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"Once each discipline is supported by developments in the others, we may begin to

understand the ultimate laws of nature and to formulate our human estimate of

God's Equation. When the �nal equation is constructed, we should be able to use

it to solve the wonderful riddle of creation. And perhaps that's why God sent us

here in the �rst place."

Amir D. Aczel
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Új eszköztár az operátorok munkáját támogató Ipar 4.0 megoldások

fejlesztésére

írta: Ruppert Tamás

A kutatás célkit¶zése olyan új algoritmusok és nyílt forráskódú eszközök fejlesz-

tése, amelyek felhasználják a különböz® monitoring, szabályozó, optimalizációs,

ütemezési, kockázati és termék-életciklus adatokat. Az Operátor 4.0 paradigma

els®dleges tényez®je a szenzor és aktuátor technológiák és kommunikációs meg-

oldások integrálása. A technológiákat bemutatásra kerülnek egy átfogó áttekin-

tés keretében és a jöv® munkahelye is felvezetésre kerül, amely az intelligens tér

koncepcióján alapul. A valósidej¶ operátor támogatás és hatékonyság monitor-

ing rendszereknek rendkívül pontos operátori tevékenység információkon kell ala-

pulniuk. A probléma a több száz alaptevékenységi id®: ezek becslése kritikus,

köszönhet®en a termékek komplexitásának és a terméktípus nagy választékának.

Ennek feloldására egy szoftver-szenzor alapú tevékenységid® és hatékonyság mér®

rendszert lett kidolgozva.

Az átállási veszteségek jelent®sége egyre szigni�kánsabb a termelésben, hála a nagy

termék-varianciának és az "éppen-id®ben" (just in time) termelési követelmények-

nek. Olyan adatvezérelt gyökérok-keresés került kidolgozásra, amelynek segítsé-

gével csökkenthet®k ezek a veszteségek. Végül, a teljes gyártási folyamat lefedése

érdekében gyártósorok irányítása került megvizsgálásra. A ciklusid®-vezérlés és a

gyártási szekvencia veszteségeket okozhat, a nem-optimális sorkiegyenlítés miatt.

Egy olyan modell-prediktív, vezérlésalapú algoritmust lett kifejlesztve, amelynek

segítségével növelhet® a gyártósor hatékonysága. Az operátori munka bizonyta-

lanságát fuzzy alapú modellel lett közelítve.

http://www.uni-pannon.hu/
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Industry 4.0 based solutions for operator e�ciency improvement

by Tamás Ruppert

The goal of the research is the development of new algorithms and open source

tools to utilize the data collected by inter-networking systems in monitoring, con-

trol, optimization, scheduling, risk management, and product lifecycle manage-

ment. The primary enabling factor of the resultant Operator 4.0 paradigm is

the integration of advanced sensor and actuator technologies and communications

solutions. An extensive overview of these technologies are provided and highlights

that the design of future workplaces should be based on the concept of intelligent

space. Realtime operator support and performance monitoring require accurate

information on the activities of operators. The problem with tracing hundreds

of activity times is critical due to the enormous variability and complexity of

products. A software-sensor-based activity-time and performance measurement

system are proposed to handle this problem.

The losses associated with changeovers are getting more signi�cant in manufac-

turing due to the high variance of products and requirements for just in time

production. A method for the reduction of these losses is introduced based on

data-driven root cause analysis and performance management. Finally, to handle

the entire manufacturing process, the controlling of assembly conveyor lines is

studied. The control of cycle time and the sequencing of production can mitigate

the losses due to non-optimal line balancing in the case of open-station production

where the operators can work ahead of schedule and try to reduce their backlog.

A cycle time control algorithm is proposed that can improve the e�ciency of as-

sembly lines. A fuzzy-model-based solution has been developed to handle the

uncertainty of activity times.
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Industrie 4.0-basierte Lösungen zur Verbesserung der Bedienere�zienz

von Tamás Ruppert

Ziel der Forschung ist die Entwicklung neuer Algorithmen und Open-Source-Tools,

um die von vernetzten Systemen gesammelten Daten für die Überwachung, Steuer-

ung, Optimierung, Planung, das Risikomanagement. Der wichtigste Faktor für das

resultierende Operator 4.0-Paradigma ist die Integration fortschrittlicher Sensor-

und Aktortechnologien und Kommunikationslösungen. Es wird ein umfassender

Überblick über diese Technologien gegeben und hervorgehoben, dass die Gestal-

tung zukünftiger Arbeitsplätze auf dem Konzept des intelligenten Raums basieren

sollte. Echtzeit-Bedienerunterstützung und Leistungsüberwachung erfordern genaue

Informationen über die Aktivitäten der Bediener. Das Problem der Rückverfol-

gung von Hunderten von Aktivitätszeiten ist aufgrund der enormen Variabilität

und Komplexität der Produkte kritisch. Zur Bewältigung dieses Problems wurde

ein software-sensorbasiertes Aktivitätszeit- und Leistungsmesssystem entwickelt.

Die mit den Umstellungen verbundenen Verluste werden in der Fertigung auf-

grund der hohen Variabilität der Produkte und der Anforderungen an die Just-in-

Time-Produktion immer bedeutender. Es wurde eine Methode zur Reduzierung

dieser Verluste entwickelt, die auf einer datengesteuerten Ursachenanalyse basiert.

Schlieÿlich wurde zur Abwicklung des gesamten Fertigungsprozesses die Steuerung

von Montagebändern untersucht. Die Steuerung der Zykluszeit und die Sequen-

zierung der Produktion kann Verluste aufgrund nicht optimaler Linienbalancierung

verursachen. Es wird ein Algorithmus zur Steuerung der Zykluszeit vorgeschla-

gen, womit man die E�zienz der Montagelinien verbessern kann. Es wurde eine

auf einem Fuzzy-Modell basierende Lösung entwickelt, um die Unsicherheit der

Aktivitätszeiten zu bewältigen.
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Chapter 1

Introduction

Industry 4.0 is a strategic approach to design optimal production �ows by integ-

rating �exible- and agile manufacturing systems (FMS and AMS) [1] with the In-

dustrial Internet of Things (IIoT) technology enabling the communication between

people [2], products, and complex systems [3]. Human resources are still utilized in

many manufacturing systems, so the development should focus on the performance

of the operators.

As these technologies revolutionize industrial production, the high-tech strategy of

the German government launched to promote the computerization of manufactur-

ing was named as the fourth industrial revolution (Industry 4.0). China developed

its own initiative. Made-in-China 2025 is a strategic plan announced in 2015 to

increase competitiveness in cutting-edge industries including the manufacturing

sector [4, 5, 6]. The approach of China is also based on the most modern IT tech-

nologies [7] that is not only used to improve the e�ciency of the production but

also to share manufacturing capacity and support cooperation [8]. The US has in-

troduced �reindustrialization" policies to reinvigorate its manufacturing industry.

By releasing the �New Robot Strategy,� Japan attempts to accelerate development

of cooperative robots and unmanned plants to revolutionize the robot industry,

cope with the aggravation of Japanese social and economic issues, and enhance

the international competitiveness. The �New Industrial France� the "high-value

manufacturing� strategy of UK, and the �advanced innovators' strategy� of South

Korea have similar CPS based focus points [9]. The common goal of these develop-

ments is to integrate the supply chain. Industry 4.0 and additive manufacturing,

when combined, can help enable the creation of products that are �rst-to-market

1



Chapter 1. Introduction 2

and fully customized. Thanks to the bene�ts of additive manufacturing not only

the consumer can �nd more customized products and services, but also the manu-

facturer has a chance to create more e�cient and scalable production �ow [10]. All

in all, these novel manufacturing technologies appear to herald a future in which

value chains are shorter, more collaborative, and o�er signi�cant sustainability

bene�ts.

Organizations should be prepared for the introduction of Industry 4.0 based com-

plex production systems. Recently developed maturity or readiness models are

mainly technology focused [11, 12] and assess the Industry 4.0 maturity of indus-

trial enterprises in the domain of discrete manufacturing [13]. Thanks to the fast

and �exible communications between CPSs, smart sensors and actuators, real-time

and self-controlled operations can be realized [7, 2]. The new smart IoT (Inter-

net of Things) devices have the potential to design mobile machines that replace

human minds [14]. Researchers at Oxford University estimated that approxim-

ately 47% of all US employment will be at a high risk of computerization by the

early 2030s [15]. A survey conducted by PricewaterhouseCoopers (PwC) found

that 37% of employees were worried about the possibility of redundancy due to

automation [16, 15].

Although state of the art in the area of Industry 4.0 has been reviewed recently [4],

systematic literature reviews are frequently published [17, 18, 19], there is a need

to study that the fourth industrial revolution will not entirely replace operators,

instead sensors, smart devices, mobile IoT assets, and technologies will be used to

design systems for operator support.

Although the increase in the degree of automation reduces costs and improves

productivity [20], human operators are still essential elements of manufacturing

systems [21, 22].

The fast development of smart sensors and wearable devices has provided the

opportunity to develop intelligent operator workspaces. The resultant Human-

Cyber-Physical Systems (H-CPS) integrate the operators into �exible and multi-

purpose manufacturing processes. The primary enabling factor of the resultant

Operator 4.0 paradigm is the integration of advanced sensor and actuator techno-

logies and communications solutions. This work provides an extensive overview of

these technologies and highlights that the design of future workplaces should be

based on the concept of intelligent space.
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This thesis considers four main problems of �exible manufacturing systems (Figure

1.1). Operators need all support in case of rapid production [23]. The fourth

industrial revolution considers the accessories for workers. In the next Chapter

(Chapter 2), I will make an overview of the Operator 4.0 concept, which can

provide all information to the operator with the newest IIoT technologies. The

right picture of the daily work is a crucial element of the modular production

[24]. The activity times are stochastic and many types of distribution in case of

modular production.

Real-time operator support and performance monitoring require accurate inform-

ation on the activities of operators. The problem with tracing hundreds of activity

times is critical due to the enormous variability and complexity of products. To

handle this problem a software-sensor-based activity-time and performance meas-

urement system is proposed. The proposed model-based performance monitoring

system tracks the recursively estimated parameters of the activity-time estimation

model. I will show the challenges of operator performance monitoring in Chapter

3.

The losses associated with changeovers are getting more signi�cant in manufac-

turing due to the high variance of products and requirements for just in time

production. The many types of products [25] are a big challenge and opportunity

for changeover optimization [26]. The operator is a crucial element of the process

even in case of fully automated manufacturing machines too. The changeovers

are manually (partly or fully). I introduced a method for the reduction of these

losses based on data-driven root cause analysis and performance management. The

method is based on models that estimate the product- and operator- dependent

changeover times by survival analysis. The root causes of the losses are identi-

�ed by signi�cance tests the utilized Cox regression models. The resulted models

can be used to design a performance management system that takes into account

the stochastic nature of the work of the operators. In Chapter 4, I will show the

developed algorithm and targeting model.

The fourth analyzed issue is the optimal cycle time in case of mixed production [27].

The control of cycle time and the sequencing of production can mitigate the losses

due to non-optimal line balancing in the case of open-station production where

the operators can work ahead of schedule and try to reduce their backlog. I will

provide a cycle time control algorithm that can improve the e�ciency of assembly

lines in such situations based on a specially mixed sequencing strategy in Chapter
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Figure 1.1: The problems of �exible manufacturing are divided into three
main topics. The operator support considers the technological solutions for
human resources, while the changeovers and mixed production are described the

manufacturing problems.

5. To handle the uncertainty of activity times, a fuzzy model-based solution has

been developed. As the production process is modular, the fuzzy sets represent

the uncertainty of the elementary activity times related to the processing of the

modules. The optimistic and pessimistic estimates of the completion of activity

times extracted from the fuzzy model are incorporated into a model predictive

control algorithm to ensure the constrained optimization of the cycle time.

To handle the uncertainty of the operator's activities, I developed three di�erent

types of time models (Figure 1.2). The �rst model is the module content-based

activity times analyses, where the base activities and the module content with the

built-in components are de�ned. The activity time analysis is the pillar of produc-

tion planning and process optimization. The second model is the changeover time

prediction based on the log data. In that case, I developed a survival model to

identify the time probability. In the third model, I de�ned a fuzzy-set to handle the

assembly time uncertainty at the open station based conveyor assembly line. To

solve the line balancing and production scheduling problem, I de�ned optimistic

and pessimistic estimates of the activity time.

Figure 1.2 shows the concept of this thesis. The three pillars are de�ned, where

the �rst step is to explore the main activities and identify the connection between

the parts of a complex system. The next step is the time measurement, where

the data from the shop �oor is used for the prediction. Finally, to increase the

process improvement, the real-time assembly line control-based on the activities

are proposed.
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Figure 1.2: The thesis de�nes three pillars. Explore the main activities is the
�rst step of the proposed system. If the activities are de�ned, then the next step
is the time measurement. Finally, the real-time assembly line control based on

the activities are proposed to increase the process improvement.

The applicability of the proposed method is demonstrated based on a wire-harness

manufacturing process with a paced conveyor, but the proposed algorithm can

handle continuous conveyors as well. The results con�rm that the application of

the proposed algorithm is widely applicable in cases where a production line of a

supply chain is not well balanced and the activity times are uncertain.

The human role in Industry 4.0 is a complex issue. The concept of Operator 4.0

is described in the next Chapter. The intelligent space is also proposed, based on

the new IIoT technologies to provide real-time information for operators.



Chapter 2

Operator in Industry 4.0

The human resources in a manufacturing area are continuously a crucial critical

factor, but the theory of the 4th industrial revolution is impacting there. In this

concept, the optimization is realized by Cyber-Physical-Systems (CPS) developed

to utilize information related to product models, simulators and process planning

data (see Figure 2.1). With the extensive inter-system communication of the

elements of CPSs and smart sensors and actuators [2] real-time optimal and self-

controlled operation can be realized [7].

Industry 4.0 (especially IoT devices and CPS) allows new types of interactions

between operators and machines [28]. These interactions will generate a new intel-

ligent workforce and have signi�cant e�ects on the nature of work. The integration

of workers into an Industry 4.0 system consisting of di�erent skills, educational

Figure 2.1: Cyber-Physical-Systems (CPS) are based on the connection of the
information related to production systems and process models.

6



Chapter 2. Operator in Industry 4.0 7

levels and cultural backgrounds is a signi�cant challenge. The new concept of Op-

erator 4.0 was created for the integrated analysis of these challenges. The concept

of Operator 4.0 is based on the so-called Human-Cyber-Physical Systems (H-CPS)

designed to facilitate cooperation between humans and machines [29].

This chapter focuses on the elements of this infrastructure and proposes an intel-

ligent space-based design methodology for the design of Operator 4.0 solutions.

According to this goal the development and application of advanced internet-of-

things technologies with regard to smart sensing technologies, IoT architectures,

services and applications will be discussed by following the types of the Operator

4.0 solutions proposed by Romero et al. [30, 29].

The chapter is comprised of the following structure. The elements of Operator 4.0

solutions are presented and a novel design methodology based on the concept of

intelligent space proposed in Section 2.1. The required infrastructural background

is presented in the remaining sections. IoT solution for tracking operator activities

is introduced in Section 2.2. Conclusions and recommendations based on the

review proposed in Section 2.3.

2.1 Framework of Operator 4.0 Solutions

The concepts of Operator 4.0, cyber-physical systems and intelligent space are

introduced and connections between these methodologies discussed in this section.

2.1.1 The Operator 4.0 Concept and Human-Cyber-Physical

Systems

Operator 4.0 typology depicts how the technologies of the fourth industrial re-

volution will assist the work of operators [29]. Operator 1.0 is de�ned as humans

conducting manual work. The Operator 2.0 generation represents a human entity

whose job is supported by tools, e.g., by computer numerical control (CNC) of

machine tools. In the third generation, the humans are involved in cooperative

work with robots and computer tools, also known as human-robot collaboration.
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Figure 2.2: (R)evolution of the tasks of operators in manufacturing systems.

This human-robot collaboration in the industrial environment is a fascinating �eld

with a speci�c focus on physical and cognitive interaction [31]. However, the new

set of solutions is based on even more intensive cooperation between operators

and production systems. This new Operator 4.0 concept represents the future of

workplaces [29] (see Figure 2.2).

The main elements of the Operator 4.0 methodology are explained in Table 2.1.

Analytical Operator-type solutions utilize Big Data Analytics to collect, organize

and analyze large data sets [30]. Augmented reality (AR) can be considered as

a critical enabling technology for improving the transfer of information from the

digital to the physical world of the smart operator. The Collaborative Operator

works together with collaborative robots (CoBots). Healthy Operator solutions

measure and store exercise activity, stress, heart rate and other health-related met-

rics as well as GPS location and other personal data. Smarter Operators interact

with machines, computers, databases and other information systems as well as

receive useful information to support their work. Social Operators use mobile and

social collaborative methods to connect to smart factory resources. Super-Strength

Operators increase the strength of human operators to be able to conduct manual

tasks without e�ort using wearable exoskeletons, while Virtual Operators interact

with the computer mapping of design, assembly or manufacturing environments.
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Table 2.1: Elements of the Operator 4.0 methodology according to [30, 29].

Type of Oper-
ator 4.0

Description Examples

Analytical oper-
ator

The application of big data analytics in real-
time smart manufacturing.

Discovering useful information and predicting relevant
events [32, 33].

Augmented oper-
ator

AR-based enrichment of the factory envir-
onment. AR improves information transfer
from the digital to the physical world.

Smartphones or tablets are used as Radio Frequency IDen-
ti�cation (RFID) readers and can become key tools of
smart manufacturing [34, 35, 36].

Spatial AR projectors support automotive manufacturing
[37, 38, 39].

Collaborative op-
erator

CoBots are designed to work in direct co-
operation with operators to perform repetit-
ive and non-ergonomic tasks.

Rethink-Robotics with Baxter & Sawyer promises low-cost
and easy-to-use collaborative robots [40].

Healthy operator
Wearable Trackers are designed to measure
activity, stress, heart rate and other health-
related metrics as well as GPS location and
other personal data.

Apple Watch, Fitbit and Android Wear-based solutions
had already been developed [30].

Military-based applications can predict potentially prob-
lematic situations before they arise [30].

Smarter operator Intelligent Personal Assistant (IPA)-based
solutions that utilize arti�cial intelligence.

Help the operator to interact with machines, computers,
databases and other information systems [41].

Social operator Enterprise Social Networking Services (E-
SNS) focus on the use of mobile and social
collaborative methods to connect smart op-
erators on the shop-�oor with smart factory
resources.

The Social Internet of Industrial Things interacts, shares
and creates information for the purpose of decision-making
support [42].

Super-strength
operator

Powered exoskeletons are wearable, light-
weight and �exible biomechanical systems.

Powered mechanics to increase the strength of a human
operator for e�ortless manual functions [43].

Virtual operator

Virtual Reality (VR) is an immersive, inter-
active multimedia and computer-simulated
reality that can digitally replicate a design,
assembly or manufacturing environment and
allow the operator to interact with any pres-
ence within.

Provide the user with an environment to explore the out-
comes of their decisions without putting themselves or the
environment at risk [44].

The VR�based gait training program provides real-time
feedback [45].

Multi-purpose virtual engineering space [46].

Table 2.2: Design principles of Industry 4.0 applied to Operator 4.0 solutions.

Design principle Description Application

System integration combines subsystems into one system. Vertical integration connects
manufacturing systems and technologies [50], horizontal integration
connects functions and data across the value chain [1].

Analytical operator

Modularity is important for the ability of the manufacturing system to adapt to
continuous changes [51, 52, 53].

Augmented operator

Interoperability allows human resources, smart products and smart factories to connect,
communicate and operate together [51]. The standardization of data is
a critical factor for interoperability because the components have to
understand each other.

Collaborative oper-
ator

Product personalization the system has to be adapted to frequent product changes [54].
Smarter operator

Decentralization is based on the distributive approach, where the system consists of
autonomous parts which can act independently [51]. It simpli�es the
structure of the system which simpli�es the planning and coordination
of processes and increases the reliability [55].

Corporate social respons-
ibility

involves environmental and labor regulations. Social operator

Virtualization uses a digital twin, i.e., all data from the physical world is presented in
a cyber-physical model [56].

Virtual operator

Whit regards to the development of Operator 4.0-based automation systems, at-

tention has to be paid to the design principles of Industry 4.0 solutions, which are

decentralization, virtualization, recon�guration and adaptability [47, 48, 49]. How

these principles should be applied during the development process is presented in

Table 2.2.
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Figure 2.3: Architecture of cyber-physical systems.

The Operator 4.0 concept aims to create Human-Cyber-Physical Production Sys-

tems (H-CPPS) that improve the abilities of the operators [30]. The allocation

of tasks to machines and operators requires the complex semantic model of the

H-CPS. Operator instructions can be programmed into a machine and but hand-

ling uncertainty and stochastic nature is di�cult. Adaptive systems are suitable

to handle these problems with the help of more frequent monitoring and model

adaptation functions [57, 58, 59, 60]. Real-time operator support and perform-

ance monitoring require accurate information concerning the activities of oper-

ators, which means all data related to operator activities should be measured,

converted, analyzed, transformed into actionable knowledge and fed back to the

operators. Based on this requirement, the operator should be connected from the

bottom (connection) to the top (con�guration) levels of the cyber-physical sys-

tems [61]. To support this goal, an overview concerning the elements of CPS from

the perspective of operators is given in Table 2.3 and the levels of CPSs with a

description of the functions and tasks are presented in Figure 2.3.

As tasks should be transformed into a form that computers can understand, task

analysis is becoming more crucial due to the di�culties of the externalization of

the tacit knowledge the operators [62]. Tacit knowledge contains all cognitive skills

and technical know-how that is challenging to articulate [63, 64]. Without elicit

tacit knowledge, the chance of losing critical information and best practice is very

high [65]. Hierarchical task analysis extended with the `skill, rule and knowledge�

framework can capture tacit knowledge [66], which approach has been proven to

be useful in manufacturing [67]. Sensor technologies are essential to elicit tacit

knowledge, for example, the tacit knowledge of the operator can be captured by

a 'sensorized' hand-held belt grinder and a 3D scanner to generate a program of
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Table 2.3: Levels of cyber-physical systems from the perspective of operators.

Level Function Example

Con�guration
Self-optimize

Prediction and online feedback with regard to quality issues [75, 76]
Self-adjust

Self-con�gure

Cognition
Collaborative diagnostic and
decision-making

VR [77, 78, 79]

Remote visualization for humans AR [80, 81, 82]

Cyber
Digital twin Decision-making based on a digital twin [83, 84, 85]

Model of operator
Worker-movement diagram [86, 87, 88, 89]

Monte-Carlo simulation of a stochastic process model [90, 91]

Conversion
Smart analytics

Online performance monitoring based on sensor fusion [92, 93]

Degradation and performance pre-
diction

Connection Sensor network
Wearable tracker [94, 95]

Indoor Positioning System [96, 97, 98, 99, 100]

a robot that can replace the operator [68]. The modelling of the physical reality

and realising it in the CPS are critical tasks [69, 70, 71, 72].

These examples illustrate that Operator 4.0 solutions should be based on con-

textual task analysis which requires precise chronological time-synchronization of

the operator actions, sensory data and psycho-physiological signals to infer the

cognitive states [73] and emotions [74] associated with the decisions and operator

actions.

Sensors and feedback technologies of interactive intelligent space can be used not

only for improving the abilities of the operators but also for the extraction of their

tacit knowledge. In the following section, these technologies will be detailed.

2.1.2 The Operator 4.0 Concept and Intelligent Space

In the previous section, the key functions of Operator 4.0 solutions were shown

to be related to the monitoring and support of operator activities. The most

signi�cant trend is related to the development of human-machine interfaces that

embrace interaction in a set of novel ways [101]. As the operator performs tasks,

real-time information is provided about the production system and real-time sup-

port is received from it. Interactive human-machine systems had already been

introduced in the Hashimoto Laboratory at the of University of Tokyo [102] where

an Intelligent Space (iSpace) system has been designed for the virtual and physical

support of people and mobile robots [103]. Intelligent interaction space supports
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the operators to complete their work with high e�ciency, high success rate, and

low burden [104]. The iSpace framework is shown in Figure 2.4.

The events within iSpace are continuously monitored by Distributed Intelligent

Network Devices (DINDs) consisting of various networked sensors, e.g., indoor

positioning systems and cameras for localization. DINDs interpret events in the

physical space and provide services (feedback) to operators using physical devices,

e.g., microphones, displays, etc. According to the horizontal integration concept,

the proposed iSpace is also connected to suppliers and customers. This concept

highlights that iSpace should relay on CloudThings architecture that integrates

IoT and Cloud Computing [105], as cloud computing enables a convenient, on

demand, and scalable network access to a shared pool of con�gurable computing

resources.

Resources, users, and tasks are the three core elements of intelligent interaction

space (see Figure 2.5). The user-resource-task model supports the design of in-

teraction among these components [104] which interactions should handle how

resources trigger the tasks and how the tasks are assigned to the operators based

on their availability, performance, and competence.

Intelligent space should respond to requests from people, so the activities of the

operators must be identi�ed by cameras, internal positioning systems, or based

on voice signals, and these multi-sensory data should be processed by arti�cial

intelligence and machine learning solutions [103]. The acquired information is

transmitted via a wireless network and processed by dedicated computers, so any

event involving or change in the monitored parameters inside the space is carefully

analyzed and processed [106].

Figure 2.4: iSpace based integrated sensor signals can be used to monitor the
work of the operators, extract their tacit knowledge, synchronize activities, and

provide contextualized information.
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Figure 2.5: The design of connections between resources, users, and tasks is
the key of the design of intelligent interaction space.

This section highlighted that the development of H-CPSs requires an appropriate

design concept. According to the concept of intelligent space the architecture

must be modular, scalable and integrated, which results in low installation and

maintenance costs and easy con�guration [107].

2.2 IoT-based Solutions to Support Operator Activ-

ities

From the viewpoint of operators, connection and conversion are the most critical

levels of cyber-physical systems as these two levels are responsible for interaction.

As smart sensors are key components of solutions for cyber-physical production

systems (CPPS) [2], it is necessary to overview what kind of tools are available

for monitoring the activity of the operators.

Usually, operator activity is monitored by RFID-based object tracking [108]. This

technology can collect real-time data about the activities of workers (operators)

and machines, as well as movements of materials [109] and workpieces [110, 111].

Multi-agent supported RFID systems realize location-sensing systems [112] and

intelligent-guided view systems [113]. RFID systems for human-activity monitor-

ing provide an excellent opportunity to observe the work of the operators [114].
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With the help of these devices, the whole production process as well as production

and waiting times have become measurable online. Based on this information,

shop �oor control (SFC) and optimization can also be realized. When the RFID

readers are placed such that the duration of the tasks can be estimated, how the

production line is balanced in addition to the e�ect of product changes can be eval-

uated, and real-time data for OEE (Overall Equipment E�ectiveness) calculations

provided [115].

The tracking of production can be signi�cantly improved by indoor positioning

system (IPS) utilized for localizing the positions of the products and operators [96].

The applications of IPS and its potential bene�ts in terms of process development

are complied in Table 2.4.

Context-aware systems require unobtrusive sensors to track each step of the per-

formed task [116]. As wearable sensors are becoming more common, their utiliza-

tion is also becoming more attractive [117]. However, hand motion-based activity

recognition is still challenging [118] and requires the application of advanced ma-

chine learning algorithms [119]. Tracking operator activity is a challenging and

highly infrastructure-demanding task which should utilize information stream fu-

sion approaches to improve the robustness of the algorithms [120]. How all these

smart sensor-based IoT technologies can be used to design Operator 4.0-type solu-

tions is compiled in Table 2.5.

The operators not only have to provide real-time information about their actions

but at the same time require real-time support in their work. Industrial wearable

[94] and communication [139] solutions help to handle this challenge. The previ-

ous paragraph showed what kind of techniques exist to collect information from

the operator. In this section, potentially applicable feedback technologies will be

introduced which are related to the con�guration level of cyber-physical systems

[61].

In the early applications production activities required to complete orders were

scheduled and managed by shop �oor control systems (SFCS). In [140] a hier-

archical SFCS (shop, workstation, equipment) was adopted. In [141] a vision-

based human-computer interaction system was introduced that interacts with the

operator and provides feedback. Complex hardware was installed in intelligent

environments, equipped with a steerable projector and spatial sound system, to

position the character within the environment [142].
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A potential grouping of feedback technologies is the following: �x-mounted devices

(e.g., LED TVs), mobile devices (e.g., tablets, smartphones) and wearable devices

(e.g., smart glasses). Intuitive displays can reduce the cost of operator interven-

tion as the performance of the operator is improved by the auditory and visual

understanding [143]. Visual collaboration systems can provide appropriate in-

structions for each step of the assembly task [144]. All groups are used correctly

and e�ciently, but the novelty of wearable devices compared to the 'simple' mo-

bile devices is the total freedom of movement and free use of limbs [145]. So far

some of these only provide a human-machine interface (HMI) and need a (mobile)

computer (e.g., a smartphone) to operate, but the tendency is that every device

will work separately and can cooperate with other devices through some commu-

nication solutions (e.g., LAN/WiFi, Bluetooth). Headsets, VR helmets, smart

gloves and smart clothes are examples of types of devices presented in Table 2.6.

The importance of this area is shown in the statistical increase in the numbers of

sales. So far these kinds of solutions have resulted in approximately $5.8 billion

in business [146].

The connections between the categories of Operator 4.0 solutions and potential

feedback technologies are shown in Table 2.6. Which feedback opportunity is

expedient is de�ned by the task in question. For example, in the case of the

Table 2.4: Applications of indoor positioning systems in production manage-
ment.

Application

area

Description Examples

Performance
monitoring

Measure e�ects of process devel-
opment and business process re-
engineering (BPR).

Analyse moving- and staying-time of
operators [121].

Movement
analysis

Spaghetti diagram of operator
movement to reduce unnecessary
movement and optimise the lay-
out and supply chain.

Reduce the duration of material
handling [122]. Reduce the number
of unnecessary movements of oper-
ators [121]. Support real-time man-
ufacturing execution systems (MES)
[123].

Support 5S
projects

Track tools and optimise the
place of application and storage.

Decrease of stock and scrap. Im-
prove activity times [121].

Digital twin Direct process the on-line in-
formation inside the process-
simulation tools. Prove the real-
time architecture for the Digital
Twin method.

The main elements of the real-time
architecture are the 'Digital Twin'
and IPS [124].
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Table 2.5: Sensors of Operator 4.0 solutions.

Type of Operator 4.0 Type of sensor Examples

Analytical operator
Infra-red sensors Discover and predict events [103]

Olfactory sensors Electronic nose [125]

Augmented operator

Microphones Capturing voices and the location of speakers [126]

Visual sensors
Machine vision systems for quality inspection [127, 128]

Virtual operator

Image processing, e.g., panoramic images [129], create the environment
of virtual reality [130]

Smart camera for probabilistic tracking [131]

Collaborative operator Localization sensors

IPS in manufacturing [96] and hybrid locating systems [132]

Mapping and localization using RFID technology [133] and e�cient ob-
ject localization using passive RFID tags [134, 135]

Social operator Smart and social factories based on the connection between machines,
products and humans [136]

Smarter and healthy oper-
ator

Wearable sensors
Smart watch with embedded sensors to recognize objects [137]

The smart glove maps the orientation of the hand and �ngers with the
help of bend sensors [138]

Super-Strength operator the feedback indicating danger is a critical function. The

next step of the design is to select the technology that delivers the information.

Danger can be indicated with the help of smart glasses or by a speaker. As soon

as the operator hears the warning alarm the danger can be avoided. In the case

of smart glasses, the worker can obtain more detailed information about the type

and location of risk. The potential applications of these solutions are summarized

in the last column of the table.

Some companies have been testing these innovative technologies in manufacturing

processes. In every case when these techniques are used, the production process is

complex, the quality management is strict, and there is a wide variety of products.

The results are impressive because the e�ciency improves while the learning time

reduces in every observed situation. In the following, some of these solutions will

be introduced.

Smart glasses-based augmented reality is used in the manufacturing of high-horse-

power wheeled tractors with hundreds of variations by the company AGCO [148].

Presently, 100 pairs of glasses are in use to visualize the next manufacturing step

and necessary information for the inspection process. The results in numbers are

promising:

• 50% reduction in learning time (in the case of new workers)

• 30% reduction in inspection time (eliminates paperwork and manual upload)
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Table 2.6: Feedback technologies for Operator 4.0 solutions.

Operator 4.0 Feedback Technologies Examples

Analytical op-
erator

Report / Potential
danger

Smart glasses, smart-
phones, tablets and
personal displays

Big data-based development of a manufac-
turing process [147].

Augmented
operator

Each possible feed-
back

Smart glasses AR for tractor manufacturing [148]. Smart
glasses [149, 30].

Collaborative
operator

Waiting for interac-
tion / Technical prob-
lem

Smart glasses, smart-
phones, tablets, personal
displays, headsets and
smartwatches

Collaborative operator workspace [150].

Healthy operator
Need rest Smart glasses, smart-

phones, tablets, personal
displays and headsets

Measurement of physiological parameters [151,
152]. Security issues [153].Change activity

Need a medical test

Smarter operator
Answer to a question Smart glasses, smart-

phones, tablets, personal
displays and headsets

Chatbot [154] and AI provide support to operat-
ors [155].Notice about an event

Process

Social operator

Emergency
Smart glasses, smart-
phones, tablets, personal
displays and headsets

Facebook-based product avatar [42] and Social
Manufacturing (SocialM) [54].Process

Manufacturing

Technical information

Super-strength
operator

Optimal route / Tar-
geting / Training

Smart glasses, tablets and
smartphones

Navigation [156, 157] and targeting [158,
159, 157].

Force feedback on a
hand or whole arm

Smart gloves and special
exoskeletons

HaptX [160], VRgluv and ABLE Project
[161, 43] are such technologies.

Danger indicator Smart glasses and speakers Safety and risk management (related to exo-
skeleton technology) [162].

Virtual oper-
ator

Collision / Weight /
Pressure

Smart clothes / smart
gloves

VR technology in prototyping and testing
[163]. This kind of technology becomes more
e�cient with every wearable feedback device
(e.g., smart gloves [164]) that use (second-
ary) human senses directly.

• 25% reduction in production time (in the case of complex assemblies and

low volumes)

Similar advantages of smart glasses were reported at DHL which is one of the

leading logistics companies in the world [157]. Ten workers who used smart glasses

for three weeks managed to distribute 20,000 packages (9,000 orders) leading to a

25% increase in the e�ciency of the operators and a reduction in errors of 40%.

Quality and reliability are critical in aerospace manufacturing. Boeing and Model-

Based Instructions (MBI) from Iowa State University support the work of the op-

erators. Their �rst solution was designed to show the instructions for the workers.

The installation of the desktop MBI was static and there were numerous situations

when the operator could not see them during the assembly process. The tablet

MBI used the same instructions as the desktop MBI, but it was mounted on a

mobile arm. The tablet AR was the same tablet that provided the tablet MBI

solution, but the operator could see the real world on the display of the tablet

and the software added virtual elements into the video stream. It was observed
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that the AR technology yielded the best solutions with regard to �rst-time quality,

speed and worker e�ciency out of these three solutions [165, 166].

These bene�ts are in accordance with what was observed in the introduction of

general Industry 4.0 solutions [167]. The examination of 385 published applications

shows that the most common bene�ts of Industry 4.0 are the enhanced e�ciency

(47%), prevention of errors (33%), reduction of cost (33%), employee support

(32%) and minimization of lead time (31%). It is worth noting that the importance

of communication (31%), human-machine interfaces (25%) and sensor technology

(11% ) were also highlighted.

The review concerning examples of applications showed clearly that the Operator

4.0 concept works in practice and the following advantages were observed: (1)

elimination of classical paper-based administration, (2) operators can use their

arms freely and receive real-time feedback about the manufacturing process, (3)

the duration of training of workers decreases, and (4) the e�ciency of production

increases and the number of errors decreases simultaneously in all cases. In sum-

mary, operators will be more e�cient in smart workplaces, where new opportunit-

ies will be available to safeguard their activities and ensure alertness. Production

systems will become safer, more controllable and manageable than ever before.

A win-win situation will develop in which humans remain an important element.

Operator 4.0 technologies only capable of bringing about these bene�ts when the

manufacturing process is complex and the variety of products is wide. Of course,

some advantages can be observed in cases of traditional mass production too, but

it is di�cult to compensate for the high investment and development costs of these

technologies.
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2.3 Conclusion of Operator 4.0

This chapter provided an overview of what kind of Industrial Internet of Things-

based infrastructure should be developed to improve the e�ciency of operators in

production systems. By following the Operator 4.0 concept proposed by Romero

et al. [30, 29], literature survey demonstrated that smart sensors and wearable

devices provide the opportunity to integrate operators into the concept of smart

factories.

It was highlighted that integrated workspaces should have modular and integrated

architecture and the development should be based on the concepts of human-in-

the-loop cyber-physical systems and intelligent space to ensure low installation

and maintenance costs.

In this chapter, the architecture and infrastructure of Operator 4.0 technologies

were surveyed. Monitoring and data-driven analytics is the key of process develop-

ment [139, 17]. There are several exciting model- and algorithm-based aspects of

these solutions, e.g., big data, sensor fusion and optimization, and machine learn-

ing whose review would also be timely as signi�cant added value and reductions

in cost can be achieved by the model-based monitoring, control and optimization

of the presented production support systems.

In order to analyze the operator in the manufacturing environment, the models of

manufacturing are needed. In the next chapter, a multilayer network model for

the exploratory analysis of production technologies is proposed. To represent the

relationships between products, parts, machines, resources, operators and skills,

standardized production and product-relevant data is transformed into a set of

bi- and multipartite networks. This representation is bene�cial in production �ow

analysis (PFA) that is used to identify improvement opportunities by grouping

similar groups of products, components, and machines.

In the next Chapter, a software sensor method is represented to support activity-

time monitoring and fault detection in production lines. The activity-based pro-

cess line control is shown in Chapter 5, where the model predictive control is

developed based on fuzzy activity times. Finally, a survival analyses technique is

described in Chapter 4 to improved the changeover times in case of manufacturing

systems.
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Software sensor for activity-time

monitoring

In the age of digital transformation, human operators are still applied in manufac-

turing processes. The Operator 4.0 concept aims to create human-cyber-physical

production systems (H-CPPS) that improve the abilities of the operators' thanks

to the dynamic interaction between humans and production systems [30]. Smart

sensors are key components of CPPS solutions [2]. Model-based production control

and performance monitoring require accurate information concerning the activity

times of the operators. Handling human factors is a challenging problem in terms

of both cellular manufacturing [168] and human-robot interaction [169]. Usually,

operator activity is monitored by computer vision-based motion detection systems

and RFID-based object tracking [108]. Context-aware systems require unobtrus-

ive sensors to track each step of the performed task and present the worker with

the information needed at any given moment [116]. As wearable sensors are be-

coming more common, their utilization is also becoming more attractive [117].

However, hand motion-based activity recognition is still challenging [118] and re-

quires the application of advanced machine learning algorithms [119]. As this

brief overview shows as well, the tracking of operator activity is a di�cult, highly

infrastructure-demanding task which should utilize information stream fusion ap-

proaches to improve the robustness of the algorithms [120].

Tracing hundreds of primary activities is critical due to the enormous variability

and complexity of products. As every operator performs sequentially a speci�c

set of actions over a period of time, our goal is to develop a sensor system that

20
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continuously estimates the time consumption of these elementary activities. I

model the time consumptions of these actions by activity time models and compare

the estimated activity times to the performance of operators and generate early

warnings when their productivity decreases.

For the cost-e�ective and robust measurement of assembly times, sensors were

developed to record the timestamps related to the activity when the components

are pushed into the �xtures by operators. As the activities of operators depend on

the type and number of the built-in components, the production �ow is tracked

by an IPS.

To integrate measurements originating from the IPS, a varying number (10�100)

of active or passive �xture sensors, and other information sources of the produc-

tion management system, a multi-sensor data fusion (MSDF) algorithm has been

developed. Multiple sensors provide redundancy enabling the robust recursive es-

timation of the unmeasured primary activity times of the operators. To constrain

the model parameters to lie within a reliable region and incorporate important a

priori knowledge concerning the activity times, the estimated parameters were op-

timally projected on to a set of linear constraints by quadratic programming [170].

This central estimation enhances the con�dence of the nominal model which im-

proves the performance of fault detection based on the reconciliation of the local

measurements.

The development of the proposed fault-detection algorithm is motivated by the

analysis of an industrial wire harness manufacturing process which is a typical com-

plex modular product manufacturing system [171, 172]. The developed algorithm

can be used in the general activity time monitoring where some activity points

are measured. To ensure our results are fully reproducible, only openly available

information on wire harness manufacturing technologies was utilized during the

development of the realistic case study.

This section is structured as follows. The developed IIoT-based sensor system is

shown in Section 3.1. The applicability of the proposed activity-time estimation

algorithm is demonstrated in Section 3.2. Based on the �ndings and discussions

reported there, conclusions are drawn in Section 3.3.
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3.1 Evaulation of activity times with software sensor

In the present section, �rst the conveyor and the modular production systems are

characterized, then the �xture sensors and the indoor positioning system as in-

formation sources are described. This is followed by the mathematical formulation

of the multi sensor data fusion-based recursive estimation model and �nally by the

local estimation and monitoring with regard to the activity times of operators.

3.1.1 Problem de�nition�evaluation of activity times on

the paced conveyor

The crucial part of the studied wire harness manufacturing system is a similar

conveyor system as shown in Figure 3.1. The motion of the conveyor is paced and

cyclic in nature. At the beginning of the cycles, every station proceeds to the next

position. The operators might work ahead of schedule or be delayed. According

to the open-station concept, when the operator does not �nish his or her job, he

or she can move with the product to the next station to reduce the backlog. When

the operator completes the task before the end of the cycle time, he or she can work

ahead of schedule [173]. Production stops when the delay exceeds a critical limit.

Contrary to this open station-type operating strategy, close-station production is

referred to when the operator must stop the conveyor even in the event of a minor

delay [174].

Figure 3.1: The wire harness paced assembly conveyor (often referred to as a

rotary) contains assembly tables consisting of connector and clip �xtures [175].
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The key idea is that in the case of modular production, the expected activity times

are estimated based on the Bill of Materials (BoM) of the manufactured products.

The manufacturing is modular meaning that the products p1, . . . , pNp are built

from the set of modules m1, . . . ,mNm [176]. The structures of the products are

de�ned by a P-matrix (also referred to as a binary/logical matrix) consisting of

Np rows and Nm columns, and the element pi,j of P is set to one when the pi-th

type of product contains the mj-th module (otherwise it is 0). The calculation of

the theoretical activity times is estimated based on which a1, . . . , aNa activities are

needed to be performed and which c1, . . . , cNc components should be built in at the

w1, . . . , wNw workstations. This information is represented in the logical matrix

M that contains the activities required to produce a given product. As is shown

in Table 3.1, the C matrix stores which components are built in in each activity,

while the W matrix assigns activities to the workstations. The speci�c activity

times and factors in�uencing them were determined based on expert knowledge

[172] as presented in Table 3.2. The matrix T provides information on the category

of the activity describing how the activities are classi�ed into the activity types

t1, . . . , tNt . The sequence of the products is represented by a π vector of the labels

of the types, so π(k) = pj states that type product pj started to be produced

during the k-th production cycle.

Table 3.1: The logical matrices de�ned for performance monitoring.

Notation Nodes Description Size

A product (p) - activity (a) activity required to produce a
product

Np ×Na

W activity (a) - workstation/ma-
chine (w)

workstation assigned for an
activity

Na ×Nw

B product (p) - component/part
(c)

component/part required to
produce a product

Np ×Nc

P product( p) - module ( m) module/part family required
to produce a product

Np×Nm

C activity (a) - component (c) component/part built in or
processed in an activity

Na ×Nc

M activity (a) - module (m) activity required to produce a
module

Na×Nm

T activity (a) - activity type (t) category of the activity Na ×Nt

Sw activity (a) - measured time
interval (zw(k))

activity involved over a meas-
ured time interval

Na × lw
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Table 3.2: Types of activities and the related activity times according to

[172]. The activity times are calculated using a direct proportionality approach,

e.g., when an operator is laying four wires over one foot, proportionally to the

parameter t4, the activity time will be 1× 6.9s+ 4× 4.2s = 23.7s.

ID Activity Unit Time [s]

t1 Point-to-point wiring on chassis Number of wires 4.6

t2 Laying in U-channel 4.4

t3 Laying �at cable 7.7

t4 Laying wire(s) onto harness jig 6.9

Per wire 4.2

t5 Laying cable connector (one end) onto

harness jig

7.4

Per wire 2.3

t6 Spot-tying onto cable and cutting 16.6

t7 Lacing activity 1.5

t8 Taping activity 6.8

t9 Inserting into tube or sleeve 3.0

t10 Attachment of wire terminal 22.8

t11 Screw fastening of terminal 17.1

t12 Screw-and-nut fastening of terminal 24.7

t13 Circular connector 11.3

t14 Rectangular connector 24.0

t15 Clip installation 8.0

t16 Visual testing 120.0

To ensure fully reproducible results, only openly available information on wire

harness manufacturing technologies was utilized during the development of this

case study.

Based on the data published in [171, 172], the number of types of products Np

is assumed to be 64 and de�ned as the combination of Nm = 7 modules: base

module m1, left- or right-hand drive m2, normal/hybrid m3, halogen/LED lights

m4, petrol/diesel enginem5, 4 doors/5 doorsm6, and manual or automatic gearbox

m7. The number of activities/tasks Na is de�ned as 654 and categorized into Nt =

16 types of activities. The time consumptions of these activities are approximated
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using a direct proportionality approach with regard to the primary activities (see

Table 3.2). During the activities involved in the production of the base harness

115 di�erent part families (component types, Nc) are built in (among these Ct =

162 terminals, Cb = 63 bandages, Cc = 25 clips, and Cw = 89 wires). The

conveyor consists of 10 workstations (tables, Nw). For every table (workstation)

one operator is assigned, therefore, No = 10.

Hereinafter, the term primary activity time denotes the estimated average period

of time required for a certain type of activity to be performed, while the term local

activity time refers to the time period required by a speci�c operator at the w-th

workstation to perform the activity in question. The structure of the developed

production-monitoring model is determined by the available information [172].

The proposed matrix-based mathematical formulation is bene�cial as it allows the

compact estimation of the individual ŷwi (k), i = 1, . . . , Na activity times in every

k cycle step (discrete time):

ŷwi (k) = [ti, ci]x
w(k) , (3.1)

as the time consumption of the i-th activity depends on how many elementary

activities of a given type should be performed (represented as ti which is the i-th

row of the matrix T), the number of built in components (the row vector ci is the

i-th row of the matrix C) and the 'e�ciency' of the operator xw(k), which is the

vector of the estimated local activity times. Therefore, the aim of our investigation

is to provide a continuous local estimate of this state vector and its workstation

independent x(k) version providing a reference value and the opportunity for the

isolation of operator-independent problems.
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3.1.2 Fixture sensor- and indoor positioning system-based

activity-time measurements

To measure the activity times, �xture sensors were designed as depicted in Figure

3.2. The �xture-based activity sensors generate timestamps when the component

is inserted into the �xture. The sensors on an illustrated assembly table are shown

in Figure 3.3, where the �xtures labeled with gray text are inactive as there are

no related activities at the depicted workstation.

The �xtures were positioned based on how the measurable activities at the work-

stations are distributed. For example, the sensor f1 sends a timestamps when the

operator inserts the component c1 which represents the starting time of the �rst

activity a1. Details concerning the placement of the sensors are given in Table 3.3.

The activity-dependent sequence of the timestamps recorded by the active sensors

in the k-th cycle of the conveyor is represented by vector which serves as the raw

input of the performance-monitoring algorithm:

s(k) = [s1(k), . . . , sj(k) . . . , sNs(k)]T (3.2)

Figure 3.2: The designed connector �xture sends timestamps when the oper-
ator inserts a component into a �xture.
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Table 3.3: The placement of the sensors is de�ned based on the activity IDs.

As can be seen in the table, not all the fi i = 1, . . . , 16 �xtures are active at

every wj j = 1, . . . , 10 workstation.

Sensor ID w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

f1 1 79 159

f2 12 90 170

f3 21 99 175

f4 31 109 181

f5 44 121 185 226

f6 422 486 595

f7 438 514 603

f8 448 535

f9 451 540 615

f10 132 192 275 324 373 453

f11 323 372 482

f12 419

f13 617

f14 630

f15 547

f16 654

Figure 3.3: Illustration of the distribution of the �xtures (f) on an assembly

table. As the �xtures move according to the tables of the conveyor system,

the �xtures are identically placed at every workstation. The �xtures labeled

with gray text are inactive as there are no related activities at the depicted work-

station.
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Figure 3.4: The concept of activity time measurements. The di�erences
between the timestamps (si) de�ne the time period required by a set of activities
(aj), the totals of which are considered as measured variables at each workstation

(zwi ), where w represents the index of the workstation.

As is shown in Figure 3.4, two timestamps clasp a set of activities, therefore,

the zwi (k) = swβ(i)(k)− swα(i)(k) di�erence between any two timestamps provides

the sum of the activity times that are situated between the two sensors. If the

timestamps swα(i)(k) measures the start of the �rst activity at the w-th work-

station, the station time of the w-th workstation can be measured as zwi (k) =

swα(i)(k+1)−swα(i)(k). Based on this concept, a set of measurements can be de�ned

for the workstations zw(k) =
[
zw1 (k), . . . , zwi (k), . . . zwlw(k)

]T
which is much more

interpretable and applicable information with regard to activity-time monitoring

than the s(k) values of the raw measurements.

To put zw(k) into context, the information on which products are assembled at

each station and the details of the activities that are assigned to the measured

time interval zwi (k) are required.

The assignment of the activities and the measured time intervals are represented

by a set of logical matrices Sw (see Table 3.1). In the case of modular production

the set of activities qa = MpTp should be calculated based on which modules are

included in the produced p-th product (represented as pp which is the p-th row of

the product-module matrix P) and whose activities are required to produce the

modules (such information is stored in the relation matrix M). The activities that

are assigned to the zw(k)-th intervals are de�ned by the operation diag(qa)S
w.

TTdiag(qa)S
w groups the activities according to activity types, while the number

of components installed over a speci�c time interval is calculated asCTdiag(qa)S
w,

which can also be grouped by activity types according to
(
TTC > 0

)
C′diag(qa)S

w.
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Based on the proposed matrix-type representation, the estimated time intervals

at the w-th workstation can be calculated as:

ẑw(k) =
[
TTdiag(qa)S

w ,
(
TTC > 0

)
CTdiag(qa)S

w
]
xw(k) = Hw(k)xw(k) (3.3)

The model equation zw(k) = Hw(k)xw(k)+ew and the related measurements zw(k)

can be used for the continuous estimation of the vector of operator e�ciencies

(namely estimated local activity times), xw(k), where ew(k) is assumed to be

a serially uncorrelated white-noise vector of observational errors with covariance

matrix Rw(k).

As Hw(k) depends on the actual product, which product is produced at the w-th

workstation must be tracked. For the localization of the products and identi�cation

of the status of the conveyor system, an Ultra-Wide band (UWB) IPS technology

with its low energy demand for transmitting information over a broad bandwidth

(> 500 MHz) and accuracy within the range of 30�50 cm, which is signi�cantly

better than the uncertainty of one meter that the Bluetooth Low Energy (BLE)-

based solutions posses [177, 178], was applied.

In comparison with outdoor environments, sensing location information in indoor

environments requires higher precision which is a more challenging task because

various objects re�ect and disperse signals. UWB is an emerging technology in

the �eld of indoor positioning [96] that has shown better performance compared

to others [179] even in the presence of severe multipath [180, 181]. Depending on

the positioning technique, the angle of arrival (AoA), the signal strength (SS), or

time delay information can be used for positioning [178]. Received signal strength

(RSS) UWB positioning methods also can be divided into Time of Arrival (ToA)

and AoA [182].

The concept of identi�cation of the products at workstations to extract product-

relevant information from the BoM and other structured information sources are

widely used to support production management [183], value stream mapping [184],

and IIoT-based lifecycle management [185]. In the developed system the IPS

beacons are mounted to the �at wire-harness and the raw signals of the receivers

(shown in Figure 3.5) are processed to assign the cables to the workstations.
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Figure 3.5: Illustration of how the IPS tracks a product in the conveyor at the

table. The tracking is accurate and nicely depicts the rotations of the table at

the edges of the conveyor.

3.1.3 Multi-sensor data fusion-based recursive estimation

Multiple sensors provide redundancy which enables the robust recursive estimation

of the unmeasured primary activity times of the operators. Therefore, the estim-

ation problem is de�ned as a sensor-fusion task [186]. The presented sensor fusion

algorithm combines all sensory and production data such that the estimates of

the activity times have less uncertainty than would be possible when these sources

were used individually. The elements of the monitoring system are structured as

shown in Figure 3.6, where the local estimations are used to evaluate the oper-

ator's performance and the FDI (Fault Detection and Isolation) to monitor the

full processes.

The fusion center receives and synchronizes all the zw(k), w = 1, . . . , Nw meas-

ured time intervals and the related Hw(k), w = 1, . . . , Nw time-variable regressors,

which means all data collected from the workstations are time-stamped and ar-

ranged according to k-th cycle of the conveyor:

z(k) =


z1(k)
...

zNw(k)

 ,H(k) =


H1(k)

...

HNw(k)

 , (3.4)

The linear structure of the developed production-monitoring model (see Equation

(3.1)) is adequate for the studied problem as the time consumption of the activities

linearly depend on how many elementary activities should be performed and what

is the number of the built in components [172]. When a linear sensor-fusion model
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Figure 3.6: The sensor fusion-based architecture of the proposed monitoring
system. The local (operators individual performance) and global (full production

line) monitoring are available with this complex architecture.

is assumed, the previously presented linear time-variant model can be represented

as

z(k) = H(k)x(k) + e(k) , (3.5)

where the e(k) noise vector of the fused observations consists of the ew(k) serially

uncorrelated white-noise vectors of observational errors at the workstations, e(k) =[
(e1(k))

T
, . . . ,

(
eNw(k)

)T]T
.

When the observation errors of the workstations are assumed to be independent,

the covariance of the e(k) noise vector is a block diagonal matrix de�ned as R =

diag
(
R1, . . . ,RNw

)
.

The central estimation enhances the con�dence of the nominal model which im-

proves the performance of fault detection based on the reconciliation of the local

measurements [187].

Based on k = 1, . . . , N synchronized z(k) and H(k) observations the objective

function of the central estimation problem can be formalized as:

x̂(N) = arg min
x
VN(x) VN(x) =

1

N

N∑
k=1

[z(k)−H(k)x]T Q [z(k)−H(k)x] . (3.6)
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When the positive-de�nite weighting matrix Q is de�ned as Q = (R)−1, the es-

timation is equivalent to the maximum-likelihood cost function [188].

The covariance matrix of the estimation error x̃(k) = x̂(k)− x(k) is:

E
(
x̃(N)x̃T (N)

)
= P∗(N) =

[
N∑
k=1

HT (k)R−1H(k)

]−1
(3.7)

The recursive estimation of the primary activity times x(k) is similar to the state

estimation algorithm which assumes the following Gauss-Markov (GM) process:

x(k) = A∗(k)x(k − 1) + η(k − 1), η(k) = N (0,Qx) (3.8)

z(k) = H(k)x(k) + e(k), e(k) = N (0,R) (3.9)

where η(k) noise vector and its Qx covariance matrix represents the uncertainty of

the unknown and time-varying parameters and A∗(k) stands for the state trans-

ition matrix of this random process.

The recursive estimation consists of prediction and correction steps as follows.

At the prediction step the state vector and its covariance matrix is calculated

based on information available at the k − 1 time instant:

x̂(k − 1) = x̂(k − 1) (3.10)

P∗(k − 1) = P∗(k − 1) + Qx (3.11)

The correction step utilizes the measured z(k) measurements at the correction the

estimated state variables by the e(k) = [z(k)−H(k)x̂(kk − 1)] prediction error,

with the K(k) time-varying Kalman gain updated based on the refreshed P∗(k)

covariance matrix:

x̂(k) = x̂(k − 1) + K(k) [z(k)−H(k)x̂(k − 1)] (3.12)

K(k) = P∗(k − 1)HT (k)
[
R + H(k)P∗(k − 1)H∗T (k)

]−1
(3.13)

P∗(k) = P∗(k − 1)−K(k)H(k)P∗(k − 1) (3.14)
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3.1.4 Local estimation and monitoring of the primary activ-

ity times

To constrain the model parameters to lie within a reliable region and incorporate

important a priori knowledge of the activity times, the estimated parameters were

optimally projected on to the set of linear constraints by quadratic programming

[170].

The local (operator-related) projection of the unconstrained estimate x̂(k) can be

considered as a quadratic programming problem:

x̂w(k) = argmin
x(k)

[x(k)− x̂(k)]TQp[x(k)− x̂(k)] (3.15)

subject to:

Aw
e (k)x(k) = bwe (k) (3.16)

Lwx(k) ≤ cw (3.17)

x̂(k)c = x̂(k)−P∗(k)HT
j µj −P∗(k)LTj λj (3.18)

where x̂(k) denotes the unconstrained solution, x̂(k)c denote the constrained solu-

tion, Aw
e (k) and bwe (k) de�ne the linear equality constraints, while Lw(k) and

cw(k) represent the linear inequalities. µj and λj are vectors of Lagrange multipli-

ers associated with equality and inequality constraints. This formulation ensures

the optimal (least squares correction) when Qp = (P∗(k))−1. When Qp denotes

the identity matrix an orthogonal projection is obtained. Assuming the constraints

are true, parameter bias can never be increased [170].

The following section demonstrates how the estimated and expected primary activ-

ity times are used for production monitoring.
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3.2 Wire harness case study

To validate the reliability of the proposed model, the distribution of the activity

times collected from real production lines was studied. As is illustrated in Fig-

ure 3.7 the distribution of the assembly times can be broken down into several

Gaussian-type distributions. The distribution is not bimodal because the lower

outliers are neglected.

3.2.1 Online monitoring of operator performance

When the raw material, design or the processing of a component in a cost-cutting

or quality-improvement project is changed by the supplier, this change may in�u-

ence the activity times of the operators. The identi�ability of the model is determ-

ined by the rank of the covariance matrix P∗(N). When the rank is smaller than

the number of measurements (which occurs when the individual performance of

operators is estimated at a speci�c workstation) only a subset of the parameters

is identi�able.

Figure 3.7: The histogram of measured processing times in two di�erent con-
veyors (production lines). The histograms indicate that the distribution of the
sensor-delivered processing times can be decomposed into normal distribution

functions according to di�erent products.



Chapter 3. Software sensor for activity-time monitoring 35

The information content of the available data can be evaluated based on the ei-

genvalues or determinant of the covariance matrix P∗(N). The tools of D-optimal

experimental design that tries to maximize the determinant of F∗(N) which is

identical to the minimization of the determinant of P∗(N) where utilized.

F∗(N) = (P∗(N))−1 =
N∑
k=1

HT (k)R−1H(k) (3.19)

When only one product is produced,H(k) does not change in terms of time. In this

case, the set of the identi�able parameters for a given product can be determined

by the QR decomposition of H(k) (or Hw(k) when a local estimation is needed).

When di�erent products are produced, the variation inH(k) signi�cantly increases

the available information, so the optimization of the production sequence can

highly in�uence the identi�ability of the model and con�dence in the parameters

(P∗(N), π(k)).

The production of 1000 products was studied. The production sequence contained

all 64 types of products with an average batch size of 10 products/batch. The rank

of the covariance matrix F∗(N) was identical to the size of x̂(k), so all activities

could be monitored (see Figure 3.8).

Such operator-independent loss in performance can occur when a shorter length of

wire increases the time required to lay and arrange the cables. In this case study,

such e�ects are monitored. In the studied case, the new wires between the c87
and c8 components are a bit shorter than speci�ed. The component c87 (seal on

the terminal) has an impact on the t10 type of activity in the module m4 which

increases the related primary activity time (x10(k)) by 15% at the 200th product,

while the component c8 (the shorter wire) has an impact on the activity type t5 in

the module m2, which increases the related x5(k) state variable by 20% after the

300th product. In this illustrative scenario the quality inspection time decreases

after the 500th product.
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Figure 3.8: Estimated primary activity times with their p = 0.01 con�dence

intervals (represented by dashed lines). The �gure illustrates that the algorithm

is able to track the changes in the x10(k), x5(k) and x16(k) activity times after

the 200th, 300th and 500th product, respectively. The bold lines represent the

constrained parameter estimates and the y axis is the activity times in seconds,

the x axis is the cycles.

As Figure 3.8 illustrates, the proposed system is able to track the slowed and

fastened activities. The cycles are noted with Time(k). The bene�t of the pro-

posed constrained algorithm is clearly visible, the estimated variables converge

faster and are always reliable.

The means of detecting individual losses in operator performance losses and sensor

faults (due to delayed registration and IIoT communication) were also studied.
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In terms of fault detection, the prediction error used in Equation (3.6) can be

used as generates an interpretable and easily traceable univariate time series that

re�ects the global performance of the model.

The global performance of the model is re�ected by

eq(k) = [z(k)−H(k)x]T Q [z(k)−H(k)x] , (3.20)

while the local, workstation related fault detection should be based on the local

observations:

ewq (k) = [zw(k)−Hw(k)x]T Qw [zw(k)−Hw(k)xw] , (3.21)

where Qw represents the wth block matrix of Q.

Based on the analysis with regard to the rank of theHw(k) matrices, the observable

sets of activities were determined. As is illustrated in Figure 3.9, at the w = 2

workstation the time consumption of six primary activities are observable. The

proposed algorithm was able not only to detect operator-dependent problems (of

the 250th product) related to these activities, but by monitoring the eq(k) it

was possible to determine when sensor faults occurred (see the bottom of the

�gure). The parameters of the gross error detection algorithm can be �ne-tuned

by Monte Carlo simulation and detailed analysis of the distribution of the modeling

error [189, 190] (the demonstration of the applicability of these techniques in this

problem is out of the scope side this thesis).

As is illustrated in Figures 3.10 and 3.11, the calculations above can be used to

estimate the expectable operation times for all workstations, check how well the

process is balanced and how the complexity of the product in�uences the workloads

of the workstations. Left diagram on the Figure 3.11 shows the minimal version of

the product (p1), while the right is the most complex (p64). With the help of this

model the e�ect of the changes in the activity time can be immediately calculated

on the tack-time and the e�ectiveness of the operators. The presented example

demonstrated that in the event of good estimates with regard to the duration of the

primary activities and with the help of the IIoT-based fusion of product-relevant

information, real-time data for OEE calculations can be provided.
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Figure 3.9: Fault-detection performance at the 2nd workstation. The upper
�gure illustrates that the algorithm is able to detect operator-dependent prob-

lems (after the 250th product).
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Figure 3.10: The number of the built-in components at a given workstation.
The �gure shows how the workload di�ers during the production of the base

module (p1) and the most complex product (p64).



Chapter 3. Software sensor for activity-time monitoring 39

Figure 3.11: The variability of the station times during the production of the

64 product. The �gure illustrates how the production line is balanced and how

the complexity of di�erent products in�uences the station times. The connection

between the diamonds notation is for to help the understanding. These are

discrete values.

The most important key performance indicators (KPIs) of the production system

are the station times which re�ect how well the production line is balanced. The

balancing of a modular production system is a challenging industrial problem due

to the great diversity of products [25]. As the station times are the functions of the

manufactured products, which product is assembled on a given workstation must

be followed. The calculation of the station time is similar to the calculation of

the estimated sum of activity times between two �xture sensors (Equation (3.3)),

namely the di�erence between the appropriate timestamps recorded by the �xture

sensors:
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3.3 Conclusion of activity-time monitoring

Human-in-the-loop cyber-physical production systems are transforming the indus-

trial workforce. Due to the enormous variability and complexity of products, the

tracing of hundreds of activity times on production lines is a critical problem. To

handle this problem a software-sensor-based activity-time and performance meas-

urement system was proposed. To ensure a real-time connection between operator

performance and varying degrees of product complexity �xture sensors were util-

ized and designed. An indoor positioning system used to merge this multi-sensor

data with product-relevant information.

The presented sensor fusion algorithm combines all sensory and production data

such that the estimates of the activity times have less uncertainty than would

be possible when these sources were used individually. The estimation of the

activity times is based on a linear-in-parameters model. The linear structure of the

developed production-monitoring model is adequate as the time consumption of

the activities linearly depend on how many primary activities should be performed

and what is the number of the built-in components.

The number of parameters of activity time estimation models is comparable to

the number of measurements, the identi�ability of the parameters of the model

has to be carefully analyzed. For this purpose, I studied the Fisher information/-

covariance matrix of the estimation problem. The identi�ability of the model and

the information content of the available data can be evaluated based on the rank,

the eigenvalues and the determinant of the covariance matrix. When the rank is

smaller than the number of measurements (which occurs when the individual per-

formance of operators is estimated at a speci�c workstation), only a subset of the

parameters is identi�able. As the placement of the sensors signi�cantly in�uences

the identi�ability of the parameters, tools of D-optimal experimental design can

be used to optimize the proposed system.

The determination of the optimal number of sensors and features has crucial im-

portance as redundant sensors can generate correlated features which decrease the

e�ciency of the algorithm. The analysis of the eigenvalues of the covariance mat-

rix can highlight these negative e�ects. As this analysis is identical to Principal

Component Analysis (PCA) of the multisensor data, the proposed methodology

can utilize the reduced and transformed uncorrelated features, which results in a

Principal Regression-based process monitoring algorithm. The second approach of
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avoiding correlated features is the application of feature selection algorithms that

should be based on the previously discussed experimental design optimization task.

As the estimation problem can be ill-conditioned and poor raw sensor data can

result in unrealistic parameter estimates, constraints were introduced into the

parameter-estimation algorithm to increase the robustness of the software sensor.

The proposed model-based performance monitoring system tracks the recursively

estimated parameters of the activity-time estimation models, while the sensor-

relevant fault detection functionalities are based on the modeling errors which can

be evaluated by classical residual-based fault detection algorithms.

The applicability of the proposed methodology is demonstrated on a well-documen-

ted benchmark problem of a wire harness manufacturing process. The presented

example demonstrated the bene�ts of multiple sensors as they provide redundancy

which enables the robust recursive estimation of the unmeasured primary activity

times. The fully reproducible and realistic simulation study also con�rmed the

e�ciency of the proposed constrained estimation algorithm regarding fast conver-

gence and giving reliable estimates.

The results illustrate that indoor positioning system-based integration of product-

relevant information and sensor signals and can be e�ciently utilized to design

on-line performance management systems.

The developed benchmark problem can be used to study fault detection and sensor

placement algorithms which is the objective of our further research.

Thanks to the newest IIoT technologies supported constantly improving measure-

ments, the activity times can be monitored more and more accurately enabling

process engineers to construct models of optimal complexity that support the con-

trol of production with the required degree of precision and accuracy. Thanks to

this development the results can be easily generalised and widely utilised, e.g., by

the next Chapter presented model-based controller can be implemented in the real-

time optimisation of supply chains, and the proposed fuzzy activity-time models

are easily applicable in the scheduling of uncertain business and production pro-

cesses, which will form the basis of our future research.



Chapter 4

Reducing machine setup and

changeover times by survival

analysis

4.1 Introduction

As manufacturing companies increase their �exibility by increasing the variance

of the products [191] and reducing lot sizes [192], changeovers are becoming a

critical issue [193], as changeovers can lead to unplanned downtimes and signi�cant

capacity losses [194]. Since the number of changeovers cannot be signi�cantly

minimized, the losses associated with such changeovers should be minimized.

Although some reasons for anomalies can be identi�ed based on observations, for

example, incorrect orders, there can be several hidden causes that can be detected

only based on the detailed analysis of log data. Furthermore, the detection of

anomalies is not su�cient for systematic improvement; continuous development

requires performance models and the application of data- and model-based root

cause analyses.

In changeover improvement projects, changeovers are divided into small process

steps [26]. A changeover is typically composed of three phases: run-down, set-up

and run-up [195]. Set-up duration reduction initiatives have been associated with

Shingo's single minute exchange of die (SMED) method [196]. The application of

42
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Shingo's methodology usually results in two main bene�ts: increasing manufactur-

ing capacity and improving equipment �exibility [197]. SMED can be supported

by intelligent data-driven techniques; neural networks (NNs) [198], graph theory

[199], activity time models [200], and machine learning methods [201] were already

utilized in these projects.

Data-driven performance models are built when no detailed knowledge is available

about the process [202]. These models can be used for activity-based targeting

[203] when the drivers of the performance can be explored by regression models

[204].

The minimization of the setup times should also follow data- and model-based

approaches. The reduction of the losses should be based on a process model [205].

Process models are based on analysis activities that require resources and time

[206]. The analysis of activity times requires activity-time models. When it is rel-

evant, these models should handle how product-relevant issues and competencies

of the operators in�uence the activity times [207]. Based on these requirements,

the development of these models should be based on the integration of heterogen-

eous information about the production [208] and should also handle the stochastic

nature of the work of the operators [209].

This Chapter presents how survival analysis can be used to identify probabilistic

and dynamic targeting models that can support the work of operators. Our key

idea is that survival analysis can generate cumulative distribution functions of

the activity times that represent the probability that the activity will be shorter

than a given value. Instead of the easily applicably non-parametric Kaplan-Meier

distribution [210], the parametric Cox regression-based method is applied [211], as

the sensitivity analysis and signi�cance tests of the parameters of the model can

be used to identify the root causes of the increased setup and changeover times.

The application of the parametric activity-time distribution function is bene�cial

because it can be easily incorporated into a dynamic performance management

system where the expected activity times are compared to the logged activities of

the operators.

To the best of our knowledge, the proposed method has never been used before

for changeover analysis. In the �eld of systems engineering, survival analysis is

mainly used to build accelerated-failure-time models [212] that can be used for

remaining useful life (RUL) estimation [213]. Recently, interesting applications in
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business process development were also reported, where dropped calls in a helpline

[214] and stock selection times [215] were analyzed. This later study is the closest

to our work, as the important factors that in�uence the selection speed were also

studied by Monte Carlo simulation. Despite the small number of related studies,

we believe that there is a strong need for the identi�ed parametric activity time

models. For example, a costing methodology called time-driven activity-based

costing uses a formula for calculating the required activity time, which is very

similar to what we will propose based on the survival analysis of the activity times

of the operators [216].

The remainder of the Chapter is structured as follows. Section 4.2 describes the

proposed method. In Section 4.3, a detailed application study is presented based

on the analysis of crimping machines. With the help of this case study, the sections

will illustrate 1) how information about production should be integrated into the

analysis of the changeovers, 2) how the models should be identi�ed and how the

proportional hazard assumptions of Cox regression should be checked and ensured,

and 3) how the resulting model can be used to evaluate the losses of changeovers

and the e�ciency of the operators.

4.2 The concept of Cox regression-based root-

cause analysis and performance monitoring

This section presents the details of the proposed method. As Figure 4.1 shows, the

method starts with the collection and integration of changeover-relevant inform-

ation. The activity-time related data are extracted from machine logs. Section

4.2.1 discusses how machine and production states, such as production, setup, wait,

stop, fault, and short-fault states, can be extracted from these log �les. Section

4.2.2 shows how the duration of these states can be processed by survival analysis

to identify probabilistic activity-time models and how parameter con�dence ana-

lysis can be used for root-cause detection of longer changeovers. Finally, Section

4.2.3 presents how the resulting models can be used for performance monitoring.
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Figure 4.1: The proposed method is based on the fusion of heterogeneous
information that characterizes the changeovers. The survival analysis of the
integrated log-�les can be used for �nding the root causes of capacity losses, and

the resulting models can also be used for performance monitoring.

4.2.1 Integrated log �le

Industry 4.0 solutions utilize the potential of information sharing. The integration

of information enables the monitoring and logging of events and their background

data to characterize the activities of the operators. For this particular case, the

primary sources of this information fusion are illustrated in Figure 4.2.

Figure 4.2: The analysis is based on the fusion of information from the machine
log �les, operator seniority and training data from the HR (human resources)

database, and the product parameters from the product database.
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Table 4.1 illustrates the integrated variables in the case of the studied wire crimping

process. The order ID de�nes the actual lot. All the details of the product, such

as the cross-section and the length of the wire as well as wire and terminal types,

are connected to the log �le based on this key ID. The operators are identi�ed by

operator IDs that are used to connect their seniority stored in the database of the

human resources department to the extended log �le.

Given that changeover analysis is in focus, four types of events (process steps) are

identi�ed. The �rst step is always the setup-changeover step when the operator

prepares all of the necessary materials and tools for the changes. This step is

generally the longest because the operator must search the materials on the shop

�oor. After the setup-changeover step is performed, in a typical case, some samples

are selected for learning, which means that the operator sets the crimping force.

The setup-short fault step follows every setup-sample operation, which represents

the cutting of the sample wire. All steps can be repeated several times, e.g., when

the measured value is not satis�ed, then the operator needs to cut a new sample.

The sequence of these steps is neither linear nor deterministic. Figure 4.3 shows

the BPMN (business process model and notation) model of the whole changeover

process. Such a model can be built based on the expert knowledge of the process

engineers or can be explored from machine logs by process mining algorithms [217].

Figure 4.3: The process model of the changeover represents how the setup-
changeover step is followed by sampling, learning (when the operator sets the
crimp force), or short-fault steps. The branches in the process are described in

Table 4.2.
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4.2.2 Survival-analysis-based activity time modeling

This work focuses on the analysis of the duration of the elementary process steps

and the overall changeover process. Due to the nature of the operators and the

complexity of the changeover process, stochastic activity time models are identi-

�ed. The key idea is that the activity times are described by survival functions

representing the conditional probability that an activity will last longer than a

speci�c time T , provided that it lasts for a time T [218]:

S(t) = P (t 6 T 6 t+ dt|T > t) (4.1)

where T is the survival time (duration of the activity). The primary survival ana-

lysis, the Kaplan-Meier method [219], generates an empirical distribution function

that can be described by the following equation [211]:

S(t) =
∏
j:tj6t

nj − dj
nj

(4.2)

where nj represents the number of activities that have not been completed at time

instant tj, while dj is the number of activities completed between periods tj−1 and

tj (as illustrated in Figure 4.4).

Figure 4.4: Example of Kaplan-Meier empirical survival function. In this
example, the probability that the event will last longer than 2 seconds is 0.8,
while the probability that the event will last longer than 6 seconds is 0.35.
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As we are interested in which variables in�uence the activity times, instead of this

nonparametric model, the parametric Cox regression model is used [218]:

S(t,xk) = [S0(t)]
exp[

∑n
j=1 bjxk,j ] (4.3)

where S0(t) is the baseline survival function, which is proportionally modi�ed by

the xk,j j = 1, . . . , n number of xk,j features, where k = 1, . . . , N represents the

index of the xk vector of the variables that in�uences the activity times, and bj
denotes the parameters of the regression model.

The available data used for the identi�cation of this model are arranged accord-

ing to the assumed model structure (see Table 4.3). During the identi�cation of

the parameters, the activities that take an unreasonable amount of time can be

eliminated by censoring the observations.

The results of the Cox regression can be accepted if the proportional hazard as-

sumption (PHA) is met for each predictor. This means that the e�ect of the

individual predictors must be independent and proportionally in�uence the activ-

ity times. The hypothesis can be veri�ed by examining the Schoenfeld residuals

[220]. This statistical test ranks the survival times, as the �rst event has a value

of one, etc. [218]. If these ranks and the Schoenfeld residuals are not correlated

with each other, then the PHA is satis�ed for the studied predictor.

The assumption can also be visually checked by the log-log or the observed vs

predicted (OP) method. In the log-log method, Kaplan-Meier distributions are

plotted for every possible value of the individual predictor on a double logarithmic

scale. If the curves are parallel, then the PHA assumption is met. For the OP

method, the observed function represents the Kaplan-Meier distribution, and the

predicted function represents the baseline hazard of the Cox regression. If the

two functions are close to each other, the PHA hypothesis is satis�ed. If the

PHA hypothesis fails to be satis�ed for any of the predictors, the so-called strat-

i�ed Cox model should be identi�ed [221]. In the strati�ed Cox model for each

of the predictors that does not satisfy the PHA, an individual baseline hazard

function can be created. In sophisticated modelling, the statistical signi�cance of

the parameters should also be evaluated based on the analysis of their p-values,

which provides the most informative information for the root-cause analysis of the

performance losses of the changeovers and setup process, as it highlights which

variables in�uence the related activity times signi�cantly.
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Figure 4.5: The targeting model compares the measured ti(x) and the estim-

ated activity times t̂i(x, p).

The details of these statistical tests and their applicability to root-cause analysis

will be presented in the case study.

4.2.3 Targeting model-based performance monitoring

The t̂i = S−1(xk, p) = t̂i(xk, p) inverse of the survival function can be used to

estimate if the i-th type of activity will be �nished with a given probability, e.g.,

when p = 0.5, the model estimates the median of the activity times when the

changeover is represented by the xk feature vector. As Figure 4.5 shows, this

model can be used as a dynamic targeting model that considers all the relevant

aspects of the changeover represented by the xk feature vector and allows the

tuning of the expectations by the selection of the p probability of the �nishing of

the activities.

Based on the targeting model and the ti(xk) measured activity times, the Li(p)

performance loss can be calculated

Li(p) =
N∑
k=1

max(ti(xk)− t̂i(xk, p), 0) (4.4)

where N represents the number of observations. When the operators �nish the

steup and changeover activities sooner than expected, the gained time can also be
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quanti�ed by the proposed gain Gi(p) function:

Gi(p) =
N∑
k=1

max(t̂i(xk, p)− ti(xk)), 0) (4.5)

A performance index can also be de�ned as the ratio of the measured and ex-

pected activity times, which can be considered as an overall operator e�ciency

indicator. The proposed measures can be aggregated to evaluate the work oper-

ators, machines or other aspects of the production process, as will be presented in

the following application example.

4.3 Application example

The applicability of the proposed methodology is demonstrated in the development

of a multi-product crimping production line. Due to our con�dentiality agreement,

the data were re-scaled and anonymized. This section is structured as follows.

Section 4.3.1 describes the studied wire-harness production technology and the

analyzed log �le. Section 4.3.2 describes the results of the Cox regression, while

the application of the models in performance monitoring is presented in Section

4.3.3.

4.3.1 Changeovers in crimping machines

The studied production line consists of several fully automated crimping machines

that can cut, strip and terminate wires (see Figure 4.6).

As changeovers consider changes in wire spools, crimping tools and terminals,

many types of changeovers can be detected, e.g.,

• only wire change: the operator needs to change only the wire and perform

the learning process

• tool change: when the wire cross or terminal type (or both) is also changed

• terminal change: some terminals can be produced in the same tool, whereas

others need a di�erent tool
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Figure 4.6: The studied automatic crimping machines log all the states and
both setup and changeover activities.

The process steps are logged, and the log �le stores the states of the machine (see

Table 4.4).

All the integrated data are stored in a database structured as described in Table

4.1. The variables represent the number of length and cross-section area (CSA)

changes, therein described by binary values (1 if there is a change). A wire change

is also represented by a binary value. The number of tool changes can be 0, 1 or 2

based on how many tool changes are necessary. The number of terminal changes

can also be 0, 1 or 2.

4.3.2 Results of the Cox regression analysis

First, the distribution of the time demand of the whole changeover process is

analyzed. The impact of the studied variables has been checked by the sensitivity

analysis shown in Figure 4.7. As this �gure shows, the curve related to the cross-

section change (CSAChange) deviates the most from the baseline, which indicates

that this variable has the most signi�cant in�uence on the time demand of the

changeover.

The �rst row (Overall process) of Table 4.5 summarizes the parameters of the

identi�ed Cox model. When a parameter is smaller than the related variable,

the changeover time increases. The analysis highlights that OperatorSeniority

does not a�ect the time demand of the changeover process, while CSAChange is
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Figure 4.7: Survival functions of the whole process and the in�uences of the
variables.

the most signi�cant feature. The No.ofTools and No.ofWires variables have a

considerable in�uence on the times. Note that these variables are not independent,

and both No.ofTools and CSAChange change when the tools are changed.

The estimated uncertainty parameters are summarized in Table 4.6, while the p

values are shown in the �rst row in Table 4.7, also con�rming thatOperatorSeniority

does not signi�cantly in�uence the time demand of the process.

A changeover is decomposed into di�erent states to further explore the root causes

of the losses. Figure 4.8 shows the four studied steps of the process: the setup-

changeover, setup-sample, setup-short fault, and setup learning steps.

Figure 4.8 a) presents the time demand of the Setup-Changeover step. Based on

the Cox parameters (shown in the second row of Table 4.5), the NoOfWires has

the most signi�cant in�uence on the time, and the curves showing the sensitivity

of the CSAChange and NoOfTools variables also signi�cantly deviate from the

baseline.

The results of the Cox regression of the setup-sample process step can be seen in

Figure 4.8 b). The parameters are given in the third row of Table 4.5. Note that

NoOfWires decreases the activity time because, during the setup-changeover

step, the wire spool is replaced, and there are more preparation activities than

there would be otherwise.
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Figure 4.8: a.) Setup-Changeover b.) Setup-Sample c.) Setup-Short Fault d.)
Setup-Learning. This �gure shows the survival functions of individual machine

states.

Figure 4.8 c) shows the result of the setup-short fault step. The Cox parameters

are not statistically signi�cant in this case (see the fourth row in Table 4.5), and

the parameters are close to zero, which correctly re�ects that this process step

occurs randomly.

The Cox parameters of the setup-learning step are shown in Figure 4.8 d. The

small parameter values shown in the last row in Table 4.5 re�ect a well-controlled

process. The change in cross-section increases the activity time, which is entirely

in line with the experience of the process engineers.

The application of the method assumes that the proportional hazard assumption

(PHA) is satis�ed for each predictor. As presented in the previous section, when

the Schoenfeld residuals are correlated and the rank order of the survival times

are not correlated, then the PHA is satis�ed for the studied predictor. As the cor-

relation values in Table 4.8 show, the PHA assumption is not satis�ed in the case

of the total activity time for the NoOfWires, NoOfTerminals and NoOfTools

variables; in the case of the setup-changeover, the NoOfWires variable should be

modelled by strati�ed Cox regression.

A graphical validation of the PHA has also been performed. There are two graph-

ical methods. One method is the log-log method. The Kaplan-Meier curves for
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Figure 4.9: a.) Kaplan-Meier distribution of marked events b.) Graphical
checking of the PHA being satis�ed in log-log scale c.) Graphical checking of
the PHA being satis�ed in log scale d.) Predicted vs expected examination of

satisfying the PHA.

each value of the predictors must be twice logarithmized, and the proportional

hazard analysis is satis�ed if these curves are parallel [218]. The functions of

NoOfWires of the data are plotted in Figure 4.9 b),c). Figure 4.9 b) has the

abscissa label also logarithmized. The other method is the predicted vs expected

method. The Kaplan-Meier curve and the baseline curve of the Cox regression

need to be compared. If the curves are close to each other, the PHA assumption

is satis�ed [218]. These functions are displayed in Figure 4.9 d). The application

of both methods leads to the previous conclusion, as the PHA is not satis�ed for

the NoOfWires variable; thus, the strati�ed Cox model should be applied for

modeling the overall process and the setup-changeover process step.

As Figure 4.10 and Table 4.10 show, this model describes the Setup-changeover

process step well, while the overall process should be modelled when bothNoOfWires

and NoOfTools are used to form separate groups in the survival analysis. As

Figure 4.10 and Figure 4.11 illustrate, these models show realistic results, and the

e�ects of CSAChange and NoOfTerminals are in line with expectations.
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Figure 4.10: Strati�ed Cox model for setup-changeover. a) No. of Wires is
0;b) No. of Wires is 1.

Figure 4.11: Strati�ed Cox model for the whole process. a) No. of Wires is 0,
No. of Tools is 0; b) No. of Wires is 0, No. of Tools is 1; c) No. of Wires is 0,
No. of Tools is 2; d) No. of Wires is 1, No. of Tools is 0; e) No. of Wires is 1,

No. of Tools is 1; f) No. of Wires is 1, No. of Tools is 2.
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Table 4.1: Integrated information database and the key variables

Database Variable Range Description
Machine
log-data

Time stamp
[datetime]

[−] The start time stamp
of the status

Event name [−] [Setup −
Changeover, Setup−
Sample, Setup −
ShortFault, Setup−
Learning,NoCause]

Name of the actual
status of machine

Order ID [−] [−] The ID of the order
Operator ID [−] [−] The ID of the oper-

ator
Machine name
[−]

[−] The ID of the ma-
chine

Duration [s] [1−] The duration of ac-
tual status

Number of
Wires [pcs]

[0, 1] If the wire is
changed, then it
is 1 and 0 otherwise.

Number of Ter-
minals [pcs]

[0, 1, 2] If the terminal is
changed, then it is 1
or 2 and 0 otherwise.

Number of Tools
[pcs]

[0, 1, 2] If the tool is changed,
then it is 1 or 2 and
0 otherwise.

Number of CSA
[pcs]

[0, 1] If the cross section of
wire is changed, then
it is 1 and 0 other-
wise.

Number of
Length [pcs]

[0, 1] If the length of wire
is changed, then it is
1 and 0 otherwise.

Order de-
scriptions

Order ID [−] [−] The identi�cation of
produced order

CSA [mm2] [0.13− 35] Wire cross section
Length [mm] [30− 8514] Length of the wire
Type of terminal
[−]

[−] Type of the terminal

Type of wire [−] [−] Type of the wire
Operator
data

Operator ID [−] [−] Operator IDs

Seniority
[weeks]

[0−] Seniority of the op-
erator (number of
weeks working at the
company)
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Table 4.2: Description of branches

Event Code Next
event

Description

Setup-
Changeover

A Setup-
Sample

Normal sequence

Setup-
Changeover

A Setup-
Short
Fault

If only cutting oc-
curs (no termin-
ating)

Setup-
Changeover

A Setup-
Learning

When only the
length of wire is
changed

Setup-
Sample

- - -

Setup-Short
Fault

B Setup-
Learning

Normal sequence

Setup-Short
Fault

B Production If no need for
more learning

Setup-
Learning

- - -

Table 4.3: Input variables of the Cox regression model

CaseID Duration Censored Features representing the changeover
1 t1 s1 x1,1 x1,2 . . x1,m
2 t2 s2 x2,1 x2,2 . . x2,m
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
8 t8 s8 x8,1 x8,2 . . x8,m
9 t9 s9 x9,1 x9,2 . . x9,m
. . . . . . . .
. . . . . . . .
. . . . . . . .
N tN sN xN,1 xN,2 . . xN,n
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Table 4.4: Logged machine states

Status Description

Production Logged when the actual
production is started

Production end Logged at the end of the
order (all batches are
done)

Production-Short
fault

Micro-stoppages
between two batches or
during a fault

Setup-
Changeover

Logged when the
changeover is started

Setup-Learning Logged at the beginning
of the learning (meas-
urement, tool/machine
setup)

Setup-Sample Logged when the ac-
tual sample production
is started

Setup-Short Fault Micro-stoppages during
changeovers

No Cause Starts when the down-
time is longer than 30
second and the operator
did not log any cause.
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Figure 4.12: Scatter plot of the prediction of the targeting model (t̂, p = 50%)
and the measured (t) activity times. The red diamonds represent the average

measured activity times of identical changeovers.

4.3.3 Application to performance monitoring

This section aims to present how the resulting models can be used to evaluate the

e�ciency of the operators based on the methods presented in Section 4.2.3.

Figure 4.12 shows the targeting model of the operators, where the nominal (t̂) and

measured (t) times are compared. Every column represents a typical changeover,

while the red diamonds represent the average of the related activity times. This �g-

ure nicely demonstrates the asymmetric distribution of delays/performance losses.

The operator performance can be evaluated by using the proposed gain and loss

model. Based on the models, the performance losses for each operator, machine,

and shift can be determined. The performances of a productive vs. less-productive

operator are depicted in Figure 4.13 and Figure 4.14. These time-variant perform-

ances can be averaged, and the total loss or gain can be aggregated to other

attributes (e.g., machine). Figure 4.15 shows the results of such an analysis. As

this heatmap shows, at machine 27, operator 98 works well, whereas operators

No. 44 and No. 16 are performing below expectations. It can also be seen that

operator 98 performs well with every machine, whereas operator 145 performs sig-

ni�cantly poorly with all machines. The detailed analysis highlights that operator

145 is a new employee, has worked on many di�erent machines, and has not had

a chance to learn correctly on either machine, information that is useful for the

shift supervisor.
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Figure 4.13: The performance of one of the best operators. The average shift
measured and nominal times are shown in diagram a). Sub�gure b) shows the

high gained times, while c) shows the rare loss times.
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Figure 4.14: The performance of one of the less-e�cient operators. The av-
erage shift measured and nominal times are shown in plot a). The rare gained
times of one shift over shifts are plotted in diagram b), while the signi�cant loss

times are in c).
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Figure 4.15: The calculated e�ciencies of di�erent operators working with
machines. The operator performs better than the expected changeover time if
the value is less than 1. We can note that operator No.145 is the worst with all

machines except for machine No.18.
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4.4 Details of the Cox regression

The Chapter presents the detailed results of the Cox regression. Table 4.5 shows

the identi�ed parameters, while Tables 4.6 and 4.7 show their standard errors and

p-values. The PHA is examined using the Schoenfeld residuals in Table 4.8. The

parameters of the strati�ed Cox model are shown in Table 4.9 and Table 4.10.

Table 4.5: The b parameters of Cox regression. The activities are slower if the
parameter is negative at this changing feature. The higher the absolute value of

the number, the more signi�cant the di�erence.
No. of
Wires

No. of
Termin-
als

No. of
Tools

CSA
Change

Length
Change

Operator
Senior-
ity

Overallproces −0.4726 −0.2494 −0.4957 −0.6314 0.2646 −0.0001
Setup-
Changeover

−0.8760 −0.1995 −0.4260 −0.5530 −0.0197 0.0016

Setup-Sample 0.4642 0.0051 −0.0726 −0.1591 0.1370 0.0035
Setup-Short
Fault

−0.0617 −0.0151 −0.1001 −0.0973 0.0743 0.0006

Setup-
Learning

0.1997 0.0219 −0.0502 −0.1085 0.0817 0.0026

Table 4.6: Standard errors of coe�cient estimates (b).

No. of
Wires

No. of
Termin-
als

No. of
Tools

CSA
Change

Length
Change

Operator
Senior-
ity

Overallprocess 0.0135 0.0312 0.0311 0.0242 0.0145 0.0002
Setup-
Changeover

0.0130 0.0267 0.0267 0.0209 0.0131 0.0002

Setup-Sample 0.0128 0.0192 0.0191 0.0131 0.0092 0.0002
Setup-Short
Fault

0.0080 0.0121 0.0120 0.0082 0.0060 0.0001

Setup-
Learning

0.0111 0.0171 0.0170 0.0110 0.0090 0.0001
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Table 4.7: The p values of the data. If the p value is less than 0.05, then the
data are signi�cant.

No. of
Wires

No. of
Termin-
als

No. of
Tools

CSA
Change

Length
Change

Operator
Senior-
ity

Overallprocess 0.0000 0.0000 0.0000 0.0000 0.0000 0.6268
Setup-
Changeover

0.0000 0.0000 0.0000 0.0000 0.1326 0.0000

Setup-Sample 0.0000 0.7926 0.0001 0.0000 0.0000 0.0000
Setup-Short
Fault

0.0000 0.2117 0.0000 0.0000 0.0000 0.0000

Setup-
Learning

0.0000 0.2017 0.0032 0.0000 0.0000 0.0000

Table 4.8: Validation of the PHA based on the examination of the Schoenfeld
residuals. The PHA is satis�ed if the time-ranked variables and the Schoenfeld

residuals are not correlated with each other.
No. of
Wires

No. of
Termin-
als

No. of
Tools

CSA
Change

Length
Change

Operator
Senior-
ity

Overallprocess 0.4031 0.2768 0.2820 0.1170 −0.1006 0.0066
Setup-
Changeover

0.3736 0.0622 0.0698 0.0159 −0.0173 −0.0146

Setup-Sample −0.0906 0.0216 0.0244 0.0341 −0.0087 −0.0083
Setup-Short
Fault

0.0460 −0.1148 −0.1161 −0.0420 0.0151 0.0243

Setup-
Learning

0.0350 0.0429 0.0414 −0.0086 −0.0205 −0.0108

Table 4.9: Parameters of the strati�ed Cox model for the overall process

No. of
Termin-
als

CSA
Change

Length
Change

Operator
Senior-
ity

b paramet-
ers

−0.2391 −0.5028 0.2812 0.0003

Error of b 0.0307 0.0223 0.0141 0.0003
Signi�cance 0.0000 0.0000 0.0000 0.2036
PH ass 0.0364 0.0735 0.0231 0.0247
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Table 4.10: Parameters of the strati�ed Cox model for setup changeover

No. of
Tools

No. of
Termin-
als

CSA
Change

Length
Change

Operator
Senior-
ity

b paramet-
ers

−0.2416 −0.4661 −0.4021 −0.0679 0.0017

Error of b 0.0278 0.0279 0.0211 0.0133 0.0002
Signi�cance 0.0000 0.0000 0.0000 0.0000 0.0000
PH ass −0.0186 −0.0136 0.0189 0.0811 −0.0219

4.5 Conclusion of reducing machine setup and

changeover times by survival analysis

This Chapter highlighted that survival analysis can be used to model the activity

times of machine setups and changeovers. Based on the statistical analysis of the

model parameters, the main drivers of the performance losses can be identi�ed.

The developed model considers the stochastic nature of complex processes and the

work of operators. Based on the inverse of the cumulative distribution function of

the activity times, a dynamic targeting model can be developed. The model can

be tuned to express the expectations of the process engineers, and the calculated

performances can be aggregated to evaluate operator and machine e�ciencies.

The presented application example highlights how the model assumptions can be

validated and what type of information can be extracted based on the analysis of

the model.



Chapter 5

Fuzzy activity time-based model

predictive control

The sequencing and line balancing of manual mixed-model assembly lines are

challenging tasks due to the complexity and uncertainty of operator activities.

The control of cycle time and the sequencing of production can mitigate the losses

due to non-optimal line balancing in the case of open-station production where

the operators can work ahead of schedule and try to reduce their backlog. The

objective of this Chapter is to provide a cycle time control algorithm that can

improve the e�ciency of assembly lines in such situations based on a specially

mixed sequencing strategy. To handle the uncertainty of activity times, a fuzzy

model-based solution has been developed. As the production process is modular,

the fuzzy sets represent the uncertainty of the elementary activity times related

to the processing of the modules. The optimistic and pessimistic estimates of

the completion of activity times extracted from the fuzzy model are incorporated

into a model predictive control algorithm to ensure the constrained optimization

of the cycle time. The applicability of the proposed method is demonstrated

based on a wire-harness manufacturing process with a paced conveyor, but the

proposed algorithm can handle continuous conveyors as well. The results con�rm

that the application of the proposed algorithm is widely applicable in cases where

a production line of a supply chain is not well balanced and the activity times are

uncertain.

65
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Industry 4.0- and IIoT-based production management systems explicitly aim to

connect decentralized production units and information sources to increase pro-

ductivity and �exibility. Besides the various factors that a�ects the variability of

production lines [222], as human resources are still utilized in many manufacturing

systems, the development of these processes should also focus on the performance

of the operators. Due to the complexity and uncertainty of human behavior, bal-

ancing and scheduling the work of the operators are challenging tasks [223]. As the

activity times depend on the complexity of the products, balancing of mixed-model

assembly lines (MMALs) with high product variety, is of outstanding complexity

[25]. The incorporation of the stochastic behavior of human nature into such an

uncertain optimization problem is a signi�cant improvement compared to the de-

terministic models [224]. Therefore, accurate activity-time monitoring and the

construction of activity-time models, is of crucial importance [207].

Modular assembly lines with manual workstations have already been analyzed for

di�erent types of conveyors [225]. In closed-station production, the operator must

stop the conveyor even in the event of a minor delay [174]. Our research focuses on

open-stations where the operators can work ahead of schedule or can be delayed

[173], and the production only stops when the delay exceeds a critical limit. These

open workstations reduce the capacity loss by decreasing the risk of stopping the

conveyor, but the modeling and optimization of these processes are much more

challenging as the model has to handle idle and delay times [226]. The most

sophisticated model of open-stations is based on worker movement analysis that

recognizes the interactions between operators and analyzes idle times as well as the

risk of stopping production in the event of unmanageable backlogs [227]. Although

this model is excellent for detailed analysis, unfortunately it is too complex to

handle multiple modular products.

As the objective of the Chapter is to solve this problem, in Section 5.2, a state-

space model for the e�cient modeling of the �ow of the assembly line and es-

timation of the activity times for every station is proposed. The model-based

integration of the isolated production cells facilitates the model-based control of

the production �ow. Even in the case of open-station production lines, the ef-

�ciency of the processes signi�cantly depends on the cycle time. Recently, the

IIoT-based infrastructural background of an algorithm that continuously sets the

cycle time to maximize the productivity whilst preventing the conveyor line from
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being stopped [228] and a method capable of estimating the elementary activ-

ity times that can serve as parameters in the proposed state-space model were

developed [207].

The developed state-space model (proposed in Section 5.2) can also be utilised in

digital twins. Usually, the digital twin model is based on discrete-event simulators

(DES). Although these tools support stochastic simulators, their model cannot be

directly utilised in control algorithms. The key bene�t of the developed state-

space model-based predictive control (MPC) algorithm is that the related model

can be easily implemented in every platform, so the model can be easily applied in

digital twins. This interoperability-based double utilisation is crucially important

as it allows the consistent development and maintenance of the models.

Many manufacturing processes cannot be fully automated, so human operators are

working at the assembly workstations. The stochastic nature of operators causes

an essential problem in cycle time optimisation, line balancing and scheduling

[229, 230]. In order to handle this problem, in this work a fuzzy set-based activity

time representation is proposed. The primary role of the fuzzy sets is to represent

the uncertainty of the knowledge about the activity times. This representation

is bene�cial as when the work of the operators is statistically consistent, and the

historical data is available for the characterisation of the distribution of activity

times, the fuzzy sets can approximate the related distribution functions. On the

other hand, when there are frequent changes in the process, or the production of

a new product begins, the data-driven information can be complemented by the

a priori expert knowledge of the process engineers and operators (see Section 5.3)

and thus the growing trend of greater variety of products [231] can be handled.

Fuzzy time distributions can be conveniently applied for the estimation of the

time of certain tasks [232] and activity times can be represented by triangular

fuzzy numbers [233]. Moreover, fuzzy time distributions can be applied for the

calculation of task times [234] and project time and cost [235] in project manage-

ment. The applicability of fuzzy activity times has already been demonstrated

in the case of fuzzy line-balancing approaches [236] for the improvement of pro-

duction line performance using discrete event simulations [237] and for machine

scheduling with fuzzy processing times [238].

To e�ciently handle the asymmetric distribution of human performance, in Sec-

tion 5.3, the importance of the application of LR (left-right) fuzzy sets [239] for
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the representation of operator activity times is highlighted. The application of

fuzzy sets is bene�cial as it facilitates the integration of measured activity times

and takes into consideration the knowledge of process experts and engineers [240],

which also makes the proposed method highly applicable with regard to the pre-

liminary design of processes.

The modeling of assembly lines is important as the models are the cornerstones

that optimize the operation. Just to mention the few of the latest publications,

a new mixed-integer linear programming formulation was proposed to optimize

the steady state of these lines [241] and a control policy was derived by using a

simulation-based optimization approach that o�ers a powerful technique to control

the considered system [242]. Although, as it is highlighted by the above examples,

the optimization of the cycle time is mainly studied as part of a line-balancing

problem as the continuous optimization and control of the cycle time can signi-

�cantly improve the performance of complex processes. Successful applications

of this concept have already been reported, e.g., particle swarm optimization has

been used to simultaneously minimize the cycle time and total energy consumption

[243], moreover, a multi-objective metaheuristic algorithm [244] simultaneously

minimized the wastage at each station and the work overload.

To ensure �exibility and handle the time-varying nature of the process, in Section

5.4, an approach that seeks to determine an optimal solution under a prediction

horizon is proposed. Thus, it is formalized as a model predictive control (MPC)

problem.

The application of an MPC-based control framework has the advantage of e�ect-

ively optimizing the production under a de�ned time horizon even in the presence

of uncertainty, forecast errors and di�erent types of operational constraints, e.g.,

capacity, inventory, control variable [245]. MPC has several successful applica-

tions in the case of discrete event systems, e.g., it has already been applied for

the minimization of the overall waiting time and energy consumption of a baggage

handling system [246] and the optimal control of a multi-product, multi-echelon

supply chain [247]. The most similar formalization to our approach is presented

in the work of De Schutter and van den Boom [248], where the system is charac-

terized as a linear discrete event system and formulated as a state-space model,

accordingly.
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This Chapter proposes an MPC-based cycle time control algorithm for open-

station conveyor lines when the production sequencing is determined by the re-

quirements of JIT (just-in-time) production. Although the applicability of the

proposed method is demonstrated on a paced conveyor, the developed MPC can

also control the speed of unpaced production lines. The results will illustrate that

the dynamically optimized setting of the cycle time can improve the utilisation of

not perfectly balanced workstations.

5.1 Overview of model-based control of operator

activity

This Chapter aims to develop a cycle time control algorithm for conveyor-based

production lines that are frequently used in JIT (just-in-time) production man-

ufacturing processes. The main requirement of the control algorithm is that it

should e�ectively handle the stochastic nature of the operators' assembly times.

As MPC usually requires a simple model that can be optimized at any instant of

time, the integration of fuzzy models into this scheme is far from a trivial task.

The most widely applied method is based on the extraction of linear models [249].

Another approach of fuzzy predictive control when fuzzy multicriteria decision-

making is integrated into the MPC using fuzzy sets is to translate the goals and

constraints in a transparent way [250]. In this work, a third novel approach is

proposed. The α-cuts of the fuzzy sets are extracted and the estimated lower and

upper bounds of the activity times used to formalize the constrained optimization

problem that sets the cycle time of each cycle based on the estimated uncertainties

of the activity times.

According to these, the Chapter is motivated by the problem of handling the uncer-

tainty of activity times on open-station assembly lines and its main contributions

are the following:

• a state-space model was developed to represent the �ow of the modules of

modular products (in Section 5.2),

• the fuzzy time distribution is used to handle the stochastic nature of operat-

ors and the uncertain a priori knowledge of the process engineers about the

activity times,
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• to handle the asymmetric distribution of human performance, the activity

times are represented as the sets of left-right fuzzy numbers and their α-

cut-based con�dence values are used to determine optimistic and pessimistic

estimates of the completion of activity times (in Section 5.3),

• a model-predictive control algorithm was developed to optimize the cycle

time (in Section 5.4),

• the method can also be applied to control the speed of unpaced conveyors.

Evaluation of the e�ectiveness of the proposed control scheme follows these listed

contributions in terms of the analysis of two use cases in Section 5.5 which serve as

a proof of concept of the described method. The �rst is an illustrative production

example which transparently demonstrates the proposed method. However, the

second is motivated by an industrial wire-harness assembly line, due to con�den-

tiality and aiming for reproducibility, simulations are applied in the case studies

(such simulational investigations are well-accepted as it was highlighted in the lit-

erature overview, for example in [237]). The applied example is a well-documented

production line which has already been applied to demonstrate how multilayer net-

works can be used in production �ow analysis [251] and how soft sensors can be

used to estimate activity times [207].

5.2 State-space model of modular assembly lines

As is shown in Figure 5.1, the studied assembly line consists of w = 1, . . . , Nw

workstations where operators perform di�erent sets of elementary activities related

to the production of di�erent types of modular products. The sequence of the

Np types of products is represented as π(k) ∈ {1, . . . , Np} according to which

type of product is started to be produced at the �rst workstation in the k =

1, . . . , N -th cycle. The product types are de�ned based on their m = 1 . . . Nm

modules according to the binary vectors pp, the product de�nition of which can

be considered as the bill of materials (BOM) presented by a P matrix of Nm ×
Np dimensions, where the columns represent which modules can be found in the

p = 1, . . . , Np-th type of product. For example, assuming that only four types

of modules are present, p1 = [1, 0, 1, 1]T represents that the �rst type of product
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Figure 5.1: The cycle time setting problem of the open-station conveyor where
every operator can be delayed or work ahead of schedule within certain limits

for the production of a π sequence of di�erent products.

consists of three modules (the second module is not installed in the �rst type of

product) [251].

When zf (k) represents the modules of the product that is started to be produced at

the �rst workstation of the production line, namely zf (k) = pπ(k−w), the modules

of the product produced at the w-th workstation is represented by a vector xf,w(k)

of length Nm and the set xf (k) = [xTf,1(k), . . . , xTf,Nw
(k)]T of these vectors de�nes

the state of the workstation, the �ow of the products can be represented by the

state-space model in Eq. (5.1):

xf (k + 1|k) = Afxf (k) + Bfzf (k) , (5.1)

where the matrix Af as a shifted NmNw × NmNw identity matrix with the �rst

Nm rows and last Nm columns of zeros de�nes the �ow of the assembly line.

Similarly, the �rst Nm rows of the matrix NmNw × Nm. Bf form an identity

matrix which represents how the production of the π(k) type of product starts at

the �rst workstation. Henceforth, the notation (k) after each mark denotes the

measured value of the related metric at the beginning of cycle k, while (k + j|k)

represents the predicted value at the beginning of cycle k to the beginning of cycle

k + j.
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The following output equation can estimate the station times (activity times of the

workstations) ta(k+1|k) = [ta,1(k + 1|k), . . . , ta,Nw(k + 1|k)]T at the workstations:

ta(k + 1|k) = Cfxf (k + 1|k) (5.2)

The matrix Cf of dimensions NwNm × Nw is de�ned in Eq. (5.3) based on the

elementary activity times required for the production of the modules at the work-

stations based on the linear model ta,w(k + j|k) = θTwpp(k + j|k) = θTwpπ(k−w+i)

where θw represents the building blocks of the wth rows of the matrix Cf with the

elementary activity times related to implementing the modules into the product

at the wth workstation:

Cf =


θT1 0 . . . 0

0 θT2 . . . 0
...

...
...

0 . . . θTNw

 (5.3)

The proposed model can be used to predict the station times for any workstations

ta,w(k + j|k) during cycle k for any j = 1, . . . , N − k step ahead of schedule. Due

to the stochastic nature of human activities, these predicted station times will not

be identical to the measured activity times denoted by ta,w(k).

The previously presented prediction model of activity times was developed for the

formulation of a model predictive controller. However, to take into consideration

the stochastic nature of human behaviour, how the activity times can be described

by a fuzzy model and summed to form the ta,w(k + j|k) station time of each

workstation at a prede�ned con�dence level is presented in the following section.
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5.3 Fuzzy representation of probabilistic activity

times

To represent the uncertainty of the activity times, a fuzzy set-based method was

proposed where the required time of the ith activity is represented by the fuzzy

variable Ai de�ned by the membership function µAi
(t). The main bene�t of this

approach is that it introduces the e�cient integration of the data-driven informa-

tion and expert knowledge of process engineers into the model [249].

Since the activity times are usually described by skewed distributions [224], their

fuzzy values were de�ned by the well-known LR model [252] according to a uni-

variate function that is quasi-concave over an interval I. The membership function

µ de�nes a distribution of µ : I → [0, 1] and the subintervals I1 and I2 of I are

such that µ monotonously increases over I1 and monotonously decreases over I2.

Subsequently, I1 is the left subinterval and I2 the right subinterval of the domain

of the membership function µ. If the maximum value is reached in more than one

point, then a third central subinterval exists where µ is constant and maximal. If

I1 = [a, b] and I2 = [c, d], then µ is de�ned as outlined in Eq. (5.4):

µ(t) =


L
(
b−t
b−a

)
if a ≤ t ≤ b

1 if b ≤ t ≤ c

R
(
t−c
d−c

)
if c ≤ t ≤ d

0 otherwise

(5.4)

In Eq. (5.4), L(x) and R(x) (L(x), R(x) : [0, 1] → [0, 1]) are non-increasing

functions with the following two constraints: L(0) = R(0) = 1 and L(1) = R(1) =

0. When L(y) and R(y) are de�ned such that y = 1− x, the resultant shapes are
fuzzy trapezoid, which is su�cient in practice, as in probability theory it is of the

uppermost importance to order the probability degrees according to the domain

values where the function is interpreted rather than the precise assignment of

probability degrees [253].

Based on our industrial experience and the analysis of the data taken from several

production lines, L(x) =
√
max(0, 1− x2) and R(x) = exp (−‖x‖3) were selected

as the LR fuzzy membership functions. A schematic example of the distribution

of activity times and the �tted fuzzy distribution is presented in Figure 5.2, where
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Figure 5.2: A schematic example of how the distribution of recorded activity
times (left) can be approximated by LR fuzzy sets (right) with the identi�cation

of their parameters.

the fuzzy set is parametrised as a = 150, b = c = 250 and d = 450. As this example

illustrates, the parameters of the fuzzy sets can easily be obtained by minimisa-

tion of the least-squares error between the membership values and the normalised

histogram of the logged activity times. When historical data is unavailable, the

fuzzy sets can be designed based on the expertise of the process engineers.

The support of µAi
is a time interval of τ at which the membership grade of µAi

(t)

is greater than zero as presented by Eq. (5.5):

supp(Ai) = {t|t ∈ τ, µAi
(t) > 0} (5.5)

Similarly, for α ∈ [0, 1] the α-cut of Ai is de�ned by Eq. (5.6) (in the case of

α = 0, the α-cut is equal to the support of µAi
):

[Ai]α = {t|t ∈ τ, µAi
(t) > α} (5.6)

This α-cut time interval can be considered to be a con�dence interval, since it

describes how short or long a given activity with a prede�ned con�dence value

is. As the activity times are represented by fuzzy sets, the optimistic/shortest
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expected activity time is ti,L = min ([Ai]α), while the pessimistic/longest expected

activity time is ti,R = max ([Ai]α).

The addition and subtraction of two fuzzy values can be conducted according to

Eqs. (5.7) and (5.8), respectively:

µAi⊕Aj
(z) = supp{(x,y)/z=x+y}min

(
µAi

(x), µAj
(y)
)

(5.7)

µAi	Aj
(z) = supp{(x,y)/z=x−y}min

(
µAi

(x), µAj
(y)
)

(5.8)

Subsequently, the level cuts of the sum of Ai and Aj can be de�ned according to

Eq. (5.9):

[Ai + Aj]α = [Ai]α + [Aj]α = {x+ y|x ∈ [Ai]α, y ∈ [Aj]α} (5.9)

An example of how two fuzzy variables can be totaled based on their α-cuts is

given in Fig. 5.3. The parameters of the fuzzy set denoted by dashed lines are

a1 = 110, b1 = c1 = 50 and d1 = 450, while the parameters of the other fuzzy

variables are a2 = 90, b2 = c2 = 40 and d2 = 650.

The proposed fuzzy set-based representation is highly bene�cial as it represents

the asymmetric uncertainty of the activities and with the aid of the α-cut val-

ues the fuzzy sets can be defuzzi�ed as the left-hand side supreme of the fuzzy

set, ti,L = min ([Ai]α) represents the shortest/optimistic time demand, while the

pessimistic/longest expected time demand is represented by the right-hand side

supreme of the set, ti,R = max ([Ai]α). The following section presents how this

α-cut can estimate the earliest and latest station times in a modular production

line in case of the stochastic nature of human operators and, thus, a general max-

min problem can be formulated and incorporated into a model predictive control

scheme.
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5.4 Fuzzy activity time-based predictive control

The scheme of the developed framework is depicted in Figure 5.4. The main

challenge of the studied modular multi-product production line is that the station

times are uncertain and depend on which products, produced at a given station,

are handled by the model predictive controller that utilises the state-space model

presented in Section 5.2. The de�nitions of the sequenced modular products π(k)

are stored in the MES.

In the ideal case, there is a degree of freedom to optimize the sequence of the

production by minimising the risk of conveyor stoppage and maximising the total

utility/productivity of the production line. The proposed MPC has been developed

for the same purpose, so it can maximise the bene�ts of the sequencing as it will

be demonstrated in the case study (in Section 5.5) where the sequencing algorithm

proposed in [254] was incorporated into the proposed framework.

Based on this information, the model calculates which elementary activities should

be performed at a given station. As the activity times are represented by fuzzy sets,

the optimistic/shortest expected activity time is the left-hand side supreme of the

fuzzy set, ti,L = min ([Ai]α), while the pessimistic/longest expected activity time
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Figure 5.3: An example of how two fuzzy variables can be totaled based on
their α-cuts. The parameters of the fuzzy set with dashed lines are a1 = 110,
b1 = c1 = 50 and d1 = 450, while the parameters of the other fuzzy variables

are a2 = 90, b2 = c2 = 40 and d2 = 650.
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is the right-hand side supreme of the fuzzy set, ti,R = max ([Ai]α). Based on this

concept, optimistic and pessimistic estimates of the activity times, ta,{L,R}(k+j|k),

�nishing times, tf,{L,R}(k+1|k), and the delays, td,{L,R}(k+1|k) = tf,{L,R}(k+1|k)−
tc(k+1), where td,L(k) is the lower and td,R(k) the upper bound of the duration of

the delay at the start of the kth cycle. (The {L,R} notation in lowercase denotes

the left, or right-hand supreme of the fuzzy sets). tc(k) is the sum of elapsed

cycle times of the kth cycle. According to this de�nition, this value is positive

during delays and negative when the operators work ahead of schedule. As is

shown in Figure 5.4, based on the extracted (defuzzi�ed) activity times related to

a given con�dence (α-cut), the model predictive controller calculates the optimal

cycle time as control signal, u(k). The �gure also illustrates that data collected

concerning the elementary activity times can be used to update the parameters of

the fuzzy sets based on the method that was presented in the previous section.

The following subsections will illustrate how the information extracted from the

fuzzy activity-time models can be incorporated into model-based control schemes.

As will be presented in the following subsection, when the control signal is calcu-

lated to prevent stoppage of the conveyor in the following cycle time, a one-step-

ahead predictive controller is de�ned. Based on the constrained minimisation of

the delay, in a prediction horizon Hp, a more sophisticated optimal control solution

will also be proposed in the remaining part of this section.

Figure 5.4: The scheme of the proposed fuzzy activity time-based model pre-
dictive controller (MPC). The fuzzy activity times are identi�ed based on his-
torical data collected from the conveyor. The models of the MPC are updated

based on the sequence of the produced products.
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5.4.1 One-step-ahead predictive control

Using the ta,{L,R}(k + 1|k) prediction of the lower or upper bound of the activity

times (for a given α) at the beginning of the k-th cycle, the tf,L(k+1|k) lower and

tf,R(k + 1|k) upper boundaries of the completion times can be calculated. Based

on the tc(k+ 1) start time of the (k+ 1)th cycle, the delay at every (k+ j)th cycle

can be predicted according to Eq.(5.10).

td,{L,R}(k + 1|k) = tf,{L,R}(k + 1|k)− tc(k + 1) = tf,{L,R}(k + 1|k)− (tc(k) + u(k))

(5.10)

where u(k) denotes the cycle time set at the beginning of the kth cycle. Therefore,

the kth cycle starts at tc(k) and �nishes at tc(k + 1) = tc(k) + u(k).

The upper bound of the delay, td,R(k), cannot exceed a critical limit, therefore,

a ccrit value can be de�ned which is equal to this critical limit or less than it.

The cycle cannot be started should it be impossible to �nish the tasks before this

limit. Therefore, the criteria for not stopping the conveyor can be formulated as

Eq. (5.11).

max (tf,R(k + 1|k))− (tc(k) + u(k)) < ccrit (5.11)

where max (tf,R(k + 1|k)) denotes the delay of the slowest operator (workstation).

By expanding the expression (tf,R(k + 1|k)), the Eq. (5.12) can be derived.

max ((tf,R(k) + ta,R(k + 1|k)))− (tc(k) + u(k)) < ccrit (5.12)

It should be noticed that tf,R(k) is a measured value of the completion of the kth

cycle, while ta,R(k+ 1|k) is a predicted one, therefore, making it possible to derive

a one-step-ahead predictive controller.

The proposed algorithm continuously sets the cycle time u(k) for every kth cycle to

avoid any stoppages, so the control signal/the cycle time should exceed the upper
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bound of the �nishing time. The Eq. (5.13) shows how to u(k) is de�ned.

max(td,R(k) + ta,R(k + 1|k))− ccrit < u(k) (5.13)

The Eq. (5.14) shows that stoppages can be prevented by setting the u(k) to

ensure that the expected maximum delay should be less than u(k).

u(k) = max(td(k) + ta,R(k + 1|k))− ccrit (5.14)

If an unpaced conveyor is used during the production, the speed of the line can

be de�ned as the output of the controller by using the s(k) = l
u(k)

transformation,

where l stands for the length of the conveyor line.

5.4.2 Constrained fuzzy model predictive control

In addition to the one-step-ahead predictive control, a much more e�ective model

predictive control scheme that minimizes the e�ect of tuning for horizon of longer

duration, Hp, by determining a control sequence of length Hc u
∗(k) =

[u(k), u(k + 1), . . . , u(k +Hc)] where Hc denotes the control horizon was formu-

lated.

As the control horizon cannot exceed the prediction horizon (Hp ≥ Hc), it is

assumed that the control variable remains constant after the control horizon has

ended until the end of the prediction horizon u(k + Hc + 1), . . . , u(k + Hp) =

u(k +Hc).

In a similar manner to the cost functions of simple assembly line balancing prob-

lems [255], several types of cost functions can be de�ned, e.g., the cost function

can be formalized to minimize the cycle time which in turn minimizes any delay

to the expected �nishing times in Eq. (5.15), which also optimizes the utilities of

the operators and attempts to ensure a well-balanced workload.

min
u∗(k)

u∗(k)TRu∗(k) (5.15)

The type of model predictive control can primarily be determined from the de�n-

ition of the control constraints as the formulation of the control sequence seeks
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to avoid stoppages to the conveyor belt due to the accumulation of a delay. The

constraints that ensure this leads to the formulation of a quadratic optimisation

problem in Eq. (5.16).

ARu
∗(k) < bR (5.16)

where AR denotes a lower triangular matrix and bR = tc(k) + ccrit− tf,R(k+ j|k).

Therefore, the constraint applied to the cycle time should be rearranged in the

form of Eq. (5.16). By rearranging Eq. (5.11):

tf,R(k + j|k)− tc(k)− ccrit <
Hp∑
j=1

u(k + j − 1) (5.17)

−
Hp∑
i=j

u(k + j − 1) < tc(k) + ccrit − tf,R(k + j|k) (5.18)

5.5 Examples of applications

Two examples of applications have been de�ned to demonstrate the applicability of

the proposed fuzzy activity time-based approach. The �rst, an easily understand-

able example, is reproducible and transparent, while the second demonstrates the

bene�ts of the model-based controller in more complex and realistic situations.

However, the second example is motivated by an industrial wire-harness assembly

line, due to con�dentiality and aiming for reproducibility, simulations are applied

in the second case study as well. Since multiple products with di�erent work

demand are produced, the production lines cannot be perfectly balanced. The

application examples aim to demonstrate how the bene�ts of the sequences op-

timized based on the high/low product complexity strategy can be realized with

the help of the proposed control algorithm.
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5.5.1 Illustrative example

TheNw = 5 workstations of the studied illustrative assembly line produceN = 500

modular products during every shift in 10-piece batches of the same product type.

TheNm = 5 modules determine the elementary activities that should be performed

at each workstation. The nominal time values of these activities are presented in

matrix θ, where each row represents a workstation and each column provides the

activity time of the related module at the given station:

θ =



250 40 25 70 30

260 35 0 100 20

230 10 80 80 15

240 32 58 85 0

260 23 0 72 60


(5.19)

The matrix P (Np × Nm) matrix de�nes the types of products, where the rows

denote the type of products and the columns the modules. The nominal values ta
of the station times can be calculated as ta = θTpp, as is depicted in Fig. 5.5 for

the products of the lowest degree of complexity p1 = [1, 0, 0, 0, 0] (base module)

to the highest degree of complexity p6 = [1, 1, 1, 0, 0]:

P =



1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 1 1 0 0


(5.20)

As is depicted in Fig. 5.5, the process is not perfectly balanced and a signi�cant

di�erence between the maxima of the activity times is present. Instead of the

described deterministic station times, the proposed more realistic L-R fuzzy sets

were used to represent the activity times. According to our expertise, the same

strategy was followed with regard to the fuzzi�cation of the activity times as the

parameters of the fuzzy set (Eq. 5.4) were set at b = c (therefore, a single maximum

was de�ned) and set to the nominal values (the average cycle times), namely

a = b/15 and d = b/10, respectively. These fuzzy sets were applied to analyse
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Figure 5.5: Station times (ta,w(k + j|k)) of di�erent types of products calcu-
lated according to the parameter matrices P and θ of the presented illustrative
example. The bars represent di�erent workstations. The blue segments illustrate
the station times, while the yellow parts highlight the di�erence from the max-
imum time of the bottleneck. As can be seen, the production line is not perfectly

balanced and there are signi�cant di�erence between the station times.

the stochastic simulation by Monte Carlo simulation-based random generation to

ensure that the distribution of the generated random variables approximates the

membership functions.

The model permits the operators to work ahead of schedule for a certain duration

of time. However, since the operators must not disturb each other, none of the

elements of the vector td(k) can exceed a critical value cah, which is usually half

of the average cycle time. In that case, the delay time (td) is negative, therefore,

the operators work ahead of schedule, but according to this de�ned constraint

cannot leave their assigned workstation. When a constant setting time is applied,

the cycle time is set to the maximum of the station times calculated using the

α = 0.1, ccrit = 120 and cah = 120.

Fig. 5.6 depicts the results when the cycle time was constant. In this case, every

operator can complete their designated tasks, but the e�ciency of production

is low compared to the controlled cycle time set in Fig. 5.7. As can be seen

in the subplot at the top of both �gures, the same sequences of products were

produced in both cases. The subplots in the middle depict show the controlled

cycle times, which was constant in the �rst case, while the subplots at the bottom

present how the delays vary in the case of di�erent cycletimes and work stations.
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The negative delays show that the operators worked ahead of shedule at given

workstation and when the cycle times were constant the system was excessively

optimized to prevent stoppages. However, by applying a model predictive control

scheme, the system is optimized to prevent stoppages and maintain a high level of

productivity.
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Figure 5.6: Production of N = 500 products in batches with constant cycle
time, u = 348. The bottom plot shows the time delay (td(k)) at every worksta-

tion where the colors represent the operators.
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Figure 5.7: Production of N = 500 products in batches with model predictive
control of the cycle time according to the following parameters: Hp = 2, Hc = 1
and α = 0.1. Control of the cycle time maximises the productivity, so the
improvement in performance compared to the �xed cycle time is 11%. The
bottom plot shows the time delay (td(k)) at every workstation where the colors

represent the operators.
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The numerical results are presented in Table 5.1. The performance of the produc-

tion line is measured as the average production time calculated by dividing the

total time required to produce N products by the number of products tf (N)/N ,

the value of which is sensitive to the number of stoppages since when production

has to be stopped, one cycle time is required to restart the conveyor belt.

As is illustrated by the results, when the cycle time is controlled, the productivity

of the production line is enhanced by 11%. By decreasing α, the robustness of

the controller is increased, thanks to a reduction in the number of stoppages. An

increase in the prediction horizon also enhances the degree of robustness. A larger

prediction horizon usually results in a slightly slower, balanced response and robust

performance.

Table 5.1: A comparison between the average production times (tf (N)/N)
and number of stoppages when the cycle time is constant and di�erent settings

are applied to the controllers.
Scenario Prod. time

[min]
# of stop-
pages

Constant cycle time, u = 348 348.6 0
One-step-ahead predictive con-
trol, α = 0.1

312.4 6

Model predictive control, Hp =
5,Hc = 3, α = 0.1

309.4 0

Model predictive control, Hp =
2,Hc = 1, α = 0.1

309.2 0

One-step-ahead predictive con-
trol, α = 0.05

309.9 2

Model predictive control, Hp =
5,Hc = 3, α = 0.05

309.8 0

Model predictive control, Hp =
2,Hc = 1, α = 0.05

309.5 0
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5.5.2 Dynamic cycle time setting at a wire-harness produc-

tion line

To support the reproducible development of production �ow analysis and optim-

ization algorithms, an open-source benchmark problem of a modular wire-harness

production line was developed [207, 251]. The core of the system is a paced con-

veyor. Based on the data published in [171], the number of product types was

Np = 64, which was de�ned as the combination of Nm = 7 modules: base mod-

ule m1, left- or right-hand drive m2, normal/hybrid m3, halogen/LED lights m4,

petrol/diesel engine m5, 4 doors/5 doors m6 and manual or automatic gearbox

m7.

The conveyor consisted of Nw = 10 workstations (tables). For every table (work-

station) one operator was assigned, No = 10. The activity time of each workstation

is illustrated in Fig. 5.8. Further details concerning the applied example can be

seen in the appendix and in [207, 251].
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Figure 5.8: Station times with regard to the production of di�erent types of
modular products calculated based on the parameters given in the Appendix.
The lines with di�erent colours represent di�erent product types. A signi�cant
di�erence can be observed in the workload of the operators in terms of the

production of simple (basic) and more complex products.
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The maximum delay time and working ahead-of-schedule times were both de�ned

as ccrit = 400 and cah = 400. As is illustrated by the results illustrate in Table

5.2, the control of the cycle time improves the productivity of the production line

by 20% which is more signi�cant than the improvement in the previous demon-

strative example. The performances of the controllers were evaluated based on

the tf (N)/N average production times and the number of stoppages that are cal-

culated based on the logic incorporated in eq. 5.13. The e�ects of the parameters

are identical to those experienced previously. The decrease in α increases the

robustness of the controller, thanks to the decrease in the number of stoppages.

The increase in the prediction horizon also leads to an increase in the robustness.

A larger prediction horizon usually results in a slightly slower, balanced response

and robust performance, however, in this case, the larger control horizon enhances

the performance as the length of the production line increases, so the dynamical

behaviour of the accumulation of delays is of a higher order. These results are

nicely represented in Fig. 5.10 and numerically described in Table 5.2.

Table 5.2: Comparison between the average production times (tf (N)/N) and
number of stoppages when the cycle time was constant and di�erent settings
applied to the controllers when the cycle time of the wire-harness production

conveyor was controlled.
Scenario Prod. time

[min]
# of stop-
pages

Constant cycle time, u = 1110 1110.6 0
One-step-ahead predictive con-
trol, α = 0.1

928.6 6

Model predictive control, Hp =
5,Hc = 3, α = 0.1

916.4 0

Model predictive control, Hp =
2,Hc = 1, α = 0.1

917.5 0

One-step-ahead predictive con-
trol, α = 0.05

920.3 3

Model predictive control, Hp =
5,Hc = 3, α = 0.05

916.5 0

Model predictive control, Hp =
2,Hc = 1, α = 0.05

917.5 0



Chapter 5. Fuzzy activity time-based model predictive control 87

Figure 5.9: Systematic analysis of the e�ects of the Hp, Hc and α parameter
values. The heatmaps are based on 100 simulations. The heatmaps on the
left show the average production times in minutes, while the ones on the right
present the average number of stoppages. The heatmaps at the top and bottom

are calculated at α = 0.1 and α = 0.05, respectively.

The detailed e�ects of the Hp, Hc, and α parameters are studied based on the

systematic analysis of 100 independent simulations of di�erent control tunings.

The heatmaps in Figure 5.9 show the average production times in minutes (left)

and the average number of stoppages (right). As the results show, the increase

of Hp prediction horizon and the α regulation parameters make the performance

more robust and sluggish, while the increase of the Hc increases the �exibility

of the optimisation that makes the controller more aggressive. As Hc should be

smaller than Hp, the combination of these e�ects results that there is an optimal

parameter set at Hp = 5, Hc = 3, and α = 0.05.

In order to prove the scalability of the developed algorithm, a performance analysis

was also performed. In this study, the calculation times in the case of three

production lines with a di�erent number of workstations were compared. As Figure

5.11 shows, although the number of workstations linearly increases the size of the

matrices that has to be inverted, the computational demand at this step is so

marginal that the calculation times are not signi�cantly a�ected in a practical

range of the parameters.
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Figure 5.10: Production of N = 500 products in batches by applying model
predictive control with regard to the cycle time of the wire-harness production
line, Hp = 5, Hc = 3, α = 0.1. Control of the cycle time maximizes productivity,
so performance is enhanced by 20 % in this complex problem compared when
the cycle time was constant. The bottom plot shows the time delay (td(k)) at

every workstation where the colors represent the operators.
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Figure 5.11: The scalability of the developed algorithm. The avarage calcu-
lation times/cycle in the case of three production lines with di�erent number
of workstations. The computational demand of the controller is so marginal
that the calculation times are not signi�cantly a�ected by the complexity of the

production line in a practical range of the parameters.
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5.6 Conclusion of fuzzy activity time-based model

predictive control of open-station assembly lines

The balancing and sequencing of manual mixed-model assembly lines face several

challenges due to the complexity of production and the unpredictable nature of hu-

man activities. Open-station production is widely used in manufacturing processes

as it provides a �exible working environment for the operators because they can

work ahead of schedule or try to reduce any backlogs. This �exibility can be ap-

plied to increase productivity by sequencing the products. In the present Chapter,

another approach was applied which does not dismiss the demand-oriented se-

quence of the production but tries to maximise the bene�ts of a well-sequenced

production plan and mitigate the di�culties of balancing production lines with

multiple products by optimizing the cycle time of the conveyor.

The key idea was to design a model predictive control algorithm to calculate the

optimal cycle time and de�ne constraints that minimize the cycle time by prevent-

ing delay times from accumulating, any stoppages that result and the subsequent

loss of production capacity.

However, in order to e�ectively calculate and predict the activity times, a reliable

model is required as the activity times are uncertain and follow a unique distri-

bution over time. This problem was handled by the application of LR fuzzy sets,

thus, the controller could be applied by using a prede�ned α-cut, which resulted

in a new fuzzy model predictive controller scheme.

To be transparent and didactic, the applicability of the proposed method was

demonstrated by a simple example. Moreover, the simulator of an industrial wire-

harness manufacturing process was proposed to demonstrate the applicability of

the control scheme in a more complex environment. The problem is completely

industry motivated, however, only the benchmark simulator was published due to

con�dentiality.

The e�ectiveness of production was signi�cantly enhanced by applying the de�ned

control scheme, moreover, the e�ect of the parameters of the controller were invest-

igated and recommendations for their �ne-tuning made. Robustness was increased

by decreasing the α-cut and increasing the prediction horizon. Therefore, these

parameters help to prevent the conveyor from being stopped due to the accumu-

lation of delays.
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Thanks to the newest IIoT technologies supported constantly improving measure-

ments, the activity times can be monitored more and more accurately enabling

process engineers to construct models of optimal complexity that support the con-

trol of production with the required degree of precision and accuracy. Thanks to

this development the results can be easily generalised and widely utilised, e.g.,

the presented model-based controller can be implemented in the real-time optim-

isation of supply chains, and the proposed fuzzy activity-time models are easily

applicable in the scheduling of uncertain business and production processes, which

will form the basis of our future research.
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Conclusion

My thesis solved four main problems of �exible manufacturing systems (Figure

6.1), where the blue boxes are represented the developed and proposed solutions

for the identi�ed problem in the orange boxes. To understand the problem of

the operator at the shop �oor, I made an overview of Operator 4.0 concept in

Chapter 2. I proved the IIoT based solutions could support the operator in the

4th industrial revolution, and the smart operator handles the challenges of �ex-

ible manufacturing with the newest IIoT based technologies. As I proved in the

introduction, the main challenge in operator support is the stochastic nature hand-

ling. I developed a soft-sensor based real-time performance monitoring algorithms

(Chapter 3) to identify the stochastic assembly times in case of modular produc-

tion thanks to the information integration of BoM and MES. The modular and JIT

production is a crucial element of �exible manufacturing, where the importance of

changeovers are increased. I developed a targeting model-based survival analysis

helps the operator training and process improvement in the case of changeovers.

The root cause analysis based anomaly detection shows the losses of the actual

changeover (Chapter 4). Finally, based on the monitored indicators, the developed

model predictive control is capable of an optimum assembly line control in real-

time to handle the mixed-model assembly line optimal cycle time problem. Thanks

for the dynamic cycle time control the e�ciency optimization is proved in case of

mixed production (Chapter 5).
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Figure 6.1: I developed a data-based solution to solve the problems of �exible
manufacturing. I made an overview of Operator 4.0 concept, where the smart
operator handles the challenges of �exible. I identi�ed the stochastic assembly
times with the developed soft-sensor based real-time performance monitoring
algorithms. The proposed targeting model-based survival analysis helps the op-
erator training and process improvement. Based on the fully monitoring system
of production, I proposed a model predictive control based conveyor control

system.

The applicability of the proposed methodologies is demonstrated on a well-

documented benchmark problem of a wire harness manufacturing processes. The

activity time monitoring and conveyor control are demonstrated based on a wire-

harness manufacturing process with a paced conveyor. However, the proposed

algorithm can handle continuous conveyors as well, while the changeover improve-

ments are proved on an anonymized manufacturing example related to the setup

of crimping and wire cutting machines. Both three solutions can be used in widely

manufacturing problems, thanks to the generalized algorithms.
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The new scienti�c results

1. I developed a model-based performance monitoring system for

activity-time monitoring in production lines

Industry 4.0-based human-in-the-loop cyber-physical production systems are

transforming the industrial workforce to accommodate the ever-increasing

variability of production. Real-time operator support and performance mon-

itoring require accurate information on the activities of operators. The prob-

lem with tracing hundreds of activity times is critical due to the enormous

variability and complexity of products. A software-sensor-based activity-

time and performance measurement system are proposed to handle this prob-

lem. Fixture sensors and an IPS were designed and this multi-sensor data

merged with product-relevant information to ensure a real-time connection

between operator performance and varying product complexity. The presen-

ted sensor fusion algorithm combines all sensory and production data such

that the estimates of the activity times have less uncertainty than would be

possible when these sources were used individually. The estimation of the

activity times is based on a linear-in-parameters model. The linear structure

of the developed production-monitoring model is adequate as the time con-

sumption of the activities linearly depend on how many primary activities

should be performed and what is the number of the built-in components.

The number of parameters of activity time estimation models is comparable

to the number the number of measurements, the identi�ability of the para-

meters of the model has to be carefully analyzed. For this purpose, I studied

the Fisher information/covariance matrix of the estimation problem. A pro-

posed model-based performance monitoring system track to the recursively

estimated parameters of the activity-time estimation model. The fully repro-

ducible and realistic simulation study con�rms that the indoor positioning

system-based integration of primary sensor signals and product-relevant in-

formation can be e�ciently utilized in terms of the constrained recursive

estimation of the operator activity. [207, 251, 227]
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2. I developed a changeover time monitoring system based on survival

analysis

The losses associated with changeovers are getting more signi�cant in man-

ufacturing due to the high variance of products and requirements for just

in time production. I introduced a method for the reduction of these losses

based on data-driven root cause analysis and performance management. The

developed model takes into account the stochastic nature of complex pro-

cesses and the work of operators. Based on the inverse of the cumulative

distribution function of the activity times, a dynamic targeting model can

be developed. The model can be tuned to express the expectations of the

process engineers, and the calculated performances can be aggregated to

evaluate operator and machine e�ciencies. The method is based on models

that estimate the product- and operator- dependent changeover times by

survival analysis. The root causes of the losses are identi�ed by signi�cance

tests the utilized Cox regression models. The resulted models can be used

to design a performance management system that takes into account the

stochastic nature of the work of the operators. [208]

The presented application example highlights how the model assumptions

can be validated and what kind of information can be extracted based on

the analysis of the model.

3. I developed a model-predictive control for assembly conveyor based

on fuzzy-activity times

The sequencing and line balancing of manual mixed-model assembly lines

are challenging tasks due to the complexity and uncertainty of operator

activities. The control of cycle time and the sequencing of production can

mitigate the losses due to non-optimal line balancing in the case of open-

station production where the operators can work ahead of schedule and try to

reduce their backlog. The key idea was to design a model predictive control

algorithm to calculate the optimal cycle time and de�ne constraints that

minimize the cycle time by preventing delay times from accumulating, any

stoppages that result and the subsequent loss of production capacity. I prove

a cycle time control algorithm that can improve the e�ciency of assembly

lines in such situations based on a specially mixed sequencing strategy. A

fuzzy-model-based solution has been developed to handle the uncertainty of

activity times. As the production process is modular, the fuzzy sets represent
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the uncertainty of the elementary activity times related to the processing of

the modules. The optimistic and pessimistic estimates of the completion

of activity times extracted from the fuzzy model are incorporated into a

model predictive control algorithm to ensure the constrained optimization

of the cycle time. The results con�rm that the application of the proposed

algorithm is widely applicable in cases where a production line of a supply

chain is not well balanced and the activity times are uncertain [208, 209, 207].



Chapter 7

Appendix - Details of the

wire-harness production technology

To support the reproducible development of production �ow analysis and optim-

ization algorithms, an open source benchmark problem of a modular wire-harness

production system was developed. The core of the system is a paced conveyor.

Based on data published in [171] and [172], Np was based on 64 products and

de�ned Nm as a combination of 7 modules: m1 base module, m2 as left- or right-

hand drive, m3 normal/hybrid, m4 halogen/LED lights, m5 petrol/diesel engine,

m6 4 doors/5 doors and m7 manual or automatic gearbox. Na was de�ned 654

activities/tasks categorized into Nt which consisted of 16 activity types with well-

modeled activity times (see Table 7.1). In these activities Nc was equal to 64

di�erent built-in part families (component types) (among these Ct = 180 termin-

als, Cb = 63 bandages, Cc = 25 clips, and Cw = 90 wires). The conveyor Nw

consisted of 10 workstations (tables). For every table (workstation) one operator

is assigned, No = 10. The required Ns was also de�ned as 6 skills of the operators,

namely: s1 - laying cable, s2 - spot-tying, s3 - terminal attaching, s4 - connector

installing, s5 - clip installing, and s6 - visual testing. Nz was also de�ned as 6

zones for the workstations to study the distribution of the �xtures on the tables.

The related Z matrix is de�ned based on the layout of the table and shows the

relationship between the activities and zones of the workstation, which facilitates

a detailed analysis of the workload in the workstations. The related dataset is

freely and fully available on the www.abonyilab.com website.
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Table 7.1: Types of activities and the related activity times [172]. The activity
times are calculated based on �xed and proportional values, e.g., when an op-
erator is laying four wires over one foot, according to the t4 model, the activity

time will be 1× 6.9s+ 4× 4.2 = 23.7s

.

ID Activity Remark Unit Time
[s]

t1 Point-to-point wiring on
chassis

Direct wiring Number of wires 4.6

t2 Laying in U-channel 4.4

t3 Laying �at cable 7.7

t4 Laying wire(s) onto har-
ness jig

Laying �at cable Base time 6.9

Per wire 4.2

t5 Laying cable connector
(one end) onto harness
jig

To the same
breakout

Base time 7.4

Per wire 2.3

t6 Spot-tying onto cable
and cutting it with a
pair of scissors

16.6

t7 Lacing activity Base time 1.5
Per additional
stitch

3.6

t8 Taping activity Base time 1.8
Per stitch 5.0

t9 Inserting into tube or
sleeve

Base time 3.0

Per inch 2.4

t10 Attachment of wire ter-
minal

Terminal-block
fastening (fork
lug)

22.8

t11 Screw fastening of ter-
minal

17.1

t12 Screw-and-nut fastening
of terminal

24.7

t13 Circular connector Installation only 11.3

t14 Rectangular connector Latch or snap-on 24.0

t15 Clip installation 8.0

t16 Visual testing 120.0



Acronyms

General abbreviation

AMS: Agile Manufacturing System

AoA: Angle of Arrival

AR: Augmented Reality

BLE: Bluetooth Low Energy

BoM: Bill of Materials

BPMN: Business Process Model and Notation

BPR: Business Process Reengineering

CNC: Computer Numerical Control

CoBot: Collaborative Robot

CPS: Cyber-Physical System

CPPS: Cyber-Physical Production System

CS: Computer Science

CSA: Cross Section Area

DIND: Distributed Intelligent Network Device

E-SNS: Enterprise Social Networking Service

FDI: Fault Detection and Isolation

FMS: Flexible Manufacturing System

H-CPS: Human-Cyber-Physical System

H-CPPS: Human-Cyber-Physical Production System

HMI: Human Machine Interface

HR: Human Resources

IoT: Internet of Things
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IIoT: Industrial Internet of Things

IPA: Intelligent Personal Assistant

IPS: Indoor Positioning System

iSpace: Intelligent Space

KPI: Key Performance Indicator

MBI: Model-Based Instructions

MES: Manufacturing Execution System

MSDF: Multi-sensor data fusion

NN: Neural Network

OEE: Overall Equipment E�ectiveness

OP: observed vs. predicted

PHA: Proportional Hazard Assumption

PwC: PricewaterhouseCoopers

RFID: Radio Frequency IDenti�cation

RSS: Received Signal Strength

RUL: Remaining Useful Life

SFC: Shop Floor Control

SFCS: Shop Floor Control System

SMED: Single Minute Exchange of Die

SS: Signal Strength

ToA: Time of Arrival

UWB: Ultra-wideband

VR: Virtual Reality

Software sensor for activity-time monitoring

p1, . . . , pNp : products

m1, . . . ,mNm : modules

a1, . . . , aNa : activities

c1, . . . , cNc : components

w1, . . . , wNw : workstations

t1, . . . , tNt : activity types

A: (Np ×Na) activities required to produce a product
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W: (Na ×Nw) workstation assigned for an activity

B: (Np ×Nc) component/part required to produce a product

P: (Np ×Np) module/part family required to produce a product

C: (Na ×Nc) component/part built in or processed in an activity

M: (Na ×Nm) activity required to produce a module

T: (Na ×Nt) category of the activity

Sw: (Na × lw) activity involved over a measured time interval

k: index of the production cycle (discrete time)

ŷwi (k): estimation of the individual activity times for work station w

in the kth production cycle

xw(k): 'e�ciency' of the operator, the vector of the estimated

local activity times

x(k): workstation-independent version of xw(k)

s(k): sequence of the timestamps recorded by the active �xture sensors

zw(k): vector of the sum of the activity times that are situated between

the two sensors

α: index of the �rst sensor of a �xture-sensor pair

β: index of the second sensor of a �xture-sensor pair

qa: the set of activities required to produce a speci�c product

ew: serially uncorrelated white-noise vector of observational errors

Rw(k): covariance matrix of observational errors

H(k): time-variable regressors representing the number of activities and

built in components

e(k): the set of the serially uncorrelated white-noise vector of

observational errors of the workstations

x̂(N): estimation error

Q: positive-de�nite weighting matrix de�ned as Q = (R)−1

P∗: inverse of the parameter covariance matrix

A∗(k): State-transition matrix in the Kalman �lter represented

estimation problem

K(k): Gain of the Kalman �lter/recursive estimator
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Lw,cw: Representation of the linear inequality constraints

Aw
e ,b

w
e : Representation of the linear equality constraints

µj: vector of Lagrange multiplier associated with equality

λj: vector of Lagrange multiplier associated with inequality constraints

Reducing machine setup and changeover times

by survival analysis

T : Speci�c time limit to survival analysis

S(t): the survival analysis function

t: independent variable as time

nj: number of activities

dj: number of completed activities at that j time

hi(t,x): distribution function derived from the Cox regression

hi0(t): baseline hazard function

m: number of switching predictors

n: number of examined activities

b: the Cox regression parameters

t̂i(x, p): the nominal time, if the p is equal to 50%

ti(x): the measured time-based on the machine log

x: feature set

xk: subset of x

Li(p): the loss model

Gi(p): the gain model

Fuzzy activity time-based model predictive control

w = 1, . . . , Nw: index of the workstations

p = 1, . . . , Np: types of the products

k = 1, . . . , N : index of the cycle in the cyclic production of the assembly line

π(k) ∈ {1, . . . , Np}: sequence of produced products (in the kth cycle)

m = 1, . . . , Nm: types of modules

P: (Nm ×Np) binary matrix representing the types of modules with

regard to the type of product

k + j|k: represents the predicted value from the beginning of cycle k to
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the beginning of cycle k + j

ta: estimated assembly time of an activity

tc: sum of the cycle times

tf : �nishing time

td: time delay compared to the cycle time

u: actual cycle time

zf : (1×Nm) vector-based representation of the product type that is at the

start of the production line (equal to pπ(k−w) in cycle k)

xf : (1×Nw) vector-based representation that de�nes the state of

the workstation

Af : (NmNw ×NmNw) matrix de�ning the �ow of the assembly line

Bf : (NmNw ×Nm) matrix de�ning how the next product enters

the assembly line

Cf : (NwNm ×Nw) matrix de�ning the elementary activity times

Θ: (Nw ×Nm) matrix representing the building block elementary

activity times

Ai: required time of the i-th activity

µAi
(t): fuzzy membership function

I: interval of LR model

a, b, c, d: constant interval variables

L(x), R(x): non-increasing functions

α, α ∈ [0, 1]: value of α-cut

Hp: prediction horizon

Hc: control horizon

R: weighting matrix of the control actions

ccrit: critical delay time

cah: threshold of the amount of how working ahead of schedule



Bibliography

[1] Michael Rüÿmann, Markus Lorenz, Philipp Gerbert, Manuela Waldner, Jan

Justus, Pascal Engel, and Michael Harnisch. Industry 4.0: The Future of

Productivity and Growth in Manufacturing Industries. Boston Consulting

Group, 9:1�14, 2015.

[2] Shiyong Wang, Jiafu Wan, Di Li, and Chunhua Zhang. Implementing smart

factory of industrie 4.0: An outlook. International Journal of Distributed

Sensor Networks, 12(1):1�12, 2016.

[3] Ing Reiner Anderl. Industrie 4 . 0 - Advanced Engineering of Smart Products

and Smart Production. International Seminar on High Technology, 1:1�14,

2014.

[4] Li Da Xu, Eric L Xu, and Ling Li. Industry 4.0: state of the art and

future trends. International Journal of Production Research, 56(8):2941�

2962, 2018.

[5] Kuijper Martin, East Asia, et al. Innovative competition with chinese char-

acteristics. the case of'made in china 2025'in relation to the german industry.

B.S. thesis, 2018.

[6] Tian Shubin and Pan Zhi. �made in china 2025� and �industrie 4.0��in

motion together. In The Internet of Things, pages 87�113. Springer, 2018.

[7] Shiyong Wang, Jiafu Wan, Daqiang Zhang, Di Li, and Chunhua Zhang.

Towards smart factory for industry 4.0: a self-organized multi-agent system

with big data based feedback and coordination. Computer Networks, 101:

158�168, 2016. doi: 10.1016/j.comnet.2015.12.017.

104



Acronyms 105

[8] X. Chai, B. Hou, P. Zou, J. Zeng, and J. Zhou. Indics: An industrial

internet platform. In IEEE International Conference on Cloud and Big Data

Computing, Guangzhou, China, accepted, volume 1, pages 1�1. IEEE, 2018.

[9] Ma Huimin, Xiang Wu, Li Yan, Han Huang, Han Wu, Jie Xiong, and Jinlong

Zhang. Strategic plan of �made in china 2025� and its implementation. In

Analyzing the Impacts of Industry 4.0 in Modern Business Environments,

volume 23, pages 1�23. IGI Global, 2018.

[10] Simon Ford and Mélanie Despeisse. Additive manufacturing and sustain-

ability: an exploratory study of the advantages and challenges. Journal of

Cleaner Production, 137:1573�1587, 2016. ISSN 0959-6526. doi: https://doi.

org/10.1016/j.jclepro.2016.04.150. URL http://www.sciencedirect.com/

science/article/pii/S0959652616304395.

[11] Gisela Lanza, Peter Nyhuis, Sarah Majid Ansari, Thorben Kuprat, and

Christoph Liebrecht. Befähigungs-und einführungsstrategien für industrie

4.0. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 111(1-2):76�79, 2016.

[12] Moritz Schroter Karl Lichtblau, Edgar Schmitz. Impuls - industrie 4.0-

readiness. Impuls-Stiftung des VDMA, Aachen-Köln, (77):1�77, 2015.

[13] Andreas Schumacher, Selim Erol, and Wilfried Sihn. A maturity model for

assessing industry 4.0 readiness and maturity of manufacturing enterprises.

Procedia CIRP, 52:161�166, 2016.

[14] John Hawksworth, Richard Berriman, and Saloni Goel. Will robots really

steal our jobs?: an international analysis of the potential long term impact of

automation. http://pwc.blogs.com/economics_in_business/2018/02/

will-robots-really-steal-our-jobs.html, 2018. [Online; accessed 20-

July-2018].

[15] Carl Benedikt Frey and Michael Osborne. The future of employment: How

susceptible are jobs to computerisation. https://www.oxfordmartin.ox.

ac.uk/publications/view/1314, 2013. [Online; accessed 20-July-2018].

http://www.sciencedirect.com/science/article/pii/S0959652616304395
http://www.sciencedirect.com/science/article/pii/S0959652616304395
http://pwc.blogs.com/economics_in_business/2018/02/will-robots-really-steal-our-jobs.html
http://pwc.blogs.com/economics_in_business/2018/02/will-robots-really-steal-our-jobs.html
https://www.oxfordmartin.ox.ac.uk/publications/view/1314
https://www.oxfordmartin.ox.ac.uk/publications/view/1314


Acronyms 106

[16] PricewaterhouseCooper. Workforce of the future: The compet-

ing forces shaping 2030. https://www.pwc.com/gx/en/services/

people-organisation/publications/workforce-of-the-future.html,

2017. [Online; accessed 20-July-2018].

[17] Yongxin Liao, Fernando Deschamps, Eduardo de Freitas Rocha Loures, and

Luiz Felipe Pierin Ramos. Past, present and future of industry 4.0-a system-

atic literature review and research agenda proposal. International journal of

production research, 55(12):3609�3629, 2017.

[18] László Monostori. Cyber-physical production systems: Roots, expectations

and r&d challenges. Procedia CIRP, 17:9�13, 2014.

[19] Keliang Zhou, Taigang Liu, and Lifeng Zhou. Industry 4.0: Towards future

industrial opportunities and challenges. In 2015 12th International Confer-

ence on Fuzzy Systems and Knowledge Discovery (FSKD), pages 2147�2152.

IEEE, 2015. doi: 10.1109/FSKD.2015.7382284.

[20] Raja Parasuraman, Thomas B. Sheridan, and Christopher D. Wickens. A

model of types and levels of human interaction with automation. IEEE

Transactions on Systems, Man and Cybernetics, 30:286�297, 2000.

[21] Sirajum Munir, John A Stankovic, Chieh-Jan Mike Liang, and Shan Lin. Cy-

ber physical system challenges for human-in-the-loop control. In Presented as

part of the 8th International Workshop on Feedback Computing, volume 4,

pages 1�4. USENIX, 2013. URL https://www.usenix.org/conference/

feedbackcomputing13/workshop-program/presentation/Munir.

[22] Peter A Hancock, Richard J Jagacinski, Raja Parasuraman, Christopher D

Wickens, Glenn F Wilson, and David B Kaber. Human-automation interac-

tion research: past, present, and future. Ergonomics in Design, 21(2):9�14,

2013.

[23] Eija Kaasinen, Marja Liinasuo, Franziska Schmalfuÿ, Hanna Koskinen,

Susanna Aromaa, Päivi Heikkilä, Anita Honka, Sebastian Mach, and Timo

https://www.pwc.com/gx/en/services/people-organisation/publications/workforce-of-the-future.html
https://www.pwc.com/gx/en/services/people-organisation/publications/workforce-of-the-future.html
https://www.usenix.org/conference/feedbackcomputing13/workshop-program/presentation/Munir
https://www.usenix.org/conference/feedbackcomputing13/workshop-program/presentation/Munir


Acronyms 107

Malm. A worker-centric design and evaluation framework for operator 4.0

solutions that support work well-being. In IFIP Working Conference on

Human Work Interaction Design, pages 263�282. Springer, 2018.

[24] Stephan Weyer, Mathias Schmitt, Moritz Ohmer, and Dominic Gorecky. To-

wards industry 4.0-standardization as the crucial challenge for highly mod-

ular, multi-vendor production systems. Ifac-Papersonline, 48(3):579�584,

2015.

[25] Frits K. Pil and Matthias Holweg. Linking product variety to order-

ful�llment strategies. Interfaces, 34(5):394�403, 2004. ISSN 00922102. doi:

10.1287/inte.1040.0092.

[26] Pablo Guzmán Ferradás and Konstantinos Salonitis. Improving changeover

time: a tailored smed approach for welding cells. Procedia CIRP, 7:598�603,

2013.

[27] Filipe Ferreira, José Faria, Américo Azevedo, and Ana Luísa Marques. In-

dustry 4.0 as enabler for e�ective manufacturing virtual enterprises. InWork-

ing Conference on Virtual Enterprises, pages 274�285. Springer, 2016.

[28] Markus Lorenz, Michael Ruessmann, Rainer Strack, Knud Lasse Lueth, and

Moritz Bolle. Man and machine in industry 4.0: How will technology trans-

form the industrial workforce through 2025, 2015. [Online; accessed 06-July-

2018].

[29] David Romero, Peter Bernus, Ovidiu Noran, Johan Stahre, and Åsa Fast-

Berglund. The operator 4.0: Human cyber-physical systems & adaptive

automation towards human-automation symbiosis work systems. In Ad-

vances in Production Management Systems. Initiatives for a Sustainable

World, volume 10, pages 677�686. Springer, 2016.

[30] David Romero, Johan Stahre, Thorsten Wuest, Ovidiu Noran, Peter Bernus,

Åsa Fast-Berglund, and Dominic Gorecky. Towards an operator 4.0 typology:

A human-centric perspective on the fourth industrial revolution technologies.



Acronyms 108

In International conference on computers and industrial engineering (CIE46)

proceedings, volume 11, pages 1�11, 10 2016.

[31] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey on

human�robot collaboration in industrial settings: Safety, intuitive interfaces

and applications. Mechatronics, 19:1�19, 2018.

[32] Philip Russom. Big data analytics. TDWI Best Practices Report, Fourth

Quarter, 19(4):1�34, 2011.

[33] Hsinchun Chen, Roger HL Chiang, and Veda C Storey. Business intelligence

and analytics: from big data to big impact. MIS Quarterly, 24:1165�1188,

2012.

[34] Te-Lien Chou and Lih-Juan ChanLin. Augmented reality smartphone envir-

onment orientation application: A case study of the fu-jen university mobile

campus touring system. Procedia-Social and Behavioral Sciences, 46:410�

416, 2012.

[35] Katariina Penttila, Nina Pere, M Sioni, Lauri Sydanheimo, and Markku

Kivikoski. Use and interface de�nition of mobile r�d reader integrated in

a smart phone. In Proceedings of the Ninth International Symposium on

Consumer Electronics, 2005. (ISCE 2005), pages 353�358. IEEE, 2005. doi:

10.1109/ISCE.2005.1502402.

[36] Jim Davis, Thomas Edgar, James Porter, John Bernaden, and Michael Sarli.

Smart manufacturing, manufacturing intelligence and demand-dynamic per-

formance. Computers & Chemical Engineering, 47:145�156, 2012.

[37] Jianlong Zhou, Ivan Lee, Bruce Thomas, Roland Menassa, Anthony Farrant,

and Andrew Sansome. In-situ support for automotive manufacturing using

spatial augmented reality. International Journal of Virtual Reality, 11:33�41,

2012.



Acronyms 109

[38] Alex Olwal, Jonny Gustafsson, and Christo�er Lindfors. Spatial augmen-

ted reality on industrial cnc-machines. In The Engineering Reality of Vir-

tual Reality 2008, volume 9, pages 1�9. International Society for Optics and

Photonics, 2008.

[39] Andrew YC Nee, SK Ong, George Chryssolouris, and Dimitris Mourtzis.

Augmented reality applications in design and manufacturing. CIRP Annals

- Manufacturing Technology, 61(2):657�679, 2012.

[40] Baxter & Sawyer. Rethink robotics. http://www.rethinkrobotics.com/

sawyer-intera-3/, 2015.

[41] Karen Myers, Pauline Berry, Jim Blythe, Ken Conley, Melinda Gervasio, De-

borah L McGuinness, David Morley, Avi Pfe�er, Martha Pollack, and Milind

Tambe. An intelligent personal assistant for task and time management. AI

Magazine, 28(2):1�27, 2007.

[42] Thorsten Wuest, Karl Hribernik, and Klaus-Dieter Thoben. Can a product

have a facebook? a new perspective on product avatars in product lifecycle

management. In Product Lifecycle Management. Towards Knowledge-Rich

Enterprises, pages 400�410. Springer, 2012.

[43] Nahema Sylla, Vincent Bonnet, Frédéric Colledani, and Philippe Fraisse.

Ergonomic contribution of able exoskeleton in automotive industry. Inter-

national Journal of Industrial Ergonomics, 7(44):475�481, 2014.

[44] Tariq S Mujber, Tamas Szecsi, and Mohammed SJ Hashmi. Virtual real-

ity applications in manufacturing process simulation. Journal of Mater-

ials Processing Technology, 155-156:1834�1838, 2004. URL http://www.

sciencedirect.com/science/article/pii/S0924013604005618. Pro-

ceedings of the International Conference on Advances in Materials and Pro-

cessing Technologies: Part 2.

[45] Benjamin J Darter and Jason M Wilken. Gait training with virtual reality-

based real-time feedback: Improving gait performance following trans-

femoral amputation. Physical Therapy, 91(9):1385�1394, 2011.

http://www.rethinkrobotics.com/sawyer-intera-3/
http://www.rethinkrobotics.com/sawyer-intera-3/
http://www.sciencedirect.com/science/article/pii/S0924013604005618
http://www.sciencedirect.com/science/article/pii/S0924013604005618


Acronyms 110

[46] László Horváth and Imre J Rudas. Role of information content in multipur-

pose virtual engineering space. In 2017 IEEE 15th International Symposium

on Applied Machine Intelligence and Informatics (SAMI), pages 99�104.

IEEE, 2017. doi: 10.1109/SAMI.2017.7880283.

[47] Robson Marinhoda Silva, Israel F. Benítez-Pina, Mauricio F. Blos, Diolino

J. Santos Filho, and Paulo E. Miyagi. Modeling of recon�gurable distrib-

uted manufacturing control systems. IFAC-PapersOnLine, 48(3):1284�1289,

2015. URL https://doi.org/10.1016/j.ifacol.2015.06.262.

[48] Syed Imran Sha�q, Cesar Sanin, Edward Szczerbicki, and Carlos Toro. Vir-

tual engineering factory: Creating experience base for industry 4.0. Cyber-

netics and Systems, 47(1-2):32�47, 2016. URL https://doi.org/10.1080/

01969722.2016.1128762.

[49] Morteza Ghobakhloo. The future of manufacturing industry: a strategic

roadmap toward industry 4.0. Journal of Manufacturing Technology Man-

agement, 29(6):910�936, 2018. doi: 10.1108/JMTM-02-2018-0057.

[50] Jorge Posada, Carlos Toro, Inigo Barandiaran, David Oyarzun, Didier

Stricker, Ra�aele de Amicis, Eduardo B. Pinto, Peter Eisert, Jürgen Döllner,

and Ivan Vallarino. Visual computing as a key enabling technology for indus-

trie 4.0 and industrial internet. IEEE Computer Graphics and Applications,

35(2):26�40, Mar 2015. ISSN 0272-1716. doi: 10.1109/MCG.2015.45.

[51] Alasdair Gilchrist. Industry 4.0: the industrial internet of things. Springer,

2016.

[52] Morteza Ghobakhloo and Adel Azar. Business excellence via advanced

manufacturing technology and lean-agile manufacturing. Journal of Man-

ufacturing Technology Management, 29(1):2�24, 2018. doi: {10.1108/

JMTM-03-2017-0049}.

[53] David Pérez Perales, F Alarcón, and Andrés Boza. Industry 4.0: A Classi-

�cation Scheme, pages 343�350. 01 2018. ISBN 978-3-319-58408-9.

https://doi.org/10.1016/j.ifacol.2015.06.262
https://doi.org/10.1080/01969722.2016.1128762
https://doi.org/10.1080/01969722.2016.1128762


Acronyms 111

[54] Pingyu Jiang, Kai Ding, and Jiewu Leng. Towards a cyber-physical-social-

connected and service-oriented manufacturing paradigm: Social manufac-

turing. Manufacturing Letters, 7:15�21, 2016. ISSN 2213-8463. doi: https:

//doi.org/10.1016/j.mfglet.2015.12.002. URL http://www.sciencedirect.

com/science/article/pii/S221384631500022X.

[55] MPDV. Industry 4.0: Mes supports decentralization. https://www.mpdv.

com/media/company/company_magazine/NEWS_International_2015.pdf,

2015. [Online; accessed 20-July-2018].

[56] Aitor Moreno, Gorka Velez, Aitor Ardanza, Iñigo Barandiaran, Álvaro Ruíz

de Infante, and Raúl Chopitea. Virtualisation process of a sheet metal

punching machine within the industry 4.0 vision. International Journal

on Interactive Design and Manufacturing (IJIDeM), 11(2):365�373, May

2017. ISSN 1955-2505. doi: 10.1007/s12008-016-0319-2. URL https:

//doi.org/10.1007/s12008-016-0319-2.

[57] W. Dai, V. N. Dubinin, J. H. Christensen, V. Vyatkin, and X. Guan. To-

ward self-manageable and adaptive industrial cyber-physical systems with

knowledge-driven autonomic service management. IEEE Transactions on

Industrial Informatics, 13(2):725�736, April 2017. ISSN 1551-3203.

[58] Göran Adamson, Lihui Wang, and Philip Moore. Feature-based con-

trol and information framework for adaptive and distributed manufactur-

ing in cyber physical systems. Journal of Manufacturing Systems, 43:

305�315, 2017. ISSN 0278-6125. doi: https://doi.org/10.1016/j.jmsy.

2016.12.003. URL http://www.sciencedirect.com/science/article/

pii/S0278612516300905. High Performance Computing and Data Ana-

lytics for Cyber Manufacturing.

[59] X. Jin, W. M. Haddad, and T. Yucelen. An adaptive control architecture

for mitigating sensor and actuator attacks in cyber-physical systems. IEEE

Transactions on Automatic Control, 62(11):6058�6064, Nov 2017. ISSN

0018-9286.

http://www.sciencedirect.com/science/article/pii/S221384631500022X
http://www.sciencedirect.com/science/article/pii/S221384631500022X
https://www.mpdv.com/media/company/company_magazine/NEWS_International_2015.pdf
https://www.mpdv.com/media/company/company_magazine/NEWS_International_2015.pdf
https://doi.org/10.1007/s12008-016-0319-2
https://doi.org/10.1007/s12008-016-0319-2
http://www.sciencedirect.com/science/article/pii/S0278612516300905
http://www.sciencedirect.com/science/article/pii/S0278612516300905


Acronyms 112

[60] Xu Jin, Wassim M Haddad, and Tomohisa Hayakawa. An adaptive control

architecture for cyber-physical system security in the face of sensor and actu-

ator attacks and exogenous stochastic disturbances. Cyber-Physical Systems,

4(1):39�56, 2018.

[61] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems

architecture for industry 4.0-based manufacturing systems. Manufacturing

Letters, 3:18�23, 2015.

[62] Shreyas Suresh Rao and Ashalatha Nayak. Enterprise ontology model for ta-

cit knowledge externalization in socio-technical enterprises. Interdisciplinary

Journal of Information, Knowledge and Management, 12:99�124, 2017.

[63] Michael Polanyi. The tacit dimension. Garden City, 1992.

[64] Elizabeth A. Smith. The role of tacit and explicit knowledge in the

workplace. Journal of Knowledge Management, 5(4):311�321, 2001.

doi: 10.1108/13673270110411733. URL https://doi.org/10.1108/

13673270110411733.

[65] T.L. Johnson, S.R. Fletcher, W. Baker, and R.L. Charles. How and why

we need to capture tacit knowledge in manufacturing: Case studies of visual

inspection. Applied Ergonomics, 74:1�9, 2019. ISSN 0003-6870. doi: https://

doi.org/10.1016/j.apergo.2018.07.016. URL http://www.sciencedirect.

com/science/article/pii/S0003687018302278.

[66] Denham L. Phipps, George H. Meakin, and Paul C.W. Beatty. Extend-

ing hierarchical task analysis to identify cognitive demands andinforma-

tion design requirements. Applied Ergonomics, 42(5):741�748, 2011. ISSN

0003-6870. doi: https://doi.org/10.1016/j.apergo.2010.11.009. URL http:

//www.sciencedirect.com/science/article/pii/S0003687010001961.

[67] J. Everitt, S. Fletcher, and A. Caird-Daley. Task analysis of discrete and

continuous skills: a dual methodology approach to human skills capture

for automation. Theoretical Issues in Ergonomics Science, 16(5):513�532,

https://doi.org/10.1108/13673270110411733
https://doi.org/10.1108/13673270110411733
http://www.sciencedirect.com/science/article/pii/S0003687018302278
http://www.sciencedirect.com/science/article/pii/S0003687018302278
http://www.sciencedirect.com/science/article/pii/S0003687010001961
http://www.sciencedirect.com/science/article/pii/S0003687010001961


Acronyms 113

2015. doi: 10.1080/1463922X.2015.1028508. URL https://doi.org/10.

1080/1463922X.2015.1028508.

[68] W. X. Ng, H. K. Chan, W. K. Teo, and I. Chen. Programming a ro-

bot for conformance grinding of complex shapes by capturing the tacit

knowledge of a skilled operator. IEEE Transactions on Automation Sci-

ence and Engineering, 14(2):1020�1030, April 2017. ISSN 1545-5955. doi:

10.1109/TASE.2015.2474708.

[69] Mite Tomov, Mikolaj Kuzinovski, and Piotr Cichosz. Development of math-

ematical models for surface roughness parameter prediction in turning de-

pending on the process condition. International Journal of Mechanical Sci-

ences, 113:120�132, 2016. ISSN 0020-7403. doi: https://doi.org/10.1016/

j.ijmecsci.2016.04.015. URL http://www.sciencedirect.com/science/

article/pii/S0020740316300364.

[70] W.B. Lee and C.F. Cheung. A dynamic surface topography model for the

prediction of nano-surface generation in ultra-precision machining. Interna-

tional Journal of Mechanical Sciences, 43(4):961�991, 2001. ISSN 0020-

7403. doi: https://doi.org/10.1016/S0020-7403(00)00050-3. URL http:

//www.sciencedirect.com/science/article/pii/S0020740300000503.

[71] Xiaohong Lu, Haixing Zhang, Zhenyuan Jia, Yixuan Feng, and Steven Y.

Liang. Floor surface roughness model considering tool vibration in the pro-

cess of micro-milling. The International Journal of Advanced Manufactur-

ing Technology, 94(9):4415�4425, Feb 2018. ISSN 1433-3015. doi: 10.1007/

s00170-017-1123-2. URL https://doi.org/10.1007/s00170-017-1123-2.

[72] G. Urbikain and L.N. López de Lacalle. Modelling of surface rough-

ness in inclined milling operations with circle-segment end mills. Sim-

ulation Modelling Practice and Theory, 84:161�176, 2018. ISSN 1569-

190X. doi: https://doi.org/10.1016/j.simpat.2018.02.003. URL http:

//www.sciencedirect.com/science/article/pii/S1569190X18300182.

https://doi.org/10.1080/1463922X.2015.1028508
https://doi.org/10.1080/1463922X.2015.1028508
http://www.sciencedirect.com/science/article/pii/S0020740316300364
http://www.sciencedirect.com/science/article/pii/S0020740316300364
http://www.sciencedirect.com/science/article/pii/S0020740300000503
http://www.sciencedirect.com/science/article/pii/S0020740300000503
https://doi.org/10.1007/s00170-017-1123-2
http://www.sciencedirect.com/science/article/pii/S1569190X18300182
http://www.sciencedirect.com/science/article/pii/S1569190X18300182


Acronyms 114

[73] Kim J Vicente*, Randall J Mumaw, and Emilie M Roth. Operator monitor-

ing in a complex dynamic work environment: A qualitative cognitive model

based on �eld observations. Theoretical Issues in Ergonomics Science, 5(5):

359�384, 2004.

[74] Fatma Nasoz, Kaye Alvarez, Christine L Lisetti, and Neal Finkelstein. Emo-

tion recognition from physiological signals using wireless sensors for presence

technologies. Cognition, Technology & Work, 6(1):4�14, 2004.

[75] Prahalad K Rao, Jia Peter Liu, David Roberson, Zhenyu James Kong, and

Christopher Williams. Online real-time quality monitoring in additive man-

ufacturing processes using heterogeneous sensors. Journal of Manufacturing

Science and Engineering, 6(6):1�6, 2015.

[76] H Almagrabi, A Malibari, and J McNaught. A survey of quality prediction

of product reviews. International Journal of Advanced Computer Science

and Applications, 10(11):49�58, 2015.

[77] AK Bejczy. Virtual reality in manufacturing. In Re-engineering for Sustain-

able Industrial Production, volume 13, pages 48�60. Springer, 1997.

[78] Mohd Fairuz Shiratuddin and Abdul Nasir Zulki�i. Virtual reality in man-

ufacturing. In Management Education for the 21st Century, 2001. URL

http://researchrepository.murdoch.edu.au/id/eprint/9840/.

[79] Sándor Kopácsi and Ferenc Sárközy. Virtual reality in manufacturing. http:

//old.sztaki.hu/~kopacsi/vr/vr_main.htm, 2001. [Online; accessed 20-

July-2018].

[80] Ronald T Azuma. A survey of augmented reality. Presence: Teleoperators

& Virtual Environments, 6(4):355�385, 1997.

[81] Thomas P Caudell and David W Mizell. Augmented reality: an applica-

tion of heads-up display technology to manual manufacturing processes. In

Proceedings of the Twenty-Fifth Hawaii International Conference on System

Sciences, volume 2, pages 659�669. IEEE, 1992.

http://researchrepository.murdoch.edu.au/id/eprint/9840/
http://old.sztaki.hu/~kopacsi/vr/vr_main.htm
http://old.sztaki.hu/~kopacsi/vr/vr_main.htm


Acronyms 115

[82] Andrew YC Nee and Soh-Khim Ong. Virtual and augmented reality applic-

ations in manufacturing. IFAC proceedings volumes, 46(9):15�26, 2013.

[83] Eric J Tuegel, Anthony R Ingra�ea, Thomas G Eason, and S Michael Spott-

swood. Reengineering aircraft structural life prediction using a digital twin.

International Journal of Aerospace Engineering, 15:1�15, 2011.

[84] Fei Tao, Jiangfeng Cheng, Qinglin Qi, Meng Zhang, He Zhang, and Fangy-

uan Sui. Digital twin-driven product design, manufacturing and service with

big data. The International Journal of Advanced Manufacturing Technology,

4(9-12):3563�3576, 2018.

[85] Stefan Boschert and Roland Rosen. Digital Twin�The Simulation Aspect,

volume 16, pages 59�74. Springer, 2016.

[86] Zhao Xiaobo and Katsuhisa Ohno. Algorithms for sequencing mixed mod-

els on an assembly line in a JIT production system. Computers Industrial

Engineering, 32(1):47�56, 1997.

[87] Zhao Xiaobo, Katsuhisa Ohno, and Hon-Shiang Lau. A Balancing Problem

for Mixed Model Assembly Lines with a Paced Moving Conveyor. Naval

Research Logistics, 19:446�464, 2004. doi: 10.1002/nav.10116.

[88] Zhao Xiaobo and Katsuhisa Ohno. Properties of a sequencing problem for

a mixed model assembly line with conveyor stoppages. European Journal

of Operational Research, 11:560�570, 2000. ISSN 03772217. doi: 10.1016/

S0377-2217(99)00198-8.

[89] Zhao Xiaobo, Zhaoying Zhou, and Ainishet Asres. Note on Toyota's goal of

sequencing mixed models on an assembly line. Computers and Industrial En-

gineering, 36(1):57�65, 1999. ISSN 03608352. doi: 10.1016/S0360-8352(98)

00113-2.

[90] John C Barrett. A monte carlo simulation of human reproduction. Genus,

22:1�22, 1969.



Acronyms 116

[91] Samik Raychaudhuri. Introduction to monte carlo simulation. In 2008

Winter Simulation Conference, pages 91�100. IEEE, 2008.

[92] Giovanni C Migliaccio, Tao Cheng, Umberto C Gatti, and Jochen Teizer.

Data fusion of real-time location sensing (rtls) and physiological status mon-

itoring (psm) for ergonomics analysis of construction workers. In The 19th

Triennial CIB World Building Congress, Brisbane, Queensland, Australia,

volume 12, pages 1�12, 2013.

[93] Emil M Petriu, Nicolas D Georganas, Dorina C Petriu, Dimitrios Makrakis,

and Voicu Z Groza. Sensor-based information appliances. IEEE Instrument-

ation and Measurement Magazine, 3(4):31�35, 2000.

[94] Xiang T. R. Kong, Hao Luo, George Q. Huang, and Xuan Yang. Indus-

trial wearable system: the human-centric empowering technology in industry

4.0. Journal of Intelligent Manufacturing, 17:1�17, Apr 2018. ISSN 1572-

8145. doi: 10.1007/s10845-018-1416-9. URL https://doi.org/10.1007/

s10845-018-1416-9.

[95] Xiang TR Kong, Xuan Yang, George Q Huang, and Hao Luo. The impact of

industrial wearable system on industry 4.0. In 2018 IEEE 15th International

Conference on Networking, Sensing and Control (ICNSC), pages 1�6. IEEE,

2018.

[96] Hui Liu, Houshang Darabi, Pat Banerjee, and Jing Liu. Survey of wireless

indoor positioning techniques and systems. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews), 14(6):1067�1080,

2007.

[97] Yanying Gu, Anthony Lo, and Ignas Niemegeers. A survey of indoor po-

sitioning systems for wireless personal networks. IEEE Communications

Surveys & Tutorials, 20(1):13�32, 2009.

[98] Rainer Mautz and Sebastian Tilch. Survey of optical indoor positioning

systems. In 2011 International Conference on Indoor Positioning and Indoor

Navigation, pages 1�7. IEEE, 2011.

https://doi.org/10.1007/s10845-018-1416-9
https://doi.org/10.1007/s10845-018-1416-9


Acronyms 117

[99] Samer S Saab and Zahi S Nakad. A standalone r�d indoor positioning

system using passive tags. IEEE Transactions on Industrial Electronics, 10

(5):1961�1970, 2011.

[100] Rainer Mautz. Indoor positioning technologies. ETH Zurich, Department of

Civil, Environmental and Geomatic Engineering, 129:1�129, 2012.

[101] Henning Kagermann, Johannes Helbig, Ariane Hellinger, and Wolfgang

Wahlster. Recommendations for implementing the strategic initiative IN-

DUSTRIE 4.0: Securing the future of German manufacturing industry; �nal

report of the Industrie 4.0 Working Group. Forschungsunion, 2013.

[102] J-H Lee and Hideki Hashimoto. Intelligent space, its past and future. In In-

dustrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual

Conference of the IEEE, volume 6, pages 126�131. IEEE, 1999.

[103] Hideki Hashimoto. Intelligent space: Interaction and intelligence. Arti�cial

Life and Robotics, 7(3):79�85, 2003.

[104] Houyi Yan, Kui Zhu, and Yunxiang Ling. The user-resource-task model

in intelligent interaction space. In 2015 4th International Conference on

Computer Science and Network Technology (ICCSNT), volume 01, pages

768�771. IEEE, 2015.

[105] Jiehan Zhou, Teemu Leppanen, Erkki Harjula, Mika Ylianttila, Timo Ojala,

Chen Yu, Hai Jin, and Laurence Tianruo Yang. Cloudthings: A common

architecture for integrating the internet of things with cloud computing. In

Computer Supported Cooperative Work in Design (CSCWD), 2013 IEEE

17th International Conference on, pages 651�657. IEEE, 2013.

[106] Cs Szász. Recon�gurable electronics application in intelligent space devel-

opments. International Review of Applied Sciences and Engineering, 8(2):

107�111, 2017.

[107] Joo-Ho Lee and Hideki Hashimoto. Intelligent space � concept and contents.

Advanced Robotics, 16(3):265�280, 2002.



Acronyms 118

[108] Nils Krahnstoever, Jens Rittscher, P Tu, Kevin Chean, and T Tomlinson.

Activity recognition using visual tracking and r�d. In 2005 Seventh IEEE

Workshops on Applications of Computer Vision (WACV/MOTION'05) -

Volume 1, volume 1, pages 494�500. IEEE, 2005.

[109] Javad Majrouhi Sardroud. In�uence of r�d technology on automated man-

agement of construction materials and components. Scientia Iranica, 19

(3):381�392, 2012. ISSN 1026-3098. doi: https://doi.org/10.1016/j.scient.

2012.02.023. URL http://www.sciencedirect.com/science/article/

pii/S1026309812000727.

[110] George Q Huang, YF Zhang, and PY Jiang. R�d-based wireless manufactur-

ing for walking-worker assembly islands with �xed-position layouts. Robotics

and Computer-Integrated Manufacturing, 9(4):469�477, 2007.

[111] George Q Huang, YF Zhang, and PY Jiang. R�d-based wireless manufactur-

ing for real-time management of job shop wip inventories. The International

Journal of Advanced Manufacturing Technology, 13(7):752�764, 2008.

[112] Ichiro Satoh. A mobile agent-based framework for location-based services.

In 2004 IEEE International Conference on Communications (IEEE Cat.

No.04CH37577), volume 3, pages 1355�1359. IEEE, 2004.

[113] H Chao. The non-speci�c intelligent guided-view system based on r�d tech-

nology. In 19th International Conference on Advanced Information Network-

ing and Applications (AINA'05) Volume 1 (AINA papers), volume 2, pages

580�585. IEEE, 2005.

[114] Joshua R Smith, Kenneth P Fishkin, Bing Jiang, Alexander Mamishev,

Matthai Philipose, Adam D Rea, Sumit Roy, and Kishore Sundara-Rajan.

R�d-based techniques for human-activity detection. Communications of the

ACM, 6(9):39�44, 2005.

[115] Daniel Leitold, Agnes Vathy-Fogarassy, Kristof Varga, and Janos Abonyi.

R�d-based task time analysis for shop �oor optimization. In 2018 IEEE

http://www.sciencedirect.com/science/article/pii/S1026309812000727
http://www.sciencedirect.com/science/article/pii/S1026309812000727


Acronyms 119

International Conference on Future IoT Technologies (Future IoT), pages

1�6. IEEE, 2018.

[116] Thomas Stiefmeier, Daniel Roggen, Georg Ogris, Paul Lukowicz, and Ger-

hard Tröster. Wearable activity tracking in car manufacturing. IEEE Per-

vasive Computing, 7(2):1�7, 2008.

[117] Heli Koskimaki, Ville Huikari, Pekka Siirtola, Perttu Laurinen, and Juha

Roning. Activity recognition using a wrist-worn inertial measurement unit:

A case study for industrial assembly lines. In 2009 17th Mediterranean

Conference on Control and Automation, pages 401�405. IEEE, 2009.

[118] Jamie A Ward, Paul Lukowicz, Gerhard Troster, and Thad E Starner. Activ-

ity recognition of assembly tasks using body-worn microphones and acceler-

ometers. IEEE Transactions on Pattern Analysis and Machine Intelligence,

28(10):1553�1567, 2006.

[119] Ville Huikari, Heli Koskimäki, Pekka Siirtola, and Juha Röning. User-

independent activity recognition for industrial assembly lines-feature vs. in-

stance selection. In 5th International Conference on Pervasive Computing

and Applications, pages 307�312. IEEE, 2010.

[120] Athanasios S Voulodimos, Nikolaos D Doulamis, Dimitrios I Kosmopoulos,

and Theodora A Varvarigou. Improving multi-camera activity recognition

by employing neural network based readjustment. Applied Arti�cial Intelli-

gence, 26(1-2):97�118, 2012.

[121] Soo-Cheol Kim, Young-Sik Jeong, and Sang-Oh Park. R�d-based indoor

location tracking to ensure the safety of the elderly in smart home environ-

ments. Personal and Ubiquitous Computing, 17(8):1699�1707, 2013.

[122] Bartlomiej Gladysz, Krzysztof Santarek, and Cezary Lysiak. Dynamic spa-

ghetti diagrams. a case study of pilot rtls implementation. In Intelligent

Systems in Production Engineering and Maintenance � ISPEM 2017, pages

238�248. Springer, 2018.



Acronyms 120

[123] Zhixin Yang, Pengbo Zhang, and Lei Chen. R�d-enabled indoor position-

ing method for a real-time manufacturing execution system using os-elm.

Neurocomputing, 14:121�133, 2016.

[124] Matthias Blum and Guenther Schuh. Towards a data-oriented optimiza-

tion of manufacturing processes. In Proceedings of the 19th International

Conference on Enterprise Information Systems, volume 8, pages 257�264,

2017.

[125] Diana Hodgins and Derek Sirnmonds. The electronic nose and its applica-

tion to the manufacture of food products. Journal of Analytical Methods in

Chemistry, 7(5):179�185, 1995.

[126] Guido Appenzeller, Joo-Ho Lee, and Hideki Hashimoto. Building topological

maps by looking at people: An example of cooperation between intelligent

spaces and robots. In Proceedings of the 1997 IEEE/RSJ International Con-

ference on Intelligent Robot and Systems. Innovative Robotics for Real-World

Applications. IROS '97, volume 3, pages 1326�1333. IEEE, 1997.

[127] Gerald J Agin. Computer vision systems for industrial inspection and as-

sembly. Computer, 13(5):11�20, 1980.

[128] Robert M Haralick and Linda G Shapiro. Computer and robot vision.

Addison-Wesley Reading, 1st edition, 1992.

[129] Shenchang Eric Chen. Quicktime vr: An image-based approach to virtual

environment navigation. In Proceedings of the 22nd Annual Conference on

Computer Graphics and Interactive Techniques, pages 29�38. ACM, 1995.

[130] Christoph Maggioni. A novel gestural input device for virtual reality. In

Proceedings of IEEE Virtual Reality Annual International Symposium, pages

118�124. IEEE, 1993.

[131] Sven Fleck andWolfgang Strasser. Adaptive probabilistic tracking embedded

in a smart camera. In 2005 IEEE Computer Society Conference on Computer



Acronyms 121

Vision and Pattern Recognition (CVPR'05) - Workshops, pages 134�134.

IEEE, 2005.

[132] Chuanying Zhai, Zhuo Zou, Qin Zhou, Jia Mao, Qiang Chen, Hannu Ten-

hunen, Lirong Zheng, and Lida Xu. A 2.4-ghz ism rf and uwb hybrid r�d

real-time locating system for industrial enterprise internet of things. Enter-

prise Information Systems, 11(6):909�926, 2017.

[133] Dirk Hahnel, Wolfram Burgard, Dieter Fox, Ken Fishkin, and Matthai Phili-

pose. Mapping and localization with r�d technology. In IEEE Interna-

tional Conference on Robotics and Automation, 2004. Proceedings. ICRA

'04. 2004, pages 1015�1020. IEEE, 2004.

[134] Po Yang, Wenyan Wu, Mansour Moniri, and Claude C Chibelushi. E�-

cient object localization using sparsely distributed passive r�d tags. IEEE

Transactions on Industrial Electronics, 11(12):5914�5924, 2013.

[135] Po Yang and Wenyan Wu. E�cient particle �lter localization algorithm

in dense passive r�d tag environment. IEEE Transactions on Industrial

Electronics, 11(10):5641�5651, 2014.

[136] Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchida, and Tyler Horton.

Building agent-based intelligent workspaces. In International Conference on

Internet Computing, volume 7, pages 675�681. Citeseer, 2002.

[137] Elisa Morganti, Leonardo Angelini, Andrea Adami, Denis Lalanne, Leandro

Lorenzelli, and Elena Mugellini. A smart watch with embedded sensors to

recognize objects, grasps and forearm gestures. Procedia Engineering, 7:

1169�1175, 2012.

[138] Tushar Chouhan, Ankit Panse, Anvesh Kumar Voona, and SM Sameer.

Smart glove with gesture recognition ability for the hearing and speech im-

paired. In 2014 IEEE Global Humanitarian Technology Conference - South

Asia Satellite (GHTC-SAS), pages 105�110. IEEE, 2014.



Acronyms 122

[139] Xiaomin Li, Di Li, Jiafu Wan, Athanasios V. Vasilakos, Chin-Feng Lai,

and Shiyong Wang. A review of industrial wireless networks in the context

of industry 4.0. Wireless Networks, 23(1):23�41, Jan 2017. ISSN 1572-

8196. doi: 10.1007/s11276-015-1133-7. URL https://doi.org/10.1007/

s11276-015-1133-7.

[140] Hyuenbo Cho. An intelligent workstation controller for computer-integrated

manufacturing. 165:1�165, 1994.

[141] Michael S Ryoo, Kristen Grauman, and Jake K Aggarwal. A task-driven

intelligent workspace system to provide guidance feedback. Computer Vision

and Image Understanding, 15(5):520�534, 2010.

[142] Michael Kruppa, Lübomira Spassova, and Michael Schmitz. The virtual

room inhabitant�intuitive interaction with intelligent environments. In Aus-

tralasian Joint Conference on Arti�cial Intelligence, volume 10, pages 225�

234. Springer, 2005.

[143] David B. Kaber, Carlene M. Perry, Noa Segall, Christopher K. McClernon,

and Lawrence J. Prinzel III. Situation awareness implications of adaptive

automation for information processing in an air tra�c control-related task.

International Journal of Industrial Ergonomics, 16:447�462, 2006.

[144] M.S. Ryoo, Kristen Grauman, and J.K. Aggarwal. A task-driven intelli-

gent workspace system to provide guidance feedback. Computer Vision and

Image Understanding, 114(5):520�534, 2010. ISSN 1077-3142. doi: https:

//doi.org/10.1016/j.cviu.2009.12.009. URL http://www.sciencedirect.

com/science/article/pii/S107731421000024X.

[145] C. Perera, C. H. Liu, and S. Jayawardena. The emerging internet of things

marketplace from an industrial perspective: A survey. IEEE Transactions on

Emerging Topics in Computing, 14(4):585�598, Dec 2015. ISSN 2168-6750.

doi: 10.1109/TETC.2015.2390034.

[146] Jianing Sun, Minglei Gao, Qifeng Wang, Minjie Jiang, Xuan Zhang, and

Robert Schmitt. Smart services for enhancing personal competence in

https://doi.org/10.1007/s11276-015-1133-7
https://doi.org/10.1007/s11276-015-1133-7
http://www.sciencedirect.com/science/article/pii/S107731421000024X
http://www.sciencedirect.com/science/article/pii/S107731421000024X


Acronyms 123

industrie 4.0 digital factory. Logforum, 8(1):51�57, 2018. URL http:

//www.logforum.net/14_1_5_18.pdf.

[147] Marek Obitko and Václav Jirkovský. Big data semantics in industry 4.0. In

Industrial Applications of Holonic and Multi-Agent Systems, pages 217�229.

Springer International Publishing, 2015. ISBN 978-3-319-22867-9.

[148] AGCO. AGCO innovations in manufacturing

with glass. https://news.agcocorp.com/topics/

agco-innovations-in-manufacturing-with-glass, 2017. [Online;

accessed 06-July-2018].

[149] Yongxin Liao, Fernando Deschamps, Eduardo de Freitas Rocha Loures,

and Luiz Felipe Pierin Ramos. Past, present and future of industry 4.0

- a systematic literature review and research agenda proposal. Inter-

national Journal of Production Research, 55(12):3609�3629, 2017. doi:

10.1080/00207543.2017.1308576.

[150] Sotiris Makris, Panagiotis Karagiannis, Spyridon Koukas, and Aleksandros-

Stereos Matthaiakis. Augmented reality system for operator support in hu-

man�robot collaborative assembly. CIRP Annals, 4(1):61�64, 2016. ISSN

0007-8506. doi: https://doi.org/10.1016/j.cirp.2016.04.038. URL http:

//www.sciencedirect.com/science/article/pii/S0007850616300385.

[151] Marie Chan, Daniel Estève, Jean-Yves Fourniols, Christophe Escriba, and

Eric Campo. Smart wearable systems: Current status and future chal-

lenges. Arti�cial Intelligence in Medicine, 20(3):137�156, 2012. ISSN

0933-3657. doi: https://doi.org/10.1016/j.artmed.2012.09.003. URL http:

//www.sciencedirect.com/science/article/pii/S0933365712001182.

[152] Geo� Appelboom, Elvis Camacho, Mickey E. Abraham, Samuel S. Bruce,

Emmanuel LP Dumont, Brad E. Zacharia, Randy D'Amico, Justin Slo-

mian, Jean Yves Reginster, Olivier Bruyère, and E. Sander Connolly. Smart

wearable body sensors for patient self-assessment and monitoring. Archives

http://www.logforum.net/14_1_5_18.pdf
http://www.logforum.net/14_1_5_18.pdf
https://news.agcocorp.com/topics/agco-innovations-in-manufacturing-with-glass
https://news.agcocorp.com/topics/agco-innovations-in-manufacturing-with-glass
http://www.sciencedirect.com/science/article/pii/S0007850616300385
http://www.sciencedirect.com/science/article/pii/S0007850616300385
http://www.sciencedirect.com/science/article/pii/S0933365712001182
http://www.sciencedirect.com/science/article/pii/S0933365712001182


Acronyms 124

of Public Health, 72(1):28�37, Aug 2014. ISSN 2049-3258. doi: 10.1186/

2049-3258-72-28. URL https://doi.org/10.1186/2049-3258-72-28.

[153] Gunasekaran Manogaran, Chandu Thota, Daphne Lopez, and Revathi

Sundarasekar. Big Data Security Intelligence for Healthcare Industry 4.0,

volume 24, pages 103�126. Springer International Publishing, 2017. ISBN

978-3-319-50660-9. doi: 10.1007/978-3-319-50660-9_5. URL https://doi.

org/10.1007/978-3-319-50660-9_5.

[154] Enrico G. Caldarola, Gianfranco E. Modoni, and Marco. Sacco. A

Knowledge-based Approach to Enhance the Workforce Skills and Compet-

ences within the Industry 4.0. In Conference: eKNOW 2018 : The Tenth

International Conference on Information, Process, and Knowledge Manage-

ment, Rome, Italy, 2018. IARIA XPS Press. ISBN 978-1-61208-620-0.

[155] Steven Miller. Ai: Augmentation, more so than automation. Asian Man-

agement Insight, 20(1):1�20, 2018. ISSN 2315-4284. URL http://ink.

library.smu.edu.sg/ami/83.

[156] Kai Klinker, Lisa Berkemeier, Benedikt Zobel, Hanna Wüller, Veronika

Huck-Fries, Manuel Wiesche, Hartmut Remmers, Oliver Thomas, and

Helmut Krcmar. Structure for innovations: A use case taxonomy for

smart glasses in service processes. In Multikonferenz Wirtschaftsinformatik,

volume 12, pages 1599�1610, 2018.

[157] DHL. Augmented reality in logistics. http://www.dhl.com/content/

dam/downloads/g0/about_us/logistics_insights/csi_augmented_

reality_report_290414.pdf, 2014. [Online; accessed 20-July-2018].

[158] Michael Spitzer, Ibrahim Nanic, and Martin Ebner. Distance learning and

assistance using smart glasses. Education Sciences, 8(1):1�8, 2018. ISSN

2227-7102. doi: 10.3390/educsci8010021. URL http://www.mdpi.com/

2227-7102/8/1/21.

https://doi.org/10.1186/2049-3258-72-28
https://doi.org/10.1007/978-3-319-50660-9_5
https://doi.org/10.1007/978-3-319-50660-9_5
http://ink.library.smu.edu.sg/ami/83
http://ink.library.smu.edu.sg/ami/83
http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/csi_augmented_reality_report_290414.pdf
http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/csi_augmented_reality_report_290414.pdf
http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/csi_augmented_reality_report_290414.pdf
http://www.mdpi.com/2227-7102/8/1/21
http://www.mdpi.com/2227-7102/8/1/21


Acronyms 125

[159] Yuqiuge Hao and Petri Helo. The role of wearable devices in meeting

the needs of cloud manufacturing: A case study. Robotics and Computer-

Integrated Manufacturing, 45:168�179, 2017. ISSN 0736-5845. doi: https:

//doi.org/10.1016/j.rcim.2015.10.001.

[160] Edwing Isaac Mejia Orozco and Cristian Javier Luciano. Introduction to

Haptics, pages 141�151. Springer, 2018. ISBN 978-3-319-75582-3. doi: https:

//doi.org/10.1007/978-3-319-75583-0_11.

[161] P. Garrec, J. P. Friconneau, Y. Measson, and Y. Perrot. Able, an in-

novative transparent exoskeleton for the upper-limb. In 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 1483�

1488, Sept 2008. doi: 10.1109/IROS.2008.4651012. URL https://hal-cea.

archives-ouvertes.fr/cea-01588401.

[162] Johan van der Vorm, Rachel Nugent, and Leonard O'Sullivan. Safety and

risk management in designing for the lifecycle of an exoskeleton: A novel

process developed in the robo-mate project. Procedia Manufacturing, 3:

1410�1417, 2015. ISSN 2351-9789. doi: https://doi.org/10.1016/j.promfg.

2015.07.304. URL http://www.sciencedirect.com/science/article/

pii/S2351978915003054. 6th International Conference on Applied Human

Factors and Ergonomics (AHFE 2015) and the A�liated Conferences.

[163] Abhishek Seth, Judy M. Vance, and James H. Oliver. Virtual reality for

assembly methods prototyping: a review. Virtual Reality, 15(1):5�20, Mar

2011. ISSN 1434-9957. doi: 10.1007/s10055-009-0153-y. URL https://

doi.org/10.1007/s10055-009-0153-y.

[164] Paulo Leitão, Armando Walter Colombo, and Stamatis Karnouskos. In-

dustrial automation based on cyber-physical systems technologies: Pro-

totype implementations and challenges. Computers in Industry, 81:11�

25, 2016. ISSN 0166-3615. doi: https://doi.org/10.1016/j.compind.2015.

08.004. URL http://www.sciencedirect.com/science/article/pii/

S0166361515300348.

https://hal-cea.archives-ouvertes.fr/cea-01588401
https://hal-cea.archives-ouvertes.fr/cea-01588401
http://www.sciencedirect.com/science/article/pii/S2351978915003054
http://www.sciencedirect.com/science/article/pii/S2351978915003054
https://doi.org/10.1007/s10055-009-0153-y
https://doi.org/10.1007/s10055-009-0153-y
http://www.sciencedirect.com/science/article/pii/S0166361515300348
http://www.sciencedirect.com/science/article/pii/S0166361515300348


Acronyms 126

[165] Trevor Richardson, Stephen B. Gilbert, Joseph Holub, Frederick Thompson,

Anastacia MacAllister, Rafael Radkowski, Eliot Winer, and Boeing Com-

pany. Fusing self-reported and sensor data from mixed-reality training.

Industrial and Manufacturing Systems Engineering Conference Proceedings

and Posters, 12:1�12, 2014. URL https://lib.dr.iastate.edu/imse_

conf/92.

[166] Mauricio Araujo Frigo, Ethel Cristina Chiari da Silva, and Gustavo Franco

Barbosa. Augmented reality in aerospace manufacturing: A review. Journal

of Industrial and Intelligent Information, 4(2):125�130, 2016. doi: 10.18178/

jiii.4.2.125-130. URL http://www.logforum.net/14_1_5_18.pdf.

[167] Wilhelm Bauer, Sebastian Schlund, Tim Hornung, and Sven Schuler. Di-

gitalization of industrial value chains � a review and evaluation of existing

use cases of industry 4.0 in germany. Scienti�c Journal of Logistics, 14(3):

331�340, 2018.

[168] Bopaya Bidanda, Poonsiri Ariyawongrat, Kim LaScola Needy, Bryan A Nor-

man, and Wipawee Tharmmaphornphilas. Human related issues in manu-

facturing cell design, implementation, and operation: a review and survey.

Computers & Industrial Engineering, 48(3):507�523, 2005.

[169] Alina Roitberg, Alexander Perzylo, Nikhil Somani, Manuel Giuliani, Markus

Rickert, and Alois Knoll. Human activity recognition in the context of

industrial human-robot interaction. In Signal and Information Processing

Association Annual Summit and Conference (APSIPA), 2014 Asia-Paci�c,

volume 10, pages 1�10. IEEE, 2014.

[170] WD Timmons, HJ Chizeck, F Casas, V Chankong, and PG Katona.

Parameter-constrained adaptive control. Industrial & Engineering Chem-

istry Research, 36(11):4894�4905, 1997.

[171] N. S. Ong. Activity-based cost tables to support wire harness design. In-

ternational Journal of Production Economics, 29(3):271�289, 1993. ISSN

09255273. doi: 10.1016/0925-5273(93)90033-H.

https://lib.dr.iastate.edu/imse_conf/92
https://lib.dr.iastate.edu/imse_conf/92
http://www.logforum.net/14_1_5_18.pdf


Acronyms 127

[172] NS Ong and G Boothroyd. Assembly times for electrical connections and

wire harnesses. The International Journal of Advanced Manufacturing Tech-

nology, 6(2):155�179, 1991.

[173] Joseph Bukchin and Michal Tzur. Design of �exible assembly line to min-

imize equipment cost. IIE Transactions (Institute of Industrial Engineers),

32(7):585�598, 2000. ISSN 15458830. doi: 10.1080/07408170008967418.

[174] B R Sarker, H Pan, Br Sarker, and H Pan. Designing a Mixed-Model, Open-

Station Assembly Line Using Mixed-Integer Programming. The Journal of

the Operational Research Society Palgrave Macmillan Journals, 52(52):545�

558, 2001.

[175] Assembly line conveyor systems. the photo was taken from pacline.com,

2015. URL https://www.pacline.com/photos/photos-by-solution/

\assembly-line-conveyors/. [Online; accessed 22-February-2018].

[176] Catherine Da Cunha, Bruno Agard, and Andrew Kusiak. Design for Cost:

Module-Based Mass Customization. IEEE Transactions on Automation

Science and Engineering, 4(3):350�359, 2007. doi: 10.1109/TASE.2006.

887160>. URL https://hal.archives-ouvertes.fr/hal-00229758.

[177] R Faragher and Ramsey Faragher. An analysis of the accuracy of bluetooth

low energy for indoor positioning applications. 10:201�210, 2014.

[178] Sinan Gezici, Zhi Tian, Georgios B. Giannakis, Hisashi Kobayashi, An-

dreas F. Molisch, H. Vincent Poor, and Zafer Sahinoglu. Localization

via ultra-wideband radios: A look at positioning aspects of future sensor

networks. IEEE Signal Processing Magazine, 2005. ISSN 10535888. doi:

10.1109/MSP.2005.1458289.

[179] Abdulrahman Alari�, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Al-

nafessah, Suheer Al-Hadhrami, Mai A Al-Ammar, and Hend S Al-Khalifa.

Ultra wideband indoor positioning technologies: Analysis and recent ad-

vances. Sensors, 16(5):1�16, 2016.

https://www.pacline.com/photos/photos-by-solution/ \assembly-line-conveyors/
https://www.pacline.com/photos/photos-by-solution/ \assembly-line-conveyors/
https://hal.archives-ouvertes.fr/hal-00229758


Acronyms 128

[180] SJ Ingram, D Harmer, and M Quinlan. Ultra wideband indoor positioning

systems and their use in emergencies. In Position Location and Navigation

Symposium, 2004. PLANS 2004, volume 10, pages 706�715. IEEE, 2004.

[181] Zhiguo Lai, Harshit Joshi, Dennis Goeckel, Divi Gupta, Dev Gupta, and Ab-

bie Mathew. Performance of uwb systems in the presence of severe multipath

and narrowband interference. In Ultra-Wideband, 2008. ICUWB 2008. IEEE

International Conference on, volume 4, pages 85�88. IEEE, 2008.

[182] Thomas Gigl, Gerard JM Janssen, Vedran Dizdarevic, Klaus Witrisal, and

Zoubir Irahhauten. Analysis of a uwb indoor positioning system based on

received signal strength. In Positioning, Navigation and Communication,

2007. WPNC'07. 4th Workshop on, pages 97�101. IEEE, 2007.

[183] Michael Cunningham, Paul Higgins, and Jim Browne. A Decision Support

Tool for Planning Bills of Material. Production Planning & Control, 7(3):

312�328, 1996.

[184] Chao Wang, Henry Quesada-Pineda, D. Earl Kline, and Urs Buehlmann.

Using Value Stream Mapping to Analyze an Upholstery Furniture Engineer-

ing Process. Forest Products Journal, 61(5):411�421, 2011. ISSN 0015-7473.

doi: 10.13073/0015-7473-61.5.411.

[185] Fei Tao, Ying Zuo, Li Da Xu, Lin Lv, and Lin Zhang. Internet of things and

BOM-Based life cycle assessment of energy-saving and emission-reduction

of products. IEEE Transactions on Industrial Informatics, 10(2):1252�1261,

2014. ISSN 15513203. doi: 10.1109/TII.2014.2306771.

[186] Jitendra R Raol. Multi-sensor data fusion with MATLAB R©. CRC Press,

2009.

[187] X Rong Li, Yunmin Zhu, Jie Wang, and Chongzhao Han. Optimal linear

estimation fusion. i. uni�ed fusion rules. IEEE Transactions on Information

Theory, 49(9):2192�2208, 2003.



Acronyms 129

[188] Peter C Young. Recursive estimation and time-series analysis: an introduc-

tion. Springer Science & Business Media, 2012.

[189] Cameron M Crowe. Recursive identi�cation of gross errors in linear data

reconciliation. AIChE Journal, 34(4):541�550, 1988.

[190] Hongwei Tong and Cameron M Crowe. Detection of gross erros in data

reconciliation by principal component analysis. AIChE Journal, 41(7):1712�

1722, 1995.

[191] Frits K Pil and Matthias Holweg. Linking product variety to order-ful�llment

strategies. Interfaces, 34(5):394�403, 2004.

[192] Dirk Van Goubergen and Hendrik Van Landeghem. Rules for integrating fast

changeover capabilities into new equipment design. Robotics and computer-

integrated manufacturing, 18(3-4):205�214, 2002.

[193] Christopher Ketelsen, Rasmus Andersen, Kjeld Nielsen, Ann-Louise Ander-

sen, Thomas D. Brunoe, and So�e Bech. A literature review on human

changeover ability in high-variety production. In Ilkyeong Moon, Gyu M.

Lee, Jinwoo Park, Dimitris Kiritsis, and Gregor von Cieminski, editors, Ad-

vances in Production Management Systems. Smart Manufacturing for In-

dustry 4.0, pages 442�448, Cham, 2018. Springer International Publishing.

[194] Xiaorui Tong. Anomaly Identi�cation in Multistage Manufacturing Process

using Peer Comparison of Product Inspection Metrics. PhD thesis, Univer-

sity of Cincinnati, 2013.

[195] Adam Sanders, Chola Elangeswaran, and Jens Wulfsberg. Industry 4.0 im-

plies lean manufacturing: research activities in industry 4.0 function as en-

ablers for lean manufacturing. Journal of Industrial Engineering and Man-

agement, 9(3):811�833, 2016.

[196] Andrew P Dillon and Shigeo Shingo. A revolution in manufacturing: the

SMED system. CRC Press, 1985.



Acronyms 130

[197] Iris Bento da Silva and Moacir Godinho Filho. Single-minute exchange of

die (smed): a state-of-the-art literature review. The International Journal

of Advanced Manufacturing Technology, pages 1�19, 2019.

[198] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531, 2015.

[199] Narsingh Deo. Graph theory with applications to engineering and computer

science. Courier Dover Publications, 2017.

[200] Maurizio Faccio, Yuval Cohen, M Bevilacqua, FE Ciarapica, I De Sanctis,

G Mazzuto, and C Paciarotti. A changeover time reduction through an integ-

ration of lean practices: a case study from pharmaceutical sector. Assembly

Automation, 2015.

[201] Izabela Kutschenreiter-Praszkiewicz. Machine learning in smed. Journal of

Machine Engineering, 18, 2018.

[202] Janos Abonyi, Tibor Kulcsar, Miklos Balaton, and Laszlo Nagy. Energy

monitoring of process systems: time-series segmentation-based targeting

models. Clean Technologies and Environmental Policy, 16(7):1245�1253,

2014.

[203] Keith J Moss. Energy Management in Buildings. Taylor & Francis, 2006.

[204] Dan Hou, Shuai Shao, Yun Zhang, Su Ling Liu, Yu Chen, and Shu Shen

Zhang. Exergy analysis of a thermal power plant using a modeling approach.

Clean Technologies and Environmental Policy, 14(5):805�813, 2012.

[205] Mohammed Ali Almomani, Mohammed Aladeemy, Abdelhakim Abdelhadi,

and Ahmad Mumani. A proposed approach for setup time reduction through

integrating conventional smed method with multiple criteria decision-making

techniques. Computers & Industrial Engineering, 66(2):461�469, 2013.

[206] Lyle Robert Turner. Production structure models and applications within a

Statistical Activity Cost Theory (SACT) Framework. PhD thesis, Queens-

land University of Technology, 2007.



Acronyms 131

[207] Tamas Ruppert and Janos Abonyi. Software sensor for activity-time monit-

oring and fault detection in production lines. Sensors, 18(7):2346, 2018.

[208] Tamás Ruppert, Szilárd Jaskó, Tibor Holczinger, and János Abonyi. En-

abling technologies for operator 4.0: A survey. Applied Sciences, 8(9):1650,

2018.

[209] Tamas Ruppert, Gyula Dorgo, and Janos Abonyi. Fuzzy activity time-

based model predictive control of open-station assembly lines. Journal of

Manufacturing Systems, 54:12�23, 2020.

[210] Sarah Lacny, Todd Wilson, Fiona Clement, Derek J Roberts, Peter Faris,

William A Ghali, and Deborah A Marshall. Kaplan�meier survival analysis

overestimates cumulative incidence of health-related events in competing risk

settings: a meta-analysis. Journal of clinical epidemiology, 93:25�35, 2018.

[211] Mark Stevenson and IVABS EpiCentre. An introduction to survival analysis.

EpiCentre, IVABS, Massey University, 2009.

[212] Ritesh Ramchandani, Dianne M Finkelstein, and David A Schoenfeld. Es-

timation for an accelerated failure time model with intermediate states as

auxiliary information. Lifetime data analysis, pages 1�20, 2018.

[213] Krishnamoorthi Sivalingam, Marco Sepulveda, Mark Spring, and Peter Dav-

ies. A review and methodology development for remaining useful life predic-

tion of o�shore �xed and �oating wind turbine power converter with digital

twin technology perspective. In 2018 2nd International Conference on Green

Energy and Applications (ICGEA), pages 197�204. IEEE, 2018.

[214] Siddhartha Asthana, Pushpendra Singh, and Parul Gupta. Survival analysis:

Objective assessment of wait time in hci. In Proceedings of the 33rd Annual

ACM Conference on Human Factors in Computing Systems, pages 367�376.

ACM, 2015.

[215] Robert J Batt and Santiago Gallino. The e�ects of searching and learning

on pick-worker performance. History, 2017.



Acronyms 132

[216] Werner Bruggeman, Sr Anderson, and Y Levant. Modeling logistics costs

using time-driven abc: a case in a distribution company. Conceptual Paper

and Case Study, 2005.

[217] Boudewijn F Van Dongen, Ana Karla A de Medeiros, HMWVerbeek, AJMM

Weijters, and Wil MP Van Der Aalst. The prom framework: A new era in

process mining tool support. 26th International Concerence on Application

and Theory of Petri Nets and Other Models of Concurrency (ICATPN 2005),

June 20-25, 2005, Miami, FL, USA, 2005:444�454, 2005.

[218] David G Kleinbaum and Mitchel Klein. Survival analysis, volume 3.

Springer, 2010.

[219] Despina Koletsi and Nikolaos Pandis. Survival analysis, part 2: Kaplan-

meier method and the log-rank test. American journal of orthodontics and

dentofacial orthopedics, 152(4):569�571, 2017.

[220] Sunhee Park and David J Hendry. Reassessing schoenfeld residual tests of

proportional hazards in political science event history analyses. American

Journal of Political Science, 59(4):1072�1087, 2015.

[221] Frank E Harrell. Cox proportional hazards regression model. In Regression

modeling strategies, pages 475�519. Springer, 2015.

[222] Rodrigo Romero-Silva, Erika Marsillac, Sabry Shaaban, and Margarita

Hurtado-Hernández. Serial production line performance under random vari-

ation: Dealing with the `law of variability'. Journal of Manufacturing Sys-

tems, 50:278 � 289, 2019. ISSN 0278-6125. doi: https://doi.org/10.1016/j.

jmsy.2019.01.005.

[223] Chester G Gingrich, Daniel R Kuespert, and Thomas J McAvoy. Modeling

human operators using neural networks. ISA transactions, 31(3):81�90, 1992.

[224] Daniel Leitold, Agnes Vathy-Fogarassy, and J. Abonyi. Empirical working

time distribution-based line balancing with integrated simulated annealing



Acronyms 133

and dynamic programming. Central European Journal of Operations Re-

search, 1 2018. ISSN 1435-246X. doi: 10.1007/s10100-018-0570-7.

[225] Gabriel Lodewijks. Two Decades Dynamics of Belt Conveyor Systems. Bulk

Solids Handling, 22(2):124�132, 2002.

[226] Joaquín Bautista and Jaime Cano. Minimizing work overload in mixed-

model assembly lines. International Journal of Production Economics, 112

(1):177�191, 2008. ISSN 09255273. doi: 10.1016/j.ijpe.2006.08.019.

[227] Tamás Ruppert and János Abonyi. Worker movement diagram based

stochastic model of open paced conveyors. Hungarian Journal of Industry

and Chemistry, 46(2):55�62, 2018.

[228] Tamas Ruppert and Janos Abonyi. Industrial internet of things based cycle

time control of assembly lines. In Future IoT Technologies (Future IoT),

2018 IEEE International Conference on, volume 1, pages 1�4. IEEE, 2018.

[229] Fred N Silverman and John C Carter. A cost-based methodology for

stochastic line balancing with intermittent line stoppages. Management Sci-

ence, 32(4):455�463, 1986.

[230] E Erel*, I Sabuncuoglu, and H Sekerci. Stochastic assembly line balancing

using beam search. International Journal of Production Research, 43(7):

1411�1426, 2005.

[231] Johannes Fisel, Yannick Exner, Nicole Stricker, and Gisela Lanza. Change-

ability and �exibility of assembly line balancing as a multi-objective optimiz-

ation problem. Journal of Manufacturing Systems, 53:150 � 158, 2019. ISSN

0278-6125. doi: https://doi.org/10.1016/j.jmsy.2019.09.012.

[232] C. Kahraman. Fuzzy Applications in Industrial Engineering. Studies in

Fuzziness and Soft Computing. Springer Berlin Heidelberg, 2007. ISBN

9783540335177.



Acronyms 134

[233] Arnold Kaufmann and Madan M. Gupta. Fuzzy Mathematical Models in

Engineering and Management Science. Elsevier Science Inc., New York,

NY, USA, 1988. ISBN 0444705015.

[234] M. F. Yang, Y. T. Chou, M. C. Lo, and W.C. Tseng. Applying fuzzy time

distribution in pert model. In Proceedings of the International MultiConfer-

ence of Engineers and Computer Scientists 2014, volume 2, pages 1084�1087.

IMECS, 2014.

[235] F Habibi, O Birgani, H Koppelaar, and S Radenovi¢. Using fuzzy logic to

improve the project time and cost estimation based on project evaluation

and review technique (pert). Journal of Project Management, 3(4):183�196,

2018.

[236] Yasuhiro Tsujimura, Mitsuo Gen, and Erika Kubota. Solving fuzzy assembly-

line balancing problem with genetic algorithms. Computers & Industrial

Engineering, 29(1):543 � 547, 1995. ISSN 0360-8352. doi: https://doi.org/

10.1016/0360-8352(95)00131-J. Proceedings of the 17th International Con-

ference on Computers and Industrial Engineering.

[237] A. Ghaleb, M. Heshmat, M. A. El-Sharief, and M. G. El-Sebaie. Using

fuzzy logic and discrete event simulation to enhance production lines per-

formance: Case study. In 2019 IEEE 6th International Conference on In-

dustrial Engineering and Applications (ICIEA), pages 653�657, April 2019.

doi: 10.1109/IEA.2019.8714887.

[238] M. Duran Toksari and O§uzhan Ahmet Ar�k. Single machine scheduling

problems under position-dependent fuzzy learning e�ect with fuzzy pro-

cessing times. Journal of Manufacturing Systems, 45:159 � 179, 2017. ISSN

0278-6125. doi: https://doi.org/10.1016/j.jmsy.2017.08.006.

[239] Azriel Rosenfeld. Fuzzy groups. Journal of mathematical analysis and ap-

plications, 35(3):512�517, 1971.

[240] Janos Abonyi. Fuzzy Model Identi�cation for Control. Birkhouser, 2003.



Acronyms 135

[241] Thiago Cantos Lopes, Adalberto Sato Michels, Celso Gustavo Stall Sikora,

and Leandro Magatão. Balancing and cyclical scheduling of asynchronous

mixed-model assembly lines with parallel stations. Journal of Manufacturing

Systems, 50:193 � 200, 2019. ISSN 0278-6125. doi: https://doi.org/10.1016/

j.jmsy.2019.01.001.

[242] M. Assid, A. Gharbi, and A. Hajji. Production and setup control policy

for unreliable hybrid manufacturing-remanufacturing systems. Journal of

Manufacturing Systems, 50:103 � 118, 2019. ISSN 0278-6125. doi: https:

//doi.org/10.1016/j.jmsy.2018.12.004.

[243] J. Mukund Nilakantan, George Q. Huang, and S.G. Ponnambalam. An

investigation on minimizing cycle time and total energy consumption in ro-

botic assembly line systems. Journal of Cleaner Production, 90:311 � 325,

2015. ISSN 0959-6526. doi: https://doi.org/10.1016/j.jclepro.2014.11.041.

[244] Neda Manavizadeh, Masoud Rabbani, and Farzad Radmehr. A new multi-

objective approach in order to balancing and sequencing u-shaped mixed

model assembly line problem: a proposed heuristic algorithm. The Inter-

national Journal of Advanced Manufacturing Technology, 79(1):415�425, Jul

2015. ISSN 1433-3015. doi: 10.1007/s00170-015-6841-8.

[245] Jenny L. Diaz C. and Carlos Ocampo-Martinez. Energy e�ciency in discrete-

manufacturing systems: Insights, trends, and control strategies. Journal of

Manufacturing Systems, 52:131 � 145, 2019. ISSN 0278-6125. doi: https:

//doi.org/10.1016/j.jmsy.2019.05.002.

[246] Yashar Zeinaly, Bart De Schutter, and Hans Hellendoorn. A model predictive

control approach for the line balancing in baggage handling systems. IFAC

Proceedings Volumes, 45(24):215�220, 2012.

[247] Martin W Braun, Daniel E Rivera, ME Flores, W Matthew Carlyle, and

Karl G Kempf. A model predictive control framework for robust manage-

ment of multi-product, multi-echelon demand networks. Annual Reviews in

Control, 27(2):229�245, 2003.



Acronyms 136

[248] Bart De Schutter and Ton Van Den Boom. Model predictive control for

max-plus-linear discrete event systems. Automatica, 37(7):1049�1056, 2001.

[249] Stanimir Mollov, Robert Babuska, Janos Abonyi, and Henk B Verbruggen.

E�ective optimization for fuzzy model predictive control. IEEE Transactions

on fuzzy systems, 12(5):661�675, 2004.

[250] João Miguel da Costa Sousa and Uzay Kaymak. Model predictive control

using fuzzy decision functions. IEEE Transactions on Systems, Man, and

Cybernetics, Part B (Cybernetics), 31(1):54�65, 2001.

[251] Tamás Ruppert, Gergely Honti, and János Abonyi. Multilayer network-

based production �ow analysis. Complexity, 2018:1�15, 2018.

[252] Witold Pedrycz, Andrzej Skowron, and Vladik Kreinovich. Handbook of

granular computing. John Wiley & Sons, 2008.

[253] Didier Dubois and Henri Prade. Processing fuzzy temporal knowledge. IEEE

Transactions on Systems, Man, and Cybernetics, 19(4):729�744, 1989.

[254] Li-Hui Tsai. Mixed-model sequencing to minimize utility work and the risk

of conveyor stoppage. Management Science, 41(3):485�495, 1995.

[255] Armin Scholl and Christian Becker. State-of-the-art exact and heuristic

solution procedures for simple assembly line balancing. European Journal of

Operational Research, 168(3):666�693, 2006.




	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 Operator in Industry 4.0
	2.1 Framework of Operator 4.0 Solutions
	2.1.1 The Operator 4.0 Concept and Human-Cyber-Physical Systems
	2.1.2 The Operator 4.0 Concept and Intelligent Space

	2.2 IoT-based Solutions to Support Operator Activities
	2.3 Conclusion of Operator 4.0

	3 Software sensor for activity-time monitoring
	3.1 Evaulation of activity times with software sensor
	3.1.1 Problem definition—evaluation of activity times on the paced conveyor
	3.1.2 Fixture sensor- and indoor positioning system-based activity-time measurements
	3.1.3 Multi-sensor data fusion-based recursive estimation
	3.1.4 Local estimation and monitoring of the primary activity times

	3.2 Wire harness case study
	3.2.1 Online monitoring of operator performance

	3.3 Conclusion of activity-time monitoring

	4 Reducing machine setup and changeover times by survival analysis
	4.1 Introduction
	4.2 The concept of Cox regression-based root- cause analysis and performance monitoring
	4.2.1 Integrated log file
	4.2.2 Survival-analysis-based activity time modeling
	4.2.3 Targeting model-based performance monitoring

	4.3 Application example
	4.3.1 Changeovers in crimping machines
	4.3.2 Results of the Cox regression analysis
	4.3.3 Application to performance monitoring

	4.4 Details of the Cox regression
	4.5 Conclusion of reducing machine setup and  changeover times by survival analysis

	5 Fuzzy activity time-based model predictive control
	5.1 Overview of model-based control of operator activity
	5.2 State-space model of modular assembly lines
	5.3 Fuzzy representation of probabilistic activity times
	5.4 Fuzzy activity time-based predictive control
	5.4.1 One-step-ahead predictive control
	5.4.2 Constrained fuzzy model predictive control

	5.5 Examples of applications
	5.5.1 Illustrative example
	5.5.2 Dynamic cycle time setting at a wire-harness production line

	5.6 Conclusion of fuzzy activity time-based model predictive control of open-station assembly lines

	6 Conclusion
	7 Appendix - Details of the wire-harness production technology
	Acronyms
	Bibliography



