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Abstract

As network technologies such as process networks or transportation networks
become more important to today’s society, the demand for their availability and re-
liability is increasing. A fault in one or more subsystems can be propagated through
the network and will degrade the performance of the overall networked systems.
Thus, Fault Detection and Isolation (FDI) must be considered there. The two main
classes of networked systems studied here are robot platoons and heat exchange
networks.

Since the reliability of data driven fault diagnosis methods depends on the avail-
ability and quality of the data, the model based approaches are still relevant, espe-
cially for safety critical systems. This dissertation aims to enrich the existing FDI
literature for networked linear time invariant systems.

First, the model based sensor and actuator fault diagnosis methods are studied
for robot platoons that move in a leader-follower scheme. For sensor fault diag-
nosis, a model for the robot platoons that captures the effect of fault propagation
is constructed. From that model, a bank of unknown input observers is designed
as residual generators to detect and isolate the sensor faults. A threshold compu-
tation approach to prevent false alarms when there are no faulty sensors is also
given. Meanwhile, for actuator fault diagnosis, a filtering technique is proposed
that eliminates the need for network communication in isolating the actuator fault.
A Proportional Integral (PI) observer is then designed to estimate the actuator fault’s
magnitude.

Secondly, model based methods for parameter fault detection, isolation, and es-
timation in Heat Exchange Networks (HENs) are introduced. The considered fault
is a significant change in the heat transfer coefficient that determines the effect of
environmental temperature on the temperature inside the network. The network
topology contains splitting and joining connections. The sensor placement problem
for each type of connection is addressed by using the signed directed graph analysis.
However, if the fault occurs only at a certain location along the length of a tube in
the HEN, it is found that fault localisation can hardly be performed. A bank of linear
observers for fault isolation and a bank of nonlinear observers based on parameter
adaptation techniques for fault estimation are proposed.

Thirdly, a model based method for input faults in HENs that contain loops in
addition to splitting and joining connections is also presented. By using steady state
value analysis, the effect of fault propagation in the network loops is analysed. Based
on the analysis results, a fault isolation algorithm requiring only two sensors is con-
structed. To estimate the fault’s magnitude, a PI observer is then proposed. The pro-
posed method shows good robustness against the heat transfer coefficient parameter
uncertainty. Moreover, it can also isolate and estimate the slowly developing incipi-
ent faults.
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Kivonat

Ahogy a hálózati technológiák, például a folyamathálózatok vagy a szállítási
hálózatok egyre fontosabbá válnak a mai társadalom számára, egyre növekszik az
igény elérhetőségük és megbízhatóságuk iránt. Egy vagy több alrendszer hibája
továbbterjedhet a hálózaton, és rontja a teljes hálózati rendszer teljesítményét. Így itt
használni kell a hibafelismerés és -leválasztás (FDI). A dolgozatban vizsgált hálózati
rendszerek két fő osztálya a robotszakasz és a hőcserélő hálózat.

Mivel az adatvezérelt hibadiagnosztikai módszerek megbízhatósága az adatok
elérhetőségétől és minőségétől függ, a modellalapú megközelítések nagy fontosságú-
ak, különösen a biztonság szempontjából kritikus rendszerek esetében. Jelen dissz-
ertáció célja, hogy gazdagítsa a hálózatos lineáris időinvariáns rendszerek meglévő
FDI-irodalmát.

Először a modell alapú szenzor- és aktuátorhiba-diagnosztikai módszereket tár-
gyalom olyan robotszakaszoknál, amelyek vezető-követő sémában mozognak. Az
érzékelők hibáinak diagnosztizálásához a robotcsoportokhoz egy olyan modellt ké-
szítettem, amely rögzíti a hiba terjedésének hatását. Ebből a modellből egy ismeretlen
bemeneti megfigyelőkből álló csoport maradék hibákat képez az érzékelő hibáinak
észlelésére és elkülönítésére. Küszöbérték számítással lehetséges a téves riasztások
megelőzése, ha nincsenek hibás érzékelők. Az aktuátorhiba-diagnosztikához olyan
szűrési technikát javasoltam, amely kiküszöböli a hálózati kommunikáció szükséges-
ségét az aktuátor hibájának elkülönítése során. Ezután egy arányos integrál (PI)
megfigyelőt terveztem, hogy megbecsülje az aktuátor hibájának nagyságát.

Modell alapú módszereket vezettem be a hőcserélő hálózatokban (HEN) para-
méterhiba észlelésére, elkülönítésére és becslésére. A figyelembe vett hiba a hőát-
bocsátási tényező jelentős változása, amely meghatározza a környezeti hőmérsék-
let hatását a hálózaton belüli hőmérsékletre. A hálózati topológia elágazásokat és
összefolyásokat, mint kapcsolatokat tartalmaz. Az érzékelő elhelyezési problémáját
minden egyes kapcsolattípus esetében előjeles irányított gráfelemzés segítségével
oldottam meg. Ha azonban a hiba a HEN-ben egy cső hosszában csak egy bizonyos
helyen jelentkezik, akkor azt mutattam meg, hogy a hiba lokalizálása nem végezhető
el. Javasoltam egy lineáris megfigyelőkből álló bankot a hibaérzékeléshez és egy
nemlineáris megfigyelőkből álló bankot, amely paraméteradaptációs technikákon
alapul a hibabecsléshez.

Bemutattam egy modellalapú módszert a HEN-ek bemeneti hibáira, amelyek
a elágazási és összefolyási mellett hurkokat is tartalmaznak. Állandósult állapotú
értékelemzés segítségével elemeztem a hibaterjedés hatását a hálózati hurokban. Az
elemzési eredmények alapján egy csak két érzékelőt igénylő hibaleválasztó algorit-
must készítettem. A hiba nagyságának becsléséhez egy PI megfigyelőt javasoltam.
A javasolt módszer jó robusztusságot mutat a hőátadási tényező paraméterének bi-
zonytalanságával szemben. Ezenkívül képes elkülöníteni és megbecsülni a lassan
kialakuló kezdődő hibákat.
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Zusammenfassung

Da Netzwerktechnologien wie Prozess-oder Transportnetzwerke in unserer heu-
tigen Gesellschaft immer wichtiger werden, steigt auch der Bedarf an deren Verfüg-
barkeit und Zuverlässigkeit. Fehler in einem oder mehreren Subsystemen kann sich
über das Netzwerk ausbreiten und die Leistung der gesamten vernetzten Systeme
beeinträchtigen. Entsprechend muss im diesen Systemen eine adäquate Fehlererken-
nung und -isolierung (FDI) umgesetzt werden. Die beiden Hauptklassen vernetzter
Systeme, die in dieser Arbeit untersucht werden, sind Roboterzüge und Wärmeaus-
tauschnetzwerke.

Da die Zuverlässigkeit datengesteuerter Fehlerdiagnosemethoden von der Ver-
fügbarkeit und Qualität der Daten abhängt, sind modellbasierte Ansätze insbeson-
dere für sicherheitskritische Systeme von besonderer Relevanz. Das Ziel dieser Dis-
sertation ist es, die bestehende FDI-Methoden für vernetzte lineare zeitinvariante
Systeme zu erweitern.

Zunächst werdendazu die modellbasierten Fehlerdiagnosemethoden für Senso-
ren und Aktoren für Roboterzüge untersucht, die sich in einem Leader-Follower-
Schema bewegen. Für die Fehlerdiagnose an den Sensoren wird ein mathematisches
Modell der Roboterzüge erstellt, welches die Auswirkungen der Fehlerausbreitung
erfasst. Basierend auf diesem Modell wird ein Satz an Beobachtern konzipiert, um
die Sensorfehler zu erkennen und zu isolieren. Außerdem wird ein Ansatz zur Be-
stimmung der Schwellwerte zur Vermeidung von Fehlalarmen präsentiert. Für die
Fehlerfdiagnose der Aktuatorik wird eine Filtertechnik vorgeschlagen, welche die
Notwendigkeit einer Netzwerkkommunikation zur Isolierung der Fehler überflüs-
sig macht. Anschließend wird ein Proportional-Integral (PI) Beobachter entwickelt,
um die Größe des Aktuatorfehlers abzuschätzen.

Im weiteren Verlauf der Arbeit werden modellbasierte Methoden zur Erken-
nung, -isolierung und -schätzung von parametrischen Fehlern in Wärmeaus-
tauschnetzwerkenok (HEN) vorgestellt. Der betrachtete Fehler bewirkt eine signi-
fikante Änderung des Wärmeübergangskoeffizienten, der den Einfluss der Umge-
bungstemperatur auf die Temperatur im Netzwerk bestimmt. Die Netzwerktopolo-
gie an sich enthält sich teilende als auch sich vereinende Verbindungen. Das Problem
der Sensorplatzierung für beide Verbindungstypen wird mithilfe der vorzeichenbe-
hafteten gerichteten Diagrammanalyse gelöst. Wenn der Fehler jedoch nur an einer
bestimmten Stelle entlang der Länge eines Rohrs im HEN auftritt, zeigt sich, dass
eine Fehlerlokalisierung kaum möglich ist. Daher werden ein Satz an linear Beob-
achterzur Fehlerisolierung sowie ein nichtlinearer Beobachter basierend auf Para-
meteridentifikationstechniken vorgeschlagen.

Zum Abschluss wird eine modellbasierte Methode für Eingangfehler in HENs
vorgestellt, die neben der sich teilenden und vereinenden Verbindungen auch uck-
führkreise betrachtet. Mithilfe der stationären Wertanalyse wird die Auswirkung der
Fehlerausbreitung in den Netzwerkkreisen analysiert. Basierend auf den Analyseer-
gebnissen wird ein Fehlerisolationsalgorithmus konstruiert, der nur zwei Sensoren
erfordert. Um das Ausmaß des Fehlers abzuschätzen, wird dann ein PI-Beobachter
vorgeschlagen. Die vorgeschlagene Methode zeigt eine erhöhte Robustheit gegen-
über Parameterveränderungn des Wärmeübergangskoeffizienten. Darüber hinaus
ist es zudem möglich, sich langsam entwickelnde Fehler zu isolieren und abzuschät-
zen.
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Chapter 1

Introduction

1.1 Background and motivations

The complexity and the automation degree of technological processes are continu-
ously growing in this modern era. Today, their standards pay close attention to is-
sues regarding high availability, reliability, safe operation, and cost efficiency. Thus,
every effort to enhance the reliability and robustness of individual components such
as sensors, actuators, and controllers (or computers) is critical. However, a fault free
situation can hardly be guaranteed. Hence, Fault Detection and Isolation (FDI) tech-
niques are critical to ensure a reliable operation. Although Linear Time Invariant
(LTI) systems form the known well investigated class of dynamic systems, their FDI
methods still need improvements and refinements mostly in complex networked
cases. Such advancements in the FDI methods may utilize the specialties of the ap-
plication area of primary importance.

By using the minimum number of sensors placed cleverly, this present study
aims to enrich the existing FDI literature specifically for model based fault diagnosis
methods on networked LTI systems. Despite being limited to the LTI systems, this
special class provides a mathematical framework to analyse and understand a wide
range of phenomena in nature. Moreover, many nonlinearities can be approximated
locally with linear models by defining a suitable domain or equilibrium point [1, 2,
3].

Two main classes of networked LTI systems are addressed in this study: robot
platoons as an important part of modern transportation technologies, and Heat Ex-
change Networks (HENs) as one of the important processes of industries. The se-
lection of robot platoons and HEN is based on their popularity in representing net-
worked LTI systems over time in many literatures either in system or control theory.
Some small examples where the robot or vehicle platoons are modelled by LTI sys-
tems for the sake of control purposes can be seen in the works of [4, 5, 6, 7]. In the
case of HEN, the works by [8, 9, 10, 11] demonstrate the modelling of HEN as LTI
system.

1.1.1 Model based FDI in networked LTI systems

Model based and data driven methods in FDI FDI mainly deals with monitoring
processes to ensure the operation safety of control systems. There exist many dif-
ferent fault diagnosis techniques [12]. Yet, the important main categories comprise
model based [13] and data driven methods [14, 15]. Data driven methods rely on
data from system operations that are used to train machine learning (ML) or artifi-
cial intelligence (AI) data structures to detect and identify faults. Nowadays, these
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methods are gaining popularity because they are easier to implement due to the cur-
rent development of digital computing technology. However, their reliability strictly
depends on the availability and quality of the data [16].

Meanwhile, even though model based methods of FDI emerged in the early 70s,
their performance has been proven in many successful implementations in the in-
dustrial processes [17]. There are many different techniques and each of them is
usually developed for different purposes. Mostly, these methods are based on dy-
namic system models. Model based methods often use models derived from first
principles that rely heavily on the knowledge of basic physical and/or chemical
principles. Model based fault diagnosis methods are also intimate with the mod-
ern control theory [18].

The importance of fault diagnosis has given rise to a lot of research that has been
carried in the last decades. A book by [19] discusses fault detection and isolation
from a computational perspective. There is also a book by [20] explaining how to
do fault diagnosis based on system identification techniques. The current emerging
trend in Artificial Intelligence (AI) has also been exploited in [21, 22, 23] which rep-
resents data driven based FDI. In the case of a model based approach, a simple linear
model is proposed to detect and isolate faults in electrical grids by [24]. In a recent
article, [25] has also made a summary of many methods that have been researched
to solve fault detection and identification problems.

The importance and significance of FDI in networked systems On the other hand,
nowadays, the modern society relies on networks, e.g., computer networks, trans-
portation networks, social networks, electrical networks, etc. Although they could
comprise simple elements, their large number and interconnections make them an
important subclass of complex systems. As a dynamic system, a network presents
many theoretical challenges during control or diagnosis method design. There have
been many excellent surveys about this in systems and control literature [26, 27, 28,
29, 30, 31, 32].

Even though there is already abundant literature for fault diagnosis for net-
worked systems, the number of works related to FDI in networked systems is ad-
vancing slowly compared to the rapid growth of the literature related to networked
systems’ complexity and communication techniques (protocols) development [33].
There are still many various challenges because some approaches are effective only
in handling some specific applications or faults. Nevertheless, the importance of net-
work technologies in large scale control systems, as a powerful tool for data transfer,
enforces the continuity of research in studying and developing fault diagnosis tech-
niques for networked systems to ensure its reliability, availability, and security [34].

Generally, each subsystem in a networked system is designed with a specific
function to accomplish a common goal in the network. A fault in a subsystem can
propagate to others and will destroy or degrade the performance of the overall sys-
tem [35]. Thus, FDI is highly important to consider in the networked systems [36].

The importance of FDI in networked systems is proven by many previous re-
search studies. [37] introduced the method to detect and isolate sensor faults in a
Wireless Sensor Network (WSN) installed on the wind turbine. In terms of smart
grid for power systems, [38] proposed a model based sensor fault detection and iso-
lation method. Meanwhile, still in the same smart grid, some studies to detect cyber
physical attacks are done by [39, 40, 41]. [42, 43] did some research to handle faults
occurring in the formation control of multi agent systems. Based on the H∞ method,
a filter is proposed to detect stochastic additive faults by [44]. [45] investigated how
to estimate additive faults as unknown input by using a group of distributed filters.
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[46] proposed the detection and isolation for cyber attack targeting sensors by us-
ing sliding mode observer. A distributed soft fault detection for WSN by using the
approach of Fuzzy systems is done by [47]. An observer based fault diagnosis for
networks has also been done by [48, 49, 50, 51, 52].

The sensor placement problem for FDI in networked systems It is preferred to
install as few sensors as possible in the networked systems for either physical or fi-
nancial reasons [53, 54, 55]. On the other hand, there could be complex topologies in
realistic networks (e.g. branching connections and loops) [56, 57]. Thus, by consid-
ering the network topology, the sensor placement problem needs to be examined so
that the existence of faults in the subsystems inside the network can be detected and
isolated [58].

1.1.2 FDI in robot platoons

The importance of FDI in either robot or vehicle platoons can be seen from the large
amount of existing literatures. [59] used parity equations to detect faulty sensors and
actuators. [60] designed a fault detection technique and a sliding mode controller to
compensate for the detected faults. A fault classification based on Machine Learning
(ML) is also proposed by [61]. After devising an algorithm to detect and isolate the
faults, [62] suggested using the model based approaches for vehicle platoons.

Most of the literature can be grouped into 2 categories. The first category is
those who prioritize control objectives over fault identification (i.e., fault mitigation
or the fault is treated as disturbances) such as in [63, 64, 60, 65]. Meanwhile, the
second category is those who concentrate on fault isolation and estimation. This
thesis tries to contribute to the second category in a networked environment. In this
case, compared to the work of [62] which uses many sensors, and [59] which uses
parity equations and nonlinear observers, model based fault diagnosis approaches
that use conventional sensors and Unknown Input Observers (UIOs) are explored.
UIO belongs to the group of linear observers. [66] and [67] have investigated the
use of UIO to detect a faulty agent in the multi agent systems but have not gone
into detail about the sources of the fault. [68] designed a centralized UIO for fault
estimation purposes in a leader-follower linear multi agent systems. On the other
hand, related to those previous works, this thesis explores how to design a bank
of local UIOs in every subsystem to detect and isolate faulty sensors. Thus, it is
more scalable compared to the global UIO. By considering simultaneous actuator
fault and communication fault in the platoon’s subsystems, actuator fault diagnosis
is investigated that can be decoupled from communication faults.

1.1.3 FDI in heat exchanger network

Heat exchanger networks are a simple but important class of process systems. For
FDI in process systems, much literature can be found. A number of possible neural
network architectures for FDI in process systems are studied by [69]. Meanwhile,
[70] proposed a hybrid technique by using the Principal Component Analysis (PCA)
and a Bayesian network. A review about data driven methods for fault diagnosis
in process systems has also been done by [71]. In addition, [72] did a literature
review about data driven techniques that have been developed for chemical process
systems. Recently, the interconnections among fault diagnosis, risk assessment, and
abnormal situation management are analysed by [73].
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As important as it is, many have researched parameter fault diagnosis in a heat
exchange process, such as [74, 75, 76]. Moreover, the currently popular data driven
methods have been exploited in much literature in handling parameter fault diag-
nosis in HEN [77, 78, 79]. However, in terms of network topology, splitting and
joining connections are common to be found in the HEN. Combined with the spar-
sity of sensors and considering that it is not realistic to install sensors at every point
or preferred place, it is important to investigate the sensor placement problem for
fault diagnosis purposes in HEN. Yet, much literature neither includes the existence
of these branching connections nor the sensor placement problem. Thus, this thesis
tries to contribute by dealing first with investigating the sensor placement problem
in correlation with branching connections’ existence in the HEN. Then, by taking
into account the obtained results, the parameter fault diagnosis using model based
approach is explored.

Aside from joining and splitting connections, the existence of loops in networked
LTI systems is also common as part of the network topology. In the case of HEN, the
loop exists for energy or material efficiency and is a vital component in the con-
trol system. In a loop, a fault in a subsystem can propagate back to the subsystem
where the fault first occurred. Here, fault estimation becomes more challenging as
the fault’s amplitude may become smaller [80]. Much of the literature discusses such
problems using data driven approaches such as [81] and [82]. Therefore, this thesis
tries to contribute to the same problem by proposing a model based approach as an
alternative. Moreover, the approach considers that the proposed method uses the
number of sensors as minimum as possible.

1.2 The aims of the research

The aim of this research is to develop model based fault diagnosis methods for net-
worked LTI systems, specifically robot platoons and heat exchange networks. The
following goals are set:

1. To develop networked LTI system models that can meet the objectives of fault
detection, isolation, and estimation purposes.

As robot platoons and heat exchange networks are two important classes of
networked systems, many previous works discuss their dynamical modelling.
However, based on them, this study aims to construct suitable models that can
be used for fault diagnosis. To do this, after the fault has been modelled (i.e.
sensor fault, actuator fault, or parameter fault), a dynamical system model of
the networked LTI systems will be constructed that includes the fault’s model.
This problem is challenging because, in addition to the model of the fault being
included, the network’s model should also be able to capture the fault’s effect
propagation from one subsystem to the others.

2. To solve the sensor placement problem that is necessary for fault diagnosis in
the networked LTI systems.

The sensor placement problem is the problem of selecting measurement vari-
ables (i.e. where to install sensors) to maximize some objectives while satisfy-
ing various design constraints. Here, the objective is that every possible fault
should be able to be detected and isolated. Meanwhile, the constraints are re-
lated to physical and financial reasons, i.e., the number of sensors used is as
minimum as possible and they are installed at realistic places, for example at
the end of connections. This problem is challenging because, as the fault can
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propagate to the other subsystems, the source of the fault should still be able
to be localized. Furthermore, as parameter fault is considered, suitable ap-
proaches that are independent of parameters should be explored. It should be
noted that, by allowing sensors to be put only at some specific points, unmea-
surable states will emerge.

3. To investigate the effect of network topology on fault diagnosis in networked
LTI systems using the model based approach.

This study also investigates the relationship between network topology and
fault diagnosis by using the model based approaches. To make it similar to the
real world environment, the features that are considered in the network topol-
ogy are splitting connections, joining connections, and loops. This problem is
challenging because, combined with the previously mentioned sensor place-
ment problem, the presence of unmeasurable states could make the fault effect
propagation difficult to track.

1.3 The structure of this work

The basic notions that are used in these studies are briefly reviewed in Chapter 2.
Then, a model based actuator and sensor fault diagnosis for robot platoons are de-
scribed in Chapter 3. After that, a model based approach for parameter fault diag-
nosis in heat exchange networks that contains branching connections is discussed
in Chapter 4. Chapter 5 presents a model based approach for additive fault diagno-
sis in the heat exchange networks that contain loops. Finally, the theses points and
future works are summarized in Chapter 6.

Meanwhile, the appendices contain some basic knowledge and background in-
formation that are useful to provide understanding in this study. The basic theory
about the LTI system is written in Appendix A. On the other hand, Appendix B gives
the necessary background information about the networked system used in this the-
sis. After that, some basic knowledge about observers can be found in Appendix C.
Appendix D presents a summary of a special observer for a class of nonlinear sys-
tems. The last Appendix E contains a brief discussion about the future works of this
study.
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Chapter 2

Basic notions

2.1 Fault modelling in LTI systems

A fault ( f ) is a phenomenon that changes the behaviour of the technological pro-
cesses such that it no longer satisfies its original purpose. Generally, it induces con-
siderable deviation from the normal behaviour of a system that is caused by some
unexpected events [12] and it can be categorized into [18]:

1. Actuator faults ( fa): these faults cause changes in the actuator’s behaviour.

2. Sensor faults ( fs): these faults directly affect the system’s measurement.

In the case of LTI systems (see the details of LTI systems in Appendix A), the
actuator and sensor faults can be modelled by incorporating them into the gen-
eral model in Eq (A.3) as:

ẋ = Ax + B(u + fa)

y = Cx + Du + fs
(2.1)

3. Parameter/process faults: these faults directly affect the system’s dynamic, for
example a drastic change in system’s parameter (parameter faults).

The parameter faults are modelled by changing the related matrix in the LTI
model because they change the system’s dynamic:

ẋ = A f x + B f u

y = Cx + Du
(2.2)

where A f and B f are matrices containing the changed parameters because of
the faults.

Throughout this research, the fault is assumed to be an unknown vector that has
zero value in fault free condition and it is a deterministic time function.

2.2 Fault detection, isolation, and estimation

Here, some definitions and models related to the fault diagnosis process are pre-
sented [12, 18, 19]:

1. Fault detection: a binary decision about either there are some presences of any
fault or the absence of all faults.

2. Fault isolation: the process to determine the occurrence location of the faults.
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3. Weak fault isolation: fault isolation process where the faults are assumed to
happen one at a time (no simultaneous faults).

4. Fault estimation: the process of determining the magnitude of the faults and,
if it is possible, the type of the fault based on the available measurements.

2.2.1 Fault detection

Consider a residual generator for system in Eq (2.1) that has the following model:

ż = Azz + Bzuu + Bzyy , z(t0) = z0

r = Czz + Druu + Dryy
(2.3)

where z is the residual generator’s states and r is the residual signal (or residues).
Az, Bzu, Bzy, Cz, Dru, and Dry are matrices with appropriate dimensions.

By taking the previous fault diagnosis definitions, the fault detection problem
can be redefined as follows [18, 19]: given a system as in Eq (2.1), design a residual
generator as in Eq (2.3) such that:

1. In the absence of fault (both fa = 0 and fs = 0), the residues should be asymp-
totically decays to zero (limt→∞ r = 0).

2. The residues r should be affected by the fault (i.e. if fa ̸= 0 ∨ fs ̸= 0, then
limt→∞ r ̸= 0).

2.2.2 Fault isolation

In case of fault isolation, a bank of residual generators is designed in such a way that
each residues is only affected by a specific fault [12, 18, 19]. Thus, by observing the
produced residues, the fault can be isolated.

For example, consider that a system may be subjected to three different faults
f1, f2, and f3. Then, design a bank of three residual generators that produces three
residues r1, r2, and r3 so that the effects of fault on the residues satisfies:

TABLE 2.1: Effects of fault on residues: example 1

signals f1 f2 f3

r1 X 0 0
r2 0 X 0
r3 0 0 X

where X indicates a non zero value.
Table 2.1 shows that the residual generators solve the fault isolation problem.
However, in real world applications, only weak fault isolation is commonly real-

ized because strong fault isolation (for simultaneous faults) usually demands a large
number of measurements. In addition, some sufficient conditions may be not ful-
filled to obtain a diagonal structure as in Table 2.1, or the system structure does now
allow it (i.e., due to the lack of observability). In this situation, some faults should
be grouped so that some residues are affected by a specific group of faults.
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TABLE 2.2: Effects of fault on residues: example 2

signals f1 f2 f3

r1 X 0 X
r2 0 X 0

Table 2.2 shows an example where both the effect of faults f1 and f3 are grouped
to be detected by the residual signal r1 and residual signal r2 is only affected by fault
f2.

This combination of fault detection and isolation is considered as the basis of
every fault diagnosis process.

2.2.3 Fault estimation

Fault estimation represents the next enhancement and is mostly done after the fault
has been isolated. It is a challenging problem and some methods usually can only be
applied to some specific type of faults [12, 18, 19]. Generally, the steady state value
of the fault signal can be estimated and the estimation problem in case of a constant
fault is formulated as follows: obtain the fault estimate f̂ such that limt→∞ ∥ f − f̂∥ =
0.

By assuming that the fault can be modelled as a constant signal, a common fault
estimation method is to consider the fault as an additional state so that an observer
can be designed to estimate it. The system model that is augmented by the fault is
called an extended state space model and it can be written in the following general
form: [

ẋ
ḟ

]
=

[
A Fx
0 0

] [
x
f

]
+

[
B
0

]
u

y =
[
C Fy

] [x
f

] (2.4)

where f is the considered fault, 0 is the zero matrix, Fx is the fault distribution matrix
with respect to system’s states, and Fy is the fault distribution matrix with respect to
system’s measurements.

Then, some observer design techniques in Appendix C can be applied to Eq (2.4)
for fault estimation purposes.
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Chapter 3

Actuator and sensor fault diagnosis
in robot platoons

The current technological advancement in communication and networks has pushed
the popularity of technologies such as networked control systems, the internet of
everything, and distributed control. Combined with the common cooperation phe-
nomenon in nature, such as flocking birds, swarming insects, and human collabo-
ration, they inspired the emergence of cooperative robotics theory [83, 84, 85, 86].
Much research focuses on such topics because they can solve many tasks that can
not be done by only one robot in many wide and diverse areas such as space explo-
ration, domestic help, healthcare, military operations, and Wireless Sensor Networks
(WSNs) [87, 88]. As there are multiple robots that cooperate to accomplish prede-
fined tasks, many critical issues need to be handled in such systems in the area of
communication and control [89, 90]. One attractive example in cooperative robotics
that becomes a concern for many researchers is the robot or vehicle platoons where
some robots or vehicle subsystems move together in a leader-follower scheme [91,
92].

To be able to achieve a common goal for the platoons, each subsystem should
have information about the states of its neighbouring subsystem in addition to its
own states [93]. For that reason, it is common to have network communication be-
tween them either using a vehicle to vehicle or vehicle to cloud communication [94].
However, this makes the platoons more prone to network disturbances that can be
generally categorized into communication faults and False Data Injection Attacks
(FDIA) [59, 95]. As the attacker is assumed to have sufficient knowledge about the
system’s behaviour, FDIA is harder to detect and diagnose compared to communi-
cation faults [96, 97, 98, 99]. Thus, among those two, FDIA is a currently rising topic
with fewer research results.

Apart from the network disturbances, the system’s performance is also affected
by component faults such as actuator faults and sensor faults [17, 100]. To handle
them, most control strategies can be categorized into passive and active approaches
[101, 102, 103, 104]. In the passive approach, the faults information is not required
as it prioritizes the control objectives (e.g. the faults are treated like some unknown
disturbances). Meanwhile, in the active approach, the faults information is obtained
through fault detection and isolation processes in addition to the control strategies.
Thus, in many cases where the achievement of the goals is more important than the
fault diagnosis, such as a consensus based problem, the passive approach is pre-
ferred [105]. However, if the faults need to be compensated more accurately, an
active approach should be considered [106, 107].

Actuator faults and network disturbances usually enter into the same input chan-
nels in the subsystems [108, 109, 110]. Some research shows that the effect of network
disturbances, either communication faults or FDIA, can be ignored on the actuator
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fault diagnosis processes by proper fault oriented modelling, filtering, and estima-
tion techniques [64, 111]. Meanwhile, as sensor faults on a subsystem can propagate
through the network, its isolation problems should also be acknowledged so that
they will not affect other subsystems and disturb the coordination.

On the other hand, Unknown Input Observer (UIO) is a popular approach in
a model based fault diagnosis because it can decouple the influence of unknown
inputs on state estimation. In [17], it was shown that weak faults isolation can be
achieved using this UIO. Residual generators are built from these UIOs for fault
diagnosis purposes which are sensitive to some groups of faults but insensitive to
others. Chakrabarty et al have further explored the implementation of this UIO to
accommodate bounded exogenous inputs and delayed measurements [112, 113]. Xu
et al combined UIO with set-theoretic methods for robust fault detection purposes
[114]. Sensor faults detection on a Unmanned Aerial Vehicle (UAV) using UIO has
also been researched by Zuo et al [115].

As the network contributes to many unpredicted unknown inputs such as net-
work disturbances and faults propagation, this unknown inputs decoupling feature
becomes more important in networked control systems. Thus, much research to
implement UIO as states observer in this networked environment has been done.
Taha et al investigated state estimation conducted by UIO which is connected to an
observed plant via network [116]. UIO for interconnected second-order system in-
vestigation has also been done by Shames et al [117]. Chen et al and Chakrabarty et
al explored the design of UIO for a class of interconnected nonlinear systems [118,
119].

In terms of fault diagnosis in a networked environment, Liu et al and Shames et
al explored the utilization of UIO to detect a faulty agent in a multi-agent system [66,
67]. Zhang et al investigated how to do either actuator or sensor faults identification
for each agent using a global UIO in networked control systems [68].

Based on those backgrounds and motivations, this research explores the actuator
and sensor fault diagnosis problems in the robot platoons that move in a leader-
follower scheme. With the hope that the results can be used to further design some
fault tolerant controls for the said system, 2 different scenarios are investigated: 1.
detection, isolation, and estimation purposes for actuator faults, and 2. detection
and isolation purposes for sensor faults.

As mentioned earlier, for actuator fault diagnosis, the problem is that actuator
faults and network disturbances enter the subsystem from the same input channel.
Thus, a fault diagnosis method is studied that uses relative output information to
eliminate the need for information interchange among the neighbouring subsystems
so that the actuator faults isolation process is decoupled from network disturbances.
To do this, the subsystems are modelled based on which the non-measurable states
of the neighbouring subsystems can be determined by proper filtering techniques.
Then, the model is used as the basis for designing a Proportional Integral (PI) ob-
server for actuator fault estimation. The pole placement design method and Linear
Quadratic Estimator (LQE) are applied to determine the observer’s gain. The au-
thor’s related publication for actuator fault diagnosis is [A1].

Meanwhile, for sensor faults, the design of a bank of local UIOs as residual gen-
erators is studied to detect and isolate faulty sensors in each subsystem of the robot
platoons. It is done by extending the UIO based sensor faults isolation problem
into networked control systems. This local fault isolation scheme has advantages in
terms of scalability features compared to a global UIO. The author’s related publica-
tion for sensor fault diagnosis is [A2].

The research questions that we are going to tackle are as follows:
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1. How to develop the model of robot platoons that captures the actuator and
sensor fault propagations from one subsystem to the others?

2. How to isolate a specific sensor fault in a subsystem using a bank of local ob-
servers?

3. How to decouple the actuator fault and the communication fault that come
into the same input channel in a subsystem?

4. How to estimate the previously mentioned actuator fault?

3.1 The modelling of the controlled robot platoons

This section discusses the modelling of the controlled robot platoons that is used as
the same basis for both actuator fault diagnosis and sensor fault diagnosis scenarios.
It is said to be controlled because the model is derived from the Adaptive Cruise
Control (ACC) systems which is used to determine the appropriate control input for
the vehicle following system [91].

3.1.1 Fault free model of robot platoons

Consider that several robots move along an axis and each of them has a double
integrator dynamic as follows:

m(j) ẍ(j) = u(j) (3.1)

where j = 2, 3, 4, ..., N represents the jth follower robot with N being the number of
the robots. j = 1 is allocated to represent the leader robot. In addition, it holds that
ẍ(j) = v̇(j) = a(j) where x(j) is the robot’s position, v(j) is the robot’s velocity, a(j) is
the robot’s acceleration, m(j) is the robot’s mass, and u(j) is the control input of the
jth robot.

According to [92], two conditions that must be achieved in this leader-following
scheme are individual stability and string stability:

1. Individual stability means that the spacing error of the concerned robot should
converge to zero when the preceding robot has a constant speed. The spacing error
describing the distance with the preceding robot can be expressed as:

ϵ(j) = x(j) − x(j−1) + l(j−1)

e(j) = x(j) − x(j−1) + L(j)
(3.2)

where ϵ(j) is the measured inter-robot spacing, e(j) is the spacing error of the jth
robot, and L(j) is some desired value of inter-robot spacing that includes the length
of the preceding robot l(j−1). All of these are shown in Fig 3.1.

FIGURE 3.1: Robot platoon block diagram
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2. String stability means that the spacing errors on each robot should not amplify
towards the end of the string (∥e(j)∥∞ ≤ ∥e(j−1)∥∞). To satisfy both individual sta-
bility and string stability, a constant time-gap policy is used to formulate the control
input for each robot. In this policy, the desired inter-robot spacing L(j) is not made
constant. Instead, it varies in proportional with velocity as well as the spacing error
e(j) as follows:

L(j) = l(j−1) + hẋ(j)

e(j) = ϵ(j) + hẋ(j)
(3.3)

where h is a prescribed positive constant parameter called time-gap and ϵ(j) is as
given in Eq (3.2).

A previous research [92] found that a suitable control input u(j)
c for this constant

time-gap policy is in the form of:

u(j)
c = ẍ(j) = −1

h
(ϵ̇(j) + λe(j))

= −1
h
(ẋ(j) − ẋ(j−1) + l̇(j−1) + λx(j) − λx(j−1) + λl(j−1) + λhẋ(j))

= −λ

h
x(j) + (−1

h
− λ)ẋ(j) +

λ

h
x(j−1) +

1
h

ẋ(j−1) + (−λ

h
)l(j−1)

(3.4)

where λ is a constant chosen such that λ > 0.
For the sake of convenience, Eq (3.4) is rewritten as:

u(j)
c = k(j)

1 x(j) + k(j)
2 v(j) + k(j)

3 x(j−1) + k(j)
4 v(j−1) + k(j)

5 l(j−1) (3.5)

where k(j)
1 = −λ

h , k(j)
2 = − 1

h − λ, k(j)
3 = λ

h , k(j)
4 = 1

h , and k(j)
5 = −λ

h .

3.1.2 Measurements in robot platoons

It is assumed that each robot is equipped with conventional sensors which are a
Global Positioning System (GPS)-based sensor, a velocity sensor, and a radar sensor.
Thus, the considered measurement outputs are:

1. y(j)
1 is a position measurement by using a GPS-based sensor (S1).

2. y(j)
2 is a velocity measurement obtained from the same GPS-based sensor (S1).

For GPS-based velocity measurement, please refer to [120].

3. y(j)
3 is a velocity measurement by using the wheel-mounted velocity sensor (S2)

on the robot.

4. y(j)
4 is an inter-vehicle distance measurement by using a radar-based sensor

(S3).

In addition, it is also assumed that each robot receives the position information
from the preceding robot (x(j−1)) through wireless inter-vehicle network communi-
cation. The velocity from the preceding robot (v(j−1)) can also be obtained by differ-
entiating this information (ẋ(j−1)).

Note that the common use of local sensors and inter-vehicle communication in-
troduces measurement redundancy. Velocity can either be obtained from the GPS-
based sensor or measured by the wheel-mounted velocity sensor. In the same man-
ner, the inter-vehicle distance can also either be directly measured or be obtained by
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the difference between the GPS-based measurement and the position of the preced-
ing vehicle which is received through the wireless communication network.

By taking account of those measurements along with Eqs (3.1) and (3.5), the state
space model for the jth follower robot (j = 2, 3, 4, ..., N) can be written as follows:ẋ(j)

1

ẋ(j)
2

ẋ(j)
3

 =

 0 1 0
k(j)

1
m(j)

k(j)
2

m(j) 0
0 1 0


x(j)

1

x(j)
2

x(j)
3

+

 0 0 0
k(j)

5
m(j)

k(j)
3

m(j)
k(j)

4
m(j)

0 0 −1


 l(j−1)

x(j−1)

v(j−1)




y(j)
1

y(j)
2

y(j)
3

y(j)
4

 =


1 0 0
0 1 0
0 1 0
0 0 1


x(j)

1

x(j)
2

x(j)
3


(3.6)

where x(j)
1 = x(j), x(j)

2 = v(j) = ẋ(j), and x(j)
3 = x(j) − x(j−1).

Special case: the leader robot

It is considered that the leader robot (j = 1) moves with a prescribed controlled
speed and it does not receive information from the other robots. The needed control
input is calculated only from the sensor measurements without being affected by the
states of the other robots. A Proportional Integral (PI) velocity controller is assumed
for this leader as follows:

u(1)
c = k I

∫ t

0
(vre f − v(1)) dτ + kP(vre f − v(1))

u(1)
c = −k I x(1) − kPv(1) + u f f

u f f = k I

∫ t

0
vre f dτ + kPvre f

(3.7)

where k I is the integral control gain, kP is the proportional control gain, u f f is the
feed-forward control term, and vre f is a predefined speed setpoint for the leader
robot.

The assumed measurement outputs for the leader robot are:

1. y(1)1 is a GPS-based position measurement.

2. y(1)2 is a velocity measurement based on the same GPS sensor.

3. y(1)3 is a velocity measurement by using the wheel-mounted velocity sensor on
the robot.

Thus, the state space model for the leader robot is:[
ẋ(1)1

ẋ(1)2

]
=

[
0 1

− kI
m(1) − kP

m(1)

] [
x(1)1

x(1)2

]
+

[
0
1

m(1)

]
u f fy(1)1

y(1)2

y(1)3

 =

1 0
0 1
0 1

 [x(1)1

x(1)2

] (3.8)

where x(1)1 = x(1) and x(1)2 = v(1) = ẋ(1).
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3.2 Sensor fault diagnosis in robot platoons

This section is provided to discuss the sensor fault diagnosis scenario in the robot
platoons.

3.2.1 Model of robot platoons with sensor fault

Sensors can be affected by additive faults and measurement noises. The measure-
ment noises are considered to be high frequency and low amplitude signals. Mean-
while, the faults are assumed to be low frequency and high magnitude signals (e.g.
sensor biases). Furthermore, they have a considerable influence on the dynamic be-
haviour of the robot platoons. Hence, the output measurements for the follower
robot (j = 2, 3, 4, ..., N) in Eq (3.6) can now be modelled as:

y(j) = C̃(j)x(j) + f (j)
s + w(j)

C̃(j) =


1 0 0
0 1 0
0 1 0
0 0 1

 (3.9)

where y(j) = [y(j)
1 y(j)

2 y(j)
3 y(j)

4 ]T is the measurement, x(j) = [x(j)
1 x(j)

2 x(j)
3 ]T is the sub-

system’s states, f (j)
s = [ f (j)

s1 ḟ (j)
s1 f (j)

s2 f (j)
s3 ]T is the sensor fault which contains position

sensor fault ( f (j)
s1 ), derivative of the position sensor fault ( ḟ (j)

s1 ), velocity sensor fault

( f (j)
s2 ), distance sensor fault ( f (j)

s3 ), and w(j) = [w(j)
1 ẇ(j)

1 w(j)
2 w(j)

3 ]T is the measurement
noises.

The received information from the network is also considered to be affected by
network disturbances as follows:

i(j−1) = x(j−1) + δi(j−1) (3.10)

where i(j−1) is the received position information from the preceding robot, x(j−1) is
the position information from the preceding robot, and δi(j−1) represents the distur-
bance on the signal received through the network due to the possible position sensor
fault of the preceding robot.

The control input for each robot in the robot platoons can be calculated from
the enumerated sensor measurements which are affected both by sensor faults and
network disturbance. As there are redundancies in the measurements, there are also
several ways to compute the control signal u(j)

c . Based on Eqs (3.5), (3.9), and (3.10),
one possible way to compute it is:

u(j)
c = k(j)

1 y(j)
1 + k(j)

2 y(j)
3 + k(j)

3 i(j−1) + k(j)
4 i̇(j−1) + k(j)

5 l(j−1)

u(j)
c = k(j)

1 (x(j)
1 + f (j)

s1 + w(j)
1 ) + k(j)

2 (x(j)
2 + f (j)

s2 + w(j)
2 ) + k(j)

3 (x(j−1) + δi(j−1))

+ k(j)
4 (ẋ(j−1) + δ̇i(j−1)

) + k(j)
5 l(j−1)

u(j)
c = k(j)

1 x(j) + k(j)
2 v(j) + k(j)

3 x(j−1) + k(j)
4 v(j−1) + k(j)

5 l(j−1) + D̃(j)

(3.11)

where D̃(j) represents an unknown disturbance term which sums up the additive
faults and the noises terms that arrive through the networks or from the local faulty
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sensors as follows:

D̃(j) = k(j)
1 f (j)

s1 + k(j)
2 w(j)

1 + k(j)
2 f (j)

s2 + k(j)
2 w(j)

2 + k(j)
3 δi(j−1) + k(j)

4 δ̇i(j−1) (3.12)

If we implement the control input using measurements from other possibilities,
then u(j)

c will have the same form as in Eq (3.11) and only D̃(j) will change.
Thus, the state space equation with unknown disturbance term for the jth robot

in the robot platoons is:ẋ(j)
1

ẋ(j)
2

ẋ(j)
3

 =

 0 1 0
k(j)

1
m(j)

k(j)
2

m(j) 0
0 1 0


x(j)

1

x(j)
2

x(j)
3

+

 0 0 0
k(j)

5
m(j)

k(j)
3

m(j)
k(j)

4
m(j)

0 0 −1


 l(j−1)

x(j−1)

v(j−1)



+

 0 0 0 0
k(j)

3
m(j)

k(j)
4

m(j)
k(j)

1
m(j)

k(j)
2

m(j)

0 0 0 0




δi(j−1)

δ̇i(j−1)

f (j)
s1 + w(j)

1

f (j)
s2 + w(j)

2




y(j)
1

y(j)
2

y(j)
3

y(j)
4

 =


1 0 0
0 1 0
0 1 0
0 0 1


x(j)

1

x(j)
2

x(j)
3

+


f (j)
s1

ḟ (j)
s1

f (j)
s2

f (j)
s3

+


w(j)

1

ẇ(j)
1

w(j)
2

w(j)
3



(3.13)

Furthermore, Eq (3.13) can be written as in Eq (C.9) in the following form:

ẋ(j) = Ã(j)x(j) + B̃(j)u(j) + Ẽ(j)d(j)

y(j) = C̃(j)x(j) + f (j)
s + w(j)

where

Ã(j) =

 0 1 0
k(j)

1
m(j)

k(j)
2

m(j) 0
0 1 0

 , B̃(j) =

 0 0 0
k(j)

5
m(j)

k(j)
3

m(j)
k(j)

4
m(j)

0 0 −1

 ,

Ẽ(j) =

 0 0 0 0
k(j)

3
m(j)

k(j)
4

m(j)
k(j)

1
m(j)

k(j)
2

m(j)

0 0 0 0

 , C̃(j) =


1 0 0
0 1 0
0 1 0
0 0 1

 ,

x(j) =

x(j)
1

x(j)
2

x(j)
3

 , u(j) =

 l(j−1)

x(j−1)

v(j−1)

 , d(j) =


δi(j−1)

δ̇i(j−1)

f (j)
s1 + w(j)

1

f (j)
s2 + w(j)

2

 ,

f (j)
s =


f (j)
s1

ḟ (j)
s1

f (j)
s2

f (j)
s3

 , w(j) =


w(j)

1

ẇ(j)
1

w(j)
2

w(j)
3



(3.14)
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Special case: the leader robot

The control input of the leader robot (j = 1) only depends on it’s own sensor mea-
surements. The unknown inputs, which act as disturbance for the sensor faulty
model of the leader robot, come from this leader’s sensor fault. With this additive
sensor fault, the leader’s measurements become:

y(1) = C̃(1)x(1) + f (1)
s + w(1)

C̃(1) =

1 0
0 1
0 1

 (3.15)

where y(1) = [y(1)1 y(1)2 y(1)3 ]T is the leader’s measurement, x(1) = [x(1)1 x(1)2 ]T is the
leader’s states, f (1)

s = [ f (1)s1 ḟ (1)s1 f (1)s2 ]T is the leader’s sensor fault which contains po-
sition sensor fault ( f (1)s1 ), derivative of the position sensor fault ( ḟ (1)s1 ), velocity sensor
fault ( f (1)s2 ), and w(1) = [w(1)

1 ẇ(1)
1 w(1)

2 ]T is the leader’s measurement noises.
Then, based on Eqs (3.7) and (3.15), one possible way to compute the control

input of the leader u(1)
c is:

u(1)
c = −k Iy

(1)
1 − kPy(1)3 + u f f

u(1)
c = −k I(x(1)1 + f (1)s1 + w(1)

1 )− kP(x(1)2 + f (1)s2 + w(1)
2 ) + u f f

u(1)
c = −k I x

(1)
1 − kPx(1)2 + u f f + D̃(1)

(3.16)

where D̃(1) contains the additive fault-induced disturbance and noise terms as fol-
lows:

D̃(1) = −k I f (1)s1 − k Iw
(1)
1 − kP f (1)s2 − kPw(1)

2 (3.17)

Thus, the state space equation with sensor faults for the leader robot in the robot
platoons is:[

ẋ(1)1

ẋ(1)2

]
=

[
0 1

− kI
m(1) − kP

m(1)

] [
x(1)1

x(1)2

]
+

[
0
1

m(1)

]
u f f +

[
0 0

− kI
m(1) − kP

m(1)

] [
f (1)s1 + w(1)

1

f (1)s2 + w(1)
2

]
y(1)1

y(1)2

y(1)3

 =

1 0
0 1
0 1

 [x(1)1

x(1)2

]
+

 f (1)s1

ḟ (1)s1

f (1)s2

+

w(1)
1

ẇ(1)
1

w(1)
2

 (3.18)
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Furthermore, Eq (3.18) can be written as in Eq (C.9) in the following form:

ẋ(1) = Ã(1)x(1) + B̃(1)u(1) + Ẽ(1)d(1)

y(1) = C̃(1)x(1) + f (1)
s + w(1)

where

Ã(1) =

[
0 1

− k(1)I
m(1) − k(1)P

m(1)

]
, B̃(1) =

[
0
1

m(1)

]
,

Ẽ(1) =

[
0 0

− k(1)I
m(1) − k(1)P

m(1)

]
, C̃(1) =

1 0
0 1
0 1

 ,

x(1) =

[
x(1)1

x(1)2

]
, u(1) = u f f , d(1) =

[
f (1)s1 + w(1)

1

f (1)s2 + w(1)
2

]
,

f (1)
s =

 f (1)s1

ḟ (1)s1

f (1)s2

 , w(1) =

w(1)
1

ẇ(1)
1

w(1)
2



(3.19)

3.2.2 UIO-based sensor fault isolation in robot platoons

Sensor fault isolation refers to a process for determining in which sensor the fault
has occurred. One way to accomplish this is by using structured residual signals.
These structured residual signals are made in such a way that each of them is sen-
sitive (or insensitive) to a certain group of faults while insensitive (or sensitive) to
the others. This property becomes the basis to solve the isolation problem. As men-
tioned earlier, because UIO can decouple some unknown input signals so that it is
insensitive to them, it has the potential to produce the needed structured residual
signals for sensor faults isolation. One remark is that this scheme can only isolate a
single or a certain group of faults one at a time (weak fault isolation).

Consider an LTI system with sensor faults fs and unknown disturbance d as
follows:

ẋ = Ax + Bu + Ed
y = Cx + fs

(3.20)

where C ∈ Rn×m, x ∈ Rn, y ∈ Rm, and fs ∈ Rm.
To apply the UIO for weak sensor fault isolation, we delete one by one of the

rows in the C matrix in Eq (3.20) related with each sensor fault:

yi = Cix + fsi (3.21)

where Ci ∈ Rn×(m−1) is the C matrix without the ith row, yi ∈ Rm−1 is the y vector
without the ith entry, and fsi ∈ Rm−1 is the fs vector without the ith entry.

Then, a bank of m UIOs for the system can be derived with the following dynam-
ics:

żi = Fizi + TiBu + Kiyi

ri = (I − Ci Hi)yi − Cizi
(3.22)

with i = 1, 2, 3, ..., m, zi ∈ Rn is the ith sensor fault UIO’s state vector, ri ∈ Rm−1

is the ith sensor fault UIO’s residual signal, and the Fi, Ti, Ki, and Hi matrices are
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chosen in such a way to satisfy the following conditions:

HiCiE = E
Ti = I − HiCi

Fi = Ti A − K1iCi

K2i = Fi Hi

Ki = K1i + K2i

(3.23)

where K1i is chosen to stabilize Fi.
Eq (3.22) shows that zi is affected by all inputs except the ith entry related to a

specific sensor fault (yi). If a fault occurs, all the residual signals will be triggered
except for the ith one (i.e. ri is insensitive to the ith sensor fault). Hence, this bank of
UIOs can be used as residual generators for weak sensor fault isolation.

Case 1: the follower robot

In the robot platoons, the network disturbance comes from the position sensor fault
measurement of the preceding robot which is transmitted to the robot behind it. For
the jth robot, Eq (3.14) shows that we can treat both the network disturbance from
the preceding (j − 1)th robot and the effect of its own sensor faults on control as the
unknown input part d(j).

The output matrix C̃(j) is given by Eq (3.9). The C̃(j)
1 , C̃(j)

2 , and C̃(j)
3 matrices,

which correspond to the design of UIO for weak sensor fault isolation, are obtained
in the same manner as in Eq (3.21) so that we get:

C̃(j)
1 =

[
0 1 0
0 0 1

]

C̃(j)
2 =

1 0 0
0 1 0
0 0 1


C̃(j)

3 =

1 0 0
0 1 0
0 1 0


(3.24)

One remark for UIO which is designed to be insensitive to a fault in S1 is that
both the first and second row of the C̃(j) matrix is deleted to form C̃(j)

1 because y(j)
2

represents velocity which is obtained from the same sensor to obtain y(j)
1 . Thus,

GPS-based velocity measurement is not treated as an extra sensor that needs faults
isolation.

By using those new matrices in Eq (3.24), three UIOs for each sensor faults iso-
lation can be designed for each robot according to Eqs (3.22) and (3.23) to produce
residual signals r(j)

1 , r(j)
2 , and r(j

3 which are insensitive to fault in S1, S2, and S3, re-
spectively. These residual signals produced by each of those UIOs can be used to
perform weak sensor fault isolation as shown in Fig 3.2.
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FIGURE 3.2: A bank of local UIOs for sensor faults isolation on each
robot

Case 2: The leader robot

Sensor faults isolation for the leader robot has a rather different scheme because its
states are not affected by the states of the other robots. One more thing to be noted
is that it only has redundancy in velocity measurement which comes from both the
GPS-based sensor measurement (S1) and the wheel-mounted velocity sensor mea-
surement (S2).

As the leader robot has redundancy in the velocity measurement, we can use
the same method as in the case of the follower robot to design the UIO which is
insensitive to a fault in S2. Thus, based on Eq (3.19), we use the following matrices
to construct the UIO that produces r(1)2 :

Ã(1)
2 =

[
0 1

− kI
m(1) − kP

m(1)

]

B̃(1)
2 =

[
0
1

m(1)

]
C̃(1)

2 =

[
1 0
0 1

]
Ẽ(1)

2 =

[
0 0

− kI
m(1) − kP

m(1)

]
(3.25)

As the position measurement of the leader does not have any redundancy, we
refer to Eq (3.16) to design a residual generator for fault isolation in S1 by neglecting
the disturbance parts E(1) and D(1) so that the produced residual signal will respond
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to any sensor bias fault in S2. We can do that because we perform weak sensor fault
isolation that assumes no simultaneous fault. Thus, we get:

ẋ(1)2 = − kP

m(1)
x(1)2 − k I

m(1)
x(1)1 +

1
m(1)

u f f (3.26)

After that, based on Eq (3.26), the matrices to construct the UIO that produces
r(1)1 are:

Ã(1)
1 = − kP

m(1)

B̃(1)
1 =

[
− kI

m(1)
1

m(1)

]
C̃(1)

1 = 1

Ẽ(1)
1 = 0

(3.27)

3.2.3 Threshold computation for sensor fault isolation in robot platoons

As previously explained, to perform weak sensor fault isolation, the UIOs are treated
as residual generators in which each residual is insensitive to a specific fault while
sensitive to the others. Consequently, a suitable threshold need to be specified be-
cause we determine the faulty sensor by observing noisy measurement signals. By
substituting Eq (3.21) augmented with the measurement noise vector w ∈ Rm into
Eq (3.22), we get:

żi = Fizi + TiBu + Ki(Cix + fsi + wi)

ri = (I − Ci Hi)(Cix + fsi + wi)− Cizi
(3.28)

where wi ∈ Rm−1 is the w vector without the ith entry.
Thus, the sole effect of the measurement noises on the residuals (ri(noise)) is de-

fined by the following equation:

żi = Fizi + Kiwi

ri(noise) = (I − Ci Hi)wi − Cizi
(3.29)

Now, let the corresponding transfer function matrix of the state space model in
Eq (3.29) be Grwi. By assuming finite energy input signal, it is known that ∥ri∥ ≤
∥Grwi∥∞∥wi∥, where ∥ · ∥ here denotes the L2 norm, and the infinity norm of the
linear system is defined as ∥Grwi∥∞ = supω ∥G(jω)∥ = supω σ(G(jω)). Here, σ
denotes the maximum singular value.

Then, the threshold values (thi) to minimize the occurrence of false alarms can
be chosen as:

thi = ∥Grwi∥∞ max ∥wi∥ (3.30)

where max ∥wi∥ is an estimation of maximum value of ∥wi∥ based on a priori mea-
surements.

Hence, the weak sensor fault isolation is achieved by formulating the decision
signal σi based on the following relation to indicate that the ith sensor is faulty:

σi =

{
1 if ∥ri∥ ≤ thi and ∥rî∥ > thî, ∀î ̸= i
0 otherwise.

(3.31)
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3.3 Sensor fault isolation using UIO in networked LTI con-
trol systems

This section aims to generalize the sensor fault isolation using UIO from the case of
robot platoon into the networked LTI control systems.

3.3.1 Sensor fault in networked LTI control systems

In networked control systems, besides the local control inputs, the states of each
subsystem in that network are also affected by the outputs of its neighbouring sub-
systems. This is shown in Eq (3.32) as follows:

ẋ(j) = A(j)x(j) + B(j)u(j) + I(j)i(j)

y(j) = C(j)x(j)
(3.32)

where subscript j = 1, 2, 3, ..., N represents the jth subsystem, x(j) ∈ Rn is the state
vector, y(j) ∈ Rm is the measured output vector, u(j) ∈ Rr is the control input vec-
tor, and i(j) ∈ Rp is the interconnection input vector which represents the outputs
from the neighbouring subsystems. I(j) is an interconnection input matrix with an
appropriate dimension.

By assuming static linear interconnections, the interconnection inputs i(j) can be
generally written as:

i(j) = Ly(k)

i1
i2
i3
.
.
.

iN


=



0 L12 L13 . . . L1N
L21 0 L23 . . . L2N
L31 L32 0 . . . L3N

. . . . . . .

. . . . . . .

. . . . . . .
LN1 LN2 LN3 . . . 0





y1
y2
y3
.
.
.

yN


(3.33)

where L is called the interconnection matrix. This L matrix contains the matrices Ljk
which describes the relations between output measurements from the kth subsystem
y(k) being connected as interconnection inputs to the jth subsystem i(j).

For N connected LTI subsystems subjected to sensor faults and measurement
noises, each of them has dynamics described by state space equations as follows:

ẋ(j) = A(j)x(j) + B(j)u(j) + I(j)(i(j) + δi(j))

y(j) = C(j)x(j) + f (j)
s + w(j)

(3.34)

where f (j)
s ∈ Rm is the sensor fault vector, w(j) ∈ Rm is the measurement noises

vector, and δi(j) ∈ Rp is the disturbance term that describes the sensor faults prop-
agation through network such that:

δi(j) =
N

∑
k=1

Ljk( f (k)
s + w(k)) (3.35)
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Now, consider a general linear control algorithm where the control input u(j)

depends on the output measurements y(j) so that:

u(j) = K(j)y(j) + u(j)
c (3.36)

where K(j) is the controller gain matrix and u(j)
c is a feed forward term.

Hence, by rearranging Eq (3.36), it can be seen that the sensor faults are now
affecting the dynamics of the subsystem as follows:

ẋ(j) =
[
A(j) + B(j)K(j)C(j)

]
x(j) +

[
B(j) I(j)

] [u(j)
c

i(j)

]
+
[

I(j)δi(j) + B(j)K(j) f (j)
s + B(j)K(j)w(j)

]
y(j) = C(j)x(j) + f (j)

s + w(j)

(3.37)

3.3.2 UIO for sensor fault isolation in networked LTI control systems

In this section, we show that the UIO presented in Appendix C.5 can be applied to
develop proper weak sensor fault isolation despite fault propagation through the
network. The resulting observer can be implemented in a distributed way which
means that it uses local subsystem’s measurements and the measurements of the
neighbouring subsystems. Thus, it is scalable.

The model in Eq (3.37) can be written in a more compact way as follows:

ẋ(j) = Â(j)x(j) + B̂(j)û(j) + Ê(j)d̂(j)

y(j) = C(j)x(j) + f (j)
s + w(j)

(3.38)

where

Â(j) = A(j) + B(j)K(j)C(j)

B̂(j) =
[
B(j) I(j)

]
Ê(j) =

[
I(j) B(j)K(j)

]
d̂(j) =

[
δi(j)

f (j)
s + w(j)

]

û(j) =

[
u(j)

c

i(j)

]
(3.39)

Remark that Eq (3.38) has the same form as Eq (C.9) such that the UIO design as
explained in Appendix C.5 can be applied for weak sensor fault isolation purpose.
In addition, it is also seen that the input û(j) depends only on the control inputs of
the jth subsystem and the interconnection inputs from the measured outputs of the
neighbouring subsystems.

However, instead of making the UIO a residual generator that is only sensitive
to certain faults, the UIO is designed to be insensitive. This is because the ideal
situation in terms of UIO rank requirements is difficult to fulfil in real world imple-
mentations. So, to exploit maximum design freedom, each UIO is designed to be
insensitive to one or more specific faults [17].
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3.4 Simulation results for sensor fault diagnosis

In these simulations, the robot platoons consists of five robots where one robot acts
as the leader while the remaining four robots act as the followers. Each of them
transmits its GPS-based position measurement to the robot behind it.

In this simulation, the parameters for the controlled leader robot in Eq (3.19) are:
k I = 0.05, kP = 2, and m(1) = 1 where the values of k I and kP are the PI controller
gain values for leader’s velocity which is determined to get fast settling time with
small overshoot.

Meanwhile, the parameters for the remaining four of the follower robot (j =
2, 3, 4, 5) in Eq (3.14) are obtained from Eq (3.5) in which m(j) = 1, l(j−1) = 3, h = 2,
and λ = 20 refers to the adaptive cruise control examples in [92]. From those values,
it yields that: k(j)

1 = −10, k(j)
2 = −20.5, k(j)

3 = 10, k(j)
4 = 0.5, and k(j)

5 = −10.

By using the new C̃(j)
i matrices as in Eqs (3.24), (3.25), and (3.27), the rank and

detectability conditions necessary to UIO existence in Eq (C.18) are checked and it
turns out that they are fulfilled.

Subsequently, the UIO’s matrices Hi, Ti, Fi, and Ki are then computed to design
the residual generators for each robot. The observer gains were determined using
pole placement to satisfy all the conditions in Eq (3.23) with poles: at -15 for the UIO
related to the leader’s sensor S1, at -15 and -10 for the UIO related to the leader’s
sensor S2, at -15 and -10 for both the UIO related to the follower’s sensor S1 and
sensor S3, and at -15, -10, and -5 for the UIO related to the follower’s sensor S2.

Note that for the leader robot, it does not have both S3 and the related UIO for
that sensor. Consequently, it does not have distance measurement as one of its states
since it is the leader.

After that, Eq (3.29) and Eq (3.30) are used to calculate the residuals threshold by
considering measurement noises where max ∥wi∥ = 0.35 in the simulation. Also, it
is obtained that ∥Grwi∥∞ are 1 for the followers and 2.6 for the leader.

Lastly, weak sensor fault isolation is done by observing the produced residual
signals from the UIOs and then comparing them with the relationship shown in Eq
(3.31). In this simulation, the leader’s desired speed is set to 10 m

s .
There are three different scenarios that are simulated. In these scenarios, all of

the sensor faults are simulated as sensor bias errors using a step function where the
magnitude is increased from 0 to 10 at the 10th second.

In the first scenario, the fault is happening at sensor S1 in the first robot (leader)
by which the system’s response and UIO’s residual signals are shown in Figs 3.3, 3.4,
3.5, and 3.6 respectively.

In the second scenario, the fault is happening at sensor S2 in the third robot by
which the system’s response and UIO’s residual signals are shown in Figs 3.7, 3.8,
3.9, and 3.10 respectively.

Finally, in the third scenario, the fault is happening at sensor S3 in the 5th robot
by which the system’s response and UIO’s residual signals are shown in Figs 3.11,
3.12, 3.13, and 3.14 respectively.
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FIGURE 3.3: Robot’s positions with faulty sensor S1 in the 1st robot

FIGURE 3.4: Robot’s velocities with faulty sensor S1 in the 1st robot
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FIGURE 3.5: Robot’s distances with faulty sensor S1 in the 1st robot

FIGURE 3.6: Residual signals with faulty sensor S1 in the 1st robot

For the first scenario, Figs 3.3, 3.4, and 3.5 shows that fault in S1 in the first robot is
affecting all the states of the 2nd, 3rd, 4th, and 5th robots. This is happening because,
as mentioned earlier, the transmitted information in the platoons’ network comes
from the GPS-based position measurement (S1). Besides that, based on the previous
relation shown in the Eq (3.31), Fig 3.6 shows a significant change of amplitude in the
residual signals produced by the UIO for sensor S2 indicating that a fault occurred
in sensor S1 at the 10th second, which is correct.
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FIGURE 3.7: Robot’s positions with faulty sensor S2 in the 3rd robot

FIGURE 3.8: Robot’s velocities with faulty sensor S2 in the 3rd robot
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FIGURE 3.9: Robot’s distances with faulty sensor S2 in the 3rd robot

FIGURE 3.10: Residual signals with faulty sensor S2 in the 3rd robot

For the second scenario, Figs 3.7, 3.8, and 3.9 shows that fault in S2 in the third
robot does not directly affect the states of the 4th and 5th robots because the mea-
surement of sensor S2 is not the information that is transmitted to the robot behind
it. In addition, Fig 3.10 shows a change of amplitude exceeding the threshold in both
the residual signals from this robot’s UIO for sensor S1 and sensor S3 indicating that
sensor S2 is faulty at the 10th second, which is correct.
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FIGURE 3.11: Robot’s positions with faulty sensor S3 in the 5th robot

FIGURE 3.12: Robot’s velocities with faulty sensor S3 in the 5th robot



Chapter 3. Actuator and sensor fault diagnosis in robot platoons 29

FIGURE 3.13: Robot’s distances with faulty sensor S3 in the 5th robot

FIGURE 3.14: Residual signals with faulty sensor S3 in the 5th robot

Lastly, for the third scenario, Figs 3.11, 3.12, and 3.13 shows that a fault in S3
in the fifth robot does not directly affect any other robots at all because this 5th
robot is the last in the platoons. Furthermore, Fig 3.14 shows a significant change of
amplitude in this last robot’s UIO residual signal for both sensor S1 and sensor S2
indicating that a fault happened at the 10th second in sensor S3, which is correct.
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3.5 Actuator fault diagnosis in robot platoons

This section is provided to discuss the actuator fault diagnosis scenario in the robot
platoons. Moreover, since the state of the leader robot is not affected by the state
of neighbouring subsystems, the discussion only concerns the follower robots (j =
2, 3, 4, ..., N) because the proposed method is designed with the main aim of decou-
pling between actuator fault and network communication fault. As both of them
enter the subsystem from the same input channel, such decoupling is necessary so
that actuator fault diagnosis can be done.

3.5.1 Model of robot platoons with actuator fault

The actuator fault is modelled as an input signal that additively modifies the control
input so that Eq (3.5) becomes:

u(j) = u(j)
c + f (j)

a (3.40)

where u(j) is the modified control input augmented with actuator fault f (j)
a .

Then, based on Eqs (3.6) and (3.40), the related state space model for the jth robot
with actuator fault can be written as follows:ẋ(j)

1

ẋ(j)
2

ẋ(j)
3

 =

 0 1 0
k(j)

1
m(j)

k(j)
2

m(j) 0
0 1 0


x(j)

1

x(j)
2

x(j)
3

+

 0 0 0
k(j)

5
m(j)

k(j)
3

m(j)
k(j)

4
m(j)

0 0 −1


 l(j−1)

x(j−1)

v(j−1)

+

0
1
0

 f (j)
a


y(j)

1

y(j)
2

y(j)
3

y(j)
4

 =


1 0 0
0 1 0
0 1 0
0 0 1


x(j)

1

x(j)
2

x(j)
3


(3.41)

3.5.2 Filter design for state estimation

Eq (3.6) shows that the states from the preceding (j − 1)th robot acts as the input for
the jth robot. This input can be affected by network disturbances if it is obtained
from the information transmission through the network communication.

However, in addition to network communication, it is seen that x(j−1) can be
obtained from the relative output information in the jth subsystem as follows:

x(j−1)
m = y(j)

1 − y(j)
4 + w(j)

m (3.42)

where x(j−1)
m is the measured position of the (j − 1)th subsystem based on the rela-

tive output information from the jth subsystem and w(j)
m is the measurement noise.

This indicates redundancy in the position measurement and will be explored during
the actuator fault diagnosis process.

On the other hand, v(j−1) is not directly available from the measurements. Yet, it
can be estimated from x(j−1)

m by differentiation as follows:

v(j−1)
m =

dx(j−1)
m
dt

=
d(y(j)

1 − y(j)
4 )

dt
+

dw(j)
m

dt
(3.43)
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where v(j−1)
m is the computed velocity of the (j − 1)th subsystem based on the rela-

tive output information from the jth subsystem.
As ẇ(j)

m is a high frequency signal, a low pass filter (LPF) is needed to get rid of
its effect. The transfer function of the LPF is considered in the following form:

H(s) =
1

(Tf 1s + 1)(Tf 2s + 1)
(3.44)

where T(j)
f 1 , T(j)

f 2 > 0 are the filter parameters.
Then, by assuming zero initial values and by utilizing the Laplace transformation

property in function differentiation, we can obtain a velocity estimate v(j−1)
e as:

v(j−1)
e (s) =

s

(T(j)
f 1 s + 1)(T(j)

f 2 s + 1)
x(j−1)

m (s) (3.45)

where v(j−1)
e (s) is in Laplace domain.

In the time domain, Eq (3.45) can be written in a state space form as follows:ẋ(j)
f 1

ẋ(j)
f 2

 =

[
a(j)

f 1 a(j)
f 2

1 0

] x(j)
f 1

x(j)
f 2

+

[
1
0

]
x(j−1)

m

v(j−1)
e =

[
c(j)

f 0
] x(j)

f 1

x(j)
f 2


where

a(j)
f 1 =

−(T(j)
f 1 + T(j)

f 2 )

T(j)
f 1 T(j)

f 2

; a(j)
f 2 =

−1

T(j)
f 1 T(j)

f 2

; c(j)
f =

1

T(j)
f 1 T(j)

f 2

.

(3.46)

Thus, by using relative output information and LPF, the necessity of network
communication to get the position and velocity of the (j − 1)th robot can be elimi-
nated.

3.5.3 Modified subsystem model for actuator fault diagnosis

By combining Eqs (3.41) and (3.46), the robot model with actuator faults reads as
follows: 

ẋ(j)

v̇(j)

ẋ(j)
f 1

ẋ(j)
f 2

 =


0 1 0 0

k(j)
1

m(j)
k(j)

2
m(j)

k(j)
4 c(j)

f

m(j) 0

0 0 a(j)
f 1 a(j)

f 2
0 0 1 0




x(j)

v(j)

x(j)
f 1

x(j)
f 2



+


0 0

k(j)
3

m(j)
k(j)

5
m(j)

1 0
0 0


[

x(j−1)
m

l(j−1)

]
+


0
1
0
0

 f (j)
a


y(j)

1
y(j)

2

y(j)
3

y(j)
4

 =


1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0




x(j)

v(j)

x(j)
f 1

x(j)
f 2

+


0 0
0 0
0 0
−1 0


[

x(j−1)
m

l(j−1)

]

(3.47)
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Furthermore, Eq (3.47) can be written as in Eq (B.1) extended by an actuator fault
term in the following form:

ẋ(j) = Ā(j)x(j) + B̄(j)u(j) + L̄(j)x(j−1) + F̄(j) f (j)
a

y(j) = C̄(j)x(j) + D̄(j)u(j) + Ē(j)x(j−1)
(3.48)

where

Ā(j) =


0 1 0 0

k(j)
1

m(j)
k(j)

2
m(j)

k(j)
4 c(j)

f

m(j) 0

0 0 a(j)
f 1 a(j)

f 2
0 0 1 0

 ; B̄(j) =


0

k(j)
5

m(j)

0
0

 ;

L̄(j) =


0

k(j)
3

m(j)

1
0

 ; F̄(j) =


0
1
0
0

 ; C̄(j) =


1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0

 ;

D̄(j) =


0
0
0
0

 ; Ē(j) =


0
0
0
−1

 ; x(j) =
[

x(j) v(j) x(j)
f 1 x(j)

f 2

]T
;

u(j) = l(j−1); x(j−1) = x(j−1)
m ; f (j)

a = f (j)
a

3.5.4 Actuator fault estimator design in robot platoons

By assuming that f (j)
a is constant, a PI observer can be used to estimate its value

[121]. The basic knowledge as in Appendix C.4 is used here by replacing disturbance
d in Eq (C.9) with actuator fault f (j)

a and other further necessary modifications.
As a start, the actuator fault f (j)

a is firstly included in the state vector x(j) to form
a new extended state z(j) = [[x(j)]T f (j)

a ]T so that we can write an extended state
space version of Eq (3.48) as follows:

ż(j) =

[
Ā(j) F̄(j)

0 0

] [
x(j)

f (j)
a

]
+

[
B̄(j) L̄(j)

0 0

] [
u(j)

x(j−1)

]
= Āz

(j)z(j) + B̄z
(j)u(j)

z

y(j) =
[
C̄(j) 0

] [x(j)

f (j)
a

]
+

[
D̄(j) Ē(j)

0 0

] [
u(j)

x(j−1)

]
= C̄z

(j)z(j) + D̄z
(j)u(j)

z

(3.49)

If (Āz
(j), C̄z

(j)
) is an observable pair, then a PI observer can be designed for the

extended state space model as in Eq (3.49) which estimates not only the states but
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also the actuator fault. The state space model of the PI observer is:

˙̂z(j)
=

([
Ā(j) F̄(j)

0 0

]
−
[

L̄P
(j)

L̄I
(j)

] [
C̄(j) 0

]) [x̂(j)

f̂ (j)
a

]

+

[
L̄P

(j)

L̄I
(j)

]
y(j) +

[
B̄(j) L̄(j)

0 0

] [
u(j)

x(j−1)

]
= (Āz

(j) − L̄z
(j)C̄z

(j)
)ẑ(j) + L̄z

(j)y(j) + B̄z
(j)u(j)

z

= Āz
(j)ẑ(j) + L̄z

(j)(y(j) − ŷ(j)) + B̄z
(j)u(j)

z

ŷ(j) =
[
C̄(j) 0

] [x̂(j)

f̂ (j)
a

]
+

[
D̄(j) Ē(j)

0 0

] [
u(j)

x(j−1)

]
= C̄z

(j)ẑ(j) + D̄z
(j)u(j)

z

(3.50)

If L̄z
(j)

= [L̄P
(j) L̄I

(j)
]T is chosen such that (Āz

(j) − L̄z
(j)C̄z

(j)
) is Hurwitz, then

limt→∞(z(k) − ẑ(k)) = 0, i.e. the actuator fault will be correctly estimated.
To choose the appropriate observer’s gain L̄z

(j), one can use the easiest way such
as the pole placement method. This method is popular because the obtained gain
can manipulate the estimator’s dynamic according to the designer’s wish by placing
the poles in the desirable locations [122]. Meanwhile, if measurement noises are
considered, the LQE methods can be applied [123].

Remark: It is already checked that the pair (A, C) in system (3.47) (or (3.48)) is
observable. However, if we delete both the second and the third row of the C matrix
in the related system’s output equation (i.e. y(j)

2 and y(j)
3 do not exist), it is found that

the resulting system is still observable. In other words, the proposed actuator fault
diagnosis method will still work even though no velocity measurement is available.

3.6 Simulation results for actuator fault diagnosis

In this simulation, a leader-follower scheme in the robot platoons consisting of 3
robots is built based on Eq (3.48) except for the leader robot. The first robot (j = 1),
which acts as the leader, moves at a pre-determined controlled speed. The leader
is followed by the second robot (j = 2) which is then followed by the third robot
(j = 3) consecutively. Furthermore, an LPF based on Eq (3.46) is designed for each
of the second and third robots as the followers by which its parameters are chosen so
that the filter’s dynamics are faster than the robot’s dynamics. The used parameters
for the follower robot’s model and filter are shown in Table 3.1 where each robot is
assumed to have a mass of 1 (m(j) = 1) and a length of 3 (l(j) = 3).

TABLE 3.1: Robot model and filter parameters

Parameters k(j)
1 k(j)

2 k(j)
3 k(j)

4 k(j)
5 T(j)

f 1 T(j)
f 2

For j = 2, 3 -10 -20.5 10 0.5 -10 0.05 0.1

To estimate the actuator fault, an observer based on Eq (3.50) is designed for
every follower. As their sensor measurements are subjected to band limited white
noise with 10−4 noise power and 0.1 sample time in the simulation, two methods
are used in determining the needed observer’s gain to check the performance: the
common pole placement design method and LQE. For pole placement, the command
place in MATLAB is used to get the necessary gains in placing the poles at −5, −5.1,
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−5.2, −5.3, and −5.4. Meanwhile, for LQE, the command lqe in MATLAB is used to
get the necessary gains with the same Q = 1 but with different R which are:

R1 =

0.1 0 0
0 0.1 0
0 0 0.1

 , R2 =

1 0 0
0 1 0
0 0 1

 , R3 =

10 0 0
0 10 0
0 0 10


where Q is the process noise variance and R is the measurement noise variance.

The position (x(j)) for each robot when there are no faults is shown in Fig. 3.15.
It is seen that each follower keeps a predefined distance from its neighbour.

FIGURE 3.15: Robots’ positions when there are no actuator faults

Fig 3.16 shows the output difference between the system that uses network com-
munication as in Eq (3.41) and the system without network communication as in Eq
(3.47). It is seen that the model without network communication is good enough to
replace the one that uses network communication.

For the leader, there is no difference because it does not have network communi-
cation (as a leader, it does not have a preceding subsystem to be followed).

FIGURE 3.16: Difference in position responses of the models with and
without network communication

In the next scenario, an actuator fault with an amplitude of 150 is injected into
the second robot ( f (2)a = 150) at the 25th second. The position of each robot is shown
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in Fig 3.17. Meanwhile, the observer’s fault estimation using pole placement and
LQE are shown in Figs 3.18 and 3.19 respectively.

FIGURE 3.17: Robots’ positions when there is an actuator fault in the
2nd robot

FIGURE 3.18: Actuator fault signal and its estimate in the 2nd robot
using pole placement

FIGURE 3.19: Actuator fault signal and its estimate in the 2nd robot
using LQE
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It is seen that the actuator fault causes a deviation in the motion of the second and
third robots consecutively. After the fault occurred, the position between the second
and the third robots got farther away because the platoons implemented a constant
time gap policy. In this policy, the desired inter spacing between subsystems varies
proportionally to the velocity as seen in Eq (3.3). Thus, when their velocity increases
because of the fault, the gap between them is widening. On the other hand, by
using pole placement, the observer successfully estimates the fault in an instant even
though it is affected by the measurement noise. By using LQE, the noise’s effect is
eliminated. However, for each value of R1, R2, and R3, they take a much longer time
to estimate the fault which is around 100 seconds at best.

In the last scenario, an actuator fault with an amplitude of 100 is injected into the
third robot ( f (3)a = 100) at the 25th second. The position of each robot is shown in
Fig 3.20. Meanwhile, the observer’s fault estimation using pole placement and LQE
are shown in Figs 3.21 and 3.22 respectively.

FIGURE 3.20: Robots’ positions when there is an actuator fault in the
3rd robot

FIGURE 3.21: Actuator fault signal and its estimate in the 3rd robot
using pole placement
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FIGURE 3.22: Actuator fault signal and its estimate in the 3rd robot
using LQE

It is seen that the actuator fault causes a deviation only in the motion of the third
robot. On the other hand, by using pole placement, the observer also successfully
estimates the fault in an instant even though it is still affected by the measurement
noise. By using LQE, the noise’s effect is eliminated. However, for each value of R1,
R2, and R3, the results are the same as before where they take a much longer time to
estimate the fault which is around 100 seconds at best.

3.7 Summary and discussion

In this chapter, the actuator and sensor fault diagnosis in the robot platoons that
move in a leader-follower scheme is considered. For actuator fault diagnosis, no
sensor fault is assumed. Likewise, for sensor fault diagnosis, no actuator fault is
assumed. Each fault diagnosis problem is studied separately. In the case of actuator
fault diagnosis, the detection, isolation, and estimation of the fault are the goals.
Meanwhile, in the case of sensor fault diagnosis, the goals are to detect and isolate
the faulty sensors in each robot of the platoons.

As a networked system, the states of each robot in the platoons are affected by
the states of the preceding robot, except the leader. Network communication be-
tween subsystems is considered for the sake of state information transmission. It is
assumed that the control input for each robot is computed from the time-gap policy
used in the Adaptive Cruise Control systems. In addition, some conventional sen-
sors are considered in each robot which are: a GPS-based sensor, a wheel-mounted
velocity sensor, and a radar sensor for inter-vehicle distance measurement.

As actuator fault and network communication fault enter the subsystem through
the same input channel, their decoupling needs to be considered during the actuator
fault diagnosis. To do this, by exploiting measurement redundancy from the sensors,
a filtering technique is proposed to get rid of the necessity of network communica-
tion so that the communication fault can be neglected. Thus, a new model that does
not include network communication is constructed. Then, by using the new model
as the basis, a PI observer is designed for the actuator fault estimation purpose. If the
observer’s gain is determined from the pole placement design method, it is found
that the fault is estimated rapidly but the measurement noise was not suppressed.
Meanwhile, by using the LQE design to determine the observer’s gain, the measure-
ment noise is eliminated in exchange for a much longer settling time.
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Unlike in the actuator fault diagnosis, network communication is considered
during the sensor fault diagnosis because the sensor fault from a specific subsystem
can propagate through the network so that it disturbs the whole networked system.
Thus, a networked system model that can describe the expected behaviour of the
robot platoons with sensors fault and their propagation is constructed. By treating
the fault propagation as the unknown input, a bank of distributed Unknown In-
put Observers for each robot is designed to detect and isolate the faulty sensor. As
sensor measurement noise is considered, a threshold computation method is also
introduced to prevent a false alarm when there are no faulty sensors. It is found that
the weak sensor fault isolation in the robot platoons can be achieved by using this
local UIOs approach in each subsystem which is more scalable than a single global
UIO for the whole networked system.

The proposed sensor and actuator fault diagnosis methods here are developed
on the robot platoons which move along one axis. Thus, for another system’s imple-
mentation, preliminary steps must be taken. For example, in the case of Unmanned
Aerial Vehicles (UAV)s, some decouplings need to be done as their movement is in
more than one axis (i.e. pitch, roll, yaw). Moreover, as the proposed method targets
weak fault isolation, some faults should be grouped (fault grouping).

Compared to other works in robot and vehicle platoons such as [63, 64, 60, 65]
that prioritizes the control objectives over fault identification, this thesis concentrates
on fault detection, isolation, and estimation so that the fault can be better compen-
sated. The proposed model based methods use only 3 conventional sensors com-
pared to [62], and a bank of local UIOs which belongs to the group of linear ob-
servers compared to [59] that use nonlinear observers. In comparison with [66] and
[67] where the UIO is used only to detect a faulty agent, the UIO in this thesis is
designed to detect a specific faulty sensor. Furthermore, a bank of local UIOs means
that they are more scalable compared to the global UIO introduced by [68].
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Chapter 4

Parameter fault diagnosis in heat
exchange networks

Heat exchange units form an important class of operating elements in process sys-
tems [124]. They are commonly used for heating/cooling systems of a large building
or a district of living houses. Here, one can find a heating/cooling source that serves
a network of connected consumers where the heating/cooling medium (e.g. water)
circulates in closed and well isolated tubes. In many cases, because of financial rea-
sons, there are only a few sensors in such systems that are placed at the source and
consumers.

The dynamic models of heat exchange units can be derived from first engineering
principles, in particular from energy balances, and they are in the simplest lumped
parameter case linear or bilinear state space models depending on the chosen or
available input variables [125]. Thus, the system’s states (e.g. temperatures) are spa-
tially distributed along the tube length.

In most cases, heat exchange units are used in multiple instances forming a Heat
Exchange Network (HEN), which is a networked dynamic system. A recent book
by [126] describes network based methods for analysing structural properties of dy-
namic systems in general, and heat exchanger networks in particular.

Generally, the fault diagnosis design in networks of dynamic systems represents
a hard problem due to the fault effect propagation through the network connec-
tions. In some cases, the specifics of the interconnections and the subsystems have to
be explored to design fault diagnosis methods with guaranteed performances [127,
128]. Some also tried to use heuristic approaches such as fuzzy neural network [129]
or machine learning [130] to handle it. A fuzzy observer based fouling detection
method for heat exchangers was proposed in [131]. A nonlinear high gain observer
based fault diagnosis method was introduced in [132] for such heat exchangers in
which exothermic chemical reactions take place.

From the perceptive of fault types, a huge literature also exists. In the study of
[133], several types of faults in heating networks were identified: leakage, pressure
losses, and heat losses. A neural network based leakage detection method was pro-
posed in [134] for heating networks with small and constant supply flows. The de-
terioration detection of the heat transfer surface by ageing was investigated in [135].
A recent study by [136] has also proposed a dissipation based distributed fault diag-
nosis that can detect and isolate actuator faults in HENs as the case study. A review
of fault diagnosis strategies for district heating and cooling systems is presented in
[15].

The general aim of this research is to develop simple yet powerful diagnosis
methods for networked heat exchange units. In this present study, the particularities
of the addressed system class will be explored.
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In this section, the considered fault in HENs is the change in the heat transfer
coefficient caused by the deterioration of the heat transfer surface because of ageing
or degradation of the isolation of the heat transferring tubes. The fault diagnosis
method is built upon a simple specific model of HENs. Thus, a model based ap-
proach for parameter fault diagnosis is proposed.

Two different fault scenarios are investigated in this study by which the goals are
to detect, isolate, and estimate the faults. In the first scenario, the parameter fault is
considered to happen along the length of the tube in an element in the HENs which
contains splitting and joining connections. The author’s related publication for this
first scenario is [A3]. Meanwhile, in the second scenario, the parameter fault is con-
sidered to happen only in a certain position along the length of the tube connecting
the elements in the HENs. In this second scenario, to differentiate it from the first
scenario, we change the fault isolation term into fault localization, i.e. finding the
isolation breakdown position along the tube. For this second scenario, the author’s
related publication is [A4]. The two scenarios are described using different system
models (see Section 4.2 for details).

The research questions that we are going to tackle are as follows:

1. In the heat exchange networks that contain splitting and joining connections,
how to identify a parameter fault that is happening either along the length of
a heat exchange element or in the pipes connecting the subsystems?

2. Which sensor measurements are necessary to isolate the previously mentioned
parameter faults?

3. By using the previously mentioned sensor measurements, how to estimate the
magnitude of the fault?

4.1 Fault free model of heat exchange networks

Generally, the dynamic model of elements in HENs can be built from the energy con-
servation equations in their lumped model form (see Appendix A.2). Furthermore,
even the distributed delay interconnections between elements can be represented in
the same way (see Appendix B.1). Thus, the model of every element (heat exchange
units) in HENs and their interconnections can be obtained by applying Eq (A.7).
However, to make it more general, the environmental temperature will be consid-
ered by adding the heat transfer term kE(TEXT − xi) where kE > 0 is the heat transfer
coefficient and TEXT represents the temperature of the environment. Meanwhile, the
input u in Eq (A.7) is considered as the first input u1 of the system. For connecting
elements, this heat transfer term is also assumed to exist in the heat isolation wall.
In the case of heating devices, TEXT represents the temperature of an external heat
source in which heat is transferred to the devices. Thus, by applying this addition,
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the system’s model for HENs can be written as follows:

CLj :=
{

ẋ(j) = A(j)x(j) + B(j)u(j)

y(j) = Cx(j)

A(j) =


−v(j) − k(j)

E 0 ... 0
v(j) −v(j) − k(j)

E ... 0
0 v(j) ... 0
0 ... ... 0
0 ... ... −v(j) − k(j)

E


B(j) =

[
v(j) 0 . . . 0
k(j)

E k(j)
E . . . k(j)

E

]T

, C =
[
0 0 0 ... 1

]
(4.1)

where CL is used to refer the model of a heat exchange unit or connection and j =
1, 2...N represents the jth CL unit. The input is u(j) = [u(j)

1 TEXT]
T where u1 is the inlet

temperature and TEXT is the external temperature from the environment. The state
vector x(j) ∈ Rn contains the temperatures xi along the tube of the jth subsystem
where i = 1, 2...n represents the position of a flow element in the tube. The measured
output of the system is the last state variable x(j)

n , i.e. y(j) = x(j)
n .

Note that the input u(j)
1 comes from the output of another CL unit which may

happen to pass through a joining connection. Also, the output y(j) becomes the
input of another CL unit which may happen to pass through a splitting connection.
For those splitting and joining connections, Kirchoff law as in Eqs (B.4) and (B.6) is
applied (see Appendix B.2).

Furthermore, the model will always be stable as long as kE is positive because the
eigenvalues are already stable shown by the negative sign of the diagonal entries of
the A matrix (see Gershgorin Circle Theorem for details [137]).

4.2 Parameter fault modelling in heat exchange networks

The heaters and consumers of HENs could be connected by such transmitting el-
ements (pipes) that can hardly be monitored e.g. due to the unfavourable spatial
placements or excessive lengths. In these cases, it is important to estimate the inter-
nal states and operating conditions of these elements based only on measurements
performed at their terminals.

A critical parameter in the elements of a heat exchange network is represented by
the heat transfer coefficient k(j)

E . Its decrease leads to the performance degradation
of the HENs. The slackening of the heat transfer coefficient is treated as a fault event
in the network. The fault is modelled as a multiplicative parameter uncertainty in
the system:

k(j)
E f = (1 − f j)k

(j)
E (4.2)

where k(j)
E f is the modified heat transfer parameter because of the fault f j and f j ∈

[0, 1) is a piece-wise continuous fault signal in the jth subsystem with sparse changes.
As mentioned earlier, the fault diagnosis problem in this section has two differ-

ent scenarios with two different parameter fault modellings. In the first scenario, the
parameter fault happens along the tube in an element in the HENs (no simultaneous
faults in many elements at the same time). Meanwhile, in the second scenario, the
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parameter fault happens in a certain position along the length of the tube in a pre-
determined element in the HENs (no simultaneous faults in many positions at the
same time). For the sake of convenience, the first scenario is named scenario A. On
the other hand, the second scenario is named scenario B. Moreover, to differentiate
it between different scenarios, the fault isolation term in scenario B is changed into
fault localization.

Scenario A

The fault signal in Eq (4.2) can be incorporated into the state space model in Eq (4.1)
as follows:

ẋ(j) = A(j)x(j) + B(j)u(j) + f jh(j)(x(j)) , y(j) = Cx(j) (4.3)

where the ith entry of h ∈ Rn is h(j)
i = k(j)

E (x(j)
i − TEXT).

Special case: faulty model with splitting connection. Consider two interconnected
CL type connections where the first (j) is before the split while the second (k) is
one of the split elements after the split. The state vector of this system is x(j,k) =
[x(j)T x(k)T]T ∈ R2n. Assume that the fault can only happen either before or after the
split so that it will not affect all of the states.

The fault diagnosis oriented model in Eq (4.3) in this case can be extended by
adding a fault distribution matrix F(j,k) to the last term of the model:

ẋ(j,k) = A(j,k)x(j,k) + B(j,k)u(j,k) + F(j,k)h(j,k)(x(j,k))

y(j,k) = C(j,k)x(j,k)
(4.4)

where

F(j,k) =

[
f j I 0
0 0

]
if the fault happens before the split

F(j,k) =

[
0 0
0 fk I

]
if the fault happens after the split

(4.5)

Here, I ∈ Rn×n is the identity matrix and 0 ∈ Rn×n is the zero matrix.

Scenario B

By assuming that there are no simultaneous faults, parameter fault in Eq (4.2) can be
incorporated into the state space model in Eq (4.1) only on the ith state as follows:

ẋ = A f ,jx + B f ,ju , y = Cx

A f ,j =



−(v + kE) 0 ... ... ... 0
v −(v + kE) ... ... ... 0
0 v ... ... ... 0
0 ... ... ... ... 0
0 ... v −(v + kE f ) ... 0
0 ... ... ... ... 0
0 ... ... ... −(v + kE) 0
0 ... ... ... v −(v + kE)


B f ,j =

[
v 0 ... 0 ... 0
kE kE ... kE f ... kE

]T

, C =
[
0 0 0 ... 1

]

(4.6)
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The superscript ...(j) in this scenario B is not written because it is considered to be
predetermined or already specified.

This can be seen in Fig 4.1.

FIGURE 4.1: kE f fault position in the ith section of a tube

By substituting Eq (4.2) into Eq (4.6) and derive it more, we get:

ẋ = Ax + Bu + Fj , y = Cx

A =


−(v + kE) 0 0 ... ... ... 0

v −(v + kE) 0 ... ... ... 0
0 v −(v + kE) ... ... ... 0
0 ... ... ... v −(v + kE) 0
0 ... ... ... ... v −(v + kE)


B =

[
v 0 ... 0
kE kE ... kE

]T

, Fj =
[
0 ... f jh(xi) ... 0

]T

(4.7)

where h(xi) = kE(xi − TEXT) and only the ith entry of Fj ∈ Rn×1 has a non-zero
value. A and B are the state and input matrices in the fault free case as in Eq (4.1).

4.3 Structural observability analysis for sensor placement in
heat exchange networks

In a networked system, it is rare to install many sensors along the interconnections
and at every subsystem’s outputs because of either physical or financial reasons.
Thus, sensor placement is another problem that needs to be considered for fault
diagnosis purposes. This problem is related to the system’s observability.

However, despite the observability defined by Kalman, the possible complexity
that may arise in the network topology make a graph based approach intuitively
preferable. To do this, a Signed Directed Graph (SDG) is drawn from the structural
state space model of the related system [138, 139, 140]. In SDG, the vertices represent
the inputs, outputs, and states, while the edges represent the relations between them.
Therefore, an edge (pi, pj) from pi vertex to pj vertex exists if and only if there is a
direct relation between them. Then, the observability analysis is done by checking
the fulfilment of the following two conditions (details are in Theorem 14.4 in [138]):

1. There is at least one path from every state vertices to at least one of the outputs
vertices.

2. There is at least one cycle family which touches every state vertices.

A cycle family means a set of vertices with disjoint cycles. The first condition
is also called output reachability. It implies that each change in the states can be
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detected at least in one of the output vertices. Meanwhile, the second condition is
related to the structural rank (s-rank) of the observable pair of (A, C) in Eq (A.3) to
ensure that it has a full rank. If both of those conditions are satisfied, then the system
is called structurally observable or s-observable.

As SDG is a structural graph based approach, it is a parameter independent tool.
Thus, in addition to being more intuitively preferable in terms of dealing with the
network topology, it can also be applied to nonlinear systems.

Scenario A

In the CL type connection, Eq (4.1) shows that each state affects its successive state.
The last state is measured by a sensor so that it is directly connected to the output
vertex. The fault representing the change in k(j)

E parameter is influencing all of the
states. Thus, we can make a condensed graph where all of the states are represented by
just one vertex except the fault because we want to investigate whether that fault is
observable or not concerning the sensor placement. Moreover, it implies that the first
condition is already satisfied so we only need to check the fulfilment of the second
condition.

As an example, consider three CL type connections CL1, CL2, and CL3 which
are joined into one CL type connection CL and then it is split into three CL type
connections CLa, CLb, and CLc as shown in Fig 4.2. The y vertices are representing
the possibility of sensor placement in the joining and splitting connections.

FIGURE 4.2: SDG of joining and splitting CL type connections

For joining connection, it is seen that ( f1, CL1, CL, y) is not in a disjoint cycle family
with ( f2, CL2, CL, y) because they have two common vertices CL and y. This is also
valid for the other cycles ( f3, CL3, CL, y). Thus, with only one sensor put at the end
of the CL type connection after the join, a single observer to isolate all the faults can
not be constructed because the second observability condition is not fulfilled.
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However, a bank of observers can be built by which each observer is constructed
specifically just to detect a single specific fault. For each observer, we treat the output
of the remaining CL type connections as an additional disturbance. The drawback
of this approach is that a disturbance decoupling must be designed to compensate
for the additional disturbances from the remaining CL type connections other than
the one that we build a specific observer to estimate the fault happening there.

One other way to make the joining connection be s-observable for the whole fault
vertices is by adding a sensor at each CL type connection output in addition to the one at the
joining connection output. With this treatment, it will have exactly one cycle family for
each fault vertex in the interconnected subsystems which are ( f , CL, y), ( f1, CL1, y1),
( f2, CL2, y2), and ( f3, CL3, y3).

For splitting connection, it can be seen that each output vertex has two cycle fami-
lies. One cycle touches the fault and state vertices of the CL type connection before
it is split, while the other one touches the fault and states vertices of its related CL
type connection after the split. Thus, with just one sensor put at the output of a specific
CL type connection after the split, an observer can always be constructed to estimate a fault
happening at the CL type connection before the split. Moreover, based on that same sen-
sor, another observer to estimate a specific fault that occurs in the related CL type
connection after a split can also be constructed. It should also be remarked that, for
this splitting connection, only some of the states are affected by the fault depending
on whether it happened before or after the splits as seen in Eqs (4.4) and (4.5).

Scenario B

From Eq (4.6), it is seen that each state affects its consecutive state. To make it sim-
pler, but without loss of generalization, assume that the system consists of 5 states
(n = 5) and the third state is affected by a parameter fault. Hence, we can draw
the SDG as shown in Fig 4.3. The output vertices y1, y2, y3, y4, and y5 represent
the possibility of sensor placement in the related system. Meanwhile, the f vertex
represents the parameter fault.

FIGURE 4.3: SDG for parameter fault in a certain location along the
length of a tube

If minimizing the number of sensors is preferred, it is seen that y5 is the best
position to place the sensor. From that position, every state vertices have a path to
the output vertex and there is one cycle family which touches all of the state vertices
(y5, x1, x2, x3, x4, x5). Thus, both of the s-observability conditions are fulfilled. This
shows that using just one sensor at the end of the connection to measure the last
state is enough to estimate all of the system’s states. Moreover, it is also seen that
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there exists a path from f to y5 which implies that we can use that same sensor to
estimate the parameter fault in the considered system. This will always hold even if
the fault affects other states.

4.4 Adaptive observer design for parameter fault estimation
in heat exchange networks

A critical issue in the formulated fault diagnosis problem is that there are unmeasur-
able states in the system. [141] has developed a fault observer based method where
a nonlinear fault distribution function depends not only on the inputs and outputs
but also on estimated states (for the related article’s main results, see Appendix D).
By taking the basic idea from this previous research, we modified it to suit our case.

Scenario A

The dynamics of the CL type connections with fault is as shown in the Eq (4.3).
Define the estimation errors as:

e(j)
x = x(j) − x̂(j) , e(j)

y = y(j) − ŷ(j) = Ce(j)
x

e(j)
f = f j − f̂ j

(4.8)

where f̂ j is the estimated fault.
Consider an observer for faulty case as follows:

˙̂x(j)
= A(j) x̂(j) + B(j)u(j) + f̂ jh(j)(x̂(j)) + K(j)

x e(j)
y

ŷ(j) = Cx̂(j)
(4.9)

along with the following parameter adaptation equation:

˙̂f j :=

{
K(j)

f h(j)(x̂(j))e(j)
y , if ∥ f̂ j∥ ≤ σ

0, otherwise
(4.10)

Here, K(j)
x , K(j)T

f ∈ Rn are the observer and adaptation gain vectors. σ is a design
constant to guarantee the stability and robustness of the adaptation law so that e f is
always bounded [142].

By assuming piece-wise constant fault signal, we can further derive the state and
fault estimation error to get:[

ė(j)
x

ė(j)
f

]
= Ae

[
e(j)

x

e(j)
f

]
where

Ae =

[
(A(j) − K(j)

x C + f jk
(j)
E I h(j)(x̂(j))

−K(j)
f h(j)(x̂(j))C 0

] (4.11)

According to Gershgorin Circle Theorem, if A(j) − K(j)
x C is stable, then A(j) −

K(j)
x C + f jk

(j)
E I is also stable as long as k(j)

E f j ≥ 0 has small norm. This is most likely

fulfilled because f j ∈ [0, 1) (see Eq (4.2)). Furthermore, the estimation error e(j)
x and
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e(j)
f will converge to zero if Ae is stable for all x̂(j) and f j. This stability can be checked

online during the adaptation process. Thus, an observer described by Eq (4.9) along
with its adaptation as in Eq (4.10) can be used to estimate the fault and it is called a
fault estimator.

Special case, fault detector and fault estimator for splitting connection. As shown ear-
lier, for splitting connection, we can put the sensors only at the end of each element
after the split (see subsection 4.3). With this configuration, there will be one specific
sensor that is used as an input to two observers for fault estimation either before or
after the split. However, by assuming no simultaneous faults, the difference in fault
distribution matrix shown in Eq (4.5) causes the need of a fault detector to determine
where the fault is happened before fault estimation can be carried out.

Consider a bank of linear observers:

FDk :=

{
˙̂x(j,k)

= A(j,k) x̂(j,k) + B(j,k)u(j,k) + Kxe(j,k)
y

ŷ(j,k) = C(j,k) x̂(j,k)
(4.12)

where e(j,k)
y = y(j,k) − ŷ(j,k) and FDk is a fault detector based on the measurement at

the end of the kth split elements (elements after the split).
If Kx is chosen such that A(j,k) − KxC(j,k) is stable, then limt→∞ e(j,k)

x = 0 and
limt→∞ e(j,k)

y = 0 for non-faulty condition. It is also easily inferred that when a fault
occurs before the split, it will propagate to all of the split elements. Thus, the follow-
ing algorithm can be used to determine where the fault is happening in the splitting
connection (fault isolation logic):

e(j,k)
y


= 0 ∀ FDk, no fault
̸= 0 ∀ FDk, a fault has occured before the split
̸= 0 ∃ FDk, a fault has occured at the kth split element

(4.13)

Then, after a fault has been detected, a specific nonlinear observer is activated
to estimate the related fault. For this purpose, a bank of nonlinear observers is con-
structed as follows:

FEj :=



˙̂x(j,k)
= A(j,k) x̂(j,k) + B(j,k)u(j,k)

+F̂(j,k)
j h(j,k)(x̂(j,k)) + Kxe(j,k)

y

y(j,k) = C(j,k) x̂(j,k)

F̂(j,k)
j =

[
f̂ j I O
O O

]

FEk :=



˙̂x(j,k)
= A(j,k) x̂(j,k) + B(j,k)u(j,k)

+F̂(j,k)
k h(j,k)(x̂(j,k)) + Kxe(j,k)

y

y(j,k) = C(j,k) x̂(j,k)

F̂(j,k)
k =

[
O O
O f̂k I

]

(4.14)

with the following adaptation equations:

˙̂f j =
˙̂fk :=

{
K(j,k)

f h(j,k)(x̂(j,k))e(j,k)
y , if (∥ f̂ j∥ ≤ σ) ∨ (∥ f̂k∥ ≤ σ)

0, otherwise
(4.15)
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Here, FEj is a fault estimator based on the measurement at the end of any of the
split elements to estimate the fault that happened before the split, and FEk is a fault
estimator based on the measurement at the end of the kth split elements to estimate
the fault happened there.

In the same manner as before in Eq (4.11), with ∥F(j,k)∥ ∈ [0, 1), the same conclu-
sion can be drawn for either FEj or FEk as long as the fault and kE have small norm.
Thus, a bank of linear observers described by Eq (4.12) along with the algorithm de-
scribed by Eq (4.13) can be used as fault detectors. Meanwhile, a bank of nonlinear
observers described by Eq (4.14) along with its adaptation described by Eq (4.15) can
be used as fault estimators.

Scenario B

By using the same parameter adaptation equation as in Eq (4.10), a bank of nonlinear
observers is constructed by which each of them is specifically designed to detect a
fault in a section (a flow element position) of the tube. For example, observer 1 is
designed to estimate a fault that happened in the 1st section of the tube, observer 2
is designed to estimate a fault that happened in the 2nd section of the tube, and so
on.

To make limt→∞ e f = 0 for the ith section (i = 1 . . . n), the following fault estima-
tor observer can be constructed:

FEi :=


˙̂x = Ax̂ + Bu + F̂j + Kxey

y = Cx̂

F̂j =
[
0 ... f̂ jh(x̂i) ... 0

]T
(4.16)

Here, FEi is an observer specifically designed to estimate a fault that happened in
the ith section in the tube.

The diagram of this bank of observers is shown in Fig 4.4.

FIGURE 4.4: A bank of observers for fault estimation in a tube
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4.5 Sensitivity analysis for parameter fault localization in heat
exchange networks

This subsection is dedicated to scenario B.
Using a bank of observers described by Eq (4.16), it is expected that the fault can

also be localized in addition to be estimated. To investigate it, by assuming zero
initial conditions, we took the Laplace transform of Eq (4.6) so that we get:

Y(s) = Xn(s) =
vn

[s + (v + kE)]n−1[s + (v + kE f )]
U1(s)

+
n−i

∑
k=1

vk−1

[s + (v + kE)]k
kETEXT(s)

+
vn−i

[s + (v + kE)]n−i[s + (v + kE f )]
kE f TEXT(s)

+
i−1

∑
k=1

vn−i+k

[s + (v + kE)]n−i+k[s + (v + kE f )]
kETEXT(s)

(4.17)

where Y(s), Xn(s), U1(s), and TEXT(s) are the Laplace transform of y(t), xn(t), u1(t),
and TEXT(t), respectively.

From Eq (4.17), it is seen that the transfer function from U1(s) to Y(s) does not
contain the i variable which represents the ith section in the tube where the fault
occurred. Thus, even if we manipulate or tweak the input u1 with a signal which
contains a wide spectrum of frequency (e.g. inserting a white noise signal, a saw-
tooth signal, or a Pseudo Random Binary Signal (PRBS)), the information about the
fault position can not be obtained.

On the other hand, the transfer function from TEXT(s) to Y(s) contains the i vari-
able that looks promising to use so that the fault position can be obtained. However,
it is impractical to manipulate or tweak the input TEXT because it represents the ex-
ternal temperature which comes from the outside environment.

Besides the transfer function as in Eq (4.17), we can also use the steady state value
of the plant’s output with respect to the position variation of the fault.

In Laplace transform, there is a property about Final Value Theorem (FVT) as
follows:

lim
t→∞

f (t) = lim
s→0

sF(s) (4.18)

where F(s) is the Laplace transform of f (t).
By assuming that u1(t) and TEXT(t) are step function from 0 to U1 and from 0 to

TEXT respectively so that U1(s) = U1
s and TEXT(s) = TEXT

s , we can use FVT to get a
steady state value of y(t) = xn(t) in Eq (4.17) as follows:

yss =
vn

(v + kE)n−1(v + kE f )
U1 +

n−i

∑
k=1

vk−1

(v + kE)k kETEXT

+
vn−i

(v + kE)n−i(v + kE f )
kE f TEXT

+
i−1

∑
k=1

vn−i+k

(v + kE)n−i+k(v + kE f )
kETEXT

(4.19)
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where yss is the steady state value of y(t) given that the input u1(t) and TEXT(t) are
step function.

Now, consider two faults occurred in two different positions i1 and i2 where
i2 > i1. Let the steady state values in the presence of these faults are yss1 and yss2
respectively. If we compute the difference between these two steady state values, we
get:

yss2 − yss1 =−
n−i1

∑
k=n−i2+1

vk−1

(v + kE)k kETEXT

+ TEXT

[(
(v + kE)

i2

vi2
− (v + kE)

i1

vi1

)
vn

(v + kE)n

]
(

kE f

(v + kE f )
+

kE

(v + kE f )

i2−1

∑
k=i1

vk

(v + kE)k

) (4.20)

Note that v
v+kE

∈ (0, 1). Eq (4.20) shows that if kE > 0 is sufficiently large com-
pared to v and n is also large, then the effect of the fault can hardly be distinguished.

4.6 Simulation results

To verify and validate the proposed fault diagnosis method, some simulations is
done using MATLAB/Simulink.

Scenario A

In this scenario, a simulation model of a HEN connecting a heater to two consumers
is used. The energy output of a heater is distributed to the consumers via a hot pipe
(H) which is then split into hot pipe 1 (H1) and hot pipe 2 (H2). The fluid from
the consumers is fed back to the heater via cold pipe 1 (C1) and cold pipe 2 (C2)
which are then joined into a cold pipe (C). It is assumed that the dynamics of each
pipe can be represented as CL type connection with n = 5, v = vH = vC = 2, and
kE = kH = kH1 = kH2 = kC = kC1 = kC2 = 1. The splitting connection from H to
H1 and H2 splits the mass flow equally (0.5 : 0.5). The diagram of this case study
is shown in Fig 4.5. In this figure, the fault diagnostic blocks contain either a fault
estimator for joining connection, or both a fault detector and a fault estimator for
splitting connection.
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FIGURE 4.5: Heat exchange networks case study

To be able to detect and estimate the fault in each pipe, the sensor placement is
done based on the previous structural observability analysis. For splitting connec-
tion in the hot pipe, it is enough to put the sensors at H for input measurement and
at the end of H1 and H2 for output measurements. Meanwhile, for joining connec-
tion in the cold pipe, we use the multiple sensors approach. Thus, the sensors are
put at the beginning of C1, C2, and C for input measurements and the end of C1,
C2, and C for output measurements. The fault estimator for each pipe is constructed
using those measurements. For hot pipes, fault detectors are also constructed. The
fault estimator for hot pipe H is a special case because it can be constructed based
on either the sensor measurement at the end of H1 or H2.

Eq (4.12) is used to construct the fault detectors for the splitting connection. As
fault isolation logic, Eq (4.13) is applied with k = 1, 2. Meanwhile, as we used multi-
ple sensors approach for the joining connection, only fault estimators are constructed
to estimate specific faults for each cold pipe. To construct the fault estimators, we
use Eq (4.14) for splitting connection and Eq (4.9) for joining connection.

After the fault detectors and fault estimators are constructed, the related mea-
surements are fed into each of those observers. Then, when a fault is happening in
the splitting connection, the fault isolation logic will activate a specific fault estima-
tor based on the error signals from the fault detectors. It should be remarked that
this configuration works on the assumption that no simultaneous faults happen in the
splitting connection. To be able to detect and estimate simultaneous faults in the split-
ting connection, we must use the same multiple sensors approach as in the joining
connection.

In this simulation, the fault detector gain Kx is chosen using the pole placement
method while the fault estimator gain K f is chosen so that the settling time is small
enough without oscillation. Meanwhile, the chosen design constant is σ = 1.5 to
allow some small overshoot in the observer’s estimation process when the fault is
near its maximum value.

First, a fault at the 15th second with an amplitude of 0.5 is introduced into the
system. Fig 4.6 shows the error signals from the fault detector H1 and H2 when this
fault is happening in the hot pipe H before the split. It can be seen that both the
error signals eH1 and eH2 have the same non-zero value indicating that a fault has
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occurred at the hot pipe H. The estimated fault from the fault estimator for this hot
pipe H is shown in Fig 4.7 which displays that the fault is successfully estimated.
Furthermore, this fault estimator can also estimate the unmeasurable states which
are shown in Fig 4.8.

FIGURE 4.6: Error signals of fault detectors, fault at H

FIGURE 4.7: Fault estimation, fault at H

FIGURE 4.8: State estimation of fault estimator, fault at H

In the second simulation, the fault is simulated to be happening at the hot pipe
H2 after the split. Fig 4.9 shows the error signals from the fault detector H1 and H2.
It is seen that only the error signal eH2 has a non-zero value indicating that a fault
is happening in the hot pipe H2. The estimated fault from the fault estimator for
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hot pipe H2 is shown in Fig 4.10 which reveals that it also successfully estimated the
fault. Meanwhile, the state estimation from this fault estimator is shown in Fig 4.11.

FIGURE 4.9: Error signals of fault detectors, fault at H2

FIGURE 4.10: Fault estimation, fault at H2

FIGURE 4.11: State estimation of fault estimator, fault at H2

Scenario B

In this simulation, it is assumed that the dynamics can efficiently be represented
using 5 states/sections (n = 5). The other parameters are v = 3 and kE = 2. The
inputs are u1 = 600K and TEXT = 500K. All of those numbers are chosen for the
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sake of convenience. In the real world, they have many various values based on the
units and equipment/medium type.

For the observers, the fault detector gains Kx is chosen using the pole placement
method while the fault estimator gain K f is chosen to achieve a fast but sufficiently
damped observer response. Meanwhile, the chosen design constant is σ = 1.5 to
allow some small overshoot in the observer’s estimation process when the fault is
near its maximum value.

There are 3 scenarios of fault occurrence in different sections that are simulated.
For every scenario, a fault is introduced into the system at the 20th second. Fig 4.12
shows the results when a fault with an amplitude of 0.4 ( f = 0.4) happened in the 1st
section of the tube (i = 1). Fig 4.13 shows the results when a fault with an amplitude
of 0.2 ( f = 0.2) happened in the 3rd section of the tube (i = 3). Lastly, Fig 4.14
shows the results when a fault with an amplitude of 0.6 ( f = 0.6) happened in the
5th section of the tube (i = 5). In all of those figures, the real fault is plotted using
dotted lines while the estimated fault from each observer is plotted using dashed
lines.

FIGURE 4.12: f and f̂ for f = 0.4 in the 1st section of the connection

FIGURE 4.13: f and f̂ for f = 0.2 in the 3rd section of the connection
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FIGURE 4.14: f and f̂ for f = 0.6 in the 5th section of the connection

In the figures, it can be seen that all the faults in every scenario are correctly
estimated by the observers. However, it is also shown that every observer in each
scenario produced the same fault estimation results. Thus, even though the fault
estimation is successful, it can not detect in which section the fault has occurred in
the system.

Fault localization results. In the previous section (see subsection 4.5), we have
shown that the fault position can only be extracted by tweaking the input TEXT
which is impractical to do. Moreover, here, we will also show that it is still diffi-
cult to get this information even if we can tweak it.

Using Eq (4.19), the steady state value yss of a system with 5 states (n = 5) is
calculated for each value of i = 1 . . . 5 representing the position of the fault for a
fixed input variable of u1 = 600 and TEXT = 500 with several different parameters
values of v, kE, and kE f . The results are shown in Table 4.1. It is seen that the steady
state value of the plant’s output is always the same wherever the fault is happening.

TABLE 4.1: Steady state value yss for each fault’s position i with sev-
eral different parameter values of v, kE, and kE f

parameters values i = 1 i = 2 i = 3 i = 4 i = 5
v = 2, kE = 1, kE f = 0.5 515.8 515.8 515.8 515.8 515.8
v = 3, kE = 2, kE f = 1.5 508.6 508.6 508.6 508.6 508.6
v = 8, kE = 3, kE f = 0.75 525.6 525.6 525.6 525.6 525.6
v = 10, kE = 4, kE f = 2 521.7 521.7 521.7 521.7 521.7
v = 15, kE = 5, kE f = 3.75 525.3 525.3 525.3 525.3 525.3

Fig 4.15 shows the Bode plot from input 1 (u1) and input 2 (TEXT) to output y
for i = 1, 2, 3, 4, 5 ( f1, f2, f3, f4, f5) which looks almost identical to each other for
each value of i. This reinforces the previous results that the position of the fault can
hardly be isolated using only a measurement at the end of the connection (last state
variable xn) even if we excite the system in the entire reasonable frequency range.
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FIGURE 4.15: Bode diagram for fault in each section of the connection

4.7 Summary and discussion

In this chapter, model based methods are proposed to handle parameter fault diag-
nosis problems in HENs by considering two different scenarios. In the first scenario,
the considered fault is the change in the heat transfer coefficient kE along the length
of the tube in an element in the HENs. Thus, the goal is to detect and isolate which
tubes experience the parameter fault in the HENs and also to estimate the fault.
Meanwhile, in the second scenario, the goal is to detect, isolate, and estimate the
parameter fault that happens only at a certain location along the length of a specific
tube.

As the network contains realistic connections in the form of joining and splitting
elements, the investigation of sensor placement problems to identify every possible
fault around the branching elements is needed. For that, an analysis of observability
conditions using SDG is done. It is found that, in the case of splitting connections, it
is enough to put the sensors only at the end of the elements after the split to detect
and estimate the fault that occurred either before or after the split. However, in
the case of joining connections, a sensor at the end of the joining elements before
the connection is necessary. Moreover, in the case of a specific tube, the SDG based
analysis also shows that using only one sensor at the end of that tube is enough
to estimate the states when there is no fault and the fault when there is a single
parameter fault at a certain location along the tube’s length.

With the change of heat transfer coefficient being the model parameter, the fault’s
presence in HENs yields bilinear fault-input terms into the model. Thus, a linear ob-
server is not suitable to solve the parameter fault estimation problem. However, a
bank of linear observers can still be used and is especially necessary to detect and
isolate the parameter fault in splitting connections because, there, the same sensor is
used when the fault happens either before or after the split. To estimate the param-
eter fault, a bank of nonlinear observers is proposed that is based on the parameter
adaptation equation.

To generalize the implementation of the proposed method, some properties must
be fulfilled in the networked LTI systems which are: 1. The systems are positive.
This positivity in LTI systems will always result in the same structure of the A ma-
trix in the system’s state space model ẋ = Ax where the off-diagonal elements are
non-negative, i.e., a Metzler matrix [143]. Moreover, as the diagonal elements are
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negative, this implies that the systems are also stable [144, 145, 146] (see Appendix
A.2), 2. The network elements can be modelled as a 2ISO state space model as shown
in Eq (4.1), 3. The fault can be modelled as a multiplicative parameter fault as shown
in Eq (4.2), 4. The mass and/or energy conservation applies in the network’s split-
ting and joining connections (see Appendix B.2), and 4. The faulty parameters affect
all of the system states and the system’s second input as shown in Eq (4.3).

In the case of a single parameter fault in a certain location in a specific tube, even
though the proposed nonlinear observer can estimate it, fault isolation can not be
done. It is because, by using sensitivity analysis on this specific case, it is found that
the fault localization depends on the values of the environmental temperature which
is not a practically changeable input variable. Moreover, even if we can tweak this
impractical input variable, a steady state value calculation and frequency response
analysis using the Bode plot show that the effect of different fault positions is hard
to distinguish.

Here, the proposed method can be generalized to networked LTI systems where
the first four properties are the same as in the previous case. The different property
is only on the fifth by which the faulty parameters now affect only one of the system
states and the system’s second input as shown in Eq (4.7).

By proposing a model based method, this thesis provides an alternative to the
currently popular data driven approaches in handling parameter fault diagnosis in
HEN that have been carried out by many people before [77, 78, 79]. Furthermore,
compared to much other works such as [74, 75, 76], the proposed method takes into
account the sensor placement problem in correlation with the presence of joining
and splitting connections. As a result, the method ensures the use of the minimum
number of sensors possible. However, this leads to the existence of unmeasurable
states which, combined with the parameter fault, induces a nonlinear fault distri-
bution in the system. Thus, the nonlinear observer is applied for fault estimation
purposes that can handle unmeasurable states.
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Chapter 5

Input fault diagnosis in networks
of heat exchangers

The FDI problem in industrial networks, such as heat exchange networks, presents
special challenges. For the sake of energy and/or material efficiency, such networks
usually contain loops. Therefore, fault diagnosis is harder to perform as the effect of
the fault is propagated back to the subsystem where it first occurred [147, 148, 149,
104, 150]. Recent research has approached the fault isolation problem in such a loop
using an improved deep neural network [82].

Another difficulty in the complex networked industrial systems related to FDI is
the sparsity of sensors. Because of financial reasons, it is rare to install a multitude
of sensors along the connections of the interconnected subsystems in the network.
Commonly, they are placed at the end of a connection or at some of the subsystem’s
outputs. This motivates the development of an FDI method that groups network
elements for fault identification [151, 152].

Furthermore, the interconnections that define the network topology make a net-
worked dynamic system complex even if one considers simple elements (subsys-
tems) in the network. Therefore, a practically important subclass of heat exchange
systems is considered in this work where the elements are linear heat exchange sys-
tems connected by linear (possibly dynamic) connections.

Despite being a special case, it is a very important subclass because it can de-
scribe the dynamic behaviour of processes that serve our daily basic needs, e.g.,
domestic heating/cooling systems. Even some cellular processes belong to a similar
linear subclass [124]. The fault that occurred in one of the subsystems is considered
to be generated by an external source that can be treated as an extra input in a sub-
system. Physically, this kind of fault represents some leakage phenomenon that is
commonly found inside the networked linear heat exchange systems [153].

A model-based approach is proposed in this research to handle the fault diag-
nosis problem in a network of linear heat exchange systems, which may contain
cycles/loops. The proposed approach does not need high computational costs. The
burden of high computational power is common for fault diagnosis in a network
[117].

The research questions that we are going to tackle are as follows:

1. In a heat exchange network with loops, how can a fault be identified in a
subsystem or group of subsystems regardless of the fault effect propagation
through the network loops and branches?

2. Which sensor measurements are necessary to isolate a fault in a subsystem of
a heat exchange network (or group of subsystems), and how can measurement
noise be handled during fault diagnosis?
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3. If fault isolation can be conducted, how can the magnitude of the fault be esti-
mated?

The author’s related publication for this study is [A5].
The following modelling assumptions are used in this chapter:

A1 Only the transport of a single conserved extensive quantity (in this study, it
is energy) is considered in the process systems. Thus, we have either energy-
transport or mass-transport systems. Heat exchanger networks and domestic
heating/cooling systems belong to the linear energy-transport class.

A2 Only linear convection and transfer is considered without any linear source.

A3 Constant overall mass and constant physicochemical parameters (such as den-
sity, specific heat, heat transfer coefficient, and convective flow rate) are as-
sumed.

A4 One inlet and one outlet flow are considered where the inputs of the systems
are the intensive variable (temperature or concentration) at the inlet and that
of the balance volume with which transfer is assumed. Meanwhile, the output
is the intensive variable (temperature or concentration) at the outlet.

Remark: In this chapter, the used subsystem’s model is the same as in chapter
4, specifically Eq (4.1) in Section 4.1. However, for the sake of convenience to differ-
entiate the discussion here from the one in Chapter 4, the input in the subsystem’s
model in Eq (4.1) is changed into u(j)

X = [u(j) u(j)
E ]T which consists of u(j) as the in-

tensive variable of the jth subsystem at the inlet and u(j)
E as the intensive variable of

the external balance volume (environment).

5.1 Additive fault modelling in networks of linear heat ex-
change systems

In this chapter, the considered fault is a constant input signal which additively mod-
ifies the external intensive variable input signal u(j)

E . The faulty external variable

input signal u(j)
E f has the form:

u(j)
E f = u(j)

E + f (j) (5.1)

where f (j) is the fault signal in the jth subsystem.
Such fault modelling can describe several fault events: the unforeseen appear-

ance of an unknown external source, or change in the heat transfer coefficient k(j)
E .

If there is a change f (j)
k in the heat transfer coefficient, i.e., k(j)

E f = k(j)
E + f (j)

k , then
the second input of the model in Eq (4.1) can be rephrased as:

(k(j)
E + f (j)

k )u(j)
E = k(j)

E (u(j)
E + f (j)),

where f (j) =
f (j)
k u(j)

E

k(j)
E

.
(5.2)

Note that Eq (5.2) shows the relationship between additive and multiplicative
fault modelling. In other words, although the proposed method is built on the addi-
tive fault model, it can also be used for the multiplicative fault model.
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During the fault diagnosis algorithm design, we assumed that:

A5 The probability of multiple fault events happening at the same time in the net-
work is negligible (weak fault isolation), i.e., there are no simultaneous faults
during the fault isolation and estimation processes.

5.2 Fault effect propagation in the network loops

To investigate the fault’s effect on the subsystems of the network, the state space
model in Eq (4.1) is converted into input-output realization as follows:

y(j)(s) = S(j)
1 (s)u(j)(s) + S(j)

2 (s)u(j)
E (s)

S(j)
1 (s) =

(
v(j)

s + v(j) + k(j)
E

)n

S(j)
2 (s) =

n

∑
h=1

[
(v(j))(h−1)

(s + v(j) + k(j)
E )h

]
k(j)

E

(5.3)

where S(j)
1 (s) is the transfer function in Laplace domain from u(j)(s) to y(j)(s) and

S(j)
2 (s) is the transfer function in Laplace domain from u(j)

E (s) to y(j)(s). Zero initial
states are assumed.

Fig 5.1 shows the proposed realization for the fault effect analysis. For the sake
of convenience, the notation S(j)

i will be used instead of S(j)
i (s) from here on.

FIGURE 5.1: Input output representation of a subsystem.

Now, consider a loop in the process network as shown in Fig 5.2. There, S(j) rep-
resents the block diagram of the jth subsystem which contains S(j)

1 and S(j)
2 as shown

in Fig 5.1. Meanwhile, i(j), where j = 1 . . . m, represents the inflows of the sub-
systems that are not part of the loop (possible joining connections), and o(j), where
j = 1 . . . m, represents the outflows from the loop in splitting connections.

It is considered that the sensors are placed at the outputs y(l) and y(m) where
m ≥ 2 and 0 < l < m.
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The fault f (k) is represented by a constant input in the kth subsystem, where
0 < k < l, which enters the subsystem from the same channel as the external source
u(k)

E .

FIGURE 5.2: Diagram of a loop/cycle with fault in the process net-
work.

For fault effect analysis, the Final Value Theorem (FVT) of the Laplace transform
as in Eq (4.18) is applied.

To calculate the steady state value of the lth subsystem’s output in the fault-free
case f (k) = 0, the FVT is applied to the previous transfer functions along with the
superposition principle (see Fig 5.1). By assuming that the inputs are step functions
with zero initial conditions, it yields:

y(l)ss =
l

∑
j=1


∥S(j)

2 ∥0
l

∏
h=j+1

∥S(h)
1 ∥0

1 −
m
∏

h=1
∥S(h)

1 ∥0


(

v(j)

V(j)

)
u(j)

E

+
m

∑
j=l+1


∥S(j)

2 ∥0
m
∏

h=j+1
∥S(h)

1 ∥0
l

∏
h=1

∥S(h)
1 ∥0

1 −
m
∏

h=1
∥S(h)

1 ∥0


(

v(j)

V(j)

)
u(j)

E
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∑
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m
∏
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1 −
m
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(

v(j)

V(j)

)
i(j)
ss +

m

∑
j=l+1


m
∏

h=j
∥S(h)

1 ∥0
l

∏
h=1

∥S(h)
1 ∥0

1 −
m
∏

h=1
∥S(h)

1 ∥0


(

v(j)

V(j)

)
i(j)
ss

(5.4)

where V(j) is the sum of the mass flow rate passing through the jth joining/splitting
connection before the jth subsystem input, y(l)ss is the steady state value of y(l) when
there is no fault, i(j)

ss is the steady state value of i(j), and ∥ · ∥0 is the steady state gain
of the related transfer function. u(j)

E is assumed to be constant.
Since the addressed subsystem class is positive (see Appendices A.2 and 4.1), the

steady state gains are also always positive.
Note that the terms of

(
1 − ∏ ∥S(j)

1 ∥0

)
appear because of the loop (see Appendix
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B.3). Meanwhile, the terms of
(

v(j)

V(j)

)
come from the mass/energy conservation bal-

ance (see Appendix B.2).
When a step-like fault arises in the kth subsystem ( f (k) ̸= 0), we obtain:

y(l)f ss =


∥S(k)
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l
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(5.5)

where y(j)
f ss is the steady state value of y(j) in the presence of a fault.

Now, by subtracting Eq (5.4) from Eq (5.5), we obtain the deviation of the faulty
output related to the fault-free case:

y(l)f ss − y(l)ss =


∥S(k)

2 ∥0
l

∏
j=k+1

∥S(j)
1 ∥0

1 −
m
∏
j=1

∥S(j)
1 ∥0


(

v(k)

V(k)

)
f (k) (5.6)

The difference between the faulty and fault-free outputs of the mth subsystem
can be computed similarly:

y(m)
f ss − y(m)

ss =


∥S(k)

2 ∥0
m
∏

j=k+1
∥S(j)

1 ∥0

1 −
m
∏
j=1

∥S(j)
1 ∥0


(

v(k)

V(k)

)
f (k) (5.7)

Eqs (5.6) and (5.7) show that the fault influences all subsystems in the loop. How-
ever, the fault effect on the outputs of the subsystems can be calculated.

5.3 Fault isolation algorithm design in networks of linear heat
exchange systems

Given a heat exchange network, consider that a fault event arises in one of the sub-
system in the network. As a consequence of the branches and loops in the underly-
ing graph (G) of the process network, the effect of this fault could induce deviations
in the outputs of all the subsystems. Moreover, due to the loops, the fault could
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propagate back to the input of the faulty subsystem as well. The loops and network
branches make the fault effect propagation barely traceable.

The presence of a fault in the network can simply be detected by comparing
the measured outputs of the subsystems in the network with the predicted outputs
based on a reliable model of the corresponding subsystem. However, due to fault
effect propagation, the localization of the fault source in the network is a difficult
task.

Recall that the subsystems represent the edges in the underlying graph G of the
process network. We consider a directed path of subsystems

{
S(1) . . . S(l)

}
where

l > 0 such that this path may be part of at least one simple loop of G.
Let a fault event happen in a subsystem in the network. Formulate the following

fault diagnosis problems:

• Consider a path of l subsystems that can be part of a loop consisting of m > l
subsystems (see Fig 5.2). We must determine whether the fault occurred in the
addressed path. Furthermore, we must determine which measurements are
necessary to perform the isolation problem (sensor placement) in this path.

• If the fault has been isolated in one subsystem, an estimation algorithm must
be designed that outputs the magnitude of the fault.

Note that the path can be part of more than one loop in the graph of the process
network. As an example, in Fig 5.3, the path

{
S(A), S(F)

}
is in more than one simple

loop. For an algorithm that finds all the simple loops in a graph, see, e.g., [154].
In this case, such a loop should be chosen that is more representative for the fault
isolation process, e.g., from the perspective of the sensor placement.

FIGURE 5.3: Example of a process network.

The formulated diagnosis problem can specify whether the fault happened in
a group of subsystems (or one subsystem for l = 1), or in some other part of the
network. However, the diagnosis process can be repeated for different groups (or
subsystems). Thus, by exhaustive search, the fault in the network can be localized.
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The fault isolation algorithm is designed by applying the fault effect analysis as
presented in Section 5.2. For fault estimator design, we take the PI observer ap-
proach as presented in Appendix C.4.

To derive a fault isolation algorithm, we consider that two sensors are placed in
a loop at two different locations (see Fig 5.2). They measure the output of the lth and
mth subsystems.

The isolation logic is based on Eqs (5.6) and (5.7). By subtracting these equations,
we obtain:

(y(l)f ss − y(l)ss )− (y(m)
f ss − y(m)

ss ) =



∥S(k)

2 ∥0
l

∏
j=k+1

∥S(j)
1 ∥0

1 −
m
∏
j=1

∥S(j)
1 ∥0


(

1 −
m

∏
j=l+1

∥S(j)
1 )∥0

)
(

v(k)

V(k)

)
f (k)

(5.8)
We make the following assumptions on the steady state gains of the subsystems:

A6 Either every ∥S(j)
1 ∥0 ∈ (0, 1) or every ∥S(j)

1 ∥0 > 1;

A7 ∥S(j)
2 ∥0 > 0, ∀j.

In the view of Eq (5.8), if these assumptions hold, then
∥S(k)

2 ∥0
l

∏
j=k+1

∥S(j)
1 ∥0

1 −
m
∏
j=1

∥S(j)
1 ∥0


(

1 −
m

∏
j=l+1

∥S(j)
1 )∥0

)
> 0 (5.9)

Note that A6 and A7 hold true for the subsystem’s model introduced in Eq (4.1);
if we apply the FVT to Eq (5.3), we obtain:

∥S(j)
1 ∥0 = lim

s→0
S(j)

1 (s) =

(
v(j)

v(j) + k(j)
E

)n

∈ (0, 1)

∥S(j)
2 ∥0 = lim

s→0
S(j)

2 (s) =
n

∑
h=1

[
(v(j))(h−1)

(v(j) + k(j)
E )h

]
k(j)

E > 0

(5.10)

Furthermore, by assumptions A6 and A7, Eq (5.8) leads to:

(y(l)f ss − y(l)ss ) > (y(m)
f ss − y(m)

ss ) for f (k) > 0 and

(y(l)f ss − y(l)ss ) < (y(m)
f ss − y(m)

ss ) for f (k) < 0

∴ ∥y(l)f ss − y(l)ss ∥ − ∥y(m)
f ss − y(m)

ss ∥ > 0 for f (k) ̸= 0

(5.11)

where ∥ · ∥ is the absolute value of the related function.
Thus, Eq (5.11) shows that ∥y(l)f ss − y(l)ss ∥ − ∥y(m)

f ss − y(m)
ss ∥ > 0 when a fault occurs

in a subsystem between S(1) and S(l).
With the same assumptions, we can perform the same derivation to obtain ∥y(l)f ss −

y(l)ss ∥−∥y(m)
f ss − y(m)

ss ∥ < 0 when a fault occurs in a subsystem between S(l+1) and S(m).
For implementation of the fault isolation algorithm, the fault-free steady state

values y(l)ss and y(m)
ss have to be known a priori, or they have to be computed. In
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view of the relation in Eq (5.4), to compute y(l)ss and y(m)
ss , the steady state value of the

inputs i(j)
ss and u(j)

E have to be measured.
To conclude, the fault isolation can be performed according to the following Al-

gorithm 1:

Algorithm 1 Fault isolation algorithm.

• Measure y(l)f ss and y(m)
f ss in steady state.

• Compute y(l)ss and y(m)
ss .

• Isolate the fault:

– If ∥y(l)f ss − y(l)ss ∥ = ∥y(m)
f ss − y(m)

ss ∥ = 0, then no fault event occurred.

– If ∥y(l)f ss − y(l)ss ∥ − ∥y(m)
f ss − y(m)

ss ∥ > 0, then the fault occurred before l and
after m.

– If ∥y(l)f ss − y(l)ss ∥ − ∥y(m)
f ss − y(m)

ss ∥ < 0, then the fault occurred before m and
after l.

Remark: For future works, a possible way to generalize the proposed method
and algorithm to Multi Input Multi Output (MIMO) systems is outlined in Appendix
E.

5.4 Fault isolation in the presence of measurement noises

In a realistic environment, it has to be considered that the measurements on the
subsystems are affected by signal noise. In the model shown in Eq (4.1), the noise
inputs that influence the model’s inputs and outputs are introduced as:{

ẋ(j) = A(j)x(j) + B(j)
(

u(j)
X + w(j)

uX

)
y(j) = Cx(j) + w(j)

y

(5.12)

where w(j)
uX = [w(j)

u w(j)
E ]T.

The following assumptions are considered for signal noise:

A8 ∥w(j)
u (t)∥∞ ≤ w(j)

uM, ∥w(j)
E (t)∥∞ ≤ w(j)

EM, ∥w(j)
y (t)∥∞ ≤ w(j)

yM
where ∥ · ∥∞ is the infinity norm of the related function.

A9 w(j)
u (t), w(j)

E (t), w(j)
y (t) are locally integrable.

A10 The signal noise is unbiased with known variances:
w(j)

E (t) ∼ (0, R(j)
u ), w(j)

y (t) ∼ (0, Q(j)
y ).

A11 w(j)
u (t), w(j)

E (t), w(j)
y (t) are mutually uncorrelated with both each other and sys-

tem states.
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The input-output model in Eq (5.3) in the presence of newly considered signal
noise takes the form:

y(j)
n (s) = S(j)

1 (s)
[
u(j)(s) + w(j)

u (s)
]
+ S(j)

2 (s)
[
u(j)

E (s) + w(j)
E (s)

]
+ w(j)

y (s)

y(j)
n (s) = y(j)(s) +

[
S(j)

1 (s)w(j)
u (s) + S(j)

2 (s)w(j)
E (s) + w(j)

y (s)
]

y(j)
n (s) = y(j)(s) + w(j)(s).

(5.13)

where y(j)
n is the subsystem’s output in the presence of noise and w(j) is the noise’s

effect where
∥w(j)(t)∥∞ ≤ w(j)

M . (5.14)

As the noise from each subsystem propagates inside the loop, the measurement
at both points l and m in the network are affected. Thus, to compensate for noise in
the fault isolation process, a suitable threshold needs to be specified.

By applying the FVT and superposition principle, the noise’s effect on the mea-
surements at sensors l and m can be computed, obtaining:

y(l)f nss = y(l)f ss +
l

∑
j=1


l

∏
h=j+1

∥S(h)
1 ∥0

1 −
m
∏

h=1
∥S(h)

1 ∥0


(

v(j)

V(j)

)
w(j) +

m

∑
j=l+1


m
∏

h=j+1
∥S(h)

1 ∥0
l

∏
h=1

∥S(h)
1 ∥0

1 −
m
∏

h=1
∥S(h)

1 ∥0


(

v(j)

V(j)

)
w(j)

y(m)
f nss = y(m)

f ss +
m−1

∑
j=1


m
∏

h=j+1
∥S(h)

1 ∥0

1 −
m
∏

h=1
∥S(h)

1 ∥0


(

v(j)

V(j)

)
w(j) +


m
∏

h=1
∥S(h)

1 ∥0

1 −
m
∏

h=1
∥S(h)

1 ∥0


(

v(m)

V(m)

)
w(m)

(5.15)

where y(j)
f nss is the steady state value of y(j) in the presence of a fault and noise, w(l)

is the noise’s effect on the measurement at sensor l, and w(m) is the noise’s effect on
the measurement at sensor m.

With the addition of the noise’s effect, Eq (5.8) becomes:

(y(l)f nss − y(l)ss )− (y(m)
f nss − y(m)

ss ) =



∥S(k)

2 ∥0
l

∏
j=k+1

∥S(j)
1 ∥0

1 −
m
∏
j=1

∥S(j)
1 ∥0


(

1 −
m

∏
j=l+1

∥S(j)
1 )∥0

)
(

v(k)

V(k)

)
f (k)

+
l

∑
j=1


l

∏
h=j+1

∥S(h)
1 ∥0

(
1 −

m
∏

h=l+1
∥S(h)

1 ∥0

)
1 −

m
∏

h=1
∥S(h)

1 ∥0


(

v(j)

V(j)

)

︸ ︷︷ ︸
S(j)

wl

w(j)

+
m

∑
j=l+1


m
∏

h=j+1
∥S(h)

1 ∥0

(
l

∏
h=1

∥S(h)
1 ∥0 − 1

)
1 −

m
∏

h=1
∥S(h)

1 ∥0


(

v(j)

V(j)

)
︸ ︷︷ ︸

S(j)
wm

w(j)

(5.16)
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Now, for measurements at points l and m, the threshold value th(lm) is defined
as:

th(lm) =
l

∑
j=1

∥S(j)
wl ∥∞w(j)

M +
m

∑
j=l+1

∥S(j)
wm∥∞w(j)

M (5.17)

Then, by considering the measurement noise, Algorithm 1 is updated into Algo-
rithm 2 as follows:

Algorithm 2 Fault isolation algorithm in the presence of measurement noise.

• Measure y(l)f nss and y(m)
f nss in steady state.

• Compute y(l)ss , y(m)
ss , and th(lm).

• Isolate the fault:

– If ∥y(l)f nss − y(l)ss ∥ − ∥y(m)
f nss − y(m)

ss ∥ ∈ (−th(lm), th(lm)), then no fault event
occurred or the fault is negligible in comparison to the threshold.

– If ∥y(l)f nss − y(l)ss ∥ − ∥y(m)
f nss − y(m)

ss ∥ > th(lm), then the fault occurred before l
and after m.

– If ∥y(l)f nss − y(l)ss ∥ − ∥y(m)
f nss − y(m)

ss ∥ < −th(lm), then the fault occurred before
m and after l.

5.5 Observer design for additive fault estimation in networks
of linear heat exchange systems

Assume that, by exhaustive search, the two sensors have been positioned such that
the particular fault-affected subsystem has been located (see Section 5.3). After that,
the fault estimation can be performed. A linear disturbance observer approach is
proposed to determine the magnitude of the fault given by Eq (5.1).

During the estimation process, consider k = l = 1 and the fault has been isolated
in subsystem k = 1.

The state space model given by Eq (4.1) with fault (5.1) can be rewritten as fol-
lows:

ẋ(k) = A(k)x(k) + B(k)u(k)
X + E(k) f (k)

y(k) = Cx(k)

E(k) =
[
k(k)E k(k)E ... k(k)E ... k(k)E k(k)E

]T
(5.18)

where E(k) is a fault distribution column matrix and f (k) is assumed to be constant.
This new model in Eq (5.18) can be further transformed into an extended state

space model by defining an extended state vector containing the fault as z(k) =
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[x(k) f (k)]T:

ż(k) =
[

A(k) E(k)

0 0

] [
x(k)

f (k)

]
+

[
B(k)

0

]
u(k)

X = A(k)
z z(k) + B(k)

z u(k)
X

y(k) =
[
C 0

] [x(k)

f (k)

]
= Czz(k)

(5.19)

The state space model of a PI observer is:

˙̂x(k)
= A(k) x̂(k) + B(k)u(k)

X + L(k)
P (y(k) − ŷ(k)) + E(k) f̂ (k)

˙̂f (k) = L(k)
I (y(k) − ŷ(k))

ŷ(k) = Cx̂(k)
(5.20)

where x̂(k) is the estimated state vector, f̂ (k) is the estimated fault magnitude, L(k)
P is

the observer’s proportional gain, and L(k)
I is the observer’s integral gain.

Hence, a PI observer can be designed for the extended state space model in Eq
(5.19) to not only estimate the states but also the fault. By applying Eq (5.20) into Eq
(5.19) with the assumption that (A(k)

z , Cz) is an observable pair, we obtain:

˙̂z(k)
=

([
A(k) E(k)

0 0

]
−
[

L(k)
P

L(k)
I

] [
C 0

])
ẑ(k) +

[
L(k)

P

L(k)
I

]
y(k) +

[
B(k)

0

]
u(k)

X

= (A(k)
z − L(k)

z Cz)ẑ(k) + L(k)
z y(k) + B(k)

z u(k)
X

ŷ(k) = Czẑ(k)

(5.21)

Thus, if L(k)
P and L(k)

I are chosen such that (A(k)
z − L(k)

z Cz) is Hurwitz, then limt→∞(z(k)−
ẑ(k)) = 0.

In the presence of noise, the widely known linear quadratic estimator (LQE) pro-
cedure can be used to compute the observer’s gain L(k)

z .

5.6 Simulation results

To verify and validate the proposed fault isolation and fault estimation methods,
two simulation case studies were examined in the MATLAB/Simulink environment.
The first case study is based on Fig 5.4. Meanwhile, for the second case study, the
investigated network comprises six subsystems as presented in Fig 5.3.
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FIGURE 5.4: Diagram of two subsystems in a loop with a fault.

5.6.1 Case study 1

In this case study, two identical subsystems S(P) and S(Q) are connected as shown in
Fig 5.4. The model of the subsystems is given by Eq (5.12) where each subsystem is
considered to have five state variables (n = 5). The applied parameters and external
inputs are shown in Table 5.1.

TABLE 5.1: Case study 1 parameters and external inputs.

j P Q
v(j) 10 10
k(j)

E 3 3
u(j)

E 400 400
R(j)

u 20 20
Q(j)

y 20 20

It is considered that the measurements y(P) and y(Q) are influenced by noise as
presented in Eq (5.12). To compensate for the noise that influences the system, a
suitable threshold th(PQ) is computed by applying Eq (5.17). From the proposed fault
isolation logic shown in Algorithm 2, as the loop is composed of two subsystems S(P)

and S(P), the simulation results should show that ∥y(P)
f nss − y(P)

ss ∥ − ∥y(Q)
f nss − y(Q)

ss ∥ is

above th(PQ) when there is a fault in subsystem S(P), or ∥y(P)
f nss − y(P)

ss ∥−∥y(Q)
f nss − y(Q)

ss ∥
is below −th(PQ) when there is a fault in subsystem S(Q).

In the first scenario, no fault is injected into the subsystems. The simulation result
in Fig 5.5 shows ∥y(P)

f nss − y(P)
ss ∥ − ∥y(Q)

f nss − y(Q)
ss ∥ ∈ (−th(PQ), th(PQ)), i.e., no fault is

injected.
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FIGURE 5.5: Case study 1 fault free case.

In the second scenario, a constant fault signal f (P) = 100 is injected into subsys-
tem S(P) at t = 20 s. Fig 5.6 shows that the value of ∥y(P)

f nss − y(P)
ss ∥ − ∥y(Q)

f nss − y(Q)
ss ∥

is above the threshold after the fault event occurred. This indicates that a fault is
occurring in subsystem S(P), which is correct.

To verify the proposed fault estimation approach, an observer is designed specif-
ically for subsystem S(P) based on Eq (5.21). By using the lqe MATLAB function, the
observer’s gain is computed such that the measurement noise variances are taken
into consideration. Fig 5.7 shows the fault and its estimated value. It is seen that the
fault’s magnitude is correctly estimated. Meanwhile, Fig 5.8 shows that the observer
successfully estimates the states of subsystem S(P).

FIGURE 5.6: Case study 1 fault isolation in subsystem S(P).
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FIGURE 5.7: Case study 1 fault estimation in subsystem S(P).

FIGURE 5.8: Case study 1 states estimation in subsystem S(P).

In the third scenario, a constant fault signal f (Q) = −50 is injected into subsystem
S(Q) at t = 20 s. Fig 5.9 shows that the value of ∥y(P)

f nss − y(P)
ss ∥ − ∥y(Q)

f nss − y(Q)
ss ∥ is

below −th(PQ) after the fault event occurred. This indicates that a fault is occurring
in subsystem S(Q), which is correct.

Moreover, an observer is designed specifically for subsystem S(Q) based on Eq
(5.21). The observer’s gain is also computed using the same lqe MATLAB function
such that the noise variances are taken into consideration. Fig 5.10 shows the fault
and its estimated value. Here, the fault’s magnitude is also correctly estimated.
Meanwhile, Fig 5.11 shows that the observer successfully estimates the states of sub-
system S(Q).
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FIGURE 5.9: Case study 1 fault isolation in subsystem S(Q).

FIGURE 5.10: Case study 1 fault estimation in subsystem S(Q).

FIGURE 5.11: Case study 1 states estimation in subsystem S(Q).
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5.6.2 Robustness analysis for case study 1

To analyse the robustness of our proposed approach, modified parameter values
are considered in the subsystem’s model as in Eq (4.1) only during the simulations.
Here, we have two parameters to modify: the mass flow rate and the transfer co-
efficient. The mass flow rate v(j) can be easily measured. However, the transfer
coefficient k(j)

E can only be estimated as its value changes depending on the phys-
ical conditions and circumstances. Thus, the robustness analysis is performed by
checking the performance of fault isolation and estimation in the presence of trans-
fer coefficient parameter uncertainty.

This robustness analysis for k(j)
E can be considered as a special type of analysis for

modelling uncertainties that take into account the uncertainty of the most important
parameter.

By using case study 1 for the sake of convenience but without loss of generality,
the simulation is carried out by increasing the value of k(j)

E in Table 5.1 by 25% (k(j)
E =

3.75 where j = P, Q). After this, a constant fault signal f (Q) = −50 is injected into
subsystem S(Q) at t = 20 s. Fig 5.12 shows that the value of ∥y(P)

f nss − y(P)
ss ∥ − ∥y(Q)

f nss −
y(Q)

ss ∥ is below −th(PQ) after the fault event occurred. This indicates that a fault is
occurring in subsystem S(Q), which is correct. The real and estimated fault values
are shown in Fig 5.13. There, the fault’s magnitude is estimated with an error of less
than 10%. This error is acceptable provided that the maximum tolerable value of the
uncertainty in k(j)

E is 25%.

FIGURE 5.12: Case study 1 fault isolation in subsystem S(Q) with a
parameter change.
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FIGURE 5.13: Case study 1 fault estimation in subsystem S(Q) with a
parameter change.

5.6.3 Incipient fault analysis for case study 1

We also analysed the performance of our proposed approach in the case of an incipi-
ent fault (slowly developing fault). To do this, by using case study 1 again, a linearly
increasing fault signal is assumed with an initial value of 0 and a slope value of 0.1
per unit of time. This fault is injected into subsystem S(P) at t = 20 s. Fig 5.14 shows
that the value of ∥y(P)

f nss − y(P)
ss ∥ − ∥y(Q)

f nss − y(Q)
ss ∥ is above the threshold th(PQ) some

time after the fault event occurred. This indicates that a fault is occurring in subsys-
tem S(P), which is correct. Meanwhile, Fig 5.15 shows that the observer successfully
estimates the magnitude of the incipient fault.

FIGURE 5.14: Case study 1 fault isolation in subsystem S(P) with an
incipient fault.
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FIGURE 5.15: Case study 1 fault estimation in subsystem S(P) with an
incipient fault.

5.6.4 Case study 2

In this case study, six subsystems S(A), S(B), S(C), S(D), S(E), and S(F) are connected
as shown in Fig 5.3. The model of the subsystems is given by Eq (5.12) where each
subsystem is considered to have five state variables (n = 5). The applied parameters
and external inputs are shown in Table 5.2.

TABLE 5.2: Case study 2 parameters and external inputs.

j A B C D E F
v(j) 20 4 16 8 12 20
k(j)

E 3 3 3 3 3 3
R(j)

u 20 20 20 20 20 20
Q(j)

y 20 20 20 20 20 20

In this network, two sensors are placed to measure both y(A) and y(F) that are
affected by noise as presented in Eq (5.12). To compensate for the noise that influ-
ences the system, a suitable threshold th(AF) is computed as presented in Eq (5.17).
As both subsystem S(A) and S(F) are inside the loops of either

{
S(A), S(B), S(D), S(F)

}
or
{

S(A), S(B), S(E), S(F)
}

, the simulation’s results should show that: ∥y(A)
f nss − y(A)

ss ∥−

∥y(F)
f nss − y(F)

ss ∥ is above the threshold th(AF) when there is a fault in subsystem S(A),

or ∥y(A)
f nss − y(A)

ss ∥ − ∥y(F)
f nss − y(F)

ss ∥ is below −th(AF) when there is a fault in either

subsystem S(B), S(C), S(D), S(E), or S(F) (see Algorithm 2).
In the first scenario, no fault is injected into the subsystems. The simulation

results in Fig 5.16 show that ∥y(A)
f nss − y(A)

ss ∥ − ∥y(F)
f nss − y(F)

ss ∥ ∈ (−th(AF), th(AF)), i.e.,
no fault is injected.
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FIGURE 5.16: Case study 2 fault free case.

In the second scenario, a constant fault signal f (A) = 200 is injected into subsys-
tem S(A) at t = 20 s. Fig 5.17 shows that the value of ∥y(A)

f nss − y(A)
ss ∥ − ∥y(F)

f nss − y(F)
ss ∥

is above the threshold after the fault event occurred. This indicates that a fault is
occurring in subsystem S(A), which is correct.

To verify the proposed fault estimation approach, an observer is designed for
subsystem S(A) based on Eq (5.21). By using the lqe MATLAB function, the ob-
server’s gain is computed such that the measurement noise variances are taken into
consideration. Fig 5.18 shows the fault and its estimated value. It is seen that the
fault’s magnitude is correctly estimated. Meanwhile, Fig 5.19 shows that the ob-
server successfully estimates the states of subsystem S(A).

In the third scenario, a constant fault signal f (F) = −150 is injected into subsys-
tem S(F) at t = 20 s. Fig 5.20 shows that the value of ∥y(A)

f nss − y(A)
ss ∥ − ∥y(F)

f nss − y(F)
ss ∥

is below −th(AF) after the fault event occurred. This indicates that a fault is occur-
ring either in subsystem S(B), S(C), S(D), S(E), or S(F), which is correct. However,
to specifically locate the fault-affected subsystem (S(F)), an exhaustive search must
be done by shifting the position of the two sensors and repeating the fault isolation
algorithm (see Section 5.3).

An observer is then designed specifically for subsystem S(F) based on the same
Eq (5.21). The observer’s gain is computed using the same lqe MATLAB function
such that the noise variances are taken into consideration. Fig 5.21 shows the fault
and its estimated value. Here, the fault’s magnitude is also correctly estimated.
Meanwhile, Fig 5.22 shows that the observer successfully estimates the states of sub-
system S(F).
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FIGURE 5.17: Case study 2 fault isolation in subsystem S(A).

FIGURE 5.18: Case study 2 fault estimation in subsystem S(A).

FIGURE 5.19: Case study 2 states estimation in subsystem S(A).
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FIGURE 5.20: Case study 2 fault isolation in subsystem S(F).

FIGURE 5.21: Case study 2 fault estimation in subsystem S(F).

FIGURE 5.22: Case study 2 states estimation in subsystem S(F).
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5.7 Summary and discussion

In this chapter, the case of networked linear heat exchange systems with only a sin-
gle conserved extensive quantity but with a network structure containing loops is
considered. It is assumed that the probability of multiple faults happening at the
same time in the network is negligible.

For fault detection and isolation purposes, the network elements are described
by 2ISO LTI state space models where the fault enters as an additive linear term
into the second input of the equations representing the external environment. Using
the models of the network elements, a general model of the network is constructed
which includes static splitting and joining connections. This results in an LTI state
space model for the overall networked system that is suitable for fault detection and
isolation.

By analysing the effect of the fault in a subsystem that propagates to the sensors
placed at different positions in the network, a fault isolation algorithm (Algorithm
1) was proposed. It uses two sensors that are installed at the output of the two
subsystems in the loop inside the network to locate the fault. A steady state analysis
and superposition principle were used to build the algorithm. An improved version
of the algorithm (Algorithm 2) was also proposed to perform the fault localization
in the presence of measurement noise.

Having completed the fault isolation process, a PI disturbance observer was then
proposed to estimate the magnitude of the fault.

The proposed method shows good robustness against the uncertainty in transfer
coefficient parameter kE which is difficult to estimate in practice. In addition, it can
also correctly estimate incipient faults modelled as ramp-like fault signals.

Even though the proposed method is built for networked heat exchange systems,
it can be generalized to the networked LTI systems as long as the properties of the
network elements are the same, which are: 1. The systems are positive. This positiv-
ity in LTI systems will always result in the same structure of the A matrix in the sys-
tem’s state space model ẋ = Ax where the off-diagonal elements are non-negative,
i.e., a Metzler matrix [143]. Moreover, as the diagonal elements are negative, this im-
plies that the systems are also stable [144, 145, 146] (see Appendix A.2), 2. It can be
modelled as a 2ISO LTI system, 3. The fault enters the system through the system’s
second input, 4. The mass and/or energy conservation applies in the branching
points, i.e., splitting and joining connections (see Appendix B.2). For the relation
between additive and multiplicative fault modelling, we can refer to Eq (5.2).

The work here tries to contribute by giving an alternative using model based
approach for fault diagnosis in a loop compared to other literature that uses data
driven approaches [81, 82]. Moreover, the proposed method requires only 2 sensors
for implementation.

Since the proposed method is built on the heat exchange network model, some
further efforts can be made by trying to generalize it to MIMO systems. Thus, Ap-
pendix E is dedicated to outline this future work.
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Chapter 6

Conclusions

6.1 Thesis points

The summary of the new scientific contributions is as follows:

Thesis I

The corresponding publications are [A1] and [A2].
In this thesis, a model based actuator and sensor fault diagnosis method for robot

platoons that move in a leader-follower scheme is proposed. As a networked system
with distributed control, the states of each robot are affected by the states of its pre-
ceding robot. Thus, to achieve reliable platoon control, network communication can
be applied for the sake of information transmission. The sensor and actuator fault
diagnosis method is studied separately because of their different goals. For actuator
fault diagnosis, the goals are to detect, isolate, and estimate the fault. Meanwhile,
for sensor fault diagnosis, the faulty sensor’s detection and isolation are the goals.
The considered sensors include a GPS-based sensor, a wheel-mounted velocity sen-
sor, and a radar sensor for inter-vehicle distance measurement. No sensor fault is
assumed in studying the actuator fault diagnosis and vice versa.

Sensor fault diagnosis related research results:

1. A model for robot platoons with network communication was proposed that
can capture the effect of sensor fault propagation in the networked systems.

2. By using the networked system model as the basis, a bank of distributed Un-
known Input Observers (UIO)s as residual generators was designed that iso-
late the faulty sensor in each robot.

3. A threshold computation was also proposed to prevent false alarms in the
presence of measurement noise when there are no faulty sensors.

4. The extension of the UIO-based sensor fault isolation method for a more gen-
eral class of networked LTI systems is also presented.

Actuator fault diagnosis related research results:

1. By exploiting the measurement redundancy, a filtering technique is proposed
to eliminate the need for network communication so that the actuator fault and
the communication fault can be decoupled from each other.

2. By using the filter, the model without network communication was derived
that shows similar behaviour to the original model with network communica-
tion.
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3. Based on the model without network communication, a PI observer was de-
signed to estimate the magnitude of the actuator fault.

4. Two estimation filter gain design methods were examined. The pole placement
design method results in a rapid fault estimation process but the measurement
noise still influences the estimation result. Meanwhile, by using the Linear
Quadratic Estimator (LQE), the measurement noise is eliminated but the esti-
mation process needs a much longer time.

Thesis II

The corresponding publications are [A3] and [A4].
In this thesis, model based methods are proposed for fault detection, isolation,

and estimation in heat exchange networks where the considered fault is the param-
eter change in the heat transfer coefficient that describes the effect of environmental
temperature on the temperatures inside the heat exchange networks. In addition,
the proposed model of the heat exchange networks includes splitting and joining
connections that are common in real world applications.

The results of this research are:

1. By using SDG to investigate the structural observability in solving the sensor
placement problem, it is found that

• For splitting connections, it is enough to put sensors only at the end of
each element after the split to detect, isolate, and estimate the fault that
happens either before or after the split.

• For joining connections, it is necessary to put sensors at the end of each
element both before and after the joint to detect, isolate, and estimate the
fault that happens either before or after the joint.

• If the fault happens only at a certain location along the length of a spe-
cific tube, then putting a sensor only at the end of the considered tube is
enough to detect and estimate the fault.

2. In the splitting connections, a bank of linear observers can detect and isolate
whether the fault happens before or after the split.

3. As the parameter fault induces bilinear fault input terms in the model, a bank
of nonlinear observers that is based on the parameter adaptation can estimate
it.

4. By using sensitivity analysis, it is found that fault isolation can hardly be per-
formed in the case of a single parameter fault in a certain location in a specific
tube.

Thesis III

The corresponding publication is [A5].
In this thesis, a model based fault diagnosis method is proposed for the net-

worked linear heat exchange systems that contain splitting and joining connections,
and also loops. The considered fault enters into the subsystem as an additive linear
input term.

The results of this research are:



Chapter 6. Conclusions 82

1. By using steady state value analysis, a fault isolation algorithm requiring two
sensors is proposed that can localize the fault in the loops inside the network.

2. After the fault has been isolated, a PI observer is proposed to estimate the
magnitude of the fault.

3. The proposed method has good robustness against the heat transfer coefficient
parameter uncertainty that is hard to estimate in practice.

4. The proposed method can also isolate and correctly estimate incipient faults
(slowly developing faults).

6.2 Future works

In this subsection, possible future works for each thesis point are presented:

• For Thesis I, there is a possibility to explore other approaches to deal with
the diagnosis of the communication faults in the network. In addition, the re-
search results can further be used for designing a fault tolerant controller for
such systems. Lastly, in this present study, actuator fault and sensor fault diag-
nosis are studied separately (i.e. no sensor fault is assumed during the actuator
fault diagnosis study and vice versa). Thus, a further study to simultaneously
integrate them can be considered.

• For Thesis II, it is shown that parameter fault at a certain location along the
length of a tube in an element of heat exchange networks is hard to isolate.
This leads to possible future work in finding other approaches to tackle this
problem.

• For Thesis III, further studies can be carried out to generalize the proposed
method to MIMO systems. The outline can be seen in Appendix E.
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Appendix A

Linear time invariant model for
fault diagnosis

Commonly, linear system models are obtained by linearising a nonlinear system
model around its equilibrium points [124, 125]. Even though the instability may
caused the system’s states to move far away from the equilibrium points, a good
controller hopefully can keep them in a small neighbourhood around the equilibri-
ums where the linearisation still holds [3].

Consider a nonlinear system as follows:

ẋ = f (x, u) , x(t0) = x0

y = g(x, u)
(A.1)

where x ∈ Rn is the system’s states, x0 is the states’ initial conditions, u ∈ Rr is
the control input, and y ∈ Rm is the measured system’s output. f and g should be
derivable.

By using Taylor series expansion, system in Eq (A.1) can be linearised for a small
∆x = x − xeq and ∆u = u − ueq around (xeq, ueq) where f (xeq, ueq) = 0. For small
displacements around (xeq, ueq), the higher order terms in the Taylor series expan-
sion can be neglected because their values are small. For the lowest order terms, it
can be represented by doing a partial derivative computed at (xeq, ueq). This first
order partial derivative gives the Jacobian matrix. Thus, the linearisation process
can be written as:

f (xeq + ∆x, ueq + ∆u) = f (xeq, ueq)+
d f
dx

∣∣∣∣∣
(xeq,ueq)︸ ︷︷ ︸
A

∆x +
d f
du

∣∣∣∣∣
(xeq,ueq)︸ ︷︷ ︸

B

∆u

g(xeq + ∆x, ueq + ∆u) = g(xeq, ueq)+
dg
dx

∣∣∣∣∣
(xeq,ueq)︸ ︷︷ ︸

C

∆x +
dg
du

∣∣∣∣∣
(xeq,ueq)︸ ︷︷ ︸
D

∆u

(A.2)

where A, B, C, and D are the Jacobian matrices with appropriate dimensions.
Then, by shifting (xeq, ueq) to the origin point and dropping ∆, the linearised

model can be written in the form of LTI model as follows:

ẋ = Ax + Bu , x(t0) = x0

y = Cx + Du
(A.3)

Eq (A.3) shows the general LTI system model in a state space form.
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The following are two examples of particular LTI models: mechanical systems
and lumped elements in energy systems.

A.1 Mechanical systems

In mechanical systems, the state vector usually contains the position states (p) and
the velocity states (v) [155]. If the mechanical system has n Degrees of Freedom
(DOF), then the dimension of the state vector is 2n. Meanwhile, for the control in-
puts, generalized forces can be considered that affect directly the system’s accelera-
tion (v̇). The state matrix A also has a special structure due to the double integrator
character of the dynamic model of mechanical systems. Thus, the model can be
written as:

x =

[
p
v

]
,
[

ṗ
v̇

]
=

[
0n×n In×n
A1 A2

] [
p
v

]
+

[
0
B

]
u

y = Cx + Du
(A.4)

where 0 and I are the zero and identity matrices, respectively. A1 and A2 are matrices
with appropriate dimensions.

As an example, consider an object in a two-dimensional (2D) space that moves in
xy coordinate system where (x0, y0) is its initial condition and (vx, vy) is its velocity
as shown in Fig A.1.

FIGURE A.1: A mechanical system example

Also, assume that the object’s acceleration v̇ depends on its related position p
by some stiffness coefficients, velocity v by some damping constants, and a control
input u by some input gain constants. In addition, the measurement is done on the
object’s position. Then, similar to Eq (A.4), the model of the object’s motion can be
written as: 

ṗx
ṗy
v̇x
v̇y

 =


0 0 1 0
0 0 0 1
c1 0 c2 0
0 c3 0 c4




px
py
vx
vy

+


0
0
c5
c6

 u

[
y1
y2

]
=

[
1 0 0 0
0 1 0 0

] 
px
py
vx
vy


(A.5)
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where c1 and c3 are the stiffness coefficients, c2 and c4 are the damping constants,
and c5 and c6 are the input gain constants.

A.2 Lumped elements in energy systems

Here, we are interested in energy systems that can be modelled as Lumped Param-
eter System (LPS). In this model, the system’s state is the intensive variable (com-
monly temperature) which is assumed to be homogeneous for a single balance vol-
ume. Thus, it can be represented by a single state value in a function of time only.
This leads to Ordinary Differential Equations (ODEs) representation in the system’s
model [124]. One example of such energy systems is distributed heating/cooling
systems. Distributed heating/cooling systems transfer energy from one place to an-
other using a heat transfer media, usually a fluid, transported in tubes and one tries
to perfectly isolate the connecting tubes between the source and the consumer equip-
ments. The distributed heating/cooling systems as process systems have three types
of elements as operating units which are source elements, consumer elements, and
connecting elements.

In the simplest case, one can construct the model of all of the above three system
elements by spatially lumping the distributed engineering model derived from dy-
namic energy balance. Assume a tube as connecting element with a heat isolation
wall containing incompressible liquid phase. The tube is well mixed in its cross sec-
tion and has a spatially distributed temperature along its length. The state variables
x ∈ Rn will be the fluid temperatures xi along the tube length (in the lumps) where
i = 1 . . . n represents the position of a flow element in the tube. The inlet temper-
ature u is considered the system’s input which acts only on the first state variable.
The measured output of the system y is the outlet temperature which is the last state
variable. A plug flow convection model is considered with flow-rate v > 0. Thus,
the system’s model can be written as:[

rate of change
of total energy

]
=

[
flow of energy
into the system

]
−
[

flow of energy
out of the system

]
ẋ1 = −vx1 + vu
ẋi = −vxi + vxi−1 , for i = 2, 3, ..., n
y = xn

(A.6)

Eq (A.6) can be converted into an LTI state space model as follows:

ẋ = Ax + Bu
y = Cx

where

A =


−v 0 ... 0
v −v ... 0
0 v ... 0
0 ... ... 0
0 ... ... −v

 ,

B =
[
v 0 . . . 0

]T , C =
[
0 0 0 ... 1

]

(A.7)

By looking at Equation (A.7), we can derive some important points:
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1. The model will always be stable because the eigenvalues are already stable
shown by the negative sign of the diagonal entries of the A matrix [137].

2. The A ∈ Rn×n matrix is a Metzler matrix by which all of its off-diagonal ele-
ments are non-negative. Thus, the matrix represents the time delayed differen-
tial equations and positive linear dynamical systems [156]. This is understand-
able because between the input and output states in the subsystem, a propa-
gation inside the transport element will occur contributing to the increase in
delayed processes. This also implies the stability of the model because this
matrix is sign stable and Hurwitz [157].

3. It is jointly controllable and observable because it is derived from conservation
balance equations (it is a compartmental system) [158, 159].
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Appendix B

Networked systems

In networked systems where there are N connected subsystems, the states of each
subsystem in the network are also affected by the states of its neighbouring subsys-
tems [93] as follows:

ẋ(j) = A(j)x(j) + B(j)u(j) + I(j)i(j)

y(j) = C(j)x(j) + D(j)u(j)
(B.1)

where j = 1, 2, 3, ..., N represents the jth subsystem and i(j) is the interconnection
input which comes from the neighbouring subsystem’s outputs. I(j) is an intercon-
nection matrix with appropriate dimension.

By assuming static linear interconnections, the interconnection input i(j) can be
generally written as:

i(j) = L(jk)y(k) (B.2)

where L(jk) is called the adjacency matrix containing the relations between output
measurements from the kth subsystem being connected as interconnection inputs to
the jth subsystem.

Eqs (B.1) and (B.2) show the general model of networked system with static lin-
ear interconnection. However, through out this research, the connections in the net-
worked system is expanded more details with distributed delay interconnections
(using linear chain trick), joining and splitting connections, and loops.

B.1 Distributed delay interconnections

The interconnection between subsystems can be further generalized by allowing a
delay kernel function g to describe interconnection with distributed time delay [160]
as follows:

i(j) = L(jk)
[∫ 0

−τ
g(jk)(s)y(k)(t + s) ds

]
∫ 0

−τ
g(jk)(s) ds = 1

(B.3)

However, instead of trying to characterize the interconnection using a kernel
function, a finite dimensional ODE realization through an LTI model can also be
used to represent it. The basis of this approach is the linear chain trick method for
approximating finite delays with a chain of linear reactions [161, 162]. Thus, from
the perspective of linear chain trick, a linear interconnection with distributed time
delay can equivalently be represented by a stable LTI system model. For example,
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the model of lumped elements as in Eq (A.7) can represent the distributed delay
interconnections in networked energy systems.

B.2 Splitting and joining connections

In a realistic network, it is common to have a branching phenomenon in the intercon-
nection between subsystems. Here, the Kirchoff law applies to the flows of extensive
variables entering and exiting this interconnection. Considering the ℓth junction, the
sum of either the overall mass, component mass, or energy flows entering the junc-
tion is equal to the sum of flows exiting as shown in the following equation for the
case of overall mass flows:

∑
α∈IN(ℓ)

v(α) = ∑
β∈OUT(ℓ)

v(β) = V(ℓ) (B.4)

where α runs over the branches by which the flow enters the interconnection. Mean-
while, β runs over those where the flows exits the interconnection. IN(ℓ) is the input
set of the interconnection junction point, OUT(ℓ) is the output set of the interconnec-
tion junction point, and v is measured in kg

s .
Similar conservation equations apply for the energy flows Q̇ in energy transport

systems. However, to obtain the relations between the intensive temperature vari-
able T among the subsystems in the networked energy systems, we substitute the al-
gebraic equations representing the relationship between the intensive and extensive
variables into the mass conservation as in Eq (B.4) [125]. The algebraic relationship
between energy and temperature is in the following general form:

Q = McPT (B.5)

where Q is the thermal energy, M is the overall mass, and cP is the specific heat in
the balance volume.

Then, we can substitute relations in Eq (B.5) into the Kirchhoff law in Eq (B.4)
while taking into account that the value of the intensive variable for all the outflows
is the same. This way, one obtains the linear algebraic equations for the intensive
temperature variable T at the ℓth junction in the following general form:

∑
α∈IN(ℓ)

v(α)

V(ℓ)
T(α) = T(β) , ∑

α∈IN(ℓ)

v(α)

V(ℓ)
y(α) = u(β) , ∀ β ∈ OUT(ℓ) (B.6)

B.3 Loops

For the sake of energy or material efficiency, it can be happen that a networked sys-
tem contains loops. However, to ease the analysis of the networked system in the
presence of loops, we transform the general LTI model from its state space form as
in Eq (A.3) into transfer function in the Laplace domain s [3] as follows:

y(s) = S(s)u(s) (B.7)

where u(s) and y(s) is the Laplace transform from the input u(t) and y(t) respec-
tively, and S(s) is the transfer function from input u(s) to output y(s).
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By assuming zero initial conditions, the transfer function S(s) can be obtained
from the related state space matrices:

S(s) = C(sI − A)−1B + D (B.8)

Now, consider many interconnected subsystems forming a loop where S(j)(s) is
the jth subsystem’s transfer function and j = 1, 2, ..., l − 1, l, l + 1, ..., m as shown in
Fig B.1.

FIGURE B.1: Block diagram of a closed loop

By using block diagram analysis, the overall transfer function from the consid-
ered input in(s) to the considered output out(s) is:

out(s)
in(s)

=
∏l

j=1 S(j)(s)

1 − ∏m
j=1 S(j)(s)

(B.9)
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Appendix C

Linear observers

In the real world applications, not all of the system’s states can be directly measured
using the available sensors. Thus, it is important to investigate the observability of
the system. A system is called observable if it is possible to construct or estimate the
system’s states from available measurements [3, 125].

C.1 State estimation

Consider a system as in Eq (A.3) where the states are x ∈ Rn. Define the observabil-
ity matrix O as:

O =
[
C CA CA2 ... CAn−1]T (C.1)

If the rank of the matrix O is n, then the system is observable [125].
Now, assume that the pair (A, C) in Eq (A.3) is already observable. Then, a state

observer can be constructed for such system. A state observer is an estimator that
can construct or estimate the given real system’s internal states from its available
input and output measurements [3]. The model of the estimator is:

˙̂x = Ax̂ + Bu + L(y − ŷ)
ŷ = Cx̂ + Du

(C.2)

where x̂ is the states estimation and L is the observer’s gain.
System in Eq (C.2) is a linear observer.
From Eqs (A.3) and (C.2), the state estimation error ϵ = x − x̂ can be obtained as

follows:

ϵ̇ = ẋ − ˙̂x
= (Ax + Bu)− ((A − LC)x̂ + Ly + (B − LD)u)

ϵ̇ = (A − LC)ϵ
(C.3)

Eq (C.3) shows that if we can choose L so that A− LC is stable (or Hurwitz), then
limt→∞ ϵ = 0. In other words, the observer successfully estimates the real system’s
states. There are two common methods to determine the observer’s gain L which
are pole placement design and Linear Quadratic Estimator (LQE).

Note that the system’s observability is a duality problem with the system’s con-
trollability because they are mathematically similar.

C.2 Pole placement design

Pole placement design is originated from Full State Feedback (FSF) which is com-
monly used in control theory to place the poles (or eigenvalues) of a closed loop
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system in desired locations. By placing the poles in the desired locations, we can
modify the characteristics of the system’s responses [3]. To apply this method, the
system must be controllable (or observable in the case of state estimation).

From Eq (C.3), the poles can be determined from the characteristic equation of
A − LC:

det[sI − (A − LC)] = 0 (C.4)

where I is the identity matrix.
If the system is observable, Eq (C.4) shows that the values of L can be used to

forcefully place the poles of A − LC to some locations related to the desired charac-
teristic responses of the state estimation.

C.3 Linear quadratic estimator design

Consider that system (A.3) is now affected by disturbance and measurement noise
as follows:

ẋ = Ax + Bu + d
y = Cx + Du + n

(C.5)

where d is the disturbance and n is the measurement noise.
LQE can optimally compensate the effect of disturbance and measurement noise

in estimating the system’s states. However, it must be assumed that both disturbance
and measurement noise are zero mean Gaussian processes with known disturbance
variance Wd and measurement noise variance Wn [3].

As observability and controllability are dual properties, LQE is also dual with
Linear Quadratic Regulator (LQR) optimization.

LQE deals with how to choose a suitable observer gain L in estimating the sys-
tem’s states in the presence of disturbance and measurement noises. To do that,
define a state estimation error covariance Y that satisfies:

Y ≻ 0

Ẏ = YAT + AY − YCTW−1
n CY + Wd

(C.6)

Therefore, by choosing Y to solve the following algebraic Riccati equation:

0 = YAT + AY − YCTW−1
n CY + Wd (C.7)

then, the error covariance Y will diminish in a steady state value (Ẏ = 0).
The optimal gain L can be computed as:

L = YCTW−1
n (C.8)

Remark: In this research, instead of manual computation, the author used the
MATLAB commands place and lqe to compute the necessary observer’s gain for pole
placement and LQE methods, respectively.
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C.4 Proportional-Integral observer

Consider an LTI system affected by unknown constant disturbance as follows:

ẋ = Ax + Bu + Ed
y = Cx

(C.9)

where d is the unknown constant disturbance and E is disturbance distribution ma-
trix with appropriate dimension.

Assume that the states for the system as in Eq (C.9) are being estimated by the
following linear observer:

˙̂x = Ax̂ + Bu + L(y − ŷ)
ŷ = Cx̂

(C.10)

Then, the state estimation error dynamics will be:

ϵ̇ = ẋ − ˙̂x = (A − LC)ϵ + Ed (C.11)

As long as A − LC is Hurwitz, Eq (C.11) shows that there will always be a con-
stant steady state error if d ̸= 0.

Fortunately, a Proportional Integral (PI) observer has the ability to eliminate this
steady state error [121]. Moreover, this PI observer can also be applied to estimate
the disturbance by considering it as an additional state for the system in Eq (C.9) so
that the model becomes an extended state space model as follows:

z =

[
x
d

]
, ż =

[
A E
0 0

]
z +

[
B
0

]
u

y =
[
C 0

]
z

(C.12)

Then, for system in Eq (C.12), a PI observer can be designed to estimate both
the states and disturbance. Hence, a PI observer is sometimes called a disturbance
observer. The model for the PI observer is:

˙̂x = Ax̂ + Bu + Ed̂ + LP(y − ŷ)
ŷ = Cx̂
˙̂d = LI(y − ŷ)

(C.13)

where d̂ is the disturbance estimate, LP is the observer’s proportional gain matrix,
and LI is the observer’s integral gain matrix.

By further derivation, Eq (C.13) can also be written as:

˙̂z =

([
A E
0 0

]
−
[

LP
LI

] [
C 0

])
ẑ +

[
LP
LI

]
y +

[
B
0

]
u

= (Az − LzCz) ẑ + Lzy + Bzu
(C.14)

The state estimation error dynamics for PI observer is:

ϵ̇z = ż − ˙̂z = (Az − LzCz)ϵz (C.15)

Thus, if Lz = [LP LI ]
T is chosen such that Az − LzCz is Hurwitz, then limt→∞ ϵz =

0. In other words, the PI observer will successfully estimate both the system’s states
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x and the unknown constant disturbance d.

C.5 Unknown input observer

Here, consider again an LTI system with unknown disturbance as in Eq (C.9).
An Unknown Input Observer (UIO) is a special observer that produces a state

estimation x̂ that converges to the real one if certain conditions hold despite of the
presence of some unknown input d [17]. The state space model for the UIO is:

ż = Fz + TBu + Ky
x̂ = z + Hy
r = y − Cx̂ = (I − CH)y − Cz

(C.16)

where I is the identity matrix, z is the UIO’s internal states, x̂ is the states estimation,
and r is the UIO’s residual signal.

If the matrices F, T, K, and H with appropriate dimensions are chosen such that
they satisfy:

HCE = E
T = I − HC
F = A − HCA − K1C

K2 = FH
K = K1 + K2

(C.17)

where K1 is chosen to stabilize F, then limt→∞(x − x̂) = 0. In this situation, r = 0
also applies.

The necessary conditions so that Eq (C.17) can be satisfied are:

1. rank(CE) = rank(E)
2. (C, A − HCA) is a detectable pair

(C.18)

The first condition is to ensure that H matrix in Eq (C.17) exists. It also indicates
that the number of available independent measurements limits the maximum size
of the unknown input that can be decoupled. Meanwhile, the second condition is
a milder condition related to observability. If (C, A − HCA) is already observable,
a pole placement design method can directly be used to determine the value of K1.
If it is not observable, an observable canonical decomposition procedure must be
performed to do a matrix transformation before using pole placement to find the
value of K1. The details of this decomposition procedure can be seen in [163].
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Appendix D

Parameter fault detection and
estimation of a class of nonlinear
systems using observers

This section presents the main results from [141]. See the related article for further
details and mathematical proofs.

Consider a nonlinear system as follows:

ẋ = Ax + g(u, y) + Bθ f (u, y, x)
y = Cx

(D.1)

where x ∈ Rn is the state, u ∈ Rm is the input, and y ∈ Rr is the output. The pair
(A, C) is observable. g(u, y) is a nonlinear term that depends on the available u and
y. f (u, y, x) ∈ Rr is a nonlinear vector function. θ ∈ R is a parameter that changes
when a fault occurs and it is bounded, i.e. ∥θ∥ ≤ θ0. θ = θH when there is no fault
where θH is a known scalar.

In addition, assume that:

1. A known positive constant L0 exists such that for any norm bounded x1, x2 ∈
Rn, the following inequality holds (Lipschitz condition):

∥ f (u, y, x1)− f (u, y, x2)∥ ≤ L0∥x1 − x2∥ (D.2)

2. For a given positive definite matrix Q > 0 ∈ Rn×n, a matrix P = PT > 0 ∈
Rn×n and a scalar R exist such that:

(A − KC)TP + P(A − KC) = −Q

PB = CTR
(D.3)

Consider the following linear observer:

˙̂x = Ax̂ + g(u, y) + BθH f (u, y, x̂) + K(y − ŷ)
ŷ = Cx̂

(D.4)

Also, define the following errors:

ex = x − x̂
ey = y − ŷ

eθ = θ f − θ̂

(D.5)
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where θ f is the changed parameter after the fault occurred and satisfies θ f ̸= θH,
∥θ f ∥ ≤ θ0. θ̂ is the estimate of θ f .

Then, for system described by Eq (D.1) under the assumptions (D.2) and (D.3),
the linear observer described by Eq (D.4) can be used to detect the fault as limt→∞ ex(t) =
0 and limt→∞ ey(t) = 0 when θ = θH (fault free condition).

Now, consider the following nonlinear observer:

˙̂x = Ax̂ + g(u, y) + Bθ̂ f (u, y, x̂) + Key

ŷ = Cx̂
˙̂θ = Γ f T(u, y, x̂)Rey

(D.6)

where Γ > 0 is a weighting scalar and R is given by Eq (D.3).
Then, under a persistent excitation, the nonlinear observer described by Eq (D.6)

can be used to estimate θ̂ as limt→∞ eθ(t) = 0 within a bounded eθ and can also
ensure that limt→∞ ex(t) = 0.



107

Appendix E

A possible way to generalize
networked fault isolation in MIMO
systems

Consider a network of N interconnected subsystems where the state space model
for each subsystem is:

ẋ(j) = Ax(j) + Bu(j)

y(j) = Cx(j) + Du(j)
(E.1)

where j = 1, 2, 3...N represents the jt subsystem, x(j) ∈ Rnj is the subsystem’s states,
u(j) ∈ Rmj is the subsystem’s input, and y(j) ∈ Rpj is the measured subsystem’s
output.

The input has the form of:

u(j) = w(j) + f (j) + i(j) (E.2)

where w(j) is the known subsystem’s local input, f (j) is the possible fault input in
the subsystem ( f (j) = 0 when there is no fault), and i(j) is the subsystem’s intercon-
nection input.

Moreover, the interconnections among the subsystems can be described by the
following interconnection matrix:



i(1)

i(2)

i(3)

.

.

.
i(j)


=



0 L(1)
2 L(1)

3 . . . L(1)
j

L(2)
1 0 L(2)

3 . . . L(2)
j

L(3)
1 L(3)

2 0 . . . L(3)
j

. . . . . . .

. . . . . . .

. . . . . . .
L(j)

1 L(j)
2 L(j)

3 . . . 0





y(1)

y(2)

y(3)

.

.

.
y(j)


(E.3)

where L(a)
b are the interconnection matrices with appropriate dimensions that relate

the interconnection input of the ath subsystem and the output of the bth subsystem.
Instead of state space representation, the relation between the subsystem’s input

and output can also be presented in the form of a transfer function matrix G(s) =
C(sI − A)−1B + D, where I is the identity matrix with appropriate dimension, so
that y(j)(s) = G(j)(s)u(j)(s).
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For the sake of convenience, the complex variable s will be neglected from here
on (i.e., G(j)(s) will simply be written as G(j) and so will the others).

A chain of subsystems. Consider several subsystems in series connections. To
derive its model, define:

u(j)
i/l = u(j) − L(j)

l y(l)

i(j)
i/l = i(j) − L(j)

l y(l)
(E.4)

Example: Fig E.1 shows the chain of 3 interconnected subsystems.

FIGURE E.1: An example of a chain of subsystems

By using the superposition principle, the output can be obtained as follows:

y(3) = G(3)
[
(w(3) + f (3) + i(3)i/2 + L(3)

2 G(2)(w(2) + f (2) + i(2)i/1 + L(2)
1 G(1)(w(1) + f (1) + i(1))))

]
y(3) = G(3)w(3) + G(3)L(3)

2 G(2)w(2) + G(3)L(3)
2 G(2)L(2)

1 G(1)w(1)

+ G(3) f (3) + G(3)L(3)
2 G(2) f (2) + G(3)L(3)

2 G(2)L(2)
1 G(1) f (1)

+ G(3)i(3)i/2 + G(3)L(3)
2 G(2)i(2)i/1 + G(3)L(3)

2 G(2)L(2)
1 G(1)i(1)

(E.5)

Thus, based on Eq (E.5), the generalization for a chain of k interconnected sub-
systems is:

y(k) = G(k)
(

w(C) + f (C) + i(C)
)
+ G(k)L(k)

k−1 · · · L(3)
2 G(2)L(2)

1 G(1)︸ ︷︷ ︸
G(C)

i(1)

where

w(C) = w(3) + L(k)
k−1G(k−1)w(k−1) + · · ·+ L(k)

k−1G(k−1) · · · L(3)
2 G(2)w(2)

+ L(k)
k−1G(k−1) · · · L(2)

1 G(1)w(1)

f (C) = f (3) + L(k)
k−1G(k−1) f (k−1) + · · ·+ L(k)

k−1G(k−1) · · · L(3)
2 G(2) f (2)

+ L(k)
k−1G(k−1) · · · L(2)

1 G(1) f (1)

i(C) = i(k)i/(k−1) + L(k)
k−1G(k−1)i(k−1)

i/(k−2) + · · ·+ L(k)
k−1G(k−1) · · · L(4)

3 G(3)i(3)i/2

+ L(k)
k−1G(k−1) · · · L(3)

2 G(2)i(2)i/1

(E.6)

Loops in the network. Now, consider a loop as shown in Fig E.2 that is formed
from a subsystem G(1) and a chain of interconnected subsystems G(C) where the last
subsystem of the chain is the kth subsystem.
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FIGURE E.2: A subsystem and a chain of subsystems forming a loop

Then, by using the same derivation as in Eq (E.5), we can write:

y(1) = G(1)w(1) + G(1)L(1)
C G(k)w(C) + G(1) f (1) + G(1)L(1)

C G(k) f (C)

+ G(1)i(1)i/C + G(1)L(1)
C G(k)i(C)i/1 + G(1)L(1)

C G(k)L(C)
1 y(1)

(I − G(1)L(1)
C G(k)L(C)

1 )y(1) = G(1) f (1) + G(1)L(1)
C G(k) f (C)

+ G(1)w(1) + G(1)L(1)
C G(k)w(C) + G(1)i(1)i/C + G(1)L(1)

C G(k)i(C)i/1︸ ︷︷ ︸
p(1)

y(C) = G(k)L(C)
1 G(1)w(1) + G(k)w(C) + G(k)L(C)

1 G(1) f (1) + G(k) f (C)

+ G(k)L(C)
1 G(1)i(1)i/C + G(k)i(C)i/1 + G(k)L(C)

1 G(1)L(1)
C y(C)

(I − G(k)L(C)
1 G(1)L(1)

C )y(C) = G(k)L(C)
1 G(1) f (1) + G(k) f (C)

+ G(k)L(C)
1 G(1)w(1) + G(k)w(C) + G(k)L(C)

1 G(1)i(1)i/C + G(k)i(C)i/1︸ ︷︷ ︸
p(C)

(E.7)

Note that, p(1) and p(C) can be computed if the transfer functions and the input
signals are known.

Weak fault isolation problem statement: given a loop as shown in Fig E.2, de-
termine whether a fault occurred in G(1) or in G(C).

Assume that:

1. There are no simultaneous faults in the loop.

2.
∥G(k)L(C)

1 x∥
∥x∥ < 1 and

∥G(1)L(1)
C x∥

∥x∥ < 1 for ∀x ̸= 0.
(E.8)

where ∥ · ∥ denotes the L2 vector signal norm.
Now, define the residuals as follows:

r(1) = (I − G(1)L(1)
C G(k)L(C)

1 )y(1) − p(1)

r(C) = (I − G(k)L(C)
1 G(1)L(1)

C )y(C) − p(C)
(E.9)

Then, by combining Eqs (E.7) and (E.9), we get:

for ∥r(1)∥ − ∥r(C)∥ = ∥G(1) f (1) + G(1)L(1)
C G(k) f (C)∥ − ∥G(k)L(C)

1 G(1) f (1) + G(k) f (C)∥,

if f (1) = f (C) = 0, then ∥r(1)∥ − ∥r(c)∥ = 0,

if f (1) ̸= 0 and f (C) = 0, then ∥r(1)∥ − ∥r(C)∥ = ∥G(1) f (1)∥ − ∥G(k)L(C)
1 G(1) f (1)∥,

if f (1) = 0 and f (C) ̸= 0, then ∥r(1)∥ − ∥r(C)∥ = ∥G(1)L(1)
C G(k) f (C)∥ − ∥G(k) f (C)∥

(E.10)
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Furthermore, by Assumptions (E.8), the following relations can be obtained:

1. ∥r(1)∥ − ∥r(C)∥ > 0 when f (1) ̸= 0 and f (C) = 0

2. ∥r(1)∥ − ∥r(C)∥ < 0 when f (1) = 0 and f (C) ̸= 0
(E.11)

Thus, Eq (E.11) can be applied to solve the weak fault isolation problem.
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