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Towards improved Understanding of Running Fatigue and Gait 

Asymmetry 

 

Abstract 

The popularity of long-distance running as an easily accessible and promoted sport has increased 

within the last four decades. However, the incidence of musculoskeletal injuries caused by 

running has also increased rapidly, especially in the lower extremities of amateur runner. It should, 

however, be noted that the etiology of running fatigue-induced injuries is multifactorial and 

complex. Fatigue-induced changes in the symmetry of the lower limbs may be one of the major 

causes of unilateral limb overloading. 

The first research question of this thesis: Fatigue gait risk is associated with shifts in the 

distribution of bilateral plantar pressure. Therefore, human activity recognition (HAR) methods 

based on wearable sensors and deep learning algorithms have been widely developed in the last 

decade. Despite significant strides in gait and biomechanics analysis, research into automated 

fatigue gait recognition with data-driven models remains insufficient. Force plates or insoles with 

force transducers are easy to use relative to other biomechanical data collection methods, saving 

time in experimental setup data collection. Therefore, this study intends to use a deep learning 

algorithm based on bilateral plantar pressure data for the early identification of fatigue gait. 

The first objective of this thesis: Detecting fatigue at the early stages of a run could aid training 

programs in making adjustments, thereby reducing the heightened risk of injuries from overuse. 

The study aimed to investigate the effects of running fatigue on plantar force distribution in the 

dominant and nondominant feet of amateur runners. The Convolutional Long Short-Term Memory 

Network (ConvLSTM) model will be used in this study on the ground that it transforms the 

structure of recurrent neural networks into a convolutional structure, thereby preserving the spatial 

and temporal information of plantar pressure. 

The second research question of this thesis: Although many studies have investigated the acute 

effects of long-distance running on gait symmetry, they have mainly focused on exploring pre- 

and post-fatigue comparisons. One gap is the lack of understanding of how symmetry changes 

during various stages of long-distance running. In addition, researchers have utilized various 

techniques from chaos theory and information theory to enhance their understanding of the 

intricacies of gait behavior. Although nonlinear evaluation is important in the quantification of 

gait stability, there is a lack of research on gait asymmetry. 
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The second objective of this thesis: This part focuses on understanding the variations in gait 

symmetry during a prolonged running activity. Specifically, the question seeks to unravel how the 

dynamic stability of gait symmetry, as quantified by the Largest Lyapunov exponent (LyE), alters 

across different stages of a 10-kilometer run among amateur male runners. The results of present 

study could provide a towards improved understanding of the symmetry of long-distance running. 

The third research question of this thesis: Understanding the internal load characteristics of the 

knee joint is essential for investigating unilateral knee injuries associated with running. previous 

studies on fatigue and differences in load between limbs haves not precisely addressed the 

distribution and extent of the load on the knee joint's internal tissues, potentially missing key 

insights into the causes of unilateral limb injuries. 

The third objective of this thesis: The aim of this study is to determine whether there are 

differences in the location and magnitude of von Mises stress in the internal structures of both 

knee joints during the stance phase of gait, and to investigate the effects of running at the 

submaximal speed for 10 kilometers on these internal structures. The findings enhance our 

understanding of the impact of running-induced fatigue on bilateral knee joint loading. It provides 

a detailed analysis of factors leading to unilateral knee overload during extended running. These 

insights are essential in formulating targeted strategies to reduce injury risks. 

In summary, this study investigates the biomechanical implications of long-distance running, 

focusing on the potential relationship between running-induced fatigue and the risk of 

musculoskeletal injury in amateur runners. It delves into three key areas: using deep learning 

algorithms to detect fatigue gait through changes in bilateral plantar pressures, analyzing nonlinear 

changes in gait symmetry during long-distance running, and exploring internal knee loading 

characteristics to understand unilateral knee injury mechanisms. This study aims to provide new 

insights into the prevention and management of running-related injuries by comprehensively 

analyzing gait dynamics and joint loading at different stages of long-distance running. 
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1. Introduction 

1.1 The structure and functions of human lower limbs 

1.1.1 The structure of human lower limbs 

The human lower limb locomotor system is constructed by three important components: skeletal 

tissue, joints and skeletal muscles. In this system, the femur and tibia play a major supporting role 

in human gait tasks[1]. Bones are connected to each other by ligaments to form joints as the pivot 

of movement, which in the lower limbs mainly include the hip, knee and ankle joints[2]. The hip 

joint is a pestle and mortar joint consisting of two components, the head of the femur and the 

acetabulum. It is an essential joint that connects the body's abdomen to the lower thigh and is the 

most deeply located joint in the body[3]. The anatomical structure of hip joint is depicted in 

Figure 1.1.1. 

 

 

Figure 1.1.1 Anatomical structure of the hip joint[4] 

 

The spherical femoral head can rotate in all directions in the socket-like acetabulum during 

movement, and their surfaces are covered with a thick layer of cartilage, which functions to reduce 

friction, absorb impact, and dampen vibrations[5]. In addition, the hip joint possesses a robust and 

thick articular capsule along with intricate ligaments that serve a supportive role. The function of 

the iliofemoral ligament is to limit overextension and adduction of the thigh to prevent joint 
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dislocation, the function of the pubofemoral ligament is to limit excessive abduction and external 

rotation of the joint, the function of the is chi femoral ligament is to limit excessive adduction and 

internal rotation, the function of the transverse acetabular ligament is to compensate for the notch 

in the acetabulum, and the function of the ligament of the femoral head is to limit joint flexion, 

adduction, and external rotation, maintaining the stability of the femoral head[6]. The hip joint 

also possesses well-developed muscles, which can participate in various types of movement tasks 

such as walking, running, and jumping. Movement of the hip joint revolves around three 

fundamental anatomical axes, encompassing flexion and extension about the coronal axis, 

adduction and abduction about the sagittal axis, and internal and external rotation around the 

vertical axis. 

The knee joint, encompassing the tibiofemoral and patellofemoral joints, stands as one of the most 

intricate and fragile human joints. The knee joint is the largest and most complex joint in the 

human body. The primary function of the knee joint is to bear the weight of the body and support 

the main movements of flexion, internal and external rotation, and inversion and eversion in daily 

life[7]. Anatomically, the bony structure of the knee joint consists of four main bones: the distal 

femur (thigh bone), the proximal tibia (shinbone), the patella (kneecap), and the fibula. The soft 

tissue structure of the knee joint includes the femoral cartilage, tibial cartilage, medial and lateral 

menisci, anterior and posterior cruciate ligaments, medial and lateral collateral ligaments, and the 

patellar ligament[8]. The anatomical structure of knee joint is depicted in Figure 1.1. 2. 

 

 

Figure 1.1.2  Antero-medial (left) and axial (right) view of the knee joint.[9] 

 

At the back of the distal end of the femur, there are two rounded prominences known as the medial 

and lateral femoral condyles. The tibial plateau is the term for the tibial condyles found on the 

upper surface of the tibia. Research has shown that the femur undergoes sliding and rolling over 

the tibia to facilitate bending movements when the lower limb walks, with the bending axis 
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roughly corresponding to the line connecting the medial and lateral femoral condyles. The axis 

line is defined as the line connecting the most prominent point of the lateral femoral condyle and 

the deepest concavity of the medial condyle[10]. 

The articular cartilage, affixed to the femur, tibial plateau, and patella, is a translucent thin layer of 

connective tissue predominantly made up of cartilage cells and intercellular matrix. The articular 

cartilage offers a smooth surface for facilitating motion, enabling the femoral condyles to glide on 

the tibial plateau and preventing wear of the contact area. The meniscus, a vital part of the knee 

joint, is a fibrocartilaginous pad with a thick outer rim and a thin inner margin. Positioned on the 

joint surface of the tibial plateau, it is categorized into the medial and lateral menisci[11]. Serving 

as a shock absorber during bodily movements, the meniscus's role is to distribute the load between 

the femur and tibia, thus diminishing cartilage surface wear. Clinically, the meniscus is 

anatomically segmented into three parts: the anterior horn, the body, and the posterior horn[12]. 

The five major ligaments of the knee joint (anterior cruciate ligament, posterior cruciate ligament, 

medial collateral ligament, lateral collateral ligament, patellar ligament) play a crucial role in 

maintaining stability during its physiological movements[13, 14]. The anterior and posterior 

cruciate ligaments restrict the movement of the tibia relative to the femur, while the medial and 

lateral collateral ligaments control the knee's varus and valgus movements, as well as internal and 

external rotation[15, 16]. Additionally, the periphery of the knee joint cartilage is attached to the 

joint capsule, which acts as a lubricant, with fat filling the spaces. These tissue structures ensure 

that the knee joint stably performs a wide range of flexion and extension movements, as well as 

slight varus and valgus, and internal and external rotational movements. 

The ankle joint is an essential joint that connects the leg to the foot and has a complex anatomical 

structure consisting mainly of bones, ligaments, tendons, and a joint capsule[17]. Bone structures 

include the tibia, fibula, and talus, which together form the joint that allows the foot to perform a 

variety of movements. Ligamentous structures, such as the anterior talofibular ligament, posterior 

talofibular ligament, medial collateral ligament, and lateral collateral ligament, provide stability to 

the ankle joint, limiting excessive motion and preventing injury. Tendons, especially the Achilles 

tendon, connect the calf muscles to the heel bone and play a key role in ankle motion[18]. In 

addition, the joint capsule and synovium surround the ankle joint and secrete synovial fluid to 

minimize friction and provide nourishment. The anatomical structure of knee joint is depicted in 

Figure 1.1. 3. 
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Figure 1.1.3 Medial collateral ligaments (right) and Lateral ligaments of the ankle and midtarsal 

joints (left) of the Ankle joint.[19] 

 

Gait movement in the human body is facilitated through the ankle joint's interaction with the 

ground[17]. This involves active movements such as dorsiflexion (upward rotation of the foot 

around the joint's coronal axis) and plantar flexion (downward rotation of the foot around the 

joint's coronal axis) on the sagittal plane, inversion (inward rotation of the foot around the joint's 

sagittal axis) and eversion (outward rotation of the foot around the joint's sagittal axis) on the 

coronal plane, and internal (inward rotation of the foot around the joint's horizontal axis) and 

external rotation (inward rotation of the foot around the joint's horizontal axis) on the horizontal 

plane. 

 

1.1.1 The functions of human lower limbs 

During sport tasks, the thigh moves around the knee joint and the lower leg around the ankle joint, 

creating sliding and rotating motions. The hip, knee, and ankle joints are closely connected 

through bones, ligaments, and muscles, supporting and influencing each other, collectively 

coordinating the fundamental and important movement behavior of advancing the leg forward, 

thereby propelling the body forward. The task of gait consists of repetitive lifting and landing of 

both lower limbs, with these movements occurring at relatively consistent times. Analyzing phase 

division and parameter characteristics in the gait process is crucial before delving into lower limb 

movement, as it lays the groundwork for summarizing the general patterns and individual 

variations in human gait tasks. The full gait cycle is divisible into two phases: the stance phase and 

the swing phase. The stance phase is the period from heel contact to toe-off, where the foot is in 

contact with the ground and bears weight, constituting approximately 60% of the gait cycle. The 

swing phase describes the duration from when the support leg lifts off the ground and steps 

forward until it touches the ground again, making up roughly 40% of the gait cycle. While 
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walking, there are two instances when both feet contact the ground simultaneously, termed the 

double support phase, generally comprising 20% of the gait cycle, with the other stages 

characterized by single foot support, known as single support phases. The stance phase of gait can 

be subdivided into initial contact, loading response, mid-stance, terminal stance and push-swing 

phases, each named for the position of the ipsilateral foot. Conversely, the swing phase 

encompasses an initial swing phase, mind swing phase and terminal swing phase (Figure 1.1.4). 

In the acceleration phase of the swing, the lower limbs swing forward, catching up and surpassing 

the torso. Conversely, during the deceleration phase, the lower limbs prepare for heel strike, 

setting the stage for the ensuing stance phase. However, the intricacies of human walking gait far 

exceed this simplified division. This categorization of the gait cycle, while a general simplification, 

provides a convenient and broadly accepted framework for analyzing muscle contraction changes 

in the lower limb joints throughout the gait cycle. 

 

 
Figure 1.1.4 Pictorial representation of a one complete gait cycle [20] 

 

The lower limbs of the human body experience a combination of ground reaction forces, muscle 

forces, and gravity when performing gait tasks. The knee joint, while walking, primarily manages 

weight bearing and flexion-extension movements, driving the body forward. Besides its own 

weight, the knee joint is influenced by the combined forces of muscle contraction and dynamic 

loading, underscoring the significant role of muscle force in walking. During extension movement 

of the knee joint, the lateral, medial, and intermediate vastus muscles, as well as the vastus 

medialis oblique and rectus femoris, are mainly active. During flexion, the hamstring muscles, 

gastrocnemius, and hamstring tendons (semimembranosus, semitendinosus, and biceps femoris) 

predominantly function. Maintaining motion balance in the knee joint depends on the interplay of 

these forces, and considering the complexity of muscle force coordination, simplified resultant 

forces and torque at the knee joint are typically used for mechanical calculations. 
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1.2 Biomechanics analysis of long-distance running 

1.2.1 Running biomechanical analysis 

Running biomechanics has received widespread attention from runners, coaches and researchers 

for the past 30 years [21, 22]. In the realm of recreational and amateur sports, running stands as a 

quintessential and accessible form of physical activity, garnering attention not only for its 

cardiovascular benefits but also for the biomechanical intricacies underlying its execution[23]. 

The decrease in athletic performance associated with running fatigue is partly due to inadequate 

central nervous system (CNS) drive of motor neurons and poor muscle executive function [24]. 

Exercise results from a combination of biomechanical and neurophysiological factors[25]. Long-

term movement produces motor variability, therefore increasing exercise duration can result in 

neuromuscular fatigue. Similar studies have shown that running fatigue can reduce the body's 

control over posture and change lower limb biomechanical parameters[26].  

However, fatigue caused by long-distance running may affect the neuro-muscular control of lower 

limb stability [27]. Thus, it is relevant to study the gait stability in athletes and numerous studies 

have reported that the symmetrical movement patterns exhibited by proficient runners are 

postulated to reflect not only efficient energy transmission but also underlying neuromuscular 

control mechanisms[22]. In addition, running is a cyclical exercise, and every step is not exactly 

the same from a biomechanical perspective [28]. Small internal or external perturbations may 

impact the neuromuscular and motor systems. Traditionally, Linear methods are frequently 

employed to analyze the stability of running gait, such as limb kinematics and Kinetic data [29, 

30]. Approximately thirty years ago, scientific evidence emerged to demonstrate that the 

implementation of non-linear methods, grounded in dynamic systems theory, served as a plausible 

enhancement to the analysis of human locomotion[31]. Dynamic stability (DS) reflects the 

compensatory ability of the neuromuscular system to small perturbations[32].Therefore, in the 

study of human walking, the evaluation of gait stability has frequently relied on the analysis of DS 

[32]. The DS or running stability can be calculated through nonlinear time series analysis [28]. 

The largest Lyapunov exponent can be used to quantify the degree of response of a sports system 

to these small perturbations at different stages of long-distance running. Running-relevant injury, 

such as stress fracture of tibia induced by repetitive monotonous loads, may occur with lower DS 

and poor ability of compensatory the small perturbations[33]. Therefore, DS testing is an 

important method for analyzing gait signal characteristics. Running stability can be affected by 

neuromuscular and central fatigue, decreased of gait symmetry, running experience. A study on 

the 5000m running reported that stability increases with the increase of running distance[34]. In 

addition, elite runners with more running experience have higher gait stability compared to 
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recreational runners[34]. Previous research has reported that the gait of older adults is 

characterized by lower levels of DS in the trunk and lower limbs[35]. The loss of DS and regular 

kinematics in the gait cycle is a potential mechanism for injury and fall occurrence[36]. Within the 

field of studying DS of fatigue gait, there are numerous parameters that necessitate analysis[37]. A 

study by Hollander et al. [38] using an inertial sensor attached to the tibia found decreased running 

stability during a 15-min run. Previous study found that the running fatigue can change the 

temporal dynamics[23]. In addition, Schutte et al. have shown that run-induced fatigue increases 

the complexity of the pace and the complexity of trunk acceleration[39, 40].  

 

1.2.2 Running-related injury 

It is estimated that more than 35 million Americans participate in long-distance running as part of 

their daily physical activity[41]. Previous studies have shown that individuals with a long distance 

running habit can reduce the risk of cardiovascular-related death by 45%-70%[42]and cancer-

related death by 30-50% [43]. However, fatigue from long distance running is also associated with 

a higher rate of injuries[44]. Hulme et al.[45] reported that 2.5-33.0 running-related injuries 

occurred per 1000 hours of running, and more than 79.3% of injuries occurred in knee joints. In 

addition, changes in muscle strength, cognitive function, and proprioception can be caused by 

fatigue[46], besides, stress, strain, shear force, and impact force on the lower limb joints also 

increase during fatigue [47]. The incidence of musculoskeletal injuries caused by running has also 

increased rapidly, especially in the lower extremity[48]. The tendons, muscles or bones of the 

lower extremities during long-distance running are repeatedly subjected to chronic submaximal 

loading over a long period of time[49]. As a consequence, overuse injuries are considered to be 

the most common running injury[49]. It should, however, be noted that the etiology of running 

fatigue-induced injuries is multifactorial and complex[50]. Fatigue from long-distance running can 

shift foot mechanics, potentially causing structural overload [51, 52]. Investigating the relationship 

between fatigue and the load distribution pattern during running gait has garnered increased 

interest [53]. A consensus is that an increase in peak metatarsal head pressure occurs after running 

fatigue[54, 55]. However, inconsistent results have been reported for the influence of running 

fatigue on the middle foot and heels[49, 54]. Weist et al. demonstrated a significant increase in 

midfoot pressure and the impulse in the medial heel after performing a running-induced fatigue 

protocol[56]. Nevertheless, the study by Bisiaux et al. [57] found a reduction in pressure and 

impulse in the midfoot under similar conditions. Willson and Kernozek [58] observed a significant 

reduction in peak heel pressure after 30 minutes of high-intensity running. In addition, more 

laterally directed roll-off and inadequate pronated heel strikes has been demonstrated to be the 
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potential triggers for lower limb overuse injuries[59]. Previous studies have reported that midfoot, 

metatarsal and medial heel loading increases after running-induced plantar muscle fatigue while 

loading on the lateral toes decreases[49]. Similar studies have reported that running fatigue causes 

a reduction in the medial longitudinal arch, which significantly increases mid-toe pressure[60]. In 

addition, excessive plantar forces of the forefoot lateral were identified as a potential cause for 

gait-related Achilles tendinopathy[54]. Most of the studies mentioned above did investigate 

changes in unilateral plantar pressure distribution after fatigue, especially the dominant side.  

The mechanical loading within the knee joint is a dynamic interplay between motion and contact 

mechanics[61]. The knee joint's capacity to endure high mechanical loads is formidable, yet knee 

injuries are becoming more prevalent with the increasing number of runners. Annually, 37% to 56% 

of runners incur at least one running-related injury[62]. The knee is one of the joints most prone to 

pain in runners [63]. Prolonged repetitive mechanical loading may damage the knee joint, such as 

cartilage degeneration and additional chondrocyte apoptosis[64]. Osteoarthritis (OA), meniscal 

and ligament injuries are significant contributors to these pathologies. A previous study reported 

that the adduction moment is a pivotal factor in OA progression during the stance phase of 

gait[65]. Peak forces are concentrated in the lateral compartment of the knee during the initial 

contact and terminal stance, while the medial compartment bears the most weight during mid-

stance [66]. OA primarily affects the articular cartilage but also impacts surrounding structures [67, 

68]. Miller et al. [69] found that the knee load of per unit distance during running is comparable to 

walking, suggesting that runners' compensatory mechanisms (stride length adjustments and 

reduced ground contact time) effectively mitigate overall load. Nonetheless, rapid force is exerted 

on the articular cartilage during instances of unanticipated high-impact or substantial joint loading, 

which is incapable of adequate force dispersion [67]. Consequently, this leads to matrix damage 

and irreversible cartilage disruption, serving as a potential initiating factor for post-traumatic OA. 

In addition, a recent systematic review on prospective evidence for running related injury found 

only limited evidence for increased asymmetry in ground contact time and decreased asymmetry 

in vertical impact peak as being related to running injury[70]. Consequently, the presence of 

bilateral lower limbs asymmetry may be one of the potential causes of injure. Especially when one 

side of the limb load is more than the other side, suggesting that the unilateral injures may occur 

[71]. For example, healthy recreational runners have significantly higher Achilles tendon loads in 

the dominant lower limbs than in the non-dominant lower limbs [71]. 
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1.3 Limb dominant and asymmetry evaluation 

1.3.1 Limb dominant and Asymmetry in sports biomechanics  

Symmetry has long been regarded as a synonym for health in sports training[72], therapy[73] and 

daily practice[74]. However, the movement and posture of human does not conform to the concept 

of complete symmetry[75]. Asymmetry may be widespread even in high-performance sports[76]. 

Movement symmetry is an essential technical parameter in some competitive sports, such as sprint 

running[77], walking race[78] and rugby[79]. In addition, most athletes have dominant limbs for 

certain tasks, and these preferences may be determined by different motor tasks[76]. Asymmetry 

of athletes is one of the main causes of musculoskeletal diseases, sports injuries and poor 

performance[80]. Although bilateral asymmetry is widely believed to be detrimental to sports 

performance of athletes, previous studies does not fully support this association[81]. Therefore, 

the athletes and coaches would benefit from an biomechanical examination of quantitative 

asymmetry of the bilateral movement or posture, rather than depending exclusively on subjective 

determination during daily training [76]. Quantification of bilateral asymmetries has been widely 

examined in the available studies as well as the quantification method is not uniform[80]. The 

literature reports that the associated symptoms may occur only when the degree of asymmetry 

exceeds certain thresholds [80]. Previous studies have shown a potential relationship between 

athletes' limb asymmetry greater than 15% and the occurrence of sports injuries[82, 83]. In 

addition, other researchers have set asymmetry of less than 10% as the goal for discharge and 

returning to the sport of athletes with unilateral limb injury[84, 85]. Trivers et al.[86] reported that 

symmetry can be identified as one of the indicators of early talent recognition in athletes. A long-

term Jamaican study observed that the athletes' knee asymmetry at age 8 could predict their sprint 

performance 14 years later[86]. On the other hand, opponents argue that musculoskeletal 

coordination forms the basis for the symmetry of an athlete's static and dynamic movements[87]. 

In practice, interpreting motor coordination is more complex than classical biomechanical 

measurements[88]. Therefore, athletes performing an action with bilateral asymmetry may cause a 

decrease in biomechanical parameters of one or both sides. For example, water rowing is widely 

evaluated by bilateral continuous variables of force symmetry rather than coordination[81]. These 

findings suggest that asymmetry is an adaptive consequence magnified with long-term physical 

activity participation [76]. One of the causes of bilateral asymmetry is an abnormality of the 

spine[89]. The pressure generated during movement is transferred to the spine to stabilize the 

upper body and keep it balanced and upright. Therefore, biomechanical assessment of athletes' 

bilateral symmetry is the main method to develop recovery strategies to restore normal function in 

clinical practice.  
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Limited literature suggests that greater than 10% power and force asymmetry of the bilateral lower 

extremity can reduce the change of direction speed times[90] and jumping performance[91], 

indicating that increased asymmetry can impair athletic performance. Tomkinson et al [92] have 

reported that the athletes who are symmetrical can improve the sport performance. Although 

further research is needed into the relationship between symmetry and athletic performance, the 

potential applications of this research should also be considered. On the other hand, opponents 

argue that bilateral asymmetry may negatively affect athletic performance [76]. Loturco and 

colleagues[93] analyzed the relationship between vertical asymmetry and basal performance in 

high level female soccer players and they found that bilateral countermovement jump performance 

was significantly associated with strength on sprinting and squat tests, while asymmetry of 

unilateral squat jump was not associated with athletic performance. Within the previous studies, a 

stronger topic surrounding patients or rehabilitated people to have been explored then the 

participants of athletes. Asymmetry of the bilateral body has been evidenced to be indicative of 

movement function [94]. Therefore, The symmetry of biomechanical parameters were often used 

in the clinical and motion capacity assessment, which was important for restoration of abnormal 

function through appropriate of treatment strategies[73, 75]. Increased symmetry is considered by 

clinicians to be a sign of successful recovery and can increase the confidence of athletes to return 

to sport safely and effectively[80]. The degree of asymmetry determines whether an athlete may 

have a potential injury risk[74, 95]. Asymmetry of bilateral loading can contribute to the increase 

of unilateral limb damage such as ACL injuries, especially in female athletes[96, 97]. The non-

contact injury rates in soccer were 68% in non-dominant limbs for females and 74% in dominant 

limbs for males[98]. Similarly, Brown and Brughelli [99] used symmetry of lower limbs as a 

decisive factor in assessing rugby players' return-to-sport status. Schache et al. [100] observed a 

soccer player with a unilateral hamstring strain due to a 5.7° difference in peak knee extension 

between legs and a 7% vertical peak force during the swing. However, the methods used to assess 

symmetry vary greatly, so caution should be exercised when establishing a correlation between 

asymmetry and injury[76]. Previous research has shown that when asymmetry exceeds a certain 

threshold, it can negatively impact an athlete's health, although it may be beneficial for specific 

athletic performance[81]. However, these thresholds are still an unsolved problem in current 

studies and may vary between individuals and individual states. Therefore, these complex 

explanations should be considered in future studies. By better understanding of the effects of 

limbs asymmetry on athletes' physical activities can provide an important basis for coaches and 

athletes to design training strategies and rehabilitation testing. 

The asymmetry of human body structure will cause the asymmetry of bilateral limb function. 

Similarly, asymmetrical movement over a long period of time can promote structural asymmetry. 
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This potentially vicious cycle may have a negative impact on athletes' training efficiency, so 

exploring the causes of asymmetry should be the focus of future research. Previous studies have 

reported that dexterity is one of the important causes of upper extremity gross anatomical 

asymmetry[101]. Oyama et al.[102]assessed the asymmetry of bilateral scapular position and 

orientation in 3 groups of healthy overhead athletes (13 tennis players,15 baseball pitchers and 15 

volleyball players). More internally rotated (p<0.01) and anteriorly tilted (p<0.01) of the scapula 

was showed on the dominant side of the overhead athletes and a more protracted of the scapula 

position occurred on the dominant side of the tennis players(p<0.05). These results indicate that 

the cause of the asymmetry may be related to the athletic attributes of the athletes, and clinicians 

should be cautious in evaluating the asymmetry of the upper limbs in such athletes. However, the 

authors did not analyze the correlation between asymmetry and exercise experience, and more 

future research would be required to confirm this suggestion. More definite conclusion has been 

described for the Paralympic powerlifting athletes. Dalla Bernardina and colleagues[103] analyzed 

functional asymmetries during different submaximal intensities (50% and 90% of the one-

repetition maximum, 1RM) using linear velocity. Powerlifting performed symmetrically at 50% of 

1RM. In comparison, significant asymmetry in favor of the dominant limb occurred at 90% of 

1RM. By comparing the sensitivity of ANOVA and FANOVA to body asymmetry, the authors 

found that the latter is the most suitable for examining the asymmetry of the performance of 

paralympic weightlifters. However, Further research is needed to confirm the relationship between 

bilateral asymmetry and weightlifting performance. Similar disparate findings have been reported 

for racing wheelchair propulsion. Goosey[104] reported that no statistical difference was found in 

the elbow height, elbow angular displacement and propulsion phase of the racing wheelchair 

athletes. 

For sports requiring a high level of the unilateral upper extremity, such as archery, previous 

studies have shown that the nature of the movement leads to an asymmetry in skin temperature. 

The authors point out that the asymmetry of different temperatures can reflect the muscle 

activation of archers and make an important contribution to their posture. The influence of 

exercise experience on skin temperature needs to be further explored in combination with 

neuromuscular signal analysis. Asymmetry is generally thought to affect athletic performance 

negatively, but the scientific evidence to support this claim is insufficient. In addition, asymmetric 

types are usually not defined. Warmenhoven et al.[88] noted that high-level rowers are more likely 

to use adaptive asymmetric strategies for rowing, suggesting that asymmetries have a functional 

role in a rowing movement. However, more scientific evidence is needed to determine whether 

asymmetry boosts rowing performance. Gender differences is also widely believed to be an 

important reason for individual differences in asymmetric parameters. Male pole vaulters with 
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greater explosive power have greater step length and step frequency asymmetry during 

competition. This gender difference could be attributed to the athletes' physical condition and pole 

characteristics. Gray et al.[105] By comparing abdominal muscle thickness asymmetry in fast 

bowling players with and without low back pain, athletes with low back pain had more 

symmetrical abdominal muscle size. However, whether this phenomenon has clinical significance 

remains unclear. A systematic review on the application of symmetry in competitive sports was 

reported by Gao, which shown that the application of symmetry angle (SA) is the most 

symmetrical evaluation measure in competitive sports (Figure 1.3.1). As shown in Figure 1.3.1 

(B), the author identified 6 studies on the variables of asymmetry on sprinter and 4 on multifarious 

sports. The number of analyzed the variates of kinetic and kinematics asymmetries was the highest 

among all the included studies, 14 and 13, respectively. 9 studies analyzed the asymmetry of 

spatiotemporal variables (Figure 1.3.1 (C)). In addition, SA was used as an assessment tool for 

asymmetry in 8 studies, and 6 studies used the method of SI (3 studies) and two side differences (3 

studies), respectively. 5 of 22 articles used general statistical check approaches to identify bilateral 

asymmetries, ANOVA (2 studies), N-K procedures (1 study), FANOVA (1 study), W M-Pairs 

Signed (1 study) and Separate analyses of variance (1 study), as shown in Figure 1.3.1 (D). The 

results show that the Inter-limb asymmetry appears to have a positive effect on physical 

performance in upper limb movement, while it may cause injury to occur and have a detrimental 

effect on performance in gait related sports. However, the evidence pertaining to inter-limb 

asymmetry in ball athletes and different athletes is less conclusive. Mixed results were also found 

in a specific sport, suggesting that the effects of bilateral limbs asymmetry on different athletes 

may be task-specific. 
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Figure 1.3.1 The Effect of Application of Asymmetry Evaluation in Competitive Sports[22]; (A) 

Study Quality assessment. (B) The number of each sport category. (C) the number of each 

test parameter. (D) The number of each asymmetry metrics measured. 

 

Limited data are available on the effect of motor tasks on limb asymmetry. Further studies in a 

broad population of athletes are needed to clearly determine whether various body asymmetries 

are associated with motor tasks. Liu and Jensen[106] calculated asymmetry of kinematics and 

kinetics in 56 athletes who underwent ACLR and found that asymmetries in sagittal plane knee 

moments at initial contact during the landing phase of a DVJ are strong predictors of second ACL 

injury. This prediction model only applies to the prediction of secondary ACL injury in athletes 

who have experienced ACLR, and further research is needed for the prediction of injury risk in 

healthy athletes. A similar study assessed changes in lower extremity symmetry in athletes who 

had experienced ACLR after return to sports criteria and found that patients used hip, pelvis, and 

trunk compensatory strategies to address inter-limb differences in knee function[107]. A further 

consideration for the inducement of asymmetry would be the Athletic level. Minimal literature has 

focused on the difference in biomechanical symmetry of lower limbs in athletes of different sports 

levels. Morishige et al. (2016) compared the leg asymmetry between 23 female collegiate and 19 

recreational athletes during the landing phase of a DVJ, and the results showed that the asymmetry 

of bilateral knee abduction Angle was opposite in the two groups. However, further evidence is 

needed to determine whether this interesting phenomenon is related to the injury. The presence of 

biomechanics asymmetries within athletes has been reported for several decades. Investigations 
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had previously reported that an increased asymmetry of bilateral lower limbs was one of the 

potential causes of spinal abnormalities. However, investigation of the ameliorating interventions 

of asymmetry has only recently been examined. Alvarenga et al.[108] reported that the 

intervention of lumbar SMT can improve the immediate static asymmetry of athletes, more 

interventions related to dynamic asymmetry need to be explored in the future. 

 

1.3.2 Limb dominant and asymmetry in running biomechanics  

Since the human body is a large and complex system, consequently, gait motion can be realized in 

many different ways. For example, the muscle group of the normal leg can compensate for the 

other leg with the weak muscle group during gait movement[109]. Therefore, Gait asymmetry can 

increase the workload of one limb. By analyzing the gait variability and symmetry of 35 race 

walkers, Tucker and Hanley reported the asymmetrical step lengths were persistent in individual 

athletes, which may be caused by the underlying gait imbalance[78]. Further data has also linked 

gait asymmetries to sprint running performance. Brown et al[79] used acceleration and maximal 

velocity sprinting to assess athletic performance in thirty male rugby athletes (development-level). 

Trivial to small correlations was proved between the Vmax and symmetry angle of vertical and 

horizontal force in both acceleration (R2 = 0.021 and 0.100) and maximal velocity sprint phases 

(R2 = 0.179 and 0.0002), while the correlations between the symmetry angle in acceleration and 

maximal velocity sprint phases were 0.459 for vertical force and 0.721 for horizontal force. These 

results suggesting that the asymmetry of vertical and horizontal force may be the crucial 

components for acceleration performance in sprinting. However, the relationship between athlete 

performance with asymmetries is not clearly stablished. Another similar case study indicated that 

asymmetry was negatively associated with a lower risk of injury and high sprinting 

performance[72]. On the other hand, opponents argue that the symmetry of kinematic parameters 

during the stride cycle was no relationship with sprinter sports performance and the prevalence of 

injury[77]. 

In addition, Exell and colleagues used asymmetry composite scores to quantify the intra-limb 

asymmetry in eight male sprint athletes and reported that asymmetrical measures exist for inter-

participant differences[110]. A similar study compared and evaluated the spatiotemporal 

parameters and GRF asymmetries of 18 elderly and 17 young walkers and found that although 

there was no overall mean asymmetry, the individual analysis found asymmetries of several 

athletes(SA≥1.2%)[78], This is somewhat supported by Girard who highlighted the relatively 

large range of asymmetries between individuals should be taken into account in the analysis[111]. 

Therefore, these findings should be interpreted with caution, significant asymmetrical variables 

may be athletes specific, and therefore, intra-limb variability should be included in asymmetrical 
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analyses to avoid misleading results[112]. In addition, Previous studies have hypothesized that 

gait asymmetry may be due to running fatigue[79]. Girard and colleagues have examined whether 

inter-limb asymmetry in lower limb mechanics increases with fatigue and found that similar 

fatigue rates exist in bilateral lower limbs during sprinting exercise[113]. Consequently, the cause 

of bilateral lower extremity asymmetry should be the focus of future research. 

Typically, the mean value of bilateral variables [26, 114] or the default complete symmetry of both 

limbs [52, 115] was widely used in running biomechanical research. Although these methods 

mentioned above can describe the motion well, it also ignores the false claims and misleading 

interpretations caused by the asymmetry of bilateral variables [116]. Neuromuscular asymmetry is 

a widespread phenomenon occurred in functional tasks [117]. Few previous studies have 

considered that the biomechanical asymmetry of running gait [116, 118, 119], even though this 

phenomenon is common among healthy people [21, 52]. Quantitative gait characteristics (e.g., 

parameters of time and parameters of space) and qualitative gait characteristics (e.g., gait 

variability and gait asymmetry) are related to running-related injuries, especially among amateur 

runners [120, 121]. Similarly, the effects of gait asymmetry are also an important consideration for 

motor performance[122]. Previous studies have shown that a 10% increase in asymmetry of 

vertical ground reaction force (GRF) leads to a 3.5% increase in net metabolic power during 

running[116]. Another finding was that increased foot contact time asymmetry was associated 

with increased metabolic costs of running[116]. Zifchock et al. [123] found that the asymmetry 

was 49.8% and 37.5% at the running speed of 3.65 m/s by evaluating the peak lateral and medial 

GRF of bilateral lower limbs in the running process of healthy individuals, similarly by Williams 

et al.[124] reported that 13.8% and 20.2% asymmetry of peak lateral and medial GRF at the speed 

of 5.36m/s, suggesting that greater symmetry is associated with faster running speeds. The same 

conclusion regarding walking gait was reported by previous. Asymmetry between limbs refers to the 

phenomenon that one limb difference of function, physical strength, and other parameters relative to 

the other limb[25]. Moreover, Seeley et al.[125]found that impulses from dominant limbs were 

significantly larger than those from non-dominant limbs during the push-off phase during fast walking, 

suggesting that the dominant limb contribute more to gait propulsion. Likewise, previous studies also 

have reported that the non-dominant foot showed more stable Foot Balance Index Range during 

running gait [52]. Likewise, Gao et al. [52] reported that a Running-Induced Fatigue Protocol caused 

knee flexion angle, hip flexion angle, hip extension angle, and the hip flexion moment to be more 

asymmetrical. However, the biomechanical changes of human movement usually occur in three 

anatomical planes[126]. Therefore, the effect of fatigue on the symmetry of coronal and horizontal 

biomechanical parameters is less known. Previous studies have widely shown that fatigue gait risk is 

associated with shifts in the distribution of bilateral plantar pressure [48, 51, 53, 58].   
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The quest for optimal stability often intersects with the pursuit of gait symmetry, as deviations 

from symmetry may not only impede performance but also predispose individuals to overuse 

injuries and musculoskeletal imbalances[116]. Therefore, research on the symmetry of running 

gait mainly involves investigating biomechanics[29], athletic performance[116], or outcomes 

related to injuries over the past few decades [127]. However, the ultimate conclusions regarding 

its benefits or harms are still pending. Although many studies have investigated the acute effects 

of long-distance running on gait symmetry, they have mainly focused on exploring pre- and post-

fatigue comparisons. One gap is the lack of understanding of how symmetry changes during 

various stages of long-distance running. In addition, researchers have utilized various techniques 

from chaos theory and information theory to enhance their understanding of the intricacies of gait 

behavior. Although nonlinear evaluation is important in the quantification of gait stability, there is 

a lack of research on gait asymmetry. Therefore, the existence of asymmetries is often assumed to 

be unstable without clear evidence. Mechanisms of the central and peripheral nervous systems 

may be involved in the phenomenon of fatigue in a complex manner[128]. Therefore, the effect of 

this gait symmetry may not be easily quantified by linear methods during running. And inferring 

symmetry information from kinematic and kinetics data can be challenging. Therefore, more 

sophisticated tools are especially important to probe fatigue-induced symmetry changes. In the 

present study we investigated the temporal gait variability associated with gait asymmetry running 

10km running. 

In addition, stress during exercise tasks gives rise to specific joint dynamics, and investigations of 

stressful activities can help to understand the biomechanisms of forces generated by joint loading. 

The menisci, crucial in load distribution and shock attenuation, withstand significant shear, tensile, 

and compressive forces[129]. Composed of fibrocartilaginous material, they are essential in the 

effective transmission and dispersion of mechanical loads[130]. Notably, 5% of runners sustain 

meniscal injuries[131]. Meniscal tears are common and often disrupt circumferential fibers, 

leading to extrusion, displacement, and intra-articular constriction under axial stress[132]. 

Running fatigue has been reported to increase tibial stress in past studies[133]. However, the 

research related to whether this phenomenon exists in the context of internal tissue stress in the 

knee is still insufficient. In addition, the ligaments of the knee joint are significant contributors to 

the DS of gait, as they prevent excessive extension or rotation of the knee with the assistance of 

muscular strength. Prolonged running may lead to decreased muscle strength, resulting in an 

overuse load on the ligaments[44]. Therefore, the health of the ligaments is crucial for maintaining 

a healthy gait posture. Numerous studies in gait biomechanics presuppose entirely symmetrical 

gait patterns and only examine unilateral variables, encompassing both the experimental analysis 

and numerical simulation [129, 134, 135]. However, Sadeghi and colleagues[25] observed that 
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asymmetry in lower limb gait is present even in healthy individuals. The stronger limb typically 

compensates for its counterpart to address biomechanical shortcomings in the gait during long-

distant running[136]. However, running-related injuries commonly occur in a unilateral limb[137]. 

Approximately half of recreational runners sustain an injury annually, with many being recurrent 

and side-specific[138]. Despite extensive research into factors contributing to injuries, the 

mechanisms underlying side-specific injuries are not well understood[139, 140].  
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1.4 Running gait investigations using modelling technology 

1.4.1 Machine learning modelling technology 

Machine learning approaches have been widely utilized in gait biomechanics studies in the past 

decades[141, 142]. Utilizing learning-driven sensor data, machine learning and deep learning 

methodologies can facilitate real-time gait monitoring, offer recommendations for running 

equipment, and provide insights for running injury prevention. Understanding the implementation 

of machine learning techniques in lower limb running biomechanics through the exploration of 

wearable sensor data is essential. Recent advancements in artificial intelligence provide novel 

opportunities for analyzing variations during exercise and estimating fatigue levels.  

Uhlrich and colleagues[143] reported that a new approach of integrating physical and machine 

learning models into a unified model could be a popular topic in future biomechanics research. 

These models can be trained on smaller data sets and achieve higher accuracy. There are three 

common application methods (Figure 1.4.1): 

(1) The application of musculoskeletal models to generate training data for machine learning 

models, particularly those utilizing sparse inputs like data from a limited number of Inertial 

Measurement Units (IMUs) or acoustic emissions from joints, is a strategic approach in 

biomechanical studies.[144, 145] 

(2) Incorporating elements of the physical system into machine learning models is an effective 

strategy. For instance, using physics simulations can notably enhance the accuracy of a deep 

learning-based pose estimation model [146, 147]. Additionally, integrating physics-based 

terms into the loss function can effectively regularize neural networks, ensuring that their 

predictions adhere more closely to physical principles[148]. 

(3) An alternative strategy involves employing physical models for well-understood elements of a 

system, while training machine learning models for the less understood components. For 

instance, through reinforcement learning, a network can learn a model of sensory-motor 

control, which is inherently challenging to model mechanistically. This approach enables a 

musculoskeletal model to effectively navigate complex environments[149]. 
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Figure 1.4.1 Approaches to combining physics-based modeling and machine learning[143]. (a) 

Musculoskeletal models can be used to synthesize inputs to machine learning models[144, 

145]; (b) Physics-based optimization can improve the accuracy of deep-learning-based pose 

estimation[146, 147]; (c) Physics terms can regularize the loss function of a deep 

learning model, helping to reduce overfitting[148]. 

 

Coaches and runners can avoid the occurrence of overuse injuries by monitoring fatigue levels in 

the context of competitive and recreational sports. In addition, excessive fatigue may affect 

runners' performance and cause secondary injuries to the runner[150]. Therefore, human Activity 

Recognition (HAR) methods based on wearable sensors and deep learning algorithms have been 

widely developed in the last decade [151]. Despite significant strides in gait and biomechanics 

analysis, research into automated fatigue gait recognition with data-driven models remains 

insufficient [141, 152]. Typical techniques to detect fatigue are surface electromyogram -based 

collection of muscle activity signals and optical motion capture-based collection of joint 

kinematics[29, 153]. However, the limited data collection area and the location of the marker 

attachments make monitoring limited. On the contrary, Force plates or insoles with force sensors 

are easy to use and save time in the experimental setup for data collection. Therefore, this study 

intended to use a deep learning algorithm based on bilateral plantar pressure data for early 

identification of fatigue gait. Nonetheless, these methods can be both computationally and data 

intensive. A systematic review by Xiang[154] and colleagues on the application of machine 

learning algorithms in running biomechanics reported that deep learning algorithms account for 57% 

of the total number of machine learning methods, while traditional machine learning algorithms 

https://www.sciencedirect.com/topics/engineering/deep-learning
https://www.sciencedirect.com/topics/engineering/deep-learning
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make up 43%. The specific application distribution is shown in Figure 1.4. 2. 

 

 

Figure 1.4.2 Recent Machine Learning Progress in Lower Limb Running Biomechanics With 

Wearable Technology.[154] (A) sample size; (B) the number of sensors; (C) types of 

machine learning algorithms; (D) machine learning approaches; (E) purpose of machine 

learning. 

 

The previous study demonstrated that the support vector machine (SVM) has a high generalization 

ability for dichotomous data[155]. The optimal separating hyperplane was created by maximizes 

the distance of separation in SVM model[155]. Moreover, it can transform the matrix into a higher 

dimensional space for classification by setting the different types of kernel functions[155]. SVM 

algorithms was widely used in gait patterns recognition, such as differences of young and elderly 

populations[156], competitive and recreational runners[157], barefoot and shod population[141]. 

Mundt et al.[158], for instance, expanded their measured inertial sensor dataset with simulated 

IMU data to enhance the estimation of walking and running biomechanics.  

Supervised machine learning and deep learning techniques have been developed for classifying 

fatigue status, with deep learning offering the advantage of autonomously extracting features 

without the need for specific domain knowledge, leading to state-of-the-art outcomes[159]. 

Contemporary research predominantly assesses fatigue by analyzing sensor-derived data through 

person-specific statistical and data mining techniques. The evaluation approaches of running gait 

symmetry have been widely utilized in biomechanical studies in past decades[117, 123, 160]. 

Traditional person-dependent fatigue recognition systems necessitate user-specific labeled data to 

train classifiers. This process, involving the induction of a fatigue state for data collection, is both 
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time-consuming and labor-intensive. Currently, only a limited number of studies have successfully 

generalized fatigue classifiers across different participants. Buckley and colleagues [161] explored 

the efficacy of a single IMU in distinguishing between non-fatigue and fatigue states utilizing both 

subject-dependent and subject-independent classifiers. Their findings indicated superior accuracy 

with the subject-dependent classifier (100%) compared to the subject-independent one (75%). 

They highlighted that fatigue is a multifactorial condition influenced by various factors such as 

sleep disorders, pain, and alterations in affective and cognitive states. The majority of data 

augmentation techniques applied to time series data rely on random transformations of the training 

dataset. Khandakar et al.[162] recently addressed the challenge of identifying construction 

activities using a LSTM network, employing augmented IMU data. By integrating four data 

augmentation techniques—jittering, scaling, rotation, and time warping—the model's accuracy 

was substantially enhanced from 63.5% to 97.9%.  

Since larger spatial dependencies exist in the pressure data of each plantar region throughout the 

gait cycle[163], the CNN model has been reported to be better at extracting to local spatial 

features[164]. Similarly, time series data-based plantar pressure data are considered to possess 

time dependence[165]. However, the plantar pressure distribution data based on time series 

features may be regarded as static spatial data by the CNN model, and the time-dependent 

information within the series is lost. Previous studies have shown that Long Short-Term Memory 

Network (LSTM) models perform better for the prediction of long-time dependence and nonlinear 

dynamic changes in a time series[166]. However, LSTM models are less effective in handling 

spatial relationships of data. The spatial characteristics of the pressure distribution in different 

plantar regions and the dynamic time characteristics of the variation with time should be 

considered in the model selection for this study. Therefore, the ConvLSTM model, which 

integrates the advantages of CNN and LSTM, was used in this study because it converts the 

structures in the recurrent neural network into convolutional structures, thus preserving the spatial-

temporal information of plantar pressure.  

 

1.4.2 Musculoskeletal modeling technology 

Scientists working in biomechanics have recently developed numerous computational tools for 

analyzing the neuromuscular skeletal (NMS) system, grounded in a joint-multibody system 

framework. In order to foster the progress of sports science, researchers aspire for computational 

modeling and simulation tools to transcend disciplines like anatomy, physiology, neuroscience, 

kinematics, mechanics, robotics, and computer science, thereby facilitating easier motion 

analysis[167]. Utilizing mathematical and physical algorithms, these tools facilitate the 

biomechanical analysis and quantification of internal variables during human movements, 
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including analyses of kinematics and kinetics, muscle fiber length, muscle force, joint force, and 

reaction forces of muscles/joints. Analysis tools such as LifeMod, SIMM, Visual 3D, AnyBody, 

and recent open-source tools like OpenSim are employed to simulate human motion, compute 

muscle strength and muscle activation, and are extensively applied in gait analysis[168]. The 

software encompasses all essential computational components, crucial for deriving motion 

equations in dynamic systems, conducting numerical integrations, and addressing constrained 

nonlinear optimization challenges. 

A dynamic simulation framework, incorporating models that detail the neuromusculoskeletal 

system's anatomy and physiology along with the mechanics of multi-joint movements, offers a 

comprehensive approach. These muscle-driven dynamic simulations augment experimental 

methods, furnishing estimates of critical but experimentally elusive variables such as muscle and 

joint forces. Additionally, they facilitate the elucidation of causal relationships and permit 

hypothetical analyses. In these analyses, modifications to a muscle's excitation pattern can be 

implemented, enabling observation and analysis of the consequent motion[169]. In the latest five 

decades an increasing number of biomechanical researchers have chosen to use opensim for 

musculoskeletal modeling and simulation investigations, and Figure 1.4.3 shows the number of 

relevant published studies. 

 

 

Figure 1.4.3 Growth of musculoskeletal modeling and simulation[143], Annual PubMed 

publications in “(musculoskeletal simulation) OR (musculoskeletal model*)” have grown by 

three orders of magnitude since 1970. Over the past two decades, many musculoskeletal 

models have been developed and shared publicly on SimTK.org for use in simulation 

research. Examples of shared models, shown to relative scale, have been provided by 1 
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Hutchinson et al. (2005), 2 Mortensen et al. (2018), 3 McFarland et al. (2019), 4 Saul et al. 

(2015), 5 Rajagopal et al. (2016), 6 Willson et al. (2020), 7 O’Neill et al. (2013), 8 Bishop et 

al. (2021b), 9 Hutchinson et al. (2015), 10 Rankin et al. (2016), 11 Stark et al. (2021), and 12 

Johnson et al. (2008). 

 

OpenSim users are capable of fully utilizing the open-source model library to create and augment 

new models, as well as engage with other users in exchanging simulation research outcomes and 

develop and share novel model data and plugins through a vibrant developer community. 

Consequently, after a thorough analysis of factors like operating environment, precision of muscle 

control, extent of errors, software price, and the capability for whole-body human modeling, as 

well as inverse and forward kinematic and dynamic simulations, OpenSim has been selected from 

the mainstream human motion simulation software as the musculoskeletal modeling and 

simulation tool for our research. Lerner and colleagues[170] developed an OpenSim full-body 

model that includes a quantitative function for medial and lateral contact forces between the tibia 

and femur in the knee joint(Figure 1.4.4(A)). They validated it using a model with geometric 

parameters and found that the model has high predictive accuracy (Figure 1.4.4(C)). In addition, 

As shown in Figure 1.4.4 (D), Delp et al.[169] utilized a 12-segment, 29 degree-of-freedom (DOF) 

musculoskeletal model to construct their simulation. This model featured actuation in the lower 

extremity and back joints through 92 musculotendon actuators. In the simulation, muscle color 

serves as an indicator of the activation level, ranging from fully activated (represented in red) to 

fully deactivated (depicted in blue) (Figure 1.4.2.2(E)), the results shown that the quadriceps and 

plantar flexors are the major contributors to acceleration of the body mass center during 

running[171]. 
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Figure 1.4.4  Graphical (A) and schematic (B) depictions of the medial/lateral 

compartment joint structures in Lerner et al musculoskeletal model, (C) Medial (top) and 

lateral (bottom) compartment tibiofemoral contact forces during stance[170];(D) Joint 

definitions for the 12 segment, 29 degree-of-freedom musculoskeletal model created by 

Hamner et al, (E) Snapshots from a simulation of the running gait cycle[171]. 

 

The verification of a simulation typically hinges on the consistency between its outputs and 

experimental measurements of kinematic, kinetic, and electromyographic (EMG) activities. Upon 

successful performance and validation, the simulation can be analyzed to evaluate muscle 

contributions to body movement and the effects of simulated treatments. The primary challenge in 

developing a dynamic simulation for coordinated movement lies in identifying a suitable set of 

muscle excitations. Advancements in computer science and robotic computed muscle control 

technology have now significantly expedited the determination of muscle excitation levels. 

Creating a dynamic musculoskeletal model in OpenSim simulation software is divided into the 

following 5 steps (Figure 1.4.5). 

（1） Utilizing motion capture devices to design experiments and gather data, a suitable 

OpenSim generic musculoskeletal model is scaled to create a personalized model aligned 

with individual traits. 

（2） Inverse kinematic analysis is applied to align the experimental kinematics with the 

https://www.sciencedirect.com/topics/engineering/joints-structural-components
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measured motion data, ensuring that the experimental model is consistent with the actual 

human motion posture. 

（3） The Residual Reduction Algorithm (RRA) method is utilized to rectify residuals resulting 

from model minimization and inaccuracies in marker data processing. This is achieved by 

combining ground reaction forces with human body inertia parameters, thereby limiting 

the calculation errors from inverse dynamics to a smaller scope, dynamically converging 

towards ground reaction force data, and fulfilling the aim of static optimization. 

（4） Forward dynamics involves altering muscle parameters such as activation level and 

maximum isometric contraction force through Computed Muscle Control (CMC). 

Optimal simulation results are achieved through a combination of these parameters and 

static optimization. 

（5） Ultimately, through the forward dynamics process, the results of simulation calculations 

are achieved, replicating the process of actual movement, and obtaining related data such 

as joint reaction forces and joint reaction moments generated relative to the ground, 

considering muscle activity. 

 

 

Figure 1.4.5 The process of musculoskeletal modeling simulation in Opensim software  

 

1.4.3 Finite element modelling technology 

The finite element (FE) analysis is a computer simulation technique, where its built-in algorithms 

can divide larger and more complex mechanical problems into smaller elements that can be solved 

in relation to each other[172]. Moreover, finite element analysis for examining the biomechanical 

characteristics of the knee joint is a mainstream tool in engineering and medical research[173]. 

Previous research on knee joint finite element analysis primarily concentrated on four areas: 

predicting the knee joint's mechanical properties[172], comprehending the stress conditions it 

endures[174], investigating the mechanisms of joint injury, and simulating the stress-strain 
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relationship between knee joint prosthetics and bones[175]. FE analysis primarily excels in its 

ability to model intricate geometries, varied material properties, and complex boundary and 

loading conditions. When integrated with experimental methodologies, it effectively uncovers the 

internal states of bony structures under various scenarios. 

Alterations in knee mechanical load can influence OA-induced knee pain[176]. Tibiofemoral joint 

contact forces arise from the combined action of muscles and ligaments[177]. Direct JCF 

quantification is invasive and ethically complex[135, 178]. Therefore, MS and FE modeling are 

widely used as non-invasive alternatives to simulate dynamic loads. MS models estimate muscle 

and joint forces using kinematic and kinetic data, but the tissue response during KOA progression 

or the factors influencing cartilage degeneration cannot be fully evaluated[67]. FE modeling, on 

the other hand, can provide intuitive graphical results to elucidate the distribution and magnitude 

of localized loads induced by biomechanical changes in the knee joint[179]. Running-related knee 

injuries are caused by the complex interplay of tissues such as the meniscus, cartilage, ligaments, 

and muscles, even if they may be due to fatigue or an asymmetric gait[44]. Nonetheless, previous 

studies on fatigue and differences in load between limbs has not precisely addressed the 

distribution and extent of the load on the knee joint's internal tissues, possibly missing key insights 

into the causes of unilateral limb injuries[29]. 

As described by the author in the previous section (1.4.2), musculoskeletal modeling, which relies 

on motion measurement data, has been demonstrated to offer relatively accurate predictions of 

muscle activities throughout the human body. A static optimization algorithm is commonly 

employed to address the muscle redundancy problem, enabling the estimation of muscle activities 

either throughout the entire body or in specific local areas of the body. Muscle activities play a 

significant role in influencing joint kinematics, which can alter the deformation of cartilage and 

other soft tissues. These deformations, in turn, may modify the joint's secondary kinematics. Such 

changes are critical as they can significantly impact muscle length and the muscle moment arm, 

thereby affecting the accuracy of muscle activity estimations[169]. However, traditional 

musculoskeletal models are predominantly developed within the framework of multibody 

dynamics, where the skeletal structure is modeled as a rigid body. In these models, joints are 

typically represented as simple rotational joints with specific degrees of freedom. 
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Figure 1.4.6 Subject-specific FE MS model with high-fidelity intact FE knee joint[180] (LCL: 

lateral collateral ligament; MCL: medial collateral ligament; ACL: anterior cruciate ligament; 

PCL: posterior cruciate ligament; PT: patellar tendon; RF: Rectus femoris; MPL: medial 

patellofemoral ligament; LPL: lateral patellofemoral ligament; TL: transverse ligament; 

AMMH: anterior medial meniscus horn; ALMH: anterior lateral meniscus horn; PMMH: 

posterior medial meniscus horn; PLMH: posterior lateral meniscus horn; MTC: medial tibial 

cartilage; LTC: lateral tibial cartilage; PCAPM: medial posterior capsule; PCAPL: lateral 

posterior capsule). 
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Through FE analysis, individual tissues are divided into finite, independent elements, each of 

which is assigned material properties corresponding to the tissue it represents. Material models of 

bone, cartilage and ligaments have been validated under laboratory conditions[181]. Therefore, by 

applying forces, moments, rotations and/or translations from MS models as boundary conditions, 

it helps to non-invasively estimate the stresses and strains in bones, cartilage and ligaments during 

everyday activities such as gait[182]. The study of Halonen and colleges[183] used a combination 

of MS and FE modeling to simulate the biomechanical effects of different gait styles on knee 

stresses, and they demonstrated that this method is also effective for analyzing the stress and load 

on the internal tissue of the cartilages of knee joint. Similarly. Shu et al. used MRI data to 

establish a 3d knee joint model and assess detailed joint kinematics and contact mechanics during 

the gait cycle (Figure 1.4.6). The methodology included analysis of the tibiofemoral and 

patellofemoral joints, cartilage, meniscus, and ligaments, and the results showed that inter 

cartilages contact carries the majority of the load of the joint[180]. An accurate three-dimensional 

model of the knee joint is a prerequisite to ensure that its finite element model simulation is close 

to reality. The construction of a knee joint model mainly involves developing a comprehensive 

knee geometry model that encompasses the femur, tibia, patella, fibula, femoral and tibial 

cartilage, medial and lateral menisci, anterior and posterior cruciate ligaments, medial and lateral 

collateral ligaments, and the patellar ligament. The finite element model of knee joint established 

in this study is mainly divided into the following four steps: Model construction, Material property 

assignment, Boundary and loading condition and Model validation. Detailed modeling and 

analysis steps are described separately in the Methods section of this study. 
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1.5 Aims and hypothesis 

1.5.1 Plantar pressure and fatigue gait recognition 

Fatigued gait is common one of the risk factors for run-related injuries. Therefore, the research on 

wearable sensor equipped with automatic gait recognition system for fatigue risk has a wide 

application prospect. Most of the existing fatigue gait recognition methods in the literature require 

the participation of others, so they are difficult to be used in this scenario.  

The ConvLSTM model will be used in this study on the ground that it transforms the structure in 

recurrent neural networks into the convolutional structure, thereby preserving the spatial and 

temporal information of plantar pressure [184]. To verify the performance of ConvLSTM model 

for fatigue gait recognition, we used a CNN model to compare the performances. Two hypotheses 

were proposed: 1). The metatarsal, midfoot, and heel pressures increased in the dominant and non-

dominant feet after the fatigue intervention, with more significant changes in the non-dominant 

foot; 2) The ConvLSTM model has better performance than the CNN model for automatic 

recognition of fatigue gait. 

 

1.5.2 Dynamic stability 

Long-distance running usually causes discomfort or injury in one limb, partly due to bilateral 

lower limb asymmetry. Previous studies have shown that asymmetry between lower limbs or 

imbalance between limbs greater than 10-15% is associated with an increased incidence of injury. 

Therefore, the stage at which asymmetry occurs and worsens the most may be a potential factor in 

the occurrence of running-related injuries.  

The effect of repeated test conditions period of running symmetry stability has been investigated 

in present study. Although the specific physiological mechanisms that influence running stability 

are not yet clear, it can be hypothesized that as running distance increases, the DS of symmetry in 

recreational runners may decrease. Therefore, this study aims to determine the nonlinear 

biomechanical effects of running distance on symmetry capacity. The stability of symmetry 

capacity is represented by the LyE of the kinematic time series symmetrical function. This 

exponent, which encapsulates the rate of divergence of initially close trajectories in a dynamical 

system, offers a unique vantage point to discern the DS of symmetry function amidst the temporal 

flux of a prolonged running task. Although the specific physiological mechanisms that influence 

running stability are not yet clear, it can be hypothesized that as running distance increases, the DS 

of symmetry in recreational runners may decrease. 
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1.5.3 Joint stress response 

Excessive internal load of the knee joint is one of the causes of common musculoskeletal diseases 

in long-distance runners. However, current biomechanical studies on long-distance running mainly 

report the kinematic characteristics of the lower limbs and focus on unilateral limb analysis, while 

there are few comparative studies on internal load of the bilateral knee joint.  

Therefore, the aim of this study was to employ coupled person-specific musculoskeletal with finite 

element models to explore inter-limb variations in internal knee joint loading and assess the 

effects of a long-distance running event on these variables. We hypothesize that: (1) differences in 

the loading distribution of the menisci, tibial cartilage, and ligaments on both sides will be 

observed at the peak value phase, both pre- and post-fatigue states; (2) disparities in the loading 

magnitude of the menisci, tibial cartilage, and ligaments on both sides will be observed throughout 

the gait support phase in both states; (3) the loading on the knee will increase with fatigue and be 

greater on the non-dominant side than the dominant side due to the different fatigue tolerance of 

the two limbs during the whole gait support phase.  
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2. Materials and methods 

2.1 Participant 

2.1.1 Plantar pressure and fatigue gait recognition 

Thirty healthy amateur runners (males) were enlisted from universities and local running clubs for 

this study. The anthropometric information of the participates is presented in Table 2.1.1. The 

inclusion criteria for the current study were that the dominant extremity side was the right 

extremity side (preferred leg when kicking a ball), the absence of any lower extremity or pelvic 

musculoskeletal pain in the last six months, and running at least 2-3 times per week and for < 45 

minutes or <10 km at per running event. Ethics Committee at Ningbo University approved the 

study (code: RAGH20210827), and all subjects signed the informed consent. 

  

Table 2.1.1 Anthropometric characteristics of the recruited participants 

Information Mean S.D. 

Age (year) 24.27 1.36 

Height (cm) 177.00 4.33 

Weight (kg) 69.80 8.46 

BMI (kg/m2) 22.20 1.7 

 

2.1.2 Dynamic stability 

Seventeen male amateur runners were recruited for the study and the Table 2.1.2 shown that the 

demographic information. Amateur runners are required to have the ability to run 10 kilometers in 

45-50 minutes [185]. All participants were determined to have their right limb as the dominant 

limb and have had no injuries or abnormalities in the lower limbs and pelvis in the past six months. 

The subjects have provided written consent for all aspects of the experiment, and the Ethics 

Committee of Ningbo University has approved this testing protocol (code: RAGH20220218). 

 

Table 2.1.2 Descriptive characteristics of 17 participants 

Information  Mean SD 

Age (year) 22.4 2.58 

Height (cm) 177.4 4.77 

Weight (kg) 71.29 7.16 

BMI (kg/m2) 22.61 1.82 

 

2.1.3 Finite element model 

A 20-year-old healthy male amateur runner was enlisted for this study, with a body weight of 72 

kg and a height of 178 cm. Dominance in the right limb and a rearfoot strike pattern were noted, 
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alongside an absence of pelvic or lower limb injuries in the preceding six months. The amateur 

runner are required to be able to run 10 kilometers in 45-50 minutes[185]. Ethical approval for the 

study protocols was conferred by the Institutional Ethics Committee, with the assurance that all 

methods adhered to the Declaration of Helsinki. Furthermore, the Ethics Committee at Ningbo 

University (code: RAGH20230315) sanctioned all procedures. 
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2.2 Experimental protocol and Data collection 

2.2.1 Plantar pressure and fatigue gait recognition 

Subjects were guided by the experimental operator to familiarize the experimental environment 

(Includes ground running tests with barefoot before and after the running induced fatigue protocol) 

and process and participated in a 10-minute jogging warm-up on a treadmill (Satun h/p/cosmos, 

Nussdorf- Traunstein, Germany) in advance. A previously identified and validated protocol was 

employed for building a running-induced fatigue model [186]. With reference to our previously 

built approach [52], A heart rate sensor band (Polar RS100, United States) and Borg RPE scale (6–

20 scales) were utilized for monitoring fatigue during running [187]. Every participant 

commenced walking on a treadmill at a velocity of 6 km/h. The pace of gait was augmented by 1 

km/h every 2 minutes until an exertion level of 13 on the Borg scale was attained. Participants 

sustained the running pace at the established equilibrium until achieving a Borg rating of 17 or 90% 

of their maximum heart rate (maximum heart rate = 220-age), at which juncture they persisted in 

running for an extra 2 minutes. New neutral running shoes were given to every participant for the 

protocol involving running-induced fatigue. 

Pedobarographic data collection was done before and after the running induced fatigue protocol. 

Dynamic plantar force data were measured during running using a FootScan pressure plate 

(Size:2m×0.4m, frequency:480Hz, RsScan International, Olen, Belgium) embedded in the middle 

of a 20-m runway. The pressure plate is calibrated using the individual's body weight prior to 

measurement to avoid errors. Two sets of infrared photocells were placed on either side of the data 

collection area to monitor the running speed. All participants were required to run barefoot over 

the data collection area at a speed of 3.3 m/s±5%[187]. Participants were instructed to use the non-

dominant foot as the first step on the force plate and to ensure that two consecutive steps were 

recorded for each trial. Attempts to change the operating mode to strike the pressure plate were 

ruled out until three valid trial data points were measured before and after running-induced fatigue 

protocol. 

 

2.2.2 Dynamic stability 

XSENS MVN (Xsens, Enschede, Netherlands) represents a portable inertial motion capture 

system designed for comprehensive analysis of human body movements. The sensors within the 

system encompass accelerometers, gyroscopes, and magnetometers. As shown in Figure 2.3.4, 

seven sensors were individually affixed to the subject's sacrum, bilateral dorsal surfaces of the feet, 

shins, and thighs, in order to construct a lower limb skeletal model. The initial calibration process 

was carried out in accordance with the manufacturer's instructions. As shown in Figure 2.3.4 (A), 

this calibration data was utilized to initiate the analysis within the Xsens MVN software (version 
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2023, Xsens, Enschede, Netherlands) in order to fit a 7-segment half-body kinematic model to the 

data captured by the inertial sensors with 60Hz sampling. Prior to conducting this experiment, 

participants were thoroughly acquainted with the surroundings and underwent a 10-minute 

treadmill (Satun h/p/cosmos, Germany) warm-up session of walking or running and to confirm a 

submaximal speed range[30, 188].  

The participants completed a 10km running on a treadmill at a submaximal speed (approximately 

12 kilometers per hour, 80% of their personal best pace) [189]. Data were collected for 60s at 1000, 

2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and 10000m, which allowed for at least 100 steps 

can be collected during each sampling period. The participants were accustomed to using 

treadmills and all of them donned standard running footwear provided by the laboratory. 

 

2.2.3 Joint stress response 

Data collection was divided into four parts: (1) MRI scans, (2) ground running test before and (3) 

after a 10km treadmill run, and (4) treadmill running at submaximal speed for 10km. The (2) and 

(3) sections employed the same testing procedure (Figure 2.3.4 (A)). 

2.2.3.1 Medical image acquisition 

A 3.0 T clinical MRI scanner (General Electric Healthcare, Milwaukee, WI, USA), equipped with 

a 12-channel knee joint transmit-receive RF coil, was employed for the acquisition of magnetic 

resonance data. The participant was oriented in a supine, non-weight-bearing posture, with the 

right knee under investigation centrally aligned within the coil. The MRI data was collected in the 

morning to avoid the day-long load bearing in the knee joint[190]. 

2.2.3.2 Experimental data collection 

For the 10 km treadmill running (Quasar, h/p Cosmos®, GmbH, Germany), the participant wore 

standardized lab-provided running footwear and maintained a submaximal speed of approximately 

11.5 km/h, 80% of their personal best, to represent a casual running pace [30]. 

Our data were collected in the ground running test before and after the 10km treadmill run. The 

participant was allowed to acclimate by running on the track in the data collection area before the 

ground running tests to mitigate the influence of conscious gait adjustments. Subsequently, a total 

of 38 retroreflective markers were affixed in alignment with a pre-established protocol[191]. The 

marker trajectory and Ground reaction forces (GRFs) were synchronously collected using an 

eight-camera Vicon 3D motion capture system (Vicon Metrics Ltd.,200Hz, Oxford, United 

Kingdom) and an AMTI force platform (AMTI, 1000Hz, Watertown, Massachusetts, USA), 

respectively. The velocity for the ground running tests was consistently monitored at 3.33 m/s 

using photocells. Five successful trials meeting the criteria for proximity to the target speed and 

step location within the force plate area were chosen for subsequent MS and FE analysis[192]. 
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In addition, muscle activity from the rectus femoris, biceps femoris, tibialis anterior, medial 

gastrocnemius, and lateral gastrocnemius of the dominant limb was synchronously captured using 

a 16-channel surface electromyography system (Delsys, 1000 Hz, Boston, Massachusetts, US). 

Prior to the testing procedures, maximum voluntary contraction (MVC) levels for these muscles 

were also recorded to establish a baseline for activity assessment. 
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2.3 Data processing 

2.3.1 Plantar pressure and fatigue gait recognition 

For each trial, 10 plantar anatomical regions were identified by the FootScan application. To avoid 

recognition errors, the pixels of each area was manually calibrated by an operator. These areas 

were defined as the Hallux (H), Other toe (OT), Metatarsal 1-5 (M1-M5), Midfoot (MF), Medial 

heel (HM) and Lateral heel (HL). Time-series attributes of force information for each region and 

the sum area were interpolated to 101 frames using linear interpolation for statistical comparison. 

In order to reduce the effect of individual weight and gait speed differences on the data, all data in 

this study were annotated using Zavg (total force over the entire support period divided by the 

total number of frames)[165]. As shown in Figure 2.3.1, To preserve asymmetric information of 

bilateral limbs before and after fatigue, the plantar force data of the non-dominant and dominant 

foot were stitched longitudinally to obtain the bipedal force distribution information of one gait 

cycle for machine learning training[163].
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Figure 2.3.1 Data collection and analysis process. Note: Non-dominant side: left foot; Dominant side: right foot; H: Hallux, OT: Other toe; M1-5: Metatarsal 1-5; MF: 

Midfoot; HM: Medial heel; HL: Lateral heel. 
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2.3.1.1 CNN model building 

The current study uses the Keras Application Programming Interface (API) in python 3.8.8 for 

CNN and ConvLSTM model building. CNN models have good performance for feature extraction 

of input data through convolutional operations of different topological structures kernels. The 

convolution layer in the model preserves the spatial relationships of the data by using the same 

convolution operation for each position of the original data in turn. Each type of feature that is 

extracted generates a feature matrix Z. Therefore, after 𝑘 times convolution calculations, the 

corresponding output matrix 𝑍𝑘 can be represented by Equation (1). In addition, the convolution 

operation for one-dimensional time series data is also a nonlinear transformation of the original 

series. Applying a convolution kernel of length 𝑙 to a univariate time series X of length T, Equation 

(2) is obtained. 

𝑍𝑘 = 𝑓(𝑊𝑘 ∗ 𝑋 + 𝑏)                                    (1)  

  𝐶𝑡 = 𝑓(𝑤 ∗ 𝑋𝑡−𝑙/2:𝑡+𝑙/2 + 𝑏) ∣ ∀𝑡 ∈ [1, 𝑇]                       (2) 

Where Wk and k are the convolution kernels (Size: 𝑘1×𝑘2) and the number of convolution kernels, 

respectively. b is biased, and the convolution operator is defined as ∗. 𝑓 is the activation function 

that performs a nonlinear transformation in the convolution layers.  

As shown in Figure 2.3.2, The optimal convolution neural network model for the recognition of 

fatigue gait is obtained through repeated debugging parameters. We used a total of eight 

convolutional layers, three maximum pooling layers, one average pooling layer, one Dropout layer 

and one Dense layer to build the convolutional neural network model. The number of convolution 

kernels is set to (128, 128, 128, 128, 64, 64, 32, 32). The time step settings are (10, 10, 10, 10, 10, 

10, 4, 4). In addition, ‘RELU' and 'Softmax' are set as the activation functions for the 

convolutional and Dense layer, respectively. 

 

Figure 2.3.2 Diagram of the internal structure of CNN model in this study 

 

https://www.sciencedirect.com/topics/computer-science/topological-structure
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2.3.1.2 ConvLSTM model building 

The convolutional layer extracted the temporal characteristics from the pressure data, while the 

LSTM layer handled the spatial characteristics (Figure 2.3.3 (B)). In our ConvLSTM model, 

operations are depicted by Equations (3-8), where ∗ symbolizes the convolution process, and ∘ 

denotes the Hadamard product. 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑥𝑡 + 𝑊ℎ𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓)                           (3) 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑥𝑡 + 𝑊ℎ𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖)                          (4) 

𝑐̃𝑡 = tanh(𝑊𝑥𝑐 ∗ 𝑥𝑡 + 𝑊ℎ𝑐 ∗ ℎ𝑡−1 + 𝑏𝑐)                       (5) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑐̃𝑡                               (6) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑥𝑡 + 𝑊ℎ𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜)                         (7) 

ℎ𝑡 = 𝑜𝑡 ∘ tanh (𝑐𝑡)                                 (8) 

 

Where 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the input gate, oblivion gate, and output gate, respectively, in the proposed 

model; 𝑥𝑡 represents the data input at the current moment, while ℎ𝑡-1 refers to the output from the 

hidden layer at the preceding moment. 𝑐𝑡 denotes the cell state.  

Figure 2.3.3 (A) shows the framework for building the ConvLSTM model in the current research. 

In this study, we try to make 𝑙 choose a variety of different division lengths, such as 51, 101, 151, 

202, etc., for modeling, and finally find that the model's classification performance is optimal 

when the subsequence length is 𝑙 = 101. The optimal ConvLSTM for the recognition of fatigue 

gait is obtained through repeated debugging parameters. We sequentially set up a ConvLSTM 

layer (Number of convolution kernels=64, kernel size= (1,5)), A dropout layer (Random Discard 

Ratio= 0.5), a Flatten layer and two dense layers (first: units=50, activation='RELU'; Second: 

units=2, activation= 'Softmax') in the final model. 

In order to ensure fast convergence during the training of the binary classification model, the 

cross-entropy loss function was chosen as the loss function for the current study, as shown in 

Equation (9). 

𝐿 = −
1

𝑁
∑  𝑁

𝑖=1 [𝑦(𝑖)log (𝑦̂(𝑖)) + (1 − 𝑦(𝑖))log (1 − 𝑦̂(𝑖))]               (9) 

 

where 𝑁 is the number of samples and 𝑦(𝑖) and 𝑦̂(𝑖) are defined as the true and predicted values. 
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Figure 2.3.3 Diagram of the internal structure of ConvLSTM model in this study. (A) Frame 

diagram of the ConvLSTM model. (B) Structure diagram of the ConvLSTM model. 

 

2.3.2 Dynamic stability 

Each recorded running measurement underwent post-processing within the Xsens MVN software, 

employing the corresponding calibration file. This post-processing was executed using the 'High 

Definition' mode and the "no-level" processing scenario. In addition, the built-in algorithm of 

software was used to calculate the angle information of the mannequin's knee, hip, and ankle 

joints on three anatomical planes of the same space coordinate system. Additional post-processing 

steps for the angle and acceleration data were carried out using a custom Python script written in 

Visual Studio Code version 1.59.0. 

Successive gait cycles (comprising 50 cycles in this investigation, collected from the 35th cycle to 

calculate LyE) were discerned, with each gait cycle delineated as the interval between successive 

ground contacts of the same foot. The methodology employed for stride identification through 

resultant acceleration inertial data form a IMU attached in foot back (Figure 2.3.4 (B)) is detailed 

elsewhere[193]. First, we calculate the resultant acceleration of the IMU data (As show in Eq 10, 

resultant acceleration is calculated by taking the square root of the sum of the squared individual 

components of acceleration in these three axes). The peak resultant acceleration points were 

defined as initial contact (IC) and two adjacent IC are identified as one complete gait cycle of one 

side. The threshold of 2g (g= gravitational acceleration) was identified as Toe-off (TO). Previous 

studies have shown that errors caused by axis misalignment can be minimized because of the 

resultant acceleration applied to the method[194, 195]. 

For each participant and each side total of continuous 50 cycles were selected from the collected 

data. Following this, the dataset was temporally standardized to comprise 5050 data points for 
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each side, which on average corresponded to approximately 101 data points per side of individual 

gait cycle. 

 

Resultant acceleration = √𝑥2 + 𝑦2 + 𝑧2                    (10) 

 

The degree of asymmetry of each complete gait cycle was assessed using the dynamic Symmetry 

Function (SF). The specific calculation method is shown in eq. (11): 

 

𝑆𝐹(𝑡) = 2 ⋅
𝑥𝑟𝑖𝑔ℎ𝑡(𝑡)−𝑥𝑙𝑒𝑓𝑡(𝑡)

Range(𝑥𝑟𝑖𝑔ℎ𝑡(𝑡))+Range(𝑥left (𝑡))
                         (11) 

 

Where, the overarching structure of SF encompasses a function of time (t) and articulates the 

percentage disparity between the implicated right (𝑥𝑟𝑖𝑔ℎ𝑡) and left (𝑥𝑙𝑒𝑓𝑡) facets relative to an 

average range of change[196]. Then the SF data of 50 continuous gaits were spliced to facilitate 

the DS calculation.  

DS was determined based on the LyE, The computation of LyE was performed using the 

algorithm outlined in the publication by Rosenstein et al.[31], This approach assumes that each 

stride feature has the potential to be identical to any other stride feature. The variations observed 

in SF measurements in gait are attributed to minor perturbations. Consequently, SF variability can 

serve as a means to assess the system's stability by monitoring the recovery of a perturbed gait 

cycle toward the mean. Since the calculated SF has the characteristics of a one-dimensional 

time series vector. Therefore, a new n-dimensional state space should be created for 

determine dynamic perturbations. A SF in n-dimensional space would calculate as eq. (12): 

 

𝑋(𝑡) = [𝑥(𝑡), 𝑥(𝑡 + 𝜏), 𝑥(𝑡 + 2𝜏) … , 𝑥(𝑡 + (𝑛 − 1)𝜏)]               (12) 

 

Where, For the determination of time delay (τ), the initial minimum of mutual information was 

identified in accordance with the approach proposed by Fraser and Swinney in 1986[197]. 

Likewise, the selection of an appropriate number of dimensions (n) involved the utilization of the 

global false nearest neighbor technique[198], as shown in Figure 2.3.5. In addition, the embedding 

dimensions and time delay settings for present study are shown in Table 3.2.1 & Table 3.2.2. 

Following the reconstruction of the state-space, the quantification of the Lyapunov exponent (λ) 

was conducted utilizing the algorithm delineated by Rosenstein et al.[31]. To achieve this, the 

Euclidean distance between the initially proximate neighbors of every point within the state-space 

was meticulously monitored. Elevated values of λ are indicative of diminished DS. Therefore, the 

DS can be created using the following formula (eq. (13)): 
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ln {di(𝑡 + 𝑡)/di(𝑡)} = 𝜆max 𝑡.                      (13) 

 

The ln {di(𝑡 + 𝑡)/di(𝑡)} denotes the logarithm of dispersion, di(t), which is calculated as the 

average across all pairs of nearest neighbors, i. The 𝜆max  represents the slope of this line, which 

measures the average rate of divergence among initially adjacent trajectories across the dimension 

that is considered the least stable. 

 

Figure 2.3.4 Illustrating (A) 10km running protocol and the location of the IMU. (B) Process of 

gait data detection. (C) Evaluation of the local dynamic running stability 
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Figure 2.3.5 Illustrating of evaluation of the dynamic stability of SF of running gait. 

2.3.3 Joint stress response 

2.3.3.1 Musculoskeletal model 

The Opensim  (National Center for Simulation in Rehabilitation Research, Stanford, USA) gait 

2392 generic musculoskeletal model was chosen and scaled in the context of real experiments to 

establish a personalized model that aligns with individual characteristics[169]. Figure 2.3.5 (A)). 

An inverse kinematic analysis was then conducted to align the experimental biomechanics with 

the acquired motion data. The residual reduction algorithm (RRA) was employed to address 

minimization errors in the modeling and marker data processing. This application ensured that any 

computational inaccuracies in inverse dynamics remained within acceptable limits, allowing for a 

dynamic alignment with GRF data, culminating in static optimization. Finally, joint reactions 

analysis (JRA) was used to calculate the knee reaction forces for the muscle activation scenario 

and the joint reaction moments relative to the ground. 

 

2.3.3.2 Finite element modeling  

Knee Joint Reconstruction and Segmentation 

Figure 2.3.6 (B) presents the structured framework outlining the sequential phases for 

reconstructing FE models. The three-dimensional reconstruction was carried out using MIMICS 

21.0 software (Materialise, Leuven, Belgium). Segmentation of magnetic resonance imaging (MRI) 



54 

 

data facilitated the delineation of the anatomical boundaries of the articular cartilages (femoral, 

tibial, and patellar), menisci (medial and lateral), and ligaments (ACL, PCL, MCL, LCL, and 

PTL). To assure the accuracy of the FE model, manual segmentation of non-osseous elements was 

meticulously performed under the guidance of experienced orthopedic and radiological experts, 

attaining a precision of 0.1 mm[199]. The tissues reconstructed in great detail were exported as 

STL files and further refined for model representation in Geomagic Studio 2021 (Geomagic, Inc., 

Research Triangle Park, NC, United States), where any problematic surfaces were identified and 

rectified. The final geometries were then assembled using SolidWorks 17 software (SolidWorks 

Corporation, MA, United States), completing the model construction.  

 

Model Assembly and Material Allocation 

Material properties were allocated to each specific tissue to authentically model the biomechanical 

variations within the knee joint. The stance phase of running gait, characterized by a 

comparatively brief load application, permits the characterization of all cartilage tissues under 

quasi-static conditions using an instantaneous elastic model [200-202]. For the sake of 

computational efficiency without compromising accuracy, ligaments were modeled as transversely 

isotropic, nearly incompressible materials using the Neo-Hookean approach[200]. Table 2.3.1 

enumerates the attributes and values of material constants for each geometric entity. In accordance 

with the knee joint's anatomy and the specifics of the stance phase in running, modeling, meshing, 

and boundary conditions setting for this finite element knee model were established in Workbench 

2021 R1 (ANSYS Inc., Canonsburg, Pennsylvania, USA). The distal portions of the tibia and 

fibula were fully constrained, immobilizing all shifts and rotations.  

Model Validation 

By setting boundary conditions for the model, the rotation center (The midpoint of the trans-

epicondylar line[203]) of the femur is used to find the translational displacement values for the 

knee joint. The two values for rotation are based on how the tibial moves (the average rotation 

angles of the MCL and LCL attachment points on the tibia and fibula in relation to the tibial 

plateau reference point). We compared the displacements in the antero-posterior, proximal-distal, 

and medial-lateral directions of the knee model of the present study (under conditions of 0°  and 

remote displacement of 15° and 30° knee flexion and 134N afterload on the center of rotation of 

the femur) with the finite element simulation results of Song et al.[204] (0°) and cadaveric 

experiments of Gabriel et al.[205] ( 0°, 15° and 30°). 

Running Gait Simulation 

The stance phase was divided into five stages (initial contact, first peak, mid-stance, second peak, 



55 

 

and toe-off) based on the vertical GRF data. The knee rotation center was used to apply the knee 

flexion angle (the translational displacement), joint reaction force, and joint reaction moment 

calculated by the MS model to the corresponding five gait moments (Figure 2.3.6 C1 & C2).  

Constraints on femoral rotations were imposed only when specific flexion angle-related loads 

were applied, leaving other directional movements unconstrained. Through binding commands, 

cartilage and ligament tissues were rigidly attached to their corresponding skeletal points of origin. 

The meniscus and tibial cartilage were also bound together in the same way. Five discrete contact 

pairs were featured within the knee joint model, each facilitating surface-to-surface interactions: 

between the femoral cartilage and the medial meniscus, the lateral meniscus, the medial tibial 

cartilage, the lateral tibial cartilage, and the patellar cartilage. A frictionless, finite sliding 

approach was employed to address the minimal friction between joint cartilage surfaces[206], as 

shown in Figure 2.3.6.
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Figure 2.3.6 Musculoskeletal Modeling and Finite Element Modeling and Analysis. (A) Typical flow of motion simulation of OpenSim. (B) Optimized three-

dimensional model of the knee joint. (C1) GRFs, joint reaction forces, and joint reaction moments correspond to the 5 phases of the stance phase; (C2) the center 

of rotation of the knee joint is determined, and knee flexion angles correspond to the 5 phases of the stance phase. (D) Knee joint model after meshing and 

solutions. Note: Pre left: left leg before 10km running. Pre right: eight legs before 10km of running. Post left: left leg after 10km running. ACL: anterior cruciate 

ligament, PCL: posterior cruciate ligament, MCL: medial collateral ligament, LCL: lateral collateral ligament, PTL: Patellar tibial ligaments. IC: initial contact; 

FP: first peak; MS: mid-stance; SP: second peak; TO: Toe of
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Table 2.3.1 Material properties and element types used in the knee joint FE models to represent different components. 

Part name References Element number Model assumptions Element Type 

Material assignment 

Young’s modulus 

(MPa) 

Poisson’s 

ratio 
C1 D1 

Bone 

Femur 

Song et al.,[204] 

51809 

Linearly elastic 

Tetrahedral solid 

11000 0.3 

\ \ 

Tibia 43673 

Fibula 5935 

Patella 8062 

Meniscus 
Medial 

Li et al., 2001[202] 
24313 

Linearly elastic 59 0.49 
Lateral 22276 

Cartilage 

Femoral 

LeRoux et al., 2002[201] 

133537 

Linearly elastic 55 0.46 

Medial tibial 4780 

Lateral tibial 5373 

Patellar  11524 

Tibiofibular  3521 

Ligament 

ACL 

Li et al., 2001[202] 

1602 

Neo-Hookean 
Tension-only  

Tetrahedral solid 
\ \ 

1.95 0.00683 

PCL 1902 3.25 0.0041 

MCL 1441 1.44 0.00126 

LCL 1959 1.44 0.00126 

PTL 18163 3.25 0.0041 

Note: ACL: anterior cruciate ligament, PCL: posterior cruciate ligament, MCL: medial collateral ligament, LCL: lateral collateral ligament, PL: Patellar ligament.
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2.4 Statistical analysis  

2.4.1 Plantar pressure and fatigue gait recognition 

In this study, a total of 90 cases were sampled, and 80% of the samples were set as the training set 

and 20% as the test set, where 20% of the training samples were set as the validation set for cross-

validation. Therefore, the training set validation set and test set samples in the current study are 72, 

14 and 18. In order to avoid the occurrence of model underfitting, the number of model iterations 

was set to 300. The current study uses Accuracy, Sensitivity and Specificity as quantitative metrics 

for the performance of two classification models. We used fatigue gait as positive samples and 

normal gait as negative samples. Thereinto, Acc (14) was used to assess the overall classification 

capability of the models. Sen (15) and Spe (16) were used to evaluate the classification capability 

of negative samples and positive samples of the models, respectively. 

Accuracy =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁)
× 100%                     (14) 

Sensitivity =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100%                         (15) 

Specificity =
𝑇𝑁

(𝐹𝑃+𝑇𝑁)
× 100%                         (16) 

Where TP, TN are the number of samples correctly identified as fatigue gait and normal gait, 

respectively, and FP and FN are the number of samples incorrectly identified as fatigue gait and 

normal gait, respectively. In order to avoid accidental error, each model is run five times on the 

test set, and the corresponding classification results are collected. 

The Shapiro-Wilk test was performed to check the normality of the data distribution. The paired 

sample T-test of open-source statistical parameter mapping 1d (SPM1d) was used to check the 

differences between pre- and post-fatigue time-series force at dominant and non-dominant foot. 

The discrete values of the percentage of time of peak force were checked using paired sample T-

test in python 3.8.8 with the SciPy library. The significance levels were set at 0.05. 

 

2.4.2 Dynamic stability 

Statistical analyses examined the effects of different running stages within 10 km on the DS of the 

angular symmetry of each joint of the lower limbs. Descriptive statistics are presented in the form 

of Mean± Standard Deviation (SD). All data underwent normality assessment through the 

examination of Q–Q plots and the application of Shapiro–Wilk tests. The one-way repeated 

measures analysis of variance(one-tail) and Tukey's Honest Significant Differences (HSD) was 

performed to assess significant differences among groups of Lye of SF. Analyses were performed 
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using SciPy library of Python 3.8.8 using a statistical significance level of p < 0.05. 
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3 Results 

3.1 Plantar pressure and fatigue gait recognition 

3.1.1 Force development in toe and metatarsal areas 

 

Figure 3.1.1 The time-series normalized force in the metatarsal areas in the pre-fatigue versus 

post-fatigue at non-dominant and dominant foot during running gait. Note: Non-dominant 

side: left foot; Dominant side: right foot. 

 

As shown in Figure 3.1.1, starting from initial non-dominant foot contact, the force progression in 

forefoot regions differed between pre- and post-fatigue states. Specifically, the force in M3 shows 

a significant increase at 12-79% of contact duration after fatigue. However, the force of M5 has 
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decreased at 50-69% of contact duration after fatigue (p<0.001). For the dominant foot, there was 

a significant increase of force at OT (83-95% (p=0.001), 96-100% (p=0.046) of contact duration), 

M2(17-97%, p<0.001) and M3(14-97%, p<0.001) after running-induced fatigue. However, the 

force of M4 decreased at 0-3% of contact duration after fatigue (p=0.049). 

 

3.1.2 Force development in the middle foot, heel, and sum areas 

 

 

Figure 3.1.2 The time-series normalized force in the middle foot, heel and sum areas in the pre-

fatigue versus post-fatigue at non-dominant and dominant foot during running gait. Note: Non-

dominant side: left foot; Dominant side: right foot. 

 

As shown in Figure 3.1.2, there was no difference in MF at the non-dominant foot. Interestingly, 

there was a significant decrease in plantar force at the dominant foot (0-65%, p<0.001). The heel 

regions were directly affected by running fatigue. For non-dominant and dominant plantar force 

was significantly increased at HM (non-dominant: 30-36%, p=0.023; dominant:11-49%, p<0.001) 

and HL regions (non-dominant: 11-19%, p=0.027; dominant:3-51%, p<0.001). However, the sum 

of forces from all ten regions at non-dominant (33-46%, p<0.001) and dominant (34-47%, 

p<0.001) significantly decreased after running-induced fatigue. 

 

3.1.3 Relative time of peak force 
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Table 3.1.1 The relative of time of peak force in the 10 areas in the pre-fatigue versus post-fatigue 

at non-dominant and dominant foot during running gait. 

 Non-dominant foot Dominant foot 

Areas Pre 

(%) 

Post (%) p-value Pre 

(%) 

Post 

(%) 

p-value 

H 56.99(9.07)       57.26(11.14) 0.

84 

55.6(1

2.71) 

58.9(1

3.02) 

0.04

* 

O

T 

52.51(11.90)     55(13.46) 0.

17 

53.34(

11.59) 

52.43(

12.95) 

0.

58 

M

1 

56.99(9.33) 55.8(11.5

8) 

0.

27 

56.22(

10.75) 

56.33(

10.62) 

0.

92 

M

2 

58.97(6.19) 58.7(7.09) 0.

74 

58.47(

5.96) 

58.32(

6.38) 

0.

86 

M

3 

56.74(3.46) 56.87(4.6

2) 

0.

22 

56.98(

4.39) 

56.51(

5.23) 

0.

49 

M

4 

54.46(5.01) 54.00(7.0

9) 

0.

56 

55.93(

5.60) 

55.70(

6.31) 

0.

77 

M

5 

57.03(7.88) 57.38(9.2

3) 

0.

76 

62.23(

6.59) 

59.62(

11.30) 

0.

05* 

M

F 

53.26(6.40) 50.50(7.1

4) 

0.

001* 

53.87(

6.75) 

53.61(

8.09) 

0.

81 

H

M 

25.37(18.94) 25.3(17.5

8) 

0.

97 

24.48(

19.59) 

24.57(

17.30) 

0.

97 

H

L 

11.02(11.54) 11.62(10.

25) 

0.

72 

14.50(

15.19) 

11.29(

10.64) 

0.

07 

S

UM 

31.61(4.76) 29.7(6.06) 0.

01* 

33.47(

6.32) 

32.38(

7.86) 

0.

28 

Note: “*” means significant difference between pre- and post-fatigue state (p ≤ 0.05). Non-

dominant foot: left foot; Dominant foot: right foot. 

 

As shown in Table 3.1.1, the relative time of peak force was significantly shortened at MF 

(p=0.001) and SUM (p=0.01) regions at non-dominant feet in a fatigued state. Similarly, there was 

a significant shortening in the relative time of peak force at M5 of the dominant foot after fatigue. 

Interestingly, for H regions, the relative time of peak force was significantly delayed. 

 

3.1.4 Representations of deep learning models 

 

Table 3.1.2 Classification metrics of total plantar pressure by two models 

Model Accuracy Sensitivity Specificity 

CNN 0.800 0.874 0.718 

ConvLSTM 0.867 0.874 0.859 
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Figure 3.1.3 Violin plots of classification results of total plantar pressure at CNN and ConvLSTM 

model. 

 

 

Figure 3.1.4 Confusion matrix and ROC of CNN and ConvLSTM models for 5 tests, respectively. 

(A) Confusion matrix of CNN model, (B) ROC of CNN model, (C) Confusion matrix of 

ConvLSTM model, (D) ROC of ConvLSTM model. 
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The classification results of total plantar pressure at CNN and ConvLSTM model shown in Figure 

3.1.3 and the Confusion matrix and ROC of each model shown in Figure 3.1.4. Table 3.1.2 

presents the average accuracy, specificity, and sensitivity derived from the five test sets. The 

ConvLSTM model outperformed the CNN with an accuracy of 86.7% versus 80%. Likewise, 

ConvLSTM's specificity was superior at 85.9%, compared to CNN's 71.8%. Nonetheless, both 

models matched with a sensitivity rate of 87.4%. 

 

3.2 Dynamic stability 

3.2.1 Maximum Lyaplov index 

 

Figure 3.2.1 Post hoc analysis of groupwise comparisons for largest Lyapunov exponents of 

symmetry function of ankle angle during 10km running. 

 

The participants completed the 10 km run in 46 ± 8 minutes. As shown in Figure 3.2.1, the one-

way repeated measures analysis results shown that there are no statistical differences of LyE based 

on the SF of ankle angle data collected in Abduction/Adduction (F=1.41, P=0.24) and there are 



66 

 

statistical differences have found in Dorsiflexion/Plantarflexion (F=5.42, P=0.02) and 

Internal/External Rotation direction (F=80.92, P<0.01). Furthermore, the results of Tukey's Honest 

Significant Differences shown that LyE after 9 km running decreased 0.19 bit/s compared with 

Lye after 1km (mean difference=0.19, 95%CI: -0.36 to -0.03, p=0.01) in Internal/External 

Rotation direction. In addition, LyE after 10 km running decreased 0.21 bit/s compared with Lye 

after 1km (mean difference=0.21, 95%CI: 0.38 to -0.004, p<0.01).

 

Figure 3.2.2 Post hoc analysis of groupwise comparisons for Largest Lyapunov exponents of 

symmetry function of knee angle during 10km running. 

 

As shown in Figure 3.2.2, the one-way repeated measures analysis results shown that there are no 

statistical differences of LyE based on the SF of ankle angle data collected in 

Abduction/Adduction (F=1.50, P=0.22) and Dorsiflexion/Plantarflexion (F=0.06, P=0.80) 

direction. However, there are statistical differences have observed in Internal/External Rotation 

direction (F=18.67, P<0.01). Furthermore, the results of Tukey's Honest Significant Differences 

shown that LyE after 10 km running decreased 0.13 bit/s compared with Lye after 6km (mean 

difference=0.13, 95%CI: -0.25 to -0.01, p= 0.04) in Abduction/Adduction direction In addition, 
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LyE after 10 km running decreased 0.15 bit/s compared with Lye after 1km(mean difference=0.15, 

95%CI: -0.29 to 0, p= 0.04), 3km (mean difference=0.15, 95%CI: -0.29 to 0, p= 0.04) and 6km 

(mean difference=0.15, 95%CI: -0.29 to 0.01, p=0.04). 

 

Figure 3.2.3 Post hoc analysis of groupwise comparisons for largest Lyapunov exponents of 

symmetry function of hip angle during 10km running. 

 

As shown in Figure 3.2.3, the one-way repeated measures analysis results shown that there are no 

statistical differences of LyE based on the SF of ankle angle data collected in 

Abduction/Adduction (F=1.93, P=0.17) and Internal/External Rotation (F=0.22, P=0.64) direction. 

However, there are statistical differences have observed in Dorsiflexion/Plantarflexion direction 

(F=20.75, P<0.01). Furthermore, the results of Tukey's Honest Significant Differences shown that 

LyE after 5 km running increased 0.23 bit/s compared with Lye after 1km (mean difference=0.23, 

95%CI: 0.04 to 0.42, p< 0.01) in Abduction/Adduction direction. In addition, LyE after 9 km 

running decreased 0.18 bit/s compared with Lye after 1km (mean difference=0.18, 95%CI: -0.35 

to -0.01, p=0.03). LyE after 7 km running increased 0.16 bit/s compared with Lye after 2km (mean 

difference=0.16, 95%CI: 0.02 to 0.31, p=0.02). however, LyE after 10 km running have observed 

significant decrease (0.22 bit/s) after 7 km (mean difference=0.22, 95%CI: -0.36 to -0.07, p<0.01). 
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3.2.2 Embedding dimension and time Delay 

 

Table 3.2.1 The Embedding Dimension of LyE of SF ankle, knee and hip joint angle during 10km running 

Joint 
Mean (±SD) 

1 km 2 km 3 km 4 km 5 km 6 km 7 km 8 km 9 km 10km 

Ankle           

Abduction/Adduction 9(1) 9(2) 9(1) 9(2) 8(2) 9(2) 9(2) 9(1) 9(2) 9(2) 

Flexion/Extension 9(1) 9(1) 9(1) 9(1) 9(2) 9(1) 8(1) 8(1) 9(2) 9(1) 

Internal/External Rotation 9(1) 9(1) 9(1) 9(1) 9(1) 9(1) 9(1) 9(1) 9(1) 10(1) 

Knee           

Abduction/Adduction 7(1) 7(2) 7(2) 7(3) 7(1) 7(1) 7(1) 7(2) 7(1) 7(2) 

Flexion/Extension 7(1) 8(1) 8(1) 7(1) 7(1) 8(1) 7(1) 8(1) 8(1) 7(1) 

Internal/External Rotation 8(2) 8(2) 8(2) 8(1) 8(2) 8(1) 8(2) 8(2) 8(2) 8(2) 

Hip           

Abduction/Adduction 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 

Flexion/Extension 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 6(1) 

Internal/External Rotation 8(1) 8(2) 8(1) 8(1) 8(1) 8(2) 7(1) 8(1) 8(1) 8(1) 

 

 

 

 

 

Table 3.2.2 The Time Delays of LyE of SF ankle, knee and hip joint angle during 10km running 
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Joint 
Mean (±SD) 

1 km 2 km 3 km 4 km 5 km 6 km 7 km 8 km 9 km 10km 

Ankle           

Abduction/Adduction 22.06(4.94) 20.88(5.28) 20.94(6.17) 20.59(4.98) 20.47(4.96) 20.06(5.67) 20.76(6.14) 20.06(5.46) 20.65(5.06) 19.29(5.33) 

Flexion/Extension 20.88(5.29) 21.47(5.60) 21.76(6.92) 19.82(5.63) 21.06(6.29) 20.65(6.24) 21.29(5.52) 21.12(5.75) 20.06(5.43) 20.06(5.72) 

Internal/External Rotation 18.06(4.28) 16.47(3.97) 16.24(4.51) 17.18(4.36) 15.24(3.54) 16.76(4.07) 15.71(3.14) 15.29(3.35) 15.12(2.83) 15.35(2.78) 

Knee           

Abduction/Adduction 17.18(3.15) 18.41(5.82) 18.29(4.47) 18.88(5.53) 17.18(3.97) 20.12(6.8) 19.12(5.34) 19.84(5.71) 19.24(5.76) 18.18(5.00) 

Flexion/Extension 20.23(3.61) 20.71(4.06) 20.65(3.41) 21.24(4.16) 21.24(4.35) 20.06(3.21) 20.94(5.24) 20.06(3.09) 19.88(3.57) 19.76(3.21) 

Internal/External Rotation 16.29(2.71) 16.06(2.93) 16.41(4.14) 17.76(4.38) 17.53(4.99) 17.35(4.78) 17.18(4.98) 17.47(4.91) 17.53(5.46) 17.71(4.51) 

Hip           

Abduction/Adduction 29.24(7.51) 29.94(8.58) 27.41(4.43) 30.06(7.01) 27.53(4.96) 27.59(4.87) 28.35(7.23) 28.59(7.20) 28.53(5.78) 27.94(4.16) 

Flexion/Extension 26.47(1.97) 25.76(3.75) 25.47(3.43) 26.41(3.06) 26.71(3.84) 26.35(3.32) 26.71(4.15) 27.18(4.42) 26.82(3.86) 26.59(3.68) 

Internal/External Rotation 24.41(4.00) 22.82(4.59) 23.53(4.33) 25.12(6.11) 22.76(3.87) 23.24(4.93) 24(5.81) 23.47(5.09) 24.12(6.23) 21.53(3.66) 

 

Table 3.2.1 and Table 3.2.2 describe the optimal embedding dimension and time delay calculated from the global false nearest neighbor technique and initial 

minimum of mutual information. All data are expressed as Mean±SD.  Running distance did not affect embedding dimension or time delay of LyE in 10km running. 

The ankle joint had the highest embedding dimension in all three anatomical planes, and the hip joint had the lowest in the sagittal and coronal planes. In Addition, 

the hip had the greatest time delay in all three planes, and the knee was smaller than the ankle in the sagittal plane and larger than the ankle in the horizontal plan.
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3.3 Joint stress response 

3.3.1 Model validation 

 

Figure 3.3.1 Validation of the musculoskeletal model and finite element model (A) Comparison of 

OpenSim-calculated muscle activity levels versus experimentally recorded EMG from 

experimental recordings. (B) Attachment position of EMG sensors. (C) Comparison of the 

results obtained from the finite element model of this study as the same boundary conditions 

with the cadaver experiments and the finite element simulation results of previous studies (D) 

Schematic diagram of finite element model validation. 

 

The muscle activation levels of rectus femoris, biceps femoris, tibialis anterior, medial 
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gastrocnemius, and lateral gastrocnemius calculated in pre- and post-fatigue states were similar to 

the surface EMG signals recorded in the experiment, as shown in Figure 3.3.1 (A). In addition, 

under the condition of 0° knee flexion and a posterior load of 134N on the rotation center of the 

femur, the displacement in the anterior-posterior, proximal-distal, and medial-lateral directions in 

this study's knee joint model is similar to the cadaver experiments by Gabriel et al.[205] and the 

finite element simulations by Song et al.[204]. By applying remote displacement to the center of 

femoral rotation under identical boundary and loading conditions, the knee joint's displacement 

outcomes at 15° and 30° of flexion are congruent with the cadaveric study findings of Gabriel et 

al.[205], as shown in Figure 3.3.1 (B). 

 

3.3.2 Kinematics and Kinetics 

 

Figure 3.3.2 Knee joint angles, joint reaction forces calculated from experimental and 

musculoskeletal models during running gait. 
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Figure 3.3.3 Knee joint reaction forces and joint reaction moments from experimental and 

musculoskeletal models during running gait. 

 

As shown in Figure 3.3.2 and Figure 3.3.3, in the pre-fatigue states, a greater internal rotation 

angle was observed in the left knee compared to the right side, and this difference was more 

pronounced in the post-fatigue states during mid-stance. Additionally, a greater anterior joint 

reaction force was observed in the right knee. Similarly, a greater abduction joint reaction moment 

was noted in the left knee joint. In the post-fatigue states, the left knee exhibited a greater 

extension angle, and there was more pronounced adduction in the right knee. Furthermore, an 

increase in right knee flexion reaction moments was observed after fatigue. 

 

Table 3.3.1 Summary of loads applied to the knee joint at five typical moments in a stance phase 

of gait. 

Gait (%) angle(°) Force(N) Moment (Nmm) 

Fx Fy Fz Mx My Mz 

Pre left        

Initial 

contact 

-22.63 -307.01 -1000.21 -41.05 -0.27 -0.52 -4.14 

First Peak -33.17 -1367.24 -4674.43 -228.66 -1.89 -2.55 -25.10 

Mid-stance -37.44 -1628.87 -5498.92 -315.23 -2.03 -2.58 -26.96 

Second Peak -49.71 -1673.34 -6575.96 -798.51 -2.22 -1.76 -25.23 

Toe off -30.63 94.03 -1106.56 -48.22 -0.4 0.14 -1.40 

Pre right        

Initial 

contact 

-20.71 -208.69 -814.29 -39.31 0.22 -0.05 -0.51 

First Peak -30.77 -827.09 -3424.58 -327.90 -0.18 -2.00 -10.13 

Mid-stance -36.13 -960.45 -4231.98 -490.15 -0.28 -1.40 -11.49 

Second Peak -45.41 -1233.75 -6091.67 -898.97 -0.24 -2.77 -21.64 

Toe off -29.10 100.07 -430.28 -17.98 0.39 -0.07 -2.91 
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Post left        

Initial 

contact 

-18.31 -255.96 -620.13 40.21 -0.02 -0.14 -1.20 

First Peak -28.15 -1847.02 -4833.12 -161.08 0.07 -1.72 -14.63 

Mid-stance -34.26 -2317.48 -6301.40 -252.31 0.10 -2.08 -17.96 

Second Peak -49.07 -1735.97 -6916.34 -376.52 -1.47 -3.50 -30.10 

Toe off -28.50 75.88 -670.86 -0.10 -0.41 -0.32 -4.61 

Post right        

Initial 

contact 

-15.10 -20.17 -321.62 -10.93 0.01 0.01 0.19 

First Peak -25.50 -697.02 -2709.89 -205.22 -0.96 -1.32 -9.90 

Mid-stance -29.47 -833.77 -2710.82 -281.44 -1.22 -1.55 -11.20 

Second Peak -42.79 -1212.97 -6868.54 -541.09 -2.94 -3.11 -21.66 

Toe off -25.42  -68.59 -397.60 -37.15 -0.37 -0.51 -1.79 

Note: Pre left: Left leg before 10km running. Pre right: Right leg before 10km running. Post left: 

Left leg after 10km running. 

 

Table 3.3.1 enumerates the mechanical data applied to the finite element model for both lower 

limbs at five moments in pre- and post-fatigue states. Additionally, the knee joint flexion angles at 

each moment serve as remote displacement boundary conditions for the rotation center of the 

femur. 

 

3.3.3 Finite element analysis 
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Figure 3.3.4 Von Mises stresses the bilateral knee joint in the meniscus and tibial cartilage before 

and after 10km of running at the moment of maximum GRF of the stance phase. The change 

in color scaling represents the change in stress from large (red) to small (blue) on the stress 

cloud. Note: Pre left: Non-dominant leg before 10km running. Pre right: Dominant leg before 

10km running. Post left: Non-dominant leg after 10km running, Post right: Dominant leg 

after 10km running. 

 

In Figure 3.3.4, similar stress distributions were observed on both dominant and non-dominant 

limb menisci in both states. Maximum stress was predominantly located at the central and anterior 

horn of the medial meniscus. Notably, the left knee surpassed the right knee by 9.5 MPa, and 9.12 

MPa decreased after fatigue. The peak stress of the right medial meniscus decreased by 12.7 MPa 

after fatigue. Additionally, the anterior segment of the middle region of the lateral meniscus 

sustained the maximum stress, the left side by 3.39 MPa more than the right side, and 5.47 MPa 

decreased after fatigue.  

The tibial cartilage exhibited a consistent stress distribution, with the anteromedial part of the 

medial tibial cartilage bearing the main load. The stress of the left tibial cartilage was higher than 

that of the right side by 2.86 MPa and decreased by 1.82 MPa after fatigue. For the lateral tibial 
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cartilage, the left side is 4.81 MPa more than the right in pre-fatigue states. The peak stress of the 

right lateral tibial cartilage increased by 12.7 MPa after fatigue. 

 

 

Figure 3.3.5 Von Mises stresses the bilateral knee joint in the ACL, PCL, MCL, LCL, and PTL 

before and after 10km running at the moment of maximum GRF of the stance phase. The 

change in color scaling represents the change in stress from large (red) to small (blue) on the 

stress cloud. Note: Pre left: Non-dominant leg before 10km running. Pre right: Dominant leg 

before 10km running. Post left: Non-dominant leg after 10km running, Post right: Dominant 

leg after 10km running. ACL: anterior cruciate ligament, PCL: posterior cruciate ligament, 

MCL: medial collateral ligament, LCL: lateral collateral ligament, PL: Patellar ligaments. 

 

Similar stress distributions were observed on the ligaments in both states (Figure 3.3.5). Maximum 

stresses for the ACL and PCL were primarily located at the femoral contact points. The left ACL 

was 17.07 MPa higher than the right side, and it increased by 3.15 MPa after fatigue. In post-

fatigue states, it surpasses the right side by 11.28 MPa. The left PCL was 16.59 MPa higher than 
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the right side and decreased by 8.56 MPa after fatigue. In post-fatigue states, it was 9.24 MPa 

higher than the right side. 

The maximum stress for the MCL was mainly on the anterosuperior side. The left MCL was 7.86 

MPa higher than the right side and decreased by 2.90 MPa after fatigue. Additionally, the stress of 

the left LCL was 6.56 MPa higher than the right side, and 14.54 MPa increased after fatigue. In 

post-fatigue states, it surpasses the right side by 23.00 MPa. The maximum stress for the PL was 

mainly in the middle region. Interestingly, the stress on the left side was lower than on the right 

side by 1.10 MPa and decreased by 1.38 MPa after fatigue. In post-fatigue states, it was 0.46 MPa 

higher than the left side. 

 

Figure 3.3.6 The peak von mises stresses changes of meniscus, cartilage and ligaments of bilateral 

knee joint for 5 phases of the stance phase before and after 10km running. Note: Pre left: Left 

leg before 10km running. Pre right: Right leg before 10km running. Post left: Left leg after 

10km running. ACL: anterior cruciate ligament, PCL: posterior cruciate ligament, MCL: 

medial collateral ligament, LCL: lateral collateral ligament, PL: Patellar ligaments. IC: Initial 

contact, FP: First Peak, MS: Mid-stance, SP: Second Peak, TO: Toe off. 
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Figure 3.3.6 illustrates the variations in stress values for the meniscus, tibial cartilage, and 

ligaments of the bilateral knee during a gait stance phase in both states. Except for the PCL, the 

peak stress of the tissues was consistently lowest during the IC phase, gradually increased during 

the SP phase, reached its maximum, and decreased during the OT phase at both states. 

Interestingly, the maximum stress for the PCLs occurred at the TO phase, while the stress was 

lowest at the FP phase except on the left side in pre-fatigue and post-fatigue states, respectively. 

The medial and lateral menisci trend graphs reveal that peak stress in pre-fatigue states was 

consistently higher than in post-fatigue states, with the left side consistently exhibiting greater 

stress than the right. The ACLs and MCLs showed higher stress on the left side than the right of 

all states. The stress on the left LCL increased, while it decreased on the right side after fatigue. 

The peak stress for the left PL was highest at the IC phase, while the right PL was highest for all 

other phases in pre-fatigue states. 
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4 Discussion  

4.1 Plantar pressure and fatigue gait recognition 

The aim of current investigation was to investigate the effect of running fatigue on the bilateral 

plantar force distribution of the foot and the effectiveness of CNN and ConvLSTM models for 

fatigue gait recognition. The results of this study showed that running fatigue changed the 

distribution pattern of load on the plantar of the dominant and non-dominant limb. These changes 

are similar to previous studies[53, 55, 58]. The force distribution of the dominant plantar of 

runners shown major differences reflected in reduced force under the midfoot at the expense of 

increased force under the H, M2 and M3. This increased loading of the medial forefoot region is 

in agreement with previously demonstrated higher pressures under the forefoot and lower peak 

pressures under the midfoot, which was reported by Bisiaux et al. after fatigue induced by an 

intensive 30-min run[57]. These results may indicate that the load was transferred from the 

midfoot to the toes and metatarsals[57]. The increased loading in M2-3 may be related to reduced 

activity of the toe flexors and posterior tibial muscles after running fatigue[207]. In addition, 

Arndt et al. have also reported that higher strain rates and deformation of metatarsal bones can 

also occur after muscle fatigue caused by running[208]. These findings could be a risk factor for a 

metatarsal stress fracture[57]. Especially the M2 and M3 are vulnerable because of the difference 

between the applied plantar pressure and bone strength[207]. 

Previous studies have demonstrated that dominant feet play a propulsive role, while non-dominant 

feet are more likely to function as a stable gait[28]. Excessive force at the H region after fatigue 

appears in the dominant limb may be a compensatory effect of the functionally driven winch 

mechanism[52]. Willson and Kernozek [58] reported that running fatigue could cause changes in 

the plantar surface loading characteristics and in running technique. The current study showed that 

the force of M5 at non-dominant foot has decreased at metaphase(50-69%) of contact duration, 

while the force of M3 has increased significantly at most of the contact duration(12-79%) after 

fatigue, suggesting that the fatigue transferred foot loading from lateral region toward the inside of 

the foot, especially in the non-dominant foot [60]. This finding may be a weakening of the 

function of the non-dominant limb to stabilize gait after muscle fatigue[29]. Additionally, the 

relative time of peak force of MF at the non-dominant was significantly shortened after fatigue, 

suggesting that more impulse was concentrated in the MF region. This finding may be due to the 

damage of the active control mechanism of the MF during the contact stage leading to a reduction 

in the cushioning function of the non-dominant plantar, which was the potential factors for plantar 

fasciitis[209]. Interestingly, the relative time of the peak of H regions force at the dominant foot 

was significantly delayed after fatigue. This finding may be a compensatory mechanism to 
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maintain the propulsive function of the dominant limb, making the gravitational torque between 

the heel and toe region more even in the later stages of push-off [53]. 

Several reports have investigated the influence of the range of motion in the coronal plane of the 

foot on shock attenuation at heel strike [210, 211]. In addition, the ability of the musculoskeletal 

system to attenuate the shock magnitude generated during heel strikes also decays with the 

happening of fatigue[212]. In our study, the plantar forces recorded under the HM and HL region 

of both dominant and non-dominant revealed the changes which running fatigue during the 

loading stage. Without other direct measurements, we can only speculate that excessive heel 

loading after fatigue may be linked to weaker muscle strength which controls the movement of the 

ankle joint in the coronal plane after fatigue[57]. These observations were consistent with several 

previous studies[49, 54]. Interestingly, the sum of forces from all ten regions at non-dominant of 

33-46% of contact duration significantly decreased, and the relative time of peak force was 

significantly shortened after running-induced fatigue, suggesting that dorsiflexor fatigue led to 

more vertical loading rate on the plantar. A significant interaction between loading rate and 

running-related calf, foot and ankle injuries was demonstrated in a study by Gerlach et al.[213]. 

The results of the current study could provide necessary enlightenment about the condition of 

different running-related injuries among runners with limbs on different sides.  

Additionally, by applying the feature set of the time series bilateral plantar force data in specific 

deep learning predictive models for running fatigue gait, the results showed that both CNN and 

ConvLSTM models have good performance in predicting fatigue gait automatically. As expected, 

the ConvLSTM model (85.9%, 88.9%, 83.3%, 85.9% and 89.2%, respectively) has better 

accuracy compared to the CNN model (85.6%, 73.8%, 82.7%, 80.3% and 75.4%) in all five tests, 

suggesting that ConvLSTM performs better for multi-feature data with simultaneous 

spatiotemporal dependence[184]. Traditional time series biomechanical datasets are all 

characterized by high dimensionality, high variability, time dependence, and nonlinearity[214]. 

Therefore, with the promising findings from this study as a foundation, future research suggests 

applying the Convlstm model to other analyses, such as marker trajectories, ground reaction forces, 

myoelectric signals, and other prediction and classification needs. In addition, as shown in Table 3, 

the specificity of the ConvLSTM model was also higher than that of the CNN, indicating that it 

could detect fatigue gait better, while the performance of sensitivity was consistent in both models, 

indicating that both models were equally effective in predicting non-fatigue gait. 

There are four limitations to the current study. Possible differences in plantar pressure distribution 

patterns between overground conditions and treadmill conditions were reported by Garcia-Perez et 

al.[215]. In this study, the running-induced fatigue protocol was carried out on a treadmill. Thus, 

further investigation is needed to support our findings in overground conditions. The runners were 
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evaluated under barefoot conditions, potentially overlooking the impact of footwear on post-

fatigue running posture [40]. Additionally, we selected only two deep learning models (CNN and 

ConvLSTM) for data training based on data features, and more comparisons of classifiers (Such as 

deep neural network) for plantar pressure feature discovery should be developed in future studies. 

At the end, only the pedobarographic data of amateur male runners were included in this study, 

whether the model developed in this study applies to female or elite runners should be verified in 

future studies. 
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4.2 Dynamic stability 

This was the first study to investigate the effect of long-distance running on the DS of gait 

symmetry. Enhancing comprehension of the methodologies employed could potentially contribute 

to the advancement of comprehension regarding the mediation of movement kinematic during 

running. The results of present study are not completely consistent with our hypothesis. 

Specifically, the DS of sagittal and horizontal of the hip joint decreased in the middle of the 10km 

run. Intristingly, the knee and ankle joints and the hip joint the coronal plane shows an increasing 

trend during the late period of 10km running.  

The occurrence of asymmetry is commonly cited as a contributing factor to overloading of 

unilateral lower limb joints [119]. If gait symmetry remains in an unstable state, the lower limbs 

may not be able to achieve dynamic balance in terms of load distribution[136]. One factor that 

could potentially influence gait symmetry is an individual's level of fatigue at any given point 

during a task[29, 136]. In general, with prolonged activity or muscle fatigue, it is expected that 

symmetry would decrease[29]. Minor disturbances or incorrect recruitment of unilateral muscles 

can alter the movement posture, which may result in excessive local tissue loading and diminished 

performance[216]. Therefore, the biomechanical tolerance to unilateral lower limb overloading 

injuries can be partially attributed to the ability of the neuromuscular system to maintain the 

stability of symmetry[25].  

In the event of gait analysis, linear measurements can only quantify the magnitude of variability, 

whereas nonlinear analytical methods can be used to investigate how this complexity changes over 

time [32]. Time delay state space reconstruction is essential for the computation of LyE [31]. This 

procedure further offers insight into the nature of the gait signal and reveals the underlying 

dynamics of continuous gai[217].In general, fewer state dimensions are commonly applied to 

describe simple dynamical systems. In contrast, complex dynamical systems need a large number 

of embedding dimensions to be described[218]. Therefore, the number of state variables of the 

system is proportional to the required dimensionality [219]. We can observe from Table 3.2.1 that 

the motion distance does not have a large impact on the embedding dimension. Interestingly, the 

limb embedding dimension increases from proximal to distal, suggesting that SF complexity 

appears to be lowest at the hip and highest at the ankle during running. This is inconsistent with 

the results of previous studies of the local DS of the lower limb joint angle, and this interesting 

distinction suggests that future interpretations of local stability should be cautious.  

In addition, limited information is available regarding the prolonged and uninterrupted 

perturbations' impact on the adaptive regulation of homeostasis [220]. The present study tested the 

hypothesis that the biomechanics symmetry is not always stable during long distance running. The 

present results conld not confirm this. Existing knowledge of gait fatigue in SD of lower limb 

symmetry is limited. One study has assessed the  vertical component of back-waist acceleration 

and observed increases LyE values as fatigue happend in walking gait [221]. However, there are 

no existing direct empirical measurements of stability to test whether fatigue influences gait 

asymmetry stability during long-distance running [29]. To provide a better understanding of the 

role of symmetry in running, the assessment of DS may be useful. The study by Granata et al. 

reported that the trunk was more unstable after a fatigue protocol than the non-fatigue states[219]. 

Some previous studies have suggested that fatigue has a negative impact on DS [221, 222]. 

However, the biomechanics background of an running induced decrease in DS is not well 
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understood [34]. Changes in muscle recruitment and gait asymmetry degree have been mentioned 

as possible explanations[36, 219]. These findings suggest mixed results regarding the impact of 

running fatigue nonlinear dynamic variables[35, 39, 220, 222, 223]. Future studies should unify 

the setting of fatigue mechanisms and evaluation parameters. Only LyE of coronal of the hip 

increased during running was observed in present study. This effect may be attributed to altered 

symmetry induced by previously reported fatigue-related changes in muscle recruitment and 

changes in feedback neural control[29], suggesting that ability of neuromuscular control of hip 

joint becomes unstable with running fatigue. 

Interstingly, the runners showed three overall trends in the DS of SF in the 10km run, which 

differed from the hyoithesis of the current study. First of all, the measured DS of ankle in sagittal 

and coronal plane and knee in sagittal plane remains unafeected in the function of running 

distance, the stability of these variables did not change significantly with the occurrence of 

fatigue.Previous study reported that the joint angle of these parts are symmetryic were obvered 

during running gait [29], therefore we can assume that this state cam be maintained steadily until 

the end of 10km running. However, the joint abduction angle of knee became more symmetrical 

after a fatigue-induce protocol [29]. This interesting difference my be not acute, so caution should 

be exercised when interpreting linear analysis results.In addition, the LyE of SF of knee and ankle 

in the horizontal plane and hip in the sagittal plane was continuously downward trend until last 

1km (9-10 km), suggesting that the ability to withstand local perturbations increased of these 

variates after fatigue [34]. This positive change is likely to be slow an steady. This result is 

positive, and future studies should explore the mechanism by which it increases and whether it 

continues to increase during longer running tasks. However, the measured DS of knee in coronal 

plane and hip in coronal and horizontal plane is decreased in the first part of the running distance. 

Approximately at the half of the distance a sudden peak can be observed, which is followed by a 

continuous improvement in stability. We can deduce that in the later stages of middle-distance 

running (about 5-7 km), the symmetry of the hip and knee joints is less resistant to interference 

and, therefore, the load distribution in the joints does not reach a stable dynamic balance. Runner 

and coaches should focus on the possibility of risk when running middle distances when 

developing training programmers.  

In addition, there are three limitations of this study. Firstly, previous study report that low 

variability is considered a healthy running gait pattern[224], the nonlinear study of gait symmetry 

of professional runners should be considered in our future research. Furthermore, this study is 

based on some assumptions, described by research on DS in human walking. We suggest to further 

evaluate similarities and differences of walking and running regarding DS. At the end, the 

execution of this study was done on a treadmill, therefore, whether the results of this study apply 

to ground running needs further research because of the differences between treadmill and ground 

running as reported in previous studies[225] 
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4.3 Joint stress response 

To find out what changes in the dominant and non-dominant knee joints during different running 

phases and how a 10 km submaximal intensity run affects these variables, this study coupled 

variables from musculoskeletal models (GRF, knee joint angles, reaction forces, and moments) to 

drive finite element simulations (menisci, tibial cartilage, ACL, PCL, MCL, LCL, and PL). 

Specifically, the distribution of loads on the tissues was similar in both knees and all states. 

Moreover, the load on the meniscus and tibial cartilage were greater on the non-dominant side and 

greater in the pre-fatigue state. The load on the ACL, PCL, and LCL of non-dominant limb were 

increased after fatigue. However, they were decreased in the dominant side. Interestingly, the load 

on the PL of the dominant side was greater in pre- fatigue state. Therefore, the results of the 

current study are consistent with hypotheses (2) but present some contradictory findings with 

hypotheses (1) and (3). 

In this study, the stance phase of gait was divided into five distinct postural stages based on the 

pattern of vertical GRFs. The goal was to explore the disparities in internal loading of the bilateral 

knee joints across different ground contact stages and the influence of fatigue thereon. Previous 

research reported no differences in both knee joint angles at the pre-fatigue states[29]. A greater 

internal rotation angle in the non-dominant knee joint during the MS period could explain the 

excessive load on its ACL and LCL. Additionally, the study found a greater anterior joint reaction 

force peak in the dominant knee, potentially indicating a higher load on the patellofemoral joint of 

the dominant knee[226]. This is corroborated by the noted excess load on the PL of dominant knee. 

Hence, patellofemoral joint pain in the dominant limb should be a consideration for amateur 

runners [52, 152, 227].  

The findings of this study show that fatigue heightened the flexion reaction moment in the 

dominant knee, hinting at diminished quadricep control, which might lead to an increased load on 

the PCL of the dominant knee post-fatigue[228]. The larger loading of the dominant knee’s PCL 

during the MS period after fatigue is observed in the current FEM simulations, which can also 

support this conclusion. Additionally, a greater abduction joint reaction moment of the non-

dominant knee joint in the pre-fatigue states occurred during the mid-stance phase, indicating a 

greater load on the medial tibial plateau[30]. This finding is consistent with the observation of a 

greater load on the medial meniscus and tibial cartilage of the non-dominant knee joint. 

The meniscus functions to transmit and evenly distribute forces from the femur to the tibial 

plateau. However, this load-transferring mechanism can become compromised due to recurrent 

overloading, resulting in localized stress peaks and subsequent damage to the knee joint[229]. The 

current study observed that the load on the medial meniscus was primarily concentrated at the 

anterior horn, and the load on the lateral meniscus was concentrated on the posteromedial side, 
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consistent with previous studies[230, 231]. Greater loads may cause tears at the anterior horn of 

the medial meniscus and the middle of the lateral meniscus. Interestingly, we found a similar load 

distribution in both the non-dominant and dominant knee joints before and after fatigue. It can be 

hypothesized that fatigue and limb preference do not affect the location of the meniscus, tibial 

cartilage, and ligaments where injuries can develop during the running event and that injuries are 

generally only related to the magnitude of the load. In addition, the load on the ACL and PCL was 

mainly concentrated at the contact points with the femur. This is consistent with the findings of the 

previous study [232].  

By observing the load distribution of the LCL, we found that most of it was concentrated near the 

points where the ligaments attached to the bones which could be the most vulnerable area to 

strains. Additionally, larger loads were found in the non-dominant LCL after fatigue, which may 

be induced by foot pronation after fatigue[233]. The correlation between CLC loading and the 

degree of foot pronation should be further addressed in future studies. However, most of the 

MCL's load was concentrated in the anterosuperior direction and was more pronounced on the 

non-dominant side. This is a key area where too much MCL load is caused by the femur rotating 

during knee flexion[203]. Furthermore, the reduced PL load after fatigue suggests that running 

fatigue is not the leading cause of patellar pain, which has had mixed results in previous 

studies[234-237]. 

The findings of the current study demonstrated that the load on the bilateral menisci, tibial 

cartilage, and ligaments during the gait support phase shows a consistent trend of change both pre- 

and post-fatigue, being almost at its lowest during the IC phase, then gradually increasing, peaking 

during the SP phase, and subsequently decreasing during the TO phase. This presents a divergent 

trend from the findings of a previous study, where the greatest load occurred during the FP 

phase[172]. The cause of this discrepancy may be attributed to the different postures associated 

with walking and running gaits. Previous studies have indicated an increased injury risk in the 

non-dominant limb within the running gait[29, 238]. This study indicates that the non-dominant 

limb typically bears a greater load, particularly in the meniscus, tibial cartilage, ACL, MCL, and 

LCL. It could potentially account for the overload in a single knee joint. Furthermore, the study 

observed that the effect of fatigue on the ACL, PCL, and LCL of the non-dominant limb during 

the gait support phase is often negative. Interestingly, this is manifested as the opposite effect on 

the dominant limb. This may be due to the dominant limb's weaker fatigue tolerance, and the 

increased load on the knee joint tissues of the non-dominant limb caused by fatigue should be 

given attention by runners and coaches[28]. 

When interpreting the significant findings of this study, certain limitations should be considered. 

First, the study did not incorporate bilateral knee MRI data for the finite element model. Instead, it 
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applied boundary conditions collected from both knees during the experiment to a single model, 

which did not account for morphological variances between the two knees. The study's participant 

was an amateur male runner, so the results might not be generalizable to female runners. 

Additionally, future research should involve more participants to enable a more robust statistical 

analysis of the observed differences. 
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5 Conclusions and future works 

5.1 Plantar pressure and fatigue gait recognition 

A running-induced fatigue protocol caused different changes in the distribution of plantar force on 

the dominant and non-dominant limb. These changes may be part of the underlying mechanism of 

unilateral limb overuse injury. Future discussions of lower limb lesions or running-related injuries 

should take this into account. Furthermore, the ConvLSTM model showed high performance 

(acc= 0.867) in detecting fatigue gait, and it outperformed the CNN model (0.800). This will 

broaden the possibilities for future research on running-related gait biomechanical features 

recognition and enhance the development of fatigue monitoring tools. 

 

5.2 Dynamic stability 

This research investigates how DS of gait symmetry varies across 10km running. Investigating the 

kinematic symmetry of runners as assessed at lower limbs, revealed noteworthy variations during 

the progression of a 10-km run. Specifically, With the exception of the hip, all lower extremity 

joints experienced either elevated or no significant change in DS of symmetry. Future research 

should consider the reasons why hip control deteriorates at 5-7km. The findings of the current 

investigation underscore the significance of nonlinear assessing gait symmetry in the context of 

long-distance running. Such assessments can potentially contribute to a more comprehensive 

comprehension of gait biomechanics, particularly within clinical or research contexts involving 

athletes. As discussed in this study, the degree of symmetry of kinetics and muscle activity 

information can be studied nonlinear in the future. 

 

5.3 Joint stress response 

The research examines the differences in load distribution and magnitude within the bilateral knee 

joint's internal tissues and the effects of running-induced fatigue on these aspects. Although the 

load distribution areas of the menisci, cartilage, and ligaments in both knee joints are similar, the 

differences in their magnitude should also be considered as potential causes of excessive loading. 

This study found that the internal tissue load in the non-dominant limb during the stance phase of 

gait is greater than that in the dominant limb, and fatigue has a negative effect on the internal 

tissue load of the non-dominant limb, whereas the effect is reversed in the dominant limb. 

Compared to previous studies, the current research results are more comprehensive. The 

methodologies employed herein can be additionally utilized to delve into the etiologies of knee 

injuries associated with running.  
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Thesis points 

1st Thesis point:  

Based on experimental data, I divided the left and right plantar into 22 anatomic regions, where I 

have quantitatively allocated those time-intervals (contact durations) which can inflict overload on 

the feet (see Figure 3.1.2). These findings, to my knowledge, have not yet published before. 

Furthermore, these results offer empirical data for evaluating risk factors associated with overuse 

injuries and assist in the early detection of fatigued gait. 

In addition, I created an augmented ConvLSTM model to recognize fatigue on running gait, from 

the perspective of deep learning, by the use of time-series planter pressure data. This data was 

based on high number of samples (thirty amateur runners). With this model, compared to the 

traditional CNN model, fatigue can be detected with higher accuracy (7%) and specificity (17%) 

as it is seen in the Table. 

 

 

 

Model Accuracy 
Percentage  

difference 
Sensitivity 

Percentage  

difference 
Specificity 

Percentage  

difference 

CNN 0.800 

7% 

0.874 

0% 

0.718 

17% aug. 

ConvLSTM 
0.867 0.874 0.859 

 

Related articles to the 1st thesis point: 

1. Gao, Z., Xiang, L., Fekete, G., Baker, J. S., Mao, Z., & Gu, Y. (2023). A Data-Driven 

Approach for Fatigue Detection during Running Using Pedobarographic Measurements. 

Applied Bionics and Biomechanics, 2023, 1-11. IF: 2.2, Q3 

2. Gao, Z., Zhu, Y., Fang, Y., Fekete, G., Kovács, A., Baker, J. S., ... & Gu, Y. (2023). 
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Automated recognition of asymmetric gait and fatigue gait using ground reaction force 

data. Frontiers in Physiology, 14: 369-382. IF:4.000, Q2  
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2nd Thesis point: 

I described the dynamic stability behaviour of nine major biomechanical parameters, namely 

abduction-adduction, flexion-extension and internal-external rotational angle of the hip-, knee-, 

and ankle joint by means of the Largest Lyapunov exponent (LLE) as a function of running 

distance.  

 

Based on my experiments (carried out on 17 male amateur runners) and calculations I could 

differentiate three groups for the biomechanical parameters such as stable, continuously improving 

and fluctuating and I could drew general conclusions. All angles were transformed into symmetry 

functions (SF). 

 Ankle Knee Hip Dynamic stability 

Stable 

parameters 

ad/abducti

on, 

flexion-

extension  

flexion-

extension  
- 

The stability of these parameters 

remain unaffected in the function of 

running distance. 

Continuous

ly improving 

parameters 

internal-

external 

rotation  

internal-

external 

rotation  

flexion-

extension  

The stability of these parameters 

improve in the function of running 

distance. 

Fluctuating 

parameters 
- 

ad/abduct

ion 

ad/abducti

on, 

internal-

external 

The stability of these parameters is 

decreased in the first part of the running 

distance. Approximately at the half of 

the distance a sudden peak can be 
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rotation observed, which is followed by a 

continuous improvement in stability.  

Related articles to the 2nd thesis point: 

1. Gao, Z., Fekete, G., Baker, J. S., Liang, M., Xuan, R., & Gu, Y. (2022). Effects of 

running fatigue on lower extremity symmetry among amateur runners: From a 

biomechanical perspective. Frontiers in Physiology, 13: 899818-899830. IF: 4.000, Q2 

2. Xiang, L., Gu, Y., Wang, A., Shim, V., Gao, Z., & Fernandez, J. (2023). Foot Pronation 

Prediction with Inertial Sensors during Running: A Preliminary Application of Data-

Driven Approaches. Journal of Human Kinetics, 87: 29-40. IF: 2.300, Q3 

3. Xiang, L., Gu, Y., Gao, Z., Yu, P., Shim, V., Wang, A., & Fernandez, J. (2024). 

Integrating an LSTM framework for predicting ankle joint biomechanics during gait 

using inertial sensors. Computers in Biology and Medicine, 170, 1-12. IF: 7.700, Q2 

4. Xiang, L#., Gao, Z#., Wang, A., Shim, V., Fekete, G., Gu, Y., & Fernandez, J. (2024). 

Rethinking running biomechanics: a critical review of ground reaction forces, tibial bone 

loading, and the role of wearable sensors. Frontiers in Bioengineering and 

Biotechnology, 12, 1-13. IF: 5.700, Q2 
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3rd Thesis point: 

I created a high accurate 3D Knee FE model. The joint reaction forces and joint reaction moments 

calculated from the musculoskeletal model simulation were used as boundary conditions to 

investigate the distribution and magnitude of loads on the meniscus, articular cartilage, and 

ligaments of the bilateral knee joints before and after a 10-kilometer run at this maximum intensity. 

I found similar load distribution in both knee joints regardless of the state. The left ACL was 

17.07 MPa higher than the right side, and it increased by 3.15 MPa after fatigue. In post-fatigue 

states, it surpasses the right side by 11.28 MPa. 

 

I propose a more comprehensive approach to load analysis by dividing the gait support period into 

five typical phases based on vGRF for comparison of organizational loads at the maximum 

moment. The results showed that the load on the meniscus and tibial cartilage were greater on the 

non-dominant side and greater in the pre-fatigue state. The load on the ACL, PCL, and LCL of 

non-dominant limb were increased after fatigue. However, they were decreased in the dominant 

side. 
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series analysis on the effects of induced running fatigue on leg symmetry using 

kinematics and kinetic variables: Implications for knee joint injury during a 

countermovement jump. Frontiers in Physiology, 13: 877394. IF: 4.000, Q2 

2. Gao, Z., Fekete, G., Baker, J. S., Liang, M., Xuan, R., & Gu, Y. (2022). Effects of 

running fatigue on lower extremity symmetry among amateur runners: From a 

biomechanical perspective. Frontiers in Physiology, 13: 899818-899830. IF: 4.000, Q2 
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