₂	0,2	0,7	-2,1	-0,8	-0,2	-0,1	1,2	2,1	2,1	1,7
elb	CO	3,1	2,0	0,6	0,4	-0,8	-0,3	-0,9	-4,0	-5,3	-6,2
tét	CH4	-1,6	-1,1	-1,0	-1,2	-0,7	-2,2	-1,6	-0,4	-1,1	-1,9
sze	CO_2	-0,1	-1,8	-0,9	-2,4	-4,2	-3,8	0,9	-2,0	-1,5	-1,1
ös	C2-C5	3,8	3,6	3,4	4,0	5,9	6,5	6,4	5,8	5,8	6,7
gáz						Ni/Ca	aO				
8	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ség	H ₂	-9,1	-6,3	-3,0	-9,6	-8,5	-6,2	-3,8	-2,9	-8,9	-8,0
qu	СО	2,6	-2,0	-4,5	-8,0	-7,5	-8,9	-8,1	-9,9	-10,4	-10,6
ülö	CH4	1,7	1,4	3,0	3,2	3,4	3,1	1,8	1,2	0,1	-0,1
Σ	CO_2	-0,3	1,4	2,0	2,0	5,9	5,2	8,6	4,/	6,1 12,1	5,5
	$C_2 - C_5$	5,5	5,6	5,7	0,7	9,0	0,9	9,5	0,8	13,1	15,4
	Pag Ciklus	1	2	2	4	NI/KIINO]	ptilolit 6	7	e	0	10
	H ₂	-0.1	0.8	24	-	62	62	28	3.6	27	23
		33	44	4 2	1.4	1.0	1.2	-2.8	-53	-6.9	-8.0
	CH4	0.4	14	1.9	2.2	13	13	2,0	2.9	2.0	1.8
	CO_2	-4.1	-7.1	-79	-93	-10.2	-9.9	-74	-7.0	-5 3	-4.6
	C_2-C_5	0,4	0,5	-0,6	-0,4	1,7	1,2	5,4	5,8	7,5	8,5
	mmol/g értékek					Ni/ZSI	M-5				
				3	4	5	6	7	8	9	10
	eltérései %-ban	1	2	-							
	eltérései %-ban H ₂	1 50,6	2 54,1	72,4	127,6	132,7	140,2	119,0	122,7	93,4	72,5
	eltérései %-ban H ₂ CO	1 50,6 80,9	2 54,1 76,5	72,4 71,3	127,6 70,8	132,7 69,8	140,2 64,4	119,0 63,2	122,7 65,1	93,4 63,0	72,5 61,0
	eltérései %-ban H ₂ CO CH4	1 50,6 80,9 69,3	2 54,1 76,5 85,3	72,4 71,3 100,2	127,6 70,8 96,6	132,7 69,8 116,8	140,2 64,4 75,3	119,0 63,2 81,4	122,7 65,1 82,4	93,4 63,0 68,4	72,5 61,0 69,2
	eltérései %-ban H ₂ CO CH4 CO ₂	1 50,6 80,9 69,3 56,3	2 54,1 76,5 85,3 58,5	72,4 71,3 100,2 62,5	127,6 70,8 96,6 66,6	132,7 69,8 116,8 69,2	140,2 64,4 75,3 67,9	119,0 63,2 81,4 66,1	122,7 65,1 82,4 68,1	93,4 63,0 68,4 67,1	72,5 61,0 69,2 67,0
	eltérései %-ban H2 CO CH4 CO2 C2-C5	1 50,6 80,9 69,3 56,3 475,5	2 54,1 76,5 85,3 58,5 422,3	72,4 71,3 100,2 62,5 399,5	127,6 70,8 96,6 66,6 331,5	132,7 69,8 116,8 69,2 340,8	140,2 64,4 75,3 67,9 294,0	119,0 63,2 81,4 66,1 374,3	122,7 65,1 82,4 68,1 344,9	93,4 63,0 68,4 67,1 491,3	72,5 61,0 69,2 67,0 494,2
	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz	1 50,6 80,9 69,3 56,3 475,5 76,6	2 54,1 76,5 85,3 58,5 422,3 73,3	72,4 71,3 100,2 62,5 399,5 71,4	127,6 70,8 96,6 66,6 331,5 79,0	132,7 69,8 116,8 69,2 340,8 78,9	140,2 64,4 75,3 67,9 294,0 75,3	119,0 63,2 81,4 66,1 374,3 71,2	122,7 65,1 82,4 68,1 344,9 73,4	93,4 63,0 68,4 67,1 491,3 67,4	72,5 61,0 69,2 67,0 494,2 62,6
%	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz	1 50,6 80,9 69,3 56,3 475,5 76,6	2 54,1 76,5 85,3 58,5 422,3 73,3	72,4 71,3 100,2 62,5 399,5 71,4	127,6 70,8 96,6 66,6 331,5 79,0	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al ;	140,2 64,4 75,3 67,9 294,0 75,3 203	119,0 63,2 81,4 66,1 374,3 71,2	122,7 65,1 82,4 68,1 344,9 73,4	93,4 63,0 68,4 67,1 491,3 67,4	72,5 61,0 69,2 67,0 494,2 62,6
п, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus	1 50,6 80,9 69,3 56,3 475,5 76,6 1	2 54,1 76,5 85,3 58,5 422,3 73,3 2	72,4 71,3 100,2 62,5 399,5 71,4 3	127,6 70,8 96,6 66,6 331,5 79,0 4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al 2 5	140,2 64,4 75,3 67,9 294,0 75,3 203 6	119,0 63,2 81,4 66,1 374,3 71,2 7	122,7 65,1 82,4 68,1 344,9 73,4 8	93,4 63,0 68,4 67,1 491,3 67,4 9	72,5 61,0 69,2 67,0 494,2 62,6 10
iban, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 C2	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 58,5	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 53,8	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1	140,2 64,4 75,3 67,9 294,0 75,3 203 6 78,6 78,6	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7
mában, %	eltérései %-ban H ² CO CH4 CO ₂ C ₂ -C5 Szintézisgáz Reg. Ciklus H ₂ CO	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 7,7	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 78,0	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al : 5 76,1 76,1	140,2 64,4 75,3 67,9 294,0 75,3 203 6 78,6 79,4	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 60,0	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8
)zamában, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 72,7	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 79,7 64,0	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4	140,2 64,4 75,3 67,9 294,0 75,3 203 6 78,6 79,4 54,3 71,0	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,2	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 70,0	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5
l hozamában, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO2 CH4 CO2	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 120,4	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 11,7 8	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 122,8	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 120,5	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 128,0
étel hozamában, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO2 C2-C5 Szintézisoáz	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1 20,4	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 200,3	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 72,8	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 76,1 69,8 69,4 122,7 76,1	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 70,3	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3
zetétel hozamában, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO2 C2-C5 Szintézisgáz	1 50,6 80,9 69,3 56,3 475,5 76,6 80,1 56,4 73,7 101,1 79,4	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C	140,2 64,4 75,3 67,9 294,0 75,3 203 6 78,6 79,4 54,3 71,9 130,4 79,3	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3
összetétel hozamában, %	eltérései %-ban H ² CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1 79,4	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 a0 6	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10
jázösszetétel hozamában, %	eltérései %-ban H ² CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1 79,4 1 8,6	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5	127,6 70,8 96,6 66,6 63,31,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20 6	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 6 6 6 7 8,0 7 8,0 7 8,0 7 8,0 7 9,4 54,3 7 1,9 38 0 6 7 8,1 6 7 8,1 6 7 8,1 7 8,1 7 8,1 7 8,1 7 8,1 7 8,1 8,1 7 8,1 7 8,1 7 8,1 8,1 7 7 8,1 7 7 8,1 7 8,1 7 7 8,1 7 8,1 7 8,1 7 8,1 7 8,1 7 8,1 7 8,1 7 8,1 8,1 7 8,1 8,1 8,1 8,1 8,1 8,1 7 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1 8,1	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9
a gázösszetétel hozamában, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4
-és a gázősszetétel hozamában, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO C2-C5 Szintézisgáz Reg. Ciklus H2 CO C2+C5 Szintézisgáz	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/Ce 5 20,6 58,4 139,1	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2
ltérés a gázösszetétel hozamában, %	eltérései %-ban H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO CH4 CO CH4 CO2 CO CH4 CO2	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5 76,8	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0 70,2 103,0 76,8	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 84,3	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 76,1 69,8 69,4 122,7 76,1 Ni/Ca 5 20,6 58,4 139,1 83,7	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 3 8,1 62,6 147,7 91,8	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6
Eltérés a gázösszetétel hozamában, %	eltérései %-ban H_2 CO CH4 CO_2 C_2 - C_5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 - C_5 Szintézisgáz Reg. Ciklus H_2 CO C_2 - C_5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CO C2- $C5C2$ - $C5C2$ - $C5C3C3C2$ - $C5C3C3C0C2$ - $C5C3C2$ - $C5C3C0C2$ - $C5C3C0C2$ - $C5C2$ - $C5C3C0C2$ - $C5C3C0C0C2$ - $C5C3C0C0C2$ - $C5C3C0C0C0C0C0C0C0C0C0C0C2$ - $C5C3C0C2$ - $C5C3C0C2$ - $C5C3$	1 50,6 80,9 69,3 56,3 475,5 76,6 80,1 75,6 80,1 75,6 80,1 75,6 80,1 101,1 79,4 1 18,6 82,4 113,5 76,8 81,23,6	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0 70,2 103,0 76,8 120,0	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 64,2 150,9 84,3 139,4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4 139,1 83,7 143,6	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 4 200,4	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6 202,7
Eltérés a gázősszetétel hozamában, %	eltérései %-ban H ² CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO CH4 CO ₂ CO CH4 CO CH4 CO CO CH4	1 50,6 80,9 69,3 56,3 475,5 76,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5 76,8 123,6 68,1	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 55,0 70,2 103,0 76,8 120,0 62,3	72,4 71,3 100,2 3399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0 64,5	127,6 70,8 96,6 66,6 63,31,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 84,3 139,4 53,4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4 139,1 83,7 143,6 49,9	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5 57,1	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2 57,6	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6 61,5	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 200,4 51,9	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6 20,2,7 52,9
Eltérés a gázösszetétel hozamában, %	eltérései %-ban H ² CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO CH4 CO CH4 CO CH4 CO Szintézisgáz	1 50,6 80,9 69,3 56,3 475,5 76,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5 76,8 123,6 68,1	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0 76,8 120,0 62,3	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0 64,5	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 150,9 84,3 139,4 53,4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4 139,1 83,7 143,6 49,9 Ni/Klino]	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5 57,1 ptilolit	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2 57,6	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6 61,5	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 200,4 51,9	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6 202,7 52,9
Eltérés a gázősszetétel hozamában, %	eltérései %-ban H ² CO CH4 CO ₂ C ₂ -C5 Szintézisgáz Reg. Ciklus H ² CO CH4 CO ₂ C ₂ -C5 Szintézisgáz Reg. Ciklus H ² CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CO CO CO CO CO CO CO CO CO CO CO	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5 76,8 123,6 68,1 1	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 80,3 2 35,0 70,2 103,0 76,8 120,0 62,3 2	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0 64,5 3	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 84,3 139,4 53,4 4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4 139,1 83,7 143,6 49,9 Ni/Klinoj 5	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5 57,1 ptilolit 6	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2 57,6 7	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6 61,5 8	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 200,4 51,9 9	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6 202,7 52,9 10
Eltérés a gázösszetétel hozamában, %	eltérései %-ban H ² CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ² CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO ₂ CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CH4 CO CO CO CO CO CO CO CO CO CO CO CO CO	1 50,6 80,9 69,3 56,3 475,5 76,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5 76,8 123,6 68,1 1 35,9	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0 76,8 120,0 62,3 2 42,4	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0 64,5 3 56,2	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 84,3 139,4 53,4 4 85,7	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al; 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/Ce 5 20,6 58,4 139,1 83,7 143,6 49,9 Ni/Klinop 5 87,0	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5 57,1 ptilolit 6 90,6	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2 57,6 7 55,3	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6 61,5 8 62,0	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 200,4 51,9 9 54,4	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6 202,7 52,9 10 50,8
Eltérés a gázösszetétel hozamában, %	eltérései %-ban H_2 CO CH4 CO_2 C_2 - C_5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 - C_5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 - C_5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 - C_5 Szintézisgáz Reg. Ciklus H_2 CO CD_2 C_2 - C_5 Szintézisgáz Reg. Ciklus H_2 CO CD_2 C	1 50,6 80,9 69,3 56,3 475,5 76,6 80,1 75,6 80,1 75,6 80,1 75,6 80,1 70,1 79,4 1 18,6 82,4 113,5 76,8 123,6 68,1 1 35,9 93,3	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0 70,2 103,0 70,2 103,0 70,3 2 42,4 95,4	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0 64,5 3 56,2 97,8	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 64,2 150,9 84,3 139,4 53,4 4 85,7 92,8	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4 139,1 83,7 143,6 49,9 Ni/Klinoj 5 87,0 92,3	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5 57,1 ptilolit 6 90,6 96,6	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2 57,6 7 55,3 78,0	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6 61,5 8 62,0 73,8	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 200,4 51,9 9 54,4 69,3	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6 202,7 52,9 10 50,8 67,0
Eltérés a gázősszetétel hozamában, %	eltérései %-ban H ² CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH4 CO CH4 CO ₂ C ₂ -C ₅ Szintézisgáz	1 50,6 80,9 69,3 56,3 475,5 76,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5 76,8 68,1 1 35,9 93,3 96,9	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0 70,2 103,0 70,2 103,0 70,3 2 42,4 95,4 121,5 2	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0 64,5 3 56,2 97,8 137,7	127,6 70,8 96,6 66,6 6331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 84,3 139,4 53,4 4 85,7 92,8 145,4	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4 139,1 83,7 143,6 49,9 Ni/Klinoj 5 87,0 92,3 122,8	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5 57,1 ptilolit 6 90,6 96,6 129,6	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2 57,6 7 55,3 78,0 130,5	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6 61,5 8 62,0 73,8 153,9	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 200,4 51,9 9 54,4 69,3 128,7	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,3 75,3 10 26,9 60,4 79,2 93,6 60,4 79,2 93,6 202,7 52,9 10 50,8 67,0 123,3
Eltérés a gázösszetétel hozamában, %	eltérései %-ban H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz	1 50,6 80,9 69,3 56,3 475,5 76,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5 76,8 123,6 68,1 1 35,9 93,3 96,9 99,0	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0 76,8 120,0 62,3 2 42,4 95,4 121,5 90,1	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0 64,5 3 56,2 97,8 137,7 90,3	127,6 70,8 96,6 66,6 6331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 84,3 139,4 53,4 4 85,7 92,8 145,4 87,1	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4 139,1 83,7 143,6 49,9 Ni/Klino] 5 87,0 92,3 122,8 84,6	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5 557,1 ptilolit 6 90,6 90,6 90,6 129,6 88,9	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2 57,6 7 55,3 78,0 130,5 86,1	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6 61,5 8 62,0 73,8 153,9 88,0	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 200,4 51,9 9 54,4 69,3 128,7 91,0	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6 202,7 52,9 10 50,8 67,0 123,3 92,7
Eltérés a gázősszetétel hozamában, %	eltérései %-ban H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2 -C5 Szintézisgáz	1 50,6 80,9 69,3 56,3 475,5 76,6 1 75,6 80,1 56,4 73,7 101,1 79,4 1 18,6 82,4 113,5 76,8 123,6 68,1 1 35,9 93,3 96,9 99,0 149,4	2 54,1 76,5 85,3 58,5 422,3 73,3 2 83,0 79,7 64,0 72,1 102,1 80,3 2 35,0 70,2 103,0 76,8 120,0 62,3 2 42,4 95,4 121,5 90,1 150,6	72,4 71,3 100,2 62,5 399,5 71,4 3 53,8 77,7 65,7 74,6 101,5 73,8 3 56,5 66,8 138,6 79,3 123,0 64,5 3 56,2 97,8 137,7 90,3 139,5	127,6 70,8 96,6 66,6 331,5 79,0 4 68,5 78,0 63,8 72,1 107,2 76,4 4 15,9 64,2 150,9 84,3 139,4 53,4 4 85,7 92,8 145,4 87,1 144,2	132,7 69,8 116,8 69,2 340,8 78,9 Ni/Al: 5 76,1 76,1 69,8 69,4 122,7 76,1 Ni/C: 5 20,6 58,4 139,1 83,7 143,6 49,9 Ni/Klinoj 5 87,0 92,3 122,8 84,6 174,4	140,2 64,4 75,3 67,9 294,0 75,3 6 78,6 79,4 54,3 71,9 130,4 79,3 6 38,1 62,6 147,7 91,8 141,5 57,1 ptilolit 6 90,6 96,6 129,6 88,9 173,6	119,0 63,2 81,4 66,1 374,3 71,2 7 84,9 70,8 55,5 74,3 117,8 73,1 7 50,5 59,6 110,7 92,7 151,2 57,6 7 55,3 78,0 130,5 86,1 209,3	122,7 65,1 82,4 68,1 344,9 73,4 8 102,4 70,9 74,4 75,2 123,8 76,0 8 61,4 61,6 108,8 92,0 142,6 61,5 8 62,0 73,8 153,9 88,0 216,4	93,4 63,0 68,4 67,1 491,3 67,4 9 107,1 71,3 69,9 79,9 129,5 77,1 9 21,0 60,8 83,0 95,4 200,4 51,9 9 54,4 69,3 128,7 91,0 234,0	72,5 61,0 69,2 67,0 494,2 62,6 10 103,7 69,8 60,5 81,4 138,0 75,3 10 26,9 60,4 79,2 93,6 202,7 52,9 10 50,8 67,0 123,3 92,7 246,4

Az ábrán és a táblázatos eredmények alapján is megállapítható, hogy az első mérési pontban a Ni/Klinoptilolit eredményezte a legmagasabb hidrogén és szén-monoxid hozamot, emellett közel a legalacsonyabb szén-dioxid tartalmat. Továbbá megfigyelhető, hogy a regenerációs ciklusok előrehaladtával a keletkezett gáztermék hozama is jelentősen csökken (**18. táblázat**).

38. ábra

A komponensek hozama (alacsony hőmérsékletű, vízgőzmentes elgázosítás) a vizsgált katalizátorok, Ni/ZSM-5, Ni/Al₂O₃, Ni/CaO, Ni/Klinoptilolit mellett

A **39.** *ábrán* látható, hogy a C₂-C₅ szénhidrogének mennyiségét az egyes katalizátorok széles tartományban (0,7-11,4 mmol/g alapanyag) növelték (Ni/ZSM-5 katalizátorral 294,0-494,2%-a az első mérési eredménynek (**18.** *táblázat*)). A Ni/ZSM-5 katalizátornak szignifikáns hatása volt az egyes komponensek mennyiségére. Más részről a kifejtett hatás jelentősen változott a regenerálási ciklusok előrehaladtával, mely a katalizátor kokszosodásával, valamint pórusainak folyamatos eltömődésével magyarázható. Megfigyltem, hogy a Ni/ZSM-5 és a Ni/Al₂O₃ szignifikáns értékkel (0,5-8,1, illetve 4,5-11,8 mmol/g alapanyag) csökkentette a szén-monoxid és a szén-dioxid mennyiségét is (az első mérési pont eredményeinek 61,0-80,9% illetve 56,3-81,4%-a (**18.** *táblázat*)) [152].

A Ni/CaO jelenlétében a szén-dioxid mennyisége a harmadik regenerálási ciklusig 0,2-1 mmol/g alapanyag értékkel csökkent, majd 1,4-4,9 mmol/g alapanyag értékkel nőtt. Ezt a szakirodalomi adatok alapján a többször alkalmazott, magas hőmérsékletű regenerálás okozta, mert annak hatására a katalizátor szinterelődhetett, ami a fajlagos felületének növekedését okozta [178-181, 152]. Megállapítottam, hogy a hidrogén és a szén-monoxid koncentrációja sorrendben 2,1-7,1 mmol/g alapanyag, illetve 3,8-8,3 mmol/g alapanyag értékkel csökkent (az első mérési pont értékeinek 18,6-61,4%, valamint 59,6-81,4%-a *(18. táblázat)*). A hidrogén csökkenése mellett a metán hozama 0,1-2,3 mmol/g alapanyag értékkel nőtt, ami a metánképződési reakcióval magyarázható.

A Ni/Klinoptilolit katalizátort alkalmazva a hidrogén- és a szén-dioxid-tartalom a regenerálási ciklusokban 1,0-7,1 mmol/g alapanyag, illetve 0,3-4,4 mmol/g alapanyag értékekkel csökkent (35,9-90,6%-a és 84,6-99,0%-a az első mérési pont eredményeinek (18. táblázat)), míg a szén-monoxid, valamint a metántartalom növekedett (1,4-3,7 mmol/g alapanyag és 0,3-2,2 mmol/g alapanyag). A szén-monoxid mennyisége a hetedik regenerálási ciklustól a továbbiakban jelentősen, 4,5-9,2 mmol/g alapanyag értékkel csökkent. Az eredmények a klinoptilolit kedvező savas tulajdonságaival magyarázhatók, míg a hetedik regenerálási ciklustól kezdődő jelentős összetételváltozás a tetraéderes szerkezetben bekövetkezett módosulással, illetve a katalizátor felületén történő kokszlerakódással magyarázható [179,180,152]. Az eredmények alapján azt is megfigyeltem, hogy a Ni/ZSM-5, valamint a Ni/Al₂O₃ esetében a 10. regenerálási ciklusig alacsonyabb volt a szén-dioxid mennyisége a regenerálás nélküli esethez képest, míg a Ni/CaO esetében ugyanezen eredmény a 3. ciklusig volt csak megfigyelhető. Ni/Klinoptilolit jelenlétében a szén-dioxid tartalom még az utolsó regenerálási ciklusban is csökkenő tendenciát mutatott, a ciklusvizsgálat elején kapott eredményekhez viszonyítva.

A komponensek mennyiségének változása a vizsgált katalizátorok (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit regenerálási ciklusainak függvényében

A 40. ábra a kísérletben keletkezett szintézisgáz hozamát szemlélteti a regenerálási ciklusok függvényében. A szintézisgáz hozama 24,9-50,5 mmol/g alapanyag tartományban változott. A Ni/ZSM-5, a Ni/Al₂O₃, valamint a Ni/CaO jelenlétében a

mennyisége kismértékben csökkent szintézisgéz a regenerálási ciklusok előrehaladásával, míg a Ni/Klinoptilolit esetében a szintézisgáz hozama a hatodik regenerálási ciklusig emelkedett (43,0-50,5 mmol/g alapanyag), majd a 7-10. regenerálási ciklusban számottevő csökkenés volt megfigyelhető. Ennek ellenére a Ni/Klinoptilolit volt a leghatékonyabb a vizsgált katalizátorok közül. A H₂/CO, valamint a CO/CO2 arányok fontos információt adnak a termékgáz további felhasználási lehetőségiről. Az eredmények alapján megállapítható, hogy a vizsgált katalizátorok jelenlétében a H₂/CO aránya 0,06-0,36 között változott, míg a CO/CO₂ aránya 0,7-1,3 között alakult. Megállapítottam, hogy a legnagyobb H2/CO arányt a regenerálási ciklusok mindegyikében a zeolit (Ni/ZSM-5, Ni/Klinoptilolit) katalizátorok adták. Az ismertetett eredmények alapján elmondható, hogy a Ni/Klinoptilolit eredményezte a legtöbb szintézisgázt. A 40. ábra adatai alapján az is jól látszik, hogy a legkevesebb szén-dioxidot a Ni/Klinoptilolit eredményezte, míg a Ni/Al₂O₃ és Ni/CaO esetében a keletkező szintézisgáz tíz regenerálási cikluson keresztül 33 mmol/g alapanyag érték alatt maradt [152].

Szintézisgáz mennyiségének változása a regenerálási ciklusok függvényében

A regenerálási ciklusokat követően a katalizátorok főbb tulajdonságait is vizsgáltam, melyeket a **19. táblázat** tartalmaz. A katalitikus pirolízis-elgázosítás során a katalizátorok dezaktiválódása erősen függ a másodlagos reakcióktól, valamint a kokszlerakódástól. Fontos megemlíteni, hogy a biomassza termokémiai degradációja során oxigéntartalmú vegyületek, például fenolok, alkoholok, ketonok és aldehidek keletkezhetnek, amelyek magasabb hőmérsékleten, illetve katalizátorok jelenlétében koksz képződés mellett bomlanak. A keletkező koksz eltömíti a katalizátorok pórusait, emellett beborítja a felületét is és ezáltal csökkenti az aktivitást. A táblázatban feltüntetett eredmények alapján megfigyelhető, hogy a Ni/ZSM-5 és a Ni/Klinoptilolit

mikropórusainak, illetve a Ni/CaO pórusainak eltömődést okozta. A friss katalizátorokat (*3.1.2. fejezet, 10. táblázat*) a használt és regenerált katalizátorok jellemzőit összehasonlítva elmondható, hogy a legnagyobb és legkisebb S_{BET} értékcsökkenés a használt Ni/CaO (54%), valamint a használt Ni/ZSM-5 (17%) katalizátorok esetében volt megfigyelhető. A Si/Al arány és a mikropórusos térfogat enyhe csökkenést mutatott a Ni/ZSM-5 és a Ni/Klinoptilolit katalizátoroknál, ami a részben gátolt, illetve nehezen megközelíthető savas centrumokkal magyarázható. Emellett fontos megjegyezni, hogy a friss Ni/CaO, valamint Ni/Al₂O₃ katalizátorok nem tartalmaztak mikropórusokat, míg a használt és regenerált katalizátor már mikropórusokkal rendelkezett. Ezen eredmény a vizsgált katalizátor szinterelésével magyarázható, amelyet a 700°C-on történő többszöri használat, valamint a 800°C-on végzett többszöri regenerálás okozta. Az alacsony hőmérsékletű pirolízis-elgázosítás során a fő cél a szén-dioxid mennyiségének csökkentése volt, a szintézisgáz hozam növelése mellett. A vizsgálatok során nemcsak a hőmérséklet és a katalizátorok hatását, hanem a katalizátorok regenerálási ciklusait is vizsgáltam.

19. táblázat

A használt és a regenerált katalizátorok morfológiája a 10. regenerálási ciklust követően, vízgőz nélküli elgázosítás során

	0154205143 50141											
	Ni/ZSM-5	Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/Al ₂ O ₃	Ni/CaO	Ni/CaO	Ni/Klinoptilolit	Ni/Klinoptilolit				
	kokszos	regenerált	kokszos	regenerált	kokszos	regenerált	kokszos	regenerált				
Si/Al	16,1	16,0	-	-	-	-	4,5	4,5				
S _{BET} , m ² /g	279,4	287,7	2,1	2,1	19,4	44,7	13,9	12,7				
S _{micro} , m ² /g	164,5	166,9	1,6	1,8	2,2	2,9	0,9	1,0				
V _{micro} , m ² /g	0,0765	0,0777	0,0007	0,0008	0,0009	0,0011	0,0003	0,0004				
V, cm ³ /g	0,1191	0,1088	0,0209	0,0152	0,0943	0,1736	0,1028	0,0890				
D _{av} , nm	5,7	4,9	66,5	54,3	10,2	14,6	21,3	20,0				

alacsonv hőmérsékletű, vízgőzmentes katalitikus elgázosítás Az során megállapítottam, hogy valamennyi katalizátornál a C2-C5 szénhidrogének mennyisége jelentősen megnövekedett, kiváltképp a Ni/ZSM-5 jelenlétében, amit a katalizátor kokszosodása, illetve póruseltömődése okozta. A termékhozamoknál, illetve a termékösszetételnél a Ni/Al₂O₃ jelenlétében leginkább a hőmérséklet hatása figyelhető meg, mivel a nikkellel impregnált katalizátor kis BET felülettel rendelkezett. A Ni/CaO kapcsán megemlíthető, hogy a számos, magas hőmérsékletű használat, illetve regenerálás mellett a katalizátor szinterelődött, így abban mikropórusok alakultak ki. Ni/Klinoptilolit jelenlétében a 6. regenerálási ciklusig jelentős növekedés volt megfigyelhető а szintézisgáz hozamában, melv katalizátor я nagy kvadrupólmomentumával magyarázható, ami elősegíti a szén-dioxid megkötését. Ezzel együtt a szén-monoxid mennyisége is növekedett. Az eredmények alapján megállapítható, hogy a nem regenerált katalizátorokhoz viszonyítva a Ni/ZSM-5 és a

Ni/CaO esetében a szén-dioxid mennyisége az 5. és 3. regenerálási ciklusig csökkent. Ugyanakkor a Ni/Klinoptilolitot alkalmazva az utolsó regenerálási ciklusban alacsonyabb szén-dioxid koncentrációk adódtak, mint a ciklusvizsgálat elején.

4.4.2. Alacsony hőmérsékletű katalitikus elgázosítás vízgőz jelenlétében

A **41.** *ábra* a termékhozamok alakulását szemlélteti, a regenerálási ciklusok függvényében a vízgőz jelenlétben végzett alacsony hőmérsékletű elgázosítás során. Az alkalmazott paraméterek megegyeznek a 4.5.1. *fejezetben* ismertetettekkel, emellett a 4.4.3. *és 4.4.4 fejezetek* alapján zajlottak, azaz 42 ml/perc nitrogén térfogatáram jelenlétében, 20 percig, 5g kukorica biomassza hulladék (0% nedvességtartalom), 5g/h vízgőz, illetve 2,5g katalizátor jelenlétében.

A termékhozam alakulása a vízgőzös elgázosítás során a regenerálási ciklusok függvényében a vizsgált katalizátorok mellett (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit

A gáztermék hozama a Ni/ZSM-5, illetve a Ni/Klinoptilolit esetében, a 4. és 6. ciklusig jelentősen csökkent, míg a Ni/CaO és a Ni/Al₂O₃ katalizátorok mellett a 2., illetve az 1. ciklustól nem volt szignifikáns különbség észlelhető. Emellett a maradék hozama közel állandó volt, míg az alkalmazott katalizátor hatékonysága jelentősen befolyásolta a gáztermék hozamát. Fontos megemlíteni, hogy a folyadéktermék hozama a regenerálási ciklusok függvényében jelentősen növekedett, különösen a Ni/CaO és a Ni/Al₂O₃ alkalmazásával (<60%) [177].

A gáztermékek összetételének változását, a még nem regenerált katalizátorok alkalmazásával kapott mérési pontokhoz viszonyítva (*42. ábra*) a *43. ábra* szemlélteti, míg a *20. táblázat* a számszerű eltéréseket tartalmazza a gáztermék hozamában, a gázösszetételben, valamint a gázösszetétel hozamában. A 42. áábrán megfigyelhető, hogy a Ni/Klinoptilolit katalizátor eredményezte a legmagasabb szén-monoxid, széndioxid, metán, valamint C_{2} - C_{5} szénhidrogén tartalmat.

A komponensek hozama (alacsony hőmérsékletű, vízgőzös elgázosítás) a vizsgált katalizátorok, Ni/ZSM-5, Ni/Al₂O₃, Ni/CaO, Ni/Klinoptilolit mellett

Megfigyeltem, hogy a regenerálási ciklusok előrehaladtával a vizsgált komponensek mennyisége csökkent *(43. ábra)*, mely a gázhozam változásával magyarázható *(20. táblázat)*. A Ni/ZSM-5 esetében a szén-monoxid, illetve a szén-dioxid mennyisége a 4. regenerálási ciklustól kezdve jelentős csökkenést mutatott (25,6-12,1 mmol/g alapanyag, illetve 15,1-8,8 mmol/g alapanyag, mely 48,3-73,2%-a és 70,1-98,7%-a az első mérési pont eredményeinek *(20. táblázat)*). A hidrogén és a metán hozama 6,3 mmol/g alapanyag és 5,4 mmol/g alapanyag alatti volt, míg a C₂-C₅ szénhidrogének részarányában az 5. ciklusig enyhe növekedés volt megfigyelhető, ami a kokszlerakódás okozta csökkenő katalitikus aktivitással magyarázható [177].

Ni/Klinoptilolit jelenlétben (43. ábra) az 5. regenerálási ciklusig nagy mennyiségű szén-monoxid keletkezett (3,7-25,9 mmol/g alapanyag, mely 105,7-181,1%-a az első mérési pontnak (20. táblázat)), míg a szén-dioxid mennyisége jelentős csökkenést mutatott (24,2-40,5 mmol/g alapanyag értékkel). Más részről a hidrogén és a metán tekintetében enyhe növekedés volt megfigyelhető [177].

Ni/CaO katalizátort alkalmazva *(43. ábra)* az első ciklusban keletkezett a legtöbb hidrogén (a változás mértéke 5,3 mmol/g alapanyag volt), ami a katalizátor kisebb molekulatömegű szénhidrogénekre gyakorolt reformáló hatásával, valamint annak széndioxid megkötő képességével magyarázható. Az említett tulajdonságok, illetve a katalizátor viszonylag magas nikkeltartalma (9,2%) mellett a hidrogénhozam a vízgőzös

elgázosítás során növekedett [177,179]. A hidrogén mennyisége a 3. regenerálási ciklustól kezdve állandó értékűnek adódott (3,7-4,9 mmol/g alapanyag változás).

20. táblázat

Az eltérések (első mérési ponthoz képest) számszerű adatai az alacsony hőmérsékletű, vízgőzös elgázosításnál

	Százaláltolt altárásai			eig	azosnas	1141 N:/7	SM E				
%	Bag Ciklus	1	2	3	4	5	/SIVI-5 6	7	8	0	10
an,	Reg. Cikius	17	-23	-14	-20	-0.5	-3.5	-8.8	-93	-11.0	-12.2
qu		1,7	-2,5	-1,4	-2,0	-0,5 Ni/	-5,5 ALO2	-0,0	-7,5	-11,0	-12,2
Zaı	Reg Ciklus	1	2	3	4	5	6	7	8	9	10
cho	Rog. Cikius	0.2	-04	-0.6	-1.2	-30	-5.6	-6.1	-7.0	-78	-8.1
gáz		0,2	0,1	0,0	-,-	Ni/	CaO	0,1	7,0	7,0	0,1
a	Reg Ciklus	1	2	3	4	5	6	7	8	9	10
ség	rtog. Onitus	-21.3	-24.4	-24.9	-26.1	-27.5	-21.8	-23.2	-24.3	-24.9	-27.9
qu		,.	, .	,,		Ni/Klir	noptilolit	,_	,.	,,	,,
ölü	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
Ki		-3,1	-10,3	-10,7	-14,7	-25,1	-18,6	-20,0	-26,0	-26,9	-21,5
	Százalékok eltérései	- /	- /-	- , -	, .	Ni/Z	SM-5	.,.	- / -	-)-	1-
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H ₂	3.7	0.2	2.2	3.3	2.8	2.8	2.0	2.9	2.4	1.6
	CO	-5.1	-7.0	-10.5	-11.7	-12.6	-10.3	-12.3	-8.4	-9.6	-12.4
	CH_4	-0,7	-0,8	-0,2	0,0	0,4	-0,4	0,7	-0,1	-0,6	0,2
	CO_2	3,1	4,9	5,9	6,4	5,7	6,7	4,7	2,5	3,8	3,1
	C2-C6	-1,0	2,7	2,5	2,1	3,7	1,2	5,0	3,1	4,1	7,5
						Ni//	Al ₂ O ₃				
%	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
en,	H_2	-2,3	-4,8	-4,6	-6,4	-4,6	-4,4	-3,9	-3,9	-4,2	-4,5
elb	CO	1,8	3,7	2,8	2,5	1,4	1,8	-0,4	-0,4	-1,0	-1,2
téte	CH ₄	0,7	2,0	1,5	1,8	0,5	1,1	1,3	1,0	1,5	1,1
Zel	CO_2	-5,2	-7,4	-4,9	-4,4	-3,0	-3,9	-3,0	-2,3	-2,1	-1,0
öse	C_2-C_6	3,6	6,4	5,1	6,5	5,7	5,4	5,9	5,6	5,7	5,6
gáz						Ni/	CaO				
8	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ség	H_2	-0,7	-5,7	-9,8	-11,1	-11,2	-10,3	-11,8	-11,3	-10,5	-11,1
qu	СО	1,5	4,0	3,8	2,3	2,6	2,0	4,3	2,1	1,1	0,1
ilö	CH ₄	-0,7	0,2	1,8	1,0	1,2	1,1	1,8	1,5	0,7	0,9
Ki	CO_2	-0,4	1,4	1,6	1,5	2,7	2,7	-0,4	1,7	5,0	5,6
	C_2-C_6	0,3	0,2	2,6	6,2	4,8	4,4	6,1	6,0	3,7	4,5
	D CTU		•	•		Ni/Klir	noptilolit	-		0	10
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
		6.2	0,9	1,0	2,7	5,0	2,1	0,0	1,0	2,5	10.0
	CH	-0,5	-7,0	-10,8	-10,5	-11,4	-14,2	-14,1	-10,6	-12,7	-10,9
	CO ₄	-0,4	1.9	5.1	2,4	7.9	0,0	10.5	-0,5	7.9	1,0
	Co-Cr	0.5	3.8	3.8	6.2	0.5	2.5	2 4	1.2	24	4,1
	mmal/a ártákak	0,0	5,6	5,6	0,2	0,0	2,0	2, :	1,2	2, :	.,>
	eltérései %-han					Ni/Z	SM-5				
	Reg Ciklus	1	2	3	4	5	6	7	8	9	10
	H ₂	553.6	173.9	304.8	271.2	258.1	233.4	156.7	190.7	160.0	120.3
	CO	160.7	137.6	108.0	73.2	75.1	71.8	56.4	60.5	54.5	48.3
	CH ₄	153.6	133.6	130.6	93.5	106.2	82.7	82.4	70.8	58.4	65.5
	CO ₂	197.9	186.2	163.3	95.5	98.7	90.9	85.8	78.4	75.6	70.1
	C2-C6	163.5	193.9	162.5	110.0	128.2	98.3	103.2	89.9	88.6	101.2
	Szintézisgáz	173,1	138,7	114,2	79,5	80,9	76,9	59,6	64,6	57,9	50,5
%	-					Ni//	Al ₂ O ₃				
an,	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ábs	H_2	84,4	64,4	65,2	50,9	58,7	53,3	54,7	52,1	48,4	46,1
Ë,	CO	106,8	110,0	106,3	102,8	92,1	82,4	75,0	71,5	67,3	65,6
3Z0	CH_4	117,6	144,0	131,6	134,8	98,7	97,7	97,6	88,5	92,6	85,2
ЧI	CO_2	87,8	80,1	85,7	84,7	81,6	70,3	70,2	68,0	65,7	66,5
éte	C_2-C_6	95,8	109,6	95,8	101,4	76,8	68,6	69,1	71,4	67,8	65,0
zet	Szintézisgáz	100,0	96,2	93,8	87,0	82,0	73,6	68,8	65,6	61,6	59,6
öss						Ni/	CaO				
jáz	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ag				250	20.7	19.2	27.0	21.6	21.8	23.3	19,0
és	H ₂	54,2	35,6	25,0	20,7			,-	21,0	20,0	
•	H ₂ CO	54,2 58,8	35,6 56,2	25,0 55,0	20,7 49,8	47,2	58,8	59,6	53,6	50,6	42,9
ltér	H ₂ CO CH ₄	54,2 58,8 48,0	35,6 56,2 51,7	25,0 55,0 68,3	20,7 49,8 57,0	47,2 54,8	58,8 68,6	59,6 72,9	53,6 66,5	50,6 56,6	42,9 50,9
Eltér	H ₂ CO CH ₄ CO ₂	54,2 58,8 48,0 55,5	35,6 56,2 51,7 51,9	25,0 55,0 68,3 51,3	20,7 49,8 57,0 48,4	47,2 54,8 47,0	58,8 68,6 59,8	59,6 72,9 51,7	53,6 66,5 52,7	50,6 56,6 56,2	42,9 50,9 49,8
Eltér	H2 CO CH4 CO2 C2-C6	54,2 58,8 48,0 55,5 57,6	35,6 56,2 51,7 51,9 51,1	25,0 55,0 68,3 51,3 60,7	20,7 49,8 57,0 48,4 72,9	47,2 54,8 47,0 63,1	58,8 68,6 59,8 78,2	59,6 72,9 51,7 82,3	53,6 66,5 52,7 78,1	50,6 56,6 56,2 65,6	42,9 50,9 49,8 60,8
Eltér	H2 CO CH4 CO2 C2-C6 Szintézisgáz	54,2 58,8 48,0 55,5 57,6 57,0	35,6 56,2 51,7 51,9 51,1 48,2	25,0 55,0 68,3 51,3 60,7 43,2	20,7 49,8 57,0 48,4 72,9 38,4	47,2 54,8 47,0 63,1 36,2	58,8 68,6 59,8 78,2 46,3	59,6 72,9 51,7 82,3 44,7	53,6 66,5 52,7 78,1 41,1	50,6 56,6 56,2 65,6 39,9	42,9 50,9 49,8 60,8 33,6
Eltér	H ₂ CO CH ₄ CO ₂ C ₂ ·C ₆ Szintézisgáz	54,2 58,8 48,0 55,5 57,6 57,0	35,6 56,2 51,7 51,9 51,1 48,2	25,0 55,0 68,3 51,3 60,7 43,2	20,7 49,8 57,0 48,4 72,9 38,4	47,2 54,8 47,0 63,1 36,2 Ni/Klin	58,8 68,6 59,8 78,2 46,3 noptilolit	59,6 72,9 51,7 82,3 44,7	53,6 66,5 52,7 78,1 41,1	50,6 56,6 56,2 65,6 39,9	42,9 50,9 49,8 60,8 33,6
Eltér	H2 CO CH4 CO2 C2-C6 Szintézisgáz Reg. Ciklus	54,2 58,8 48,0 55,5 57,6 57,0 1 214,3	35,6 56,2 51,7 51,9 51,1 48,2 2	25,0 55,0 68,3 51,3 60,7 43,2 3	20,7 49,8 57,0 48,4 72,9 38,4 4 245,6	47,2 54,8 47,0 63,1 36,2 Ni/Klin 5 203 6	58,8 68,6 59,8 78,2 46,3 moptilolit 6	59,6 72,9 51,7 82,3 44,7 7	21,0 53,6 66,5 52,7 78,1 41,1 8 121,5	23,5 50,6 56,6 56,2 65,6 39,9 9	42,9 50,9 49,8 60,8 33,6 10
Eltér	H2 CO CH4 CO2 C2-C6 Szintézisgáz Reg. Ciklus H2 CO	54,2 58,8 48,0 55,5 57,6 57,0 1 214,3 181.0	35,6 56,2 51,7 51,9 51,1 48,2 2 188,5 157,9	25,0 55,0 68,3 51,3 60,7 43,2 3 192,1 145,1	20,7 49,8 57,0 48,4 72,9 38,4 4 245,6 118 5	47,2 54,8 47,0 63,1 36,2 Ni/Klin 5 203,6 105 7	58,8 68,6 59,8 78,2 46,3 noptilolit 6 116,6	59,6 72,9 51,7 82,3 44,7 7 82,0 62.0	21,3 53,6 66,5 52,7 78,1 41,1 8 121,5 78,4	23,5 50,6 56,6 56,2 65,6 39,9 9 129,1 72.8	42,9 50,9 49,8 60,8 33,6 10 117,0 80,8
Eltér	H2 CO CH4 CO2 C2-C6 Szintézisgáz Reg. Ciklus H2 CO CO	54,2 58,8 48,0 55,5 57,6 57,0 1 214,3 181,0 149,8	35,6 56,2 51,7 51,9 51,1 48,2 2 188,5 157,9	25,0 55,0 68,3 51,3 60,7 43,2 3 192,1 145,1 169,1	20,7 49,8 57,0 48,4 72,9 38,4 4 245,6 118,5 196,6	47,2 54,8 47,0 63,1 36,2 Ni/Klin 5 203,6 105,7 106,2	58,8 68,6 59,8 78,2 46,3 noptilolit 6 116,6 66,2 81,6	59,6 72,9 51,7 82,3 44,7 7 82,0 62,9 75 3	21,3 53,6 66,5 52,7 78,1 41,1 8 121,5 78,4 60 1	25,5 50,6 56,6 56,2 65,6 39,9 9 129,1 72,8 77,0	42,9 50,9 49,8 60,8 33,6 10 117,0 89,8 106 6
Eltér	H $_2$ CO CH $_4$ CO $_2$ -C $_6$ Szintézisgáz Reg. Ciklus H $_2$ CO CH $_4$ CO	54,2 58,8 48,0 55,5 57,6 57,0 1 214,3 181,0 149,8 78,7	35,6 56,2 51,7 51,9 51,1 48,2 2 188,5 157,9 158,9 81,4	25,0 55,0 68,3 51,3 60,7 43,2 3 192,1 145,1 169,1 73,6	20,7 49,8 57,0 48,4 72,9 38,4 4 245,6 118,5 196,6 66 4	47,2 54,8 47,0 63,1 36,2 Ni/Klin 5 203,6 105,7 106,2 64 3	58,8 68,6 59,8 78,2 46,3 noptilolit 6 116,6 66,2 81,6 58 1	59,6 72,9 51,7 82,3 44,7 7 82,0 62,9 75,3 58 1	8 121,5 53,6 66,5 52,7 78,1 41,1 8 121,5 78,4 69,1 62,2	25,5 50,6 56,6 56,2 65,6 39,9 9 129,1 72,8 77,0 59,7	42,9 50,9 49,8 60,8 33,6 10 117,0 89,8 106,6 61,8
Eltér	H_2 CO CH_4 CO_2 $C_2 \cdot C_6$ $Szintézisgáz$ $Reg. Ciklus$ H_2 CO CH_4 CO_2 CO_2 $C_2 \cdot C_4$	54,2 58,8 48,0 55,5 57,6 57,0 1 214,3 181,0 149,8 78,7 192,7	35,6 56,2 51,7 51,9 51,1 48,2 2 188,5 157,9 158,9 81,4 215 3	25,0 55,0 68,3 51,3 60,7 43,2 3 192,1 145,1 169,1 73,6 213,4	20,7 49,8 57,0 48,4 72,9 38,4 4 245,6 118,5 196,6 66,4 227,9	47,2 54,8 47,0 63,1 36,2 Ni/Klin 5 203,6 105,7 106,2 64,3 124,2	58,8 68,6 59,8 78,2 46,3 noptilolit 6 116,6 66,2 81,6 58,1 96,0	59,6 72,9 51,7 82,3 44,7 7 82,0 62,9 75,3 58,1 90,3	8 121,5 53,6 66,5 52,7 78,1 41,1 8 121,5 78,4 69,1 62,2 96,1	25,6 56,6 56,2 65,6 39,9 9 129,1 72,8 77,0 59,7 101,7	42,9 50,9 49,8 60,8 33,6 10 117,0 89,8 106,6 61,8 141,5
Eltér	$\begin{array}{c} H_2\\ H_2\\ CO\\ CH_4\\ CO_2\\ C_2\text{-}C_6\\ Szintézisgáz\\ \hline\\ Reg. Ciklus\\ H_2\\ CO\\ CH_4\\ CO_2\\ C_2\text{-}C_6\\ Szintézisgáz\\ \hline\end{array}$	54,2 58,8 48,0 55,5 57,6 57,0 1 214,3 181,0 149,8 78,,7 192,7 183,3	35,6 56,2 51,7 51,9 51,1 48,2 2 188,5 157,9 158,9 81,4 215,3 160,0	25,0 55,0 68,3 51,3 60,7 43,2 3 192,1 145,1 169,1 73,6 213,4 148,4	20,7 49,8 57,0 48,4 72,9 38,4 4 245,6 118,5 196,6 66,4 227,9 127 3	47,2 54,8 47,0 63,1 36,2 Ni/Klin 5 203,6 105,7 106,2 64,3 124,2 112,5	58,8 68,6 59,8 78,2 46,3 noptilolit 6 116,6 66,2 81,6 58,1 96,0 69 7	59,6 72,9 51,7 82,3 44,7 7 82,0 62,9 75,3 58,1 90,3 64,2	8 121,5 53,6 66,5 52,7 78,1 41,1 8 121,5 78,4 69,1 62,2 96,1 81 4	25,6 56,6 56,2 65,6 39,9 9 129,1 72,8 77,0 59,7 101,7 76,7	42,9 50,9 49,8 60,8 33,6 10 117,0 89,8 106,6 61,8 141,5 91 7

A Ni/CaO szén-dioxid megkötő képessége azonban az 1. regenerálási ciklustól jelentős csökkenést (14,3-17,9 mmol/g alapanyag) mutatott, mely valószínű oka az előbb említett szinterelés volt. Megállapítottam, hogy a szén-monoxid hozamban szignifikáns csökkenés volt megfigyelhető [177].

Ni/Al₂O₃ jelenlétében *(43. ábra)* az 5. regenerálási ciklustól a szén-dioxid és a C₂-C₅ szénhidrogének részarányai enyhe csökkenést mutattak, sorrendben 0,6-3,0 mmol/g alapanyag és 1,0-2,7 mmol/g alapanyag értékekkel (mely az első mérési pont 81,6-87,8%-a és 76,8-109,6%-a *(20. táblázat)*), míg a szén-monoxid mennyisége a regenerálási ciklusok mindegyikében jelentősen, 4,8-12,8 mmol/g alapanyag értékkel csökkent. A Ni/CaO, illetve a Ni/Al₂O₃ alkalmazása mellett kapott eredményeket összevetve, a legtöbb esetben szignifikáns különbség adódott a szén-dioxid tartalomban (17,8-33,6%). Ennek ellenére a CO/CO₂ arányt vizsgálva megállapítható, hogy a Ni/Al₂O₃ katalizátorral közel azonos eredményeket kaptam (0,79-1,1), mint a Ni/CaO (0,8-1,1) esetében. Továbbá a metántartalom is közel állandó értékeket mutatott (~4,4 mmol/g alapanyag maximális érték), mely az első reaktorzónában alkalmazott alacsonyabb (400°C) hőmérséklettel magyarázható [177].

A komponensek mennyiségének változása a vizsgált katalizátorok (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit regenerálási ciklusainak függvényében

A *44. ábrán* a szintézisgáz hozamának változása figyelhető meg a regenerálási ciklusok előrehaladtával. Elmondható, hogy Ni/ZSM-5 és Ni/Klinoptilolit jelenlétében a szintézisgáz hozama jelentősen csökkent a 6., míg Ni/CaO mellett az 5. regenerálási ciklusig, továbbá a Ni/Al₂O₃ jelenlétében a változás nem volt számottevő. A Ni/Klinoptilolit jelenlétében a 6-10. regenerálási ciklus között enyhe növekedés (5,0-10,5%) adódott a szintézisgáz hozamban. Megállapítható, hogy a Ni/ZSM-5 hatékonysága nem mutatott javulást a regenerálási ciklusok előrehaladtával, mely a korábbiakban említett aktivitás csökkenéssel magyarázható. A Ni/CaO jelenlétében, az első méréshez viszonyítva a szintézisgáz hozam az 5. regenerálási ciklusig 21,4-31,8 mmol/g alapanyag értékkel csökkent, azonban a 6-10. regenerálási ciklusokban ez az érték közel 20%-kal növekedett [177].

Szintézisgáz mennyiségének változása a regenerálási ciklusok függvényében a vízgőzös elgázosítás során

A 21. táblázat a használt, illetve a regenerált katalizátorok főbb jellemzőit foglalja össze. Megfigyelhető, hogy a regenerálást követően a fajlagos felületek, a pórusátmérők, valamint a pórustérfogat értékei nőttek, mely a koksztartalom eltávolításával, valamint a sokszori regenerálást követő lehetséges aprózódással is magyarázható.

A használt és a regenerált katalizátorok morfológiája a 10. regenerálási ciklust követően, vízgőzős elgázosítás során Ni/ZSM-5 Ni/ZSM-5 Ni/Al₂O₃ Ni/Al₂O₃ Ni/CaO Ni/CaO Ni/Klinoptilolit Ni/Klinoptilolit kokszos regenerált kokszos regenerált kokszos regenerált kokszos regenerált

21. táblázat

	kokszos	regenerált	kokszos	regenerált	kokszos	regenerált	kokszos	regenerált
Si/Al	18,9	17,8	-	-	-	-	4,7	4,8
S _{BET} , m ² /g	289,5	289,9	1,3	2,0	40,4	50,1	11,5	12,9
S _{micro} , m ² /g	169,6	165,9	0,7	0,8	1,2	2,0	2,1	2,8
V _{micro} , m ² /g	0,0792	0,0773	0,0004	0,0213	0,0009	0,0011	0,0008	0,0012
V, cm ³ /g	0,1163	0,1324	0,0085	0,0112	0,1112	0,1621	0,0956	0,1021
Dav, nm	5,2	5,9	28,7	38,9	7,3	8,9	22,4	24,5

Emellett megállapítottam, hogy a Si/Al arányt a többszöri regenerálás jelentősen nem befolyásolta. Továbbá fontos megemlíteni, hogy a Ni/Al₂O₃, valamint a Ni/CaO esetében is kialakultak mikropórusok, mely a korábbiakban említett

hőmérsékletváltozással és a magas hőmérséklettel magyarázható [177,179]. A vizsgált katalizátorok hatását összehasonlítva többnyire a természetes zeolit eredményezte a legtöbb szintézisgázt, ami a klinoptilolit szén-dioxid megkötő hatásával, illetve savas jellegével magyarázható.

A bemutatott eredményeket, a korábbi, vízgőz nélküli eredményekkel (4.5.1 fejezet) összevetve megállapítható, hogy megfelelő katalizátor, valamint vízgőz jelenlétében, közel 35,0 mmol/g alapanyag értékkel növelhető a szintézisgáz hozama. Ni/ZSM-5 katalizátort alkalmazva vízgőz jelenlétében közel 10,3-30,1 mmol/g alapanyag értékkel több szintézisgáz keletkezett. Ni/Al2O3 alkalmazásával kevesebb szintézisgáz keletkezett vízgőzzel, mint anélkül, mely arra utal, hogy a Ni/Al2O3 a vizsgált körülmények között, nem alkalmas a vízgőzös elgázosításban. A Ni/CaO tekintetében enyhe csökkenést tapasztaltam (20,4-30,2 mmol/g alapanyag), a vízgőzmentes kísérletekhez viszonyítva vízgőz alkalmazásával. A Ni/Klinoptilolit eltérő tendenciát mutatott vízgőzzel és anélkül, mivel vízgőz alkalmazása nélkül a szintézisgáz hozama a 6. ciklusig javult (43,0-50,5 mmol/g alapanyag), míg vízgőzzel folyamatos csökkenés mellett, nagyobb értéket (35,1-80,8 mmol/g alapanyag) vett fel. Végül megállapítható, hogy a vízgőz jelenlétében végzett elgázosítás során Ni/ZSM-5 mellett a 4., míg Ni/CaO, illetve Ni/Al₂O₃ esetében a 6. regenerálási ciklustól nem tapasztaltam változást a gáztermék összetételében. Továbbá Ni/Klinoptilolit szignifikáns katalizátorral a vizsgált gázkomponensek az 5. regenerálási ciklusig számottevően csökkentek.

4.4.3. Magas hőmérsékletű katalitikus elgázosítás vízgőz nélkül

Az alacsony hőmérsékletű elgázosítást követően, a 4.4.1. fejezetben említett, magasabb első reaktor hőmérséklet (800°C) alkalmazásával vizsgáltam a második reaktor hőmérsékletének termékhozamra és gázösszetételre gyakorol hatását. Katalizátorként a 3.1.2. fejezetben bemutatott katalizátorokat alkalmaztam, és elsősorban a szintézisgáz, illetve a szén-dioxid hozam változását vizsgáltam. A reakciókörülmények a korábbiakban említettek voltak, azaz 42 ml/perc nitrogén térfogatáram jelenlétében, 20 percig zajlottak a vizsgálatok, 5g kukorica biomassza hulladék (0% nedvességtartalom), illetve 2,5g katalizátor jelenlétében.

A **45.** *ábra* a termékhozamok változását szemlélteti a különböző katalizátorok jelenlétében és a regenerálási ciklusok függvényében, 700°C hőmérsékletű második reaktorzónát alkalmazva. A reakciókörülmények a korábbiakban említettek voltak, azaz

42 ml/perc nitrogén térfogatáram jelenlétében, 20 percig zajlottak a vizsgálatok, 5g kukorica biomassza hulladék (0% nedvességtartalom), illetve 2,5g katalizátor jelenlétében. Megállapítottam, hogy a maradék mennyisége minden esetben 20% körüli volt. A folyadék-, illetve a gáztermék hozama ellentétes tendenciát mutatott. A Ni/ZSM-5 és a Ni/Klinoptilolit katalizátort alkalmazva, a regenerálási ciklusok előrehaladtával, a gáztermék hozama 53,4%-ról 44,2%-ra, míg a folyadékterméké 26,9%-ról 36,5%-ra változott. A Ni/Al₂O₃ jelenlétében a gáztermék hozama alacsonyabb volt (48,1-41,1%). Hasonló eredményeket lehetett megfigyelni a Ni/CaO esetében is, ahol a Ni/Al₂O₃-hoz hasonlítva 5% alatti volt a különbség.

A termékhozam alakulása a vízgőzmentes, magas hőmérsékletű elgázosítás során a regenerálási ciklusok függvényében (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit

A gáztermék komponenseinek regenerálás előtti elgázosításához képest (46. ábra) számított különbségeit a 47. ábra szemlélteti, míg a 22. táblázat a számszerű eltéréseket tartalmazza a gáztermék hozamában, a gázösszetételben, valamint a gázösszetétel hozamában a regenerálási ciklusok függvényében.

46. ábra

A komponensek hozama (magas hőmérsékletű, vízgőzmentes elgázosítás) a vizsgált katalizátorok, Ni/ZSM-5, Ni/Al₂O₃, Ni/CaO, Ni/Klinoptilolit mellett

A *46. ábra* alapján megállapítható, hogy a Ni/ZSM-5 eredményezte a legmagasabb metán, hidrogén és C₂-C₅ szénhidrogén tartalmat, míg a szén-monoxid tartalom a Ni/Al₂O₃ és Ni/Klinoptilolit katalizátorok esetében kimagasló.

22. táblázat

Az eltérések (első mérési ponthoz képest) számszerű adatai a magas hőmérsékletű, vízgőzmentes elgázosításnál

৾৽	Százalékok eltérései			0		Ni/2	ZSM-5				
1, %	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
раг		-0,7	-1,3	-2,6	-3,6	-4,5	-5,5	-6,3	-7,5	-8,1	-9,2
am		_				Ni/	Al ₂ O ₃	_			
poz	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
gázl		-0,4	-1,4	-2,0	-2,9	-3,7 Ni	-4,3 /CaO	-4,8	-5,5	-0,5	-/,1
8	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ség	6	-0,4	-1,0	-1,4	-2,1	-2,6	-3,2	-3,6	-4,2	-4,5	-5,1
dni						Ni/Kli	noptilolit				
Kälk	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
Ť	~	-1,0	-2,2	-2,8	-4,1	-4,7	-5,3	-5,9	-6,7	-6,9	-7,5
	Százalékok eltérései Bog Ciklus	1	2	2	4	Ni/2	LSM-5	7	Q	0	10
	H ₂	-1.6	-0.2	0.0	-04	03	-0.8	-12	-3.2	-16	-0.6
	CO	1,6	4,1	6,5	5,2	7.8	8,8	9,2	9,2	10,1	10,0
	CH_4	-3,1	-1,1	-1,1	0,7	-0,2	-1,3	-1,5	-1,7	-1,9	-1,2
	CO_2	0,6	0,4	-0,7	-1,4	-1,5	0,8	-3,4	1,4	0,2	-1,6
	C_2-C_6	2,4	-3,1	-4,6	-4,0	-6,3	-7,6	-3,0	-5,7	-6,9	-6,5
~	Pag Ciklus	1	2	2	4	N1/	Al ₂ O ₃	7	0	0	10
, u	H ₂	39	13	38	40	26	47	33	o 3.1	28	3.0
lbe	CO	-7,5	-5,7	-3,4	-5,8	-4,0	-9,7	-9,1	-9,4	-9,2	-10,6
téte	CH ₄	0,3	0,5	0,9	2,3	1,0	1,0	-1,1	0,5	1,1	0,6
szet	CO_2	2,3	4,0	0,8	-0,8	3,0	4,9	7,8	5,8	4,7	8,3
zös:	C_2-C_6	1,0	-0,1	-2,1	0,4	-2,5	-0,9	-0,9	0,0	0,5	-1,2
gá	Pag Ciklus	1	2	2	4	5 NI	/CaO	7	Q	0	10
80 00	H ₂	13	-2.3	-2.9	-2.6	-32	-49	-31	-14	01	-0.8
bsé	CO	-0,4	3,5	4,8	2,6	2,0	4,2	1,5	1,2	1,0	-1,5
lön	CH_4	0,9	-0,1	-0,5	0,8	1,9	1,2	1,1	1,5	0,3	0,9
Kü	CO ₂	-0,7	-1,3	0,0	-0,5	-2,6	0,2	-0,7	-2,2	-1,3	0,2
	C_2-C_6	0,6	0,2	-1,5	-0,3	2,0	-0,7	1,3	0,9	0,0	0,1
	Reg Ciklus	1	2	3	4	NI/KII 5	noptilolit	7	8	9	10
	H ₂	-1.4	0.0	1.7	-0.8	1.2	1.2	0.2	-2.7	-1.0	0.0
	CO	0,8	-3,3	-4,2	-8,8	-4,2	-1,2	-0,9	-1,7	-2,2	-2,1
	CH_4	-0,4	1,2	1,8	3,3	1,4	1,2	1,6	1,4	1,5	1,3
	CH ₄ CO ₂	-0,4 1,5	1,2 0,0	1,8 2,5	3,3 6,0	1,4 1,7	1,2 -1,3	1,6 -0,4	1,4 2,5	1,5 1,9	1,3 3,0
	CH ₄ CO ₂ C ₂ -C ₆	-0,4 1,5 -0,4	1,2 0,0 2,1	1,8 2,5 -1,7	3,3 6,0 0,4	1,4 1,7 -0,1	1,2 -1,3 0,1	1,6 -0,4 -0,5	1,4 2,5 0,5	1,5 1,9 -0,2	1,3 3,0 -2,2
	CH4 CO2 C2-C6 mmol/g értékek eltérései	-0,4 1,5 -0,4	1,2 0,0 2,1	1,8 2,5 -1,7	3,3 6,0 0,4	1,4 1,7 -0,1	1,2 -1,3 0,1	1,6 -0,4 -0,5	1,4 2,5 0,5	1,5 1,9 -0,2	1,3 3,0 -2,2
	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus	-0,4 1,5 -0,4	1,2 0,0 2,1 2	1,8 2,5 -1,7 3	3,3 6,0 0,4 4	1,4 1,7 -0,1 Ni/2	1,2 -1,3 0,1 ZSM-5 6	1,6 -0,4 -0,5 7	1,4 2,5 0,5	1,5 1,9 -0,2 9	1,3 3,0 -2,2
	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂	-0,4 1,5 -0,4 1 86,1	1,2 0,0 2,1 2 95,7	1,8 2,5 -1,7 3 94,9	3,3 6,0 0,4 4 89,9	1,4 1,7 -0,1 Ni/Z 5 93,9	1,2 -1,3 0,1 ZSM-5 6 84,2	1,6 -0,4 -0,5 7 79,7	1,4 2,5 0,5 8 63,4	1,5 1,9 -0,2 9 74,1	1,3 3,0 -2,2 10 78,8
	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO	-0,4 1,5 -0,4 1 86,1 103,2	1,2 0,0 2,1 2 95,7 109,4	1,8 2,5 -1,7 3 94,9 113,4	3,3 6,0 0,4 4 89,9 107,5	1,4 1,7 -0,1 Ni /2 5 93,9 112,6	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1	1,6 -0,4 -0,5 7 79,7 112,0	1,4 2,5 0,5 8 63,4 109,4	1,5 1,9 -0,2 9 74,1 110,0	1,3 3,0 -2,2 10 78,8 107,0
	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄	-0,4 1,5 -0,4 1 86,1 103,2 66,2	1,2 0,0 2,1 2 95,7 109,4 85,5	1,8 2,5 -1,7 3 94,9 113,4 83,5	3,3 6,0 0,4 4 89,9 107,5 100,0	1,4 1,7 -0,1 Ni/Z 5 93,9 112,6 89,2	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5	1,6 -0,4 -0,5 7 79,7 112,0 73,6	1,4 2,5 0,5 8 63,4 109,4 70,0	1,5 1,9 -0,2 9 74,1 110,0 67,9	1,3 3,0 -2,2 10 78,8 107,0 71,6
	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ CH ₄ CO ₂	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 70,0	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 92,7	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4	1,4 1,7 -0,1 Ni/Z 5 93,9 112,6 89,2 86,6 57,2	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 2,4	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9
	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szirtéziszéz	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98 7	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105 4	1,6 -0,4 -0,5 79,7 112,0 73,6 77,4 72,3 103,4	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5
	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8	1,4 1,7 -0,1 Ni/2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al2O3	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5
, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH CO CH CO CH CO CO CH CO C2-C ₆ Szintézisgáz Reg. Ciklus	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4	1,4 1,7 -0,1 Ni/Z 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni/ 5	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al₂O₃ 6	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10
ban, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni / 5 118,0	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O ₃ 6 137,2	1,6 -0,4 -0,5 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9
mában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 83,8	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni / 5 118,0 84,5	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al₂O3 6 137,2 72,2 72,2	1,6 -0,4 -0,5 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9
ızamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 109,0	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 (20,0)	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /5 118,0 84,5 105,0 84,5	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O ₃ 137,2 72,2 103,9 109,2	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 71,9 4	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 102,5	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8
el hozamában, %	CH_4 CO_2 C_2-C_6 mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CH ₄ CO ₂ C ₂ -C ₆	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79 1	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /2 5 118,0 84,5 105,0 103,5 72,7	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O ₃ 6 137,2 72,2 103,9 109,2 84,3	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6
tétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CH ₄ CO CH ₄ CO CH ₄ CO Szintézisgáz	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /5 118,0 84,5 105,0 103,5 72,7 90,0	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O ₃ 6 137,2 72,2 103,9 109,2 84,3 82,9	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7
szetétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CH ₄ CO CH ₄ CO CH ₄ CO CH ₄ CO CH ₄ CO CH ₄ CO CH ₄ CO CSzintézisgáz	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /2 5 118,0 84,5 105,0 103,5 72,7 90,0 Ni	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O ₃ 6 137,2 72,2 103,9 109,2 84,3 82,9 /CaO	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7
zősszetétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CH ₄ CO CC ₂ -C ₆	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 86,6 89,2 86,6 5 7,3 107,6 Ni /2 5 118,0 84,5 105,0 103,5 72,7 90,0 Ni	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al₂O₃ 6 137,2 72,2 103,9 109,2 84,3 82,9 //CaO 6	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9 9	1.3 3.0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10
gázösszetétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CH ₄ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,0 108,8 108,9 108,	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 766,2 200,7	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 (102,6)	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /2 5 118,0 84,5 105,0 103,5 72,7 90,0 Ni	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 49 ,3 105,4 6 137,2 72,2 103,9 109,2 84,3 82,9 109,2 84 ,3 82,9 6 6 6 7 7 7 7 7 7 7 7 7 7	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7 70,6 6,60	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 81,6	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9 9 90,7 90,7	1.3 3.0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 65,5
és a gázösszetétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CH ₄ CO CO CH ₄ CO CC C ₂ -C ₆	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,9 109,9 10,	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2 07,2	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 01,3	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4	1,4 1,7 -0,1 Nit/2 5 93,9 112,6 89,2 86,6 57,3 107,6 84,5 118,0 84,5 105,0 103,5 72,7 90,0 Nit 5 71,6 99,5 114,7	1,2 -1,3 0,1 25M-5 6 84,2 113,1 77,5 92,4 49,3 105,4 6 137,2 72,2 103,9 109,2 84,3 82,9 7(CaO 6 59,0 103,8 5 59,0	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 7 122,4 7 7,3 118,4 83,1 80,7 7 70,6 960,0	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 94,0 70,0 95,4	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9 9 90,7 92,7 92,7	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 91,8 114,0 76,6 73,7 10 84,0 85,5 99 2
térés a gázösszetétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,9 108,8 97,9 108,8 97,9 108,8 96,6 108,8 97,9 108,8 96,6 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,9 1	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2 93,7	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 94,0	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 9 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 8 5,8	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 49 ,3 105,4 6 137,2 72,2 103,9 109,2 84,3 82,9 //CaO 6 59,0 103,8 105,5 6	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7 70,6 96,0 104,0 89,9	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9 9 90,7 92,7 93,5 86,4	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8
Eltérés a gázösszetétel hozamában, %	$\begin{array}{c} CH_4\\ CO_2\\ C_2-C_6\\ \hline mmol/g \acute{e}rt\acute{e}kek eltérései\\ \ragge beta beta beta beta beta beta beta bet$	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 96,9 103,8 103,8 103,8 103,8 103,8 103,8 103,2 103,0 1	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2 97,2 97,2 99,3	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0 84,8	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 93,5	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 9 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 85,8 110,1	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 6 137,2 72,2 103,9 109,2 84,3 82,9 /CaO 6 59,0 103,8 105,5 93,9 87,5	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,3 103,4 7 122,4 77,3 118,4 83,1 80,7 7 70,6 96,0 104,0 89,9 102,3	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2 97,5	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 9 113,0 69,8 100,4 90,7 90,9 76,9 9 90,7 92,7 93,5 86,4 90,1	1.3 3.0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7
Eltérés a gázösszetétel hozamában, %	$\begin{array}{c} CH_4\\ CO_2\\ C_2-C_6\end{array}\\ \hline mmol/g értékek eltérései %-ban Reg. Ciklus H_2 CO CH4 CO_2 C_2-C_6 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2-C_6 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2-C_6 Szintézisgáz Reg. Ciklus H_2 CO CH4 CO_2 C_2-C_6 Szintézisgáz \\ \end{array}$	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,8 107,3 92,7 1 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2 97,2 93,7 100,4 80,5 100,7 100,4 80,5 100,7 100,4 80,5 100,7 100,4 80,5 100,7 10	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0 84,8 100,8	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 93,5 95,6	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /2 5 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 85,8 110,1 92,1	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O ₃ 6 137,2 72,2 103,9 6 137,2 72,2 103,9 82,9 /CaO 6 59,0 103,8 105,5 93,9 87,5 91,9	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7 70,6 96,0 104,0 89,9 102,3 89,3	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2 97,5 90,7	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 9 113,0 69,8 100,4 9 90,7 92,7 93,5 86,4 90,1 92,2	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7 85,1
Eltérés a gázösszetétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 100,8 100,8 100,8 100,8 100,9 100,12 100,10 100,12 100,10 100,12 100,10 100,12 100,10 100,12 100,10 100,12 100,10 100,12 100,10 100,10 100,12 100,10 100,12 100,10 100,10 100,12 100,10 100,10 100,10 100,12 100,100 100,10 100,100 100,100 100,100 100,100 10	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2 97,2 93,3 100,3	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0 84,8 100,8	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 93,5 95,6	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /2 5 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 85,8 110,1 92,1 Ni /Z	1,2 -1,3 0,1 ZSM-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O ₃ 6 137,2 72,2 103,9 109,2 84,3 82,9 70,0 6 59,0 103,8 105,5 93,9 87,5 91,9 noptilolit	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7 70,6 96,0 104,0 89,9 102,3 89,3	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2 97,5 90,7	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 9 113,0 69,8 100,4 9 90,7 92,7 93,5 86,4 90,1 92,2 2	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7 85,1
Eltérés a gázösszetétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH4 CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 97,9 108,8 96,6 108,8	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 105,7 2 111,4 85,2 105,7 2 111,4 85,2 105,7 2 81,1 107,2 97,2 93,7 90,3 2 05,7 2 90,3 100,4 85,5 2 81,1 107,2 90,7 100,4 85,5 2 81,1 107,2 90,7 100,4 85,5 100,4 85,5 100,4 85,5 100,4 85,5 100,4 85,5 100,4 100,4 85,5 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 100,4 100,7 1	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0 84,8 100,8 3	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 94,0 93,5 95,6 4	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /2 5 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 85,8 110,1 5 99,5 114,7 85,8 104,1 5 90,0 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 11	1,2 -1,3 0,1 25M-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al203 6 137,2 72,2 103,9 109,2 84,3 82,9 109,2 84,3 82,9 109,2 6 59,0 103,8 105,5 93,9 87,5 91,9 moptilolit 6 90,5	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7 70,6 96,0 104,0 89,9 102,3 89,3 7 70,4	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2 97,5 90,7 8 8 8,6 3,4 109,4 72,0 9,4 57,0 9,7 2 8 8 8 8,6 3,4 109,4 72,0 9,7 2 8 8 8 8,6 72,0 8 8 8 8 7,0 9,0 7,2 8 8 8 8 8 7,0 9,0 9,0 9,0 9,7 2 8 8 8 8 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9 9 90,7 92,7 93,5 86,4 90,7 92,2 9 9,7 92,2 9 9,7 9,2 9	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7 85,1 10 95,5
Eltérés a gázösszetétel hozamában, %	CH ₄ CO ₂ C ₂ -C ₆ mmol/g értékek eltérései %-ban Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₆ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO CO CH ₄ CO CO CH ₄ CO CO CH ₄ CO CO CH ₄ CO CO C ₂ -C ₆ Szintézisgáz	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,9 108,8 10	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,7 112,7 96,6 89,5 2 81,1 107,2 97,2 93,7 99,3 100,3 2 95,9 88,7	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0 84,8 100,8 3 100,8	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 94,0 93,5 6 4 86,4 86,4 74,0	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /5 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 85,8 110,1 92,1 Ni /2 5 91,9 1 2,6 1 2,6 1 2,7 90,0 1 3,5 72,7 90,0 1 3,5 72,7 90,0 1 14,7 85,8 114,7 85,8 114,7 85,8 114,7 85,8 114,7 85,8 114,7 85,8 114,7 85,8 114,7 115,7 114,7 114,7 115,7 114,7 114,7 115,7 114,7 115,7 114,7 115,7 114,7 115,7 114,7 115,7 114,7 115,7 114,7 11	1,2 -1,3 0,1 25M-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O3 6 137,2 72,2 103,9 109,2 84,3 82,9 70,2 84,3 82,9 70,2 6 59,0 103,8 105,5 93,9 87,5 91,9 moptilolit 6 88,6 87,3	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,0 7 70,6 96,0 104,0 89,9 102,3 89,3 7 90,4 86,7	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2 97,5 90,7 8 8 67,2 90,7	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9 9 90,7 92,7 93,5 86,4 90,1 92,2 9 9,7 92,2 9,7 93,5 86,4 90,1 92,2	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7 85,1 10 85,5 81,6
Eltérés a gázösszetétel hozamában, %	$\begin{array}{c} CH_4\\ CO_2\\ C_2-C_6\\ \hline mmol/g \acute{e} t \acute{e} kek elt \acute{e} t \acute{e} \acute{e} ie\\ \raises cons cons cons cons cons cons cons con$	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,9 108,8 108,8 108,9 108,8 108,8 108,9 108,8 108,9 108,8 108,8 109,7 108,8 108,9 108,8 108,9 108,8 108,9 108,8 108,	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2 97,2 93,7 99,3 100,3 2 95,9 88,7 112,9	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0 84,8 100,8 3 107,9 85,8 118,9	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 94,0 93,5 95,6 4 86,4 74,0 135,9	1,4 1,7 -0,1 Ni /2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni /5 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 85,8 110,1 92,1 Ni /2 5 99,9 82,3 109,8	1,2 -1,3 0,1 25M-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O ₃ 6 137,2 72,2 103,9 109,2 84,3 82,9 70,2 84,3 82,9 70,2 84,3 82,9 109,2 84,3 82,9 109,2 84,3 82,9 103,8 105,5 93,9 87,5 91,9 moptilolit 6 89,6 87,3 105,8	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7 70,6 96,0 104,0 89,9 102,3 89,3 7 90,4 86,7 108,9	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2 97,5 90,7 8 67,2 8,3,9 104,6	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 9 113,0 69,8 100,4 9 90,7 92,7 93,5 86,4 90,1 92,2 9 9,75,86,4 90,1 92,2 9 9,75,86,4 90,1 92,2 9,75,86,4 90,1 92,2 9,75,86,4 90,1 92,2 9,75,86,4 90,1 92,2 9,75,86,4 90,1 92,2 9,75,86,4 90,1 92,2 9,76,9 85,6 90,9 90,76,9 85,6 90,9 90,76,9 85,6 90,9 90,76,9 90,76,9 90,76,9 90,76,9 90,76,9 90,76,9 90,76,9 90,76,9 90,76,9 90,97,9 90,76,9 90,76,9 90,76,9 90,97,9 90,76,9 90,97,9 90,97,9 90,97,9 90,97,99 90,79 90,70 90,90 90,70 90,90 90,70 90,90 90,70 90,90 90,70 90,9	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7 85,1 10 85,5 81,6 101,7
Eltérés a gázösszetétel hozamában, %	$\begin{array}{c} CH_4\\ CO_2\\ C_2-C_6\end{array}\\ \hline mmol/g \acute{e}ttékek eltérései\\ $	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,4 107,3 92,7 1 108,8 97,9 108,8 108,9 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,8 108,9 108,8 108,9 108,8	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2 97,2 93,7 99,3 100,3 2 95,9 88,7 112,9 95,8	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0 84,8 100,8 3 107,9 85,8 118,9 94,4	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 94,0 93,5 95,6 4 86,4 74,0 135,9 94,8	1,4 1,7 -0,1 Ni/2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni/5 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 85,8 110,1 92,5 114,7 85,8 110,1 99,5 114,7 85,8 110,1 99,5 114,7 85,8 110,1 99,5 114,7 85,8 110,1 99,9 82,3 109,8 97,3	1,2 -1,3 0,1 25M-5 6 84,2 113,1 77,5 92,4 49,3 105,4 Al ₂ O3 6 137,2 72,2 103,9 109,2 84,3 82,9 70,2 84,3 82,9 70,2 6 6 59,0 103,8 105,5 93,9 87,5 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 87,5 84,3 82,9 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 83,5 83,5 83,5 83,5 83,5 83,5 83,5 83	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7 70,6 96,0 104,0 89,9 102,3 89,3 7 90,4 86,7 108,9 87,2	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2 97,5 90,7 8 67,2 8,67,2 9,67,2 8,67,2 8,67,2 8,67,2 9,7,2 8,67,2 8,67,2 8,67,2 9,7,2 8,67,2 8,67,2 9,7,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 9,7,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 9,7,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 8,67,2 9,7,2 8,67,2 8,67,2 8,67,2 8,67,2 9,7,2 8,67,2 8,67,2 9,7,2 8,67,2 9,7,2 8,67,2 9,7,2 8,67,2 8,67,2 9,7,2 8,67,2 9,7,2 8,67,2 9,7,2 8,67,2 9,7,2 8,67,2 9,7,2 8,67,2 9,7,2 8,67,2 9,7,2 9,7,2 8,67,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 8,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,2 9,7,5 9,7,2 9,7,2 9,7,5 9,7,5 9,7,5 9,7,5 9,7,5 9,7,5 9,7,5 9,7,5 8,67,2 9,7,5 9	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9 9 90,7 92,7 93,5 86,4 90,1 92,2 9 9,7,9 82,4 105,4 93,6	1,3 3,0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 65,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7 85,1 10 85,5 11 0 85,5 98,2 89,8 89,7 85,1 10 85,5 98,2 89,8 89,7 10 76,6 73,7 96,1 10 85,5 81,6 10,7 96,1 10 85,5 81,6 10,7 10 76,7 96,1 10 85,5 81,6 10 76,7 96,5 10 11,6 77,9 10 11,6 77,9 10 11,6 77,9 10 11,6 77,9 10 11,6 73,7 99,5 10 11,0 76,7 99,5 10 11,0 76,7 99,5 10 11,0 76,7 99,5 10 11,0 76,7 99,5 10 11,0 76,7 10 77,9 10 11,0 76,7 99,5 10 11,0 76,7 99,5 10 11,0 76,7 99,5 10 11,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7 89,10 10 11,0 76,6 73,7 10 10 76,6 73,7 10 10 76,6 73,7 10 10 10 10,7 10 76,6 73,7 10 10 10,7 10 76,6 73,7 10 10 84,0 85,5 98,2 89,8 80,10 10 10 96,9 10 10 10,9 10 10 10,9 10 10 10 10 10 10 10 10 10 10 10 10 10
Eltérés a gázösszetétel hozamában, %	$\begin{array}{c} CH_4\\ CO_2\\ C_2-C_6\\ \hline mmol/g \acute{e}rt\acute{e}kek eltérései\\ \rarcspace{1}{9} \label{eq:1}{9} \label{eq:1}{9} \label{eq:2}{9} $	-0,4 1,5 -0,4 1 86,1 103,2 66,2 101,0 112,9 98,7 1 140,6 83,2 103,0 108,8 97,9 108,8 94,0 108,8 94,7 94,0 108,8 94,7 94,0 108,8 94,0 108,8 94,0 108,8 94,0 108,8 94,0 108,8 94,0 108,8 94,0 108,8 94,0 108,8 94,0 94,	1,2 0,0 2,1 2 95,7 109,4 85,5 99,1 79,8 105,7 2 111,4 85,2 103,9 112,7 96,6 89,5 2 81,1 107,2 97,2 97,2 93,7 99,3 100,3 2 95,9 88,7 112,9 95,8 112,2	1,8 2,5 -1,7 3 94,9 113,4 83,5 92,7 69,2 108,5 3 135,6 88,8 107,0 98,9 79,1 96,5 3 76,2 109,7 91,3 97,0 84,8 100,8 3 107,9 85,8 1107,9 85,8 1107,9 84,4 81,4	3,3 6,0 0,4 4 89,9 107,5 100,0 88,5 71,4 102,8 4 134,7 82,3 123,4 90,9 97,0 91,0 4 76,6 102,4 104,4 94,0 93,5 95,6 4 86,4 74,0 135,9 94,8 94,9	1,4 1,7 -0,1 Ni/2 5 93,9 112,6 89,2 86,6 57,3 107,6 Ni/ 5 118,0 84,5 105,0 103,5 72,7 90,0 Ni 5 71,6 99,5 114,7 85,8 110,1 92,5 114,7 85,8 110,1 92,5 114,7 85,8 110,1 92,5 114,7 85,8 110,1 92,5 114,7 85,8 110,1 93,9 112,6	1,2 -1,3 0,1 25M-5 6 84,2 113,1 77,5 92,4 49,3 105,4 49,3 105,4 49,3 105,4 49,3 105,4 82,9 72,2 103,9 109,2 84,3 82,9 72,2 103,9 109,5 6 59,0 103,8 105,5 93,9 87,5 84,3 84,3 82,9 97,5 84,3 84,3 84,3 84,3 84,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 87,5 93,9 84,3 84,3 84,3 84,5 93,9 84,5 84,5 84,5 84,5 84,5 84,5 84,5 84,5	1,6 -0,4 -0,5 7 79,7 112,0 73,6 77,4 72,3 103,4 7 122,4 72,5 77,3 118,4 83,1 80,7 7 70,6 96,0 104,0 89,9 102,3 89,3 7 90,4 86,7 108,9 87,2 84,9	1,4 2,5 0,5 8 63,4 109,4 70,0 90,4 57,0 97,2 8 118,6 71,2 95,4 109,8 88,9 79,0 8 81,6 94,0 106,7 84,2 97,5 90,7 8 67,2 83,9 104,6 96,2 90,8	1,5 1,9 -0,2 9 74,1 110,0 67,9 85,6 50,4 100,4 9 113,0 69,8 100,4 103,5 90,9 76,9 9 90,7 92,7 93,5 86,4 90,1 92,2 9 79,9 82,4 105,4 93,6 85,1	1.3 3.0 -2,2 10 78,8 107,0 71,6 77,9 50,7 99,5 10 112,9 91,8 114,0 76,6 73,7 10 84,0 85,5 98,2 89,8 89,7 85,1 10 85,5 81,6 101,7 96,1 69,9

Megfigyeltem, hogy a zeolit katalizátoroknál (47. ábra) a regenerálási ciklusok előrehaladtával szignifikánsan csökkent a szén-dioxid mennyiségeinek különbsége; a Ni/ZSM-5 jelenlétében 0,3-6,5 mmol/g alapanyag (85,6-101,0%-a az első mérési pontnak (22. táblázat)), míg a Ni/Klinoptilolit alkalmazásával 4,0-8,1 mmol/g alapanyag értékkel (87,2-94,8%-a az első mérési pontnak (22. táblázat)). A C2.C5 szénhidrogének részaránya a Ni/ZSM-5 jelenlétében 3,7-9,2 mmol/g alapanyag, illetve a Ni/Klinoptilolittal 0,7-3,4 mmol/g alapanyag értékkel volt kisebb, mint a nem regenerált katalizátorral mért eredmény. Ni/ZSM-5 alkalmazásával (47. ábra) a regenerálási ciklusok mindegyikében 1,2-4,9 mmol/g alapanyag értékkülönbséggel növekedett a szén-monoxid mennyisége, míg a Ni/Klinoptilolit katalizátor mellett csupán az első három ciklusban volt növekedés megfigyelhető (1,1-4,9 mmol/g alapanyag). A regenerálási ciklusok során a metán, valamint a hidrogén részaránya a Ni/ZSM-5 jelenlétében csökkenést mutatott, míg a Ni/Klinoptilolit jelenlétében 0,1-2,6 mmol/g alapanyag értékkülönbséggel növekedett. Fontos megemlíteni, hogy a Ni/Al₂O₃ jelenlétében a regenerálási ciklusok mindegyikében szén-dioxid többlet, míg szignifikáns szén-monoxid értékkülönbség csökkenése alakult ki, mely a katalizátor kis fajlagos felületével (12. táblázat) magyarázható. A többi, vizsgált komponenst tekintve minimális különbségek voltak csak megfigyelhetők.

A komponensek változása a gáztermékben a vizsgált katalizátorok (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit regenerálási ciklusainak függvényében

A Ni/CaO jelenlétében a vizsgált komponensek többsége csökkenő tendenciát mutatott a regenerálási ciklusok előrehaladtával, azonban a 2-6. ciklus között a szénmonoxid mennyiségeinek különbsége periodikusan változott 0,3-3,4 mmol/g alapanyag értékek között. A szén-monoxid többlet a következő (42)-(43) reakciókból származtatható:

$$CaO + CO_2 \rightarrow CaCO_3$$
 (42)

$$CaCO_3 + H_2 \rightarrow Ca(OH)_2 + CO$$
 (43)

Megállapítottam, hogy a CaCO₃ hidrogénnel való reakciója (*43*) csak hidrogén többletben megy végbe, mely reaktorba bevezetett vízgőzből származhatott. Továbbá a CaO és a szén-dioxid reakciója (*42*) jelentősen csökkentheti a CO₂ mennyiségét (84,2-97,0%-a az első mérési pontnak (*22. táblázat*).

Szintézisgáz mennyiségének változása a regenerálási ciklusok függvényében a vízgőzmentes, magas hőmérsékletű elgázosítás során

A szintézisgáz hozam változását a **48.** *ábra* szemlélteti. Megfigyeltem, hogy a **48.** *ábrán* nem a különbözet, hanem a szintézisgáz teljes mennyisége került ábrázolásra. Az eredmények alapján jól látszik, hogy a szintézisgáz hozama a Ni/ZSM-5 és Ni/Klinoptilolit katalizátorok jelenlétében volt a legmagasabb, továbbá a két zeolit katalizátor alkalmazásával közel azonos érétkek érhetők el (47,6-57,4 mmol/g alapanyag közötti értékek). A zeolit katalizátorok jelenlétében a H₂/CO arány, a Ni/ZSM-5 alkalmazásával 0,27-0,30 között változott, míg a Ni/Klinoptilolit esetében ugyanez 0,23-0,33 értékű volt. A CO/CO₂ arány tekintetében a Ni/ZSM-5 katalizátornál 1,26-1,69 között változtak az értékek, míg ugyanez a Ni/Klinoptilolitnál 1,56-1,90 között alakult. A Ni/Al₂O₃, valamint a Ni/CaO alkalmazásával szintén hasonló értékek figyelhetők meg (39,6-51,9 mmol/g alapanyag közötti értékek). Ugyanakkor a 6. regenerálási ciklustól kezdve 1 mmol/g alapanyag volt az eltéréssel a két vizsgált katalizátor között. A hidrogén:szén-monoxid, illetve a szén-monoxid:szén-dioxid arányok hasonló változást mutattak a zeolit katalizátorokkal; a H₂/CO aránya 0,20-0,40 között, míg a CO/CO₂ aránya 1,09-1,88 között változott a Ni/Al₂O₃ és a Ni/CaO

jelenlétében. Továbbá megfigyeltem, hogy a regenerálási ciklusok előrehaladtával a keletkezett szintézisgáz mennyisége csökkent, mely a katalizátorok aktivitás csökkenésével, valamint az így keletkezett kisebb gázhozammal magyarázható.

A 23. táblázat a használt, illetve a regenerált katalizátorok főbb jellemzőit tartalmazza. A táblázat adatai alapján megállapítható, hogy a katalizátorok fajlagos felületei, valamint pórustérfogatai, illetve pórusátmérői a regenerálás hatására növekvő értéket mutattak, mely a koksztartalom eltávolításával magyarázható. Hasonlóképpen, a korábbi eredményekkel összevetve elmondható, hogy a Si/Al arányt a többszöri regenerálás jelentősen nem befolyásolta. A Ni/CaO és Ni/Al₂O₃ esetében szintén a szinterelés okozta, hogy a kezdeti "tiszta" katalizátorhoz viszonyítva (*3.1.2. fejezet*) mikropórusok alakultak ki. Ennek oka az lehetett, hogy a katalizátor felületén levő átmenetifémek elősegíthették a szinterelés hőmérsékletének csökkenését 1400-1600°C-ról 600-800°C-ra [181].

23. táblázat A használt és a regenerált katalizátorok morfológiája a 10. regenerálási ciklust követően, vízgőz nélküli, magas hőmérsékletű elgázosítás során

		mag	gas nomer	sekielu eig	azositas	soran		
	Ni/ZSM-5	Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/Al ₂ O ₃	Ni/CaO	Ni/CaO	Ni/Klinoptilolit	Ni/Klinoptilolit
	kokszos	regenerált	kokszos	regenerált	kokszos	regenerált	kokszos	regenerált
Si/Al	11,6	10,7	-	-	-	-	5,8	4,5
$S_{BET}, m^2/g$	274,7	264,3	3,9	5,6	27,0	29,0	11,8	12,7
Smicro, m ² /g	166,1	157,8	2,5	2,7	0,8	1,1	1,7	1,9
$V_{micro}, m^2/g$	0,0773	0,0734	0,0012	0,0012	0,0008	0,0004	0,0007	0,0008
V, cm ³ /g	0,0999	0,1106	0,0128	0,0127	0,1070	0,1145	0,1042	0,1162
Dav, nm	5,0	5,7	16,6	20,3	10,5	11,2	26,3	27,5

4.4.4. Magas hőmérsékletű katalitikus elgázosítás vízgőz jelenlétében

A magas hőmérsékletű vízgőzös elgázosításakor, a katalizátorok regenerálási ciklusvizsgálata során kapott eredményeket a *49. ábra* szemlélteti. A vízgőz:alapanyag arány ebben az esetben is 1 volt. A reakciókörülmények a korábbiakban említettek voltak, azaz 42 ml/perc nitrogén térfogatáram jelenlétében, 20 percig zajlottak a vizsgálatok, 5g kukorica biomassza hulladék (0% nedvességtartalom), illetve 2,5g katalizátor jelenlétében.

Megállapítottam, hogy a *4.4.3. fejezetben* bemutatott termékhozamokhoz képest a gáztermék mennyisége átlagosan 20%-kal volt több, míg a folyadékterméké 10-20%-kal volt kevesebb. Hasonlóképp megfigyeltem, hogy a regenerálási ciklusok előrehaladtával, valamint a katalizátorok aktivitáscsökkenése mellett a gáztermék hozama csökkenő tendenciát mutatott. Továbbá a Ni/ZSM-5, valamint a Ni/Klinoptilolit alkalmazásával a gáztermék hozama 58,9-65,7%, illetve 62,8-69,1% között változott. A Ni/CaO, valamint a Ni/Al₂O₃ jelenlétben a gáztermékek hozama a regenerálási ciklusok

előrehaladtával 1,5-13,0%-kal csökkent. A zeolit katalizátorok jelenlétében, a tizedik regenerálási ciklus után a gázhozam 60% feletti volt. A Ni/Al₂O₃, illetve a Ni/CaO katalizátorokat alkalmazva a regenerálási ciklusok előrehaladtával a gáztermék hozama egy részről alacsonyabb értékű volt, más részről viszont sokkal nagyobb mértékben csökkent, mint a zeolit katalizátoroknál. Ennek az is oka volt, hogy a folyadéktermék képződése kerül előtérbe.

A gáztermékek összetételének változását az 50. ábra szemlélteti. Az ábrán az előzőekhez hasonlóan, az adott regenerálási ciklusban mért eredmények és a még nem regenerált katalizátorok alkalmazásával kapott eredmények (51. ábra) különbségei vannak feltüntetve, míg a 24. táblázat a számszerű eltéréseket tartalmazza a gáztermék hozamában, a gázösszetételben, valamint a gázösszetétel hozamában.

50. ábra

A komponensek hozama (magas hőmérsékletű, vízgőzös elgázosítás; 4.5.4. *fejezet*) a vizsgált katalizátorok, Ni/ZSM-5, Ni/Al₂O₃, Ni/CaO, Ni/Klinoptilolit mellett

Megállapítható, hogy a legmagasabb hidrogén és metán hozamot a Ni/Klinoptilolit katalizátor, míg a legmagasabb szén-monoxid tartalmat a Ni/CaO és a Ni/Al₂O₃ katalizátorok adták.

				elgá	zosítás	nál					
%	Százalékok eltérései					Ni/2	ZSM-5				
n, '	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ıba		-0,5	-1,1	-1,3	-1,9	-2,3	-2,7	-3,8	-4,2	-5,8	-7,2
am	D CILL		•			_Ni/	Al ₂ O ₃	-	0	•	4.0
hoz	Reg. Ciklus	1	2	3	4	5	6	7	8 12 5	12.5	10
ţázl		-3,0	-0,3	-7,5	-7,8	-8,2 Ni	-9,4	-11,2	-12,5	-13,5	-14,1
ag	Reg Ciklus	1	2	3	4	5	/CaO 6	7	8	9	10
ség	rtog. Ontras	-1.5	-2.9	-4.4	-5.9	-7.5	-9.0	-10.5	-11.5	-12.5	-14.3
qu		y-	<i>y</i> -	,	-)-	Ni/Kli	noptilolit	- /-	,-	,-	,-
ülö	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
X		-0,3	-0,7	-1,2	-2,1	-2,5	-4,0	-4,0	-4,8	-5,1	-6,6
	Százalékok eltérései					Ni/Z	ZSM-5				
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H ₂	-1,4	-1,2	-1,5	-1,9	-1,8	-1,2	-0,9	0,1	-1,4	-2,3
	CO	0,5	-0,4	-1,4	0,4	-1,5	-2,5	-3,9	-4,6	-4,/	-6,1
	CH4 CO1	-0,2	-0,5	0,2	-1,0	-1,0	-1,2	-1,5	-1,2	-0,6	0,4
	C02	-0.9	-1.8	-3.4	-4.0	-27	-3.8	-2.8	-3.9	-3.4	-3.2
	C2=C6	-0,9	-1,0	-3,4	-4,0	-2, / Ni/	-5,8 Al2O2	-2,8	-3,9	-3,4	-3,2
%	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
en,	H ₂	0,3	0,5	-3,6	-2,2	-1,6	-2,5	-2,8	-2,4	-0,7	-1,4
lbe	СО	0,6	-2,8	-2,9	-3,1	-3,0	-2,8	-2,9	-3,7	-6,2	-10,2
téte	CH_4	1,6	0,4	-0,3	-0,4	0,4	0,4	-0,1	-0,6	0,7	0,4
szel	CO_2	-2,8	2,1	7,2	7,3	6,6	6,2	7,4	7,2	6,4	9,9
öss	C_2-C_6	0,4	-0,1	-0,4	-1,6	-2,4	-1,4	-1,6	-0,5	-0,2	1,2
gáz						_ Ni	/CaO	_			
ç a	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ség	H ₂	-1,/	-1,0	0,0	0,7	0,0	-0,/	-0,6	0,9	2,0	-0,4
inb	CU CH	-1,8	-1,2	-2,0	-2,5	-3,3	-5,6	-0,5	-8,5	-11,0	-11,/
ülč	CD ₄	33	-0,1	0,5	-0,5	3.1	4.3	5.8	-0,1	-0,7	11.0
K	C2-C6	-0.1	0.4	0.0	0.4	-0.3	4,5	0.7	-0.7	-1.5	0.4
	02 00	0,1	0,1	0,0	0,1	Ni/Kli	noptilolit	0,7	0,7	1,0	0,1
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H_2	0,8	0,4	-1,9	-2,7	-3,9	-3,1	-3,2	-2,9	-2,7	-2,6
	CO	0,2	1,7	3,8	4,3	3,1	3,3	2,5	1,7	1,2	-0,3
	CH ₄	-1,2	-2,8	-2,7	-2,7	-0,6	-1,7	-1,5	-1,7	-1,5	-1,0
	CO_2	1,6	2,2	2,8	3,5	4,4	4,6	5,0	5,8	6,3	6,8
	C2-C6	-1,2	-1,5	-1,9	-2,4	-3,1	-3,0	-2,9	-2,9	-3,5	-3,0
	eltérései %-ban					Ni/2	ZSM-5				
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H ₂	91,9	92,1	90,4	87,5	87,7	89,7	89,7	94,0	84,7	78,5
	CO	101,0	97,0	93,2	98,5	91,1	87,0	80,8	78,1	75,9	69,3
	CH_4	97,7	95,4	99,7	87,1	80,5	83,5	81,0	82,1	85,4	92,4
	CO_2	105,6	110,3	117,8	118,2	120,3	123,5	122,2	123,0	121,3	121,9
	C_2-C_6	92,6	84,5	72,6	67,1	76,8	67,9	73,7	65,3	67,7	67,2
	Szintezisgaz	97,2	95,0	92,1	93,9	89,7 N:7	88,1	84,5	84,7	79,5	/3,1
%	Reg Ciklus	1	2	3	4	5	A12O3 6	7	8	9	10
an,	H2	96.2	93.2	65.5	73.5	76.9	69.9	66.0	66.5	74.9	70.1
ιáb	CO	95.5	84.1	82.4	81.4	80.9	79.6	76.7	73.3	67.3	59.3
an	CH ₄	112,7	94,4	85,1	83,9	90,8	88,9	80,9	74,4	85,2	81,5
hož	CO_2	83,3	98,0	114,9	114,1	110,9	107,0	107,4	104,1	99,5	109,7
tel	C_2-C_6	97,5	88,9	85,1	74,6	67,7	74,5	70,0	76,3	77,3	86,3
eté	Szintézisgáz	95,7	86,3	78,3	79,5	79,9	77,2	74,1	71,7	69,2	61,9
zss	Dag Cildug	1	2	2		_ Ni	/CaO	-	0	0	10
ázö	Keg. Cikius	1 84.0	2	3 02 1	4	3	0 917	80.2	007	9	10 75.0
ag		93.8	93.0	87.8	85.8	81.9	75.2	71.9	66.4	60 4	57.2
és	CH	101.1	95.0	97.1	87.9	93.9	91.8	88 7	81.5	73 7	84.8
tér	CO ₂	109.7	101.8	101.4	96.5	99.0	100.3	102.2	108.4	114.6	110.4
Ξ	C_2-C_6	96,8	99,8	93,3	95,0	86,3	98,9	89,8	77,1	69,3	82,0
	Szintézisgáz	91,6	91,9	88,9	88,2	83,3	76,6	73,7	71,3	67,9	61,3
						Ni/Kli	noptilolit				
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H_2	103,0	100,8	89,9	85,3	19,2	81,1 105 0	80,7	80,7	81,4	80,0
	CU.	100,5 87 1	70.5	112,4 71-1	70.7	107,8	103,9	80.2	99,2 77 2	90,9 78 0	09,4 81.7
	C_{14}	104 7	106.0	107.4	108.1	110.3	108.4	109.8	110.9	111.9	110.8
	C2-C6	88.7	85.9	81.6	76.7	70.6	69.3	70.0	69.4	66.2	67.0
	Szintézisgáz	101,5	103,3	102,1	100,1	94,7	94,6	92,9	90,7	89,8	85,1

24. táblázat Az eltérések (első mérési ponthoz képest) számszerű adatai a magas hőmérsékletű, vízgőzös elgázosításnál A Ni/ZSM-5 jelenlétében (51. *ábra*) a szén-dioxid mennyiségének különbsége a regenerálási ciklusok előrehaladtával 2,3-8,8 mmol/g alapanyag értékkel növekedett, mely a korábbiakban említett kokszosodással, valamint a reformáló reakciókkal magyarázható. Továbbá megfigyeltem, hogy ez a katalizátor 1,1-5,3 mmol/g alapanyag értékkel csökkentette a C₂-C₅ szénhidrogének mennyiségét (67,2-97,6%-a az első mérési pont eredményeinek (24. táblázat)) a nem regenerált katalizátorokkal végzett kísérlet eredményéhez képest. Emellett a szén-monoxid koncentrációja az 5. regenerálási ciklustól kezdve (69,3-91,1%-a az első mérési pont eredményeinek (24. táblázat)) jelentős csökkenést mutatott, mely a víz-gáz shift reakcióval magyarázható.

A természetes zeolit katalizátor alkalmazásával a szén-monoxid tartalom a 7. regenerálási ciklusig 0,1-4,9 mmol/g alapanyag értékkel növelhető (100,-112,7%-a az első mérési pont eredményeinek *(24. táblázat)*), majd ezt követően a maximumhoz képest enyhén csökkent a mennyisége. A regenerálási ciklusok előrehaladtával a széndioxid részaránya nőtt, a ciklusvizsgálatokban mért különbség 5 mmol/g alapanyag értékben maximálódott. A könnyebb szénhidrogének (C₂-C₅) mennyisége a regenerálási ciklusok függvényében csökkenő tendenciát mutatott, mely a katalizátor savasságával, illetve 4,9 értékű Si/Al arányával magyarázható.

A komponensek változása vízgőzös elgázosítás során a gáztermékben (a) Ni/ZSM-5, (b) Ni/Al₂O₃, (c) Ni/CaO, (d) Ni/Klinoptilolit regenerálási ciklusainak függvényében

A Ni/Al₂O₃, illetve a Ni/CaO esetében a vizsgált komponensek közül a szénmonoxid tartalom különbsége 2,4-24,4 mmol/g alapanyag közötti értékekkel csökkent. Végül a CO₂ mennyisége szintén csökkent a regenerálás során. A vizsgált katalizátorok többségénél a metán-, valamint a hidrogéntartalom minimális értékű változást mutatott a ciklusok előrehaladtával. Ezen változás kizárólag a Ni/Klinoptilolit esetében volt jelentősebb.

A szintézisgáz hozamát az 52. ábra szemlélteti, a regenerálási ciklusok függvényében. Az eredmények alapján megállapítottam, hogy a ciklusok mindegyikében a Ni/Klinoptilolit eredményezte a legtöbb szintézisgázt (57,2-69,5 mmol/g alapanyag közötti értékekkel). Ni/Klinoptilolit jelenlétében a vízgőzmentes elgázosítás során és a vízgőz alkalmazásával kapott eredményeket összehasonlítva, vízgőz jelenlétében közel 20%-kal több szintézisgáz keletkezett. A többi katalizátort tekintve ez az érték 5-15% közötti volt. Megfigyeltem, hogy a Ni/CaO katalizátor az 5. regenerálási ciklusig a Ni/Klinoptilolit katalizátorhoz hasonló mértékű szintézisgáz hozamot eredményezett (60,9-67,2 mmol/g alapanyag), majd ezt követően nagymértékű, 4,9-15,9 mmol/g alapanyag csökkenés volt megfigyelhető, mely leginkább a kevesebb hidrogénnel magyarázható. A Ni/Al2O3 jelenlétében az első három ciklusban jelentős volt a szintézisgáz mennyiségének csökkenése. Magas hőmérsékletet alkalmazva (800°C), vízgőz jelenlétében a H₂/CO arány a zeolit katalizátoroknál 0,7-0,9, míg a Ni/CaO és a Ni/Al₂O₃ katalizátorok jelenlétében 0,2-0,4 közötti értékű volt. A CO/CO₂ arány tekintetében az látszott, hogy a Ni/ZSM-5 és a Ni/Klinoptilolit katalizátorokkal 0,5-0,9 közötti arányok, míg a Ni/CaO és a Ni/Al₂O₃ katalizátoroknál 0,9-2,1 közötti értékek adódtak.

Szintézisgáz mennyiségének változása a regenerálási ciklusok függvényében a vízgőzös, magas hőmérsékletű elgázosítás során

A 25. táblázat a használt, illetve a regenerált katalizátorok főbb jellemzőit tartalmazza. A katalizátorok fajlagos felületei, valamint pórustérfogatai, illetve pórusátmérői a regenerálás hatására növekedtek, mely a koksztartalom csökkenésével magyarázható. Az adatok alapján, a Si/Al arány ebben az esetben sem változott szignifikánsan, ami a katalizátor szerkezetének állandóságára utal. Továbbá fontos megemlíteni a Ni/CaO, valamint a Ni/Al₂O₃ esetében szintén felléphetett szinterelés, így a kezdeti "tiszta" katalizátorhoz viszonyítva (3.1.2. fejezet) mikropórusok alakulhattak ki [181].

A használt és	a regenerált l	catalizátoro	ok morfold	ógiája a 10	. regener	álási ciklus	t követően, víz	gőzös, magas					
hőmérsékletű elgázosítás során													
	Ni/ZSM-5	Ni/ZSM-5	Ni/Al ₂ O ₃	Ni/Al ₂ O ₃	Ni/CaO	Ni/CaO	Ni/Klinoptilolit	Ni/Klinoptilolit					
	kokszos	regenerált	kokszos	regenerált	kokszos	regenerált	kokszos	regenerált					
Si/Al	12,1	10,5	-	-	-	-	5,5	4,8					
S _{BET} , m ² /g	288,9	282,0	3,0	3,2	16,6	18,5	12,0	13,0					
Smicro, m ² /g	136,1	145,1	1,6	1,8	1,9	2,4	2,1	2,1					
V _{micro} , m ² /g	0,0622	0,0657	0,0007	0,0009	0,0008	0,0010	0,0008	0,0008					
V, cm ³ /g	0,1239	0,1525	0,0157	0,0185	0,0914	0,0956	0,0952	0,1119					
D _{av} , nm	5,2	6,7	48,4	49,2	48,9	51,2	22,1	27,3					

25. táblázat

Összegzés 4.4.5.

Kísérleti eredményeimmel igazoltam, hogy a vizsgált katalizátorok (Ni/ZSM-5, Ni/Al₂O₃, Ni/CaO és Ni/Klinoptilolit) elgázosítási reakciókban mutatott aktivitása jelentősen eltért egymástól, más részről a kifejtett hatást a reaktorzónák hőmérséklete és a regenerálási ciklusok is jelentősen befolyásolták.

Megállapítottam, hogy 400°C első reaktorzóna és 700°C második reaktorzóna hőmérsékleteknél (vízgőz nélkül) a vizsgált Ni/ZSM-5 10 regenerálási cikluson keresztül szignifikánsan csökkentette a szén-dioxid mennyiségét. A szén-monoxid mennyisége a regenerálási ciklusokkal csökkent. A hidrogéntartalmat tekintve megállapítottam, hogy a Ni/ZSM-5 jelenlétében a 4-9. regenerálási ciklusokban növekvő tendencia volt megfigyelhető. Az alacsony hőmérsékletű katalitikus elgázosítás során (vízgőz jelenlétében), a szén-monoxid mennyisége a 4. és 5. regenerálási ciklusoktól kezdve, míg a szén-dioxid a 2. ciklustól kezdve a ciklusok mindegyikében csökkent. A hidrogéntartalom a Ni/ZSM-5 jelenlétében az első regenerálási ciklusban növekedett. A magas hőmérsékletű katalitikus elgázosítás során (vízgőz nélkül), a regenerálási ciklusok előrehaladtával a szén-dioxid és a hidrogén mennyisége csökkent, ugyanakkor a szén-monoxid mennyisége a regenerálási ciklusok mindegyikében növekedett. A magas hőmérsékletű katalitikus elgázosítás során (vízgőz jelenlétében), a szén-dioxid tartalom a regenerálási ciklusok előrehaladtával nőtt, míg a

szén-monoxid tartalom szignifikánsan csökkent. A többnyire csökkenő szén-dioxid tartalom, valamint a növekvő CO tartalom a katalizátor nagy Si/Al arányával, fajlagos felületével és savasságával, míg a növekvő hidrogéntartalom a katalizátor nikkel tartalmával és nagy Si/Al arányával magyarázható.

Megállapítottam, hogy 400°C első reaktorzóna és 700°C második reaktorzóna hőmérsékleteknél (vízgőz nélkül) a vizsgált Ni/Al₂O₃ 10 regenerálási cikluson keresztül szignifikánsan csökkentette a szén-dioxid mennyiségét. A szén-monoxid mennyisége a regenerálási ciklusokkal csökkent. A hidrogéntartalom a 4-9. regenerálási ciklusokban növekvő tendencia szerint változott. Az alacsony hőmérsékletű katalitikus elgázosítás (vízgőzzel) során a szén-dioxid mennyisége a 4. és 5. regenerálási ciklusoktól kezdve csökkent, a hidrogéntartalom a regenerálási ciklusok mindegyikében növekedett. A magas hőmérsékletű katalitikus elgázosításnál (vízgőz nélkül) a szén-monoxid tartalom minden regenerálási ciklusban csökkent, míg a CO₂ tartalom növekedett. A hidrogéntartalom a 2-7. regenerálási ciklusban növekedett. A vízgőz jelenlétében végzett magas hőmérsékletű katalitikus elgázosítás során a szén-dioxid tartalom az 1-2. ciklus között csökkent, míg a szén-monoxid és a hidrogén tartalom az 1-2. ciklus között csökkent. A katalizátor enyhe hatásai a kis fajlagos felületével magyarázható, valamint a szinterelésével, azaz a mikropórusok kialakulásával magyarázható.

Megállapítottam, hogy 400°C első reaktorzóna és 700°C második reaktorzóna hőmérsékleteknél vízgőz nélkül, a Ni/Klinoptilolit 10 regenerálási cikluson keresztül szignifikánsan csökkentette a szén-dioxid mennyiségét. A szén-monoxid mennyisége a 6. regenerálási ciklusig növekedett, utána pedig csökkent. A hidrogéntartalom A vízgőz jelenlétében végzett, alacsony hőmérsékletű katalitikus elgázosításnál megfigyeltem, hogy a szén-monoxid mennyisége az 5. regenerálási ciklustól, míg a szén-dioxid a regenerálási ciklusok mindegyikében szignifikánsan csökkent. A hidrogéntartalom a regenerálási ciklusok mindegyikében növekedett. Magas hőmérsékletű katalitikus elgázosításnál, vízgőz nélkül, a szén-dioxid mennyisége szignifikánsan csökkenthető, míg a CO tartalom a 3. regenerálási ciklusig növekedett, a hidrogéntartalom enyhén csökkent. Magas hőmérsékletű katalitikus elgázosítás során megállapítottam, hogy vízgőz jelenlétében a szén-dioxid tartalom a regenerálási ciklusok mindegyikében szignifikánsan csökkent. A hidrogéntartalom enyhén csökkent. Magas hőmérsékletű katalitikus elgázosítás során megállapítottam, hogy vízgőz jelenlétében a szén-dioxid tartalom a regenerálási ciklusok mindegyikében növekedett, míg a CO tartalom csak a 7. regenerálási ciklusig nőtt. A hidrogéntartalom Ni/Klinoptilolit katalizátor jelenlétében csökkent értékeket mutatott. A csökkenő szén-
dioxid tartalom, valamint a növekvő CO tartalom a katalizátor nagy kvadrupólmomentumával és savasságával magyarázható.

Megállapítottam, hogy 400°C első reaktorzóna és 700°C második reaktorzóna hőmérsékleteknél, vízgőz nélkül, a vizsgált Ni/CaO a harmadik regenerálási ciklusig csökkentette a szén-dioxid mennyiségét. A szén-monoxid és a hidrogén mennyisége a regenerálási ciklusokkal csökkent. A vízgőz jelenlétében végzett, alacsony hőmérsékletű katalitikus elgázosításnál megfigyeltem, hogy a szén-monoxid, a széndioxid és a hidrogén tartalom a ciklusok mindegyikében jelentősen csökkent. A magas hőmérsékletű katalitikus elgázosítás során, vízgőz nélkül, a regenerálási ciklusok előrehaladtával a szén-dioxid és a hidrogén mennyisége szignifikánsan csökkent, míg a CO tartalom a 6. regenerálási ciklusig növekedett. Vízgőz alkalmazásával a magas hőmérsékletű katalitikus elgázosítás során kimutattam, hogy a szén-dioxid tartalom a 6. regenerálási ciklusig csökkent, a szén-monoxid és a hidrogén tartalom pedig a regenerálási ciklusok mindegyikében szignifikáns csökkenést mutatott. A Ni/CaO katalizátor jelenlétében megfigyelhető, hogy a szén-dioxid tartalom többnyire jelentősen csökkent, ami a CaO szén-dioxid megkötő sajátosságával magyarázható köszönhetően (kiváltképp vízgőzt és alacsony hőmérsékletet alkalmazva). Emellett megfigyelhető, a szén-dioxid megkötő tulajdonság javuló hatásfoka is, mely a katalizátor szinterelésének lehetett következménye (alacsony hőmérsékletet alkalmazva az első reaktorzónában).

Kimutattam, hogy az alacsony hőmérsékletű (400°C első reaktorzóna hőmérséklet) katalitikus elgázosítás során a vizsgált Ni/ZSM-5, a Ni/Al₂O₃ és a Ni/CaO esetében a szintézisgáz hozam a regenerálási ciklusok mindegyikében közel állandó értékű volt. Ugyanakkor a Ni/Klinoptilolit jelenlétében a 6. regenerálási ciklusig szignifikáns növekedés volt megfigyelhető. A vizsgált katalizátorok jelenlétében a H₂/CO arány 0,06-0,36 között, míg a CO/CO₂ arány 0,7-1,3 között változott. Fontos megemlíteni, hogy a legnagyobb H₂/CO arányt a regenerálási ciklusok mindegyikében a zeolit katalizátorok adták.

Megállapítottam, hogy a vízgőz jelenlétében végzett, alacsony hőmérsékletű (400°C első reaktorzóna hőmérséklet) katalitikus elgázosítás során a szintézisgáz tartalom a Ni/Al₂O₃ és a Ni/CaO jelenlétében közel állandó volt, míg a 6. regenerálási ciklusig a zeolit katalizátorok kimagasló értékeket eredményeztek. A vizsgált zeolit katalizátorok jelenlétében a H₂/CO arány 0,01-0,15 között, míg a CO/CO₂ arány 1,2-1,9 között változott, ahol utóbbi alkalmas a metanol szintézis alapanyagként.

Megfigyeltem, hogy a magas hőmérsékletű (800°C első reaktorzóna hőmérséklet) katalitikus elgázosítás és a vízgőz jelenlétében végzett, a magas hőmérsékletű (800°C első reaktorzóna hőmérséklet) katalitikus elgázosítás során a vizsgált katalizátorok mindegyike az 5. regenerálási ciklusig enyhén, majd utána szignifikánsan csökkentette a szintézisgáz tartalmat. Emellett a katalizátorok jelenlétében a H₂/CO aránya 0,20-0,40 között, míg a CO/CO₂ aránya 1,09-2,1 között változott.

A katalizátorok között erősorrendet felállítva:

- szén-dioxid tartalom csökkentésének mértéke: Ni/Klinoptilolit > Ni/CaO > Ni/ZSM-5 > Ni/Al₂O₃
- CO/CO₂ arány növelése: Ni/Klinoptilolit > Ni/ZSM-5 > Ni/CaO > Ni/Al₂O₃
- H₂/CO arány növelése: Ni/Klinoptilolit > Ni/ZSM-5 > Ni/CaO > Ni/Al₂O₃
- szintézisgáz hozam növelése: Ni/Klinoptilolit > Ni/CaO ~ Ni/Al₂O₃ > Ni/ZSM-5
- megfelelő szintézisgáz hozam, megfelelő gázösszetétellel: Ni/Klinoptilolit ~ Ni/ZSM-5 > Ni/CaO ~ Ni/Al₂O₃

4.5. Adszorpciós vizsgálatok modell gázeleggyel

4.5.1. Adszorpciós-deszorpciós vizsgálatok

Az adszorpciós kísérletek során, ahogy a korábbiakban már említésre került, kezdetben 4 különböző adszorbens (*3.1.3. fejezet*) szén-dioxid megkötő képességét vizsgáltam, modell gázeleggyel, a leghatékonyabb adszorbens kiválasztása érdekében a további, elgázosító kísérletsorozatokhoz. Adszorbensként három zeolitot, illetve aktív szenet alkalmaztam. Az *53. ábra* az adszorbensek izotermáit szemléltetik 0, 30, illetve 60°C-on. Jól látszik, hogy a hőmérséklet növelésével romlik az adszorpciós képesség, továbbá, hogy a kimerülési pont a vizsgált zeolitok mindegyikénél közel azonos volt (7-12 perc), míg aktív szénnél ez az érték 70-110 perc között alakult. Megállapítottam, hogy klinoptilolit alkalmazása során, a hőmérséklet jelentősen nem befolyásolta az adszorpciós kapacitás változását.

A 3.2. fejezetben ismertetett módon megvizsgáltam az egyes adszorbensek deszorpciós jellemzőit is. Az eredményeket a **31. melléklet** szemlélteti. Megfigyeltem, hogy minél magasabb az adszorpció hőmérséklete, annál kevésbé eredményes a deszorpció hatásfoka. Fontos megemlíteni, hogy a vizsgált adszorbensek mindegyikénél, az összes szén-dioxid távozott 0°C-on, míg 30 és 60°C-on egyedül a klinoptilolit esetében volt 100% a deszorpció hatásfoka.

A vizsgált adszorbensek CO₂ adszorpciós izotermái, különböző hőmérsékleteken (a) aktív szén, (b) NaX, (c) Klinoptilolit, (d) Zeosorb 5A

Az eredménysorozatok alapján meghatároztam a CO₂ kapacitást, melyet az **54.** *ábra* szemléltet. Megfigyelhető, hogy a hőmérséklettől függetlenül a referenciaként választott aktív szén rendelkezett a legnagyobb kapacitással. Emellett elmondható, hogy mindegyik adszorbens szén-dioxid kapacitása 0°C-on volt a legmagasabb, 1 mmol CO₂/g adszorbens körüli. Megállapítottam, hogy a vizsgált zeolitok közül, a klinoptilolitnak volt a legnagyobb kapacitása; 1,5 mmol/g (0°C), 1,1 mmol/g (30°C), illetve 0,8 mmol/g (60°C). Az adszorpciós és a deszorpciós eredményeket összevetve, illetve a szén-dioxid kapacitás alapján a klinoptilolitot választottam a további kísérletsorozatok adszorbensének.

A vizsgált adszorbensek szén-dioxid kapacitása, különböző hőmérsékleteken

4.5.2. Különböző hőmérsékleten kezelt klinoptilolit ciklusvizsgálata

Az előzőekben ismertetett eredmények alapján a klinoptilolitot választottam további vizsgálatok céljából. A vizsgált adszorbenst a ciklusvizsgálatok előtt különböző hőmérsékleten előkezeltem. A klinoptilolit hőmérséklet függvényében bekövetkező fázisátalakulásait az *55. ábra* szemlélteti.

A klinoptilolit fázisátalakulásai a hőmérséklet függvényében (XRD eredmények alapján)

A természetes zeolit kezdetben 44% klinoptilolitot, 8% krisztolbalitot, 24% szanidint, illetve 23% amorf fázist tartalmazott. A hőmérséklet növelésével a klinoptilolit szerkezet (32. melléklet) 500-600°C között összeomlik, amorf, valamint szanidin fázisokká alakul át. A szanidin egy földpát típus, melyet szigorúan véve nem lehet külön ásványfajtának tekinteni az ortoklásztól, mert ugyanazon ásványfaj rendezetlen, illetve részben rendezett és rendezett fajtái. Az alapvető szerkezetük (32. melléklet) egy folytonos, negatív töltésű, háromdimenziós vázból áll, mely sarokpontjait SiO₄ és AlO₄ tetraéderek alkotnak, és azokhoz pozitív töltésű kationok kapcsolódnak. A váz alapját négytagú gyűrűk egymást követő polimerizációjával létrejött (Al,Si)O₄ tetraéderekből álló, úgynevezett főtengelylánc alkotja [182,183]. A krisztobalit (32. melléklet) egy olyan polimorf SiO₂, amelyben a SiO₄ tetraéderek háromrétegű szerkezetet képeznek, emellett a kvarchoz képest nyitottabb szerkezete lehetővé teszi más elemek bizonyos fokú beépülését is a kristályszerkezetbe [184]. Fontos megemlíteni, hogy az alkalmazott klinoptilolit, egy Ca típusú klinoptilolit, mely szerkezeti összegképlete XRD eredmények alapján (33. *melléklet*), az KNa₂Ca₂(Si₉Al₇)O₇₂•24 H₂O.

Az 56. ábra a különböző hőmérsékleten kezelt klinoptilolitok FTIR spektrumait szemlélteti. A 2900 és 3750 cm⁻¹ között megfigyelhető széles sáv az adszorbeált vízmennyiség jelenlétével magyarázható. Továbbá ~1620 cm⁻¹ hullámszámnál a H₂O hajlító rezgése is megfigyelhető, mely a Na és Ca atomokhoz kapcsolódó

vízmolekulákra utal. ~1026 cm⁻¹ hullámszámnál erős vibráció figyelhető meg, mely az Al/Si aránytól függ. A TO₄ tetraéderek belső T–O kötéseinek aszimmetrikus nyújtási rezgései is megfigyelhetők, ahol T = Si és Al. 565-838 cm⁻¹ között az O–T–O csoportok nyújtási, illetve a T–O kötések hajlítási rezgései jelennek meg, melyek függetlenek az anyag kristályosságától, emellett 599 cm⁻¹-nél a heulandit fázisra jellemző csúcs is jól látható [184,185].

A klinoptilolit IR spektrumai a fázisátalakulás során a hőmérséklet függvényében

A továbbiakban a 200, 400, 600, illetve 800°C-on hőkezelt klinoptilolit szén-dioxid adszorpcióját vizsgáltam, melyek szén-dioxid kapacitását az 57. *ábra*, az adszorpciós izotermáit a 34. *melléklet*, míg a szemcseméret-eloszlás változását a 35. *melléklet* szemlélteti, a regenerálási ciklusok függvényében.

Az 57. ábra alapján megfigyeltem, hogy a 200°C-on, valamint a 600°C-on kezelt klinoptilolit szén-dioxid megkötő kapacitása az egyes ciklusokban közel állandó, 2-5 mmol CO₂/g, illetve 10-15 mmol CO₂/g értékkel rendelkezett. Megállapítottam, hogy a 400°C-on kezelt klinoptilolit szén-dioxid kapacitása a regenerálási ciklusok növekszik, előrehaladtával és hőmérsékleten átlagosan 50-70% ezen a kapacitásnövekedés volt megfigyelhető. A 34. mellékletben szemléltetett izotermákat vizsgálva az adszorbensek kimerülési ideje 200°C-on 48 percnél, 400°C-on 170 percnél, 600°C-on 120 percnél, valamint 800°C-on 10 percnél, az utolsó 4-6 regenerálási ciklus állandósult értékeivel jelenik meg.

Az adszorbensek szitafrakcióit elemezve (*35. melléklet*) megállapítható, hogy a többszöri regenerálás hatására, illetve magasabb hőmérsékletet alkalmazva a klinoptilolit aprózódott, így a fajlagos felülete növekedett, valamint, ahogy a korábbiakban már említésre került, a szén-dioxid megkötő képessége is javult. Megfigyletem, hogy az 500-600°C között történő fázisátalakulás hatására, a 600°C, illetve a 800°C hőmérsékleten kezelt klinoptilolitok szén-dioxid adszorpciós hatásfoka a

400°C-on kezelt klinoptilolittal kapott eredményekhez viszonyítva csökkent. A bemutatott eredményeket összesítve megállapítottam, hogy 400°C-on kezelt klinoptilolit rendelkezett a legnagyobb szén-dioxid kapacitással a regenerálási ciklusok függvényében, így a továbbiakban ezen a hőmérsékleten kezelt klinoptilolitot alkalmaztam szén-dioxid a post-situ megkötésére (4.6. fejezet).

A vizsgált, különböző hőmérsékleten kezelt klinoptilolit szén-dioxid kapacitása (a) 200°C, (b) 400°C, (c) 600°C, (d) 800°C

4.5.3. Összegzés

Megállapítottam, hogy a nem referenciaként (AC) választott, vizsgált adszorbensek (0,03 Si/Al arányú, 15,9 m²/g fajlagos felületű NaX, 1,5 Si/Al arányú, 448,2 m²/g fajlagos felületű Zeosorb 5A, 3,9 Si/Al arányú, 16,5 m²/g fajlagos felületű Klinoptilolit) közül a klinoptilolit rendelkezett a legnagyobb CO2 kapacitással; 0°C-on 1,5 mmol CO₂/g, 30°C-on 1,1 mmol CO₂/g, illetve 60°C-on 0,8 mmol CO₂/g értékkel. Kimutattam, hogy а vizsgált klinoptilolit (Ca-típusú, összegképlete: KNa₂Ca₂(Si₉Al₇)O₇₂•24H₂O) szerkezetében, a hőmérséklet hatására végbemenő szerkezetváltozás következtében a CO2 megkötő kapacitás jelentősen változott. A vizsgált klinoptilolit kezdetben 44% klinoptilolitot, 8% krisztolbalitot, 24% szanidint, illetve 23% amorf fázist tartalmazott, melyben a hőmérséklet növelésével 200°C felett jelentős volt a klinoptilolit szerkezetében lévő kristályvíztartalom csökkenése, 500°C felett pedig a természetes zeolitban lévő klinoptilolit részaránya jelentősen csökkent,

míg az amorf, valamint szanidin fázisoké pedig növekedett. A klinoptilolit szerkezetében lévő víztartalom hátrányos volt a CO₂ megkötő kapacitás szempontjából.

Megfigyeltem, hogy a klinoptilolit kezelési hőmérsékletének növelésével, annak szén-dioxid kapacitása 400°C-ig a regenerálási ciklusok előrehaladtával folyamatos javulást mutatott (~60%-os kapacitásnövekedés), majd 600°C, illetve 800°C esetében a szerkezeti változások következtében, kapacitáscsökkenés volt kimutatható. Megállapítottam, hogy a szerkezetben bekövetkező változások mellett, a többszöri regenerálás hatására a vizsgált klinoptilolit CO₂ megkötő képessége az aprózódás következtében bekövetkező fajlagos felület (különösen a mikropórusos) növekedés miatt javuló tendenciát mutatott.

4.6. Elgázosítási kísérletek post-situ adszorpcióval

A regenerálási ciklusvizsgálatot követően, az eredmények alapján (4.4. fejezet), további vizsgálatok céljából kiválasztottam a két leghatékonyabb katalizátort (Ni/ZSM-5 és Ni/Klinoptilolit), valamint így lehetőségem nyílt egy természetes és egy szintetikus további vizsgálatára az elgázosítási folyamatokban. zeolit А kiválasztott katalizátorokkal vízgőz (1:1 vízgőz:alapanyag arány) jelenlétében, 400°C és 800°C első, illetve 700°C második reaktorzóna hőmérsékleteket alkalmazva, a 13. ábrán látható reaktorelrendezés szerint vizsgáltam a gáztermék összetételét, post-situ adszorpcióval. A reakciókörülmények a korábbiakban említettek voltak, azaz 42 ml/perc nitrogén térfogatáram jelenlétében, 20 percig zajlottak a vizsgálatok, 5g kukorica biomassza hulladék (0% nedvességtartalom), illetve 2,5g katalizátor jelenlétében.

A vizsgálatsorozat során adszorbensként 400°C-on előzetesen hőkezelt klinoptilolitot használtam. A klinoptilolit előkezelésének hőmérsékletét mérési eredmények alapján határoztam meg (4.5.2. fejezet). Ezen kísérletsorozatokban a katalizátor, valamint az alkalmazott adszorbens ciklusvizsgálatát 10-10 cikluson keresztül, ciklusonként 20 percig végeztem. Célom a szén-dioxid részarányának csökkentése, valamint a H₂:CO arány növelése volt. A gáztermékek összetételét DANI típusú GC-FID/TCD (off-line) gázkromatográf segítségével határoztam meg. A keletkezett folyadéktermék a reaktorból kilépő, valamint az adszorbensre belépő összekötő gumicsőben kondenzálódott, melyet a kísérlet végén mintatartóban gyűjtöttem össze.

4.6.1. Ciklusvizsgálat vízgőz jelenlétében post-situ adszorpcióval

A korábbiakban bemutatott kísérletek eredményeiből (4.4.1-4.4.4. fejezetek), négy mérési sorozatot kiválasztva, a 4.5.2. fejezetben meghatározott hőmérsékleten kezelt klinoptilolit adszorbensként történő alkalmazhatóságát is vizsgáltam. Ebben az esetben a klinoptilolitot minden esetben az elgázosítási lépés után (post-situ) helyeztem el. A négy mérési sorozat a hidrogén-szén-monoxid arány, a szintézisgáz hozam, illetve a szén-dioxid csökkentésének mértéke alapján került kiválasztásra, alacsony és magas hőmérsékletű elgázosítás mellett. Ezek alapján a további kísérleteimet vízgőz jelenlétében, Ni/ZSM-5, illetve Ni/Klinoptilolit katalizátorok jelenlétében 400°C és 800°C első reaktorzóna-hőmérséklet alkalmazásával végeztem. Az 58. ábra a termékhozamok változását szemlélteti a regenerálási ciklusok előrehaladtával. hőmérsékleten (400°C), Ni/ZSM-5, Megfigveltem, hogy alacsonyabb illetve Ni/Klinoptilolit jelenlétében a termékhozamok hasonlóan alakultak.

A termékhozamok alakulása a vízgőzös elgázosítás során, post-situ adszorpcióval a regenerálási ciklusok függvényében (a) alacsony hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (b) alacsony hőmérsékletű

elgázosítás Ni/Klinoptilolit mellett, (c) magas hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (d) magas hőmérsékletű elgázosítás Ni/Klinoptilolit mellett

A maradék hozama mindkét esetben 27-30% közötti volt, míg a korábbi eredményekkel ellentétesen, a folyadéktermék a 4. regenerálási ciklustól a 10-ig 2-7% csökkenést mutatott. A gázterméket tekintve, alacsony hőmérsékleten (400°C) a

termikus degradáció mértéke alacsonyabb volt, mint 800°C első reaktorzóna hőmérsékletnél, így ekkor közel 30-35% gáztermék keletkezett a Ni/Klinoptilolit, valamint a Ni/ZSM-5 jelenlétében.

Magas hőmérsékletű elgázosításnál (800°C) a termikus degradáció növekvő mértéke figyelhető meg. Ebben az esetben a maradék mennyisége átlagosan 15% körüli volt. Emellett a Ni/ZSM-5 katalizátor jelenlétben a gáztermékek mennyisége az 5. regenerálási ciklusig növekvő tendenciát mutatott (4,7-18,6%), majd enyhe csökkenést követően ismételt növekedett (2,6-11,8%). Ezzel szemben a Ni/Klinoptilolit alkalmazásával a gáztermékek mennyisége folyamatosan növekedett (1-8,7%), ami a vizsgált katalizátor vízgőzös reformálásra gyakorolt előnyös tulajdonságaival volt magyarázható.

A gáztermékek összetételét az 59. ábra szemlélteti. Megfigyeltem, hogy mind az alacsonyabb, mind pedig a magasabb hőmérsékleten a szén-monoxid volt a meghatározó komponens. Az első reaktorzónában 400°C hőmérsékletet (59. (a)-(b) ábrák) alkalmazva, Ni/ZSM-5 jelenlétében az 5. regenerálási ciklusig a szén-monoxid növekvő, majd utána csökkenő tendencia adódott, míg a Ni/Klinoptilolit alkalmazásával a regenerálási ciklusok előrehaladtával a szén-dioxid mennyisége 2,5-18,9 mmol/g alapanyag közötti értékekkel növekedett (59. (c)-(d) ábrák). A hidrogén, valamint a metán hozama minden esetben 5 mmol/g alapanyag érték alatt volt, míg a C2-C5 szénhidrogének részaránya a legtöbb esetben kisebb volt, mint 10 mmol/g alapanyag. Fontos kiemelni a szén-dioxid tartalmat, mely post-situ adszorpció nélkül a Ni/ZSM-5 katalizátornál 23,2-49,8 mmol/g alapanyag értékek között, a Ni/Klinoptilolit katalizátornál pedig 22,3-46,7 mmol/g alapanyag értékek között változott (4.4.2 és 4.4.4. fejezetek, 43. és 51. ábrák). Megfigyeltem, hogy megfelelő adszorbenst, illetve vízgőzt alkalmazva a szén-dioxid tartalom 10 regenerálási cikluson keresztül több, mint felére csökkenthető (4.4.2 és 4.4.4. fejezetek, 43. és 51. ábrák). Továbbá az is megállapítottam, hogy utólagos adszorpció nélkül a szén-monoxid, illetve a szén-dioxid mennyisége közel azonos volt, mely ahogy az már korábban említésre került, a reformáló reakciókkal, valamint a víz-gáz shift reakcióval magyarázható.

800°C első reaktorzóna hőmérsékletnél, a több gáztermék következtében a vizsgált komponensek mindegyike nagyobb hozammal rendelkezett. A legnagyobb hozama a szén-monoxidnak volt. Ni/ZSM-5 jelenlétében a hidrogén tartalom az 5. regenerálási ciklusig 13,5-18,0 mmol/g alapanyag között változott, majd az a 8. ciklusig enyhe csökkenést mutatott (3,0-5,8 mmol/g alapanyag értékkel). A metán mennyisége,

valamint a C_2 - C_5 szénhidrogének részaránya a 4. regenerálási ciklusig enyhén növekedett, majd ezt követően csökkent. A szén-dioxid változása a hidrogén hozamához hasonló volt, mert az 5. ciklusig ebben az esetben is növekedés volt megfigyelhető. A Ni/Klinoptilolit jelenlétében, a regenerálási ciklusoktól függetlenül, szignifikánsan több hidrogén keletkezett. Emellett a metán hozama is több volt (9,1-11,3 mmol/g alapanyag), míg a szén-dioxid mennyisége nagymértékben csökkent (max. 21,1 mmol/g alapanyag). Utóbbi a Klinoptilolit előnyös szén-dioxid megkötő képességének volt köszönhető, mely oka a vizsgált természetes zeolit nagy kvadrupólmomentuma volt.

A gáztermék összetétele a vízgőzös elgázosítás során, post-situ adszorpcióval a regenerálási ciklusok függvényében (a) alacsony hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (b) alacsony hőmérsékletű elgázosítás Ni/Klinoptilolit mellett, (c) magas hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (d) magas hőmérsékletű elgázosítás Ni/Klinoptilolit mellett

A *60. ábra* a szintézisgáz tartalmat szemlélteti a regenerálási ciklusok függvényében. Megfigyeltem, hogy magasabb hőmérsékleten, a nagyobb mértékű termikus degradáció miatt a szintézisgáz tartalom is több volt. Az első reaktorzónában 400°C hőmérsékletet alkalmazva, a Ni/ZSM-5 jelenlétében, a 7. regenerálási ciklusig a szintézisgáz hozama közel 18 mmol/g alapanyag értékkel növekedett. Az első reaktorzóna hőmérsékletét 800°C-ra emelve a szintézisgáz hozam a Ni/Klinoptilolittal és Ni/ZSM-5 jelenlétben 74,3 mmol/g alapanyag értékű, amely közel 30 mmol/g alapanyag értékkel volt több, mint a 400°C első reaktorzóna hőmérséklet esetében kapott eredményeknél. A szintézisgáz mennyiségének regenerálási ciklusok során tapasztalt változását tekintve jól látszik, hogy a post-situ eljáráselrendezés mellett, 800°C első reaktorzóna hőmérsékletnél az 5. ciklusig növekedett a szintézisgáz mennyisége. 400°C hőmérsékletű elgázosítás során Ni/Klinoptilolit alkalmazásával az 5. ciklust követően jelentős csökkenés figyelhető meg a szintézisgáz mennyiségében. Az alacsonyabb hőmérsékleten végzett kísérletek során a Ni/ZSM-5 katalizátorral az 5. ciklus után monoton csökkent a szintézisgáz mennyisége. Magasabb reaktorhőmérsékleten, mindkét katalizátornál az 5. regenerálási ciklust követően a 7. ciklusig csökkent a szintézisgáz mennyisége.

A szintézisgáz hozam változása a vízgőzös elgázosítása során, post-situ adszorpcióval a regenerálási ciklusok függvényében (a) alacsony hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (b) alacsony hőmérsékletű elgázosítás Ni/Klinoptilolit mellett, (c) magas hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (d) magas hőmérsékletű elgázosítás Ni/Klinoptilolit mellett

A **61.** *ábra* a keletkezett gáztermékek H₂/CO, valamint CO/CO₂ arányát szemlélteti. Megállapítottam, hogy alacsonyabb hőmérsékletet alkalmazva (**61.** (*a*) *ábra*) az első reaktorzónában, Ni/ZSM-5 jelenlétében, a H₂/CO arány a 10 regenerálási ciklus átlagát tekintve 0,09 értékkel rendelkezik. Ni/Klinoptilolit katalizátor mellett (**61.** (*b*) *ábra*) az említett átlagérték 0,13. Természetes zeolit jelenlétében megfigyelhető a katalizátor hidrogénező hatásának csökkenése a regenerálási ciklusok előrehaladtával. A CO/CO₂ arányt tekintve, a nullás értékeknél nem keletkezett szén-dioxid tartalom, mely az elgázosítási lépés után elhelyezett adszorbens szén-dioxid megkötő képességével magyarázható. Ezen érték esetében megfigyelhető, hogy több regenerálási ciklusban 0 érték adódott, mely a regenerálási hatékonyságra ad információt. 800°C hőmérsékletet alkalmazva az első reaktorzónában (**61.** (*c*) és (*d*) *ábrák*) az átlagos hidrogén:szén-monoxid arány a háromszorosára növelhető (0,34 Ni/ZSM-5 és 0,35 Ni/Klinoptilolit mellett), míg a CO/CO₂ arány, az első mérés kivételével a regenerálásci ciklusok többségében, közel állandó 2,5-3,0 értékű. Továbbá fontos megemlíteni, hogy

magasabb hőmérsékletet alkalmazva az első reaktorzónában, a hidrogén:szén-monoxid arány a regenerálási ciklusok előrehaladtával Ni/ZSM-5 mellett konstans növekvő tendencia, míg Ni/Klinoptilolit jelenlétében periodikus növekedés figyelhető meg.

A gáztermék H₂/CO és CO/CO₂ aránya a vízgőzös elgázosítás során, post-situ adszorpcióval a regenerálási ciklusok függvényében (a) alacsony hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (b) alacsony hőmérsékletű elgázosítás Ni/Klinoptilolit mellett, (c) magas hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (d) magas hőmérsékletű elgázosítás Ni/Klinoptilolit mellett

Az említett arányokat összevetve az elgázosítási kísérletekkel, melynél post-situ adszorbens nem került elhelyezésre (4.4.2. és 4.4.4. fejezetek), megállapítható, hogy CO/CO₂ arány 1,1-1,9 értékekről átlagosan 2,5-3,0, egyes regenerálási pontokban 4,0 érték fölé növelhető. Emellett a hidrogén:szén-monoxid arány a korábbi 0,2-0,9 értékekről 0,1-0,35 közé csökkent, mely a post-situ adszoprció során elért magasabb szén-monoxid tartalommal magyarázható.

A 26. táblázat a vizsgált adszorbensek főbb jellemzőit foglalja össze a 10. regenerálási ciklus után, és az azt követő regenerálás után. A "tiszta" klinoptilolit jellemzői a 3.1.3. fejezetben találhatóak. Az eredmények alapján megfigyeltem, hogy a regenerálást követően a fajlagos felületek, a pórustérfogat, illetve a pórusátmérő mindegyik esetben megnőtt, mely a szilárd szemcsék (koksztartalom), valamint az adszorbeált molekulák (pl.: víz, CO₂) eltávolításával, illetve a korábbiakban már ismertetett, a hőmérséklet hatására bekövetkezett aprózódással magyarázható.

26. táblázat

	naesonj, metre magas nom	U								
		Első zóna hőmérséklete 400°C								
	Klinop. (Ni/ZSM-5) 10. reg. előtt	Klinop. (Ni/ZSM-5) 10. reg. után	Klinop. (Ni/Klinop.) 10. reg. előtt	Klinop. (Ni/Klinop.) 10. reg. után						
Si/Al	5,2	5,2	4,9	5,1						
S _{BET} , m ² /g	18,4	18,6	18,4	18,7						
Smicro, m ² /g	6,1	7,1	5,7	6,1						
$V_{micro}, m^2/g$	0,0026	0,0029	0,0024	0,0025						
V, cm ³ /g	0,1266	0,1269	0,1234	0,1262						
D _{av} , nm	23,5	23,8	22,3	22,9						
		Első zóna hőmérséklete 800°C								

	Klinop. (Ni/ZSM-5) 10. reg. előtt	Klinop. (Ni/ZSM-5) 10. reg. után	Klinop. (Ni/Klinop.) 10. reg. előtt	Klinop. (Ni/Klinop.) 10. reg. után						
Si/Al	Klinop. (Ni/ZSM-5) 10. reg. előtt 4,9	Klinop. (Ni/ZSM-5) 10. reg. után 5,5	Klinop. (Ni/Klinop.) 10. reg. előtt 4,8	Klinop. (Ni/Klinop.) 10. reg. után 5,2						
Si/Al S _{BET} , m ² /g	Klinop. (Ni/ZSM-5) 10. reg. előtt 4,9 18,4	Klinop. (Ni/ZSM-5) 10. reg. után 5,5 18,9	Klinop. (Ni/Klinop.) 10. reg. előtt 4,8 18,2	Klinop. (Ni/Klinop.) 10. reg. után 5,2 19,1						
Si/Al S _{BET} , m ² /g S _{micro} , m ² /g	Klinop. (Ni/ZSM-5) 10. reg. előtt 4,9 18,4 6,0	Klinop. (Ni/ZSM-5) 10. reg. után 5,5 18,9 8,0	Klinop. (Ni/Klinop.) 10. reg. előtt 4,8 18,2 6,1	Klinop. (Ni/Klinop.) 10. reg. után 5,2 19,1 8,2						
$\overline{Si/A1} \\ S_{BET}, m^2/g \\ S_{micro}, m^2/g \\ V_{micro}, m^2/g \\$	Klinop. (Ni/ZSM-5) 10. reg. előtt 4,9 18,4 6,0 0,0025	Klinop. (Ni/ZSM-5) 10. reg. után 5,5 18,9 8,0 0,0025	Klinop. (Ni/Klinop.) 10. reg. előtt 4,8 18,2 6,1 0,0025	Klinop. (Ni/Klinop.) 10. reg. után 5,2 19,1 8,2 0,0026						
$ \frac{ Si/Al}{S_{BET}, m^2/g} \\ S_{micro}, m^2/g \\ V_{micro}, m^2/g \\ V, cm^3/g $	Klinop. (Ni/ZSM-5) 10. reg. előtt 4,9 18,4 6,0 0,0025 0,1256	Klinop. (Ni/ZSM-5) 10. reg. után 5,5 18,9 8,0 0,0025 0,1211	Klinop. (Ni/Klinop.) 10. reg. előtt 4,8 18,2 6,1 0,0025 0,1179	Klinop. (Ni/Klinop.) 10. reg. után 5,2 19,1 8,2 0,0026 0,1207						

A használt és a regenerált adszorbensek morfológiája a 10. regenerálási ciklust követően, vízgőzös, alacsony, illetve magas hőmérsékletű elgázosítás során

4.6.2. Regenerálási ciklusvizsgálat és post-situ adszorpció során kapott eredmények összehasonlítása az alap eredményekkel (vízgőz és katalizátor jelenlétében, illetve termikus esetben)

Annak érdekében, hogy a post-situ adszorpció hatékonyságát meghatározzam, a mérési adatsorokat összehasonlítottam a post-situ adszorpciót nem alkalmazó, eljárás elrendezés során kapott eredményekkel. Az összehasonlított értéksoroknál az alkalmazott hőmérsékletek és a vízgőz:alapanyag arány, valamint a vizsgált katalizátorok megegyeznek. Továbbá az eredménysorozatot a termikus esetben kapott eredménysorozattal is összevetettem, mely információt szolgáltat a katalizátorok és az adszorbens hatására is. A post-situ adszorpciót alkalmazó eljárás elrendezés során kapott eredményekből kivontam az eredeti, utólagos adszorpciót nem tartalmazó mérési sorozatok eredményeit, majd ezt a különbséget ábrázoltam. A *62. ábra* a gáztermékek összetételének változását szemlélteti a katalitikus, post-situ adszorpcióval nem rendelkező eredményekhez viszonyítva (4.4.2 és 4.4.4. fejezetek, 43. és 51. ábrák), míg a 27. táblázat a számszerű eltéréseket tartalmazza a gáztermék hozamában, a gázösszetételben, valamint a gázösszetétel hozamában.

Megfigyelhető, hogy a 400°C első reaktorzóna hőmérsékletnél (*62.(a) és (b) ábra*), a Ni/ZSM-5 jelenlétében a 3. regenerálási ciklustól kezdve, míg a Ni/Klinoptilolittal az 5. regenerálási ciklustól a szén-monoxid tartalom különbsége 5,2-28,4 mmol/g alapanyag (mely 107,6-276,6%-a a post-situ adszorpciót nem tartalmazó mérési sorozat megfelelő pontjainak (*27. táblázat*)), illetve 4,3-22,8 mmol/g alapanyag közötti értékekkel

növekedett (mely 101,0-130,4%-a a post-situ adszorpciót nem tartalmazó mérési sorozat megfelelő pontjainak (27. táblázat)).

A gáztermék összetételének változása a vízgőzös elgázosítása során (katalitikus eredményekhez hasonlítva), post-situ adszorpcióval a regenerálási ciklusok függvényében (a) alacsony hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (b) alacsony hőmérsékletű elgázosítás Ni/Klinoptilolit mellett, (c) magas hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (d) magas hőmérsékletű elgázosítás Ni/Klinoptilolit mellett

Az eredmény a reformáló reakciókkal, valamint a víz-gáz shift reakciókkal és a széndioxid tartalom szignifikáns csökkentésével magyarázható. Továbbá megfigyeltem, hogy a regenerálási ciklusok előrehaladtával az adszorbeált szén-dioxid tartalom csökkent, mely fő oka az egymást követő hőterhelés volt a regenerálás során (400°C) (Ni/ZSM-5 esetében 0-137,3%-a, míg Ni/Klinoptilolit mellett 0-44,5%-a a post-situ adszorpciót nem tartalmazó mérési sorozat megfelelő pontjainak (27. táblázat)).

Ez ugyanis az adszorbens szerkezetének átalakulását (4.5. fejezet) okozta, ami a szén-dioxid adszorpció hatásfokcsökkenését eredményezte. Emellett a C₂-C₅ szénhidrogének mennyisége is nagyobb mértékben csökkent (~10 mmol/g alapanyag különbségek) az első 5 regenerálási ciklusban, mely a vizsgált katalizátorok savasságával, illetve Si/Al arányával, valamint az adszorbens nagy pórusátmérőjével magyarázható. Az első zóna hőmérsékletét 800°C-ra emelve, hasonló változásokat figyelhetem meg, mint az alacsonyabb hőmérsékleteken. A szén-monoxid tartalom különbsége mindkét vizsgált katalizátornál periodikusan változott, mely mind a katalizátorok, mind az adszorbens esetében a regenerálási hatásfokokkal magyarázható.

27. táblázat

Az eltérések (katalitikus, post-situ adszorpcióval nem rendelkező eredményekhez viszonyítva) számszerű adatai

-

-

				a 101			n				
%	Szazalekok elteresei		•	400)_700_Ni	ZSM-5_	Post-situ	kiinop_5	gvg		10
'n,	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
рa		-23,4	-23,3	-19,3	-1,5	-3,0	1,2	1,4	1,7	8,4	1,5
am				400_7	'00_Ni/Kl	linoptiloli	it_Post-si	tu klinop	_5gvg		
ZO	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
iz h		-16,9	-10,5	-12,4	-23,4	-14,7	-2,9	-8,7	-11,7	-8,4	-15,0
6 <u>3</u>	800_700_Ni/ZSM-5_Post-situ klinop_5gvg										
8	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ség	0	-23,5	-20,0	-18,0	-17,9	-12,6	-11,4	-14,9	-14,5	-12,9	-9,1
qu				800 7	'00 Ni/Kl	linoptiloli	it Post-si	tu klinop	5gvg		
ilö	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
Ki	rteg. enitus	-03	-07	-1.2	-2.1	-2.5	-40	-4.0	-4.8	-51	-6.6
		0,0	0,7	1,2		-,	D4	1,0 1-12 5	.,0	5,1	0,0
	Szazalekok elleresel	1 2 3 4 5 6 7 8 0 10									
	Reg. Cikius	1	4	3	4	3	0	~	8	9	10
	H ₂	1,3	4,5	2,2	1,1	0,6	3,0	2,9	3,2	1,8	0,5
	CO	25,2	26,9	37,2	28,7	34,6	34,0	26,5	22,2	21,6	15,2
	CH_4	1,7	-2,0	-0,5	-0,4	-3,0	1,6	-1,4	-1,2	0,2	-1,1
	CO_2	-30,8	-19,6	-32,6	-24,1	-21,7	-34,4	-23,4	-19,1	-18,8	-6,6
	C2-C5	2,6	-9,8	-6,2	-5,8	-10,4	-4,2	-4,5	-5,1	-4,8	-8,1
				400_7	'00_Ni/Kl	linoptiloli	it_Post-si	tu klinop	_5gvg		
%	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
'n	H_2	8.5	11.5	4.0	2.1	0.5	1.4	2.1	-1.5	-1.1	-0.6
pe	0	5.8	15.6	19.9	26.5	27.6	202	221	15 5	32 1	19.9
tel	CH	0.9	11	-1.2	-3.3	1 2	0.2	1.0	0.1	-0.3	-1.2
eté	C114 CO.	16.1	22.1	-1,2	-5,5	20.2	15 1	25.4	12.5	-0,5	12.1
SZ		-10,1	-25,1	-10,9	-13,7	-29,2	-15,1	-23,4	-12,5	-20,9	-15,1
sös	$C_2 - C_5$	0,9	-5,1	-5,8	-9,6	-0,2	-6,6	0,4	-1,6	-3,7	-5,1
gái				800)_700_Ni	/ZSM-5_	Post-situ	klinop_5	gvg	_	
8	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
ég	H_2	-0,9	-3,3	-2,5	-2,7	-2,1	-0,9	-0,9	-0,8	1,5	0,9
sq	CO	30,1	22,8	21,3	16,6	22,6	20,0	27,0	30,8	26,2	31,6
ön	CH_4	-3,0	-1,4	-1,4	2,0	-0,4	1,0	-1,2	0,2	-0,7	1,6
Ū.	CO_2	-19.1	-14.9	-16.3	-17.8	-16.7	-18.8	-20.7	-27.8	-23.7	-33.8
1	C2-C5	-7.0	-32	-1.2	2.0	-33	-13	-4.1	-2.5	-33	-0.2
	$C_2 C_3 = -1, 0 = -2, 2 = -1, 2 = -2, 0 = -2, 3 = -1, 3 = -2, 3 = -2, 3 = -2, 2 = -2, 3 = -2, 2 = -2, 3 = -2, 2 = -2, 3 = -2, 2 = -2, 3 = -2$									0,2	
	$D_{\text{add}} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4}$										
	IL KEG. CIKIUS	70	24	26	-	16	25	1 1	27	11	2.2
		-7,0	-5,4	-2,0	-3,9	-1,0	-5,5	-1,1	-2,7	1,1	2,2
	0	21,1	18,2	15,0	20,0	22,6	18,1	15,4	17,8	24,5	25,0
	CH_4	1,4	4,6	3,8	3,5	-1,7	0,4	2,7	1,2	-0,1	2,6
	CO_2	-13,6	-20,0	-16,5	-19,8	-19,2	-15,4	-18,1	-16,5	-24,1	-29,9
	C2-C5	-1,1	0,5	0,3	2,2	0,0	0,3	1,2	0,3	-1,4	0,2
	mmol/g értékek										
	eltérései %-ban			400)_700_Ni	/ZSM-5_1	Post-situ	klinop_5	gvg		
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H ₂	53.9	188.3	88.7	116.6	102.2	173.3	282.6	260.9	197.8	202.4
	CO	65.8	87.9	107.6	161.0	168.3	187.1	262.6	229.7	206.6	239.4
	CH ₄	58.9	30.7	51.2	88.6	43.2	137.3	120.6	117.7	145.1	140.9
	CO2	0.0	22.1	0.0	27.9	31.8	0.0	44 2	56.6	55 5	137.3
	Ca-Ca	53.1	19.2	32.9	56.8	31.4	71.6	118 1	102.4	97.1	102.8
	C2-C5	64.6	01.0	106.0	156.2	161.7	195.9	264.2	222.6	205.8	226.6
	Szintezisgaz	04,0	,,,	400.7	150,2	inontiloli	t Doct ci	tu klinon	232,0 5ava	205,0	230,0
%	Pog. Ciklus	1	•	400_/	00_11/15	moputon		ւս տուօբ	_Jgvg		10
Ľ,	Keg. Cikius		· · ·	2		5	6	7	Q	0	10
ib a		1174	2	3	4	5	6 111.2	7	8	9 57 /	
mź	H2	117,4	2 158,2	3 75,7	4 71,9	5 68,5	6 111,2	7 98,3	8 43,8	9 57,4	47,9
za		117,4 45,4	2 158,2 58,3	3 75,7 58,0	4 71,9 88,4	5 68,5 101,1	6 111,2 130,4	7 98,3 98,9	8 43,8 79,9	9 57,4 124,3	47,9 79,2
ho	CO CH ₄	117,4 45,4 48,9	2 158,2 58,3 53,3	3 75,7 58,0 32,6	4 71,9 88,4 29,4	5 68,5 101,1 79,4	6 111,2 130,4 92,4	7 98,3 98,9 77,1	8 43,8 79,9 61,2	9 57,4 124,3 66,1	47,9 79,2 44,9
ã	CO CH ₄ CO ₂	117,4 45,4 48,9 16,1	2 158,2 58,3 53,3 0,0	3 75,7 58,0 32,6 14,7	4 71,9 88,4 29,4 22,0	5 68,5 101,1 79,4 0,0	6 111,2 130,4 92,4 44,5	7 98,3 98,9 77,1 27,7	8 43,8 79,9 61,2 34,7	9 57,4 124,3 66,1 0,0	47,9 79,2 44,9 27,0
el h	$\begin{array}{c} H_2\\ CO\\ CH_4\\ CO_2\\ C_2\text{-}C_5\end{array}$	117,4 45,4 48,9 16,1 43,7	2 158,2 58,3 53,3 0,0 30,4	3 75,7 58,0 32,6 14,7 26,0	4 71,9 88,4 29,4 22,0 25,6	5 68,5 101,1 79,4 0,0 62,5	6 111,2 130,4 92,4 44,5 48,7	7 98,3 98,9 77,1 27,7 67,5	8 43,8 79,9 61,2 34,7 52,8	9 57,4 124,3 66,1 0,0 52,5	47,9 79,2 44,9 27,0 39,0
stétel h	CO CH ₄ CO ₂ C ₂ -C ₅ Szintézisgáz	117,4 45,4 48,9 16,1 43,7 51,2	2 158,2 58,3 53,3 0,0 30,4 66,4	3 75,7 58,0 32,6 14,7 26,0 59,6	4 71,9 88,4 29,4 22,0 25,6 86,2	5 68,5 101,1 79,4 0,0 62,5 97,0	6 111,2 130,4 92,4 44,5 48,7 128,2	7 98,3 98,9 77,1 27,7 67,5 98,8	8 43,8 79,9 61,2 34,7 52,8 76,2	9 57,4 124,3 66,1 0,0 52,5 116,6	47,9 79,2 44,9 27,0 39,0 76,5
szetétel h	CO CH ₄ CO ₂ C ₂ -C ₅ Szintézisgáz	117,4 45,4 48,9 16,1 43,7 51,2	2 158,2 58,3 53,3 0,0 30,4 66,4	3 75,7 58,0 32,6 14,7 26,0 59,6 80 0	4 71,9 88,4 29,4 22,0 25,6 86,2 0_700_Ni	5 68,5 101,1 79,4 0,0 62,5 97,0 /ZSM-5	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg	9 57,4 124,3 66,1 0,0 52,5 116,6	47,9 79,2 44,9 27,0 39,0 76,5
összetétel h	CO CH ₄ CO ₂ -C ₂ -C ₅ Szintézisgáz Reg. Ciklus	117,4 45,4 48,9 16,1 43,7 51,2 1	2 158,2 58,3 53,3 0,0 30,4 66,4 2	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3	4 71,9 88,4 29,4 22,0 25,6 86,2 0_700_Ni 4	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5 _1 5	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8	9 57,4 124,3 66,1 0,0 52,5 116,6 9	47,9 79,2 44,9 27,0 39,0 76,5 10
gázösszetétel h	CO CH ₄ CO ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5	4 71,9 88,4 29,4 22,0 25,6 86,2 0_700_Ni 4 69,0	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5_ 5 79,7	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7
a gázösszetétel h	CO CH ₄ CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6 124,5	3 75,7 58,0 32,6 14,7 26,0 59,6 80(3 64,5 135.8	4 71,9 88,4 29,4 22,0 25,6 86,2 0_700_Ni 4 69,0 129,9	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5_] 5 79,7 169.3	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122.5	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119.0	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140.5	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162.8	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194.7
és a gázösszetétel h	CO CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CO CH4	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5	3 75,7 58,0 32,6 14,7 26,0 59,6 80(3 64,5 135,8 64 1	4 71,9 88,4 29,4 22,0 25,6 86,2)_700_Nii 4 69,0 129,9 100 2	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5_ 5 79,7 169,3 86.4	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76 1	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5, 7 52,7 119,0 47 2	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140,5 61 5	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70 0	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91 3
térés a gázösszetétel h	CO CH ₄ CO ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38 1	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5 135,8 64,1 41,6	4 71,9 88,4 29,4 22,0 25,6 86,2)_700_Ni 4 69,0 129,9 100,2 42 3	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5] 5 79,7 169,3 86,4 50 9	6 6 1111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76,1 35 5	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26 5	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140,5 61,5 18 4	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15.0
Eltérés a gázösszetétel h	CO CH ₄ CO ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ CO ₂ CO ₂	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4	3 75,7 58,0 32,6 14,7 26,0 59,6 80 (3 64,5 135,8 64,1 41,6 65,6	4 71,9 88,4 29,4 22,0 25,6 86,2 0_700_Ni 4 69,0 129,9 100,2 42,3 99,4	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5_ 5 79,7 169,3 86,4 50,9 61,5	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76,1 35,5 8 0	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9	8 43,8 79,9 61,2 34,7 52,8 76,2 gyg 8 57,7 140,5 61,5 18,4 43,6	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8
Eltérés a gázösszetétel h	CO CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CO CH4 CO2 C2-C5 Szintéziszáz	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97 0	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,9	3 75,7 58,0 32,6 14,7 26,0 59,6 80(3 64,5 135,8 64,1 41,6 65,6	4 71,9 88,4 22,0 25,6 86,2)_700_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5_ 5 79,7 169,3 86,4 50,9 61,5 122,1	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 9,9 22,5 76,1 35,5 58,9 9,9 22,5 76,1 35,5 58,9 9,9 22,5 76,1 35,5 58,9 9,9 22,5 76,1 35,5 58,9 9,9 22,5 76,1 76	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 80,0	8 43,8 79,9 61,2 34,7 52,8 76,2 gyg 8 57,7 140,5 61,5 18,4 43,6 (102,4)	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 272	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8
Eltérés a gázösszetétel h	CO CH ₄ CO ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₅ Szintézisgáz	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97,9	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,8	3 75,7 58,0 32,6 14,7 26,0 59,6 80(3 64,5 135,8 64,1 41,6 65,6 106,8 800	4 71,9 88,4 29,4 22,0 25,6 86,2)_700_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5 00_Ni	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5 _1 79,7 169,3 86,4 50,9 61,5 133,1	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 98,2 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,2 122,5 76,1 35,5 58,9 98,9 122,5 76,1 35,5 58,9 98,9 122,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 35,5 76,1 76,	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 89,9 89,9	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140,5 61,5 18,4 43,6 102,4 5	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 127,3	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8 144,9
Eltérés a gázösszetétel h	CO CH ₄ CO ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₅ Szintézisgáz	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97,9	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,8	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5 135,8 64,1 41,6 65,6 106,8 800_7	4 71,9 88,4 29,4 22,0 25,6 86,2 0_700_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5 '00_Ni	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5 79,7 169,3 86,4 50,9 61,5 133,1 linoptiloli	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 98,2 it_Post-si	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 89,9 tu klinop	8 43,8 79,9 61,2 34,7 52,8 76,2 gyg 8 57,7 140,5 61,5 18,4 43,6 102,4 5gyg	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 127,3	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8 144,9
Eltérés a gázösszetétel h	CO CH ₄ CO ₂ -C ₃ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₃ Szintézisgáz Reg. Ciklus	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97,9 1	2 158,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,8 2 2	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5 135,8 64,1 41,6 65,6 106,8 800_7 3 3	4 71,9 88,4 29,4 22,0 25,6 86,2 0, -700_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5 '00_Ni/KI 4	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5_ 5 79,7 169,3 86,4 50,9 61,5 133,1 linoptiloli 5	6 111,2 130,4 92,4 44,5 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 98,2 it_Post-si	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 89,9 tu klinop 7 7	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140,5 61,5 18,4 43,6 102,4 -5gvg 8 8	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 127,3 9	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8 144,9 10
Eltérés a gázösszetétel h	CO CH4 CO2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97,9 1 43,7 51,2	2 158,2 58,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,8 2 60,2	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5 135,8 64,1 41,6 65,6 106,8 800_7 3 64,2	4 71,9 88,4 29,4 22,0 25,6 86,2 0,700_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5 00_Ni/KI 4 51,2	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5_ 7 9,7 169,3 86,4 50,9 61,5 133,1 1 inoptiloli 5 73,9	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 98,2 it_Post-si 6 6 6 75,5 100,4 100,5 1	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 89,9 tu klinop 7 72,5	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140,5 61,5 18,4 43,6 102,4 _5gvg 8 66,8	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 127,3 9 84,6	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8 144,9 10 95,1 10
Eltérés a gázösszetétel h	CO CH ₄ CO ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97,9 1 43,7 118,7	2 158,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,8 2 60,2 116,9	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5 135,8 64,1 41,6 65,6 106,8 800_7 3 64,2 110,4	4 71,9 88,4 29,4 22,0 25,6 86,2 0,700_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5 700_Ni/Kl 4 51,2 121,4	5 68,5 101,11 79,4 0,0 62,5 97,0 (ZSM -5_) 5 79,7 169,3 86,4 50,9 61,5 133,1 iiioptiloli 5 73,9 143,5	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 98,2 6 67,5 133,2	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 89,9 tu klinop 7 72,5 118,4	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140,5 61,5 61,5 18,4 43,6 102,4 5gvg 8 66,8 126,9	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 127,3 9 84,6 151,5	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8 144,9 10 95,1 167,9
Eltérés a gázösszetétel h	CO CH ₄ CO ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₅ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97,9 1 43,7 118,7 76,6	2 158,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,8 2 60,2 116,9 117,6	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5 135,8 64,1 41,6 65,6 106,8 800_7 3 64,2 110,4 112,7	4 71,9 88,4 29,4 22,0 25,6 86,2 0 _700_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5 '00_Ni/KI 4 51,2 121,4 109,5	5 68,5 101,11 79,4 0,0 62,5 97,0 /ZSM-5_1 5 79,7 169,3 86,4 50,9 61,5 133,1 linoptiloli 5 73,9 143,5 65,9	6 111,2 130,4 92,4 44,5 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 98,2 it_Post-si 6 6 7,5 133,2 86,5	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 89,9 tu klinop 7 72,5 118,4 101,7	8 43,8 79,9 61,2 34,7 52,8 76,2 gyg 8 57,7 140,5 61,5 18,4 43,6 102,4 -5gyg 8 66,8 126,9 88,8	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 127,3 9 84,6 151,5 78,7	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8 144,9 10 95,1 167,9 110,5
Eltérés a gázösszetétel h	CO CH ₄ CO ₂ -C ₃ Szintézisgáz Reg. Ciklus H ₂ CO CH ₄ CO ₂ C ₂ -C ₃ Szintézisgáz Reg. Ciklus H ₂ CO CO CH ₄ CO ₂	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97,9 1 43,7 118,7 76,6 37,9	2 158,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,8 2 60,2 116,9 117,6 27,3	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5 135,8 64,1 41,6 65,6 106,8 800_7 3 64,2 110,4 112,7 36,9	4 71,9 88,4 29,4 22,0 25,6 86,2 0_700_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5 00_Ni/KI 4 51,2 121,4 109,5 30,4	5 68,5 101,1 79,4 0,0 62,5 97,0 / ZSM-5_ 5 79,7 169,3 86,4 50,9 61,5 133,1 linoptiloli 5 73,9 143,5 65,9 36,3	6 111,2 130,4 92,4 44,5 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 98,2 it_Post-si 6 67,5 133,2 86,5 46,1	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 89,9 tu klinop 7 72,5 118,4 101,7 37,7	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140,5 61,5 18,4 43,6 102,4 - 5gvg 8 66,8 126,9 88,8 42,2	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 127,3 9 84,6 151,5 78,7 27,4	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8 144,9 10 95,1 16,7,9 110,5 16,7
Eltérés a gázösszetétel h	CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO2 C2-C5 Szintézisgáz Reg. Ciklus H2 CO CH4 CO2 C2-C5	117,4 45,4 48,9 16,1 43,7 51,2 1 56,9 124,2 40,4 24,6 25,3 97,9 1 43,7 118,7 76,6 37,9 58,8	2 158,3 53,3 0,0 30,4 66,4 2 55,6 124,5 57,5 38,1 48,4 96,8 2 60,2 116,9 117,6 27,3 74,4	3 75,7 58,0 32,6 14,7 26,0 59,6 800 3 64,5 135,8 64,1 41,6 65,6 106,8 800_7 3 64,2 110,4 112,7 36,9 75,6	4 71,9 88,4 29,4 22,0 25,6 86,2 00_Ni 4 69,0 129,9 100,2 42,3 99,4 106,5 (00_Ni/Kl 4 51,2 121,4 109,5 30,4 90,9	5 68,5 101,1 79,4 0,0 62,5 97,0 /ZSM-5_ 5 79,7 169,3 86,4 50,9 61,5 133,1 linoptiloli 5 73,9 143,5 65,9 36,8 80,8	6 111,2 130,4 92,4 44,5 48,7 128,2 Post-situ 6 64,9 122,5 76,1 35,5 58,9 98,2 it_Post-si 6 67,5 133,2 86,5 46,1 85,8	7 98,3 98,9 77,1 27,7 67,5 98,8 klinop_5 7 52,7 119,0 47,2 26,5 32,9 89,9 tu klinop 7 72,5 118,4 101,7 37,7 88,3	8 43,8 79,9 61,2 34,7 52,8 76,2 gvg 8 57,7 140,5 61,5 18,4 43,6 102,4 43,6 102,4 43,6 102,4 88,4 866,8 126,9 88,8 2 80,1	9 57,4 124,3 66,1 0,0 52,5 116,6 9 82,3 162,8 70,0 31,5 50,2 127,3 9 84,6 151,5 78,7 27,4 66,1	47,9 79,2 44,9 27,0 39,0 76,5 10 82,7 194,7 91,3 15,0 76,8 144,9 10 95,1 167,9 110,5 16,7 87,1

A Ni/ZSM-5, illetve a Ni/Klinoptilolit katalizátoroknál, az 5., majd 6-10. regenerálási ciklusok között a szén-monoxid tartalom növekedett (sorrendben 119,0-

194,7%-a, valamint 110,4-167,9%-a a post-situ adszorpciót nem tartalmazó mérési sorozat megfelelő pontjainak (27. táblázat)).

A szén-dioxid tartalmat vizsgálva elmondható, hogy annak különbsége a ciklusok mindegyikében közel állandó, 35,2 mmol/g alapanyag (Ni/ZSM-5) (<50,9%-a a postsitu adszorpciót nem tartalmazó mérési sorozat megfelelő pontjainak (27. táblázat)), illetve 31,8 mmol/g alapanyag (Ni/Klinoptilolit) (<46,1%-a a post-situ adszorpciót nem tartalmazó mérési sorozat megfelelő pontjainak (27. táblázat)) értékkel volt csökkenthető. Ezen eredmény az alkalmazott adszorbens aprózódása következtében bekövetkező fajlagos felület növekedésével magyarázható.

A 63. ábra a 4.3.3. fejezetben ismertetett eredményektől (35.(a) ábra; katalizátor nélkül, vízgőz:alapanyag arány=1) való eltéréseket szemlélteti, a regenerálási ciklusok függvényében, míg a 28. táblázat a számszerű eltéréseket tartalmazza a gáztermék hozamában, a gázösszetételben, valamint a gázösszetétel hozamában.

A kísérletek célja a szén-dioxid tartalom csökkentése, és a szintézisgáz hozam növelése volt. A *63. (a) és (b) ábrák* az alacsony hőmérsékletű elgázosítás (400°C) során kapott különbségeket szemléltetik, a Ni/ZSM-5 és a Ni/Klinoptilolit katalizátorok jelenlétében, illetve a post-situ adszorpció esetében.

Megfigyelhető, hogy mindkét katalizátornál a szén-monoxid tartalom különbsége kimagasló volt, míg a regenerálási ciklusok előrehaladtával a Ni/ZSM-5 katalizátor jelenlétében csökkenő (15,1-32,5 mmol/g alapanyag, mely 172,2-226,3% a post-situ adszorpciót nem tartalmazó, termikus mérési pontok eredményeihez viszonyítva (28. táblázat)), a Ni/Klinoptilolitnál pedig növekvő (9,4-28,3 mmol/g alapanyag, mely 103,0-173,5% a post-situ adszorpciót nem tartalmazó, termikus mérési pontok eredményeihez viszonyítva (28. táblázat)) tendencia adódott az eredmények közötti különbségekben. Továbbá, a szén-dioxid tartalom 16,1-24,2 mmol/g alapanyag, illetve 14,1-24,2 mmol/g alapanyag értékkel volt csökkenthető az alacsony hőmérsékletű elgázosítás során a Ni/ZSM-5 (mely 0,0-95,9% a post-situ adszorpciót nem tartalmazó, termikus mérési pontok eredményeihez viszonyítva (28. táblázat)), valamint a Ni/Klinoptilolit jelenlétben (mely 0,0-85,2% a post-situ adszorpciót nem tartalmazó, termikus mérési pontok eredményeihez viszonyítva (28. táblázat)), valamint a Ni/Klinoptilolit jelenlétben (mely 0,0-85,2% a post-situ adszorpciót nem tartalmazó, termikus mérési pontok eredményeihez viszonyítva (28. táblázat)) és utólagos adszorbens elhelyezésével.

Az első reaktorzónában magas hőmérsékletet (800°C) alkalmazva (63. (c)-(d) ábrák), megfigyeltem, hogy a post-situ adszorpció esetében a szén-monoxid tartalom mellett, a hidrogén tartalom (mely értékek 93,3-165,2%-át teszik ki a post-situ adszorpciót nem tartalmazó, termikus mérési pontok eredményeihez viszonyítva (28. *táblázat*)) is szignifikánsan növekedett.

A gáztermék összetételének változása a vízgőzös elgázosítása során (termikus eredményekhez hasonlítva), post-situ adszorpcióval a regenerálási ciklusok függvényében (a) alacsony hőmérsékletű elgázosítás Ni/ZSM-5 mellett, (b) alacsony hőmérsékletű elgázosítás Ni/Klinoptilolit mellett, (c) magas hőmérsékletű elgázosítás Ni/Klinoptilolit mellett

A vizsgált adszorbenst, és Ni/ZSM-5 katalizátort alkalmazva a szintézisgáz hozam az 1-5., majd a 6-10. regenerálási ciklusok között növekvő tendenciát mutatott 15,0-25,6 mmol/g alapanyag és 8,2-18,5 mmol/g alapanyag, valamint 3,9-8,4 mmol/g alapanyag és 5,4-7,1 mmol/g alapanyag közötti értékekkel. Ugyanezen komponenseket vizsgálva (H₂, CO), a Ni/Klinoptilolit jelenlétében hasonló tendencia volt megfigyelhető, azonban a szén-monoxid 12,6-25,7 mmol/g alapanyag és 13,8-24,0 mmol/g alapanyag, valamint a hidrogén 4,3-8,4 mmol/g alapanyag és 7,3-13,8 mmol/g alapanyag értékek között változott az 1-5., majd a 6-10. regenerálási ciklusokban.

Fontos megemlíteni, hogy a szén-dioxid tartalom különbsége, mindkét esetben a regenerálási ciklusok előrehaladtával folyamatos csökkenést mutatott, 17,3 mmol/g alapanyag maximális értékkel. Megállapítottam, hogy a post-situ adszorbensként elhelyezett Klinoptilolit közel 20 mmol/g alapanyag értékkel, azaz közel a felére csökkentette a szén-dioxid tartalmat, emellett a szén-monoxid tartalom akár 20-60%-kal, míg a hidrogéné 25-65%-kal volt növelhető.

28. táblázat

Az eltérések (termikus, post-situ adszorpcióval nem rendelkező eredményekhez viszonyítva) számszerű

%	Százalékok eltérései			4	00_700_1	Ni/ZSM-5	5_Post-sit	tu klinop_	_5gvg		
'n,	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
bai		6,1	9,8	6,0	10,3	10,3	11,5	19,4	17,2	11,1	17,0
E				400	_700_Ni/	Klinoptil	olit_Post	-situ klino	op_5gvg		
3Z(Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
zho	e e	6.2	5.4	3.1	8.2	6.4	4.8	-2.4	-1.5	1.0	-0.3
gá		- /	- ,	8	00 700 1	Ni/ZSM-5	5 Post-sit	tu klinop	5gyg	, -	- ,-
a	Reg Ciklus	1	2	3	4	5	6	7	8	9	10
ég	Rog. Cikius	11.0	72	27	12	67	80	16.6	14.1	51	10
squ		-11,9	-7,2	-2,7	700 NH	U, / Viinantii	-0,0	-10,0	-14,1	-5,4	-4,9
ön	D C11		•	2000	_/UU_NI/	KIINOPUI	ont_Post	-situ kiine	p_sgvg	0	10
(ü)	Reg. Ciklus	1	2	3	4	5	0	7	8	9	10
Ľ.		-5,6	-2,6	-1,0	-1,9	3,0	2,7	-0,8	-1,1	0,2	2,5
	Százalékok eltérései 400_700_Ni/ZSM-5_Post-situ klinop_5gvg										
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H_2	2,3	2,0	1,7	1,7	0,7	3,1	2,1	3,4	1,6	-0,6
	CO	17,2	17,0	23,7	14,0	19,0	20,7	11,2	10,9	9,0	-0,2
	CH4	0.5	-3.3	-1.1	-0.8	-3.0	0.7	-1.2	-1.7	-0.9	-1.3
	CO2	-22.0	-9.0	-21.0	-12.0	-10.3	-22.0	-13.0	-10.9	-93	23
	Co Co	2 1	6.6	3.2	3.2	63	25	1.0	16	0.3	0.2
	C2-C5	2,1	-0,0	-3,2	-3,2 700 NH	-0,5 Viinantii	-2,5 alit Daat	aitu klina	-1,0	-0,5	-0,2
৾৽	Dec Cibber	1	2	- 400	_/00_111/.	Kimopui 5	unt_r ust		p_sgvg	0	10
ŗ,	Reg. Cikius	1	11.6	3	4	3	0	10	0 1	9	10
0er	H ₂	8,7	11,0	4,2	4,1	2,8	2,7	1,9	-0,4	0,4	-0,5
ell	CO	1,6	10,7	11,2	12,1	18,3	8,1	10,1	7,0	21,5	11,1
téi	CH_4	-0,3	0,8	-1,1	-1,7	0,5	0,2	0,8	-1,2	-1,0	-0,9
sze	CO_2	-11,5	-22,0	-12,5	-11,2	-22,0	-7,0	-15,6	-5,0	-19,8	-9,7
öss	C2-C5	1,6	-1,0	-1,7	-3,2	0,5	-3,9	2,9	-0,2	-1,1	0,1
áz				8	00_700_1	Ni/ZSM-5	5_Post-sit	tu klinop_	5gvg		
80 80	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
0.0	H ₂	33	12	17	1.0	17	35	38	5.0	57	42
bsé	CO	18.2	10.0	7 5	4 5	8.6	5.0	10.7	13.8	91	13.1
lui	CH.	23	0.8	0.4	1.8	1 1	0.6	1 7	0.1	0.4	28
ülö	C114 CO.	-2,5	-0,8	-0,+	0.7	-1,1	0,0	-1,7	-0,1	-0,+	2,0
K		-13,7	-9,7	-8,0	-9,7	-7,0	-8,5	-10,1	-10,7	-12,2	-21,0
	C_2 - C_5	-3,5	-0,6	-0,2	2,3	-1,0	-0,7	-2,0	-2,0	-2,3	0,9
				800	_700_Ni/	Klinoptil	olit_Post	-situ klino	pp_5gvg	_	
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H_2	1,4	5,5	3,9	-0,2	2,8	1,9	4,1	2,8	6,8	8,0
	CO	7,5	6,2	5,1	10,5	12,0	7,7	4,2	5,8	12,0	10,9
	CH ₄	1,3	3,0	2,3	2,1	-1,1	-0,2	2,4	0,7	-0,5	2,8
	CO_2	-10,7	-16,4	-12,4	-15,0	-13,4	-9,5	-11,7	-9,4	-16,5	-21,7
	C2-C5	0,4	1,8	1,1	2,6	-0,3	0,1	1,1	0,1	-1,9	0,0
	mmol/g értékek										
	eltérései %-ban			4	00 700 1	Ni/ZSM-5	5 Post-sit	tu klinop	5gvg		
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	g H2	201.1	220.9	182.3	213.4	178.0	273.0	298.8	335 7	213.5	164.2
	CO	172.2	196.8	189.1	191.9	205.8	218.7	241.1	226.3	183.3	188.0
	CH	1/2,2	64.0	105.7	131.1	72.6	170.8	157.3	131.8	134.1	146.2
	C114 CO-	145,5	88.0	0.0	60.7	91.6	0.0	82.1	05.0	00.8	208.2
		155.0	66,9	0,0	111 6	72.0	125.7	217.6	164.5	152.0	195.0
	C2-C5	155,0	00,4 100.c	95,4	111,0	72,0	125,7	217,0	164,5	155,8	185,9
	Szintezisgaz	1/4,3	198,6	188,6	193,5	203,8	222,7	245,3	234,2	185,5	186,3
%				400	_700_Ni/	Klinoptil	olit_Post	-situ klino	p_5gvg		
'n.	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
Dai	H_2	392,5	465,0	226,9	275,4	217,7	202,2	125,7	83,0	115,5	87,4
ná	CO	136,1	152,5	139,5	173,5	177,1	143,1	103,0	103,8	150,0	117,9
car	CH_4	126,0	145,5	94,8	99,3	144,8	129,5	99,6	72,7	87,5	82,3
102	CO_2	62,9	0,0	50,1	69,9	0,0	85,2	53,2	71,2	0,0	55,1
ell	C2-C5	150,7	117,2	99,2	104,5	139,0	83,6	109,0	90,8	95,5	98,9
tét	Szintézisgáz	154.8	175.2	145.8	180.9	180.0	147.4	104.7	102.3	147.5	115.6
ze	800 700 Ni/ZSM-5 Post-situ klinon 5ovo									,	
öss	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
áz	H ₂	953	933	106.3	110.1	127.4	106.0	86.1	98 7	126.9	118.2
80	C0	111.7	107.5	112.7	113.9	137.4	94.9	85.6	97.6	110.0	120.1
Ę,	CH	56.1	77.0	00.8	124.0	08.8	00.2	54.3	71.7	84.0	110.8
ér	C114 CO:	25 2	57 1	66.6	69.0	20,0 92 0	50.4	44.0	20.9	52.0	212,0
Elt		55,5 45 7	3/,1 70.5	00,0	120.7	03,2	39,0 77 7	44,0	50,8	52,0	24,8 100.2
_	C2-C5	45,7	/9,5	92,7	129,7	91,8	11,1	47,2	55,4 67 c	00,1	100,3
	Szintezisgáz	107,5	103,8	111,1	112,9	134,8	97,8	85,7	97,9	114,3	119,7
	N		~	800	_700_Ni/	кınoptil	olit_Post	-situ klino	pp_5gvg	_	
	Reg. Ciklus	1	2	3	4	5	6	7	8	9	10
	H_2	98,2	132,4	125,8	95,2	127,6	119,5	127,6	117,6	150,2	165,9
	CO	105,8	109,7	110,4	121,8	137,7	125,6	108,7	112,0	130,7	133,6
	CH ₄	102,8	128,0	123,6	119,4	92,3	103,5	125,9	105,8	94,9	139,3
	CO_2	56,2	41,1	56,2	46,5	56,8	70,9	58,6	66,3	43,4	26,2
	C2-C5	93,4	114,4	110,5	124,8	102,1	106,4	110,6	99,5	78,4	104,4
	Szintézisgáz	103.9	115.5	114.4	115.0	135,1	124.0	113,6	113,5	135.7	141,9

A *64. ábra* a szintézisgáz hozamváltozását szemlélteti, a katalizátort nem tartalmazó termikus eredményekhez (*4.3.3. fejezet 35. ábra*, vízgőz:alapanyag arány=1) viszonyítva. Az eredmények alapján megállapítottam, hogy post-situ adszorpcióval,

illetve Ni/ZSM-5 jelenlétében, az első reaktorzónában alacsony hőmérsékletet (400°C) alkalmazva a szintézisgáz hozam a 8. regenerálási ciklusig szignifikánsan növekedett (23,9-27,7 mmol/g alapanyag). Megfigyeltem továbbá az is, hogy a Ni/Klinoptilolit jelenlétében, az első reaktorzónában magas hőmérsékletet (800°C) alkalmazva a szintézisgáz tartalom az 1-5. regenerálási ciklusokban 16,9-34,1 mmol/g alapanyag értékkel, majd a 6-10. regenerálási ciklusokban 28-37,8 mmol/g alapanyag értékkel volt növelhető.

A szintézisgáz hozam változása a vízgőzös elgázosítása során (termikus eredményekhez hasonlítva) a regenerálási ciklusok függvényében

4.6.3. CO₂ emisszió csökkentése

Végül megvizsgáltam a szén-dioxid csökkentés jelentette gazdasági előnyöket is. Az eredményeket a **65.** *ábra* tartalmazza, 89,1 euró/tonna szén-dioxid átlagárral számolva (2023) [186]. Az ábrákon a post-situ adszorpcióban keletkezett szén-dioxid tartalmat viszonyítottam az utólagos adszorpció nélküliek (4.4.2 és 4.4.4. fejezetek), illetve termikus mérési sorozat (4.3.2. fejezet) eredményeihez. Az eredmények alapján a regenerálási ciklusok mindegyikében meghatároztam azt a százalékot, mellyel a szén-dioxid kibocsátás értéke csökkenthető.

Az eredmények alapján megfigyeltem, hogy Ni/ZSM-5, valamint Ni/Klinoptilolit katalizátor jelenlétében, post-situ adszorpcióval, a regenerálási ciklusok mindegyikében 94-100%-kal volt csökkenthető a szén-dioxid kibocsátás, továbbá, hogy a regenerálási ciklusok előrehaladtával a pozitív hatás mértéke csökken. Így az említett mérési sorozatok során keletkező CO₂ tartalmat átszámítva 1 tonna alapanyagból kiindulva, pos-situ adszorpció alkalmazásával, egy teljes mérési sorozatban (10 db regenerálási ciklus), 1,1-1,3 Mrd euró gazdasági előny érhető el. Fontos megemlíteni, hogy a

gazdasági előny mellett célszerű számításba venni az alkalmazandó adszorbens és katalizátorok beszerzési költségeit, valamint a berendezés működtetési költségeit is.

A szén-dioxid kvóta értékének csökkentésének mértéke az alaperedményekhez viszonyítva, (a) Ni/ZSM-5, (b) Ni/Klinoptilolit mellett

Összességében megállapítottam, hogy post-situ adszorpcióval, a regenerálási ciklusok előrehaladtával a szén-dioxid tartalom az első reaktorzónában hőmérséklettől függetlenül szignifikánsan csökkenthető. A szintézisgáz hozam alacsony hőmérsékletet alkalmazva átlagosan 68-160%-kal, míg magas hőmérséklet mellett, 10-53%-kal növelhető. A megkötött szén-dioxid tartalom többnyire műtrágya előállításában, olajkinyerésben, szén-dioxid alapú szintetikus üzemanyagok és vegyipari termékek előállítására alkalmas.

4.6.4. Összegzés

Megállapítottam, hogy a vízgőz jelenlétében végzett, alacsony hőmérsékletű (400°C első reaktorzóna hőmérséklet) katalitikus elgázosításkor a szén-monoxid tartalom a vizsgált, Ni/ZSM-5 jelenlétében az 5. regenerálási ciklusig növekedett, majd utána csökkent, míg az alkalmazott, Ni/Klinoptilolit mellett a regenerálási ciklusok előrehaladtával folyamatosan növekedett. Post-situ adszorpciót alkalmazva a vizsgált Ni/Klinoptilolit jelenlétében a szén-dioxid tartalom nagymértékben csökkenthető. Emellett a szintézisgáz hozam a vízgőz jelenlétében végzett, magas hőmérsékletű (800°C első reaktorzóna hőmérséklet) katalitikus elgázosítás során a Ni/Klinoptilolit jelenlétében közel 50%-kal, míg a Ni/ZSM-5 jelenlétében közel 45%-kal növelhető.

Megállapítottam, hogy a regenerálási ciklusok előrehaladtával az adszorbeált széndioxid tartalom csökkent, mely fő oka az adszorbens szerekezetének átalakulása volt a regenerálás okozta hőterhelés (400°C) miatt. Mindez a szén-dioxid adszorpció hatásfokcsökkenését eredményezte. Emellett kimutattam, hogy a post-situ adszorbensként elhelyezett klinoptilolit jelenlétében a szén-dioxid tartalom közel felére csökkent, emellett a szén-monoxid tartalom akár 20-60%-kal, míg a hidrogéné pedig 25-65%-kal növekedett. Megállítottam, hogy post-situ adszorpció esetén, a szintézisgáz hozam az első reaktorzónában (400°C) alacsony hőmérsékletet alkalmazva átlagosan 68-160%-kal, míg magas hőmérséklet (800°C) mellett, 10-53%-kal növekedett.

Kimutattam, hogy az eljárásban elhelyezet post-situ adszorbenssel, valamint a vizsgált Ni/ZSM-5 és a Ni/Klinoptilolit katalizátorokkal, a regenerálási ciklusok mindegyikében 94-100%-kal csökkent a szén-dioxid kibocsátás értéke.

4.7. Az eredmények ipari hasznosíthatósága

Kutatómunkám során elért eredmények nagymértékben hozzájárultak a 2019-1.3.1-KK-2019-00015 azonosítós számú, "Körforgásos gazdasági alapokon nyugvó fenntarthatósági kompetencia központ létrehozása a Pannon Egyetemen" című projektben célul kitűzött, nagylaboratóriumi komplex elgázosító reaktorrendszer (**66**. *ábra*) vegyészmérnöki és gépészmérnöki tervezéséhez.

A reaktorrendszer különböző eredetű biomasszák 0,8-2 kg/h kapacitással, vízgőz jelenlétben vagy anélkül, 800-1000°C hőmérsékleten, 1-5 bar nyomástartományban történő elgázosítására alkalmas. A komplex reaktorrendszer az elgázosítás és reformáló reaktorok mellett, adszorber-deszorber, abszorber-deszorber és kémiai úton történő gázosító egységeket is tartalmaz. Ezzel a reaktorrendszerrel lehetőség lesz az elgázosítás és terméktisztítási folyamatok valós alapanyagok felhasználásával történő méretnövelt vizsgálatára.

ÖSSZEFOGLALÁS

Doktori disszertációmban mezőgazdasági biomassza termikus és termokatalitikus elgázosítási folyamatát vizsgáltam, vízgőzzel és vízgőz nélkül.

A kísérleti munkámban előzetesen öt különböző biomassza termikus degradációját vizsgáltam, 200-800°C hőmérséklet-tartományban. Emellett, négy különböző adszorbens szén-dioxid megkötő képességét követtem nyomon kezdetben modell gázelegyből, különböző hőmérsékleteken (0°C, 30°C, 60°C). Az alapanyag kiválasztását követően a mezőgazdasági biomassza nedvességtartalmának (0%, 20%, 40%) hatását vizsgáltam a termékösszetételre és az energiaszükségletre, míg a széndioxid adszorpció során a legjobb kapacitással, valamint megfelelő adszorpciós és deszorpciós jellemzővel rendelkező adszorbenst választottam.

A kutatómunka fő célja, a szintézisgáz hozamának növelése volt, a szén-dioxid tartalom csökkentése mellett. Ennek során az alapanyag nedvességtartalmának, az alkalmazott hőmérsékletnek, a vízgőz:biomassza aránynak, az alkalmazott katalizátorok és adszorbensek jelenlétének, illetve azok regenerálási ciklusvizsgálatainak, hatásvizsgálatát végeztem.

Megállapítottam, hogy a nedvességtartalom vizsgálata során a legtöbb szintézisgázt és a legnagyobb CO/CO₂ arányt a 0% nedvességtartalommal rendelkező alapanyag eredményezte, míg a H₂/CO arány 900°C-on, 40% nedvességtartalom mellett volt a legnagyobb. A modell gázelegyből történő szén-dioxid adszorpciós vizsgálatok során, valamint a deszorpciós eredmények és a szén-dioxid kapacitás alapján a klinoptilolitot választottam a további kísérletsorozatok adszorbensének, ahol 12 regenerálási cikluson keresztül vizsgáltam a CO₂ kapacitást.

Az elgázosítási előkísérletekben 200-800°C között vizsgáltam a mezőgazdasági biomassza termikus degradációját, majd az eredmények alapján kiválasztottam egy magas (800°C) és egy alacsony (400°C) hőmérsékletű mérési pontot. A két paraméter megválasztása előbbinél a nagy szintézisgáz hozam és az alacsony szén-dioxid tartalom alapján, míg utóbbinál a nagy szén-dioxid tartalom végett történt. A második reaktorzóna hőmérsékletét 500-700°C között vizsgáltam, katalizátorok nélkül, illetve azok jelenlétében, ahol a gáztermék összetételét és hozamát tekintve a 700°C került kiválasztásra. Ezt követően a vízgőz:biomassza arányt vizsgáltam 0,2-1,8 értékek között, ahol a szakirodalmi eredmények, illetve az összetétel, a befektetett energia, a

szintézisgáz hozam és a gáztermék hozama alapján az 1-es arányt választottam. Az előkísérleteket követően, vizsgált katalizátorok regenerálási ciklusvizsgálatát, tíz cikluson keresztül, vízgőzzel és anélkül végeztem.

Ezt követően a korábbi kísérletsorozatok eredményeiből, kiválasztottam négy mérési sorozatot, a korábbiakban megválasztott paraméterekkel, majd a kiválasztott hőmérsékleten kezelt klinoptilolit post-situ adszorpcióját is megvizsgáltam. A négy mérési sorozat a hidrogén-szén-monoxid arány, a szintézisgáz hozam, illetve a széndioxid csökkentésének mértéke alapján került kiválasztásra, alacsony és magas hőmérsékletű elgázosítás mellett, a két különböző, illetve leghatékonyabb katalizátor mellett (Ni/ZSM-5, Ni/Klinoptilolit).

Végül megvizsgáltam a szén-dioxid csökkentés jelentette gazdasági előnyöket, ahol a post-situ adszorpció során keletkezett szén-dioxid tartalmat viszonyítottam a releváns mérési pontokhoz. Ennek alapján elmondható, hogy a Ni/ZSM-5, valamint a Ni/Klinoptilolit katalizátor mellett, post-situ adszorpcióval, a regenerálási ciklusok mindegyikében 94-100%-kal csökkenthető a szén-dioxid kibocsátás értéke, melynek mértéke a regenerálási ciklusok előrehaladtával minimálisan csökkent.

IRODALOMJEGYZÉK

[1] S. Mishra, R. K. Upadhyay, 2021. Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Materials Science for Energy Technologies 4, 329–340.

https://doi.org/10.1016/j.mset.2021.08.009

[2] S. Jha, S. Nanda, B., A. K. Dalai, 2022. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 15, 6352. https://doi.org/10.3390/en15176352

[3] https://www.statista.com/statistics/222066/projected-global-energy-consumption-by-source (utoljára megtekintve: 2024. 03. 20.)

[4] https://www.worldbioenergy.org/uploads/221223%20WBA%20GBS%202022.pdf (utoljára megtekintve: 2024. 03. 20.)

[5] M. Faizan, H. Song, 2023. Critical review on catalytic biomass gasification: State-of-Art progress, technical challenges, and perspectives in future development. Journal of Cleaner Production 408, 137224. https://doi.org/10.1016/j.jclepro.2023.137224

[6] S. Valizadeh, H. Hakimian, A. Farooq, B. H. Jeon, W. H. Chen, S. H. Lee, S. C. Jung, M. W. Seo, Y. K. Park, 2022. Valorization of biomass through gasification for green hydrogen generation: A comprehensive review. Bioresource Technology 365, 128143.

https://doi.org/10.1016/j.biortech.2022.128143

[7] Ö. Tezer, N. Karabag, A. Öngen, C. Ö. Colpan, A. Ayol, 2022. Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy 47, 34, 15419-15433. https://doi.org/10.1016/j.ijhydene.2022.02.158

[8] A. Tursi 2019. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Research Journal 22, 962-979. https://doi.org/10.18331/BRJ2019.6.2.3

[9] K. Parmar 2017. Biomass- An Overview on Composition Characteristics and Properties. International Journal of Applied Sciences 7, 1, 42-51. http://dx.doi.org/10.21013/jas.v7.n1.p4

[10] S. Wanga, G. Daia, H. Yang, Z. Luo, 2017. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science 62, 33-86.

http://dx.doi.org/10.1016/j.pecs.2017.05.004

[11] H. Yang, R. Yan, H. Chen, D. Ho Lee, C. Zheng, 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel 86, 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013

[12] https://www.ieabioenergy.com/bioenergy-a-sustainable-solution/ (utoljára megtekintve: 2024.07.05.)

[13] https://newbuildings.org/wp-

content/uploads/2022/02/IECC2024_BiomassWasteDefinition_NBI.pdf (utoljára megtekintve: 2024.07.05.)

[14] S. O. Adegoke, A. A. Adeleke, P. P. Ikubanni, C. T. Nnodim, A. O. Balogun, O. A. Falode, S. O. Adetona, 2021. Energy from biomass and plastics recycling: a review. Cogent Engineering, 8, 1994106. https://doi.org/10.1080/23311916.2021.1994106

[15] S. Safarian, R. Unnþorsson, C. Richter, 2019. A review of biomass gasification modelling.
Renewable and Sustainable Energy Reviews 110, 378-391. https://doi.org/10.1016/j.rser.2019.05.003
[16] https://www.ceeweb.org/ducuments/publications/Biomass_Energy_in_Hungary_Policy Brief.pdf (utoljára megtekintve: 2024. 03. 20.)

[17] H. Chum, A. Faaij, J. Moreira, G. Berndes, P. Dhamija, H. Dong, B. Gabrielle, A. Goss Eng, W. Lucht, M. Mapako, O. Masera Cerutti, T. McIntyre, T. Minowa, K. Pingoud, 2011. Bioenergy, in: Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., von Stechow, C. (Eds.), IPCC Special Report on Renewable

Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge

[18] https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomass_en (utoljára megtekintve: 2024. 03. 20.)

[19] https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (utoljára megtekintve: 2024. 03. 20.)

[20] https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomass_en (utoljára megtekintve: 2024. 03. 20.)

[21] https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (utoljára megtekintve: 2024. 03. 20.)

[22] https://energy.ec.europa.eu/index_en (utoljára megtekintve: 2024. 03. 20.)

[23] D. Glushkov, G. Nyashina, A. Shvets, A. Pereira, A. Ramanathan, 2021. Current Status of the Pyrolysis and Gasification Mechanism of Biomass. Energies 14, 7541.

https://doi.org/10.3390/en14227541

[24] N. J. Horan, 2018. Introduction, Anaerobic Digestion Processes. Green Energy and Technology. Springer, 1-7. https://doi.org/10.1007/978-981-10-8129-3_1

[25] A. Garba, 2020. Biomass Conversion Technologies for Bioenergy Generation: An Introduction. Biotechnological Applications of Biomass, https://doi.org/10.5772/intechopen.93669

[26] J. A. Okolie, E. I. Epelle, M. E. Tabat, U. Orivri, A. N. Amenaghawon, P. U. Okoye, B. Gunes, 2022. Waste biomass valorization for the production of biofuels and value added products: A comprehensive review of thermochemical, biological and integrated processes. Process Safety and

Environmental Protection 159, 323-344. https://doi.org/10.1016/j.psep.2021.12.049

[27] L. Zhang, Z. Bao, S. Xia, Q. Lu, K. Walters, 2018. Catalytic pyrolysis of biomass and polymer wastes. Catalysts, 8, 12, 659. https://doi.org/10.3390/ catal8120659

[28] K. N. Yogalakshmi, T. Poornima Devi, P. Sivashanmugam, S. Kavitha, R. Yukesh Kannah, S. Varjani, S. Adish Kumar, G. Kumar, J. Rajesh Banu, 2021. Lignocellulosic biomass-based pyrolysis: A comprehensive review. Chemosphere, 286, 131824. https://doi.org/10.1016/j.chemosphere.2021.131824
[29] N. Syahirah, M. Aron, K. A. Khoo, K. Chew, P.L. Show, W. Chen, T. H. P. Nguyen, 2020. Sustainability of the four generations of biofuels – A review. International Journal of Energy Research, 44, 12, 9266–9282. https://doi.org/10.1002/er.5557

[30] P. Choudhary, P.P. Assemany, F. Naaz, A. Bhattacharya, J. Castro, E. Couto, M. L.Calijuri, K. K. Pant, A. Malik, 2020. A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Science of the Total Environment, 726, 137961. https://doi.org/10.1016/j.scitotenv.2020.137961

[31] M. Jach-Nocon, G. Pełka, W. Lubon, T. Mirowski, A. Nocon, P. Pachytel, 2021. An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types. Energies 14, 4465. https://doi.org/10.3390/en14154465;

[32] S. Zhang, X. Yang, H. Zhang, C. Chu, K. Zheng, M. Ju, L. Liu. 2019. Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules 24, 12, 2250.

https://doi.org/10.3390/molecules24122250.

[33] J. P. Makwana, J. Pandey, G. Mishra, 2019. Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG). Renewable Energy 130, 943–951. https://doi.org/10.1016/j.renene.2018.07.011

[34] G. Centi, S. Perathoner, Chemistry and energy beyond fossil fuels. A perspective view on the role of syngas from waste sources. 2020. Catalysis Today 342, 4–12.

https://doi.org/10.1016/j.cattod.2019.04.003

[35] R. G. dos Santos, A. C. Alencar, 2020. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: A review. International Journal of Hydrogen Energy, 45, 18114–18132. https://doi.org/10.1016/j.ijhydene.2019.07.133

[36] L. Grande, I. Pedroarena, S. A. Korili, A. Gil, 2021. Hydrothermal Liquefaction of Biomass as One of the Most Promising Alternatives for the Synthesis of Advanced Liquid Biofuels: A Review. Materials 14, 18, 5286. https://doi.org/10.3390/ma14185286

[37] A.A.A. Abuelnuor, M.A. Wahid, Seyed Ehsan Hosseini, A. Saat, Khalid M. Saqr, Hani H. Sait, M. Osman: Characteristics of biomass in flameless combustion: A review, Renewable and Sustainable Energy Reviews, 33, 363-370, (2014), http://dx.doi.org/10.1016/j.rser.2014.01.079

[38] Linghong Zhang et al. Overview of recent advances in thermo-chemical conversion of biomass, Energy Conversion and Management, 51 969-982 (2010),

http://dx.doi.org/10.1016/j.enconman.2009.11.038

[39] Nina Schmitt, Andreas Apfelbacher, Nils Jäger, Robert Daschner and Fabian Stenzel: Thermochemical conversion of biomass and upgrading to biofuel: The Thermo-Catalytic Reforming process – A review, Biofuels, Bioproducts and Biorefining, Society of Chemical Industry and John Wiley & Sons, Ltd. (2019), http://dx.doi.org/10.1002/bbb.1980

[40] Al Arni, S., 2018. Comparison of slow and fast pyrolysis for converting biomass into fuel. Renewable Energy 124, 197–201., http://dx.doi.org/10.1016/j.renene.2017.04.060

[41] Linghong Zhang et al. Overview of recent advances in thermo-chemical conversion of biomass, Energy Conversion and Management, 51 969-982 (2010),

http://dx.doi.org/10.1016/j.enconman.2009.11.038

[42] Mohammed, I.Y., Abakr, Y.A., Musa, M., Yusup, S., Singh, A., Kazi, F.K., 2016. Valorization of Bambara groundnut shell via intermediate pyrolysis: Products distribution and characterization. J. Clean. Prod. 139, 717–728., http://dx.doi.org/10.1016/j.jclepro.2016.08.090

[43] Arun Krishna Vuppaladadiyam et al. 2022. Biomass pyrolysis: A review on recent advancements and green hydrogen production, Bioresource Technology 364,

https://doi.org/10.1016/j.biortech.2022.128087

[44] Linghong Zhang et al. Overview of recent advances in thermo-chemical conversion of biomass, Energy Conversion and Management, 51 969-982 (2010),

http://dx.doi.org/10.1016/j.enconman.2009.11.038

[45] Al Arni, S., 2018. Comparison of slow and fast pyrolysis for converting biomass into fuel.

Renewable Energy 124, 197–201., http://dx.doi.org/10.1016/j.renene.2017.04.060

[46] Arun Krishna Vuppaladadiyam et al. 2022. Biomass pyrolysis: A review on recent advancements and green hydrogen production, Bioresource Technology 364,

https://doi.org/10.1016/j.biortech.2022.128087

[47] Linghong Zhang et al. Overview of recent advances in thermo-chemical conversion of biomass, Energy Conversion and Management, 51 969-982 (2010),

http://dx.doi.org/10.1016/j.enconman.2009.11.038

[48] N.L. Panwar, R. Kothari, V.V. Tyagi: Thermo chemical conversion of biomass – Eco friendly energy routes, Renewable and Sustainable Energy Reviews, 16, 1801-1816 (2012), https://doi:10.1016/j.rser.2012.01.024

[49] "R.C. Saxena, Diptendu Seal, Satinder Kumar, H.B. Goyal: Thermo-chemical routes for hydrogen rich gas from

[50] biomass: A review, Renewable & Sustainable Energy Reviews, 12, 1909-1927, 2008, doi:10.1016/j.rser.2007.03.005"

[51] Maliutina, K., Tahmasebi, A., Yu, J., Saltykov, S.N., 2017. Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Convers. Manage. 151, 426–438., http://dx.doi.org/10.1016/j.enconman.2017.09.013

[52] Linghong Zhang et al. Overview of recent advances in thermo-chemical conversion of biomass,EnergyConversionandManagement,51969-982(2010),http://dx.doi.org/10.1016/j.enconman.2009.11.038

[53] N.L. Panwar, R. Kothari, V.V. Tyagi: Thermo chemical conversion of biomass – Eco friendly energy routes, Renewable and Sustainable Energy Reviews, 16, 1801-1816 (2012), http://doi:10.1016/j.rser.2012.01.024

[54] Nina Schmitt, Andreas Apfelbacher, Nils Jäger, Robert Daschner and Fabian Stenzel: Thermochemical conversion of biomass and upgrading to biofuel: The Thermo-Catalytic Reforming process – A review, ; Biofuels, Bioproducts and Biorefining, Society of Chemical Industry and John Wiley & Sons, Ltd. (2019), http://dx.doi.org/10.1002/bbb.1980

[55] L. S. Narnaware, N. L. Panwar, 2021. Catalysts and their role in biomass gasifcation and tar abetment: a review. Biomass Conversion and Biorefnery. https://doi.org/10.1007/s13399-021-01981-1
[56] C. B. Felix, W.H. Chen, A. T. Ubando, Y.K. Park, K.Y. A. Lin, A. Pugazhendhi, T. B. Nguyen, C.D. Dong, 2022. A comprehensive review of thermogravimetric analysis in lignocellulosicand algal biomass gasification. Chemical Engineering Journal 445, 136730.

https://doi.org/10.1016/j.cej.2022.136730

[57] Z. Zhang, S. Pang, 2019. Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100 kW dual fluidised bed gasifier. Renewable Energy 132, 416–424. https://doi.org/10.1016/j.renene.2018.07.144

[58] A. A. Ahmad, N. A. Zawawi, F. H. Kasim, A. Inayat, A. Khasri, 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renewable and Sustainable Energy Reviews 53, 1333–1347. https://doi.org/10.1016/j.rser.2015.09.030

[59] Y. Zhang, L. Wang, J. Guan, Q. Xiong, S. Zhang, X. Jin, 2020. A Review on Biomass Gasification: Effect of Main Parameters on Char Generation and Reaction. Energy&Fuels, 34, 11, 13438– 13455. https://doi.org/10.1021/acs.energyfuels.0c02900

[60] R. Thomson, P. Kwong, E. Ahmad, K. D. P. Nigam, 2020. Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. International Journal of Hydrogen Energy 45, 21087-21111.

https://doi.org/10.1016/j.ijhydene.2020.05.160

[61] C. Ciliberti, A. Biundo, R. Albergo, G. Agrimi, G. Braccio, I. de Bari, I. Pisano, 2020. Syngas derived from lignocellulosic biomass gasification as an alternative resource for innovative bioprocesses. Processes 8, 12, 1567.

[62] https://www.chiyodacorp.com/en/service/gtl/ (utoljára megtekintve: 2024. 03. 20.)

[63] M. Ostadi, E. Rytter, M. Hillestad, 2019. Boosting carbon efficiency of the biomass to liquid process with hydrogen from power: The effect of H2/CO ratio to the Fischer-Tropsch reactors on the production and power consumption. Biomass and Bioenergy 127, 105282. https://doi.org/10.1016/j.biombioe.2019.105282;

[64] D. Selvatico, A. Lanzini, M. Santarelli, 2016. Low Temperature Fischer-Tropsch fuels from

syngas: Kinetic modeling and process simulation of different plant configurations. Fuel 186, 544-560. https://doi.org/10.1016/j.fuel.2016.08.093

[65] M. M. J. Li, H. Zou, J. Zheng, T. S. Wu, T. S. Chan, Y. L. Soo, X. P. Wu, X. Q. Gong, T. Chen, K. Roy, G. Held, S. C. E. Tsang, 2020. Methanol Synthesis at a Wide Range of H2/CO2 Ratios over a Rh-In Bimetallic Catalyst. Angewandte Chemie 132, 37, 16173-16180.

https://doi.org/10.1002/ange.202000841

[66] F. Amalina, A. S. A. Razak, S. Krishnan, H. Sulaiman, A.W. Zularisam, M. Nasrullah, 2022.
 Biochar production techniques utilizing biomass waste-derived materials and environmental applications

 A review. Journal of Hazardous Materials Advances 7, 100134.

https://doi.org/10.1016/j.hazadv.2022.100134;

[67] A. J. Frainetti, N. B. Klinghoffer, 2023. Recent experimental advances on the utilization of biochar as a tar reforming catalyst: A review. International Journal of Hydrogen Energy 48, 8022. https://doi.org/10.1016/j.ijhydene.2022.11.127

[68] Lepage, T., Kammoun, M., Schmetz, Q., Richel, A., 2021. Biomass-to-hydrogen: a review of main routes production, processes evaluation and techno-economical assessment. Biomass Bioenergy 144, 105920. https://doi.org/10.1016/j.biombioe.2020.105920;

[69] J. Puhar, A. Vujanović, D. Krajnc, L. Čuček, L. 2021. Technology Readiness Level Assessment of Formalin Production Pathways. Chemical Engineering Transactions 88, 607–612. https://doi.org/10.3303/CET2188101

[70] F. M. Alptekin, M. S. Celiktas, 2022. Review on Catalytic Biomass Gasification for Hydrogen Production as a Sustainable Energy Form and Social, Technological, Economic, Environmental, and Political Analysis of Catalysts. ACS Omega 7, 24918-24941. https://doi.org/10.1021/acsomega.2c01538;
[71] M. Kraussler, M. Binder, H. Hofbauer, 2016. 2250h long term operation of a water gas shift pilot plant processing tar-rich product gas from an industrial scale dual fluidized bed biomass steam gasification plant. International Journal of Hydrogen Energy 41, 6247-6258.

https://doi.org/10.1016/j.ijhydene.2016.02.137

[72] https://assets.publishing.service.gov.uk/media/649a8ea5de8682000cbc8e5d/absl-ph1-redacted-report.pdf

[73] https://www.cutec.de/fileadmin/Cutec/documents/Thermische-

Prozesstechnik/Pyrolysedrehrohr.pdf

[74] https://task33.ieabioenergy.com/wp-content/uploads/sites/33/2023/09/R.Bock_.pdf (utoljára megtekintve: 2024.07.05.)

[75] https://task33.ieabioenergy.com/wp-content/uploads/sites/33/2022/06/NL_July2013.pdf (utoljára megtekintve: 2024.07.05.)

[76] https://enerkem.com/projects-facilities (utoljára megtekintve: 2024.07.05.)

[77] https://www.plagazi.com/technology (utoljára megtekintve: 2024.07.05.)

[78] https://www.nrel.gov/docs/fy09osti/44034.pdf (utoljára megtekintve: 2024.07.05.)

[79] https://www.rwe.com/en/the-group/countries-and-locations/biogas-plant-bergheim-paffendorf/ (utoljára megtekintve: 2024.07.05.)

[80] https://mam.tubitak.gov.tr/en/teknoloji-transfer-ofisi/coal-and-biomass-combustion-gasificationsystems-and-plant-installation (utoljára megtekintve: 2024.07.05.)

[81] https://www.ifk.uni-stuttgart.de/en/research/experimental-facilities/lab-scale-test-facilities/bts-er/ (utoljára megtekintve: 2024.07.05.)

[82] M. Kraussler, M. Binder, H. Hofbauer, 2016. 2250-h long term operation of a water gas shift pilot plant processing tar-rich product gas from an industrial scale dual fluidized bed biomass steam gasification plant. International Jorunal of Hydrogen Energy 41. 6247-6258. http://dx.doi.org/10.1016/j.ijhydene.2016.02.137

[83] Y. A. Situmorang, Z. Zhao, A. Yoshida, A. Abudula, G. Guan, 2020. Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renewable and Sustainable Energy Reviews 117, 109486. https://doi.org/10.1016/j.rser.2019.109486

[84] D.T. Pio, L.A.C. Tarelho, 2021. Industrial gasification systems (>3 MWth) for bioenergy in Europe: Current status and future perspectives. Renewable and Sustainable Energy Reviews 145, 111108. https://doi.org/10.1016/j.rser.2021.111108

[85] A. Abedi, A. K. Dalai, 2019. Steam Gasification of Oat Hull Pellets over Ni-Based Catalysts:
Syngas Yield and Tar Reduction. Fuel 254, 115585. https://doi.org/10.1016/j.fuel.2019.05.168
[86] Y. Tursun, S. Xu, A. Abulikemu, T. Dilinuer, 2019. Biomass Gasification for Hydrogen Rich Gas in a Decoupled Triple Bed Gasifier with Olivine and NiO/Olivine. Bioresource Technology 272, 241–248. https://doi.org/10.1016/j.biortech.2018.10.008

[87] I. F. Elbaba, P.T. Williams, 2014. Deactivation of Nickel Catalysts by Sulfur and Carbon for the

Pyrolysis-Catalytic Gasification/Reforming of Waste Tires for Hydrogen Production. Energy&Fuels 28, 2104–2113. https://doi.org/10.1021/ef4023477

[88] J. Ren, Y. L. Liu, X. Y. Zhao, J. P. Cao, 2020. Biomass Thermochemical Conversion: A Review on Tar Elimination from Biomass Catalytic Gasification. Journal of the Energy Institue 93, 1083–1098. https://doi.org/10.1016/j.joei.2019.10.003

[89] J. Yu, Q. Guo, Y. Gong, L. Ding, J. Wang, G. Yu, 2021. A Review of the Effects of Alkali and Alkaline Earth Metal Species on Biomass Gasification. Fuel Processing Technology 214, 106723. https://doi.org/10.1016/j.fuproc.2021.106723

[90] Y. Lu, H. Jin, R. Zhang, 2019. Evaluation of Stability and Catalytic Activity of Ni Catalysts for Hydrogen Production by Biomass Gasification in Supercritical Water. Carbon Resource Conversion 2, 1, 95–101. https://doi.org/10.1016/j.crcon.2019.03.001

[91] R. Shan, J. Han, J. Gu, H. Yuan, B. Luo, Y. Chen, 2020. A Review of Recent Developments in Catalytic Applications of Biochar-Based Materials. Resources, Conservation and Recycling 2020, 162, 105036. https://doi.org/10.1016/j.resconrec.2020.105036

[92] H. Li, Y. Wang, N. Zhou, L. Dai, W. Deng, C. Liu, Y. Cheng, Y. Liu, K. Cobb, P. Chen, R. Ruan, 2021. Applications of Calcium Oxide–Based Catalysts in Biomass Pyrolysis/Gasification – A Review. Journal of Cleaner Production, 291, 125826. https://doi.org/10.1016/j.ijhydene.2015.08.111

[93] L. Jiang, S. Hu, Y. Wang, S. Su, L. Sun, B. Xu, L. He, J. Xiang, 2015. Catalytic Effects of Inherent Alkali and Alkaline Earth Metallic Species on Steam Gasification of Biomass. International Journal of Hydrogen Energy, 40, 15460–15469.

[94] T. Dahou, F. Defoort, B. Khiari, M. Labaki, C. Dupont, M. Jeguirim, 2021. Role of Inorganics on the Biomass Char Gasification Reactivity: A Review Involving Reaction Mechanisms and Kinetics Models. Renewable and Sustainable Energy Reviews 135, 110136. https://doi.org/10.1016/j.rser.2020.110136

[95] A. Phounglamcheik, R. Vila, N. Kienzl, L. Wang, A. Hedayati, M. Broström, K. Ramser, K. Engvall, Ø. Skreiberg; R. Robinson, K. Umeki, 2021. CO2 Gasification Reactivity of Char from High-Ash Biomass. ACS Omega 2021, 6, 34115–34128. https://doi.org/10.1021/acsomega.1c05728

 [96] S. Seif, S. Fatemi, O. Tavakoli, H. Bahmanyar, 2016. Hydrogen Production through Hydrothermal Gasification of Industrial Wastewaters Using Transition Metal Oxide Catalysts. Journal of Supercritical Fluids 114, 32–45. https://doi.org/10.1016/j.supflu.2016.03.028

[97] W. Jiao, Z. Wang, W. Jiao, L. Li, Z. Zuo, G. Li, Z. Hao, S. Song, J. Huang, Y. Fang, 2020. Influencing Factors and Reaction Mechanism for Catalytic CO2 Gasification of Sawdust Char Using K-Modified Transition Metal Composite Catalysts: Experimental and DFT Studies. Energy Conversion and Management 208, 112522. https://doi.org/10.1016/j.enconman.2020.112522

[98] B. Ramadhani, T. Kivevele, J. H. Kihedu, Y. A. C. Jande, 2022. Catalytic Tar Conversion and the Prospective Use of Iron-Based Catalyst in the Future Development of Biomass Gasification: A Review. Biomass Conversion and Biorefinery, 12, 1369–1392. https://doi.org/10.1007/s13399-020-00814-x

[99] W. X. Peng, L. S. Wang, M. Mirzaee, H. Ahmadi, M. J. Esfahani, S. Fremaux, 2017. Hydrogen and Syngas Production by Catalytic Biomass Gasification. Energy Conversion and Management 135, 270–273. https://doi.org/10.1016/j.enconman.2016.12.056

[100] M. Artetxe, M. A. Nahil, M. Olazar, P. T. Williams, 2016. Steam Reforming of Phenol as Biomass Tar Model Compound over Ni/Al2O3 Catalyst. Fuel, 184, 629–636.

https://doi.org/10.1016/j.fuel.2016.07.036

[101] M. Artetxe, J. Alvarez, M. A. Nahil, M. Olazar, P.T. Williams, 2017. Steam Reforming of Different Biomass Tar Model Compounds over Ni/Al2O3 Catalysts. Energy Conversion and Management 136, 119–126. https://doi.org/10.1016/j.enconman.2016.12.092

[102] D. Li, M. Tamura, Y. Nakagawa, K. Tomishige, 2015. Metal Catalysts for Steam Reforming of Tar Derived from the Gasification of Lignocellulosic Biomass. Bioresource Technology 178, 53–64. https://doi.org/10.1016/j.biortech.2014.10.010

[103] J. Li, K. R. G. Burra, Z. Wang, X. Liu, A. K. Gupta, 2021a. Co-gasification of high-density polyethylene and pretreated pine wood. Appl. Energy 285, 116472.

https://doi.org/10.1016/j.apenergy.2021.116472

[104] D. Yao, H. Yang, H. Chen, P. T. Williams, 2018. Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene. Applied Catalysis B: Environment and Energy 227, 477–487. https://doi.org/10.1016/j.apcatb.2018.01.050
[105] R.N. State, A. Volceanov, P. Muley, D. Boldor, 2019. A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresource Technology 277, 179–194. https://doi.org/10.1016/j.biortech.2019.01.036

[106] H. Song, G. Yang, P. Xue, Y. Li, J. Zou, S. Wang, H. Yang, H. Chen, 2022. Recent development of biomass gasification for H2 rich gas production. Applications in Energy and Combustion Science 10,

100059. https://doi.org/10.1016/j.jaecs.2022.100059

[107] D. Buentello-Montoya, X. Zhang, J. Li, V. Ranade, S. Marques, M. Geron, 2020. Performance of Biochar as a Catalyst for Tar Steam Reforming: Effect of the Porous Structure. Applied Energy 259, 114176. https://doi.org/10.1016/j.apenergy.2019.114176

[108] R. Pereira Lopes, D. Astruc, 2021. Biochar as a Support for Nanocatalysts and Other Reagents: Recent Advances and Applications. Coord. Chemical Reviews 426, 213585.

https://doi.org/10.1016/j.ccr.2020.213585

[109] J. Rizkiana, G. Guan, W. B. Widayatno, X. Hao, X. Li, W. Huang, A. Abudula, 2014. Promoting Effect of Various Biomass Ashes on the Steam Gasification of Low-Rank Coal. Applied Energy, 133, 282–288. https://doi.org/10.1016/j.apenergy.2014.07.091

[110] J. Meng, X. Wang, Z. Zhao, A. Zheng, Z. Huang, G. Wei, K. Lv, H. Li, 2018. Highly Abrasion Resistant Thermally Fused Olivine as In-Situ Catalysts for Tar Reduction in a Circulating Fluidized Bed Biomass Gasifier. Bioresource Technology 268, 212–220. https://doi.org/10.1016/j.biortech.2018.07.135
[111] A. Raheem, H. Liu, G. Ji, M. Zhao, 2019. Gasification of Lipid- Extracted Microalgae Biomass Promoted by Waste Eggshell as CaO Catalyst. Algal Research 42, 101601. https://doi.org/10.1016/j.algal.2019.101601

[112] M. A. Hamad, A. M. Radwan, D. A. Heggo, T. Moustafa, 2016. Hydrogen Rich Gas Production from Catalytic Gasification of Biomass. Renew. Energy, 85, 1290–1300. https://doi.org/10.1016/j.renene.2015.07.082

[113] M. Irfan, A. Li, L. Zhang, M. Wang, C. Chen, S. Khushk, 2019. Production of Hydrogen Enriched Syngas from Municipal Solid Waste Gasification with Waste Marble Powder as a Catalyst. International

Journal of Hydrogen Energy, 44, 8051–8061. https://doi.org/10.1016/j.ijhydene.2019.02.048

[114] Y. Zhao, S. Yuan, Y. Zhou, X. Xie, J. Deng, 2023. Study on the regeneration characteristics of Fe-Ni-Ca/Al2O3 catalyst in the reforming process of biomass pyrolysis volatiles. Journal of Analytical and Applied Pyrolysis 173, 106041. https://doi.org/10.1016/j.jaap.2023.106041

[115] Y. Li, Nishu, D. Yellezuome, 2022. Deactivation mechanism and regeneration effect of bi-metallic Fe-Ni/ZSM-5 catalyst during biomass catalytic pyrolysis, Fuel 312, 122924.

https://doi.org/10.1016/j.fuel.2021.122924

[116] S. Shao, H. Zhang, R. Xiao, 2018. Controlled regeneration of ZSM-5 catalysts in the combined oxygen and steam atmosphere used for catalytic pyrolysis of biomassderivates, Energy Conversion Management 155, 175–181. https://doi.org/10.1016/j.enconman.2017.10.062

[117] K. A. Margini-Bair, W. S. Jablonski, Y. O. Parent, M. M. Yung, 2012. Bench- and Pilot-Scale Studies of Reaction and Regeneration of Ni–Mg–K/Al2O3 for Catalytic Conditioning of Biomass-Derived Syngas. Topics in Catalysis 55, 209-217. https://doi.org/10.1007/s11244-012-9789-z

[118] H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang, J. Huang, 2018. Progress in the development and application of CaO-based adsorbents for CO2 captureda review. Materials Today Sustainability 1-2, 1-27. https://doi.org/10.1016/j.mtsust.2018.08.001

[119] L. H. de Oliveira, M. V. Pereira, J. G. Meneguin, M. A. S. D. de Barros, J. F. do Nascimento, P. A. Arroyo, 2023. Influence of regeneration conditions on cyclic CO2 adsorption on NaA zeolite at high pressures. Journal of CO2 Utilization 67, 102296. https://doi.org/10.1016/j.jcou.2022.102296

[120] E. Davarpanah, M. Armandi, S. Hernandez, D. Fino, R. Arletti, S. Bensaid, M. Piumetti, 2020.
CO2 capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites.
Journal of Environmental Management 275, 111229. https://doi.org/10.1016/j.jenvman.2020.111229
[121] P. Brea, J. A. Delgado, V. I. Águeda, P. Gutiérrez, M. A. Uguina, 2019. Multicomponent adsorption of H2, CH4, CO and CO2 in zeolites NaX, CaX and MgX. Evaluation of performance in PSA cycles for hydrogen purification. Microporous and Mesoporous Materials 286, 187-198. https://doi.org/10.1016/j.micromeso.2019.05.021

[122] Summary for Policymakers, in: V. Masson-Delmotte, P. Zhai, H.O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield, 2018. Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to, Eradicate Poverty, Cambridge University Press, Cambridge, UK and New York, NY, USA, 3-24,

https://doi.org/10.1017/9781009157940.001.

[123] IEA, Global, Energy Review 2021, IEA, Paris, 2021. https://www.iea.org/reports/global-energy-review-2021. (utoljára megtekintve: 2024. 03. 20.)

[124] IEA, Transforming Industry through CCUS, IEA, Paris, 2019.

https://www.iea.org/reports/transforming-industry-through-ccus.

[125] Z. Wu, X. Liang, D. Liang, Z. Huang, 2023. CO2 Capture from Biomass Gasification Current

Technologies, Challenges and Future Prospects. Academic Journal of Science and Technology 7, 1, ISSN: 2771-3032

[126] https://www.globalccsinstitute.com/wp-content/uploads/2019/03/BECCS-

Perspective_FINAL_PDF.pdf (utoljára megtekintve: 2024.07.05.)

[127] https://www.energy.gov/sites/prod/files/2017/10/f38/mcdonald_bioeconomy_2017.pdf (utoljára megtekintve: 2024.07.05.)

[128] https://www.regjeringen.no/contentassets/943cb244091d4b2fb3782f395d69b05b/en-

gb/pdfs/stm201920200033000engpdfs.pdf (utoljára megtekintve: 2024.07.05.)

[129] https://www.geos.ed.ac.uk/sccs/project-info/1325 (utoljára megtekintve: 2024.07.05.)

[130] https://www.biorecro.com/how-to-remove-co2-emissions-and-generate-power/ (utoljára megtekintve: 2024.07.05.)

[131] https://www.global.toshiba/ww/news/corporate/2008/12/pr0301.html (utoljára megtekintve: 2024.07.05.)

[132] https://bioenergyinternational.com/wp-content/uploads/2019/05/Richard_Surprenant.pdf (utoljára megtekintve: 2024.07.05.)

[133] B.P. Spigarelli, S.K. Kawatra, 2013. Opportunities and challenges in carbon dioxide capture. J. CO2 Util. 1, 69-87, https://doi.org/10.1016/j.jcou.2013.03.002.

[134] B. Dziejarski, J. Serafin, K. Andersson, R. Krzyzynska, 2023. CO2 capture materials: a review of current trends and future challenges. Materials Today Sustainability 24, 100483. https://doi.org/10.1016/j.mtsust.2023.100483

[135] H. Li, X. Chen, D. Shen, F. Wu, R. Pleixats, J. Pan, 2021. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances inadsorption applications, Nanoscale 13, 38, 15998-16016, https://doi.org/10.1039/D1NR04048K;

[136] S.S. Fatima, A. Borhan, M. Ayoub, N. Abd Ghani, 2021. Development and progress of functionalized silica-based adsorbents for CO2 capture, Journal of Molecular Liuids 338, 116913, https://doi.org/10.1016/j.molliq.2021.116913.

[137] S. Kumar, R. Srivastava, J. Koh, 2020. Utilization of zeolites as CO2 capturing agents: advances and future perspectives, Journal of CO2 Utilization 41,101251,

https://doi.org/10.1016/j.jcou.2020.101251.

[138] L.H. Chen, X.Y. Li, J.C. Rooke, Y.H. Zhang, X.Y. Yang, Y. Tang, F.S. Xiao, B.L. Su, 2012. Hierarchically structured zeolites: synthesis, mass transport properties and applications, Journal of Material Chemistry 22, 34, 17381-17403, https://doi.org/10.1039/C2JM31957H.

[139] L. Valencia, W. Rosas, A. Aguilar-Sanchez, A.P. Mathew, A.E. Palmqvist, 2019. Biobased micro-/meso-/macroporous hybrid foams with ultrahigh zeolite loadings for selective capture of carbon dioxide, ACS Applied Material Interfaces 11, 43, 40424-40431, https://doi.org/10.1021/acsami.9b11399.;

[140] S. T. Bararpour, D. Karami, N. Mahinpey, 2021. Utilization of mesoporous aluminabased supports synthesized by a surfactant-assisted technique for postcombustion CO2 capture, Journal of Environmental Chemical Engineering 9, 4, 105661, https://doi.org/10.1016/j.jece.2021.105661.

[141] B. Aghel, S. Janati, S. Wongwises, M.S. Shadloo, 2022. Review on CO2 capture by blended amine solutions, International Journal of Greenhouse Gas Control 119, 103715, https://doi.org/10.1016/j.ijggc.2022.103715;

[142] X.E. Hu, L. Liu, X. Luo, G. Xiao, E. Shiko, R. Zhang, X. Fan, Y. Zhou, Y. Liu, Z. Zeng, C.E. Li, 2020. A review of N-functionalized solid adsorbents for postcombustion CO2 capture, Applied Energy 260, 114244, https://doi.org/10.1016/j.apenergy.2019.114244.

[143] Y. Guo, C. Tan, P. Wang, J. Sun, W. Li, C. Zhao, P. Lu, 2019. Magnesium-based basic mixtures derived from earth-abundant natural minerals for CO2 capture in simulated flue gas, Fuel 243, 298-305, https://doi.org/10.1016/j.fuel.2019.01.108.

[144] N. Kundu, S. Sarkar, 2021. Porous organic frameworks for carbon dioxide capture and storage, Journal of Environmental Chemical Engineering 9, 2, 105090,

https://doi.org/10.1016/j.jece.2021.105090;

[145] S. Mandal, S. Natarajan, P. Mani, A. Pankajakshan, 2021. Post-synthetic modification of metaleorganic frameworks toward applications, Advanced Functional Materials 31,4, 2006291, https://doi.org/10.1002/adfm.202006291

[146] M.G. Mohamed, A.F. EL-Mahdy, M.G. Kotp, S.W. Kuo, 2022. Advances in porous organic polymers: syntheses, structures, and diverse applications, Materials Advances 3, 707-733, https://doi.org/10.1039/D1MA00771H.;

[147] C. Sarkar, N. Das, J. Mondal, 2021. Presenting porouseorganicepolymers as nextgeneration invigorating materials for nanoreactors, Chemical Communications Journal 57, 69, 8550-8567, https://doi.org/10.1039/D1CC02616J.

[148] Y.S. Ok, D.C. Tsang, N. Bolan, J.M. Novak, 2018. Biochar from Biomass and Waste:

Fundamentals and Applications, Elsevier. https://doi.org/10.1016/C2016-0-01974-5.

[149] S. Jung, Y.K. Park, E.E. Kwon, 2019. Strategic use of biochar for CO2 capture and sequestration, Journal of CO2 Utilization 32, 128-139, https://doi.org/10.1016/j.jcou.2019.04.012.

[150] Y. Zhu, B. Li, J. Miao, S. Sun, Y. Wang, X. Zhao, B. Chen, C. Wu, 2023. Achieving zero CO2 emissions from integrated biomass gasification with CO2 capture and utilization (IGCCU). Chemical Engineering Journal 474, 145767. https://doi.org/10.1016/j.cej.2023.145767

[151] Efetobor, U., Ikpeseni, S., C., Sada, S., O. Determination of Proximate, Ultimate and Structural Properties of Elephant Grass As Biomass Material for Bio-oil Production. J. Appl. Sci. Environ. Manage. 2022. Vol. 26 (12) 1903-1907.

[152] V. Zsinka, N. Miskolczi, T. Juzsakova, M. Jakab, 2022. Pyrolysis-gasification of biomass using nickel modified catalysts: the effect of the catalyst regeneration on the product properties. Journal of the Energy Institute 105, 16-24. https://doi.org/10.1016/j.joei.2022.08.003

[153] D. Georgiev, B. Bogdanov, I. Markovska, Y. Hristov, 2013. A study on the synthesis and structure of zeolite NaX. Journal of Chemical Technology and Metallurgy, 48, 2, 168-173.

[154] H. J. Lee, Y. M. Kim, O. S. Kweon, I. J. Kim, 2007. Structural and morphological transformation of NaX zeolite crystals at high temperature. Journal of the European Ceramic Society, 27, 2–3, 561-564. https://doi.org/10.1016/j.jeurceramsoc.2006.04.156

[155] https://3.imimg.com/data3/JA/PI/MY-9658410/zeosorb.pdf (utoljára megtekintve: 2024. 03. 20.)

[156] C. Sarathchandran, M.R. Devika, Swetha Prakash, S. Sujatha, S. A. Ilangovan, 2021. Chapter 19 - Activated carbon: Synthesis, properties, and applications. Handbook of Carbon-Based Nanomaterials, Micro and Nano Technologies, 783-827. https://doi.org/10.1016/B978-0-12-821996-6.00008-7

[157] N. Mansouri, N. Rikhtegari, H. A. Panahm F. Atabi, B. K. Shahraki, 2013. Porosity,

characterization and structural properties of natural zeolite – Clinoptilolite – as a sorbent. Environment Protevtion Engineering 39, https://doi.org/10.5277/EPE130111

[158] B. Hunger, J. Hoffmann, 1988. Temperature-Programmed Desorption (TPD) of ammonia from H+-exchanged zeolites with different structures. Journal of the Thermal Analysis 33, 933–940. https://doi.org/10.1007/BF02138612

[159] R. K. Mishra, K. Mohanty, 2018. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresource Technology 251, 63-74. https://doi.org/10.1016/j.biortech.2017.12.029

[160] D. Zhang, F. Wang, W.Yi, Z. Li, X. Shen, W. Niu, 2017. Comparison Study in Pyrolysis Characteristics and Kinetics of Corn Stover and its Digestate by TG-FTIR. BioResources 12 (4), 8240-8254. https://doi.org/10.15376/biores.12.4.8240-8254;

[161] M. Gogoi, K. Konwar, N. Bhuyan, R. C. Borah, A. C. Kalita, H. P. Natha, N. Saikiaa, 2018. Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresource Technology Reports 4, 40-49. https://doi.org/10.1016/j.biteb.2018.08.016

[162] A. Dhaundiyali, S.B. Singh, M. M. Hanoni, R. Rawat, 2018. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environmental and Climate Technologies 22, 5-21. https://doi.org/10.1515/rtuect-2018-0001

[163] Z. Yao, S. Yu, W. Su, W. Wu, J. Tang, W. Qi, 2020. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Waste Management & Research 38 (1), 77-75. https://doi.org/10.1177/0734242X19897814

[164] Z. Ni, H. Bi, C. Jiang, C. Wang, J. Tian, W. Zhou, H. Sun, Q. Lin, 2021. Investigation of the copyrolysis of coal slime and coffee industry residue based on machine learning methods and TG-FTIR: Synergistic effect, kinetics and thermodynamic. Fuel 305, 121527. https://doi.org/10.1016/j.fuel.2021.121527;

[165] M. A. Wahab, F. Ates, E. Yildirir, N. Miskolczi, 2022. Investigation of thermal degradation kinetics and catalytic pyrolysis of industrial sludge produced from textile and leather industrial

wastewater. Biomass Conversion and Biorefinery, 2190-6823. https://doi.org/10.1007/s13399-021-02183-5
[166] V. Zsinka, B. L. Tarcsay, N. Miskolczi, 2024. Determination of Kinetic and Thermodynamic

Parameters of Biomass Gasification with TG-FTIR and Regression Model Fitting. Energies, 17, 1875. https://doi.org/10.3390/en17081875

[167] V. Zsinka, Sz. Tomasek, N. Miskolczi, 2023. Feasibility and Economic Issues of Biomass Pyrolysis-Gasification: the Effect of Moisture Content of Raw Material. Chemical Engineering Transactions 99, 73-78. 10.3303/CET2399013

[168] G. R. Surup, M. Foppe, D. Schubert, R. Deike, M. Heidelmann, M. T. Timko, A. Trubetskaya, 2019. The effect of feedstock origin and temperature on the structure and reactivity of char from pyrolysis at 1300–2800°C. Fuel 235, 306–316. https://doi.org/10.1016/j.fuel.2018.07.093

[169] J. Xing, G. Xu, G. Li, 2021. Comparison of pyrolysis process, various fractions and potential soil applications between sewage sludge-based biochars and lignocellulose-based biochars, Ecotoxicology and Environmental Safety 208, 111756. https://doi.org/10.1016/j.ecoenv.2020.111756

[170] X. Chen, W. Guan, C.W. Tsang, H. Hu, C. Liang, 2019. Lignin valorizations with Ni catalysts for renewable chemicals and fuels productions. Catal. 9, 488. https://doi.org/10.3390/catal9060488
[171] Y. Xiang, Y. Xiang, L. Wang, 2017, Kinetics of the thermal decomposition of poplar sawdust, Energy Sources Part A. Recovery, Utilization and Environmental Efficiency 39, 213–218,

https://doi.org/10,1080/15567036,2016, 1212291

[172] E. P. Favvas, C. G. Tsanaktsidis, A. A. Sapalidis, G. T. Tzilantonis, S. K. Papageorgiou, A. Ch. Mitropoulos, 2016. Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous and Mesoporous Materials 225, 385-391. http://dx.doi.org/10.1016/j.micromeso.2016.01.021

[173] C.L. Waters, R. R. Janupala, R. G. Mallinson, L. L. Lobban, 2017. Staged thermal fractionation for segregation of lignin and cellulose pyrolysisproducts: An experimental study of residence time and temperature effects. Journal of Analytical and Applied Pyrolysis 126, 380-389. https://doi.org/10.1016/j.jaap.2017.05.008

[174] Y. Richardson, M. Drobek, A. Julbe, J. Blin, 2015. François Pinta Biomass Gasification to Produce Syngas. Recent Advances in Thermochemical Conversion of Biomass.

http://dx.doi.org/10.1016/B978-0-444-63289-0.00008-9

[175] C. Chen, W.S. Ahn, 2011. CO2 capture using mesoporous alumina prepared by a sol–gel process. Chemical Engineering Journal 166, 2, 646-651. https://doi.org/10.1016/j.cej.2010.11.038;

[176] F. Granados-Correa, J. Bonifacio-Martínez, H. Hernández-Mendoza, S. Bulbulian 2016. Capture of CO2 on γ -Al2O3 materials prepared by solution-combustion and ball-milling processes. Journal of the Air & Waste Management Association. 66:7, 643-654, https://doi.org/10.1080/10962247.2016.1161673 [177] V. Zsinka, N. Miskolczi 2024. Investigation of regeneration cycles with different catalysts on

steam gasification of biomass. Journal of the Energy Institute 114,101632. https://doi.org/10.1016/j.joei.2024.101632

[178] J. Dong, A. Nzihou, Y. Chi, 2017. Hydrogen-Rich Gas Production from Steam Gasification of Bio-char in the Presence of CaO. Waste and Biomass Valorization 8, 8, 2735-2746. https://doi.org/10.1007/s12649-016-9784-x

[179] V. Marcantonio, A. M. Ferrario, D. A. Carlo, L. D. Zotto, D. Monarca, E. Bocci, 2020, Biomass Steam Gasification: A Comparison of Syngas Composition between a 1-D MATLAB Kinetic Model and a 0-D Aspen Plus Quasi-Equilibrium Model. Computation 8, 4, 86.

https://doi.org/10.3390/computation8040086

[180] L. Zhang, Y. Lu, M. Rostam-Abadi, 2012. Sintering of calcium oxide (CaO) during CO2 chemisorption: a reactive molecular dynamics study. Physical Chemistry Chemical Physics. 14, 16633–16643. https://doi.org/10.1039/c2cp42209c

[181] J. Udomsirichakorn, P. Basu, P. A. Salam, Bi. Acharya, 2014. A study on CaO-based catalytic tar reforming in a chemical looping gasification system. 11th International Conference on Fluidized Bed Technology

[182] H. Schaper, E. B. M. Doesburg, L.L. Van Reijen, 1983. The influence of lanthanum oxide on the thermal stability of gamma alumina catalyst supports. Applied Catalysis 7, 2, 15, 211-220. https://doi.org/10.1016/0166-9834(83)80009-8

[183] W. J. Lee, C. Li, J. Patel, 2021, Upgrading of Bio-Syngas via Steam-CO2 Reforming Using Rh/Alumina Monolith Catalysts, Catalysts, 11, 180.

[184] S. V. Krivovichev, 2020. FELDSPAR POLYMORPHS: DIVERSITY, COMPLEXITY, STABILITY, Proceedings of the Russian Mineralogical Society 149 (4), 16-66.

https://doi.org/10.31857/S0869605520040036;

[185] https://www.britannica.com/science/feldspar/Crystal-structure (utoljára megtekintve: 2024. 03.20.)

[186] M. C. Gutiérrez-Castorena, 2018. Chapter 6 - Pedogenic Siliceous Features, Interpretation of Micromorphological Features of Soils and Regoliths (Second Edition), 127-155. https://doi.org/10.1016/B978-0-444-63522-8.00006-1

MELLÉKLETEK

1. melléklet

Advanced Biofuels Solutions Ltd. (Swindon, UK) technológiájának folyamatábrája [72]

3. melléklet

Enerkem (Varennes, Sherbrooke, Westbury, Edmonton, Kanada) technológiájának folyamatábrája [76]

Uni Stuttgart (Stuttgart, Németország) technológiájának folyamatábrája [79]

WGS pilot plant (Oberwart, Ausztria) technológiájának folyamatábrája [80]

CCU eljáráso	k integrálási lehetős	égei különböző termokémi	ai folyamatokba [125]	→ Biometán
Biolebomló anyagok	Fermentáció	CO2 szeparáció	→ Víz elválasztás	Etanol
Növényi eredetű	Fermentáció	CO2 szeparáció	→ Metanizácó	SNG SNG
	1	→ Lignin	Fischer-Tropsch szintézis	Szintetikus üzemanyag
száraz biomassza	Előkezelés + hidrolízis	→ Víz-gáz shift reakció	→ Metanol szintézis	→ Hidrogén → Metanol
Oxigén/Levegő/ Vízgőz				
Szilárd/ száraz biomassza	Gázosítás	 Előégetés + CO2 szeparáció 	Égetés	
Levegő ———		• Utóégetés + CO2 szeparáció	Energia előállítás	Villamos/
száraz biomassza	Égetés]
Szilárd/ száraz biomassza	Oxigén	• Oxyfuel eljárás		
Szilárd/ száraz biomassz:		↓ Ipari eljárások + CO2 megkötés		Ammónia/cement/ → vas és acél előállítás/ finomító

10. melléklet CCU eljárások integrálási lehetőségei különböző termokémiai folyamatokba [125]

Illinois Industrial Carbon Capture and Storage által alkalmazott eljárás folyamatábrája [126]

Mikawa Post Combustion Capture Demonstration Plant által alkalmazott eljárás folyamatábrája [128]

14. melléklet Biorecro/EERC project által alkalmazott eljárás folyamatábrája [129]

Saint-Felicien Pulp Mill and Greenhouse Carbon Capture Project által alkalmazott eljárás folyamatábrája [130]

A TG-FTIR-rel végzett kísérletsorozat összefoglalója

Kísérlet típusa	Alapanyag típusa	Vivőgáz típusa	Vivőgáz térfogatárama, l/h	Hőmérséklet, °C
5°C/min felfűtési sebesség	Kukorica biomassza Búzaszalma biomassza Faforgács Napraforgóhéj Erdei biomassza	_		
20°C/min felfűtési sebesség	Kukorica biomassza Búzaszalma biomassza Faforgács Napraforgóhéj Erdei biomassza	Nitrogén	2	800
50°C/min felfűtési sebesség	Kukorica biomassza Búzaszalma biomassza Faforgács Napraforgóhéj Erdei biomassza	_		

Az alapanyag nedvességtartalmának meghatározását célzó kísérletsorozat összefoglalója

Alapanyag típusa	Vivőgáz típusa	Vivőgáz térfogatárama, l/h	Hőmérséklet, °C	Vízgőz, g/h	Alkalmazott katalizátor
ca.			200	-	
assz			300	-	
Ü			400	-	
bid			500	-	Ni/ZSM-5 szeparálva az
ica			600	-	alapanyagtól
kor			700	-	
ku	én		800	-	
mú	rog	2,5	900	-	
talı	Nit		200	5	
tar			300	5	
ség			400	5	NT/7016 51
ves			500	5	N1/ZSM-5 keverve az
hed			600 700	5	anapanyaggan
1 %			/00	5	
40.			800	5	
-			900	5	
sza			200	-	
ase			300	-	
om			400	-	NI //7CD / 5 /1
a bi	Nitrogén		500	-	N1/ZSM-5 szeparalva az
kukorica			600 700	-	alapanyagtoi
			/00	-	
			800	-	
mú		2,5	900	-	
talı			200	5	
tar			300	5	
ség			400	5	NI /70N / 7 1
ves			500	5	N1/ZSM-5 Keverve az
peu			600 700	5	alapaliyaggal
1 %			/00	5	
209			800	5	
			900	5	
Za			200	-	
ass			300 400	-	
0 m			400 500	-	N://ZCM 5/1
į			500	-	NI/ZSM-5 szeparatva az
ica			700	-	anapanyagtor
kon			700	-	
ku	şén		000	-	
tartalmú l	trog	2,5	900		
	Nit		200	5	
			300	5	
lé gi			400	5	NE/ZOM 5 1
vess			500	5 -	INI/ZSIVI-5 Keverve az
edv			000	5	alapanyaggai
• n			/00	5	
%0			800	5 -	
			900	5	

Kísérlet típusa	Alapanyag típusa	Vivőgáz típusa	Vivőgáz térfogatárama, l/h	Hőmérséklet, °C T1	Vg., g/h T2	Alkalmazott katalizátor	Regenerálási ciklus száma, db	Alkalmazott adszorbens	Regenerálási ciklus száma, db	
				2,5	200	-	-	-	-	-
r reaktorzóns ársékleténel	són: sa isa			2,5	300	-	-	-	-	-
	orz leté sztá	Kalaasiaa	śén	2,5	400	-	-	-	-	-
	akt sékl álas	Kukorica biomassza	10g	2,5	500	-	-	-	-	-
	lérs gvi	bioinassza	Ni.	2,5	600	-	-	-	-	-
	lőn me			2,5	700	-	-	-	-	-
	<u>ц</u>			2,5	800	-	-	-	-	-
	na			2,5		500		Ni/ZSM-5,	-	-
	rzó sa	Kukorica	.5	2,5	400	600		Ni/Al2O3,	-	-
	kto ztá	biomassza	ogé	2.5	.00	700		Ni/CaO,	-	_
	rea ékl		Zit-	2,5		500		Ni/Klinoptilolit		
	ik ers gvé	Kukoriaa	4	2,5		500		N1/ZSM-5, N5/A12O2	-	-
	őm me	hiomassza		2,5	800	600		Ni/CaO	-	-
	há	01011103320		2,5		700		Ni/Klinoptilolit	-	-
ete				2.5		-	0.2	1	-	-
érl				2.5		-	0.6		-	-
)kús				2.5	400	-	1		-	-
EK	ş			2.5		-	1.4		-	-
	zás			2,5		-	1.8		-	-
	áro			2,5		-	0.2		-	-
	hat			2,5		-	0.2		_	-
	eg		E	2,5	800	-	1		_	-
	8	Kukorica	ĝ	2,5	000		1.4			
	(ya	biomassza	litro	2,5		_	1.4		_	
	pan		Z	2,5		-	0.2	Ni/ZSM-5	_	
	alaj			2,5			0.2	Ni/A12O3	-	-
	jz:	Vízgőz::		2,5	400	700	1	Ni/CaO.	-	-
	Zđ			2,5			1.8	Ni/Klinoptilolit	-	-
	is in the second			2,5			0.2	Ni/ZSM-5,	-	-
				2,5	800	700	1	Ni/Al2O3,	-	-
				2.5	800	700	1.0	Ni/CaO,		
				2,3			1.0	Ni/Klinoptilolit	-	-
Alacsonv	¥7 1 ·	én	2,5			-	Ni/ZSM-5,	Katalizátoronként	-	-
hőmérsékletű	Kukorica	rog	2,5	400	700	-	N1/A12O3,	10 db	-	-
elgázosítás	biomassza	Nit	2,5			-	Ni/CaO, Ni/Klinontilolit	ciklus (AX10db)	-	-
Alagony			2.5				NE/ZSM 5	Vatalizátoronkánt		
hőmérsékletű	Kukorica	gén	2,5				Ni/Al2O3	10 db	-	-
elgázosítás	biomassza	itro	2,5	400	700	5	Ni/CaO.	regenerálási	-	-
vízgőzzel		Z	2,5				Ni/Klinoptilolit	ciklus (4X10db)	-	-
Marra		ц	2,5			-	Ni/ZSM-5,	Katalizátoronként	-	-
Niagas hőmársáklatű	Kukorica	ogć	2,5	800	700	-	Ni/Al2O3,	10 db	-	-
elgázosítás	biomassza	Vitr	2.5	000	700	_	Ni/CaO,	regenerálási	_	_
		Z	2,5				Ni/Klinoptilolit	ciklus (4X10db)	-	_
Magas	¥Z 1 .	én	2,5				Ni/ZSM-5,	Katalizátoronként	-	-
nomersekletu	hiomacaza	rog	2,5	800	700	5	NI/AI2O3,	10 db	-	-
vízgőzzel	DIOIIIassza	ïz	2,5				Ni/Klinoptilolit	ciklus (4X10db)	-	-
VIEgozzei							10/Kinopinoni	entitas (-introdo)	400°C-on	
Post-situ		5	2.5	400	700	5	Ni/ZSM-5	Katalizátoronként	kezelt	10
adszorpció	Kukorica	géi	,-			-		10 db	klinoptilolit	
alacsony	biomassza	itro						Katali-Atamati (400°C-on	
nomersekietu		Z	2,5	400	700	5	Ni/Klinoptilolit	Katalizatoronkent	kezelt	10
eigazositasiial							-	10 db	klinoptilolit	
Post_situ								Katalizátoronként	400°C-on	
adszornció		én	2,5	800	700	5	Ni/ZSM-5	10 db	kezelt	10
magas	Kukorica	ig 0							klinoptilolit	
hőmérsékletű	biomassza	Nit	25	800	700	F	N:///1:e	Katalizátoronként	400°C-on	10
elgázosításnál			2,5	800	/00	3	1NI/ KIIIIOptiioiit	10 db	klinoptilolit	10

18. melléklet Az elgázosítási kísérletsorozat összefoglalója

Kísérlet típusa	Alapanyag típusa	Vívőgáz típusa	Vivőgáz térfogatárama, l/h	Hőmérséklet, °C	Alkalmazott adszorbens	Regenerációs ciklus száma, db
	én-			0		-
	és sz			30	NaX	-
lata	ıetán			60		-
izsgá	5% n			0		-
ció vi	15-2			30	Zeosorb 5A	-
zorp	ogén, xid)		1	60		-
s des	hidro		1	0		-
zorpció é	legy (60%		30	AC	-	
			60		-	
фA	gázel			0		-
	odell			30	Klinoptilolit	-
	We			60		-
álat	ı, 15-25%			0	200°C-on kezelt klinoptilolit	12
Regenerálási ciklusvizsgá	% hidrogér sén-dioxid)	elegy (60% hidrogén 1etán és szén-dioxid)	1	0	400°C-on kezelt klinoptilolit	12
	zelegy (60 metán és sz		1	0	600°C-on kezelt klinoptilolit	12
	Modell gázı m			0	800°C-on kezelt klinoptilolit	12

19. melléklet A szén-dioxid adszorpcióját célzó kísérletsorozat összefoglalója

A (a) CO_2 (2361 cm⁻¹), (b) CO (2166 cm⁻¹), (c) H_2O (3663 cm⁻¹), (d) CH_4 (2865 cm⁻¹), (e) aldehidek és ketonok (1792 cm⁻¹), (f) alkoholok és észterek (1168 cm⁻¹) FTIR spektrumai a felhasznált alapanyagokban, 5°C/min felfűtési sebességnél

A (a) CO_2 (2361 cm⁻¹), (b) CO (2166 cm⁻¹), (c) H_2O (3663 cm⁻¹), (d) CH_4 (2865 cm⁻¹), (e) aldehidek és ketonok (1792 cm⁻¹), (f) alkoholok és észterek (1168 cm⁻¹) FTIR spektrumai a felhasznált alapanyagokban, 50°C/min felfűtési sebességnél

22. melléklet Kissinger módszer leírása

A Kissinger módszer a modellillesztéses és a modellmentes módszerek közé tartozik, amelyben nincs szükség az aktiválási energiák számítására minden konverziónál. Az aktiválási energia meghatározása modellmentes módszer, mely az $\ln\left(\frac{\beta}{T_m^2}\right) vs.\frac{1}{T_m}$ adatsorok ábrázolásával határozható meg a következő egyenlet alapján [122]:

$$\ln\left(\frac{\beta}{T_m^2}\right) = \ln\left[\frac{AR}{E_a x}\right] - \frac{E_a x}{RT_m}$$
(27)

ahol T_m a maximális csúcs hőmérséklete, mely a DTG adatsor ábrázolásával nyerhető a hőmérséklet függvényében [122].

23. melléklet Kissinger-Akahira-Sunose (KAS) módszer leírása

A KAS egy modellmentes, izokonverziós módszer, mely az aktiválási energia és a preexponenciális tényező számítására alkalmas. A módszer végső formája a (28) egyenlet p(x) helyére beillesztett $x^{-2}e^{-2}$ kifejezéssel érhető el [119,123]:

$$\ln\left(\frac{\beta}{T^2}\right) = \ln\left[\frac{AE_a}{Rg(x)}\right] - \frac{E_a}{RT}$$
⁽²⁹⁾

ahol az eredmények az $\ln\left(\frac{\beta}{T^2}\right) vs.\frac{1}{T}$ fösszefüggés meredekségéből az aktiválási energia, míg a metszéspontból a preexponenciális tényező számítható. A teljes rendszerre jellemző kinetikai jellemzők meghatározásához több konverzió értékre, illetve felfűtési sebességre (min. 2) van szükséges meghatározni [119,123].

24. melléklet Flynn-Ozawa-Wall (FWO) módszer leírása

Az FWO módszer a kinetikai jellemzők meghatározására alkalmas, a Doyle megközelítés alkalmazásával (p(x)=-5,331-1,052 $\frac{E_a}{RT}$). A (26) egyenlet a következőképp írható fel [122]:

$$\ln(\beta) = \ln\left[\frac{AE_a}{Rg(x)}\right] - 5,331 - 1,052\frac{E_a}{RT}$$
(30)

ahol az $\ln(\beta) vs.\frac{1}{T}$ összefüggés meredekségéből az aktiválási energia, míg a metszéspontból a preexponenciális tényező számítható. Az FWO módszer csak a felfűtési sebességet veszi figyelembe, annak a hőmérséklet-függését nem. Fontos megemlíteni, hogy a Doyle megközelítés csak abban az esetben alkalmazható, amikor $20 \leq \frac{E_a}{RT} \leq 60$ [122].

25. melléklet Friedman módszer leírása

Az egyik legáltalánosabb izokonverziós módszer a Friedman módszer, mely a (22) egyenlet mindkét oldalának természetes logaritmusát veszi, így az egyenlet a következőképp alakul:

$$\ln\left(\frac{dx}{dt}\right) = -\frac{E_a}{RT} + \ln(af(x)^n) \tag{31}$$

ahol az $\ln\left(\frac{dx}{dt}\right) vs.\frac{1}{T}$ összefüggés meredekségéből az aktiválási energia, míg a metszéspontból a preexponenciális tényező számítható. A Friedman módszer elsőrendű reakciót feltételez, mely alapján az egyes konverzió értékekhez tartozó reakciókinetikai paraméterek meghatározhatók [119]. Fontos megemlíteni, hogy a Friedman módszer nem veszi figyelembe a felfűtési sebességet, és a konverzió időbeli változásával számol.

26. melléklet Termodinamikai paraméterek meghatározási módszerei

A termodinamikai paraméterek közé sorolható az entalpia (dH) (32), a Gibbs szabadenergia (dG) (33), illetve az entrópia (dS) (34), melyek értéke számos információval rendelkezik a folyamat során végbement reakciók jellegéről. Az említett paraméterek különböző konverzió értékekre külön-külön is meghatározhatók az egyes modellmentes kinetikai módszerek esetében. Amennyiben az entalpia értékek pozitívak, endoterm reakcióra következtethetünk. Minél kisebb az aktiválási energia és az entalpia értéke közötti különbség, annál könnyebb a termék(ek) képződése a folyamat során. A Gibbs szabadenergia információt ad az aktivált komplex létrejöttéhez szükséges energiamennyiségre. Az entrópia pozitív érték esetén, azt jelzi, hogy a rendszerben lévő aktivált komplex rendezetlen állapotban van, eltér a termodinamikai egyensúlytól, azaz termikus egyensúlyi állapotban van. Amennyiben az entrópia eredője is pozitív, a keletkezett végtermékek rendezetlenebb állapotban vannak, mint a kiindulási anyagok/rendszer [124,125].

$$dH = E_a - RT \tag{32}$$

$$dG = E_a + RT ln \frac{K_b I_p}{hA}$$

$$dS = \frac{dH - dG}{T_p}$$
(33)
(34)

ahol K_b a Boltzmann állandó (1,3807*10-23 J/K), h a Planck állandó (6,6261*10-31 Js) és T_p a DTG görbe csúcshőmérséklete.

A termodinamikai paraméterek változása a vizsgált szalma biomassza esetében, különböző modellmentes módszerekkel (4.1.3. fejezet)

	Szalma										
	KAS FWO Friedman										
Konverzió (α)	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK		
0,1	93,7	119,5	-42,0	77,0	180,7	-168,7	91,7	155,1	-103,1		
0,2	240,6	118,5	198,6	217,9	172,5	73,8	239,7	153,6	140,0		
0,3	316,0	206,4	178,1	309,6	124,4	301,1	316,0	171,9	234,1		
0,4	229,1	199,9	47,5	226,9	122,2	170,2	228,9	166,2	101,9		
0,5	217,2	194,8	36,3	215,3	117,7	158,7	216,8	162,1	88,9		
0,6	208,7	190,0	30,3	207,0	113,3	152,3	208,1	158,4	80,9		
0,7	185,0	187,5	-4,1	184,4	112,0	117,5	184,2	208,5	-39,5		
0,8	139,4	186,2	-76,2	140,7	113,0	45,0	138,2	158,7	-33,4		
0,9	183,2	155,2	45,5	181,5	80,1	164,8	180,6	131,0	80,6		
Átlag	201,4	173,1	46,0	195,6	126,2	112,7	200,5	162,8	61,2		

A termodinamikai paraméterek változása a vizsgált faforgács esetében, különböző modellmentes módszerekkel (4.1.3. fejezet)

				Faforg	ács					
		KAS			FWO			Friedman		
Konverzió (α)	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK	
0,1	259,4	58,9	313,3	237,6	115,0	191,6	260,7	84,3	275,5	
0,2	283,3	183,0	156,7	277,9	99,6	278,6	282,8	153,9	201,5	
0,3	205,4	199,3	9,7	204,3	119,6	132,3	205,2	167,9	58,3	
0,4	228,2	203,5	38,5	226,1	122,7	161,5	228,1	170,6	89,9	
0,5	228,2	211,2	26,6	223,5	127,6	149,9	225,3	174,1	80,1	
0,6	205,9	212,4	-10,1	205,3	132,7	113,5	206,2	177,3	45,1	
0,7	184,4	215,7	-48,9	185,1	137,0	75,0	184,9	179,8	7,9	
0,8	167,6	218,4	-79,3	169,3	140,5	44,9	168,2	181,8	-21,2	
0,9	618,7	242,6	587,8	598,4	165,4	676,7	619,6	228,3	611,4	
Átlag	264,6	193,9	110,5	258,6	128,9	202,7	264,6	168,7	149,8	

A termodinamikai paraméterek változása a vizsgált napraforgóhéj esetében, különböző modellmentes módszerekkel (4.1.3. fejezet)

	Napraforgóhéj											
	KAS				FWO			Friedman				
Konverzió (α)	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK			
0,1	110,6	69,7	64,1	96,5	132,3	-56,0	194,3	174,7	30,6			
0,2	282,3	161,3	189,3	277,0	78,1	311,2	280,9	132,3	232,6			
0,3	237,4	182,3	86,2	232,6	101,6	205,0	236,6	151,0	134,0			
0,4	179,2	196,1	-26,4	179,3	117,9	96,0	178,7	163,3	24,2			
0,5	191,1	200,0	-14,0	190,6	121,3	108,4	190,8	166,0	38,8			
0,6	188,5	204,1	-24,3	188,4	125,4	98,6	188,5	169,1	30,3			
0,7	196,4	208,0	-18,1	196,1	128,9	105,2	196,6	172,2	38,2			
0,8	281,3	114,2	261,5	259,2	169,2	140,8	280,5	150,7	203,0			
0,9	178,2	136,7	64,8	156,8	196,7	-62,5	175,8	173,7	3,2			
Átlag	205,0	163,6	64,8	197,4	130,2	105,2	213,6	161,4	81,7			

A termodinamikai paraméterek változása a vizsgált erdei biomassza esetében, különböző modellmentes módszerekkel (4.1.3. fejezet)

	Erdei biomassza											
		KAS			FWO			Friedman				
Konverzió (α)	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK	dH, kJ/mol	dG, kJ/mol	dS, J/molK			
0,1	28,9	201,6	-239,5	20,7	134,9	-158,4	33,5	164,2	-181,2			
0,2	66,1	206,3	-194,5	61,5	129,6	-94,5	67,4	174,1	-148,0			
0,3	64,8	217,7	-212,1	62,5	137,6	-104,2	64,6	182,2	-163,1			
0,4	62,4	222,8	-222,6	60,6	142,0	-112,8	62,3	185,3	-170,7			
0,5	55,8	231,4	-243,5	55,0	146,8	-127,3	55,8	188,9	-184,7			
0,6	83,6	227,1	-199,1	83,6	144,1	-84,0	83,4	187,3	-144,0			
0,7	81,4	231,7	-208,4	81,8	148,7	-92,7	81,7	191,1	-151,7			
0,8	119,3	238,0	-164,6	115,3	153,0	-52,2	119,5	196,7	-107,0			
0,9	2112,6	2040,9	99,4	188,9	375,2	-258,4	209,8	182,9	37,3			
Átlag	297,2	424,2	-176,1	81,1	168,0	-120,5	86,4	183,6	-134,8			

A vizsgált adszorbensek deszorpciós izotermái (4.5.1. fejezet), (a) aktív szén, (b) NaX, (c) Zeosorb 5A, (d) Klinoptilolit

(c)

33. melléklet A klinoptilolit XRD diffraktogramja (4.5. *fejezet*)

A vizsgált, különböző hőmérsékleten kezelt klinoptilolit adszorpciós izotermái (a) 200°C, (b) 400°C, (c) 600°C, (d) 800°C (4.5. fejezet)

KÖSZÖNETNYÍLVÁNÍTÁS

Ezúton szeretném megköszönni témavezetőmnek, Dr. habil. Miskolczi Norbert egyetemi docensnek, a PhD tevékenységem során nyújtott rengeteg segítséget, a szakmai tanácsokat, az építő, de néha kemény kritikákat, valamint a folyamatos, kitartó bíztatását. Köszönöm az elmúlt négy évet, a szakmai együttműködést és a bizalmat, valamint az állandó támogatást a jó és rosszabb napokban is.

Szeretném megköszönni a MOL Ásványolaj- és Széntechnológiai Intézeti Tanszék jelenlegi és korábbi munkatársainak a segítséget a PhD tevékenységem során, ahol külön köszönettel tartozom tanszéki mérnökeinknek és technikusainknak a mérések kivitelezésének segítése végett.

Emellett szeretném megköszönni az Anyagmérnöki Intézeti Tanszék és a Fenntarthatósági Megoldások Kutatólaboratórium kollégáinak a kiegészítő mérésekben való segítséget.

Végül hálás köszönettel tartozom családomnak és barátaimnak a támogatásért és bíztatásért, melyet tőlük kaptam az elmúlt négy év mindennapjain.