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Abstract

My thesis is about the utilisation of health data assets, in which I focused on two

different topics: one being control group selection while the other is extracting

information from medical documents.

Observational studies are often based on case-control studies in which the con-

clusion (for example, the effect of a drug on healing) is drawn based on the com-

parison of case (treated) and control (untreated) groups. The basic criterion for

the proper execution of case-control studies is the selection of appropriate case and

control groups. In retrospective studies, the treated group is usually predetermined,

and a control group must be selected for the study, in which the individuals are

very similar to the subjects of the case group in terms of their basic characteristics

that influence the investigated question. In my thesis, I proposed two new nearest-

neighbour-based control group selection methods, which perform the selection of

individuals in the original n-dimensional feature space. I tested the effectiveness of

the proposed methods with Monte Carlo simulations using self-proposed dissimi-

larity measures and other widely used similarity measures.

In everyday medical practice, the results of echocardiograms are usually recor-

ded in the form of unstructured text, from which extracting relevant information is a

challenging task. To support this information extraction, I developed a text mining-

based information extraction method that automatically identifies and standardises

the descriptions of the heart ultrasound measurement in the findings, and then stores

the extracted and standardised measurement descriptions together with the measure-

ment results in a structured form. Through case studies based on large data sets, I

have shown that the proposed method can be used to extract measurement results

from echocardiography documents with high reliability without performing a direct

search or having detailed information about the structure of the document and data

recording habits. The proposed methodology effectively handles spelling errors,

abbreviations, and varied terminology used in descriptions.



Absztrakt

Dolgozatom az egészségügyi adatvagyon hasznosításáról szól, melyben két külön-

böző témára fókuszáltam: az egyik a kontrollcsoport-kiválasztás, a másik pedig

információ kinyerése orvosi dokumentumokból.

A megfigyeléses vizsgálatok gyakorta olyan eset-kontroll vizsgálatokon alapul-

nak, melyekben a következtetést (például egy gyógyszer hatását a gyógyulásra)

az eset (kezelt) és a kontroll (kezeletlen) csoportok összehasonlítása alapján von-

ják le. Az eset-kontroll vizsgálatok megfelelő végrehajtásának alapvető kritéri-

uma a megfelelő eset- és kontrollcsoportok kiválasztása. A retrospektív vizsgálatok

során a kezelt csoport általában előre adott, és a vizsgálathoz olyan kontrollcsopor-

tot kell kialakítani, amelyben az egyedek a vizsgált kérdést befolyásoló alaptula-

jdonságaik tekintetében nagy mértékben hasonlítanak az esetcsoport alanyaihoz.

Dolgozatomban két új legközelebbi szomszéd alapú kontrollcsoport kiválasztási

módszert javasoltam, amelyek az egyedek kiválasztását az eredeti n-dimenziós tu-

lajdonságtérben végzik el. A javasolt módszerek hatékonyságát Monte Carlo szi-

mulációkkal teszteltem az általam javasolt különbözőségi mérőszámok és más, szé-

les körben használt hasonlósági mérőszámok felhasználásával.

A mindennapi orvosi gyakorlatban a szívultrahang vizsgálatok eredményeit ál-

talában strukturálatlan szöveg formájában rögzítik, amelyekből a releváns infor-

mációk kinyerése kihívásokkal teli feladat. Ezen információkinyerés támogatására

kidolgoztam egy olyan szövegbányászaton alapuló információkinyerési módszert,

amely a leletekben automatikusan azonosítja és egységesíti a szívultrahang mérések

leírását, majd a kinyert és egységesített mérési leírásokat a mérési eredményekkel

együtt strukturált formában tárolja. Nagy adathalmazon alapuló esettanulmányok

révén kimutattam, hogy a javasolt módszerrel nagy biztonsággal nyerhetők ki a

mérési eredmények az echokardiográfiás dokumentumokból anélkül, hogy közvet-

len keresést végeznének, vagy részletes információval rendelkeznénk a dokumen-

tum felépítéséről és az adatrögzítési szokásokról. A javasolt módszertan hatékonyan

kezeli a helyesírási hibákat, a rövidítéseket és a leírásokban használt változatos ter-

minológiát.



Abstrakt

In meiner Dissertation geht es um die Nutzung von Gesundheitsdatenbeständen, in

der ich mich auf zwei verschiedene Themen konzentriert habe: die Auswahl von

Kontrollgruppen und die Extraktion von Informationen aus medizinischen Doku-

menten.

Beobachtungsstudien basieren häufig auf Fall-Kontroll-Studien. Bei solchen

Studien wird die Schlussfolgerung (z. B. die Wirkung eines Arzneimittels auf

die Heilung) auf der Grundlage des Vergleichs der Fallgruppe (behandelt) und der

Kontrollgruppe (unbehandelt) gezogen. Das grundlegende Kriterium für die ord-

nungsgemäße Durchführung von Fall-Kontroll-Studien ist die Auswahl geeigneter

Fall- und Kontrollgruppen. Bei retrospektiven Studien ist die behandelte Gruppe in

der Regel vorgegeben und es muss für die Studie eine Kontrollgruppe ausgewählt

werden, bei der die Individuen den Probanden der Fallgruppe hinsichtlich ihrer

grundlegenden Merkmale, die die untersuchte Fragestellung beeinflussen, sehr ähn-

lich sind. In meiner Dissertation habe ich zwei neue, auf dem nächsten Nachbarn

basierende Kontrollgruppenauswahlmethoden vorgeschlagen, die die Auswahl von

Individuen im ursprünglichen n-dimensionalen Merkmalsraum durchführen. Ich

habe die Wirksamkeit der vorgeschlagenen Methoden mit Monte-Carlo-Simulatio-

nen unter Verwendung selbst vorgeschlagener Unähnlichkeitsmaße und anderer weit

verbreiteter Ähnlichkeitsmaße getestet.

Im medizinischen Alltag werden die Ergebnisse von Echokardiogrammen meist

in Form von unstrukturiertem Text aufgezeichnet, aus dem die Extraktion relevan-

ter Informationen eine anspruchsvolle Aufgabe darstellt. Um diese Information-

sextraktion zu unterstützen, habe ich eine Text-Mining-basierte Informationsex-

traktionsmethode entwickelt, die die Beschreibungen der Herzultraschallmessung

in den Befunden automatisch identifiziert, standardisiert und anschließend die ex-

trahierten und standardisierten Messbeschreibungen zusammen mit den Messergeb-

nissen in strukturierter Form speichert. Durch Fallstudien, die auf großen Daten-

sätzen basieren, habe ich gezeigt, dass die vorgeschlagene Methode verwendet wer-

den kann, um Messergebnisse aus echokardiographischen Dokumenten mit hoher

Zuverlässigkeit zu extrahieren, ohne eine direkte Suche durchzuführen oder detail-

lierte Informationen über die Struktur des Dokuments und Datenaufzeichnungsge-

wohnheiten zu haben. Die vorgeschlagene Methodik behebt effektiv Rechtschreib-

fehler, Abkürzungen und verschiedene in Beschreibungen verwendete Terminolo-

gien.
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Chapter 1

Introduction

The escalating growth of electronic information in the field of healthcare puts a

spotlight on retrospective clinical trials. Processing large amounts of data with tra-

ditional statistical methods is not always effective.

Due to the unique nature of healthcare and the complexity of the human bio-

logical system, for efficient analysis, data mining methods can only be used after

area-specific extensions. Improved and healthcare-adapted data science methods

can effectively contribute to the analysis of retrospective clinical trials, and they

can provide a basis to explore the influencing factors affecting the human biology

system. This new knowledge can help physicians achieve individualised medicine.

The aim of my research was to develop such new healthcare-adapted data sci-

ence methods and algorithms that can effectively contribute to the exploration of

information from large, sometimes unstructured healthcare datasets, and extract

useful information from them.

My research included the following topics: development of new control group

selection methods for retrospective case-control studies; developing new similarity

measures for evaluating the results of the control group selection; analysing the

effect of missing variables during the control group selection process; and extracting

information from large, unstructured healthcare datasets.

1.1 Control group selection

Comparative analysis methods are widely used in observational studies in the field

of social sciences [1], natural sciences [2] and engineering [3]. Although these

comparison-based scientific analyses significantly differ in the applied methodology

1



and study design principles [4, 5], due to their comparative nature they have strong

scientific evidence [6, 7, 8, 9, 10].

In human comparative cohort studies, people are classified into two independent

groups (cohorts) [8], namely into a case group and a control group. The selection

of these groups is very important and has a significant impact on the output of the

analysis as well. Individuals of these groups have to be similar in many ways (e.g.,

gender and age distribution), but they have to differ in an examined characteristic

property (e.g., patients in the case group are treated with a certain medicine, while

individuals in the control group receive placebo) [8, 9, 11].

In prospective study design [5, 11], there are many inclusion and exclusion cri-

teria specified to select the proper individuals into the case and the control groups.

Patient-specific data, thought to be important and relevant, are systematically col-

lected and recorded during the whole study period. The main disadvantage of these

studies is that the execution of a study sometimes takes up a lot of time.

In contrast, retrospective cohort studies [5, 11] look back in the time and they

do not require a long time for collecting data about patients. However, these studies

must face the fact that the range of available data is not always complete. The pop-

ularity of case-control studies, especially retrospective case-control studies, arises

from their relatively inexpensive nature, however, the degree of their evidence is

lower than that of randomised trials.

A prerequisite of carrying out appropriate analyses is that the case and control

groups have to be similar on covariates (independent variables) that predict group

membership (treatment assignment) and affect the examined output. However, ful-

filling these requirements is not a trivial task. Many articles have highlighted the

importance of the proper implementation of a control group selection method and

the effect of unbalanced control groups on the result of analyses [12, 13, 14, 15, 16].

The selection of the case group can be carried out based on the study aims, but the

determination of the control group may have difficulties and raises many questions

[8, 17]. The reliability of these studies can be improved by (1) increasing the num-

ber of cases included in the study, (2) performing thorough data preparation and

data cleaning activities, and (3) selecting a proper control group for the case group.

In the literature, various methods have been proposed for selecting a control

group. Some of them use different sampling methods (e.g., simple randomised

sampling or stratified sampling [18, 19]), while others are based on propensity score

matching (PSM) [20, 21]. Nowadays, PSM [20] is the most widely used control

group selection method. It is widespread in healthcare analyses [22, 23, 24], and is
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gaining ground in social sciences [25, 26, 27] and economics [28, 29, 30, 31].

PSM matches the individuals of the case and control groups based on their

propensity score values, which is the probability of the group (treatment) assign-

ment conditional on the observed baseline covariates. Over recent decades, differ-

ent PSM methods have been proposed (e.g., radius matching, nearest-neighbour

matching, stratified matching, kernel matching, Mahalanobis distance matching

[32, 21, 33]) to reduce the imbalance of the confounders between the case and con-

trol groups [34]. Despite the popularity of these methods, they have also received

much criticism [35, 36, 37].

The main limitation of the PSM methods is that they map the feature space into

a single value (propensity score), and the matching of the individuals is performed

in this compressed space. This can cause the problem of competing risks, which

was also highlighted in [38].

Publications [34] and [39] also highlighted that matched-pair analysis has to

be performed only when matched individuals are highly correlated, but matching

subjects having similar propensity scores does not necessarily result in matched

subjects with similar covariate values. Paul Moser in a recently published book

wrote that during control group selection, we try to control the influence of the

known knowns and the known unknowns [16]. Therefore, if we convert the known

things into a compressed 1-dimensional space, which is not able to express as much

information as in the original, more informative high-dimensional vector space of

the features, the effect of the known covariates cannot be controlled to such a degree.

The selection of covariates is a critical step in case-control studies, and the re-

sults of case-control studies rest on a correctly constructed dataset and adequate

control group selection. By these considerations, I regard matching in the original

n-dimensional vector space or its subspace more suitable than in the 1-dimensional

space of propensity scores. The mentioned subspace refers to the covariates which

should be included in the propensity score model. Austin [40] and Brookhart [41]

recommend that all variables that affect both the exposure of the treatment (group

membership) and the outcome of the study should always be taken into account.

For the aforementioned purposes, I developed a novel nearest neighbour-based

control group selection method called Weighted Nearest Neighbours Control Group

Selection with Error Minimization (WNNEM). The WNNEM method can be seen

as a hybrid combination of the PSM method and the nearest neighbour principle,

as matching is performed based on the nearest neighbours, but the distances are

weighted according to the relevance of the covariates. In [42], I have presented that
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the WNNEM method can select more balanced control groups than the greedy PSM

method, especially in cases when individuals are characterised only by few covari-

ates and covariates can take only a few values. However, the WNNEM method

presented in [42] also has some limitations. On the one hand, it can not handle

covariates negatively associated to the treatment assignment; on the other hand, the

method can be further improved by utilising probabilistic optimisation for hand-

ling more complex problems. Therefore, I proposed a novel nearest neighbour-

based control group selection algorithm called Weighted Nearest Neighbour Control

Group Selection with Simulated Annealing (WNNSA) [43], which uses simulated

annealing for finding the best pairing of the individuals. The proposed algorithm

can handle both positive and negative covariates concerning the effect on the prob-

ability of the treatment assignment.

The usability of a control group selection method can be defined as how simi-

lar the selected control group is to the case group, as the degree of similarity has

a significant impact on the evaluation of test results. The evaluation can happen

by measuring the similarity of paired individuals from the case and control groups

(paired evaluation) or by assessing the similarity of descriptive covariates of the

case and control groups (non-paired evaluation). However, the similarity of the co-

variates of these cohorts is generally not expressed as a single quantitative measure.

Only the applied control group selection methods suggest some recommendations

on how to perform them in order to be able to select an adequate control group from

the available population.

Most of the applied non-paired evaluation methods are Goodness of Fit (GoF)

tests (e.g., Kolgomorov-Smirnov test, Bhattacharyya distance, Matusita distance)

[44, 45] evaluating the distribution of the two groups. Using a GoF test, it is possible

to evaluate a 1-dimensional distribution (that is the similarity of a certain property),

but it is nearly impossible for higher dimensions [46].

However, people as the elements of the groups are characterised not by one

but by many features. On the other hand, if the elements of the control group are

selected by propensity score matching, the similarity of the case and control ele-

ments is measured again only in one dimension, namely as the dissimilarities of

the propensity scores. As the propensity score is an estimated value, the similarity

measurement is made in a lossy compressed 1-dimensional space, and not in the

original feature space of the elements.

Contrary to these methods, my aim was to measure the similarity of the case and

control groups in the original high-dimensional feature space of the individuals.
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For this reason, I proposed three quantitative dissimilarity measures to measure

the dissimilarity of the case group and the control group in combination with the

previously introduced methods [47, 48]. Two of them evaluate the similarities of

case and control groups based on the similarities of the paired individuals and the

third one compares the distribution of the characteristic features of the groups. The

versatility of the proposed methods was shown on synthetic datasets. Results point

out the fact that it is worth considering the proposed measures together to evaluate

the similarity of case and control groups and allow researchers to express the degree

of similarity of two cohorts quantitatively.

Furthermore, I also analysed the effect of missing dichotomous variables on

the deviation of the outcome variable. The analysis was based on a Monte Carlo

simulations in which I modelled the effect of omitted variables on the outcome.

To measure the bias of the outcome I applied logistic regression-based Propensity

Score Matching. I established that in the pessimistic scenario the omitted variables

with high significance could greatly affect the value of the outcome variable. This

conclusion is based on the revealed linear relationship between the deviation of the

outcome and the model accuracy [49]. This analysis drew attention to the important

fact that calculations with missing variables can significantly influence the evalua-

tion of case-control studies.

1.2 Information extraction from echocardiography

documents

Hospital information systems (HIS) are widely applied information systems for col-

lecting, storing, and managing electronic medical records (EMR). Besides their con-

stantly expanding functionality (e.g., collecting biosensor data), the analysis of in-

formation stored in HISs also becomes increasingly important. EMRs are valuable

information sources for medical analysis, however they are usually incomplete or

redundant, making data mining a difficult and challenging task. The efficiency of

information extraction and processing from stored data is significantly influenced

by the primary form of data recording. Nowadays, hospital information systems

store a large amount of data in a structured form (e.g., personal data, laboratory

results), but there are still findings recorded in semi-structured and free-text written

format (e.g., anamnesis, echocardiography results). Although the exploitation of

information in the data is still typically achieved by human intelligence, artificial
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intelligence (AI) algorithms are also gaining ground in this area and help healthcare

professionals in solving several domain-specific tasks.

Generally, information extraction from medical texts focuses on the following

two tasks: named-entity recognition (NER, or term extraction) and relation extrac-

tion (RE). Named-entity recognition refers to the process of identifying particular

types of names, terminologies or symbols in documents, while relation extraction

identifies the relation between them [50].

Successful term identification is key to getting access to the stored information

and the process of identification has been recognised as a bottleneck in text mining.

The process of term identification is usually done in three steps: the first step is term

recognition; the second step is term classification; and the last step is term mapping

[51].

There are two possible approaches to identify terms. The first approach is to

directly search for specific terms (e.g., aortic root, ejection fraction) in documents.

Direct search can also be extended by pattern search, which requires a priori knowl-

edge about the structure of the processed text (e.g., use of colon between terms and

values, order of terms, various expletives). With this extension, it becomes possi-

ble to recognise terms and their measured value (e.g., aortic root: 27 mm) together.

Other term extraction methods also exist which utilise classical text mining tech-

niques. These text mining-based solutions simply collect every occurrence of word

sequences that are possibly valid terms. However, these methods require a text pre-

processing phase (including text cleaning), and term candidates must be identified

and mapped onto a dictionary after term extraction.

In the literature, several studies have been published which are engaged in

echocardiography report processing [52, 53, 54, 55, 56, 57, 58, 59]. Generally,

echocardiography reports can be divided into two parts in terms of diagnostic con-

tent: in the first semi-structured part diagnostic results are stored in the form of

term-value pairs (e.g., interventricular septum: 14 mm) and in the second part re-

sults are recorded as free text written in natural language (e.g., mild left ventricular

hypertrophy). Processing echocardiography reports is a nontrivial task as the stor-

age of echocardiography examinations varies across different medical institutes.

The methods proposed in the literature are mostly based on the direct search

approach, but some of them apply text mining methods as well. In the published

studies, typically only the extraction of one specific parameter is the aim, such as

ejection fraction (EF). Garvin et al., Kim et al., and Xie et al. all successfully ex-

tracted this parameter from free text documents and described practical extraction

6



techniques [52, 53, 54]. In [55], a natural language-based method was presented

which uses a predefined dictionary, expert rules and predefined patterns to extract

echocardiography measurements from documents. In this study, a pattern-matching

algorithm was created and tested to extract term candidates from a large set of clin-

ical notes. The presented method relies heavily on pattern matching, but it can

also identify possible misspellings and synonyms by iterative extraction. Wells et

al. also successfully extracted a set of predefined parameters, including wall thick-

nesses, chamber dimensions or flow velocities [56]. They applied NLP to parse

the most frequently measured dimensions and used outlier analysis to filter out un-

realistic values. Toepfer et al. developed and evaluated an information extraction

component with fine-grained terminology that enabled them to recognise almost

all relevant information stated in German transthoracic echocardiography reports at

the University Hospital of Würzburg [57]. Jonnalagadda et al. described an infor-

mation extraction-based approach that automatically converts unstructured text into

structured data, which is cross-referenced against eligibility criteria using a rule-

based system to determine which patients qualify for a heart failure with preserved

ejection fraction (HFpEF) clinical trial [58]. In [59], Renganathan proposed text

mining techniques that enable the extraction of unknown knowledge from unstruc-

tured documents.

Going beyond the limitations of the proposed methods, I suggested a generally

applicable text mining method [60] for extracting numerical test results with their

descriptions from free-text-written echocardiography reports. The proposed method

abandons regex-based information extraction and employs corpus-independent text

mining techniques to extract information from medical texts. It automatically de-

tects expressions containing textual descriptions of the test results and pairs them

with their numerical measurement results. The identification of candidate terms is

performed by using fuzzy matching utilising the Jaro-Winkler distance to match

them to standardised clinical terms. For finding the most suitable text similarity

measure, I analysed different distance metrics in, namely Longest Common Subse-

quence (LCS), Levenshtein distance (LD), weighted Levenshtein distance (WLD),

Jaro-Winkler distance, and cosine distance. My experimental results showed that

the Jaro-Winkler can discover the most candidate terms at a given threshold.

The suggested similarity-based mapping makes it possible to handle typos, syn-

onyms and abbreviations flexibly; therefore, the efficacy of the information extrac-

tion is significantly increased. Additionally, the proposed method can extract mul-

tiple information from the documents by a single search, and a repetitive scan is not
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needed. The proposed method is mainly recommended for the rapid processing of

large volumes of echocardiographic findings, such as to support medical research

or to verify patient selection criteria for clinical trials quickly.

The rest of my thesis is organised as follows. Chapter 2 deals with the problems

of control group selection, including novel selection and evaluation methods, while

Chapter 3 introduces the proposed text mining method to extract information from

echocardiography documents.
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Chapter 2

Control group selection

Matching-based control group selection methods aim to select and pair individuals

from a set of potential candidates (XC) to individuals of the case (treated) group

(XT ). Individuals Xi ∈ {XC ∪ XT} are characterised by n (n ∈ N) descriptive

features (e.g., age, gender, diagnoses) denoted as f1, f2, . . . , fn. Therefore, each

subject is denoted as an Xi = [xif1 , xif2 , . . . , xifn ] vector of variables, where i =

1, 2, . . . , l and l = |XC ∪XT |.

The aim of control group selection methods is to select such an XUT control

(untreated) group that is balanced to the case group, meaning that the distributions

of the variables (fi) in both sets are similar. Naturally, XT and XUT must be disjoint

sets, that is, XT ∩XUT = ∅. To ensure this requirement, XT and XC must also be

disjoint (XT ∩XC = ∅).

During my research on control group selection, I focused on three different

questions: (i) how to quantify the quality of a control group, (ii) how to select

an adequate control group, and (iii) what happens when not all important variables

are used when we select a control group.

Chapter 2 is organised as follows. Section 2.1 presents the most widely used

control group selection methods and evaluation measures. In Section 2.2, three

different dissimilarity measures are presented to answer question (i), Section 2.3

aims to answer the question (ii) while introduces two novel control group selection

methods, and question (iii) is discussed in Section 2.4.
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2.1 Theoretical background

2.1.1 Control group selection methods

As I mentioned in Section 1.1, various methods exist for selecting a control group,

but the most widely applied method is Propensity Score Matching (PSM). In this

section, I give a detailed introduction of PSM and summarise the other methods.

2.1.1.1 Propensity Score Matching

Propensity score matching refers to matching techniques that are based on propen-

sity scores (PS). Propensity score is the conditional probability of treatment assign-

ment based on the observed baseline covariates. Propensity score can be calculated

as

pi = Pr(zi = 1|Xi), (2.1)

where pi denotes the propensity score for the i-th individual and zi ∈ {0, 1} denotes

the treatment variable in such a way that zi = 0 refers to the untreated (control)

group and zi = 1 refers to the treated (case) group. Subjects characterised by the

same properties have the same propensity scores.

In retrospective observational studies, the true propensity score is unknown and

has to be estimated from available data. Usually, it is estimated using a logistic

regression model, but other methods have also been examined and used (e.g., re-

cursive partitioning [61], random forests [62], bagging and boosting [63, 64] and

neural networks [40, 65]).

When the dependent variable is dichotomous, logistic regression is the most

commonly used method to estimate the propensity scores. In this case, treatment

status is regressed on the observed baseline covariates and propensity scores are

estimated by the fitted model. The multiple linear regression function estimated by

the logistic regression model can be calculated as

logit(p) = b0 + b1f1 + b2f2 + · · ·+ bnfn, (2.2)

where

logit(p) = ln

(
p

1− p

)
(2.3)

and p is the probability of being exposed, furthermore, bi-s (i = 1, 2, ..., n) are

the regression coefficients that describe the relative effects of the covariates (fi-s)
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on the status of treatment assignment. The propensity score estimated by logistic

regression is calculated as

p =
e(b0+b1f1+b2f2+···+bnfn)

1 + e(b0+b1f1+b2f2+···+bnfn)
. (2.4)

Various propensity score-based matching methods exist that may differ in terms

of selection methodology, the ratio of the treated and untreated individuals or the

nature of the selection process [66, 67, 68, 69, 70].

Firstly, individuals can be selected into the control group with or without the

replacement of the candidates. A general tendency is to apply PSM with replace-

ment when the population from which the control group is selected is too small.

Otherwise, matching without replacement is used.

Secondly, the ratio of the number of individuals in the case and control groups

can also be varied. One-to-one (1:1) matching is common practice, but in case of

large datasets, other implementations, such as one-to-many (1:N) matching, can

also be used.

Lastly, the variety of the PS-based matching methods also increases by the fact

that during the selection of the individuals, greedy or optimal matching can be ap-

plied. In the first case, untreated subject whose propensity score is the closest to the

score of a given treated subject is selected and matched. When optimal matching is

used, the aim is to minimise the total within-pair difference of the propensity scores,

and the pairing is optimised globally [71, 72].

It was shown in a recent article [73], that out of 1000 articles using PSM (pub-

lished between 1983 and 2015), only 6% used any iterative balance checking pro-

cedure. In the remaining 94% of the articles, simple 1:1 greedy PSM was applied

without any balance checking. Therefore, the most widely used implementation of

propensity score matching is 1:1 greedy matching without replacement. In the case

of 1:1 greedy matching, exactly one subject is paired to each individual of the case

group. Furthermore, in this case, matching is based on the nearest neighbour, that

is an individual selected for pairing whose propensity score is the most similar to

the propensity score of the current individual of the case group. If multiple subjects

from the candidates have equally close propensity scores to the propensity score of

the sample subject, one of those is selected at random.

As the greedy method does not contain any restrictions concerning the maxi-

mum acceptable difference between the propensity scores of the two matched sub-

jects, practical implementations often take into account a threshold parameter for
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the selection [74]. Individuals within a certain distance of the propensity scores

(caliper size) are matched together, and subjects that fall outside this caliper are

neglected. Various suggestions have been made for optimal caliper size in the lit-

erature [74, 75, 76], but usually 0.2 of the standard deviation of the logit of the

propensity scores is recommended [74].

Despite the popularity of the widely applied 1:1 greedy PSM, it has also got

many criticisms [13, 16, 35, 37, 39, 73, 77]. All these articles pointed out that the

PSM method in some cases and studies may result in a not well-balanced control

group. For example, in [73] the authors highlighted that propensity score matching

might increase imbalance 1 even relative to the original data.

Most of the critical comments point to the possible imbalance between the case

group and the control group. For example, King and Nielsen highlighted that

PSM is blind to the often large imbalance that can be eliminated by approximat-

ing full blocking with other matching methods [73]. Moreover, they pointed out

that propensity score matching may increase imbalance even relative to the orig-

inal data. In [78], the authors showed based on four cardiovascular studies that

propensity score methods are not necessarily superior to conventional covariate ad-

justment. Peter C. Austin, who has researched and applied PSM in several fields,

also published a review which summarizes the critical appraisals of propensity score

matching methods in the medical literature between 1996 and 2003 [77]. He re-

viewed 47 articles in which propensity score matching was applied, and found two

articles that report imbalance on the baseline covariates between the case group and

the control group despite proper application of the PSM method.

The main problem with the most widely applied form of PSM presumably orig-

inates from the application of dimension reduction on the original feature space:

pairing is performed in the 1-dimensional space of the propensity score values,

which reduced space might hide the distributions of the original dimensions (fea-

tures). Covariates that equally affect the probability of treatment assignment (mean-

ing that individuals are assigned to the treated group) also affect the value of the

propensity score to the same extent. However, the distribution of these variables

may be different, and this difference will no longer appear in the 1-dimensional

probability values. As long as the matching is performed in the 1-dimensional space

of the propensity scores, these differences can not be taken into account during the

matching procedure.

1A classification data set with skewed class proportions is called imbalanced.
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2.1.1.2 Other methods

In addition to PSM, other control group selection methods are also available, but

these methods are not as popular. Such a method is for example the Stratified

Matching (SM). SM distributes the individuals into smaller spaces, called strata,

and selects pairs stratum-by-stratum. The condition for the successful application of

SM is that there should be enough candidates in each stratum to perform the pairing.

The disadvantage of this method arises from the difficulty in handling continuous

features, as the binning method significantly influences the matching results.

Nearest Neighbour Matching (NNM) is also a simple but effective method.

NNM selects pairs based on the Euclidean distance between the elements. However,

when the Mahalanobis metric is used instead of the Euclidean distance for distance

calculation, we can talk about the Mahalanobis Distance Matching (MDM). Maha-

lanobis distance is kind of like a scale-free Euclidean distance, and it is very useful

in cases when the control group selection has to be done when the individuals are

characterised by nominal or ordinal features.

2.1.2 Evaluating the similarity of case and control groups

Evaluating the result of a control group selection method is done by measuring

the similarity of the case group and the control group. The similarity of two mul-

tidimensional groups is not clearly defined in multidimensional data analysis and

therefore, the measurement of the similarity of the case group and the control group

is not a trivial task. The classical hierarchical clustering similarity measures (single

linkage, complete linkage, average linkage) [79] reflect the similarity of two sets

of elements, however, they cannot be used to express the similarity or dissimilarity

rate of the groups of cohort-based studies. On one hand, they only consider the

similarity of one element pair (single linkage, complete linkage), on the other hand,

they evaluate the similarity of the groups by considering the similarity between all

possible element pairs (average linkage method). Since the basis for the compar-

ative analysis is that the two study groups have a similar exposure to independent

variables, the measurement of their similarity must also be performed some other

way.

Consider the following example. There is a case group and a control group, and

the distribution of sexes (male or female) is 50−50% in each. Can the two groups

be considered similar when every male but none of the females in the case group

smokes but in the control group the smoking habits are exactly the opposite? Of
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course not. In this case, the distribution of smoking habit is the same, but the paired

elements differ from each other. However, the opposite, where the paired elements

are very similar, but the distributions of the variables are different in the case group

and the control group (e.g., individuals in the control group are from 1 to 5 years

older than their pairs in the case group) may also happen. As it can be seen, we

can only say that the two groups are similar if the distributions of the predictive

variables are similar in the two groups, and furthermore, paired individuals are also

similar to each other.

Therefore, the similarity of two cohorts must be tested generally, without any

pairing of the elements (distribution-based evaluation) and the similarity must also

be tested by utilising some kind of a pairing method (pairing-based evaluation). In

the following, the measurement of these basically different similarity aspects are

detailed.

In the case of distribution-based evaluation, the dispersion of the values of the

features is examined in each dimension, and the distributions of the same dimen-

sions are compared. The similarity of the two cohorts can be calculated from the

similarities of the distributions of the dimensions. For nominal data, the chi-squared

test [80], for ordinal data, the Mann–Whitney U test [81, 82] can be applied. For

continuous variables the standardized mean difference (SMD) [83] of the variables

can be tested or Goodness of Fit tests can be used. In the case of a normal dis-

tribution, the t-test [84], for general cases, the Kolmogorov–Smirnov [85, 86] test

can be calculated. The Student’s t-test is able to compare the means of two inde-

pendent samples, but this test assumes that data is normally distributed and the two

populations have the same variance. Furthermore, this test compares only the mean

values of the datasets, and datasets have to arise from 1-dimensional populations.

The Kolgomorov-Smirnov test is also able to compare two probability distributions.

Although it is suitable to test the equality of any type of continuous distributions, its

application is also restricted to the 1-dimensional vector space. The main drawback

of these tests is that they evaluate the similarity of the case group and the control

group on only a single covariate. However, people as the elements of the case group

and the control group are characterised not by one but many features.

In the literature, there have been some solutions proposed for multidimensional

problems as well, but they also have many limitations. For example, the Hotelling

T 2 test [87] is the multivariate extension of the two-sample Student’s test. The main

limitation of this test is that it assumes that each population follows the multivariate

normal distribution, making it incapable of handling other types of continuous dis-
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tributions and discrete variables. There are similar problems with the recently pub-

lished methods as well which aim to test the mean vectors of two high-dimensional

datasets [88, 89, 90]. In biomedical studies, the Hansen and Bowers test [91] is

applied for more complex evaluations. This measure allows the evaluation of the

imbalance of all covariates simultaneously.

In case of pairing-based evaluation, the elements of the cohorts are paired (a

pair contains one individual from the case group and one individual from the con-

trol group) and the similarity of the paired elements is evaluated one by one. The

similarity of the two groups can be calculated as an aggregated value of the pairwise

similarities (i.e. the average or the weighted average of the pairwise similarities). If

the size (number of individuals) of the case group and the control group is different,

one-to-many assignment can also be used.

The utilisation of the cross-match test [92] is a very interesting approach. This

method does not consider the distributions and is based on the adjacency of the indi-

viduals. The adjacency is determined as a non-bipartite matching and the similarity

of the two groups is expressed as the number of pairs containing one observation

from the first distribution and one from the second. This interesting idea is re-

ally able to decide whether the two groups of individuals are similar to each other,

but in the case of similar groups, the differences of the paired individuals are not

expressed. However, since pairing methods are always approximation-based, it is

important to express the similarity of the paired individuals quantitatively as well.

Unfortunately, little attention is paid to the evaluation of the goodness of the

control group in many studies. However, in the absence of this or in the case of bias

in the control group, the results of the comparative analysis are questionable.

For these reasons, three similarity measures are proposed to fill the deficiencies

described above. Two of those pair elements of the case group to elements of the

control group and evaluate the similarity of these paired elements in different ways,

while the third measure is a distribution-based measure which is able to evaluate the

similarity of any kind of multidimensional dataset. I believe that by evaluating these

measures simultaneously, data analysts can gain a detailed picture of the similarity

of the groups partaking in the study and of the nature of the differences between

them.
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2.2 Novel dissimilarity measures

In this section, the proposed dissimilarity measures are presented and evaluated.

Section 2.2.1 introduces the measures while Section 2.2.2 presents the evaluation

results.

My aim was to express the dissimilarity of the two cohorts with dissimilarity

measures in the range [0, 1]. In this way, the similarity of the two groups can be

calculated as sim(XT , XUT ) = 1 − dissim(XT , XUT ), where dissim(XT , XUT )

yields the calculated dissimilarity measure of the two groups.

2.2.1 Definition of the measures

2.2.1.1 Measures for pairing-based evaluation

Nearest Neighbour Index
The first measure is called Nearest Neighbour Index (NNI) and it is quite strict.

NNI checks for each attribute whether the case-control entity pairs are the closest

neighbours to each other on that attribute. However, the index does not measure the

distance from the closest value along the given dimension. As element-pairs can be

determined by any kind of matching method, the index is applicable for any kind of

case-control pairing-based assignment. NNI is calculated the following way.

• For continuous features, the dissimilarity is 0 if and only if the sample-control

pair is the closest to each other pursuant to the examined attribute, otherwise

it is 1.

• For categorical and ordinal features the dissimilarity is 0 if the values of the

attributes of the individuals are identical, otherwise 1. In case of categorical

features there is no order between the possible values, so it is acceptable. In

case of ordinal features we lose information about the magnitude of difference

between the two values. As the name suggests, Nearest Neighbour Index only

considers perfect correspondence, and the difference between the values is not

measured.

The Nearest Neighbour Index can be formally described as:

Dissimilarity for continuous features:

NNIkij =

{
0 if |xifk − xjfk | = min (|xifk − xlfk |)
1 if |xifk − xjfk | > min (|xifk − xlfk |)

(2.5)
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for each l ∈ {1, . . . , N} \ {i}.

Dissimilarity for categorical features:

NNIkij =

{
0 if xifk = xjfk

1 if xifk ̸= xjfk

, (2.6)

where NNIkij denotes the Nearest Neighbour Index for Xi and Xj individuals in the

k-th dimension.

The Nearest Neighbour Index describing the dissimilarity of the two groups is

calculated as the average of the dissimilarities calculated in each dimension.

NNI(XT , XUT ) =

∑
(Xi,Xj)∈M

∑n
k=1 NNIkij

nN
, (2.7)

where (Xi,Xj) ∈ M yields that Xi ∈ XT and Xj ∈ XUT are matched case-control

pairs.

As previously mentioned, the Nearest Neighbour Index only considers perfect

correspondence, meaning, that the paired elements are closest or identical along the

examined dimension, and it does not take into account the magnitude of difference.

In contrast, the following measure aims to give a better understanding of the mag-

nitude of difference of the paired elements, resulting in a more sophisticated and

precise evaluation.

Global Dissimilarity Index
It is apparent that NNI checks for every dimension if the case-control pairs are

closest to each other in that dimension, however, it does not consider the distance

between them. The Global Dissimilarity Index (GDI) is a paired measure that is

meant to account for this weakness.

GDI measures the dissimilarity for nominal features as the function of the num-

ber of different values, for ordinal features as the difference of ranks and for contin-

uous features as the normalised distance. The statement about paired elements still

holds.

Dissimilarity for continuous features:

GDIkij =
|xifk − xjfk |
maxf −minf

, (2.8)

where GDIkij denotes the Global Dissimilarity Index for Xi and Xj individuals in
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the k-th dimension, minf represents the minimum and maxf represents the maxi-

mum value measured in the f -th dimension taking into account all individuals from

XT ∪XC .

Dissimilarity for nominal features:

GDIkij =

{
0 if xifk = xjfk

1
Fk

if xifk ̸= xjfk

, (2.9)

where Fk is the number of possible values along the k-th dimension.

Dissimilarity for ordinal features:

GDIkij =

{
0 if xifk = xjfk

|rxifk−rxjfk
|

Fk−1
if xifk ̸= xjfk

, (2.10)

where rxifk
yields the ordered rank of the ordinal attribute xifk and rxjfk

yields the

ordered rank of the ordinal attribute xjfk .

The Global Dissmilarity Index describing the dissimilarity of the two groups is

calculated as the average of the dissimilarities calculated in each dimension.

GDI(XT , XUT ) =

∑
(Xi,Xj)∈M

∑n
k=1GDIkij

nN
. (2.11)

It can be seen that the Global Dissimilarity Index measures the magnitude of

difference between the values of each dimension of the paired individuals not just

identities if we found the identical value or the nearest neighbour along the exam-

ined dimension. Although both the Nearest Neighbour Index and the Global Dis-

similarity Index are pairing-based dissimilarity measures, they approach the ques-

tion of dissimilarity differently. The difference lies in the quality or magnitude of

difference. NNI informs the analysts whether the pair chosen by their method is

the closest possible individual from the given population, while GDI qualifies the

actual aggregated difference between the paired individuals.

It is important to note, that in case of nearest neighbour-based pairing methods,

it is possible that not the closest neighbour is chosen as a pair, but only the second

or third nearest neighbour is selected. This can occur if the candidate individual is

the closest neighbour for more than one individual from the case group, resulting

in a conflict. So, to resolve this conflict, one of the conflicting individuals from the

case group has to choose the next nearest neighbour, if appropriate. The NNI value

18



for such a case can drastically change, while the change in GDI is low, or in some

extreme cases, non-existent. This shows that both measures behave differently but

still contain valuable information regarding the dissimilarity of the examined case

group and control group, however, it not recommended to use NNI as a standalone

evaluation metric due to its crude nature.

2.2.1.2 Measure for distribution-based evaluation

The above-mentioned methods measure the dissimilarity by determining the pair-

wise dissimilarities for each case-control pair. However, not only the pairwise dis-

similarities are relevant, but the similarities of the distributions of the characteris-

ing features have to be taken into account as well. For this reason, I suggested a

distribution-based measure called Distribution Dissimilarity Index (DDI).

Distribution Dissimilarity Index
The Distribution Dissimilarity Index is based on the histogram disparities of the

case group and the control group in each dimension. It overcomes the limitations of

the widely used evaluation methods and is capable of handling all kinds of data in-

cluding continuous, nominal and ordinal data. DDI relies on the absolute deviation

of the frequency of each property value relative to the size of the control group and

the number of characterising features. If the individuals are characterised by contin-

uous values, the values have to be discretised before the calculation of the frequency

values. Because the method of discretisation (equal width binning, equal frequency

binning, other binning methods) significantly affects the dissimilarity results, the

most suitable discretisation method for the field of the study is recommended for

use (e.g., the age attribute can be discretised based on the population pyramid in

case of healthcare).

After data preparation, the Distribution Dissimilarity Index is calculated the fol-

lowing way:

DDI(XT , XUT ) =

∑
k

∑
v∈Vk

|freqXT
kv − freqXUT

kv |
nN

, (2.12)

where freqXT
kv yields the absolute frequency of the v-th category in the k-th dimen-

sion in the case group, freqXUT
kv analogously for the control group, Vk is the set of

possible categories along the k-th dimension, and k = 1, ..., n.

We can see, that this general, frequency-based measure does not assume any

distribution along any of the dimensions, as opposed to the Student’s t-test, making
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it adequate to use without any restraints in case of multidimensional data.

It is important to note, that the dissimilarity value of 0 has different meaning

in the two cases. While in case of the paired evaluations the dissimilarity value 0

means that the cohorts XT and XUT contain the same individuals from the view-

point of pairing, in the non-paired case it yields only the identity of the distributions

of the dimensions. The 1 value in both cases indicates that the two groups differ as

much as possible from each other.

The main advantages of the three proposed dissimilarity measures are that they

express the dissimilarity of the case group and the control group as a single dissim-

ilarity value in the range of [0, 1] as opposed to the multiple values of the methods

presented in Section 2.1.2. This dissimilarity value can be calculated for multidi-

mensional data, regardless of the types (e.g., ordinal, nominal continuous) of the

attributes.

2.2.2 Evaluation of the proposed measures

Before application, the proposed measure had to be evaluated. The evaluation of the

proposed measures was performed in three different ways. First, the responsiveness

of the proposed measures was evaluated, the second examination compared differ-

ent candidate control groups by the use of the proposed similarity measures, and the

third one aimed to evaluate the behaviour of the measures in a quasi-real scenario.

All evaluations were performed by Monte Carlo simulations and are described in

detail in the following subsections.

2.2.2.1 Data generation

Evaluating the suggested measures requires reliable data sources. Real healthcare

datasets do not always hold this criteria or are not publicly available. Thus, a

dataset-generator was implemented to provide a controlled environment for making

deductions. The dataset-generator was implemented in Python and it is capable of

generating the following data types (in any possible combination): binary Bernoulli

random variable, binomial variable, continuous variable with normal distribution

(by mean and variance, or in range), continuous variable with uniform distribution,

and discrete variable with quasi-uniform distribution. Furthermore, the developed

Monte Carlo simulator is able to execute predefined (research-dependent) opera-

tions on the generated dataset: adding noise to the data, calculating measures and

evaluating results.
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Using this simulator it was possible to model any healthcare-related or other

arbitrary datasets, eliminating the need to use unreliable data sources. As a result,

evaluations happened in a controlled, well-defined environment.

2.2.2.2 Responsiveness of the measures to noise

Healthcare related data is usually noisy. To demonstrate the responsiveness of the

measures to noise, a complex dataset containing all variable types was generated.

The generated dataset contained a 1000 elements (representing the individuals) and

element was characterised by 8 variables (2 binary, 2 ordinal, 1 nominal and 3 con-

tinuous): 1 Bernoulli random variable with a probability value of 0.5 (∼B(1, 0.5)), 1

Bernoulli random variable with a probability value of 0.3 (∼B(1, 0.3)), 1 binomial

variable with 3 trials and a probability value of 0.5 (∼B(3, 0.5)), 1 uniform dis-

crete variable in the range of [0, 5) (∼Udisc(0, 5)), a uniform discrete variable in the

range of [0, 4) (∼Udisc(0, 4)), 1 uniform variable in the range of [0, 2) (∼U(0, 2)),

1 variable with normal distribution with a mean of 2 and standard deviation of 0.5

(∼N (2, 0.5)) and 1 variable with normal distribution with a mean of 1 and standard

deviation of 2 (∼N (1, 2)).

The original dataset was distorted with different degrees of noise: 1%, 5%,

10%, 25%, 50%, 75%, 90%, and finally 100% of the dataset was distorted with

noise along each dimension. The added noise was attribute-dependent: for binary

variables the values were negated, for nominal and ordinal variables the values

were shifted and aligned for the range, and for continuous variables the value was

changed by at most ±10%. My goals was to achieve theoretical completeness, but

it is important to note that noise levels of 50% and above are not realistic in medical

datasets. From a practical point of view, the results connected to lower noise levels

are more relevant.

In total, 9 case-control group pairs were created to test the proposed measures.

In each case, the original, noiseless dataset and a noisy dataset formed a pair. The

quality of the case-control group pairs was evaluated by averaging the NNI, the

GDI, and the DDI values of a 100 runs. The results of the evaluation can be seen in

Table 2.1.

The presented values in Table 2.1 are dissimilarities in the range of [0, 1]. The

smaller the value, the more similar the given case and control groups are. It can

be seen that in case of identical case and control group pairs (noise is 0%), the

value of all proposed measures was 0, and by increasing the amount of noise, the
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Table 2.1. Average of NNI, GDI and DDI values for the case-control group pairs,
where the control groups were distorted with different levels of noise.

Dissimilarity measure

Noise NNI GDI DDI

N
oi

sy
co

nt
ro

l

0% 0.000 0.000 0.000

1% 0.009 0.004 0.003

5% 0.043 0.019 0.008

10% 0.085 0.038 0.015

25% 0.214 0.096 0.036

50% 0.426 0.192 0.054

75% 0.645 0.291 0.080

90% 0.772 0.347 0.091

100% 0.851 0.385 0.097

dissimilarity values also increase for all three measures. However, the magnitude

of the change differs. The change is the largest in the case of NNI. As previously

mentioned, NNI is the strictest measure, so it is especially sensitive to the noise and

to dissimilar data. The 0.851 dissimilarity value reinforces the previous statement

about the behaviour of NNI. The statement about strict nature also holds for GDI,

while DDI, the non-paired measure is noticeably less sensitive to noise, reaching

only 0.097 dissimilarity value when the whole dataset is distorted.

It is important to mention that total dissimilarity (when the dissimilarity value is

1) is only achievable in extreme cases. These extreme cases are where the compared

values are at the opposite ends of the range of the examined variable.

Figure 2.1 shows the values of all measures in function of the distortion. We can

seen that it is linear in case of all measures. The gradient of the lines is different as

the responsiveness of the measures is different as well. The values of the proposed

measures should not be directly compared as they evaluate the dissimilarity from

different aspects, they should be used for evaluation in conjunction.

2.2.2.3 Comparison of possible control groups

The aim of the second evaluation was to compare the proposed measures and ex-

amine their behaviour for different candidate control groups. For this purpose,

a dataset containing 2000 elements was generated. All individuals were charac-
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Fig 2.1. The average NNI, GDI and DDI values in function of distortion.

terised by 6 variables: 2 Bernoulli random variables with a probability value of 0.5

(∼B(1, 0.5)), 1 ordinal variable in the range of [0, 5) (∼B(6, 0.5)), 1 ordinal variable

in the range of [0, 4) (∼B(4, 5)), 1 uniform variable in the range of [0, 5) (∼U(0, 5))

and 1 variable with normal distribution with a mean of 2 and standard deviation of

0.5 (∼N (2, 0.5)).

A case group with size 150 was randomly selected from the previously gener-

ated population. In addition, 8 control groups with a size of 150 individuals were

selected also randomly from the remaining population. The original dataset was

not distorted with noise, so groups selected by random sampling define 8 different

control groups. The created 8 case-control group pairs (the first one as a sample and

the 8 others as possible controls) comprised my test scenario. The dissimilarities of

all pairs were evaluated by NNI, GDI, and DDI. The results can be seen in Table

2.2.

The presented values in Table 2.2 are dissimilarities in the range of [0, 1]. The

smaller the value, the more similar the given case and control groups are. Cells

highlighted with light grey colour contain the minimal value for each measure. In

accordance with the used measure, these control groups are the most similar (best

match) to the case group.

It can be seen that the approach of the similarity evaluation greatly affects the

selection of the best control group. Not only the magnitudes of the measures differ

but also the order of the control groups in terms of similarity. For NNI the 4th, for

GDI the 7th, and for DDI the 3rd and 5th control groups are the most similar control

groups. The least similar control groups are also different: the 5th for NNI, the 6th
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Table 2.2. NNI, GDI, DDI and overall dissimilarity for the 8 case-control group
pairs.

Dissimilarity measure

No. NNI GDI DDI overall

C
on

tr
ol

#1 0.761 0.422 0.061 0.450

#2 0.757 0.409 0.072 0.463

#3 0.762 0.414 0.055 0.285

#4 0.749 0.407 0.068 0.314

#5 0.789 0.426 0.055 0.627

#6 0.783 0.430 0.056 0.633

#7 0.758 0.396 0.068 0.281

#8 0.772 0.424 0.076 0.780

for GDI and the 8th for DDI. It is interesting to notice that one of the most similar

control group for DDI (control group #5) is the least similar for NNI. This can

be accounted to the fact that all proposed similarity measures determine similarity

from different aspects, as it is described in Section 2.2.1.

These observations raise the need for a complex, all-encompassing evaluation.

Considering the 2 pairing-based measures (NNI and GDI) and calculating the nor-

malised average value of them, the 7th control group seems to be the appropriate

choice, however if DDI is also taken into account the 3rd control group is not a bad

choice either. This fact is also confirmed by the overall dissimilarity measure, which

was calculated as the average of the individually normalised dissimilarity measures

(see the last column in Table 2.2).

My results highlighted that the evaluation of case and control groups always

requires more than one measure, as different measures give different insights re-

garding the quality of the selected control group. Unfortunately, in most of the

published articles in the literature at most one measure is used, which is, in my

opinion, insufficient.

2.2.2.4 Application of the measures in case of Propensity Score Matching

To test the applicability of the proposed dissimilarity measures, a real-life applica-

tion scenario was modelled. Subjects of the dataset were characterised by 10 base-

line binary covariates and a treatment status indicator (Zi) was determined for each
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subject. Subjects with Zi = 1 were considered treated and subjects with Zi = 0

were considered untreated patients. Based on this model, a population containing

1000 subjects was generated. The generated data was separated on the status of

treatment. Treated subjects (Zi = 1) composed the case group and untreated sub-

jects (Zi = 0) composed the population of the possible controls. The 1000 subjects

were separated in a 30−70% ratio: 30% of the subjects was considered as members

of the treated case group and the other 70% was considered the untreated popula-

tion from which a 100 different control groups were selected with propensity score

matching. During the propensity score matching a logistic regression classification

model was determined to estimate the effect of the baseline covariates to the expo-

sure of the treatment. Based on the logistic regression model the propensity scores

for each individual were calculated, and these estimated values served as the basis

of pairing elements between the treated and untreated groups.

The quality of the propensity score-based control group selection method can

be controlled by the caliper size parameter of the PSM algorithm. The caliper size

suggested in the literature for PSM can be calculated as described in [21].

0.2
√

(σ2
T + σ2

UT+)/2, (2.13)

where σT is variance of the covariates of XT and σUT is variance of the covariates

XUT .

For testing the quality of the control groups selected with different caliper size

parameters, different multipliers (0.5, 0.75, 1.00, 1.25, 1.50, 2.00, 2.50, 5.00 and

10.0) were determined for the caliper size presented in Eq. 2.13.

Figure 2.2 shows the relation between the size of the selected control group and

the caliper size multiplier. The suggested caliper size suggested is marked with the

1.00 multiplier and a darker colour. It can be seen that by decreasing the caliper

size, the size of the selected control group also decreases. By increasing the caliper

size, further and further individuals can be selected into the control group, which

in turn, decreases the quality of the control group. This decrease in quality can be

measured by the measures proposed in Section 2.2.1.

In Figure 2.3 and Figure 2.4 the relation between the proposed NNI and GDI

measures for paired evaluation and the caliper size multiplier can be seen. The

figures show that by increasing the caliper size the similarity of the control group

decreases, which can be seen in the increase of the proposed dissimilarity measure

values. The larger the caliper size, the further subjects can be paired from the pop-
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Fig 2.2. The size of the control group in function of the caliper size multiplier.

ulation to the subjects of the case group. That is, the quality of the control group is

constantly decreasing.

Fig 2.3. NNI in function of the caliper size multiplier.

Finally, Figure 2.5 shows the relation between DDI and the caliper size multi-

plier. There is no noticeable effect of changing the caliper size on the DDI measure.

The cause of this is that DDI is a distribution-based measure and all control groups

were selected from the same population, meaning that their distributions are also

similar to the distribution of the case group. It is no surprise, that this measure does

not reflect the increase of the pairwise dissimilarities, however, it reinforces the fact

that the similarity of case and control groups needs to be evaluated from different

aspects as well.

After reviewing the proposed dissimilarity measures and their characteristics, I

deal with the problems of control group selection in the next section.
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Fig 2.4. GDI in function of the caliper size multiplier.

Fig 2.5. DDI in function of the caliper size multiplier.

2.3 Novel control group selection methods

As it was described in Section 2.1.1.1, PSM methods are constantly in the midst of

criticism, due to the imbalance of the covariates observed in some studies.

The disadvantage of the most widely used PSM and all other propensity score-

based methods is that they perform the matching of individuals in the 1-dimensional

space of the propensity scores. Additionally, uncertainty is also increased by the

fact that propensity scores are estimated and not known a priori. Although some

methods have been proposed earlier to pair individuals in the original vector space

of the features [93, 94, 95], to the best of my knowledge, none of them utilises the

result of fitting a logistic regression model during the matching performed in the

original vector space. Taking advantage of this opportunity, I developed a novel
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control group selection method which not only matches individuals in the original,

n-dimensional space, but also weights each dimension by its significance which is

determined by the the odds ratio values of the logistic regression fit. The proposed

method is named Weighted Nearest Neighbours Control Group Selection with Error

Minimization.

2.3.1 Weighted Nearest Neighbours Control Group Selection
with Error Minimization

The suggested Weighted Nearest Neighbours Control Group Selection with Error

Minimization (WNNEM) method [42] considers each subject as an n-dimensional

data point in an n-dimensional space, where each covariate (fk, k = 1, . . . , n) rep-

resents a unique dimension. This way, the problem of control group selection can

be interpreted as a distance minimisation problem. To select a proper control group,

such individuals have to be identified from the candidates that lie close to the indi-

viduals of the case group. The concept of lying close can be defined in numerous

ways. In the case of the proposed method, multivariate matching is performed in

which the odds ratio (OR) values of the fitted logistic regression model are utilised

as weighting factors of the covariates to compute the distances between the individ-

uals.

Before the whole algorithm is presented, two aspects have to be clarified. Firstly,

the term distance, and secondly, the suggested weighting method has to be specified.

Generally, as individuals may be characterised by different types of variables

(binary, nominal, ordinal, numerical), the distance calculation method to be applied

must be able to handle different data types. Furthermore, as the significance of the

covariates may differ, distances have to be calculated separately for each dimension.

The third requirement of distance calculation is that the dissimilarity measures with

identical values have to express the same degree of dissimilarity.

To fulfil these requirements, the proposed algorithm calculates the differences

for each dimension separately and converts all dissimilarity values into the range of

[0, 1]. The distance calculation for different data types is performed as follows:

• In case of binary variables, simple matching distance is calculated.

d
(f)
ij =

0 ifxif = xjf

1 otherwise
, (2.14)
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where d
(f)
ij yields the distance of individuals Xi ∈ XT and Xj ∈ XC , xif is

the value of individual Xi on binary variable f , and xjf of Xj , respectively.

• In case of nominal variables simple matching distance (Eq. 2.14) is calcu-

lated. Incidentally, these variables can be coded as a set of binary variables

and the distance can be calculated as the normalised distance of binary fea-

tures, where the normalisation constant is the number of possible values of

the nominal variable.

• In case of numerical variables, the dissimilarity measure can be calculated as

the difference of the original values. As the distance calculated in this way de-

pends on the range of the original values, normalisation is needed to achieve

uniform significance for the same dissimilarities and to make them compara-

ble to the dissimilarity measures calculated on other types of attributes. To

fulfil this requirement, min-max normalisation must be performed separately

for each numerical dimension to map the original values into the range of

[0, 1].

x∗
if =

xif −minf

maxf −minf

, (2.15)

where xif denotes the original value of individual Xi in the f -th dimension

without normalisation, minf represent the minimum and maxf the maximum

value measured in the f -th dimension taking into account all individuals from

XT ∪XC , and x∗
if yields the normalised value of the individual Xi with regard

to the f -th covariate. Subsequently, the distance of individuals Xi ∈ XT and

Xj ∈ XC is calculated as the differences of their normalised feature values.

d
(f)
ij = |x∗

if − x∗
jf |, (2.16)

• In case of ordinal variables, the ordered values have to be coded as ranks and

the distance can be calculated as the aforementioned distance of numerical

values.

After ensuring that the meaning of the dissimilarity values is identical in each

dimension, the next step is to weight them according to their relevance to group

(treatment) assignment.

As previously mentioned, the odds ratio values of the logistic regression model

fitted on the status of treatment assignment are utilised for this purpose. Generally,

the odds ratio is the probability of a characteristic being present divided by the prob-
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ability of the same characteristic being absent. The odds ratio for each independent

variable can be obtained by applying the exponential function to the corresponding

regression coefficient (bi) obtained from the logistic regression model described by

Eq. 2.2.

Odds ratios as the weights of the covariates are calculated as

wi = ORi = ebi , (2.17)

where wi denotes the weighting factor of the i-th covariate (i = 1, 2, . . . , n).

The proposed WNNEM method calculates the distances for individuals Xi ∈
XT and Xj ∈ XC as

dist(Xi,Xj) =
n∑

f=1

wfd
(f)
ij , (2.18)

where d
(f)
ij represents the normalised dissimilarity value of Xi and Xj in the f -th

dimension, and wf is the weighting factor of dimension f .

The presented weighted attribute distance is utilised to match the best pairs

of candidates (XC) and individuals of the treated group (XT ). Basically, the best

pair for each Xi ∈ XT is such an Xj ∈ XC for which dist(Xi,Xj) is minimal.

This way, the matching procedure can be regarded an optimisation problem, where∑
i,j dist(Xi,Xj) has to be minimised.

My practical experiments showed that for 1:1 matching, an adequate solution

can be found even without the use of a complex optimisation algorithm. The only

problem that needs to be handled during optimisation is how to manage the pairing

process of those candidates which lie closest to more than one individual from the

case group. These candidates are called candidates in conflict and are formally

defined as follows: Xj ∈ XC is a candidate in conflict if dist(Xi,Xj) is minimal for

more than one Xi ∈ XT . For handling these conflicts, the order of the neighbours

has to be determined.

Let NN1(Xi) denote the closest and NN2(Xi) the second closest neighbour to

individual Xi ∈ XT .

NN1(Xi) = argmin
Xj∈XC

(dist(Xi,Xj)). (2.19)

NN2(Xi) = argmin
Xj∈XC−{NN1(Xi)}

(dist(Xi,Xj)). (2.20)

The design of the conflict-handling method to solve the competition of two indi-
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viduals was inspired by the Vogel-Korda method (Vogel’s Approximation Method,

VAM): instead of a greedy selection, the second neighbours of the treated individu-

als are also taken into account: the candidate in conflict is matched to the individual

for which the error function is greater. The error function is calculated as the dis-

tance of the first and second neighbours of the individuals.

E(Xi) = |dist(Xi, NN1(Xi))− dist(Xi, NN2(Xi))|. (2.21)

In this way, the problem of two competing individuals, Xl and Xm ∈ XT , is solved.

In case of multiple competing individuals, conflicts are handled by dynamic pro-

gramming. First, the conflict with the largest error is resolved, followed by the

others in descending order. This principle is applied iteratively until all the conflicts

are resolved.

The steps of the proposed Weighted Nearest Neighbours Control Group Selec-

tion with Error Minimization method (WNNEM) are summarised by Algorithm 2.1.

We assume that argmax returns only 1 index.

2.3.2 Evaluation of the proposed WNNEM method

To present the effectiveness of the proposed method, a Monte Carlo simulation-

based evaluation was performed. During the evaluation, the quality of the control

group resulting from the proposed WNNEM method was compared to the quality

of the control group selected by the most widely applied form of the PSM method,

namely, to the result of the greedy 1:1 propensity score matching performed with-

out replacement of individuals and utilising a proper caliper size for the selection

procedure. The proper caliper size in each simulation was determined dynamically

and was set at the minimal value for which 1:1 matching could be performed.

2.3.2.1 Datasets

For the comparisons, three scenarios with varying feature characteristics were de-

signed. For each scenario, 20 datasets were generated randomly with the same

distribution parameters predefined for the covariates. As a result, each scenario

contained 20 individual datasets with the same number of individuals.

I used a benchmark dataset widely applied in theoretical PSM studies in Sce-

nario I [96]. Scenario II and Scenario III simulated such studies in which the age of

the patients and another 5 binary parameters were considered as covariates. With
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Algorithm 2.1: Weighted Nearest Neighbours Control Group Selection

with Error Minimization (WNNEM)
Input: XT case group, XC set of candidate individuals

Output: XUT control group

1 Perform a logistic regression to estimate wi weights for all covariates.

2 Normalise XT and XC collectively using feature scaling and calculate the

D = dist(Xi,Xj) distance matrix for all pairs of individuals of Xi ∈ XT

and Xj ∈ XC by Eq. 2.18.

3 Set

Xunpaired = XT

XUT = ∅

4 Determine NN1(Xi) and NN2(Xi) based on the distance matrix D for all

Xi ∈ Xunpaired.

5 Calculate E(Xi) for all Xi ∈ Xunpaired.

6 For i = 1, . . . , ∥Xunpaired∥

Set k = argmaxXi∈Xunpaired
(E(Xi))

If NN1(Xk) /∈ XUT :

XUT = XUT ∪ {NN1(Xk)}

Xunpaired = Xunpaired − {Xk}

Set l = arg(NN1(Xk))

Set D(i, l) = ∞ for all i = 1, . . . , ∥XT∥

7 Repeat Steps 4 to 6, till Xunpaired ̸= ∅.
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the analysis of theses scenarios, I aimed to simulate such recurring biomedical stud-

ies which are based on a few covariates that are mainly binary. In Scenario II, the

size of the treated group varied between 16% and 20% of the dataset, and in the

case of Scenario III, it was between 24−27%. In other words, Scenario III simu-

lated a more difficult case, where the ratio of the candidate individuals to the treated

subjects was lower (XC/XT ≈ [1.5, 2.2]) than in Scenario II (XC/XT ≈ [2.4, 3.2]),

therefore, it was harder to find a proper pair for each treated individual.

As PSM is non-deterministic and dependent on the order of the individuals it

was performed 5 times on each of the 20 generated datasets and the matching order

in each experiment was randomised during the simulations. When the WNNEM

method was applied, because of the deterministic nature of the algorithm, the con-

trol group selection was performed only once for each of the 20 generated datasets.

2.3.2.2 Scenario I

Scenario I is a widely used benchmark dataset and all parameters are taken from

[96]. According to this dataset, all individuals are characterised by 10 binary vari-

ables, each from a Bernoulli distribution (xj ∼ B(0.5), j = 1, . . . , 10). To calcu-

late the probability of treatment assignment, the following logistic regression model

was used.

logit(pi,treat) = b0,treat+

bLxi1 + bLxi2 + bLxi3 + bMxi4 + bMxi5+

bMxi6 + bHxi7 + bHxi8 + bV Hxi9 + bV Hxi10

. (2.22)

A treatment status indicator (Zi) was generated for each subject from a Bernoulli

distribution with a subject-specified probability equal to pi,treat (Zi ∼ B(pi,treat)).

The treated group consisted of subjects where Zi = 1, while subjects where Zi = 0

were assigned to the untreated group (from which the control group was selected).

The b weights in Eq. 2.22 denote a low (L), medium (M), high (H) or very high

(VH) effect on treatment assignment. The weights were assigned in such a way that

approximately 25% of the subjects were treated. The number of individuals in each

dataset was 1000. The applied weight coefficients were as follows:

• correction for binary: b0,treat = −1.344090

• low: bL = log(1.1)

• medium: bM = log(1.25)
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• high: bH = log(1.5)

• very high: bV H = log(2.1)

20 independent datasets were generated with the previously described parame-

ters. PSM was executed 5 times and WNNEM only once for each dataset. These

simulations resulted in 100 control group selections for the PSM method and 20

control group selections for the WNNEM method.

Table 2.3 summarises the average, minimum, and maximum p-values for the

Hansen and Bowers imbalance test, as well as the minimum, average and maximum

distance measures for the DDI, NNI and GDI dissimilarity measures. I decided to

use the Hansen and Bowers test, as it is applied for more complex evaluations in

biomedical studies. This measure allows the evaluation of the imbalance of all co-

variates simultaneously: covariates are considered poorly balanced if the test value

is significant (p < 0.05). The higher the p-value, the more similar the case and

control groups are. In case of the dissimilarity measures (DDI, NNI, and GDI), the

dissimilarity values falls within the range of [0, 1], but the value of zero expresses

that the case and control groups are identical. Consequently, the greater the dissim-

ilarity value, the higher the difference of the case and control groups is.

Table 2.3. Quality measures for Scenario I.

PSM WNNEM
min avg max min avg max

HB(p) 0.722 0.960 1.000 0.967 0.996 1.000
DDI(d) 0.010 0.017 0.026 0.006 0.011 0.018

NNI(d) 0.215 0.280 0.344 0.053 0.060 0.067
GDI(d) 0.220 0.314 0.397 0.051 0.061 0.074

Results presented in Table 2.3 show that the WNNEM method performed bet-

ter in terms of control group selection than the greedy 1:1 PSM. All dissimilarity

values, both for the paired evaluations (NNI and GDI) and the distribution-based

evaluation (DDI), are lower in the case of control groups selected by the WNNEM

method than by greedy PSM. Furthermore, the p-value of the Hansen and Bowers

test also shows a higher degree of balance when the WNNEM method was applied.

For a detailed insight, Table 2.4 presents the p-values of the Hansen and Bowers

imbalance test for each dataset. |XT | yields the number of the treated individuals.

In the case of the PSM method, the minimum, average and maximum values for

the 5 experiments are shown. As for each dataset, the WNNEM method was run
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only once, therefore only one p-value is given. The differences of the p-values

(diff(p)) were calculated as the average p-value of the PSM method subtracted from

the p-value of the WNNEM method. The p-values for all PSM simulations and the

WNNEM method are also presented in Figure 2.6.

Table 2.4. Results of the Hansen and Bowers test in Scenario I.

PSM WNNEM
dataset |XT | min(p) avg(p) max(p) p diff(p)

1 337 0.961 0.972 0.986 0.999 0.027
2 321 0.916 0.950 0.972 0.967 0.017
3 316 0.993 0.996 0.998 1.000 0.004
4 341 0.995 0.998 1.000 0.978 -0.020
5 354 0.990 0.995 0.998 0.998 0.003
6 335 0.994 0.996 0.998 1.000 0.004
7 317 0.995 0.997 0.998 1.000 0.003
8 320 0.941 0.960 0.973 1.000 0.040
9 325 0.998 0.999 1.000 0.998 -0.001

10 317 0.975 0.986 0.993 0.997 0.011
11 315 0.834 0.878 0.898 1.000 0.122
12 319 0.969 0.988 0.997 0.999 0.011
13 287 0.998 0.999 1.000 1.000 0.001
14 329 0.887 0.901 0.916 0.999 0.098
15 338 0.772 0.811 0.876 1.000 0.189
16 344 0.887 0.911 0.935 0.986 0.075
17 309 0.995 0.998 0.999 0.999 0.001
18 335 0.907 0.936 0.959 1.000 0.064
19 325 0.919 0.940 0.971 0.997 0.057
20 335 0.976 0.981 0.991 1.000 0.019

min -0.020
avg 0.036
max 0.189
sum 0.725

As can be seen in Table 2.4 and Figure 2.6, considering the simulated 20 datasets,

on average, the greedy PSM method produced a better control group than the pro-

posed WNNEM method only twice, namely for dataset 4 and dataset 9. The differ-

ence between the p-values in both cases is marginal. However, the WNNEM method

in many cases (see datasets 8, 11, 14-16, 18 and 19) resulted in a much more similar

control group to the group of treated individuals than the control groups selected by

the PSM method. This fact is also shown numerically by the aggregated statistics

at the bottom of Table 2.4 (see the minimum and maximum of the difference). This
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Fig 2.6. Results of the Hansen and Bowers test for each dataset in Scenario I.

part of the table also contains the totalled differences of the p-values for all datasets,

which value also confirms the advantage of applying the WNNEM method. Table

2.4 also highlights that the WNNEM method identified a perfectly balanced control

group (p-value is equal to 1) for 9 datasets, while the PSM method could for only 3

datasets. Furthermore, it must not be forgotten, that the WNNEM method was run

only once, while the PSM method was run 5 times on each dataset.

To evaluate the results of the selected control groups, the similarity of the covari-

ates were also evaluated separately. In this regard, for each control group selection,

the similarity of the values of the covariates for the case and control groups was

tested by the Chi-square test. A higher p-value means a more balanced control

group in terms of a given covariate. The detailed results are presented as box plots

in Figure 2.7. As can be seen, the median of the p-values for each covariate is higher

in the case of WNNEM, and the interquartile range is also smaller for all covariates.

To sum up, we have shown in this subsection that the proposed WNNEM method

may provide better results than the greedy, 1:1 PSM method on the benchmark

dataset.

2.3.2.3 Scenario II

Scenario II models such studies in which fewer descriptive variables are available.

In this scenario, each individual is characterised by 1 ordinal and 5 binary vari-

ables. The ordinal variable represents 5 age groups, while the binary variables may
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Fig 2.7. Distribution of all covariates in Scenario I.

represent, for example, the gender of the subject or various diagnoses.

The assignment of treatment status was analogous to the previously described

assignment. In this scenario, the assignment of weights to each descriptive variable

was as follows: the ordinal variable (x1) had very high effect, as it is usual for age,

the binary variables had low (x2), medium (x3 − x5) and high (x6) effect on the

status of treatment. The ratio of the candidate subjects to the treated individuals in

the 20 datasets was between 2.4 and 3.2.

The overall statistics of the control group selections are presented in Table 2.5.

It can be seen that the proposed WNNEM method also performed better in this

scenario. All dissimilarity measures exhibited lower degrees of dissimilarity and

the p-value of the Hansen and Bowers test also exhibited a higher degree of balance

overall. Furthermore, by comparing these results to the results of Scenario I, it can

be seen that the selected control groups are more similar to the subjects of the case

group.

Table 2.5. Quality measures for Scenario II.

PSM WNNEM
min avg max min avg max

HB(p) 0.977 0.998 1.000 0.995 1.000 1.000
DDI(d) 0.002 0.008 0.019 0.000 0.003 0.009

NNI(d) 0.002 0.012 0.028 0.001 0.006 0.011
GDI(d) 0.002 0.013 0.310 0.001 0.005 0.011

Table 2.6 and Figure 2.8 present the detailed results for each of the 20 simulated
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datasets. As it can be seen, both methods were able to select a perfectly balanced

control group in cases of datasets 3-5, 8-10, 12-16, 18 and 19. This is due to the

lower variability of features of the individuals and the relatively large number of

available candidates. In dataset 1, 2, 7 and 20, the PSM method could not select

a perfectly balanced control group, but the WNNEM method could. The opposite

was true for dataset 11, however, in this case, the difference between the p-values

was marginal.

Table 2.6. Results of the Hansen and Bowers test in Scenario II.

PSM WNNEM
dataset |XT | min(p) avg(p) max(p) p diff.(p)

1 195 0.999 0.999 0.999 1.000 0.001
2 183 0.996 0.996 0.996 1.000 0.004
3 190 1.000 1.000 1.000 1.000 0.000
4 197 1.000 1.000 1.000 1.000 0.000
5 167 1.000 1.000 1.000 1.000 0.000
6 201 0.977 0.977 0.977 0.999 0.022
7 196 0.999 0.999 0.999 1.000 0.001
8 198 1.000 1.000 1.000 1.000 0.000
9 185 1.000 1.000 1.000 1.000 0.000

10 196 1.000 1.000 1.000 1.000 0.000
11 183 0.999 1.000 1.000 0.998 -0.002
12 182 1.000 1.000 1.000 1.000 0.000
13 176 1.000 1.000 1.000 1.000 0.000
14 202 1.000 1.000 1.000 1.000 0.000
15 191 1.000 1.000 1.000 1.000 0.000
16 168 1.000 1.000 1.000 1.000 0.000
17 179 0.997 0.997 0.997 0.995 -0.002
18 185 1.000 1.000 1.000 1.000 0.000
19 204 1.000 1.000 1.000 1.000 0.000
20 201 0.983 0.983 0.985 1.000 0.017

min -0.002
avg 0.002
max 0.022
sum 0.041

For further evaluation, the similarity of the covariates was also calculated. The

box plots (Figure 2.9) show that the WNNEM method was able to select more sim-

ilar control groups than the greedy 1:1 PSM method for every covariate. It is im-

portant to emphasize that in the case of completely missing boxes (for covariates

x1, x3, x4 and x6 for the WNNEM method), the first, second and third quartiles of
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Fig 2.8. Results of the Hansen and Bowers test for each dataset in Scenario II.

the p-values were all equal to 1. In the case of partially missing boxes, the median

was equal to 1, therefore the third quartile and maximum value were equal. Figure

2.9 shows that the WNNEM method achieved perfect matching on the most impor-

tant covariates (x1 and x6) while the applied PSM method could not. Furthermore,

in the case of PSM, the largest imbalance was observed for a covariate of medium

effect (x4), while by applying the proposed WNNEM method, it was observed for

a covariate of low effect (x2).
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Fig 2.9. Distribution of all covariates in Scenario II.
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2.3.2.4 Scenario III

Scenario III is similar to Scenario II with regard to the attributes of individuals and

the total number of subjects in each dataset. However, it simulates a more difficult

control group selection problem. The number of treated individuals in the case of

the third scenario is higher than in the second one. In the third scenario, the ratio of

the candidate individuals to the treated ones was only between 1.5 and 2.2, thus, on

average, only 2 candidate individuals were available per treated person.

In Table 2.7, the overall dissimilarity measures and the results of the Hansen and

Bowers tests are presented. By comparing Tables 2.5 and 2.7, it can be seen that in

the case of the third scenario, it was harder to select a fully balanced control group

using both methods. However, Table 2.7 shows that the WNNEM method was able

to select more balanced control groups than the greedy 1:1 PSM method.

Table 2.7. Quality measures for Scenario III.

PSM WNNEM
min avg max min avg max

HB(p) 0.743 0.954 1.000 0.896 0.982 1.000
DDI(d) 0.005 0.015 0.030 0.003 0.010 0.023

NNI(d) 0.020 0.051 0.113 0.013 0.023 0.050
GDI(d) 0.025 0.060 0.166 0.012 0.026 0.072

Table 2.8 and Figure 2.10 also confirm the ability of the WNNEM method to

select a better control group in a harder situation. Notable differences can be seen

in the cases of datasets 1, 3 and 5. However, it should also be noted that while the

WNNEM method provided a more accurate control group for 17 datasets, in three

cases the PSM did.

Figure 2.11 details the covariate imbalances separately. As can be seen, the

WNNEM method in most cases was able to perfectly match on the covariate ex-

hibiting a very high effect on treatment assignment (x1), but the PSM could not.

Also on the other covariates, the WNNEM method was able to achieve more bal-

anced results.

My simulation results showed that the proposed WNNEM method achieved bet-

ter results than the most widely applied from of PSM on both the benchmark dataset

(Scenario I) and the more problematic datasets (Scenario II and Scenario III). As it

was mentioned before, the WNNEM method considers the control group selection

problem as a distance minimisation problem in the n-dimensional space. Distances
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Table 2.8. Results of the Hansen and Bowers test in Scenario III.

PSM WNNEM
dataset |XT | min(p) avg(p) max(p) p diff.(p)

1 250 0.896 0.909 0.918 1.000 0.091
2 240 0.998 0.998 0.998 1.000 0.002
3 242 0.744 0.781 0.798 0.954 0.173
4 235 0.967 0.970 0.974 0.997 0.027
5 270 0.743 0.761 0.766 0.908 0.147
6 258 1.000 1.000 1.000 0.999 -0.001
7 269 0.998 1.000 1.000 0.967 -0.033
8 230 0.983 0.986 0.989 0.993 0.007
9 227 0.991 0.992 0.995 0.993 0.001

10 249 0.996 0.998 0.999 1.000 0.002
11 257 0.844 0.862 0.888 0.896 0.034
12 253 0.964 0.976 0.983 1.000 0.024
13 277 0.922 0.923 0.927 0.950 0.027
14 240 0.979 0.983 0.988 1.000 0.017
15 221 0.996 0.996 0.996 1.000 0.004
16 248 0.995 0.997 0.999 0.999 0.002
17 237 0.991 0.993 0.993 0.988 -0.005
18 252 0.973 0.975 0.976 0.996 0.021
19 256 0.989 0.989 0.989 0.998 0.009
20 255 0.996 0.997 0.998 1.000 0.003

min -0.033
avg 0.028
max 0.173
sum 0.548

between the individuals of the case and control groups are calculated as weighted

distances of the dimensions, and the aim is to match the control subjects to the case

subjects in such a way, that the sum of their distances is minimal. It is easy to

see that in a simple case, when the neighbour closest to an individual in the case

group is chosen as the pair from the group of possible candidates, then minimisa-

tion problem is solved. The only problem arises when there are candidates which

are closest to more than one individual of the case group. The WNNEM method

solves the problem of conflicting subjects locally. In case of conflicting candidates,

the WNNEM method also takes the second nearest neighbours into account, and

the individual in conflict is matched to that individual in the case group for which

the second nearest neighbour is farther away. However, solving the conflicts lo-

cally does not guarantee that the resulting control group is globally optimal. The
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Fig 2.10. Results of the Hansen and Bowers test for each dataset in Scenario III.

Weighted Nearest Neighbour Control Group Selection with Simulated Annealing

method to be presented in Section 2.3.3 aims to eliminate this problem.

2.3.3 Weighted Nearest Neighbour Control Group Selection
with Simulated Annealing

In order to achieve a globally optimal solution, I developed a new control group se-

lection method. The developed Weighted Nearest Neighbour Control Group Selec-

tion with Simulated Annealing (WNNSA) method [43] aims to achieve a globally

optimal solution by applying simulated annealing (SA) [97]. The initial idea of the

WNNSA algorithm comes from the field of optimisation.

Algorithms based on simulated annealing are such probabilistic algorithms that

can find the global optima of a given function - however, it is not guaranteed. SA

algorithms optimise the objective function (called energy, e) iteratively in the space

of possible solutions such that they move the current state representing the actual

solution of the problem into a new candidate state representing a new possible so-

lution step-by-step. This moving is controlled by a probabilistic function which

depends on the difference of the objective function of the current and neighbouring

states, and a time-dependent variable called temperature (t). The main principle of

the algorithm is that as time goes on (the temperature is decreasing), the probability

that the algorithm will move to a state with higher energy (worse state) than the
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Fig 2.11. Distribution of all covariates in Scenario III.

energy of the current state decreases.

The WNNSA algorithm combines the simulated annealing approach with the

distance calculation method applied in the WNNEM method. However, before we

move on to the topic of simulated annealing, a shortcoming of the WNNEM method

presented in Section 2.3.1, which appeared during the development of WNNSA, has

to be addressed: the weight factors were only determined for covariates that posi-

tively affect the probability of the assignment to the treated group. To address this

gap, the weight calculation method for the WNNEM, and as a result for WNNSA

also, was extended the following way.

The calculation of the weights of covariates with OR value above 1 (positive

association) does not change, and it can take any value above one as the weighting

factor. In case of negative association (OR value in the range of [0, 1)), the weight

of the covariate should be calculated as the reciprocal of the calculated OR value.

In this way, the weights of the negatively associated covariates also take any value

from (1,∞]. Accordingly, the weights of covariates can be calculated as

wi =

ebi ORi ≥ 1

1
ebi

ORi < 1
. (2.23)

Having the extended calculation of the weighting factors, the distance matrix

containing the pairwise distances of the individuals in the treated and control groups

(Eq. 2.18) can be calculated by weighting the dimensions. With the weight calcu-

lation fixed and clarified, we can move on to simulated annealing.
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Each state in the search space represents a possible solution for the control group

selection, meaning, each state represents a possible pairing of the individuals of the

case group and the control group. The goal of the algorithm is to find the best pair-

ing. To achieve this goal, the algorithm utilises the simulated annealing principle to

select the best pairs for the treated individuals, and the goal is to minimise the sum

of the pairwise distances of the paired individuals. The probability for selecting the

candidate Xj ∈ XC for the individual Xi ∈ XT is calculated as

p(Xi,Xj) =
ptemp(Xi,Xj)∑
j ptemp(Xi,Xj)

, (2.24)

where

ptemp(Xi,Xj) =
1

dist(Xi,Xj)t
(2.25)

and t is the temperature of the simulated annealing process.

The energy function (e) determining the fitness of the candidate solutions is

given as

e =
∑

(Xi,Xj)∈M

dist(Xi,Xj), (2.26)

where M = {M1,M2, . . . ,Mm} yields the pairing of the elements. In case of 1:1

matching, m = |XT |. For later use, denote Mi1 the first and Mi2 the second element

from the i-th pair from M(i = 1, 2, . . . ,m).

In cases, when individuals to be paired can be selected from many candidates,

many possible pairings are conceivable. To reduce the runtime of the algorithm, the

WNNSA algorithm utilises linear cooling and looks for the optimal solution in a

reduced search space. The applied heuristic constraints the search space such a way

that an individual of the case group can only be paired to their k-closest neighbours

from the candidate set. Further neighbours are not considered for pairing.

Denote NNk(Xi, Y ) the k-closest neighbours of Xi from the set Y . Using this

notation, the k-size reduced environment for an individual Xi ∈ XT is given by

NNk(Xi, XC).

The WNNSA algorithm works relatively the same way as WNNEM, with some

differences. Firstly, it is executed iteratively until the t temperature reaches 0. In

each iteration, p(Xi,Xj) is calculated for all elements of NNk(Xi, XC), then 1:1

matching with conflict resolution is performed. At the the end of each iteration, e

is calculated for the current state, and is compared to the energy of the current best

state (ebest). Finally, if the energy of the current state is lower than the energy of the
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current best state, the current best state is replaced with the current state.

The detailed algorithm of the Weighted Nearest Neighbour Control Group Se-

lection with Simulated Annealing method is presented in Algorithm 2.2. For the

sake of clarity, it should be noted that ActualMatching(t) denotes a transient set

of matched pairs that the algorithm generates at temperature t. ActualMatching
(t)
i

yields an element of this set, that is a specific matching of a case element with a can-

didate element. ActualMatching
(t)
i1 denotes the first and ActualMatching

(t)
i2 the

second element of the matched pair of the i-th element from ActualMatching(t).

The first element comes from the case group and the second one from the set of

candidates to be paired as control individuals.

As Algorithm 2.2 shows, the WNNSA method uses a reduced environment for

selecting the elements of the control group. However, the application of a reduced

environment introduces another problem: below a given value of k, it is not guaran-

teed that the algorithm results in a control group with the desired size. This stems

from conflicts occurring during the selection process. For example, consider the

following situation for which a visual representation can be seen in Figure 2.12.

Let X1, X2 and X3 be three individuals from the case group. Let X4 be the closest

and X5 the second closest neighbour of X1 and X2 individuals among the candidate

subjects. Furthermore, let X5 be the first and X4 the second nearest neighbour of

X3. Moreover, let X6 be the third nearest neighbour of X1, X2, and X3.

My aim was to select an equal-sized control group for the case group. In this

case, if k is set to 2, then the reduced environments for X1, X2, and X3 contain only

the individuals X4 and X5. So, three paired control individuals cannot be selected

from the reduced environments; therefore, 1:1 matching can not be performed.

Fig 2.12. Demonstration of conflicting pairs in a reduced environment.

This problem can also be extended to higher k values. For this reason, a method

to determine the minimal k value is needed. The problem of unsolvable conflicts
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Algorithm 2.2: Weighted Nearest Neighbour Control Group Selection
with Simulated Annealing (WNNSA)

Input: XT : the set of the case group; XC : the set of candidate individuals;
k the size of the reduced environment; tmax the starting temperature

Output: XUT the selected control group; M the set of the matched pairs
1 Initialise:

XUT = ∅
M = ∅
ebest = ∞
t = tmax

2 Normalise XT and XC collectively using feature scaling.
3 Calculate the distance matrix D for all pairs of Xi ∈ XT and Xj ∈ XC by

Eq. 2.18.
4 Determine NNk(Xi, XC) based on the distance matrix D for all Xi ∈ XT .
5 Determine p(Xi,Xj) for each Xi ∈ XT and for each Xj ∈ NNk(Xi, XC) by

Eq. 2.24.
6 Set:

X
(t)
unpaired = XT

X
(t)
UT = ∅

M (t) = ∅
7 Set ActualMatchings(t) = ∅
8 For all Xi ∈ X

(t)
unpaired

Select an Xj pair from NNk(Xi, XC) for Xi ∈ X
(t)
unpaired at random

with probability p(Xi,Xj).
Set ActualMatchings(t) = ActualMatchings(t) ∪ {(Xi,Xj)}

9 For l = 1, . . . , |ActualMatchings(t)|
If ActualMatchings

(t)
l2 is selected for only one Xi ∈ XT

X
(t)
unpaired = X

(t)
unpaired − {Xi}

X
(t)
UT = X

(t)
UT ∪ {ActualMatchings

(t)
l2 }

M (t) = M (t) ∪ {ActualMatchings
(t)
l }

10 End if
11 Repeat Steps 7 to 9, till X(t)

unpaired ̸= ∅.
12 Calculate the actual energy e(t) for the matching M (t) by Eq. 2.26.
13 If e(t) < ebest

ebest = e(t)

XUT = X
(t)
UT

M = M (t)

14 Set t = t− 1.
15 Repeat Steps 6 to 14 until t = 0.
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described above can be solved mathematically.

As mentioned before, NNk(Xi, Y ) denotes the k-closest neighbours of Xi from

the set Y . Additionally, Xk
C∗ , the aggregated reduced set of candidates for the k-

sized environment, can be calculated as

Xk
C∗ = {Xj|Xj ∈ NNk(Xi, XC),∀Xi ∈ XT}. (2.27)

Furthermore, denote those individuals from the case group for which Xj ∈ Xk
C∗

is in their k-size reduced environment as Dem(Xj). Dem(Xj) is called the demand

set of Xj .

Dem(Xj) = {Xi|Xj ∈ NNk(Xi, XC)}, (2.28)

where Xi ∈ XT .

Let di(Xj) be the demand index for Xj ∈ Xk
C∗ quantifying those Xi ∈ XT

subjects which select Xj as one of the k-nearest neighbours into the k-reduced en-

vironment.

di(Xj) =
|Dem(Xj)|

k
, (2.29)

where |Dem(Xj)| yields the size of the demand set of Xj .

Denote the alternative selection index for Xj as asi(Xj), which quantifies the

alternative selection options of Xj for all Xi ∈ Dem(Xj). Alternative selection

means that the elements of the demand set of Xj are paired to another candidate

individual instead of Xj .

asi(Xj) =

∑
Xi∈Dem(Xj)

min(di(NNk(Xi, XC)))

|Dem(Xj)|
. (2.30)

Using these metrics, the minimum size of the environment required for WNNSA

to be successful can be easily defined: if exists such an Xj ∈ Xk
C∗ that di(Xj) >

1 and asi(Xj) > 1, there is an unsolvable conflict. In this case, the size of the

environment (that is the value of k) have to be increased. The method to determine

the minimal value of k is summarised in Algorithm 2.3.

After the size of the minimal required reduced environment is determined, the

WNNSA algorithm can be run. To perform a successful control group selection, the

value of k must be set to at least the value determined by Algorithm 2.3. The higher

the value of k is, the higher the degree of freedom the WNNSA algorithm has.
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Algorithm 2.3: Determination of the minimal size for the reduced envi-
ronment for the WNNSA algorithm

Input: XT : the set of the case group; XC : the set of candidate individuals
Output: k: the minimal size for the reduced environment

1 Calculate the distance matrix D by Eq. 2.18.
2 Set k = 1.
3 Determine Xk

C∗ by Eq. 2.27.
4 For all Xj ∈ Xk

C∗:
Calculate di(Xj) by Eq. 2.29.
If di(Xj) > 1

Calculate asi(Xj) by Eq. 2.30.
If asi(Xj) > 1
k = k + 1
Go Step 3

5 Return k.

2.3.4 Evaluation of the proposed WNNSA method

To test the effectiveness of the extended WNNEM method and the WNNSA method,

several Monte Carlo simulations were performed. In the following subsections,

three scenarios are presented from them, which step by step show the effective-

ness of the extensions introduced before. Scenario IV, which is based on Scenario

I presented in Section 2.3.2.2, illustrates the applicability of the extension of the

WNNEM method to negative covariates. In Scenario V, which utilises the same set-

tings as Scenario I, the advantage of the WNNSA method using simulated annealing

is presented. It is important to note, that in this scenario, negative covariates are not

present. Finally, Scenario VI is a complex simulation containing both negative and

positive covariates. This scenario aims to present the advantage of the WNNSA

method in a rare feature space containing only a few covariates with few values.

In this research, the results of the extended WNNEM method and the WNNSA

method were compared to two types of the PSM method and to stratified matching

(SM) [98, 99]. The two types of the applied propensity score matching were the

followings: (1) In practical studies, the PSM method is generally applied with a

restrictive condition. This constraint is controlled by setting the caliper size param-

eter. Generally, the caliper size is set to 0.2 of the standard deviation of the logit

of the propensity scores. It means that the control individuals can only be selected

from a reduced environment of the treated elements. In the followings, this type of

the PSM method is denoted as PSM_02. However, using this constraint, the control

group selection method may also result in a control group that contains fewer indi-
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viduals than the treated group. (2) In the second version of the PSM method, for a

fair evaluation, the propensity score matching was run with dynamic caliper size. It

means that the size of the neighbourhood (aka the caliper size) of the treated indi-

viduals was determined dynamically such that in each case, an appropriately sized

control group could be selected. In the followings, this type of the PSM method is

denoted as PSM_DYN. Such a fair evaluation was also used during the evaluation

of the WNNEM method in Section 2.3.2. In the case of the WNNSA algorithm, the

minimal size of the reduced k-size environment (kmin) was calculated in accordance

with Algorithm 2.3. To increase the search space and the freedom of the algorithm,

the value of k was set to k = ⌊kmin ∗ 1.15⌋ in all scenarios.

As mentioned before, the effectiveness of the proposed methods was evaluated

through Monte Carlo simulations. In each scenario, 100 independent datasets were

generated with the given parameters. That is, each scenario was evaluated on 100

independent but similar datasets. As the WNNEM method is a deterministic algo-

rithm, it was run only once on each generated dataset. In contrast, as the PSM_02,

PSM_DYN, and WNSSA methods are not deterministic methods, they were exe-

cuted 10-times on each dataset. For these methods, the best result from 10 runs was

considered for the evaluation.

The quality of the selected control groups was evaluated from several perspec-

tives. For distribution-based evaluation, the SMD, the t-test, the chi-squared test, the

Hansen-Bowers test, and the Distribution Dissimilarity Index has been used. The

pairwise similarities of the paired elements were evaluated by the Nearest Neigh-

bour Index and by the Global Dissimilarity Index.

2.3.4.1 Datasets

Scenario IV is a modified version of the benchmark dataset used in Scenario I and

presented in Section 2.3.2.2. I have modified it by changing the effect of some

covariates of the dataset from positive to negative. As the original form of this

dataset is a widely used dataset, I utilised it to show the efficiency of the simulated

annealing in Scenario V. In Scenario VI, a novel, synthetic dataset was used for the

simulations. In the following, these datasets are described in detail.

In Scenario IV, the logistic regression model to describe the probability for the

treated group membership was formulated as described in [96], but the effect of the

first, fourth and seventh covariates features was changed from positive to negative

(Eq. 2.31). That means these features negatively affect the probability of belong-
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ing to the treated group. The applied weight coefficients were same as in Section

2.3.2.2.

The settings of Scenario V are entirely in line with the settings of Scenario I

presented in Section 2.3.2.2.

Scenario VI is a novel, synthetic dataset. This dataset contains fewer covariates

than the previous two datasets, therefore, it better illustrates the problem of conflict-

ing candidates. However, this dataset is more complex as it also contains covariates

with negative and positive associations. Furthermore, it also contains nominal, or-

dinal and continuous variables. In this dataset, every individual is characterised by

two ordinal variables with Binomial distribution (xj ∼ B(4, 0.5), j = 1, 2), four

binary variables with Bernoulli distribution (xj ∼ B(0.5), j = 3, . . . , 6) and two

continuous variables with Normal distribution (xj ∼ N (2, 0.6), j = 7, 8).

logit(pi,treat) = b0,treat−

bLxi1 + bLxi2 + bLxi3 − bMxi4 + bMxi5+

bMxi6 + bHxi7 − bV Hxi8

, (2.31)

where b0,treat = −1.344090, bL = log(1.05), bM = log(1.25), bH = log(1.5) and

bV H = log(1.9). Approximately 19% of the subjects were considered as members

of the treated group.

2.3.4.2 Scenario IV - Illustration of the extended version of the WNNEM
method

The example presented in Scenario IV illustrates the correctness of the modified

weight calculation method given in Equation 2.23. For this purpose, the simulated

datasets contain both positively and negatively affecting features.

Table 2.9 summarises the evaluations of the control groups selected by the SM,

PSM_02, PSM_DYN, and the extended version of the WNNEM methods. Table

2.9 contains the minimal, average and maximal quality values of the control group

selections performed on the generated 100 datasets. As DDI, NNI, and GDI metrics

are distance measures, in their case, the lower the value, the more similar the se-

lected control group is. In contrast, in the case of the Hansen and Bowers test (HB),

the higher the value, the more similar the selected control group is. The maximum

possible value of the HB test is 1.

It can be seen in Table 2.9 that the SM method resulted in the worst metrics. In

no case was the method able to select a control group of the same size as the treated
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Table 2.9. Quality measures for Scenario IV.

SM PSM_02 PSM_DYN WNNEM
min avg max min avg max min avg max min avg max

HB(p) 0.505 0.873 0.999 0.735 0.965 1.000 0.776 0.980 1.000 0.944 0.998 1.000
DDI(d) 0.535 0.603 0.704 0.023 0.053 0.123 0.008 0.019 0.034 0.006 0.013 0.021

NNI(d) 0.535 0.603 0.704 0.206 0.313 0.390 0.187 0.281 0.349 0.054 0.062 0.073
GDI(d) 0.535 0.603 0.704 0.234 0.364 0.475 0.214 0.364 0.475 0.057 0.068 0.084

group. Comparing the PSM_02 and the PSM_DYN methods, the advantage of the

PSM_DYN method is clearly visible. When comparing the extended WNNEM

and PSM_DYN methods, we can see that the extended WNNEM method could

select more similar control groups than the PSM method with dynamic caliper size

setting in more cases. This fact is confirmed by all four quality indicators. The

results support that the proposed extension of the WNNEM method is appropriate

for handling negative covariates.

As the Hansen and Bowers test is a widely used overall balance test, its values

are presented in Figure 2.13 in detail for the 100 datasets. It can be observed that

the interquartile range is the smallest in the case of the extended WNNEM method.

Besides that, this method selects more similar control groups more often; it also

works quite reliably.
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Fig 2.13. Variation of the Hansen and Bowers test in Scenario IV.

Figure 2.14 shows the individual balance values for the observed covariates

separately. As the purpose of the present study was to examine how the weight-

calculation of negative covariates works, this test is the most important test in this

scenario. The similarity along with the covariates separately was calculated by the
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Chi-square test, and the figure presents the distribution of the p values. Examin-

ing the properties separately, it can be seen that the PSM and WNNEM methods

achieved better results than the stratified matching. The WNNEM method gave

the best results for almost all variables, also including the negative covariates (x1,

x4, x7). Furthermore, SMD values were also calculated for all covariates and all

matching methods. The SMD values for all matching were less than 0.1.
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Fig 2.14. Distribution of all covariates in Scenario IV.

2.3.4.3 Scenario V - Illustration of the effectiveness of the WNNSA method
against the deterministic WNNEM method

The example presented in Scenario V illustrates the advantage of the proposed

WNNSA method against the WNNEM method. In this scenario, the data-generating

process was identical to the one used in Section 2.3.2.2. The method of generating

the datasets was not changed in order to illustrate the efficiency of the proposed

method on a widely used benchmark dataset.

Table 2.10 presents the main quality indicators of the selected control groups.

Considering the Hansen and Bowers test, the PSM, WNNEM, and WNNSA meth-

ods gave almost the same results. At the same time, the stratified matching resulted

in less balanced control groups. The reason for the problem is again the same as be-

fore. As the dissimilarity indexes show, this method was not able to select full-sized
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control groups. Besides the Hansen and Bowers test, the other distribution-based

measurement (DDI) also confirms the similar qualities of the results of the PSM,

WNNEM, and WNNSA methods. However, considering the neighbourhood-based

indices (NNI, GDI), we can see that the WNNEM and WNNSA methods gave better

results with one order of magnitude than the PSM methods.

Table 2.10. Quality measures for Scenario V.

SM PSM_02 PSM_DYN WNNEM WNNSA
min avg max min avg max min avg max min avg max min avg max

HB(p) 0.512 0.873 1.000 0.813 0.978 1.000 0.904 0.993 1.000 0.740 0.991 1.000 0.955 0.998 1.000
DDI(d) 0.504 0.574 0.631 0.021 0.061 0.116 0.006 0.014 0.023 0.006 0.012 0.022 0.005 0.011 0.021

NNI(d) 0.504 0.574 0.631 0.194 0.316 0.374 0.190 0.278 0.325 0.052 0.060 0.070 0.056 0.070 0.080
GDI(d) 0.504 0.574 0.631 0.214 0.348 0.416 0.212 0.313 0.367 0.052 0.061 0.077 0.062 0.073 0.097

If we compare the WNNEM and WNNSA methods (Table 2.10), we can see

that in terms of neighbourhood indices, the WNNSA method performed slightly

worse than the WNNEM method. The reason for this is that WNNSA does not al-

ways select the nearest neighbours. In contrast, as the WNNSA is trying to achieve

a globally optimal solution, this method gave better results in terms of the indices

measuring the distributions of the whole dataset (Hansen and Bowers test, Distribu-

tion Dissimilarity Index). In consequence, the variable-wise balance may be a little

bit more diverse in the case of the WNNSA method (Figure 2.15). However, the

SMD values for all matching methods were less than 0.1.
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Fig 2.15. Distribution of all covariates in Scenario V.

At the same time, Figure 2.16 shows that the interquartile range of the WNNSA
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method is smaller than the interquartile range of the extended WNNEM method.

That is, the WNNSA method can select more similar control groups more reliably.

For better visibility, Figure 2.16 does not include the results of the SM method as

its outlier values were too low. For the sake of completeness, the first quartile (Q1)

of data for SM is equal to 0.8092, the median of the data (Q2) is equal to 0.9235,

and the third quartile of data (Q3) is equal to 0.9730.
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Fig 2.16. Variation of the Hansen and Bowers test in Scenario V.

2.3.4.4 Scenario VI - Advantage of the WNNSA method in a more conflicted
environment

The results presented in Sections 2.3.4.2 and 2.3.4.3 were based on benchmark

datasets. As the proposed WNNSA method aims to improve the efficiency of the

WNNEM method in a conflicted environment, the main advantage of the presented

method can be primarily presented with such a kind of dataset.

Table 2.11 shows the values of different quality measures of the control groups

selected by the SM, PSM_02, PSM_DYN, the extended version of the WNNEM,

and WNNSA methods in Scenario VI. Table 2.11 contains the minimal, average and

maximal values for the generated 100 datasets.

Table 2.11. Quality measures for Scenario VI.

SM PSM02 PSMDYN WNNEM WNNSA
min avg max min avg max min avg max min avg max min avg max

HB(p) 0.140 0.724 0.995 0.523 0.941 1.000 0.729 0.960 1.000 0.769 0.969 1.000 0.815 0.991 1.000
DDI(d) 0.617 0.710 0.800 0.062 0.102 0.162 0.050 0.072 0.102 0.032 0.056 0.078 0.034 0.052 0.071

NNI(d) 0.718 0.789 0.858 0.591 0.661 0.705 0.528 0.640 0.678 0.285 0.303 0.321 0.300 0.318 0.335
GDI(d) 0.637 0.728 0.815 0.314 0.411 0.463 0.279 0.376 0.446 0.035 0.046 0.057 0.043 0.056 0.069
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It can be seen in Table 2.11 that the SM method yielded the worst results in most

cases, analogously to Scenario IV and Scenario V. Overall, the nearest neighbour-

based methods (WNNEM and WNNSA) achieved better results than the PS-based

methods (PSM_02 and PSM_DYN). The differences between the two groups are

similar in magnitude as in Scenario V.

In terms of NNI and GDI measurements, the deterministic WNNEM method

achieved better results than the non-deterministic WNNSA method. However, it can

be seen that in terms of overall balance (HB(p)) WNNSA achieved better results.

The differences between the two methods are greater in this case than in Scenario

V. This fact is also observable in Figure 2.17. In this figure, the results of the SM

method are again not presented. For the SM method, the values are the followings:

Q1 = 0.6105, Q2 = 0.7810, and Q3 = 0.9093.
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Fig 2.17. Variation of the Hansen and Bowers test in Scenario VI.

Figures 2.18 and 2.19 show the individual balance values for continuous and

non-continuous variables. In the case of non-continuous variables (Figure 2.18),

the WNNSA method achieved the best results in all cases. Comparing the WNNSA

method to the WNNEM method, the distribution of the balance in the case of x1 and

x2 variables is better in the case of the WNNSA method; in the case of the other

covariates, it is the same. In the case of continuous variables (Figure 2.19), the

WNNEM method gave less good results than the PS-based methods, but the results

of the WNNSA method are similar and better for x7. The SMD for all matching

methods were again less than 0.1.

To sum up, the WNNSA method can be seen as an improvement of the Weighted
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Fig 2.18. Distribution of nominal and ordinal covariates in Scenario VI.

Nearest Neighbour Control Group Selection with Error Minimization (WNNEM)

method. It utilises simulated annealing to achieve a global optimal solution and

to find the best pairing of individuals from the case group and the control group.

All optimisation decisions are made in a reduced environment. My results showed

that the WNNSA method can achieve better results than the WNNEM method and

also has its advantage against the propensity score matching methods in rare feature

spaces.

The last question that I wanted to answer during my research regarding con-

trol group selection was how missing variables effect the outcome of case-control

studies? The details and results of my research can be found in the next section.

2.4 Measuring the effect of missing variables

As retrospective cohort studies look back in time, they do not require a long time

for collecting data about patients. However, these studies must face the fact, that

the range of available data is not always complete. For this reason, it may happen

that case and control groups differ not only in the previously planned characteristic

property (e.g., medication treatment vs placebo), but hidden differences may exist

as well, for which we do not have data. Of course, similar cases may also occur in

56



SM

PS
M
_0
2

PS
M
_D

YN

W
NN

EM

W
NN

SASM

PS
M
_0
2

PS
M
_D

YN

W
NN

EM

W
NN

SA

0.0

0.2

0.4

0.6

0.8

1.0

t-t
es
t (
p)

x7

SM

PS
M
_0
2

PS
M
_D

YN

W
NN

EM

W
NN

SASM

PS
M
_0
2

PS
M
_D

YN

W
NN

EM

W
NN

SA

x8

Fig 2.19. Distribution of continuous covariates in Scenario VI.

prospective studies, if the scope of data included in the study is not complete.

The effect of the known independent variables on the dependent variable (out-

come variable) can be determined in different ways. If the outcome variable (e.g.,

the appearance of a disease) is categorical, logistic regression is the most commonly

used method for this purpose. However, LR is based on estimation and it includes

uncertainty. The uncertainty of the model can be measured by the R2 value, which

suggests how well the observed outcome is replicated by the model from the inde-

pendent variables. If the established logistic regression model is inaccurate, then the

value of the output variable (e.g., the appearance of a disease) cannot be predicted

with sufficient certainty.

However, the question arises, whether the uncertainty of the model can be de-

rived from the missing variables. Furthermore, the uncertainty of the prediction of

the output variable only arises from the predictive variables included in the model

or the effect of the missing variables may also affect this uncertainty? How does

the uncertainty of the model relate to the uncertainty of the prediction of the output

variable?

During my research, I used a statistics-based approach with which I tried to

determine the relationship between the accuracy of the binary logistic regression

model and the uncertainty of the prediction of the output variable. The analysis was

based on benchmark datasets generated with Monte Carlo simulations. Using these

datasets, binary logistic regression-based propensity score matching was performed

under various conditions to generate possible control groups, and then the deviation

of the output variable in the case group and the control group was investigated in
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order to determine the degree of distortion.

2.4.1 The methodology of the research

The effect of the known independent variables on the outcome variable is expressed

by the calculations of odds ratios using logistic regression. As logistic regression is

a probabilistic model that does not guarantee that the regressed outcome is entirely

describable with the independent variables, it is possible to measure this uncertainty

and there are various methods to do so.

The most basic measure is the coefficient of determination, denoted by R2. R2 is

the proportion of the variance in the dependent variable that is predictable from the

independent variables. It provides a measure of how well a model approximates the

observed outcomes based on the proportion of total variation of outcomes explained

by the same model. Usually, the value of R2 is in the range of [0, 1]. The better the

linear regression fits the data, the closer the value of R2 is to 1. However, values of

R2 outside the range of [0, 1] can occur, depending on the used measure.

R2 does not indicate whether the independent variables cause the changes of

the dependent variable or omitted-variable bias exists. There is no way to tell if

the correct regression was used, if the most appropriate set of independent variables

has been chosen or if there is a collinearity present in the data on the explanatory

variables. The model might be improved by using transformed versions of the ex-

isting set of independent variables, and it is possible that there are not enough data

points to make a solid conclusion. It is important to take note of the second caveat:

R2 does not indicate whether omitted-variable bias exists. But still, R2 provides a

measure to quantify the model quality.

My main research aim was to discover if there is a measurable numeric relation-

ship or determined correlation between the value of the general R2 of models with

omitted independent variables and the influence of the omitted independent variable

on the outcome variable. My research was based on the assumption that, if the set

of observed variables is complete, the logistic regression model properly describes

the relationship between the independent variables, and the dependent variable and

the R2 value of the model is around 1.0. Selecting a control group to a sample based

on this model guarantees that the deviation of the outcome variable is marginal be-

tween the case group and the control group based on the assumption that the odds

ratio values are adequate.

The effect of the missing variables was analysed the following way. Benchmark
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datasets were generated by Monte Carlo Simulation. The investigation scenario

consisted of 100 simulated datasets of a 1000 individuals characterised by 8 binary

independent variables. All 8 independent variables (x1, . . . , x8) were independent

Bernoulli random variables with a probability parameter of 0.5. These independent

variables model the characteristics of a certain patient, e.g., sex, diagnoses and other

descriptors.

For each dataset, additional datasets were created: for every independent vari-

able, only one was omitted and the others were kept intact. This resulted in 8

additional datasets, each one containing only 7 independent variables. This way the

number of investigated datasets totalled 900 ((1 + 8) ∗ 100).

To determine the output variable, a utility value (y′) was calculated for each

individual based on Eq. 2.32. It can be seen that the values of the regression co-

efficients were chosen in such a way, that the effect of the independent variables

changes uniformly from 1.0 to 3.0. Therefore, omitting x1 should have a lower

effect on the R2 value of the model than omitting x8.

y
′
= 1.0x1 + 1.2x2 + 1.4x3 + 1.6x4 + 1.8x5 + 2.0x6 + 2.5x7 + 3.0x8. (2.32)

The binary outcome (y) was determined individually for each dataset.

y =

{
1 if y

′
> median(y)

0 otherwise
, (2.33)

where median(y) is the median of all y values. In a more comprehensible way, if

the exposure of an element from a specific dataset was higher than the median of all

elements from the same dataset, the outcome is 1 (having a diagnosis or receiving a

treatment), otherwise 0. This way the probability of the outcome estimates 0.5 for

each specific dataset.

After the creation of the datasets, to estimate the propensity scores of the indi-

viduals and the R2 values for the models logistic regression was performed on each

of them independently. In the next step, I determined the R2 difference values for

each coherent dataset as

dR2i = abs(R2
baseline −R2

xi
), i ∈ 1, . . . , 8, (2.34)

where R2
baseline is the R2 value of the dataset containing all independent variables

and R2
xi

is the R2 value of the dataset from which xi was omitted.
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In the next step, test groups were created by blind random selection from each

dataset, having the outcome retain 0.5 probability. The remaining elements formed

the population, which contained the possible entities of the control groups. 50 con-

trol groups were selected for each test group with propensity score matching (caliper

size=0.05). The evaluation of the results was based on the average values of the 50

control groups. The individuals of the control groups were selected in two different

ways.

In the first case, called realistic case, I assumed, that the population giving the

basis of the control group contains individuals both with 1 and 0 values of the omit-

ted binary variable. This case simulates when the population from which the control

group is selected may contain random values on the missing predictive variable.

In the second case, called pessimistic case, the worst case was modelled, when

the population contains only such individuals where the value of the invisible pre-

dictive variable was equal to 1. This is the case, when we do not know, for example,

that diabetes has a great impact on the outcome variable, and we select people into

the control group without taking into consideration this feature, and the resulted

control group contains only diabetic patients.

As the output variable in my investigation was binary, the distribution of the

output was determined as the ratio of cases with y = 1 value, which models, for

example, the frequency of a disease. So, the relative difference of the output variable

in the case group and the control group was calculated as

relerr =
|{Xi ∈ XUT | yi = 1}|
|{Xj ∈ XT | yj = 1}|

. (2.35)

Finally, I compared the calculated dR2i and relerr values.

2.4.2 Findings of the investigation

Figure 2.20 shows the relationship between the probability of the outcome being 1

and the dR2i value. The left side of Figure 2.20 shows that there is no noticeable

relationship between the accuracy of the logistic regression model and the proba-

bility of the outcome in the realistic scenario. The quality of the selected control

groups is almost the same in every case. The deviation of the probability of the

outcome from the expected value (shown in the figure as a cyan horizontal region

which represents the minimum, average and maximum probability of the outcome

being 1 calculated based on the case groups) is within a 10% range. It seems that
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the quality of the outcome variable is not affected by the quality of the model. The

right side of Figure 2.20 (pessimistic scenario) shows a more noticeable connection.

The omitted variable strongly affects the value of the outcome variable. The worse

the logistic regression model estimates the outcome, the bigger the difference is in

the probability of the outcome variable. The more inaccurate the model, the higher

the probability of the outcome being 1.

Fig 2.20. Relationship between the probability of the outcome being 1 and the dR2i

values for the realistic scenario (left) and pessimistic scenario (right).

Figure 2.21 shows the relative error of the probability of the outcome being

1 between the case and the selected control groups as a function of dR2i. Just as

previously, on the left side (realistic scenario) there is no noticeable relationship

and the relative error tops at 20%. In contrast, in the pessimistic scenario (right

side) there is a linear relationship between the measures. The higher the inaccuracy

of the model, the higher the relative error becomes, reaching even 70%.

The results of the logistic regression based analysis are influenced by the ig-

noration of an explanatory binary variable. In the realistic case, when the omitted

explanatory variable can take any value in the control group, the relative error of

the predicted dichotomous value moves between 0% and 20%. However, if the

omitted explanatory variable only takes 1 as value in the control group, the relative

difference between the predicted dichotomous outcome value with an omitted ex-

planatory variable and the outcome value without any omitted explanatory variable

can reach 70%.

To sum up, we can see that the selection of independent variables is a critical
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Fig 2.21. Relative error of the probability of the outcome being 1 as a function of
dR2ifor the realistic scenario (left) and pessimistic scenario (right).

step in case-control studies. The results of case-control studies rest on a correctly

constructed dataset and adequate control group selection. Missing variables that

have a high effect on the outcome variable may significantly distort the analysis

results, so during the design phase determining such variables and enrolling them

into the study is an essential task.

2.5 Related theses

Thesis 1.1

I proposed three quantitative dissimilarity measures to measure the dissimilarity of

case and control groups regardless of the types of variables. Two of them evaluate

the similarities of case and control groups based on the similarities of the paired in-

dividuals, and the third one compares the distributions of the characteristic features

of the groups. The characteristics of the proposed methods was shown on synthetic

datasets. All proposed measures are linear but their responsiveness is different. Re-

sults pointed out the fact that evaluating case and control groups must be made from

different aspects, using both pairwise and distribution-based measures.
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Thesis 1.2

I proposed a novel nearest neighbour-based control group selection method called

Weighted Nearest Neighbours Control Group Selection with Error Minimization

(WNNEM). The proposed method calculates the dissimilarities of the individuals

in the original feature space of the independent variables. The independent variables

are weighted based on a logistic regression-fit. For finding the nearest neighbours,

WNNEM uses Vogel’s approximation to solve such cases where an individual of the

candidate group would be paired to more than one individual of the case group. The

effectiveness of the WNNEM method was evaluated on benchmark and synthetic

datasets. Evaluation results showed that the proposed WNNEM method is able to

select a more balanced control group than the most widely applied greedy form of

the propensity score matching method.

Thesis 1.3

As the previously developed WNNEM method utilises local optimisation, I pro-

posed a novel simulated annealing-based control group selection method called

Weighted Nearest Neighbour Control Group Selection with Simulated Annealing

(WNNSA). The WNNSA method utilises simulated annealing to achieve a global

optimum during control group selection to find the nearest neighbours. The ef-

fectiveness of the WNNSA method was evaluated on benchmark and synthetic

datasets. Evaluation results showed that the proposed WNNSA method is able to

select a more balanced control group than the WNNEM method if numerous con-

flicted situations arise in the selection process of similar individuals.

Thesis 1.4

I analysed the effect of missing binary independent variables on the results of case-

control studies using logistic regression-fit. Using Monte Carlo simulations, my

empirical results showed that there is a correlation between missing binary inde-

pendent variables and the model accuracy. The Monte Carlo simulations revealed,

that the selection of independent variables is a critical step in case-control studies

as a biased control group regarding the missing variable may crucially affect the

analyses results.
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Chapter 3

Information extraction from
echocardiography documents

Extracting information from free-text written medical texts is a challenging task and

has been the subject of numerous publications in recent years [100, 101, 102, 103,

104, 105]. The difficulty of the task stems from the fact that free-text written med-

ical documents follow less the grammatical rules of the written language, contain

many abbreviations and spelling mistakes, and the terminology used is typically

arising from several languages.

Processing Electric Medical Records written in free-text requires different Nat-

ural Language Processing (NLP) techniques. The information extraction process

generally includes two main steps: named-entity recognition (NER) and relation

extraction (RE) [50]. NER aims to identify names or entities (e.g., diseases, med-

ical tests, results of tests), while RE aims to identify relations between them (e.g.,

symptoms related to diseases).

NER is usually implemented using direct search, rule-based search, machine

learning methods or their combinations [106]. In practice, searching methods us-

ing regular expressions defined by medical experts are most commonly used (e.g.,

[107, 108]). The drawback of this approach is that it is difficult to provide a suffi-

ciently general yet specific, complex regular expression that can handle typos and

different wordings. Furthermore, they are mainly developed for extracting only one

or some predefined keywords. Rule-based methods (e.g., [109, 110]) apply rules

defined by experts during the search. Machine learning methods (e.g., [111, 112])

also show good performance in recognizing entities; however, their performance is

highly influenced by the corpus used for training the model [113]. More recently,
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for exploring the text descriptions more effectively, text mining, NLP-based (e.g.,

[114, 115, 116]), and neural network-based (e.g., [117, 118]) methods have been de-

veloped, and their use is becoming more widespread. From deep learning methods,

mainly the recurrent neural networks (RNN), long short-term memory networks

(LSTM), its bidirectional version (Bi-LSTM), the pre-trained transformers models

(e.g., Bidirectional Encoder Representations from Transformers, BERT) and convo-

lutional networks (CNN) are used [119, 120]. The authors of these articles generally

point out that these models require a considerable computational capacity to build,

and the literature review shows that these models perform well mainly in the field

of Chinese medical NER due to the specific structure of Chinese written medical

text records [121]. But there are also examples of their use in other languages for

named-entity recognition, such as in Spanish or Swedish clinical texts [122].

Considering the application areas, we can find many biomedical application ex-

amples, but information extraction from cardiac ultrasound findings is one of the

most frequently researched areas. Since the ejection fraction (EF) is one of the

most important diagnostic measures and one of the strongest prognostic indicators

in patients with cardiovascular disease, several studies aim to extract this diagnostic

result (e.g., [52, 53, 54, 123]). Garvin et al. [53] used regular expressions for ex-

tracting EF values from echocardiogram reports. A similar method is also found in

[58]. In [54], the authors also aimed to extract EF information from three kinds of

clinical documents. Based on the characteristics of the corpora, rule-based regular

expressions and machine learning-based NLP methods were applied. The authors

evaluated the methods from different aspects, including the quantitative evaluations

of the extraction of EF mentions, mentions of left ventricular systolic function

(LVSF), extraction of EF quantitative values, and EF or LVSF qualitative assess-

ments. Naturally, in addition to the extraction of the EF values, other research was

also published that aimed to obtain other cardiac ultrasound characteristics. For ex-

ample, Wells et al. [56] utilized NLP-based parsing and outlier analysis to extract

flow velocities and chamber dimensions.

In addition to the extraction of predefined characteristics, some studies aimed

to extract a broader range of information. In [55], pattern matching was applied

to identify the relevant terms, and a concept-mapping algorithm was developed to

assign the terms to the appropriate measurement concept. Kaspar et al. [124] in-

vestigated how all variables could be extracted from echocardiogram reports and

what their quality would be for secondary use. The main conclusion of their study

was that data could be extracted from echocardiography documents, but extraction
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processes should be treated with caution, as the time and effort spent defining every

variable may make it dubious.

Based on previous publications, we can see that most of the solutions developed

aim at extracting only one or a few predefined results, typically using pattern match-

ing or integrating corpus-specific knowledge. Only two studies [55, 124] have been

published on comprehensive measurement outcome extraction, but they integrate a

big amount of corpus-specific knowledge.

To overcome these shortcomings, I developed a corpus-independent method to

extract quantitative measurement results from echocardiography documents. As the

proposed method utilises text-similarity-based mapping, I have analysed different

text-similarity measures to find the most suitable measure for information extraction

from echocardiography documents. The developed method automatically identifies

the name of the measurements and their recorded results in the text, and returns

them in a structured way. The efficiency of the method has been evaluated and

presented on a large corpus of Hungarian echocardiography documents.

The rest of this chapter is organised as follows: Section 3.1 introduces the cor-

pus used during my research and presents the challenges of extracting information

from echocardiography documents. In Section 3.2, different text-similarity mea-

sures are evaluated to find the most suitable measure for the developed method.

Finally, Section 3.3 discusses the developed method in detail and evaluates it using

the corpus introduced in Section 3.1.

3.1 Corpus

Echocardiogram is a sonogram of the heart. It is one of the most widely applied di-

agnostics test in cardiology: routinely used in diagnosis, management and follow-up

of patients with any suspected or known heart disease. Echocardiography reports

usually contain two parts in terms as diagnostic content: a semi-structured part

where results are usually stored in term-value pairs (e.g., EN: "Septum: 14 mm",

HU: "Szeptum: 14 mm") and a free text part written in natural language (e.g., EN:

Left "ventricular hypertrophy" HU: "Koncentrikus bal kamra hypertrophia"). The

form and content of the reports differ in medical institutes. The form and the con-

tent of the reports are mainly determined by the habits of the medical assistants and

doctors. For example, the test result is separated by a colon from the test name in
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some sites, while others do not use any separator character. Space characters typ-

ically separate different measurement results from each other, but other separator

characters, such as semicolons, can also be found. Furthermore, even within one

site, the same test result can be recorded with or without a unit of measurement in

the reports. There is also a wide variation in how missing data are marked; fur-

thermore, typographical errors increase the variety of the documents. A translated

example of an echocardiography document can be seen in Figure 3.1.

Fig 3.1. Raw echocardiography report translated to English.

The effectiveness of my proposed method was evaluated by processing 20,074

echocardiography reports. The document set was collected in a Hungarian hospi-

tal and contained all findings recorded between 2017 and 2021 by multiple physi-

cians. The findings were anonymised, and did not contain any information about

the patient or the examining physician. As there is no publicly available bench-

mark dataset to evaluate such methods, a dataset had to be collected, and, as none

of the proposed methodologies contain any language-dependent processing activity

and the proposed method can be used for documents written in any language, the

collected dataset was adequate for evaluation.

3.1.1 Challenges of processing echocardiography documents

The methods presented in the introduction of Chapter 3 are widely applicable to

extract information from medical documents mainly written in English, however

the nature of Hungarian language requires specific tools to extract information from
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medical documents written in Hungarian. In this section, I discuss the How To-s

and challenges of the general extraction process of echocardiography reports, and

also present some Hungarian language specific problems.

As I mentioned before, the semi-structured part of echocardiography reports

contains medical information in term–value pairs separated by colon. The term part

refers to the identifiable named entities and the value part refers to the measured and

recorded value for that named entity. The measured value may also contain a unit

of measurement. However, based on the extraction approach, various challenges

emerge aside from typographical errors during term extraction. These challenges

are described in detail in the following subsections.

Articles

A common characteristic of the English and the Hungarian language is the use of

"a" article before adjectives and nouns (in Hungarian "a"/"az" pair is used and in

English "a"/"an" pair is used). In most case the use of the "a" article does not

pose a problem, however, in case of echocardiogram reports, "A" (A wave) is the

peak velocity flow in late diastole caused by atrial contraction. Furthermore, in

Hungarian language "e" expletive is also present, but in echocardiography reports

"E" (E wave) stands for the peak velocity blood flow from gravity in early diastole.

Typographical errors

The lack of a unified recording interface infers many typographical errors which

need to be taken into account during term extraction. Most frequent typographical

errors can be resolved by using a dictionary which contains the original form of

medical terms and their synonyms. If the similarity of the written expression to any

term of the dictionary is within an acceptable margin, it is resolvable.

Missing whitespaces

As a form of typographical error, missing whitespaces can also occur between

terms, values and units (e.g., EN: "Left ventricular end-diastolic diameter43.: mm",

HU: "Bal kamra diast.átm43.: mm"). If the text processing method is word-based,

missing whitespaces have a huge impact on the success of processing. This prob-

lem can be handled by inserting separator space characters into the text during text
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cleaning, if text cleaning is applied.

Recognition of composite terms

Not only typographical errors make it harder to extract information from echocar-

diography reports. Based on the assumption, that named-entities follow the term-

value pair structure, it is possible to extract the greater part of named entities. How-

ever, special cases are also present in echocardiography reports mostly because of

the habits of the recording individual. Such a composite term can be described in

prefix–term1–term2-value1–value2–common_unit form (e.g., EN: "left ventricular

end-diast/end-syst diameter: 54/35 mm", HU: "bal kamra diast/syst átmérő: 54/35

mm") where the recording individual aggregates two somewhat related terms. In

this case the identified term should be interpreted as prefix–term1–value1–unit and

prefix–term2–value2–unit.

Other composite terms can also be present. For example EN: "ejection fraction

Teichholz: 56%, Simpson 52%", HU: "ejekciós frakció Teichholz: 56%, Simpson:

52%" can be described as prefix–term1–value1–unit–term2–value2–unit or "E/A:

0.4/0.8 m/s" can be describe as term1–term2–value1–value2–unit.

Furthermore, expletives are also commonly used (e.g., EN: "left atrium: 42 mm

(apical 4Ch: 43x75mm)", HU: "Bal pitvar: 42 mm (csúcsi nézetből: 43x57 mm)")

which makes composite term recognition even harder. A possible approach to pro-

cess composite terms is to define some basic rules and process echocardiography

documents based on these rules.

3.2 Evaluation of different text similarity metrics

To develop a text-similarity-based information extraction method, exact matching

is not a viable option, as it is not capable of finding synonyms, typos, and abbrevi-

ations of the search term. For this purpose, I examined and compared different text

similarity metrics applied in the field of NLP. My goal was to determine which sim-

ilarity metrics present the highest gain in terms of searching for echocardigoraphy

documents containing a given keyword or its misspelled, abbreviated or synonym

form.
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3.2.1 Included metrics

The basic distance metrics included in my case study are widely used metrics in the

field of NLP. The metrics of the study were the following: Longest Common Subse-

quence (LCS), Levenshtein distance (LD), weighted Levenshtein distance (WLD),

Jaro-Winkler distance, and cosine distance. In the following, these metrics and the

principles behind them are introduced in detail.

Longest Common Subsequence

Longest Common Subsequence (LCS) is one of the simple metrics measuring the

similarity of two strings. It finds the longest subsequence of characters present

in both texts. To measure the similarity of the two strings, the actual common

subsequence is irrelevant, only the length of it is taken into account [125]. For

example, both "cardi" and "ardil" are subsequences of "cardiology" and their length

in both cases equals to five. The term subsequence is defined as follows. Given a

sequence a = a1, . . . , ak. Another b = b1, . . . , bm sequence is a subsequence of a

if such a strictly increasing sequence of indices (i1, . . . , im) of a exists that for all

j = 1, . . . ,m, aij = bj . This metric also takes the cases into account where some

characters are omitted, but it cannot recognise swapped characters.

Levenshtein distance

The Levenshtein distance [126, 127] is a more complex dissimilarity metric that

counts the number of the edits that are needed to transform an s1 string into another

s2 string. The Levenshtein distance takes the following operations into account:

insertion, deletion, and substitution of characters. The Levenshtein distance works

basically on single words, however, it is not restricted to those: it can also be calcu-

lated for strings of any type.

levs1,s2(|s1|, |s2|) denotes the Levenshtein distance of strings s1 and s2, where

|s1| and |s2| yield the lengths of strings s1 and s2, and levs1,s2(i, j) for each i, j ∈ N
is calculated as

levs1,s2 =



max(i, j) if min(i, j) = 0

min


levs1,s2(i− 1, j) + 1

levs1,s2(i, j − 1) + 1

levs1,s2(i− 1, j − 1) + 1(s1i ̸=s2j)

otherwise
. (3.1)
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The inclusion of the Levenshtein distance was motivated by the fact that in med-

ical texts the Latin medical terms are probably written, to some degree, in a way

similar to spoken-language, and this kind of difference between two words can be

easily caught by the use of the Levenshtein distance.

Weighted Levenshtein distance

The original Levenshtein distance is not flexible enough to consider the magnitude

of errors: all edit operations uniformly cost 1. However, practically, not all edits

can be considered equivalent. For example, in case of typo correction substituting

"r" for "t" should have a smaller cost, since they are located close to each other on a

keyboard with QWERTY layout. The weighted Levenshtein distance considers all

these aspects as well and sets different costs to the pairs of characters according to

the probability of their interchange.

Jaro-Winkler distance

The Jaro-Winkler distance [127] accounts for the lengths of two strings and partially

accounts for the type of typographical errors humans make when typing texts. The

Jaro-Winkler distance is calculated as

dw(s1, s2) = 1− simw(s1, s2), (3.2)

where

simw(s1, s2) = simj(s1, s2) + lp(1− simj(s1, s2)) (3.3)

and simj is the Jaro similarity for s1 and s2 strings, l is the length of a maximum

4 characters long common prefix and p is a constant scaling factor with a standard

value of 0.1. The Jaro similarity (simj) is calculated as

simj(s1, s2) =

0 if m = 0

1
3

(
m
|s1| +

m
|s2| +

m−t
m

)
otherwise

, (3.4)

where |si| is the length of si, m is the number of matching characters and t is half

of the number of transpositions. The concept of matching and transpositions is

detailed in [127].

The Jaro-Winkler distance metric results in smaller distance values for those

two strings that match from the beginning in length l. I decided to analyse the
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applicability of this kind of distance metric as well, because my hypothesis based

on the manual review of a pre-selected sample document was that typing errors are

more common toward the end of the words.

Cosine similarity

The cosine similarity is also a widely used similarity metric for comparing two

strings. For example, it was used in anomaly detection in web documents [128], in

content-based recommender systems [129], and even it was used for pattern recog-

nition in medical diagnoses [130]. In the case of calculating cosine similarity, the

strings are represented as vectors, and the similarity is calculated from the angle

enclosed by the vectors. More formally, the cosine similarity is defined as the inner

product of two vectors divided by the product of their lengths. To get the cosine

similarity of two strings, the compared strings first have to be projected to a high-

dimensional (typically several hundred dimensions) vector space. I achieved it by

applying word embedding.

Word embedding [131] is one of the most popular representations of document

vocabulary as it is capable of capturing the context of a word in a document, seman-

tic and syntactic similarities or even relations between words. It provides an effi-

cient representation in which similar words have similar encodings. As a result, the

words that occur in a similar context will be represented as similar high-dimensional

vectors and they tend to have high cosine similarity, as well.

I used the FastText word embedding library developed by Facebook AI Research

(FAIR) team to calculate the high-dimensional vector representations for words oc-

curring in medical texts. FastText is an extension of the Word2Vec model proposed

by Google [131]. It uses a two-layer neural network for high-dimensional represen-

tation. The input of FastText is the word to be mapped with the surrounding text

and the output is a high-dimensional representation of the word. The key difference

between Word2Vec and FastText is the use of n-grams: Word2Vec only learns from

complete words found in the training corpus, while FastText not only considers the

complete words, but also the n-grams that are found within each word. The used

FastText model was fine tuned manually for the dataset based on the findings of

Balázs Szolár [132].

Having the high-dimensional representations of the strings to be compared, the
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cosine similarity can be calculated.

sim(S1,S2) =

∑n
i=1 s1is2i√∑n

i=1 s
2
1i

√∑n
i=1 s

2
2i

, (3.5)

where vectors S1 = [s11, s12, . . . , s1n] and S2 = [s21, s22, . . . , s2n] are the high-

dimensional vector representations of strings (in my case, words) s1 and s2.

The examination of cosine similarity was based on the fact that although the

same condition may be formulated differently in medical descriptions, but the text

surrounding the condition is most likely similar. My hypothesis was that the differ-

ent descriptions of the same medical terms (e.g., Latin and Hungarian forms of the

same term) will get high cosine similarity value. As the similarity of the synonyms

cannot be expressed by the application of the similarity metrics presented before, I

had great hopes for cosine similarity.

3.2.2 Evaluation process

I had to select the most appropriate text similarity metric as my main goal was

to develop a text-similarity-based information extraction method. This choice was

made by processing the results of the evaluation process presented in Figure 3.2.

The evaluation was done on the corpus presented in Section 3.1. The number of

unique expressions found in the original 20,074 reports was 25,380.

Fig 3.2. Workflow of the evaluation.

All echocardiography reports have been preprocessed as the zeroth step. The

aim of Preprocessing was to identify the measurements recorded as numerical val-

ues and to connect them to their units. The different measured values were replaced

with a unified special character to not differ in the preprocessed text. They can be

mapped back to their original values at a later step. This way, the variability of the

text resulting from different measurement results was significantly reduced, and the

number of unique expressions was also reduced to 15,105.

The next step was the design and the execution of Word Embedding. The applied

FastText-based neural network was tested with different parameter settings. The
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best performing neural net utilised a skipgram model with negative sampling. The

number of negative samples was 5 and the sampling threshold applied was 10−4.

The learning rate was set to 0.05 with a rate of 100 for updating the learning rate.

With 20 epochs and a window size of 5, all the words of the preprocessed documents

have been mapped to 100-dimensional vectors.

To evaluate the usefulness of the similarity metrics presented in Section 3.2, 10

medical terms considered as important search keywords have been selected by the

collaborating doctors’ personal preferences. These terms were the following: regurg

(insuff), hypokinesia (hypokinézis), akinesia (akinézis), shunt (shunt), bicuspidal

(bicuspidalis), thrombus (thrombus), stenosis (szűkület), systolic (systoles), mitral

(mitrális), and wallmotion abnormality (falmozgászavar). It is important to note

that all these medical terms were given according to the Hungarian terminology,

where all of them are expressed with one word. Furthermore, it may seem that the

set of selected words is rather small, but in a later step, doctors have to manually

annotate the resulting similar words.

In the second step, Calculating metrics, the 1,000 nearest matches have been

determined for every investigated distance metric and for all of the terms presented

in the previous paragraph. All calculated distance values have been converted to

similarity values, and the converted values have been normalised to the range of

[0, 1]. A similarity threshold of 0.65 has also been introduced to limit the number

of candidate words.

The third step was Annotation. With the help of a cardiologist, a subset of the

closest words has been annotated according to the following annotation rules:

• 2, if the found word was considered identical to the term searched for (e.g.,

alternative forms, abbreviations, typos)

• 1, if based on the found word, the cardiologist would consider checking the

report containing it to decide whether the report contains relevant information

or not, and finally

• 0, if the found word was considered irrelevant.

The difficulty of the task is shown by the fact that the evaluation of the similar words

found for these 10 search words required annotation for 8,647 similar words.

The final step was the Evaluation, where the ROC (Receiver Operating Char-

acteristic) curves have been plotted and the corresponding AUC (Area Under the

Curve) values have been calculated based on the annotation labels for each search

77



word: two values for each. The first called hard evaluation was calculated where

only the words labelled 2 were considered matches, and the second one was the

soft evaluation, where the words labelled as 1 and 2 were also considered relevant

matches.

3.2.3 Results of the evaluation

Table 3.1 shows the resulted number of candidate words in case of setting the sim-

ilarity threshold equal to 0.65. NC yields the number of candidates, NH and NS

the number of the true positive terms for the hard and soft evaluations respectively.

The corresponding AUC values for the results presented in Table 3.1 can be seen in

Table 3.2. The notation "-" means that with this parameter setting, exclusively real

positive candidates were selected and therefore the area under the ROC curve could

not be calculated. As we can see, the LCS, Levenshtein, and weighted Levenshtein

distances are more capable of distinguishing the true positive candidates from the

false positive ones. The advantage of using the weighted version of the Levenshtein

distance versus the basic one cannot be observed.

Table 3.1. The number of candidate words in case of applying different similarity
metrics and evaluation methods, while setting the similarity threshold equal to
0.65.

Number of candidate words
LCS Levenshtein weighted Lev. Jaro-Winkler Cosine

Term NC NH NS NC NH NS NC NH NS NC NH NS NC NH NS

regurg 17 15 15 15 15 15 15 15 15 103 25 29 155 54 91
hypokinesia 76 69 73 58 53 55 34 33 34 470 297 316 489 268 276
shunt 6 6 6 6 6 6 11 6 6 167 19 20 466 48 54
bicuspidal 6 2 2 6 2 2 5 2 2 135 3 4 1000 3 3
thrombus 25 25 25 22 22 22 23 23 23 191 41 49 97 42 52
stenosis 7 6 6 6 6 6 6 6 6 237 15 19 1000 15 52
systolic 50 19 39 45 19 34 39 17 27 259 27 83 136 30 89
akinesia 5 4 4 5 4 4 2 1 1 306 35 36 549 40 62
mitral 27 15 15 22 13 13 12 10 10 519 20 25 151 20 23
wallmotion abnormality 33 28 33 23 18 23 19 17 19 269 28 68 220 28 8

Comparing the two similarity metrics that selected more words as candidates,

namely the Jaro-Winkler distance and the cosine distance, we can see that the appli-

cation of the Jaro-Winkler distance is more appropriate in this topic. After manually

reviewing the results, I have established, that although the cosine distance can ex-

tract completely different word synonyms as well, they appear in the result set with

lower similarity values. Consequently, the false positive results appear with greater

similarity values in the results set than the completely different forms of synonyms.

Based on my findings, I had to reject the former hypothesis that cosine similarity
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Table 3.2. AUC values in case of applying different similarity metrics and
evaluation methods, while setting the similarity threshold equal to 0.65.

AUC
LCS Levenshtein weighted Lev. Jaro-Winkler Cosine

Term Hard Soft Hard Soft Hard Soft Hard Soft Hard Soft

regurg 1.0000 1.0000 - - - - 0.9954 0.9646 0.8894 0.8398
hypokinesia 0.6004 0.7032 0.6038 0.8545 0.1818 - 0.8483 0.8609 0.8657 0.8695
shunt - - - - 0.9333 0.9333 0.9968 1.0000 0.9041 0.9143
bicuspidal 1.0000 1.0000 0.8750 0.8750 1.0000 1.0000 0.9975 0.9790 0.9997 0.9997
thrombus - - - - - - 0.9865 0.9789 0.9519 0.8850
stenosis 0.6667 0.6667 - - - - 0.9688 0.9138 0.7919 0.7464
systolic 0.9440 0.7389 0.9413 0.8396 0.7701 0.7191 0.9120 0.9371 0.8041 0.5675
akinesia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8741 0.8507 0.7622 0.6622
mitral 0.9778 0.9778 0.9829 0.9829 0.8000 0.8000 0.9704 0.9670 0.8729 0.8441
wallmotion abnormality 0.9286 - 0.7000 - 0.9118 - 0.8718 0.9606 0.9269 0.9243

based on the applied FastText embedding can significantly improve keyword-based

search in medical texts. The results can be explained by the fact that the contexts

surrounding synonyms are probably different for those medical texts that use differ-

ent expressions for the same content.

Fig 3.3. ROC analysis of finding the term "thrombus" using different similarity
measures.

The results presented in Table 3.1 and Table 3.2 show that for the LCS, Leven-

shtein and weighted Levenshtein metrics a lower, and for Jaro-Winkler and cosine

similarity metrics a higher threshold value has to be applied to get enough true pos-

itive candidate words in a way to get good enough AUC value for the classifier.

For example, in Figure 3.3, the ROC curves for searching for the word "thrombus"

is presented. For finding more positive samples the similarity threshold for LCS,

Levenshtein, and weighted Levenshtein distances was decreased to 0.5, while the
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threshold for Jaro-Winkler and cosine similarities was left equal to 0.65. The num-

ber of the true positive candidates in this case were: NLCS = 39, NLevenshtein = 37,

NwLevenshtein = 37, NJaro−Winkler = 41, NCosine = 42. Comparing the results to

data listed in Table 3.1 and 3.2, we can see, that as the threshold decreased for the

first three similarity metrics, the number of positive candidates increased, however

the area under the ROC curve decreased.

My results showed that the Jaro-Winkler and cosine distances, at the same sim-

ilarity threshold, can discover more candidate words to be similar to the keyword.

Although a classifier based on the Common Subsequence, Levenshtein or weighted

Levenshtein distances with higher similarity thresholds is more capable of distin-

guishing the true positive candidates from the false positive ones, with these high

thresholds, these metrics provide less true positive results. Furthermore, my results

pointed out, that the weighted Levenshtein distance cannot substantially contribute

to improving the result of the Levenshtein distance.

Considering the applicability of the cosine distance based on the FastText word

embedding, I found that the exploration of synonyms requires a significantly lower

threshold, which results in the decrease of the efficiency of the classifier, as well.

The most promising distance metric was the Jaro-Winkler distance, which can

return a relatively large number of documents in a way that the distinctive ability of

the classifier still remains high. There, the developed text mining-based information

extraction method utilises the Jaro-Winkler distance.

3.3 The proposed text mining-based information

extraction method

Going beyond the limitations of methods introduced at the beginning of Chapter

3, I developed a generally applicable text mining method for extracting numerical

test results with their descriptions from free-text-written echocardiography reports.

The proposed method breaks with regex-based information extraction methods and

employs corpus-independent text mining techniques to extract information from

medical texts. It automatically detects expressions containing textual descriptions

of the test results and pairs them with their numerical measurement results. The

identification of candidate terms is performed by using similarity-based matching

to match them to standardised clinical terms. The similarity-based mapping uses

Jaro-Winkler distance and makes it possible to handle typos, synonyms and abbre-
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viations flexibly; therefore, the efficiency of the information extraction is signifi-

cantly increased. Additionally, the proposed method can extract multiple informa-

tion from the documents by a single search, and a repetitive scan is not needed.

The proposed method is mainly recommended for the rapid processing of large vol-

umes of echocardiography findings, such as to support medical research or to verify

patient selection criteria for clinical trials quickly.

The applicability of the proposed method was tested by processing the corpus

presented on Section 3.1. Figure 3.4 shows how the proposed method extracts and

transforms the measurement results of the raw echocardiography document into a

uniform and structured form.

(a) Echocardiography report (b) Extracted result

Fig 3.4. The (a) raw echocardiography report and the (b) extracted measurement
results.

3.3.1 Extracting measurement results from echocardiography
documents

The steps of the proposed method can be seen in Figure 3.5. The steps are the fol-

lowing: (1) corpus-independent preprocessing of echocardiography documents; (2)

identification of the candidate technical terms; (3) refinement of the identified can-

didate terms; (4) mapping the candidate terms for the standardised clinical terms;

(5) validation of the extracted terms and their measured results. The steps are de-

tailed in the next paragraphs.

Preprocessing: The preprocessing phase includes such text cleaning activities
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Fig 3.5. The steps of the proposed text mining method.

which aim at unifying the text and minimising the differences between them arising

from the recording habits. Therefore, in the first step, the whitespaces are unified

and the unneeded characters are deleted according to a predefined character list

(stop characters). The list of stop characters contains all characters that do not

contain any information for the measured results. The list I used and recommend

contains the following items: colon, brackets, quotation marks, TAB character and

ENTER character. As it can be seen, the dot and comma characters are not the

elements of the list because they may also denote decimal separator characters.

However, it is important to emphasise that the colon character is the element of the

list, and it is deleted at this stage, as the algorithm does not rely on the fact that the

measurement results are separated from the name of the measurement by a colon or

not.

The next step is to standardise the units of measurement based on a list pre-

defined by an expert. As part of the standardisation, units of measurement con-

taining numbers will be replaced to not contain numbers. (e.g., "mm2" is replaced

by "sqrmm"). After standardising the units of the measurements, they are glued

to the preceding numerical values (e.g., "85 cm/sec" is replaced by "85cm/sec").

In this way, we can assume that words beginning with a numerical value contain

measurement results (typically with their unit of measurement). These "words" are

considered possible measurement results and are called PMR tokens.

Following this, the cleaned documents are split into tokens, which are text frag-

ments separated by whitespace characters. This tokenised and preprocessed text

serves as the basis for the named entity recognition at the next phase.
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Identifying candidate terms: This step aims to identify those text fragments

that may indicate the names of ultrasound parameters. The proposed method as-

sumes that the description of the measurement precedes the recording of the mea-

surement result. Texts with lengths up to n tokens located between PMR tokens

or preceding the first PMR token are considered text fragments that may record

the name of a parameter. They are called echocardiography parameter candidates

(EPCs). The possible maximal number of the words (n) in EPCs is an input pa-

rameter of the method and can be established based on the corpus. After the iden-

tification, the EPCs and the PMRs are stored in structured form for subsequent

processing. We have to note that EPCs do not correspond to the exact names of

measurements in all cases; they may still contain complex terms, typos, and abbre-

viations.

Refining candidate terms: In this phase, complex EPCs will be refined using

text fragmentation methods.

If an EPC contains a token describing a unit of measure, it must be divided into

two or more parts, since in this case, we can assume that the first part of the term

candidate refers to an empty measurement result, while the second part contains

another measurement. Given the "A cm/sec EF 62%" example, the complex EPC

contains the "A cm/sec EF" string, which will be cut into two EPCs, which are "A

cm/sec" and "EF". The original PMR value ("62%") will be connected to the EPC

"EF", and the first part of the text will be stored as "A" and "cm/sec" EPC-PMR

pair. If the first part contains more than one unit of measurement, then the splitting

has to be done recursively in several steps.

The next activity is to recognise and handle the complex term–measurement

sequences. The forms of the complex sequences may be as follows:

• term1–term2–result1–result2 sequence: e.g., "left ventricular diameter end-

diastolic/end-systolic 54/35mm",

• term1–result1–subterm2–result2 sequence: e.g., "ejection fraction Teichholz

56% Simpson 52%".

The occurrences of complex sequences are searched using predefined rules. If

the sequence fits any of the rules, then the complex sequence is converted into sim-

ple term-result pairs, and the refined EPCs with their PMRs are stored.

Mapping: As identified EPCs may contain typos and abbreviations, the next

phase of the text processing aims to clarify and standardise them. For achieving
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this goal, EPCs are mapped onto a dictionary containing the standardised names of

the ultrasound parameters and their synonyms (e.g., "end-diastolic posterior wall",

"LVPWd"). The dictionary can be based on any standardised collection of clinical

terms (e.g., SNOMED CT [133]), or it can also be defined by experts.

In Section 3.2, I showed that among the different distance metrics, the Jaro-

Winkler distance achieves the best results in named entity recognition performed

in echocardiography documents. Therefore, in the present method, Jaro-Winkler

distance-based mapping is used.

For each EPC, a distance matrix is calculated, which contains the Jaro-Winkler

distances between the EPC string and the elements of the standardised dictionary.

If the smallest value of the distance matrix is less than a predefined threshold value

(α), then the EPC is mapped to the standardised name of the most similar dictionary

element. Otherwise, the EPC is discarded.

Validation: During this step, the PMR values are validated by defining a range

of interpretations for each ultrasound parameter. If the measured value does not fall

within its domain, it will be treated as a possible error.

As a result of the previous steps, the measurement results extracted from the

echocardiography documents are available in a structured format (measurement

name - measurement result pairs). This structured format allows users (e.g., physi-

cians) to process and use the results in their future work easily (e.g., patient selection

for studies or time-series comparison of results).

3.3.2 Evaluation of the proposed text mining-based
information extraction method

The effectiveness of the proposed method was evaluated by processing the corpus

presented in Section 3.1. During the evaluation, the effectiveness of the extrac-

tion of 12 commonly measured echocardiography parameters was examined. These

parameters were: aortic root diameter (aorta gyök), M-mode left atrial diameter

(Bal pitvar), end-diastolic septum thickness (Septum végdiast), end-systolic septum

thickness (Septum syst), left ventricle end-diastolic diameter (Bal kamra diast. át-

mérő), left ventricle end-systolic diameter (Bal kamra syst. átmérő), end-diastolic

posterior wall thickness (Hátsófal végdiast.), end-systolic posterior wall thickness

(Hátsófal syst.), right ventricle end-diastolic diameter (Jobb kamra), A-wave (A),

E-wave (E), and left ventricular ejection fraction (EF).

The threshold for the maximal number of the tokens in EPCs was set to n = 4,
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and the threshold parameter for the Jaro-Winkler distance between the EPCs and

the standardised terms was set to α = 0.1. The first parameter was determined

as the suggestion of the medical expert, while the second one was obtained as an

empirical fact from my previous study [134]. The cardiac ultrasound documents

were processed in a single iteration, and the detected EPCs were mapped into a

standardised, expert-defined dictionary. The dictionary used for mapping contained

179 synonyms for 40 terms. The investigated 12 terms had 56 synonyms in total.

After performing the proposed method, the evaluation was carried out the fol-

lowing way. For each document, I examined what measurements the method was

able to extract from it. If it was able to extract a given measurement result from

a document, the document was tagged with a positive label for that measurement

parameter (predicted positive, PP) and if it was unable to extract the given measure-

ment parameter, the document was labelled as negative document for that parameter

(predicted negative, PN). The tagging results are shown by Figure 3.6.

Fig 3.6. Number of documents containing (predicted positive) and not containing
(predicted negative) the given term.

Figure 3.6 shows that for eight echocardiography parameters, the algorithm

could extract the measurement results from more than 19,000 reports. For these pa-

rameters, the relative frequencies were as follows: aortic root diameter: 97.9%, M-

mode left atrial diameter: 97.5%, end-diastolic septum thickness: 98.2%, left ven-

tricle end-diastolic diameter: 98.6%, left ventricle end-systolic diameter: 98.6%,

end-diastolic posterior wall thickness: 97.8%, E-wave: 96.2%, and EF: 96.4%.

Relevant information for the remaining four parameters could be extracted from
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fewer documents as these parameters are measured less frequently during echocar-

diography examinations. This was also confirmed by a medical expert. The rela-

tive frequencies for these are: end-systolic septum thickness: 72.5%; end-systolic

posterior wall thickness: 72.1%; right ventricle end-diastolic diameter: 52.8%; A-

wave: 89.4%.

In the next phase, the quality of the information extraction algorithm was eval-

uated. 100 reports having predicted positive labels and 100 reports with predicted

negative labels have been randomly selected for each investigated term for evalu-

ation purposes. Following this, these 2,400 selected reports have been manually

evaluated, and they were labelled with true positive (TP), false positive (FP), true

negative (TN) and false negative (FN) labels according to the comparison between

the actual content of the document and the prediction. Using these results, numerous

evaluation metrics, like sensitivity, specificity, positive predictive value (PPV, pre-

cision), negative predictive value (NPV), accuracy, balanced accuracy (Bal. acc.),

and F1 score have also been calculated. The values of the calculated metrics can be

seen in Table 3.3. All values are rounded to three decimal places.

Table 3.3. Evaluation of the effectiveness of the proposed text mining-based
information extraction method.

#PP #PN Sensitivity Specificity PPV NPV Accuracy Bal. acc. F1

aortic root 19660 414 0.877 1.000 1.000 0.860 0.930 0.939 0.935
M-mode left atrium 19553 521 0.813 1.000 1.000 0.770 0.885 0.907 0.897
end-diastolic septum 19722 352 0.862 1.000 1.000 0.840 0.920 0.931 0.926
end-systolic septum 14557 5517 1.000 1.000 1.000 1.000 1.000 1.000 1.000
left ventricle end-diastolic 19790 284 0.926 1.000 1.000 0.920 0.960 0.963 0.962
left ventricle end-systolic 19790 284 0.943 1.000 1.000 0.940 0.970 0.972 0.971
end-diastolic posterior wall 19630 444 0.775 1.000 1.000 0.710 0.855 0.888 0.873
end-systolic posterior wall 14473 5601 1.000 1.000 1.000 1.000 1.000 1.000 1.000
right ventricle 10595 9479 0.980 1.000 1.000 0.980 0.990 0.990 0.990
A 17947 2127 0.855 1.000 1.000 0.830 0.915 0.927 0.922
E 19308 766 0.909 1.000 1.000 0.900 0.950 0.955 0.952
EF 19525 549 0.901 1.000 1.000 0.890 0.945 0.951 0.948
Average 0.904 1.000 1.000 0.887 0.939 0.952 0.948

In Table 3.3, we can see that both specificities and predicted positive values are

equal to 1.0 for each parameter. It means that there were no false positive results

predicted. The sensitivity of the proposed method takes values from 0.775 to 1.0,

and the average sensitivity for the 12 measurements is 0.904. The accuracy of the

algorithm varies between 0.855 and 1.0, and the average accuracy is 0.939. The bal-

anced accuracy takes values between 0.888 and 1.0, and its average value is 0.952.

The F1 score also shows sufficiently high values, it takes values between 0.873 and

1.0, and its average value is 0.948. The best results were obtained for end-systolic

septum thickness and end-systolic posterior wall thickness. Results show that the
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most difficult parameter to obtain was the end-diastolic posterior wall thickness. At

the same time, the extraction of the measurement result of ejection fraction as an

essential diagnostic measure shows good results with 0.901 sensitivity, 1.00 speci-

ficity, 0.945 accuracy, and 0.948 F1 score values.

In the next phase of the evaluation, the false negative documents were examined

in detail. The errors were classified into two types: (1) the parameter under study

is included in the document and its measured value was recorded with numerical

values (Errnum) or (2) the parameter under study is recorded in the document, but

only textual information is given for it (e.g., "end-diastolic posterior wall: can not

be measured") (Errtext). Table 3.4 shows the occurrence of two different types

of error by terms. Findings that contain only textual information on the parameter

under study mainly were found for the A-wave. In the case of this type of error

(Errtext), the algorithm could not be expected to extract the correct information

from the document since the proposed method only aims to extract numerical mea-

surement results. However, in a higher proportion of false negative cases, reports

also contained numeric measurement results. This is most noticeable for terms end-

diastolic posterior wall thickness with 27 occurrences and left atrium diameter with

22 occurrences. Therefore, this error type has been further analysed.

Table 3.4. Frequency of different error types in false negative documents.

Errnum Errtext

aortic root 5 9
M-mode left atrium 22 1
end-diastolic septum 12 3
end-systolic septum 0 0
left ventricle end-diastolic 6 2
left ventricle end-systolic 6 0
end-diastolic posterior wall 27 0
end-systolic posterior wall 0 0
right ventricle 1 1
A 0 17
E 10 0
EF 10 1

Total 99 34

Table 3.5 shows the detailed presentation of the classification of Errnum errors

according to their causes. The causes of the errors were classified into the following

six categories.
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• missing whitespaces: there were missing whitespaces in the recorded text

(e.g., "aortic root: 26mmleft atrium: 47 mm");

• multiple values: there were several measurement results recorded together,

therefore the term could not be successfully extracted (e.g., "aorta anulus-

sinus valsalva-root: 26-36-33 mm");

• additional text: the recorded information contained additional text (e.g., "Aor-

tic root: calcified, 26 mm");

• defined by other parameters: the measurement result was given in the docu-

ment as it is equal to another measurement result (e.g., "E=A");

• wrong order: the order of the measurement value and its unit was wrong (e.g.,

"mm7");

• wrong format: the recording format of the measured value does not meet the

preliminary expectations (e.g., "left atrium: x47 mm", "left atrium 55xmm",

"left atrium: 34x33x40 mm").

Table 3.5. Causes of the error type Errnum in false negative documents.

missing multiple additional defined by wrong wrong
total

whitespaces values text other parameter order format

aortic root 0 0 5 0 0 0 5
M-mode left atrium 0 7 11 0 0 4 22
end-diastolic septum 10 2 0 0 0 0 12
left ventricle end-diastolic 5 0 1 0 0 0 6
left ventricle end-systolic 6 0 0 0 0 0 6
end-diastolic posterior wall 22 2 0 0 3 0 27
right ventricle 0 0 1 0 0 0 1
E 0 0 2 8 0 0 10
EF 0 0 10 0 0 0 10
total 43 11 30 8 3 4

As it can be seen in Table 3.5, the top three most frequent reasons for clas-

sification error were lack of whitespace characters in the text (43 occurrences),

measurement values recorded with additional text (30 occurrences), and multiple

measurement results recorded together (11 occurrences). However, it is also clear

that not only general errors were found but also errors specific to the parameters.

For example, the difficulty in extracting the M-mode left atrial diameter is mainly

because the used measurement method is not well defined, and in some cases, 2D

measurement was applied. Another typical example is the recording of the value

of ejection fraction, which is often only given as an estimated value (e.g., "EF:

88



estimated 68%"). Knowledge of this and similar facts could greatly facilitate the

development of a postprocessing method that could further reduce the number of

false negative documents.

3.3.3 Discussion of the results

The main advantage of the suggested method is that it extracts the measurement re-

sults of cardiac ultrasound findings by automatically identifying the text fragments

describing the measurement names. For this purpose, it uses an expert-defined dic-

tionary and applies text-similarity mappings to identify the unified name of the mea-

surement. In contrast, methods published in the literature typically perform regex-

based information extraction. In these methods, the set of regular expressions has

to be defined for each measurement parameter separately, which requires IT skills.

Furthermore, regular expressions are created as a result of lengthy iterative manual

modifications.

To show the effectiveness of the proposed method in terms of finding the mea-

surement descriptions, a comparative analysis between the direct search and the

suggested method was performed. All the dictionary elements used in my study

were searched in the document set during this analysis, and the evaluation was per-

formed manually on the same test set. As a part of the comparative analysis, I

manually checked whether any related numerical measurement results were recor-

ded in the documents. The direct search results are presented in Table 3.6. All

values are rounded to three decimal places.

Table 3.6. Evaluation of the effectiveness of direct search.

#PP #PN Sensitivity Specificity PPV NPV Accuracy Bal. acc. F1

aortic root 19708 366 0.902 0.843 0.830 0.910 0.870 0.872 0.865
M-mode left atrium 19853 221 0.941 0.826 0.800 0.950 0.875 0.884 0.865
end-diastolic septum 14870 5204 0.521 1.000 1.000 0.080 0.540 0.760 0.685
end-systolic septum 25 20049 0.217 1.000 1.000 0.100 0.280 0.609 0.357
left ventricle end-diastolic 3939 16135 0.511 0.700 0.970 0.070 0.520 0.605 0.669
left ventricle end-systolic 4096 15978 0.146 0.124 0.150 0.120 0.135 0.135 0.148
end-diastolic posterior wall 14858 5216 0.556 0.681 0.850 0.320 0.585 0.618 0.672
end-systolic posterior wall 2 20072 0.020 0.600 0.500 0.030 0.048 0.310 0.038
right ventricle 12070 8004 0.941 0.950 0.950 0.940 0.945 0.945 0.945
A 19978 96 0.023 0.093 0.020 0.104 0.061 0.058 0.021
E 19903 171 1.000 0.806 0.760 1.000 0.880 0.903 0.864
EF 19764 310 0.918 0.809 0.780 0.930 0.855 0.863 0.843
Average 0.558 0.703 0.718 0.463 0.550 0.630 0.581

Comparing the results of Table 3.3 and 3.6, we can see that the proposed method

performed better in extracting all measurement descriptions. This is, of course, due

to the fact that the proposed methodology also includes a text similarity mapping,
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which can improve the results significantly. In the case of the "end-systolic septum"

and "end-systolic posterior wall", the direct search has found only a few search re-

sults. In these cases, the text similarity mapping and the EPC refinement phases

yielded excellent results in the proposed methodology. In the case of the A-wave,

the main problem was, of course, caused by the fact that "A" as a search term is part

of the dictionary used, at the same time, it is also a definite article in Hungarian. The

search for the terms "E" and "EF" also causes similar problems due to the brevity

of the measurement terms. However, as these descriptions are indeed included as

measurement descriptions in several documents, the discrepancy is less significant.

Moreover, we have to note that the aim of the direct search was only to find the

elements of the dictionary in the echocardiography documents, but the related mea-

surement results were extracted manually. In contrast, the proposed method can

find the measurement descriptions and extract the related measurement results. By

manual refinement, the regex search could be refined, but as mentioned before, this

requires the overview of a huge part of the documents, which is a time-consuming

task and results in only corpus-dependent regex terms.

If we consider the possibility of international comparison, we find that previ-

ously published methods often aim to extract the results of only a single measure-

ment parameter. Hence, the complete comparative evaluation of the effectiveness

of the proposed methodology is not feasible. While partial comparisons can be

made regarding the extraction of a single ultrasound parameter, the evaluation of

the results should consider that the aim of each method was typically different. For

example, many previous studies aimed to extract the ejection fraction mentions, in-

cluding numerical and text descriptions. In contrast, my method was designed to

extract several parameters; but at the same time, it aimed at only the extraction of

the numerical measurement result.

Research presented in [53] aimed at extracting EF values and mentions from

echocardiography reports. The analysis was based on a regex search, and to mea-

sure the quality of the method, 765 reports were evaluated. For defining regex terms,

a set of sample documents were visually analysed to determine the structure of the

documents. The initial pattern set of the regex expressions defined directly for ex-

tracting EF values from the reports achieved only an F1 score of 0.4387, but after

several refinement phases of the regex expressions, the highest F1 score was 0.957.

Finally, the sensitivity of the proposed whole system was 0.889, and the positive

predicted value was 0.950. In contrast, my method achieved a sensitivity of 0.901, a
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positive predicted value of 1.0 and F1 score of 0.948 when extracting EF values. Al-

though the results can not be compared directly due to the issues mentioned before

(my method was developed to not directly extract the EF values but simultaneously

more echocardiography parameters), it can be seen that my method has achieved

good results and is competitive.

In [52], a large number of echocardiography reports (621,856) were analysed,

and the aim was to extract both the numerically or text-recorded ejection frac-

tion measurement results. First, the text descriptions were searched based on a

set of concepts defined by the experts, and then, the numerical values associated

with the keyword were searched first backwards, then forwards, starting from the

text description. If a numeric value was not found, predefined text descriptions

(e.g., "severe") were also searched and extracted. The quality of the proposed

method was evaluated based on 200 randomly selected reports manually. The al-

gorithm (including the textual information extraction as well) got sensitivity=0.950

and PPV= 0.969. Nevertheless, it should be noted that in the present case, we are

talking about a system based on the definition and application of a large set of regex

terms, and it was developed exclusively for the extraction of the ejection fraction

and therefore only applicable to it.

In the study presented in [55], the authors aimed to extract not only ejection frac-

tion measurements but also other cardiac function measurements. The developed

methodology was based on natural language processing using a dictionary lookup,

rules, and patterns. In this study, the developed NLP method was again based on a

large set of regex expressions fine-tuned for both the term and value identifications.

The proposed method was evaluated not only for echocardiography reports but also

for general clinical notes and radiology reports. Their evaluation was based on 100-

100 documents of each type of record. The method achieved averaged F1 score

of 0.844 and averaged precision of 0.982 regarding the echocardiography datasets,

respectively, for the investigated 27 measurements. For my method the average F1

score was 0.948 and the average precision was 1.000. A comparison of the ex-

traction efficiency of the cardiac ultrasound parameters involved in both cases is

shown in Table 3.7. Table 3.7 contains only those results which are covered by both

studies.

It can be seen that for some parameters, the method published in [55] performed

better, while for other parameters, my proposed method gave better results. For the

most informative cardiac ultrasound parameter (EF), the sensitivity of my proposed

method was exactly 0.1 better than the method proposed in [55], and the PPV values
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were identically 1.0 for both methods.

Table 3.7. Comparison of results of my text mining-based information extraction
method with the results achieved by the method presented by Patterson [55].

Results by Patterson [55] My results
sensitivity PPV sensitivity PPV

end-diastolic septum 1.000 0.926 0.862 1.000
left ventricle end-diastolic 0.706 1.000 0.926 1.000
left ventricle end-systolic 1.000 1.000 0.943 1.000
end-diastolic posterior wall 0.842 0.970 0.775 1.000
EF 0.801 1.000 0.901 1.000

Evaluating the results, we can see that the proposed method provides similar or

better results than other methods published in the literature. However, those meth-

ods typically rely on the use of regex-based expressions. In contrast, my method

is simple, does not require the definition of regex expressions and does not rely

on any assumptions about the form in which the results are recorded. Moreover,

though my proposed method can extract many numeric measurement results, it still

achieves similar results when compared to the methods that are designed to extract

only one specific measurement result.

Like other methods, my method also has some limitations. First, with the pro-

posed method, only numerical measurement results can be extracted; textual de-

scriptions regarding the measurements cannot. If numerically recorded measure-

ment results are supplemented with textual descriptions (e.g., "Aortic root: calci-

fied, 26 mm"), this additional information remains hidden. Additional text infor-

mation, unusual recording formats and missing spaces can also cause errors when

extracting measurement results from the text. However, it should be noted that these

errors do not always cause problems. Furthermore, measurement results recorded

by another echocardiography result (e.g., "E=A") will be missing from the extracted

results. However, the mentioned limitations can be generally eliminated by extend-

ing the proposed general methodology with special rules.

3.3.4 Usage outside the field of healthcare

The proposed method can be used, not only for healthcare-related documents. A

precondition of this generalisation is to have a field-specific dictionary that can be

used during mapping. Another limitation of the methods is the usage of the Jaro-

Winkler distance. Its usage has only been tested on my specific corpus, but it can
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be easily swapped out with other metrics or a stacking [135] can also be used.

3.4 Related theses

Thesis 2.1

I examined and compared different text similarity metrics applied in the field of NLP

to determine which similarity metrics present the highest gain in terms of extracting

medical terms from echocardiography documents. The examined metrics were the

following: Longest Common Subsequence, Levenshtein distance, weighted Leven-

shtein distance, Jaro-Winkler distance and cosine distance. I established that the

Jaro-Winkler distance is the most suitable to identify medical terms in echocardio-

graphy documents written in Hungarian language.

Thesis 2.2

By utilising the findings of the comparison of different text similarity metrics, I

proposed a text mining-based information extraction method to extract numerical

measurement results from echocardiography documents. The proposed method per-

forms generally applicable, language-independent text-cleaning preprocessing ac-

tivities, automatically identifies measurement names and results, and returns them

in a structured way. The methodology is also able to identify, correct and unify

synonyms, acronyms, and typos. Since the method does not contain any language-

dependent implementation elements, it is suitable for processing echocardiography

findings written in any language.

The proposed text mining-based information extraction method was evaluated

on a document set containing more than 20,000 echocardiography reports. During

the evaluation, 12 relevant echocardiography parameters were extracted from the

documents. As a result, an average sensitivity of 0.904, an average specificity of

1.0 and an average F1 score of 0.948 were obtained. The evaluation sufficiently

demonstrated the broad applicability of the method, also confirmed by the experts.
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Summary

The large amount of information stored in health databases shines a spotlight on the

possibilities offered by retrospective clinical studies. However, the processing of

large amounts of data sets requires new methods and new algorithms in many cases,

since due to the unique nature of the operation of healthcare and the complexity of

the human biological system, data mining methods can typically only be applied

after area-specific extensions. Advanced data science methods adapted to health

care can effectively contribute to the implementation of retrospective clinical studies

and can provide a basis for a more thorough understanding of the functioning of

the human biological system. This new knowledge can help doctors implement

personalised medicine.

The aim of my research was to develop such new healthcare-adapted data sci-

ence methods and algorithms, which can effectively contribute to the extraction of

information from large (sometimes unstructured) healthcare data files and to the

discovery of the information hidden in the data.

My research covered the following topics: development of new control group

selection methods for retrospective case-control studies; developing new similarity

measures for evaluating the results of the control group selection; analysing the

effect of missing variables during the control group selection process; and extracting

information from large, unstructured healthcare datasets.

I developed such control group selection methods that can be widely used in

case-control studies, irrespective of the field of the study. This statement is evi-

denced by the fact, that in a recent study, Pouwels et al used the WNNEM method

to select healthy participants from different sites [136]. The method is also men-

tioned and applied in the Pachama study [137] and in a dissertation [138] written

at the University of Duisburg-Essen. The purpose of the research described in the

professional paper was to create a dynamic baseline that algorithmically selects a

regulatory area as an appropriate comparative reference for a carbon project, while

the dissertation analyses the financial situation of Chile.
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I also developed an information extraction method that is able to extract nu-

merical measurement results from the echocardiogram reports, regardless of the

language of the document. The method was published only recently, so its appli-

cation has not been mentioned until now. Howerver, due to the set of tools used, it

is suitable for processing echocardiograms in any language, so I am confident that

its use can be implemented on a wider scale in the near future. Since the proposed

method uses general text mining procedures, its application is not necessarily lim-

ited to the processing of echocardiogram reports, but its application in other areas

is also conceivable.
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Összefoglalás

Az egészségügyi adatbázisokban tárolt nagy mennyiségű információ reflektorfénybe

helyezi a retrospektív klinikai vizsgálatok nyújtotta lehetőségeket. A nagy menny-

iségű adathalmazok feldolgozása azonban sok esetben új módszereket és új algo-

ritmusokat igényel, mivel az egészségügy működésének egyedi jellege és a humán

biológiai rendszer összetettsége miatt a adatbányászati módszerek jellemzően csak

területspecifikus kiterjesztések után alkalmazhatók. A továbbfejlesztett és az egész-

ségügyhöz igazított adattudományi módszerek hatékonyan járulhatnak hozzá a ret-

rospektív klinikai vizsgálatok megvalósításához, és alapot adhatnak az emberi bi-

ológiai rendszer működésének alaposabb megismeréséhez. Ez az új tudás segítheti

az orvosokat az egyénre szabott orvoslás megvalósításában.

Kutatásom célja olyan új, egészségügyhöz adaptált adattudományi módszerek

és algoritmusok kidolgozása volt, amelyek hatékonyan hozzájárulhatnak a nagymé-

retű (esetenként strukturálatlan) egészségügyi adatállományokból történő informá-

ciókinyeréséhez és az adatok közt rejlő információk feltárásához.

Kutatásom a következő témákat ölelte fel: új kontrollcsoport-kiválasztási mód-

szerek kidolgozása retrospektív eset-kontroll vizsgálatokhoz; új hasonlósági mérté-

kek kidolgozása a kontrollcsoport-kiválasztás eredményeinek kiértékelésére; a hi-

ányzó változók hatásának elemzése a kontrollcsoport kiválasztási folyamat során;

és információk kinyerése nagy, strukturálatlan egészségügyi adathalmazokból.

A kidolgozott kontrollcsoport kiválasztási módszerek széles körben alkalmazha-

tók eset-kontroll vizsgálatokban, a vizsgálati területtől függetlenül. Ezt az állítást

bizonyítja, hogy Pouwels és társai legutóbbi tanulmányukban a WNNEM módszert

használták, hogy egészséges résztvevőket válasszanak ki különböző telephelyekről

[136]. A módszert a Pachama tanulmány [137] és egy, a Duisburg-Essen Egyete-

men [138] írt disszertáció is említi és alkalmazza. A szakmai tanulmányban is-

mertetett kutatás célja egy dinamikus alapvonal létrehozása volt, amely algoritmiku-

san kiválaszt egy szabályozási területet megfelelő összehasonlító referenciaként egy

karbon projekthez, miközben a disszertáció Chile pénzügyi helyzetét elemzi.
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A kifejlesztett információkinyerési módszer a dokumentum nyelvétől függetle-

nül képes numerikus mérési eredményeket kinyerni a szívultrahang leletekből. A

módszer publikálása csupán a közelmúltban történt meg, így alkalmazására minded-

dig nem érkezett említés. Az alkalmazott eszközkészletből adódóan azonban tet-

szőleges nyelvű szívultrahang feldolgozására alkalmas, így bízom benne, hogy fel-

használása a közeljövőben szélesebb körben is megvalósulhat. Mivel azonban a

javasolt módszer általános szövegbányászati eljárásokat használ, így alkalmazása

nem feltétlen korlátozódik szívultrahang leletek feldolgozására, hanem egyéb terüle-

ten történő hasznosítása is elképzelhető.
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