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Abstract 

Bioinformatics experiments usually require efficient computational systems that streamline the 

data processing. Recent advances in high-throughput technologies have been expanding the 

experimental scenario. This fact is producing an avalanche of unmanageable data converting the 

biological sciences from a poor data discipline to a rich one. Furthermore, next-generation 

sequencing (NGS) technologies created to sequence very long DNA pieces at low cost, are 

widely used to generate biological data. Unfortunately, the bioinformatics‘ tools haven‘t changed 

their algorithms and computational techniques to deal with this data explosion. Therefore, the 

integration of biological data, as a product of those technological advances, is far from being a 

solved task although it is one of the most important and basic element inside the bioinformatics 

research and/or System Biology projects. 

Hence, in this thesis, we developed a biological data integration framework (JBioWH) that has a 

modular design for the integration of the most important biological databases. The framework is 

comprised of a Java API for external use, a desktop client and a webservices application. This 

system has been supplying integrative data for many bioinformatics projects. Also, a program 

(Taxoner) was developed to identify taxonomies by mapping NGS reads to a comprehensive 

sequence database. As a result of alterations to the indexing used, this pipeline is fast enough to 

run evaluations on a single PC, and is highly sensitive; as a result, it can be adapted to the 

analysis problems such as detecting pathogens in human samples. Finally, a workflow for DNA 

sequence comparison is presented. This workflow is applied either to create a marker database 

for taxonomy binning or just to obtain unique DNA segments among a group of targets 

sequences. It is based on a set of in-house developed programs that includes the JBioWH and 

Taxoner. All the programs developed are freely available through the Google Code Platform. 
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1 Introduction 

The introduction of information technology to manage the biological data has been 

changing the biological research. Also, a technological revolution on labs, like low-cost 

genomic DNA sequencing technologies and biological assays made by robots, have been 

contributing to this new era of the biological sciences. 

The field of Bioinformatics is a product of this new era. The National Center for 

Biotechnology Information (NCBI) defines bioinformatics in 2001 as: 

―Bioinformatics is the field of science in which biology, computer science, and information 

technology merges into a single discipline. There are three important sub-disciplines within 

bioinformatics: the development of new algorithms and statistics with which to assess 

relationships among members of large data sets; the analysis and interpretation of various 

types of data including nucleotide and amino acid sequences, protein domains, and protein 

structures; and the development and implementation of tools that enable efficient access 

and management of different types of information.‖ 

This discipline have been used for decades as a basic support for biological research 

projects, its use provides a better understanding of complex biological process.  

Additionally, the Systems Biology, known as the next big intellectual challenge in biology, 

has been integrating the Bioinformatics tools in its research projects producing high quality 

results. This synergy is not a method but a paradigm, a general approach of thinking [2]. 

They form an inter-discipline that makes use of principles, knowledge and tools coming 

from biology, computer sciences, medicine, physics, chemistry and engineering, bridging 

the gaps between them [3]. 

This paradigm is helping to develop new research archetypes that shifts focus from 

traditional studies of single gene or protein to unified systems view on biological processes. 

It combines data-mining from large-scale, technology-driven projects, such as human 
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genome or structural genomics projects, with traditional hypothesis-driven experimental 

work. 

The aforementioned way of thinking tend to improve the understanding of the biology and 

its mechanisms, particularly, the interactions between its key elements (DNA, RNA, 

proteins, chemical compounds, cells, etc.). The bottom up approach builds on its key 

elements, which are strictly related to the OMICS data sets, and the proposed models of 

biological systems. 

This integration through novel methodologies is not limited to the description of the 

existing knowledge using a new syntax. It combines old and new models to develop new 

approaches for the characterization of the biological systems. 

Based on an integrationist approach, this paradigm fills the empty spaces left by the 

reductionist approaches where the complex system is nothing more than the sum of its 

parts. These reductionist approaches have played an important role in the development of 

the biology sciences until now. They allowed the identification of the majority of the 

biological elements independently. Unfortunately, they offer no convincing concepts and 

methods to comprehend how system properties emerge [4]. 

The technical challenges of the Systems Biology [5] are mainly along four lines: (i) system-

wide component identification and quantification (―OMICS‖ data sets); (ii) experimental 

identification of physical component interactions, primarily for information processing 

networks; (iii) computational inference of structure, type, and quantity of component 

interactions from data; and (iv) rigorous integration of heterogeneous data [41]. Being this 

last step significantly behind, such that many more data are generated than possibly can be 

analyzed or interpreted [6]. 
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1.1 Next-generation sequencing 

Knowing the DNA sequence is essential for all kind of projects in biological research. 

Scientists extracting the genetic information from the biological systems produced a 

limitless insight to the ―OMICS‖ disciplines, especially to the Genomics and 

Transcriptomics. The DNA sequencing techniques have been evolving continuously, and 

consequently, they have been incorporating new challenges to the Bioinformatics. 

On the other hand, major developments of bioinformatics usually result from parallel 

development in data processing. ―Traditional bioinformatics‖ provides data processing and 

storage technologies that served protein and DNA sequencing technologies developed from 

the 70‘s and 80‘s. However, next generation sequencing (NGS), that is an umbrella name 

for DNA sequencing technologies that followed after 2000, is a complete new approach 

that cannot be afforded using the traditional bioinformatics tools. The goal of this chapter is 

to give an overview of the data processing of NGS, I briefly review this field based on 

Homer and Li [7]. 

These new sequencing technologies often aims at sequencing very long DNA pieces, such 

as whole chromosomes, although, large-scale sequencing can also be used to generate very 

large numbers of short sequences. Also, they are designed for low-cost sequencing 

producing high-throughput DNA sequences data of the order of giga base-pairs (Gbp) per 

machine day [8]. 

There are two groups of DNA sequencing technologies that fall into the NGS umbrella. The 

first group (second generation) follows chemical synthesis techniques, similar in part to 

conventional Sanger sequencing, another group (third generation) uses single molecular 

techniques that, on one hand, do not require amplification, but on the other hand, report 

single molecule variants, see Table 1. 

From the perspective of bioinformatics, the length and the accuracy of the reads is the most 

important (two right columns), as this will determine the probability of chance identities, 

i.e. the background noise of sequence alignment. 
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NGS applications fall into a few characteristic categories, listed in Table 2. It is interesting 

to realize the parallelism between the data processing perspectives of high throughput 

proteomics and NGS. Nevertheless, the two fields were developed in vastly different ways, 

see Table 3. 

Table 1: Types of NGS technologies 

―Generation‖ Type of sequencing Instrument 
Max read 

length 

Accuracy 

Second generation sequencers 

sequencing-by-

synthesis 

Roche/454 700 99.9% 

Illumina 150 98% 

sequencing-by-ligation ABI/ SOLiD 75-100 99.9% 

sequencing-by-

synthesis 

Ion Torrent/Life 

Technologies 

200 98% 

Third generation sequencers 

(single molecule sequencing) 

single-molecule 

sequencing 
Helicos 

50 99.5% 

single-molecule 

sequencing 
Pacific Biosciences 

1500 87-99 

nanospore single-

molecule sequencing 
Oxford Nanospore 

n/a n/a 

The Bioinformatics approaches used by the NGS applications to process the data can be 

described by two main groups. The first group includes the approaches to manipulate, store 

and share the experimental results, namely reads or segments of DNA sequences, including 

the experimental description. The second group includes computational applications to 

process the experimental results. These computational tools can be generally classified in 

tools to align the DNA reads and tools to assemble the final DNA sequence. 
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Table 2: Goals of next generation sequencing 

Category Application example 

De novo sequencing of complete 

genomes 
Description of new species, identification of unique genes. 

Complete genome resequencing Identification of mutations and polymorphisms; structural variants 

Paired-end sequencings Inherited and acquired structural variations (e.g. CNV) 

Metagenomic sequencing Study of microbial communities, detection of pathogens 

Transcriptome sequencing Quantifying/comparing gene expression 

MicroRNA sequencing Gene regulation studies 

Exome sequencing Concomitant study of all exons in all genes 

Molecular barcode sequencing Parallel identification of several species 

 

 

Table 3: The parallelism between NGS and high throughput proteomics 

 

 NGS High throughput proteomics 

Macromolecular 

fragments 
Random, overlapping Enzyme generated, disjunction 

Analysis of single 

items 

Genomics, assembly 

Goal: single genome sequencing 

De novo sequencing by proteomics 

Goal: Single protein sequencing 

Analysis of complete 

mixtures 

Metagenomics; 

Goal: Identification of taxa in 

complex communities 

High throughput MS/MS; Goal: identification 

of proteins in  complex mixtures 

DOI:10.15774/PPKE.ITK.2014.011



 

6 

 

1.1.1 Sequence alignment algorithms 

The crucial part of NGS data processing is the alignment of the DNA reads. Most current 

alignment algorithms index structures either for the read sequences or for the reference 

database sequence, or sometimes both. Based on the index properties, alignment algorithms 

can be largely grouped into two large categories: a) algorithms based on hash tables, b) 

algorithms based on suffix trees and algorithms based on merge sorting. (An additional 

group consists of Slider [9] and its descendant SliderII [10], we concentrate on the first two 

categories). 

1.1.2 Hash table based approaches 

All hash table based algorithms essentially follow the idea of BLAST of Steve Altschul and 

associates [11, 12] which can be called a seed-and-extend paradigm. The philosophy was 

based on protein sequencing, but the main corollaries keep also for DNA sequencing. The 

fundamental supposition is that homologous sequences contain conserved segments that 

can be located by the position of k-mer words shared by two sequences. BLAST keeps the 

position of each k-mer (k = 11 by default) subsequence of the query in a hash table with the 

k-mer sequence being the key, and scans the database sequences for k-mer exact matches, 

by looking up the hash table. A sufficient (user selected) number of k-mers is called a seed. 

BLAST extends and joins the seeds first without gaps and then refines them by a Smith-

Waterman alignment [13, 14]. It outputs statistically significant local alignments as the 

final results. This basic approach has been improved and adapted to alignments of different 

types, but here we focus on mapping a set of short query sequences against a long reference 

genome of the same species. 

1.1.3 Improved seeding techniques 

Ma and associates realized that seeds of k non-consecutive identities are more sensitive 

than seeds of k consecutive identities, used in the original BLAST algorithm [15, 16]. A 

seed allowing internal mismatches is called a spaced seed; the number of matches in the 
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seed is its weight. The time complexity of spaced seed alignment is approximately 

proportional to mnL/4
q
 where q is the weight, m the number of templates, n the number of 

reads and L the genome size. The memory required by hashing genome is usually log2 L 

max(4q, L/s) bytes where s is the sampling frequency [17]. It is memory demanding to hold 

in RAM a hash table with q larger than 15. Homer and associates proposed a two-level 

indexing scheme for any large q [18]. They build a hash table for j-long (j < q, typically 14) 

bases. To find a q-long key, they look up the hash table from the first j bases and then 

perform a binary search among elements stored in the resulting bucket. Looking up a q-

long (q > log4 L) key takes O(max(1, log4 L – j)) time, only slightly worse than the optimal 

speed O(1). And, as a consequence, the peak memory becomes independent of q. 

The idea can be implemented in several ways, sometimes linked to the peculiarities of 

individual sequencing technologies; we only cite a few here. The program Eland builds k-

mer templates for the reads. For an Illumina read it builds 6 templates and allows for two 

mismatches during the alignment. SOAP [19] adopts almost the same strategy except that it 

indexes the genome rather than reads. SeqMap [20] and MAQ [21] allow k mismatches, 

this requires an exponentially high number of templates for the same sensitivity which is 

inefficient for larger k values. To improve the speed, MAQ only takes advantage of the fact 

that the first half of the reads is more reliable so it accepts only 2 mismatches in the first 

28bp i.e. the most reliable part of an Illumina read. MAQ will extend the partial match 

when a seed match is found. There are several other programs that capitalize on the same or 

similar ideas, for a further review see [7]. 

A potential problem with consecutive seed and spaced seed is they disallow gaps within the 

seed. Gaps are usually found afterwards in the extension step by dynamic programming, or 

by attempting small gaps at each read positions [19, 20]. The q-gram filter [22-24] is based 

on the observation that at the occurrence of a w-long query string with at most k differences 

(mismatches and gaps), the query and the w-long database substring share at least 

(w+1)−(k+1)q common substrings of length q [25-27]. Methods based on spaced seeds and 

the q-gram filters are similar in that they both rely on fast lookup in a hash table. They are 

mainly different in that the former category initiates seed extension from one long seed 
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match, while the latter initiates extension usually with multiple relatively short seed 

matches. In fact, the idea of requiring multiple seed matches is more frequently seen in 

capillary read aligners such as SSAHA2 and BLAT; it is a major technique to accelerate 

long-read alignment.  

1.1.4 Improved seed extension  

Due to the use of long spaced seeds, many aligners do not need to perform seed extension 

or only extend a seed match without gaps, which is much faster than dynamic 

programming. Nonetheless, several improvements over BLAST have been made regarding 

seed extension. A major improvement comes from accelerating the standard Smith-

Waterman with vectorization. The basic idea is to parallelize alignment with the CPU 

SIMD instructions such that multiple parts of a query sequence can be processed in one 

CPU cycle. Using the SSE2 CPU instructions implemented in most latest x86 CPUs, 

[28]results in a revised Smith-Waterman algorithm that is over 10 times faster than the 

standard algorithm. Novoalign (http://novocraft.com), CLC Genomics Workbench 

(http://clcbio.com) and SHRiMP are known to make use of vectorization.  

Another improvement is achieved by constraining dynamic programming around seeds 

already found in the seeding step [18, 29, 30]. Thus, unnecessary visits to cells far away 

from seed hits in iteration are greatly reduced. In addition, [31] found that a query can be 

aligned in full length to an L-long target sequence with up to k mismatches and gaps in 

O(kL) time, independent of the length of the query. These techniques also help to accelerate 

the alignment when dynamic programming is the bottleneck. 

1.1.5 Fast aligners based on suffix/prefix try 

The use of hash tables is getting impractical for larger input data sizes. As a consequence, 

current aligners seek to the inexact matching problem to the exact matching problem and 

involve two steps: 1) identifying exact matches and 2) building inexact alignments 

supported by exact matches. To find exact matches, these algorithms rely on a certain data 
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representations, such as suffix tree, enhanced suffix array [32] and FM-index [33]. The 

advantage of using a try as the basic data structure is that alignment to multiple identical 

copies of a substring in the reference is only needed to be done once because these identical 

copies collapse on a single path in the try, whereas with a typical hash table index, an 

alignment must be performed for each copy. It should be noted that the choice of these data 

structures is independent of methods of step 2 for finding inexact matches i.e. an algorithm 

built upon FM-index, for example, would also work with suffix tree index in principle. 

Algorithms in this class make use of key methods, such as the Burrows-Wheeler transform 

(BWT) [34], the Ferragina-Manzini index (FM) [33] and the Huffman coding (HC) [35]. 

Briefly, BWT is a lossless compression algorithm used among others in bzip2, it allows one 

to compress and decompress data without loss of information. The compression of 

biological data, such as a genome becomes practical if one combines BWT with HC or 

other coding technique. A BWT encoded dataset is not suitable for searching in itself, but 

Ferragina and Manzini discovered in 2005 that a new index, now called the FM index, 

which can search a BWT dataset without decompression. With this combination we have a 

new index structure that can replace the hash table with a concomitant gain in speed. 

Further, speedup is possible by avoiding dynamic programming, even though some of the 

current programs allow dynamic programming as a more sensitive option. 

There are two current programs that are widely used today in the bioinformatics 

community. BWA [36] is the program of the Durbin group that was the first in time, it is 

relatively sensitive but somewhat less fast than Bowtie [37] and Bowtie2, developed at the 

Salzberg group which is considered somewhat faster but less sensitive. 

1.1.6 Sequence assembly 

The assembly process is out of the scope of this thesis, however, we would like to introduce 

briefly some concepts and algorithms used to assemble DNA segments up to chromosome 

length.  
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An assembly is a hierarchical data structure that maps the sequence data to a putative 

reconstruction of the target. It groups reads into contigs and contigs into scaffolds. Contigs 

provide a multiple sequence alignment of reads plus the consensus sequence. The scaffolds, 

sometimes called supercontigs or metacontigs, define the contig order and orientation and 

the sizes of the gaps between contigs. Scaffold topology may be a simple path or a network 

[38].  

Sequence assembly is the reconstruction of sequence up to chromosome length. The 

assembly task is relegated to computer software [39]. Assembly is possible when the target 

is over-sampled by the shotgun reads, such that reads overlap. De novo Whole-genome 

shotgun (WGS) assembly refers to reconstruction in its pure form, without consultation to 

previously resolved sequence including from genomes, transcripts, and proteins [38]. DNA 

sequencing technologies share the fundamental limitation that read lengths are much 

shorter than even the smallest genomes. WGS overcomes this limitation by over-sampling 

the target genome with short reads from random positions. Assembly software reconstructs 

the target sequence. 

The NGS assemblers can be group into three categories, all based on graphs. The 

Overlap/Layout/Consensus (OLC) methods rely on an overlap graph. The de Bruijn Graph 

(DBG) methods use some form of K-mer graph. The greedy graph algorithms may use 

OLC or DBG. 

The OLC approach was typical of the Sanger-data assemblers. It was optimized for large 

genomes in software including Celera Assembler [40], Arachne [41, 42], and CAP and 

PCAP [43]. The OLC approach has been reviewed elsewhere [44]. The most 

representatives assembler programs using this approach are Newbler [45], the Celera 

Assembler [40] and Edena [46] 

The DBG approach is most widely applied to the short reads from the Solexa and SOLiD 

platforms. It relies on K-mer graphs, whose attributes make it attractive for vast quantities 

of short reads, see [47] for review. The most representatives assembler programs using this 

DOI:10.15774/PPKE.ITK.2014.011



 

11 

 

approach are Euler developed for Sanger reads [48-50], Velvet [51, 52], ABySS [53], 

AllPaths [54] and SOAPdenovo [55]. 

1.2 OMICS disciplines and biological databases 

The OMICS suffix has been added to the names of many kinds of biological studies 

undertaken on a large or genome-wide scale. Today, there are numerous derivatives of the 

basic concept of large-scale biological analysis, with the common denominator of aiming to 

study the complete repertoire of particular biological entities [56]. It includes several 

disciplines that are growing within this new biological era. They are mainly represented by 

Genomics, Transcriptomics, Metagenomics and Metatranscriptomics, Proteomics, 

Metabolomics/metabonomics, Localizomics, etc. 

The advent of whole-genome sequencing and other high-throughput experimental 

technologies transform the biological research from a relatively data poor discipline into 

one that is data rich [5]. This exponential increment of the data produced by the OMICS 

disciplines is associated to the number of available biological databases. A synergy 

between the OMICS and the Bioinformatics tools is used to produce, store, process and 

validate the biological data. They use high-throughput screening experiments for 

identification and validation of biological entities; computational tool and databases to 

manage the data generated in the previous stage; and algorithms for computational 

predictions of biological properties and interactions [57-59].  

One of the biggest problems of this synergy is that the high-throughput experimental 

technologies used for querying the biological system have an inherent high rate of false 

positive results and they are able to produce an unmanageable volume of data [60, 61]. 

Although, each experiment result obtained is not useful by itself. They have a limited utility 

unless efficient computational systems are used to manage, integrate and process them. 

Indeed, a biological database as any kind of database is a collection of data that is 

organized so that its contents can easily be accessed, managed, and updated [59, 62]. A 
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simple database might be a single file containing many records, each of which includes the 

same set of information. 

The Nucleic Acids Research (NAR) journal online Molecular Biology Database Collection 

[63] published a collection of 1552 databases that are sorted into 14 categories and 41 

subcategories. This updated collection includes only active databases at the beginning of 

2014, see Figure 1. 

Figure 1: Biological database growth during the last decade 

These set of categories and subcategories are not the only way to classify the biological 

databases. Some authors grouped them in three general groups for better understanding [4]. 

The first group includes the primary databases. These databases contain information of the 

sequence or structure alone. It includes nucleotide, RNA, protein sequences and structures 

databases. A second group includes databases which are generated by a computational 

processing of the primary databases and they are named secondary databases. This group 

includes databases of genes, genomes, protein domains and families, etc. Finally, the last 

group, named composite databases or metabases [64], includes databases generated from 
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the integration of the primary and secondary databases. This group has been growing 

according with the level of acceptance of the Systems Biology and its use to solve problems 

in research projects. Also, it is closely related to one of the most important problems faced 

today which is the integration of biological data. 

We accept and respect these classifications; however, we will present and discuss the 

biological databases in more detail through the organization of the OMICS disciplines. This 

structure follows the Systems Biology point of view and offers a better overview of all its 

elements and their integration. Despite of that, the databases will be located in one of these 

three groups once they are presented and analyzed. Furthermore, there are 1552 active 

databases, so only the most important and useful databases will be presented and discussed 

here. 

1.2.1 Genomics 

This OMICS discipline is defined as the study of the whole genome sequence and the 

information contained therein, is clearly the most mature of all OMICS [5]. Since 1995, 

when the first bacterial genome was sequenced [65], a huge explosion on genomic data has 

occurred. More than thousand organisms have been sequenced producing more than 169 

million of sequences available according to the NCBI statistics [66]. 

In the last years, this discipline has received a fresh support with the arrival of new 

technologies for sequencing at low costs. These high-throughput sequencing (or next-

generation sequencing) technologies are able to produce thousands or millions of sequences 

concurrently [67]. 

Additionally, the genomics databases represent the most widely used databases and they are 

the best established. With terabytes of data, these databases cover the three main groups 

aforementioned. 

The primary databases related to Genomics are: GenBank [68], DDBJ [69] and ENA [70]. 

These databases provide public repositories for the nucleotide sequences data. They daily 
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exchange data between them to ensure worldwide coverage. These databases contain 

sequences for almost 260 000 formally described species [68]. They offer to the user web 

portals and desktop tools to submit and update entries creating a direct channel between the 

database administrators and the data suppliers. 

The secondary databases are mainly represented by Entrez Gene [71], Entrez Genome [72], 

KEGG Genes and KEGG Genome [73], GOLD [74] and Ensembl [75]. 

The Entrez Gene database is a gene-specific database which establishes a gene-to-sequence 

relationship used by other NCBI resources. It provides tracked, unique identifiers for genes 

and to report information associated with those identifiers for unrestricted public use [71]. 

The Entrez Genome database provides access to more than six thousand complete genomes. 

The database offers a graphical overview of an entire genome to the level of a single gene. 

At the level of a genome or a chromosome, a Coding Regions display gives the locations 

coding regions, and the lengths, names and GenBank identification numbers of the protein 

products [72]. 

The KEGG is an integrated database of 15 main databases. KEGG Genes and KEGG 

Genome are the KEGG resources related to the Genomics discipline. KEGG Genes is a 

collection of gene catalogs for all complete genomes generated from publicly available 

resources. The KEGG Genome is a collection of organisms with known complete genome 

sequences. Similar to NCBI databases, the KEGG database offers multiple tools for 

submitting the data to their resources.  It also provides an avowed group of biocurators 

involved in the analysis, interpretation and integration of the biological information into the 

data repositories. 

The GOLD database provides an online centralized portal for genomic and metagenomic 

projects. It includes the implementation of GOLD-specific controlled vocabularies for 

representation of the associated data, in coordination with the Genomics Standards 

Consortium (GSC) [74, 76]. 
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Finally, the Ensembl project creates and distributes genome annotations and provides 

integrated views of other valuable genomic data for supported genomes. Ensembl provides 

unique tools, datasets and user support compared to similar projects such as the UCSC 

Genome Browser. It offers an open software infrastructure with diverse analysis pipelines 

supporting a variety of genome analysis methods [75]. 

1.2.2 Transcriptomics 

Transcriptomics is defined as the study of Transcriptome and its interactions. 

Transcriptome is set of all RNA molecules including the messenger RNA (mRNA), 

ribosomal RNA (rRNA) and transfer RNA (tRNA). All this important molecules perform 

multiple vital roles in coding, decoding, regulation, and expression of genes. 

There are several databases related with this OMICS discipline. Both the primary and the 

secondary databases are included in this particular discipline. 

The most important primary databases in this discipline are Ribosomal Database Project 

(RDP) [77] and miRBase database [78]. These databases provide a computational 

framework for management of Transcriptomics primary data. 

The RDP database has expanded its resources to handle high-throughput data. Also, it 

provides a set of Open Source tools for custom analysis. Whereas, the miRBase has 

focused on micro RNA, which play an important role in cellular physiology, development 

and disease using a negatively regulating gene expression approach [79]. 

The secondary databases are led by the HMDD [80], DIANA-LncBase [81] and NCIR [82]. 

The HMDD database is a collection of experimentally supported human microRNA 

(miRNA) and disease associations. It provides a web interface for users to browse, search 

and download data sets. Also, user friendly tools are available for submission. 

The DIANA-LncBase database provides experimentally verified and computationally 

predicted microRNA targets on long non-coding RNAs. The miRNA-lncRNA interactions 

supported by experimental data for both human and mouse species are also available. 
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The NCIR database provides a rapid access to all RNA structures with emphasis in those 

with base-base interactions reported. Moreover, the database offers a collection of 

important properties associated to RNA molecules and to their interactions [82]. 

1.2.3 Metagenomics and Metatranscriptomics 

Metagenomics and Metatranscriptomics describe the functional and sequence-based 

analysis of the collective genomes contained in a sample [83], see Figure 2. They provide a 

unique opportunity to explore earth‘s limitless environments harboring scores of yet 

unknown and mostly unculturable microbes and other organisms [84]. Whereas WGS 

targets one genome, metagenomics usually targets several. They refer to culture-

independent studies of the collective set of genomes of mixed microbial communities and 

apply to explorations of all microbial genomes in consortia that reside in environmental 

niches, in plants, or in animal hosts [85]. 

Metagenomics is a powerful approach for exploring the ecology of complex microbial 

communities. Its power will be realized when it is integrated with classical ecological 

approaches and efforts to culture previously unculturable microorganisms, which will likely 

be facilitated by clues about the physiology of the uncultured microorganisms derived from 

metagenomic analysis. Microscopy and stable isotope analysis are two approaches that will 

be particularly informative when linked to metagenomics [86]. 

Metagenomics and associated meta-strategies have arrived at the forefront of biology 

primarily because of 2 major developments, the deployment of next-generation sequencing 

technologies and the emerging appreciation for the importance of complex microbial 

communities in mammalian biology and in human health and disease. 

However, each stage of the analysis suffers heavily due to inherent problems of the 

metagenomic data generated, including incomplete coverage, massive volumes of raw 

sequence data produced by the next-generation sequencers, generally short read-lengths, 

species abundance and diversity and so on [87, 88]. 
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The metagenomics assembly problem is confounded by genomic diversity and variable 

abundance within populations. Assembly reconstructs the most abundant sequences [89]. 

Simulations indicate high rates of chimera, especially in short contigs assembled from 

complex mixtures [90]. Studies that rely on characterization of individual reads prefer long 

reads [91]. The role for de novo genomic assembly from NGS metagenomics data should 

grow as NGS read lengths and NGS paired-end options increase. 

Figure 2: Flow chart for the analysis of a metagenome from sequencing to functional annotation. Only the basic 

flow of data is shown up to the gene prediction step. For the context-based annotation approach, only the gene 

neighborhood method has been implemented thus far on metagenomic data sets; although in principal, other 

approaches which have been used for whole genome analysis can also be implemented and tested [84]. 
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1.2.3.1 Taxonomy identification in Metagenomics 

One direct application of metagenomics using NGS technologies is the taxonomy 

identification in unknown samples [92]. This is crucial in various fields, such as detection 

of human or animal pathogens [93], detection of bacterial contamination in food samples 

[94] etc. Additionally, the majority of these organisms in environmental samples belong to 

hitherto unknown taxonomic groups, the challenges is not only just to catalog the known 

organisms, but also to identify and characterize new organisms belonging to known or 

unknown taxonomic groups. These organisms could belong to an entirely new species or 

genus or family or order or class or even a new phylum [95]. 

This process is known as ―Taxonomic binning‖ and corresponds to the process of assigning 

a taxonomic identifier to sequence fragments, based on information such as sequence 

similarity, sequence composition or read coverage [96]. 

Next generation sequencing is increasingly becoming the method of choice in many areas 

because of the richness of data it can provide. Moreover, metagenomics produces massive 

volumes of raw sequence data were NGS technologies are used, so, the processing of NGS 

data is problematic in many respects. Namely, current sequence alignment problems were 

developed with genome sequencing in mind; they are optimized for handling a single 

reference genome (the human genome) on which they work very efficiently. 

Current computational approaches for taxonomic binning fall into two broad categories. 

The first group, marker-based methods seek to bypass the bottleneck via search space 

reduction, using dedicated, small datasets. A typical example is 16S RNA analysis wherein, 

a dataset of short sequence items is searched with sensitive alignment techniques, such as 

BLAST [12]. While this is the traditional standard for taxonomic identification, it has well 

known limitations, including the need for PCR amplification that introduces extra overhead 

as well as experimental bias. Alternatively, word-based techniques combined with artificial 

intelligence can be used to construct a database of clade-specific recognizers that make it 

possible to use rapid string matching techniques for species identification [97]. 
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The MetaPhlAn [98] program uses a small clade-specific sequence marker database using 

the genome sequences of the known taxa that can be searched with general purpose 

aligners. This search is extremely fast and accurate for determining taxa and their 

approximate proportions within large microbial communities. A potential common 

drawback of marker-based approaches is the frequent lack of lower (e.g. strain-level) taxon 

identification, as the markers are often identical to many strains. This may cause problems 

in identifying pathogenic strains of common commonly occurring bacteria such as E. coli. 

A recently developed program uses a radically different approach, that of compressing 

sensing [99]. This methodology goes back to a ―mixing problem‖ used in various fields of 

signal processing and analytical chemistry. Briefly, if pure signals (pure chemical 

materials) can be described in terms of a vector, than the mixed signal can be described as a 

linear combination of these vectors, where the coefficients of each vector are proportional 

to the % of each signal/chemical material in the mixture. For n vectors of m components, 

we have (n-1) percentage values (coefficients). This problem defines a set of n linear 

equations, each of them containing m members (vector components). 

In the technical life, there are many, sometimes over a hundred years old methods for such 

problems, least squares fitting is perhaps the best known. The problem requires that the 

number of measured vector components should be greater than the number of coefficients,. 

Compressed sensing [100] simply relies to the relatively recent discovery that such 

equation systems can be solved for problems where the number of number of measured 

components are low, but the number of equations is also below a certain limit. Metagenome 

identification is such a problem: From all the possible species, only a few or a few hundred 

are present. 

As vector description, WGSQUIKR uses 7-mer word composition vectors (16 000 

components), calculated for entire genomes. The reads of a metagenomics experiments are 

directly translated into a 7 mer vector, which can be considered as a mixture of pure 

genomic vectors and the system of equations solved via the methods of compressed 

sensing. 
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In the second group of metagenome sequencing approaches, whole genome shotgun 

sequencing reads are directly aligned against a comprehensive sequence database. In this 

group of approaches database search is a critical step since aligning a large set of reads 

against a comprehensive database using high quality aligners such as BLAST is either too 

time consuming, or requires computational resources that that are not readily available for 

all research groups. A good alternative to BLAST style alignment are the dedicated aligners 

developed for next generation sequencing such as bowtie2 [101], BWA [102], mrFAST 

[103] (for a review sew see [7]). These aligners are extremely fast but often require an 

excessive amount of memory for storing the indexed database, especially when 

comprehensive sequence databases are used. 

A crucial step in all approaches is taxon assignment [96] which is often carried out via 

various flavors of lowest common ancestor search within a taxonomic hierarchy. Briefly, 

alignment programs assign reads either to one taxon (say, an E. coli strain), or to several 

taxa (say 100% identity with an E. coli strain and an E. fergusoni strain), and in the latter 

case the lowest common taxonomic ancestor (the genus Escherichia) is reported. This 

principle is used in such popular programs as MEGAN [97, 104], Mothur [105] and SOrt-

ITEMS [106]. 

The variety of computational approaches indicates that there is a need for further 

computational improvements. The need for dedicated tools is a crucial problem, since most 

of the current software tools are developed for general research purposes. In research 

settings, the qualitative and quantitative answers are not always clearly separated. For 

instance, the presence of E. coli reads in an output may be a safe indication for E. coli being 

present, but the number of the identified reads is not necessarily a quantitative measure of 

the abundance of the species. Currently, MetaPhlAn is considered a reliable quantitative 

indicator for species abundance in metagenome analysis [98]. Diagnostic settings pose a 

separate problem: here one has to precisely detect whether or not a pathogen is present 

above a certain threshold level, but the knowledge of the exact quantity is not necessarily 

important. 
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1.2.4 Proteomics 

Proteomics is the discipline to study the large-scale set of proteins, particularly their 

structures and functions. It is based on the study of the Proteome which describe the 

cellular stage or the external conditions of the cell. The Proteome analysis is an essential 

tool in the understanding of regulated biological systems [107]. It can be used to compare 

cellular stages in order to determine the molecular mechanism that are involves in a specific 

cellular process. Additionally, there is a great interest in the Proteomics due to the fact that 

the majority of the pharmacological targets are proteins [108]. 

In current science, proteomics is almost exclusively used for a well defined field where 

mass spectrometry is used for the analysis of complex protein or peptide mixtures. Namely, 

mass spectrometry coupled with high performance liquid chromatography has become the 

de facto experimental standard for the proteomic analysis of complex biological materials 

such as tissue samples, biofluids, immunoprecipitates etc [109]. Each sample produces 

many thousand spectra, so the interpretation of LC-MS/MS relies entirely on computational 

tools [110]. The field of mass spectrometry is very complex, so, an overview of the topics 

closely related to bioinformatics analysis used in routine analysis of biological samples will 

be outlined. 

Proteomics databases are widely spread on internet and include the most heterogeneous 

biological data. Moreover, they have more tools associated covering a huge range of 

applications than any other biological database. 

The most important databases for this discipline are UniProt [111], RefSeq [112], RCSB 

PDB [113] and the protein DB from the Ensembl project, already described [75]. The first 

two databases are primary databases and include the protein sequences and its primary 

descriptions. The last one is a metabase that integrates several kinds of biological data and 

computational tools. 

The UniProt database provides freely accessible resource of protein sequences and 

functional annotations. This database has two sections: a reviewed section containing 

manually annotated records with information extracted from literature and curator-
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evaluated computational analysis (UniProtKB/Swiss-Prot), and an unreviewed section with 

automatically annotated records (UniProtKB/TrEMBL) [68]. The proportion of reviewed 

entries varies between proteomes, and is obviously greater for the proteomes of intensively 

curated model organisms. 

The RefSeq database integrates an organism‘s genomic, transcript and protein sequence 

with descriptive feature annotation and bibliographic information. It is build from sequence 

data available in public archival sequence databases of the International Nucleotide 

Sequence Database Collaboration. Unique features of the RefSeq collection include its 

broad taxonomic scope, reduced redundancy, informative cross-links between nucleic acid 

and protein records [112]. 

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) 

provides a structural view of biology for research and education. The online PDB archive is 

a repository for the coordinates and related information for more than 84 000 entries, 

including proteins, nucleic acids and large macromolecular complexes that have been 

determined using X-ray crystallography, NMR and electron microscopy techniques [113, 

114]. This database includes cross-references with UniProt databases for a close 

relationship between the protein sequence and the structure. 

The next group of databases is secondary databases which provide proteins properties, 

domains, families and motifs. 

The first group of databases to be mentioned is the protein clusters. These databases 

provide data sets of proteins clustered or grouped by sequence similarity or any other 

feature. The most representative database of this group is UniRef [115]. It provides 

clustered sets of sequences from the UniProt database sequences. Currently covering 44 

million source sequences, the UniRef100 combines identical sequences and subfragments 

from any source organism into a single UniRef entry. UniRef90 and UniRef50 are built by 

clustering UniRef100 sequences at the 90 or 50% sequence identity levels. 
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Alike, the protein families databases are led by the Pfam database [116]. This database 

includes a curated set of protein families, each of which is defined by two alignments and a 

profile hidden Markov. It contains 14 831 manually curated entries. 

The next group of databases is protein orthologs. Orthology refers to a homologous 

relationship resulting from a speciation event, as opposed to paralogy, which is the result of 

a gene duplication event [117]. The first database in this group is the COG [118]. This 

database includes one-to-many and many-to-many orthologous relationships in form of 

clusters. Each COG consists of individual orthologous genes or orthologous groups of 

paralogs from three or more phylogenetic lineages. The COG database lacks phylogenetic 

resolution and is not regularly updated due to the manual labor required. However, its 

groups are still used by other databases to classify proteins. As an extension of COG, the 

eggNOG database was created [119]. It can be updated without the requirement for manual 

curation, covers more genes and genomes than COG, contains a hierarchy of orthologous 

groups to balance phylogenetic coverage and resolution and provides automatic function 

annotation of similar quality to that obtained through manual inspection [120]. 

1.2.5 Metabolomics/metabonomics 

These two OMICS disciplines are one of the essential parts of the Systems Biology 

approach. They are used for the study of metabolism which makes life possible and is one 

of the most complex processes in nature [121]. 

The discipline of metabolomics seeks to identify the complete set of metabolites, or the 

Metabolome, of the cell. The related metabonomics field specifically studies the dynamic 

metabolic response of living systems to environmental stimuli or genetic perturbation 

[122]. The Metabolome represents the output that results from the cellular integration of the 

Transcriptome, Proteome and Interactome [5]. The Interactome is the whole set of 

molecular interaction. It includes the protein-DNA, protein-protein and protein-metabolites 

interactions dictating many cellular processes [123]. 
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There are several secondary databases and metabase systems related with the two OMICS 

disciplines. The first group is related to the Interactome and includes the databases for 

molecular interactions. These databases are led by BioGrid [124, 125], IntAct [126, 127], 

MINT [128, 129] and DIP [130]. All these databases provide protein-DNA, protein-protein 

and protein-metabolites interactions with a high redundancy between them. 

The metabase systems are led by KEGG [73], Reactome [131], BioCyc and MetaCyc [132, 

133]. All these systems provide collections of pathway databases with multiple tools for 

data analysis. The tools are online resources specialized on pathway analysis and 

visualization. The main differences between them are related with the level of curated and 

predicted data included into the database. The KEGG and Reactome resources offer a more 

manually curated set of data than the other systems but, at the same time, the BioCyc and 

MetaCyc predicted data are really useful in multiple scenarios. 

1.2.6 General databases 

The general databases are resources which are not generated by the OMICS disciplines but 

they are used by them. The taxonomy and ontology databases are included in this extra 

category. These are useful databases that are used to standardize the species names and 

terms used by the biological databases. 

The main taxonomy database is the NCBI Taxonomy [134]. This database provides 

nomenclature and classification for the source organisms in the biological databases. Its 

taxonomy identifier (taxid) is widely used by all other databases to identify the source 

organism of the biological data. 

Finally, the Gene Ontology (GO) database is a community-based bioinformatics resource 

that classifies gene product function through the use of structured, controlled vocabularies. 

It serves as a comprehensive source of functional information on gene products and 

descriptions of functions through the use of domain-specific ontologies. The GO terms 

follow a hierarchical organization that is widely used by other biological databases [135]. 
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1.3 Integration of biological data 

The computer assisted data integration is an important field of Bioinformatics. It can be 

defined as the problem of combining data residing at different sources, and providing the 

user with a unified view of these data [136, 137]. The integration of biological data is 

essential to understand and analyze the function of a biological entity; therefore, it is 

essential for the Systems Biology. In addition, it can be used as an effective mechanism of 

data validation reducing the false positives produced by the experimental technologies 

[138, 139] and to know the extended biological context of a biological entity, including its 

relationships with other elements [140]. However, this is one of the most open subjects on 

Bioinformatics [141] because there is not a definitive solution for the integration of the 

biological databases [142]. 

Data integration is one of the oldest themes in computer science that takes another face 

when it is dealing with biological data. It is perhaps one of the most challenging tasks today 

due to the nature of the data itself. Even though, it is well known its importance for the 

Systems Biology and, in general, for the biological sciences. This integration faces a lot of 

complexities that go beyond of a simple integration process. The fast accumulation of data 

and its eventual modification are only one side of the problem. The heterogeneity and 

redundancy are also an important part of this complexity. 

The problem of integrating biological data sources has several aspects none of which have 

been solved with the available tools [143-146]. The most important aspects are: (i) a large 

collection of interrelated heterogeneous data that are connected through internet, (ii) they 

are distributed using various file formats and delivery systems [147, 148], and finally, (iii) 

there is not a unique solution for data integration because it depends on the biological or 

application context in which it will be used. 

There are several active biological databases which share a high level of redundancy or 

semantic equivalent data. Each database has its own Web-based interface and its own 

schema and access formats. Therefore, the number of available biological databases may 

befog the integration process. This number can be reduced if the biological or application 
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context is used to address the task [149]. Additionally, the interoperability between them, 

which depends on the use of the unique ID keys, can make the integration process difficult 

due to inconsistencies between databases version and updates. 

Moreover, the biological data are often reformulated in some fashion or worst; they may 

have a short lifetime and can be neglected after new experimental evidence. Therefore, the 

integration process has to be an ongoing process closely related to the data generation 

process. 

This volatile property of the data may have terrible consequences if the context is not taken 

into account. For example, the simple way to model the data about two proteins which 

interact in a metabolic pathway can be just the proteins‘ IDs and the metabolic pathway‘s 

name. However, the protein-interacting region can be added to the model if more details are 

needed. After new experimental evidences, the protein-interacting region changes, and the 

database have to be updated. This update would affect the solution where the protein-

interacting region is included and not the simple solution aforementioned. Both solutions 

are practical but their use will depend on the context. 

The simple solution would be enough for metabolic network construction and the extended 

solution would be useful for virtual experiments on drug design. In the last case, changing 

the protein-interacting region could affect seriously the experiment result. This example 

shows how the application context can reduce the complexity of the integration process. 

Hence, the general task of data source integration can be seen to consist of five conceptual 

tasks: (i) transformation from heterogeneous data model to a global model, (ii) semantic 

schema matching, (iii) schema integration, (iv) data transformation to the global schema 

and (v) comparison and identification of semantic equivalent data [150]. 

Traditionally, biological database integration efforts are classified into three main classes 

[151]: federated, mediated and warehouse-style integration. Federated integration, 

(sometimes termed portal, navigational or link integration) provides hyperlinks to join data; 

early examples include SRS [152] and Entrez [71]. The Semantic Web and linked data are a 
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more recent approaches that use the World Wide Web to create typed links between data 

from different resources [153]. With the federated approach, it is relatively easy to provide 

up to date information but extra care is required to maintain the links. On the other hand, 

mediated integration, also called view integration provides a unified query interface and 

collects the results from various data sources. DiscoveryLink [154], BioMediator [155], 

BioMoby [156] are good examples of this approach. 

Finally, warehouse databases integrate data sources in one place include Biowarehouse 

[157], Biozon [158], Atlas [159], EnsMart [160] and IGD [161] [157, 159, 162-164]. This 

approach provides fast querying over joined data sets, but also requires continuous 

updating. 

1.3.1 Heterogeneity and redundancy in biological data 

The inherent heterogeneity of the biological data, which arises in many forms, ranging from 

the hardware and software platform that a database system is based on, to the data model 

and schema used to provide logical structure for the stored data, to the various kinds of data 

and information that are being stored. This heterogeneity of the data is a problem which 

one faces during the data integration process [136]. 

The heterogeneity can be found at different levels of the biological data organization. 

Data heterogeneity 

 Naming differences: Two objects that represent the same concept are named 

differently, e.g. ProteinID or UniProtID. 

 Semantic differences: Two objects that represent the same concept are described 

differently, e.g. proteins in UniProt [111] and proteins in DrugBank [165] represent 

the same concept but they have a complete different set of properties and attributes. 

 Content differences: Two databases both contain gene data, but one also contains 

gene functions using the COG [166] and the other does not. 
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 Format differences: Data elements use different formats to represent the same 

concept, using numeric id in Entrez Gene [71] for the Gene ID vs. strings on KEGG 

Genes [167]. 

Database heterogeneity 

 Schematic dissimilarity: The relationships among the entities are defined 

differently. 

 Query language dissimilarity. Two databases with similar content do not share a 

common query language. Individual sources provide their own user-access 

interface, all of which a user must learn in order to retrieve information that is likely 

spread across several sources. Additionally, the sources often allow for only certain 

types of queries to be asked, thereby protecting and preventing direct access to their 

data. 

 Format dissimilarity: The databases are distributed using different file format and 

release systems. 

The heterogeneity has been faced using methods that seek to unify the biological databases 

through the imposition of external structures. The 

uses of ontologies and vocabulary standardization 

schemes have been also used.  

The redundancy is another problem to face. For 

example, the UniProt, RefSeq and Ensembl 

databases are highly redundant among them [1] but, 

at the same time, they include sets of unique 

proteins, see Figure 3. 

This redundancy increases when large-scale 

automatic processes are being used for the data 

Figure 3: Overlap between protein 

databases. Figure from ProgMap [1] server. 
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generation and, as a result, the database management becomes more difficult and time-

consuming. Although, there have been several attempts to remove excessive redundancy 

inside a database [168], the redundancy between different databases remain uncontrollable. 

1.3.2 The format of biological data 

The biological data comes in multiple kinds of formats. The majorities of the biological 

databases provide flat files in text with their specific formats or non-standardized tabular 

text files. Also, the new experimental technologies are providing a huge number of 

different files formats [169]. The lack of standardization in the biological data obstructs the 

data exchange and process by external researchers. Multiple parsers and compilers have 

been written by decades to extract the biological data from the flat files representing a 

waste of resources and time. 

Inconsistency on key definitions, internal errors, lack of standardization and computer 

readable file structures, files with gigabytes of size in text format without any methods to 

verify the file integrity are the most common problems faced during the work with the 

biological data. 

In the last years, multiple initiatives have introduced community standards to the biological 

data files. They are trying to provide standard computer libraries, in several computer 

languages, for data manipulation. The eXtensible Markup Language (XML) [170] file 

format have been adopted by many databases [171] due to its benefits on data definition 

and integrity, also, because it is widely used by multiple computer systems. This file format 

allows the definitions of your own markup language keeping a standard file structure. 

Furthermore, multiple international initiatives have been developed to offer standard 

definitions for the biological data files. As an example, the Proteomics Standards Initiative 

(PSI) [172] have been working to define community standards for data representation in 

proteomics to facilitate data comparison, exchange and verification. 
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1.4 Scope 

Several Bioinformatics problems have been discussed during this introduction. Although, 

they may seem independents there is a strong relationship among them. First, all of them 

need an organized and structured data supplier system. Also, optimized, fast and reliable 

computers programs to process the data are required. 

This thesis concentrates on developing three approaches to solve some of the 

aforementioned problems. First, a system named Taxoner, designed for prediction of 

bacterial taxa and gene function from NGS results is presented. Then, a workflow, based on 

the Taxoner programs and the JBioWH framework, is used as a DNA marker databases 

generator or just for DNA sequence comparison. Finally, JBioWH, a framework for 

biological data integration is presented. 

All the software presented in this thesis are open-source and freely available through their 

respective web sites. 
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2 Materials and Methods 

During the course of these projects, many tools, pipelines and computational environments have 

been developed using various programming languages and third party libraries. 

A workstation computer (two Intel Core CPU Q6850 (3.00 GHz and 4.0 MB of cache) and 8.0 

GB of RAM) with GNU/Linux operating system (kernel version 3.11.10-11-desktop), 

specifically OpenSuSE distribution version 13.1, was used for developing and tests the 

programs. 

The Google Cloud Platform [173] was used for computations which require a high performance 

computing using virtual machines in-house modified to create a virtual Beowulf like Cluster 

[174] inside the cloud platform. 

2.1 Database designs 

Relational schemas were developed using standard SQL language. The Database Management 

System used was MySQL community server [175] version 5.6. 

The MySQL Workbench Tool [176] was used for design and visualization of the relational 

schemas. All databases developed have an associated MySQL Workbench project freely 

available for users. 

2.2 Programming languages and libraries 

2.2.1 Java 

Oracle Java Standard Edition (SE) [177] version 7 was used for the Java programs. Netbeans 

IDE [178] was used as integrated development environment for writing the Java codes. 

All the source code generated using Java languages are freely available through the projects web 

sites using their respective version control systems. The source code building process is executed 

by the Maven tool [179]. This is a software project management and comprehension tool. It is 

used to manage a projects building, reporting and documentation from a central location. 
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Several Java technologies and libraries have been used in the projects. The most important 

technologies used are EclipseLink [180] for the Java Persistence Model (JPA), Red Hat JBoss 

Middleware [181] for the webservices development, JGraph [182] for graph computing and 

visualization, Mojarra JavaServer Faces [183] using the Java Server Faces (JSF) technology and 

Primefaces [184] as JSF component for web interfaces. 

2.2.2 C 

The ANSI C language was used for programs with a high computing demand. The GCC 

compiler for GNU/Linux operating systems was used as compiler for the C code. The projects 

use the Make program to build the executables and libraries using the well-known Makefile. 

The parallelism in the programs was implemented using the POSIX Thread [185] library. This 

library allows our programs to take advantage of the multicores and multiprocessors 

architectures available today. 

Additionally, the MPICH [186] library, an implementation of the Message Passing Interface 

(MPI) paradigms [187], was used to extend the parallelism of our programs from the multicores 

and multiprocessor architectures to the cluster platforms where the communication between the 

nodes is preformed through computer networks. 

2.2.2.1 The BioC library and tools 

Nowadays, working with ―mountains‖ of data is a common task in Bioinformatics. Frequently, 

high level programming languages like Perl, Python or even Java are not fast enough to process 

data efficiently. For instance, a simply random access to entries of a fasta of size 50 GB becomes 

prohibitively resource consuming, even in high performance computational environments like 

the Google Cloud Platform. For facing this problem, there arose a necessity to develop some 

utilities on low-level programming language.  

As a result, highly optimized and fast programs were developed to for dealing with demanding 

tasks in terms of computational power and highly loaded data access. The BioC library is a 

freely available C project comprised of eight modules. These modules are structured in the form 
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of two major groups; the first group contains the basic data structures and functions to process 

error, memory, time and string objects. Full documentation is freely available in 

https://code.google.com/p/bioc/wiki/bioc.  

The main idea of boosting access time is loading the data into custom data structures and 

indexing them using B+ Trees [188].  

B+ tree ("bee plus tree") is a data structure used as an index to facilitate fast access to the 

elements of a larger body of data, such as the entries in a database. Each target object (entry) is 

associated with an index key. The B+ tree is laid out like a family tree, where each node has 

some number of keys that is between some predetermined maximum limit and half that limit 

(inclusive). Each node also has one more pointer than the number of its keys. (A "pointer" is the 

address of a location in memory.) You can picture the node as having alternating pointers and 

keys, starting and ending with pointers. 

At the bottom level of the B+ tree are the leaves. Each pointer on the leaf except the last 

(rightmost) one points to the data object whose key stands immediately to the right of that 

pointer. The rightmost pointer points to the next leaf over to the right. Then, each bunch of 

leaves has its own parent node. If there are enough of these parents, then they, in turn, are 

divided into bunches, each of which shares but one parent — and this one-parent-many-children 

family tree goes all the way up to a single ancestor at the top, the root. The internal nodes, which 

are the parents, grandparents, etc., of the leaf nodes, also have keys, which are (initially) 

duplicates of some of the keys on the leaves. A given internal node's keys are "representative" 

copies of a few of the keys to be found on the leaves that are the (ultimate) descendants of that 

node. The pointers on the internal nodes point to nodes at the next level down on the tree, which 

may be leaves or other internal nodes. 

Our B+ Tree implementation exploits two kinds of keys, integer based keys and string based 

keys. Both approaches can index any kind of object without data duplication. These kinds of 

indexes can be used to create an index of offset positions in a fasta file using the entries‘ GI as 

keys, see full description of data structures and functions in 

https://code.google.com/p/bioc/wiki/btreeString. Index catalogue is created from a fast sequential 

DOI:10.15774/PPKE.ITK.2014.011



 

34 

 

reading of the file where the sequences are excluded and only the headers are processed. The 

entry‘s offset position is used to create the B+ Tree which takes the GI as keys. 

The second group has two Bioinformatics modules, the fasta and the taxonomy modules. These 

modules were implemented in Object Oriented Design fashion, in order to encapsulate the 

functions/methods available for each data structure and hide internal functions. This is a useful 

approach that increases the readability and reusability of the code offering a safe environment for 

developing, see Table 4. All the data structures developed using this approach have two standard 

functions, the first one named free used to release the memory occupied by the object and the 

second named toString to print the object. 

Table 4: Object oriented design for the C structures. 

Data structure definition in the .h file Function access from the object in .c file 

struct fasta_s { 
        /** 
         * Set the fasta header 
         *  
         * @param self the container object 
         * @param string the header 
         */ 
        void (*setHeader)(void *self, char *string); 
}; 
typedef struct fasta_s *fasta_l; 

// Header definition 
char *header = "the fasta header"; 
 
// Creation of the fasta_l object 
fasta_l myObj = CreateFasta(); 
 
// Setting the fasta header 
myObj->setHeader(myObj, header); 
 

The fasta module is designed to process fasta files. It has a fasta_l data structure with methods to 

manipulate the sequence and the header. Also, the module has independent functions for 

creating, reading and writing B+ Tree indices from fasta files allowing a fast and random access 

to the entries. See https://code.google.com/p/bioc/wiki/fasta for full description of the fasta 

module. 

The second module of this group is named taxonomy and it is designed to load the NCBI 

Taxonomy database using B+ Tree index for fast retrieval of the taxonomy entries. Several 

Bioinformatics experiments need a taxa organization and/or classification according to their 

lineage or rank. This module provides a fast way of using the taxa information in C programs. 

See https://code.google.com/p/bioc/wiki/taxonomy for full description of the taxonomy module. 

BioC project provides a set of tools for making use of the concepts and paradigms described 

above. They are briefly summarized in Table 5. 
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Table 5: Tools available in the BioC Project. 

Tool Description BioC modules used 

BuildBtreeIndexFasta Build a binary index file for a fasta file B+ Tree, Fasta 

SplitFastaFile Split a fasta file by reads (overlapped or not) B+ Tree, Fasta 

TaxLineageFromGi Print the taxonomy lineage from GenBank Gi B+ Tree, Taxonomy 

TaxLineageFromTaxId Print the taxonomy lineage from TaxId B+ Tree, Taxonomy 

TaxonerAssamblerMarkerDB 
A basic assembler program for the Taxoner output using 

overlapped reads 

B+ Tree, Fasta, 

Taxonomy 

2.2.3 Bash shell scripting 

Bash shell is a command processor script language widely used by the Linux users to create 

small programs that can be used to integrate complex workflows and pipeline processes. This 

scripting language was used in our projects to create automatics scripts for retrieval, 

manipulations and transformations of data files.  

Also, several scripts were developed for the Google Cloud administration and configuration 

offering an automatic workflow for running computational experiments on the Cloud. 

2.3 Google Code Projects 

The Google Code Platform [189] is a free project hosting service that provides a free 

collaborative development environment for open source projects. The source codes developed 

are included in Projects that are freely available using the Google Code hosting services. 

This platform offers to each project a version control system. In our projects we are using the 

Apache Subversion System (SVN) [190], to manages files and directories, and the changes made 

to them, over time. Also, an easy Wiki pages maker is available for publishing the project 

documentation developed by the programmers. 

Table 6: List of Google Code Projects developed. 

Name URL Language 

Taxoner http://code.google.com/p/taxoner/  C 

JBioWH http://code.google.com/p/jbiowh/  Java 

BioC http://code.google.com/p/bioc/  C 

The Table 6 shows the list of projects published on the Google Code Platform and the 

programming languages used on them. 
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2.4 Cloud Platforms 

Google Cloud Platform provides both a fully managed platform and flexible virtual machines, 

allowing the users to choose a system that meets the needs of their own projects. This platform is 

built on the same infrastructure that allows Google to return billions of search results in 

milliseconds. 

For our projects, a virtual Beowulf like cluster was implemented on the Google Cloud Platform. 

The virtual machines provides by Google were modified to have a server virtual machine (head) 

and multiple computing clients (nodes). 

The head virtual machine runs a network file system (NFS) server. The NFS server is a 

distributed file system protocol that allows a client computer to access files over a network much 

like local storage is accessed. Also, a network information system (NIS) is installed on the head. 

The NIS is a client-server directory service protocol for distributing system configuration data 

such as user names and host names, between computers on a computer network.  

Additionally, the head includes the Torque Resource Manager that is a distributed resource 

manager providing control over batch jobs and distributed computer nodes. This server allows 

the creation of queues to organize and manage the jobs executed by the users. 

Virtual cluster also includes a directory named progs distributed by the NFS server with the most 

important programs for Bioinformatics installed in it. This directory allows the usage of the 

virtual cluster for any Bioinformatics projects. 

Two scripts where developed to start the head virtual machine remotely from our workstations 

and to create, start and delete the client nodes. These scripts, developed in bash, use the Google 

Cloud gcutil utility to interact with the cloud platform. Using this platform we can easily expand 

or reduce our virtual cluster depending on our needs. The nodes are created from a snapshot 

image and they are inserted in the cluster environment automatically. 
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3 Results and Summary 

3.1 Biological Database integration 

3.1.1 General approach 

Biological database integration is one of the most challenging topics on Bioinformatics. As we 

mentioned above, the integration of biological data has to be an ongoing project due to the nature 

of the data itself. The data heterogeneity and the redundancy are important problems to be solved 

during an integration process. Also, the biological context has to be taken into account in order to 

reduce the integration domain. Multiple the systems have been developed to integrate biological 

data using different kinds of approaches. However, as we specified in the Introduction, a number 

of specific challenges still remain. 

We present here a data integration framework developed using Java environment, usage of which 

is not restricted to it. Java BioWarehouse (JBioWH) is an open-source framework developed in 

Java which offers to the Bioinformatics community a set of computational tools designed for a 

wide range of users. Users with advanced programming skills in Java, SQL and Webservices can 

find JBioWH a useful framework to work with biological data. At the same time, users without 

programming skills can use the JBioWH multiplatform desktop client to perform complex 

queries to the integrated data included in the system. 

The framework is freely available in https://code.google.com/p/jbiowh/. This site also offers full 

documentation and multiple examples, figures and tables. Also, a Google Group called jbiowh-

discuss (https://groups.google.com/forum/#!forum/jbiowh-discuss) is active for posting 

questions and ideas; it keeps an open channel between the system‘s users and our developer 

group. Additionally, a MySQL server, designed for demonstration purposes, is available at: 

hydra.icgeb.trieste.it:3307 and a Webservices site available at: http://net.icgeb.org/jbiowh-

webservices/. 

Our goal was to design a flexible system which would be used in multiple scenarios. Its modular 

design allows the creation of context dependent integrated databases where the database size and 

DOI:10.15774/PPKE.ITK.2014.011



 

38 

 

the databases to integrate can be fully manipulated by the user. This made the JBioWH 

completely different from the available solutions due to its versatility. It can be used in personal 

computers with a low level of resources, in big servers for high demanding tasks or simply in the 

Cloud through the Google Cloud Platform [191]. 

Five interrelated components sketch out the JBioWH architecture: (i) the data sources, (ii) the 

relational schema and database, (iii) Java API, (iv) Desktop client and (v) Webservices. This 

architecture and the relationship between the components can be seen on  Figure 4, further 

description of these components will be outline in the next subchapters. 

3.1.2 Data sources 

JBioWH contains data retrieved from 24 databases, see Table 7. The framework provides a Java 

command line tool for fetching the data from their own providers and insertion of data into the 

JBioWH relational database (top of the Figure 4). This process includes the data transformation 

from their own file formats to internals TSV files which are inserted into MySQL database. 

This command line tool is able to work with the data locally or remote. Also, compressed files 

can be handled in order to reduce network transfer and data storage. 

The loading times depend on the size of the data to be inserted. Small databases like NCBI 

Taxonomy [134], Gene Ontology [135], DrugBank [165] and OMIM [192] can be loaded in a 

few minutes. However, big databases like Gene [193], UniRef [115] and KEGG [73] may take 

multiple hours. The worst case is the UniProt TREMBL which can take until 3 days on a 

personal computer. The Table 8 shows the database original file size, the final MySQL file size, 

the loading times and the number of elements inserted. 

Figure 5 shows loading times against the total number of elements inserted into the MySQL 

database. For small and medium databases the loading time scales linearly. However, three 

databases do not obey this tendency: Draft Genomes (48 084 s), KEGG (50 416 s) and UniProt 

TREMBL (253 304 s). Draft Genomes and the KEGG databases include multiple files, so the 

process of opening and closing of these files create a long delay which is not the case for other 

databases. The case of the UniProt TREMBL is the other exception. This database includes only 
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one file of 21 GB but it contains 1x10
9
 elements to insert. Leaving out the outliers and fitting a 

linear equation to the rest we can find a correlation coefficient of 0.98. The Figure 6 shows the 

graph for this linear correlation and the linear equation itself. 

 Figure 4: The JBioWH architecture and the relationship between the components 
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Table 7: Data sources included in JBioWH 

Data Type Data Source URL 
Data 

Format 

Taxonomy NCBI Taxonomy ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz Delim. Text 

Ontology GO ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-full/ OBO XML 

Gene Gene ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ Delim. Text 

Gene KEGG Gene http://www.bioinformatics.jp/en/keggftp.html Text 

Gene GenBank ftp://ftp.ncbi.nih.gov/genbank Text 

Gene RefSeq ftp://ftp.ncbi.nih.gov/refseq/release/ Text 

Chromosome Genomes ftp://ftp.ncbi.nih.gov/genomes/ Delim. Text 

Protein UniProt ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/ XML 

Enzyme KEGG Enzyme http://www.bioinformatics.jp/en/keggftp.html Text 

PPI IntAct ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psi25/pmidMIF25.zip PSI 25 XML 

PPI MINT ftp://mint.bio.uniroma2.it/pub/release/psi/current/psi25/pmids/ PSI 25 XML 

PPI DIP http://dip.doe-mbi.ucla.edu/dip/ PSI 25 XML 

PPI BioGrid http://thebiogrid.org/ PSI 25 XML 

Prot.  Cluster UniRef ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref100/ XML 

Drug DrugBank http://www.drugbank.ca/system/downloads/current/drugbank.xml.zip XML 

Drug KEGG Comp. http://www.bioinformatics.jp/en/keggftp.html Text 

Pathway KEGG Pathway http://www.bioinformatics.jp/en/keggftp.html Text 

Reaction KEGG Reaction http://www.bioinformatics.jp/en/keggftp.html Text 

Disease OMIM http://www.omim.org/downloads Text 

Prot. Domain PFAM ftp://ftp.sanger.ac.uk/pub/databases/Pfam/releases/Pfam26.0/database_files/ SQL 

Prot. Groups COG ftp://ftp.ncbi.nih.gov/pub/COG/ Text 

Prot. Groups eggNOG http://eggnog.embl.de/version_4.0.beta/downloads.v4.html Text 

Prot. Groups NCBI Prot Cluster ftp://ftp.ncbi.nih.gov/genomes/CLUSTERS/ Text 

Prot. Groups PirSF ftp://ftp.pir.georgetown.edu/databases/pirsf/ Text 

The databases were accessed in May 2014. 

Figure 5: Loading times against the number of elements inserted. The outliners are the Draft Genomes (48 084 s), KEGG 

(50 416) and UniProt TREMBL (253 304 s). 
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Table 8: Loading times, final data sizes and number of elements inserted. This example was executed in a computer with 

two Intel Core CPU Q6850 (3.00 GHz and 4.0 MB of cache) and 8.0 GB of RAM running OpenSuSE 13.1 (Linux version 

3.11.10-11-desktop. 

DB Download Date File size (MB) MySQL size (MB) Load time (s) No. main elements No. elements Total elements 

GO Ontology  3/22/2013    4    70    16   39 118   473 599   512 717 

DrugBank  3/23/2013    90    143    24   6 711   397 847   404 558 

DIP  3/22/2013    164    280    90    1  1 833 668  1 833 669 

NCBI Taxonomy  3/22/2013    159    547    143  1 002 774  2 778 537  3 781 311 

MINT  3/22/2013    990   15 466    308   1 400  4 394 018  4 395 418 

OMIM  3/23/2013    163    332    381   22 811   879 509   902 320 

IntAct  3/22/2013   2 757   2 579    494   6 234  14 851 480  14 857 714 

BioGrid  3/22/2013   2 598   2 053    652    1  15 583 825  15 583 826 

Complete Genomes  3/25/2013    577   2 055   1 132  7 301 020  14 603 906  21 904 926 

UniProt (SwissProt)  3/22/2013    737   4 228   2 185   539 616  51 168 667  51 708 283 

Gene  3/22/2013   5 619   14 801   2 484  11 402 702  97 450 383  108 853 085 

PFAM  3/28/2013   31 000   20 501   12 668   14 831  259 648 666  259 663 497 

UniRef 90  3/25/2013   4 379   25 787   13 606  13 613 286  332 379 407  345 992 693 

Draft Genomes  3/11/2013   3 130   6 143   48 084  17 166 166  17 168 429  34 334 595 

KEGG  6/11/2011   40 668   14 784   50 416   126 478  130 469 935  130 596 413 

UniProt (TREMBL)  3/5/2013   21 953   131 352   253 304  29 266 939 1 056 770 378 1 086 037 317 

Total (GB and Hours)  112.29 235.47 107.22 80 510 088 2 000 852 254 2 081 362 342 

Figure 6: Linear correlation between the loading times and the number of elements inserted. The outliers are left out 
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3.1.3 Relational schema 

For the integrated database, we designed a relational database scheme in SQL. The relational 

scheme contains 414 tables including auxiliary tables for cross-references and for speeding up 

the ‗join‘ operations. Figure 7 shows the main tables and their relationships. 

Additionally, the JBioWH relational schema is designed to store all the information that comes 

from biological databases. This means that JBioWH can be treated as a relational representation 

of each of biological databases, without any missing features. This is possible because the 

original sequential data representation in terms of large flat files was transformed into 

representation in terms of object relations, which we call as biological objects. 

While the storage of all the information that comes from the original sources might seem as a 

waste of space and resources, it gives JBioWH framework extra features. First, it can be used as 

a data supplier to other applications, allowing a fast data retrieval process to integrated data. 

Second, context dedicated views of the relational schema can be generated without adding new 

data to the relational database. 

The schema can be described through databases groups. These groups organize the JBioWH’s 

database modules taking into account the level of cross-references of the biological databases. 

There are three groups: (i) the basement group which includes the aforementioned general 

databases (NCBI Taxonomy and Gene Ontology) that does not included references from any 

other database, (ii) the primary group which includes primary databases like GenBank and 

UniProt, and (iii) the secondary group which include secondary databases and metabases. 

On the other hand, two informative tables are included into the relational schema which does not 

hold biological data. The first one is the DataSet table which is used to store the biological data 

sources information. This table stores information such as the data source name, version, release 

date, the user who performed the insertion etc. Also, a status field is included which is used to 

store to current status of the database, e. g. status: created that is used when the database is 

created for the first time and is under the insertion process, updating that is used when the 

database is being updated and inserted that is used when the created or updating processes 

ended successfully. The identifier of this table is used as a foreign key in the main tables of the 

different modules to keep the track of the biological objects. 
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The second informative table is named WIDTable. This table is used to keep the last global 

identifier used by the system. The WID identifier, that is explained bellow, is a global unique 

number that is used as a surrogate primary key to identify every database entry. 

3.1.3.1 Naming convention and global surrogate primary key 

Additionally, the naming convention is used to organize the table names offering a direct way to 

identify which module the table belongs. Each database module uses the name of its main table 

as a prefix for the other module‘s tables. For instance, in the Taxonomy module the main table is 

called Taxonomy and all other tables of this module are named using the prefix Taxonomy (the 

table which stores the synonyms is named: TaxonomySynonym). 

A surrogate primary key named WID is generated and is used to identify the biological objects 

inserted into the database. This is a global unique number that can be used to identify all the 

entries inserted into the database. Also, it is used to create cross-references between the entries. 

The next available number (which is the last number plus one) is stored in the WIDTable 

aforementioned. 

Many biological databases use strings as unique identifiers instead of integers. As it is well 

known, the usage of strings as identifiers in the SQL databases increase the index size and 

introduce some delay during the ‗join‘ operations. The JBioWH‘s relational schema uses name 

conventions which include the creation of WID, which is not a descriptive value, in each table as 

internal identifier and surrogate primary key in order to reach the best possible performance. 

This internal identifier will be hidden from users keeping the original identifier (the one that 

come with the biological database) as the main reference for users. The WID field will be only 

available if the JBioWH is used from a computer client application or directly in the SQL 

environment. 
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Figure 7: JBioWH relational schema with the main tables and their relationship. 
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The fields which are foreign keys follow a similar convention; they use the foreign table‘s 

name as a prefix followed by the underscore ―_‖ character and the foreign field‘s name, e. 

g. the Taxonomy table has a field named WID as surrogate primary key and the 

TaxonomySynonym table has a field named Taxonomy_WID as a foreign key between 

the Taxonomy and the TaxonomySynonym tables. 

The many-to-many relationship tables are also included in the naming conventions. The 

tables use as prefix the name of the table which owns the relationship and at the same time 

defines to which module the table belongs to. For instance, the table named 

Protein_has_Ontology represents the relationship between the proteins and the ontology 

terms, i. e. one protein can have multiple ontology terms and one ontology term can be used 

by multiple proteins. This table belongs to the Protein module and will remain empty if the 

proteins are not inserted into the database. 

3.1.3.2 Basement group 

The basement group is formed by the NCBI Taxonomy and Gene Ontology databases. 

These databases do not include cross-references to any other biological database but they 

are cited by all of them.  

The Taxonomy module includes the NCBI Taxonomy database. This database is used to 

organize the biological data through a curated taxonomy classification and nomenclature of 

all biological organisms. It is cited by almost all of the biological databases through the 

TaxId identifier. This is a unique numerical field used to identify all biological organisms. 

The module includes eight tables plus six temporal tables that are used during the insertion 

process.  

The Ontology module includes the Gene Ontology database. The module includes eighteen 

tables in total with 5 temporal tables. This database offers the possibility to use well 

defined terms to classify the biological objects. The GO database use a string identifier for 

its terms, therefore the WID is inserted in the main module (Ontology table) as surrogate 

primary key. This key is used in the cross-references as the naming convention specify. 
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3.1.3.3 Primary group 

The primary group includes modules for primary databases. These modules are Protein, 

GenBank, and the Gene. 

The Protein module follows the UniProt XML file format structure and contains all 

database data including the proteins sequences. It includes sixty tables in total; eleven are 

used for many-to-many relations and fourteen are temporary tables. This is a highly cross-

reference module but also it contains multiple cross-references to other databases. One 

important characteristic of the UniProt database is that it includes a wide and well curated 

list of cross-references. This module splits the Unipart‘s external database references table 

(ProteinDBReference) into multiple tables creating small tables for each external database 

that is cited by UniProt, e. g. the modules includes tables like ProteinGO, ProteinGene, 

ProteinDrugBank, etc. Those tables are used to store the original cross-reference data that 

comes in UniProt. Additionally, the relational schema includes relationship tables like 

Protein_has_Ontology, Protein_has_GeneInfo and Protein_has_DrugBank which are 

used to store the cross-reference between the databases using the JBioWH‘s surrogate 

global primary key and are created from the before mentioned tables. 

The GenBank module is based on the GBK file format from the NCBI. This module 

includes nine tables in total; one of them is used to store the relation between the GenBank 

CDS and the Gene information. The relational schema stores the nucleotide sequences 

offering a fast delivery system for multiple applications. This module can be used not only 

for the GenBank database but also it can be used to manage any database using the GBK 

file format. For instance, this module can be used for the RefSeq database offering a 

relational schema for a more concise database than the GenBank, although their usage will 

depend on the biological context. 

The last database included in this group is not a primary database but it contains the gene 

data. This database is the NCBI Gene database that is cited by multiple databases. It acts as 

the bridge between GenBank and UniProt data. This module includes thirty nine tables in 

total with five many-to-many relation tables and eighteen temporary tables. 
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The relationships between these modules are through the Gene module. The GenBank CDS 

are linked to the genes and the genes are linked to the proteins. Additionally, they are 

linked to the basement group through bilateral relations with the tables on that group. The 

Figure 8 shows the relations between these modules. 

As can be seen in the figure, the modules are designed in a circular reference way. This 

design is useful because it allows join queries that can start in any table of the circle but it 

may introduce extra complications from the programming point of view. Extra care has to 

be taken on the programming side to handle this circular reference and the data integrity 

during insertion or update processes. 

Figure 8: The relations between the Basement and first group of modules 
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3.1.3.4 Secondary group 

The secondary group is formed by the rest of modules included into the JBioWH relational 

schema. This group includes the Chromosome, Protein-Protein interaction, Protein clusters, 

Drugs, Pathway, Disease, Protein families and Protein Groups modules.  

The chromosome module is based on the Genomes database of the NCBI and it is closely 

related to the Gene database. The modules is based on the data of the PTT and RNT file 

formats offering the possibility to work with genes‘ positions in the chromosomes. The 

module includes five tables and it is linked to the Gene, Protein and Taxonomy modules. 

The Protein-Protein interaction module is based on the MIF25 file format. The module 

includes forty two tables with one temporary table. It is linked to the Protein module. This 

module can store the data provided by BioGrid, IntAct, MINT, DIP and any other database 

providing MIF25 file format. This module can be used for protein network reconstruction. 

Protein cluster module is based on the UniRef database and it is connected to Protein and 

Taxonomy modules. It includes eight tables with one temporary table. The UniRef database 

includes 3 kinds of protein clusters, 50, 90 and 100 % of identity. The module can handle 

all three files but they will be inserted as independent datasets. 

The Drugs module is based on the DrugBank database and contains forty seven tables. It is 

connected to the Protein and Pathway modules. This module has the particularity of 

included proteins which have different biological meanings than the proteins in the UniProt 

database. Consequently, there are some redundancy between the Drug and the Protein 

modules. The Target object in DrugBank is a protein but with an associated biological 

role. Therefore, the biological object is not the protein sequence and its attributes but also, 

its biological role. These biological roles are mapped to the Protein module using many-to-

many relationship tables like: Protein_has_Drugbank for the proteins who act as targets, 

Protein_has_DrugBankAsCarriers for the proteins which act as carriers, the 

Protein_has_DrugBankAsEnzyme for proteins which act as enzymes and 

Protein_has_DrugBankAsTransporters for proteins which act as transporters. This 
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approach allows joining extra information that comes with DrugBank to all the useful 

information included in UniProt. 

The Pathway module is based on the KEGG database and includes 84 tables. This is one of 

the most cross-reference modules in the relational schema; it is linked to Gene, Protein, 

DrugBank and Taxonomy. It has a hierarchical design that starts with KEGGCompounds, 

KEGGGenes, KEGGEnzymes and KEGGReactions blocks. Then, all of them are linked 

through the KEGGPathway block. The KEGGPathway is graph based structure where 

the nodes are the KEGGEnzymes and the edges are the KEGGReactions. This module 

can be used for metabolic pathway reconstruction. 

Disease module is based on the OMIM database. The module includes 22 tables with 3 

temporary tables. This module is linked to the Gene module. 

The next module is the Protein domain. This module is based on PFAM database and 

includes 39 tables with 3 temporal tables. The tables of this module are based on the SQL 

files provided by PFAM. 

Finally, the last module is the Protein Groups module. It contains four sub-modules based 

on the following databases: PirSF, COG/eggNOG, NCBI Protein Cluster and the 

OrthoXML [194] file format. 

All these sub-modules provide orthologous groups for genes and proteins. We designed the 

Protein Groups module as the addition of the tables included by the four sub-modules 

mentioned. The approaches followed by these databases to generate the orthologous groups 

are completely different and they can be used according to the biological context of the 

experiments. 

The PirSF based sub-module includes 3 tables. The module is linked to the Protein module 

and it is based on the ―pirsfinfo.dat‖ file. The Orthologs group‘s members provided by 

PirSF use the UniProt Accession Number for the protein identification. The cross-reference 

in JBioWH is recreated using the internal WID in order to avoid the usage of strings for 

cross-references. 
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The COG/eggNOG sub-module includes 10 tables with 2 temporary tables. This module is 

linked to the modules: Taxonomy, Gene and Protein. Although the COG database is no 

longer updated, it is included into the JBioWH because several databases and 

bioinformatics tools still use the COG classification of functional groups. Also, the module 

was designed to store the eggNOG database using the same JBioWH relational schema as 

the COG database. As we aforementioned, the eggNOG database is a continuity of the 

COG database keeping the same organizational schema of functional categories and groups. 

The Protein Cluster module includes 9 tables and it is linked to the Taxonomy, Gene and 

Protein. 

The OrthoXML file format based sub-module includes 10 tables. This sub-module is not 

based in a particular database; it can handle any database which provides the data using the 

OrthoXML file format. This file format is designed broadly to allow the storage and 

comparison of orthology data from any ortholog database. It establishes a structure for 

describing orthology relationships while still allowing flexibility for database-specific 

information to be encapsulated in the same format. This file format is used by the OMA 

[195, 196] and ProGMap [1] among others. 

3.1.3.5 Cross-references 

The cross-references in the JBioWH relational schema are one-to-one, one-to-many and 

many-to-many relations. All of them are created using the cross-references that come with 

the biological databases. 

There are two cases of cross-reference between the databases. The first one is when the 

cross-reference is in one direction, e. g. one database includes a cross-reference of another 

database that doesn‘t have any reference to the first one. In this case the owner database of 

the relationship is the one that includes the cross-reference and the relation table will be 

included into its JBioWH module. Namely, we use the Gene Ontologies references 

included in the UniProt entries. However, the Gene Ontology database does not contain any 
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reference; so, the Protein module has a relation table named Protein_has_Ontology that is 

the many-to-many relationship between the Proteins and the ontology terms. 

The second case of cross-reference is when both databases are cited among them. In this 

case the module which will be the relationship owner is selected according to the biological 

meaning of the data. As an example we can see the cross-references between UniProt and 

Gene databases. The final relationships are generated using the data provided by two 

databases. They are converted to the internal JBioWH‘s WID and then, the redundant ones 

are eliminated. This procedure allows us to create multiple relationships that are not 

available using the databases independently. 

3.1.4 Java API 

The Java API has been designed for maintaining the relational database and querying the 

data. It is implemented using the Oracle Java SE 7 [177] and the classes were designed 

according to the standard Java design patterns [197]. The usage of commonly known 

design patterns from the field of object oriented software design in software development 

leads to standardization of the code, making it easier to understand and use for other 

programmers or users. 

The API has three principal libraries, jbiowh-core, jbiowh-dbms and jbiowh-persistence 

and five Java applications, jbiowh-parser, jbiowh-desktop, jbiowh-webservices, jbiowh-

webservices-client and jbiowh-tools. 

This is an ongoing work that is used by several external projects to our lab. Also, the 

framework is indexed by multiple search engines like the Ohloh metasite 

(http://www.ohloh.net/p/jbiowh/). 

The Figure 9 shows the number of lines committed per time. This graph shows that 

JBioWH have been growing during the time and is in continues development. 
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Figure 9: The number of code lines included into the JBioWH framework. Statistics taken from 

http://www.ohloh.net/p/jbiowh/ 

The next Figure 10 shows the statistics for the JBioWH source code. 

Figure 10: Number of code lines in the JBioWH framework. Statistics taken from http://www.ohloh.net/p/jbiowh/ 

3.1.4.1 The Core library 

The first library includes all basic classes of the JBioWH framework. It also has other 

useful classes like JBioWHUserData class which is used to store the User information, the 

VerbLogger class used as the logger system and the fileformats package. 

In addition, this package provides the classes for parsing some files used by JBioWH 

framework. The formats supported are the BIOpolyer Markup Language (bioml) [198], the 

NCBI XML Blast [12], fasta [199] and the Structured Query Language (SQL). 
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3.1.4.2 The DBMS library 

The second library comprises of classes which are used to manage 

the Database Management Systems (DBMS). This library includes 

an interface named JBioWHDBMS which is used to specify the 

available methods to interact with the DBMS. This class is 

implemented by the WHMySQL class that extends the 

aforementioned JBioWHUserData class, see Figure 11. The 

WHMySQL class is used to communicate the JBioWH 

framework with the MySQL DBMS [175]. 

3.1.4.3 The Persistence library 

The last library applies the Java Persistence Model (JPA) for the JBioWH relational 

schema. This library operates the classes to handle the database entities in accordance with 

the object-oriented model described by the JPA approach. Each entity maps the relationship 

between the biological objects giving total interconnectivity between the objects within the 

Java code. The core classes use the EclipseLink [180] library to map object-oriented 

models onto the relational database tables in the back-end through the JBioWHPersistence 

singleton class. 

Additionally, this library employs the JBioWHSearch interface to provide the methods to 

search over the JBioWH relational schema. Also, an abstract class named SearchFactory is 

provided here. This abstract class includes the basic modules that will be used by the class 

that implement the JBioWHSearch class, see Figure 12. 

Figure 11: The functionality to 

manage the DBMS. 
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Figure 12: The structure of the Search functionality. The interface JBioWHSearch is implemented by the modules 

search classes that extends the SearchFactory abstract class. 

3.1.4.4 The Parser application 

The jbiowh-parser application comprises of classes which are used for reading the data 

from the data sources (parsers) and inserting into the relational schema. This application 

can process the data sources locally (previously copied by the user) or remotely through an 

HTTP or FTP server (the data sources servers providers). 

A JBioWHParser interface is used by the parsers which also extend the ParserFactory 

class as shown in the Figure 13. This application includes java packages for each module 

with classes that implement the JBioWHParser interface and also extends the 

ParserFactory class. 

Figure 13: The JBioWH parser structure. 
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Each module implements their own methods to connect to the source databases, retrieve 

data in flat file format, parse and put the data into the relational database using the jbiowh-

persistence and jbiowh-dbms libraries. Modules can be loaded or unloaded independently 

from each other; hence, unnecessary data can be easily omitted to save storage space and to 

speed up query execution. The biological databases are often large and their syntax is often 

poorly defined. This problem frequently causes failures while loading the data in the 

available integration frameworks, or worse, it can corrupt the biological data themselves. 

The loader functions of JBioWH were designed to preserve the biological data so that the 

loader process stops in case of errors in the database format or structure. 

3.1.4.5 The Desktop application 

The JBioWH Desktop Client application (jbiowh-desktop) has been developed for users 

who are not familiar with SQL scripting or the Java programming languages. The client 

application provides a graphical interface to access, manipulate and execute complex 

queries by simple mouse clicking from the integrated database (the desktop client is 

illustrated in Figure 14). 

Figure 14: A screenshot of JBioWH Desktop Client. The left panel shows the relational schemes opened. The top 

right panel shows the list of the database inserted in the relational scheme, while on the bottom left panel one can 

see the tables in the selected database. 

DOI:10.15774/PPKE.ITK.2014.011



 

56 

 

Next example shows a query over the Protein, Taxonomy and Ontology modules performed 

by the user. The query is to find the proteins which have the EC (Enzyme Id) equal to 

2.7.11.22 belonging to the Taxonomy Caenorhabditis elegans species and to the Ontology 

term: GO:0007126 (Meiosis). The result is shown with a tab named CDK1_CAEEL which 

is the name of the protein. 

The application has a temporary working space, the tab Result, where the user can store 

intermediate results that will be used in further queries as shown in the Figure 15. In this 

example, two queries are executed to retrieve the Taxonomy and Ontology objects that are 

used in the final query as Constrains. 

Figure 15: The search interface with constrains. 

DOI:10.15774/PPKE.ITK.2014.011



 

57 

 

The search interface is designed to allow complex queries using the Constrains box as 

shown in the Figure 15. The result interface is shown in the Figure 17 

Figure 16: The SQL query interface with the result list. 

Figure 17: The result interface showing the gene linked to the protein. 
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Additionally, the application provides a SQL editor that allows the execution of queries on 

the relational schema. The editor is highlighted to help the typing and the results are shown 

in a different tab that also includes a simple filter as shown in Figure 16. 

3.1.5 Web services 

The JBioWH webservices (jbiowh-webservices and jbiowh-webservices-client) are 

applications designed to provide the integrated data inserted into the JBioWH relational 

schema access over a HTTP. The webservices have an associated web site that is published 

using the Apache Tomcat server [200], see a demo server: http://net.icgeb.org/jbiowh-

webservices/. The associated web site offers a table with the data inserted into the relational 

schema as shown in the Figure 18. Also, tutorial pages are published for each module in 

order to describe the available webservices paths (methods) for each module. 

Figure 18: The webservices associated web site showing the available Datasets. 
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The URL path is structured using the global path webservices (common for all modules), 

the module‘s name (protein), the method‘s name (accession) and the parameters 

(040R_%25). Additionally, all modules included the count and the search methods. The 

search method is implemented using the JBioWHSearch interface. Each module will have 

a search path that acts as a wrapper to the search interface. This allows to include 

automatically all the search options available for the module directly in the webservices. 

For example, for the Protein module the paths are showed in the Figure 19. 

Finally, the parameters passed to the webservices are designed to use regular expressions in 

the MySQL format. The regular expressions have to be encoded using the HTTP encoding 

system in order to be correctly passed through the webservices to the DBMS. 

Figure 19: The available webservices methods for the Protein module. 
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3.1.6 Examples 

To show the multiple applications that JBioWH framework can have we would like to 

describe some experiments. The experiments are designed to use all the available features 

of JBioWH from the Java API to the Desktop client. 

Additionally, there are multiple examples published on the project‘s Web site 

http://code.google.com/p/jbiowh/wiki/Examples. 

Examples of simple data retrieval (retrieving one protein sequence, or all human sequences) 

are shown in  

The Table 9 shows two solutions for each problem, i.e. the SQL command for retrieving 

the data, and the Java code used in conjunction with the API. 

Table 9: Two simple examples and their solutions using SQL language and the Java API code 

More complex questions can be solved using the JBioWH Java API. These kinds of 

questions cannot be solved directly using SQL language (neither the Desktop Client). The 

API can be used to answer queries that cannot be easily handled by the SQL language. 

Task SQL solution Java solution 

Retrieve the protein 
sequence for the 

protein Q8DR59 

from UniProt. 

SELECT p.seq FROM Protein p INNER 
JOIN ProteinAccessionNumber a ON 
a.Protein_WID = p.WID WHERE 
a.AccessionNumber = 'Q8DR59'; 

JBioWHSearch sProt = new SearchProtein(); 
List prots = sProt.search(‚Q8DR59‛, null); 

for(Protein p : (List<Protein>) prots) 
   System.out.println(p.getSeq()); 

Retrieve the protein 

sequence of all 
human proteins  

SELECT p.seq FROM Protein p INNER 
JOIN Protein_has_Taxonomy pt ON 
pt.Protein_WID = p.WID INNER JOIN 
TaxonomySynonym ts ON 
ts.Taxonomy_WID = pt.Taxonomy_WID 
WHERE ts.Synonym like 'human'; 

JBioWHSearch sTax = new SearchTaxonomy(); 
JBioWHSearch sProt = new SearchProtein(); 
 
List taxs = sTax.search(‘human’,null); 

 
List c = new ArrayList(); 
List o = new ArrayList(); 
c.add(taxs); 
o.add("IN"); 
 
JPLConstrains constrain = new 
JPLConstrains(c,o,null); 
 
List prots = sProt.search(‚‛, constrain); 

 
for(Protein p : (List<Protein>) prots) 
   System.out.println(p.getSeq()); 
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Namely, recursive queries such as finding nearest neighbors in terms of metabolism, 

taxonomy or chromosomal locations are typical examples of this kind of a problem.  

For instance, we want to find out if there are antibiotics that target a certain chromosomal 

region. As an example, we take the ±10 genes in the chromosomal neighborhood of the 

gene spr0328 of Streptococcus pneumoniae R6, which encodes the protein Endo-alpha N-

acetylgalactosaminidase (Q8DR60). The JBioWH will find gene spr0329 (GeneId: 

934791). This gene encodes protein Q8DR59, a penicillin-binding protein that is the target 

of Oxacillin, Hetacillin, Nafcillin, Ampicillin, Cefalotin, Azidocillin, Cefotaxime, Cefoxitin 

and Cephalexin.  

To answer this question one needs to retrieve gene and chromosomal position information 

from the Gene and Genome databases, respectively, then use the cross-references to 

identify the corresponding proteins in the UniProt database. Subsequently, JBioWH 

retrieves antibiotic information for these proteins from DrugBank. The total execution time 

for this operation is 10 s. The complete description and the source code are available at 

http://code.google.com/p/jbiowh/wiki/Example7. 

We can extend the scope of this question for an entire taxonomic subgroup. The question 

now is whether the orthologs of gene spr0328 in a certain taxonomic group have 

chromosomal neighbors that encode for antibiotic targets. We will use the ±10 genes 

neighborhoods in two genera, Streptococcus and Burkholderia.  

To answer this question, we first have to retrieve the taxonomic groups. For this purpose, 

JBioWH uses graph structures that can be created by extending the JBioWHGraph class 

in Java. For instance, the TaxonomyGraph class represents the hierarchical structure of a 

Taxonomy family. Table 10 shows the data of three example taxonomies that can be 

created by a code shown in http://code.google.com/p/jbiowh/wiki/Example5. 
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Table 10: This table shows the use of the TaxonomyGraph class to create the hierarchical structure of a Taxonomy 

family. 

Family Tax Id 
Graph 

Time (s) 
Vertex Edges 

Bacteria 2 283 371 283 370 121 

Burkholderia 32008 3790 3789 4 

Streptococcus pneumoniae 1313 303 302 3 

Then, we want to get the orthologs of spr0328 from all Streptococci, located within a 10-

gene neighborhood of spr0328 and thereafter, locate the antibiotic target genes. For the 

location of the orthologs JBioWH uses the eggNOG databases. In Streptococcus, JBioWH 

finds two genes encoding antibiotic target proteins, gene 934791 of S. pneumoniae R6, 

which was already found in our first example, and gene 930269 S. pneumoniae TIGR4. 

The total execution time for this query was 15 s. The complete description and the source 

code are available in http://code.google.com/p/jbiowh/wiki/Example8. 

Now we further generalize the query: Given a taxonomic group find all chromosomal 

regions (say maximum 5000bp in length) that harbor at least two genes encoding antibiotic 

targets. 

Again, we will use the genera Streptococcus and Burkholderia as the examples. JBioWH 

will use TaxonomyGraph class to retrieve the genus members. The NCBI PTT table of the 

genomes will be used for a step-by-step search. Genes that encode an antibiotic target will 

be identified through links to UniProt, and from UniProt to DrugBank. The results in Table 

11 show that one gene-pair in S. pneumoniae TIGR4, and two gene- pairs in Burkholderia 

xenovorans LB400 are retrieved. The execution time for Streptococcus is 112 s and for the 

Burkholderia 249s. The complete description and the source code are available at 

http://code.google.com/p/jbiowh/wiki/Example6. 
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Table 11: This table shows the genes encoding for drug’s target protein that are in the same chromosome at a 

distance less than a specific number of pair bases. 

Family Genes Found gene ID Species Time(s) 

Streptococcus pneumoniae 41 576 930805-930802 Streptococcus pneumoniae TIGR4 112 

Burkholderia 224 568 4010698 -4010703 
4010703-4010704 

Burkholderia xenovorans LB400 249 

Finally, we show examples related to drugs that act on similar targets. In the database, the 

drugs are linked to proteins, and proteins are members of a network of metabolic pathways. 

In this system, two drugs can be (i) target neighbors, if they act on the same protein (ii) 

pathway neighbors, if they act on proteins that belong to the same metabolic pathway or 

(iii) distant neighbors, if they act on different pathways, and in the latter case it is important 

to know, in addition, how far apart in the metabolic network the two drugs are because 

distant relationships can be biologically meaningless. 

Questions related to (i) and (ii) can be answered by SQL queries but they need multiple 

joints, which makes the search time-consuming, especially in the case of (ii). Questions of 

type (iii), however, involve a prohibitively large number of multiple SQL join operations. 

JBioWH can handle these complex queries because of the graph structures implemented 

using the DrugPathwayGraph class. 

Hetacillin (DrugBank id: DB00739) is a beta-lactam that does not have intrinsic 

antibacterial activity, but is converted in the human body to Ampicillin, which is active 

against a variety of organisms. In DrugBank, Hetacillin is reported to act only on 

Penicillin-binding protein 1A (UniProt Id: PBPA_STRR6) and Penicillin-binding protein 

2B (UniProt Id: PBP2_STRR6) both of which are parts of the pathway Peptidoglycan 

biosynthesis (KEGG: spr00550) of the strain S. pneumoniae R6 (TaxId: 171101).  

Other links of Hetacillin are not reported even though its metabolite Ampicillin is well-

known to act on various organisms. If we use a simple SQL query, only the links to S. 

pneumoniae R6 will be found. However, the DrugPathwayGraph class can be used to 

find all target neighbors, pathway neighbors and also distant neighbors of the Hetacillin. 
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The answer provided by JBioWH is that (i) the drug has 19 target neighbors that would act 

on the same protein target, (ii) has 38 pathway neighbors and (iii) the drug has 35 nearest 

distant neighbors that are identified as antibiotics. The execution time was 300-400 s. 

In addition, the drug-pathway graph can be useful for identifying antibiotic drugs that target 

the same pathway in other organisms. For instance, Ceftazidime (DrugBank Id: DB00438) 

and Cyclacillin (DrugBank Id: DB01000) are antibiotic drugs that target the same pathway 

as Hettacillin, but in three different organisms, S. pneumoniae R6 (TaxId: 171101), 

Escherichia coli str. K-12 substr. MG1655 (Taxid: 511145) and Clostridium perfringens 

str. 13 (Taxid: 195102). This answer can be obtained using the DrugPathwayGraph class 

as described in http://code.google.com/p/jbiowh/wiki/Example10. 

We point out that graph-based queries cannot be easily answered by SQL-based systems 

such as relational databases that do not have graph extensions, and these queries are 

practically impossible to answer using the traditional central resources or federated 

databases such as Biomart [201, 202]. Although the data sources involved are well-known 

and sufficiently cross-referenced, it would require multiple visits from one database to 

another, which would make the process too time-consuming and complex for human 

operators, and also, too vulnerable to network failure. On the other hand, such complex 

questions may arise in data mining projects where the queries need to be answered many 

times within a loop. 

3.1.7 Applications 

The JBioWH has been used as integrated data supplier system to different OMICS 

disciplines like genomics, proteomics and drug design. A detailed explanation of these 

applications is out of the scope of this Thesis. Therefore, we simply mentioned them and 

the scientific papers and patents related to those works. 

Specifically, the integrated database was used in drug design experiments to characterize 

the metabolic pathways and the protein targets. The Drug module was used to provide the 

drug-target relationship used to test the docking programs and the three-dimensional 
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location of the drug inside the protein‘s active site. See the patents [203, 204] and paper 

[205]. 

Also, proteomics databases designed for protein identification using the Mascot Server 

[206] was created from JBioWH. Specifics criterions for filtering the proteins by 

sequences composition was used in order to create training datasets for testing proteomics 

experiments. See the papers [207, 208]. 

Finally, JBioWH is the data supplier of the applications used to study Quorum Sensing 

Systems. This application requires classified taxonomic data integrated with the bacterial 

genomes. See the paper [209]. 

3.1.8 Summary 

The JBioWH framework provides an open-source Java API for integrating biological data 

from various public databases in a data warehouse manner. The aim of JBioWH is to allow 

users to construct application-specific databases taking into account the biological context; 

in this chapter, we present a demo example of integrating 24 data sources. The integrated 

database is hosted on a local computer so it can be used for data-intensive calculations. 

This feature is especially important for queries that are not, or not easily, accommodated on 

central data resources. 

We note also that this feature could be important in environments with slow, or limited, 

Internet access. The relational schema of JBioWH is defined in a MySQL DBMS, and 

contains Java classes and parsers that load the modules of the JBioWH with data from 

public databases.  

Finally, JBioWH includes an API interface for programmatic access and a Desktop Client 

that lets users easily manipulate and query data via a graphical interface. Future work will 

aim to integrate further biological data sources and the implementation of other DBMS 

such as PostgreSQL and Oracle. 
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The webservices application can be used by external programs to retrieve data from the 

integrated database over HTTP. This kind of communications between the integrated 

database and the application clients is very important for mobile applications due to the 

actual limitation of the mobile platforms to use the Java Persistence models. 
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3.2 Prediction of bacterial taxa and gene function from NGS results  

Identification of bacteria in unknown samples is crucial in various fields, such as detection 

of human or animal pathogens, detection of bacterial contamination in food samples etc. 

Next generation sequencing is increasingly becoming the method of choice in many areas 

because of the richness of data it can provide, however the processing of NGS data is 

problematic in many respects. Namely, current sequence alignment problems were 

developed with genome sequencing in mind; they are optimized for handling a single 

reference genome (the human genome) on which they work very efficiently. 

From the computational point of view, the problem lies in the indexing process. All 

database search programs, starting from BLAST, gain efficiency by indexing the database 

in a form that can be rapidly searched. Current alignment programs (BWA, Bowtie2) use 

the Burrows Wheeler Transform combined with the Ferragina index for preprocessing the 

database. 

An indexed database can be quite large, but searching such a database with a query is not 

proportional to the database size, it rather depends on the length and number of the queries. 

Current aligners are optimized for indexing one ―human-size‖ genome and running a large 

number of reads against the indexed database. Identification of bacterial taxa is not such a 

task, here we have many thousands of genomes, draft genomes and individual DNA 

sequences and in an optimal case, we should use all these data for the identification of 

bacteria. Running searches on these genomes separately may require several thousand of 

separate indexing and alignment procedure which is computationally not tractable. 

3.2.1 The Taxoner principle 

The idea we proposed to solve this problem is the construction of a number of artificial 

genomes from many bacterial sequences, and running alignments on the artificial 

chromosome. In this way, we can use the advantages of the genome-mapping programs. 

When aligning a complex metagenomic dataset against the artificial chromosomes, in the 

ideal case, each read will map to its own genome, so the mapping will provide a way to 
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identify the taxa present in the sample. For this aim, we need to know the location of 

genomes within the artificial chromosomes. 

From the logical point of view, our database consists of segments of a large artificial 

chromosome sequence which is nothing but a large annotated sequence. Each annotated 

segment represents a taxon, more precisely a bacterial strain which is a leaf in the 

taxonomic hierarchy, so whenever a sequencing read maps to a segment, in can be traced 

back to a taxon, see Figure 20. 

Importantly, this process is analogous with the mapping of reads to an annotated genome. 

In an annotated genome, the segments are the genes which are named according to the 

function they carry. The functions are defined as part of a classification scheme, such as the 

COG, eggNOG or GO databases. 

The analogy between taxon assignment and function assignment allows us to develop a 

common system which will interpret metagenomic sequencing reads in terms of both taxa 

and functions. The central data structure is the artificial chromosome - which is – same as 

the sequences annotated in GenBank or UniProt – contains annotated segments. The 

annotation is particular in this case. The top level corresponds to a genome which is named 

by a taxon. The next level corresponds to segments annotated within the genome segments; 

these are the genes, named by the functional hierarchies. 

Figure 20: Mapping of reads to bacterial strains using artificial chromosomes. A strain is a segment of the artificial 

chromosome that is named by a label in the taxonomical hierarchy. 
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The database is a set of artificial chromosomes which have to be built from the public 

databases, given as concatenated FASTA files. A database can be built from the finished 

(complete) bacterial genomes, and then it will allow the identification of taxa and gene 

functions. Or it can also include draft genomes, or simply the entire nt database of NCBI. 

The number of chromosomes that need to be built depends on the capacity of the computer. 

Table 12 shows the current size of a few databases and the number of artificial 

chromosomes necessary for the analysis. The artificial chromosomes are then indexed 

using the indexing facility of Bowtie2 which is the current aligner used by the Taxoner 

program. 

Table 12: Current size of a few databases subsets and the number of artificial chromosomes necessary for the 

analysis. 

The original dataset was the NCBI nt 

Database Size (GB) No. of Chromosomes Bowtie Index size (GB) 

Bacteria 13.4  4 18.8  

Archaea 0.58 1 0.83 

Fungi 2.6 1 3.7 

Virus 2.0 1 2.8 

In addition to the artificial chromosome data, we also need the taxonomy tree, the gene 

sequences and their positions in the chromosome and COG or GO data. These data are 

extracted using an SQL script over the JBioWH integrated database. This script uses the 

Figure 21: Mapping of reads to gene functions within an annotated genome. A gene is a segment of the genome that 

is named by a label in the functional hierarchy, such as the COG/EggNOG system or the GO databases. 
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JBioWH modules GenBank, COG, Protein Cluster and Taxonomy (see Section 3.1 for 

further explanation of the JBioWH framework). Then, the text file obtained is converted to 

a binary B+ Tree index using an in-house program developed in C (see Section 2.2.2.1). 

This program creates a B+ Tree index to store the data in a form that allow fast retrieval.  

We mention that the design of the index files is not a straightforward task, since genomes 

and genes are named with a number of different ids that all have to be correctly mapped 

before we can establish an unequivocal mapping between the taxon, the gene and the 

function (See Section 3.2.2.4).  

An important problem is the handling of uncertainties which is solved by empirical rules. 

First, a read can map to several taxa. In this case, the lowest common ancestor will be used 

as the resulting taxon, so, if a read maps both the Escherichia coli and to Escherichia 

fergusoni strains, it will be assigned to the genus Escherichia, but if it maps to two E. coli 

strains, it will be assigned to the species E. coli. But if a read maps to two taxa in such a 

manner that it overlaps their endpoints within the artificial chromosome, the read will be 

discarded as an artifact. 

Mapping of reads to functions represent a different problem of uncertainties. In our 

approach, we used the functions annotated for known genes instead of performing a 

function prediction. For instance, if a read is assigned to a region who fall inside an 

annotated gene that gene and its annotated functions will be assigned to the read and 

reported by our programs. 

Additionally, it is assumed that functions are constant within the members of species and 

not necessarily within higher taxonomies levels. Accordingly, if a read maps to several 

species, it will be not used for function assignment. If a read overlaps with two functions 

annotated in a genome, both functions will be reported. 

Further sources of uncertainties are genes to which functions are not assigned. It is well 

known that most bacterial genomes contain a large number of such genes. When building 

the function assignment database for Taxoner, extra effort is made to assign a function to 
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the hypothetical genes if reliable data are found in other databases, such as COG and 

eggNOG. In other words, the hypothetical proteins are re-annotated before insertion into 

the Taxoner database. Reads mapping to the remaining hypothetical proteins that are 

without function will be reported separately during the analysis. 

3.2.2 The Taxoner algorithm 

Taxoner is a program that identifies taxa, primarily bacteria, by mapping NGS reads to a 

comprehensive sequence database such as the NCBI nt database or its predefined subsets. 

The program is developed in such a way that I can run both on standard desktop/laptop 

computers under the Linux operating system or in high performance system like the Google 

Cloud Platform. 

The algorithm consists of 3 phases. i) In the preprocessing phase, the database is divided 

into partitions and indexed with the bowtie2-build program of the Bowtie2 package. 

Alternatively, pre-built indices can be downloaded from the project site. ii) Alignment is 

carried out with bowtie2 and the taxa are identified with a lowest common ancestor search 

algorithm. The standard output of this phase is a summary of the found taxa and alignments 

in the SAMtools format. iii) Unlike other metagenome analysis programs, Taxoner can 

optionally provide a list of genes identified at the species level, along with their predicted 

functions. It also contains a utility that can produce a summary of the found functions, 

based on the COG-EggNOG scheme of functional descriptors [166, 210], using a B+ tree 

index. In addition, the read alignments provided in the SAMtools format can be further 

processed with other taxon assignment programs such as MEGAN. 

3.2.2.1 The Taxoner pipeline 

Taxoner is a pipeline written in C, which  currently uses Bowtie2 [101] (2.0.0-beta5) for the 

sequence alignments. 

The input is a reference nucleotide database in the form of concatenated FASTA file, and a 

set of nucleotide sequence reads typically 40-500bp in length, in fastq format. The Taxoner 
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database is freely available from http://pongor.itk.ppke.hu/taxoner/databases/bowtie2/. The 

NCBI Taxonomy database retrieved on 11-07-2013.was used for taxon assignment. For 

function assignment, Taxoner uses a preformatted dataset that contains two binary files 

which can be easily created from a pipeline that uses a SQL script and the JBioWH 

framework [211].  

The binary files can be downloaded from 

http://pongor.itk.ppke.hu/taxoner/databases/geneassignment/ and the pipeline description 

can be found in the Taxoner Google Code web site. 

The source code is freely available from the Taxoner Project published on the Google Code 

web site (http://code.google.com/p/taxoner/). The program runs on Linux computers and 

includes a simple html graphical interface for local use. The program can be operated in the 

command line mode and allows evaluation of large read datasets on personal computers or 

laptops with at least 8GB RAM. A demo web server, with test cases and a capacity to 

process datasets up to 100 thousand reads can be found at http://pongor.itk.ppke.hu/taxoner. 

3.2.2.2 Preprocessing 

The database used for alignment is created using the NCBI nt fasta file. The standard 

database creation process is done by splitting the nt fasta file into ~4Gb fasta files (sub-

databases), where the headers of each fasta sequence is replaced with the GI identifier and 

the organism taxon ID. The fasta files cannot be larger than ~ 4.0 Gb, since Bowtie2 has a 

limit on the reference genome size. When the database is created, the final step is then to 

index each reference fasta file with the bowtie2-build program. Since the nt database is not 

restricted to microbial organisms, an alternative database can be created by extracting the 

subset organisms of interest (e.g. bacteria, fungi, archaea, see Table 12).This greatly 

reduces the analysis time since reads do not have to be aligned to non-microbial entries. For 

this reason we made a pre-parsed and indexed database for each major microbial 

superkingdom available that can be downloaded via our website at 
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https://code.google.com/p/taxoner/wiki/07_Databases. We also included a database creator 

program that can create a database with any taxon ID(s) specified by the user. 

3.2.2.3 Analysis 

For the analysis the user must provide the input parameters (listed and explained below, 

under command line usage). During analysis, Taxoner first runs Bowtie2 using the default 

or user specified parameters and writes the alignments into a SAM (Sequence 

Alignment/Map)[212] file.  

The sequence alignment with Taxoner is done using the Bowtie2 aligner and the pre-

indexed databases. Since the nt database is too large to fit in a single fasta file, the input 

sequencing reads have to be aligned separately against each sub-database. Fortunately, 

Bowtie2 is a multithreaded aligner, which enables faster alignments using multithreaded 

processors. After all reads are aligned against each database, the taxonomic evaluation can 

be done. The main difficulty here is that a read can align with the same alignment quality to 

each fasta file. For this reason, Taxoner calculates a ―local‖ common ancestor (LCA) for 

each read in each alignment file and then merges the results into one file. In the final step, 

the merged file is sorted by read‘s name and a final LCA is calculated for each read using 

their ―local‖ lowest common ancestors.  

The output is a file that contains read names, alignment information, nearest neighbor taxon 

ID, start and ending positions of the alignment against the best hit and the genome 

accession number of the best hit. An optional output is a MEGAN compatible output, 

which enables the post analysis and visualization of the results. 

3.2.2.4 Gene Assignment 

In the Taxoner framework, detection of genes and assignment of functions is a problem 

analogous to function assignment (see Figure 21). This is a standalone utility that take the 
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alignment output in the Taxoner format and maps the hits to genes specified in GenBank 

[213]. 

Function assignment is carried out by a scheme that is analogous to taxon assignment and it 

is performed on reads assigned to strains or to species. Briefly, a read mapping a (protein or 

RNA coding) gene within a strain contributes one count to that function. Reads assigned at 

species level are assigned to the highest-ranking gene‘s function in the top-list. It is 

assumed that genes within a species have identical functions, so if there are several hits 

within the same species the read is assigned to the highest-ranking annotated gene. The 

result of function assignment is a list of functions with the corresponding read counts. The 

COG-EggNOG scheme of functional descriptors [166, 210] is used for functional 

assignments, in conjunction with a pre-calculated database file that uses the B+ Tree index 

[214] for fast function retrieval. The B+ Tree index algorithm was implemented in C. Its 

implementation is part of a C library developed by our group and is freely available at 

https://code.google.com/p/bioc/, see Section 2.2.2.1. 

Figure 22: COG Functional classification made by the Gene Assignment tool for the genes identified by Taxoner. 
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The identifiers of the genes are stored either in a relational database, prepared with the 

JBioWH [211] framework, or are stored in the form of a binary file with a B+ Tree index. 

This stored form contains from-to location of each gene, the identifier and pointers to the 

COG-eggNOG [166, 210, 215] functional classification terms. If a read is mapped to one 

single genome, and the hit overlaps with one or more genes, each of the concerned genes 

will receive one hit. If the read is 100% identical with several genomes, then the first 

genomes in the Bowtie2 alignment will receive the hit. After evaluating all hits in this 

manner, a potentially large number of genes will have hits assigned. The utility can simply 

list the genes with the number of hits, or can combine the genes into functional categories 

using the COG-eggNOG scheme. As result, the hits collected by single genes will be added 

up to higher categories, and graphical statistics can be made. Examples are shown in Figure 

22. 

3.2.2.5 Output files generation. 

The output of this phase is a file with a list of GenBank accession number(s), taxonomy id, 

NCBI protein id, NCBI gene symbol, the number of reads hitting the gene, a list of 

COG/eggNOG ids and NCBI Protein Cluster ids. Examples are deposited at 

http://pongor.itk.ppke.hu/taxoner/examples/. 

3.2.3 Desktop and server versions 

Taxoner includes a web based graphical interface that helps users to run the programs and 

parse the results. This interface is a JavaScript based set of web services developed using 

AngularJS library [216] and running over on the Nodes.JS platform [217]. 

This graphical interface is designed to be used locally on a PC. It offers input forms for the 

different components of the Taxoner system. The starting script will open a web site 

running on http://127.0.0.1:8081 (the local computer) and creates a series of web services 

running in the same IP address but in different ports. 

DOI:10.15774/PPKE.ITK.2014.011



 

76 

 

It is well know that modern web browsers do not have access to the local file system due to 

a security issue. As such a set of different web services must be created to allow access to 

the local files from the web browser. 

The Taxoner web services are running on ports from 8081 to the 8084. The port 8081 is for 

the HTTP web site (the user interface). The rest are ports for internal uses: port 8082 offer a 

web service to read and parse the log files of Taxoner, 8083 is a web service to run system 

commands from the web browser and 8084 is a web service to create the Taxoner 

summaries from the output files. 

Three web forms are available on the graphical interface to run the Taxoner program, the 

gene assignment program and to parse the outputs of both programs and show a summary 

of them. 

Full description and images of the graphical interface can be seen at 

https://code.google.com/p/taxoner/wiki/06_Graphical. 

In addition, a demo server was developed for demonstration purposes using the same look 

and feel of the local graphical interface. This web server offers the same features as the 

graphical interface but has a file size limitation for the input files. The demo server is 

available from http://pongor.itk.ppke.hu/taxoner. 

3.2.4 Run times and examples 

We evaluate the performance of Taxoner in comparison with Metaphlan [98], BLASTall 

[218] and MegaBLAST [219], both in combination with the MEGAN taxon assignment 

program [97, 104]. Metaphlan was selected because of its speed and accuracy in estimating 

taxon composition, BLAST was selected because of its reputation in alignment. 

It is noted that comparison is a complex task since, for instance, Metaphlan compares reads 

to its own small taxon-marker database of about 367 million nucleotides that includes only 

bacteria. BLAST and Taxoner, on the other hand can run on comprehensive databases such 

as NCBI nt (52 billion nucleotides), which includes all species, or on a bacterial subset 
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(typically 15.5 billion nucleotides). The search of the database thus impacts the speed and 

the accuracy of the results. 

The actual alignment times for Taxoner, Metaphlan and BLAST depend on the size of the 

database and the number of threads used for the calculation, and naturally on the length and 

the number of the reads to be evaluated. The input read datasets used for testing are listed 

Table 13. 

Table 13: Typical running times for the alignments. 

  Running time
1
 

 Dbase 1 thread 4 threads 12 threads 

MetaPhlAn
5
 own bacterial marker dbase

2
 14 sec 7 sec 6 sec 

Taxoner
5
 NCBI nt Bacteria

3
 165 sec 105 sec 90 sec 

Taxoner
5
 NCBI nt full dbase

4
 2446 sec 2031 sec 1866 sec 

MEGABLAST
6
 NCBI nt bacteria

3
 8.3 h n/a 3.9 h  

MEGABLAST
6
 NCBI nt full dbase

4
 37.6 h n/a 9.4h 

 

1Read dataset: Dataset A, Table 1. Processor: Intel(R) Xeon(R) CPU E5-2640; 2The built-in dataset is 366,988,039 

nucleotides (367 MB) and contains only bacterial sequences; 3 15,400,949,699 nucleotides (15 GB), downloaded on 

11/07/2013; 4 52,380,339,934 nucleotides (54 GB), downloaded on 11/07/ 2013; 5Times include taxon assignment; 6 

time of taxon assignment by MEGAN is not included.  

3.2.5 Analyzing metagenomic datasets 

The classification performance of Taxoner is compared with that of two programs in Table 

14. We carried out an analysis of a metagenomic dataset published by the Human 

Microbiome Project that consisted of 6.5 and 1.4 million reads (Dataset G and H, 

respectively) and consisted of equal amounts of 22 strains representing 22 species. The data 

presented in Table 14 show that Taxoner can detect taxa at the strain level, which is in 

contrast to MetaPhlAn (and other programs, such as WGSQUIKR). The accuracy of 

MetaPhlAn and Taxoner are comparable in this task, but it has to be mentioned that 

Taxoner can achieve this accuracy only if one sets a minimum threshold to the number of 

reads necessary to identify a taxon (strain, species, etc). MetaPhlAn uses a similar 

thresholding for improving the accuracy. Without setting this threshold, Taxoner will report 

all spurious similarities, which would result in a very high number of false positives. In this 

analysis we also included WGSQUIKR, an extremely fast and innovative program that uses 

compressed sensing principles for finding a number of taxa that can identify the presence of 
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the reads [99]. This analysis is extremely fast, the number of taxa present is apparently 

underestimated at all taxonomic levels. 

Table 14: Detection of species in a metagenomic datasets 

A) Illumina sequenced HMP Mock Community sample1 (dataset G) 

   MetaPhlAn Taxoner2 WGSQUICKR 

 

No of 

positives 

(taxa 

present) 

TP3 FN4 FP5 
F-

measure 
TP FN FP 

F-

measure 
TP FN FP 

F-

measure 

strain 22 NA6 NA NA NA 14 7 8 0,65 1 20 79 0,02 

species 22 21 1 7 0,84 20 2 0 0,95 9 13 67 0,18 

genus 19 18 1 5 0,86 17 2 0 0,94 13 6 45 0,34 

family 18 18 0 6 0,86 17 1 0 0,97 13 5 29 0,43 

B) 454 sequenced HMP Mock Community sample1 (dataset H) 

  MetaPhlAn Taxoner7 WGSQUICKR 

taxa 

assigned 

No of 

positives 

(taxa 

present) 

TP FN FP 
F-

measure 
TP FN FP 

F-

measure 
TP FN FP 

F-

measure 

strain 22 NA NA NA NA 9 12 19 0,37 1 20 58 0,03 

species 22 19 3 0 0,93 19 3 0 0,93 5 17 52 0,13 

genus 19 16 3 0 0,91 16 3 0 0,91 8 11 37 0,25 

family 18 16 2 0 0,94 16 2 0 0,94 9 9 23 0,36 

The data was a mock community dataset provided by the Human Microbiome Project, consisting of 22 strains. 
2Only those hits (read-taxon assignments) were considered where the worst alignment score was at least 0.9. 

Positive taxa predicted by Taxoner are those that received at least 1000 hits (dataset G). 3True positives. 4False 

negatives. 5False positives. 6Not available. 7Only those hits (read-taxon assignments) were considered where the 

worst alignment score was at least 0.9. Positive taxa predicted by Taxoner are those that received at least 100 hits 

(dataset H). 

3.2.6 Analyzing known and unknown strains 

Given the very high sequence variability of bacterial genomes, it is crucial to know whether 

or not the genome of a bacterium to be detected by NGS is included in the database. This is 

a very important question, since unknown strains represent the majority of environmental 

samples. In the context of data analysis, a strain is known when its genome or draft genome 

is included in the database. With this in mind we compared the detection probability of two 

Bacillus anthracis strains (Table 15). The ―known‖ strain was the Sterne strain, used for 

vaccination, and the dataset consisted of 100bp long overlapping segments (―artificial 

reads‖) of the genome, offset by 50bp. This is thus a perfect dataset on which no mistakes 

are expected. The unknown strain was a Japanese isolate which was not included in the 

database at the time of this analysis, and the dataset contained 7.7 million Illumina reads. 
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In fact, the number of errors (false negatives) is substantially higher for the strain not 

included in the database. The synthetic reads generated from a genome included in the 

database are perfectly detected by Taxoner, which is not surprising (they are perfectly 

detected also by MegaBLAST, data not shown). What is somewhat unexpected is that 

Metaphlan detects a substantial % of species not present in the samples, even in the 

synthetic reads. Even though we cannot explain this finding, it is good to remember, that B. 

anthracis belongs to the B. cereus group which includes three highly related species, B. 

cereus, B. thurigiensis  and B. anthracis. This is reflected by the fact that a large 

percentage, about 75% of the synthetic reads generated from the Sterne strain is 100% 

identical in all three species (data not shown). Metaphlan assigns these reads to the Bacillus 

genus, while Taxoner (and Megan) assigns the reads to the B. cereus group. This illustrates 

the fact that species % reported by the various programs highly depend on the database as 

well as on the taxonomy definitions used by the given programs. 

Table 15: Analysis of known and unknown B. anthracis strains. 

Taxa assigned Metaphlan1 Taxoner2 

A) Strain included in the database (B. anthracis strain Sterne (NCBI taxon id: 260799), 104574 synthetic reads, Dataset F)   

all   991 reads 104,573 reads 

genus Bacillus 100.00 100.00% 

species Bacillus anthracis 76.60% 100.00% 

species Bacillus cereus 15.40% 0.00% 

species Bacillus thuringiensis 8.00% 0.00% 

species other 0.00% 0.00% 

  False negative %3 
23.40% 0.00% 

B) Strain not included in the database (B. anthracis strain  BA104 (NCBI taxon id: Not Available) , 7.7million Illumina reads, Dataset 

E)  

all   96,045 reads  7,379,118 reads 

genus Bacillus 99.58% 100.00% 

species Bacillus anthracis 65.30% 96.50% 

species Bacillus cereus 18.70% 0.80% 

species Bacillus thuringiensis 15.60% 0.40% 

species other 0.00% 2.30% 

  False negative % 34.44% 3.50% 
1The values are taken from the standard output of the program. 2Values indicate the number of reads expressed as 

% of the total. 3False negative% is the % of taxa (Metaphlan) and reads (Taxoner) detected but not present 
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3.2.7 Summary 

Here we described a pipeline of programs, called Taxoner that uses a fast aligner and a 

comprehensive database for analyzing metagenomic datasets. As a result of alterations to 

the indexing used, this pipeline is fast enough to run evaluations on a single PC, and it is 

highly sensitive so it can be adapted to analysis problems such as detecting pathogens in 

human samples. 

Taxoner is much faster and at times more accurate than BLAST based evaluation schemes. 

In our case we tested BLAST in conjunction with the MEGAN program. 

Detection of unknown strains is a problem to most aligners. It is important to remember 

that strains of the same species isolated from different natural environments can differ in a 

very large portion of their genome. As such analyzing the metagenome of soil bacteria may 

require the identification of strains that are largely novel as compared to the current 

databases. In this sense, approaches based on a comprehensive database, such as Taxoner, 

are at an advantage in comparison to approaches based on marker databases. This is 

because new strains do not necessarily contain the unique sequences included in a marker 

database. On the other hand, this is an important problem since detection of hazardous 

pathogens requires strain level identification. This feature is included in Taxoner, but not in 

many other programs designed for metagenome analyses. 

We note that Taxoner uses bowtie2, and not BLAST, still its sensitivity is at times better 

than that of BLAST-based methodologies. This shows that fast alignment techniques may 

provide a useful alternative for sensitive analysis of metagenomic samples. 
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3.3 The Genome Specific Marker Database 

Modeling the alignment of reads to a genome is only seemingly simple. Namely, sequence 

reads are of varying length and quality, various segments of genomic DNA may not be 

equally amenable to sequencing reaction. 

However, as a first approximation, we can neglect these differences and model a simpler 

problem (Figure 23, left). Let‘s suppose that the reads are of roughly equal length, R, and 

they are evenly distributed along the genome. 

For diagnostic use, we need to distinguish those segments of the genome that are unique i.e. 

they can serve as diagnostic identifiers of the genome. Let‘s denote the cumulative length 

of such unique parts is U. And finally, if one is to build a marker database, one has to 

identify suitable markers which, by definition will be a subset of the unique segments. Let‘s 

denote the cumulative length of the markers as M. 

To describe the problem in quantitative terms, we define the coverage values. For N 

sequencing reads of length R and a total DNA length D, the read coverage Cr is defined as: 

D

NR
Cr  (1) 

For genome sequencing, the only DNA in the sequencing reaction is the genome being 

sequenced G. In this case, 

reads 

unique segments 

markers 

genome 1.0 

Cr 

Cu 

Cr 

Figure 23: Reads, unique segments and markers (left), cumulative coverage values (right). Note that reads can 

overlap with each other but unique (“diagnostic”) segments ad markers are disjunct. Also note that markers must 

fully overlap with the unique segments. 
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G

NR
Cr  (2) 

For genome sequencing, Cr has to be greater than one, for medical diagnostics read 

coverage of several thousands are necessary. 

When bacterial communities are sequenced such as in metagenomics experiments, the read 

coverage may fall much below one. Namely, for rare species we may only get a few reads. 

We can denote the proportion of a given genome within the total DNA being sequenced is 

aG (0 ≤ aG ≤ 1) we can express the expected coverage of genome in a mixture of genomes 

as: 

Ga

NR
C

G

r  (3) 

In other words, aG is 1 for genome sequencing, and can be close to zero for metagenomics 

experiments which, at the same time, indicates the importance of high sequence coverage in 

metagenomics experiments. We note the read coverage values defined in this manner do 

not correspond to the real coverage of the genome by reads. Namely, real life reads are not 

disjunct but can be highly overlapping, so Cr can be >>1. However, as we take that the 

reads are distributed evenly along the genome and among the various genomes, this 

proportion is considered constant. 

The proportion of the unique diagnostic regions within a genome is denoted by the 

coverage value Cu as 

G

U
Cu  (4) 

Here U denotes the unique portion of the genome. In principle, 0 ≤ Cu ≤ 1, in practice the 

proportion of the unique parts is much smaller, e.g. the proportion of the markers, selected 

for identification purposes within a given genome is denoted by the coverage value Cm as 
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G

M
Cm  (5) 

In this equation M denotes the unique portion of the genome. In principle, 0 ≤ Cm ≤ Cu, in 

practice the proportion used by a particular marker database is often defined empirically 

with statistics, for instance a sufficient number of marker regions are collected that allow 

safe identification of genomes in a given dataset. 

We can now estimate pgi, the probability of genome identification by aligning a single read 

to the genome or to a marker database. Note, that the read is considered perfect if its 

sequence is part of the DNA to be sequenced. If we compare the read with the entire 

genome, we would expect that pgi will be 1 since the read is contained within the genome. 

This may hold for long reads, however, we know that sequences of 40nt can occur by 

chance. So the probability of genome identification is better for long reads and decays for 

shorter reads. This property can be simply captured by assigning a significance value to the 

hit, which is calculated by aligner programs such as BLAST or Bowtie. 

Let‘s now consider a marker database which is, by definition shorter than the genome itself. 

Since the reads are evenly distributed along the genome, only Cm fraction of them will hit 

the marker database and result in positive genome identification. In other words, the size of 

the marker dataset of a given genome should be close to CmL so as to ensure a high 

probability identification. 

Another approach is to use the entire genome as the database which, by definition includes 

the unique regions necessary for identification. Even this simple overview shows that there 

are several compromises possible when we design a marker database, as summarized in the 

Table 16. 

As a specific example I mention Metaphlan, which is a small database, Cm~0.01. The 

search is extremely fast, but the sensitivity is quite low, we need over 100 reads per 

genome in order to notice one or two of them. 
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Table 16: Summary pros and cons for the marker database design, 

Marker 

database 
Pros Cons 

Small, Cm<< Cu Fast searches 

Low sensitivity, need for high read coverage, some 

genomes contain few unique regions, dbase building 

takes time 

Large, Cm ~ Cu Medium to Fast searches 
Higher sensitivity, some genomes contain few unique 

regions, dbase building takes time 

Full genome 
Full coverage, high 

sensitivity 
Long searches 

Taxoner, described in the previous section, uses full genomes as the database, so it‘s 

searching times is about 10 times that of Metaphlan. However the sensitivity is much 

better, genomes can be detected from a few reads. 

GSMer [220] has a larger marker database than Metaphlan, but smaller than a full genome. 

The sensitivity and the search times are thus between Metaphlan and Taxoner. 

One problem which is not mentioned so far explicitly is the taxonomic depth of 

identification. Taxon are usually identified by versions of the lowest common ancestor 

algorithm, i.e. reads common to two strains within one species and not present elsewhere, 

are assigned to the species. If a large part of the genomes of two strains are common, much 

more reads will be identified at the species level than at the strain level. On the other hand, 

we can define marker sequences also for the species level (or for higher taxonomic levels). 

These higher level marker datasets can be substantially bigger that those defined at the 

strain level. As a result, the searching time can increase above the practical level. 

The selection of the marker dataset is not easy even if the markers are ideally specific for a 

given strain or species. Small marker datasets allows for fast searching, but a sufficiently 

sensitive detection of low abundance species may require prohibitively high read coverage. 

The loss of sensitivity also makes the detection of lower taxonomic levels more difficult. 

Full genomic databases, on the other hand, allow a sufficiently sensitive detection at lower 

read coverage values, but the search time may become prohibitively long because a large 

number of identical sequences are present in the database (redundancy caused by common 

sequence parts). 
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Parallel to identification by NGS, the methods of in vitro identifications also need unique 

markers, especially PCR primers, for various taxa. In addition to the condition to ubiquity, 

efficient primers need to have certain physicochemical properties, like stability, melting 

point etc., which are required for the PCR reaction. The summary of these conditions is 

beyond the scope of this thesis; we can find good descriptions in [221, 222]. Briefly, when 

the goal is to design efficient primers for PCR identification, unique sequences of a marker 

dataset are processed further by primer design program that will select a subset of potential 

sequences. 

From this brief introduction it is conspicuous that one needs to find the right balance 

between database size, sensitivity, taxonomic depth and search time. We will use these 

principles for designing a) a taxon identification system that uses NGS reads for 

metagenomic communities and b) a nearly non-redundant, comprehensive bacterial marker 

database, suitable for marker selection and primer design. 

3.3.1 The marker database approach 

There are several ways to construct specific marker databases, but the underlying 

workflows are not always described clearly in the literature. We can roughly picture the 

problem as a k-mer tiling: we cover a selected genome with overlapping words. As we 

increase the size of the words, we find words that are ―unique‖ in sense that only the 

selected genome contains it and no other genome or genome segment in the entire database. 

Then, we simply concatenate our unique words into marker regions. We need to note that 

―uniqueness‖ means that a certain word does not have an exact match, but more precisely, 

we may be better of looking for words whose nearest neighbors are less than, say, 80% 

identical. In order to find unique words, we need, as an example, a) to check the occurrence 

of all words in the database and preselect the unique ones, b) as we build up the tiling we 

need to check if the actual word is in the preselected list of unique words. 

This workflow is not practical since the number of potentially useful words (say 25 to 50 

mers) is too large; it is not practical to search all of them in the database. The GSMer 
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database uses an interesting workaround: It first establishes a set of redundant words that 

occur only in more than one genome. Then it makes a dense 50mer tiling for the target 

genome, and discards those words that contain one of the redundant words. This means that 

the retained 50mer will have few close neighbors since all of their subsequences are 

―unique‖ (i.e. have neighbors max 80% identical with them). This is thus a two step 

procedure and generates a set of overlapping words that are not concatenated into longer 

regions or ―contigs‖. In many cases, the number of unique sequences is too low, so the 

procedure has to be repeated with longer unique words. In any case, this procedure 

approaches the ―unique regions‖ from a below, i.e. finding relatively short words with very 

high resolutions (dense tiling). 

The approach we propose is to find the unique regions from above, i.e. make a sparse tiling 

with longer words, say 100mers, offset by 20-50 nucleotides. There are relatively few such 

words in a genome, i.e. the resulting set of words (in the range of a few hundred thousand 

k-mers) is small as compared to the capacity of current aligners such as Bowtie. The 

solution is then straightforward, we make a Bowtie search against a large comprehensive 

database, using Taxoner, and simply identify the k-mers that have no sequence neighbors 

above the level of, say 80% identity. Henceforward, we simply concatenate the words into 

regions wherever possible. This analysis does not take prohibitively long times, it gives 

long regions for strains, species or genera, i.e. for any desired taxonomic level.  

It is useful to overview this seemingly trivial problem from the perspective of string 

matching. According to a naive definition, a unique region of a genome is a substring that 

does not occur in other database entries. 

While this subsequence can be useful for finding the only database entry which it contains, 

we immediately have to add it as a biological marker. This ―unique segment‖ should be 

common to all individual members of a strain (or species), so we cannot use simplistic 

terms like identity or non-identity, and we have to consider small local mutations, 

sequencing errors, etc. 
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So we are better off if we use approximate string matching terms, i.e. a marker substring 

has to be at least x% identical with the genome of other organisms within its strain (or 

positive group) and has to be less than y% identical with the genome of other organisms (or 

negative group). It is easy to realize that this is a nearest neighbor definition where 

distance/similarity-like measures and thresholds are used to determine group membership 

(Figure 24). 

The second problem is how we define the boundaries of a unique segment. Imagine we 

have a unique region to start with – can we extend it and check whether or not the extended 

segment still obeys our marker criteria? This is certainly possible; this is essentially how 

BLAST finds HSPs between two sequences. For optimizing markers in an entire database 

this may not be computationally feasible, but it is not even important. Namely, the identity 

criterion is by and large arbitrary, and we can easily find regions that approximately match 

this criterion, using a tiling approach. 

For the construction of the GSM (genome specific marker) database, a dense tiling was 

applied to the target genome using 50 nucleotide words, shifted by one nucleotide. Each 

50mer was checked against a precomputed list of 18mer redundant words, that occurred in 

at least two genomes. The 50mer was considered a marker (―GSM‖) if it did not contain 

such a redundant word, in other words one would naively expect that it was less than 18/50 

Figure 24: Logical scheme of identifying a query sequence as a marker using a nearest neighbor paradigm. 

identity > x % identity < y % 

query 

+ group 
- group 
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= 36 % identical with anything else in the database. This is not true, however. Since a 

50mer can contain two nonadjacent polymorphisms with respect to another genome, say at 

positions 17 and 42, respectively, which will ensure that it is still 96% identical with 

another sequence, but this 50mer still will be included by the GSMer procedure since it 

does not contain any contiguous 18mers known as redundant words. 

In order to exclude such cases, the GSMer database uses a second validation step, a 

MEGABLAST screening that discards all 50mers that are more than 85% identical with 

anything else in the database. Note that this is a three-step procedure (1: Build the database 

of redundant words, 2: perform dense tiling of the each genome, exclude those 50mers that 

contain redundant words, and 3: filter the results for 85% identity using BLAST). Steps 2 

and 3 have to be performed for ALL genomes, and if the number of markers is below a 

certain threshold (a minimum of 50 pieces of 50mer markers), they are repeated again for a 

redundant database of larger words. 

Because of the BLAST, searches and the iterative multistep filtering are a very time 

consuming processes that are not particularly accurate in terms of the boundaries. Let‘s 

imagine a single unique region of 100 residues within a genome. This region would be 

covered by 100 – 50 +1 = 51 completely unique markers with zero identity to other 

genomes, and further 7 markers would pass the 85% percent limit of the BLAST search on 

either side of the regions (Figure 25). This is a total of 114 GSMs for a single region 

(meaning 114 BLAST searches for this single region. 

genome 

100 nt 

7 nt 7 nt 

―first GSM window‖ ―last GSM window‖ 

Direction of window sliding 

Figure 25: The outline of the GSMer procedure. A unique region of 100 nt is indicated shown in pink. Imagine 

sliding a window of 50nt along the sequence. The first and last windows passing the < 85% threshold are indicated 

by black lines. 
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Because of the high computational load and the low accuracy of the boundaries, let‘s 

consider an alternative procedure. We apply a sparse tiling to a genome; we cover it by 

windows of 100 nt, offset by 20. It is easy to show (Figure 26), that wherever we place a 

unique region within this roster, it will be covered by 2 consecutive windows. In other 

words, it will be located within a region of 150nt, which is larger (―less accurate‖) than the 

one noted in Figure 25. Nevertheless, the uncertainty of the boundaries is proportional with 

the offset (average equals half of the offset), so the accuracy can be linearly improved as 

we decrease the offset. 

Based on this consideration we suggest the following, non-iterative procedure for building 

a database of genome-specific markers. 

1. Cover the target genome with a sparse tiling (say windows of 100nt, offset 50nt). 

2. Do a similarity search using a fast aligner, such as Bowtie2, against the entire DNA 

dbase. Exclude windows that have neighbors above a similarity threshold (say 70-

80%). 

3. Concatenate overlapping windows. 

The differences between this outline and the GSMer procedures are conspicuous: a) 

similarity search is the only identification step; there is no need for building a pre-

computed database for filtering. b) A different similarity search process is used which is 

optimal for the purpose. Namely, genome aligners look for minimal differences (as is 

Figure 26: The outline of a sparse tiling procedure for marker identification. Note that the unique region (pink) can 

overlap with a minimum of one, or a maximum of two tiling windows. 

genome 

100 nt 

100 nt 

100 nt 

 

 Unique region, L=100 nt 

Tiling windows, L=100  nt , offset = 50 nt. 
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necessary here), while the much more time consuming BLAST programs used in GSMer 

look for maximal similarities. c) More similarity searches are used, but this is not a problem 

for the fast genome aligners. For instance, an average bacterial genome needs 100 000 

Bowtie searches which allows one to process the database of complete genomes in 10 hours 

on a Google Cloud virtual Machine server (n1-standard-8, 8 virtual CPUs (2.75 GCEUs) 

and 30 GB of memory). In comparison, the search of testing the GSMer database on the 

same computer would take a minimum of 30 days. 

3.3.2 Production of markers for higher level taxa or other sequence groups 

It is important to realize that the identification of marker segments follows the simplified 

logics presented in Figure 24. In this scheme any two disjunct groups of genomes can be 

selected as a pair of positive/negative groups. So we can generate markers for one strain 

(positive group), vs. the rest of the database (negative group). But we can also generate 

markers for one species vs. the rest of the database – these will be species level markers. 

Using this definition, a species level marker is a sequence that appears in any of the 

genomes belonging to the species. This type of definition is a set-union (Figure 27). But 

conversely, we can collect marker windows that appear in all strains of a species, which 

corresponds to the intersection of sets. 

It is important to realize that the simple picture in Figure 27 does not hold for practical 

situations. Namely, the union-type definition cannot be made easily non-redundant since 

the marker regions never completely overlap, i.e. the marker dataset for a species may not 

be much smaller than the sum of all strain-markers. 
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On the other hand, Figure 27 illustrates two important points: i) we can define marker 

regions, which appear in the genome of one strain but not in the other strains (the +group in 

Figure 24 will be one strain, all others will be the –group). ii) The problem of strain-

specific identification is not an easy one. Namely, strains within a bacterial species can 

differ in a large part of their genomes, so every isolate of a species can be roughly regarded 

as a ―new strain‖. 

3.3.3 Overview of the database production workflow 

The marker database was obtained following the workflow shown in Figure 28. This 

approach can be used either to create a marker database for taxonomy binning or just to 

obtain unique segments of a sequence. 

Strain A Strain B 

Strain B 

Strain A Strain B 

Strain B 

Figure 27: Two types of marker datasets, illustrated on a hypothetical species of 3 strains. Left: A set union type 

definition, k-mers appearing in any of the 3 strains of the species. This is a non-redundant set, i.e. k-mers appearing in 

more than one strain appear only once. Right: A set-intersection type definition, k-mers appearing in all 3 strains of the 

species. Note that this is a much smaller set. 
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Figure 28: Workflow for unique segments identification 

The initial targets are the sequences in fasta format that will be processed for the unique 

marker extraction. The sparse tilling over these sequences is executed using the 

SplitFastaFile program included in the BioC library. This program cover the targets 

sequences producing overlapped reads with length and offset entered as parameters. 

The obtained reads are aligned with Bowtie2 using the Taxoner database. This procedure 

will create the SAM alignments of the targets reads with the database. Bowtie2 can report a 

number of alignments per reads (option -k) or just all of them (option -a). Reporting all 

alignments per reads is a time consuming process that can delay the Bowtie2 runs from a 

few hours to days. In our cases, we realized that results reporting all alignments and those 

using just the first 2000 alignments are completely equal differing just in the runtime. 

Therefore, the marker database was generated using the first 2000 alignments from Bowtie.  

Then, the SAM files are processed by Taxoner for the taxon assignments using the score 

parameter as input. This score parameter is used to set the maximum percent of identities 

allowed between the target read and the database reads. Subsequently, from the taxon 

assignments point of view, having a read assigned to the strain level means that the next 
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aligned database segment to that reads fall below the 80% of identity. Following this idea, 

the concatenated reads that will be assigned to any taxonomic level can be considered as 

unique segments for that level. 

Finally, the TaxonerAssemblerMarkerDB program, included in the BioC library, is used 

to concatenate the reads using the Taxoner output creating the marker databases for the 

different taxonomic ranks. 

It should be noted that this approach can be used to compare sequences in order to know 

how similar they are. For example, if the Taxoner database is created with the same targets 

sequences, then, the workflow align the targets sequences again themselves. Consequently, 

the concatenated reads that will be assigned to the different taxonomic level can be 

considered as unique segments for that level. This is a useful procedure that can be used to 

compare families, species or even genus for DNA studies. 

3.3.4 Sequence comparison for the Burkholderia genus 

The aforementioned workflow was used to create a marker database for the Burkholderia 

genus. Accordingly with the previous section, using the same targets sequences as Taxoner 

database the workflow will return the unique segments of those targets for each taxonomic 

level. This kind of study shows how similar the strain and species inside a genus are. 

Then, 39 Burkholderia sequences were used from the Complete Genomes database with a 

total of 145,993,599 bp. We executed our workflow varying the Taxoner score from 0.05 to 

0.99. As we commented previously, lower Taxoner score turn out in more specificity of the 

unique segments assigned to each taxonomic level. 
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The Figure 29 shows the variation of the bp assigned to each taxonomic level against the 

Taxoner score. It can be seen that lower scores reduce the bp assigned to the strain (no 

rank) and species level, but at the same time, it increases the bp assigned to the genus and 

species group. Moreover, reducing the Taxoner score allows the program to collect more 

alignments per read. Then, for those collected alignments, the lowest common ancestor 

algorithm is executed assigning a taxa to the read. Therefore, we can say that the reads 

assigned to a taxonomic level are unique for that level if more alignments per read are 

collected. 

Finally, the Table 17 shows the full distribution of bp for the Taxoner score 0.50. Here we 

can see the variability in the sequences among the taxonomic groups. There are special 

cases like Burkholderia mallei species which does not have any unique segment between 

Figure 29: The figure shows the percent of bp assigned against the Taxoner score for the Burkholderia genus. After the 

score of 0.30 the Taxoner returns the same result. 
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the strains whereas, Burkholderia rhizoxinica HKI 454 has 97.78% of unique sequences. 

Additionally, we can say the 32.72% of the sequences is similar for the whole genus. 
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Table 17: The table shows the percent of bp assigned to the taxonomic levels for the Burkholderia genus using a 

Taxoner score of 0.50. Note that the table continues in the next page. They should be seen in parallel. 

GENUS SPECIES GROUP 

Taxonomy Length 
bp 

assigned 

% of 

total bp 
Taxonomy Length 

bp  

assigned 

% of 

species 

group 

bp 

Burkholderia 142545178 46642275 32.72 

cepacia complex 43447291 6232175 14.34 

pseudomallei 

Group 
58085018 37817075 65.11 
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SPECIES STRAIN 

Taxonomy Length 
bp 

assigned 

% of 

species 

bp 

Taxonomy Length 
bp  

assigned 

% of 

strain 

bp 

lata 3694126 1084400 29.35         

ambifaria 7000128 944125 13.49 
 ambifaria AMMD 3556545 451,675  12.70 

 ambifaria MC40-6 3443583 358,000  10.40 

cenocepacia 14181430 2764525 19.49 

 cenocepacia AU 1054 3294563 427,400  12.97 

 cenocepacia HI2424 3483902 81,700  2.35 

 cenocepacia J2315 3870082 747,975  19.33 

 cenocepacia MC0-3 3532883 305,125  8.64 

  

 sp. CCGE1001 4063449 566175 13.93 

 sp. CCGE1002 3518940 2643600 75.12 

 sp. CCGE1003 4077097 2707675 66.41 

 cepacia GG4 3463655 866,475  25.02 

 multivorans ATCC 17616 3448466 1,523,800  44.19 

mallei 13961522 21575 0.15 

 mallei ATCC 23344 3510148 0  0.00 

 mallei NCTC 10229 3458208 0  0.00 

 mallei NCTC 10247 3495687 0  0.00 

 mallei SAVP1 3497479 0  0.00 

thailandensis 7776995 309250 3.98 
 thailandensis E264 3809201 948,500  24.90 

 thailandensis MSMB121 3967794 1,127,700  28.42 

  

 pseudomallei 668 3912947 106,875  2.73 

 pseudomallei BPC006 4001777 30,075  0.75 

 pseudomallei K96243 4074542 133,275  3.27 

 pseudomallei MSHR305 4054155 113,300  2.79 

 pseudomallei MSHR346 4098576 106,125  2.59 

 pseudomallei NCTC 

13179 3997089 103,300  2.58 

 pseudomallei 1026b 4092668 36250 0.89 

 pseudomallei 1106a 3988455 31950 0.80 

 pseudomallei 1710b 4126292 120050 2.91 

  

 sp. RPE64 3013410 2198250 72.95 

 sp. YI23 3131280 2300525 73.47 

 sp. KJ006 3145156 140225 4.46 

 phenoliruptrix BR3459a 4152217 651,300  15.69 

 phymatum STM815 3479187 3,019,225  86.78 

 phytofirmans PsJN 4467537 2,771,075  62.03 

 gladioli BSR3 4413616 3,439,525  77.93 

 glumae BGR1 3906507 2,912,000  74.54 

 vietnamiensis G4 3652814 612,075  16.76 

 xenovorans LB400 4895836 3,189,000  65.14 

 rhizoxinica HKI 454 2755309 2694050 97.78 

DOI:10.15774/PPKE.ITK.2014.011



 

98 

 

3.3.5 Marker database for the Complete Genomes 

The Complete Genomes from the NCBI was used to generate a marker list using as 

Taxoner database the bacteria subset of the nt file. The Table 18 shows the data of the 

target sequences used as input in our workflow. The reads are 100 bp long with an offset of 

25 bp. 

Table 18: Complete genomes data downloaded from the NCBI FTP site 03/24/2014. 

Target Group  Sequences bp No. reads 

Complete genomes 5,190  9,572,092,555  127,628,722  

 

Figure 30: Percent of bp assigned per Taxoner score for the Complete Genomes using the nt file as Taxoner 

database. 

The Figure 30 shows the percent of bp assigned using different Taxoner score values. 

Varying this score does not produce a considerable change in the number of bp assigned. 

However, as we can see in the Figure 31, the score redistribute the reads among the 

Taxonomic ranks depending of the percent of identity between the targets reads and the 

DOI:10.15774/PPKE.ITK.2014.011



 

99 

 

Taxoner database. The reads are switched from the strain and species ranks to the genus 

when the score change from 0.90 to 0.50. As was explained before, the reduction of the 

Taxoner score increase the percent of identity of the reads that are assigned to any 

Taxonomic rank. 

Figure 31: Distribution of the assigned bp against the Taxonomic ranks using different Taxoner scores. 

The potential uses of a marker database fall in two main categories: i) Taxon identification 

by computational analysis. This is the approach initiated by Metaphlan [98] and adopted by 

other programs such as GSMer. ii) Designing diagnostic tools such as PCR primers of 

microarray tests. This is an important practical application since the identification of 

potential pathogens, microbial contaminants is crucial in many areas. With these areas in 

mind, we developed a server application http://pongor.itk.ppke.hu/markerdb that has the 

following functionalities: 
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a) Defining marker sequences unique for bacterial groups, i.e. finding markers that are 

diagnostic for a strain, or a group of strains. This task can include running primer 

selection algorithms on various subgroups of the marker database. 

b) Defining differential markers that can distinguish (group of) sequences from 

another group of sequences. This is important when we try to detect one particular 

(group of) strain(s) in the present of closely related strains. 

3.3.6 Run times and space complexity 

Creating a marker database from genomes sequences can be time consuming even if 

powerful computers are used. Table 19 shows the total time for different set of input data. It 

should be notice that in the case of general databases like NCBI NT a pre-filter step is 

needed in order to extract the target taxonomies. 

The workflow‘s space complexity depends on the different stages. The biggest space, both 

RAM and hard disk is required by Bowtie when it is doing the alignments. It requires 8.0 

GB of RAM minimum and 500 GB of disk space. 

Table 19: Run times for the creation of the Marker database for different set of input data 

Input DB 
Initial 
Size 
(GB) 

Selecting 
microbial 

entries 
(Hour) 

Creation of 
tiling 

segments 
(Hour) 

Creation of 
Taxoner-

Bowtie DB 
(Hour) 

Identifying 
unique 

segments, 
Taxoner 
(Hour) 

Concatenation of 
unique segments 

(Hour) 

Total 
Time 

(Hour) 

NCBI nt 60 4 6 4 18 6 42 

Complete 
Bacterial 
Genomes 

9.4 - 1.5 2 9 3 15.5 

Burkholderia 
genus 0.14 - 0.1 0.1 0.002 0.1 0.3 

 

3.3.7 Summary 

During this section we presented a workflow for the generation of a DNA marker database 

from (group of) sequences and a Taxoner database. This workflow allows the identification 

of unique DNA segments among the (group of) sequences targets. Also, it can be use for 
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sequence comparison from taxonomic groups providing a taxa classification of DNA 

segments. 

The workflow uses a group of in-house developed programs and the Bowtie2 aligner. The 

programs developed by our group are freely available through the Google Code Platform. 

We show a complete comparison for the Burkholderia genus using the workflow and the 

percentages for each taxonomic level. 

Additionally, a marker database was created from the Complete Genomes from the NCBI. 

This database is freely available through the project web site. 

Finally, a web server was developed to compare groups of sequences using an automatic 

pipeline based on the workflow aforementioned. 
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4 Conclusion 

The integration and fast processing of biomolecular data are crucial topics for the Life Sciences. 

An avalanche of data is generated continuously by the new experimental technologies producing 

new kinds of data or simply modifying the existent one. Next-generation sequencing (NGS) 

technologies can sequence the complete genome of isolated organisms or complex mix of them 

at a very low cost. It is becoming a standard approach to detect individual species or pathogenic 

strains of microorganisms. Computer programs used in the NGS community have to balance 

between speed and sensitivity and as a result, species or strain level identification is often 

inaccurate and low abundance pathogens can sometimes be missed. Parallel to that, 

Bioinformatics‘ tools are changing slowly its way of access, manage and integrate the upcoming 

data but this evolution is not fast enough. 

In this thesis, we presented a) an open-source framework for biological data integration 

(JBioWH), b) a pipeline of programs (Taxoner) for taxonomic binning or metagenomics 

analysis of complex mix of NGS data and c) a workflow for DNA sequencing comparison that 

can be used for the generation of marker databases or just for identification of unique DNA 

segments from a group of target sequences. 

The JBioWH framework is a mature computational system freely available that can be used to 

answer complex biological questions, or just, as supplier system of integrative data to others 

client applications. It can be used for intensive querying of multiple data sources and the creation 

of streamlined task-specific data sets on local PCs.  

JBioWH is based on a MySQL relational database and provides four kind of access to the 

integrated data: a) direct access to the relational schema (SQL), b) programmatically access 

through the Java API (java persistence model and search classes), c) graphical access through the 

Desktop Client and d) html access through the webservices (JSON and XML). 

The system has a modular design that can be easily modified accordingly to the biological 

context of the problem. Therefore, JBioWH can be tailored for use in specific circumstances, 

including the handling of massive queries for high-throughput analyses or CPU intensive 
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calculations. At present, JBioWH contain parsers for retrieving data from 24 public databases 

(e.g. NCBI, KEGG, etc) [223]. 

Finally, the JBioWH framework has been used by several Bioinformatics projects associated to 

different OMICS disciplines like genomics, proteomics and drug design. 

Taxoner is a pipeline of programs designed to perform taxonomic binning or metagenomics 

analysis of NGS data. Its main advantage over the equivalent programs is related to the correct 

identification of unknown strains. Therefore, this approach can be used for the detection of 

hazardous pathogens that requires strain level identification. Multiple datasets were analyzed by 

Taxoner showing its advantages over the rest of available programs. When applied to 

metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can 

provide strain level identification as shown [224]. It is much faster and at times more accurate 

than BLAST-based evaluation schemes as those used by the MEGAN program meaning that it 

can be run on desktop or laptop computers. The Taxoner source code is freely available and a 

demo server was published for demonstration porpoises. 

Finally, a workflow for DNA sequencing comparison and DNA markers identification, based on 

in-house developed programs, that include JBioWH and Taxoner, was presented. DNA markers 

are unique nucleotide sequences allowing the detection of certain organisms and to distinguish 

those organisms from all other species, using in silico or experimental technologies. Markers can 

be used as the basis for diagnostic assays to detect microbes in environmental or clinical 

samples. 

The workflow developed was used to study sequences similarities among the complete genomes 

of the Burkholderia genus. As a result, taxonomic levels were assigned to unique DNA segments 

of the members of this genus. This study shows the variability in the sequences among the 

taxonomic groups. There are special cases like Burkholderia mallei species which does not 

contain a single unique segment in their strains and on the other hand, Burkholderia rhizoxinica 

HKI 454 has 97.78% of unique sequences. Additionally, we can say that the 32.72% of the 

sequences is similar for the whole genus.  

Lastly, a marker database was generated from the NCBI Complete Genomes using this 

workflow. 5190 sequences were included, they generated 127,628,722 reads after the windows 
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tiling. The study showed that the number of bp assigned by Taxoner does not change with the 

variation of the Taxoner‘s score. Just the distributions of the DNA segments among the 

taxonomic levels change accordingly with the percent of identity between the reads and the 

Taxoner database. The workflow description, programs and flat files of the marker database are 

freely available. Also, a web site was published for demonstration purposes. 
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