
UNIVERSITY OF MISKOLC

FACULTY OF MECHANICAL ENGINEERING AND INFORMATICS

DISSECT-CF-FaaS: A Simulation Environment for Simulating
Functions-as-a-Service

PhD dissertation

Author
Dilshad Hassan Sallo

MSc in Advanced Computer Science with a Specialisation in Software Technology

‘JÓZSEF HATVANY’ DOCTORAL SCHOOL
OF INFORMATION SCIENCE, ENGINEERING AND TECHNOLOGY

HEAD Of DOCTORAL SCHOOL
Prof. Dr. Jenő SZIGETI

ACADEMIC SUPERVISOR
Prof. Dr. Gábor Kecskeméti

Miskolc, 2024

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

Declaration

The author hereby declares that this thesis has not been submitted, either in the
same or in a different form, to this or to any other university for obtaining a PhD
degree. The author confirms that the submitted work is his own and the
appropriate credit has been given where reference has been addressed to the work
of others.

Dilshad H. Sallo

2

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

Acknowledgments

First and foremost I want to gratefully and sincerely thank Almighty God for
assisting me to complete this project. I owe special thanks to Prof. Dr. Gabor
Kecskemeti for his excellent guidance, patience and most importantly, his
friendship during doing this project.

I would like to express special thanks to the Kurdistan Regional Government to
fully support me during my study. I thank my parents, my friends, and all other
family members for encouraging and supporting me throughout this study.

Finally, I dedicate this work to my sons Shad and Shan, wishing them an
unclouded childhood and power to make their dreams come true.

Dilshad H. Sallo

3

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

Abstract

Serverless computing is a new style of delivering cloud services in an easy-environment
that abstracts a user from the burden of managing resources and infrastructure. This
computing paradigm is adopted by several commercial providers to offer elasticity
to develop applications with a fine-grained cost model. Despite the widespread use
of Functions-as-a-Service (FaaS) within the research community, conducting experi-
ments, evaluating the performance and provisioning policies in commercial providers
remains a difficult endeavour and costly. Therefore, simulators have been opted as
an alternative solution. Unfortunately, there are no established simulation frame-
works that can support research focussing on the challenges accompanying serverless
computing. The existing serverless simulators focus on specific functionality or as-
pects, but they could not meet the expectations compared to the services offered by
commercial providers.

Therefore, this dissertation focuses on introducing a comprehensive serverless
environment to the DISSECT-CF simulator to enable simulating realistic FaaS so-
lutions and evaluating scenarios reliant on the concepts of the serverless paradigm.
This environment is capable of generating realistic FaaSs and imitating serverless
providers’ in terms of cost-model, associating triggers, resource constraints, and cus-
tomising the configurations of FaaSs. Moreover, it reveals the internal behaviour of
provisioned resources that occur during simulation by extracting performance met-
rics in a parallel manner. The evaluation shows that our environment is able to
simulate and evaluate FaaSs scenarios by properly reflects providers’ policies and
captures the behaviour of FaaS component.

4

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

Contents

1 Introduction 13
1.1 Research goals . 14
1.2 Dissertation guide . 14

2 Background and Literature Review 16
2.1 Introduction . 16
2.2 Background . 17

2.2.1 Serverless computing . 17
2.2.1.1 Serverless computing terminology 17
2.2.1.2 Serverless computing use cases 18
2.2.1.3 Serverless computing providers 19
2.2.1.4 Open-source serverless computing frameworks 21
2.2.1.5 Serverless and other computing paradigms 22
2.2.1.6 Virtualization, containerization and serverless com-

puting . 22
2.2.2 Traces . 23
2.2.3 Simulation environments . 23
2.2.4 Evaluation methodologies . 25

2.3 Related works . 26
2.3.1 Cloud simulators . 26

2.3.1.1 Implementation language 28
2.3.1.2 Simulation type . 28
2.3.1.3 Simulation input . 28
2.3.1.4 Support extension 28
2.3.1.5 Lack of parallelsation 29

5

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

2.3.2 Serverless simulators . 30
2.3.3 Discussion and concluding remarks 32
2.3.4 Overview of DISSECT-CF simulator 32

2.4 Summary . 34

3 Generating Realistic Serverless Traces 35
3.1 Introduction . 35
3.2 Architecture of the trace generator and serverless model 36

3.2.1 Configuration setup layer . 37
3.2.2 FaaS creation layer . 37
3.2.3 Serverless management layer 38

3.3 Generating realistic traces from Azure Functions dataset 38
3.3.1 Generating invocations, execution times and allocated memory 39
3.3.2 Evaluation of generator approach 42

3.4 Improving our previous generator approach 44
3.4.1 Limitations of previous approach 44
3.4.2 Architecture of enhanced approach 45

3.4.2.1 Improving the percentiles of generated traces 46
3.4.2.2 Scaling workload with real users’ behavior 49
3.4.2.3 Converting generated trace to standard formats . . . 50

3.4.3 Evaluation of improved percentiles 51
3.4.4 Evaluation of users’ behavior 52
3.4.5 Evaluation of converting approach 55

3.4.5.1 DISSECT-CF . 55
3.4.5.2 Other simulators . 56
3.4.5.3 SimFaaS . 58

3.5 Summary . 59

4 An Extension of DISSECT-CF to Simulate Function-as-a-Service 62
4.1 Introduction . 62
4.2 Extending our previous model . 63
4.3 Proposed architecture . 63

4.3.1 Configuration setup layer . 64
4.3.2 FaaS Creation layer . 65
4.3.3 Serverless management layer 65
4.3.4 Cost modeling and statistics layer 66

4.4 An illustrative walk through of our extensions 67
4.5 Experiments . 70

6

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

4.5.1 Evaluation cost model . 70
4.5.2 Evaluation of provisioned concurrency 71
4.5.3 Evaluation of trigger . 72
4.5.4 Evaluation of performance metrics 72

4.6 Summary . 74

5 Parallel Event System to Reveal the Internal Behavior of our Server-
less Environment 75
5.1 Introduction . 75
5.2 PDES issues and challenges . 76
5.3 Prominence of recurrent events . 77
5.4 The parallelisation of simultaneous events 80
5.5 Evaluation of the parallel event system 82

5.5.1 Validation of the parallel event system 82
5.5.2 Performance of the parallel event system 84

5.6 Evaluation of our serverless environment using parallel event system . 87
5.7 Summary . 89

6 Conclusion 91
6.1 Summary . 91
6.2 Contributions . 92
6.3 Future works . 93

7 Author’s Publication and Software Availability 94
7.1 Author’s publication . 94
7.2 Software availability . 95

7

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

List of Figures

2.1 Architectural view of DISSECT-CF [57] 33

3.1 Architecture of proposed model . 37
3.2 Flowchart of generating trace by Generic Trace Producer and other

components . 41
3.3 Coefficient of determination evaluation for generated execution time

(left-figure) and memory utilisation (right-figure) 43
3.4 Dynamic memory allocation of our model 43
3.5 Architecture of generator approach 46
3.6 Flowchart for process of generating trace 48
3.7 Coefficient of determination evaluation for generated percentiles with

help of GA, for execution time (left-figure) and memory utilisation
(right-figure) . 52

3.8 Number of orchestration triggers invoked in one day 54
3.9 Percentage of invocations for timer trigger per user, Left-figure: first

minute of the day, Right-figure: Last minute of the day 54
3.10 Performance metrics extracted from simulation, left-figures were gen-

erated by simFaaS, right-figures were generated by our model 60

4.1 Architecture of our serverless environment 64
4.2 A demonstration scenario executed on our extended simulation envi-

ronment . 68

5.1 The average number of serverless functions executed simultaneously
in Azure Functions provider . 78

5.2 Representing multiple events in Table 5.1 occur at a specific time . . 79
5.3 Diagram of Timed class and Parallel class 80

8

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

5.4 Boxplot diagrams for JobDispatchingDemo class and our classes . . . 84
5.5 The execution time in seconds of different workload sizes simulated by

parallel and sequential versions . 86
5.6 Percentage of average life-time, running-time and idle-time of instance

for different workloads . 89

9

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

List of Tables

2.1 Comparison of virtual machines, containers and serverless computing
features . 24

2.2 Review articles for cloud simulators 27
2.3 Extensions of various aspects that based on cloud simulators 29
2.4 Comparison of the examined serverless simulators with servereless fea-

tures . 31

3.1 Top 10 users by number of tasks submitted to the real provider . . . 53
3.2 Scaling workloads with real users’ behaviour 53
3.3 Simulating twenty thousand functions with different formats 56
3.4 Open-source simulators used recently by researchers in their evalua-

tion process . 57
3.5 Comparing simulating functions using DISSECT-CF and GridSim in

terms of simulated timespan . 58

4.1 Simulating 100k invocations using different memory sizes 71
4.2 Simulating 100k invocations using the AWS provider with instances

having 128 MB memory . 72
4.3 Using timer trigger for five groups of functions with different trigger

intervals . 73
4.4 Average performance metrics of the instances were extracted while

simulating different workload sizes . 73

5.1 Three events with different frequencies 79
5.2 The execution time(s) of parallel version using four different sizes of list 85
5.3 The execution time(s) of parallel and sequential versions in four dif-

ferent degrees of parallelism . 86

10

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

5.4 Extracted performance metrics of different workloads using our server-
less environment . 88

5.5 The execution time in seconds of our serverless environment using
sequential and parallel versions . 89

11

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

List of abbreviation

BaaS Backend-as-a-Service . 17

CSV Comma-Separated Values . 55

DES Discrete Event Simulation . 25

GPU Graphics Processing Unit . 76

GWF Grid Workload Format . 55

FaaS Functions-as-a-Service . 4

HPC High Performance Computing . 82

IaaS Infrastructure-as-a-Service . 13

IoT Internet of Things . 17

PaaS Platform-as-a-Service . 16

PDES Parallel Discrete Event Simulation . 29

PM Physical Machine . 22

QoS Quality of Service . 58

SaaS Software-as-a-Service . 16

SWF Standard Workload Format . 55

VM Virtual Machine . 17

12

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

Chapter 1
Introduction

Serverless is a new computing paradigm adopted by several cloud providers. It pro-
vides a new style of delivering cloud services by letting a user to mainly concentrate
on coding rather than managing backend-infrastructure and operations [70, 96]. In
most cases, commercial providers are not always the most favourable choices for re-
searchers to execute and evaluate their desired scenarios, due to having a costly and
complex environment (leading to non-reproducible results) [53, 72].

One alternative solution is simulators, which were opted by the research commu-
nities to evaluate scenarios in reduced-cost and easy-to-setup-environments [35, 43].
Over the last years, numerous cloud simulators have been built to support the
Infrastructure-as-a-Service (IaaS) model [10, 16, 35, 54, 106]. They offer a flexi-
ble environment to experiment on various algorithms and scenarios in the field of
infrastructure management. To obtain respectable precision, simulators use real
traces often collected and offered by commercial providers. These traces represent
comprehensive information about executed tasks reflecting users’ behaviour within
providers.

Despite the widespread use of cloud simulators, they are still mainly focused on
supporting more traditional IaaS scenarios, and this reduces their applicability in
the serverless and FaaS domains. There are several features essential to support
the serverless models that are missing from most IaaS frameworks. For example, the
need of simulating and execute multiple events in parallel. Moreover, workload traces
typically employed by IaaS simulators are not well adoptable to the new computing
model. Thus, they do not represent the new kind of users’ behaviour. In addition
to that, IaaS simulators are not designed to take responsibility for managing the
necessary infrastructure, complex provisioning, and configurations on behalf of a
user, which is how he/she deals with serverless systems.

13

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

The need for an integrated serverless environment capable of mimicking the be-
haviour of real providers is essential towards evaluating applications and scenarios
reliant on the concepts of this computing paradigm. To fulfil the researchers’ pur-
pose, the environment has to support the newly introduced features, computing style,
and resource constraints that led to exist of this computing type.

As serverless technology still based on underlying infrastructure that is abstracted
from a user, it is beneficial to extend existing IaaS simulators to support serverless
functionalities and features. The IaaS simulator called DISSECT-CF [57] is selected
to fulfill this purpose as it is extensible, allows sharing low-level computing, supports
loading and managing several trace file formats, and its performance is significantly
higher than most simulators in the field [71]. All these reasons are leading us to the
main aim of the research.

1.1 Research goals

This research aims to develop a comprehensive serverless environment on DISSECT-
CF simulator. This new environment is capable of simulating and evaluating server-
less applications and scenarios. The research is divided into three goals.

1. The ability to generate realistic serverless workloads close to real users’ be-
haviour. Also supporting scaling such workloads to fit any researchers’ desired
scenario.

2. The ability to mimic real serverless providers in terms of provisioning resources
policy, internal mechanism, estimating costs and provided services.

3. The ability to perform parallel execution for revealing the internal behaviour
of large-scale simulation session.

1.2 Dissertation guide

The list below shows the organisation of the chapters, which constitute this disser-
tation.
Chapter 2 gives an overview of serverless computing and the terminology behind
the existence of this computing. Moreover, it analyses the most popular providers
that support this computing paradigm. It then explains the role of traces and a
simulation environment in the research area. After this, it presents the literature

14

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

review that conducted related to our study including limitations and common fea-
tures that exist in current cloud and serverless simulators. Subsequently, it exposes
the concluded remarks that urged us to perform this study. Finally, it provides an
overview of DISSECT-CF and the reason behind selecting this robust simulator to
be the foundation to achieve our goals.

Chapter 3 introduces our novel approach for generating realistic serverless traces.
It commences by proposing the architecture of a model that consists of two layers
built on the top of DISSECT-Cf. It then demonstrates the mechanism of producing
serverless workloads. Besides, it exposes the enhancement that introduced to enable
our approach to improve the quality of traces by using a genetic algorithm. Addi-
tionally, it allows scaling of workloads with attention to real users’ behaviour. It
also supports the reusability of generated traces to be used by simulators that model
different computing approaches. Finally, it offers different ways of evaluating our
generator approach.

Chapter 4 looks into the layers that constitute the architecture of our intro-
duced serverless environment that supports several serverless providers. Followed
by detailed steps to reveal the internal mechanism of this environment. Finally, it
deals with the evaluation of the functionalities and services that are offered by this
serverless environment.

Chapter 5 has the spotlight on the prominence of recurrent events in DISSECT-
CF and demonstrates on proposed solution (parallel event system) to the core of
DISSECT-CF. After this, it shows a performance comparison between the sequential
and parallel versions. Finally, it deals with the investigation of the parallel version
in our serverless environment with a scenario that require high performance.

Chapter 6 provides a summary of the dissertation and highlighted the outcomes.
Additionally, it summarises the main contributions of the author towards the scien-
tific community. Finally, it considers possible future work that could be done to
further extend this project towards various applications and scenarios that reliant
on the concepts of the serverless paradigm.

Chapter 7 provides the list of scientific publications achieved by the author to
support the introduced contributions. Moreover, it gives a link to the source code of
introduced serverless environment.

15

DOI: 10.14750/ME.2024.033

http://dx.doi.org/10.14750/ME.2024.033

Chapter 2
Background and Literature Review

2.1 Introduction

The term cloud computing was first introduced in 2006 to offer elastic and reliable
services to the maximum number of users [11]. Cloud computing refers to both the
applications delivered as services over the Internet and the hardware and systems
software in the data centers that provide those services. The way and type of deliver-
ing these services led to constitute several models to describe products, most promi-
nently, IaaS, Software-as-a-Service (SaaS), and Platform-as-a-Service (PaaS) [31].

Research in these fields cannot rely on commercial cloud providers such as AWS
and Azure, as their inflexibility to setup experiments with the same behaviour and
cost often limit the required levels of reproducibility and scalability. Thus, many
IaaS simulators have been developed as alternative solutions to experiment scenarios
in a cloud computing environment [16, 59, 72].

Recently, serverless computing was introduced as FaaS, to deliver cloud services
in style that abstracts a user from the burden of managing infrastructure. Serverless
computing enables software development agility towards supporting various real-
world scenarios. The need to introduce serverless computing to the research com-
munity in a simulation environment is essential towards evaluating scenarios that
reliant on the concepts of the serverless paradigm.

This chapter gives an overview of serverless computing terminology and its pop-
ular providers. Section 2.2 gives background information on serverless providers
and highlights the role of the simulation environment and traces in the research
community that led to exist various simulators in different aspects of computing.
Additionally, it presents the IaaS simulators and their shared common features and

16

DOI: 10.14750/ME.2024.033

limitations. Section 2.3 shows conducted surveys related to the aim of our research
study and the existed limitations in current serverless computing simulators. Finally,
Section 2.4 summarise the key concepts behind this study.

2.2 Background

2.2.1 Serverless computing

Serverless computing is a step forward to provide a cloud environment. It’s style
differs from traditional cloud computing in terms of releasing users from the bur-
den of managing underlying infrastructure and operations [70]. Serverless does not
mean that there is no server in general, but the operations, scalability and backend-
infrastructure that related to server is fully abstracted from users, and managed by
cloud providers [48].

Serverless computing is defined as a complete computing model that incorporates
two different services, namely, FaaS and Backend-as-a-Service (BaaS). FaaS is con-
cept that focuses on event-driven execution of written functions to accomplish target
actions. BaaS is cloud service that manages by provider to backend functions to
accomplish a task. This includes any type of service in which server management,
configuration, scaling, and billing are abstracted from the end user.

Serverless is gaining momentum over public clouds as a great solution for industry
and development. By contrast, it is limited in the research community in terms of
offering research insight into infrastructure and concepts behind [13].

Serverless computing has become dominant environment for applications whose
nature of workloads depends on lightweight and stateless services [70] such as big
data [20], Internet of Things (IoT) [14, 26], scientific computing [34], artificial ma-
chine learning model training [22], mathematical Computation [98], and workflow
applications [52, 69].

2.2.1.1 Serverless computing terminology

Function trigger: Serverless providers introduce triggers to invoke functions when
certain events happen [33]. This gives different methods for defining how a function
will be run on the basis of associated trigger. Trigger types can vary to meet a user’s
scenario demand, such as timers with the predefined schedule or a blob that responds
to new or updated blob status.

Instance lifetime: An Instance is a Virtual Machine (VM) which runs our
tasks in the cloud. The lifetime of an instance starts by initial state that requires

17

DOI: 10.14750/ME.2024.033

allocating sufficient resources and loading configurations. Then, the instance will
be able to handle incoming requests (running state). Whenever there are no more
dispatched requests, the instance will be kept warm (idle state) for short-time for
future reuse or terminated [67].

Cold-start and warm-start: Cold-start happens when a task is dispatched
and there is no instance available to run this task. Thus, the platform needs to
boot a new one from scratch and allocate appropriate resources that meet the task’s
demand. The time spent on initialising instance to be ready is called cold-start
delay. In the opposite scenario, warm-start represents an available instance that is
ready to accommodate the dispatched task [105].

Auto-scaling: One of the essential aspects of serverless (FaaS) platforms is
auto-scaling instances based on incoming requests [111]. This ensures provisioning
of resources rapidly in response to workload, including scaling to zero that allow
instances to be run when there is demand. Essentially, the auto-scaling solution
behind the provider will make task dispatch more or less likely to be in the cold start
state. What makes serverless providers unique is their ability to launch instances
quickly and manage them efficiently.

Utilization-based billing: A factor that attracts a user towards serverless plat-
forms is paying only for consumed resources during the actual running time [112] of
the function. This pattern is fairly inexpensive compared with renting and paying
fixed-term resources in traditional IaaSs.

2.2.1.2 Serverless computing use cases

The advantages of serverless computing, such as scalability and minimized admin-
istrative overhead, make it a fitting choice for various use cases. Here are some
common use cases.
Event-Driven Applications: one of the most popular use cases is the implemen-
tation of event-driven applications that leverage serverless computing architecture
to respond to various events in real-time [33, 114]. As the serverless environment is
built upon an event-driven design that inherently enables loose coupling, it runs ap-
plications in response to functions triggered by events, which facilitates asynchronous
processing without requiring continuous server resources, independent scale, deploy-
ment flexibility, service abstraction, and isolation. The serverless computing model
can respond to event changes or updates in the state, such as HTTP requests, file
uploads, messages from a message queue, and database updates.

Multimedia Processing: the serverless architecture is commonly used in image
and video processing tasks. By combining serverless functions such as compute and

18

DOI: 10.14750/ME.2024.033

flow, it is possible to build resilient and scalable serverless video processing systems.
These systems not only deliver improved performance and efficiency but also come
with reduced costs [29, 117]. Triggering serverless functions immediately upon file
uploads to a storage service enables efficient processing for activities such as resizing
images or video processing, generating thumbnails, encoding or transcending videos,
data extraction, and transformation.

Chatbots: serverless computing is used to implement chatbots which respond
to user queries. The chatbot’s backend relies on modular blocks to engage and col-
laborate with cognitive services. Each interaction within the chatbot is treated as an
independent serverless function that executes valuable tasks such as processing user
input and fetching information [27, 115]. This makes serverless architecture well-
suited for such workloads, enabling a chatbot employing numerous interconnected
functions to effortlessly scale, managing thousands of simultaneous interactions with-
out the need for a continuously running server [47, 63].

APIs and Backend Services: serverless computing is frequently employed to
facilitate APIs that foster communication between front-end applications and back-
end services [83, 110]. It manages API requests, executes essential computations,
fetches data, and interacts with databases or additional services. Within a backend
service, serverless computing can be applied to establish particular functions, render-
ing them well-suited for managing specific tasks within the backend infrastructure.

IoT and Microservices Applications: serverless computing is well-suited for
managing sporadic and unpredictable workloads linked to IoT devices and for de-
ploying microservices [24, 65]. Functions within this model can efficiently process
and analyze data produced by devices, responding to real-time events triggered by
IoT devices. In the context of microservices, each function encapsulates distinct
business logic or acts as a self-contained service. This methodology streamlines in-
dependent development, deployment, and scaling of diverse components within a
broader application.

2.2.1.3 Serverless computing providers

Many serverless providers deliver computing services to users without involving the
burden of user level management operations of the infrastructure. In this section,
we list the most popular providers and the key differences between their policies.

AWS lambda [13] was introduced in 2014 by Amazon. It came with a price
model that mainly relies on allocated memory size and number of invocations [112].
AWS Lambda offers elastic options for allocating the memory of function instance
starting from 128 MB to 3008 MB with an attached CPU whose performance in-

19

DOI: 10.14750/ME.2024.033

creases proportionally to the allocated memory. It also allows providing, by default
a thousand, concurrent function instances to serve deployed functions [65]. However,
the number of instances could vary depending on the region where the function is
deployed [68]. AWS Lambda introduced resource limits to ensure dealing with in-
tensive workload efficiently. These include a timeout of function execution set to
15 minutes [112] and the maximum time of a function instance to be idle before it
terminates is 5 minutes [79].

Microsoft azure functions was officially released in 2016 to deliver serverless
services in the same manner as AWS Lambda [70]. But the price model depends on
the average consumed memory of serverless functions instead of the memory allo-
cated. Azure functions introduced three hosting plans to run serverless applications,
namely, consumption, premium and dedicated plans [112]. Each has different resource
configurations and costs. It also uses the function app concept to accommodate one
or more individual functions sharing the same runtime configurations. Each app can
scale up to 200 instances with a maximum memory of 1.5 GB [68]. Thereby Azure
app service limits the runtime of function to 10 minutes, and function instance will
be terminated after staying 12 minutes in an idle state [79].

Google cloud functions was released in 2017 as serverless platform [70]. The
price model of Google Cloud Function relies on provisioned memory and CPU. This
platform offers users a for memory options like 128 MB, 256 MB, 512 MB, 1024 MB
and 2048 MB. Google Cloud Functions does not highlight the number of instances
it support a single function to be scaled to, but it allows up to 1000 functions to be
executed concurrently per session [68]. This platforms determined 9 minutes for the
function execution timeout [112] and 15 minutes idle time for function instance to
be terminated.

IBM cloud functions is built on the top of open-source project ”OpenWhisk” de-
veloped by IBM. It was released in 2016. The price model of IBM offers mem-
ory sizes, namely, between 128 MB to 2045 MB [68] and it charges for the GB-
seconds used [62]. This platform automatically scales up to 1000 concurrent func-
tion instances to serve intensive workload. The maximum function timeout is 10 min-
utes in IBM Cloud Functions [112] and it allows 10 minutes for function instance
to be idle [79].

In summary, although the aforementioned providers have common features and
offer similar services, each one has different policy which relies on several factors such
as cost model, auto-scaling mechanism, predefined configurations and constraints on
resources.

20

DOI: 10.14750/ME.2024.033

2.2.1.4 Open-source serverless computing frameworks

Open-source serverless frameworks offer more flexibility to build and deploy server-
less applications compared with using proprietary serverless computing providers.
They are not introduces new cost models or policies but address vendor lock-in with
FaaS in commercial providers [78]. This enables developers to execute FaaS on mul-
tiple providers or local machines. In this section, we list some popular open-source
frameworks.

OpenWhisk [1] framework allows developers to build and deploy serverless ap-
plications and functions in a cloud-native, event-driven, and scalable manner. It
enables written functions to be invoked via events, which are referred to as ”ac-
tions”. OpenWhisk came with distinct features that make it a compelling choice
for researchers and developers, such as supporting various programming languages,
providing automatic scaling of resources to handle differing workloads, and its archi-
tecture is designed around event-driven.

OpenFaaS [6] framework designed to streamline the deployment and adminis-
tration of functions or applications within a serverless architecture, harnessing the
capabilities of containers. It offers flexibility, extensibility, and language-agnostic
support in a containerised environment that utilizes containers as the fundamental
deployment unit for functions, making it compatible with various container orches-
tration platforms.

Kubeless [5] is a portable framework that allows developers to deploy and man-
age serverless functions on Kubernetes clusters. This framework extends the server-
less computing model to Kubernetes to simplify the deployment, scaling, and man-
agement of serverless applications within a Kubernetes environment. In Kubeless,
serverless functions can be triggered by diverse events, such as HTTP requests, and
are compatible with multiple programming languages.

Fission [3] is framework seamlessly integrated with Kubernetes, enabling the exe-
cution of serverless functions within the Kubernetes ecosystem. Fission simplifies the
operational intricacies associated with managing serverless applications, delivering a
serverless experience atop Kubernetes infrastructure. This integration amalgamates
the advantages of serverless computing with the robustness and adaptability inherent
in Kubernetes. It supports integration with external services and APIs, facilitating
the creation of serverless applications that effortlessly interact with databases, mes-
saging systems, and various third-party resources.”

IronFunctions [4] framework meticulously crafted to streamline the develop-
ment and execution of event-driven, on-demand applications. It is particularly suit-
able to build and run serverless functions using containerisation technology, where
each function runs inside its own lightweight container and provides consistency.

21

DOI: 10.14750/ME.2024.033

2.2.1.5 Serverless and other computing paradigms

In the cloud computing paradigm, the processing of data happens within centralised
data centres that are often located at a significant distance from the end-users,
whereas edge computing and fog computing are both characterised as technological
paradigms that relocate computing processes to be in close proximity to the locations
where data is generated and collected [55].

Traditional serverless computing was originally designed for cloud environments
to automatically manage the underlying infrastructure and operations while func-
tions (FaaSs or events) are executed in datacenters using VMs or containers [12].
However, Serverless is also establishing its presence in fog and edge computing by
resolving FaaSs request on the nearest point of devices, the edges of the network, or
nodes, enabling low-latency processing and efficient utilisation of fog or edge comput-
ing infrastructures [26]. That is, serverless transcends cloud boundaries to evaluate
its advantages in fog and edge computing to serve their associated applications, such
as IoT applications, which are based on events triggered through sensing/actuating
in the same way functions are triggered in serverless [24].

Although our serverless environment is generic, our dissertation focuses on cloud
computing as evaluation scenarios will be performed on centralized datacenters. How-
ever, it can also support typical scenarios on fog and edge computing that we intend
to present in the future by deploying and simulating FaaSs on multiple nodes and
edge devices.

2.2.1.6 Virtualization, containerization and serverless computing

Virtualisation is a technology that turns a single physical hardware’s resources such
as a server or Physical Machine (PM) into multiple virtual environments (VMs)
to enable the running of several applications on a single server [100]. It uses a
hypervisor to decouple physical hardware from virtual environments and allows each
VM to have its own operating system and applications [75, 95]. Virtualization has
several advantages, such as reduced operating cost, simplified development, efficient
utilisation of resources, and multi-tenancy.

Containerization is a technology that virtualizes the entire operating system,
applications, and their dependencies in containers managed by the underlying op-
erating system kernel [41]. Containers are lightweight, scale quickly, and run faster
than VMs because they consume much fewer resources and share the same operating
system kernel [95, 100]. Containers do not require a hypervisor or guest operating
system and enable the running of multiple applications independently and securely
on a single operating system.

22

DOI: 10.14750/ME.2024.033

Serverless computing does not offer a completely new technology because con-
tainers and VMs are still used in the serverless underlying infrastructure [13, 41].
Instead, it provides an architecture style that achieves better efficiency for writ-
ten functions by creating short-lived and lightweight containers or VMs, as well as
caching and reusing them by the provider for multiple function calls within a par-
ticular duration. The efficiency behind serverless computing comes from mastering
the entire underlying infrastructure, provisioning resources wisely, and special con-
figurations of resources and cashing that reduce additional overhead [9].

Table 2.1 summarises features of traditional VM processing, containers and server-
less computing.

2.2.2 Traces

Tracing is an effective way of recording detailed information about application activ-
ities in a real system such as a cloud services provider [85]. These applications are
composed of tasks could work together to fulfil the desired purpose. During execut-
ing these tasks within a provider, it captures information related to these tasks, such
as consumed resources and a user who executes them. This information is extracted
as a text file called a trace file. Thus, a trace file represents the execution history
of tasks by users on a specific infrastructure. Each trace record fully represents the
behaviour of a task within a provider in terms of the amount of consumed resources
(i.e., memory), the total time spent in execution, the user who invoked the task,
and so on. The type of trace is distinctly defined by two main factors. First, the
type of application that determines the characteristics of executed tasks within a
provider. Second, the type of provider in which trace is collected [30].

Each provider has its own restrictions on executing tasks, which eventually affect
the characteristics of the tasks in the trace. Collecting trace reveals the total be-
haviour of applications and users’ activities within a provider that responds to them
according to its policy. This helps researchers interested in the evaluation of real
systems and to know their behaviour.

There are several useful traces collected from large-scale systems around the
world, such as grid workload traces [45], parallel workload traces [7, 36], and google
workload traces [86].

2.2.3 Simulation environments

Simulation is a technique used to turn a real environment into a computer environ-
ment where we are able to conduct experiments in similar behaviour as if we would

23

DOI: 10.14750/ME.2024.033

Table 2.1: Comparison of virtual machines, containers and serverless computing
features

Feature
Virtual machines Containers Serverless

Isolation Strong isolation be-
cause each VM has
a separate operating
system

Light isolation as an
operating system is
shared among con-
tainers

High isolation at the
function level only

Resource
Overhead

Higher, because of
running a complete
operating system for
each VM

Lower, because of
sharing the host op-
erating system ker-
nel

Fairly high overhead
as resources are al-
located and deallo-
cated dynamically

Deployment
and Scaling

Management, provi-
sioning, and scaling
can be performed
manually or auto-
matically with the
help of cloud services

Horizontal scal-
ing, deployment,
and management
are simplified com-
pared with VMs

Automatic scaling
with easy de-
ployment as the
management of the
infrastructure is
abstracted away

Portability Portable because it
is executable on ev-
ery virtual machine
monitor that sup-
ports the same hard-
ware architecture

Less portable be-
cause it is only us-
able on exactly the
same host operating
system

Complete lockdown
because the server-
less platform has
vendor lock-in

Cost model Continuous cost, as
VMs remain active
continuously regard-
less of usage

Resource-effective,
cost scales with
the number of
containers

Cost-efficient due to
pay for actual usage

Resource
Allocation

Resources are allo-
cated manually or
automatically for
each VM

Resources are allo-
cated manually or
automatically for
each container

Automatically scales
resources based on
demand

Use Cases Suitable for ap-
plications with
long-running pro-
cesses and consistent
workloads

Well-suited for mi-
croservices and dis-
tributed systems ap-
plications

Ideal for event-
driven and short-
lived tasks such as
IoT applications.

Examples VMware and Virtu-
alBox

Docker and Kuber-
netes

AWS Lambda,
Azure Functions,
Google Cloud Func-
tions

24

DOI: 10.14750/ME.2024.033

on a real system [80]. There are three major types of simulations that determine
the behaviour of experiments within the simulation environment, namely: discrete
which the state variables change only at a countable number of points in time, con-
tinuous which the state variables change in a continuous way, and not abruptly from
one state to another, and combined which involves both [87]. Thus, the simulation
state will be changed frequently in time fashion according to changing of involved
variables. The Discrete Event Simulation (DES) type is massively used in cloud
field [99], as it requires capturing only the state changes over time, and no need to
record the complete state. In the cloud research community, simulations have gained
popularity [80], due to the following advantages:

1. Cheap environment compared to conducting experiments using the real sys-
tem.

2. High-level of elasticity to configure scenarios and experiments in a reproducible
environment.

3. Easy-setup and control even regarding the underlining layers that can be hardly
to be performed in a real system.

4. Producing accurate result undistracted by other external variables such as dif-
ferent number of users present at any particular time in real system.

2.2.4 Evaluation methodologies

In our dissertation, several evaluation methods were used to validate the final re-
sults. In chapter 3, the coefficient of determination (R2) was used to validate most
results, as it measures the goodness of fit of extracted percentiles and averages as
predicted against the original values in the dataset. This ensures that a single mea-
surement considers all the extracted values to find the correlation between predicted
percentiles and average in the dataset for each function and the actual percentiles
and average in the dataset. Percent difference was also used to determine the range
of change for the output of simulators when they have the same input. In chapter 4,
the obtained results, such as estimating cost, have been validated against the AWS
provider to show the accuracy of the results. Finally, in chapter 5, the results of the
simulation for sequential and parallel versions were compared to demonstrate the
ratio of improvement by the parallel version.

25

DOI: 10.14750/ME.2024.033

2.3 Related works

Our methodology to find relevant work was divided into two parts; we, first, inves-
tigated recent published surveys of cloud computing in a simulation environment.
Second, we looked for current serverless simulators by delving into the drawbacks
of the existing solutions and revealing neglected features. During the literature re-
search, we focused on the relevant aspects and features to our research aims by
highlighting common features, limitations, and research trends.

2.3.1 Cloud simulators

Over the last two decades, several IaaS simulation frameworks have been built to offer
high levels of freedom to experiment. These frameworks introduced many features,
functionalities, and concepts to handle the challenges that accompanying the cloud
computing field. We conducted literature research on survey papers to reveal different
aspects of cloud computing in a simulation environment, as the results show in Table
2.2. Each one provides a critical and comparative analysis of several simulators, and
sheds the light on diverse evaluation criteria.

Based on the literature, we have concluded with 51 unique cloud simulators. Each
simulator was built for a specific purpose. On one hand, some IaaS simulators have
been built to focus on specific aspects such as energy-aware provisioning, and middle-
ware supervision as the best solution in this sub-field. For example, GreenCloud [60]
is a simulator specifically built for estimating the energy consumption of cloud data
centres. Or, SPECI [104] is a simple simulator that was built to investigate mid-
dleware supervision protocols of data centres. Finally, GroudSim [82] is a platform
mainly focused on scientific application modelling (e.g., workflows) in cloud and grid
computing.

On the other hand, some IaaS simulators have been built to suit wider cloud
modelling scenarios with extensibility in mind to support comprehensive features.
Thus, they provide essential architecture and significant concepts as foundation to
others. For instance, CloudSim [19] is one of the well-known frameworks designed
to mimic general cloud behaviour. CloudSim built with the ability to introduce new
features that support modelling and simulation of cloud computing environments
and its extensibility has been demonstrated with numerous cases over the years.

DISSECT-CF [57] is a simulation framework that improved the modelling of
resources, network utilisation, power consumption, and data centre configurations,
by providing the capability of simulating IaaS internal behaviour. DISSECT-CF
demonstrated its capability towards supporting DES environment in various aspects

26

DOI: 10.14750/ME.2024.033

Table 2.2: Review articles for cloud simulators

Authors Year Main goal
Ahmed et al. [10] 2014 Provide a comprehensive overview of 11 simulators and

highlighting their important features, and analyse their
pros and cons.

Ettikyala et al. [35] 2015 Present a comparison of 15 simulators based on the type
of simulators, developed programming languages and
other characteristics.

Kaleem et al. [54] 2015 Study 12 simulators and provide a better understanding
of attributes for selecting appropriate simulators for new
users.

Suryateja. [106] 2016 Give an overview of 17 simulators based on diverse cri-
teria such as programming language and base platform.

Byrne et al. [16] 2017 Provide a review of 33 cloud tools focused on plugins and
extensions proposed by researchers to support different
aspects of cloud, edge, and fog computing. Additionally,
it reveals the lack of distributed execution and parallel
execution.

Khalil et al. [59] 2017 Investigating the common architecture of 33 simula-
tors and provides evaluation cloud services and mod-
elling equipment. Moreover, it shows the capabilities,
challenges, and extendibility of cloud simulators.

Mansouri et al. [72] 2020 Providing a multi-level feature analysis of 33 frameworks
with a practical way for evaluating their performance
based on various scenarios.

Ismail. [46] 2020 Study 11 simulators based on developed types such as
general purpose or specific simulators with energy con-
cern. It also shows the challenges that e.g., could face
these simulators.

27

DOI: 10.14750/ME.2024.033

of computing such as fog [73].
While investigating, we observed several properties that reveal trends, common-

aspects, and current challenges. These properties in most cases required going in the
deep of concerned simulators to obtain more details. We have categorised them as
the following.

2.3.1.1 Implementation language

Cloud simulators have been developed by researchers to be used as reliable tools to
conduct experiments and modelling various types of applications. Designing evalua-
tion scenarios require sufficient knowledge in the underlying programming language
of simulators. In our study, it was observed that Java dominated the programming
language category for 80% of investigated cloud simulators.

2.3.1.2 Simulation type

Cloud simulators have been built to imitate the real providers by simulating events in
the same behaviour that occurred in the original providers. Event-driven simulators
are based on the sequences of events that lead to changes in the state of the system.
We have seen in this study that 76% of the investigated cloud simulators fall into
the discrete event-based category.

2.3.1.3 Simulation input

To imitate the behaviour of computing providers with respectable precision, simula-
tors have to use realistic traces that were collected from real providers. These traces
represent users’ behaviour by showing the type of executed tasks and consumed re-
sources. During this study, we found that 58% of cloud simulators supported realistic
traces for simulating scenarios, while the others used synthetic workloads.

2.3.1.4 Support extension

While designing cloud simulators, it is beneficial to consider the extensibility to
include additional features and functionalities for supporting future not yet foreseen
technologies. We have observed that cloud simulators designed for general purpose
such as CloudSim and DISSECT-CF have been used as foundations to support other
aspects of computing such as fogs. The Table 2.3 shows the extensions that were
built based on the core of these simulators.

28

DOI: 10.14750/ME.2024.033

Table 2.3: Extensions of various aspects that based on cloud simulators

Simulator Serverless Fog Edge/IoT
CloudSim [19] DFaaSCloud [50] iFogSim [42],

Myi-
FogSim [66]

EdgeCloudSim [103],
PureEdgeSim [76],
IOTSim [116],
IoTSim-Edge [51]

DISSECT-CF Our model [92, 94] DISSECT-
CF-Fog [73]

DISSECT-CF-
IoT [74]

2.3.1.5 Lack of parallelsation

Although IaaS simulators offer many features that fulfil researchers’ intent, we have
observed that the majority were built in a sequential fashion. Parallel Discrete Event
Simulation (PDES) approach has been applied in various fields with the primary goal
of performance. For example ROSS [21] and GWT [28] are parallel discrete event
simulators that execute on shared-memory multiprocessor systems. They mostly
used in large-scale networking simulation models and telecommunication networks.
DaSSF [64] is also parallel simulator targeting network simulation and it achieves
high performance through parallel processing.

Unfortunately, cloud (IaaS) simulation frameworks have limited parallelisation.
Parallelising existing systems remains a challenge. However, one of the frameworks
called Cloud2Sim [56] supports concurrent and distributed simulations of clouds,
based on the following libraries: Hazelcast, Infinispan and Hibernate.

In [39] the author raises many challenges that researchers could face in a PDES.
One of these challenges is the complexity of using a parallel implementation correctly
and simplifying code to understand it easily. Agreeing with this, our approach aims to
keep the original sequential APIs while making a parallel solution in the background.
In [40] the authors suggested the initial steps towards cloud supporting PDESs,
unfortunately these steps were not yet adopted by current simulators. Introducing
parallel execution to simulators needs easy simulation control as well as repeatable
tests. In [32] the authors explained that sequential execution can be insufficient
for modelling real complex systems, and parallel execution could manage resources
efficiently. Sequential approaches are unable to fulfil many requirements, and lead
to trade-off between the cost and performance.

29

DOI: 10.14750/ME.2024.033

2.3.2 Serverless simulators

Recently, few serverless simulators have been developed either by extending the IaaS
simulators’ functionalities or from scratch. To fulfil the researchers’ purpose towards
simulating FaaSs, serverless simulators have to mimic a real provider by offering the
foundations and features of this new technology. Unfortunately, serverless simulation
is in its infancy, frameworks only partially support the features (e.g., auto-scaling)
of the new model. Thus, using them for evaluating new approaches to manage FaaS
systems could still lead to potentially misleading research results.

DFaaSCloud [50] simulator extends CloudSim [19] to support some serverless
features. It allows defining FaaS functions with various profiles and characteristics
that determine their behaviour during simulation. However, it has the following
major limitations for its support of serverless environments: (i) establishing and
managing the virtual infrastructure backing functions is not fully supported because
it does not consider the providers’ policies, (ii) unable to utilise large scale generated
realistic serverless traces due to use synthetic workload, and (iii) extracting serverless
performance metrics (e.g., probability of cold-start and average utilization) from the
simulation are missing.

OpenDC serverless [53] is a framework that was introduced based on the OpenDC
simulator. It allows to model and test custom FaaS patterns. It introduced the essen-
tial architectural component, instance routing policy such as that imitates the basic
serverless platform. However, it lacks an important concept of serverless, namely
auto-scaling resources that responds to workload. It also doesn’t provide informa-
tion about the internal behaviour of infrastructure and function status.

SimFaaS [67] is a simulation platform that introduces a serverless environment to
enable researchers to develop and optimise FaaS applications. It is designed to extract
performance metrics from simulation. However, one of the missing features that
make simFaaS, not-a-comprehensive-simulator, is the trigger, which defines how FaaS
functions will invoke during simulation. SimFaaS also doesn’t provide a foundation
for a cost model of real providers. Moreover, the provider’s resource constraints
cannot be applied to simFaaS. Extracting performance metrics in simFaaS mainly
relies on the already existing attributes of functions in the author’s proprietary trace
format, such as cold-start probability. Additionally, it calculates some metrics based
on the traces, not actually evaluating the results from the simulation session.

Table 2.4 summarises research gaps and missing features of existing serverless
simulators that need to be addressed to fully support researchers, developers, and
end users. Providing such features enables researchers to experiment and evaluate
various serverless scenarios in the same manner as commercial providers, as well as
having full control over the simulation environment.

30

DOI: 10.14750/ME.2024.033

Table 2.4: Comparison of the examined serverless simulators with servereless features

Feature
DFaaSCloud OpenDC SimFaaS

Auto-scaling N/A × ✓
Cost model × × Partial
Function triggers × × ×
Extracting performance
metrics

× × Partial

Applying the policy of
commercial providers

× × ×

Revealing internal
behaviour of infrastruc-
ture and provisioning
resources

× × ×

Concurrent provisioning
resources

× × ✓

Supporting trace file N/A ✓ ✓
Establishing and manag-
ing virtual infrastructure

N/A × ×

Parallel simulation and
execution

× × ×

31

DOI: 10.14750/ME.2024.033

2.3.3 Discussion and concluding remarks

In the past decade, we have seen how simulators play an important role in comput-
ing by enabling the evaluation of desired scenarios and algorithms in an easy-setup
and reproducible environment. Thus, the research community has been using them
in their evaluations as an alternative solution for services provided by real cloud
providers.

We have concluded the following the key findings: first, the most favourable en-
vironment in cloud simulation is a discrete event simulator that has written using
the Java programming language. Second, the general-purpose cloud simulators such
as CloudSim and DISSECT-CF, demonstrated their ability to support other tech-
nologies and are potentially suitable to provide solid-foundation to support serverless
model. However, as demonstrated by [71] CloudSim’s performance is not sufficient,
to provide a robust-extension able to analyse the internal behaviour of function in-
stances in serverless computing. Third, the majority of cloud simulators use traces to
mimic the behaviour of real providers. However, workload traces collected from past
providers are not well adoptable for modelling infrastructure workloads of server-
less frameworks, due to their resources not streamed from serverless platforms and
their attributes not fit the serverless policy. Fourth, cloud simulators lack of parallel
execution, which could struggle to address the scale increases observed in server-
less. Finally, there is a lack of features in existing serverless simulators that are not
covering this new computing paradigm’s needs.

We can conclude that the need to enrich the research community with a compre-
hensive serverless environment is crucial to fulfil researchers’ expectations towards
this technology, by offering the services behind serverless computing. Therefore, in
this dissertation, we addressed the aforementioned limitations by introducing an inte-
grated serverless environment (dubbed as DISSECT-CF-FaaS) able to generate and
simulate large-scale serverless workloads. This environment is capable of supporting
several real providers and mimicking their distinctive policies. It also provides par-
allel execution to foster analyzing the internal behaviour of our environment. The
introduced serverless environment was built based on DISSECT-CF simulator. The
rest of this dissertation is going to focus on these extensions.

2.3.4 Overview of DISSECT-CF simulator

DISSECT-CF [57] is a discrete-event simulation framework that offers insight into
advanced cloud concepts. DISSECT-CF is written in Java and provides an amal-
gamation of several features that hardly exist in any previous simulators such as
capturing low-level resource sharing behaviour and introducing an extensible energy

32

DOI: 10.14750/ME.2024.033

���������	���
�����
�
�������
���	
����	�
����� ����	�
����� �
�����������������	���
��������������� �
���������

���
����	
��������
����	
���
��
��
����	
����������� �
����	
�	�
���
� ��
������
������
����
�
����
������
 ���������������
���
�������
� ��
� !
�
��
����
��
Figure 2.1: Architectural view of DISSECT-CF [57]

consumption model. This aims to support previously problematic IaaS simulation
scenarios. In DISSECT-CF, time is measured in ticks and users of the simulator are
free to interpret ticks the way they want.

The extensible core of the DISSECT-CF simulator consists of five major subsys-
tems in a layered fashion as shown in Figure 2.1. Generally, each layer attempts
to provide a comprehensive implementation for a particular concept without being
dependent on the rest of the framework. The lowest subsystem the event system
provides a mechanism to manage the behaviour of regularly and irregularly occurring
events as well as controlling the basic state of the simulation in a given time instance.
This subsystem is the foundation of all layers and introducing new features here has
the highest potential impact on higher level subsystems.

Next, the unified resource sharing subsystem introduces a holistic approach to
establish a central resource provider able to share behaviour among low-level comput-
ing concepts. Then, the energy modelling subsystem provides a unique approach
that allows monitoring and analysing energy usage of all simulation resources by de-
coupling energy modelling from resource simulation (this allows performance gains
by only offering selective energy monitoring). On a layer above, the Infrastructure
simulation subsystem deals with modelling the behaviour of typical distributed sys-

33

DOI: 10.14750/ME.2024.033

tem components like VMs, PMs, storage and networking. Finally, the highest layer
of abstraction is provided in the Infrastructure management subsystem which
contains major IaaS components such as VM and PM scheduler that simulate the
management of users requests and fosters the creation of custom internal IaaS be-
haviours. It also provides components such as Repository and the IaaS service to
interact with users of the simulator.

Along the core DISSECT-CF, there are several relevant extensions and projects
that enrich the simulator’s feature set towards serverless simulation. The most
relevant to this research is the auto scaling framework presented in the dissect-cf-
examples project1. This framework enables the modelling of virtual infrastructure
management tools and job schedulers on these virtual infrastructures. This allows
simulations where the virtual infrastructure built up on top of DISSECT-CF core
components are following the workload patterns pushed to the job scheduler.

The other relevant extension to the simulator is its workload representation fo-
cused DistSysJavaHelpers project2. This project provides abstractions to represent
arbitrary workloads and offers ways to produce even generated workloads. Finally,
it also enables the loading of several well known workload trace formats to foster
realistic simulations.

2.4 Summary

In this chapter, we provided a background about serverless technology. We then
analysed the common features and limitations of the most popular cloud simulators.
Additionally. we revealed the researchers’ trend towards the simulation environment
and their favourable aspects. Finally, we showed the limitations of current serverless
simulators and proposed this study to handle these limitations.

1https://github.com/kecskemeti/dissect-cf-examples
2https://github.com/kecskemeti/DistSysJavaHelpers

34

DOI: 10.14750/ME.2024.033

https://github.com/kecskemeti/dissect-cf-examples
https://github.com/kecskemeti/DistSysJavaHelpers

Chapter 3
Generating Realistic Serverless Traces

3.1 Introduction

Trace-based simulators are favourable in research [35], due to their elasticity to
performing evaluation scenarios that could hardly be accomplished in real cloud
providers. Over the past few years, numerous cloud simulators have been built to
support the IaaS model [16, 72, 106]. These simulators use traces as a vital input
to experiment the desired scenarios with respectable precision. These real traces are
collected and offered by commercial or academic providers and represent comprehen-
sive information of executed tasks or events that reflect their users’ behaviour. Trace
types are uniquely defined by first, their real provider where they were collected
from. Second, the activity of users within that provider. Moreover, the provider’s
policy in terms of resource constraints and the nature of task leave a fingerprint in
the behaviour of collected traces.

Due to serverless computing’s recency, typical workload traces employed by IaaS
simulators are not well adoptable to the new computing model due to trace’s at-
tributes not fit the serverless policy, such as the execution time of the task could
exceed the timeout threshold of provider, and the trace does not contain information
about how the task has been invoked (e.g., triggers). Moreover, the trace do not rep-
resent new kind of users. Thus, to simulate and predict the behaviour of functions in
a serverless simulation environment, realistic workload needs to be used during the
research scenario evaluation process.

In this chapter, we propose a novel approach for generating realistic serverless
traces as a foundation for serverless and other simulators. We introduce two ways
to implement the proposed approach to enrich current scenarios that desired by the

35

DOI: 10.14750/ME.2024.033

research community. The first manner is integrated with DISSECT-CF simulator to
directly and internally generate realistic traces within the simulator’s environment.
The second manner involves an independent architecture that does not link to any
simulators. It can be used to enrich various types of simulators with new traces types.
The traces produced by our approach are based on the Azure Functions dataset (as
it contains large number of functions), but its underlying concepts and mechanism
are likely to be applicable to the other datasets as well.

The remainder of this chapter is as follows: Section 3.2 introduces the architecture
of the proposed approach that is built on the top of DISSECT-CF simulator. Sec-
tion 3.3 shows the mechanism of generating traces. Alongside this trace generation
approach, it presents a simple evaluation framework to simulate generated traces.
Section 3.4 demonstrates the improvement of the generator approach in Section 3.2
by introducing several concepts such as genetic algorithm to enhance outcomes, scal-
ing workload, and supporting the reusability of generated traces. Moreover, it covers
the evaluation of introduced concepts using various methods and simulators. Fi-
nally, Section 3.5 concludes the chapter and highlights the main accomplished re-
sults.

3.2 Architecture of the trace generator and server-

less model

Supporting serverless computing model by IaaS simulators necessitate the introduc-
tion of additional features. One of the significant features is to enable the simulator
to generate realistic-trace and predict the behaviour of such realistic serverless work-
loads. We introduced our serverless architecture based on DISSECT-CF that is
aimed at offering automated management of FaaS workloads (by building on top
of the pre-existing auto-scalers, see Subsection 2.3.4), as well as providing realistic
models for such serverless models in order to enable building large scale simulations.
The proposed architecture consists of three layers built on the top of DISSECT-CF,
as shown in Figure 3.1.

The first step towards generating and executing serverless functions, is selecting
dataset file and type of provider by a user of simulator, which will then be passed to
the FaaS creation and configuration setup layers.

36

DOI: 10.14750/ME.2024.033

1. Function scheduler determines where to execute the function properly.
2. Define function with different characterization (execution time)
3. Provisioning resources includes Number of CPUs used by a single FaaS, Memory usage of a single FaaS
4. It also min and max memory this is for all functions, billing interval (100 ms), type of memory allocation (fixed

or dynamic).

Virtual Infrastructure Manager

Serverless Management

DISSECT-CF

Function Deployer

FaaS Creation

Generic Trace Producer

Generate
Memory

Generate
Execution Time

Auto-Scaling Approach

Infrastructure Configuration

Configuration setup

FaaS
Definition

Figure 3.1: Architecture of proposed model

3.2.1 Configuration setup layer

It handles the user options by establishing proper infrastructure based on the selected
provider’s plan. It consists of Infrastructure configuration component that
contains preset configurations that mimic a particular functions provider (in the
current case, it was focused on Azure Functions [8]). The configurations offered
focus on resource options (e.g., storage and memory) for functions as well as pricing
and energy model details.

3.2.2 FaaS creation layer

It is responsible for generating serverless traces form a selected dataset file. It con-
sists Generate execution time and Generate memory components that connect
with the Generic Trace Producer component, which master the mechanism of gen-
eration. These components with help of FaaS Definition allow the generation of
function invocations follow the desired amount and distribution specified by the sim-
ulator’s user. The FaaS Definition component is responsible for populating the
corresponding function definition in the simulation. The way function invocations
are generated and governed by dataset file (in our case the Azure Functions dataset).
The FaaS Definition component holds attributes that specifically define each func-
tion and its behaviour during simulation. These are either directly represented as
individual invocation properties such as runtime, utilisation metrics; or they are
represented through probability distribution functions of each metric for scalable re-
production of the original trace. The mechanism of the components of this layer are

37

DOI: 10.14750/ME.2024.033

further detailed in the Subsection 3.3.1.

3.2.3 Serverless management layer

It is responsible for managing virtual infrastructure (that backs the serverless com-
puting platform), as well as providing just-enough resources for all the function
invocations. This layer consists of following main components.

Virtual infrastructure manager is responsible for providing and managing
the virtual infrastructure that backs the function invocations. It is used to offer a
unified interface towards the auto-scalers, and abstract the cloud infrastructure so
the VM requests or destruction requests are handled uniformly. This component
is also responsible of collecting information on the provisioned resources during the
simulation (e.g., the total amount of memory used at a particular moment). Finally,
it enables calculating the number of provisioned instances and observing their status
to determine the average of idle and utilisation of instances as well as the probability
of cold-start.

Auto-scaling approach provides several, extensible mechanisms that observes
the previously collected information, and makes sure the virtual infrastructure is in-
creased or decreased in size according to the ongoing and future function invocations.
When a decision is made to change the infrastructure, the Auto-scaling approach

will notify the Virtual infrastructure manager component to request or destroy
VMs.

Function deployer gets all generated functions and dispatches them to avail-
able VMs for execution. For example, when the number of functions needs to be
dispatched simultaneously is increased, Auto-scaling approach component will ob-
serve the utilization of VMs and request more.

3.3 Generating realistic traces from Azure Func-

tions dataset

The first official real-world FaaS workload dataset was publicly released on June 17th
2020 [97] by Microsoft Azure Functions on Github1. In this section, we demonstrate
our approach of generating realistic trace from the Azure dataset. The Azure work-
load consists of 14 sets of three files representing 14 days of execution history. Each
a day came with three files include real detailed information regarding a particular
aspect of Azure Functions provider.

1https://github.com/Azure/AzurePublicDataset

38

DOI: 10.14750/ME.2024.033

https://github.com/Azure/AzurePublicDataset

The first file contains a history of invocations per function. This file contains
1440 columns (a full day) per function due to the invocations were binned at 1-
minute intervals. Thus, it offers per minute details of function invocation counts.
The second file includes the median, the minimum, maximum and average values for
each function invocation kind’s runtime and memory use.

The third and last file contains distributions of allocated memory per application,
which is able to host the execution of individual functions. For this metric, each
application’s memory was sampled every 5 seconds, which they then averaged every
minute. Alongside these, it also characterises the runtime and memory utilisation
characteristics of a particular function invocation type. This characterisation is done
in terms of disclosing the distribution of the utilisation via a few percentile values
(i.e., they specified what was the runtime/memory value for 0th, 1st, first quartile,
median, third quartile, 99th and the 100th percentile). The percentiles were provided
on a daily basis showing the distribution execution time and memory utilisation for
invocation count that were binned at 1-minute intervals.

To access holistic details for a one-day dataset simply, we developed code2 that
combined the three files into a single file, representing one day, by matching hash of
the owner’s ID, the function’s ID and the application’s ID.

3.3.1 Generating invocations, execution times and allocated
memory

When a user selects the Azure dataset file, it will be processed by the Generic Trace

Producer component. This loads the file and analyses its contents in terms of the
number of lines existed in dataset file (each line represent a unique function and its
detailed information regarding invocations over a 24 hour period, the distribution of
execution time and memory utilisation and other details).

The Generic Trace Producer component reads each line from the dataset file
and produces the attributes of existed function according to invocations (how many
times current function is invoked in one day) as shown in Figure 3.2. This is done
by extracting the percentiles of each function to be passed for generating execution
time and memory utilisation values.

Generating the execution time and amount of memory for each function and its
invocations, is mainly based on the values of the dataset file’s percentile related
columns. The minimum and maximum values determine the range for creating the
invocations.

2https://github.com/dilshadsallo/DistSysJavaHelpers

39

DOI: 10.14750/ME.2024.033

https://github.com/dilshadsallo/DistSysJavaHelpers

The count value specifies the total number of invocations for single function in
a day of the original dataset’s recording. Our approach offers customisation options
for the count value in order to allow the simulator’s user to generate traces which are
similar but have different number of invocations. The percentile values that existed
under percentile ranks, which shows how execution time and memory are distributed
over one day in the original dataset. The execution time came with 1, 25, 50, 75, 99
and 100 percentile ranks, whereas the percentile ranks of memory are 1, 5, 25, 50,
75, 95, 99 and 100.

When the functions are defined, as a first step we calculate how many invocations
should fall in each percentile rank by using the following equation.

Invocationsnumber =
count ∗ percentileRank

100
(3.1)

Thus, the total number of invocations will be divided into six and eight values for
execution time and memory, respectively, according to the percentile ranks. As the
percentile is a value score below which a given percentage of scores in its frequency
distribution falls, each calculated value will be subtracted from its previous one,
except the first value that falls under percentile rank 1. Thus, the total number will
be equal the count value (total number of invocations).

The second step of our approach is generating execution time and memory values
from the percentile values according to the number of invocations for each percentile
rank. Here, Generate Execution Time and Generate Memory componentes take
percentile values provided by the original dataset file, and then generates their cor-
responding values within the range (considering minimum and maximum values for
each function) of percentile values. When the count value is customized the charac-
teristics of the invocations are maintained from the original dataset.

Let us take an arbitrary number of invocations such as 89434 (count) with per-
centile values 10, 230, 550, 650, 800, 950 for percentile ranks 1, 25, 50, 75, 99 and
100, respectively. As the first step, our approach calculates the invocations fall
within each percentile rank using equation 3.1. As result of first step, we will have
894, 21464, 22359, 22358, 21464 and 895 for percentile ranks 1, 25, 50, 75, 99 and
100 respectively. After getting total invocations for each percentile rank, the second
step is generating execution time values for invocations. Our approach will generate
randomly (with a uniform PRNG) 894 execution time values within the range of
min (that came with original dataset file) and 10 that located under percentile rank
1. Then, it generates 21464 execution time values within the range of 10 and 230
located under percentile ranks 1 and 25, respectively, and so on. This process will
continue till generating execution values for all invocations of selected function, and
the same approach will be used for memory values.

40

DOI: 10.14750/ME.2024.033

Start

Read line (function)
from CSV file

Get invocations,
percentiles values,

minimum, maximum
values and average

Generate execution time
and memory values

Set total = invocations
Set I = 0

Get single value
(execution time and

memory) for invocation

I < total Create single invocation

End of
CSV file

End

I = I + 1

YES

YES

NO

NO

Fa
aS

 D
ef

in
iti

on
 C

om
po

ne
nt

Generate Execution Time Component
Generate Memory Component

Generic Trace Producer Component

FaaS Creation Layer

Figure 3.2: Flowchart of generating trace by Generic Trace Producer and other
components

Finally, for each invocation, the FaaS Definition will be instantiated with the
previously extracted values (e.g., amount of memory), unique ID and submitted
time that determine the behaviour of function’s invocation. FaaS Definition will
continue to instantiate invocations according to the total number of function’s invo-
cations in the original dataset.

After generating all required function invocations, the Generic Trace Producer

proceeds reading the next line from the dataset. This process continues till we finish
generating all requested functions and their invocations. Once process is finished,
the trace will be passed to serverless management layer to be used by the simulator’s
further components (this is achieved with the Function Deployer).

41

DOI: 10.14750/ME.2024.033

3.3.2 Evaluation of generator approach

In all the forthcoming experiments in this chapter, a laptop (Intel (R) Core (TM)
i7-4600U CPU @ 2.10GHz (4 CPUs), 2.7GHz, 8 GB) was used for the evaluation of
our approach and model for generating and simulating FaaS.

To validate our approach that will act as a foundation for evaluation serverless
model, we have chosen a one of dataset files that contains around 36000 unique
functions. Then, we picked randomly 5000 functions and we have generated 5000
invocations for each function. In total, we have generated 25,000,000 invocations
as medium-scale compared to total dataset’s invocations. For each function that
has generated 5000 invocations, we calculated the percentile values and average for
both execution time and memory utilization. Then, we measured (R2) between the
generated and original values to show data accuracy.

For execution time, R2 was 0.8438 for percentiles and 0.9956 for average, which
indicates the accuracy (and realism) of our approach and how close the data points
fall to the fitted regression line as shown in Figure 5.6a. For memory, R2 were 0.8999
and 0.9977 for percentiles and average, respectively. The generated percentiles of
memory is more adequate as shown in Figure 5.6b, compared to the execution time
and the reason is the distribution of execution time values is significantly wider than
the distribution of memory usage.

There are many application areas that are able to use our generated realistic
traces, but we used Azure Functions provider as scenario to demonstrate the advan-
tage of our introduced model. The configurations to simulate serverless functions
are different in FaaS providers. Azure Functions provider offers several plans to be
selected by a user for its workload. Our model is able to support consumption and
premium plans, which have different resources such as the memory, price and storage.
We have provided a simple measurement using the consumption plan, to simulate our
generated serverless functions and predict the internal behaviour of Azure provider
in our model.

We have conducted an experiment that directly generates (using FaaS creation
layer) and simulates (using serverless management layer) around 2 million serverless
invocations using our model. This scenario demonstrates how our model responds
to rapid increase or decrease in demand of invocations during the simulation. The
Figure 3.4 shows how our model imitates the Azure Functions provider by utilising
dynamic allocation of memory based on the number of invocations at each time
instance.

42

DOI: 10.14750/ME.2024.033

(a) Execution time

(b) Memory

Figure 3.3: Coefficient of determination evaluation for generated execution time
(left-figure) and memory utilisation (right-figure)

15000

20000

25000

Series1Memory(MB)Count

0

5000

10000

1 48 95 14
2

18
9

23
6

28
3

33
0

37
7

42
4

47
1

51
8

56
5

61
2

65
9

70
6

75
3

80
0

84
7

89
4

94
1

98
8

10
35

10
82

11
29

11
76

12
23

12
70

13
17

13
64

14
11

Time (tick)

Figure 3.4: Dynamic memory allocation of our model

43

DOI: 10.14750/ME.2024.033

3.4 Improving our previous generator approach

It is often difficult to predict scenarios that are desired by the research community
in the serverless field. Thus, it is always better to produce customised traces based
on a particular time, homogeneous events, users’ behaviour and invocation patterns.
Moreover, giving an opportunity to exploit these scenarios by non-serverless simula-
tors is essential to provide an alternative way to simulate serverless behaviour with
simulators that do not natively support the serverless model.

In this section, we address the limitations of our previous approach by proposing
a new architecture (see Subsection 3.4.2). It applies a genetic algorithm to obtain the
best generated functions’ attributes (the mechanism of the work is further detailed
in Subsection 3.4.2.1). It also generates customised traces (see Subsection 3.4.2.2).
Finally, it supported the reusability of the generated traces in other computing sim-
ulators by converting them to popular formats (see Subsection 3.4.2.3).

3.4.1 Limitations of previous approach

Our approach that introduced in Section 3.2, aimed at generating realistic traces
based on Azure dataset. This approach allowed a user (who requires to produce
trace) to select a particular function invocation kind and time period of a particular
day to act as the model to generate traces. During the generation, the approach
reused the submitter and function related information in the generated trace, while
it provided new values for not-explicitly disclosed values like arrival time, runtime
and memory utilisation. To generate these, we used the disclosed percentiles and
minimum and maximum values. We validated this approach by generating several
traces containing functions that were selected randomly from the complete dataset
(i.e., we asked the generator to try to mimic the behaviour of a particular function
on a particular day during a simulation). We then collected the average runtime and
memory utilisation values, and shown that the coefficient of determination (R2) was
> 0.99. This suggests that we have produced an approach that is providing realistic
average runtime and memory utilisation values. We also calculated the percentiles
for the generated trace and the percentile values were having significantly weaker
R2 values due to the dataset’s way of disclosing the percentiles (i.e., they did not
disclose the actual percentiles but they first calculated average runtime and memory
utilisation values over 30 second periods throughout the day, then this was used as
the basis of the percentile calculation).

Dataset that is collected from the Azure Functions provider reflect users’ be-
haviour (a user has unique HashOwner in dataset) by showing the number of invo-

44

DOI: 10.14750/ME.2024.033

cations (tasks), type of service and how frequently particular functions are invoked.
Enclosing the real information is crucial for further studies such as predicting the
consumption behaviour of users to stimulate resource usage awareness. The Azure
dataset contains a huge number of functions and services, which could not meet sev-
eral researchers’ scenarios that require small-scale workload with real users’ be-
haviour. Unfortunately, this previous approach did not consider this feature to sup-
port this scenario. It also neglects generating traces based on triggers that came with
original dataset such as http, timer, event, queue, storage, orchestration and others.

One of the observed limitations of the previous approach is the lack of trace
reusability. As it is integrated internally with a serverless model of DISSECT-CF
simulator, every time there is a demand of serverless traces, we must go through the
process of generating realistic traces completely. Moreover, other simulators have no
opportunity to advantage from the generated realistic serverless traces as they are
not adapted to this approach.

3.4.2 Architecture of enhanced approach

To remedy the aforementioned limitations, we introduced independent architecture
that holds FaaS creation layer from the previous approach as well as adding three
further components, namely GA, User Behaviour and Standard Format as shown
in Figure 3.5. They are introduced to improve quality, enabling scaling workload
and providing reusability of generated traces respectively. These components are
compatible with the previous generator approach and distributed over the following
two layers. FaaS creation, which is responsible for generating traces based on a
selected dataset. Processing layer, which is responsible for detecting the users’
behaviour and converting the generated traces to standard formats.

Our new architecture relies on the DistSysJavaHelpers project (see Subsection
2.3.4) that provides abstractions to represent arbitrary workloads as well as enabling
loading of several well-known workload trace formats.

Here we will give an overview about introduced components and in the forth-
coming sub-subsections, we will explain them in details. The GA component includes
the concept of genetic algorithm, and it works with other components of the same
layer to improve the process of generating traces based on averages and percentiles.
The User Behaviour component enables the generator to scale-workloads with real
user’s behaviour. Finally, the Standard Format component supports the reusability
of the generated traces by converting them to other formats that are supported by
most simulators.

45

DOI: 10.14750/ME.2024.033

1. Function scheduler determines where to execute the function properly.
2. Define function with different characterization (execution time)
3. Provisioning resources includes Number of CPUs used by a single FaaS, Memory usage of a single FaaS
4. It also min and max memory this is for all functions, billing interval (100 ms), type of memory allocation (fixed

or dynamic).

Standard Format

Processing

DistSysJavaHelpers

User Behaviour

FaaS Creation

Generic Trace Producer

GA FaaS Definition Generate Memory Generate Execution Time

Figure 3.5: Architecture of generator approach

3.4.2.1 Improving the percentiles of generated traces

The previous approach generates one set of values (representing one individual in
genetic algorithm concept) for each unique function and its invocations. This was
based on the percentiles of execution time and memory utilisation, which deter-
mine how the values are generated and distributed. Although our approach gener-
ates values within the range of percentiles, good values of (R2) between the generated
and original could not be produced by a single iteration as they are generated ran-
domly.

To address this issue, we introduce (GA component) to our previous approach,
which applies the concept of a genetic algorithm. A genetic algorithm is a type of
optimization technique based on the process of natural selection and genetics. It
belongs to the larger category of evolutionary algorithms, which are computational
techniques influenced by biological evolution. Genetic algorithm is frequently used
for search and optimization problems, aiming to find optimal solutions within ex-
pansive and intricate search spaces [37]. It works in several steps: Initialization
generates random populations (individuals or chromosomes) with each individual
having the potential to be the best solution to the problem. Selection forms a
new population from only the individuals that have good fitness. An individual’s
fitness is measured by its effectiveness in solving the problem at hand. Crossover
combining pairs of selected individuals to create a completely unique individual (off-
spring) by exchanging genes in a manner similar to crossover in biological genetics.
Mutation random changes are introduced in some individuals to simulate genetic
mutations to maintain diversity in the population as well as assisting the exploration
of new regions within the solution space. Replacement populations that include
parents are substituted with their offspring to avoid overlapping between successive

46

DOI: 10.14750/ME.2024.033

generations. Termination extends the algorithm to perform these steps, whether
the termination condition is met (finding optimal solution) or reaches the specified
number of generations.

Thus, GA component produce several sets of values, and then it selects optimal
values to constitute a single set for function and its invocations as shown in Figure
3.6. Our approach is able to generate a full large-scale trace or scaling-workload to
the desired size (scaling-workload approach will be discussed in the following sub-
subsection). When the Azure dataset is selected, it will be processed by Generic

Trace Producer to analyse dataset’s contents. It reads each line from the dataset file
(which represent one unique function and its invocations over a 24 hour period) and
imitates the behaviour of the function according to invocations, as shown in Figure
3.6. This is done by extracting the necessary percentile information to be passed for
Generate Execution Time and Generate Memory components via GA component.
The GA component holds all concepts of genetic algorithm and enables a user to set
configurations in terms of generation’s number, individuals, mutation and crossover
ratios, and fitness value that must be fulfilled, such as the value of (R2) between the
generated and original percentiles has to be greater than 0.99.

For each unique function and its invocations, the GA component produces sets
of values according to the number of individuals. Each set of these represents gen-
erated execution time and memory utilisation values for the selected function and
its invocations. For each iteration, the GA component will apply the selection, muta-
tion, and crossover policies according to the configuration. This will lead to se-
lect the best amongst the whole selection of individuals that produce good R2

value for the percentiles (meets fitness function’s value) against the original per-
centiles of the Azure dataset. The process of iteration will continue, according to
the selected number of generations that is determined by a user, which finally will
concluded with optimal execution time and memory utilisation values for the se-
lected function and its invocations.

As we explained in Subsection 3.3.1, FaaS Definition component will then in-
stantiate invocation with the previously extracted values (e.g., amount of memory).
Each single invocation involves several parameters such as unique ID, submitted
time, execution time and memory utilisation, that determine the behaviour of the
function. FaaS Definition will continue the generation of the invocations of the
selected function according to its total number of invocations. After generating all
the required function invocations for the simulator, Generic Trace Producer pro-
ceeds reading the next line from the dataset. This process continues till we finish
generating all requested functions and their invocations.

47

DOI: 10.14750/ME.2024.033

Start

Read line (function, invocations,
percentiles, average) from CSV

file

Evaluate R2 of each individual

Generate set of execution time and
memory values (chromosomes)

Generate Execution Time Component
Generate Memory Component

For each individual

Are optimization
/ termination
criteria met?

Best individual (values) has R2 >= 0.99

Get single value for
execution time and memory

Function has
more invocations

Create single invocation

End of CSV
file / scaling
mode active

YES

NO End

NO

YES

YES

No

New individuals (new sets of
execution time and memory values)

Fa
aS

 D
ef

in
iti

on

G
A

 C
om

po
ne

nt

Generate initial population
(set of individuals)

Select individuals for next generation

Apply Crossover between individual’s values

Apply Mutation between individual’s values

-Read line of user’s id (percentiles,
average) from CSV file.
-Get function's invocations,
service, and time for user id.

Scaling
mode NO YES

G
en

er
ic

 T
ra

ce
 P

ro
du

ce
r

C
om

po
ne

nt

FaaS Creation layer

Figure 3.6: Flowchart for process of generating trace

48

DOI: 10.14750/ME.2024.033

3.4.2.2 Scaling workload with real users’ behavior

Algorithm 1 Scaling workload with users’ behaviour

1: procedure ScalingWorkload(dataset, workloadSize, service, time)
2: totalTasks←

∑N
i=0 nti

3: workload← ∅
4: for idux ∈ ID do
5: involvedPerc← ut(idux)/totalTasks
6: scaledTasks← ⌊involvedPerc · workloadSize⌋
7: workload ← workload ∪ genericTraceProducer(idux , scaledTasks,

service, time)
8: end for
9: return workload
10: end procedure

Scaling-workload is essential to support researchers’ scenarios that require small
infrastructure to achieve their desired purposes, such as predicting the consumption
behaviour of users to stimulate resource usage awareness. Therefore, we introduce
User Behavior component that enables scaling workloads by detecting users’ be-
haviour in terms of calculating the percentage of participation for each unique user
in a dataset. The main logic behind this component is explained in Algorithm 1.

Before we introduce the algorithm, we discuss its foundational notation. It is
based on the dataset that is read in the beginning to identify each user and its
behaviour. The complete dataset ofN lines is represented as: dataset = {line1, line2,
. . . lineN}. During scaling, we model each line as a tuple: linei = (idi, nti), where idi
depicts the hash owner identified by the ith line, and nti specifies the number of tasks
(function and its invocations) listed in the particular line. User hashes can repeat over
several lines in the dataset when the same user returns and uses the infrastructure for
multiple functions. Thus, it could happen that idi = idj = idux . To ensure correct
user representation in our scaling approach, we collect the unique hashes (depicted
as idux) in the set of ID = {idu1 , idu2 , . . . iduK

}. During the loading of the dataset,
we also determine each individual user’s overall workload in the dataset. We use the
following notation for this calculation: ut : ID → N, and we calculate the value of
this function as follows: ut(idux) =

∑
i:idi=idux

nti, where idux is a unique hash that
we previously collected in the set ID.

Based on these definitions, our algorithm, first collects the total number of tasks
in the complete dataset - see line 2. This goes through all the trace lines and sums
up their individual task counts. Next, the algorithm also starts by initialising the

49

DOI: 10.14750/ME.2024.033

generated workload completely empty. This allows us to generate individual sub-sets
representing particular users from the original dataset and then merge them together
in the next phase.

After the preparatory steps, our algorithm goes through all unique user ids found
in the original dataset and generates a sub-scaled workload for each of them. This
is done by first calculating the involvement percentage of each user based on its to-
tal number of tasks (ut) and the total number of tasks in dataset (see line 5). After
that, we calculate the expected number of invocations in the scaled workload for
each user based on their participation percentage and the expected workloadSize
(see line 6). Note, that we round the result down to the nearest integer ensuring
that our scaled trace only contains user ids that would result in at least one gener-
ated invocation. Finally, in line 7, we generate the required number of invocations
following our previously discussed Generic Trace Producer component as shown
in Figure 3.6. This, then produces a single user focused statistically correct gener-
ated set of invocations that fits the desired scenario of the user of our scaler. These,
unique-user-specific traces are then merged into the finally returned generated work-
load. To allow further customisation of the scaled traces, we enabled customising the
scaled workload based on a particular time range or specific services. These are both
passed in as the service and time parameters to both the scaler as well as the trace
producer.

3.4.2.3 Converting generated trace to standard formats

Standard Format component enables the reusability of generated traces by con-
verting them to other formats as standalone traces, and getting rid of the process
of generating traces repeatedly. When the serverless functions are generated, this
component obtains each function’s invocation with all its attributes (e.g., execution
time, tasks’ id and amount of memory) to store in its repository. Then, for each
invocation, it arranges its attribute values based on the desired format, as each one
has its own ordering. Finally, it goes through this process till the end of functions,
then it produces standalone trace file.

Standard Format component supports converting generated traces to several
standard formats. This provides an alternative solution to other simulators that
don’t natively support the serverless model to take advantage from the generated re-
alistic serverless traces. It also allows a user of the model to write its own format by
arranging all attributes of generated functions based on the requirements of desired
format.

Standard Format component also enriches serverless frameworks with FaaS work-

50

DOI: 10.14750/ME.2024.033

load by converting generated traces to AWS Lambda traces and other trace formats.
However, some AWS trace attributes are not available in Azure dataset, such as
cold-start, which demonstrate when a provider has requested a new instance for an
invocation. To collect these attributes in real run time, our serverless model (see
Section 3.2) that was devised by extending the DISSECT-CF, uses converted AWS
Lambda trace as input for simulation to produce the necessary attributes that are un-
available. For each function’s invocation in trace, our model will submit the function
to the infrastructure to be simulated. If there is an instance ready to accommodate
this function, it will simulate directly. Otherwise, the model will request a new in-
stance (cold-start) for this function. The mechanism of requesting and terminating
instances that affect producing cold-start attributes depends on the configurations
that is selected by a user of model. When the simulation is finished, the model re-
produces the AWS trace with complete attributes to be simulated by other serverless
frameworks.

3.4.3 Evaluation of improved percentiles

To validate our approach of generating realistic traces with the help of the genetic al-
gorithm, we configured the GA component setting according to an analysis provided
in [107] that obtained by conducting a deep study to determine the best setting.
We used 100 individuals and tournament selection with size equal to 10 individuals.
Regarding crossover and mutation rates, they set to 0.9 and 0.05, respectively. Fi-
nally, the elitism strategy is exploited to copy the best individual from the current
population into the next one without undergoing the genetic operators.

After that, we used the first day of the Azure dataset that contains around 36000
unique functions. We then used uniform randomly generator to pick up 5000 func-
tions (the same numbers as in previous generator approach in Subsection 3.3.2),
and we have generated 5000 invocations for each unique function based on the per-
centiles that disclosed in Azure dataset. As a result, large-scale of execution time
and memory utilisation values were generated. For each function, we calculated those
percentiles from generated 5000 invocations to see how close they are to the original
percentiles of the Azure dataset. We used the coefficient of determination (R2) be-
tween generated and original percentiles as fitness value to show data accuracy.

Although the selected functions produced wider range of values for the model
and observed data compared to result in previous approach (see Subsection 3.3.2)
as they have chosen randomly (each has different distribution values), we concluded
with a very good result of R2, which was 0.9994 for execution time and 0.9995 for
memory utilisation as shown in Figure 3.7. This indicates the accuracy (and realism)

51

DOI: 10.14750/ME.2024.033

� �� �
Figure 3.7: Coefficient of determination evaluation for generated percentiles with
help of GA, for execution time (left-figure) and memory utilisation (right-figure)

of our approach and how genetic algorithm has enhanced the generated percentiles
that affected the result of the previous generator approach.

3.4.4 Evaluation of users’ behavior

To validate users’ behaviour, we have chosen the second day of the Azure dataset,
which contains comprehensive functions that executed in the Azure provider. Then,
we invoked User Behavior component to analyse the selected file statistically. The
User Behavior component demonstrated that the file came with around 853 million
invocations, 36,456 services and 8,590 users. Moreover, it provided detailed informa-
tion regarding each user’s invocation number and the percentage of participation, as
shown in Table 3.1. After obtaining these details, they will be passed to Generic

Trace Producer component to be used for providing different workloads.
We validated the scaling approach by producing different workload sizes that

fit small and large infrastructure configurations. We, then, invoked User Behavior

component for statistical analysis of each generated workload. Finally, we compared
the percentage of users’ participation in all different workloads, with the original
dataset by using R2 as shown in Table 3.2. We also measured R2 between the
average of percentiles for execution time and memory utilisation for all generated
workloads against the original one to show data accuracy. The results show that our

52

DOI: 10.14750/ME.2024.033

Table 3.1: Top 10 users by number of tasks submitted to the real provider

Rank UserID Number of Jobs Percentage
1 U4932 127471686 14.94%
2 U376 98867247 11.59%
3 U5660 51372036 6.02%
4 U1746 49036404 5.75%
5 U3387 37036087 4.34%
6 U8104 22457567 2.63%
7 U6940 16743959 1.96%
8 U6143 15937341 1.87%
9 U2488 15808936 1.85%
10 U6175 14780372 1.73%
11 Other 403617380 47.31%
12 Total 853129015 100.00%

Table 3.2: Scaling workloads with real users’ behaviour

Workload Size R2 (User’s percentage) R2 (Execution time) R2 (Memory)
103 0.9999 0.9969 0.9986
104 1 0.9986 0.9984
105 1 0.9993 0.9989
106 1 0.9993 0.9981
107 1 0.9995 0.9997
108 1 1 0.9998

approach enables scaling workloads efficiently with the real users’ behaviour. It also
shows that the generated execution time and memory utilisation percentiles resemble
the original values during scaling workloads.

The Generic Trace Producer component also enables a user of a simulator to
generate workload with customized options, while maintaining real users’ behaviour
with help of User Behavior component to assist researchers to explore the behaviour
of a particular service at a specific time. We generated a trace, as shown in Figure
3.8 for orchestration trigger service that contains numerous invocations during one
day. We also generated a trace for the timer trigger, and we showed the participation
percentage of users at the first and last minutes of the day, as shown in Figure 3.9.

53

DOI: 10.14750/ME.2024.033

0

5000

10000

15000

20000

25000

30000

35000
1 43 85 12
7

16
9

21
1

25
3

29
5

33
7

37
9

42
1

46
3

50
5

54
7

58
9

63
1

67
3

71
5

75
7

79
9

84
1

88
3

92
5

96
7

10
09

10
51

10
93

11
35

11
77

12
19

12
61

13
03

13
45

13
87

14
29

Number of invocations

Time (tick)

Figure 3.8: Number of orchestration triggers invoked in one day

U22
49%

U31
21%

U4
5%

U20
4%

U28
3%

U12
3%

U0
3%

U32
2%

U42
2%

U13
1%

Other
7%

U16
68%

U0
7%

U2
6%

U8
4%

U21
4%

U24
2%

U11
1%

U10
1%

U27
1%

U17
1% Other

5%

Figure 3.9: Percentage of invocations for timer trigger per user, Left-figure: first
minute of the day, Right-figure: Last minute of the day

54

DOI: 10.14750/ME.2024.033

3.4.5 Evaluation of converting approach

Converting generated traces is beneficial to computing simulators that only support
real traces and consider all the function’s attributes in trace. To validate our convert-
ing approach, we have generated traces with different formats and simulated them by
simulators that belong to different fields, namely, DISSECT-CF (cloud simulator),
GridSim (Grid simulator) and simFaaS (serverless simulator).

3.4.5.1 DISSECT-CF

One of the approaches to verify the reliability of converting generated traces is moni-
toring the internal behaviour of the simulation while simulating the same tasks from
different formats. Therefore, we have selected the DISSECT-CF simulator as it is
enabling observing the internal behaviour of the infrastructure during simulation as
well as offering precise results. DISSECT-CF will also be used as a standard to
compare with other simulators in the forthcoming sub-subsections.

To show the accuracy of converting traces to other formats, we first configured
the simulated infrastructure of DISSECT-CF for all experiments by setting up a
homogeneous cloud with 100 PMs (each configured with 32 CPU cores, 256 GiB
of memory and 256 GB of storage) and configured central data storage of 36 TB.
Moreover, VMs were set to auto-scaling, and each one will be requested based on
function attributes. Thus, the VM cannot process more than one invocation at the
same time but can be used for the same function type if it is available.

Second, we generated 20 thousand functions (medium-scale trace that is suit-
able to above configuration) from the third day of original Azure dataset (Comma-
Separated Values (CSV) file). We then asked to convert the same generated trace
to Grid Workload Format (GWF) and Standard Workload Format (SWF) traces.
First, we generated a workload from the Azure dataset (CSV) that was directly sim-
ulated by DISSECT-CF. In the second round, we simulated the transformed GWF
and SWF traces. Finally, in order to prove that the two approaches are the same,
they had to achieve our expectation of having less than (5%) percent difference in the
internal behaviour. This ratio of differences is acceptable for the internal behaviour
of the same simulator to obtain reliable results when we validate the conversion of
traces using more than one simulator.

We have observed the internal behaviour of the simulated infrastructure in terms
of simulated timespan (time that trace takes in simulated work not in real life),
number of used virtual machines, average utilization of PMs and total power con-
sumption for all experiments. Table 3.3 shows that simulation timespan and the
number of used VMs are identical between the original trace (CSV) and converted

55

DOI: 10.14750/ME.2024.033

Table 3.3: Simulating twenty thousand functions with different formats

Metrics CSV GWF SWF
Average utilization of PMs(%) 0.8119 0.8014 0.8014
Total power consumption (kWh) 73.5076 73.4451 73.4451
Simulated timespan (ms) 87792001 87792001 87792001
Number of used VMs 301 301 301

traces (GWF and SWF). However, there is a difference of 1.3% and 0.08% for the
average utilisation of PMs and total power consumption, respectively. This meets
our expectations and shows that our approach of converting is properly and realistic.

3.4.5.2 Other simulators

Enriching simulators with serverless traces offers an opportunity to simulate the
behaviour of FaaSs, which enables researchers to conduct various experiments by
simulators that belong to different fields. To validate our approach of converting
traces and demonstrating their usability by other simulators, we explored the most
popular open-source simulators in the computing field, as shown in Table 3.4, that
could use these traces. We have considered two factors while exploring these simula-
tors. First, the recent year these simulators were used by researchers for evaluating
real computing scenarios. Second, the types of workloads that are supported by these
simulators.

We have selected the most recent simulator used in the evaluation CloudSim [19]
to validate our converted traces against the validated simulator DISSECT-CF. It
is popular simulator and supports both real traces and generated synthetic work-
loads for simulation. We used the same cloud configurations mentioned in Sub-
subsection 3.4.5.1, for both DISSECT-CF and CloudSim. We generated traces in
GWF and SWF formats originally for DISSECT-CF, and we then reused them for
CloudSim. Unfortunately, the result was very different in terms of simulated times-
pan. CloudSim could not even be close to it. After investigating the factors that
influenced the result, we have concluded that CloudSim does not consider the sub-
mitted time of a function (which represents the time of dispatch function to the real
provider), and it dispatches all functions at the same time in the beginning of the
simulation. This renders it unsafe for our expectations.

We then have selected the second recent and popular simulator GridSim [15] for
simulating and validating our converting approach. GridSim considers all attributes
of a task, such as execution time, submit time, memory utilisation and others, as

56

DOI: 10.14750/ME.2024.033

Table 3.4: Open-source simulators used recently by researchers in their evaluation
process

Workload supported
Simulator Type Year Used Trace file Synthetic

CloudSim [19] Cloud 2022 ✓ ✓
GridSim [15] Grid 2022 ✓ ✓
iCanCloud [81] Cloud 2021 ✓ ✓

DISSECT-CF [57] Cloud 2021 ✓ ✓
WorkflowSim [25] Cloud 2021 ✓ N/A
CloudSched [109] Cloud 2021 ✓ N/A
CloudAnalyst [113] Cloud 2021 N/A ✓
GreenCloud [60] Cloud 2021 ✓ ✓

GPUCloudSim [101] Cloud 2021 N/A ✓
SimGrid [23] Grid/Cloud 2021 ✓ ✓

DFaaSCloud [50] Serverless 2021 N/A ✓
BigHouse [77] Cloud 2021 ✓ ✓
simFaaS [67] Serverless 2021 ✓ ✓

CloudSimSDN [102] Cloud 2021 ✓ N/A
CEPSim [44] Cloud 2021 N/A ✓

OpenDC Serverless [53] Serverless 2020 ✓ ✓
FederatedCloudSim [61] Cloud 2020 ✓ N/A

EMUSIM [18] Cloud 2019 N/A ✓
CloudReports [108] Cloud 2019 N/A ✓

DCSim [58] Cloud 2018 ✓ N/A
ElasticSim [17] Cloud 2017 ✓ N/A
Cloud2Sim [56] Cloud 2016 ✓ ✓

57

DOI: 10.14750/ME.2024.033

Table 3.5: Comparing simulating functions using DISSECT-CF and GridSim in
terms of simulated timespan

Simulator 1k 5k 10k 50k 100k 500k 1m
DISSECT-CF 33.6s 2.79m 5.58m 27.9m 55.9m 4.65h 9.31h

GridSim 34.3s 2.81m 5.59m 27.9m 55.9m 4.65h 9.31h
Difference 1.95% 0.4% 0.2% 0.04% 0.02% ∼0% ∼0%

the same as DISSECT-CF does. We have simulated different workload sizes starting
from small-scale trace (1 thousand functions) to large-scale trace (1 million functions)
using DISSECT-CF and GridSim. As both were set to the same configuration and
have simulated identical workloads, the timespan reflects the overall execution time
of the simulation session. We have calculated the percent difference of simulated
timespan for each workload, as shown in Table 3.5. The result shows the average
percent difference is 0.37% between both simulators, which shows how accurately the
traces are generated to match the original one and converted to standard formats.

3.4.5.3 SimFaaS

Our approach supports converting generated traces to various serverless workload
formats that used by serverless simulators. To demonstrate that, we have selected
simFaaS to simulate converted traces as it supports real traces and it was recently
used for evaluating research as shown in Table 3.4.

SimFaaS [67] is a serverless framework built to optimize the performance of FaaS
applications by predicting several Quality of Service (QoS) metrics accurately. Sim-
FaaS used real-world traces from Amazon AWS Lambda to conduct experiments and
extract performance metrics from simulation. These metrics include calculating the
probability of cold start, the average number of idle instances and average utilization
of instances.

As our generator approach can produce traces in different standard formats
that meet a user’s and a simulator requirements, we converted Azure dataset to AWS
Lambda traces to be used as input to our rudimentary model (see Section 3.2). It
then reproduces the AWS traces with complete attributes to be simulated by sim-
FaaS framework.

Our model also provides performance metrics likes simFaaS, but it extracts them
from simulation session. These include calculating the arrival rate of requests and
counting the idle instances by calculating the difference between the total number
of instances, and the number of instances that running at each second. Moreover,

58

DOI: 10.14750/ME.2024.033

it measures the probability of cold start by dividing the number of requests caus-
ing a cold-start, by the total number of requests made during the simulation. Finally,
it measures the average of instance utilisation by counting the number of unique in-
stances in the warm pool at each second.

To check the accuracy of our model output, first, we simulated the real-life traces
from AWS Lambda (enclosed with simFaaS) using simFaaS simulator and our model.
These traces contain around 500 thousand functions’ invocations. As both simulators
extract performance metrics from simulation, we measured the coefficient of determi-
nation (R2) between the simFaaS and our model results to show data accuracy. For
arrival rate, R2 was 0.9999 and 0.9964 for cold start probability. R2 were 0.9962 and
0.9982 for average utilisation and idle instances, respectively.

Second, we chose the third day of the Azure dataset. We then generated 15 AWS
Lambda traces from this Azure dataset. For each trace, we have randomly selected
thousand unique functions with their invocations. As a result, the generated traces
contain around 500 thousand requests. After that, we simulated these traces with
our model to enclose the attributes that are not available, as well as to extract the
performance metrics from the simulation. Finally, we simulated the AWS traces that
reproduced by our model as output, using simFaaS framework.

The performance metrics extracted from the simulations as shown in Figure 3.10,
for both simFaaS and our model. To validate the converting approach, we measured
R2 of performance metrics for both. The results of R2 were 0.9999, 0.9960, 0.9177,
and 0.9525 for arrival rate, cold-start probability, average utilisation and average idle
instances, respectively. This indicates the accuracy of our approach for producing
traces that used by the simFaaS serverless simulator.

3.5 Summary

Simulators play a crucial role in the cloud computing, grid computing, and serverless
computing fields by providing a flexible environment that could replace real providers
in the research area. Imitating such serverless environments requires realistic traces
that reflect users’ behaviour in terms of execution history. Due to problems with
existing IaaS workloads and their adaptability for use by serverless simulators, in
this chapter, we proposed a novel approach to generate realistic serverless traces for
enriching simulators that belong to different types of computing paradigms.

We have generated several traces to evaluate our approach. These traces involved
functions with arbitrary invocation numbers to demonstrate the usability of our ap-
proach under different circumstances. We then validated our generator approach
using the coefficient of determination (R2) of the reported execution time and mem-

59

DOI: 10.14750/ME.2024.033

Figure 3.10: Performance metrics extracted from simulation, left-figures were gener-
ated by simFaaS, right-figures were generated by our model

60

DOI: 10.14750/ME.2024.033

ory utilisation averages and percentiles, between both the original Azure dataset as
well as our generated ones. Our approach provided very good R2 (> 0.99) values for
predicting averages and percentiles.

To demonstrate the benefits of the generated traces, we introduced a rudimentary
model for serverless systems based on DISSECT-CF to imitate the behaviour of
Azure’s Functions provider, and made several estimates and predictions of cost and
utilisation. Our evaluation shows that the generated workloads are realistic and
closely follow the behaviour of Azure’s Functions as a service component.

In terms of scaling-workload with real users’ behaviour, we have compared the
generated traces to the originals in the following way. First, we calculated the per-
centage of users’ invocations that reflect their behaviour over one complete day.
Second, we randomly selected different numbers of functions to generate the differ-
ent size workloads. Third, we calculated the percentage of users’ invocations and
percentile values of execution time and memory utilisation for generated workloads.
Finally, we compared the already percentiles and calculated the percentage of user’s
behaviour from the original dataset with the generated ones with the help of (R2).
Our approach provided very good (R2) (> 0.99) values for users’ invocations with
relatively well matching behaviour to the originals found in the Azure dataset.

Finally, we have demonstrated the benefit of the reusability of the generated
traces by converting and applying them in a diverse set of simulators (belongs to
cloud, grid and serverless fields) and shown that they offer reproducible results in-
dependently of the simulator used.

61

DOI: 10.14750/ME.2024.033

Chapter 4
An Extension of DISSECT-CF to Simulate
Function-as-a-Service

4.1 Introduction

Serverless is a computing paradigm that relieves users from the burden of managing
infrastructure and operations [70]. In the research community, simulators are the
most common environments for evaluating algorithms and scenarios, as they provide
easy-setup, low-cost and reproducible environments [80]. To support the research
community’s needs on serverless simulator and enabling evaluating FaaS scenarios,
a simulator has to support the freshly introduced features, computing style, and
resources constraints of serverless providers. These include: (i) auto-scaling resources
to meet the demand of invocations, (ii) function-level execution-time monitoring,
(iii) simulating realistic workload for precise results, (iv) associate triggers to invoke
functions, (v) customising configurations of functions in terms of allocated resources,
(vi) calculating costs based on selected configurations and function-level runtime,
as well as providing statistical information about executed functions and internal
infrastructure.

Unfortunately, there are no established simulation frameworks that can support
research on the challenges accompanying serverless computing. The few serverless
simulators that exist focus on specific functionality or aspects, but they could not
comprehensively support the above listed features [50, 53, 67]. Thus, a comprehen-
sive serverless framework able to mimic the behaviour of real providers is essential
towards evaluating applications and scenarios reliant on the concepts of the serverless
paradigm.

62

DOI: 10.14750/ME.2024.033

As serverless technology is based on an underlying IaaS that is abstracted from
a user, it is beneficial to extend an existing IaaS simulator to support serverless
features. This chapter focuses on introducing a serverless computing model to
the DISSECT-CF simulator to enable simulating realistic Function-as-a-Service so-
lutions. Our serverless environment provides an integrated environment (dubbed
DISSECT-CF-FaaS) that fully supports all aforementioned features, first by, provid-
ing a generic cost-model, able to imitate serverless providers’ cost policies. Second
by, extracting performance metrics such as cold-start and warm-start probability
that occur during a simulation. Third by, introducing the trigger concept to offer
different ways to invoke a function. Fourth by, enabling customising configurations of
providers. Finally, producing statistical information regarding the internal behaviour
of provisioning and simulated tasks.

The remainder of this chapter is laid out as follows: Section 4.2 studies the lim-
itations of our previous model. Section 4.3 demonstrates the architecture of the
proposed serverless simulation environment. Section 4.4 exposes the internal mech-
anisms of DISSECT-CF-FaaS. Section 4.5 deals with experiments and scenarios to
evaluate the services that provided by our serverless environment. Finally, Section
4.6 provides a summary of DISSECT-CF-FaaS’s outcomes.

4.2 Extending our previous model

The foundation of modern computing technologies such as fog computing, edge com-
puting, and serverless computing, are built on the concept of cloud computing.
Thus, extending IaaS simulators to support other computing models is an essen-
tial step towards offering a versatile solution for the research community. In Section
3.2, we introduced a rudimentary model for serverless systems based on DISSECT-
CF. However, it had noticeable limitations such as (i) focused only on Azure Func-
tions providers, which limited its use for other providers and theirs policies, (ii) the
quintessential concept widely used by FaaS systems is not offered, (iii) its cost model
was not generic enough to support the newer providers, and (iv) essential, serverless
focused performance metrics such as the number of provisioned instances at a specific
time, are complicated to acquire.

4.3 Proposed architecture

To remedy the aforementioned limitations, we introduced new layers and compo-
nents to the architecture of the previous model, in addition we updated the internal

63

DOI: 10.14750/ME.2024.033

1. Function scheduler determines where to execute the function properly.
2. Define function with different characterization (execution time)
3. Provisioning resources includes Number of CPUs used by a single FaaS, Memory usage of a single FaaS
4. It also min and max memory this is for all functions, billing interval (100 ms), type of memory allocation (fixed

or dynamic).

	

Configuration setup

Provider Configuration

Pricing
Policy

Infrastructure
Configuration

Generic Trace Producer

FaaS Definition Trigger

FaaS Creation

Auto-Scaling
Approach

Virtual Infrastructure Manager

Function
Deployer

Serverless Management

FaaS Cost

Cost modeling and statistics

Utilization and Performance Metrics

 DISSECT-CF

GA

User Behaviour Generate Memory
 Generate Execution

Figure 4.1: Architecture of our serverless environment

implementation of some components. This proposed architecture consists of four
layers built on top of the core DISSECT-CF simulator (see Figure 4.1). Each layer
is designed independently from others as possible. The architecture aims at enabling
extensibility towards other serverless providers and triggers.

4.3.1 Configuration setup layer

This layer provides direct interaction with a researcher to establish underlying infras-
tructure and cost policies through provider selection and configuration. It consists
of the three main components.

Provider configuration component allows choosing one of the providers with
its policy that mimics the real one. In addition, it can be extended to include
other providers or defining desired configurations. The provider’s policy reflects the
resource limits, regions, scaling approach, memory sizes and other constraints that
will be applied during simulating functions.

Pricing policy component holds the cost of offered services for each serverless
platform, such as AWS lambda [2]. This cost, is not only dependent on the provider,
it varies depending on region selection, architecture, provisioned instance numbers,
memory size and so on.

Infrastructure configuration component has updated (see Section 3.2) to in-
clude preset configurations of other real functions providers. It links with the in-

64

DOI: 10.14750/ME.2024.033

frastructure management subsystem of DISSECT-CF to establish relevant IaaS level
components like data centres based on the selected configurations and provider.

4.3.2 FaaS Creation layer

In contrast to the configuration layer, FaaS creation focuses on the functionality
running on top of the previously configured infrastructure. Primarily, this is done
via the selection and customisation of a trace/dataset used for modelling serverless
function behaviour. It also enables associating triggers to these functions. It consists
of Generate execution time, Generate memory, FaaS Definition, Generic
Trace Producer,GA andUser Behaviour components that introduced in Section
3.2 and Subsection 3.4.2.

The process of generating is managed by Generic Trace Producer component,
which is responsible for loading and reading the selected trace file and turns its
content to functions and characteristic invocation patterns. This is achieved with the
help of aforementioned components which are based on our previous research results
on realistic trace generation (see chapter 3). The generation and trace loading is
offered on several widely used datasets collected as traces of real-world infrastructure
behaviour. These can have formats such as dataset file (CSV), standard grid (&),
parallel workload formats (e.g., GWF), AWS Lambda traces and other.

Additionally, the Trigger component is introduced to provide various ways to
tell what could cause the function to be invoked in the simulation. The mechanism of
trigger to invoke functions is managed by event system of DISSECT-CF. Currently,
apart from directly scheduling the function invocations as they are listed in the traces,
it also supports timer and blob triggers. Timers triggers represent recurring function
invocations with regular intervals. In comparison, blob triggers offer a capability to
trigger a function invocation when there is a new blob deposited in the cloud storage.
Such this concept enables researchers to conduct experimental patterns easily.

4.3.3 Serverless management layer

This layer represents the internal implementation that reflect the policy of serverless
providers. This is achieved through the management of virtual infrastructures behind
each serverless function created earlier. These virtual infrastructures provide just-
enough resources for all function invocations throughout the simulation.

We upgraded the internal implementation of this layer from our previous rudi-
mentary model (see Section 3.2). This update focuses on multi-provider support
that let select one provider for each single simulation session, and then reflect its

65

DOI: 10.14750/ME.2024.033

scaling policy, limits, and mechanism.
Virtual infrastructure manager component is responsible for providing and

managing the virtual infrastructure that backs the function invocations. It has a
direct link with the Infrastructure simulation subsystem of DISSECT-CF to request
resources such as function instances for simulating functions based on the configured
FaaS provider’s policy. Thus, it follows the selected provider and FaaSs configuration
in terms of requesting resources for simulating functions and observing the internal
behavior of the simulation.

Auto-scaling approach component provides a scaling mechanism that relies
on a selected provider. It applies the provider’s policy in terms of terminating func-
tion and function instances as well as keeping several function instances within the
provider’s expiration threshold. This component allows our environment to apply
horizontal scaling to instances and other resources within the provider’s policy.

Function Deployer component handles all generated functions to virtual in-
frastructures by dispatching each to available function instances inside the managed
infrastructure.

4.3.4 Cost modeling and statistics layer

In our final layer, we provide components to estimate the cost of the workload that
passed through the simulation. This layer consists of two components, namely, FaaS
Cost, which follows cost model’s policy of the configured providers to calculate the
total cost of the simulated function invocations. As each provider has its own policy
to calculate the cost, this component acts according to the selected provider and
applies its cost model to simulated functions.

As the first step, this component obtains the cost of selected services and configu-
rations from Pricing policy via Infrastructure configuration. It then calculates
the number of invocations (requests) of all functions that occurring during the sim-
ulation session. Next, it gets the actual running time of functions from Utilisation
and performance metrics. Finally, it collects the consuming resources (e.g., used
memory) to apply the cost model of the selected provider. For instance, if the AWS
provider is selected by a user, this component calculates the number of requests and
their durations for the functions. Additionally, it will calculate the allocated memory
for all functions, and then it obtains the cost of these to estimate the total cost.

Utilisation and performance metrics component provides statistical infor-
mation and essential performance metrics about the internal behaviour of the IaaS,
and virtual infrastructures that back the workload, to allow the in depth research
analysis of the impact of the various scaling, invocation trigger end similar strate-

66

DOI: 10.14750/ME.2024.033

gies. In addition to support the introduced performance metrics in Section 3.2,
this component enables calculating average concurrent number of instances, average
life-time of instances, average running-time of instances, and average idle-time of
instances. Finally, it can be extended by researchers to include other further metrics.

Analysing the internal behaviour of the IaaS and all provisioned resources in terms
of starting and terminating time within simulation, is mainly managed through the
event system of DISSECT-CF

4.4 An illustrative walk through of our extensions

Figure 4.2 demonstrates a typical simulation scenario with DISSECT-CF-FaaS. The
flow of this scenario is marked by arrows and each arrow shows the sequence of steps
that a user of the simulator would likely take.

The first step towards simulating FaaS is selecting a provider such as AWS.
This leads our extended simulation environment (i.e., our model) to establish the
provider’s policy internally. Each provider has its own configuration and Provider

configuration component stores these configurations that mimics the correspond-
ing real providers. Our model also supports extending to another serverless provider
via this component. In this step, we allow a user to customise resources for simulating
functions by specifying expected infrastructure and virtual infrastructure configura-
tions based on modelled functions, users, or just in general in the overall simulation
session.

After selecting the provider and its configurations, in step (2), these are forwarded
to the Infrastructure Configuration component. This obtains the cost model of
the selected configurations and services from the pricing policy component to be
ready for estimating the total cost at the end of simulation session, in step (3). The
cost of services relies on selected criteria such as region/data centre, architecture
and memory size. With this additional information, it is now ready to then estab-
lish the underlying infrastructure with help of DISSECT-CF, to accommodate the
forthcoming virtual infrastructure of step (4).

At the same time, in step (5), Generic Trace Producer component begins load-
ing the user selected trace/dataset file. This reads the trace line-by-line, then extracts
and generates the distribution functions of each essential attribute (e.g., runtime, in-
vocation frequency). These are then passed to the FaaS Definition component to
create FaaS functions in step (6). If a user defined functions with trigger during step
1, the Trigger component will be associated to the functions in during step (7).

Whenever all the desired functions are defined, they are stored in the reposi-
tory of the Generic Trace Producer component, as shown in step (8). Next, all

67

DOI: 10.14750/ME.2024.033

 PFFF

La
ye

Co
m

Le
g

In
fr
a

Co
nt

Fa
aS

Fu
nc
t

Se
tu

In
fr
a

Da
ta

Se
tu

In
fr
a

Co
nf
i

Ia
a

Ph
ys
i

Fu
nc
In

Fu
nc
In

Fu
nc
In

er
 po
n e

en
d

as
tr
uc

tin
ue

S tio
n
I

up
 V
ir

as
tr
u

a
flo

w

up
 U
n

as
tr
u

ig
ur
atS

(s
im

ca
l M

ns
t5

ns
t3

ns
t1

en
t

ct
ur
e

ed
 L
e

ns
ta
n

rt
ua
l

ct
ur
e

w

nd
er
l

ct
ur
e

tio
n

m
ul
at

M
ac
hiFu
n

Fu
n

Fu
n

e eg
en

d F

nc
e e yi
ng

e

te
d)

in
e
1

nc
In
st

nc
In
st

nc
In
st

d Fu
n

Fu
nc

 {

1 t6

t4

t2
 cI
ns
t

{…
}

Ph
y

Fu
nc

Fu
nc 4

t

ys
ic
al

cI
ns
t3

cI
ns
t1F M

ac

3
FF

1 Fu
nc
In 13

ProviderConfiguration AutoScalingApp

ch
in
e

un
cI
n

un
cI
n

ns
t5

3

Provider Configuration

1

Auto‐Scaling App

e
2

ns
t4

ns
t2

AzAW G IB 1 1zu
re

W
S

G
CF

BM

13
 5

Infrast Config VIM Th16
 hr
e

10

0

1

Fu
Co

nf

Se
tu

Id
le

 t2 4

17

un
ct
io

fig
ur

up
 U
n

tim
e

2 4

12

on
s

at
io
n

nd
er

Fun Dep C

Se
rv

n ly
in
g

Co
nf
i

ve
rle

Pr
ic
i

In
fr
a

Co
n

Fu
nc Fu
n

Fu
nc

Fu
n Fu
n

Fu
n

Fu
n

 Fu9

ig
ur
a

es
s m

ng
 P
o

as
tr
u

nf
ig
ur

Co
s

c
{…
}

nc
In
st

c
{…
}

c
{…
}

nc
 {…

nc
In
s

nc
In
s

Ex
pi
ra
tio

n
th
re
sh
ol
d

nc
 {…1 1 4

at
io
n

m
an
ag

ol
ic
y

ct
ur
e

ra
tio

st
 t } …
} st
 t1

…
} 3 1 4 se
tu

ge
m
e

D

e n

Pool

p

en
t

IS
SE
C1

20
 CT

‐C
F

18
 20

 F

GenericTracePro

Co

Generic Trace Pro

9

Cr
ea

st
 m

o

FSDfiiti

Fu Fu Fu Fu

at
io
n

od
el
i

FaaS Definition U
til
i

nc
 {…

nc
 {…

nc
 {…

nc
 {…8

Fa
aS

ng
 a
n

Fu Id ..

za
tio

…
}

…
}

…
}

…
} S
 nd
 st

un
c
{

d,
 ru

n
.} on

 a
n

6

ta
tis
t{…

n
tim Fa
aS

d
Pe6 ic

e S
Co

st

rf
or
m19

t m
an
c

9

Da Tr
a

e
M
e

Fu
n

Fu
n

Fu
n

Fu
nat
as
et

ac
e
fi

et
ric
s

nc
 {…

}
nc

 {…
}

nc
 {…

}
nc

 {…
}

7

t /

ile

s } } } }

Tr
ig
g

5

ge
r

F
ig
u
re

4.
2:

A
d
em

on
st
ra
ti
on

sc
en
ar
io

ex
ec
u
te
d
on

ou
r
ex
te
n
d
ed

si
m
u
la
ti
on

en
v
ir
on

m
en
t

68

DOI: 10.14750/ME.2024.033

functions will be forwarded to Function Deployer component to be ready for sim-
ulation in step (9). Whenever the functions reach Function Deployer component,
the Virtual Infrastructure Manager component gets the configurations for these
functions from Infrastructure Configuration component, see step (10). Here
the process of simulation inside the core DISSECT-CF will commence as well by
dispatching each function to user selected Auto-Scaling component in step (11).

In this scenario, the modelled provider is not preparing warm function instances,
thus at the beginning of the simulation, there are no available function instances in
the pool to accommodate the dispatched functions. Thus, Auto-Scaling Approach

will notify Virtual Infrastructure Manager to request a function instance based
on the selected provider’s policy and function’s configuration (12). The Virtual

Infrastructure Manager component will handle the instance requests with the
help of DISSECT-CF (13) that mimics the provision of the instance. This manager
is also responsible for destroying a function instance when it is expired (e.g., due to
the instance not having invocations dispatched to it in the past 10 minutes). With
the aforementioned policy, the first invocation will take significant time to dispatch
(see step (14)) due to initialising, loading and registering function instance, which
eventually leads to a cold-start. A user can avoid cold-start in some providers, such
as AWS Lambda by selecting provisioned concurrency that warms-up instances to be
ready before any invocations get dispatched. However, this service incurs an extra
cost to the bill according to AWS provider’s policy.

While the function invocations are executed, our model maintains the execution
timeout and it will terminate any function instance that exceeds the threshold of the
selected provider. After a function invocation is completed, the function instances
might be idle for while and here Auto-Scaling Approach component calculates the
idle time to determine the necessary state of the instance as shown in step (15).

If the idle time exceeds the provider instance expiration threshold, the simula-
tor requests the destruction of it via the Virtual Infrastructure Manager com-
ponent as demonstrated in step (16). Otherwise, in step (17), the idle instances
will join the pool to allow their reuse and increase the ratio of warm start invoca-
tions. By adding instances to the pool, we also consider the per instance maximum
scaling numbers defined by the provider’s pre-configured policy. Once all function
invocations complete, Utilisation and Performance Metrics component obtains
detailed information about simulated functions and their instances from the Virtual
Infrastructure Manager in step (18).

This component will start to calculate performance metrics such as running time,
arrival rate, cold-start and warm-start probability, average life-time of instances, av-
erage idle-time of instances, and average concurrent number of instances with the

69

DOI: 10.14750/ME.2024.033

help of the event system of DISSECT-CF. I.e., it injects introspection points to the
simulated infrastructure to get notifications about instance, invocation, utilisation
state changes. In step (19), these stats are then passed to the FaaS Cost component
to estimate the costs that would likely to incur if such simulated workload would
happen on a real-life infrastructure. FaaS Cost will first get the price of the func-
tions’ configurations from the Infrastructure Configuration component as per
step (20).

4.5 Experiments

A laptop (Intel (R) Core (TM) i7-4600U CPU @ 2.10GHz (4 CPUs), 2.7GHz, 8
GB) was used for the evaluation of our extension. In this evaluation section, we
evaluate the effectiveness of our extension by producing services that resemble the
AWS Lambda and Azure Functions providers, as they are most popular serverless
providers [84]. Moreover, mimicking the providers’ policies in terms of resource
constraints and associating triggers to serverless functions to reflect the realistic
internal behaviour of serverless computing.

4.5.1 Evaluation cost model

Estimating the cost of serverless workload sheds light on how a provider charges
a user based on actual services used, which is the main concept behind existing
serverless technology. It also enables researchers to evaluate several computing cost
scenarios. As each serverless provider has its own policy to calculate the price, our
serverless environment is able to mimic the behaviour of providers and reflect their
policies to estimate the cost of simulated workload.

To evaluate our generic cost-model, we have imitated AWS Lambda provider by
selecting AWS provider that leads our serverless environment to apply its policy
internally. AWS Lambda provider offers users different memory sizes to simulate
functions. The cost of services increases based on the allocated memory size that
also leads to proportionally increased CPU allocations. Apart from memory size, the
cost of service varies according to the selected architecture and region.

We have generated 100k realistic serverless function invocations by selecting the
first day of Azure dataset as input to our serverless environment. We then have
conducted experiments to estimate the cost of the same workload but using different
memory configurations. We have used memory sizes, namely, 128 MB, 512 MB, 1024
MB, 2048, MB and 3072 MB, with architecture (x86) and region (frankfurt) as it’s
the closest one to our location. The Table 4.1 shows that we obtained similar cost

70

DOI: 10.14750/ME.2024.033

Table 4.1: Simulating 100k invocations using different memory sizes

Size Cost($) Average run time(ms) Cold-start(%) Warm-start(%) Arrival Rate(s)
128 3.553 17329 1.059 98.941 0.0036
512 3.503 4321 0.614 99.386 0.0073
1024 3.517 2156 0.555 99.444 0.0103
2048 3.625 1114 0.523 99.477 0.0145
3072 3.504 717 0.510 99.490 0.0151

for all experiments but with different running time as expected. The reason is AWS
Lambda provider offers a user trade-off between cost and running time. Increasing
memory size is costly but leads to reduced running time and cold-start probability.
Thus, a user can have a fast or slow run time with almost the same cost.

As each provider has its own cost model to calculate the cost, our environment
applies the same cost model to simulate functions. For the AWS used here, the cost
model is based on the number of invocations, selected memory size, and average
running time of the simulated functions provided by our environment. As AWS [2]
provides estimating cost based on the aforementioned parameters, we validated the
obtained results in this way to show the accuracy of the results.

4.5.2 Evaluation of provisioned concurrency

The AWS Lambda provider offers a user option (provisioned concurrency) to min-
imise the cold-start probability that leads to sped up invocations. This option charges
a user based on the selected number of provisioned concurrency. This prepares func-
tion instances in advance to be ready when a function is dispatched without causing
cold-start. We conducted experiments to reflect the behaviour of AWS Lambda
provider when this option was selected. We have simulated the same workload as
previously. We limited the memory size to smallest 128 MB and evaluated the costs
and performance with and without the provisioned concurrency option. We have
set the number of provisioned concurrency to one for each function type to show
minimum influence of this option.

We validated the results of the Table 4.2 against the AWS estimating cost model
that shows our simulations can imitate the AWS Lambda policy to reduce cold-start
and timespan with extra cost when the user chooses a provisioned concurrency to
simulate workload. As demonstrated, the workload can benefit from warm-start, both
in terms of execution time as well as reduced cold-start percentage.

71

DOI: 10.14750/ME.2024.033

Table 4.2: Simulating 100k invocations using the AWS provider with instances having
128 MB memory

Provisioned Cost($) Cold-start(%) Warm-start (%) Timespan(tick)
No 3.553 1.059 98.941 27861501
Yes 3.821 0.846 99.154 27361501

4.5.3 Evaluation of trigger

A trigger is used to provide different ways to invoke a function. The trigger type
determines the situation of event that needs to be met before an invocation takes
place. According to [97], the timer was one of the most heavily used triggers in
the Azure dataset. The timer trigger is set based on an interval that defines how
frequently the function is invoked.

To investigate the timer trigger in our serverless environment, we first imitate the
Azure provider’s policy by selecting a consumption plan for all functions. We, then,
generated varying sized realistic traces and conducted an experiment that involves
five different groups of functions. Each group consists of 500 types (medium scale)
of functions and has different invocation intervals determined by their triggers as
shown in Table 4.3. Each function (in each group) is invoked using timer trigger,
these invocations then end up having function-typical realistic attributes such as
execution time and memory utilization that was derived from the Azure dataset
with the help of our generator.

We ran the functions of all groups for one simulated day. The result shows that
the probability of cold-start for the group of functions that has the smallest interval
is less than for other groups. As our environment observes the status of instances and
measures their life-time, it allows more frequent reuse of their instances than those
belonging to other function groups. This eventually reduces the idle time of these
instances in warm-pool. Therefore, they will not exceed the expiration threshold of
the selected provider to be terminated by our environment.

4.5.4 Evaluation of performance metrics

Our serverless environment enables extracting essential performance metrics from
the simulation sessions based on users that existed in trace, type of simulated func-
tions, or overall session. These metrics harder to come by in real serverless providers
in smooth way. The performance metrics reveal the internal behaviour of the imi-
tated provider in terms of applying its policy, constraints and backend provisioning
resources for understanding internal mechanism.

72

DOI: 10.14750/ME.2024.033

Table 4.3: Using timer trigger for five groups of functions with different trigger
intervals

Interval (s) Prob. of cold-start (%) Prob. of warm-start (%) No invocations
Group1 30 0.1945 99.8054 1440000
Group2 60 0.2461 99.7538 720000
Group3 300 1.0277 98.9722 144000
Group4 600 1.1013 98.8986 72000
Group5 1200 2.3555 97.6444 36000

Table 4.4: Average performance metrics of the instances were extracted while simu-
lating different workload sizes

Workload size Concurrent no Lifetime(s) Running-time(s) Idle-time(s)
1k 65 1239 40 1199
10k 67 1381 197 1183
100k 98 1481 323 1158
200k 155 1541 408 1133

We have demonstrated our performance metrics through workloads sized. Each
single session, we generated workload size between 1-200k function invocations from
Azure dataset. We then simulated this workload by mimicking the Azure Functions
provider and observed its average provisioned number of instances concurrently as
well as average life-time of instance (when it starts for the first time and then even-
tually terminates), actual running-time and idle-time of instances for the overall
simulation session.

The result shows that our serverless environment provisioned more instances when
the workload size was heavy, as shown in Table 4.4. The reason is Azure Functions
provider can scale up to 200 instances concurrently per function-app type. The re-
sults also show that the utilisation of instances (running time) is increased when
workload size is heavy. Note that, even though the idle instance lifetime in Azure
Functions bounded to 12 min, the average lifetime of instances exceeds the con-
straints. The reason is when the instance reused for simulating function, its starting
time will be updated, and our serverless environment records the lifetime of the in-
stance from the first time requested until it is terminated. Thus, the instance could
have worked for hours within the provider’s limits. Another reason is, according
to [111] each provider has its own policy to keep several instances in warm-state for
a while.

73

DOI: 10.14750/ME.2024.033

4.6 Summary

In this chapter, we extended the DISSECT-CF simulator to offer the services unique
to current serverless technologies. We offer an extensible simulation framework in a
comprehensive environment that enables realistic mimicry of the behaviour of com-
mercial providers.

We have designed several experiments to evaluate our serverless extension. These
experiments were conducted by imitating services and features of AWS Lambda and
Azure function providers. In the AWS Lambda provider, our experiments evaluated
the cost model by simulating the same workload with different memory sizes. They
also show how the selection of provisioned concurrency reduces the cold-start proba-
bility and simulation time. In Azure Functions, we have investigated the timer trigger
by simulating five groups of functions (each group contains 500 functions) with differ-
ent time-span. We have also designed an experiment to extract performance metrics
and internal behaviour of the serverless environment that occur during simulation.

In terms of cost-model, our serverless environment provided the expected results
by estimating similar costs for all different memory sizes but with different running
time. Our DISSECT-CF-FaaS properly reflected the AWS provisioned concurrency
policy to reduce cold-start with extra cost. The trigger behaviour was successfully
captured by our serverless environment and reflected in Azure Functions environ-
ment that avoided idle instances when functions were heavily invoked. Finally, our
serverless environment extracted the performance metrics such as average concurrent
instances, actual running-time and idle-time of involved instances from the simula-
tion session.

DISSECT-CF-FaaS demonstrated its performance towards simulating the afore-
mentioned small and medium-scale scenarios as its execution is limited to a sequen-
tial manner. However, large-scale scenarios such simulating millions of functions are
required parallel execution.

74

DOI: 10.14750/ME.2024.033

Chapter 5
Parallel Event System to Reveal the
Internal Behavior of our Serverless
Environment

5.1 Introduction

As DES simulators gained significant popularity to support and evaluate cloud com-
puting environments, there are several obstacles that stop increasing the performance
of these simulators. First of all, most are designed to execute sequentially [16] that
could not be appropriate for the state of the art scenarios, such as simulating millions
of service invocations and their interactions in serverless computing situations.

Introducing a parallel approach to the core event handling in IaaS simulators,
would be the first step towards scaling their performance efficiently to meet the
newest challenges in the field. Moreover, it will benefit extensions that are built on
top of them.

Always applying parallel execution to the simultaneously occurring events in the
simulation does not necessarily lead to a well scaling DES though. When only a
few events occur simultaneously, sequential execution is often times beneficial as we
can avoid the overheads of parallel constructs. Otherwise, the parallel execution can
lead to better performance. Thus, the necessity of determining at a specific simulated
time instance, whether the events will execute sequentially or parallel, is crucial to
increase the performance and to avoid unnecessary overhead.

This chapter introduces the parallel execution to its most abstract system of
DISSECT-CF: the event system. The new event system automatically switches be-

75

DOI: 10.14750/ME.2024.033

tween the new parallel mode and the old sequential one based on the number of
simultaneous events that occur at a given time instance. The parallel executor di-
vides and distributes the simultaneous events equally over the available processors
and balances the load across the system. These two operations reduce idle CPUs
(or cores) behind the simulator. This parallel version is able to foster the execution
time of our serverless environment by extracting the performance metrics in parallel
manner.

The remainder of this chapter is as follows: Section 5.2 covers the existed chal-
lenges and issues of PDES. Section 5.3 looks to investigate the occurrence of si-
multaneously events. Section 5.4 presents our methodology of employing parallelism
in the event system of DISSECT-CF. Section 5.5 deal with experiments that are
designed to evaluate the scalability and performance of the new approach. These
experiments focus on the core functionality and time management mechanisms of
the event system in DISSECT-CF. Section 5.7 summarises the conducted results of
our parallel approach.

5.2 PDES issues and challenges

The main goal of PDES [39] is to enhance the execution of discrete event simulations
by efficiently exploiting the capabilities of high-performance computing platforms.
This can be achieved by taking advantage of the natural parallelism that occurs in de-
veloped models, applications, or systems. Despite PDES field has gained significant
popularity over the last decades, it faces several challenges and issues arising from
the need to adapt and deal with the modern architecture of underlying hardware,
the complexity of systems, and the development of software [49].

The PDES issues are arisen from applying various strategies and principles to
decompose a simulation to be processed on available processors when there is an
opportunity to exploit the parallelism available in a sequential program, underlying
problem, or even the architecture of underlying hardware. These strategies have to
be designed and developed to get the most out of them by ensuring loading balancing
fairly among all processors, scheduling events properly, and offering synchronisation
mechanism.

Besides the general PDES issues, there are other world-wide challenges that make
developing parallel simulation efficiently is hard [38] such as creating large-scale sim-
ulations to support the behaviour of real-world irregular systems, developing scalable
and efficient techniques to map PDES computation to modern hardware architec-
tures such as Graphics Processing Unit (GPU) to achieve better performance, and

76

DOI: 10.14750/ME.2024.033

simplifying the development of PDES to encourage developers to shift towards cre-
ating parallel models.

As the subsystems of DISSECT-CF are designed to work independently as much
as possible, this give privilege to simplify introducing PDES to the core of the sim-
ulator (event subsystem) as a foundation for parallel simulation. Based on the ar-
chitecture of DISSECT-CF, several of the aforementioned issues can be considered
when developing a new parallel event system of DISSECT-CF. The parallel version
has to resolve fundamental issues, such as exploiting the parallelism available at each
particular tick via detecting all simultaneously occurring events. Second, exploit all
processors of the platform and offer initial load balancing by dividing the list of events
into sub-lists to be distributed equally over available processors. Finally, foster the
execution of regular and irregular events that occur during the simulation. In the
forthcoming sections, we will explain in detail how a parallel event system is applied
and the mechanism of work.

5.3 Prominence of recurrent events

Most cutting-edge technologies such as serverless computing have designed to allow
multiple events such as serverless functions (FaaSs) and their invocations or comput-
ing tasks in cloud, happen at the same time to obtain better performance [62]. Its
paradigm encourages users to execute events in a parallel by managing the backend
infrastructure on their behalf. Moreover, it provides essential concepts such as a
timer trigger that leads events to occur simultaneously within the serverless com-
puting provider. Thus, the serverless technology provides an elastic environment to
invoke functions in parallel.

In Azure Functions provider, the collected datasets reveal to which extent the
serverless functions are happened simultaneously. We analyzed the available 14 days
of Azure datasets [97] to estimate the average number of functions that were executed
in parallel. For each dataset representing a one day, we collected the total number of
functions’ invocations, and we then divided the number by 1440, as invocations were
binned at 1-minute. Finally, we divided the concluded number by 60 to calculate
the average executed functions per second. The Figure 5.1 shows how intensively
functions were executed in parallel during 14 days by users the worldwide.

When we come to simulation environment to mimic advanced technologies mech-
anism, the architecture of simulator is critical word to demonstrate its capability
towards parallelism. It could be the architecture of a simulator is designed with par-
allel in mind, or having extraordinary features, such as ability to recurrent events
based on specific time, to be used as a foundation towards parallel execution.

77

DOI: 10.14750/ME.2024.033

8500

9000

9500

10000

10500

11000

11500

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Days

Parallel invocations per second

Figure 5.1: The average number of serverless functions executed simultaneously in
Azure Functions provider

Although, the selected simulator DISSECT-CF reduces the execution time of
equal quality/detail simulations done compared to several other simulators in the
field, it still does so in a sequential fashion. Therefore, we aim to set the foundations
to support simulations that require high performance.

The lowest (event) subsystem of DISSECT-CF has two main classes: (i) the
Timed class, used for recurring events; and (ii) DeferredEvent class used for irreg-
ular events. Recurring events are invoked regularly based on a specified frequency.
Thus, recurring events can subscribe notifications, when subscribing, an event fre-
quency must be specified to determine how many ticks must pass to get repeated
notifications. As the higher level subsystems of the simulator are built on the top
of mostly recurring events, our target is enhancing the performance of this subsys-
tem. We expect that this will positioning affect the performance over the rest of
the framework and its extensions. The event sub-system had a sequential execution
design. Based on the existing API of DISSECT-CF, parallelisation could happen for
executing of simultaneously happening events (i.e., events that should happen in the
same time instance or tick of a simulation).

To understand such simultaneous events, we have provided a simple example
scenario with three event objects with various frequencies (this demonstrates events
derived from the Timed class of DISSECT-CF which allows defining events that
can happen repeatedly). Table 5.1 shows the basic details of our simple example
scenarios. The first three rows show the event objects and their behaviour. The
fourth row shows the time instances in our simple simulation. In the table, we can
see for every time instance when the events will be processed. E.g., the second event

78

DOI: 10.14750/ME.2024.033

Table 5.1: Three events with different frequencies

Events Freq Next events of e1, e2 and e3 based on their frequencies(Freq)
e1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
e2 3 3 3 3 6 6 6 9 9 9 12 12 12 15 15 15
e3 5 5 5 5 5 5 10 10 10 10 10 15 15 15 15 15
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Degree(%) 33 33 66 33 66 66 33 33 66 66 33 66 33 33 100

e1

e2e3

e1 e1 e1

e2 e2

e1 e1 e1 e1 e1e1 e1 e1 e1 e1 e1

e2 e2e3

e3

Time(tick)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.2: Representing multiple events in Table 5.1 occur at a specific time

(e2) is processed in time instances 3,6 etc. Figure 5.2 shows how the event queue
will look like at any particular time instance in case we execute the events defined
in the previous table.

The degree of parallelism denotes the number of events (overall percentage in the
last row) occurring at a specific time instance (tick). Which mainly depends on the
frequencies of subscribed objects that determine how frequently these events occur.
When all subscribed events happen at a specific time, the degree of parallelism is
100%. When half of them occurs at one time, the degree is 50% and so on. Thus,
the degree of parallelism varies according to the occurrence of events at each tick.
Therefore, the average degree of parallelism in a single simulation run is deduced from
all ticks for the whole system. In Figure 5.2, there are 15 simulated time instances,
out of these 7 are having parallel events, making the example’s average degree of
parallelism 50.66%. If we execute simultaneously occurring events (e.g., e1 and e2 in
time instance 3 in the figure) in a sequential fashion, then we pay a penalty of using
a sequential simulator. This observation will guide the next the subsection where we
discuss how we identify these kinds of events and how we execute them in parallel.

79

DOI: 10.14750/ME.2024.033

Figure 5.3: Diagram of Timed class and Parallel class

5.4 The parallelisation of simultaneous events

Figure 5.3 shows the basis of our extension. The diagram shows only the relevant
parts of the original Timed class, and the new Parallel class. The new class is
created as an inner class within Timed class, to ensure easy access to the original data
structures within the event subsystem’s main class. The user of the system is still
expected to interface with the existing methods of the Timed class (thus all previous
extensions to the simulator would benefit from our parallelisation approach). Note
that inside the simulator, all higher level subsystems (e.g., those which simulate VMs)
are users of the Timed class. As parallelisation is automatically executed depending
on the state of the event queue, the higher level subsystems could benefit from the
improvement on Timed.

Algorithm 2 Determining the need for parallelism

1: threshold = specified size
2: list = all simultaneous events
3: if list.size ⩽ threshold then
4: while list.notEmpty do
5: event = get single event from list
6: Execute event
7: end while
8: else
9: execute Parallel(list.lowIndex, list.upperIndex)
10: end if

The events taking place in a particular tick are handled with the fire() method
(see Figure 5.3). Our approach changes the behaviour of this method by introducing
Algorithm 2. Here we first collect the list of simultaneously occurring events at each
particular tick (see line 2) – note that this list was not needed for the sequential sub-

80

DOI: 10.14750/ME.2024.033

system as that would only work with one event at a time. As a result, the collection
of this list is an overhead of the new parallel algorithm. The discussed approach
below aims at minimising this overhead.

Our new fire() method now checks the size of the list to determine if we need to
execute in sequential or parallel fashion. The old, sequential execution is shown in the
loop of line 4, this is still kept and used if we have too few simultaneous events in the
queue. The parallel execution utilises our new Parallel class to distribute the work
over threads, that will be created implicitly according to the number of available
cores. This is done by passing the lowerIndex and upperIndex that specify the
indices of first and last elements of the list (see line 9). The threshold (minimal
size of the list which leads to parallel execution) is configurable by the user of the
simulator. To aid the user determining the threshold, an auto-tuning approach is
also going to be offered for the threshold which determines its value when suitably
long running simulations are executed.

Algorithm 3 Mechanism of Parallel class

1: Procedure Parallel(list.lowIndex, list.upperIndex)
2: lowerIndex = list.lowIndex
3: upperIndex = list.upperIndex
4: Funct compute ()
5: if upperIndex - lowerIndex ⩽ threshold then
6: while list.notEmpty do
7: Execute events of list
8: end while
9: else
10: midIndex = (lowerIndex + upperIndex / 2)
11: execute all (Parallel(lowIndex, midIndex), Parallel(midIndex,

upperIndex))
12: end if

After the decision to parallelise, the actual parallelisation is organised by the
Parallel class according to Algorithm 3. Instances of this class are executed in
their own threads. Thus, they will likely run on another CPU core compared to the
original fire() method. When a Parallel instance is instructed to compute, it
again uses our the previously discussed and determined threshold value to decide
if the workload assigned to the thread is sufficiently small or not.

If the sublist of simultaneous events is short enough (see line 5), the sublist is
executed in the current thread. This sublist execution is done just like the sequential

81

DOI: 10.14750/ME.2024.033

one discussed before (see Algorithm 2’s line 4). But instead of going through the
entire list of simultaneous events, now we have a shorter list to process which was
assigned only to the thread of this Parallel object in the parallel invocations of
Algorithms 2 and 3.

In contrast, when there are more simultaneous events than a single thread should
handle, we sub-divide the list of events based on its size in equal parts and pass them
on to further threads (see line 11). We recursively perform this process until the list of
events is divided into sublists (sublists size become less than or equal threshold) and
all threads have sufficiently short lists, then the threads are scheduled according to
a fork-join model. This list division method ensures that we execute on all available
processors in the current machine and also offers an initial load balance. Although
each thread has an almost equal number of sublists, work-stealing approach ensures
that the threads workloads are almost equal to avoid wasting resources. Note that
the proposed approach also supports parallelism of irregular events as they happen
somewhere during the simulation, but to which level, it depends on how intensively
they happen and how the queue of events appears at particular times.

5.5 Evaluation of the parallel event system

Intel High Performance Computing (HPC) platform was used for the evaluation of
our parallel DISSECT-CF. It has the following specifications: Intel (R) Core (TM)
i7-8700 CPU @ 3.2GHz (6 cores + 6 hyper threaded cores), 64GB memory, 1T
SSD, 1T HDD, Debian Linux Buster 10.4, OpenJDK 11.0.6. We have designed
several scenarios to test the performance of the parallel version by focusing on time
management while ensuring complete control over event occurrence. We also made
sure the evaluation was validating the parallel version: we used the complete API
of the Timed class to verify if the parallel version produces results matching output
from the unmodified sequential code.

5.5.1 Validation of the parallel event system

To ensure that the behaviour of our evaluation is following real life simulation
patterns, we have instrumented the JobDispatchingDemo class of the dissect-cf-
examples project. This class was already validated before to produce realistic sim-
ulations e.g., comparable to CloudSim (see [57]). Our instrumentation focused on
how the realistic simulation utilises the lowest abstraction layer of DISSECT-CF.
We measured, the degree of parallelism, the typical event behaviour, the number
of events in total and the average execution time of a single tick method call in

82

DOI: 10.14750/ME.2024.033

nanoseconds (i.e., the single event workload). To enable the comparison, we have
also instrumented our parallel Timed class in the same way allowing us to acquire
the typical workload of our synthetic tick methods.

We have set up our realistic simulation with JobDispatchingDemo as follows:
(i) maximum number of jobs that exist in parallel was set to 2; (ii) the amount of
seconds the job startup times was set to 10; (iii) minimum execution time of a single
job was set to 10s; (iv) maximum execution time of a single job was set to 90s; (v)
minimum and maximum gaps between the last and the first job submission of two
consecutive parallel batches were set to 200s; (vi) minimum number of processors
for a single job was set to 1; (vii) maximum number of processors for a single job
was set to 2; (viii) total number of processors usable by all parallel jobs was set to
4; (ix) total number of jobs was 100000; (x) the number of nodes was 5000.

To allow our evaluation to focus at the lowest abstraction layer, we set out to cap-
ture the event workload behaviour of the above complex simulation, but with a syn-
thetic workload. This synthetic workload ensures that we do not run complete simu-
lations all the time and that our parallelism evaluations not to be distracted by upper
layer behaviour. Our synthetic tick method (implemented in TimeRandomGenerator

class), does a busy waiting loop by calculating the following formula:

SyntheticEventWorkload(size) :=
size∑
i=0

(
2ei
√
i
)

mod

∣∣∣∣⌊i+ 5

i+ 1

⌋∣∣∣∣ (5.1)

, where size can control the single event workload, while the denoted operations
ensure that the distribution of the single event execution time is closely matching
the above mentioned more realistic simulation. Thus, the synthetic Equation 5.1 can
model the captured behaviour of realistic large-scale simulations by producing the
same weight of the single event workload. Note that the formula is selected to make
a single event workload have the same behaviour as a realistic simulation, and any
other formula can be used as long as it makes the loop busy to capture the same
behaviour.

To ensure that the workload produced by this busy waiting loop is equivalent
to the realistic simulation, we have executed the same number of events we have
recorded in the realistic simulation and repeated the measurement 100 times. The
repetition allowed us to collect several statistical properties of the single event work-
load in both the synthetic and the realistic simulations. We present our findings for
the realistic simulation in the box plot of Figure 5.4a. Our best approximation of
this realistic workload was captured by our synthetic workload parametrised with
size = 49.

83

DOI: 10.14750/ME.2024.033

3000 3500 4000 4500 5000 5500

si
ng

le
 e

ve
nt

 w
or

kl
oa

d

. ● ● ● ● ●

(a) The execution time(ns) of sin-
gle event workload using JobDispatch-
ingDemo class

3500 3600 3700 3800 3900 4000

si
ng

le
 e

ve
nt

 w
or

kl
oa

d

.

(b) The execution time(ns) of single
event workload using our experiments
classes.

Figure 5.4: Boxplot diagrams for JobDispatchingDemo class and our classes

Figure 5.4b shows the behaviour of our best approximate synthetic workload.
Our median duration is within 3% of the realistic. The distribution of our workload
is a bit narrower and more even, but the upper and lower whiskers of our synthetic
experiment are within the typical range of the realistic simulation’s values. As a
result, from this point onwards, we will refer to synthetic workloads set up with this
particular parameter as the original single event workload.

Note, that later we have evaluated the system with other single workloads. For
example, changing the size to 147 (49 x 3), leads to a threefold increase in single
event workload compared to the realistic setting. In contrast, changing it to 16
(49/3), leads to a three fold reduction in single event workload again compared to
the realistic setting. These two values will be the extremes used in Figure 5.5.

5.5.2 Performance of the parallel event system

Our evaluation scenarios create 35,000 recurrent event objects. The object count was
set so the minimum execution time of the sequential version is at least 5 minutes,
allowing sufficient time for the parallelisation to take effect. The recurring events
subscribe with different frequencies so we have control over the degree of parallelism.
We provided controls to these scenarios, so we can easily adjust the degree of paral-
lelism (through event subscription changes) and the single event workload (through
changing the size in Equation 5.1). The evaluation scenarios are publicly available
in the ParallelTimed package released in the dissect-cf-examples project on GitHub1.

The invocation of Parallel class depends on the threshold value (see Algorithm 2
for details) to determine the maximum length of the event list processed by a single
thread. To determine the ideal setting for the threshold, we evaluated our solution
with four different values: 8, 16, 32 and 64. We have also generated recurring events
with four different degrees of parallelism as shown in Table 5.2. Based on our analysis

1https://github.com/dilshadsallo/dissect-cf-examples

84

DOI: 10.14750/ME.2024.033

https://github.com/dilshadsallo/dissect-cf-examples

Table 5.2: The execution time(s) of parallel version using four different sizes of list

Degree of Parallelism
Threshold 25% 50% 75% 100%
8 235 412 549 657
16 234 411 548 657
32 231 408 545 654
64 229 406 541 652

of the execution times in the table. Even though the differences are not big, it is
recommended to use a threshold equal or exceed 32 to enhance the performance.

With the respect to the number of cores, there are two factors that influence the
performance of the parallel version. First, the degree of parallelism plays a significant
role and it is shown in Table 5.3 that the parallel version can significantly improve
performance. We evaluated both the parallel and sequential versions of the simulator
with four different degrees of parallelism (25%, 50%, 75%, 100%). Even though the
evaluation of this scenario has been done with the same number of aforementioned
objects, the number of events that occur, and the number of events that occur at
the same time significantly increase. This is because we simulated for the same
amount of simulation time, but with increasing subscription frequency each object
receives more event notifications. E.g., to increase the degree of parallelism on the
scenario in Table 5.1, we can change the subscription frequency of event two to 1.
In this example, the degree of parallelism increases to 73%, but we see more event
notifications delivered as we will have 15 notifications for event two as well.

With regards to Table 5.3, in 25% of parallelism, the parallel version runs 1.72
faster than the sequential. When the degree reaches 50%, the ratio increased to 1.74.
The parallel version executes simulations 1.84 faster than the sequential version when
75% of all subscribed events occur recurrently during a simulation time. Finally, the
parallel version reaches 2.01 times faster than the sequential version when the degree
of parallelism is 100%. Even with a high degree of parallelism and using multi-core,
we cannot use all cores because there is still a performance cost such as coordinating
threads that introduced by multi-thread compared to a single-threaded approach.

Now let’s analyse the effect of the size of the single event workload (as per Equa-
tion 5.1). We tested both of the parallel and sequential versions with various single
event workload sizes, commenced with threefold lower than the original one to show
the behaviour of simulating very low single event workload. Then reaching to three-
fold higher than the original single event workload to demonstrate the advantage of
parallel version as shown in Figure 5.5. When the single event workload is threefold

85

DOI: 10.14750/ME.2024.033

Table 5.3: The execution time(s) of parallel and sequential versions in four different
degrees of parallelism

Degree of Parallelism
Version 25% 50% 75% 100%
Sequential 379 717 989 1312
Parallel 220 410 543 651

300
400
500
600
700
800

Parallel Sequential

0
100
200
300

3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Low single event workload Original High single event workload

Workload Size

Time(s)

Clic
k t

o BUY NOW!PD

F-XChange Editor

w
w

w.tracker-software

.c
om Clic

k t
o BUY NOW!PD

F-XChange Editor

w
w

w.tracker-software

.c
om

Figure 5.5: The execution time in seconds of different workload sizes simulated by
parallel and sequential versions

lower than original one, the parallel version runs 1.33 faster than the sequential ver-
sion. This ratio increases to 1.67 when the single event workload is two times lower
than the original single event workload. The parallel version even runs 2.11 faster
than the sequential version using original single event workload. When the single
event workload size doubled, the parallel version executes the simulation 2.32 times
faster than the sequential version. The ratio increases to 2.44 when the single event
workload size becomes threefold higher than the original one.

Thus, the parallel version speeds up the performance of simulation by using the
additional cores of the host. The biggest advantages of the parallel version can be
exploited when there are larger simultaneously occurring event queues and when the

86

DOI: 10.14750/ME.2024.033

single event workload is larger as well.

5.6 Evaluation of our serverless environment us-

ing parallel event system

One of the main concept that attracted users towards serverless computing is paying
only for actual use, no need to pay for idle VMs and other resources such as tra-
ditional cloud computing. Thus, the serverless provider accommodates many users
simultaneously and its resources could be shared among them effectively.

The nature of the task in serverless computing is also central to increasing the
opportunity of invoking a provider at a specific period. The tasks in serverless are
usually lightweight and are not executed for a long time compared to the tasks in
cloud computing. This gives a chance to execute numerous tasks in a period such
as a one day. According to the traces that collected from real providers, 942 million
tasks were executed in one day using a serverless provider [97]. Whereas in one
month, the maximum number of tasks executed by many cloud computing providers
is 13 million [7].

Such these state-of-art scenarios that involve large number of functions require
parallel simulation and execution to handle the requests properly. Regarding sim-
ulations, particularly in DES environments that produce precision results rapidly,
executing these scenarios sequentially often leads to losing the benefit behind exist-
ing simulators. Thus, simulating many functions or revealing their behaviour within
a simulation environment requires parallel execution that exploits all the cores behind
the simulator.

We exploited our parallel version to foster the aforementioned scenarios that
happen in our introduced serverless environment in the chapter 4, particularly the
Cost Modeling and statistic layer that mainly depends on the event system
of DISSECT-CF. Our parallel version can be advantageous to these scenarios that
require high performance, such as revealing the internal behaviour of provisioning
resources and estimating the cost in our introduced environment.

To demonstrate the performance of our parallel event system, we have conducted
experiments on different workloads that require faster processing. We have generated
workloads with different numbers of functions’ invocations, namely, light-workload
(100 thousands), normal-workload (1 million), and heavy-workload (10 million) by
using our generator that we introduced in chapter 3. We then imitated the AWS
Lambda provider by setting all functions to the following configurations: memory
size (3082 MB), region (Frankfort), and architecture (x86). After that, we simulated

87

DOI: 10.14750/ME.2024.033

Table 5.4: Extracted performance metrics of different workloads using our serverless
environment

Performance metrics Light Normal Heavy
Cold-start probability (%) 2.542 0.385 0.135
Warm-start probability (%) 97.458 99.614 99.864
Arrival rate (s) 0.031 0.115 0.442
Average execution time of function (ms) 512 476 626
Number of unique functions 1256 1639 4660
Estimated cost ($) 2.503 23.264 305
Average Number of Concurrent instances 389 770 3913
Average lifetime instance (s) 1218 2199 6671
Average running-time instance (s) 126 947 3882
Average idle-time (s) 1092 1251 2789

these workloads by our serverless environment in HPC platform 12 threads (see
5.5). We then analyzed the internal behavior of each simulation session, one times
using the sequential event system and other using parallel event system. In the
parallel version, the threshold was set to 32, as we recommended in the Subsection
5.5.2. Finally, we have collected the extracted performance metrics of each session,
including the duration of the simulation in real-time.

As both sequential and parallel versions produce the same simulation results
(except execution time), Table 5.4 lists the performance metrics extracted from sim-
ulation sessions for all different workloads. Although the number of unique functions
in heavy workload is almost fourfold than in the light-workload, it is obvious that
the probability of cold-start is a low in heavy-workload compared to other. The
reason is that the functions are dispatched intensively to be simulated in the heavy-
workload (see arrival rate), and this leads to reuse of the available instances again
and again. Which eventually, they are not exceeding the expiration-threshold to be
terminated. As consequence, the average percentage of running-time of instance is
increased in heavy-workload compared to other different workloads, as shown in Fig-
ure 5.6. This also has influence to increase the number of provisioning instances in
our serverless environment during simulation. The result shows that it is reaches up
to 3913 concurrent-instances for all functions in heavy-workload, whereas it is 389 in
light-workload, as shown in Table 5.4.

When we come to the simulation time for these workloads, as we previously men-
tioned in Section 5.6, the workload size and the degree of parallelism have significant
influence in demonstrating the benefit of using the parallel version. As the num-

88

DOI: 10.14750/ME.2024.033

(a) Light-workload (b) Normal-workload (c) Heavy-workload

Figure 5.6: Percentage of average life-time, running-time and idle-time of instance
for different workloads

Table 5.5: The execution time in seconds of our serverless environment using sequen-
tial and parallel versions

Version Light-workload Normal-workload Heavy-workload
Sequential 56 850 23204
Parallel 45 378 8703

ber of functions’ invocations in heavy-workload is huge compared to light-workload,
the probability of invocations to invoke simultaneously increases and leads to a high
degree of parallelism. This also has an effect on the single-event workload.

Table 5.5 shows the execution time of simulated light, normal, and heavy work-
loads (the results listed in Table 5.4) in our serverless environment using sequential
and parallel versions. The results show that the parallel version runs 1.24 faster
than the sequential version during analyzing and simulating light-workload. This
ratio increased to 2.24 when the workload was normal. Finally, the performance
of the parallel version reaches 2.66 in heavy-workload compared to the sequential
version. The results show that the parallel version demonstrates better performance
for scenarios that engage heavy workload.

5.7 Summary

In this chapter, we have introduced a parallel event system to DISSECT-CF simu-
lator for fostering the execution of scenarios that require high throughput. We have
validated our parallel version by designing experiments that had independent con-
trol on the following four properties: (i) event independence (no influence on future
events); (ii) pattern of events throughout a simulation (i.e., how many events do we
have in total and when should they happen); (iii) number of simultaneous events

89

DOI: 10.14750/ME.2024.033

(degree of parallelism) happening at an average time-simulated instance; (iv) the sin-
gle event workload (i.e., how compute heavy is a particular event). We instrumented
and measured the behaviour of realistic simulations in terms of these properties.
Then, we implemented simple synthetic event patterns (that are only exercising the
event system of DISSECT-CF) for the simulator, which we calibrated to imitate the
properties of the previously measured realistic simulations.

To ensure the quality of our experiments, we collected the synthetic event pat-
tern’s properties with the same measurement approach that we applied for the re-
alistic setting to compare and analyse them. We also evaluated with random event
patterns to test the behaviour of the parallel version under unforeseen conditions.
With respect to the number of cores, evaluation results show that two factors have
affected the performance of the parallel version. First, if we have at least two simul-
taneous events for more than 50% of the simulated time instances, then the parallel
version already runs two times faster than the sequential. Second, increasing the sin-
gle event workload leads to 2.44 times faster simulation execution than sequential.

Finally, we used a parallel version with our introduced serverless environment to
evaluate real serverless workloads. We have generated different workloads, namely,
light, normal and heavy, and we then simulated them using sequential and parallel
versions. The result shows that the parallel version can speed up the process of
simulation up to 2.66 compared to sequential when the workload is heavy.

90

DOI: 10.14750/ME.2024.033

Chapter 6
Conclusion

6.1 Summary

Simulators play a crucial role in the computing field by providing a flexible environ-
ment that could mimic real providers in the research area. As serverless computing is
in its infancy, the research community needs to explore this promising cloud paradigm
in a simulation environment to evaluate FaaS scenarios, and explore potential on ar-
chitectures, operations, and mechanisms that could foster this computing paradigm.

In this dissertation, we proposed the DISSECT-CF-FaaS serverless environment.
This integrated environment is capable of generating realistic traces that closely
matches the original dataset’s characteristics in terms of execution time, memory
utilisation as well as user participation percentage. The evaluation in chapter 3
showed that our generator approach provided excellent values for predicting gen-
erated trace attributes and users’ invocations compared with the behaviour in the
real-life dataset.

Our serverless environment is able to mimic the provisioning of resources, ser-
vices, while also mimic the policy of the most well-known serverless providers. It
also reveals the internal mechanisms and behaviours of the imitated providers by
extracting performance metrics during simulation sessions. In chapter 4, our evalu-
ation showed that our environment provided the expected experimental results by,
first, estimating the costs for various memory configurations. Second, reflecting pro-
visioning policy properly to reduce cold-start. Third, capturing the behaviour of the
trigger successfully. Finally, extracting average concurrent instances, running-time,
and idle-time of involved instances from the simulation session.

Our DISSECT-CF-FaaS offers parallel execution to foster the scenarios that re-

91

DOI: 10.14750/ME.2024.033

quire high performance in computing, such as revealing the internal behaviour of the
simulation session by extracting performance metrics. The evaluation of the parallel
version in chapter 5 showed that the execution of the simulation session can be sped
up by 2.66 times compared to the sequential version. Thus, DISSECT-CF-FaaS is
able to meet the expectations of the research community towards experiment various
FaaS workloads and scenarios in a versatile environment.

6.2 Contributions

The new scientific results that are achieved during the completion of the project
summarized in the following three theses.
Thesis 1 Related Publications: [92, 93]
I proposed a novel approach for generating realistic serverless traces to enrich cloud
computing simulators with varying characteristic workload types. My approach ap-
plies a genetic algorithm to produce and select the best generated functions’ attributes
that resemble the behaviour in a real-life dataset. It also enables scaling-workload to
fit desired scenarios while maintaining the users’ behaviour disclosed in the real-life
dataset. Finally, it supports the reusability of the generated traces in other computing
simulators by adapting the traces to popular formats.

Thesis 2 Related Publications: [89, 90, 92, 94]
I proposed a comprehensive serverless extension (DISSECT-CF-FaaS) to the research
community for evaluating a wide range of real-case FaaS scenarios in an environ-
ment that imitates commercial providers’ behaviour. This environment is capable of
capturing real behaviour services to enable establishing a cost model, offering scal-
ing up-down function instances, introducing a trigger mechanism comparable to real
usage behaviour, and applying constrained on provisioning resources. It also extracts
performance metrics from the simulation session to reveal how the internal behaviour
of provisioning resources responds while serverless functions are simulated.

Thesis 3 Related Publications: [88, 91]
I proposed a new parallel event system to foster the execution of DISSECT-CF-FaaS
towards simulating large-scale scenarios. The introduced parallel version increases
resource utilisation capability by allocating all available cores for backing the cost
modelling and statistics of our serverless environment. The advantage of the paral-
lel version is demonstrated when the simulated workload involves a large number of
simultaneous events.

92

DOI: 10.14750/ME.2024.033

6.3 Future works

We have identified three future research directions, namely, first we have to investi-
gate other simulators that could use different trace formats, and exploit our genera-
tor to shift the generated realistic trace to these formats. To demonstrate to which
extent our introduced approach can support these formats as well as to introduce
modifications to adapt with them.

Second we hope to introduce other triggers such as the http trigger that enable
DISSECT-CF-FaaS to interact and communicate with real applications to support
other serverless scenarios such as dependent tasks in microservices applications. Fi-
nally we aim at focusing on the simulator’s second most heavily used component
in DISSECT-CF: the unified resource-sharing subsystem. This subsystem has high
compute complexity, and its parallelisation will enable our model to rapid estimation
of resource sharing on even larger scale-distributed systems. Applying these will lead
to the seamless transition of the entire DISSECT-CF-FaaS into simulating billions
of service invocations and their interactions in serverless computing situations.

93

DOI: 10.14750/ME.2024.033

Chapter 7
Author’s Publication and Software
Availability

7.1 Author’s publication

[88] Sallo, D. H., & Kecskemeti, G. (2020). Parallel Simulation for The Event
System of DISSECT-CF. In the 12th Conference of PhD Students in Computer
Science: Volume of short papers Szeged, Hungary, University of Szeged, pages 58-61.

[89] Sallo, D. H., & Kecskemeti, G. (2020). Towards a DISSECT-CF extension for
simulating Function-as-a-Service. In the 16th MIKLÓS IVÁNYI INTERNATIONAL
PHD and DLA SYMPOSIUM abstract book, Pécs, Hungary : Pollack Press, ISBN:
9789634295785.

[90] Sallo, D. H., & Kecskemeti, G. (2021). Introducing Serverless Computing Model
Based on DISSECT-CF Simulator. In the XXIV. Spring Wind Conference abstract
book, Association of Hungarian PHD and DLA Students. Miskolc

[91] Sallo, D. H., & Kecskemeti, G. (2021). A Parallel Event System for Large-Scale
Cloud Simulations in DISSECT-CF. Acta Cybernetica, 25(2), 469-484. Scopus
Indexed [Q3].

[92] Sallo, D. H., & Kecskemeti, G. (2022, June). Towards Generating Realistic
Trace for Simulating Functions-as-a-Service. In Euro-Par 2021: Parallel Processing
Workshops: Euro-Par 2021 International Workshops, Lisbon, Portugal, August 30-

94

DOI: 10.14750/ME.2024.033

31, 2021, Revised Selected Papers (pp. 428-439). Cham: Springer International
Publishing. Scopus Indexed [Q2].

[93] Sallo, D. H., & Kecskemeti, G. (2023). Enriching computing simulators by gen-
erating realistic serverless traces. Journal of Cloud Computing, 12(1), 1-13. Scopus
Indexed [Q1].

[94] Sallo, D. H., & Kecskemeti, G. (2023). Towards a DISSECT-CF extension
for simulating function-as-a-service. International Journal of Parallel, Emergent and
Distributed Systems, 1-13. Scopus Indexed [Q3].

7.2 Software availability

The source code of this project is open and available (under the licensing terms of
the GNU Lesser General Public License 3) at the following website:

Serverless trace generator: https://github.com/dilshadsallo/DistSysJavaHelpers

Serverless environment: https://github.com/dilshadsallo/dissect-cf-examples

95

DOI: 10.14750/ME.2024.033

https://github.com/dilshadsallo/DistSysJavaHelpers
https://github.com/dilshadsallo/dissect-cf-examples

Bibliography

[1] Apache openwhisk. open source serverless cloud platform, 2023. https://

openwhisk.apache.org/, Last accessed on October 30, 2023.

[2] Aws lambda pricing, 2023. https://aws.amazon.com/lambda/pricing/, Last
accessed on April 04, 2023.

[3] Fission - open source, kubernetes-native serverless framework, 2023. https:

//fission.io/, Last accessed on October 30, 2023.

[4] Ironfunctions - open source serverless computing, 2023. https://open.iron.
io/, Last accessed on October 30, 2023.

[5] Kubernetes Native Serverless Framework, 2023. https://github.com/

vmware-archive/kubeless, Last accessed on October 30, 2023.

[6] OpenFaaS - Serverless Functions Made Simple, 2023. https://www.openfaas.
com/, Last accessed on October 30, 2023.

[7] Parallel Workloads Archive, 2023. https://www.cs.huji.ac.il/labs/

parallel/workload/, Last accessed on January 21, 2023.

[8] Pricing - Functions : Microsoft Azure, 2023. https://azure.microsoft.com/
en-us/pricing/details/functions/, Last accessed on January 21, 2023.

[9] Paarijaat Aditya, Istemi Ekin Akkus, Andre Beck, Ruichuan Chen, Volker
Hilt, Ivica Rimac, Klaus Satzke, and Manuel Stein. Will serverless computing
revolutionize nfv? Proceedings of the IEEE, 107(4):667–678, 2019.

96

DOI: 10.14750/ME.2024.033

https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/pricing/
https://fission.io/
https://fission.io/
https://open.iron.io/
https://open.iron.io/
https://github.com/vmware-archive/kubeless
https://github.com/vmware-archive/kubeless
https://www.openfaas.com/
https://www.openfaas.com/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://azure.microsoft.com/en-us/pricing/details/functions/
https://azure.microsoft.com/en-us/pricing/details/functions/

[10] Arif Ahmed and Abadhan Saumya Sabyasachi. Cloud computing simulators:
A detailed survey and future direction. In 2014 IEEE International Advance
Computing Conference (IACC), pages 866–872. IEEE, 2014.

[11] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
et al. A view of cloud computing. Communications of the ACM, 53(4):50–58,
2010.

[12] Mohammad S Aslanpour, Adel N Toosi, Claudio Cicconetti, Bahman Javadi,
Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh Gill, Raj Gaire,
and Schahram Dustdar. Serverless edge computing: vision and challenges. In
Proceedings of the 2021 Australasian Computer Science Week Multiconference,
pages 1–10, 2021.

[13] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander
Slominski, et al. Serverless computing: Current trends and open problems.
In Research advances in cloud computing, pages 1–20. Springer, 2017.

[14] Priscilla Benedetti, Mauro Femminella, Gianluca Reali, and Kris Steenhaut.
Experimental analysis of the application of serverless computing to iot plat-
forms. Sensors, 21(3):928, 2021.

[15] Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for the modeling
and simulation of distributed resource management and scheduling for grid
computing. Concurrency and computation: practice and experience, 14(13-
15):1175–1220, 2002.

[16] James Byrne, Sergej Svorobej, Konstantinos M Giannoutakis, Dimitrios Tzo-
varas, Peter J Byrne, Per-Olov Östberg, Anna Gourinovitch, and Theo Lynn.
A review of cloud computing simulation platforms and related environments. In
International Conference on Cloud Computing and Services Science, volume 2,
pages 679–691. SCITEPRESS, 2017.

[17] Zhicheng Cai, Qianmu Li, and Xiaoping Li. Elasticsim: A toolkit for simu-
lating workflows with cloud resource runtime auto-scaling and stochastic task
execution times. Journal of Grid Computing, 15(2):257–272, 2017.

[18] Rodrigo N Calheiros, Marco AS Netto, César AF De Rose, and Rajkumar
Buyya. Emusim: an integrated emulation and simulation environment for

97

DOI: 10.14750/ME.2024.033

modeling, evaluation, and validation of performance of cloud computing appli-
cations. Software: Practice and Experience, 43(5):595–612, 2013.

[19] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and experience, 41(1):23–50, 2011.

[20] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache flink: Stream and batch processing in a
single engine. The Bulletin of the Technical Committee on Data Engineering,
38(4), 2015.

[21] Christopher D Carothers, David Bauer, and Shawn Pearce. Ross: A high-
performance, low-memory, modular time warp system. Journal of Parallel and
Distributed Computing, 62(11):1648–1669, 2002.

[22] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. A case for serverless machine learning. In Workshop on Systems for ML
and Open Source Software at NeurIPS, volume 2018, pages 2–8, 2018.

[23] Henri Casanova. Simgrid: A toolkit for the simulation of application schedul-
ing. In Proceedings First IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 430–437. IEEE, 2001.

[24] Gustavo André Setti Cassel, Vinicius Facco Rodrigues, Rodrigo da Rosa Righi,
Marta Rosecler Bez, Andressa Cruz Nepomuceno, and Cristiano André
da Costa. Serverless computing for internet of things: A systematic litera-
ture review. Future Generation Computer Systems, 128:299–316, 2022.

[25] Weiwei Chen and Ewa Deelman. Workflowsim: A toolkit for simulating sci-
entific workflows in distributed environments. In 2012 IEEE 8th international
conference on E-science, pages 1–8. IEEE, 2012.

[26] Bin Cheng, Jonathan Fuerst, Gurkan Solmaz, and Takuya Sanada. Fog func-
tion: Serverless fog computing for data intensive iot services. In 2019 IEEE
International Conference on Services Computing (SCC), pages 28–35. IEEE,
2019.

[27] Shilpa Choudary. Chatbot on serverless/lamba architecture. Asian Journal of
Engineering and Technology Innovation (AJETI), page 190, 2018.

98

DOI: 10.14750/ME.2024.033

[28] Samir Das, Richard Fujimoto, Kiran Panesar, Don Allison, and Maria Hy-
binette. Gtw: a time warp system for shared memory multiprocessors. In
Proceedings of Winter Simulation Conference, pages 1332–1339. IEEE, 1994.

[29] Chavit Denninnart and Mohsen Amini Salehi. Smse: A serverless platform for
multimedia cloud systems. arXiv preprint arXiv:2201.01940, 2022.

[30] Sheng Di and Franck Cappello. Gloudsim: Google trace based cloud simulator
with virtual machines. Software: Practice and Experience, 45(11):1571–1590,
2015.

[31] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues and
challenges. In 2010 24th IEEE international conference on advanced informa-
tion networking and applications, pages 27–33. Ieee, 2010.

[32] Gabriele D’Angelo and Moreno Marzolla. New trends in parallel and dis-
tributed simulation: From many-cores to cloud computing. Simulation Mod-
elling Practice and Theory, 49:320–335, 2014.

[33] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Jo-
hannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup.
A review of serverless use cases and their characteristics. arXiv preprint
arXiv:2008.11110, 2020.

[34] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Jo-
hannes Grohmann, Nikolas Herbst, Cristina L Abad, and Alexandru Iosup.
The state of serverless applications: Collection, characterization, and com-
munity consensus. IEEE Transactions on Software Engineering, 48(10):4152–
4166, 2021.

[35] Kalpana Ettikyala and Y Rama Devi. A study on cloud simulation tools.
International Journal of Computer Applications, 115(14), 2015.

[36] Dror G Feitelson, Dan Tsafrir, and David Krakov. Experience with using the
parallel workloads archive. Journal of Parallel and Distributed Computing,
74(10):2967–2982, 2014.

[37] Stephanie Forrest. Genetic algorithms. ACM computing surveys (CSUR),
28(1):77–80, 1996.

[38] Richard M Fujimoto. Parallel discrete event simulation. Communications of
the ACM, 33(10):30–53, 1990.

99

DOI: 10.14750/ME.2024.033

[39] Richard M Fujimoto. Research challenges in parallel and distributed simula-
tion. ACM Transactions on Modeling and Computer Simulation (TOMACS),
26(4):1–29, 2016.

[40] Richard M Fujimoto, Asad Waqar Malik, A Park, et al. Parallel and distributed
simulation in the cloud. SCS M&S Magazine, 3:1–10, 2010.

[41] Phani Kishore Gadepalli, Gregor Peach, Ludmila Cherkasova, Rob Aitken, and
Gabriel Parmer. Challenges and opportunities for efficient serverless computing
at the edge. In 2019 38th Symposium on Reliable Distributed Systems (SRDS),
pages 261–2615. IEEE, 2019.

[42] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource management
techniques in the internet of things, edge and fog computing environments.
Software: Practice and Experience, 47(9):1275–1296, 2017.

[43] Moin Hasan and Mohammad Anwarul Siddique. A research-oriented mathe-
matical model for cloud simulations. In 2021 Fifth International Conference on
I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pages 875–
878. IEEE, 2021.

[44] Wilson A Higashino, Miriam AM Capretz, and Luiz F Bittencourt. Cepsim:
A simulator for cloud-based complex event processing. In 2015 IEEE Interna-
tional Congress on Big Data, pages 182–190. IEEE, 2015.

[45] Alexandru Iosup, Catalin Dumitrescu, Dick Epema, Hui Li, and Lex Wolters.
How are real grids used? the analysis of four grid traces and its implications.
In 2006 7th IEEE/ACM International Conference on Grid Computing, pages
262–269. IEEE, 2006.

[46] Azlan Ismail. Energy-driven cloud simulation: existing surveys, simulation
supports, impacts and challenges. Cluster Computing, 23(4):3039–3055, 2020.

[47] Heba Ismail, Nada Hussein, Rawan Elabyad, and Salma Said. A serverless
academic adviser chatbot. In The 7th Annual International Conference on
Arab Women in Computing in Conjunction with the 2nd Forum of Women in
Research, pages 1–5, 2021.

[48] Vitalii Ivanov and Kari Smolander. Implementation of a devops pipeline for
serverless applications. In Product-Focused Software Process Improvement:

100

DOI: 10.14750/ME.2024.033

19th International Conference, PROFES 2018, Wolfsburg, Germany, Novem-
ber 28–30, 2018, Proceedings 19, pages 48–64. Springer, 2018.

[49] Deepak Jagtap, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Optimization
of parallel discrete event simulator for multi-core systems. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, pages 520–531.
IEEE, 2012.

[50] Hongseok Jeon, Chunglae Cho, Seungjae Shin, and Seunghyun Yoon. A
cloudsim-extension for simulating distributed functions-as-a-service. In 2019
20th International Conference on parallel and distributed computing, applica-
tions and technologies (PDCAT), pages 386–391. IEEE, 2019.

[51] Devki Nandan Jha, Khaled Alwasel, Areeb Alshoshan, Xianghua Huang,
Ranesh Kumar Naha, Sudheer Kumar Battula, Saurabh Garg, Deepak Puthal,
Philip James, Albert Zomaya, et al. Iotsim-edge: a simulation framework for
modeling the behavior of internet of things and edge computing environments.
Software: Practice and Experience, 50(6):844–867, 2020.

[52] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. Cloud programming simplified: A berkeley view on serverless
computing. arXiv preprint arXiv:1902.03383, 2019.

[53] Soufiane Jounaid. OpenDC Serverless: Design, Implementation and Evaluation
of a FaaS Platform Simulator. PhD thesis, Ph. D. Thesis, Vrije Universiteit
Amsterdam, 2020.

[54] MA Kaleem and PM Khan. Commonly used simulation tools for cloud com-
puting research. In 2015 2nd International Conference on Computing for Sus-
tainable Global Development (INDIACom), pages 1104–1111. IEEE, 2015.

[55] Yogeswaranathan Kalyani and Rem Collier. A systematic survey on the role
of cloud, fog, and edge computing combination in smart agriculture. Sensors,
21(17):5922, 2021.

[56] Pradeeban Kathiravelu and Luis Veiga. Concurrent and distributed cloudsim
simulations. In 2014 IEEE 22nd International Symposium on Modelling, Anal-
ysis & Simulation of Computer and Telecommunication Systems, pages 490–
493. IEEE, 2014.

101

DOI: 10.14750/ME.2024.033

[57] Gabor Kecskemeti. Dissect-cf: a simulator to foster energy-aware scheduling in
infrastructure clouds. Simulation Modelling Practice and Theory, 58:188–218,
2015.

[58] Gastón Keller, Michael Tighe, Hanan Lutfiyya, and Michael Bauer. Dcsim: A
data centre simulation tool. In 2013 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2013), pages 1090–1091. IEEE, 2013.

[59] Khaled M Khalil, M Abdel-Aziz, Taymour T Nazmy, and Abdel-Badeeh M
Salem. Cloud simulators–an evaluation study. International Journal Informa-
tion Models and Analyses, 6(1), 2017.

[60] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. Greencloud: a
packet-level simulator of energy-aware cloud computing data centers. The
Journal of Supercomputing, 62(3):1263–1283, 2012.

[61] Andreas Kohne, Marc Spohr, Lars Nagel, and Olaf Spinczyk. Federated-
cloudsim: a sla-aware federated cloud simulation framework. In Proceedings of
the 2nd International Workshop on CrossCloud Systems, pages 1–5, 2014.

[62] Hyungro Lee, Kumar Satyam, and Geoffrey Fox. Evaluation of production
serverless computing environments. In 2018 IEEE 11th International Confer-
ence on Cloud Computing (CLOUD), pages 442–450. IEEE, 2018.

[63] Jyri Lehvä, Niko Mäkitalo, and Tommi Mikkonen. Case study: building a
serverless messenger chatbot. In International Conference on Web Engineering,
pages 75–86. Springer, 2017.

[64] Jason Liu, David Nicol, Brian Premore, and Anna Poplawski. Performance
prediction of a parallel simulator. In Proceedings Thirteenth Workshop on
Parallel and Distributed Simulation. PADS 99.(Cat. No. PR00155), pages 156–
164. IEEE, 1999.

[65] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep Pal-
lickara. Serverless computing: An investigation of factors influencing microser-
vice performance. In 2018 IEEE international conference on cloud engineering
(IC2E), pages 159–169. IEEE, 2018.

[66] Márcio Moraes Lopes, Wilson A Higashino, Miriam AM Capretz, and Luiz Fer-
nando Bittencourt. Myifogsim: A simulator for virtual machine migration in
fog computing. In Companion Proceedings of the10th International Conference
on Utility and Cloud Computing, pages 47–52, 2017.

102

DOI: 10.14750/ME.2024.033

[67] Nima Mahmoudi and Hamzeh Khazaei. Simfaas: A performance simulator for
serverless computing platforms. arXiv preprint arXiv:2102.08904, 2021.

[68] Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. Faasdom:
A benchmark suite for serverless computing. In Proceedings of the 14th ACM
International Conference on Distributed and Event-based Systems, pages 73–84,
2020.

[69] Maciej Malawski. Towards serverless execution of scientific workflows-
hyperflow case study. In Works@ Sc, pages 25–33, 2016.

[70] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya. A holistic
view on resource management in serverless computing environments: Taxon-
omy and future directions. ACM Computing Surveys (CSUR), 54(11s):1–36,
2022.

[71] Zoltán Ádám Mann. Cloud simulators in the implementation and evaluation
of virtual machine placement algorithms. Software: Practice and Experience,
48(7):1368–1389, 2018.

[72] Najme Mansouri, R Ghafari, and B Mohammad Hasani Zade. Cloud comput-
ing simulators: A comprehensive review. Simulation Modelling Practice and
Theory, 104:102144, 2020.

[73] András Márkus. Dissect-cf-fog: A simulation environment for analysing the
cloud-to-thing continuum.

[74] Andras Markus, Attila Kertesz, and Gabor Kecskemeti. Cost-aware iot exten-
sion of dissect-cf. Future Internet, 9(3):47, 2017.

[75] Ilias Mavridis and Helen Karatza. Orchestrated sandboxed containers, uniker-
nels, and virtual machines for isolation-enhanced multitenant workloads and
serverless computing in cloud. Concurrency and Computation: Practice and
Experience, 35(11):e6365, 2023.

[76] Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa. Pureedgesim: A
simulation toolkit for performance evaluation of cloud, fog, and pure edge com-
puting environments. In 2019 International Conference on High Performance
Computing & Simulation (HPCS), pages 700–707. IEEE, 2019.

103

DOI: 10.14750/ME.2024.033

[77] David Meisner, Junjie Wu, and Thomas F Wenisch. Bighouse: A simulation
infrastructure for data center systems. In 2012 IEEE International Symposium
on Performance Analysis of Systems & Software, pages 35–45. IEEE, 2012.

[78] Sunil Kumar Mohanty, Gopika Premsankar, Mario Di Francesco, et al. An eval-
uation of open source serverless computing frameworks. CloudCom, 2018:115–
120, 2018.

[79] Kim Long Ngo, Joydeep Mukherjee, Zhen Ming Jiang, and Marin Litoiu. Has
your faas application been decommissioned yet?–a case study on the idle time-
out in function as a service infrastructure. arXiv preprint arXiv:2203.10227,
2022.

[80] Alberto Núñez, Pablo C Cañizares, and Juan de Lara. Cloudexpert: An in-
telligent system for selecting cloud system simulators. Expert Systems with
Applications, 187:115955, 2022.

[81] Alberto Núñez, Jose L Vázquez-Poletti, Agustin C Caminero, Gabriel G
Castañé, Jesus Carretero, and Ignacio M Llorente. icancloud: A flexible and
scalable cloud infrastructure simulator. Journal of Grid Computing, 10(1):185–
209, 2012.

[82] Simon Ostermann, Kassian Plankensteiner, Radu Prodan, and Thomas
Fahringer. Groudsim: an event-based simulation framework for computational
grids and clouds. In European Conference on Parallel Processing, pages 305–
313. Springer, 2010.

[83] Olli Paakkunainen et al. Serverless computing and faas platform as a web
application backend. 2019.

[84] Annanda Rath, Bojan Spasic, Nick Boucart, and Philippe Thiran. Security
pattern for cloud saas: From system and data security to privacy case study
in aws and azure. Computers, 8(2):34, 2019.

[85] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. Towards understanding heterogeneous clouds at scale:
Google trace analysis. Intel Science and Technology Center for Cloud Com-
puting, Tech. Rep, 84:1–12, 2012.

[86] Charles Reiss, John Wilkes, and Joseph L Hellerstein. Google cluster-usage
traces: format+ schema. Google Inc., White Paper, 1:1–14, 2011.

104

DOI: 10.14750/ME.2024.033

[87] Paul F Roth. Discrete, continuous, and combined simulation. In Proceedings
of the 20th conference on Winter simulation, pages 56–60, 1988.

[88] Dilshad Hassan Sallo and Gabor Kecskemeti. Parallel simulation for the event
system of dissect-cf. In The 12th Conference of PhD Students in Computer
Science, pages 58–61. University of Szeged, Institute of Informatics, 2020.

[89] Dilshad Hassan Sallo and Gabor Kecskemeti. Towards a dissect-cf extension
for simulating function-as-a-service. In Abstract book for the 16th MIKLÓS
IVÁNYI INTERNATIONAL PHD and DLA SYMPOSIUM, page 132. Pécs,
Hungary : Pollack Press, 2020.

[90] Dilshad Hassan Sallo and Gabor Kecskemeti. Introducing serverless comput-
ing model based on dissect-cf simulator. In XXIV. Spring Wind Conference:
Abstract volume, Association of Hungarian PHD and DLA Students, page 408.
Miskolc University, 2021.

[91] Dilshad Hassan Sallo and Gabor Kecskemeti. A parallel event system for large-
scale cloud simulations in dissect-cf. Acta Cybernetica, 25(2):469–484, 2021.

[92] Dilshad Hassan Sallo and Gabor Kecskemeti. Towards generating realistic
trace for simulating functions-as-a-service. In European Conference on Parallel
Processing, pages 428–439. Springer, 2022.

[93] Dilshad Hassan Sallo and Gabor Kecskemeti. Enriching computing simulators
by generating realistic serverless traces. Journal of Cloud Computing, 12(1):1–
13, 2023.

[94] Dilshad Hassan Sallo and Gabor Kecskemeti. Towards a dissect-cf extension for
simulating function-as-a-service. International Journal of Parallel, Emergent
and Distributed Systems, pages 1–13, 2023.

[95] Mathijs Jeroen Scheepers. Virtualization and containerization of application
infrastructure: A comparison. In 21st twente student conference on IT, vol-
ume 21, pages 1–7, 2014.

[96] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. Serverless comput-
ing: a survey of opportunities, challenges, and applications. ACM Computing
Surveys, 54(11s):1–32, 2022.

105

DOI: 10.14750/ME.2024.033

[97] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul
Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich,
and Ricardo Bianchini. Serverless in the wild: Characterizing and optimizing
the serverless workload at a large cloud provider. In 2020 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 20), pages 205–218, 2020.

[98] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkatara-
man, Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. Numpywren:
Serverless linear algebra. arXiv preprint arXiv:1810.09679, 2018.

[99] Mohamed Abu Sharkh, Ali Kanso, Abdallah Shami, and Peter Öhlén. Building
a cloud on earth: A study of cloud computing data center simulators. Computer
Networks, 108:78–96, 2016.

[100] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and YC Tay. Contain-
ers and virtual machines at scale: A comparative study. In Proceedings of the
17th international middleware conference, pages 1–13, 2016.

[101] Ahmad Siavashi and Mahmoud Momtazpour. Gpucloudsim: an extension of
cloudsim for modeling and simulation of gpus in cloud data centers. The Jour-
nal of Supercomputing, 75(5):2535–2561, 2019.

[102] Jungmin Son, Amir Vahid Dastjerdi, Rodrigo N Calheiros, Xiaohui Ji, Young
Yoon, and Rajkumar Buyya. Cloudsimsdn: Modeling and simulation of
software-defined cloud data centers. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pages 475–484. IEEE,
2015.

[103] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim: An environ-
ment for performance evaluation of edge computing systems. Transactions on
Emerging Telecommunications Technologies, 29(11):e3493, 2018.

[104] Ilango Sriram. Speci, a simulation tool exploring cloud-scale data centres. In
IEEE International Conference on Cloud Computing, pages 381–392. Springer,
2009.

[105] Kun Suo, Junggab Son, Dazhao Cheng, Wei Chen, and Sabur Baidya. Tack-
ling cold start of serverless applications by efficient and adaptive container
runtime reusing. In 2021 IEEE International Conference on Cluster Comput-
ing (CLUSTER), pages 433–443. IEEE, 2021.

106

DOI: 10.14750/ME.2024.033

[106] Pericherla S Suryateja. A comparative analysis of cloud simulators. Interna-
tional Journal of Modern Education & Computer Science, 8(4), 2016.

[107] Andrea Tangherloni, Simone Spolaor, Leonardo Rundo, Marco S Nobile, Paolo
Cazzaniga, Giancarlo Mauri, Pietro Liò, Ivan Merelli, and Daniela Besozzi.
Genhap: a novel computational method based on genetic algorithms for hap-
lotype assembly. BMC bioinformatics, 20(4):1–14, 2019.

[108] Thiago Teixeira Sá, Rodrigo N Calheiros, and Danielo G Gomes. Cloudreports:
An extensible simulation tool for energy-aware cloud computing environments.
In cloud computing, pages 127–142. Springer, 2014.

[109] Wenhong Tian, Yong Zhao, Minxian Xu, Yuanliang Zhong, and Xiashuang
Sun. A toolkit for modeling and simulation of real-time virtual machine allo-
cation in a cloud data center. IEEE Transactions on Automation Science and
Engineering, 12(1):153–161, 2013.

[110] Thurupathan Vijayakumar and Thurupathan Vijayakumar. Serverless apis.
Practical API Architecture and Development with Azure and AWS: Design and
Implementation of APIs for the Cloud, pages 133–158, 2018.

[111] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. Peeking behind the curtains of serverless platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages 133–146, 2018.

[112] Jinfeng Wen, Zhenpeng Chen, and Xuanzhe Liu. A literature review on server-
less computing. arXiv preprint arXiv:2206.12275, 2022.

[113] Bhathiya Wickremasinghe, Rodrigo N Calheiros, and Rajkumar Buyya. Cloud-
analyst: A cloudsim-based visual modeller for analysing cloud computing en-
vironments and applications. In 2010 24th IEEE international conference on
advanced information networking and applications, pages 446–452. IEEE, 2010.

[114] Michael Wurster, Uwe Breitenbücher, Kálmán Képes, Frank Leymann, and
Vladimir Yussupov. Modeling and automated deployment of serverless applica-
tions using tosca. In 2018 IEEE 11th conference on service-oriented computing
and applications (SOCA), pages 73–80. IEEE, 2018.

[115] Mengting Yan, Paul Castro, Perry Cheng, and Vatche Ishakian. Building a
chatbot with serverless computing. In Proceedings of the 1st International
Workshop on Mashups of Things and APIs, pages 1–4, 2016.

107

DOI: 10.14750/ME.2024.033

[116] Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, Prem Prakash Jayara-
man, Dimitrios Georgakopoulos, and Rajiv Ranjan. Iotsim: A simulator for
analysing iot applications. Journal of Systems Architecture, 72:93–107, 2017.

[117] Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu. Video processing
with serverless computing: A measurement study. In Proceedings of the 29th
ACM workshop on network and operating systems support for digital audio and
video, pages 61–66, 2019.

108

DOI: 10.14750/ME.2024.033

	Introduction
	Research goals
	Dissertation guide

	Background and Literature Review
	Introduction
	Background
	Serverless computing
	Serverless computing terminology
	Serverless computing use cases
	Serverless computing providers
	Open-source serverless computing frameworks
	Serverless and other computing paradigms
	Virtualization, containerization and serverless computing

	Traces
	Simulation environments
	Evaluation methodologies

	Related works
	Cloud simulators
	Implementation language
	Simulation type
	Simulation input
	Support extension
	Lack of parallelsation

	Serverless simulators
	Discussion and concluding remarks
	Overview of DISSECT-CF simulator

	Summary

	Generating Realistic Serverless Traces
	Introduction
	Architecture of the trace generator and serverless model
	Configuration setup layer
	FaaS creation layer
	Serverless management layer

	Generating realistic traces from Azure Functions dataset
	Generating invocations, execution times and allocated memory
	Evaluation of generator approach

	Improving our previous generator approach
	Limitations of previous approach
	Architecture of enhanced approach
	Improving the percentiles of generated traces
	Scaling workload with real users’ behavior
	Converting generated trace to standard formats

	Evaluation of improved percentiles
	Evaluation of users’ behavior
	Evaluation of converting approach
	DISSECT-CF
	Other simulators
	SimFaaS

	Summary

	An Extension of DISSECT-CF to Simulate Function-as-a-Service
	Introduction
	Extending our previous model
	Proposed architecture
	Configuration setup layer
	FaaS Creation layer
	Serverless management layer
	Cost modeling and statistics layer

	An illustrative walk through of our extensions
	Experiments
	Evaluation cost model
	Evaluation of provisioned concurrency
	Evaluation of trigger
	Evaluation of performance metrics

	Summary

	Parallel Event System to Reveal the Internal Behavior of our Serverless Environment
	Introduction
	PDES issues and challenges
	Prominence of recurrent events
	The parallelisation of simultaneous events
	Evaluation of the parallel event system
	Validation of the parallel event system
	Performance of the parallel event system

	Evaluation of our serverless environment using parallel event system
	Summary

	Conclusion
	Summary
	Contributions
	Future works

	Author’s Publication and Software Availability
	Author’s publication
	Software availability

