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Chapter 1 

1. INTRODUCTION 

Geophysics, when combined with data processing, plays an essential role in the exploration of raw 

materials, especially in the constantly changing oil and gas industry. It faces new challenges from 

the increased availability of unconventional resources, shifting supply and demand factors, and 

environmental pressures, as well as legislative and tax changes and new trends in supply and 

demand. Geophysics methods are considered the most cost-effective way to gather subsurface 

data, as they provide low-cost results that offer a large amount of information about the ground 

structure and other properties. Initially, these methods focused on assessing the potential resources 

of a basin. However, seismic imaging data obtained through two or three-dimensional processing 

proved very helpful in understanding the long-term effects of large structures on the earth, leading 

to positive results and a successful demonstration of the cost-effectiveness of acquiring data about 

subsurface layers without direct measurement. Advances in geoscience continue to support this 

premise. Our understanding of the ground layers grows as discoveries are made through cost-

effective methods. Currently, geophysicists find seismic to be a particularly compelling method 

because its workflows are more cost-effective than previous ones for exploring and developing 

new reservoirs. Modern acquisition and processing techniques provide high-quality subsurface 

illumination for both conventional and unconventional reservoirs at a lower cost than before. 

Prestack methods like AVO are used in conjunction with anisotropic velocity analysis to predict 

the fluid properties of a reservoir. Seismic attributes can be used to indicate stress orientation, the 

integrity of the overlying cap rock, fault distribution, and reservoir quality. Additionally, these 

attributes can be used to identify statistical relationships between payout rate and quality through 

cross-correlation. Easy access to 3D seismic data makes it an essential aspect of many projects, 

and it is used in a variety of ways, including predicting fluid distribution and migration through 

rock formations and assessing the performance of enhanced recovery efforts. 

When understanding the earth's properties through seismic data, it is frequently suggested to 

perform a Fourier transform on the x, y, and z axes. This allows for the conversion of complex 

differential equations into more easily manageable algebraic equations. Performing this with the 

time axis also helps convert temporal frequency differential equations into traditional algebraic 
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ones. Seismic data analysis relies heavily on the use of the Fourier transform throughout the entire 

process. A seismic wavefield recorded at a receiver location is called a seismic trace, and its digital 

form is a time-based series of sinusoids with distinct peaks, frequencies, and phases. The digital 

data can be transformed into sinusoidal components by performing the Fourier forward transform 

on the trace, and then an individual Fourier transform is performed in reverse to create the seismic 

trace from sinusoidal components. Seismic data processing algorithms are often more easily 

understood when converted into the frequency domain, instead of the traditional time-based 

method. Frequency filters work well for this process because they use Fourier analysis for their 

design. These filters are typically multichannel or single-channel and use an operand (such as a 

trace of seismic activity) and an operator (such as a filter) to process data. To work with digital 

samples of signals in seismic traces, we need to use the Discrete Fourier transform (DFT) which 

provides a way to analyze and understand discrete signals in the frequency domain. It is essentially 

the digital counterpart to Fourier transforms. On the other hand, the inverse Fourier transform is 

also known as the Inverse Discrete Fourier transform (IDFT), representing the discrete-time 

version of the inverse transform. 

Several factors can affect the accuracy of seismic data, which can be improved using appropriate 

noise attenuation strategies and implementing signal processing methodologies. The subsequent 

stages of data analysis incorporate various approaches, including signal processing, statistical 

analysis, and algebraic calculations. These methods require expertise from both geophysics and 

other disciplines. Each method typically pertains to a specific target, such as frequency and 

wavelength filtering, velocity analysis, static correction, deconvolution, and time/depth migration 

(Yilmaz, 2001). Noise can generate unwanted features, and can be divided into incoherent 

(random) and coherent noise. Incoherent noise can be shown as temporal and spatially random 

noise, while coherent noise can be shown as linear noise, repercussion, or multiples. The ground 

roll may also appear in land data surveying and dominate the reflection energy in recorded data. 

Coherent noise contains low frequencies and large amplitudes (Yilmaz, 2001). This type of noise 

can be processed by F-K filtering and inverse velocity stacking, but field results have shown that 

the noise is still present in the seismic data (Maurya et al., 2019). All of these types of noise can 

cause significant artefacts that have a significant negative impact on interpretation results, from 

simple structural attributes to prestack impedance inversion and amplitude variations from seismic 

azimuth-gathers (AVAz) analysis. These noises are linearly projected into the frequency domain 
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during Fourier transformation, meaning that traditional FT algorithms are most sensitive to non-

Gaussian noise. 

Due to technical issues and the current state of the economy, construction projects may be delayed, 

leading to missing data in seismic records. Many processes, such as reverse time migration, reverse 

vector tilt, full waveform inversion, amplitude variation with offset, and more, are heavily 

impacted by missing data. Therefore, before the data can be used to obtain high-quality results, it 

needs to be reconstructed from initial seismic data. This becomes increasingly important as the 

preprocessing stages progress. Different methods have been developed to deal with gaps in seismic 

records. One such method is wave equation-based reconstruction, which uses the physical 

properties of seismic waves to create a wave field. However, this method can be costly to use in 

some applications due to computational limitations. The F-X and F-K domains provide a linear, 

predictable pattern for prediction filters to use, but this requires the seismic signal data to be 

equally spaced. 

Attributes are specific pieces of hidden information contained within a seismic wave. They 

represent a smaller subset of the overall information in the original wave and are displayed at the 

same scale, making them easy to see and understand. They can be computed using a variety of 

methods. However, the relationships between each attribute can often be complicated. These 

attributes are calculated to remove extraneous information from the data, making trends or patterns 

visible that were not present in the original data. They are intended to provide insight into 

reservoirs that contain oil and gas, as well as information on how they moved and were trapped, 

by mapping out the geological features associated with hydrocarbon deposits. Cosentino et al., 

(2001) describes these features as structural elements, such as the thickness and shape of 

reservoirs, faults, and other geological features. Additionally, a well's petrophysical properties, 

such as permeability and porosity, are critical to its functionality. The problem here appears when 

noise exists as in other geophysical methods. Turning inverse problem theory that can help reduce 

the noisy effect, and consists of a collection of methods that can reject noise and handle it as an 

overdetermined inverse problem (Dobróka et al., 2012).  

Auken et al., (2005) presented an inversion blueprint for continuous resistivity as laterally 

constrained data as a 1D model and inverted to one system with lateral transitions. They 

regularized the model and generated the estimated model, which was full of sensitivity analysis of 
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model parameters to apply evaluation of the inversion outputs. The inversion of time-lapse data 

was used to improve the characterization of the reservoir using full wavefield inversion (FWI), 

which is capable of determining subsurface changes due to production (Routh et al., 2012). The 

series expansion-based inversion method was then applied to borehole data in the interpretation 

process (Szabó, 2015, 2011) and also in processing induced polarization data (Turai, 2011). The 

1D Fourier transformation was handled by Szegedi and Dobróka (2014) as a robust inverse 

problem using the Iteratively Reweighted Least Squares (IRLS) algorithm with Cauchy-Steiner 

weights (Steiner, 1997), and the results appeared as a significant reduction in noise sensitivity of 

the continuous Fourier transform. The inversion method gives the ability to estimate the underlying 

model of physical properties of the rock and fluids to achieve good reservoir characterization 

(Berteussen and Ursin, 1983). Maurya and Singh, (2020) presented many attributes, such as P-

impedance, S-impedance, P-wave, and S-wave velocity, using inversion that depends on creating 

forward modelling that generates a set of model parameters. Marashly and Dobroka, (2021) 

showed that the IRLS inversion-based Fourier transform method achieved good results in noise 

resistance when applied to a synthetic wavelet. 

In this thesis, a new inversion-based Fourier transformation (C-IRLS-FT) is introduced using 

Chebyshev polynomials in discretizing the Fourier spectrum. The procedure is applied to synthetic 

wavelets and synthetic seismic complex models. The outlier sensitivity rejection for 1D data is 

assessed using both DFT and C-IRLS-FT methods to demonstrate the ability of Chebyshev 

polynomials in noise rejection for both Cauchy and Gaussian noise. The technique is then 

compared with the Legendre Polynomial-based Fourier transform method (L-IRLS-FT) for 

evaluating its performance in eliminating noise in pre-generated seismic data. In more depth, the 

inversion-based Fourier transform process (C-IRLS-FT) combined with the Most Frequent Value 

method (MFV) developed by Steiner can effectively make the Fourier transform more robust.  

The robustness of the C-IRLS-FT to outliers and its outstanding noise suppression capability 

justifies the method being applied in the field of seismic data processing. To make the Hilbert 

transform more robust, we applied our C-IRLS-FT in its calculation and define a robust analytical 

signal. As an application example, we calculate the absolute value of the analytical signal that can 

be produced as an attribute gauge (instantaneous amplitude), also instantaneous phase was tested. 

The new algorithm is based on dual inversion: the Fourier spectrum of the time signal (channel) is 
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determined by inversion, and the spectrum obtained by the transformation required for the Hilbert 

transform is transformed back into the time domain using robust inversion. The latter operation is 

carried out using the Steiner weights calculated inside of the Iterative Reweighting Least Squares 

(IRLS) method (robust inverse Fourier transform based on inversion). To discretize the spectrum 

of the time signal, we use the again Chebyshev polynomials in a series expansion. The expansion 

coefficients are the unknowns in the inversion. The results show that the procedure has remarkable 

resistance to outlier noise and noise suppression, an order of magnitude better than that calculated 

by using the conventional DFT in calculating the Hilbert Transform. 

Building on the principles of the one-dimensional Hilbert Transform, the two-dimensional (2D) 

variant has emerged as a potent instrument in image processing. Particularly, it has made 

considerable strides in earth science-oriented applications, such as edge detection, noise reduction, 

and image enhancement. The 2D Hilbert Transform is characterized by a convolution operation 

with a 2D Hilbert kernel, yielding a 2D analytic signal that combines the original image data with 

its Hilbert Transform. This operation provides valuable insights into spatial frequency content and 

phase information. In this research, we examine the conventional 2D Hilbert method and the newly 

developed 2D C-IRLS-HT and 2D H-IRLS-HT (with Hermite basis functions) methods, focusing 

on their capacity to detect anomalies within noisy datasets. Our findings reveal that the traditional 

Discrete Fourier Transform (DFT)-based 2D Hilbert Transform encounters numerous challenges, 

such as substantial noise levels, less distinct edges, and the presence of outliers, which hinders 

accurate anomaly detection. However, applying the 2D H-IRLS-HT method to a noisy synthetic 

dataset showed notable improvements in terms of clarity, quality, and noise reduction. The 

elimination of outliers further enhanced the interpretability of the data, enabling clearer 

identification of anomaly boundaries. The superior performance of the 2D H-IRLS-HT and 2D C-

IRLS-HT methods underscores their potential as reliable alternatives for anomaly detection, 

especially in challenging environments where conventional techniques might be less effective. 

Continuing our exploration, comprehensive geophysical measurements were performed in the 

eastern region of area Syria, spanning approximately 128 km2, by an exploration company. 

Employing a gravity meter and GPS locating, robust measurements were obtained and corrected 

considering the rock density of the region. These measurements aimed to extract valuable 

subsurface geological information. During the initial stages of previous research, we utilized 
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Surfer software to identify the structure within the dataset. As the study progressed, we 

incorporated a more advanced method, the 2D C-IRLS-FT, particularly in the low-pass filter 

process. This method was systematically applied to evaluate the gravity measurement dataset. Our 

primary objective was to assess the effectiveness of this method before any comprehensive 

analysis using a two-dimensional low-pass Butterworth filter. The 2D C-IRLS-FT method, when 

integrated with Fourier Transform, enabled the decomposition of gravity data into its frequency 

components, facilitating a more detailed interpretation of subsurface structures. As the 

investigation continued, the MINIMAG device captured magnetic readings every twenty seconds, 

highlighting the necessity of applying the 2D C-IRLS-FT method for pole reduction and overall 

data quality enhancement. The pole reduction process using C-IRLS-FT enhanced the coherence 

of the geological structures within the dataset, leading to a noticeable improvement in data quality. 

This process, coupled with the elimination of noise and outliers, resulted in a more distinct 

representation of the structure, facilitating a more reliable interpretation. Our work also included 

a novel technique that combined the 2D C-IRLS-FT method and k-means clustering for denoising 

seismic data, specifically within a seismic section that contained significant noise. This method 

involved transforming seismic data into the frequency domain, identifying significant spectral 

components through clustering, and filtering out noise components. The results demonstrated the 

effectiveness of this method in denoising seismic data, with the filtered data preserving significant 

spectral components while eliminating the noise. In essence, this study underscores the value of 

employing advanced methods like the 2D C-IRLS-FT and k-means clustering for data analysis and 

interpretation in geophysical studies. These techniques fostered robust and accurate 

interpretations, paving the way for identifying key geological characteristics and assessing the 

underlying spatial patterns and relationships more accurately. 
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Chapter 2  

2. THE METHODS OF GEOPHYSICAL INVERSION 

Geophysical methods involve examining various physical fields, such as gravity, magnetic, 

electromagnetic, and seismic waves, as they pass through the earth. These fields are influenced by 

the physical characteristics of rocks, and their values can be measured and studied. In geophysical 

data analysis, various geological models are created, and the predicted geophysical data for these 

models are compared to the actual observed data. This process, known as the forward problem, 

involves the numerical modeling of geophysical data based on given model parameters and allows 

for the prediction of geophysical data for specific geological structures. The ultimate aim of 

geophysical observations is to identify geological structures from the geophysical data. However, 

this can be challenging due to the intricate nature of the earth's interior. To overcome this difficulty, 

we often approximate the actual geology with a simplified model and try to determine the model 

parameters from the data. This process is known as the inverse problem. The effectiveness of 

geophysical interpretation relies on our ability to approximate real geological structures with 

reasonable models and solve inverse problems efficiently (Zhdanov, 2015). 

Inversion is the process of mathematically reconstructing an image of the earth's subsurface from 

measured data. It involves complex mathematics and requires a deep understanding of the physics 

of the geophysical method being used. Where considered an essential tool for exploring and 

understanding the earth's subsurface, and has various applications in fields such as oil and gas 

exploration, mineral exploration, and environmental studies. One of the main challenges in 

inversion is dealing with the inherent uncertainty in the measured data and the complexity of the 

subsurface. To overcome this, inversion algorithms must consider this uncertainty and try to find 

the most likely model that is consistent with the data. This often involves iterative processes and 

the use of regularization techniques to constrain the solution. In addition to creating a subsurface 

model, inversion can also be used to estimate the physical properties of the subsurface, such as the 

density, conductivity, or elastic properties of the earth's materials. This information can be used to 

understand the region's geology and make predictions about the location of natural resources or 

the presence of subsurface contaminants (Oldenburg and Li, 2005) (Sen and Stoffa, 2013). 
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In recent times, optimization methods have gained popularity among scholars due to advancements 

in theory, resulting in improved geophysical inversion methods and data processing. Geologists 

can use inversion, which involves combining various techniques that measure different physical 

responses to the same geological structure, to solve geophysical inverse problems. More 

specifically, to tackle the inverse problem, experts need to first build an initial model of their case 

and then determine the model type (such as horizontal stratification, dip, or tectonic structure) and 

its quantitative properties (such as petrophysical and geometric factors). Before examining a 

structure geologically, it must be examined computationally, requiring access to hardware and 

software resources. These resources are necessary for measuring physical principles and designing 

appropriate measurement setups. In addition, this information is essential for calculating 

theoretical data, which is similar to measured data but in a digital format, about the effects of 

complex structures. 

The first step in the modeling process is to input data and previous model parameters into the 

model. Once these values are established, forward modeling can be performed to generate a 

prediction of the resulting data. After the inversion phase is completed, the calculated data is 

compared to the actual field data. The preliminary model is gradually improved through an 

iterative process until the computed data and observed phenomena consistently match. This is done 

by adjusting the model parameters until they consistently align. To achieve this task, an objective 

function is calculated that characterizes the difference between the two sets of data. An 

optimization algorithm is then applied to the iterative process until a stopping criterion is met (Ito 

and Jin, 2014). 

2.1. THE APPLIED LINEARIZATION TECHNIQUES OF GEOPHYSICAL INVERSION  

Linear inverse methods are a type of geophysical method that has been used for a long time. They 

work well when the data can be described as a linear function of the model parameters. However, 

in some cases, it may be possible to linearize the relationship between the data and the model by 

applying certain conditions. For example, the Zoeppritz equations, which describe reflection 

coefficients, are a nonlinear function of certain parameters (Aki and Richards, 2002), but they can 

be approximated by a linear equation when the angles of reflection are small. Another way to 

linearize the relationship between the data and the model is to consider perturbations in the data 

and perturbations in the model and find a linear relationship between them. Linear inversion 
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methods are relatively fast methods that are used to solve several geophysical problems. Let us 

assume that the M number of model parameters is introduced as: 

 ÿ""ñ = 	 {ÿ!, ÿ", & ,ÿ#}$ (2-1) 

and the number of the measured data (N) is collected into a data vector	ý÷%&'( 

 ý÷%&'( =	{ý!%&'(, ý"%&'(, & , ý)%&'(}$ (2-2) 

The calculated data ý÷*'+* 	can be presented as the following 

 ý÷*'+* =	 ,ý!*'+* , ý"*'+* , & , ý)*'+*-$ (2-3) 

The connection between ý÷*'+* 	and ÿ""ñ	can be represented like 

 ý÷*'+* =	ý÷(ÿ""÷) (2-4) 

where ý÷ is the response function. To calculate the overall error between measured and calculated 

data, we used the deviation vector  

 ÿ÷ = 	ý÷%&'( 2 ý÷*'+* 	 (2-5) 

which is a nonlinear function of the model parameters. To characterize the misfit between the 

calculated and measured data, we can introduce a scalar function which is usually minimized in 

the inversion procedure  

 ý = ý	 4ý÷%&'( 2	ý÷(ÿ""÷)5. (2-6) 

 

To linearize our problem we calculate the response function at ÿ""÷ = ÿ""÷, + Dÿ""÷, in a close 

neighborhood of a ÿ""÷, reference model. After expanding Eq(2-4) using Taylor's series around the 

reference model and ignoring the higher-order terms we can obtain 

 ý÷(ÿ""÷, + Dÿ""÷) = ý÷(ÿ""÷,) + ÿDÿ""÷ (2-7) 

 

where ÿ is the Jacobi matrice with the elements  

 ÿ-. = 8ÿý-ÿÿ.
8
%///÷!

 
(2-8) 

This gives the deviation vector in Eq(2-5) as 
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 ÿ÷ = Dý÷ 2 	ÿDÿ""÷ (2-9) 

where Dý÷ = ý÷%&'( 2 ý÷(ÿ""÷,).	 After this, the misfit function in Eq(2-6) takes the form 

 ý = ý	;Dý÷ 2 	ÿDÿ""÷< (2-10) 

Depending on the form of the misfit function a variety of different inversion procedures can be 

defined. The geophysical inverse theory has brought about numerous innovative ideas and 

concepts regarding solution methods, the characteristics of solutions obtained, and the 

circumstances under which solutions may be obtained (Backus and Gilbert, 1967; Backus, 1970; 

Parker, 1977; Jackson, 1979). 

2.1.1. THE OVER-DETERMINATION CASE 

When we have more data than unknown model parameters and the data contains information on 

all model parameters, the problem is called overdetermined. In this situation, all of the model 

parameters are represented in the data and the observed data points can be effectively fitted by the 

equations in a linear system by using the methods of least squares. The best estimate in this 

situation can be found using the least squares method, which minimizes the so-called L2 norm of 

the derivation vector (Sen and Stoffa, 2013). This means in our linearized case in Eq(2-10) that 

ý = 	3 ÿ-")
-1! = 3 (Dý÷ 2 ÿDÿ""÷)-")

-1!   

To simplify the notations, in the following, we omit the symbol D and write 

 ý = 	>(ý÷ 2 	ÿÿ""÷)-")

-1!

 (2-11) 

 

2.1.1.1 THE GAUSSIAN LEAST SQUARES (LSQ) METHOD 

The Gaussian Least Squares method is a significant linear inversion technique that involves 

minimizing the squared ÿ2 norm of the deviation vector. This method was first introduced and 

formulated by Gauss and Davis in (1809) as a solution to the overdetermined inverse problem. The 

objective (or misfit) function in Eq(2-11) that needs to be minimized can be written as: 
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 ý = 	>ý-")

-1!

+>>ÿ2ÿ. @>ÿ-.ÿ-2)

-1!

B#

.1!

#

21!

2 2>ÿ. @>ÿ-.ý-)

-1!

B#

.1!

  

When E is minimized:  

 ÿýÿÿ+
= 0																	ÿýÿ	ý = 1,2,3, & ,ý (2-12) 

 

Zero will be the result of the derivative of the first term, for the second term will be: 

 ÿÿÿ+
L>>ÿ2ÿ. >ÿ32ÿ3.)

-1!

#

.1!

#

21!

M = 2>ÿ2

#

21!

>ÿ-2ÿ-+)

-1!

 (2-13) 

Where j and i are exchanged. The third term can write like the following: 

 ÿÿÿ+
>ÿ2

#

21!

>ÿ-2ÿ-+)

-1!

= 2>ÿ-2ý-)

-1!

 (2-14) 

Inserting equations 2-13 and 2-14 in 2-12: 

 >ÿ2

#

21!

>ÿ-2ÿ-+)

-1!

= >ÿ-2ý-)

-1!

 (2-15) 

The vector shape of this equation can be formed like this: 

 ÿ$ÿÿ""÷ = ÿ$ý÷ (2-16) 

By multiplying (ÿ$ÿ)4!with Eq (2-16) we can have: 

 ÿ""÷ = (ÿ$ÿ)4!ÿ$ý÷ (2-17) 

The solution can be formed as the following: 

 ÿ""÷ = ÿ45ý÷ (2-18) 

where ÿ45 = (ÿ$ÿ)4!ÿ$. In an overdetermined problem scenario, the model vector can be 

calculated using ÿ45 concerning the generalized inverse of the Gussin Least Squares method.  
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2.1.1.2 THE WEIGHTED LEAST SQUARES (WLSQ) METHOD 

Noise is always present in geophysical measurements, so it is crucial for the methods used to 

process these data to be sensitive to it. Geophysicists often encounter regular noise in their data 

that can obscure their observations, which has been a persistent problem for them to address. This 

noise can come from various sources and can be caused by inadequate data processing. Removing 

estimates of noise from records is believed to help reduce both systematic and non-systematic 

noise in the records, as proposed by Nyman and Gaiser in 1983, and also by Butler and Russell in 

1993. Other methods proposed to reduce noise include subtracting an estimate of noise from 

recorded data (JeffryesB, 2002; Butler and Russell, 2003; Meunier and Bianchi, 2002; Saucier et 

al., 2005), and assuming that the noise is stationary for the entire duration of the record (Butler 

and Russell, 2003). There are numerous reasons why the attributes of noise inevitably change over 

time. This can be mitigated by using filters that employ inversion techniques or patterns that use 

pattern-based schemes, such as those suggested by Guitton and Symes, (2003). Additionally, 

effective methods require using filters with estimable models, which can be time-consuming, as 

well as implementing filters with pattern-based schemes (Haines et al., 2007). 

When gathering data with varying degrees of accuracy due to different types of noise, it is 

important to proportionally weight each datum to achieve a solution that accounts for all variables. 

This is best accomplished by using a symmetric weight matrix, such as W. Data that is included in 

the main diagonal of the matrix represents the weights. The weighted scheme improves the 

inversion's performance by reducing the impact of noisy data with large errors. This is particularly 

helpful when dealing with outliers. 

The distance between data predictions and measurements can be mitigated by incorporating a 

weighted matrix as the following:  

 

 ý = 	>@ý- 2>ÿ-2ÿ2

#

21!

B>ÿ-6 Lý6 2>ÿ6.ÿ.

#

.1!

M)

61!

)

-1!

 (2-19) 

The optimum of the objective function is fulfilled when 
78

7%"
= 0  

 >ÿ2

#

21!

>>ÿ-6ÿ-2ÿ6+ 2>ý-)

-1!

>ÿ-6ÿ6+)

61!

)

61!

)

-1!

= 0 (2-20) 
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The solution will be: 

 ÿ""÷ = 	ÿ45ý÷ (2-21) 

Where ÿ45 =	(ÿ$ÿÿ)4!ÿÿ is a generalized inverse matrix. 

2.1.1.3 THE ITERATIVELY REWEIGHTED LEAST SQUARES (IRLS) METHOD 

IRLS allows for finding the most likely estimates for a generalized linear model by using robust 

regression to mitigate the influence of outliers on data. This is done by solving Lp approximation 

in the inverse problem through the use of a weighting matrix that is iteratively updated multiple 

times before completion. This method, as opposed to finding the least square errors, minimizes the 

effects of data distribution irregularities. For example, IRLS searches for an estimator that 

minimizes least absolute errors rather than least square errors. IRLS benefits from the ability to 

work with Gauss-Newton and Levenberg-Marquardt algorithms as well as other non-convex and 

linear programming methods by taking advantage of the Lp norm function's overall approach: 

 ý9 = >Pý- 2>ÿ-.ÿ.

#

.1!

P9)

-1!

 (2-22) 

When 
78

7%"
= 0 to solve the problem we can form the Eq (2-22) like: 

 >ÿ2

)

21!

>ÿ-2)

-1!

>ÿ-(ÿ(+ = >ÿ(+)

(1!

>ÿ-(ý-)

-1!

)

(1!

 (2-23) 

 

Eq (2-23) can be written in vectorial shape as the following: 

 ÿ$ÿÿÿ""÷ = ÿ$ÿý÷ (2-24) 

The ÿ symbol represents the matrix weight  ÿýý =	 Qý- 23 ÿ-2ÿ2
#
21! Q;4"where ÿ2 are the 

unknowns. Noisy data negatively influences the solution because its weight is inversely 

proportional to the differences between calculated and observed data. Consequently, noisy data 

makes less of a contribution than data that's less noisy. The weighting matrix is chosen as an 

identity matrix when (p = 2) and the model vector is estimated as a first loop from: 

 ÿ""÷(!) = (ÿ$ÿ)4!ÿ$ý÷ (2-25) 
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In the second loop of iteration, Eq (2-25) is solved iteratively as: 

 ÿ$ÿ(!)ÿ""÷(") =	ÿ$ÿ(!)ý÷													ýÿý/	ÿýý =	 Vý- 2>ÿ-2ÿ2

#

21!

V;4"		 (2-26) 

Eq (2-26) is linear,  the solution for it where ÿ(ÿ) is connected to ÿ""÷(!) is: 

 ÿ""÷(") = ;ÿ$ÿ(ÿ)ÿ<4!ÿ$ÿ(!)ý÷ (2-27) 

For the i-th loop of iteration to the nonlinear equation, we can type: 

 ÿ$ÿ(24!)ÿ""÷(2) =	ÿ$ÿ(24!)ý÷ (2-28) 

The weighting matrix is updated iteratively using the Least Squares method, which is why the 

method is referred to as Iteratively Reweighted Least Squares. 

2.2. ACCURACY CALCULATION AND ERROR ESTIMATION  

Geophysicists must test and evaluate their inversion methods using synthetic datasets before using 

real field data measurements. This allows them to understand the impact of random noise on their 

model's parameters and to properly perform the geophysical inversion. They use noise-filled 

synthetic datasets to solve geophysical problems, and when working with real field data 

measurements, they may see a correlation between model parameters and associated errors. It is 

important to accurately measure and account for random noise in the measurements and to quantify 

estimation errors, which are often assessed through various model acceptance criteria. The relative 

data distance is typically utilized to measure the discrepancy between the measured and calculated 

data using the following equation where N represents the number of inverted data: 

 ÿ =	X1ý>@ý3(%&'(?6&@) 2 ý3(*'+*?+'A&@)ý3(%&'(?6&@) B")

31!

7 100% (2-29) 

In synthetic inversion experiments, the relative model distance is used to assess the quality of the 

estimated model using the following: 

 ÿ =	X1ý>@ÿ2
(&(A2%'A&@) 2ÿ2

(&B'*A)ÿ2
(&(A2%'A&@) B"#

21!

7 100% (2-30) 
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Where M represents the number of model parameters. The mathematical expression for a 

covariance matrix, as described by Menke (1984), to evaluate the quality of model parameter 

estimates is typically represented by the following equation: 

 ýýÿ(ÿ""÷) = 	ÿ45ýýÿ(ý÷)(ÿ45)$ (2-31) 

Where ýýÿ(ÿ""÷)	ÿÿý	ýýÿ(ý÷)	 are the covariance matrix of the model parameters and the 

measurement data, respectively, ÿ45is the Generalized Inverse matrix and it can be represented 

as: 

 ÿ45 = (ÿ$ÿÿ)4!ÿ$ÿ (2-32) 

 and W is the weighting matrix (used to account for any known errors or uncertainties in the data). 

The superscript T denotes the transpose of a matrix. It's important to notice that this is a general 

expression, and the specific form of the weighting matrix, W, and Jacobian matrix, G, will depend 

on the specific problem and data at hand. The i-th element of the main diagonal of the model 

covariance matrix is used to calculate the estimation error of the i-th model parameter: 

 ÿ2(%) =	bÿÿý22(%) (2-33) 

Inversion methods often produce correlated parameter estimates. To determine the level of 

correlation between the model parameters, a correlation matrix is calculated: 

 ýýÿÿ2.(%) = ÿÿý2.(%)

bÿÿý22(%)ÿÿý..(%)
 (2-34) 

Model correlation matrices include the main diagonal, which includes elements that always equal 

1. The elements on the off-diagonal range from -1 to +1. Taking into consideration correlation 

coefficients, the best result is when these range from 0 to ±0.5. This tool can be used to determine 

the level of correlation between parameters in a model. When values for both problems are close 

to negative or positive 1, a suggested solution will be considered unreliable. The correlation matrix 

can be formed by one scalar like:  

 ÿ = 	X 1ý(ý 2 1)>>4ýýÿÿ2.(%) 2 ÿ2.5"#

C1!

#

21!

 (2-35) 

Where ÿ	represents the mean spread which considers a good way to measure reliability 
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Chapter 3 

3. CHEBYSHEV POLYNOMIAL-BASED ROBUST FOURIER 

TRANSFORMATION  

It is well known that in traditional Fourier transformation (DFT, FFT) the data noise is directly 

projected from the time domain to the frequency domain. It was proved by Dobróka et al., (2012) 

that in the framework of a series expansion-based inversion algorithm, the noise sensitivity of the 

Fourier transformation can be sufficiently reduced. The essential step of the procedure is 

expanding the complex Fourier spectrum in series utilizing a set of orthogonal basis functions. The 

expansion coefficients are determined in the framework of an overdetermined inverse problem. 

This inversion-based Fourier transformation can be robustified by introducing Cauchy-Steiner 

weights (Steiner, 1997) in an Iteratively Reweighted Least Squares (IRLS) algorithm. As base 

functions, Dobróka et al., (2012) used Hermite functions, which are eigenfunctions of the Fourier 

transformation. In discretizing the spectrum Legendre polynomials were used by Nuamah et al., 

(2021). In this chapter, a new Chebyshev polynomial-based robust Fourier transformation will be 

introduced. 

3.1. CHEBYSHEV POLYNOMIALS AS BASIS FUNCTIONS 

The Chebyshev polynomials, named after the Russian mathematician Pafnuty Chebyshev who 

studied them in the 19th century, are a sequence of orthogonal polynomials with many important 

properties and applications in various fields such as numerical analysis and signal processing. The 

Chebyshev polynomials of the first kind fulfill the differential equation: 

 (1 2 ý")ÿDD 2 ýÿD + ÿ"ÿ = 0 (3-1) 

where |ý| f 1 and n represent integer numbers. They can also be generated by using the recurrence 

equations 

 ÿ,(ý) = 1 (3-2) 

 ÿ!(ý) = ý (3-3) 
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 ÿE(ý) = 2ýÿE4!(ý) 2 ÿE4"(ý)			, ÿ > 1 (3-4) 

The first five Chebyshev polynomials of the first kind are plotted below (Figure 3-1). It can be 

seen that these functions fulfill the symmetry conditions 

 ÿE(2ý) = (21)EÿE(ý) (3-5) 

and on the interval 21 f x f 1 all of the extrema have values that are either 21 or 1: 

 ÿE(1) = 1,						ÿE(21) = (21)E (3-6) 

In applying these polynomials as basis functions in a series expansion, the extrema features can 

result in resolution problems at large n values because ÿ(ÿ, ý) and ÿ(ÿ + 2, ý) are close to each 

other near x=(+/-) 1. Because of this reason, we will apply also the Chebyshev polynomials of the 

second kind which fulfill the differential equation 

 (1 2 ý")ÿDD 2 3ýÿD + ÿ(ÿ + 2)ÿ = 0     (3-7) 

and can be generated by the recurrence formulae 

Figure 3-1: Chebyshev Polynomials - First type 
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 ý,(ý) = 1 (3-8) 

 ý!(ý) = 2ý (3-9) 

 ýE(ý) = 2ýýE4!(ý) 2 ýE4"(ý)				, ÿ > 1 (3-10) 

The first five Chebyshev polynomials of the second kind are plotted below (Figure 3-2).  

It can be seen that these functions fulfill the symmetry conditions 

 ýE(2ý) = (21)EýE(ý)   (3-11) 

and on the interval 21 f x f 1 the extrema have different values  

 ýE(1) = ÿ + 1   (3-12) 

 

 

Figure 3-2: Chebyshev Polynomials - Second type 
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 ýE(21) = (21)E(ÿ + 1) (3-13) 

The Chebishev polynomials have important orthogonality properties. The first kind of polynomials 

considers orthogonal on the interval 21 f ý f 1 with weight function ý(ý) = !

:!4B#
 

 p ÿE(ý)ÿ%(ý):1 2 ý"ÿ

4ÿ
ýý = 	r 0	ÿÿ	ÿ	 b ÿ								ÿ	ÿÿ	ÿ = ÿ = 0ÿ2 	ÿÿ	ÿ	ÿ b 0.		  (3-14) 

Also, the Chebyshev polynomials of the second kind can be considered orthogonal on the interval 21 f ý f 1 with weight function ý(ý) = :1 2 ý" 

 

3.2. THE C-LSQ-FT AND C-IRLS-FT ALGORITHM IN 1D  

As is well known, the traditional Fourier transformation is highly noise sensitive. On the other 

hand, inverse problem theory encompasses a variety of noise rejection methods. So it is 

straightforward to expect, that by formulating the Fourier transform as an inverse problem, the 

noise sensitivity can be appreciably reduced. This idea was followed at the Department of 

Geophysics (University of Miskolc). Concerning the selection of the basis functions, two kinds of 

inversion-based Fourier transform algorithms were developed: Hermite function-based (H-LSQ-

FT and H-IRLS-FT) method (Dobróka et al., (2012); Szegedi and Dobróka, (2014); Dobróka et 

al., (2015)) and the Legendre polynomial-based (L-LSQ-FT and L-IRLS-FT) algorithm (Nuamah 

and Dobroka, (2019) and Nuamah et al., (2021)). As a third possibility in this chapter, we formulate 

inversion-based Fourier transformation algorithms employing the Chebyshev polynomials for the 

discretization of the continuous Fourier spectra. A new 1D Fourier transformation algorithm, the 

Chebyshev Polynomial Least-Squares Fourier Transformation (C-LSQ-FT), is presented together 

with the robust Chebyshev Polynomial Iteratively Reweighted Least-Squares Fourier 

Transformation (C-IRLS-FT). 

 p ýE(ý)ý%(ý)u1 2 ý"ÿ

4ÿ
ýý = 	 v0	ÿÿ	ÿ	 b ÿÿ2 	ÿÿ	ÿ = ÿ (3-15) 
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Data conversion from the time domain to the frequency domain can be established using a Fourier 

transform. For the one-dimensional case, the ÿ(ÿ) Fourier transform of the time-dependent ý(ý) 
function is defined as 

ÿ(ÿ) = 	 1:2ÿ	p ý(ý)ÿ4.GAýýH

4H
					 

where ý denotes the time, ÿ is the angular frequency and ÿ is the imaginary unit. The inverse 

Fourier transform ensures a return from the frequency domain to the time domain: 

ý(ý) = 	 1:2ÿ	p ÿ(ÿ)ÿ.GAýÿH

4H
.					 

In the framework of the inversion-based Fourier transformation the ÿ(ÿ)	frequency spectrum 

should be discretized using a finite series expansion 

 ÿ(ÿ) = >ýE	ÿE(ÿ)#

E1!

 (3-16) 

Where the parameterýE is a complex-valued expansion coefficient and ÿEis a member of an 

accordingly chosen set of real-valued basis functions. Using the terminology of (discrete) inverse 

problem theory, the theoretical values of time-domain data in the k-th sampling time ý- (forward 

problem) can be given by the inverse Fourier transform 

ý(ý- 	) = ý-AI&J6 	= 	 1:2ÿ	p ÿ(ÿ)ÿ.GA$ýÿH

4H
 

Inserting the expression given in Eq(3-16) one finds that 

 ý-AI&J6 =	>ýEÿ-,E#

E1!

 (3-17) 

where the Jacobi matrix is introduced 

ÿ-,E =	 1:2ÿ	p ÿE(ÿ)ÿ.GA$ýÿH

4H
  

as the inverse Fourier transform of the ÿE basis function: 
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						ÿ-,E =	1-4!{ÿE(ÿ)}  (3-18) 

In our present approach, the Chebyshev polynomials serve as the model's basis function for 

parameterization using ÿE(ÿ) for the first kind  

 ÿ-,E =	1-4!{ÿE(ÿ)} (3-19) 

and ýE(ÿ)	for the second kind.  

To calculate the elements of the Jacoby matrix we can use a standard inverse DFT procedure: 

 ÿ-,E =	 ýÿýÿ-{ÿE(ÿ)}  (3-20) 

 

In this case, the deviation vector can be formed like this: 

 ÿ- = ý-%&'( 2 ý-AI&J6 = ý-%&'( 2 >ýEÿ-E#

)1!

 (3-21) 

where ý-%&'( represent the measurement signal. The normal equation of the Gaussian Least 

Squares method, after using the L2-norm to measure the misfit and minimizing it, can be written 

as: 

 ý""÷ = 	 (ÿ$ÿ)4!ÿ$ý÷%&'( (3-22) 

In the knowledge of the expansion coefficients the estimated spectrum can be given as the 

following: 

 ÿ&(A(ÿ) = >ýEÿE(#

E1!

ÿ) (3-23) 

The previous equations rely on the inversion-based Fourier Transformation method, which uses 

Chebyshev polynomials based on the Least Square Fourier Transformation method (C-LSQ-FT). 

However, this method only works effectively with data sets that have noise that is distributed in a 

regular pattern. In cases where the data contains outliers, the procedure has less efficiency in 

processing them. As Barnett and Lewis (1994) stated, outliers are different from the remaining 

data, and LSQ will not give acceptable results. Outliers can appear as abnormal, deviant, 

incongruous, or anomalous (Aggarwal, 2013), leading to serious problems such as high error 
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variance in statistical power, decreased normality in the data, and corrupting the true relationship 

between exposure and outcome in model bias (Osborne and Overbay, 2004). To solve this 

problem, we used the Iterative Reweighted Least Squares method that minimizes the deviation 

vector via Cauchy-Steiner weights in combination with the Fourier transform using Chebyshev 

polynomials as basis functions for discretization, creating a robust algorithm, C-IRLS-FT. 

From Eq (3-19), which shows the Jacobian matrix derived from the inverse FT, and indicates the 

calculation of the theoretical value of the signal in Eq (3-17), we can use the IRLS inversion 

algorithm as described by Dobróka et al. (2012), and write the weighted norm as: 

 ýL = >ý-ÿ-")

-1!

 (3-24) 

where Cauchy-Steiner weights represent the term ý- and can be defined as the following (ÿ is the 

scale parameter): 

 ý- = ÿ"ÿ" + ÿ-" (3-25) 

Scales and Gersztenkorn (1988) shows that the problem of a nonlinear inverse problem caused by 

a non-quadratic misfit function can be solved by applying the IRLS method. As a first step, the 

misfit function: 

ýL, = > ÿ-")

31!

 

can be minimized in a linear set of normal equations: 

 ý"÷, = (ÿ$ÿ)4!ÿ$ý÷%&'( (3-26) 

and the deviation error: 

 ÿ-, = ý-%&'( 2>ýE,ÿ-E#

E1!

 (3-27) 

The weight equation can be written like this: 
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 ý-
, = ÿ"ÿ" + (ÿ-,)" (3-28) 

and the new misfit function takes the form: 

 ýL! = >ý-
,(ÿ-!)")

-1!

 (3-29) 

The minimization of Eq (3-29) in a linear set of equations can be solved where the weighting 

matrix ÿ,	is independent of ý"÷!: 

 ý"÷, = (ÿ$ÿÿÿ)4!ÿ$ÿ,ý÷%&'( (3-30) 

And this will be in an iterative loop until matching the stop criterion; thus, it's called the Chebyshev 

polynomials-based Iteratively-Reweighted Least Square Fourier Transform method (C-IRLS-FT). 

3.2.1. NUMERICAL TESTING  

As we mentioned earlier, the new algorithms should be tested on synthetic data first to test their 

reliability and output quality.  

 

 

 

 

 

 

 

 

For that, we create a wave loaded with different types of noise (Gaussian and Cauchy noise) to 

qualify the noise reduction capability of the introduced algorithms. We start with the following 

equation to create the data set: 

Figure 3-3 : The generated noise-free wave 
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 ý(ý-) = ýý-Eÿ4NA$sin	(ÿý- + ÿ) (3-31) 

and the items n =1, ÿ = 20, ÿ = 40ÿ, c = 739, and ÿ = ÿ/4 are the parameters of the generated 

wave.  The sample rate of the generated waveform is &ý = 0.005	ýÿý. within the interval of [-1,1], 

as shown in Figure (3-3). The DFT method was applied to generate the real and imaginary parts 

of the Fourier transform without any noise contamination. In the same step, the C-LSQ-FT and C-

IRLS-FT for the first and second kinds of Chebyshev polynomials were also applied, as shown in 

Figure (3-4). 

 

 

 

 

 

 

 
Figure 3-4: The spectrum of the noise-free signal in the frequency 

domain using (A) DFT (B) C-LSQ-FT FK (C) C-IRLS-FT FK (D) C-

LSQ-FT SK (E) C-IRLS-FT SK 



28 
 

The DFT, C-LSQ-FT, and C-IRLS-FT methods produced similar results for the real and imaginary 

parts of the Fourier-transformed spectrum. Furthermore, in the inversion-based method for high-

quality discretization, we use Chebyshev polynomials of the order of M=150. In summary, 

demonstrated methods are highly suitable for datasets without noise. 

Gaussian and Cauchy's noise are respectively loaded onto the previous waveform to test the 

algorithms separately and see the efficiency, as demonstrated in Figure (3-5).  

 

Figure 3-5: Generated noisy waveform with (A) Gaussian noise (B) Cauchy noise in the time domain 

Gaussian noise is generally considered a type of random noise that follows a normal distribution 

with a zero mean and a specified variance. It is often utilized as a model for external noise in signal 

processing. It is considered additive, meaning that it does not depend on the signal and can be 

added to it without altering the signal's distribution. Due to its properties, it is commonly used to 

simulate the effects of real-world noise in simulations and performance evaluations of signal 

processing algorithms. It is very important to reduce its impact on the interpretation of the real 

signal. This includes the development of filters using various transforms such as the Wavelet 

Transform (Deighan and Watts, 1997), S-Transform (Askari and Siahkoohi, 2008), and Fourier 

Transform (Dobroka et al., 2012). For testing purposes, the parameters of the applied Gaussian 

noise are the mean = 0 and ÿ = 0.01. As we can see in Figure (3-6), the DFT method was applied 

to the Gaussian noisy data sets to demonstrate the efficiency of the presented algorithm. 
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Furthermore, C-LSQ-FT and C-IRLS-Ft were also applied to the same data, as shown in Figure 

(3-7). To quantify the results, we used data distance: 

 ÿ@'A' =	X1ý>;ý-EJ2(O 2 ý-EJ2(&4P6&&<")

-1!

 (3-32) 

and the spectral distance 

 ÿ(;&*A =	X1ý>ýÿ;ÿ2EJ2(O 2 ÿ2EJ2(&4P6&&<" + ýÿ;ÿ2EJ2(O 2 ÿ2EJ2(&4P6&&<")

21!

 (3-33) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6: Applying DFT on the noisy data set (Gaussian 

noise) to extracting the real and the imaginary part 

Figure 3-7: The result of noisy data (Gaussian noise) after applying (A) C-LSQ-FT first kind (B) C-LSQ-FT second kind 
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Figures (3-6), (3-7), and (3-8) show that the present algorithms, C-LSQ-FT and C-IRLS-FT, have 

similar effective results in reducing Gaussian noise in synthetic data than the traditional DFT.  

When conducting a comparison between different methods, it is important to consider the level of 

error associated with each approach. In the case of methods C-LSQ-FT, C-IRLS-FT, and 

conventional Discrete Fourier transform method (DFT), notable differences in error levels can be 

observed. Upon analyzing a Gaussian noisy data set, the data distance between the noisy and noise-

free data is 0.1032 (Figures (3-3) and (3-5A)). The conventional DFT displays a spectrum distance 

of 0.0103 (Figure 3-6), while method C-LSQ-FT display of 0.0079 for the first type of Chebyshev 

polynomials (Figure 3-7A) and a slight difference of 0.0078 to the second one (Figure 3-7B). And 

method C-IRLS-FT displays a spectrum distance of 0.0081 for the first type (Figure 3-8A) and 

0.0077 for the second one (Figure 3-8B). Note that there is a slight improvement using the second 

type of Chebyshev polynomials, probably due to the different extrema (Eqs. (3-12), (3-13)). 

Processing speed is a critical factor in many computational tasks, and various methods have been 

developed to enhance it because serial processing involves executing one task at a time, which can 

be time-consuming and limit overall processing speed. The method C-IRLS-FT consumes slightly 

more time (between 14-20 seconds) in both types than the C-LSQ-FT (between 8-11second). This 

is related to the more computing procedure in IRLS. 

This data highlights that method C-LSQ-FT and C-IRLS-FT is likely the most accurate approach 

among the DFT method, which exhibits progressively higher (28-29 %) spectrum distance.  

Figure 3-8: The result of noisy data (Gaussian noise) after applying (A) C-IRLS-FT first kind (B) C-IRLS-FT second kind 
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In the case of Cauchy noise, Figures (3-9), (3-10), and (3-11) compare the presented algorithms 

C-LSQ-FT and C-IRLS-FT with the traditional DFT. It reveals a significant reduction in noise and 

spikes when compared to conventional ones. C-IRLS-FT demonstrates better results (Figure 3-11 

(A) and (B)) with both types of Chebyshev polynomials compared to C-LSQ-FT (Figure 3-10 (A) 

and (B)). The data distance between noisy and noise-free data sets is 0.414. As we compared 

previous methods in the Gaussian noise data set, we applied the same procedure and observed that 

the conventional DFT displays a spectrum distance of 0.0416 (Figure 3-9) while method C-LSQ-

FT display of 0.0224 for the first kind of Chebyshev polynomials (Figure 3-10A) and slightly 

different 0.0220 to the second one (Figure 3-10B).  

 

 

 

 

 

 

 

Figure 3-9: Applying DFT on the noisy data set (Cauchy noise) to extracting the real and the imaginary part 

Figure 3-10: The result of noisy data (Cauchy noise) after applying (A) C-LSQ-FT first kind 

(B) C-LSQ-FT second kind  
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Compared to C-LSQ-FT the method C-IRLS-FT shows an improvement of around 60% in the 

spectrum distance (0.0143 for the first kind (Figure 3-11A) and 0.0131 for the second one (Figure 

3-11B)). 

Also, the method C-IRLS-FT consumes slightly more time (between 13-15 seconds) in both types 

compared to the C-LSQ-FT (between 10-11 seconds). This is related to the more computing 

procedure in IRLS. 

 

 

This greatly highlights the limitations of traditional DFT in effectively eliminating randomly 

occurring outliers and recursive random noise from a waveform compared with C-LSQ-FT and C-

IRLS-FT. 

 

3.2.2. COMPARISON BETWEEN C-IRLS-FT AND AND L-IRLS-FT 

Nuamah et al.(2021) introduced two advanced Fourier transformation algorithms the Legendre-

Polynomials Least-Squares Fourier Transformation (L-LSQ-FT) and the Legendre-Polynomials 

Iteratively Reweighted Least-Squares Fourier Transformation (L-IRLS-FT). These algorithms use 

Legendre polynomials as basis functions for discretizing the Fourier spectrum through series 

expansion. The algorithms were found to be robust and resistant to sparsely distributed data 

outliers, particularly when compared to the traditional DFT algorithm in the reduction of magnetic 

data poles. 

Figure 3-11: The result of noisy data (Cauchy noise) after applying  (A) C-IRLS-FT first kind 

(B) C-IRLS-FT second kind 
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It's important, as mentioned before, to compare different methods to determine the right situation 

in which they are suitable. The same data, without any changes in the waveform or types of noise 

(Gaussian and Cauchy), was used on the same machine to apply the L-IRLS-FT algorithm and 

compare it with C-IRLS-FT (Figure 3-12). 

When comparing the presented algorithm X with Y, an improvement can be observed in terms of 

lower spectral distance and reduced computation time (from an average of 3 to 5 seconds on the 

same data set). These factors are very important when selecting a suitable algorithm for the study 

criteria. The spectral distance of the L-IRLS-FT method is 0.0092, compared to 0.0081 for the first 

type of the C-IRLS-FT method and 0.0077 for the second type, which is associated with noisy data 

sets contaminated with Gaussian noise. When Cauchy noise is considered, the spectral distance of 

the L-IRLS-FT method is 0.0143, compared to 0.0143 for the first type of C-IRLS-FT method and 

0.013 for the second type. It can be mentioned that the methods using the Chebishev polynomial 

of the second kind as a base function give better results compared to methods based on both 

Legendre- and Chebishev polynomial (of the first kind). The reason is that Legendre polynomials 

have the same extrema at x=+/- 1 as the Chebishev polynomial (of the first kind).  

Figure 3-12: : The result of L-IRLS-FT algorithm on (A) Gaussian noise  (B)Cauchy noise 
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3.3. The C-IRLS-FT algorithm in 2D  

The advancement in signal processing has led to remarkable improvements in the extraction and 

analysis of vital information from various sources, as we can see before. One-dimensional (1D) 

noise reduction methods are being extensively utilized for their simplicity and computational 

efficiency. However, the inherent limitations of 1D techniques have prompted us to explore higher-

dimensional approaches, offering improved performance and adaptability. We introduce a new 

algorithm C-IRLS-FT that enhances the existing 1D noise reduction techniques by extending their 

applicability to two-dimensional (2D) signals. Many papers discussed noise reduction in 2D 

geophysical data sets like gravity and magnetic (Dobróka et al., 2017; Nuamah and Dobroka, 

(2019);Abdelaziz and Dobróka, (2020); Nuamah et al., 2021) using the Hermite function or 

Legendre polynomials. This innovative using Chebyshev polynomials for the first time offers 

several advantages over traditional 1D methods, including improved noise reduction capabilities, 

better handling of complex data structures, and enhanced adaptability to various signals and data 

types. 

Furthermore, the proposed 2D method incorporates advanced signal decomposition techniques, 

adaptive filtering, and intelligent thresholding mechanisms, collectively contributing to its superior 

performance. In particular, the method's ability to exploit the spatial and spectral correlations 

present in 2D signals enables it to effectively suppress noise while preserving the underlying data's 

essential features and details. This is achieved through the use of inversion-based 2D Fourier 

transform 2D-IRLS-FT that are designed to automatically identify and eliminate noise components 

while retaining the informative elements of the signal. 

Data conversion from the space domain to the space-frequency domain can be established using a 

2D Fourier transform. For the two-dimensional case, the ý(ÿB , ÿO) Fourier transform of the space-

dependent ÿ(ý, ÿ) function is defined as 

ý(ÿB , ÿO) = 	 12ÿ	p ÿ(ý, ÿ)ÿ4.(G%BQG&O)ýýýÿH

4H
					 

where (ý, ÿ) denote the space coordinates, (ÿB , ÿO) are the (angular) space frequencies in 2D and ÿ is the imaginary unit. The inverse Fourier transform ensures a return from the space-frequency 

domain to the space domain: 
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ÿ(ý, ÿ) = 	 12ÿ	p ý;ÿB , ÿO<ÿ.(G%BQG&O)ýÿBýÿO

H

4H
			 

In the framework of the inversion-based Fourier transformation the ý;ÿB , ÿO<	frequency spectrum 

should be discretized using a finite series expansion 

ý;ÿB , ÿO< = 	> > ýE,%	ÿE(ÿB)	ÿ%;ÿO<#

%1!

)

E1!

 

where the parameters ýE,% are complex-valued expansion coefficients, ÿE	and ÿ%		 are members 

of an accordingly chosen set of real-valued basis functions. Using the terminology of (discrete) 

inverse problem theory, the theoretical values of spatial domain data in the (ý- , ý+) sampling point 

(forward problem) can be given by the inverse Fourier transform 

 ÿ(ý- , ý+) = ÿ-,+AI&J6 	= 		> > ýE,%	ÿ-,+E,%#

%1!

)

E1!

 (3-34) 

where the Jacobi matrix is introduced as 

 ÿ-,+E,% =	 1:2ÿ	p ÿE(ÿB)ÿ.G%B$ýÿB

H

4H

1:2ÿ	p ÿ%(ÿO)ÿ.G&O"ýÿO

H

4H
  

The Jacobian matrix is the inverse Fourier transform of the basis function ÿE and ÿ%.  

In our investigations the Chebyshev polynomials serve as the model's basis function for 

parameterization using Eq(3-10) for the first kind and Eq(3-15) for the second one: 

 ÿ-,+E,% =	 1:2ÿ	p ÿE(ÿB)ÿ.G%B$ýÿB	.

!

4!

1:2ÿ	p ÿ%;ÿO<ÿ.G&O"ýÿO	

!

4!
 (3-35) 

Or in another form: 

 ÿ-,+E,% =	1-4!{ÿE(ÿB)}	. 1+4!,ÿ%(ÿO)- (3-36) 

The reason for creating a new Fourier Transformation method revolves around creating a 2D 

inversion-based version of Eq (3-35). To accomplish this, we will use a standard 2D inverse DFT 

process: 

 ÿ-,+E,% =	 ýÿýÿ-{ÿE(ÿB)}	. ýÿýÿ+,ÿ%(ÿO)- (3-37) 
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We can create the theoretical data at the sampling points (ý- , ÿ+): 
 ý-,+AI&J6 =	> > ýE,%ÿ-,+E,%#

%1!

)

E1!

 (3-38) 

 

The programming of the algorithm is more simple after using the transformation of the indices 

ÿ = ÿ + (ÿ 2 1)ý,				ý = ý + (ý 2 1)ÿ. With these notations, the total number of the unknown 

expansion coefficient is   ý = ý + (ý 2 1)ý = ýý and that of the measurement data is ÿ = ÿ +(ÿ 2 1)ÿ = ÿÿ. The theoretical data can be calculated as 

ý(AI&J6 = >ý2ÿ(2#

21!

 

In this case, the deviation vector takes the form: 

 ÿ( = ý(%&'( 2 ý(AI&J6 = ý(%&'( 2>ý2ÿ(2#

21!

 (3-39) 

The normal equation of the Gaussian Least Squares method, after using the L2-norm to measure 

the misfit of the function and minimizing it, can be written as: 

 ý""÷ = 	 (ÿ$ÿ)4!ÿ$ý÷%& (3-40) 

where the estimated spectrum can be given as the following: 

 ÿ&(A;ÿB , ÿO< = > > ýE,%ÿE(#

%1!

ÿB))

E1!

ÿ%(ÿO) (3-41) 

The previous equations rely on the inversion-based Fourier Transformation method, which uses 

Chebyshev polynomials based on the Least Square Fourier Transformation method (C-LSQ-FT) 

as we saw in the 1D case. Also, this method only works effectively with data sets that have noise 

that is distributed in a regular pattern. In cases where the data contains outliers, the procedure has 

less efficiency in processing them. To solve this problem, we used the Iteratively Reweighted Least 

Squares method that minimizes the deviation vector via Cauchy-Steiner weights in combination 
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with the Fourier transform using Chebyshev polynomials as basis functions for discretization, 

creating a robust algorithm, C-IRLS-FT. 

As in the 1D case from Eq (3-34), which shows the Jacobian matrix derived from the inverse FT, 

and indicates the calculation of the theoretical data, we can use the IRLS inversion algorithm as 

described by Dobróka et al., 2012, and write the weighted norm as: 

 ýL = >ý(ÿ("T

(1!

 (3-42) 

where Cauchy-Steiner weights represent with term ý( and can be defined as the following: 

 ý( = ÿ"ÿ" + ÿ(" (3-43) 

Scales and Gersztenkorn (1988) shows that the problem of a nonlinear inverse problem caused by 

a non-quadratic misfit function can be solved by applying IRLS. As a first step, the misfit function: 

ýL, =>ÿ("T

(1!

 

can be minimized in a linear set of normal equations: 

 ý"÷, = (ÿ$ÿ)4!ÿ$ý÷%& (3-44) 

and the deviation error: 

 ÿ(, = ý(%&'( 2>ý2,ÿ(2U

21!

 (3-45) 

The weight equation can be written like this: 

 

 ý(
, = ÿ"ÿ" + (ÿ(,)" (3-46) 

and the misfit function: 
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 ýL! = >ý(
,(ÿ(!)"T

(1!

 (3-47) 

The minimization of Eq (3-29) in a linear set of equations can be solved where the weighting 

matrix ÿ,	is independent of ý"÷!: 

 ý"÷! = (ÿ$ÿÿÿ)4!ÿ$ÿ,ý÷%&'( (3-48) 

And this will be in an iterative loop until matching the criteria; thus, it's called the Chebyshev 

polynomials-based IRLS Fourier Transform method (2D C-IRLS-FT). 

3.3.1. Numerical testing for 2D C-LSQ-FT and 2D C-IRLS-FT method 

To test the proposed method, we create a 2D noise-free data set consisting of a rectangular region 

with the (normalized) dimensions [-1,1] units for directions x and y. In addition, this data set 

contains an anomaly in the middle with dimensions [-0.2,0.2] units also in directions x and y. The 

homogeneous background and the anomaly is characterized by the physical value dback, and danom, 

respectively, where danom=2*dback. For numerical tests we introduce the dimensionless function 

 

 

 

 

 

 

 

 

magnitude(x,y)=(d(x,y)-dback)/dback  

giving the values 0 and 1, in the background and the anomaly, respectively (Figure 3-13).  For the 

sampling intervals, we set it to equal 0.02 units for both directions, creating 101*101 data points. 

Figure 3-13:  The Noise-Free data set 
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We started with noise-free data set in comparison to the previously mentioned method. The 2D 

Fourier spectrum of the data set was computed using 2D DFT, 2D C-LSQ-FT and 2D C-IRLS-FT 

algorithms. 

Figure (3-14) demonstrates the amplitude spectrum using 2D DFT, 2D C-LSQ-FT, and 2D C-

IRLS-FT methods. All approaches give similar results without any significant difference, which 

indicates the effectiveness in processing noise-free datasets. The 2D C-LSQ-FT  and 2D C-IRLS-

FT used Chebyshev polynomials with M=35 order.  

The efficacy of the three methods was confirmed when applied to the noise-free surface. To test 

real-world scenarios, the surface was contaminated with Gaussian and Cauchy noise as two 

separate scenarios, producing much rougher areas- as depicted in Figure (3-15) and Figure (3-17). 

To accurately quantify the results, we propose the Root Mean Square (RMS) distance as a measure 

between the data sets (a) in the space domain: 

 ÿ@'A' =	X1ý>>�ÿEJ2(O;ý2 , ÿ.< 2 ÿEJ2(&P6&&;ý2 , ÿ.<�")&

.1!

)%

21!

 (3-49) 

where ýB	ÿÿý	ýO are the number of data sets on x and y axis, and (b) in (space) frequency domain: 

ÿ
/
ÿ

 

ÿ
/
ÿ

 
Figure 3-14: The 2D Amplitude Spectrum for noie-free data set (A) Using 2D DFT method (B) Using 2D 

C-LSQ-FT (C) Using 2D C-IRLS-FT 
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ÿ'()*+,-. =	

·
óóó
óóó
óóó
óóó
ó& 1

ý))*ýÿ	[ý/0123*ÿ41 , ÿ351] 2 ýÿ[ý/012)6,))*ÿ41 , ÿ351]17
8!

59:

8"

19:

+	 1ý))*ýÿ	[ý/0123*ÿ41 , ÿ351] 2 ýÿ[ý/012)6,))*ÿ41 , ÿ351]17
8!

59:

8"

19:

 (3-50) 

 

In the Gaussian noise scenario, shown in Figure (3-16), the data distance between the noise-free 

and noisy data sets is 0.0501. On the other hand, the model distance between the 2D DFT spectrum 

of the noisy and noise-free data sets is 0.0017. Moving to the introduced methods, the data distance 

using the 2D C-LSQ-FT method is 0.0176, and the model distance is 7.3347e-04. The 2D C-IRLS-

FT showed similar results with a data distance equal to 0.0178; the model distance is 7.3272e-04. 

From above, we can summarize that the 2D C-LSQ-FT and 2D C-IRLS-FT demonstrate high noise 

reduction to random noise compared to the 2D DFT method. Also, both methods have similar 

outputs for amplitude spectrums. This result refers to the power of using Chebyshev polynomials 

as an alternative basis function in the inversion method. 

 

 

 

 

 

 

 

 

 

  

Figure 3-15: The Noisy data set contaminated with Gaussian noise 
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In the Cauchy noise scenario as shown in Figure (3-17), the addition of random Cauchy noise 

generated outliers with sharp spikes. 

Figures (3-18) showcase the noise reduction capabilities of the 2D DFT, 2D C-LSQ-FT, and 2D 

C-IRLS-FT methods, through processing Cauchy's noisy data set. The output spectrums 

demonstrate that the 2D C-IRLS-FT method suppresses Cauchy noise considerably more 

effectively than the traditional 2D DFT method and 2D C-LSQ-FT. The 2D DFT method proves 

inadequate in eliminating the introduced noise, as evidenced by the spread of data noise in its 

output Fourier spectrums. 

ÿ
/
ÿ

 

Figure 3-16: The 2D Amplitude Spectrum for noisy data set (Gaussian noise) (A) Using 2D DFT method (B) Using 2D C-LSQ-FT 

(C) Using 2D C-IRLS-FT 
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Figure 3-17: The Noisy data set contaminated with Cauchy noise 
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The data distance between the noise-free and noisy data sets is 0.0958. On the other hand, the 

model distance between the 2D DFT spectrum of the noisy and noise-free data sets is 0.0034. 

Moving to the introduced methods, the data distance using the 2D C-LSQ-FT method is 0.0253, 

and the model distance is 0.0009. The 2D C-IRLS-FT showed similar results with a data distance 

equal to 0.0161; the model distance is 6.6927e-04. 

Upon examination of the data, it became evident that the 2D L-LSQ-FT and 2D C-IRLS-FT 

techniques offered superior noise reduction capabilities relative to the traditional 2D DFT 

approach. Nonetheless, it is essential to establish a more resilient and effective method for filtering 

out random noise and outliers, given the susceptibility of the Least Squares and 2D DFT methods. 

Thus, it is strongly advised to consider utilizing the 2D C-IRLS-FT method. 

 

 

 

 

 

 

 

 

 

Thesis one: 

I have developed an improved inversion-based Fourier transformation method with Chebyshev 

polynomials, as basis functions (1D C-IRLS-FT) using one-dimensional synthetic datasets. Using 

a time-domain 1D synthetic wavelet (contaminated with Gaussian- and Cauchy noises) a 

comparison is made between the proposed inversion-based technique and the conventional 

Discrete Fourier Transformation (DFT) method. The results indicate that the inversion-based 

Fourier transformation (1D C-IRLS-FT) method demonstrates the robustness and a significant 

Figure 3-18: The 2D Amplitude Spectrum for noisy data set (Cauchy noise) (A) Using 2D DFT method (B) Using 2D C-LSQ-FT 

(C) Using 2D C-IRLS-FT 
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ability to mitigate the influence of outliers compared to the outcomes achieved using the 

conventional DFT method.  

 

Thesis Two: 

Owing to the effectiveness of the IRLS inversion technique in processing 1D datasets, the 

inversion-based Fourier transformation algorithm is further developed for the processing of 2D 

datasets with the use of the Chebyshev polynomials as a basis function (2D C-IRLS-FT method). 

To assess the accuracy, stability and outlier sensitivity, a 2D synthetic dataset (contaminated with 

random Gaussian and Cauchy noise) was ised. Upon data examination, it becomes clear that the 

2D C-IRLS-FT technique demonstrates superior noise reduction capabilities in comparison to the 

traditional 2D DFT approach.  
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Chapter 4 

4. HILBERT TRANSFORM USING C-IRLS-FT ALGORITHM  

 

4.1. HILBERT TRANSFORM USING THE METHOD OF THE MOST FREQUENT 

VALUES 

Attributes play an important role in seismic data processing and interpretation. They can be used 

to extract certain information, such as physical or geometric parameters, that may not be obtainable 

otherwise. Since the seminal paper published by Taner et al. in 1979, the field has expanded and 

undergone significant development. Today, we can discuss a wide range of attributes, which can 

be divided into physical and geometric categories, and classify procedures based on factors such 

as whether they are applied before or after processing, interpreted using one or more seismic 

channels, etc. When developing processing methods, it's important to manage and improve the 

signal-to-noise ratio as much as possible. Fourier transforms often play an important role in 

creating attributes mentioned in Péter Vass's Ph.D. thesis (Vass, 2010). Szegedi and Dobroka 

(2012) proposed a robust Fourier transform procedure (IRLS-FT) based on inversion. Our previous 

work showed that this method effectively suppresses outliers and can significantly improve the 

signal-to-noise ratio by up to an order of magnitude. In this chapter, we propose applying this 

procedure to computing attributes. First, we show how to create the Hilbert transform as part of a 

robust/resistant inversion framework, which plays a crucial role in defining the complex channel. 

It is considered a powerful tool in signal processing that allows for analyzing the phase and 

frequency components of a signal. First proposed by David Hilbert in 1917, the transform is used 

in a variety of fields, including telecommunications, control systems, and seismology. 

4.2. THE ANALYTICAL SIGNAL 

The starting point for calculating basic attribute stations is the creation of an analytical signal, also 

known as the complex channel. The concept of the analytical signal was introduced by Hungarian 

physicist Dénes Gabor, who won a Nobel Prize, in 1946. His goal was to use the powerful 

mathematical tools of quantum mechanics in signal processing, using square-integrable complex 

functions as elements of Hilbert space. To achieve this, he introduced the analytical signal. 
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where  

 ÿV(ý) = 1ÿ p ÿ(ÿ)H

4H

ýÿÿ 2 ý (4-2) 

is the Hilbert -transform of the time signal. According to Eq. (4-2), the Hilbert transform is 

generated as a convolution of the time signal u(t) with function 2 !

WA
  .  

In the frequency domain, this relation can be written as: 

 	1{ÿV(ý)} = 1	{ÿ(ý)}1 �2 1ÿý� (4-3) 

where 1 denotes the Fourier transform. As 1 �2 !

WA
� = 2ÿ sign(ÿ), introducing the notation 

 ý(ÿ) = 1{ÿ(ý)} (4-4) 

one can write 

 1{ÿV(ý)} = 	2ÿ sign(ÿ)ý(ÿ) = ýV(ÿ) (4-5) 

giving the Hilbert transform as  

 ÿV(ý) = 14!{ýV(ÿ)} (4-6) 

 

It can be seen that the calculation of the Hilbert transform requires the use of the Fourier transform 

and its inverse. The traditional DFT and IDFT algorithms are known to be sensitive to non-

Gaussian noise in data sets. Dobroka et al. (2017) introduced an inversion-based Fourier transform 

method (IRLS-FT) to define a robust procedure, as we mentioned earlier in Chapter 3. To take 

advantage of its noise-rejection capacity, IRLS-FT can be used in calculating ý(ÿ) as: 

 ý(ÿ) = 1UXYT{ÿ(ý)} (4-7) 

 
with IDFT in Eq. (4-6). A full inversion-based method can be produced when the 1UXYT4!  procedure 

is also used in Eq. (4-6). 

 

 ý(ý) = ÿ(ý) + ÿÿV(ý) (4-1) 



46 
 

 

4.3. The robust generation of Hilbert transform 

To produce the Hilbert transform, we need to know the signal's U(Ë) spectrum. To improve the 

signal-to-noise ratio, the Fourier transform is performed by the IRLS-FT method, and then the 

spectrum is multiplied by the function -j sign(Ë). We then return to the time domain by an inverse 

Fourier transform. This can be done by applying IDFT and also by using an inversion-based 

inverse Fourier transform. The latter procedure can be performed by robust inversion defined here. 

The starting point is the expression of the Fourier transform 

 
 ý(ÿ) = 1:2ÿp ÿ(ý)ÿ4.ZAýý	.H

4H
 (4-8) 

 
The direct problem is given by the formula of the Fourier transform, where the time function u(t) 

is discretized in the form of a series expansion 

 
 ÿ(ý) = >ýE«E(ý)#

E1!

 (4-9) 

 
where ýE denotes the complex expansion coefficients, «E(Ë) indicates the n-th known basis 

function, and M is the total number of the basis functions. After substitution, the following formula 

is obtained for the k-th sampling element of the spectrum 

 
 ý-(ÿ-) = >ýE#

E1!

1:2ÿp «E

H

4H
(ý)ÿ4.G$Aýý = >ýEÿ-E#

E1!

 (4-10) 

 
Where 

 ÿ-E = 1:2ÿp «E

H

4H
(ý)ÿ4.G$Aýý = 1-{«E(ý)}	 (4-11) 

 
is the Jacobi matrix, the elements of which can be thought of as Fourier transforms of the basis 

function system. The calculation of the complex integral in the formula can be avoided by choosing 

the basic functions of series expansion from the eigenfunctions of the Fourier transform (Hermite 
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functions). In this chapter, we will use Chebyshev and Legendre polynomials as basis functions 

because, in the case of inverse problems, it is advised to use complete and orthogonal function 

systems to reduce the number of unknown parameters and improve the stability of the inversion 

procedure.  

The Chebyshev polynomials were discussed early in Chapter 3. About the Legendre polynomials, 

we can demonstrate the orthogonality using the following equation that Nuamah et al. (2021) used 

in Fourier transformation for reduction to the pole of magnetic data (McCarthy et al., 1993): 

 p ÿ%(ý)!

4!
ÿE(ý)ýý = 0					ÿÿ	ÿ b ÿ (4-12) 

The Legendre differential equation is: 

 (1 2 ý") ý"ÿýý" 2 2ýýÿýý + ÿ(ÿ + 1)ÿ = 0 (4-13) 

where ÿ > 0, |ý| < 1, ýÿ	ÿÿÿÿÿÿýÿÿýýÿ 

The solution can be written as a:  

 ý = ýÿE(ý) + ý;E(ý) (4-14) 

The ÿE(ý)	ÿÿý	;E(ý) are Legendre functions of the first and second kinds. That means we can 

write for n order: 

 ÿE(ý) = 12Eÿ! ýEýýE (ý" 2 1)E (4-15) 

which can be written also in the recursive form: 

 (ÿ + 1)ÿEQ!D (ý) = (2ÿ + 1)ýÿE(ý) 2 ÿÿE4!D (ý) (4-16) 

 

4.4. USING HILBERT TRANSFORM TO GENERATE SEISMIC ATTRIBUTES 

Many years ago, people commonly used seismic information to characterize emerging reservoirs. 

Seismic qualities help to find structural and stratigraphic information in three dimensions. Also, 

they can detect flaws and faults, as well as discernible geological lines, with characteristics of 

seismic data including amplitude, phase, and frequency. Getting instant and precise values for 

these criteria is crucial for finding hidden submerged features (Barnes, 2000). 
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Over the last three decades, many people have attempted to group various seismic attributes into 

specific categories to understand and apply them better. A 2002 version of this classification 

contains 153 lines, consisting of 69 text lines, a 34-line table, nine lines discussing coherence, 25 

lines on hydrocarbon indicators, 16 lines on complex trace analysis, and six figures. In the study 

by Taner et al. (1994), attributes are classified as either physical or geometric. The former pertains 

to visualizing the continuity, azimuth, and dip of data collected through geometrical 

measurements. As for geometric attributes, they change the perceived visibility of data gathered 

through those measurements. 

Norman Neidell originally proposed the Hilbert transform as a mean to achieve complex-trace 

analysis. Koehler and Taner worked with Neidell and developed a mathematical framework for 

attributes. The real part of the seismic signal's amplitude is represented by the magnitude of the 

complex analytical signal. The imaginary part is computed by taking a Hilbert transform of the 

analytical signal. Next, envelope, phase, and square root calculations are performed. These 

processes involve calculating the sum of the squares of the real and imaginary components. Three 

important attributes - the envelope, phase, and frequency - were established. The first one is the 

instantaneous envelope (reflection strength). It is sensitive to lithology, porosity, hydrocarbons, 

and thin-bed tuning. The second one is the instantaneous phase, which is useful for tracking 

reflector continuity, detecting unconformities, faults, and lateral changes in stratigraphy. The third 

one is the instantaneous frequency. It is useful in identifying abnormal attenuation and thin-bed 

tuning (Chopra and Marfurt, 2005). 

4.5. NUMERICAL TESTS 

The Ricker wavelet (Ricker, 1953) has been used to illustrate the response of a new method, as 

shown in Figure (4-1) in blue. This wavelet was generated at 10 Hz and is localized at 0.1 seconds, 

using a sampling interval of 5 milliseconds in the range of [-1, 1] seconds (Figure 4-1). Two types 

of noise were applied to the previous clean data set. As an example, gaussian noise with a standard 

deviation of 0.0025 was added to the first data set to simulate random noise from devices. On the 

other hand, Cauchy noise with a scale parameter of ·=0.04 was applied to the second data set to 

simulate outliers in measured data (Figure 4-2). 
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4.5.1. CHEBYSHEV POLYNOMIALS AS A BASIS FUNCTION 

The first attribute that can be produced is the reflection strength (Instantaneous amplitude), which 

is considered an absolute signal value. We can represent it with the following equation: 

 ý(ý) = 	uÿ(ý)" + ÿV(ý)" (4-17) 

The noise sensitivity of this attribute can be illustrated in Figure (4-3) using the previous wavelet. 

The reflection strength calculated by the conventional process for noise-free inputs contaminated 

Gaussian and Cauchy noise at the same time. 

 

Figure 4-2: The data set with Cauchy and Gaussian noise 

Figure 4-1:The data set without noise 
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The second attribute, which is the instantaneous phase, can be given by: 

 '(ý) = ÿÿý tan|ÿV(ý)/ÿ(ý)| (4-18) 

where u(t) is the signal (Ricker wavelet) and ÿV (t) is the Hilbert transform which those related to 

the envelope E(t) and the phase '(ý) by the following equations: 

 

 			ÿ(ý) 		= 	ý(ý)cos	(§(ý)) (4-19) 

 		ÿV(t) 	= E(t)sin(§(ý)) (4-20) 

 

The instantaneous phase is measured in degrees (-180, 180). It is independent of amplitude and 

shows continuity and discontinuity of events. It shows bedding very well. Phase along horizon 

should not change in principle. Changes can arise if there is a picking problem or if the layer 

changes laterally due to <sinkholes= or other phenomena. The noise sensitivity of this attribute can 

be illustrated in Figure (4-4) using the previous wavelet. The reflection strength calculated by the 

conventional process for noise-free inputs contaminated Gaussian and Cauchy noise at the same 

time. 

Figure 4-3: The Ricker wavelet (blue) and reflection strength (red) where (A) Noise-free data set and (B) Noisy 

data set. The discrete Fourier transform method (DFT) and its inverse (IDFT) were used. 
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The newly introduced algorithm was applied to the same data set, as shown in Figure (4-5). A new 

method has been developed that effectively reduces noise in a given noisy data set on the first 

seismic attribute (Reflection strength) Figure (4-5B) compared to the old one Figure (4-5A). The 

previous method relied on traditional DFT and signal processing techniques that were ineffective 

in removing noise from the signal.  

Also, the second attribute (Instantaneous phase) was tested on the same noisy data set, as shown 

in Figure (4-6). This attribute is very sensitive to noise compared to the previous one. Therefore, 

Figure 4-4: The Ricker wavelet (blue) and instantaneous phase (magenta) where (A) Noise-free data set 

and (B) Noisy data set. The discrete Fourier transform method (DFT) and its inverse (IDFT) were used. 

Figure 4-5: The Ricker wavelet (blue) and reflection strength (red) where (A) DFT and IDFT used on 

noisy data set and (B) The newly introduced method was used on the noisy data set. 
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we can conclude that the new method effectively reduces noise in a given noisy data set, as seen 

in Figure (4-6B), in contrast to the transitional process in Figure (4-6A). 

 

Figure 4-6: The Ricker wavelet (blue) and instantaneous phase (magenta) where (A) Noisy data set and (B) 

The newly introduced method was used on the noisy data set. 

One common way to measure the accuracy of an introduced algorithm is by comparing its output 

to the original data set (Noise-free data set) by measuring the data distance as we performed in 

Chapter 3. In the context of our study, when comparing two methods or approaches in data 

analysis, it is important to consider the data distance between them, as we discussed earlier. Data 

distance refers to the degree of difference or similarity between the data generated by each method. 

Understanding the data distance between two methods is important in determining which method 

is more appropriate for a particular research question or problem. On the other hand, if the data 

distance between the two methods is large, it may suggest that they are measuring different aspects 

of the same phenomenon but with different accuracy. Therefore, a thorough understanding of the 

data distance between the two methods is essential for making informed decisions about data 

analysis and interpretation.  

The newly developed method called C-IRLS-HT is more effective in eliminating noise than the 

traditional Hilbert transform method in two seismic attributes, as evidenced by the lower data 

distance values obtained through its use. In the first attribute (Reflection Strength), when Method 

C-IRLS-HT was applied to a dataset with high levels of generated noise, it was found to reduce 

the error with D = 0.009, resulting in more accurate and reliable data. Conversely, when the 

traditional Hilbert transform was applied to the same dataset, the error reduction was demonstrated 
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with D = 0.045. Similarly, in the second attribute (Instantaneous Phase), where both methods were 

applied to a dataset with the same noise, Method C-IRLS-HT was again found to be more effective 

in reducing the error despite the high sensitivity of the attribute, resulting in data distance D = 

0.160 compared to a 0.435 with traditional Hilbert transform. These findings suggest that the C-

IRLS-HT is a more robust and reliable method for data analysis in situations where noise reduction 

is very important.  

4.5.2. LEGENDRE POLYNOMIALS AS A BASIS FUNCTION  

Another introduced algorithm that uses Legendre polynomials was applied to the same data set, as 

shown in Figure (4-7). Also, this method effectively reduces noise in a given noisy data set on the 

first seismic attribute (Reflection strength) Figure (4-7B) compared to the conventional method 

Figure (4-7A). The conventional method relied on traditional DFT and signal processing 

techniques that were ineffective in removing noise from the signal.  

 

 

 

 

 

 

 

 

Also, the second attribute (Instantaneous phase) was tested on the same noisy data set, as shown 

in Figure (4-8). Like the previous case, this attribute is more noise-sensitive than the reflection 

strength. Therefore, we can conclude that also this method effectively reduces noise in a given 

noisy data set, as seen in Figure (4-8B), in contrast to the conventional method in Figure (4-8A). 

Figure 4-7: The Ricker wavelet (blue) and reflection strength (red) where (A) Noisy data set and (B) The 

second introduced method was used on the noisy data set (Using Legendre Polynomials). 
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Also, Method L-IRLS-HT has been evaluated for its ability to eliminate noise from data using the 

data distance analytic method. In the first attribute (Reflection Strength), where a dataset with high 

levels of generated noise was analyzed. Method L-IRLS-HT was found to reduce the error with 

data distance D = 0.020, while Method traditional Hilbert transform method as we saw before only 

reduced the error by D = 0.045. Similarly, the second attribute (Instantaneous Phase) was analyzed 

with the same noisy data set. The L-IRLS-HT reduced the error by D = 0.180, while the traditional 

Hilbert transform shows that D = 0.435 as before without any change. These results also suggest 

that Method L-IRLS-HT as C-IRLS-HT may be more effective than the traditional Hilbert 

transform in eliminating noise from data. The comparison between the newly developed C-IRLS-

HT and L-IRLS-HT methods shows the superiority of C-IRLS-HT. However, again, the 

effectiveness of these methods may depend on the specific characteristics of the dataset.  

 

4.5.3. THE COMPARISON BETWEEN LEGENDRE and CHEBYCHV POLYNOMIALS AS 

BASIS FUNCTIONS FOR HILBERT TRANSFORM  

There are various methods available for solving numerical problems, each with its own unique set 

of advantages and disadvantages. In this section, we will compare two presented methods, Hilbert 

Figure 4-8: The Ricker wavelet (blue) and instantaneous phase (magenta) where (A) Noisy data set and 

(B) The second introduced method was used on the noisy data set (Using Legendre Polynomials). 
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transforms using Chebyshev and Legendre polynomials with IRLS, based on their noise reduction 

ability, speed, iteration, and the number of unknowns. 

Regarding noise reduction, the Hilbert transform using the Chebyshev polynomials method (C-

IRLS-HT) has the edge over Hilbert transform using Legendre polynomials (L-IRLS-HT). This 

difference regards C-IRLS-HT utilizing a better filtering technique due to the Chebyshev 

polynomials of the second kind that helps to eliminate any unwanted noise in the system, making 

it particularly useful in applications where the data is subject to interference or distortion compared 

to L-IRLS-HT.  

When it comes to iteration, both methods are capable of handling a significant number of iterations. 

However, method L-IRLS-HT tends to require more iterations (100 iterations) Figure (4-9) C&D 

Figure 4-9: Comparison between the number of iterations and the data distance between the noise-free 

attribute and noisy attribute A-Using C-IRLS-HT for reflection coefficient B- Using C-IRLS-HT for 

instantaneous phase C- Using L-IRLS-HT for reflection coefficient D- Using L-IRLS-HT for instantaneous 

phase 
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to converge on a solution, mainly when dealing with more complex problems. Method C-IRLS-

HT, on the other hand, is typically more efficient and can often converge on a solution with fewer 

iterations (50 in numerical tests) Figure (4-9) A&B. 

The number of unknowns (M)that each method can handle is an important consideration. Both 

methods should have suitable values that do not distort the signal and, at the same time, eliminate 

the noise. Figure (4-10) demonstrates that a value of 150 is the most convenient value for both 

methods without distorting the data. If we choose a value less than 100, it may corrupt the signal, 

and if we choose a value higher than 150, it may also introduce noise. 

 

Figure 4-10: Comparison between the Model Parameters and the data distance between the noise-free 

attribute and noisy attribute A-Using C-IRLS-HT for reflection coefficient B- Using C-IRLS-HT for 

instantaneous phase C- Using L-IRLS-HT for reflection coefficient D- Using L-IRLS-HT for instantaneous 

phase 
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Finally, in terms of speed, method C-IRLS-HT has a clear advantage over method L-IRLS-HT. 

This is because method C-IRLS-HT requires fewer iteration steps. However, in modern computing 

systems, the difference in time can be negligible if we use powerful CPUs or GPUs. In summary, 

both methods C-IRLS-HT and L-IRLS-HT have the ability to reduce noise better than 

conventional methods, taking into consideration the sensitivity of the second attribute that plays a 

significant role in judging the results. 

Thesis Three: 

We further explored the application of the inversion-based Fourier transformation procedure to 

computing seismic attributes. We have demonstrated that the newly developed method, referred 

to as (1D) C-IRLS-HT, outperforms the traditional Hilbert transform method in reducing noise for 

two seismic attributes. Specifically, when applied to process noisy Reflection Coefficient (first 

attribute) and the Instantaneous Phase (second attribute) data, the Method C-IRLS-HT 

demonstrated a significant noise reduction, resulting in more accurate and reliable data compared 

to the traditional Hilbert transform method. These findings underscore the effectiveness of the C-

IRLS-HT procedure as a more robust and reliable method for data analysis in situations where 

noise reduction is essential. 
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Chapter 5 

5. 2D HILBERT TRANSFORM WITH IRLS-FT 

 

5.1. 2D HILBERT TRANSFORM  

The two-dimensional (2D) Hilbert Transform, a natural extension of its one-dimensional 

counterpart, has proven to be a powerful and versatile tool in the domain of image processing. By 

adopting the Hilbert Transform to handle 2D signals, researchers have been able to efficiently 

analyze and process images to extract spatial information and identify features that may be obscure 

to traditional methods. This chapter will focus solely on the 2D Hilbert Transform, shedding light 

on its theoretical foundations, and contemporary developments within the realm of earth science-

related image processing (edge detection) from the point of view of noise reduction and image 

enhancement. 

We begin by elaborating on the mathematical formulation of the 2D Hilbert Transform, 

highlighting its derivation and inherent properties. The 2D Hilbert Transform can be understood 

as a convolution operation involving the image and a 2D Hilbert kernel. The kernel itself is 

frequently derived from the product of two 1D Hilbert kernels, with one acting along the rows and 

the other along the columns of the image. This convolution can be extended to a 2D analytic signal 

that encapsulates both the original image data and its Hilbert Transform, providing valuable 

insights into the image's spatial frequency content and phase information. 

When applied to a square wave signal, as Figure (5-1) shows, the Hilbert transform accentuates 

the abrupt changes in amplitude. This observation implies to use the 2D Hilbert transform for edge 

detection of 2D objects. The edge transitions can be determined by examining also the 

instantaneous amplitude and phase of the analytic signal. The instantaneous amplitude is given by 

the magnitude of the analytic signal, while the instantaneous phase is the arctangent of the 

imaginary part divided by the real part, as we saw before. 

In the case of a square wave ÿ, (ý), the ÿV (ý)		Hilbert transform is shown in Fig 1a. and the 

instantaneous amplitude ÿ[ (ý) is depicted in Fig. 1b. Both operations exhibit peaks at the edge 

transitions. By analyzing these peaks and changes, the precise location of the edge transitions in 
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the square wave signal can be determined. This information is precious for applications that require 

mostly the identification of boundaries or changes in one-dimensional signals. 

 

Edge detection is an important operation in image processing. The most frequently used tools for 

it are the Prewitt and Sobel operators performing difference calculations along the x- or y-

directions of the image. As is well known, differentiation is highly sensitive to noises. To attenuate 

the effect the difference is multiply calculated (due to the size of the convolution mask) and the 

arithmetic mean (Prewitt operator) or the binomial mean (Sobel operator) of the differences is 

applied for the central pixel of the image section covered by the mask. As is shown above, the 

calculation of the Hilbert transform needs integration, which is less sensitive to the noises. So it 

can be expected to find less noise-sensitive edge detection results by using Hilbert transform (Pei 

and Ding, 2003).  

Figure 5-1: a.) The square wave signal and its Hilbert transform, b.) The square wave 

signal (blue) and Instantaneous amplitude (red) 
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One of the most compelling applications of the 2D Hilbert Transform lies in its ability to perform 

noise reduction in addition to edge feature extraction. By analyzing the local phase information, 

the transform can accurately discern edges, corners, and other salient features in an image, often 

outperforming traditional edge detection techniques. Furthermore, the 2D Hilbert Transform 

enables the decomposition of an image into its constituent amplitude and phase components, which 

can be invaluable for tasks such as image enhancement, denoising, and compression (Havlicek et 

al., 2002). 

In addition to edge detection, the 2D Hilbert Transform has found utility in texture analysis, where 

it has been employed to characterize and discriminate between different textures within an image. 

By examining the local frequency content and phase relationships, the 2D Hilbert Transform can 

effectively isolate and identify various textural patterns, providing valuable information for tasks 

such as segmentation, classification, and feature extraction (Guanlei et al., 2018). 

Moreover, the 2D Hilbert Transform has been utilized in image reconstruction, particularly in the 

context of medical imaging and synthetic aperture radar (SAR) systems. By exploiting the phase 

information provided by the transform, it is possible to reconstruct high-resolution images from 

limited or incomplete data, leading to improved diagnostics and decision-making. However, 

despite its current limitations, the 2D Hilbert Transform remains a cornerstone in image 

processing, with its unique capabilities continuing to inspire novel applications and advancements 

in the field (Moon et al., 1988). 

The main aim that will focus on in this chapter further improve the efficacy of the Hilbert transform 

in edge detection by reducing its outlier sensitivity. In addition, this approach will allow us to 

enhance the processing and interpretation phases for more precise output and accurate information. 

This chapter will further discuss various computational approaches for implementing the 2D 

Hilbert transformation with our newly developed inversion-based C-IRLS-FT robust Fourier 

transformation method. 

5.2. THE CONVENTIONAL 2D HILBERT TRANSFORM 

The one-dimensional (1D) Hilbert Transform (HT) and Analytic Signal have played a significant 

role in signal processing since their introduction by Gabor (1946). The analytic signal is obtained 
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by eliminating negative frequency components from a signal's Fourier Transform, as we saw in 

Chapter 4, resulting in the following: 

 ý(ý) = ÿ(ý) + ÿÿV(ý) (5-1) 

where ÿV(ý) denotes the signal's Hilbert Transform, acquired through convolution: 

 ÿV(ý) = 1ÿ p ÿ(ÿ)H

4H

ýÿÿ 2 ý (5-2) 

The Analytic Signal allows for the calculation of instantaneous amplitude and phase as the 

modulus and angle of the complex function Eq (5-1). Numerous applications have been explored, 

including time-frequency signal analysis (Cohen, 1995). However, extending HT and AS concepts 

to two-dimensional (2D) cases and their application to images has been challenging due to the 

non-uniqueness of the multidimensional HT, leading to various approaches. 

Sommer et al. (1997) emphasized that three properties of 1D-AS must be satisfied also in 2D cases:  

- the first one is the AS spectrum is causal: S[(	f	) 	= 	0	"	f	 < 	0 (the function or 

property SA(f) equals zero for all negative frequencies.) 

- the second one is the mention that the original signal can be recovered from its 

associated Analytic Signal, with the real part of the AS equaling the original signal 

- the last one indicates that the envelope of an actual signal is acquired as its associated 

AS's magnitude, representing the instantaneous amplitude. 

To satisfy these conditions in 2D cases, several approaches have been proposed. Simultaneously, 

interesting applications for 2D-HT and the corresponding AS have been developed or identified, 

including corner detection (Kohlmann, 1996), AM-FM image models (Havlicek et al., 1998), 

phase congruency calculations (Kovesi and others, 1999), and edge detection (Pei and Ding, 2003), 

among others. In the subsequent discussion, x = (x,y) represents the spatial domain, and u = (u,v) 

is the 2D Fourier-transformed domain. The term s(x) denotes a real image, and S(u) is its 2D 

Fourier transform. The double asterisk symbolizes a 2D convolution, and sgn(ç) represents the 

signum function, defined in 2D and oriented in the x direction as: 

ýýÿ(ý) = v					21,											ý < 0							0,												ý = 0								1,											ý > 0 
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A signum oriented in the y direction has a notation that bears some resemblance. While the idea 

of an analytic signal does not apply to discrete signals as the ones analyzed in this study, it is still 

commonly referred to as such in the relevant literature. 

The 2D Hilbert Transform (2D-HT) is an extension of the 1D HT and is defined for a two-

dimensional function s(x, y) as follows (ýV(ý) represent the 2D-HT in time domain (Lorenzo-

Ginori, 2007)): 

 ýV(ý) = ý(ý) 77 1ÿ"ýÿ (5-3) 

For the frequency domain, the 2D Hilbert transform is: 

 ÿV(ÿ) = 	ÿ(ÿ)ÿ(ÿ) (5-4) 

where  

ÿ(ÿ, ÿ) = 2ýýÿ(ÿ)ýýÿ(ÿ)       
is the 2D mask of the Hilbert transform. The 2D Analytic Signal from Eq(5-1): 

 ÿ[(ÿ) = [1 2 ÿ	ýýÿ(ÿ)ýýÿ(ÿ)]ÿ(ÿ). (5-5) 

By multiplying the transformed image with a suitable mask, Equations (5-4) and (5-5) yield the 

2D-Hilbert Transform or the 2D-Analytic Signal in the frequency domain. The Hilbert transform 

can be calculated by using the inverse Fourier transformation: 

 ýV(ý) = 14!{ÿV(ÿ)} (5-6) 

or in another form 

 ýV(ý) 	= 14!,ÿ(ÿ)ý{ý(ý)}- (5-7) 

In calculating the discrete 2D Hilbert transform the 2D DFT (or 2D FFT) and its inverse, the 2D 

IDFT (or IFFT) is used resulting in the well-known outlier sensitivity. 

5.3. THE ROBUST 2D HILBERT TRANSFORMS C-IRLS-HT AND H-IRLS-HT 

Due to using DFT and IDFT, the conventional algorithm of the 2D Hilbert transform given in 

Equation (5-7) is sensitive to non-Gaussian noises, especially outliers. To make the 2D Hilbert 

transform more robust we apply our newly developed 2D C-IRLS-FT method and its inverse, the 
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C-IRLS-FT-1. The inversion-based 1D inverse Fourier transformation was introduced in Chapter 

4, its straightforward extension to the 2D case is performed and implemented in our Matlab 

software. So the robustified 2D Hilbert transform is introduced as 

 ýV(ý) 	= ÿ_ýýÿÿ_ýÿ4!,ÿ(ÿ)ÿ_ýýÿÿ_ýÿ{ý(ý)}- (5-8) 

and will be called 2D C-IRLS-HT.  

In this section, we introduce also the robust 2D Hilbert transform method based on a previously 

developed H-IRLS-FT procedure (Dobróka et al., 2012), in which the spectrum is discretized by 

using the Hermite functions. The new robustified 2D Hilbert transform is introduced as 

ýV(ý) 	= ÿ_ýýÿÿ_ýÿ4!,ÿ(ÿ)ÿ_ýýÿÿ_ýÿ{ý(ý)}- 
and will be called 2D H-IRLS-HT. In the following, the noise- and outlier sensitivity of the 

conventional and the robust Hilbert transform methods will be analyzed using synthetic 2D 

models. 

5.4. NUMERICAL INVESTIGATION  

In this study, we propose the development of a two-dimensional synthetic model with the size [-

1,1] in both x- and y direction (Figure 5-2). The test area is divided into 101*101 cells with a  

20*20 cells anomaly in the middle (having a unit value in the zero-valued background). The 

model's intricate design emulates a very noisy scenario, enabling a comprehensive understanding 

of the interaction between noisy and real data within the model. This meticulous evaluation will 

not only provide insights into the method's potential limitations but also elucidate opportunities 

for optimization.  

Ultimately, our synthetic model serves as a potential case for noise reduction approaches using the 

2D Hilbert transform with the inversion-based IRLS-FT method (2D C-IRLS-HT, 2D H-IRLS-

HT) and refining our understanding of complex phenomena in a controlled academic setting. 
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In the initial phase of our investigation, the conventional 2D Hilbert Transform method using DFT 

was employed on synthetic data devoid of noise to demonstrate its capacity to delineate the 

boundaries of anomalies within the dataset, as Figure (5-3) shows. The absence of noise in this 

controlled environment facilitated the unambiguous identification of the anomaly borders to 

Figure 5-2: The Generated 2D input noise free data set 

ÿ[ÿ] 

ý[ÿ] 

ÿ
ÿ
ý
ÿ
ÿý
ÿ
ý
ÿ
[2

] 

Figure 5-3: The generated conventional 2D Hilbert Transform on 

noise free synthetic data 
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compare it with the noisy one. By using a noise-free dataset, we aimed to establish a baseline 

performance metric to ascertain the effectiveness of the 2D Hilbert transforms using the IRLS 

method. This step was important in elucidating the underlying principles and potential limitations 

of the technique, which would subsequently inform the analysis of more complex, noise-affected 

data. By applying the 2D DFT, we aimed to accentuate the importance of frequency domain 

analysis in conjunction with the 2D Hilbert transform for a comprehensive understanding of the 

data. Consequently, the incorporation of 2D DFT analysis bolsters the robustness of the introduced 

method in comparison and contributes significantly to the ongoing development of advanced 

techniques for anomaly detection. We implemented the introduced 2D C-IRLS-HT, and the 2D H-

IRLS-HT methods in a Matlab environment and tested them. Using noise-free dataset the 2D 

IRLS-HT methods give the result shown in Figure (5-4). As it can be seen, the two results are 

similar with slightly better resolution of the H-IRLS-HT procedure. Because of the fact that the 

Hermite functions are eigen functions of the Fourier transform, the H-IRLS-HT method is more 

economic (the computation time is much smaller). So, in our later investigations we use the 

Hermite function-based method with the note, that the 2D C-IRLS-HT procedure gives similar 

results. 

 

As a first step, we show the response of 2D H-IRLS-HT when a 1D Hilbert kernel is applied to the 

2D model. Specifically focusing on the X-axis (with the kernel ÿ(ÿ, ÿ) = ÿýýÿ(ÿ)) the result 

shown in Figure (5-5) can be found, which are the change of the edges along the X- axes. Similarly, 

 
      (A)                (B) 

Figure 5-4. The 2D IRLS Hilbert transforms A) C-IRLS-HT in 2D view B) H-IRLS-HT in 2D view 
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using Hilbert transform with the kernel ÿ(ÿ, ÿ) = ÿýýÿ(ÿ) the change of the edges along the Y-

axes are detected (Figure 5-6). In a subsequent step, we used the complete Hilbert mask ÿ(ÿ, ÿ) =2ýýÿ(ÿ)ýýÿ(ÿ) in our 2D H-IRLS-HT method to find the full set of edges. The result is shown 

in Figure (5-7), which is in complete agreement with the conventional (DFT-based) view shown 

in Figure (5-3).  

  

Figure 5-6: The new 2D Hilbert Transform H-IRLS-HT method acting 

along the Y-axis 

Figure 5-5: The new 2D Hilbert Transform H-IRLS-HT method acting 

along the X-axis 
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To further evaluate the efficacy of the conventional and introduced methods under more realistic 

conditions, we incorporated noise into the synthetic dataset, simulating challenges similarly 

encountered in Figure (5-8). The introduction of noise aimed to test the resilience of both 

techniques in the presence of potentially interfering signals, which often obscure critical features 

and hinder accurate anomaly detection. By applying the conventional 2D Hilbert method and the 

2D H-IRLS-HT to the noisy dataset (with outliers), we sought to assess their respective 

Figure 5-7: The new 2D Hilbert Transform H-IRLS-HT method acting on X 

and Y axis 
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Figure 5-8: The generated synthetic 2D noisy input data set 
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performances and identify the most suitable approach for robust anomaly detection. This 

comparative analysis enabled us to draw meaningful conclusions regarding the strengths and 

weaknesses in the field of anomaly detection.  

 

Upon applying the traditional DFT-based 2D Hilbert transform to the noisy synthetic dataset, as 

shown in Figure (5-9), our analysis revealed several challenges and limitations inherent to this 

method. The output exhibited a significant level of noise, which adversely affected the clarity and 

sharpness of the identified anomaly borders. As a result, the edges were less distinct, leading to an 

impaired ability to accurately detect and characterize anomalies in more complex data sets. 

Additionally, the presence of numerous outliers within the data further exacerbated the difficulties 

encountered in the analysis process. These findings underscore the importance of refining existing 

techniques and exploring alternative approaches to mitigate the impact of noise and outliers, 

thereby enhancing the reliability and robustness of anomaly detection methods in complex, real-

world environments. In contrast, when we applied the newly introduced 2D H-IRLS-HT method 

to the noisy synthetic dataset, our results exhibited a marked improvement in both the clarity and 

the quality of the output, as shown in Figure (5-10). The noise present in the dataset was effectively 

mitigated, revealing a more accurate representation of the underlying spatial patterns. Notably, the 

absence of outliers in the analysis considerably enhanced the interpretability of the data, allowing 

for the clear identification and delineation of anomaly boundaries. The improved edge sharpness 

facilitated a more precise characterization of the anomalies, ultimately yielding more accurate 

results. This superior performance of the 2D H-IRLS-HT method highlights its potential as a robust 

Figure 5-9: The 2D DFT-based Hilbert transform of the noisy dataset A) 2D view B) 3D view  
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and reliable alternative for anomaly detection, particularly in challenging environments where 

noise and outliers may compromise the efficacy of conventional techniques. 

 

 

In a comprehensive comparative analysis of 2D data distance and model distance methods, it is 

important to scrutinize their capacity to counteract noise interference for improved edge detection, 

facilitating more accurate identification of anomalies. These two distinct methodologies differ in 

their approach to handling data, as we saw in Chapter 3. 

Data distance methods primarily involve calculating the dissimilarity between data points by 

employing various distance metrics. These metrics are instrumental in quantifying the degree of 

separation between individual points and thus aid in clustering, classification, or outlier detection 

tasks. Also, we used the proposed Root Mean Square (RMS) distance as a measure between the 

measured and calculated data in the space domain. The data distance between the noise-free and 

noisy data sets is 0.4091; meanwhile, the 2D H-DFT-HT method showed the data distance equal 

to 0.5197. On the other hand, the 2D H-IRLS-HT showed the data distance equal to 0.1074. 

Ultimately, a thorough evaluation of data distance method should emphasize their noise reduction 

efficacy, edge detection capabilities, and suitability for the specific application. The introduced 

method will enable more accurate identification of anomalies, even in the presence of considerable 

noise. 

Figure 5-10: The 2D H-IRLS-HT of noisy dataset A) 2D view B) 3D view  
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Furthermore, we aimed to evaluate the effectiveness of our proposed method on a more complex 

model, which contains the letters H and T (as abbreviation of Hilbert Transform). To simulate the 

challenge, we intentionally contaminated the model with noise in the form of outliers. The dataset 

was generated by constructing geometric representations of the H and T characters, followed by 

the addition of random noise with varying degrees of intensity, as shown in Figure (5-11). This 

allowed us to assess the robustness of the proposed algorithm in the presence of both structured 

and unstructured noise. Through iterative testing and refinement, we were able to observe the 

performance of our approach in identifying and mitigating the effects of outliers on the model's 

ability to discern the H and T characters accurately. The calculated IRLS-FT spectrum is 

demonstrated in Figure (5-12).  

We employed a defined geometric representation for both the H and T letters, centred in the middle 

of the model, to ensure a controlled environment for evaluating our proposed method. The T letter 

was constructed by assigning a binary value of 1 to the model in the following dimensions: the 

horizontal bar of the T was created using [38:44, 20:44], while the vertical bar was represented by 

[41:63, 29:35]. Similarly, for the H letter, we assigned a value of 1 to the model in three distinct 

dimensions: the left vertical bar was created using [38:64, 56:60], the right vertical bar with [38:64, 

76:80], and the connecting horizontal bar was represented by [47:51, 61:75].  

Figure 5-11: The generated synthetic 2D noisy input data set using H and 

T letters 
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These predefined positions allowed us to generate a dataset with clear, identifiable patterns of the 

H and T letters, which facilitated the evaluation of our method's performance in detecting and 

mitigating the impact of outliers in the presence of structured data. 

The Hilbert Transform method using DFT in Figure (5-12) and IRLS-FT with Hermit function in 

Figure (5-13) were applied to this model to compare the noise rejection capability.   

 

Figure 5-12: The Hilbert Transform method using DFT 
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Figure 5-13: The Hilbert Transform method using IRLS-FT 
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The results provide valuable insights into the effectiveness of the introduced method and suggest 

potential avenues for future research and optimization in the context of noise and outlier reduction 

in pattern recognition and edge detection. 

Thesis Four: 

We introduced the 2D C-IRLS-HT and 2D H-IRLS-HT Hilbert transform methods and sought to 

evaluate the efficacy of the conventional (DFT-based) 2D Hilbert transformation method and the 

newly developed procedures in detecting anomalies within a noisy dataset. The traditional DFT-

based 2D Hilbert transform encountered numerous challenges, including substantial noise levels, 

less distinct edges, and the presence of outliers, all of which impeded accurate anomaly detection 

and characterization in complex datasets. Our investigations show that compared to conventional 

methods, when the 2D H-IRLS-HT was applied to the noisy synthetic dataset, the results exhibited 

marked improvements in clarity, quality, and noise reduction, which led to a more accurate 

representation of the underlying spatial patterns. The superior performance of the 2D H-IRLS-HT 

and 2D C-IRLS-HT methods underscores their potential as a robust and reliable alternative for 

anomaly detection, especially in challenging environments where noise and outliers might 

compromise the effectiveness of conventional techniques. 
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Chapter 6 

6. FIELD DATA 

6.1. CASE STUDY 

The study area is located in the eastern part of Syria. The total area of the studied area is about 150 

km2 (Figure 6-1).  

 

6.2. THE GEOLOGICAL BACKGROUND OF THE MEASUREMENT AREA 

6.2.1. THE TECTONIC BACKGROUND OF THE EUPHRATES GRABEN 

Syria is located in the northern part of the Arabian Plate, south and west of the main edge where 

the Arabian and Eurasian plates meet. The Arabian Plate moves in a northeast-north direction and 

subducts under the Eurasian Plate through the Thrust Fault, forming the Zagros fold belt and the 

Bitlis Suture (Brew et al., 2001). The Euphrates Basin contains a series of normal faults (resulting 

from tensile forces) that created a series of uplifted structures that are conducive to trap formation. 

Figure 6-1: Syria map showing the study area situation in East of Syria, and displaying 

locations of Rutbah and Rawdah Uplifts. 
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As a result, the Euphrates Basin, which is 60-120 km wide, forms an incomplete rift system (Fault-

Bounded Failed Rift) that trends northwest-southeast within the Intracratonic (a stable region of 

the earth's crust composed of an ancient crystalline basement that includes the old Proterozoic 

shields) located in the northern part of the Arabian Plate, separated from the uplift of the Rataba 

to the south and the uplift of the Rawdah to the northeast (Figure 6-2). 

The Euphrates Basin formed as a result of severe fracturing and vast subsidence during the Upper 

Cretaceous. The initial phase of the Euphrates Basin rift began with the spread of Toronian - 

Coniacian discordance due to an uplift that affected the Pre-rift region. Evidence of this rift 

includes the occurrence of Redbed rocks resulting from the alteration of volcanic tuff rocks that 

flowed due to early fractures. The Goudia formation below the Redbed was also subjected to 

weathering and erosion. The fracturing resulting from tensile forces, in addition to the formation 

of the Euphrates Basin, led to the formation of NW-SE-trending normal faults and the relative 

separation of the Rawdah and Rataba uplifts. However, these fractures that occurred in the earth's 

crust did not reach the stage of continental separation. 

The rifting phase continued during the Santonian period of the formation of the Ramah Group, but 

with less intensity. Another rifting phase followed it during the Campanian and early Maestrichtian 

times of the formation of the Ark and Lower Shiranish formations. During this phase, volcanic 

Figure 6-2: A map shows the location of some of the major tectonic units, 

including the Al-Furat Depression, as well as the Zagros fold belt and the Bitlis 

suture (Alsouki et al. 2015). 
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activity ceased, and there was a widespread subsidence in the Euphrates Basin, especially in its 

central part. Seismic data indicates that the rifts and fractures on the wings of the Euphrates Basin, 

and its southern region, generally stopped at an early stage compared to the central part of the 

basin, where the growth of faults towards the upper formations of the Lower Shiranish continued. 

Seismic and well data also show that the upper Ark and Shiranish formations were deposited 

horizontally (Onlap), with a change in thickness, during the period of significant initial rifting in 

the tilted fault blocks.  

This confirms that the deposition of the lower Ark and Shiranish formations coincided with the 

later tectonic activity of the initial rifts, where they were deposited with large thicknesses. The 

activity and growth of the faults began to decline gradually during the deposition of the upper part 

of the Shiranish formation. This stage coincided with the increasing effect of the subsequent wide 

subsidence due to the pressures applied to the brittle part of the earth's crust because of the 

increased thickness and weight of the Upper Cretaceous sediments. It also coincided with a period 

of thermal subsidence resulting from the decline and cessation of the upper part of the mantle's 

twisting.  

The local changes in the subsidence rate during the deposition of the upper and lower Shiranish 

formations are shown through the different patterns of their orientation (onlap, offlap) overlying 

the formations below belonging to the Lower Cretaceous. The onlap pattern of the Shiranish 

formations' orientation indicates that the uplift or tilting of the fault blocks occurred in a later stage 

after the deposition of the Upper Cretaceous formations, while the offlap pattern indicates that the 

uplift occurred in an earlier stage before the deposition of the Shiranish formations, which in turn 

accelerated and increased the uplift and tilting of the fault blocks.  

The third epoch (Tertiary) was characterized, particularly during the Paleogene, by a wide thermal 

subsidence resulting from thermal equilibrium restoration in the lithosphere after the rifting stage 

(Litak et al., 1998). During this period, a wide depositional subsidence occurred in the Euphrates 

area, leading to fragmentation and shattering along active fault lines and blocks in the Euphrates 

Basin. However, the most significant and dominant event in Syria, both generally and partially on 

the western outskirts of the Euphrates Basin, occurred during the Miocene, when the Crustal 

Shortening system controlled Syria's structure as a result of compressive forces caused by the 

continental collision of the Arabian Plate with the Eurasian Plate, particularly the northern borders 
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of Syria, near the Anatolian region of Turkey. The compressive deformation led to a secondary 

inversion (resulting in the uplift and folding of northeast-southwest-trending faults) in the Tadmur 

and Sinjar sedimentary basins with an SW-NE trend. This event only affected the western outskirts 

of the Euphrates Basin adjacent to the Tadmur Basin. At the same time, this deformation was 

utterly absent from the central and southern parts of the Euphrates Basin. Several theories explain 

the mechanism that caused the Euphrates Rift, as some researchers, such as (Alsdorf et al., 1995), 

have assumed that the continental collision between the Arabian and Eurasian plates led to the 

creation of intense vertical forces on the fault line, contributing to the formation of the Euphrates 

Rift system. 

However, the early cracking of the Euphratesbefore the mentioned continental collision justifies 

the rejection of this hypothesis. Others, such as Lovelock, have suggested the Slab-pull theory as 

a possible mechanism for the formation of passive rifting in the Euphrates. Another hypothesis 

assumes that the gradually increasing load of volcanic formations led to the formation of strong 

forces that caused the Euphrates rifting, which ceased with the Arabian plate's continental collision 

during the Maestrichtian period. The Euphrates rifting system can be divided into several structural 

units based on the degree of deformation and geometric shape, including the deep central graben 

unit, a set of peripheral graben units surrounding the central Euphrates graben, stable and relatively 

elevated platforms, as well as flat, elevated terraces or high plateau areas surrounding the periphery 

(Figure 6-3) (Alsouki and Taifour, 2015).  

Figure 6-3: Illustrates the assumed tensional forces responsible for the formation of the fracture 

system in the Euphrates (Alsouki et al. 2015). 
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The Central Euphartes extends northwest-southeast and forms the deepest part of the Euphrates 

Rift Basin, where the depth increases towards the northwest, away from the humid and alluvial 

ridges located in the south and southeast. During the Upper Cretaceous (rift) period, intense 

tectonic forces were concentrated in the Central Euphrates Basin, resulting in the formation of 

inverted blocks separated by large NW-SE faults that do not trend towards the axis of the central 

basin but instead are inclined away from it. Small peripheral grabens, such as the Madaba, 

Burghuth, Jido, and Ward grabens (Figure 6-4), branch off from the Central Euphrates to the south 

and southeast. To the north and northeast, there are the Sijan, Tayyani, and Northern grabens, 

which are characterized by their narrowness and great depth its also surrounded by very large 

faults. Many of these grabens are filled with continental sediments representing the Dier Abu Saif 

Formation, which resulted from the weathering of intrusive volcanic rocks during the rift stage. 

Stable, relatively elevated platforms separate these grabens in the rift basin, such as the Central 

Platform in the northeast of the central basin and the Sijan block to the north, as well as the southern 

platform, including the Ward, Madaba, Akash, and Aqaba blocks to the south and southeast.  

Figure 6-4: Tectonic map of the Al-Furat Basin during the Late Cretaceous base period (Alsouki et al. 

2015). 
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Most of these platforms are inclined towards the central axis of the rift system, with the inclination 

of some platforms potentially starting before the early stages of rifting, but most occurring during 

and after the rift stage, i.e., during the broad subsidence phase of the Upper Shiranish/Mastrichtian 

and Paleogene times. 

6.2.2. THE LOCAL STRUCTURAL ELEMENTS OF THE EUPHRATES GRABEN 

The Euphrates Graben, situated in the northern part of the Arabic plate, is considered a rift fault 

system formed due to intensive intracontinental plate deformation. This Graben with Anah Graben 

located inside Iraqi territory has evolved within the northern Arabic plate and divided the Rutbah 

Zone "oriented the N-S" to two stable areas, the Rutbah Uplift to the south and the Rawdah 

(Khleissya) Uplift to the northeast in Late Miocene-present age (Al-Heety et al., 2017). Both stable 

areas comprise significant basement uplifts. This rift fault system with general trending E-W to 

NW-SE could be categorized into several groups of structural elements based on the intensity and 

shape of the structural deformations: central graben, marginal grabens, and marginal platforms.  

The central graben with NW-SE orientation is considered the largest structural element and 

constitutes the deepest zone of the rift Euphrates Basin. It is governed by a complicated system of 

overturned fault blocks like Omer Block, the largest oilfield in the Euphrates Graben and Syria. 

This rift basin also contains several rising platforms or terraces like Sijan Terrace and Madabe 

Platforms. The Northern platform extends towards the west side of the Rawdah Uplift, the top of 

which lies on the outlines with Iraqi territory.  

The Rawdah Uplift appears to be relatively moderate compared to the Euphrates structure slopes 

as indicated by seismic profiles. Marginal grabens exist on the sides of the Euphrates Graben, to 

the south, southeast, and northeastwards of the main graben, like the Madabe Graben, Jido Graben, 

Elward Graben, the Anah Graben, the Northern Graben, and Sijan Graben (Figure 6-5). These 

grabens contain vast quantities of rocks that are composed of sedimentary succession and early 

syn-rift volcanic rocks. 
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6.3. GRAVITY DATA 

The exploration company carried out gravity and magnetic geophysical measurements within an 

area of approximately 128 km2. The Scintrex CG gravity meter, which is the latest device from 

Scintrex with a standard deviation of 0.5 mGal, was used along with a GPS locator. Gravity 

measurements were taken and then interpreted using a set of basic gravity data corrections (terrain, 

Bouguer, free air, and other corrections) while considering the rock density of the study area, which 

was determined to be 1.9 g/cm3.   

In order to utilize the gravitational measurements to obtain important subsurface geological 

information through interpretation processes, it was necessary to carry out some necessary 

processing operations. In the previous stages of my research in this area, we utilized Surfer 

software to identify the structure within the dataset. However, as discussed in the later chapters, 

we have now introduced a more advanced method 2D C-IRLS-FR to effectively use it in low-pass 

filter process. This innovative approach will contribute to a more robust interpretation of the data 

and facilitate the development of more reliable conclusions. 

Figure 6-5: The structural map of the Euphrates Graben based on seismic data 

displaying the local structural elements, particularly Northern and Sijan 

Grabens besides Omar and Sijan blocks located on the study Area (Alsouki et 

al. 2015). 
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In the subsequent phase of the research, we employed MATLAB as the primary tool for data 

processing and analysis. The first step in this procedure involved importing the dataset into the 

MATLAB environment as shown in Figure (6-6). This allowed us to leverage the powerful 

computational capabilities of the software to conduct a comprehensive examination of the data. 

By utilizing the extensive suite of functions and libraries that we developed in this thesis, we were 

able to effectively perform a series of operations, such as filtering, and visualization, to better 

understand the underlying patterns and trends within the data. 

 

 

In our investigation, we employed 2D C-IRLS-FT method to systematically evaluate the gravity 

measurement dataset, with the primary objective of testing the method itself and examining its 

subsequent effects on the data prior to conducting any in-depth analysis. This rigorous approach 

facilitated a comparative assessment, enabling us to establish a comprehensive understanding of 

both the method's efficacy and its impact on the unaltered gravity measurements. Consequently, 

this preliminary examination served as a robust foundation for further investigation, ensuring the 

reliability and validity of our findings in the context of gravity measurement research. Figure (6-

7) shows the gravity measurements before and after applying the introduced method. 

Figure 6-6: The gravity measurements in 3D view 
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The minimum values of gravity anomalies are attributed to the gradual subsidence of the basement 

surface, reaching its lowest point in the Sejan area located southwest of the study area. The low-

range areas of the apparent gravity anomalies, colored in blue, are filled with large thicknesses of 

sediments from the second, third, and fourth periods, which are characterized by their low density. 

The Bouguer anomaly values in the study area change from 31 mGal in the western part to more 

than 36 mGal in the eastern part of the study area, where gravity values increase from the north 

and northwest to the south and southeast. The high values of gravity anomalies in the southeastern 

part are attributed to the rise of basement rocks extending in a north-south elongated range. This 

range represents the western edge of the Rawda uplift, which increases in elevation towards the 

east in the direction of the Iraq lands. 

We demonstrate the application of a two-dimensional low-pass Butterworth filter on gravity data. 

After converting the data to double precision, a 2D C-IRLS-FT is applied. A grid for the low-pass 

Butterworth filter is created, with its size defined by the dimensions of the data. The filter 

parameters, such as the normalized cutoff frequency and filter order, are set to 0.1 and 2, 

respectively. The low-pass Butterworth filter, which is a function of the distances from the center 

point of the grid, is then applied to the gravity data in the frequency domain (Butterworth, 1930). 

The filtered data is then shifted back, and the inverse procedure is applied to convert it back to the 

spatial domain as a part of the 2D C-IRLS-FT method. Finally, low-pass filtered gravity data are 

visualized, as shown in Figure (6-8). The Fourier Transform, using 2D C-IRLS-FT, a key 

Figure 6-7: The gravity measurements A) Befor B) After apply the 2D C-IRLS-FT method 
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component in this procedure, allows for the decomposition of the gravity data into its frequency 

components, enabling the application of the low pass filter in the frequency domain. 

 

By providing a more reliable and coherent picture of the subsurface, the method enabled a more 

efficient and accurate assessment of the geological features and their spatial relationships. 

In summary, the utilization of the 2D C-IRLS-FT method for calculating the low pass filter as an 

example of an application proved to be a valuable addition to the analytical toolkit. The results 

obtained through this approach facilitated a more comprehensive interpretation of the subsurface 

structures, contributing to an understanding of the geological context of the study area. 

  

Figure 6-8: Low pass filter for the gravity data using 2D-IRLS-FT method 
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6.4. MAGNETIC DATA 

As for the magnetic measurements, the MINIMAG MMPOS-1 device was used, which can be 

used as a programmable independent magnetic station, taking one reading every twenty seconds, 

with an operating range between 20-100,000 nT, and an absolute measurement accuracy about  

±10 nT due to problems in the device during measurements. 

We imported magnetic data into the MATLAB environment to complement our analysis. 

Incorporating this supplementary dataset provided a broader perspective on the subsurface 

structures and allowed for a more comprehensive understanding of the underlying geological 

features, as shown in Figure (6-9). 

The magnetic intensity map indicates a consistent increase in magnetic intensity values from the 

southwestern region toward the northeastern region. The intensity increases from a value of 10 nT 

in the southern part to a value of 76 nT in the northern and northeastern parts. This can be attributed 

to the gradual rise of basement rocks in the eastward and northeastward directions within the study 

area, which corresponds to the uplift of basement rocks towards Rutba. Conversely, the basement 

subsides towards the south in the direction of depression Sejan and Bargouth, where the thickness 

of the sedimentary cover reaches its maximum, resulting in a decrease in magnetic field values.  

Figure 6-9: The magnetic measurement in 3D view 
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To gain further insight into the properties of the field data, we proceeded to calculate the frequency 

spectrum of the data set (Figure 6-10). 

 

In light of the findings from the spectral analysis, we proceeded to apply the C-IRLS-FT method 

(Figure 6-10) to the selected data segment with the aim of applying the pole reduction, reducing 

Figure 6-11: The calculated data using C-IRLS-FT method 

Figure 6-10: The spectrum of the magnetic data using 2D C-IRLS-

FT method  
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noise, and improving data quality. The implementation of this technique resulted in a significant 

reduction in noise levels, thereby enhancing the overall clarity and interpretability of the dataset 

(Figure 6-11). 

The pole reduction process, as shown in Figure (6-12), which is a standard approach used in the 

analysis of magnetic anomalies. This method involves transforming the measured magnetic data 

to a common reference, typically the magnetic pole, in order to minimize the effects of varying 

magnetic inclinations (45-50o) and declinations (60o positive). By applying the pole-to-pole 

reduction, we were able to effectively minimize any potential distortions within the dataset, 

ultimately enabling a more accurate assessment of the underlying geological structures and 

properties. 

Following the application of the pole-to-pole reduction technique, the clarity and co  herence of 

the geological structures within the dataset were significantly enhanced. The removal of outliers 

and noise from the data led to a more distinct representation of the structure, allowing for a more  

straightforward and reliable interpretation. Consequently, this improved data quality facilitated the 

identification of key geological characteristics and enabled a more accurate assessment of the 

underlying spatial patterns and relationships. In summary, the combination of the presented noise 

Figure 6-12: Pole reduced magnetic map using 2D C-IRLS-FT method 
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reduction methods and the pole-to-pole reduction technique played an essential role in refining the 

dataset and ensuring that the subsequent interpretation was both accurate and robust. 

6.5. SEISMIC DATA 

The data used in this area include a three-dimensional seismic survey (seismic cube) covering an 

area of approximately 150 km2. The boundaries are shown in Figure (6-13). The seismic lines were 

surveyed in a northeast-southwest direction. The data was processed using the pre-stack time 

migration method to improve the quality and image of the seismic data, which achieved good 

resolution throughout the geological section from the Triassic to the top. However, this feature 

weakens in deeper layers due to energy attenuation and high-frequency absorption. The quality of 

the seismic data also decreases in the time levels close to the surface due to energy absorption by 

the salt rocks. 

 

We will present a method for denoising seismic data using the 2D C-IRLS-FT and k-means 

clustering technique that will be applied to a smaller region within the seismic section that contains 

a significant amount of noise. The method involves transforming the seismic data into the 

frequency domain, identifying the significant spectral components through clustering, and 

Figure 6-13: The shape of the study area 
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subsequently filtering out the noise components. The seismic data is first transformed into the 

frequency domain in the process of the 2D C-IRLS-FT method. The amplitude spectrum is 

computed as the absolute value of the transformed seismic data and reshaped into a one-

dimensional array to serve as input features for the k-means clustering algorithm. In order to 

provide a comparative analysis of the denoising method, we also compute the amplitude spectrum 

of the seismic data without applying the proposed technique, as Figure (6-14) showed. This will 

serve as a baseline for evaluating the effectiveness of the 2D C-IRLS-FT and k-means clustering 

method in enhancing the amplitude spectrum and reducing the noise components.  

 K-means clustering (MacQueen, 1967) is a partition-based clustering technique that aims to 

minimize the sum of squared distances between each data point and the centroid of the cluster it 

belongs to. The algorithm is initialized with 'k' centroids, and each data point is assigned to the 

nearest centroid. The centroids are then updated as the mean of all the data points assigned to them. 

This process is iterated until convergence or a predetermined number of iterations is reached. 

In the introduced method, k-means clustering is applied to the feature set to separate the significant 

spectral components (signal) from the noise that remains from the first process of the 2D C-IRLS-

FT method, with the number of clusters, k, set to 2, representing the signal and noise components.  

 

Figure 6-14: The spectrum of the noisy seismic data  
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The cluster with the highest mean amplitude is identified as the signal cluster. Using the clustering 

results, the seismic data in the frequency domain is filtered by setting the amplitude of the noise 

cluster components to zero. The filtered amplitude spectrum is visualized in Figure (6-15), and the 

inverse process of the 2D C-IRLS-FT is applied to the filtered data to obtain the denoised seismic 

data in the spatial domain. 

 

The proposed method demonstrates effective denoising of the seismic data, as evidenced side-by-

side comparison of the original and denoised seismic sections, as shown in Figure (6-16). 

The amplitude spectra visualizations show a clear distinction between the signal and noise 

components, and the filtered data retains the significant spectral components while eliminating the 

noise. 

  

Figure 6-15: The filtered amplitude spectrum of the noisy seismic 

data  
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Thesis Five: In the concluding analysis of the research conducted in the eastern part of region 

Syria, we introduced a more advanced method, the 2D C-IRLS-FT, particularly in the low-pass 

filtering of gravity data. The inversion-based Fourier transform using the Chebyshev function as 

basis function (2D C-IRLS-FT method) played a pivotal role in this procedure, enabling the 

decomposition of the gravity data into its frequency components. Subsequent spectral analysis 

illuminated the necessity of applying the 2D C-IRLS-FT method to a chosen data segment for 

noise reduction, pole reduction, and overall enhancement of data quality. The pole-reduction 

technique further amplified the coherence of the geological structures within the dataset, leading 

to a noticeable improvement in data quality. The sufficient reduction of noise and outliers from 

the data yielded a more distinct representation of the structure, thereby facilitating a more reliable 

interpretation. As an extension of our current research scope, a novel technique that combines the 

2D C-IRLS-FT method and k-means clustering was deployed for denoising seismic data. This was 

specifically undertaken within a seismic section that harbored a significant noise component. This 

method hinges on the transformation of seismic data into the frequency domain.  

  

Figure 6-16: The orginal seismic section and the denoised one using 2D C-IRLS-

FT with clustering 
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Chapter 7 

 

7. CONCLUSION 

The research problem addressed in this PhD thesis revolves around the persistent challenge of 

noise and outlier contamination in geophysical data, specifically focusing on seismic, gravity, and 

magnetic measurements, as well as in other 2D images that encompass geophysical data. Noise 

and outliers in geophysical datasets can originate from various sources, such as instrumental errors, 

environmental factors, and processing artefacts. The presence of these unwanted signals can 

significantly impact the accuracy and reliability of interpretations and output results, ultimately 

affecting our understanding of subsurface structures, resource exploration, and hazard assessment. 

This, in turn, may lead to suboptimal decision-making in the context of natural resource 

management, environmental protection, and infrastructure development. In light of these 

challenges, there is a pressing need to develop effective methodologies for identifying and 

mitigating noise and outlier-related issues, intending to enhance the quality and reliability of 

geophysical data interpretation. This thesis aims to contribute to this area of research by exploring 

novel techniques and algorithms for noise and outlier detection and reduction by assessing their 

performance in various geophysical applications. We recognize the importance of Fourier 

transformation as a widely utilized tool in geophysical data processing, particularly for enhancing 

the quality of datasets and providing a comprehensive picture of subsurface geology, but the 

traditional Discrete Fourier Transform (DFT) approaches have limitations in processing outlier 

noisy data. From this point, to address these challenges, this thesis introduces an inversion-based 

1D and 2D Fourier transformation (C-IRLS-FT) algorithm. These research findings demonstrated 

significant improvements in both the space and frequency domains, providing a strong foundation 

for the development and application of the C-IRLS-FT algorithm in the context of noise and outlier 

detection and reduction in geophysical data. 

To comprehensively evaluate the applicability and effectiveness of the C-IRLS-FT method, three 

of the objectives of this thesis are centred around reducing the sensitivity to outliers by 

implementing the inversion-based Fourier transformation on synthetic 1D and 2D datasets, as well 

as real field measurements. The overarching aim is to improve the reliability and accuracy of 
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geophysical data interpretation, paving the way for more informed decision-making in resource 

exploration. To achieve this goal, the proposed C-IRLS-FT inversion approach is primarily 

grounded in the iteratively reweighted least-squares Fourier transformation. This iterative process 

allows for the fine-tuning of the analysis and enhances the ability to address noise and outlier-

related issues. The series expansion technique is employed to discretize the Fourier frequency 

spectrum, which provides a more manageable and computationally efficient representation of the 

data. The expansion coefficients are then estimated as the solution to the over-determined inverse 

problem, further refining the analysis and ensuring that the method is robust in the face of diverse 

challenges. The Chebychev polynomials are used as basis functions for this approach. This choice 

enables rapid and accurate computation of the elements of the Jacobian matrix, streamlining the 

overall process and increasing the method's efficiency. Furthermore, the most frequent value 

(MFV) method is employed to address the issue of scale parameters, which can be a critical factor 

in the analysis of geophysical data. By iteratively determining the Cauchy-Steiner weights through 

an internal iteration loop, the MFV method minimizes data loss and contributes to the robustness 

of the C-IRLS-FT method. Overall, this carefully crafted combination of methods and techniques 

results in a powerful and effective approach to handling noise and outlier challenges in geophysical 

datasets.  

Initially, the inversion-based Fourier transformation method using Chebychev polynomials (C-

IRLS-FT) is scrutinized using one-dimensional synthetic datasets. In order to evaluate its noise 

rejection capabilities, a comparison is made between the proposed inversion technique and the 

conventional Discrete Fourier Transformation (DFT) method, referencing the research by Dobroka 

et al. (2012). A time-domain 1D synthetic wavelet is created for this purpose. To gauge the 

sensitivity to noise, the initially noise-free wavelet is intentionally contaminated with both 

Gaussian and Cauchy noise, which mimics real field data measurements. Subsequently, the real 

and imaginary components of the Fourier frequency spectrum are calculated using both the 

traditional DFT and the inversion-based C-IRLS-FT methods, converting the noisy datasets from 

the time domain to the frequency domain. The results indicate that the inversion-based Fourier 

transformation (C-IRLS-FT) method demonstrates robustness and a significant ability to mitigate 

the influence of outliers compared to the outcomes achieved using the conventional DFT method. 

This observation is further substantiated by numerical data derived from data and model distance 

values. The superior performance of the C-IRLS-FT method in addressing noise and outlier 
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contamination underscores its potential for improving the accuracy and dependability of 

geophysical data interpretation across various applications. 

Owing to the effectiveness of the IRLS inversion technique in processing 1D datasets, the 

inversion algorithm is further refined for application to 2D synthetic data. The 2D synthetic data 

is generated to encompass a rectangular region with dimensions spanning from -1 to 1 unit for 

both the x and y directions. Additionally, this dataset features an anomaly located centrally with 

dimensions of -0.2 to 0.2 units for both x and y directions. The sampling intervals are established 

at 0.04 units for both directions, resulting in 101x101 data points. To assess the outlier sensitivity, 

the dataset is contaminated with random Gaussian and Cauchy noise, similar to the 1D case. To 

achieve inversion accuracy and stability, the Chebychev polynomials were used as a basis function 

of order (Mx=My=26) and selected for data processing calculations. Upon data examination, it 

becomes clear that the 2D C-IRLS-FT technique demonstrates superior noise reduction capabilities 

in comparison to the traditional 2D DFT approach. However, it is crucial to develop a more robust 

and effective method for filtering out random noise and outliers, considering the limits of the Least 

Squares and 2D DFT methods. Therefore, it is highly recommended to explore the utilization of 

the 2D C-IRLS-FT method for improved noise reduction in 2D geophysical data. 

Building upon the foundation of previous research, this study has further explored the critical role 

of attributes in seismic data processing and interpretation. Attributes are essential tools for 

extracting crucial information, such as physical and geometric parameters, which may not be 

obtainable through conventional means. Since the seminal work by Taner et al. in 1979, the field 

has experienced significant growth, resulting in a diverse range of attributes that can be classified 

into various categories, such as physical, geometric, and procedural. In the realm of developing 

processing methods, optimizing the signal-to-noise ratio is of utmost importance. Fourier 

transforms often play a pivotal role in this process, and our previous work proposed a robust 

Fourier transform inversion (C-IRLS-FT) procedure that effectively suppresses outliers and 

significantly improves the signal-to-noise ratio. On these findings, we further explored the 

application of this procedure to computing attributes, with a particular focus on the Hilbert 

transform, which serves as a vital component of the robust/resistant inversion framework. The 

Hilbert transform allows for the analysis of the phase and frequency components of a signal. In 

this study, we have demonstrated that the newly developed method, referred to as C-IRLS-HT, 
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outperforms the traditional Hilbert transform method in reducing noise for two seismic attributes. 

This superior performance is evidenced by the lower data distance values obtained through its 

application. Specifically, when Method C-IRLS-HT was applied to a dataset with high levels of 

generated noise for the first attribute (Reflection Coefficient), it demonstrated a significant 

reduction in error, resulting in more accurate and reliable data compared to the traditional Hilbert 

transform method. Similarly, for the second attribute (Instantaneous Phase), Method C-IRLS-HT 

showed greater effectiveness in reducing error when applied to a dataset with the same noise levels, 

as opposed to the traditional Hilbert transform. These findings not only underscore the 

effectiveness of Method C-IRLS-HT as a more robust and reliable method for data analysis in 

situations where noise reduction is essential, but they also point to the potential for further 

advancements in the field of seismic data processing and interpretation through the development 

and application of innovative techniques. 

Expanding on the foundational principles of the one-dimensional Hilbert Transform, the two-

dimensional (2D) Hilbert Transform has demonstrated its potential as an influential instrument in 

image processing. By enabling the efficient analysis and extraction of spatial information and the 

identification of features that may be hidden by traditional methods, the 2D Hilbert Transform has 

made significant strides within the realm of earth science-related image processing, particularly in 

edge detection, noise reduction, and image enhancement. The 2D Hilbert Transform can be 

characterized as a convolution operation involving the image and a 2D Hilbert kernel, which is 

frequently derived from the product of two 1D Hilbert kernels. This operation can be extended to 

generate a 2D analytic signal that encompasses both the original image data and its Hilbert 

Transform, providing valuable insights into the image's spatial frequency content and phase 

information. In this research, we sought to evaluate the efficacy of the conventional 2D Hilbert 

method and the newly introduced both 2D C-IRLS-HT and 2D H-IRLS-HT method (using Hermite 

functions as basis functions) in detecting anomalies within a noisy dataset. The traditional DFT-

based 2D Hilbert transform encountered numerous challenges, including substantial noise levels, 

less distinct edges, and the presence of outliers, all of which impeded accurate anomaly detection 

and characterization in complex datasets. These findings emphasize the necessity of refining 

existing techniques and exploring alternative approaches to enhance the reliability and robustness 

of anomaly detection methods. Conversely, when the 2D H-IRLS-HT method was applied (due to 

speed efficiency) to the noisy synthetic dataset, the results exhibited marked improvements in 
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clarity, quality, and noise reduction, which led to a more accurate representation of the underlying 

spatial patterns. Additionally, the elimination of outliers significantly enhanced the interpretability 

of the data, enabling the clear identification and delineation of anomaly boundaries. The superior 

performance of the 2D H-IRLS-HT and 2D C-IRLS-HT methods underscores their potential as a 

robust and reliable alternative for anomaly detection, especially in challenging environments 

where noise and outliers might compromise the effectiveness of conventional techniques. 

In the concluding analysis of the research conducted in the eastern part of region Syria, spanning 

approximately 128 km2, gravity, and magnetic geophysical measurements were performed by an 

exploration company. The use of the Scintrex CG gravity meter, paired with GPS locating, allowed 

for the collection of good measurements. These measurements underwent a series of necessary 

corrections considering the rock density of the study area. The intention was to utilize these 

gravitational measurements to yield valuable subsurface geological information through intricate 

interpretation processes. In the prior stages of my last research, we employed the Surfer software 

to identify the structure within the dataset. As the research evolved, we introduced a more 

advanced method, the 2D C-IRLS-FT, particularly in the low-pass filter process. The study 

systematically applied the 2D C-IRLS-FT method to evaluate the gravity measurement dataset. 

Our main objective was to examine the effectiveness of this method and its impact on the data 

before proceeding with any comprehensive analysis using a two-dimensional low-pass 

Butterworth filter on the data set. The Fourier Transform, using the 2D C-IRLS-FT method, played 

a pivotal role in this procedure, enabling the decomposition of the gravity data into its frequency 

components. In essence, the 2D C-IRLS-FT method proved to be an invaluable addition to the 

analytical toolkit, particularly when calculating the low pass filter. It facilitated a more thorough 

interpretation of the subsurface structures, thereby contributing to a comprehensive understanding 

of the geological context of the study area. Proceeding with the investigation, the use of the 

MINIMAG MMPOS device, a programmable independent magnetic station, was crucial in 

capturing readings every twenty seconds within a significant range, despite occasional 

inaccuracies. Subsequent spectral analysis illuminated the necessity of applying the 2D C-IRLS-

FT method to a chosen data segment for noise reduction, pole reduction, and overall enhancement 

of data quality. The successful implementation of this method facilitated a significant decrease in 

noise levels, effectively improving the interpretability of the dataset. Particularly, the pole 

reduction process, a standard in magnetic anomalies analysis, proved instrumental in minimizing 
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the effects of varying magnetic inclinations and declinations, thus ensuring the accuracy of the 

evaluation of the underlying geological structures and properties. The pole-to-pole reduction 

technique further amplified the coherence of the geological structures within the dataset, leading 

to a noticeable improvement in data quality. The elimination of noise and outliers from the data 

yielded a more distinct representation of the structure, thereby facilitating a more reliable 

interpretation. As a result, it became possible to identify key geological characteristics and assess 

the underlying spatial patterns and relationships more accurately. In essence, this study 

underscores the synergistic impact of noise reduction methods and pole-to-pole reduction 

techniques in refining the dataset, thereby fostering robust and accurate subsequent interpretations. 

As an extension of our current research scope, a novel technique that combines the 2D C-IRLS-

FT method and k-means clustering was deployed for denoising seismic data. This was specifically 

undertaken within a seismic section that harboured a significant noise component. This method 

hinges on the transformation of seismic data into the frequency domain, followed by the 

identification of substantial spectral components via clustering and, ultimately, the filtering out of 

noise components. The procedure initiates the transformation of seismic data into the frequency 

domain via the 2D C-IRLS-FT method. The amplitude spectrum, computed as the absolute value 

of the transformed seismic data, is then reshaped into a unidimensional array. This reformed data 

serves as the input feature for the k-means clustering algorithm. To provide a comparative 

assessment of the denoising technique, the amplitude spectrum of seismic data was computed 

without applying the proposed approach, thus serving as a benchmark for evaluating the 

effectiveness of the combined 2D C-IRLS-FT and k-means clustering technique in amplifying the 

amplitude spectrum and diminishing the noise components. The results of this advanced method 

underscored its efficacy in denoising seismic data, as evidenced by the side-by-side comparison of 

the original and denoised seismic sections. The amplitude spectra visualization elucidated a clear 

demarcation between the signal and noise components, with the filtered data preserving the 

significant spectral components while eliminating the noise, thereby underscoring the superior 

performance and potential applicability of this technique.  
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