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Abstract 

Object positioning is becoming more and more important, and thus, nowadays is integrated in 

our everyday life. Be it the positioning of a mobile phone, a passenger vehicle, or any 

autonomous transportation vehicle in a warehouse, the demand after new and more reliable 

positioning methods and technologies is high. While the outdoor case of object positioning is 

dominated by the Global Navigation Satellite Systems, indoor positioning is still under heavy 

research with various techniques competing with each other trying to provide the best solution 

for the different use cases and their requirements. 

Indoor positioning can be achieved with numerous technologies, e.g., using radio signals, 

ultrasound, RFID tags, graphical markers, fingerprinting, and optical solutions. The thesis 

provides contributions to visible light-based indoor positioning systems utilizing cameras as to 

be positioned objects, and LED light fixtures as reference points, which are pre-installed in 

known positions and can also be part of the environment’s lighting infrastructure. The reference 

points (LED beacons) are identified by utilizing a Visible Light Communication protocol. The 

thesis introduces a possible implementation of such an indoor positioning system on which the 

results are based. 

One of the main requirements for the LED beaconing in the positioning system is that the 

LED’s modulation should not be disturbing for the human eye. The other important requirement 

is that the camera should not be required to operate in a synchronized manner with the LED 

beacons. These requirements inevitably cause undersampling for the communication, since an 

ordinary camera operates in the 30-120 Hz region, and a flicker free modulation requires a much 

greater frequency, e.g., more than 1000 Hz. The detailed error analysis of two VLC protocols 

found in the literature - namely Undersampled Frequency-Shift On-Off Keying, and 

Undersampled Phase-Shift On-Off Keying - are provided in the thesis. The effect of various 

error sources - e.g., thresholding error, saturation, noise, jitter, and frequency error - on the 

performance properties of the protocols are analyzed. 

A key feature for robust, real-time operation for such positioning systems is the 

trackability of the LED beacons on the camera’s image stream. A steadily trackable beaconing 

solution is presented in the thesis, which builds on the basics of the UPSOOK protocol. It 

incorporates two LEDs, a circular and a ring shaped one, of which at least one is always active. 

Another important feature is the identifiability and availability of the beacons, but due to the 

camera is unsynchronized to the LED beacons reliable operation is not possible with the 

aforementioned protocols from the literature. A novel, robust VLC protocol is presented in the 

thesis which can be used to stream a beacon’s ID periodically, and provide error-free operation 

in a wide range of parameters. The protocol uses equivalent sampling, and is also based on the 

UPSOOK protocol. 

The thesis also presents two positioning algorithms, which uses the measured angle 

differences between detected LED beacons pairs to estimate the object’s (camera’s) position 

and orientation. The first method utilizes a heuristic, geometric approach using inscribed angles, 

and two threshold parameters for outlier filtering. The second method uses a random sample 

consensus-based method, where the position estimate is further refined with the Nelder-Mead 

method using a consistent set of beacons. 



  



Kivonat 

A különféle objektumok helymeghatározása egyre fontosabb szerepet játszik a mindennapokban, 

melynek köszönhetően mára már szinte teljesen integrálódott az életünkbe. Legyen szó akár egy 

mobiltelefon, személygépjármű vagy egy raktárban működő autonóm szállítójármű 

lokalizációjáról, nagy az igény az újabb, megbízhatóbb helymeghatározási módszerek és 

technológiák iránt. Míg az objektumok helymeghatározását kültéri esetben a globális 

helymeghatározó műholdrendszerek dominálják, a beltéri helymeghatározás mind a mai napig 

erősen kutatott tématerület egymással versengő módszerekkel, melyek mindegyike a legjobb 

megoldást próbálja kínálni a különböző felhasználási területek számára. 

Beltéri helymeghatározás számos technológiával megvalósítható, például rádióhullámok, 

ultrahang, RFID címkék, grafikus markerek, lenyomat-alapú módszerek, vagy optikai megoldások 

segítségével. Az értekezés olyan látható fény-alapú beltéri lokalizációs rendszerekhez tartalmaz új 

eredményeket, amelyeknél kamerák helymeghatározása történik ismert pozíciókban előre 

elhelyezett LED lámpák segítségével, amelyek referencia pontokként kerülnek felhasználásra, és 

akár a helyszín megvilágítási infrastruktúrájának részét is képezhetik. A referencia pontok (LED 

jeladók) látható fény-alapú kommunikációs protokoll használatával kerülnek azonosításra. A 

dolgozat bemutatja az említett beltéri helymeghatározó rendszer egy lehetséges megvalósítását, 

amelyen az elért eredmények is alapulnak. 

Az egyik fő követelmény a helymeghatározó rendszerben használt LED jeladók számára, 

hogy a LED-ek modulációja ne legyen zavaró az emberi szem számára. A másik fontos 

követelmény, hogy ne kelljen a kamerát és a LED jeladókat szinkronizáltan üzemeltetni. Ezek a 

követelmények elkerülhetetlenül alulmintavételezést fognak okozni a kommunikáció során, hiszen 

egy átlagos kamera a 30-120 Hz-es tartományban üzemel, viszont a villódzásmentes modulációhoz 

jóval nagyobb frekvencia szükséges, akár több mint 1000 Hz. A dolgozat tartalmazza kettő, a 

szakirodalomban fellelhető - név szerint, Undersampled Frequency-Shift On-Off Keying, and 

Undersampled Phase-Shift On-Off Keying - protokoll részletes hibaanalízisét. Bemutatásra kerül, 

hogy a különböző hibatényezők – például a küszöbérték szuboptimális megválasztása, a szenzor 

szaturációja, mérési zaj, jitter, frekvencia hiba - milyen hatást gyakorolhatnak a protokollok 

teljesítményére. 

Az efféle helymeghatározó rendszerek robusztus, valós-idejű működésének egy 

kulcsfontosságú tényezője, hogy a LED jeladók nyomon követhetőek legyenek a kamera által 

szolgáltatott képsorozatban. A dolgozat bemutat egy stabilan nyomon követhető jeladózási 

megoldást, amely az UPSOOK protokoll alapjaira épít. Két LED-et használ, egy kör és egy gyűrű 

alakút, amelyek közül legalább egy állandóan aktív. Egy másik fontos tényező a jeladók 

azonosíthatósága és rendelkezésre állása, ám köszönhetően annak, hogy a kamera nincs 

szinkronizálva a LED jeladókhoz, lehetetlen biztosítani a már említett kettő, szakirodalomban 

fellelhető protokoll megbízható működését. A dolgozatban egy újszerű, robusztus VLC protokollt 

mutatok be, melynek segítségével a jeladók azonosítókódja periodikusan ismétlődve átküldhető, 

továbbá a különböző paraméterek egy széles tartományán belül képes hibamentesen üzemelni. A 

protokoll ekvivalens mintavételezést használ és szintén az UPSOOK megoldásra épül. 

A dolgozatban bemutatok továbbá kettő helymeghatározási algoritmust, amelyek detektált 

jeladó-párok közt mért szögkülönbségek felhasználásával becslik a lokalizálandó objektum 

(kamera) pozícióját és orientációját. Az első módszer egy heurisztikus, geometriai-alapú 

megközelítés, amely látószögek felhasználásával működik, és két küszöbérték paramétert használ 

a kiugró mérések kiszűréséhez. A második módszer az iteratív robusztus becslési eljáráson alapul, 

ahol a pozíció becslő további finomításra kerül a Nelder-Mead módszerrel a jeladók egy 

konzisztensnek ítélt halmazának felhasználásával.



  



Abstrakt 

Die Lokalisierung verschiedener Objekte spielt eine zunehmend wichtige Rolle in unserem 

täglichen Leben und ist zu einem integralen Bestandteil unseres Daseins geworden. Ob es sich um 

die Lokalisierung eines Mobiltelefons, eines Personenkraftwagens oder eines autonomen 

Transportfahrzeugs in einem Lager handelt, es besteht eine wachsende Nachfrage nach neuen und 

zuverlässigeren Methoden und Technologien zur Bestimmung der Position von Objekten. Während 

die Lokalisierung von Objekten im Freien von globalen Satellitenpositionierungssystemen 

dominiert wird, bleibt die Lokalisierung in Innenräumen ein stark erforschtes Gebiet mit 

konkurrierenden Methoden, die jeweils die beste Lösung für verschiedene Anwendungsbereiche 

bieten möchten. 

Die Innenraumlokalisierung kann mit verschiedenen Technologien realisiert werden, 

wie beispielsweise Funkwellen, Ultraschall, RFID-Tags, grafische Marker, 

fingerabdruckbasierte Methoden oder optische Lösungen. Diese Arbeit präsentiert neue 

Ergebnisse für sichtlichtbasierte Innenraumlokalisierungssysteme, bei denen die Lokalisierung 

von Kameras mithilfe von LED-Lampen in bekannten Positionen als Referenzpunkte erfolgt. 

Diese Referenzpunkte (LED-Sender) werden mithilfe eines sichtlichtbasierten 

Kommunikationsprotokolls identifiziert. Die Arbeit zeigt eine mögliche Umsetzung des 

genannten Innenraumlokalisierungssystems auf der Grundlage der erzielten Ergebnisse. 

Eine der Hauptanforderungen für die in dem Lokalisierungssystem verwendeten LED-

Sender ist, dass die Modulation der LEDs nicht störend für das menschliche Auge sein darf. 

Eine weitere wichtige Anforderung ist, dass die Kamera und die LED-Sender nicht synchron 

betrieben werden müssen. Diese Anforderungen führen zwangsläufig zu einer Untersampelung 

in der Kommunikation, da eine durchschnittliche Kamera im Bereich von 30-120 Hz arbeitet, 

während eine flimmerfreie Modulation eine wesentlich höhere Frequenz erfordert, die 

möglicherweise über 1000 Hz liegt. Die Arbeit enthält eine ausführliche Fehleranalyse von 

zwei Protokollen aus der Literatur, nämlich Undersampled Frequency-Shift On-Off Keying und 

Undersampled Phase-Shift On-Off Keying, und untersucht, wie verschiedene Fehlerfaktoren 

wie unsachgemäße Schwellenwerteinstellung, Sensorübersättigung, Messrauschen, Jitter und 

Frequenzfehler die Leistung dieser Protokolle beeinflussen können. 

Ein Schlüsselfaktor für den robusten Echtzeitbetrieb solcher Lokalisierungssysteme ist 

die Rückverfolgbarkeit der LED-Sender in der von der Kamera bereitgestellten Bildfolge. Die 

Arbeit stellt eine stabile rückverfolgbare Signalisierungslösung auf der Grundlage des 

UPSOOK-Protokolls vor. Es werden zwei LEDs verwendet, eine kreisförmige und eine 

ringförmige, von denen mindestens eine ständig aktiv ist. Ein weiterer wichtiger Faktor ist die 

Identifizierbarkeit und Verfügbarkeit der Sender. Aufgrund des Mangels an Synchronisation 

zwischen Kamera und LED-Sendern ist es jedoch unmöglich, den zuvor erwähnten beiden 

Protokollen einen zuverlässigen Betrieb zu gewährleisten. In der Arbeit wird ein neues robustes 

Visible Light Communication (VLC)-Protokoll vorgestellt, das die periodische Übertragung 

von Senderidentifikationscodes ermöglicht und einen fehlerfreien Betrieb innerhalb eines 

breiten Parameterspektrums sicherstellt. Das Protokoll verwendet die äquivalente Abtastung 

und basiert ebenfalls auf der UPSOOK-Lösung. 

Die Arbeit stellt auch zwei Lokalisierungsalgorithmen vor, die die Position und 

Ausrichtung des zu lokalisierenden Objekts (der Kamera) anhand der gemessenen 

Winkelunterschiede zwischen erkannten Senderpaaren schätzen. Die erste Methode ist ein 

heuristischer, geometriebasierter Ansatz, der Sichtwinkel verwendet und zwei 

Schwellenwertparameter zur Filterung von Ausreißern einsetzt. Die zweite Methode basiert auf 

einem iterativen robusten Schätzverfahren, bei dem der Positionsschätzer mithilfe der Nelder-

Mead-Methode und einer konsistenten Gruppe von Sendern weiter verfeinert wird. 
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1 

1 Introduction 

This section provides a brief overview of the current, widely used positioning principles (Section 

1.1) and their applications (Section 1.2). Section 1.3 presents the problem statements and my 

research goals. The localization system’s architecture, on which the various methods and algorithms 

of this thesis is based, is presented in Section 1.4. 

1.1 Object positioning and tracking principles 

In the field of object positioning several basic principles are used, where an object’s position is 

calculated/estimated using measured quantities in the environment of the object. These methods can 

be categorized into the following main groups: geometrical methods (ToA, TDoA, AoA, ADoA), 

dead reckoning, and fingerprinting methods. 

A geometrical method uses measured quantities of angles and distances from which the 

location estimate is calculated. These methods require reference anchor points. The position of 

anchor points is either calculated, estimated on the go, or measured at the installation or calibration 

phase of a positioning system. 

Dead reckoning only uses measured quantities which represent object state differences (e.g., 

position differences) that are accumulated over time. In this case, for example, only the relative 

movement path can be estimated based on an initial state. The absolute position estimate can only 

be obtained if the initial state of the target object is known. 

Fingerprinting methods compare various measured quantities (e.g., magnetic field, Wi-Fi 

RSSI) to previously measured value maps created in the object’s environment at the installation or 

calibration phase of such systems. 

These positioning principles will now be introduced with examples in 2-dimensional space, 

and without measurement noise for the sake of simplicity. Note that they can be trivially extended 

to the more general 3-dimensional case. 

1.1.1 ToA/TDoA 

Time of Arrival (ToA, also known as Time of Flight or ToF) approach utilizes range-based 

measurements between the target object and different anchor points in its environment. The distance 

is measured with some sort of signal’s propagation: the distance between the target object and a 

reference point is proportional with the measured time required for that signal to travel through a 

medium, hence the name of this approach. When multiple reference points are available, the target 

object’s position can be narrowed down to intersections of basic geometrical entities (e.g., 

hyperbolas or circles in a 2-dimensional case) constructed from the measurements and known 

location of the anchors. The principle is illustrated in Figure 1.1. 
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Figure 1.1 Range-based location estimation of object 𝐶 using anchor points 𝐵𝑘 with: (a) Time of Flight (ToA) 

approach utilizing measured ranges 𝑟𝑘, and (b) Time Difference of Arrival (TDoA) approach utilizing the 

measured range differences. 
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If we can measure the exact distance (or signal propagation time) between the target object 

and the anchor points, the target object is located at the intersection point of circles. These circles 

are located around the reference points and their radii are equal to the measured distances, as seen 

in Figure 1.1 (a). [1-5] 

If we cannot measure the exact distances between the reference points and the target object, 

but only their differences, we talk about Time Difference of Arrival (TDOA). In this case the target 

object will be located at the intersection point of hyperbolas, as seen in Figure 1.1 (b). [6-10] 

1.1.2 AoA/ADoA 

Angle of Arrival (AoA) is an approach that utilizes angles as measured quantities. In most cases the 

angle between a global reference direction and the target object is measured at several reference 

points from which the target object’s position can be trivially determined as the intersection point 

of vectors, as can be seen in Figure 1.2 (a). [11-16] 
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Figure 1.2 Angle-based location estimation of object 𝐶 using anchor points 𝐵𝑘 with: (a) Angle of Arrival (AoA) 

approach utilizing measured angles 𝜙1, 𝜙2 based on a reference direction, and (b) Angle Difference of Arrival 

(ADoA) utilizing measured angle differences 𝛼, 𝛽 from object 𝐶’s point of view between reference points 

[𝐵1;𝐵2] and [𝐵2;𝐵3], respectively. 

If no global reference direction is available for the angle measurements, the difference of the 

angles can still be used to determine the target object’s position. This approach is called Angle 

Difference of Arrival (ADoA). In this case the measured angle differences are the inscribed angles 

in circles: the angle between two reference points from the target object’s view, as can be seen in 

Figure 1.2 (b). When an adequate number of measurements are available, the position can be 

estimated as the intersection point of such circles, constructed from the angle difference 

measurements and the reference point coordinates. [11,17-20] 

1.1.3 Dead reckoning 

Dead reckoning in itself is a relative positioning approach, where consecutive movement parameters 

(distance, direction) are measured or estimated (e.g., using rotary encoders, accelerometers or 

gyroscopes), and are integrated together to obtain the current position of the tracked object with 

respect to its previous position, as seen in Figure 1.3. The obvious downsides of this approach are 

that it also accumulates the measurement errors and requires correction from time to time, and that 

the position estimate itself is relative to the initial position of the system. Dead reckoning is typically 

used in combination with other approaches to minimize or eliminate these problems. [21-25] 



 

3 

(C )(O)

P1

P2

P3

P4

PN

d⃗ 1
d⃗

2

d⃗
3

d⃗ N−1

 

Figure 1.3 Dead reckoning localization of object 𝐶 in estimated relative position 𝑃𝑁 with respect to an initial 

position 𝑃1 using consecutive displacement estimations 𝑑𝑘. If the exact initial position value 𝑂 for 𝑃1 is known, 

then the target object’s relative position estimate 𝑃𝑁 can be converted to an absolute position estimate 𝐶. 

1.1.4 Fingerprinting 

The fingerprinting approach requires a previously measured reference value map, where the 

measured quantities (fingerprints) are collected in several well-known coordinates, usually based 

on a grid. During localization the currently measured quantities are compared to the reference map 

and the position is estimated with the point that has the highest correlation between the measured 

and reference values, as seen in Figure 1.4. This approach typically uses multiple measurable 

quantities to further improve positioning accuracy, moreover, using a single quantity may result in 

ambiguous position estimates (due to multiple local optimums). The most commonly used 

quantities for fingerprinting are received signal strength and magnetic field. [26-30] 

measurement

C

reference map

 

Figure 1.4 Fingerprinting approach for location estimation utilizing a reference map to which the actual 

measurement is compared. The measurement is taken at the target object’s current position. The position 

estimate is located at point 𝐶, where the correlation is the highest. 

1.2 Object positioning technologies 

While Global Navigation Satellite Systems (GNSS) dominate in outdoor positioning, at certain 

conditions (e.g., at the base of tall buildings, underground or indoors) accurate position estimates 

cannot be provided or even the technology itself may fail due to reflecting, fading, multipath effect, 

deep shadowing effect, and interferences. It may also happen that certain applications simply 

require more precision that GPS can provide real-time in a specific environment. Several methods 

have been proposed in the recent decades to provide alternative methods for indoor positioning. 

This section provides a brief overview of these approaches and shows how the positioning 

principles are used with different technologies. 

Radio signal-based localization [31] is among the most common approaches of indoor 

positioning. Several radio technologies can be utilized for this purpose, for example Wi-Fi, 

Bluetooth [32], UWB [6,12,18,33], ZigBee [34], LoRa [35], Cellular (e.g., 4G [36], and 5G [37]), 

and even RFID [38]. When used with fingerprinting, various signal parameters (or even their 

combination) can be used: Received Signal Strength (RSS) [39], Channel State Information (CSI) 

[40]. Although creating a reference map of the localization environment is quite costly and labor-

intensive, good results can be achieved with it in Non-Line of Sight (NLoS) cases, where there may 
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be additional signal distortions due to obstacles between the transmitter and receiver. Note that 

RSSI, since it is based on a path loss model, is prone to ambiguity, and is often combined with other 

parameters (e.g., CSI), so that reference measurements may provide a more unique description 

about the environment. On the other hand, range and angle-based methods (ToA, TDoA, AoA, 

ADoA) provide the best results when Line of Sight (LoS) is available and the signal can be 

transmitted without any interfering structural obstacles, lowering shadowing and multipath effect. 

Another approach uses radio-interferometric measurements [41] for localization and tracking. 

The system performs low frequency signal processing on interference signals instead of using high 

frequency signal processing, and uses RSSI along with phase-difference measurements to estimate 

the tracked object’s position with the intersection point of hyperbolas. 

Acoustic (audible and ultrasound) techniques [42,43] utilize angle and range-based principles 

to estimate the position or even the orientation of the target object. The system proposed in [44] 

uses a number of broadband ultrasonic transmitters (reference points) in known positions with radio 

frequency synchronization, which transmit simultaneously using Frequency-Hop Spread Spectrum. 

Mobile nodes (target objects) utilize a circular sensor array. When they receive at least three signals, 

they are able to estimate their own position (with ToF) and orientation (with AoA) using a 

multilateralization algorithm. A big drawback of acoustic positioning is that the speed of sound is 

temperature dependent, so the temperature of the environment is also needs to be monitored for 

compensation purposes. 

Inertial Measurement Units (IMU) are typically used in pedestrian dead reckoning techniques 

with other sensor modalities using data fusion [45]. When not combined with other positioning 

methods, dead reckoning may still provide good results for room level localization in indoors, 

moreover, the system does not require a beaconing infrastructure, and is low cost. In [46] the relative 

movement trajectory of the target object is fitted to a map of the environment with which the 

position estimate becomes absolute and the movement trajectory’s drift is also lowered. 

Digital cameras are also used in localization solutions, where some kind of feature extraction 

with image processing is involved to obtain and identify reference points in the captured camera 

images (e.g., solution [47] using circular feature extraction method [48]). The reference points may 

be an infrastructural part of the positioning system, e.g., pre-installed markers (Aruco, QR, etc.) or 

LED beacons [49, 50] in the environment, other solutions use algorithmically extracted feature 

points of the captured image with Simultaneous Localization And Mapping (SLAM) methods [51] 

with which not only the positioning of the target object, but also the mapping process of the 

environment can be achieved at the same time. 

Light-based approaches don’t necessarily use digital cameras. Laser scanners provide very high 

accuracy in the mm/cm range, but also at a very high price tag [52]. Localization can also be achieved with 

photodiodes or phototransistors. In [53] a simple photodiode-based positioning technique was proposed, 

which utilizes Visible Light Communication (VLC) to transmit additional data (e.g., the reference point’s 

ID, or even its position). The proposed approach uses pre-installed LED beacons (reference points) on the 

ceiling, at known locations. These beacons transmit their position simultaneously with different 

subcarriers, to reduce possible interference. A simple photodiode (the target object to be localized) is 

placed underneath these beacons, facing upwards. The system has some limitations: the movement plane 

of the photodiode has to be parallel with the plane where the beacons are placed; the distance between the 

two planes has to be known; the tilting of the sensor is prohibited, or needs to be compensated. The 

proposed solution uses measured RSS as range-based measurements (TOA principle) and an 

experimentally measured angle-gain profile for location estimation. In [53] the beacons transmit their 

positions with a high frequency subcarrier (for 3 beacons: 2.0, 2.5, 3.0 MHz). In [54], and in [55] a similar 

setup is used, but the beacons transmit their IDs using OFDM, and OFDMA, respectively. In [56] a two-

stage neural network is used to learn the environment using the LED beacon’s RSS. A more common way 

of indoor positioning with visible light is to use angle measurements with AoA/ADoA principles 

[11,17,57,58]. The positioning method proposed in [59] uses a quadrant photodiode (2 by 2 grid sensor 

arrangement) with a single aperture to measure the angle of the incoming light. In [60] an entire array of 

photosensitive sensors (in a circular shape) was used to obtain azimuthal angle measurements in 360°.  
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1.3 Research goals and problem statements 

Off-the-shelf cameras present a promising opportunity for the development of indoor positioning 

systems due to the advancements of camera technology in recent years: their quality is increasing, 

yet they become more and more affordable and widely available. With the advancements of 

computer vision and image processing algorithms off-the-shelf cameras can be used to identify and 

track visible light patterns more accurately. This enables the development of robust positioning 

solutions that work effectively in complex indoor environments, where other positioning 

technologies cannot provide good performance or may not be applicable. 

My main research goal was to create a robust visible light-based indoor positioning system, 

that is able to provide real-time position and orientation estimates in the centimeter range, while 

still can be considered inexpensive. 

Optical positioning techniques utilize “anchor” features in images to determine the position 

and orientation of the camera sensor. The position of these reference points is either estimated on 

the go, or measured at the installation phase of the system. Image feature extraction methods are 

used to detect possible anchor points based on their descriptive properties, which is a difficult task: 

there exists several algorithms tailored to specific needs, but there is no universal solution; it can be 

computationally expensive; its success rate may depend on the properties of the environment, and 

may provide several non-reliable, and false detections. Using modulated LED light fixtures as 

anchor points is beneficial in multiple ways: the detection of such features is not computationally 

demanding; they can be easily detected in the image as bright spots, and can be identified based on 

their unique modulation patterns; when operated in the visible light spectra, they may also be part 

of the environment’s lighting infrastructure. It is also important to note that the modulation signal 

of the protocol needs to be high enough to achieve flicker-free operation that does not disturb the 

human eye (>> 200 Hz). However, the sampling rate (or frame rate) of off-the-shelf cameras is 

usually limited to 30-60 Hz, inevitably causing undersampling. Thus, special communication 

protocols need to be used that can operate even when the transmitted data signal is undersampled. 

Undersampled Frequency-Shift On-Off Keying (UFSOOK) [61] and Undersampled Phase-

Shift On-Off Keying (UPSOOK) [62] are two visible light communication (VLC) protocols found 

in the literature that can be used to transmit data between a light source and a camera sensor. They 

can also be adjusted to minimize the flickering for the human eye. 

The features of UFSOOK and UPSOOK made them promising to be used for beacon 

identification for the visible light-based positioning system. My first goal was to analyze them and 

provide detailed explanation how various error sources may affect their operation. (Sections 2-3) 

While examining UFSOOK and UPSOOK it turned out that they need time synchronization 

and precise clock signal generators to operate reliably, which is not feasible in most practical cases, 

and reduces the beacons’ cost-effectiveness and complexity. Also, their proposed decoding method 

depends on the sampled light intensity, which makes them impractical for positioning applications 

where the position of the transmitters and receivers may change over time. 

My second goal during my research was to address the trackability and reliable identifiability 

of the beacons without synchronization by: designing an LED light fixture that is easy to track in 

the camera image and can be used to transmit beacon IDs for the positioning system; developing a 

robust communication protocol tailored for the periodical transmission of constant beacon data 

(e.g., beacon ID, beacon position). (Sections 4-5) 

The third topic of my research was directed towards the positioning methods used in the 

indoor positioning system. Most solutions require at least 6 beacons to operate, due to the degree 

of freedom in a general, 3-dimensional case. The type of lens used for the camera also has an impact 

on the expenses of the system: by using a fisheye lens, the field of view of the camera sensor is 

gradually increased, lowering the beacon count needed for the operation of the positioning system. 

For most practical applications, the estimation of a 2-dimensional position and orientation is 

sufficient, which decreases the degree of freedom, and further decreases the minimum number of 

beacons required by the system. A reliable positioning solution also has to handle outlier 
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measurements in the system, whose occurrence is unavoidable in most cases due to reflections and 

other measurement error possibilities. 

My third goal during my research was to develop robust, fast positioning solutions that can 

provide 2-dimensional position and orientation estimates in real-time while mitigating the impact 

of outlier measurement errors in the system. (Sections 6-7) 

In Section 1.4  a novel, visible light-based indoor positioning and tracking system is proposed, 

which utilizes an off-the-shelf global shutter digital camera with fisheye lens as to be localized 

target object and pre-installed LED light fixtures using VLC as beacons. The motivation behind the 

system is to merge the good properties of digital camera-based and visible light-based positioning 

techniques: the good resolution of recent digital cameras is very beneficial for angle measurements 

for AoA/ADoA-based positioning, moreover, cameras are able to support multiple beacons out of 

the box (they appear as distinct blobs in the captured image); LED fixtures with visible light 

communication capabilities may provide reliable, robust and easy-to-detect features in the camera’s 

image stream. 

1.4 Proposed localization system’s architecture 

In this section the proposed indoor positioning system (IPS) is presented, which was also the testbed 

for the various VLC protocols and positioning methods presented later in the thesis. The design 

considerations mainly targeted the practical use case in a warehouse, where different kinds of 

automated guided vehicles (AGVs) and forklifts have to be localized. In most IPS use cases the 2-

dimensional position estimate of the target is sufficient, as in this case, since these vehicles usually 

move on an approximately flat plane with not so many elevations. 

The system’s infrastructure (see Figure 1.5) consists of pre-installed LED light fixtures, in 

known positions, which act as reference points. 

ID: i ID: j

Proccessing unit

LED beacons

Grayscale image stream

Moving object

VLC controller

Camera

185° FOV

fisheye lens

Bj Bi

Beacon positions: P1, P2,    Pi, Pj, ...  

 (a) (b) 

Figure 1.5 (a) Hardware architecture of the proposed indoor positioning system: LED beacons 𝐵𝑘 are installed at 

known positions 𝑃𝑘 in the environment and continuously transmit their identification number 𝑘 using a visible 

light communication protocol. A digital camera with fisheye lens is attached to the target object, which we 

would like to localize, and captures a continuous video footage of the environment. A processing unit calculates 

the real-time position estimate of the moving object based on the camera’s image stream and the known location 

of the beacons. (b) Application example: automated guided vehicle with the attached camera and a processing 

unit (notebook). 

These beacons are controlled according to a visible light communication protocol so that they are 

able to continuously transmit their own identification number. The receiver part of the system is a 

digital camera which captures its environment along with these LED beacons and provides a 
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continuous image stream for a processing unit. The processing unit is responsible for the 

identification of the reference points in the captured image stream, and for the calculation of the 

real-time position and orientation estimate of the camera based on the position of the identified 

reference points in the consecutive images and their known real-world location. The pose (i.e., the 

position and orientation) estimate of the target object is then obtained after the application of a 

trivial geometric transformation (applying the constant translation and rotation between the camera 

and the target object) on the calculated camera pose estimate. 

Digital cameras with global shutter are advised to be used in the system, instead of rolling 

shutter ones, so that every pixel of the sensor captures the incoming light at the same time avoiding 

the rolling shutter distortion effect. The camera is equipped with a 185° field of view fisheye lens 

and is mounted above the AGV or forklift, facing upwards, to minimize the occurrence of obstacles 

between the camera and the beacons providing good LOS availability. 

The LED beacons can be located on the ceiling, on the horizon of the camera or somewhere 

in between. Placing them on the horizon may provide the best angular resolution for angle-based 

positioning with the fixed upwards looking camera, but other vehicles with the same camera height 

may interrupt the LOS availability of the beacons. The white light LEDs that were used for 

beaconing in the system are 10-20 W of power to be easily visible by the camera from higher 

distances (20-30 meters), and can also be used to illuminate the interior environment being part of 

the lighting infrastructure. 

Note that one may find it tempting to use infrared LEDs in the beacons to minimize possible 

interferences with other light sources, and to be able to use communication methods with lower 

frequencies (that may disturbingly flicker with visible light), since the human eye is not that 

sensitive in that light spectrum. However, high power IR light may cause serious eye injuries if the 

beaconing infrastructure is designed to be too powerful, and extra care must be taken in that case. 

Using the visible light spectrum may also allow the usage of existing light fixtures as passive 

beacons (auxiliary beacons without VLC) if they provide a consistent, reliable light source without 

flickering (even for the camera) and without other defects in the camera image. It is also important 

to use the VLC protocols with such settings that will not cause intense flickering of the light for the 

human eye. In general, a blinking frequency above 200 Hz can be considered safe [63]. 

Figure 1.6 shows an image of the digital camera with a 185° fisheye lens attached and an 

LED beacon that were used in the localization system. 

 

 (a) (b) (c) 

Figure 1.6 (a) Digital camera with fisheye lens. (b) Trackable LED beacon design. (c) Camera image of the LED 

beacon when the outer ring is on (upper) or off (lower). 

The LED beacon is designed to be easily detectable and trackable by the IPS. As opposed to many 

VLC methods, the protocols used in this system are not utilizing the measured light intensity 

changes of a beacon directly, but the changes of its size in consecutive camera images. To achieve 

the size changing behavior in the captured camera images, the beaconing light fixture consists of 

two separate high power Multiple Chip-On-Board (MCOB) LEDs: a smaller circular one, and a 

larger ring one around it. At least one of the LEDs are always on, hence the trackability of the 
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beacon. Section 4 presents the trackable beacon design and the first proposed VLC protocol 

(TUPSOOK) that was used with it at that time in detail. Using global shutter cameras and size-

based decoding also makes it possible to detect the beacons from longer distances, as opposed to 

the rolling shutter solutions (e.g., Luxapose [64]). 

The camera was calibrated using an improved version of the Omnidirectional Camera 

Calibration (OCamCalib) Matlab toolbox [65], [66] with 16 images of a conventional 7 by 9 

calibration chess pattern printed on a A4 sized paper, which is favored by many camera calibration 

methods due to the ease of use of corner extraction methods. Grayscale cameras provide more 

accurate measurements than colored cameras [67] with general calibration methods, and also the 

detection of blobs is more accurate as all the pixels share the same sensitivity to white LED beacons. 

This is especially important when the beacons are sensed from longer distances, and they are 

represented on the camera image only by a few pixels. 

The functional diagram of the localization system’s Processing unit is shown in Figure 1.7. 

The processing modules that the system is made up of are the following: 

Blob detector

Object tracker

Beacon identifier
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Figure 1.7 Functional diagram of the Processing unit. The forward data flow is represented with solid blue 

arrows, and feedback with dashed blue arrow. The 2D/3D visualization module is an example output module. 

Image pre-processor: The raw input grayscale image frames of the video stream start their 

journey with image filtration at the Image pre-processor module, which aims to provide a consistent, 

noise-free, binarized output image. The operation of the module is shown in Figure 1.8. The module 
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houses a Gaussian-filter, an image binarization step, two dilation and one erosion operation. The 

dilation and erosion operations can even be configured to do a morphological close or open 

operation (by bypassing the last or first dilation). The kernel size 𝑘𝑛 of the operations, the 𝜌 

percentage and 𝑄 binarization threshold level are experimentally set. Apart from the binarization, 

every other step can be bypassed if deemed by the user as not needed. The image processing part 

of the module was implemented with the cross-platform Open-source Computer Vision library 

(OpenCV) [68]. 

Input
γ 
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Figure 1.8 Image pre-processor module’s operation diagram. The module supports the setting of kernel size 𝑘𝑛 

of the Gaussian filter and the dilation and erosion operations (bypassed if set to 0), the filter application 

percentage 𝜌 and the binarization threshold level 𝑄. A morphological close or open operation can also be 

achieved. 

Blob detector: This module analyzes the binarized image to find consistent, white blobs which 

are possible LED beacons. The center point and area (in pixels) of the detected blobs are also 

calculated by the module. The blob’s center point will be handled as the approximation for the 

center point of the beacon in the image, which is easy to determine, and introduces a small amount 

of error if the beaconing is properly designed (e.g., visible, yet small beacons in the image). The 

areas of the blobs are used by the VLC protocol at the Beacon identifier module. The Blob detector 

module used in this system was implemented with the connectedComponentsWithStats function of 

the OpenCV library, which, as its name suggests, extracts the connected white areas (potential 

beacon candidates) from the image along with their statistical information (e.g., midpoint of the 

connected area, pixelwise size of the area, bounding box, etc.). The speed of this method is 

remarkably fast (~1.5 msec on a conventional laptop), which makes it possible to use in real-time 

applications. 

Object tracker: To be able to retain the identity of the blobs between the consecutive images, 

an Object tracker module is incorporated in the system. The operation of the module is shown in 

Figure 1.9. This module is implemented using an open source multitarget tracker library [69]. The 

library offers several tracking algorithms, from which the Hungarian method-based one was used 

with Euclidean distances between the detected blobs’ center points in the image and the tracked 

blobs’ latest trajectory elements. The distance, as cost, is minimized with the algorithm creating an 

optimal matching of the newly detected and already tracked blobs. Each tracked object is backed 

up with a Kalman-filter using a constant velocity model that smooths the trajectory of the tracked 

blob and is able to predict its movement for a short period of time if it is not visible in the image. If 

a tracked object is not visible for too many consecutive image frames it is removed from the tracking 

system. The threshold is configured experimentally or is based on the properties of the VLC 

protocol in use. Apart from the trajectory, the sizes of the blobs are also stored for each tracked 

object in separate buffers which will be used later by the Beacon identifier module to identify the 

tracked objects as beacons using the beacon database. The processing time of the Object tracker 

module is less than 1 msec in this application scenario. The use of underexposed, filtered camera 

images on which mostly only the beacons are visible is highly beneficial. 
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Figure 1.9 Operation diagram of the Object tracker module. 

Beacon identifier: This module is responsible for the identification of the beacons. It uses a 

Visible Light Communication protocol to decode the transmitted identification number of the active 

beacons and stores the tracking ID and the assigned beacon ID in its database. Based on the selected 

VLC protocol implementation and beacon design the decoding may happen based on the measured 

consecutive light intensity changes of the beacon (e.g., the value of the pixel at the center point of 

a blob), or as in our case, it happens based on the stored consecutive size changes of the blob 

representing the beacon in the captured image. Two existing VLC protocols (found in the literature) 

are analyzed in Sections 2-3 in detail, and two proposed VLC protocols are presented in Sections 

4-5 in detail. 

Positioning module: The positioning module estimates the position and orientation of the 

target object (camera). First, the tracked and identified beacons’ center points in the image are 

transformed from the 2-dimensional image plane into the camera’s 3-dimensional local coordinate 

system as direction vectors using the camera’s calibration data. Perspective-n-Point algorithms 

[70],[71] are widely used for the generic, purely visual 3D camera pose estimation case, however 

they usually require at least 4 (typically 6, due to degrees of freedom) reference points. The angles 

can be measured in 3D, where both the azimuth and elevation of the beacon are measured [17], or 

in 2D, using only the azimuth values [58]. The azimuth-only estimation requires much less 

computation [72], and is sufficient for applications where only the 2D location is to be determined 

and the elevation is irrelevant (e.g., when a fork-lift truck is tracked). The sensor’s direction, 

however, must be known or measured in the azimuth-only method; the simplest solution being when 

the sensor is facing upwards [58]. The estimation of the sensor position can be made by solving an 

equation system [73]; or in case of redundant measurements, least squares methods [17], consensus-

based approaches [58], exhaustive search methods [17] were proposed. In the proposed system’s 

case, we are only interested in the 2-dimensional position of the camera, which is upwards-facing 

and is approximately parallel (or the measurements can be compensated with an IMU (e.g., [58]), 

so that the camera’s local coordinate system’s up axis is parallel) with the up axis in the world 

coordinate system. Only the azimuthal angle of the direction vectors is retained and used for 
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positioning. The orientation of the camera is not assumed to be known (only that it is facing 

upwards), meaning that angle difference measurements between identified beacon pairs from the 

camera’s point of view have to be used in the module with the ADoA positioning principle. I 

proposed two robust methods to address the positioning task of this module. The proposed methods 

were tested and used in the system. Sections 6 presents a heuristic, geometry-based approach using 

inscribed angles and arc intersections. Section-7 presents a RANSAC-based robust positioning 

approach in detail. Both methods were designed to provide outlier-tolerant estimates. 

Back-projection identifier: This module is used in the system to support the usage of passive 

beacons (light fixtures without VLC) and to speed up the identification of active beacons (requiring 

only one image frame, as opposed to e.g., 25 consecutive frames). The module requires an already 

calculated pose (position and orientation) estimate of the camera, the camera’s calibration data and 

the beacon database (real-world coordinates). The direction vectors from the estimated pose to the 

not yet identified beacons are calculated and projected back into the camera’s image coordinate 

system using the inverse of the transformation that was used to calculate the direction vectors from 

the image coordinates. When the system is used in a 3-dimensional positioning mode, these back-

projected vectors will be points in the image, but in our 2-dimensional case they only contain 

azimuthal angle information, so they are represented as lines in the camera image, meaning that any 

blob’s center point that is located on that line is a possible beacon-candidate. If the height of the 

camera and the height of the beacons in the world coordinate system are known, the back-projection 

method using the 3-dimensional case is also possible. 

Output module: The purpose of this module is to transmit the estimated camera position and 

orientation to other services. In Figure 1.7 the output module is represented by the 2D/3D 

visualization module that displays the position of the beacons and the estimated position and 

orientation of the camera along with its trajectory. 
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2 Analysis of the UFSOOK protocol 

The Undersampled Frequency-Shift On-Off Keying (UFSOOK) protocol [61] is a simplex VLC 

protocol found in the literature that can be used to transmit data between an ordinary camera as the 

receiver, and controllable LED light fixtures (LED beacons) as transmitters. The protocol’s 

operation is illustrated in Figure 2.1. For the data transmission three different symbols are used: 

HEADER, MARK, and SPACE symbols, each symbol (or bit) requires 2 samples for decoding. 

Data packets are preceded by a Start Frame Delimiter, containing a HEADER symbol and a 

MARK symbol (see Figure 2.1). The MARK symbol in the Start Frame Delimiter is used to mitigate 

bad data transmission cases (e.g., caused by phase slippage when the MARK symbol in the Start 

Frame Delimiter is incorrectly detected as a SPACE). The HEADER symbol of the next packet is 

also used as a footer for the actual packet, achieving framing. A MARK symbol represents the 

logical 1 value, containing two consecutive samples with different light intensities (i.e., OFF-ON 

as in Figure 2.1, or ON-OFF). A SPACE symbol represents the logical 0 value, where two 

consecutive samples have the same light intensity state (i.e., ON-ON as in Figure 2.1, or OFF-OFF). 

Each symbol is generated as a square wave with different frequency, which can be chosen to seem 

flicker-free for the human eye, but not for the camera sensor. Thus, the communication protocol 

can be used in the environment’s lighting infrastructure too. 

ON

OFFL
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D
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TimeHEADER MARK (Logical 1) SPACE (Logical 0)

- maximum intensity - half intensity - minimum intensity

- symbol boundary- sampling instances
 

Figure 2.1 The operation of UFSOOK protocol. 

The HEADER symbol’s time period is chosen to be small with respect to the sensor’s 

exposure time (e.g., 𝑓𝐻𝐸𝐴𝐷𝐸𝑅 > 10 kHz), thus, the camera senses it as half (average) intensity ( see 

the first two samples with detected half intensity signal values in Figure 2.1). The SPACE symbol’s 

frequency is chosen to be an integer multiple of the camera’s sampling frequency: 

𝑓𝑆𝑃𝐴𝐶𝐸 =
1

𝑇𝑆𝑃𝐴𝐶𝐸

= 𝑛𝑓𝐶𝐴𝑀 (2.1) 

This choice of frequency ensures that consecutive samples are taken at the same phase of the signal, 

thus, providing the same values (see the last ON-ON sample pair in Figure 2.1). 

The MARK symbol’s frequency is chosen as follows: 

𝑓𝑀𝐴𝑅𝐾 =
1

𝑇𝑀𝐴𝑅𝐾

= (𝑛 − 0.5)𝑓𝐶𝐴𝑀 , (2.2) 

which leads to consecutive samples taken 180° out of phase, resulting in opposite signal values (see 

the second sample pair in Figure 2.1, showing OFF-ON values). 
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As a typical example, a camera with sampling rate of 30 Hz and 𝑛 = 4 results 𝑓𝑆𝑃𝐴𝐶𝐸 =
120𝐻𝑧 and 𝑓𝑀𝐴𝑅𝐾 = 105 Hz. Notice that each symbol contains 2 samples, hence every symbol 

(i.e., bit) has a transmission time of 2/𝑓𝐶𝐴𝑀. 

2.1 Camera sampling model 

In order to be able to perform the mathematical analysis of the protocol’s performance, a model on 

the operation of the camera and the light sources will be used. 

We assume the camera has global shutter, i.e., the sampling of each pixel is performed 

simultaneously. The sampling is performed during the exposure time of the camera sensor. If the 

exposure time is 𝑆 and the luminous intensity of the light source is 𝐼(𝑡), where 𝑡 is time, then the 

detected light intensity 𝑑 at time instant 𝑡0 is the following: 

𝑑(𝑡0) = α∫ 𝐼(𝑡)𝑑𝑡
𝑡0

𝑡0−S

+ 𝑛(𝑡0), (2.3) 

where α depends on the camera’s various properties and settings (e.g., ISO number and 

aperture size) and 𝑛(𝑡0) is the additive noise component. Notice that (2.3) is valid only when the 

camera is not saturated, i.e., the value computed in (2.3) is not larger than the maximum value the 

camera can represent (in case of cameras, sampled values are usually represented by 8-12-bit 

unsigned integers). 

Figure 2.2 (a) illustrates the effect of sampling with an integral camera model. The square-

wave light source’s intensity signal 𝐼 is sampled according to (2.3) in an aperture window 𝑤 with 

width 𝑆. The detected light intensity 𝑑, as a function of the sampling time instant, has a trapezoidal 

shape, where the rising and falling edges have width of 𝑆. 

I

w

d

S S

T/2

I'

w'

d'

S S

T/2

 

 (a) (b) 

Figure 2.2 Integral sampling and the equivalent model. (a) Integral sampling model. 𝐼 is the luminous intensity 

of the light source, 𝑤 is the sampling window with aperture time 𝑆, and 𝑑 is the detected light intensity as a 

function of the sampling time instant (which is at the center of the sampling window). (b) Equivalent model. 𝐼′ =
𝑑 is the modified light source, 𝑤′ is impulse sampling, and 𝑑′ = 𝑑 is the detected light intensity. 

Notice that the sampling time instant is in the center of the aperture window in case of Figure 

2.2 to better illustrate the connection. 

The operation of the system can be modelled with an equivalent model, illustrated in Figure 

2.2 (b): the equivalent light source produces the trapezoidal intensity curve 𝐼′ (instead of square 

wave 𝐼), as follows: 

𝐼′(𝑡0) = ∫ 𝐼(𝑡)𝑑𝑡
𝑡0

𝑡0−S

, (2.4) 

while the camera performs pulse sampling (instead of the integral sampling of (2.3)): 
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𝑑′(𝑡0) = α𝐼′(𝑡0) + 𝑛(𝑡0). (2.5) 

For every time instant 𝑡0, the two models are equivalent: 𝑑′(𝑡0) = 𝑑(𝑡0). 
The camera is assumed to perform sampling with constant frequency (or frame rate) 𝑓𝐶𝐴𝑀. 

We assume that the short-term stability of the camera is good enough, so we can ignore effects of 

frequency change or jitter.  

It is not assumed however, that the light modulator and the camera are synchronized. This 

would be impractical in most applications; thus, we allow slight differences between the ideal and 

real frequencies. Let the ideal camera frequency be 𝑓𝐶𝐴𝑀 and the corresponding ideal sampling 

period be 𝑇𝐶𝐴𝑀 = 1/𝑓𝐶𝐴𝑀, and let us assume that the modulator operates using this ideal frequency, 

according to (2.1) and (2.2). If the actual camera frequency is 𝑓𝐶𝐴𝑀 = 1/𝑇̃𝐶𝐴𝑀  then let us denote 

the difference between the actual and ideal sampling interval by 𝛿𝐶𝐴𝑀, as follows:  

𝛿𝐶𝐴𝑀 =
1

𝑓𝐶𝐴𝑀

−
1

𝑓𝐶𝐴𝑀

= 𝑇̃𝐶𝐴𝑀 − 𝑇𝐶𝐴𝑀 , (2.6) 

and the size of the difference 

𝛿 = |𝛿𝐶𝐴𝑀|. (2.7) 

2.2 Error analysis 

With respect to the assumptions at the end of Section 2.1 the effect of frequency error (Section 

2.2.1) and the effect of noise (Section 2.2.2) on the data transmission will be analyzed in the 

following. 

2.2.1 Frequency error 

Let us define the noise-free samples 𝑑1(𝑡) and 𝑑2(𝑡), as follows:  

𝑑1(𝑡) = 𝛼𝐼′(𝑡),

 𝑑2(𝑡) = 𝛼𝐼′(𝑡 + 𝑇̃𝐶𝐴𝑀),
 (2.8) 

where 𝑑1(𝑡) represents a potential first sample of a symbol, in case the sampling occurs at time 𝑡 

(called primary sampling time), while the next sample, sampled 𝑇̃𝐶𝐴𝑀 time later, will be denoted by 

𝑑2(𝑡). The decoding graphs, shown in Figure 2.3, contain 𝑑1(𝑡) (solid blue lines) and 𝑑2(𝑡) (dashed 

red lines). Thus, from the decoding graphs, for each symbol, the value of the first and the 

corresponding second sample can be read, as a function of the primary sampling time. 

In case of the SPACE symbol, according to (2.1),  𝐼(𝑡) = 𝐼(𝑡 + 𝑇𝐶𝐴𝑀), thus, also 𝐼′(𝑡) =
𝐼′(𝑡 + 𝑇𝐶𝐴𝑀). If 𝛿𝐶𝐴𝑀 error is present according to (2.4) then 𝐼′(𝑡) = 𝐼′(𝑡 + 𝑇̃CAM − 𝛿𝐶𝐴𝑀), thus, 

𝑑1(𝑡) = 𝑑2(𝑡 − 𝛿𝐶𝐴𝑀); in this case the two curves of the decoding graph are shifted by 𝛿𝐶𝐴𝑀, as 

shown in Figure 2.3 (a). For the MARK symbol, however, 𝐼(𝑡) = ! 𝐼(𝑡 + 𝑇𝐶𝐴𝑀), according to (2.2), 

where ! denotes the opposite intensity value. If 𝐼(𝑡) varies between 𝐼L and 𝐼H then 𝐼(𝑡) can be 

expressed as 𝐼(𝑡) = 𝐼L + 𝐼H − 𝐼(𝑡 + 𝑇𝐶𝐴𝑀). Similarly, if 𝐼′(𝑡) = 𝑑(𝑡) varies between 𝐴L and 𝐴H 

then 𝐼′(𝑡) = 𝐴L + 𝐴H − 𝐼′(𝑡 + 𝑇𝐶𝐴𝑀), thus, 𝑑1(𝑡) = 𝐴L + 𝐴H − 𝑑2(𝑡 − 𝛿𝐶𝐴𝑀). Thus, the decoding 

graph for the MARK symbol contains a trapezoid signal and its shifted inverse, as shown in Figure 

2.3 (b) and (c), for different values of 𝛿𝐶𝐴𝑀. 

The decoding graph also contains the threshold 𝑄. If 𝑑(𝑡) > 𝑄 then the detected source is 

considered to be ON, otherwise it is OFF. Ideally, for SPACE symbols either 𝑑1(𝑡) > 𝑄 and 

𝑑2(𝑡) > 𝑄 (ON-ON) or 𝑑1(𝑡) ≤ 𝑄 and 𝑑2(𝑡) ≤ 𝑄 (OFF-OFF); and for MARK symbols the 

samples are either 𝑑1(𝑡) > 𝑄 and 𝑑2(𝑡) ≤ 𝑄 (ON-OFF) or 𝑑1(𝑡) ≤ 𝑄 and 𝑑2(𝑡) > 𝑄 (OFF-ON). 

However, as Figure 2.3 shows, there are time intervals, the lengths of which are denoted by 𝜆𝐴 and 
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𝜆𝐵, where these constrains do not hold and thus, the symbol decoding returns false results. Let us 

call these intervals “dangerous”.  

𝐴𝐻 

𝛿 

𝑄 

𝐴𝐿 

𝛿 

𝜆𝐴 𝜆𝐵 

𝑆 

𝑇𝑆𝑃𝐴𝐶𝐸 

(a)

(b)

(c)

𝜆𝐴 

𝜆𝐵 

𝛿 

𝐴𝐻 

𝑄 

𝐴𝐿 

𝑆 

𝑆 

𝛿 

𝑇𝑀𝐴𝑅𝐾 

𝐴𝐻 

𝑄 

𝐴𝐿 

𝑆 

𝑆 
𝛿 

𝛿 

𝜆𝐵 

𝜆𝐴 

𝑑1(𝑡) 𝑑2(𝑡) 

𝑑1(𝑡) 𝑑2(𝑡) 

𝑑2(𝑡) 

𝑑1(𝑡) 

𝑄0,𝐴 

𝑄0,𝐵 

 

Figure 2.3 The effect of frequency error on the sampling. (a) SPACE symbol, (b) MARK symbol with 𝛿 < 𝑆, (c) 

MARK symbol with 𝛿 ≥ 𝑆. The 𝛿𝐶𝐴𝑀 is negative in case of (a) and (b), meaning that the second sample is taken 

a bit earlier than the ideal resulting in that ideal 𝑑2(𝑡) is shifted to the right on the decoding graphs; 𝛿𝐶𝐴𝑀 is 

positive in case of (c) resulting in a shift of the ideal 𝑑2(𝑡) towards the opposite direction. 

In the synchronized case (when the frequency error is 0, i.e., 𝛿 = 0) the sampling is always 

performed at the same phase of the blinking signal, thus, the decoding is either always good (the 

primary sampling time is not in a dangerous interval), or it is always bad (the primary sampling 

time is inside of a dangerous interval). In the unsynchronized case (𝛿 ≠ 0), however, the phase of 

the sampling time is continuously changing, thus, the primary sampling time sweeps along the 

timeline. The detection is good, while the primary sampling time is outside of the dangerous 

intervals; and the detection is faulty, when the primary sampling time is inside of one of the 

dangerous intervals.  
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First let us investigate the detection graph for SPACE symbols. As Figure 2.3 (a) clearly 

shows, the width of the dangerous intervals is 𝜆𝐴 = 𝜆𝐵 = 𝛿. Since there are two dangerous intervals 

with cumulative length of 2𝛿 in a blinking period 𝑇𝑆𝑃𝐴𝐶𝐸, the bit error rate (BER) 𝜇𝑆𝑃𝐴𝐶𝐸 in case of 

𝛿 ≠ 0 can be estimated as follows: 

𝜇𝑆𝑃𝐴𝐶𝐸 =
2𝛿

𝑇𝑆𝑃𝐴𝐶𝐸

= 2𝛿𝑛𝑓𝐶𝐴𝑀. (2.9) 

Now let us examine the MARK symbol. Here the two cases of 𝛿 < 𝑆 and 𝛿 ≥ 𝑆 will be 

handled separately. The case of 𝛿 < 𝑆 is shown in Figure 2.3 (b). The signal amplitudes at the 

intersections of 𝑑1(𝑡) and 𝑑2(𝑡) are denoted by 𝑄0,𝐴 and 𝑄0,𝐵, as shown in Figure 2.3 (b). Using 

similar triangles, it follows that 

𝑄0,𝐴 − 𝐴L

𝑆 − 𝛿
2

=
𝐴H − 𝐴L

𝑆
, 

(2.10) 

𝐴H − 𝑄0,𝐵

𝑆 − 𝛿
2

=
𝐴H − 𝐴L

𝑆
, 

(2.11) 

from which the values of 𝑄0,𝐴 and 𝑄0,𝐵 can be expressed: 

𝑄0,𝐴 =
𝐴H + 𝐴L

2
−

𝐴H − 𝐴L

2

𝛿

𝑆
   , (2.12) 

𝑄0,𝐵 =
𝐴H + 𝐴L

2
+

𝐴H − 𝐴L

2

𝛿

𝑆
   . (2.13) 

If 𝑄0,𝐴 ≤ 𝑄 ≤ 𝑄0,𝐵 (as the illustration of Figure 2.3 (b) shows) then 𝜆𝐴 and 𝜆𝐵 can be 

calculated, using similar triangles, as follows:  

𝑄 − 𝑄0,𝐴

𝜆𝐴

=
𝐴H − 𝐴L

2𝑆
, (2.14) 

𝑄0,𝐵 − 𝑄

𝜆𝐵

=
𝐴H − 𝐴L

2𝑆
, (2.15) 

from which 

𝜆𝐴 = (𝑄 − 𝑄0,𝐴)
2𝑆

𝐴H − 𝐴L

, (2.16) 

𝜆𝐵 = (𝑄0,𝐵 − 𝑄)
2𝑆

𝐴H − 𝐴L

. (2.17) 

Using (2.12)-(2.13) and (2.16)-(2.17) it follows that 

𝜆𝐴 + 𝜆𝐵 = 2𝛿. (2.18) 

Now let us consider the case of 𝑄 < 𝑄0,𝐴 (not shown in Figure 2.3 (b)). Again, using similar 

triangles, the following results can be obtained: 

𝜆𝐴 = (𝑄0,𝐴 − 𝑄)
2𝑆

𝐴H − 𝐴L

, (2.19) 



 

18 

𝜆𝐵 = (𝑄0,𝐵 − 𝑄)
2𝑆

𝐴H − 𝐴L

, (2.20) 

from which it follows that  

𝜆𝐴 + 𝜆𝐵 =
2𝑆

𝐴H − 𝐴L

(𝑄0,𝐴 + 𝑄0,𝐵 − 2𝑄). (2.21) 

Using (2.12) and (2.13), it follows that  

𝜆𝐴 + 𝜆𝐵 =
2𝑆

𝐴H − 𝐴L

((𝐴H + 𝐴L) − 2𝑄). (2.22) 

Similarly, for the case of 𝑄 > 𝑄0,𝐵 the following results can be obtained: 

𝜆𝐴 + 𝜆𝐵 =
2𝑆

𝐴H − 𝐴L

(2𝑄 − (𝐴𝐻 + 𝐴𝐿)) (2.23) 

The results (2.18), (2.22), and (2.23) for the MARK symbol can be summarized as follows: 

𝜆𝐴 + 𝜆𝐵 = {

2𝛿 if 𝑄0,𝐴 ≤ 𝑄 ≤ 𝑄0,𝐵 

2𝑆

𝐴H − 𝐴L

|𝐴H + 𝐴L − 2𝑄| otherwise.
 (2.24) 

Thus, the BER estimate for MARK symbol, for the case 𝛿 < 𝑆, is the following: 

𝜇𝑀𝐴𝑅𝐾 = {

2𝛿/𝑇𝑀𝐴𝑅𝐾 if 𝑄0,𝐴 ≤ 𝑄 ≤ 𝑄0,𝐵 

2𝑆

𝑇𝑀𝐴𝑅𝐾

|𝐴H + 𝐴L − 2𝑄|

𝐴H − 𝐴L

otherwise.
 (2.25) 

The case 𝛿 ≥ 𝑆 is illustrated in Figure 2.3 (c). For this case, with geometrical calculations, 

similarly to the previous cases, 𝜆𝐴 and 𝜆𝐵 can be derived as follows: 

𝜆𝐴 = 𝛿 + 𝑆
𝐴𝐿 + 𝐴𝐻 − 2𝑄

𝐴𝐻 − 𝐴𝐿

, (2.26) 

𝜆𝐵 = 𝛿 − 𝑆
𝐴𝐿 + 𝐴𝐻 − 2𝑄

𝐴𝐻 − 𝐴𝐿

. (2.27) 

Thus, for the case of 𝛿 ≥ 𝑆 the BER is the following: 

𝜇𝑀𝐴𝑅𝐾 =
𝜆𝐴 + 𝜆𝐵

𝑇𝑀𝐴𝑅𝐾

=
2𝛿

𝑇𝑀𝐴𝑅𝐾

= 2𝛿(𝑛 − 0.5)𝑓𝐶𝐴𝑀 (2.28) 

The BER, as a function of threshold parameter 𝑄, according to (2.9), (2.25), and (2.28), is 

shown in Figure 2.4. 
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Figure 2.4 The bit error rate, as a function of threshold 𝑄. Green: SPACE symbols, solid red: MARK symbols 

with 𝛿 < 𝑆,  dashed red: MARK symbols with 𝛿 ≥ 𝑆. 

For extreme choices of 𝑄, i.e., 𝑄 < 𝐴L or 𝑄 ≥ 𝐴H, everything is detected as SPACE, thus, for 

𝜇𝑀𝐴𝑅𝐾 = 100% and 𝜇𝑆𝑃𝐴𝐶𝐸 = 0. For values of 𝑄 between the minimum and maximum detected 

light intensity, the value of BER 𝜇𝑆𝑃𝐴𝐶𝐸 depends on 𝛿, 𝑛, and 𝑓𝐶𝐴𝑀 , but does not depend on 𝑄, 

according to (2.9). Similarly, if 𝛿 ≥ 𝑆, 𝜇𝑀𝐴𝑅𝐾 does not depend on 𝑄, according to (2.28). When 

𝛿 < 𝑆, for threshold values between 𝑄0,𝐴 and 𝑄0,𝐵 the BER for MARK symbols is minimal, with 

value of 2𝛿/𝑇𝑀𝐴𝑅𝐾, which is identical to (2.28). For 𝑄 < 𝑄0,𝐴 or 𝑄 > 𝑄0,𝐵 the BER value increases 

as 𝑄 approaches the minimum or maximum light intensity: 

𝜇𝑀𝐴𝑅𝐾(𝐴𝐿) = 𝜇𝑀𝐴𝑅𝐾(𝐴𝐻) =
2𝑆

𝑇𝑀𝐴𝑅𝐾

 (2.29) 

The results show that the BER is proportional with the 𝛿 time difference between ideal and 

real camera sampling interval, the 𝑛 design parameter, and the 𝑓𝐶𝐴𝑀 camera frame rate. In practice 

𝑛 must be high enough to provide flicker free operation (i.e., 𝑛𝑓𝐶𝐴𝑀 ≫ 100 Hz), but our results also 

suggest that 𝑛 should be chosen as small as possible (while satisfying the flicker-free requirements), 

in order to provide small BER. 

The results also indicate that the detection quality for SPACE symbol does not depend on the 

threshold parameter 𝑄, while for the optimal detection of MARK symbols 𝑄 should be chosen 

between 𝑄0,𝐴 and 𝑄0,𝐵 (thus, the mean of the signal is a good choice). If this cannot be guaranteed, 

the BER is proportional with the aperture time 𝑆, and inversely proportional with the signal’s 

amplitude 𝐴H − 𝐴L, thus, 𝑆 should be kept small (preferably below 𝛿, when the BER does not 

depend on the exact value of 𝑄), and low signal amplitudes should be avoided. Thus, the following 

design rules can be stated in order to provide low BER:  

• the frequency offset should be kept small, since the minimum error depends on this value;  

• the threshold should be close to the ideal value of 𝑄0 = (𝐴L + 𝐴H)/2; 

• small aperture time should be used, to minimize the effect of suboptimal threshold; 

• design parameter 𝑛 should be small, to provide large 𝑇SPACE and 𝑇MARK (while satisfying the 

requirements of flicker-free operation), to provide small minimum value for the error;  

• the signal amplitude should be as high as possible, to provide a wide range for optimal 

threshold, and also to provide high signal-to-noise ratio. 
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2.2.2 Noise 

For the noise analysis, we assume that the measurement noise can be modelled as Additive White 

Gaussian Noise (AWGN). Thus, the noisy detection signals are 

𝑑̌1(𝑡) = 𝑑1(𝑡) + 𝑛1(𝑡), (2.30) 

𝑑̌2(𝑡) = 𝑑2(𝑡) + 𝑛2(𝑡), (2.31) 

where 𝑑1(𝑡) and 𝑑2(𝑡) are the noise-free samples, 𝑛1(𝑡) and 𝑛2(𝑡) are the AWGN components 

with distribution 𝑁(0, 𝜎2).  

For SPACE symbols detection error occurs when the detected light intensities are different, 

i.e., in the following two cases:  

(a) 𝑑̌1(𝑡) > 𝑄 and  𝑑̌2(𝑡) ≤ 𝑄 or  

(b) 𝑑̌1(𝑡) ≤ 𝑄 and  𝑑̌2(𝑡) > 𝑄.  

Let the Q-function 𝑄𝑓(𝑥) denote the probability that random variable 𝑋 with distribution 𝑁(0, 𝜎2) 

is higher than 𝑥: 

𝑄𝑓(𝑥) = 𝑃(𝑋 > 𝑥) =
1

2
−

1

2
erf (

𝑥

𝜎√2
). (2.32) 

If the threshold is 𝑄 then the probability that the detection, with primary sampling time 𝑡, is false 

due to case (a) is the following: 

𝑃𝑒𝑟𝑟−𝑎(𝑡, 𝑄) = 𝑄𝑓1(𝑡, 𝑄)(1 − 𝑄𝑓2(𝑡, 𝑄)), (2.33) 

where 𝑄𝑓1(𝑡, 𝑄) =  𝑄𝑓(𝑄 − 𝑑1(𝑡)) and 𝑄𝑓2(𝑡, 𝑄) = 𝑄𝑓(𝑄 − 𝑑2(𝑡)). Similarly, the probability of 

false detection due to case (b) is the following:  

𝑃𝑒𝑟𝑟−𝑏(𝑡, 𝑄) = (1 − 𝑄𝑓1(𝑡, 𝑄))𝑄𝑓2(𝑡, 𝑄). (2.34) 

For MARK symbols erroneous detection can happen when the detected light intensities are 

the same, in the following two cases: 

(c) 𝑑̌1(𝑡) > 𝑄 and  𝑑̌2(𝑡) > 𝑄 or 

(d) 𝑑̌1(𝑡) ≤ 𝑄 and  𝑑̌2(𝑡) ≤ 𝑄.  

Given the threshold value 𝑄, the probabilities of false detections, due to case (c) and (d), are the 

following: 

𝑃𝑒𝑟𝑟−𝑐(𝑡, 𝑄) = 𝑄𝑓1(𝑡, 𝑄)𝑄𝑓2(𝑡, 𝑄), (2.35) 

𝑃𝑒𝑟𝑟−𝑑(𝑡, 𝑄) = (1 − 𝑄𝑓1(𝑡, 𝑄))(1 − 𝑄𝑓2(𝑡, 𝑄)). (2.36) 

Using (2.33) and (2.34), the probability of false detections 𝑃𝑒𝑟𝑟(𝑡, 𝑄) for SPACE symbols can 

be computed as follows: 

𝑃𝑒𝑟𝑟,𝑆𝑃𝐴𝐶𝐸(𝑡, 𝑄) = 𝑃𝑒𝑟𝑟−𝑎+𝑃𝑒𝑟𝑟−𝑏. (2.37) 

Similarly, using (2.35) and (2.36), for MARK symbols the probability of false detections is the 

following: 

𝑃𝑒𝑟𝑟,𝑀𝐴𝑅𝐾(𝑡, 𝑄) = 𝑃𝑒𝑟𝑟−𝑐+𝑃𝑒𝑟𝑟−𝑑 . (2.38) 
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The BER can be estimated as follows: 

𝜇 =
1

𝑇
∫ 𝑃𝑒𝑟𝑟(𝑡, 𝑄)𝑑𝑡

𝑇

0

≅
1

𝐾
∑𝑃𝑒𝑟𝑟 (𝑘

𝑇

𝐾
,𝑄)

𝐾

𝑘=1

, (2.39) 

where 𝑇 = 𝑇𝑆𝑃𝐴𝐶𝐸 and 𝑃𝑒𝑟𝑟 = 𝑃𝑒𝑟𝑟,𝑆𝑃𝐴𝐶𝐸 for SPACE symbols and 𝑇 = 𝑇𝑀𝐴𝑅𝐾 and 𝑃𝑒𝑟𝑟 = 𝑃𝑒𝑟𝑟,𝑀𝐴𝑅𝐾 

for MARK symbols. The rightmost expression of (2.39) is a practical discrete approximation using 

𝐾 sample points.  

The BER, as a function of 𝑄, is illustrated in Figure 2.5 and Figure 2.6, where the BER was 

calculated using the discrete approximation of (2.39), for 𝛿/𝑇 = 0.025, 𝑆/𝑇 = 0.05, and 𝐹𝑆 =
𝐴𝐻 − 𝐴𝐿 = 20. The figures show various signal-to-noise levels: the ratio of 𝜎/𝐹𝑆 varied from 0.001 

to 0.1. The shape of the BER function for SPACE symbols is shown in Figure 2.5. 

 

Figure 2.5 The bit error rate for SPACE symbols, as a function of threshold 𝑄, in the presence of additive noise 

with variance 𝜎. 

For small values of 𝑄 it converges to the noise-free case, shown by green in Figure 2.4. For values 

of 𝑄 between 𝐴𝐿 and 𝐴𝐻, according to (2.9), 𝜇𝑆𝑃𝐴𝐶𝐸 = 2𝛿/𝑇𝑆𝑃𝐴𝐶𝐸 = 0.05, while outside of this 

region 𝜇𝑆𝑃𝐴𝐶𝐸 = 0, which corresponds with the calculated shape of Figure 2.5. Notice that for 

noiseless case the BER function has a rectangular shape, but in the presence of noise two pulses 

appear around 𝐴𝐿 and 𝐴𝐻, the width of which depend on the noise level (wider pulse for higher 

noise). The amplitude of the pulse can be derived as follows. Let the threshold be 𝐴𝐿 and the noise 

variance be higher than 0. When either of the detected samples is low (i.e., 𝑑1 ≅ 𝐴𝐿 or 𝑑2 ≅ 𝐴𝐿, 

see Figure 2.3 (a)) then the probability of the false detection is 50%, for arbitrarily small, positive 

noise variances. For higher values of 𝑑1 and 𝑑2 the probability of false detections is close to 0 for 

small noise levels. Since the total time of either 𝑑1 or 𝑑2 being close to 𝐴𝐿 is 𝑇𝑆𝑃𝐴𝐶𝐸/2 − 𝑆 + 𝛿, 

the BER at 𝐴𝐿 in the presence of noise is  

𝜇𝑆𝑃𝐴𝐶𝐸(𝐴𝐿) = 0.5

𝑇𝑆𝑃𝐴𝐶𝐸

2 − 𝑆 + 𝛿

𝑇𝑆𝑃𝐴𝐶𝐸

= 0.25 +
𝛿 − 𝑆

2𝑇𝑆𝑃𝐴𝐶𝐸

. (2.40) 

The same argument can be repeated for threshold 𝐴𝐻, thus,  

𝜇𝑆𝑃𝐴𝐶𝐸(𝐴𝐻) = 0.25 +
𝛿 − 𝑆

2𝑇𝑆𝑃𝐴𝐶𝐸

. (2.41) 
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In the case shown in Figure 2.5, the value of the BER at 𝐴𝐿 and 𝐴𝐻, according to (2.40)-

(2.41), is 0.25 − 0.0125 = 0.2375, which correspond well to the values shown in Figure 2.5. 

Notice that the effect of noise is especially significant around the smallest and highest detected light 

intensities 𝐴𝐿 and 𝐴𝐻. Around the optimal choice of 𝑄0 = (𝐴𝐿 + 𝐴𝐻)/2, however, the effect of 

noise is hardly observable.  

Figure 2.6 shows the BER functions for MARK symbols. For small noise levels the shape of 

𝜇𝑀𝐴𝑅𝐾 is similar to the function shown in Figure 2.4 with solid red line. 

 

Figure 2.6 The bit error rate for MARK symbols, as a function of threshold 𝑄, in the presence of additive noise 

with variance 𝜎.  

According to (2.12) and (2.13), 𝑄0 − 𝑄0,𝐴 = 𝑄0,𝐵 − Q0 = 𝐹𝑆 ∙ 𝛿/2𝑆 = 𝐹𝑆/4; and according to 

(2.25), the minimum of the function, around the optimal value, is 2𝛿/𝑇𝑀𝐴𝑅𝐾 =0.05, while 

𝜇𝑀𝐴𝑅𝐾(𝐴L)= 𝜇𝑀𝐴𝑅𝐾(𝐴H) = 2𝑆/𝑇𝑀𝐴𝑅𝐾 = 0.1, and the BER is 100% below 𝐴L and above 𝐴H: these 

theoretical results are accurately represented by the function shown by deep blue line in Figure 2.6. 

For higher noise levels the function gets distorted, especially around 𝐴L and 𝐴H. Notice again that 

the effect of noise is small for threshold values close to the optimum. The theoretical results will be 

verified by real measurements in the next section. 

2.3 Evaluation 

The purpose of the measurements is to validate the theoretical BER results derived in Section 2.2. 

Thus, the two data symbols, SPACE and MARK were separately tested in a well- controlled 

environment. First the measurement setup and the devices used in the measurement will be 

introduced, then the measurement results will be presented and evaluated. 

2.3.1 Measurement setup 

The measurement setup is illustrated in Figure 2.7. The modulated signal was generated by a 

Microcontroller Unit (MCU) through a MOSFET LED driver. The LEDs were placed in separate 

closed (black) measurement chambers, in order to exclude external disturbances. In the experiment 

two separate channels were used to test the behavior of the protocol’s MARK and SPACE symbols: 

Channel 1 was dedicated to MARK symbols, while in Channel 2 SPACE symbols were transmitted. 

Notice that the purpose of the test was to determine the error sensitivity of the data symbols, thus, 

only the symbols were transmitted continuously without any data framing (i.e., no HEADER was 
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used). Each symbol’s channel was simultaneously observed by the same global shutter camera. The 

recorded video stream was processed off-line, with optional controlled additive noise.  

 

Figure 2.7 Measurement setup: hardware components (left hand side) and the optical measurement chambers 

The nominal frame rate of the camera was 30FPS. The design parameter 𝑛 was set to 4, thus, 

the frequencies of the SPACE and MARK symbols were ideally 120 Hz and 105 Hz, respectively. 

Since the exact camera sampling rate slightly differs from the nominal value, to experiment with 

multiple slip values, the LED frequencies were fine-tuned to provide the required amount of slip. 

In the experiments slip values were set between 20 μsec and 180 μsec. The detected signal range 

was between 𝐴𝐿 ≅ 20 and 𝐴𝐻 ≅ 150 with the 8-bit camera. The exposure time of the camera was 

varied between 𝑆 = 100 μsec and 𝑆 = 400 μsec.  

2.3.2 Measurement results 

Each symbol channel was processed separately, and the numbers of good and bad detections were 

determined, as a function of threshold parameter 𝑄. The calculated symbol error rates are presented 

in the following figures. 

Figure 2.8 and Figure 2.9 show the BER results of three experiments with 𝑆(1) =
100 μsec, 𝑆(2) = 200 μsec and 𝑆(3) = 400 μsec, when 𝛿 = 20 μsec was constant. The noise 

variance was below 1 bit. The light intensities of the LEDs were set so that the minimum and 

maximum detected amplitudes were approximately the same in each experiment. The representative 

values 𝑄0,𝐴, 𝑄0, 2𝛿/𝑇𝑀𝐴𝑅𝐾, 2𝛿/𝑇𝑆𝑃𝐴𝐶𝐸, and 2𝑆(𝑖)/𝑇𝑀𝐴𝑅𝐾 are also shown in the figures (compare 

with Figure 2.4). For easier comparison, a theoretical 𝐵𝐸𝑅 diagram for MARK symbols is also 

shown (for better visibility, only for experiment 3). The measurements fit the theoretical results 

with remarkable accuracy.  
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Figure 2.8 Measured 𝐵𝐸𝑅 values for constant 𝛿 and three different values of 𝑆, as a function of 𝑄. The 

theoretical 𝐵𝐸𝑅 diagram for MARK symbols in experiment 3 is also shown. 

 

Figure 2.9 Measured BER values for constant 𝛿 and three different values of 𝑆, as a function of 𝑄 (zoomed). 

The theoretical 𝐵𝐸𝑅 diagram for MARK symbols in experiment 3 is also shown. 
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Figure 2.10 shows the case of varying slip values of 𝛿1 = 20 μsec, 𝛿2 = 98 μsec, and 𝛿3 =
177 μsec, with constant 𝑆 = 200 μsec. The figure contains the measurement results as well as the 

theoretical 𝐵𝐸𝑅 functions: orange and grey curves correspond to MARK and SPACE symbols, 

respectively. As the figure clearly shows, the measurement results fit the theoretical results.  

 

Figure 2.10 Measured 𝐵𝐸𝑅 for constant 𝑆 and various values of 𝛿, as a function of 𝑄. 

The effect of noise is shown in Figure 2.11, for 𝑆 = 200 μsec and 𝛿 = 98 μsec. The variance 

of the additive noise component was set to 1, 5, 10, 15, and 20 LSB (notice that the camera was 

used in 8-bit mode). Comparing Figure 2.11 with Figure 2.5 and Figure 2.6, the measured 𝐵𝐸𝑅 

functions correspond well with the theoretical results.  

 

Figure 2.11 Measured and theoretical symbol error rates (zoomed). 
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The presented measurements are in good agreement with the theoretical results. Thus, the 

derived theoretical model can be used to design the parameters of the protocol, and also to predict 

the performance of the protocol. 

2.4 Conclusion 

In this section I analyzed the effect of frequency error between the transmitter and the receiver, and 

the effect of noise on the transmission of UFSOOK’s data symbols with the proposed equivalent 

camera operation model, which operates with impulse sampling instead of integral sampling. 

I showed that for reliable operation of UFSOOK using a global shutter camera without 

synchronization between the transmitter and receiver the 𝛿 sampling interval offset should be kept 

small to provide a higher count of good samples, while the 𝑆 shutter speed should be set even 

smaller than 𝛿, to avoid the suboptimal thresholding of MARK symbols. The ideal value for the 𝑄 

threshold is the 𝑄0 signal amplitude average value, with which we can improve the transmission 

performance of MARK symbols in case 𝛿 < 𝑆. While small 𝛿 values decrease the BER of the 

protocol, in practical cases a too small 𝛿 value may have a negative impact on the data transmission 

service when 𝛿 < 𝑆, since it also extends the width (in sample counts) of dangerous intervals for 

the symbols, e.g., the transmission of symbols will be good for a day, but then the protocol will be 

unusable for a few hours. 

In practical cases when we would like to tune the value of 𝛿, the camera’s sampling frequency 

may not be fine-tunable (i.e., only pre-defined values are supported by the device). In these cases, 

instead of adjusting the receiver’s frequency the tuning of parameter 𝛿 can also be achieved if the 

transmitter’s clock is adjusted, i.e., we can still modify the 𝑓𝐶𝐴𝑀 ideal sampling frequency instead 

of the 𝑓𝐶𝐴𝑀 actual sampling frequency to get the desired 𝛿 offset. 

The analysis of the effect of noise showed that low signal-to-noise ratio may have a heavy 

impact on the proper determination of the symbols. In practical cases the camera sensor’s noise 

level is usually low when using small exposure time, low ISO value, and low gain, which is mainly 

the case when it is used in the positioning system introduced in Section 1.4, but in addition to that, 

achieving a high signal amplitude between 𝐴𝐿 and 𝐴𝐻 (but also keeping 𝐴𝐻 below the sensor 

saturation level) is also advised to keep the signal-to-noise ratio as high as possible. I also showed 

that using 𝑄0 optimal thresholding value to determine the high/low transmitter states the impact of 

noise on the symbol transmission can be minimized. 

Although setting the protocol’s 𝑛 design parameter to a higher value makes its modulation 

less flickering for the human eye, it also has a negative impact on the protocol’s transmission 

performance, thus, lower values that already seem flicker-free for the human eye are favorable. 

The protocol’s data transmission performance also depends on the transmitted data due to the 

usage of different frequencies for SPACE and MARK symbols. Figure 2.12 shows an example of 

symbol transmission error regions, where 𝜎 = 0, 𝛿 = 𝑇𝑀𝐴𝑅𝐾/80, and 𝑆 = 𝑇𝑀𝐴𝑅𝐾/20. The blue and 

red regions mark the dangerous intervals for SPACE and MARK symbols, respectively, where the 

corresponding symbols will possibly fail. Each vertical gray line illustrates a time instant when a 

symbol is received, while its inclusion in a region also depends on the 𝑄 threshold level used at the 

receiver. To successfully transmit a data packet with M bits, we need M+1 consecutive symbols in 

the white region, where the extra symbol is the MARK symbol of the Start Frame Delimiter. E.g., 

if we choose threshold 𝑄 to be equal with 𝑄0,𝐴, the first 17 symbols are error-free. A bad 

transmission occurs if the transmission of any bit in the data packet happens during a corresponding 

dangerous interval. In case of Figure 2.12, for logical 0 values, we have to avoid the blue region, 

and for logical 1 values, the red region. E.g., if we choose the optimal 𝑄0 as the threshold, and start 

at index 19, the first bit is correct in both cases (0 and 1 values), but the second bit’s transfer will 

be faulty if its value is 1, as it would be in the red region. 
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(b)

(a)

 

Figure 2.12 Example of data transmission errors. Dangerous intervals for SPACE and MARK symbols are 

marked with blue and red color, respectively. The frequency error and exposure time are set based on MARK 

symbol’s time period: 𝛿 = 𝑇𝑀𝐴𝑅𝐾/80, 𝑆 = 𝑇𝑀𝐴𝑅𝐾/20, 𝛿 is set to 0 (noise-free). (b) is a zoomed portion of (a). 

During my research, the UFSOOK protocol's packet error rate (PER) was not extensively 

investigated, as the protocol was abandoned relatively early in favor of the upcoming protocol 

presented in Section 3. However, with the provided equivalent camera operation model and error 

analysis the PER could be estimated for each data packet with e.g., simulations. 

While it is not guaranteed that UFSOOK’s data transmission will always be error-free, with 

the right settings, it can be used as a communication protocol to transfer the beacon IDs in a visible 

light indoor positioning system from time to time. One of its major drawbacks is that sometimes we 

have to wait for a little while to be able to correctly identify an LED beacon; the other one is that 

the position and width of its dangerous intervals depend on the data itself, and their width may 

occasionally add up, as different frequencies are used for the data symbols. Luckily, if the beacons 

are tracked in the indoor positioning system, the IPS relies on the VLC protocol only for the first 

time since their identity is preserved while they are visible for the camera sensor. 

In the following section a similar OOK-based VLC protocol will be analyzed that uses phase-

shifting instead of frequency-shifting, hence it uses only one frequency for data symbols making 

the occurrence of dangerous intervals regular. Also, the transmission data rate of the protocol is 

doubled compared to UFSOOK’s. 
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3 Analysis of the UPSOOK protocol 

The Undersampled Phase-Shift On-Off Keying (UPSOOK) protocol [62] is another protocol that 

can be used to transmit data between a camera and LED beacons, similarly to UFSOOK (analyzed 

in Section 2). Its operation is illustrated in Figure 3.1. UPSOOK operates similar to UFSOOK, but 

instead of frequency-shifting, it uses phase-shifting for MARK and SPACE symbols. The protocol 

also utilizes three symbols: HEADER, MARK, and SPACE, but both MARK and SPACE symbols 

are square wave signals with duty cycle of 50% and have the same frequency of  

𝑓𝑑𝑎𝑡𝑎 = 𝑛𝑓𝐶𝐴𝑀, (3.1) 

where 𝑛 is an integer design parameter and 𝑓𝐶𝐴𝑀 is the ideal camera sampling frequency (in the 

illustration of Figure 3.1 the parameter 𝑛 is 3). Equation (3.1) can be rewritten to represent the 

relationship between the signal period 𝑇𝑑𝑎𝑡𝑎 and the ideal sampling interval 𝑇𝐶𝐴𝑀: 

𝑛𝑇𝑑𝑎𝑡𝑎 = 𝑇𝐶𝐴𝑀. (3.2) 

The phases of MARK and SPACE symbols differ by 180⁰, as shown in Figure 3.1.  

MARKSPACESFD (MARK) MARK
𝑇𝐶𝐴𝑀 

Start Frame Delimiter (HEADER + SFD) DATA

𝑇𝑑𝑎𝑡𝑎  

Ξ = "𝑋" 

Ξ = "𝑋" 

Ξ = "𝑋" 

ΞSFD = "𝐻" 

ΞSFD = "𝐿" 

ΞSFD = "?" 

Ξ = "𝐿" 

Ξ = "𝐻" 

Ξ = "?" Ξ = "?" Ξ = "?" 

Ξ = "𝐿" Ξ = "𝐿" 

Ξ = "𝐻" Ξ = "𝐻" 

Ξ = 𝑋𝐻𝐿𝐻𝐻𝑋… 

Ξ = 𝑋𝐿𝐻𝐿𝐿𝑋… 

Ξ = 𝑋?? ?? 𝑋… 

(  0)

(  0)

(  1) (  1)

(  1)(  1)

(   ) (   ) (   )

DATA = 011

DATA = 011

DATA = ???

HALF INTENSITY

LED ON

LED OFF

 

Figure 3.1 The operation of the UPSOOK protocol. The sent packet contains the Start Frame Delimiter 

(HEADER = X, SFD = MARK = 1), and three data bits of 011. Due to the phase uncertainty, two possible 

received sample sequence can be produced (1st and 2nd rows), where the ambiguity can be resolved using the 

SFD. When sampling is done near the edges, the outcome of the decoding is uncertain (3rd row). 

Similarly, the HEADER symbol is also a square wave signal with duty cycle of 50%, and with high 

frequency 𝑓ℎ𝑒𝑎𝑑𝑒𝑟, as in case of UFSOOK. The signal frequencies are determined so that  

𝑓𝑑𝑎𝑡𝑎 ≪
1

𝑆
 , (3.3) 

and 

𝑓ℎ𝑒𝑎𝑑𝑒𝑟 ≫
1

𝑆
 , (3.4) 

where 𝑆 is the camera exposure time. When (3.3) holds, then the camera senses that the signal level 

is either high (H) or low (L), while with (3.4) the sensed signal level X has approximately half 
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intensity. Notice that this is true for the ideal case, but in practice, it was found that the level of X 

approaches the level of H, as the communication distance increases [62]. This makes decoding more 

difficult and limits the maximum communication distance of UPSOOK (it’s also true for 

UFSOOK). 

The transmitted packet contains the Start Frame Delimiter (a HEADER symbol, followed by 

a MARK symbol), and then one symbol for each data bit. Data bits are simply coded as follows: 1: 

MARK, 0: SPACE. See the example of Figure 3.1 for data bit sequence of 011. Notice that although 

SFD is the abbreviation for the complete Start Frame Delimiter, in our case it is used as the name 

of the special MARK symbol after the HEADER symbol in the real Start Frame Delimiter. 

In case of UPSOOK each symbol has length of 𝑇𝐶𝐴𝑀, thus, exactly one sample is taken from 

each symbol. The received symbols are denoted by 𝛯. Since the transmitter and receiver are 

asynchronous, sampling can happen at any phase of the signal. The phase uncertainty does not affect 

the X symbol, due to (3.4), but it does affect the SFD and data symbols. Figure 3.1 illustrates the 

two possible outcomes: in the first case the received SFD is 𝛯𝑆𝐹𝐷 = H and the received data symbols 

are 𝛯𝐷𝐴𝑇𝐴 = 𝐿𝐻𝐻 (upper row of Figure 3.1), while in the second case 𝛯𝑆𝐹𝐷 = 𝐿 and the data 

symbols are 𝛯𝐷𝐴𝑇𝐴 = 𝐻𝐿𝐿 (middle row of Figure 3.1). Using the SFD, the ambiguity of the data bit 

𝛯𝐷 is resolved in the following way:  

𝐷 = {
1 𝑖𝑓 𝛯𝑆𝐹𝐷 = 𝛯𝐷 
0 𝑖𝑓 𝛯𝑆𝐹𝐷 ≠  𝛯𝐷

, (3.5) 

where D is the bit value corresponding to symbol value 𝛯𝐷. In the example of Figure 3.1, both cases 

result in the correct bit sequence of 011. 

The camera detects light intensity 𝐼𝑠, which is a value between 0 and 2𝐵 − 1, where 𝐵 is the 

depth of the camera sensor (in bits). From 𝐼𝑠 the detected symbols are generated by thresholding, as 

follows: 

𝛯 = {
𝐻 𝑖𝑓 𝐼𝑠 ≥ 𝑄 
0 𝑖𝑓 𝐼𝑠 < 𝑄

, (3.6) 

where 𝑄 is the decision threshold. 

Notice that the decoding works only if the sampling is close to the ideal circumstance shown 

in the first two lines of Figure 3.1. If samples are taken around the signal edges, as shown in the 

third line of Figure 3.1, erroneous detections can happen.  

3.1 Connection between UFSOOK and UPSOOK 

Both UFSOOK and UPSOOK utilize three symbols (HEADER, MARK = logical 1, SPACE = 

logical 0), and are decoded in a similar way, using an intensity threshold to detect ON/OFF states 

of the transmitter. The equivalent camera model (presented in Section 2.1) can also be used for 

UPSOOK. 

One of the key differences between the two protocols is in the determination of the symbols. 

The meaning of primary (reference) and secondary LED states are exchanged, with respect to the 

MARK symbols and SPACE symbols. In UFSOOK, a MARK symbol is determined if the 

secondary sample represents the opposite LED state than the LED state in the primary sample. And 

a SPACE symbol is determined if the LED states are similar both in the primary sample, and in the 

secondary sample. In UPSOOK however, a MARK symbol is determined when the reference (SFD) 

and the data sample are similar, and a SPACE symbol is determined if they represent the opposite 

LED state. 

The other key difference lies in the timing of the samples. In UFSOOK, each symbol has its 

own reference sample (the first sample of a symbol), immediately followed by the data’s sample 

(the second sample of a symbol). In UPSOOK however, all of the data samples are compared to a 

dedicated reference sample (SFD) preceding the data part, meaning that the inevitable time offset 



 

31 

in practical unsynchronized use cases, caused by the frequency error, will be its multiple based on 

the index of the data bit. 

The results of the UFSOOK analysis (presented in Section 2) can also be used for UPSOOK 

with respect to the differences mentioned above: the equations for the calculation of bit error rates 

should be exchanged (MARK  SPACE); the 𝛿 parameter should be multiplied with the index of 

the examined data bit. The latter implies that in UPSOOK, the bits will have different error rates 

inside a packet based on their position, and the bits at the end of the packet are more susceptible to 

errors. 

3.2 Error analysis 

As discussed in Section 2.4 the calculation of the packet error rate (𝑃𝐸𝑅) of the UFSOOK protocol 

is a rather complex task, as the protocol uses different transmission frequencies for its symbols. 

However, in UPSOOK, only one frequency is used for data transmission, which implies that the 

dangerous regions, where the transmission may possibly fail, are aligned. The goal of this error 

analysis is to estimate the worst-case 𝐵𝐸𝑅 and 𝑃𝐸𝑅 of the protocol to obtain the guaranteed 

transmission performance. 

The first two rows of Figure 3.1 show an ideal situation when the sampling is done near the 

middle of the light and dark pulses. However, this cannot be guaranteed; if the transmitter and 

receiver are not synchronized, the sampling may be performed near the edges of the blinking signal, 

as shown in the 3rd row of Figure 3.1.  

The outcome of the detection depends on various factors: the decision threshold, noise, jitter, 

frequency error. The possible error sources and their effect will be discussed in detail using the 

equivalent camera operation model presented in Section 2.1. 

3.2.1 Threshold 

If 𝐼(𝑡) is a rectangular signal with duty cycle of 50%, and there are no additional error sources, and 

no sensor saturation, then according to (2.4) and (2.5), 𝑑′(𝑡) is a symmetric trapezoid signal with 

rising and falling times equal to 𝑆, as shown in Figure 3.2 (a). Notice that the symbol coded by 

signal 𝐼(𝑡) can be reconstructed from 𝑑′(𝑡) by using the ideal threshold  

𝑄0 =
𝐴𝐻 − 𝐴𝐿

2
. (3.7) 

Using 𝑄0, the time function of the received symbol is the exact replica of that of the transmitted 

symbol, delayed by 𝑆/2, as shown in Figure 3.2 (a). Notice that the sampling time instant is at the 

end of the aperture window in this case, according to (2.4). 
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Figure 3.2 Decoding of symbols using thresholding. (a) Using ideal threshold 𝑄0. (b) The effect of non-ideal 

threshold: samples taken in the unsafe interval (red) provide incorrect symbols, while samples in the safe regions 

(green) provide correct symbols. 
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The illustration of Figure 3.2 (b) shows multiple signal segments of 𝑑′(𝑡) around signal 

changes, so that the shown signal segments are 𝑘𝑇𝐶𝐴𝑀 apart, where 𝑘 = 1,2,3,… is integer and 

refers to the bit index. If (3.1) holds then all rising edges and all falling edges are precisely aligned, 

as shown in Figure 3.2 (b). The horizontal axis represents possible sampling instants and at the same 

time successive sampling instants 𝑘𝑇𝐶𝐴𝑀 time later. Using the figure, the values of the samples can 

be determined, given the sampling instant and the threshold.  

As an example, Figure 3.2 (b) shows a SFD (around a falling edge, shown by a solid light 

blue line), a MARK symbol (around a falling edge, dashed dark blue line), and a SPACE symbol 

(around a rising edge, solid purple line). The ideal threshold 𝑄0, and the real threshold 𝑄 are also 

shown.  

Let us suppose that the data symbol to be decoded is SPACE. In this case the samples, taken 

from the SFD and from the data symbol, should be different for correct detection. This is true for 

time instants both on the left-hand side and the right-hand side of Figure 3.2 (b). However, if 

samples are collected in the unsafe time interval, shown by red in Figure 3.2 (b), then both samples 

are considered L, resulting in incorrect detection. In Figure 3.2 (b) a falling SFD edge and a rising 

data edge is shown; notice that similar unsafe intervals exist on the opposite edges, too.  

If the detected signal amplitude is 𝐴𝐿 and 𝐴𝐻 for Low (L) and High (H) states, respectively, 

and the difference between the actual and ideal thresholds is 𝛥𝑄 = 𝑄 − 𝑄0 then the worst-case 

width of the unsafe interval can be computed, using similar triangles of Figure 3.2 (b), as follows: 

𝜆𝑄 =
2|𝛥𝑄|

𝐴𝐻 − 𝐴𝐿

𝑆 (3.8) 

If the data symbol is MARK and no other disturbances are present, then the sample of the 

SFD and the sample of the data symbol will be the same (see the solid light blue and dashed dark 

blue lines in Figure 3.2 (b)); in this case the value of 𝑄 has no effect on the decoding, i.e., for MARK 

symbols there is no unsafe interval. Since in a message both MARK and SPACE symbols may be 

present, in worst case (3.8) provides the width of the unsafe interval. 

3.2.2 Noise 

The sensed signal 𝑑′(𝑡) may contain additive noise, due to possible external disturbances and 

camera sensor noise. The effect of noise is illustrated in Figure 3.3, where the maximum noise 

amplitude is denoted by 𝐴𝑛. 
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Figure 3.3 The effect of noise to symbol decoding. Samples taken in the red unsafe intervals may provide 

incorrectly decoded symbols, while samples in the safe regions (green) provide correct detections. 
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For MARK symbols the width of unsafe interval, shown by a red line (for the case of no 

saturation), using notations of Figure 3.3, is the following: 

𝜆𝑛 =
2𝐴𝑛

𝐴𝐻 − 𝐴𝐿

𝑆 (3.9) 

According to the results of Section 3.2.1, for SPACE symbols there may exist an unsafe 

interval, due to inaccurate thresholding, denoted by a striped white-red interval in Figure 3.3. The 

additive noise widens this interval on both sides, as shown by red intervals in the figure. The width 

of the red intervals on both sides are equal to 𝜆𝑛/2, where 𝜆𝑛 is defined in (3.9). Thus, the total 

increase of the unsafe interval, due to noise, equals to 𝜆𝑛 for both MARK and SPACE symbols. 

The usage of maximum noise amplitude is sufficient for the worst-case scenario. 

3.2.3 Jitter 

Both the transmitter and the camera may have jitter. The effect of the cumulative jitter is illustrated 

in Figure 3.4. 
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Figure 3.4 The effect of jitter to symbol decoding. Samples taken in the red unsafe intervals may provide 

incorrectly decoded symbols, while samples in the safe regions (green) provide correct detections. 

Let us use the SFD as reference; in the presence of jitter, the edges of SPACE and MARK 

symbols may arrive earlier or later than in the ideal case, thus, the sample taken in the unsafe interval 

may or may not be correct. If the maximum jitter is 𝜏𝑗 then the width of the resulting unsafe interval 

for MARK symbols is the following: 

𝜆𝑗 = 2𝜏𝑗  . (3.10) 

For SPACE symbols, very similarly to the case of noise, jitters enlarge the unsafe interval of 

inaccurate thresholding. The total growth of the unsafe interval is equal to 𝜆𝑗 of (3.10), as shown in 

Figure 3.4. Thus, for both MARK and SPACE symbols the effect of jitter is characterized by (3.10). 

3.2.4 Frequency error 

Ideally, the camera’s sampling interval 𝑇𝐶𝐴𝑀 is an integer multiple of the blinking period length 

𝑇𝑑𝑎𝑡𝑎, according to (3.2). The validity of (3.2) can be ensured if the transmitter and receiver are 

synchronized. In practical cases, where no time synchronization is applied, there always is a small 
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frequency error between the transmitter and the camera, i.e., instead of (3.2), similarly to (2.6), the 

following holds: 

𝑇̃𝐶𝐴𝑀 = 𝑛𝑇𝑑𝑎𝑡𝑎 + 𝛿𝐶𝐴𝑀 , (3.11) 

where 𝛿𝐶𝐴𝑀 can be considered as the error of the camera’s sampling interval when the transmission 

frequency is accurate (see (2.6) and (2.7) in Section 2.1). If 𝛿 (i.e., the size of 𝛿𝐶𝐴𝑀) is not zero, the 

phase of the sampling instants is shifted at each sample, the effect of which is shown in Figure 3.5 

for the 𝑘th data bit. 
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Figure 3.5 Effect of frequency error. SFD: solid light blue, SPACE: solid purple, MARK: dashed dark blue 

lines. Samples taken in the red unsafe intervals provide incorrectly decoded symbols, while samples in the safe 

regions (green) provide correct detections. The light purple line shows the SPACE symbol with no frequency 

error. 

Notice that during decoding each sample is compared to the SFD, according to (3.5). Thus, 

the reference is the SFD sample, and each of the successive sampling times of the data bits are 

shifted by δ, the total delay being 𝑘𝛿 at the 𝑘th data bit, as shown in Figure 3.5. Thus, compared to 

the reference SFD, the first bit is sampled with a 𝛿 time offset; the delay of the second bit is 2𝛿, 

etc., generally the 𝑘th bit is sampled with a 𝑘𝛿 time offset. Thus, the unsafe interval for the 𝑘th bit, 

due to frequency error, for both the SPACE and MARK symbols is the following: 

𝜆𝑓 = 𝑘𝛿 (3.12) 

3.3 Performance properties 

In worst case, the cumulative effect of the above error sources can be represented as a combined 

unsafe interval with width of 𝜆, around the edges of the transmitted signal, as shown in Figure 3.6. 

In worst case the width of the combined unsafe interval is the following for MARK and SPACE 

symbols in case of a non-saturated camera: 

𝜆𝑀𝐴𝑅𝐾 = 𝜆𝑛 + 𝜆𝑗 + 𝜆𝑓 , (3.13) 

𝜆𝑆𝑃𝐴𝐶𝐸 = 𝜆𝑄 + 𝜆𝑛 + 𝜆𝑗 + 𝜆𝑓 . (3.14) 

For general (not symbol-based) worst case estimation (3.14) should be used (as it is more sensitive 

to error sources). 
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When the frequency synchronization between the transmitter and the camera is perfect, 

according to (3.2), the sampling is always performed at the same phase of the transmitted signal, 

thus, the sampling is either always good (green arrows of Figure 3.6 (a)), or always possibly bad 

(red arrows of Figure 3.6 (a)). In practical cases there always is a small frequency error between the 

transmitter and the camera, i.e., (3.11) holds. 

 
bit #(𝑗 − 1) bit #𝑗 bit #(𝑗 + 1) bit #(𝑗 + 2) 

𝑇𝐶𝐴𝑀 = 𝑛𝑇𝐷𝐴𝑇𝐴 (𝛿 = 0) 𝑇𝐶𝐴𝑀 
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𝛿 

𝜆 𝑇𝐷𝐴𝑇𝐴

2
− 𝜆 
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𝜆 

 
 (a) (b) 

Figure 3.6 (a) Unsafe intervals with width of 𝜆, as a cumulative results of various error sources. Sampling is 

made with 𝛿 = 0. Red arrows: samples taken in unsafe intervals, dark green arrows: samples taken in safe 

intervals. (b) The equivalent sampling of the signal with equivalent time interval of 𝛿 > 0. Samples are taken 

from safe and unsafe intervals as well. The unsafe and safe intervals are red and green, respectively. 

If 𝛿 is not zero, the phase of the sampling instants is shifted at each sample, as shown in Figure 3.6 

(b). When 𝛿𝐶𝐴𝑀 > 0, the equivalent samples are taken from left to right, while in case of 𝛿𝐶𝐴𝑀 < 0, 

from right to left. In Figure 3.6 (b) the safe and unsafe intervals are shown by green and red colors, 

respectively, and the equivalent sampling instants are denoted by colored arrows. The interpretation 

of the figure is the following: If a sample is taken at a particular phase of the signal (e.g., the leftmost 

red arrow of Figure 3.6 (b)) then the next sample will be taken 𝛿 time to the right (second red arrow 

in the middle of the unsafe interval in Figure 3.6 (b)), the next sample is taken further 𝛿 time to the 

right (third, green arrow at the beginning of the safe interval in Figure 3.6 (b)), etc. The samples 

traverse along the alternating safe and unsafe intervals; thus, the sampling is performed in the safe 

interval for a while, then in the unsafe interval, then again in the safe interval, etc.  

The average number of samples in the unsafe region is 

𝑁𝑢𝑛𝑠𝑎𝑓𝑒 =
𝜆

𝛿
 , (3.15) 

while in the safe region the average number of samples is  

𝑁𝑠𝑎𝑓𝑒 =

𝑇𝑑𝑎𝑡𝑎

2 − 𝜆

𝛿
=

𝑇𝑑𝑎𝑡𝑎

2𝛿
−

𝜆

𝛿
=

𝑇𝑑𝑎𝑡𝑎 − 2𝜆

2𝛿
 . (3.16) 

Thus, the transmission is potentially broken periodically with period  

𝑇𝑃 = 𝑇̃𝐶𝐴𝑀(𝑁𝑢𝑛𝑠𝑎𝑓𝑒 + 𝑁𝑠𝑎𝑓𝑒) = 𝑇̃𝐶𝐴𝑀

𝑇𝑑𝑎𝑡𝑎

2𝛿
 , (3.17) 

and the length of the potentially bad interval is  

𝑇𝑢𝑛𝑠𝑎𝑓𝑒 = 𝑇̃𝐶𝐴𝑀𝑁𝑢𝑛𝑠𝑎𝑓𝑒. (3.18) 

While the sampling is done in the unsafe interval, the protocol is likely to provide incorrect 

detections, thus, the protocol may not be responsive for time interval 𝑇𝑢𝑛𝑠𝑎𝑓𝑒. Thus, the 

responsiveness in worst case is characterized by 𝑇𝑢𝑛𝑠𝑎𝑓𝑒. 
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To calculate the worst-case 𝑃𝐸𝑅 for a particular data transmission, we can calculate the 𝜆 

value for each bit using (3.13) and (3.14) based on the bits’ value and position in the packet. Then, 

the maximum value of 𝜆 in the packet is sufficient to calculate the 𝑃𝐸𝑅 estimate with the above 

equations for a worst-case scenario, since even a single bit error can cause a bad packet, and the 

position of the unsafe intervals are aligned. To calculate the absolute worst case 𝑃𝐸𝑅 for the entire 

protocol, we may use the last bit (index) and assume, that it is a SPACE symbol (logical 0). 

To estimate the worst-case 𝐵𝐸𝑅 for MARK and SPACE symbols in UPSOOK, we only need 

to divide (3.13) or (3.14) with 𝑇𝑑𝑎𝑡𝑎/2, similarly as in the case of UFSOOK. To estimate the average 

𝐵𝐸𝑅, the results of Section 2 can also be used for this protocol, (e.g., with the estimation method 

(2.39) presented in Section 2.2.2, which supports the noise, suboptimal threshold, and frequency 

error components) with exchanged rule set for the symbols (MARK  SPACE), common symbol 

time 𝑇𝑑𝑎𝑡𝑎, and proper phase offset. Notice, that due to UPSOOK’s encoding-decoding method, 

each bit will have a different error rate if frequency error is present in the system, and 𝛿 must be 

adjusted accordingly with the usage of 𝑘𝛿, where 𝑘 = 1,2,3,… is the index of the examined bit. 

3.4 Evaluation 

The responsiveness of the UPSOOK protocol was tested in laboratory settings in ideal 

circumstances. In the test setup 9-bit packets were transmitted repeatedly. Altogether 45000 bits 

(5000 packets) were sent, using 𝑇𝑑𝑎𝑡𝑎 = 1/(𝑛 ∗ 30)  sec and 𝑇̃𝐶𝐴𝑀 = 1/30 + 𝛿 sec, where 𝑛 = 4, 

𝛿 = 0.2 μsec and 𝑆 = 250 μsec. The detected signal amplitude was between 𝐴𝐿 = 7 and 𝐴𝐻 =
109. The standard deviation of the measurement noise was 𝜎𝑛𝑜𝑖𝑠𝑒 = 0.6 LSB. 

To illustrate the behavior of UPSOOK, a test was run with various values of 𝑄. The 

transmission status of the protocol for 𝑄 = 50 is shown in Figure 3.7. 

 

Figure 3.7 Measured transmission status of the UPSOOK protocol, with 𝑆 = 250 μsec, 𝐴𝐿 = 7, 𝐴𝐻 = 109, 𝑄 =
50 and 𝛿 = 0.2 μsec. 

As shown in the record, the protocol fails periodically, where 𝑇𝑃 ≅ 12 min, and the width of the 

unsafe intervals was 𝑇𝑢𝑛𝑠𝑎𝑓𝑒 ≅ 7 sec. During these unsafe intervals the system is not responsive: in 

worst case the detection of a beacon is delayed by ~7 seconds. 

Table 3.1 contains measured and theoretical values for 𝑇𝑃 and 𝑇𝑢𝑛𝑠𝑎𝑓𝑒, for 𝑄 = 20, 50 and 

58. The theoretical values were calculated for the entire protocol’s worst-case scenario. Let us 

examine the theoretical values for 𝑄 = 50. The results show that in worst case, we should expect 

that the protocol will fail in every 694 s, and its transmission is erroneous for 8.5 s. The measured 

values show a better case: the occurrence of transmission errors was less common, and their width 

was also less (with 1.5 s). The measured and theoretical values show good correspondence, 

validating the theoretical results, which can be used to calculate the guaranteed operation 

performance of the protocol. 
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𝑸 
Theoretical Measured 

𝑻𝑷 𝑻𝒖𝒏𝒔𝒂𝒇𝒆 𝑻𝑷 𝑻𝒖𝒏𝒔𝒂𝒇𝒆 

20 694 sec 33.5 sec 729 sec 30 sec 

50 694 sec 8.5 sec 718 sec 7 sec 

58 694 sec 1.8 sec 721 sec 1 sec 

Table 3.1 Theoretical results and measured performance properties of the UPSOOK protocol 

3.5 Conclusion 

I presented the in-depth analysis of how and when do the various error sources affect the 

performance properties of the UPSOOK visible light communication protocol: improper 

thresholding, noise, jitter, and frequency error between the transmitter and the receiver. I showed 

that these error sources all enlarge the width of the periodically repeating unsafe intervals, where 

the communication possibly becomes faulty. With these results one can pre-calculate the guaranteed 

data transmission rate even before the system is put into operation, and adjust its parameters to 

achieve the best possible outcome. 

The key benefits of utilizing UPSOOK over UFSOOK are that it can transmit data twice as 

fast, and also the distribution of unsafe intervals is more uniform since the protocol uses only one 

frequency for both SPACE and MARK symbols. The design rules of UPSOOK are mainly the same 

as UFSOOK’s: a high signal amplitude is favorable, so that it provides a wide range for optimal 

thresholding, while also keeping a high signal-to-noise ratio; the design parameter 𝑛 should be kept 

minimal, to provide large safe intervals, and should only be increased to the point where the 

flickering is not disturbing for the human eye anymore; the smallest possible exposure time, with 

which the transmitters can still be sensed with a good signal amplitude, is favorable for the 

communication to decrease the width of the signal transition parts, in practice, setting a small gain 

is still better than having a large exposure time; using stable clocks both for the transmitter, and for 

the receiver minimizes the effect of jitter, which does not depend on any other parameters; the 𝛿 

parameter should be set according to the requirements of the actual use-case, for example, in case 

of the indoor positioning system introduced in Section 1.4, the 𝛿 parameter was fine-tuned, so that 

after several minutes of reliable operation the delay for the next successful beacon ID transmission 

(i.e., the length of the unsafe interval) was under a second. 

Technically, both UFSOOK’s (see Section 2) and UPSOOK’s decoding depends on the 

received brightness level of a single, blinking light source modulated according to the protocol’s 

encoding and transmitted data (in case of the aforementioned indoor positioning system, only the 

beacon IDs are transmitted, repeatedly). Due to the fact that these protocols contain dark (low) 

transmitter states, the trackability of the transmitters is poor. The trackability property of the LED 

beacons will be investigated in the next section (Section 4), which plays a crucial role for the IPS 

presented in Section 1.4. 
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4 Novel TUPSOOK VLC protocol 

When using VLC protocols for camera communication with rolling shutter cameras the transmitted 

code appears in the form of fringes in the camera’s image frames [70]. The usage of rolling shutter 

cameras also makes it possible to decode the transmitted data from just one image frame, as the 

sampling is done per row (or column). However, the size of the LED beacon needs to be sufficiently 

large to encompass a whole packet within the image frame, significantly restricting the practical 

usability distance. 

Global shutter cameras, on the other hand, sample the entire image simultaneously: the LED 

will blink in the consecutive camera image frames instead of becoming fringy. Also, the decoding 

of the VLC protocols mentioned in Sections 2-3 is based on the sensed brightness levels of the 

transmitters. which in case of the indoor positioning system presented in Section 1.4 is hard to 

implement. When the target camera is static, the image of the blinking LED beacon is at the same 

position of the detected image stream, making it possible to decode the data. However, in case of a 

moving camera (or beacon), the image of the LED is also moving in the picture. In order to be able 

to detect the transmitted code, the position of the LED beacon must be known in each image frame. 

This requirement will be referred to as trackability requirement. Figure 4.1 shows the modulation 

scheme of various VLC protocols. 
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Figure 4.1 Various VLC modulation schemes for undersampled camera communication, (a) UFSOOK, (b) 

UPSOOK, (c) LookUp, (d) TUPSOOK  
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Since the LED is blinking, the image may contain various detections, depending on the 

utilized coding scheme and the actual code. For illustration purposes let us consider transmitted 

code segment 1000. For UFSOOK, the detected sequence may be the following (see coding in 

Figure 4.1 (a)): (OFF-ON)-(OFF-OFF)-(OFF-OFF)-(OFF-OFF), thus the beacon may not be visible 

for 6 consecutive frames (in parentheses detections corresponding to one bit are shown). In case of 

UPSOOK, it may happen that the detection is the following (see Figure 4.1 (b), case #2): (ON)-

(OFF)-(OFF)-(OFF). In this case the beacon is not visible in 3 consecutive frames. The LookUp 

[58] coding for bit 1 allows several similar detections before the required change: in the illustration 

of Figure 4.1 (c)) the detection for bit 1 is (ON-OFF-OFF-ON), where the beacon is not visible in 

2 consecutive frames. In practice, this number can occasionally be even higher. 

All of these modulation schemes (Figure 4.1 (a)-(c)) can produce (in worst case) several 

consecutive frames with blank (dark) image, where the position of the LED cannot be measured. If 

the target makes a significant move during these frames, the tracking of the LED and the decoding 

of the transmitted code may become impossible. The more frames the beacon is not visible in, the 

slower motion can safely be tracked. Thus, for simultaneous tracking and decoding of beacons with 

a moving camera the optimal choice is when the beacon is visible in all images. 

It is worth noting, that there exist other VLC solutions that make an LED beacon trackable in 

consecutive image frames. In [74] Color-Shift Keying (CSK) was used to increase the transmission 

data rate. The usage of color coding may also make an LED beacon trackable, for example, when 

the LED consistently emits a dedicated color (e.g., green), and the encoding is performed using 

other colors (e.g., red and blue). I dismissed the idea of investigating the usage of CSK for my 

indoor positioning system for the following reasons: the LED beacons would not only blink but also 

emit different colors based on their transmitted data, making the beacons impractical for 

illuminating an environment; the transmission distance would be lower due to the Bayer pattern of 

most color image sensors (although this problem may be solved by using a Foveon-type color image 

sensor, where a physical pixel contains all three color components [75]); the intensity of the LED’s 

color components would need to be fine-tuned per image sensor so that all color components can 

be sensed in the same range (with normalized intensity). 

In the following a modified UPSOOK-based modulation scheme will be introduced, which 

provides good trackability.  

4.1 Protocol design 

The key elements of the Trackable UPSOOK (TUPSOOK) are the following (see Figure 4.1 (d) for 

illustration and Figure 4.2 for detailed explanation): 

• The original ON-OFF key (LED ON and LED OFF) is replaced by symbols X and Y, where 

the size of X and Y states is different in the image (instead of the difference in sensed 

brightness level), which is achieved with a special transmitter (LED light fixture) design. 

This way the LED can always be visible in the image, providing ideal trackability. The 

price of the modified keys is the somewhat decreased communication range, in which the 

size differences can still be detected. 

• For increased robustness, bits are Manchester-coded, using pairs of states to code each bit: 

bit 1 is coded as X-Y, while bit 0 is coded as Y-X. The coding allows the detection of 

incorrect detections at a price of decreased communication bandwidth: the maximum data 

transmission rate is 𝑓𝐶𝐴𝑀/2, ignoring the header, similarly to UFSOOK.  

• The original header (high frequency blinking, sensed as a half-intensity signal) is replaced 

by a special series of symbols, which cannot occur among the data symbol series (Y-X-X-

X-Y, 2.5 bits long). The header plays both the role of frame delimiter and MARK symbol. 

The main advantage of the proposed header is that it avoids the utilization of a special 

symbol, the detection of which may depend on environmental factors. See e.g., the 

measurement results in [62], showing that the HEADER and ON symbols become very 

similar as the distance increases between the transmitter and the receiver. The price of 

increased robustness is the somewhat increased frame length: while in UPSOOK the header 
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and mark symbols occupy 2 symbols, in TUPSOOK the length of the combined header is 

5 symbols.  

Y X X X Y YX YX YX YX XY YX XY XY Y X X X Y

Header

0 0 0 0 1 0 1 1

Footer

Y X X X Y YX YX YX YX XY YX XY XY Y X X X Y

X Y Y Y X XY XY XY XY YX XY YX YX X Y Y Y X

Channel decoding

OR

0 0 0 0 1 0 1 1
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Channel encoding

Payload

Symbol X Symbol Y
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Send

Modulation signal
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Decoded data (8 bit)
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Figure 4.2 Coding and decoding of TUPSOOK 

The proposed transmitter can be seen in Figure 4.3. Symbol X is represented by the outer ring 

ON and the inner ring OFF, while symbol Y is coded as the outer ring OFF and the inner ring ON. 

 
 (a)  (b)  (c) 

Figure 4.3 LED transmitter (a) beacon containing an outer ring LED (symbol X) and an inner dot LED 

(symbol Y), (b) photo of the beacon, (c) detected symbols on the camera image 
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Figure 4.3 also shows the detected symbols on the camera image: it is clearly visible that symbol X 

is larger than symbol Y. Notice the important fact that the beacon is visible on each camera frame, 

regardless of the transmitted symbol. 

The coding and decoding process is illustrated in Figure 4.2. First the data is Manchester-

coded: bit 1 is represented by XY, while bit 0 is coded by YX symbol pairs. The payload is 

surrounded by the header/footer segments, coded by symbol series YXXXY. (Notice that a footer 

segment is also the header of the next payload segment, the name footer is used only for 

convenience.) The channel coding is performed by phase modulation: symbol X shifts the carrier 

by phase 0, while symbol Y shifts the carrier by or 180⁰. 

The sampling is performed by the camera, detecting bright blobs in the image which are 

possible LED beacons. On each image symbols X and Y are detected, as will be described in Section 

4.2. When a header is found, the payload and the footer is also stored in a buffer. Similar to 

UPSOOK, the sampling may reproduce either the transmitted symbol series (case #1) or its inverted 

form (case #2), depending on the actual relative phase of the receiving camera and the transmitting 

beacon. The ambiguity is resolved using the received header: in case series YXXXY is received, 

the payload is decoded using XY→1 and YX→0, while for received header XYYYX the decoding 

is made using XY→0 and YX→1.  

Error checking is performed as follows: the received packet is marked faulty if  

• the header and footer are different or  

• the header/footer pattern is not YXXXY or XYYYX or 

• any data bit, i.e., symbol pair in the data region, is XX or YY. 

The error detection scheme provided by the above channel coding replaces the repeat coding 

used e.g., in [77]. 

4.2 Simultaneous beacon tracking and detection 

The tracking and decoding infrastructure is illustrated in Figure 4.4. On each camera frame, after 

pre-processing and conditioning it, blobs are detected, the center position and size of which are 

measured. Notice that blobs, corresponding to beacons, are visible on each image frame, due to the 

applied coding and beacon design. The tracking is performed as follows: 

The tracked blob set at time instant 𝑘 − 1 is  𝐵𝑘−1 = {𝑏1, 𝑏2, … , 𝑏𝑁𝑘−1
}, based on the acquired 

image samples up to time instant 𝑘 − 1. Tracked blob 𝑏𝑖 contains the following set of information:  

• Kalman filter parameters, describing the observed motion of the blob; 

• the last size 𝑠𝑘−1 and the current size 𝑠𝑘 of the blob, 

• number of consecutive frames 𝑁𝐼𝑁𝑉𝐼𝑆 where the blob was not seen, 

• the last Ξ𝑀𝑆𝐺 decoded symbols {𝑆𝐼𝑀𝑘 , 𝑆𝐼𝑀𝑘−1, … , 𝑆𝐼𝑀𝑘−𝑘𝑀𝑆𝐺+1}, where 𝑘𝑀𝑆𝐺 is the 

total number of symbols a message contains (including the header, the payload, and 

the footer), and 

• the detected ID of the corresponding beacon (if any). 

At time instant 𝑘, a set of detected blobs 𝐴𝑘 = 𝑎1, 𝑎2, … , 𝑎𝑁𝑘
 are detected. From 𝐵𝑘−1 and 𝐴𝑘 

the new tracked set 𝐵𝑘 is generated, as follows:  

• For each tracked blob 𝑏𝑖 the predicted position 𝑝̂𝑖 is calculated using the Kalman filter. 

Notice that for each detected blob a separate Kalman filter is operated, using a constant 

speed model.  

• Using the predicted position 𝑝̂𝑖 of tracked blob 𝑏𝑖, and the measured position 𝑝𝑗 of 

detection 𝑎𝑗, a matching is calculated (see block blob pairing in Figure 4.4): for each 

𝑏𝑖 at most one 𝑎𝑗 is assigned, and for each 𝑎𝑗 at most one 𝑏𝑖 is assigned such that the 

sum of distances ∑|𝑝𝑗 − 𝑝̂𝑖| be minimal, with the constraint that all pairwise distances 
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are below a limit: |𝑝𝑗 − 𝑝̂𝑖| < 𝑑𝑚𝑎𝑥. Thus, for each tracked blob at most one detected 

blob (presumably the one, which is closest to it) is assigned, as the latest track element.  

• Some tracked blobs 𝑏𝑖 have assigned detected blob s (see e.g., tracked blob 𝑏2 and 

detected blob 𝑎1 in Figure 4.4). For these tracks 𝑁𝐼𝑁𝑉𝐼𝑆(𝑖) = 0 is set. 

Blobs after pairing [k]

Tracked blobs [k]

Source image

Filtered image

Blob detection

Image preprocessing
Blob pairing

Detected blobs [k]

b1

Tracked blobs [k-1]
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a2 a3

a1 b2

a3b3
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b4
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b1

Beacon 1 identified

a2

 
Figure 4.4 Simultaneous tracking and symbol detection 

• Some tracked blobs 𝑏𝑗 may not have a detected blob assigned (e.g., a tracked beacon 

is now covered by an obstacle, see e.g., tracked blob 𝑏1 in Figure 4.4). For these blobs 

𝑁𝐼𝑁𝑉𝐼𝑆(𝑗) = 𝑁𝐼𝑁𝑉𝐼𝑆(𝑖) + 1. 

• Some detected beacons 𝑎𝑘 may not have an assigned track (e.g., a previously unseen 

beacon appeared, see detected 𝑎2 in Figure 4.4). For these detections a new tracked 

blob is created (𝑏4 in Figure 4.4). 

• Tracked blobs with high 𝑁𝐼𝑁𝑉𝐼𝑆 > 𝑁𝐼𝑁𝑉𝐼𝑆_𝑀𝐴𝑋 are purged.  

The symbol detection is performed for each frame, for tracked blob 𝑏𝑖 blob sizes 𝑠𝑘−1 and 𝑠𝑘 are 

compared:  

• if 𝑠𝑘−1 > 𝛾𝑠𝑘 then 𝑆𝐼𝑀𝑘 = 𝑌, where 𝛾 is a constant parameter 

• else if 𝛾𝑠𝑘−1 < 𝑠𝑘 then 𝑆𝐼𝑀𝑘 = 𝑋, 
• otherwise 𝑆𝐼𝑀𝑘 = 𝑆𝐼𝑀𝑘−1.  
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4.3 Evaluation 

The maximum communication distance was tested in two scenarios, using a global shutter camera 

equipped with fisheye lens, with 𝑓𝐶𝐴𝑀 = 80𝐻𝑧, 𝑓𝑑𝑎𝑡𝑎 = 640𝐻𝑧, and with parameter 𝛾 = 1.25. In 

scenario 1 the camera was facing towards the LED beacon (i.e., the LED image appeared at the 

center of the picture), while in scenario 2 the LED was placed on the horizon of the camera (i.e., 

the LED appeared at the edge of the picture). The number of successfully received messages per 

minute are shown in Figure 4.5 (a). In both cases 14𝑚 was safely covered. Notice that TUPSOOK 

has smaller communication distance than techniques using purely ON-OFF techniques (e.g., 

LookUp can provide 50m communication range). 

The trackability of TUPSOOK was also tested with 5 different beacons. The camera was 

moving with different speeds, and the number of received messages per minute is shown in Figure 

4.5 (b). As the results show, the system is able to provide simultaneous tracking and detection for 

speeds as large as 1m/s, without significant change in the system performance. 

 

 (a)  (b)  
Figure 4.5 Number of successful detections per minute, (a) as a function of distance, (b) as a function of camera 

speed 

Notice that the number of detections is not consistent (as shown in Figure 4.5), which is 

mainly caused by the constantly changing phase between the receiver and transmitter as discussed 

during the analysis of frequency error for UPSOOK in Section 3.2.4. The beacon is detectable from 

a longer distance when placed on the horizon of the camera, due to the better azimuthal angular 

resolution (e.g., if the beacon can be seen at a 2° angle by the camera, the beacon’s image contains 

more pixels along the horizon of the camera). 

4.4 Conclusion 

With the proposed beacon design and symbol encoding the transmitter will always be visible in 

line-of-sight case, thus TUPSOOK fulfills the trackability requirement as opposed to the other 

mentioned solutions when used with global shutter cameras. The tracking of moving transmitters 

makes it possible to decode the transmitted data, even when the receiver or the transmitter is 

moving. 

In case of the indoor positioning system introduced in Section 1.4, each beacon transmits its 

own unique identification number continuously. Since tracking enables the retention of the identity 

of moving objects in the camera’s image frames, the VLC protocol is crucial mainly for the initial 

detection. Therefore, the only drawback arising from the unsafe intervals of the protocols is their 

potential to delay the detection of the beacons. 

In the next section a novel, robust version of UPSOOK will be introduced, which eliminates 

the existence of unsafe intervals on a wide range of system parameters. 
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5 Novel RUPSOOK VLC protocol 

The visible light communication protocols introduced in Sections 2-4 all suffer from frequency 

errors, causing phase slippage, due to the practical case of unsynchronized transmitters and 

receivers, as proved in Section 2.2.1 and in Section 3.2.4. Even if we would try to fine-tune the 

frequencies to have a small 𝛿 frequency error, that would not only cause the enlargement of safe 

transmission segments, but would also enlarge the unsafe transmission segments (e.g., the data 

transmission would be flawless for a whole day, but then would be unusable for a few hours). On 

the other hand, if the 𝛿 frequency error is intentionally made larger, it results in smaller, but more 

frequent transmission errors. This problem urged the development of Robust UPSOOK 

(RUPSOOK) that can operate in an error-free manner on a wide range of system parameters, and 

can be used to reliably transmit data (e.g., beacon IDs for the indoor positioning system). 

The protocol uses only two symbols, which are single ON (H) and OFF (L) states of the 

transmitter, each symbol having width of 𝑇𝐵, as shown in Figure 5.1. First the data bits to be 

transmitted are Manchester-coded, i.e., each bit is represented by two symbols as follows: 
0: 𝐿𝐻
1: 𝐻𝐿

 (5.1) 

The Manchester coded bits can be considered as phase-shift keying signals, similarly to 

UPSOOK’s MARK and SPACE symbols. A key difference is that, according to (3.2), each 

UPSOOK symbol contains 𝑛 > 1 periods (for practical cases to make flickering unnoticeable for 

the human eye), while here only one period is utilized, as shown in Figure 5.1. 

At the beginning of the packet the header is transmitted, which contains 𝑁𝐻𝐸𝐴𝐷 = 5 symbols 

of LHHHL. Due to the Manchester coding, the three consecutive H symbols can never be present 

in the data part, thus, the header can be separated from the data (see details of decoding later). The 

data segment, following the header, contains B bits, Manchester encoded. 
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Figure 5.1 The operation of the Robust UPSOOK protocol.  

The packet contains 𝑀 symbols, where 

𝑀 = 𝑁𝐻𝐸𝐴𝐷 + 2𝐵. (5.2) 

The transmitter repeats the packet of M symbols continuously; thus, the header also serves as a 

footer. The receiver is configured to have an intentional frequency shift between the transmitter and 

receiver; the ideal sampling interval 𝑇𝐶𝐴𝑀 of the receiver is set so that 𝑇𝐶𝐴𝑀 is slightly longer than 

the packet time (𝑇𝐵𝑀):  
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𝑇𝐶𝐴𝑀 = 𝑇𝐵(𝑀 + 𝑐), (5.3) 

where 0 < 𝑐 < 1. With this setting, the continuously transmitted packet will be sampled so that the 

phase of the samples changes continuously, providing equivalent sampling intervals of  

𝛿𝐸 = 𝑐𝑇𝐵 (5.4) 

between consecutive samples, as illustrated in Figure 5.2. If 𝛿𝐸 were zero, each instance of the 

packet would be sampled at the same phase. Since 𝛿𝐸 > 0, instance 𝑘 + 1 is sampled at a different 

phase, virtually 𝛿𝐸 time later than instance 𝑘. The equivalent sampling of the packet is shown in the 

lower part of Figure 5.2 and in the receiver part of Figure 5.1. 

packet instance #1 packet instance #2 packet instance #3

𝑀𝑇𝐵  𝑀𝑇𝐵  

𝑆1 𝑆2 𝑆3 
𝛿𝐸 𝛿𝐸 

𝑆1 

𝑆2 
𝑆3 

𝛿𝐸 

 
Figure 5.2 The sampling at the receiver side of Robust UPSOOK protocol, and its equivalent representation. The 

equivalent sampling interval is 𝛿𝐸. The sampling instances are denoted with solid blue arrows. 

5.1 Robust parameter design 

The value of 𝑐 should be chosen so that the following three requirements are fulfilled: 

R1 from each symbol one or two samples are taken; 

R2 from two consecutive symbols three or four samples are taken; 

R3 from three consecutive symbols at least five samples are taken. 

The above requirements allow the decoding of the symbols from the received samples, as shown in 

the receiver part of Figure 5.1. First the number of the same consecutive samples is determined. In 

Figure 5.1 the illustration shows one L, five H, two L, one H, etc. samples in row Received Samples. 

Using R1-R3, the symbols are decoded as follows: 

• One or two of samples Z are converted to a symbol Z, where Z is H or L. 

• Three or four of samples Z are converted to symbols ZZ, where Z is H or L. 

• At least five samples of H are converted to HEAD_H. 

The result of symbol decoding is illustrated in Figure 5.1, row Received Symbols. The received 

symbols are then converted to bits, using the following rules: 

• An L followed by HEAD_H, followed by L is the HEADER. 

• After the HEADER, B symbol pairs are decoded using (5.1). 

The decoded bits are shown in Figure 5.1 in row Received Bits. 

The value of constant 𝑐 must be determined so that the protocol be tolerant towards the error 

sources. Most of the error sources, described in Section 3.2 for UPSOOK, are relevant for 

RUPSOOK as well: the effects of thresholding, noise, jitter, and saturation [S4] on the sampling are 
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the same. The frequency error, which was characterized by the slip parameter 𝛿𝐶𝐴𝑀, is now a design 

parameter, 𝛿𝐸. Thus, the widths of the unsafe regions are now estimated by (3.14) with 𝜆𝑓 = 0. 

In the protocol one, two, or three of the same symbols can follow each other (one or two in 

the data segment, three in the header). Since sampling around the edges is unsafe, again safe and 

unsafe regions are observed, as shown in Figure 5.3: the symbols’ width is 𝑇𝐵, and the unsafe 

regions’ width is 𝜆. 

𝑇𝐵 

𝛿𝐸 

2𝑇𝐵  3𝑇𝐵  

𝜆 

R1 R2 R3  
Figure 5.3 Unsafe regions (red rectangles) in a transmitted signal, showing the equivalent sampling of the signal 

(blue dots). The samples in an unsafe region may result in an incorrectly detected value (red dots), or in a 

correctly detected value (green dot). The example also illustrates requirements R1, R2, and R3. 

Notice that the unsafe regions may virtually increase or decrease the width of a symbol in 

worst case by 𝜆. E.g., in Figure 5.3 if the sample taken in the third unsafe interval (middle of the 

figure) is L, then the sensed length of two symbols L becomes longer and at the same time the length 

of the three symbols of H seems shorter. If the sample in the unsafe interval is H, then the effect 

will be the opposite.  

Taking this effect into consideration, R1 can be expressed as follows (for illustration see the 

first symbol H in Figure 5.3): 

𝑇𝐵 − 𝜆 > 𝛿𝐸 (5.5) 

𝑇𝐵 + 𝜆 < 2𝛿𝐸 (5.6) 

Similarly, for R2 (see the two consecutive symbols L in Figure 5.3): 

2𝑇𝐵 − 𝜆 > 3𝛿𝐸 (5.7) 

2𝑇𝐵 + 𝜆 < 4𝛿𝐸 (5.8) 

Finally, R3 results in the following constraint (see the three consecutive symbols H in Figure 5.3): 

3𝑇𝐵 − 𝜆 > 5𝛿𝐸 (5.9) 

From (5.5), (5.7), and (5.9) it follows: 

𝛿𝐸 < min (𝑇𝐵 − 𝜆,
2

3
𝑇𝐵 −

1

3
𝜆 ,

3

5
𝑇𝐵 −

1

5
𝜆) (5.10) 

Since in a meaningful case 𝜆 <
𝑇𝐵

2
, (5.10) can be simplified to 

𝛿𝐸 <
3

5
𝑇𝐵 −

1

5
𝜆. (5.11) 

From (5.6) and (5.8) the following constraint follows: 
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𝛿𝐸 > max (
𝑇𝐵

2
+

𝜆

2
,
𝑇𝐵

2
+

𝜆

4
) =

𝑇𝐵

2
+

𝜆

2
. (5.12) 

Let us use the following notation: 

𝜆 = 𝑎𝜆𝑇𝐵. (5.13) 

Using (5.4), (5.11), (5.12), and (5.13), the possible region for constant 𝑐 is the following: 

1

2
(1 + 𝑎𝜆) < 𝑐 <

3

5
(1 −

𝑎𝜆

3
). (5.14) 

The solution exist if  

𝑎𝜆 <
1

7
. (5.15) 

From (5.13) and (5.15) it follows that the protocol can operate only if the unsafe interval 𝜆 is 

smaller than 𝑇𝐵/7. From (39) a region is given for possible values of 𝑐, where the width of the 

region is 

𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛 =
1

10
−

7

10
𝑎𝜆. (5.16) 

The value of 𝑐 should be chosen as the middle of the interval:  

𝑐𝑜𝑝𝑡 = 0.55 + 0.15𝑎𝜆 (5.17) 

5.2 Adaptive thresholding 

In practical cases the amplitudes 𝐴𝐿 and 𝐴𝐻 may change in time, which causes the change of ideal 

thresholding parameter 𝑄0. In the following a windowing-based adaptive estimator for 𝑄0 will be 

introduced. Let the sampled intensity value at time instant 𝑘 be 𝐼𝑆(𝑘). Let us use a time window 

with length 𝑊. The minimum and maximum amplitudes are estimated as follows: 

𝐼𝑀𝐴𝑋(𝑘) = max(𝐼𝑆(𝑘 − 𝑊 + 1), 𝐼𝑆(𝑘 − 𝑊 + 2), … , 𝐼𝑆(𝑘)), (5.18) 

𝐼𝑀𝐼𝑁(𝑘) = min(𝐼𝑆(𝑘 − 𝑊 + 1), 𝐼𝑆(𝑘 − 𝑊 + 2),… , 𝐼𝑆(𝑘)), (5.19) 

and the estimate of 𝑄0 is the following: 

𝑄0(𝑘) =
𝐼𝑀𝐴𝑋(𝑘) + 𝐼𝑀𝐼𝑁(𝑘)

2
. (5.20) 

The window length 𝑊 must be chosen so that the window contains at least one sample from 

a symbol L and at least one sample from a symbol H, at any part of the signal, even in the header. 

From (5.4) it follows that 1/𝑐 expresses the average sample count per symbol. The header contains 

the largest possible consecutive symbols (LHHHL), thus to satisfy the requirement for the window 

length at least 4 symbols should be sampled, meaning 𝑊 > 4/𝑐 ≈ 8. 
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Figure 5.4 Adaptive estimation of threshold 𝑄0. 

The operation of the adaptive estimator is illustrated in Figure 5.4. The varying input signal 

intensity, denoted by blue crosses, is synthetized with 𝐵 = 8 bits and camera aperture time of 𝑆 =
500 μsec. The ideal 𝑄0 value is calculated using (3.7), and plotted in red. The signal contains 

additive noise (with standard deviation of 1 LSB). In the signal there is a section where the line of 

sight is blocked (between samples 200 and 240), and a section where the amplitude is constant 

(between samples 600 and 700). In the experiment two windows were used with 𝑊 = 10 and 𝑊 =
50. 

Both estimators estimate well the constant region. The smaller window (shown in green) 

allows faster adaptation when the signal changes, thus, the estimated threshold follows closely the 

ideal threshold. The larger window (shown in magenta) produces slower adaptation, the delay 

between the ideal and estimated values is apparent. 

When a non-line-of-sight (NLOS) situation occurs, the estimated threshold decreases to 𝐴𝐻/2 

within a few samples (visible for both windows), and falls to zero not later than W samples after 

the start of the NLOS (visible for 𝑊 = 10). In both cases the estimate quickly recovers when the 

line of sight is restored.  

According to the experiment, the smaller window size provides faster and more accurate 

estimate, thus, in practice a good choice is a window with size slightly above the minimum vale, 

e.g., around 10. 

Notice that the adaptive mechanism only sets the threshold value and thus, has no effect on 

the latency of the protocol. 

5.3 Evaluation 

In this section the performance of the proposed RUPSOOK protocol is evaluated using simulations 

and real measurements. 

For evaluation purposes, instead of 𝑐, a more practical parameter, called Samples Per Bit 

(𝑆𝑃𝐵), will be used. Since the length of one bit is 2𝑇𝐵, the number of samples per bit is, using (5.4), 

can be expressed as follows: 

𝑆𝑃𝐵 =
2𝑇𝐵

𝛿𝐸

=
2

𝑐
. (5.21) 
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Notice that according to (5.17), the ideal value of 𝑐 is around 0.55…0.56, which corresponds 

with ideal samples per bit value of 𝑆𝑃𝐵 ≅ 3.6. Table 5.1 shows the main technical parameters, used 

in the simulations and measurements. 

Parameter Simulations Laboratory I. Laboratory II. Long-distance 

𝑇𝐶𝐴𝑀  (sec) 1/30 1/30 1/30 1/30 

𝑆 (μsec) 100 100 15 100 

𝑓-𝑛𝑢𝑚𝑏𝑒𝑟 𝑛. 𝑎. 𝑓/8 𝑓/2.8 𝑓/2 

𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ (mm) 𝑛. 𝑎. 2.7 2.7 6 

𝐵(bits) 5 + header 9 + header 9 + header 20 + header 

𝑆𝑃𝐵 

(𝑐) 

2.5…5.0 

(0.4…0.8) 

2.75…4.25 

(0.47...0.73) 

2.75…4.75 

(0.47...0.73) 

3.65 

(0.55) 

𝑇𝐵  (msec) ≅ 2.381 ≅ 1.515 ≅ 1.515 ≅ 0.7575 

𝑄 (LSB) 0…255 0…255 0…255 0. .40 

𝐴𝐿;  𝐴𝐻 (LSB) 40;  160 42;  155 43;  154 0; 28-36 (varied) 

𝑠𝑡𝑑𝑛𝑜𝑖𝑠𝑒  (LSB) 5 (controlled) 0.8 (L), 2.31 (H) 0.9 (L), 2.7 (H) 0 (L), 1.7 (H) 

𝑃𝐿𝐸𝐷  (W) 𝑛. 𝑎. 0.0015 0.0015 4.9 

𝑡𝑜𝑡𝑎𝑙 #𝑏𝑖𝑡𝑠 𝑠𝑒𝑛𝑡 1000/experiment 1800/experiment 1800/experiment 38280 

Table 5.1 Technical parameters of the measurements. 

5.3.1 Simulations 

The behavior of the proposed protocol was analyzed in a well-controlled simulation environment. 

The sampled signal was simulated using an ideal square-wave blinking signal and a camera model 

according to (2.5). The resulting signal was similar to the trapezoidal signal shown in Figure 3.2 

(a), with 𝑇𝐵 = 𝑇𝐷𝐴𝑇𝐴/2, with tunable parameters 𝑇𝐵 and 𝑆. By varying the sampling rate, various 

SPB values were set, and the variation of the sampling frequency allowed the simulation of jitter 

and frequency error as well. With additive nose the effect of noise was modelled. 

The camera frequency was set to 30 Hz, the simulated aperture time was 100 μs, the received 

signal amplitude was set between 40 and 160. The threshold 𝑄 was varied from 0 to 255, and the 

transmitter frequency was tuned to provide samples per bit (𝑆𝑃𝐵) between 2.5 and 5. In each 

simulation the same transmission sequence with 200 packets were used and the Packet Error Rate 

(𝑃𝐸𝑅) was calculated as follows: 

𝑃𝐸𝑅 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
. (5.22) 

In Figure 5.5 the 𝑃𝐸𝑅 is shown as a function of the threshold 𝑄 and samples per bit 𝑆𝑃𝐵. 

Figure 5.5 (a) shows the ideal case, where no error source is present. The central part, shown by 

black, is error free (𝑃𝐸𝑅 = 0). The error-free region is located around 𝑆𝑃𝐵 = 3.6, corresponding 

well with the theoretical results. As it was expected, the protocol operates well with thresholds 

between the minimum and maximum  

Figure 5.5 (b) shows the effect of additive noise with variance 𝜎 = 5 LSB. The error-free 

region decreased by approximately 3𝜎 LSB around the threshold values corresponding to the 

minimum and maximum signal amplitude (i.e., the top and bottom of the error-free region).  

For better visibility, in the simulations a high jitter value in the range of ±100 μs, was used, 

with uniform distribution. The effect is shown in Figure 5.5 (c): the shrinking of the error-free 

region on both the left-hand side and right-hand side is clearly observable.  
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 (a) (b) 

 

 (c) (d) 

 

 (e) (f) 

Figure 5.5 Simulated 𝑃𝐸𝑅 in the presence of various error sources. (a) ideal case, (b) noise with 𝜎 = 5 LSB, (c) 

±100 μsec jitter, (d) camera frequency error of with Δ𝑓𝐶𝐴𝑀 = −0.1 Hz, (e) combined noise, jitter, and frequency 

error, (f) saturation. 

The frequency error was modelled as a constant bias in the camera frequency: the camera 

frequency was set to 29.9 Hz.  The effect is visible in Figure 5.5 (d), where the original error-free 

region is shifted to the right. The explanation is the following: RUPSOOK uses a constant frequency 
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difference between the camera and the transmitter, according to (5.3) and (5.4). This frequency 

difference is modified by the constant frequency error of the camera, thus, the designed 𝑆𝑃𝐵 value 

is different from the nominal value, resulting in a shift of the error-free region. If the sampling of 

camera is faster/slower than expected then the real SPB is higher/lower than the nominal, causing 

shift of the error-free region to the left/right. The theoretical relationship between the nominal 𝑆𝑃𝐵, 

the real 𝑆𝑃𝐵’, and the frequency error Δ𝑓 is the following: 

𝑆𝑃𝐵′ ≅
𝑆𝑃𝐵

1 + 𝑆𝑃𝐵
1

2𝑇𝐵

𝛥𝑓𝑐𝑎𝑚

𝑓𝑐𝑎𝑚
2

≅ 𝑆𝑃𝐵 − 𝑆𝑃𝐵2
1

2𝑇𝐵

𝛥𝑓𝑐𝑎𝑚

𝑓𝑐𝑎𝑚
2

. 
(5.23) 

 

As an example, if the nominal 𝑆𝑃𝐵 is 3.5 and the frequency error is 0.1 Hz then the real 𝑆𝑃𝐵’ 

is 3.2, thus, the values corresponding to 𝑆𝑃𝐵 = 3.5 in Figure 5.5 (d) correspond to values 𝑆𝑃𝐵 =
3.2 in Figure 5.5 (a), producing the shift visible. Notice that according to (5.23) the value of the 

shift depends on the 𝑆𝑃𝐵: the larger the 𝑆𝑃𝐵 the larger the shift. 

The effect of multiple error sources, including noise, jitter, and frequency error is shown in 

Figure 5.5 (e). The levels of the disturbances are equal to those of the individual sources presented 

in Figure 5.5 (a)-(d). The combined effect, containing shrinking and shifting of the error-free region, 

is obvious.  

The effect of saturation is illustrated in Figure 5.5 (f). In the example the signal values 

changed between 40 and 400, saturated at 255. Without saturation (up to amplitude 400) the figure 

would be an enlarged version of the saturation-free case of Figure 5.5 (a), but due to saturation, it 

is truncated at the saturation level of 255. Thus, Figure 5.5 (f) is the stretched version of the lower 

half of Figure 5.5 (a), caused by sensor saturation.  

5.3.2 Measurement setup 

During the tests two measurement setups were utilized: a well-controlled laboratory environment 

and a long-distance outdoor setup. In the laboratory setup the camera and the low-power 

transmitters were built into an enclosure blocking external light, where the minimum and maximum 

light intensity, along with the noise level can be controlled. The photo of the equipment is shown 

in Figure 5.6. In the long-distance setup power LEDs were used, as transmitters. The map of the 

premises and the photo of the equipment are shown in Figure 5.7. 

 

Figure 5.6 The setup for laboratory measurements. 
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Figure 5.7 Long distance measurement setup and the photo of the equipment. 

The main technical parameters of the measurements are shown in Table 5.1. Notice that in 

Table 5.1 the value of 𝑇𝐶𝐴𝑀 is the nominal value, but the camera provided slightly different sampling 

period; thus, parameter 𝑇𝐵 was tuned while measuring the actual value of parameter 𝑆𝑃𝐵. The 

measurement method for 𝑆𝑃𝐵 is described in the next Section. 

5.3.3 Measurement of the SPB value 

For the tests the exact SPB value need to be determined. Parameter 𝑇𝐵 of the transmitter can be 

measured easily with high precision, using a time/frequency meter, but for most cameras the 

measurement of the exact sampling frequency is troublesome. Thus, the value of 𝛿 is difficult to 

obtain. Instead, a measurement setup was used to directly measure the 𝑆𝑃𝐵, as shown in Figure 5.8.  

The transmitter is the RUPSOOK transmitter under test, but during the 𝑆𝑃𝐵 measurement the 

packets do not contain header and the same symbols (e.g., bit 1’s HL) are transmitted, resulting a 

continuous alternating sequence of HLHLHL… The received samples are binarized by a 

comparator. The measurement is performed using two counters: one counter contains the number 

of received bits 𝑁𝑏, while the other counts the number of received frames (or samples) 𝑁𝑓. After 

each received full bit the ratio of the samples and bits is calculated, providing an estimate for the 

𝑆𝑃𝐵 value:  

𝑆𝑃𝐵 =
𝑁𝑓

𝑁𝑏

±
1

𝑁𝑏

. (5.24) 

Figure 5.8 shows the result after the reception of 4 full bits, containing 27 samples. Note that 

the counters should be cleared when the transmitter frequency is changed. Using the real-time 

feedback of 𝑆𝑃𝐵 values, the required 𝑆𝑃𝐵 can be easily set by tuning the transmitter’s clock 

frequency.  

RUPSOOK 

transmitter 

(no header) c
a

m
e
ra

𝑇𝐵 
comparator

LED

1 bit

÷ 

HLHLHLHL...

bit counter

frame counter

SPB

𝑁𝑓 = 27 

𝑁𝑏 = 4 

6.75 ± 0.25 

 
Figure 5.8 Measurement setup to determine the 𝑆𝑃𝐵 value. 

Notice that the speed of measurement depends on the actual 𝑆𝑃𝐵 value and the required 

precision. E.g., for 𝑆𝑃𝐵 = 3 each bit contains 3 samples, thus, samples corresponding to one bit are 
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collected in 0.1𝑠𝑒𝑐, using 𝑓𝑆 = 30 Hz. In order to provide measurement accuracy of ±0.05, 

according to (5.22), 𝑁𝑏 = 20 is necessary, thus, the measurement time is 20 ∙ 0.1 sec = 2 sec.  

5.3.4 Laboratory measurements 

The laboratory measurements contained two setups, using aperture times of 100 μsec and 15 μsec. 

The technical parameters are listed for both setups in Table 5.1. In each test different 𝑆𝑃𝐵 values 

were set, ranging from 2.75 to 4.25. The Packet Error Rate (𝑃𝐸𝑅), as a function of parameters 𝑆𝑃𝐵 

and 𝑄, was calculated.  

Figure 5.9 shows the 𝑃𝐸𝑅 as a function of 𝑆𝑃𝐵 and 𝑄, for both setups. The shape and size of 

the error-free regions resemble to the those of simulation results. In case of smaller aperture time 

the tilting on the left- and right-hand side of the error-free region is narrower. The robust operation 

is apparent: the PER is zero for a wide range of parameters 𝑆𝑃𝐵 and 𝑄, as shown by the black area 

in the center.  

 
 (a) (b) 

Figure 5.9 The packet error rate as a function of parameters 𝑆𝑃𝐵 and 𝑄.  

(a) 𝑆 = 15 μsec, (b) 𝑆 = 100 μsec. 

Notice that the robust operation region provides guaranteed response time. E.g., in case of 

𝑆𝑃𝐵 = 3.5 the decoding of 11-bit long packet requires 39 samples. Since in worst case the reception 

begins slightly after the start of the first header symbol, almost two packets must be received for 

the first detection. In this case, considering the utilized camera frequency, the worst-case guaranteed 

response time will be 2.6 sec. 

5.3.5 Long-distance measurement 

A long-distance measurement was also conducted to check the robustness of RUPSOOK in extreme 

conditions. The camera was placed in a 9th-floor window, while the transmitter was deployed at 

the side of a nearby road (see Figure 5.7). The distance between the transmitter and the camera was 

160m. In this experiment no additional noise was added to the measurement. The noise was 

observable only at state H (with standard deviation of 1.7 LSB), state L was always zero. A sample 

packet can be seen in Figure 5.10. Notice that most of the samples are around zero and 30 but there 

are numerous samples in between: these were taken in unsafe intervals.  

The PER is shown in Figure 5.11, as a function of parameter 𝑄. The performance of the 

protocol was perfect (zero error) with parameters 1 ≤ 𝑄 ≤ 20, for the 38280 transmitted bits: 1740 

packets were transmitted and successfully received. The header was 2 bits long in this experiment 

(instead of the 2,5 bits shown in Figure 5.1) with HHHL symbols (the last symbol of the packet in 

the data region was L, so the first L symbol of the header was omitted). 
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Figure 5.10 Example samples from the long-distance measurements. 

 
Figure 5.11 The packet error rate of the long-distance measurement, as a function of parameter 𝑄. 

5.4 Comparison and conclusion 

The main performance properties of UFSOOK [61], UPSOOK [62], the Undersampled 64-PAM 

[78], and the proposed RUPSOOK protocol are listed in Table 5.2. 

 UFSOOK UPSOOK UPAM-64 RUPSOOK 

Bits / Sample 0.5 1 8 0.28 

Covered distance medium medium low high 

Theoretical 𝑷𝑬𝑹 > 0 > 0 > 0 = 0 

QoS no no no yes 

Worst-case response time 𝑂(1/𝛿) 𝑂(1/𝛿) 𝑂(1/𝛿) 𝑂(1) 

Table 5.2 Performance properties of UFSOOK [61], UPSOOK [62], 

Undersampled 64-PAM [78], and RUPSOOK 

The highest spectral efficiency belongs to U-64-PAM, where the PAM coding allows the coding of 

multiple (8) bits into one symbol. In this respect RUPSOOK has the lowest performance with only 

0.28bits/sample. Protocols with higher bandwidth, using various color coding and parallel channels, 

were also proposed (e.g., [77], [79]), but for the target application field these are not applicable, due 

to their limited communication range. The covered distance is low in case of U-64-PAM, due to the 

sensitive coding. Both UFSOOK and UPSOOK performs better, due to the OOK coding, but the 

observed sensitivity of the header to distance reduces the possible distance coverage [62]. 

RUPSOOK’s better performance is due to its header structure, where there is no need for a different 

symbol. The theoretical PER is zero for RUPSOOK, with correct settings. The wide range of correct 

settings makes the protocol robust. The only correct setting for the other protocols is the tight 

synchronization, which is not practical. Thus, RUPSOOK is able to guarantee Quality of Service 

(QoS) for the response time, while the other protocols are not. The worst-case response time is 

constant for RUPSOOK, while this time is inversely proportional with the frequency error 𝛿 for 

other protocols. 



 

56 

When combined with the size change-based data encoding-decoding method and beacon 

design introduced in Section 4, RUPSOOK can also satisfy the trackability requirement. This 

combined solution was superior to any other solution found in the literature at the time that could 

be used to transfer beacon identification numbers in the visible light-based indoor positioning 

system introduced in Section 1.4. 
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6 Novel HIAL ADoA positioning method 

Sections 2-5 dealt with the topic of VLC protocols that can be used in the IPS system presented in 

Section 1.4 to transmit an LED beacon’s identification number, so that the system may recognize the 

beacons, and use them as anchor (reference) points for positioning purposes.  

In this section, the Heuristic Inscribed Angle-based Localization (HIAL) method will be 

presented, which can be used to estimate the position and orientation of a camera in the indoor 

positioning system. The camera is using global shutter and is equipped with fisheye lens. A key 

requirement for the method is that the camera has to face upwards, so that the normal vector of the 

camera is parallel with the z axis of the real-world coordinate system, or its tilt needs to be 

compensated. The method uses angle difference measurements (from the camera’s point of view) of 

tracked and identified beacons in the IPS, which position is known in the real-world coordinate 

system. 

If the viewing angle between two beacon points (also known as Angle Difference of Arrival) 

𝑃𝑖 and 𝑃𝑗 is 𝜗𝑖,𝑗, measured at point 𝐶 (i.e., ∢𝑃𝑖𝐶𝑃𝑗 = 𝜗𝑖𝑗), then the possible position of point 𝐶 is on 

a circularly symmetric surface, which is constructed as the rotation of a circular arc around chord 𝑃𝑖 

and 𝑃𝑗, corresponding to viewing angle 𝜗𝑖,𝑗 [17]. Such surfaces are illustrated in Figure 6.1. If 

multiple pairs of beacons are available, multiple surfaces can be constructed, the intersection of which 

determines the location of 𝐶 (camera), as was used e.g., in [17]. In HIAL, however, it is not the 

viewing angle 𝜗𝑖,𝑗 in 3D, what is measured, but instead the 2D viewing angle 𝛼𝑖,𝑗 = ∢𝑃′𝑖𝐶′𝑃′𝑗, where 

𝑃′𝑖, 𝑃′𝑗, and 𝐶′ are the orthogonal projections of 𝑃𝑖, 𝑃𝑗, and 𝐶, respectively, to plane x-y, as shown 

in Figure 6.1 (a). This can be done due to the abovementioned requirement about the camera’s 

normal vector. Using multiple pairs of beacons, first the 𝐶′ position of the camera on the x-y plane 

is calculated, as the intersections of circular arcs, followed by the calculation of the height and 

azimuth of the camera. 

 
Figure 6.1 The surfaces show the possible location of the camera if the 𝜗𝑖,𝑗 angle difference of arrival from two 

beacons 𝑃𝑖  and 𝑃𝑗 are measured: (a) Apple surface of a spindle torus, when 𝜗𝑖,𝑗 < 90°, also showing the measured 

2D viewing angle 𝛼𝑖,𝑗; (b) Sphere, when 𝜗𝑖,𝑗 = 90°; (c) Lemon surface of a spindle torus, when 𝜗𝑖,𝑗 > 90°. 

The utilized coordinate systems and their relations are shown in Figure 6.2. The real-world 

coordinate system is 𝐾1 (shown by solid axes), in which the unknown camera coordinates are 
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represented by vector 𝒄 = (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) and the known position of the 𝑗-th reference point (LED 

beacon) is 𝑃𝑗 = (𝑥𝑗, 𝑦𝑗, 𝑧𝑗). Camera coordinate system 𝐾2 (shown by dashed axes) is a translated and 

rotated version of 𝐾1, where the rotation is performed around axis 𝑧 by unknown angle 𝜑, and the 

translation is characterized by the unknown vector 𝒄, as shown in Figure 6.2. Notice that 𝑧1 and 𝑧2 

are parallel, since the camera is facing upwards (or is being compensated to do so). The position of 

beacon j in 𝐾2 is 𝒑𝒋
(𝟐)

= (𝑥𝑝,𝑗
(2), 𝑦𝑝,𝑗

(2), 𝑧𝑝,𝑗
(2)). The fisheye camera shows the beacon in a heavily 

distorted image in coordinate system 𝐾3, from which, using the camera calibration data, unit vector 

𝒗𝒋 = (𝑥𝑣,𝑗
(2), 𝑦𝑣,𝑗

(2), 𝑧𝑣,𝑗
(2)) can be calculated, which has approximately the same direction (will be 

discussed in Section 6.3) as 𝒑𝒋
(𝟐)

, as shown in Figure 6.2 (see e.g., [80] for detailed discussion). The 

orthographic projection of 𝒗𝒋 to the 𝑥-𝑦 plane is 𝒗′𝒋 = (𝑥𝑣,𝑗
(2), 𝑦𝑣,𝑗

(2)), from which 𝛼𝑗 =

atan2(𝑦𝑗
(2), 𝑥𝑗

(2)) can be calculated, where 𝛼𝑗 is the angle of 𝒗′𝒋 in 𝐾2, as shown in Figure 6.2.  
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Figure 6.2 Coordinate systems used in positioning. 𝐾1: world, 𝐾2: camera calibrated, 𝐾3: camera raw (fisheye). 

The unknown camera location and orientation in 𝐾1 are 𝐶 and 𝜑, respectively. The coordinate systems (only x-y 

plane) are illustrated on the right-hand side. 

When a beacon pair 𝑖 and 𝑗 is detected, the angle difference of arrival 𝛼𝑖,𝑗 = 𝛼𝑗 − 𝛼𝑖 is 

calculated from angles 𝛼𝑖. and 𝛼𝑗. Notice that 𝛼𝑖 and 𝛼𝑗 are measured in 𝐾2, but the viewing angle 

𝛼𝑖𝑗 is the same in 𝐾1 and 𝐾2, as illustrated in Figure 6.1 (a). Using the inscribed angle theorem, for 

fixed points 𝑃𝑖
′ and 𝑃𝑗

′, the possible location of 𝐶′, for which ∢𝑃𝑖
′𝐶′𝑃𝑗

′ = 𝛼𝑖,𝑗 is an arc of a circle, as 

shown in Figure 6.3 (a). 
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Figure 6.3 (a) The possible location of 𝐶′ is on an arc of circle, when viewing angle ∢𝑃𝑖

′𝐶′𝑃𝑗
′ is 𝛼𝑖𝑗. (b) The 

calculation of position 𝐶′, as the intersection of three arcs of circle. 

Let us denote the arc, defined by viewing angle 𝛼𝑖𝑗 and two points 𝑃𝑖
′ and 𝑃𝑗

′, by the triplet 

[𝛼𝑖𝑗, 𝑃𝑖
′, 𝑃𝑗

′]. The center 𝑂𝑖,𝑗 and radius 𝑟𝑖,𝑗 of each arc of circle can be calculated using e.g., [58]. 

Having three anchor points 𝑃1, 𝑃2, and 𝑃3, three pairs of anchors and thus three corresponding 

arcs [𝛼1,2, 𝑃1
′, 𝑃2

′], [𝛼2,3, 𝑃2
′ , 𝑃3

′], [𝛼3,1, 𝑃3
′ , 𝑃1

′] can be calculated, the intersection of which is the 

location of 𝐶′, as shown in Figure 6.3 (b).  

The calculation of 𝐶′ is straightforward when three beacons are available, according to Figure 

6.3 (b). When multiple beacons are visible, however, more than three pairs can be selected and thus 

more arcs can be calculated. This allows the creation of a more robust, fault-tolerant estimate. 

Theoretically, all arcs should intersect in one point, but in reality, due to measurement errors, 

several intersections may be present. Errors can occur due to small measurement inaccuracies, e.g., 

inaccurate beacon location in the database or small detection errors. These sources can be modelled 

as small measurement noise and they result in the scattering of intersections around the true location. 

Due to the nature of the detection, however, outliers are not uncommon, e.g., due to reflections a 

mirror image of a beacon is detected, which results a completely bad arc and several intersections 

far from the true location. Thus, simple statistical approaches (e.g., least squares method) do not 

work when bad detections can be present. To avoid large bias caused by outliers, a fast heuristic 

scoring of the intersections is proposed, which helps the selection of a group of possibly valid 

intersections, which do not contain outliers.  

𝐼1 

𝐼2  

𝜀1 

𝜀2 
𝑎1 

𝑎2 

𝑎3 

𝑎4 

 
Figure 6.4 Scoring of arc intersections with parameters 𝜀1 and 𝜀2  

The scoring process is illustrated in Figure 6.4. Every pair of detected beacons is used to create 

an arc of circle, and every pair of arcs creates an intersection point. The arcs in Figure 6.4 are denoted 

by 𝑎1, 𝑎2, 𝑎3, 𝑎4, while the intersections are 𝐼1 and 𝐼2. Intersection 𝐼1 was computed from 𝑎1 and 𝑎2, 

while 𝐼2 is the intersection of 𝑎1 and 𝑎3. 
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An intersection gets a score if  

• it is close to an arc, which was not used in the computation of the intersection (a point is 

considered close to an arc if their distance is smaller than 𝜀1, where 𝜀1 is a predefined 

constant; in Figure 6.4, 𝐼1 is close to 𝑎4, that was not used to create 𝐼1, thus 𝐼1 gets plus 

one score); or 

• it is close to another intersection (two intersections are close to each other if their distance 

is smaller than 𝜀2, where 𝜀2 is a predefined constant; in Figure 6.4, 𝐼1 is close to 𝐼2 thus 

both 𝐼1 and 2 get plus one score). 

In the illustration of Figure 6.4 intersections 𝐼1 and 𝐼2 have 2 and 1 scores, respectively. Notice 

that the higher the score of a point the higher number of measurements it is consistent with. Thus, 

the location estimate 𝐶̂ is the intersection 𝐼𝑚𝑎𝑥 with the highest score. If multiple intersections share 

the same highest score, their mean position is used for the location estimate. 

Once 𝐶̂ is known in 𝐾1, the calculation of the camera orientation (azimuth) and height is 

straightforward, as follows. Let 𝑃𝑗 be a beacon which was used to create one of the arcs that resulted 

𝐼𝑚𝑎𝑥 (i.e., 𝑃𝑗 is possibly a beacon that was correctly detected). First, vector 𝐶′𝑃𝑗
′ is calculated. Let us 

denote its angle by 𝛽𝑗, as shown in Figure 6.2. The unknown camera orientation is calculated as 𝜑̂ =

𝛽𝑗 − 𝛼𝑗.  

Notice that 𝒑𝒋
(𝟐)

= 𝑢𝒗𝒋, where scalar 𝑢 is unknown. Since 𝐶′𝑃𝑗
′ = 𝑢𝒗𝒋

′, 𝑢 can be calculated as 

𝑢 = ‖𝐶′𝑃𝑗
′‖/‖𝒗𝒋

′‖. Thus, the 𝑧 coordinate of beacon 𝑃𝑗 in 𝐾2 is 𝑧𝑝,𝑗
(2)

= 𝑢𝑧𝑣,𝑗
(2)

. Finally, the height of 

the camera is calculated as 𝑧𝑐 = 𝑧𝑗 − 𝑧𝑝,𝑗
(2)

. 

6.1 Error analysis 

The possible error sources were analyzed with Monte Carlo simulations. For easier comparison, the 

test configuration in the simulations reflects the real measurement setup (see Section 6.2)  

The tests were performed in a room with size of approx. 6 m x 6 m, where 17 test positions 

were defined in the central 3 m x 3 m area, as shown in Figure 6.5. In the room 6 beacons were 

installed, thus different configurations with different number of beacons could be tested. The beacon 

positions are denoted by 𝐵1, 𝐵2, … , 𝐵6 in Figure 6.5. The 17 test positions are shown by blue crosses. 

The z coordinates of the beacons and the test points were 3.04 m and 0.02 m, respectively (not shown 

in Figure 6.5).  

Notice that in the simulations beacon detection and tracking capabilities were not tested: the 

detected beacon positions were calculated from the ideal physical model and additional errors were 

added, as will be described in each case.  

In the tests the following error sources were analyzed:  

• Camera orientation error: the camera is supposed to look upwards. This simulated error source 

reflects real situations where the camera orientation is not accurate.  

• Detection error: the beacon’s position is detected in the image with possible error. This error 

source describes e.g., errors due to inaccurate camera compensation, quantization, or 

inaccuracies of the preprocessing algorithms.  

• Reference position error: beacons are assumed to be in known positions. This error source 

simulates measurement inaccuracies of the reference positions.  

• Outliers: real detections may contain large errors (e.g., due to reflections or incorrect beacon 

identification). This simulated error source injects large measurement errors to analyze the fault 

tolerance capabilities of the positioning algorithm.  
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In the tests the proposed algorithm using n beacons will be denoted by HIAL-n (HIAL-3, 

HIAL-4, HIAL-5, and HIAL-6). The applied beacons setups were the following: 

• HIAL-3: beacons 1, 3, and 4 

• HIAL-4: beacons 1, 2, 3, and 4 

• HIAL-5: beacons 1, 2, 3, 4, and 5 

• HIAL-6: all 6 beacons 

For reference, the widely used Maximum Likelihood Perspective-n-Point (MLPnP) algorithm 

was used (always with the minimum required 6 beacons, and without covariance information 

feedback) [76]. 

The 3D error is defined as the distance between the true location and the location estimate. In 

several applications the 2D error is more significant: here only the 𝑥 and 𝑦 coordinates are used for 

error calculation.  

6.1.1 Effect of camera orientation error 

The camera is supposed to look upwards, but the camera orientation in reality may not be accurate. 

In the simulation the tilt of the camera was changed by 1-5° (in steps of 1°) from the ideal (upwards) 

direction. The azimuthal orientation of the camera was swept around from 0 to 360°. For each non-

ideal camera position the beacon detections were calculated, ignoring other possible error sources, 

and the localization algorithm was run for each case. The results are plotted in Figure 6.5 with red 

color. According to the results, for a constant amount of tilt error (e.g., 1°) the localization error is 

almost constant: the error trajectory is approximately circular (the smallest circles correspond to 1°, 

the largest ones to 5°).  
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Figure 6.5 Test environment and the result of camera angle perturbation analysis in 2D. 

The detailed results are listed in Table A.1, both for 2D and 3D cases. It can be observed that 

the localization error is approximately proportional with the orientation error. In the test 

environment 1° of orientation error resulted in approximately 5 cm of position error. The number 

of beacons had no significant effect on the localization error. Notice that this test is not meaningful 

for reference algorithm MLPnP, since it is able to handle any camera orientation. 
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6.1.2 Effect of detection error 

Due to the non-ideal physical properties of the camera and the inaccuracies of the applied processing 

algorithms the detection of the beacons may be inaccurate. In the tests ideal detections were 

simulated for all 17 test points. In the next step the simulated detection images were corrupted by 

various amount of error (i.e., the center of the detected object was moved by some pixels, in random 

directions). The localization algorithms were run on each corrupted image.  

The tests were performed using 𝑛 = 1, 2, 3 pixels of error, and for each error value 800 

independent simulations were run. Figure 6.6 illustrates the 2D error for HIAL-6 and MLPnP, for 

𝑛 = 2. The error greatly depends on the location, e.g., in 𝑇11 for HIAL-6 and 𝑇13 for MLPnP large 

errors (10-20 cm) can be observed, possibly due to geometric dilution of precision. 

 
Figure 6.6 Effect of detection error on the 2D localization accuracy for MLPnP and HIAL-6, with 𝑛 = 2 pixels. 

The detailed measurement results are summarized in Table A.2 (due to lack of space HIAL-5 was 

omitted). Again, the localization error is approximately proportional with the detection error, 1 pixel 

of detection error resulting in approx. 1-1.5 cm of localization error. The number of beacons has 

moderate effect on the localization error: more beacons usually provide more accurate results. 

6.1.3 Effect of reference position error 

To analyze the effect of inaccurate reference positions, the following test was performed: for each 

test points the ideal detections were calculated (with no error). Then the reference positions were 

all perturbed, by adding a vector with random direction and length 𝑑 to the true positions, with 𝑑 =
1, 2, 3, 4 cm. The localization algorithm was run using the true detections and the perturbed 

reference locations. The resulted location error is illustrated in Figure 6.7 with 𝑑 = 4 cm, using 

MLPnP and HIAL-4.  
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Figure 6.7 Effect of reference position error on the 2D localization accuracy for algorithms MLPnP and HIAL-

4, with 𝑑 = 4 cm. 

The detailed results are listed in Table A.3. Clearly, increasing amount of error in the 

reference positions caused proportionally increasing localization error, in the test case 1 cm 

uncertainty in the reference position caused approximately 1-1.5 cm of localization error. The 

number of beacons had no significant effect on the accuracy. Notice that in general the MLPnP 

algorithm was less sensitive to reference position errors: the mean and maximum values tend to be 

lower in this case. This is possibly due to the applied position estimation method: while MLPnP 

approximates the maximum likelihood solution in 3D, the HIAL algorithms compute the 2D 

solution first, and extend it to 3D in a separate step (see main part of Section 6). 

6.1.4 Effect of outliers 

False detections can happen e.g., when a reflected beacon is observed. False detections can be 

anywhere in the detected image; thus, they can be modelled as random outliers. The test was 

performed in the following way. 

Since the reference algorithm MLPnP requires at least 6 beacons, for fair comparison 

altogether 7 beacons were utilized, as follows: the locations of the original 6 beacons 𝐵1, 𝐵2, … , 𝐵6 

were always correctly detected, while beacon 𝐵7 (see Figure 6.8 for its location) was always 

incorrectly detected.  

The detections for the test were simulated as follows: for all test points the ideal detection 

was computed for all beacons (no other error source was utilized) and then the detected position of 

𝐵7 was modified randomly within ±(50-100) pixels, using uniform distribution. The localization 

algorithms were run using the modified detection and the ideal beacon positions. For each test point 

800 independent experiments were carried out.  

The tested HIAL algorithms utilized the original beacon configurations plus always used 

beacon 𝐵7. E.g., now HIAL-5 utilized 4 good beacons (as in earlier HIAL-4 configuration) and 𝐵7. 

Accordingly, in the tests HIAL-4 … HIAL-6 were tested, along with MLPnP, which utilized all 

seven beacons.  

The behavior of the algorithms MLPnP and HIAL-4 is illustrated in Figure 6.8. As the plotted 

results clearly show, MLPnP is very sensitive to large measurement errors: even if 6 of 7 detections 

were correct, the one outlier caused large bias (~0,5 m) of the location estimate. Algorithm HIAL-
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4, however, always provided perfect results (since the other simulated detections were free of error, 

the localization error was always practically zero, except for small rounding errors). 

 
Figure 6.8 Effect of one outlier detection on the 2D localization accuracy, for algorithms MLPnP and HIAL-4. 

The test results for all test cases are shown in Table A.4. While MLPnP was clearly very 

sensitive to the outlier, all HIAL configurations provided perfect localization in all test cases (with 

practically zero error). Thus, the proposed HIAL algorithm is able to filter out bad detections and 

provide fault tolerant behavior, thanks to the approach utilized in data fusion: only consistent 

measurements (determined by parameters 𝜀1 and 𝜀2) are used in the estimation process and outliers 

are automatically neglected, while MLPnP needs to be used in RANSAC-based outlier rejection 

schemes. 

6.2 Evaluation 

Real measurements were performed in a room of size 6.5 m x 6 m, with height of approx. 3.1 m. 

The 6 beacons were deployed on the ceiling. The beacon locations in 2D are shown in Figure 6.5, 

and the z coordinates were 3.04 m for all beacons. The 17 reference positions for the static tests 

were measured on the floor, as shown in Figure 6.5. The positions were measured with a laser 

distance meter with estimated accuracy of 1 cm. Parameter 𝜀1 was set to 2 cm,  parameter 𝜀2 was 

set to 6 cm. 

6.2.1 Static accuracy 

To test static accuracy of the algorithms 17 test points were used (see Figure 6.5). The camera was 

placed over each test point and at every point 800 measurements were performed. For HIAL-3 and the 

reference algorithm MLPnP, the results are illustrated in Figure 6.9. Both algorithms provided error in 

the range of a few centimeters. At the center test points the error is as low as 10-20 mm, while at some 

test points at the perimeter the error was systematically higher (60-80 mm) for both the HIAL and the 
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reference MLPnP algorithms. The reason of the higher error is possibly the inaccurate beacon 

positioning, which has more significant impact at certain location, due to geometric dilution of 

precision. 

Notice the slight variance of the estimated object positions even though the camera was not 

moving. This effect is due to the internal operation of the object detection: since the beacon is blinking, 

the size and shape of the detected object is changing in time, and thus the detected object’s center 

position may slightly change. This effect is smoothed by the Kalman-filters of the Object Tracker block, 

but still there is a small variation in the detected object position, resulting slight variation in the estimated 

object position. 

 

Figure 6.9 3D localization accuracy for MLPnP and HIAL-3, using real measurements 

The detailed 3D test results are listed in Table A.5. The average accuracy of the system is 

around 3-4 cm. According to the results, the HIAL algorithm provides accuracy in the same range 

as the reference algorithm MLPnP, but with fewer (at least 3) beacons. When the number of beacons 

is higher than 3, the accuracy of HIAL is better than that of MLPnP. Notice that MLPnP is able to 

operate with arbitrary camera orientation, while HIAL requires that the camera faces upwards.  

6.2.2 Dynamic accuracy 

To test the accuracy of the system (see Section 1.4) while the tracked object is moving, another test 

setup was constructed. The camera was moved along a circular path, the radius of which was 1 m 

and its center was at test point 𝑇10. The true trajectory is shown in blue in Figure 6.10. During the 

test the speed of the object varied between 0.1 m/s and 0.6 m/s. The detected trajectories, 

according to MLPnP and HIAL-3 are plotted in red and green, respectively. There is a visible 

distortion along the path, which is again probably due to the inaccurate beacon positioning. The 

positioning errors along the track correspond well with that of the static case.  



 

66 

 

 
Figure 6.10 Tracking results of a moving object. The insert shows the 3D error of the HIAL and MLPnP 

algorithms.  

The detailed statistical results are shown in Table A.6. As the results show, increased number 

of beacons provided somewhat better results; the mean error being around 2 cm. This result is 

slightly better than that of the static case, the reason of which is that the dynamic track was placed 

in the middle of the room, where the static error was also smaller.  

To test the dependence of the location accuracy as a function of camera speed, the following 

test was performed. The camera was moved along a linear trajectory with constant speed. Five 

different speed values were used, and the measured 3D tracking errors are included in Table A.7. 
Interestingly, the increase of speed slightly increased the accuracy, especially in case of lower 

beacon numbers. This is probably due to the smoothing effect of the built-in Kalman filters: higher 

speed provides more efficient filtering effect against the random variance, present due to object 

detection (see Section 6.2.1). Notice that the proposed system is capable of tracking objects in real-

time with high accuracy, even when the object is moving as fast as 1 m/s (which is a typical speed 

of forklift trucks).  

6.3 Comparison and conclusion 

The proposed method is compared to other VLC-based localization methods in Table 6.1. The 

compared methods include the exhaustive search (MEX) and least squares method (LSM) proposed 

in [17], the least squares solution of [81], the geometric consensus-based approach of [58], 

MLPnP [76], and HIAL-3. 



 

67 

 

 Mean error 
Processing 

time 
Test area 

Number of 
Beacons 

Fault 
tolerant 

MEX [17] 3.2 cm 0.36 sec 1 m x 1 m 5  
LSM [17] 14.7 cm 0.001 sec 1 m x 1 m 5  
LSM [81] 18 cm 0.17 sec 5.4 m x 7.5 m ~15-20  

LookUp [58] 17 cm ~2 sec 15 m x 30 m 4 ✓ 
MLPnP [76] 3.4 cm < 0.001 sec 4 m x 4 m 6  
HIAL-3 [S1] 3.9 cm ~ 0.002 sec 4 m x 4 m 3 ✓ 

 

Table 6.1 Comparison of various VLC localization methods. 

The comparison includes the mean positioning error in real measurements, and the 

computation time for one estimate. To provide better comparison, the size of the test area and the 

number of beacons is also included. Methods resilient to faulty detections are also marked in Table 

6.1. 

The proposed HIAL method is able to provide one of the smallest localization errors, with 

the smallest number of beacons. The method, with higher number of beacons, is fault tolerant 

against false detections/outliers. The speed of the proposed algorithm is also remarkable for beacon 

counts occurring in a practical case (e.g., 12 beacons are visible ~ 12 msec with multithreading), 

allowing real-time calculation for realistic camera (e.g., with 30 Hz). However, the required amount 

of time needed to calculate the position scales badly as the number of beacons is increasing. Also, 

various error sources in the system may cause an increased number of generated intersection points, 

as it is possible that 2 arcs generate 2 intersection points in worst case, which slows down the scoring 

part of the method, especially when high number of beacons are present. 

During the real measurements (see Figure 6.9 and Figure 6.10) the center point of each beacon 

was only approximated based on the camera image frames: First, the center point of the blob was 

determined based on the pixels in the distorted camera image, for which a better approach would 

be to first apply the coordinate transformation, based on the camera calibration data, to convert each 

corresponding pixel into a unit direction vector in the camera’s local coordinate system, then 

calculate the mean unit direction vector of them. Second, for higher accuracy, the beacon’s pre-

measured central coordinate should be compensated to be in the position where the mean direction 

vector would intersect it (within the bounds of the beacon), which is not applicable with this method. 

The nature of the error is systematic with respect to the position of the camera, and the actual 

beacons geometrical alignment, which can be compensated with post-processing the resultant 

estimate. This size of the error is proportional with the size of the beacon in the camera’s image, 

and with its real-world size, and inversely proportional with the distance between the camera and 

the beacon, and in cases, the camera’s resolution. Also, choosing the correct beacon size and camera 

based on the environmental properties the error causing the distortion can be reduced into a 

negligible amount. 

Due to the score-based selection of the intersections, which are used to generate the output 

estimate, this method may be sensitive to noisy measurements, since it can cause the intersection-

intersection and intersection-arc distances to wiggle around the method’s thresholds (𝜀1 and 𝜀2) 

when they are not properly set. The appearance of a new beacon or the removal of a previous one 

may also cause sudden jumps in the estimate. Thus, additional smoothing/filtering may be necessary 

for the output estimate. 
In the next section a random sample consensus-based approach will be introduced, which is 

not only tolerant against outliers, but possesses better computational performance, and is able to 

provide a smoother output estimate. 
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7 Novel RBL ADoA positioning algorithm 

The proposed solution in Section 6 is able to provide outlier-tolerant, robust position and orientation 

estimates most of the time, however, after extensive usage and testing it was found that in certain 

beacon alignments the distance-based scoring method may provide noisy estimates if not properly 

set (see e.g. Figure 6.6). Let us consider the case, when the measured beacon angles are noisy. In 

this case the constructed arcs may be larger or smaller, providing 0 or 2 intersection points with 

other arcs instead of the optimal 1 (error-free case). Also, if the filter parameters are not properly 

set, it may also happen that when 2 intersection points are generated from 2 arcs, only one of them 

will contribute to the largest group. Finding a good value for the 𝜖1 and 𝜖2 parameters is also 

cumbersome, and would require a trial-and-error approach, or simulations. 

The calculation performance of the HIAL algorithm is sufficient for practical cases (~10 

beacons are visible at a time), but scales badly: from every possible beacon pair an arc is generated; 

from every possible arc pair 0-2 intersection points are generated; we also need to compare the 

intersection points with each other, and with the non-constructing arcs. A conventional laptop for 

example, can handle ~10-15 beacons to calculate 30 estimates per second (real-time operation for 

a camera sampling with 30 Hz), but it will struggle when the beacon count is greater, leading to 

dropped estimations (the process is still computing and will skip e.g., every second estimation 

resulting in a larger delay, and breaking the real-time requirement of the system). 

These problems urged the development of the RBL method, which is presented in this section. 

The proposed solution operates with the same principle (ADoA) and requirement (the normal vector 

of the camera is known) as HIAL (see Section 6 for details). It requires angle measurements of at 

least 3 beacons. With minimal number of beacons an algebraic solution is provided, which is 

naturally sensitive to outliers. When redundant (i.e., four or more) measurements are present, 

random sample consensus (RANSAC) is used to select the largest possible consistent beacon set to 

calculate a robust position estimate. A practical error model for cameras is proposed to determine 

the position-dependent inlier angle tolerance of the beacons. The performance of the proposed 

solution is illustrated by simulation examples and practical measurements as well. 

7.1 Error model 

The beacons are detected on the camera’s image stream. On the left-hand side of Figure 7.1 a bird’s-

eye view of the area is shown, with the camera 𝐶′, beacons 𝑃𝑖
′, 𝑃𝑗

′, 𝑃𝑘
′ , 𝑃𝑙

′, and an obstacle partly 

covering beacon 𝑃𝑖
′. On the right-hand side the fish-eye camera image is shown, with two possible 

sources of detection error. 
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Figure 7.1 Detection error sources. (a) Bird’s-eye view of the detection area. (b) Fisheye camera image. The 

detected and true beacon centers are denoted by red and green dots.  

First, the center estimate of a beacon’s image may be inaccurate, as illustrated on 𝑃𝑘
′ . This 

center detection error Δ𝐶𝑝 is usually small (around one pixel), and if all beacons are approximately 

on the horizon, the angle error is independent of the distance between the beacon and the camera. 
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This error is modeled as a random additive error 𝛼 (𝑑) with uniform distribution between −Δ𝛼𝑑 and 

+Δ𝛼𝑑, where Δ𝛼𝑑 is constant. If the radius of the horizon on the camera image is 𝑅𝑝 pixels, then 

the value of Δ𝛼𝑑 can be approximated as follows: 

𝛥𝛼𝑑  = atan2(𝛥𝐶𝑝, 𝑅𝑝) , (7.1) 

where atan2 is the two-argument arctangent function. 

The second type of detection error may happen when a beacon is partially obscured (see 𝑃𝑖
′ in 

Figure 7.1). In this case the camera image contains a misshapen beacon, the center of which may 

have an offset with regard to the true center. The error is the largest when almost the whole beacon 

is covered; in this case the center of the observed beacon may appear 𝑊/2 away from the true 

position, where 𝑊 is the horizontal size of the beacon. The resulting angle error may be higher if 

the beacon is closer to the camera (i.e., the beacon image is larger). This angle error is modeled as 

a random additive error 𝛼 𝑖
(𝑐)

, with uniform distribution between −Δ𝛼𝑐,𝑖 and +Δ𝛼𝑐,𝑖, where Δ𝛼𝑐,𝑖 is 

the maximal angle error as follows: 

𝛥𝛼𝑐,𝑖 = atan2 (
1

2
𝑊,𝐷𝑖), (7.2) 

where 𝑊 is the horizontal size of beacon 𝑃𝑖
′, and 𝐷𝑖 is the distance between 𝑃𝑖

′ and the camera. 

The measured angle of beacon 𝑃𝑖
′ is modelled as follows: 

𝛼𝑖 = 𝛼𝑖
(𝑡𝑟𝑢𝑒) + 𝛼 

(𝑑)
+ 𝛼 𝑖

(𝑐)
 (7.3) 

7.2 RANSAC-based localization process 

In this section the operation of the proposed localization algorithm is briefly summarized. The 

technical details will be discussed later; the summary contains references to sections with the 

detailed discussion. The pseudo-code of the proposed algorithm is the following: 

 

Repeat Steps 1-4 𝑁𝑄 times. The number 𝑁𝑄 of iterations is discussed in Section 7.2.1. 

Step 1:  Select 3 beacons randomly. Let the selected beacon triplet be 𝐵𝑇𝑗. 

Step 2:  Calculate initial position estimate 𝐶̂𝑗 and orientation estimate 𝜑̂𝑗 using 𝐵𝑇𝑗. The 

estimates are calculated from the positions of beacons 𝐵𝑇𝑗 and the measured angles 

of these beacons. The details of the estimation are presented in Section 7.2.2. 

Step 3:  For all the other beacons, check whether their measurements are consistent with 𝐶̂𝑗 

and 𝜑̂𝑗. The set of supporter beacons of 𝐵𝑇𝑗 (i.e., the inliers) is denoted by 𝑆𝑈𝑃𝑗. 

The proposed inlier-outlier classification method uses a position-dependent 

threshold; thus, the effect of the measurement errors will be location-independent. 

The method is discussed in Section 7.2.3. 

Step 4:  Calculate the number of supporter beacons 𝑁𝑆𝑗 = n(𝑆𝑈𝑃𝑗) and their mean squared 

angle measurement error 𝐸𝑗, as described in Section 7.2.3. 

End Repeat 

Step 5:  From the 𝑁𝑄 experiments select the triplet with the highest value 𝑁𝑆𝑘. If multiple 

triplets exist with the same 𝑁𝑆𝑘, then select the one with the smallest value 𝐸𝑘.  

Step 6:  Using all of the supporter beacons in 𝑆𝑈𝑃𝑘, calculate refined estimates 𝐶̂̂𝑘   and 𝜑̂̂𝑘, 

starting from 𝐶̂𝑘, as described in Section 7.2.4. 

 

7.2.1 Number of iterations 

The estimation process uses random beacon triplets to find an initial position estimate. In order 

the estimator algorithm to provide a good estimate the measurement must fulfill the following two 

conditions:  
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a) All three initial beacons must be detected correctly, i.e., with small measurement error. If 

some of the initial measurements are outliers, the initial estimate will be wrong. 

b) According to the phenomenon called geometrical dilution of precision (GDOP), some 

setups are more sensitive to measurement errors than others [82]. Thus, the geometry of 

the initial beacons and the camera must allow a good estimate when the measurements are 

correct (i.e., the measurement error is small, according to condition (a)).  

In order for the estimator algorithm to provide a reliable estimate, it is necessary to have at 

least one good initial triplet that fulfills both requirements among the 𝑁𝑄 experiments. Since beacon 

triplets 𝐵𝑇𝑗 are chosen randomly, it is possible to determine the probability 𝑃𝑟ℎ𝑖𝑡 of having at least 

one good beacon triplet among the randomly chosen 𝑁𝑄 triplets. On the reverse direction, we can 

use this design parameter 𝑃𝑟ℎ𝑖𝑡 to determine the necessary number of iterations 𝑁𝑄 [83].  

Let us denote the number of beacons and the number of total experiments by 𝑁𝐵 and 𝑁𝑄, 

respectively. Let us suppose that out of 𝑁𝐵 measurements 𝑁𝐺𝑂𝑂𝐷 are inliers. The probability of 

choosing a reliable triplet is  

𝑃𝑟(𝐵𝑇𝑗 𝑖𝑠 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒) =
(
𝑁𝐺𝑂𝑂𝐷

3
)

(
𝑁𝐵
3

)
𝑃∗, (7.4) 

where 𝑃∗ is the conditional probability of providing a good estimate if all of the initial 

measurements are inliers [83].  

The probability 𝑃𝑟ℎ𝑖𝑡 of having at least one reliable triplet out of 𝑁𝑄 trials can be expressed 

as follows:  

𝑃𝑟ℎ𝑖𝑡 = 1 − (1 − (
(
𝑁𝐺𝑂𝑂𝐷

3
)

(
𝑁𝐵
3

)
)𝑃∗)

𝑁𝑄

  (7.5) 

Thus, the number of necessary trials, given probability 𝑃𝑟ℎ𝑖𝑡 and 𝑃∗, is the following: 

𝑁𝑄 =
𝑙𝑜𝑔(1−𝑃𝑟ℎ𝑖𝑡)

𝑙𝑜𝑔(1−(
(
𝑁𝐺𝑂𝑂𝐷

3
)

(
𝑁𝐵
3

)
)𝑃∗)

  
(7.6) 

In practice the number of inlier/outlier measurements is usually unknown. However, it is 

usually possible to give a safe upper bound for the outliers (e.g., if there are rarely more than one 

outlier, then a safe assumption is that 𝑁𝐺𝑂𝑂𝐷 ≥ 𝑁𝐵 − 2, and an even safer assumption is that 

𝑁𝐺𝑂𝑂𝐷 ≥ 𝑁𝐵 − 3). If the number of inliers is at least 𝑁𝐺𝑂𝑂𝐷, then the calculated 𝑁𝑄, according to 

(7.6), provides an upper bound for the required number of trials.  

The probability 𝑃𝑟ℎ𝑖𝑡 is a design parameter, set close to 1 (e.g., 0.999). Probability 𝑃∗ can be 

estimated using simulations, using the inlier angle tolerance value, as input parameter [83].  

For small number of beacons, it is feasible to use all the possible beacon triplets. Even for 15 

visible beacons, the number of trials is only 455 (see the measurement speed in Section 7.3.1). 

However, for higher number of beacons (6) may really be helpful: e.g., for 50 visible beacons the 

total number of trials would be 19600, which is not feasible for real-time applications. In the tests, 

we had a small number of beacons and thus used all possible triplets. 

 

7.2.2 Calculation of the initial estimate 

For the sake of simplicity, and without loss of generality, in iteration step 𝑗 let us denote the selected 

beacons by 𝐵𝑇𝑗 = {𝑃1
′, 𝑃2

′ , 𝑃3
′}. Our goal is to determine the 2D camera position 𝐶𝑗

′ and orientation 

𝜑𝑗. For simpler notation for now, iteration index 𝑗 will be omitted, and the estimates will be denoted 

by 𝐶̂ and 𝜑̂. Let us use the following notations: 
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𝒗𝒊
′ = 𝑃𝑖

′ − 𝐶′,  
(7.7) 

𝛼𝑖,𝑗 = ∠𝑃𝑖
′𝐶′𝑃𝑗

′ = 𝛼𝑗 − 𝛼𝑖 (7.8) 

where 𝑖, 𝑗 = 1,2,3. Let us choose two beacons (e.g., 𝑃𝑖
′ and 𝑃𝑗

′), and suppose that 𝛼𝑖,𝑗 ≠ 0 and 

𝛼𝑖,𝑗 ≠ 𝜋. Let us express the square of their distance 𝑑𝑖,𝑗, using the law of cosines, as follows: 

𝑑𝑖,𝑗
2 = ‖𝒗𝒊

′‖2 + ‖𝒗𝒋
′‖

2
− 2‖𝒗𝒊

′‖‖𝒗𝒋
′‖ cos 𝛼𝑖,𝑗  . (7.9) 

Using the fact that 𝒗𝒊
′ and 𝒗𝒋

′ are on the same x-y plane, the equality 𝒗𝒊
′ × 𝒗𝒋

′ =

𝒏𝒛‖𝒗𝒊
′‖‖𝒗𝒋

′‖ sin 𝛼𝑖,𝑗 , holds, where 𝒏𝒛 is the unit vector in direction of axis z. In this case (7.9) takes 

the following form: 

𝑑𝑖,𝑗
2 = ‖𝒗𝒊

′‖2 + ‖𝒗𝒋
′‖

2
− 2

[(𝑥𝑖 − 𝑥0)(𝑦𝑗 − 𝑦0) − (𝑥𝑗 − 𝑥0)(𝑦𝑖 − 𝑦0)] cos 𝛼𝑖,𝑗

sin 𝛼𝑖,𝑗  
 (7.10) 

Substituting 𝑑𝑖,𝑗
2 = (𝑥𝑗 − 𝑥𝑖)

2
+ (𝑦𝑗 − 𝑦𝑖)

2
 and ‖𝒗𝒊

′‖2 = (𝑥𝑖 − 𝑥0)
2 + (𝑦𝑖 − 𝑦0)

2, and using 

notation 𝑐𝑖,𝑗 = cot 𝛼𝑖,𝑗, we get the following equation: 

𝑥𝑖𝑥𝑗 + 𝑦𝑖𝑦𝑗 + (𝑥𝑗𝑦𝑖 − 𝑥𝑖𝑦𝑗)𝑐𝑖,𝑗 =   

𝑥0[𝑥𝑖 + 𝑥𝑗 + (𝑦𝑖 − 𝑦𝑗)𝑐𝑖,𝑗] + 𝑦0[𝑦𝑖 + 𝑦𝑗 + (𝑥𝑗 − 𝑥𝑖)𝑐𝑖,𝑗] − 𝑥0
2 − 𝑦0

2 (7.11) 

Similar result is obtained if beacon pair 𝐵𝑗 and 𝐵𝑘 is used: 

𝑥𝑗𝑥𝑘 + 𝑦𝑗𝑦𝑘 + (𝑥𝑘𝑦𝑗 − 𝑥𝑗𝑦𝑘)𝑐𝑗,𝑘 = 

𝑥0[𝑥𝑗 + 𝑥𝑘 + (𝑦𝑗 − 𝑦𝑘)𝑐𝑗,𝑘] + 𝑦0[𝑦𝑗 + 𝑦𝑘 + (𝑥𝑘 − 𝑥𝑗)𝑐𝑗,𝑘] − 𝑥0
2 − 𝑦0

2 (7.12) 

By subtracting (7.12) from (7.11) the squared terms vanish and we get the following linear 

equation: 

−𝑥𝑗  𝜉𝑘,𝑖 − 𝑦𝑗𝜐𝑘,𝑖 − 𝜔𝑖,𝑗𝑐𝑖,𝑗 + 𝜔𝑗,𝑘𝑐𝑗,𝑘 = 

𝑥0[−𝜉𝑘,𝑖 + 𝜐𝑖,𝑗𝑐𝑖,𝑗 − 𝜐𝑗,𝑘𝑐𝑗,𝑘] + 𝑦0[−𝜐𝑘,𝑖 − 𝜉𝑖,𝑗𝑐𝑖,𝑗 + 𝜉𝑗,𝑘𝑐𝑗,𝑘] , 
(7.13) 

where 𝜉𝑎,𝑏 = 𝑥𝑎 − 𝑥𝑏, 𝜐𝑎,𝑏 = 𝑦𝑎 − 𝑦𝑏, and ω𝑎,𝑏 = 𝑥𝑎𝑦𝑏 − 𝑥𝑏𝑦𝑎. 

Now let us calculate (7.13), by substituting (𝑖, 𝑗, 𝑘) = (1,2,3), (2,3,1), and (3,1,2). We get 

the following overdetermined linear equation system: 

𝑨 ⋅ [
𝑥0

𝑦0
] = 𝒃 , (7.14) 

where 

𝑨 = [

−𝜉3,1 + 𝜐1,2𝑐1,2 − 𝜐2,3𝑐2,3 −𝜐3,1 − 𝜉1,2𝑐1,2 + 𝜉2,3𝑐2,3
−𝜉1,2 + 𝜐2,3𝑐2,3 − 𝜐3,2𝑐3,1 −𝜐1,2 − 𝜉2,3𝑐2,3 + 𝜉3,1𝑐3,1
−𝜉2,3 + 𝜐3,1𝑐3,1 − 𝜐1,2𝑐1,2 −𝜐2,3 − 𝜉3,1𝑐3,1 + 𝜉1,2𝑐1,2

] , (7.15) 

and 

𝒃 = [

−𝑥2 𝜉3,1 − 𝑦2𝜐3,1 − 𝜔1,2𝑐1,2 + 𝜔2,3𝑐2,3
−𝑥3 𝜉1,2 − 𝑦3𝜐1,2 − 𝜔2,3𝑐2,3 + 𝜔3,1𝑐3,1
−𝑥1 𝜉2,3 − 𝑦1𝜐2,3 − 𝜔3,1𝑐3,1 + 𝜔1,2𝑐1,2

] . (7.16) 

If none two of the three beacons are on the same line with 𝐶 (i.e. sin 𝛼1,2 ≠ 0, sin 𝛼2,3 ≠ 0, 

and sin 𝛼3,1 ≠ 0) then 𝑐1,2, 𝑐2,3, and 𝑐3,1 are finite and any two lines can be selected from 𝑨 and 𝒃 

to construct 𝑨′ and 𝒃′, resulting in an equation system with two equations and two unknowns. The 

initial location estimate is the following: 
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𝐶̂ = [
𝑥̂0

𝑦̂0
] = (𝑨′)−1𝒃′ . (7.17) 

If one pair of beacons is on the same line with 𝐶′ (e.g., 𝑃𝑖
′ and 𝑃𝑗

′), then sin 𝛼𝑖,𝑗 = 0. In this 

case only one row is selected from 𝑨 and 𝒃, the one which does not include the infinite term 𝑐𝑖,𝑗. 

(E.g., if 𝐵1, 𝐵2, and 𝐶′ are on the same line then 𝑐1,2 would be infinite, thus only the second row is 

used from 𝑨 and 𝒃). In this case another equation must be constructed for 𝑨′ and 𝒃′; from (7.13) 

using limit sin 𝛼𝑖,𝑗 → 0 the following equation can be obtained: 

𝑥0𝜐𝑖,𝑗 − 𝑦0𝜉𝑖,𝑗 = −𝜔𝑖,𝑗, 
(7.18) 

and again (7.17) can be used to calculate the position estimate.  

If all three beacons and 𝐶′ are on the same line (i.e., sin 𝛼1,2 = sin𝛼2,3 = sin 𝛼3,1 = 0), then 

the position cannot be determined from this set of measurements. Also, there is no solution if all 

three beacons and 𝐶′ are on the same circle (det(𝑨′) ≅ 0). 

In practice the angle differences 𝛼𝑖,𝑗 are checked before calculating 𝑨 and 𝒃: if any of them 

is closer to 0 or 𝜋 than a small threshold (e.g., 1e-6) then (7.18) is applied. If all measurements are 

close to 0 or 𝜋 then the triplet is ignored (since the position cannot be reliable determined), and the 

iteration is continued by selecting a different beacon triplet.  

Once the initial position is estimated, the initial orientation estimate can be calculated as 

follows: Let us choose any of the three beacons, e.g., 𝑃𝑘
′ . From point 𝐶′ beacon 𝑃𝑘

′  is observed in 

𝐾1 under angle  

𝛽𝑘 = atan2(𝑦𝑘 − 𝑦̂0, 𝑥𝑘 − 𝑥̂0). 
(7.19) 

The observed angle in 𝐾2 was 𝛼𝑘, thus the estimated orientation, according to Figure 6.2 (a), 

is the following: 

𝜑̂ = 𝛽𝑘 − 𝛼𝑘. 
(7.20) 

 

7.2.3 Location-dependent inlier-outlier classification 

In the previous step the initial position 𝐶̂ = (𝑥̂0, 𝑦̂0), and the initial orientation 𝜑̂ were estimated. If 

the initial estimates are correct then any beacon 𝑃𝑖
′ should be seen from ideal direction 𝛽𝑖, in the 

world coordinate system:  

𝛽𝑖 = atan2(𝑦𝑖 − 𝑦̂0, 𝑥𝑖 − 𝑥̂0), 
(7.21) 

In coordinate system 𝐾2 the ideal angle is  

𝛼𝑖
𝑖𝑑 = 𝛽𝑖 − 𝜑̂. (7.22) 

The observation error of beacon 𝑃𝑖
′ is the following:  

𝜀𝑖 = 𝛼𝑖 − 𝛼𝑖
𝑖𝑑 = 𝛼𝑖 − 𝛽𝑖 + 𝜑̂. (7.23) 

Let us use design parameters Δ𝛼𝑑 and Δ𝛼𝑐,𝑖, according to (7.1) and (7.2), where 

𝐷𝑖 = √(𝑥𝑖 − 𝑥̂0)
2 + (𝑦𝑖 − 𝑦̂0)

2, (7.24) 

and let us calculate inlier angle tolerance Δ𝛼𝑖 for beacon 𝑃𝑖
′ as follows: 

𝛥𝛼𝑖  = 2(𝛥𝛼𝑑 + 𝛥𝛼𝑐,𝑖). (7.25) 

Using (23) and (25), the location-dependent inlier/outlier classification is the following:  
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𝑃𝑖

′ ∈ 𝑆𝑈𝑃𝑗(𝑖𝑛𝑙𝑖𝑒𝑟): 𝑖𝑓 |𝜀𝑖| ≤ 𝛥𝛼𝑖

𝑃𝑖
′  ∉ 𝑆𝑈𝑃𝑗 (𝑜𝑢𝑡𝑙𝑖𝑒𝑟): 𝑖𝑓 |𝜀𝑖| > 𝛥𝛼𝑖

, (7.26) 

where 𝑆𝑈𝑃𝑗 is the set of supporter beacons for triplet 𝐵𝑇𝑗. Notice that beacons in 𝐵𝑇𝑗 are naturally 

elements of 𝑆𝑈𝑃𝑗. The mean squared angle measurement error 𝐸𝑗 [17], using the consistent 

measurements only, is the following:  

𝐸𝑗 =
1

n(𝑆𝑈𝑃𝑗)
∑ 𝜀𝑖

2
𝑃𝑖

′∈𝑆𝑈𝑃𝑗
. (7.27) 

7.2.4 Refined location estimate 

While the algorithm can provide a usable pose estimate after selecting the best hypothesis, which 

has the largest number of supporters, it is not guaranteed, that it is a local optimum. It may happen, 

that we did not select the best initial beacon triplet (during the random selection); or the supporter 

beacons may be able to lower the error of the position estimate. Thus, the calculation of a refined 

estimate using not only the 3 initial beacons, but also the supporter beacons is necessary to find a 

locally optimal position estimate. 

Let us construct error function 𝐸(𝑥, 𝑦) as follows: if the camera position were in (𝑥, 𝑦) then 

beacon 𝑃𝑖
′ would be observed in direction 𝛽𝑖, in coordinate system 𝐾1:  

𝛽𝑖(𝑥, 𝑦) = atan2(𝑦𝑖 − 𝑦, 𝑥𝑖 − 𝑥), 
(7.28) 

From measurements 𝛼𝑖 of the consistent beacons, the orientation estimate is refined as follows:  

𝜑̂̂(𝑥, 𝑦) =
1

n(𝑆𝑈𝑃𝑗)
∑ (𝛽𝑖(𝑥, 𝑦) − 𝛼𝑖)𝑃𝑖

′∈𝑆𝑈𝑃𝑗
. (7.29) 

Thus, the observation error of beacon 𝑃𝑖
′, provided that the camera position is (𝑥, 𝑦), is  

𝜀𝑖(𝑥, 𝑦) = 𝛼𝑖 − atan2(𝑦𝑖 − 𝑦, 𝑥𝑖 − 𝑥) + 𝜑̂̂(𝑥, 𝑦), (7.30) 

and the mean squared error function [17], similarly to (27), is the following: 

𝐸(𝑥, 𝑦) =
1

n(𝑆𝑈𝑃𝑗)
∑ 𝜀𝑖

2
𝑃𝑖

′∈𝑆𝑈𝑃𝑗
(𝑥, 𝑦). (7.31) 

The refined position estimate 𝐶̂̂𝑗 is at the minimum of 𝐸(𝑥, 𝑦): 

𝐶̂̂𝑗 = (𝑥̂0
′ , 𝑦̂0

′) = argmin
(𝑥,𝑦)

𝐸(𝑥, 𝑦), 
(7.32) 

and the refined orientation estimate 𝜑̂̂𝑗 is the following: 

𝜑̂̂𝑗 = 𝜑̂̂(𝑥̂0
′ , 𝑦̂0

′). (7.33) 

The location estimate is calculated by the downhill simplex method on the error function 

𝐸(𝑥, 𝑦), starting from initial position estimate (𝑥̂0, 𝑦̂0). The search finds a (possibly local) minimum 
(𝑥0

′ , 𝑦0
′) near the initial estimate. It is not guaranteed that the global minimum of (7.31) is found, 

but since the selected measurements of beacons in 𝑆𝑈𝑃𝑗 are consistent and the search is started from 

a consistent initial estimate (𝑥̂0, 𝑦̂0), the iterative search in practice quickly and accurately finds the 

correct estimate, usually close to the initial value (𝑥̂0, 𝑦̂0).  
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7.3 Evaluation 

The proposed method was evaluated using simulations (Section 7.3.1) and real measurements 

(Section 7.3.2). 

7.3.1 Simulation results 

The tests were performed in the simulated environment, shown in Figure 7.2. The size of the 

simulated room was 22 m x 22 m, where 12 beacons were deployed in the positions shown in 

Figure 7.2. Performance tests were made on a test grid containing 23 x 23 points, the grid 

coordinates being integer numbers in meters, between −11 m and +11 m.  

The measurements were generated as follows. In each test point the ideal angles were 

calculated, then a random error between −0.4° and +0.4° was added to simulate the center detection 

error, which is equivalent to Δ𝛼𝑑 = 0.4°. This value corresponds to the case when the distance 

between the beacon’s image and the center of the camera is ~150 pixels and the center detection 

error is Δ𝐶𝑝 = 1 pixel. Also, a potential coverage error was simulated with beacon width value 

𝑊 = 3 cm, according to (2). In each test points 20 independent noise realizations (i.e., measurement 

errors 𝛼 
(𝑑)

+ 𝛼 𝑖
(𝑐)

, according to (7.3), were generated. 

The outliers were generated as follows: When one outlier was present, a random beacon was 

selected and a random angle measurement error in the range of ±[10°, 170°] was added. When 𝐾 ≥
2 outliers were present then 𝐾 beacons were randomly selected and their generated measurements 

were shuffled. This error simulates multiple incorrect beacon identifications and thus resulting false 

measurements. 

The proposed method was compared with the method of exhaustion (MEX), proposed in [17], 

applied for the 2D case. The MEX method utilizes error function 𝐸𝑟𝑒𝑓, which is similar to the error 

function of the proposed method: 

𝐸𝑟𝑒𝑓(𝑥, 𝑦) =
1

𝑁𝐵
∑ 𝜀𝑖

2𝑁𝐵
𝑖=1 (𝑥, 𝑦). (7.34) 

MEX uses an exhaustive (brute-force) search on a grid and is guaranteed to find the optimal 

position on the search grid. In the tests a search grid was used with resolution of 2 cm for MEX to 

find the smallest error function value. On the other hand, the proposed algorithm is not restricted to 

a search grid, but finds the solution anywhere on the search plane, without any guarantee for global 

optimum. Since the error functions are similar (see (7.31) and (7.34)), the expected behavior of the 

two algorithms is the same, when there are no outliers.  

Since the number of beacons is low (𝑁𝐵 = 12), in the tests all possible beacon triplets were 

used, i.e., 𝑁𝑄 = (
𝑁𝐵

3
) = 220.  

In the first test measurement noise was added for the ideal angle measurements, but no 

outliers were present. Figure 7.2 shows the position errors for the proposed and the reference 

methods. The performances of the algorithms are very similar, as it was expected. The error is small, 

mainly below 10 cm. At certain points of the search space slightly higher errors can be observed: 

this is because of the poor GDOP; here 8 of the beacons (𝑃1
′,𝑃3

′, 𝑃4
′, 𝑃6

′ , 𝑃7
′ , 

𝑃9
′,)(𝑃1

′, 𝑃3
′ , 𝑃4

′, 𝑃6
′ , 𝑃7

′ , 𝑃9
′, 𝑃10

′ , 𝑃12
′ ) are on the same circle, while the other 4 beacons are also close to 

this circle.  
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(b)(a)

 
Figure 7.2 Average position errors for the proposed RBL method (a) and the reference MEX method (b) for 

simulated noisy measurements without outliers. 

To allow detailed analysis of the errors, the error distributions are shown in Figure 7.3, using 

all of the experiments (23 x 23 x 20 = 10580 test runs). The behavior of the two algorithms is 

apparently quite similar, according to the expectations. The average error was 2.65 cm and 2.67 cm 

for the proposed and reference methods, respectively. The slight difference is probably due to the fact 

that the reference method was evaluated on a 1 cm grid, while the proposed method provides results on 

the continuous plane. 

 
Figure 7.3 Error distribution of the proposed RBL method and the reference MEX method for simulated noisy 

measurements, without outliers. Empirical PDF is illustrated as a histogram with bin size of 1 cm. 

In the next experiments 1, 3, and 5 outlier measurements were included. The position errors 

in the search area, for 1 outlier, are shown in Figure 7.4. The results for the reference method clearly 

show the dramatic effect of the outlier: most of the position estimates have significant error now, 

up to a few meters. The position errors of the proposed method did not change significantly, 

illustrating the effectiveness of the outlier detection and removal.  
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(b)(a)

 
Figure 7.4 Position errors for the proposed (a) and the reference (b) methods for simulated noisy measurements 

with 1 outlier. 

The position error distributions are shown in Figure 7.5, for 1, 3, and 5 simultaneous outliers. 

The reference method, as shown in Figure 7.5 (b), cannot provide meaningful estimates in the 

presence of outliers. Even a single outlier can destroy the estimate, but more outliers affect the 

estimation quality more severely.  

(b)(a)

 

Figure 7.5 Error distribution of the proposed RBL method (a) and the reference MEX method (b) for simulated 

noisy measurements and outliers. Empirical PDF is illustrated as a histogram with bin sizes of 1 cm (a), 

 and of 20 cm (b). 
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For the proposed method the quality of the estimate did not change significantly, as shown in 

Figure 7.5 (a). However, there is a slight shift towards larger errors when outliers are present. The 

reason is the following: when more outliers are present then there are fewer correct measurements 

that can be used in the estimation process, thus the accuracy of the estimation naturally decreases. 

But since there are no outliers included in the estimation, the quality degradation is only minor. 

The computational costs between the proposed and the reference method were compared. 

Both methods were implemented in Matlab and run on a conventional laptop with Intel Core i7-

9750H processor. The proposed method (with 12 beacons, using all possible beacon triplets) 

required 56 microseconds in average to compute an estimate, while for the reference MEX method 

the average runtime was 278 milliseconds.  

7.3.2 Measurement results 

The test measurements were made inside of an industrial warehouse and in front of the warehouse. 

The map of the test area is shown in Figure 7.6 (a). On the right-hand side a part of the warehouse 

is visible, where nine beacons were deployed along the walls and on the shelves. There were another 

six beacons deployed outside the building on the walls and poles. The camera was deployed on top 

of the vehicle, as shown in Figure 7.6 (b). An estimated path of the vehicle is shown in Figure 7.6 

(a) in blue: the vehicle started from point A in the warehouse, exited the building, crossed a bumpy 

part of the pavement and turned left to point B. Here the vehicle moved backwards and made another 

left turn to point C. From point C the vehicle entered the building on a straight trajectory to the final 

point D. 
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 (a)   (b) 

Figure 7.6 (a) Map of the measurement environment. On the right-hand side there is a warehouse, the left-hand 

side shows the open-air area in front of it. The beacons are denoted by numbered crosses. The estimated vehicle 

route A-B-C-D is shown in blue. (b) Photo of the vehicle with the installed camera on top of it. 

During the measurements the number of visible beacons varied from 3 to 13. Apart from the 

bumpy pavement, where the camera swayed significantly on the top of the vehicle, the trajectory 

estimate is smooth and contains variation of a few centimeters only. During the test, the algorithm 

detected outliers (due to reflecting surfaces in the warehouse) at three different path segments, in 

total of ~550 image frames, as marked in Figure 7.6 (a). The outliers had no significant effect on 

the position estimates which clearly illustrates the fault-tolerance of the proposed system. 
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7.4 Conclusion 

Measurements with large error (i.e., outliers), usually resulting from incorrect detections or 

reflections, may cause large error in the position estimate. Such outliers must be removed from the 

data used in the estimation process, to avoid incorrect estimates. Popular methods include model-

based approaches (using e.g., Kalman-filters) [84], statistical methods [85], consistency-based 

approaches [58], and Random Sample Consensus (RANSAC) [86]. RANSAC [87] is popular 

because it iteratively adds inliers to and excludes outliers from a small starting set of measurements, 

thus provides robust estimates with reasonable amount of computation. 

I proposed a robust RANSAC-based solution for 2D position estimation using azimuth-only 

angle measurements. The proposed method uses a practical error model and a corresponding 

position-dependent inlier angle tolerance to detect outliers. The initial estimate is calculated by a 

linearized equation system, using measurements from 3 beacons. The number of supporter beacons 

is increased incrementally using RANSAC. The best initial estimate (with the largest set of 

supporters and the smallest error function value) is used as an initial point for the downhill simplex 

method to find the final position estimate; in the search those measurements are used which are 

consistent with the winner initial estimate. 

The performance of the proposed method was illustrated by simulation examples. It was 

shown that the proposed method and the reference MEX method has essentially the same accuracy 

when no outliers are present. This is due to the similar cost functions used by the two methods. 

However, in the presence of outliers, the reference method provided no usable results, since it used 

the bad measurements as well for the estimation, generating large estimation errors. The proposed 

method was not sensitive to outliers: its performance degradation was minor, even when as much 

as 5 simultaneous outliers were present. 

The computational cost of the proposed method is low: in the realistic test cases the 

computational time of one position estimate (including refinement) was as low as 56 microseconds 

on a conventional laptop. The speed of the reference method, due to its exhaustive (brute-force) 

nature, was more than three orders of magnitude lower. 

The performance of the proposed method was tested using real measurements as well, in an 

industrial warehouse. During the tests, the outliers had no effect on the position estimates, allowing 

positioning with only a few centimeters of error. 

Compared to HIAL (presented in Section 6), the RBL method (presented in Section 7) uses 

location-independent, angle-based filtering of outlier measurements instead of distance-based ones, 

as a more practical approach. The calculation speed for HIAL is ~28 msec for 12 beacons on a 

conventional laptop, while the RBL method needs only ~56 μsec to provide an estimate, which 

makes it ~500x faster. Also, with the help of the location-refinement step, the estimate provided by 

RBL is much more consistent (smooth), than HIAL’s. 

The issue of beacon center point approximation in the camera’s image, mentioned in Section 

6.3, is also present in these physical measurements. As opposed to HIAL, however, this proposed 

solution makes it possible to adjust the error function used at the refined location estimation stage 

to use a compensated beacon coordinate based on: the current search point that is being evaluated; 

and the properties of the LED light fixture (e.g., size, shape, orientation in real-world coordinate 

system). The compensation method, however, is yet to be implemented. 
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8 Summary 

8.1 New results 

The first part of the thesis (Sections 2-3) presented the detailed error analysis of two visible light 

communication protocols (UFSOOK, UPSOOK) found in the literature, which can be used to 

provide a simple, yet effective method to identify anchor points used in the localization system. By 

understanding the effect of various error sources on the symbol transmission of the OOK protocols, 

the parameters of the communication methods can be designed to achieve ideal detection rate given 

the environmental conditions, and requirements (e.g., flicker-free operation). For the two VLC 

protocols the following design rules can be stated in general: the frequency offset (error) should be 

kept small, since the minimum error depends on this value; the threshold should be close to the 

ideal value (half amplitude of the detected signal); using small exposure time minimizes the effect 

of suboptimal thresholding; the design parameter of the two protocols should be kept small, to 

provide large symbol times (low number of signal transitions, where the unsafe regions can be 

found), while also satisfying the flicker-free requirement; the signal amplitude should be as high as 

possible to provide a wide range for optimal threshold, and also to provide high SNR. I showed that 

the effect of noise is the lowest at the optimal threshold, and the highest near the signal’s extrema. 

The performance of UFSOOK was analyzed using the bit error rate of distinct symbols. The 

performance of UPSOOK was analyzed using a worst-case analysis to obtain the guaranteed 

minimum performance of the protocol by calculating the highest possible packet error rate. The 

results of the UFSOOK analysis for calculating the BER can also be used for UPSOOK, after proper 

adjustments (e.g., symbol time, symbol’s rule set, offset parameter 𝛿, etc.). As it was found, the 

transmission of these protocols will inevitably fail from time to time, when operated without 

synchronization, and using global shutter cameras. 

The second part of the thesis (Sections 4-5) contained my contributions that addresses the 

problem of trackability and robust identifiability of beacons for visible light-based positioning 

systems. The beacon design of TUPSOOK makes it possible to track beacons in the camera’s image 

stream providing reliable reference points for positioning. The protocol’s encoding scheme provides 

means to identify the beacon in the image with using only one frequency component for symbols, 

and two signal states. The beacon design consists of two white LEDs: a small circular one, and a 

larger ring one around it. This beacon design also makes it possible, to use the LED beacon to 

illuminate the environment. Other approaches use e.g., multiple colors, or multiple separate LEDs, 

which either makes the beaconing infrastructure not suitable for proper illumination purposes, or 

the LED beacons are hard to detect/track reliably, when the camera is moving. The proposed 

equivalent sampling-based RUPSOOK protocol deals with the problem of delayed beacon 

identification that occur from time to time due to the unsynchronized case of the transmitter and the 

receiver. RUPSOOK’s robustness lies in the wide range of system parameters where the operation 

of the data transmission is guaranteed to be error-free. The price for its robustness is the decreased 

transmission data rate of ~0.28 bits/sample (UFSOOK ~0.5 BPS, UPSOOK ~1 BPS). Since 

RUPSOOK also uses only two LED states for its operation, it can be integrated with the trackable 

beacon design of TUPSOOK, achieving a VLC protocol that is not only robust, but its beacons are 

also trackable. 

The third part of the thesis (Sections 6-7) presented two proposed positioning algorithms that 

aims to provide robust location and orientation estimates by eliminating the threat of outlier 

measurements. HIAL uses a heuristic geometric approach, where the geometrically constructed 

possible location targets are scored based on two distance-based filtering parameters. The HIAL 

method is able to provide outlier-tolerant operation in most cases, but finding the optimal value for 

its filtering parameters is not straightforward (requires trial-and-error method or simulations). Also, 

the performance of the protocol scales poorly: only supports ~12 beacons on a conventional laptop 

for real-time operation with 30 Hz, which is sufficient for most practical use cases, but this 

limitation strips the HIAL method of the opportunity to provide more accurate estimates with the 
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use of additional beacons. The proposed random sample consensus-based RBL method is not only 

tolerant against outliers, but also has much better computational performance while providing a 

smoother output estimate as opposed to HIAL. Also, the RBL method uses angle-based filtering of 

outliers in a location-independent manner instead of HIAL’s distance-based filtering. This approach 

provides more reliable inlier/outlier classification. Finally, the refinement of the position estimate 

provides a locally optimal solution based on the largest consistent beacon group, that supported the 

best hypothesis of the RANSAC part with the least amount of error. Due to the refinement, the 

output of the RBL method is not only reliable, but also consistent (much less noisy than HIAL’s). 

An additional topic covered during my studies involved precise camera shutter speed 

measurement methods [SO1]-[SO4]. However, this topic was excluded from the dissertation for 

two main reasons. Firstly, it is not closely connected to indoor positioning methods but rather 

pertains to visible light communication. Secondly, it was considered unsuitable for inclusion in the 

dissertation due to specific formal requirements and constraints. 

8.2 Future research 

The localization system introduced in Section 1.4 still has room for improvements. To mention 

some: a main improvement would be the implementation of a beacon position correction component 

for the error function used in RBL method’s estimate-refinement step, which would adjust the 

beacon’s pre-measured position based on the position of evaluation, the beacon’s physical 

properties, and its placement, since the measured direction is actually the mean direction (half-

angle) of the beacon’s visible portion (not its center point), which is location-dependent; 

Another improvement would be an automated beacon registration process, with which the 

system could automatically learn the position of a new beacon based on measurements with already 

present references; the development of a beacon-placement aiding solution may also be beneficial 

for the system to minimize the number of beacons needed, and to lower the effect of geometric 

dilution of precision with an optimized geometric arrangement. 

In [9] an interesting concept of a visible light-based indoor positioning system is introduced, 

that uses the TDoA principle with LED beacons modulated in the MHz range. The theoretical 

results in the paper are validated using simulations. It would be interesting to integrate the proposed 

solution of [9] into the IPS introduced in Section 1.4 to achieve a more accurate and robust system 

by utilizing both ADoA and TDoA principles. For example, RUPSOOK could be operated with 

TUPSOOK’s beacon design in a way, that only the outer ring LED is blinking according to 

RUPSOOK, and the central circular LED can be modulated based on [9] (the high frequency 

modulation in the MHz range will result in an always ON state for the camera sensor). One or more 

photodiodes can be attached to the camera to detect the LEDs modulated in the MHz range. The 

resulting system would be beneficial in numerous ways: increased outlier-rejection possibilities; 

very precise, sub-centimeter positioning with orientation estimation from just 3 beacons; etc.  
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Theses 

Thesis 1  

I provided the detailed analysis of various error sources affecting the communication performance 

of the Undersampled Frequency-Shift On-Off Keying (UFSOOK) and Undersampled Phase-Shift 

On-Off Keying (UPSOOK) visible light communication protocols. With the achieved results the 

protocol’s parameters can be designed to achieve optimal data transmission between LED light 

fixtures and digital cameras with regard to the protocol’s limitations. I validated the theoretical 

results with simulations and real measurements. 

1.1 I proposed a new equivalent mathematical operation model for digital cameras operating 

with modulated light sources to allow the mathematical analysis of the protocols' behavior. 

1.2 I determined the bit error rate (BER) in the presence of frequency slip that is inevitable 

when there is no synchronization between the transmitter and the receiver. I proved that the 

best achievable BER depends on the frequency slip for both data symbols of the protocols. 

1.3 I determined the BER as a function of threshold parameter 𝑄, which is used by the protocol 

to determine the state of a transmitter. I proved that the value of 𝑄 has no effect on the BER 

for symbols utilizing same transmitter states (SPACE for UFSOOK, MARK for 

UPSOOK). I also proved that there is an optimal range for parameter 𝑄, where the BER is 

minimal, for symbols using opposite transmitter states (MARK for UFSOOK, SPACE for 

UPSOOK). 

1.4 I determined the effect of the measurement noise on the BER, for both data symbols. I 

proved that the effect is highest for values 𝑄 near the extrema of the sensed signal. The 

effect of noise is minimal for 𝑄 values at the mean signal amplitude. 

1.5 I determined the frequency of occurrence and size of unsafe intervals, where the operation 

of the protocols may possibly be faulty. I showed that in case of UPSOOK, the unsafe 

intervals are aligned, as opposed to UFSOOK. I determined the packet error rate (PER) for 

the UPSOOK protocol based on the aforementioned achieved results. 

 

Related publications: [S1], [S2], [S3], [S4], [S5] 

 

Other related publications: [SO1], [SO2], [SO3], [SO4] 

 

Thesis 2  

I proposed two novel visible light communication solutions that address the issue of trackability 

and robust identifiability of beaconing infrastructures in visible light-based positioning systems. 

The proposed Trackable UPSOOK (TUPSOOK) solution, achieved through a special beacon 

design, makes it possible to detect the beacons in every image frame of a camera, even from large 

distances, while maintaining its communication capabilities and usability as practical 

environmental lighting infrastructure. The proposed Robust UPSOOK (RUPSOOK) protocol is 

able to operate in an error-free manner on a wide range of system parameters and can be used with 

the beacon design of TUPSOOK to also fulfill the trackability requirement. I verified the usability 

of the solutions with simulations and real measurements. 

2.1 I proposed a novel beacon design containing an internal circular LED and an outer ring-

shaped LED around it. The proposed architecture allows continuous detection and thus, 

continuous tracking of the transmitter. I modified the coding scheme of UPSOOK, to only 

utilize two transmitter states and one data frequency. The modified coding scheme 

(TUPSOOK) fits well the new beacon design. The price of the modifications is the 

somewhat decreased data rate. 
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2.2 I proposed a novel encoding-decoding scheme (RUPSOOK) for visible light 

communication based on Manchester coding and equivalent sampling, which is able to 

periodically transmit constant data (e.g., beacon ID). I proposed a design method to 

determine the nominal frequency slip to achieve optimal robustness in the protocol. I 

proved that the RUPSOOK protocol is robust over a finite range of system parameters, 

including: exposure time, frequency slip, threshold, jitter, saturation, and noise. 

2.3 I proposed an adaptive thresholding method which provides robust transmitter state 

detection for changing signal amplitudes that may inevitably occur when the transmitter or 

the receiver is moving. 

 

Related publications: [S3], [S4], [S6], [S7] 

 

Other related publications: [SO1], [SO2], [SO3], [SO4] 

 

Thesis 3  

I proposed two novel positioning methods for angle difference of arrival (ADoA)-based positioning 

to determine the position and orientation of a sensor based on angle difference measurements of 

reference points (beacons). The proposed solutions require the sensor’s normal vector (e.g., facing 

upwards) and the position of reference points to be known. A minimum number of 3 beacons is 

needed for their operation, which makes them useable for practical applications. The solutions are 

able to filter outlier measurements to provide robust operation. I verified the usability of the 

proposed solutions with simulations and real measurements. 

3.1 I proposed a geometry-based heuristic method (HIAL) to determine the position and 

orientation of a sensor using angle difference measurements of reference points, provided 

that the normal vector of the sensor is known. The advantage of the proposed method with 

respect to the general (3D) geometric solutions is that the search is performed on a plane 

instead of space, thus the speed and performance is improved. The algorithm calculates 

potential solutions by constructing circular arcs based on beacon pairs and subsequently 

determining intersections based on arc pairs; each intersection point represents a potential 

solution. I proposed a heuristic ranking to quantify the relative confidence of these possible 

solutions, using two distance-based filtering parameters.  

3.2 I proposed a novel, outlier-tolerant, RANSAC-based method (RBL) to determine the 

position and orientation of a sensor using angle difference measurements of reference 

points, given that the normal vector of the sensor is known. The proposed solution 

calculates an initial position and orientation estimate with RANSAC using a linearized 

equation system. Subsequently, it refines the pose estimate utilizing the best consistent 

beacon group of the initial estimate. The solution uses location-independent, angle-based 

outlier-filtering criteria, which are simple, and user-friendly to set, in contrast to HIAL’s 

filtering parameters. The estimate-refinement step of the method provides a consistent 

output. 

3.3 I provided a method to determine the number of necessary trials for the RANSAC-based 

selection of the initial beacon set based on an upper bound for outliers, and a hit rate 

probability design parameter. With the proposed solution the number of necessary trials 

can be reduced by orders of magnitude while still maintaining the desired hit rate 

probability of a good initial beacon set. 

 

Related publications: [S8], [S9] 
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List of Abbreviations 

 

ADoA Angle difference of arrival 

AoA Angle of arrival 

AGV Automated guided vehicle 

BER Bit error rate 

CSI Channel state information 

FOV Field of view 

GDOP Geometric dilution of precision 

GNSS Global Navigation Satellite Systems 

HIAL Heuristic, inscribed angle-based localization (positioning method) 

ID Identification number 

IPS Indoor positioning system 

IMU Inertial measurement unit 

LSM Least squares method (positioning method type) 

LED Light emitting diode 

LOS Line of sight 

LoRa Long range (wide-area network technology) 

MLPnP Maximum Likelihood Perspective-n-Point (positioning method) 

MEX Method of exhaustion (positioning method) 

MCU Microcontroller unit 

MCOB Multiple chip-on-board (LED type) 

NLOS Non-line of sight 

PER Packet error rate 

QoS Quality of Service 

RFID Radio frequency identification (technology) 

RANSAC Random sample consensus 

RBL RANSAC-based localization (positioning method) 

RSS Received signal strength 

RSRP Reference signal received power 

RSRP Reference signal received quality 

RUPSOOK Robust Undersampled Phase-Shift On-Off Keying (VLC protocol) 

SPB Samples per bit 

SLAM Simultaneous localization and mapping 

SNR Signal-to-noise ratio 

TDoA Time difference of arrival 

ToA Time of arrival 

ToF Time of flight 

TUPSOOK Trackable Undersampled Phase-Shift On-Off Keying (VLC protocol) 

UWB Ultra-wideband (radio technology) 

UFSOOK Undersampled Frequency-Shift On-Off Keying (VLC protocol) 

UPSOOK Undersampled Phase-Shift On-Off Keying (VLC protocol) 

VLC Visible light communication 

Wi-Fi Wireless network technology 
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List of Notations and common Parameters 

 

Visible light communication  

| . | Absolute value 

𝑆 Exposure time 

𝑑(𝑡) Detected light intensity signal as a function of time 

𝐼(𝑡) Luminous intensity of a light source as a function of time 

𝑛(𝑡) Additive noise component 

𝑛 Design parameter 

𝑓𝑋 Frequency of X (e.g., a symbol’s or the camera’s) 

𝑇𝑋 Time period of X (e.g., a symbol’s or the camera’s) 

𝑄𝑓( . ) Q-function 

erf ( . ) Gauss error function 

𝛿 
Size of time offset between two consecutive samples 

caused by frequency error 

𝛿𝐸 Virtual sampling period during equivalent sampling 

𝜆 
Width of unsafe interval (where the communication may 

possibly fail) 

𝛯 Decoded symbol / symbol set 

𝑄 Threshold parameter for LED state determination 

𝑄0 Ideal threshold parameter 

∆𝑄 Size of difference from the ideal threshold parameter 𝑄0 

𝐴𝐻 Maximum signal amplitude 

𝐴𝐿 Minimum signal amplitude 

𝜇𝑋 Bit error rate (BER) of symbol X 

  

Pose estimation methods  

‖ . ‖ Euclidean norm 

𝒗 Vector 

𝑨 Matrix 

𝒗𝟏 × 𝒗𝟐 Cross product of 𝒗𝟏 and 𝒗𝟐 

𝒑𝒋 = (𝑥𝑝,𝑗, 𝑦𝑝,𝑗, 𝑧𝑝,𝑗) 
3D vector in the real-world coordinate system (K1), 

with logical connection to the 𝑗th beacon 

𝒑𝒋
(𝟐)

= (𝑥𝑝,𝑗
(2), 𝑦𝑝,𝑗

(2), 𝑧𝑝,𝑗
(2)) 

3D vector in the K2 coordinate system, 

with logical connection to the 𝑗th beacon 

𝐶̂ Position estimate (2D) 

𝐶̂̂ Refined position estimate (2D) 

𝜑̂ Orientation estimate (rotation around z axis) 

𝜑̂̂ Refined orientation estimate (rotation around z axis) 

𝐵𝑇𝑗 Initial beacon triplet of the 𝑗th hypothesis 

𝑆𝑈𝑃𝑗 Set of beacons that support the 𝑗th hypothesis 

𝑁𝑆𝑘 Number of beacons that support the 𝑗th hypothesis 

n( . ) Set cardinality operator (set size) 
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Appendix 

HIAL’s evaluation 

This appendix contains the HIAL and MLPnP algorithm’s error analysis results (presented in 

Section 6.1): mean position error, maximum position error, and the position error’s standard 

deviation. 

Effect of camera orientation error - simulation 

3D HIAL-3 HIAL-4 HIAL-5 HIAL-6 

Angle 

error 
Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

1° 59.3 82.7 59.5 57.2 76.6 57.4 57.4 112.0 57.5 57.8 113.6 57.9 

2° 118.5 165.4 119.0 114.5 153.9 114.7 114.8 153.5 115.1 115.4 163.1 115.7 

3° 177.7 248.1 178.4 171.7 231.6 172.1 172.2 232.3 172.6 173.1 237.6 173.5 

4° 236.9 331.0 237.9 228.9 310.3 229.4 229.4 310.5 229.9 230.6 317.7 231.2 

5° 296.1 414.1 297.3 286.1 389.2 286.7 287.0 386.9 287.6 288.5 396.8 289.1 

2D HIAL-3 HIAL-4 HIAL-5 HIAL-6 

Angle 

error 
Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

1° 52.7 53.8 52.7 52.7 60.7 52.7 52.8 93.9 52.8 52.8 104.8 52.8 

2° 105.4 109.9 105.4 105.4 110.7 105.4 105.5 122.5 105.5 105.5 154.6 105.5 

3° 158.1 168.1 158.1 158.1 170.3 158.1 158.3 196.6 158.3 158.3 196.6 158.3 

4° 210.8 228.5 210.9 210.8 226.8 210.8 210.8 254.7 210.8 210.9 250.1 210.9 

5° 263.4 291.1 263.6 263.5 282.8 263.6 263.7 310.9 263.7 263.7 308.4 263.7 

Table A.1 Effect of camera orientation (tilt) error to the localization error (in millimeter). 

 

Effect of detection error - simulation 

3D MLPnP HIAL-3 HIAL-4 HIAL-6 

Pixel 

error 
Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

𝑛 = 1 16.0 65.1 17.5 16.7 86.3 18.5 12.0 61.1 13.2 13.7 88.3 15.5 

𝑛 = 2 32.0 121.2 35.0 33.2 185.9 36.8 24.7 289.9 27.0 27.7 532.6 31.8 

𝑛 = 3 48.1 180.4 52.7 50.1 296.9 55.5 42.1 1388.5 60.9 43.7 1371.0 53.8 

2D MLPnP HIAL-3 HIAL-4 HIAL-6 

Pixel 

error 
Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

𝑛 = 1 14.0 65.0 15.8 13.9 84.1 15.9 9.9 55.7 11.3 11.4 71.9 13.2 

𝑛 = 2 28.0 105.3 31.4 27.6 184.1 31.7 20.5 287.9 23.2 22.9 244.6 26.8 

𝑛 = 3 42.1 164.3 47.4 41.6 294.9 47.7 35.8 1376.3 56.5 35.9 1369.0 44.5 

Table A.2 Effect of the detection error (in pixels) to the localization error (in millimeter). 
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Effect of reference position error - simulation 

3D MLPnP HIAL-3 HIAL-4 HIAL-6 

Ref. 

error 
Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

𝑑 = 1 11.7 40.6 12.1 13.1 55.1 13.9 10.1 63.0 10.3 13.7 386.8 16.6 

𝑑 = 2 23.3 74.8 24.1 26.2 108.2 27.8 19.8 86.2 19.9 26.5 443.9 30.3 

𝑑 = 3 35.2 117.4 36.4 39.3 163.8 41.5 30.0 118.4 30.3 38.7 492.4 43.0 

𝑑 = 4 46.6 147.6 48.1 52.3 221.8 55.3 40.3 155.8 40.7 52.2 641.5 58.2 

2D MLPnP HIAL-3 HIAL-4 HIAL-6 

Ref. 

error 
Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

𝑑 = 1 10.5 34.7 11.0 11.7 54.5 12.5 9.2 62.7 9.5 11.7 113.8 13.7 

𝑑 = 2 20.8 70.1 21.8 23.5 106.9 25.1 18.0 83.7 18.3 22.7 134.0 24.9 

𝑑 = 3 31.5 105.4 33.0 35.0 162.4 37.4 27.2 117.4 27.8 33.3 273.6 36.0 

𝑑 = 4 41.8 136.2 43.6 46.8 219.1 49.8 36.8 155.3 37.6 44.3 354.3 47.5 

Table A.3 Effect of the reference position error to the localization error (in millimeter). 

 

Effect of outliers - simulation 

 MLPnP HIAL-4 HIAL-5 HIAL-6 

 Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

3D 702.0 2113.2 718.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.2 0.0 

2D 624.8 1523.3 649.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.2 0.0 

* 0,0 error means error smaller than 0.05mm 

Table A.4 Effect of outliers on the localization error (in millimeter). 

 

Static accuracy – measurement 

 MLPnP HIAL-3 HIAL-4 HIAL-5 HIAL-6 

 Mean Max SD Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

3D 33.9 81.1 2.2 38.7 84.4 3.2 31.3 78.0 5.0 28.1 82.7 4.4 28.9 83.0 5.4 

2D 33.2 75.7 2.1 36.6 88.7 3.6 27.6 74.5 5.0 25.6 80.9 4.0 26.3 76.2 5.1 

Table A.5 Static localization error in real measurements (in millimeter). 

 

Dynamic accuracy - measurement 

3D Mean Max SD 

MLPnP 18.6 61.1 15.7 

HIAL-3 19.0 51.1 13.1 

HIAL-4 19.9 71.1 17.5 

HIAL-5 12.5 70.2 16.5 

HIAL-6 13.6 58.4 16.0 

Table A.6 Dynamic localization error in real measurements (in millimeter). 
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3D MLPnP HIAL-3 HIAL-4 HIAL-5 HIAL-6 

Movement 

speed 
Mean Max SD Mean Max SD Mean Max SD Mean Max SD Mean Max SD 

0.05 𝑚/𝑠 12.1 19.2 1.9 8.1 15.0 2.9 7.7 14.2 2.2 11.5 42.8 2.6 11.5 42.8 2.6 

0.1 𝑚/𝑠 11.9 19.1 2.1 8.1 15.8 3.1 7.6 14.4 2.4 11.2 27.8 2.5 11.2 27.8 2.5 

0.3 𝑚/𝑠 11.7 19.6 2.6 7.7 16.5 4.1 7.2 15.6 3.2 11.3 19.9 2.3 11.3 19.9 2.3 

0.5 𝑚/𝑠 11.4 20.2 2.3 7.0 15.7 3.7 7.0 14.5 2.7 11.2 24.5 2.3 11.2 24.5 2.3 

1 𝑚/𝑠 10.9 22.6 3.1 6.4 19.1 4.4 6.5 18.4 3.4 11.2 27.6 2.2 11.2 27.6 2.2 

Table A.7 3D localization error as a function of object speed, in a linear trajectory 

(in millimeter). 
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