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“Beware of the man who works hard to learn something, learns it, and finds 

himself no wiser than before,” Bokonon tells us. “He is full of murderous 

resentment of people who are ignorant without having come by their ignorance 

the hard way.” 

(Kurt Vonnegut: Cat’s cradle) 

  



 

 

  



 

 

Abstract 

Advanced Methods in the Design of 

Heterocatalytic Processes under Uncertainties 

All kinetic models are uncertain to some extent. Usually that is the case when 

many consecutive and competitive reactions occur in the system investigated. In 

such cases, determining individual reaction rates with high accuracy becomes ever 

less feasible. The kinetic parameter identification problem will be even more 

complicated if the reaction mixture contains an extensive range of individual 

species, and there are not enough resources (available analytical methods or time, 

which is also important in the engineering practice) available to measure the 

concentration of every component. 

Nevertheless, engineers would even want to use uncertain kinetic models to 

size key pieces of equipment for the industrial implementation of the chemical 

process. And in order to counter the possible effects of uncertain parameters, these 

units tend to be oversized. Although this is viable, it would be economically more 

efficient if we had higher confidence in the kinetic parameters. 

Consequently, this dissertation revolves around novel and improved methods to 

reduce uncertainties connected to reaction networks describing various 

heterocatalytic processes. Specifically, I authored new kinetic parameter 

identification methods, applied global sensitivity analysis and the concept of 

Factors Fixing to reduce the number of parameters to be identified from a series of 

measurements with a given level of detail, and mapped out the correlations 

between the formations of certain components that also reduces the number of 

independent reactions in the system. 

Moreover, there are two case studies present in the second part of the 

dissertation that deal with the optimal design of heterocatalytic processes; the first 

one aims to answer the question of the optimal design itself, while the second one 

addresses the broader topic of design under uncertainties (including the 

uncertainties of reaction networks, or catalyst deactivation) and how we can take 

these into account when designing a reactor, aside from and possibly without 

much oversizing. 

  



 

 

  



 

 

Kivonat 

Továbbfejlesztett módszerek heterogén katalitikus folyamatok 

bizonytalanságának csökkentésére 

Minden kinetikai modell valamilyen mértékű bizonytalansággal terhelt. 

Általában ez a helyzet áll fent akkor, ha nagyszámú konszekutív és kompetitív 

reakció játszódik le a vizsgált rendszerben. Ebben az esetben az egyes reakciók 

sebességének pontos meghatározása egyre kevésbé kivitelezhető. A kinetikai 

paraméterek identifikálásnak feladata még összetettebbé válik, ha a reakcióelegy 

sokkomponensű és ezzel egyidejűleg nem áll rendelkezésre elegendő erőforrás 

(analitikai módszer, illetve idő, mely szintén lényeges a mérnöki gyakorlatban) az 

elegyet alkotó összes komponens koncentrációjának meghatározására. 

Mindezek ellenére a mérnöki munka során a bizonytalansággal terhelt kinetikai 

modellek is felhasználásra kerülnek fontos műveleti egységek méretezése, illetve 

az adott kémiai folyamat ipari mértékű implementálása során. A bizonytalan 

paraméterek lehetséges negatív hatásainak kiküszöbölése érdekében ezeket a 

műveleti egységeket általában túlméretezik. Bár ez járható út a tervezés során, 

gazdaságilag előnyösebb a kinetikai paraméterek megbízhatóságának növelése. 

Ezt a felismerést követve dolgozatomban a heterokatalitikus folyamatokat leíró 

reakcióhálózatokat övező bizonytalanságok csökkentésére irányuló új és általam 

továbbfejlesztett módszereket mutatok be. Új módszereket dolgoztam ki a 

kinetikai paraméterek identifikálására, a globális érzékenységvizsgálat és 

paraméter rögzítés módszerét alkalmaztam az identifikálandó paraméterek 

számának csökkentésére adott részletességű mérési adatsorból, valamint feltártam 

az egyes komponensek képződése közötti korrelációkat, ezzel tovább csökkentve 

a meghatározandó paraméterek számát a vizsgált rendszerben. 

Ezeken túlmenően a dolgozat második részében két esettanulmány kapott 

helyet, melyek a heterokatalitikus folyamatok optimális tervezésével 

foglalkoznak, melyek közül az első célja egy heterokatalitikus reaktor optimális 

tervezése, míg a második a bizonytalanság alapú tervezés tágabb témakörét érinti 

(ideértve a reakcióhálózatokat, vagy a katalizátor dezaktiválódását övező 

bizonytalanságokat), bemutatva, hogyan vehetőek ezek figyelembe a reaktor 

tervezés során, elkerülve a műveleti egység komolyabb túlméretezését. 



 

 

  



 

 

Auszug 

Fortschrittliche Methoden bei der Entwicklung 

heterokatalytischer Prozesse unter Unsicherheiten 

Alle kinetischen Modelle sind bis zu einem gewissen Grad unsicher. In der Regel 

ist dies der Fall, wenn viele aufeinander folgende und konkurrierende Reaktionen im 

untersuchten System auftreten. In solchen Fällen wird die Bestimmung der 

Geschwindigkeiten der individuellen Reaktionen mit hoher Genauigkeit immer 

weniger durchführbar. Das Problem der kinetischen Parameteridentifikation wird 

noch komplizierter, wenn das Reaktionsgemisch ein umfangreiches Spektrum 

einzelner Arten enthält und es nicht genügend Ressourcen (verfügbare analytische 

Methoden oder Zeit, die auch in der Ingenieurpraxis wichtig ist) zur Messung der 

Konzentration jeder Komponente zur Verfügung stehen. 

Dennoch werden sogar ungewisse kinetische Modelle zur Dimensionierung 

wichtiger Anlagen für die industrielle Umsetzung des chemischen Prozesses durch 

die Ingenieure verwendet. Und um den möglichen Auswirkungen unsicherer 

Parameter entgegenzuwirken, sind diese operativen Einheiten meist 

überdimensioniert. Obwohl dies lebensfähig bei der Planung ist, ist es wirtschaftlich 

effizienter, die Zuverlässigkeit der kinetischen Parameter zu erhöhen. 

Folglich zeige ich in meiner Arbeit neuartige und verbesserte Methoden, um 

Unsicherheiten im Zusammenhang mit Reaktionsnetzen zu verringern, die 

verschiedene heterokatalytische Prozesse beschreiben. Insbesondere habe ich neue 

kinetische Parameter-Identifikationsmethoden, eine globale Sensitivitätsanalyse und 

das Konzept von Faktoren entwickelt, die die Anzahl der Parameter verringern, die 

aus einer Reihe von Messungen mit einem bestimmten Detailgrad identifiziert werden 

sollen. Ferner deckte ich die Korrelationen zwischen den Formationen bestimmter 

Komponenten auf, die auch die Anzahl unabhängiger Reaktionen im System 

reduzieren. 

Außerdem gibt es zwei Fallstudien im zweiten Teil der Studie, die sich mit der 

optimalen Gestaltung heterokatalytischer Prozesse befassen. Die erste soll die Frage 

nach dem optimalen Design selbst beantworten, während die zweite das weiter 

gefasste Thema Planung unter Unsicherheiten (einschließlich der Unsicherheiten von 

Reaktionsnetzen oder Katalysatordeaktivierung) erörtert und aufzeigt, wie wir diese 

bei der Konstruktion eines Reaktors berücksichtigen können, ohne die operative 

Einheit erheblich zu überdimensionieren. 
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List of Notations 

Mathematical symbols 

a Catalyst Dilution Coefficient [-] 

A Cross-section [m2] 

c Concentration [kg m-3] or [mol m-3] 

cp Specific Heat Capacity [J kg-1 K-1] 

d Diameter [m2] 

du Uncertainty Distance 

Ea Activation Energy [J mol-1] 

exs existence variable [-] (Eq. (5.2)) 

f friction factor [-] 

F molar inflow rate [kmol s-1] 

k Reaction Rate Coefficient [varies] 

k0 Pre-exponential Factor [same as k] 

K Adsorption Equilibrium Constant [varies] 

l Length [m] 

ℓ Dimensionless Length [-] 

L Kirchhoff Matrix of the Reaction System 

Lr Reactor Length [m] 

mr Reactant Mass [kg] 

�̇� Mass Flow [kg s-1] 

M Molar Weight [kg mol-1] 

n Molar Mass [mol] 

N Number of Observations 

p Pressure [Pa] 

Q Adsorption Activation Energy [kJ mol-1] 

r Reaction Rate [kg m-3 s-1] or [mol m-3 s-1] 

r’ Reaction Rate in Volume [kg s-1] 

R Gas Constant; R = 8.314 J mol-1 K-1 

Rc Component Source [kg m-3 s-1] or [mol m-3 s-1] 

𝑅𝑐
′  Component Source in Volume [kg s-1] 
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Si Sensitivity index 

t Time [s] 

T Reactor Temperature [°C] or [K] 

ToS Catalyst Time-on-Stream [h] 

v Plug Flow Velocity [m s-1] 

𝓋 Dimensionless Velocity [h-1] 

V Volume [m3] 

�̇� Volume Flow [m3 s-1] 

w weight fraction [-] 

x Mole Fraction [-] 

x Search Variable Vector 

Greek letters 

α Decay Coefficient of Catalyst Deactivation [h-1] 

δ variation of the total molecular number in the reaction [-] (Eq. 

(2.2)) 

ΔrH Heat of Reaction [J kmol-1] 

εref Volume Ratio of the Catalyst and the Reference Phase [-] (Eq. 

(3.5)) 

ε’ Catalyst Volume Fraction [mcat
3  mreactor

−3 ] 

η Catalyst Effectiveness Factor [-] 

κ Total Heat Transfer Coefficient [W m-2 K-1] 

ν Stoichiometric Coefficient 

ρ Density [kg m-3] 

φ Catalyst Activity Coefficient (as a function of time) [-] 

Components 

DME Dimethyl Ether 

HDPE High-Density Polyethylene 

LDPE Low-Density Polyethylene 

PE Polyethylene 

PP Polypropylene 

PVC Polyvinyl Chloride 



 List of Notations 

 

ZSM-5 Zeolite Socony Mobil–5; an aluminosilicate zeolite belonging to 

the pentasil family of zeolites. The additional leading chemical 

symbol in the abbreviation corresponds to the ion occupying the 

zeolite ion-exchange sites. 

Pseudocomponents 

C Coke 

D Diesel 

G Gas 

HN Heavy Naphtha 

K Kerosene 

L+ Heavy Liquid 

𝐿𝑖
+ Heavy Isomer 

𝐿𝑜
+ Heavy Olefin 

𝐿𝑝
+ Heavy Paraffin 

L– Light Liquid 

𝐿𝑖
− Light Isomer 

𝐿𝑜
− Light Olefin 

𝐿𝑝
− Light Paraffin 

LN Light Naptha 

P Polymer 

P– Cracked Polymer 

VGO Vacuum gas Oil 

Nonlinear Programming 

eSS Enhanced Scatter Search 

GA Genetic Algorithm 

LB Lower Bound of Search variable 

MINLP Mixed-Integer Nonlinear Programming 

NLP Nonlinear Programming 

NOMAD Nonlinear Optimization with Mesh Adaptive Direct Search 

PSwarm Particle Swarm Pattern Search 



List of Notations  

 

UB Upper Bound of Search Variable 

For non-frequently used algorithm abbreviations, refer to Table 8.4. 

Abbreviations 

CDF Cumulative Distribution Function 

DAEM Distributed Activation Energy Model 

DTG Differential Thermogravimetry 

EET Elementary Effects Test (Morris Method) 

ELV End-of-Life Vehicle 

FAST Fourier Amplitude Sensitivity Analysis 

GC-MS Gas Chromatography – Mass Spectrometry 

GHSV Gas Hourly Space Velocity [h-1] 

GSA Global Sensitivity Analysis 

LHSV Liquid Hourly Space Velocity [h-1] 

MPC Model Predictive Control 

NMR Nuclear Magnetic Resonance (Spectroscopy) 

PAWN Pianosi-Wagener Sensitivity Analysis 

PDF Probability Distribution Function 

RMSE Root Mean Squared Error 

RS-HDMR High Dimensional Model Representation with Random Sampling 

STD Standard Deviation 

SAFE Sensitivity Analysis for Everybody (Toolbox) 

TBP True Boiling Point 

TGA Thermogravimetric Analysis 

VBSA Variance Based Sensitivity Analysis 

For identifiers of the different lumped reaction networks introduced in the thesis, 

refer to Table S1 in the Appendix. 

Subscripts 

act actual value 

B catalyst bed 

cal calculated 

cat catalyst 
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comp component 

exp experimental 

g gas 

i ith reaction 

max maximum value 

min minimum value 

pt data point 

r reactor 

ref reference volume 

Superscripts 

in inflow 

j jth reactor 

k kth catalyst layer (3.22) 

n normalized value 

net net amount 
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1 Introduction 

A process model is a set of equations, and the necessary input data to solve 

those equations as well that allows us to describe the behavior of a chemical 

process system [1]. Needless to say, these two components have to be carefully 

balanced. We can cleverly set up a sophisticated model that would mimic the 

behavior of the system investigated as carefully as possible with high algorithmic 

efficiency; it would be all for nothing if we are not able to fetch the necessary 

quantity and quality of input data to validate it. Sometimes we have to get on with 

what we have. For example, interim measurements are usually not exactly 

detailed. They do not need to be in order to run the plant smoothly. With that in 

mind, we could say that simpler models have their own raison d’etre. And if that 

is the case, there ought to be methods that exist to construct process models that 

are both simple and reliable, i.e., to reduce the uncertainties enveloping them. 

After laying the necessary theoretical foundations, I will start with kinetic 

models, carefully examining the topic of how to represent a complex reaction 

mechanism with less (here I mean very few) reactions without actually losing the 

reliability of the kinetic model. For this topic, I have chosen examples of 

heterocatalytic processes in connection with sustainable development. For 

example, it is becoming increasingly urgent to do something with the tremendous 

amount of plastic waste that our civilization currently leaves behind. Among other 

things, we can utilize pyrolysis to recover valuable fuels and energy storage 

materials from this waste. On the other hand, the thermo-catalytic cracking of the 

feedstock polymer leads up to thousands of reactions that are quite a pain in the 

neck to follow individually. A similar example is the catalytic cracking of long 

hydrocarbons to produce fuels. The source material in this case can be vacuum 

gas oil in order to make better use of a barrel of crude oil, thus reducing excess 

emission; moreover, non-conventional feedstocks (like vegetable oils) can also be 

processed using such methods. 

One of my main objectives is to construct reliable lumped reaction networks. 

By their very nature these models tend to have uncertain parameters. Considering 

that we replace thousands of chemical compounds and reactions with a few 

lumped ones, this is a plausible assumption. The uncertainty of the kinetic model 
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is not necessarily related to the model error. Strictly speaking, the latter represents 

the error between the output of the model and the modeled system. This can be 

reasonably low even in the case where the values of the model parameters cannot 

be identified with high certainty. In the specific case, this will mean that even if 

the difference between the experimental and calculated product composition is 

reasonably low, it will remain uncertain how many reactions form the lumped 

reaction network and what are the values of the corresponding kinetic parameters. 

Such a situation inevitably decreases our confidence in the kinetic model. 

Therefore, I propose different methods in my thesis to reduce the emerging 

uncertainties. I account for observability and identifiability, correlations between 

the rates of parallel and consecutive reactions, or apply sensitivity analysis to 

eliminate the less significant reactions under the specific conditions. I also deal 

with the problem of the identification of the parameters of the reaction networks 

that usually involve the application of a nonlinear optimization program; 

nevertheless, I would like to show that this is also not an obvious step, associated 

with uncertainties that can be reduced. 

The second major topic of my thesis work broadens the score and discusses the 

uncertainty factors involved with the design of heterocatalytic processes 

themselves. The main objective here is to counter the effects of uncertainties in 

the design procedure, facilitating the applicability of the process model during 

reactor design and scale-up. On the one hand, I will carry on the knowledge 

acquired in constructing simplified reaction networks to describe complex 

processes, and using that as a starting point I would like to address other sources 

of uncertainties emerging during the design of a hydrocracking reactor, providing 

an integrated framework to induce robustness. Or, in other words, to fashion a 

reactor whose operation is the least susceptible to the changes of the possible 

uncertain parameters. On the other hand, moving away from the problem of 

simplified reaction networks, I will also investigate the design of a fixed-bed 

reactor for HCl oxidation using CeO2−CuO/Y catalyst, showing that even such a 

system with only one reaction between four gaseous compounds could present a 

challenge of how the optimal reactor design can be defined. In addition to being a 

simpler reaction system, the choice of HCl oxidation to further investigate was 
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also motivated by sustainable development as this process is essential to close the 

production cycle of isocyanates. As the technology otherwise would involve 

manufacturing a high amount of chlorine from salt brine by consuming insane 

amounts of electricity, and the Cl2 in turn would end up as an HCl side product 

that should be somehow processed as well, this oxidation step turning HCl back to 

chlorine is essential to keep the production of isocyanates sustainable. 

With the wide range of process examples, I would like to provide a convincing 

argument regarding the proposition of the application of the methods I developed 

to reduce the uncertainties emerging during the modeling of heterocatalytic 

processes, illustrating both their applicability and the advantages of their 

application. 

This introduction, like any other, is already too long. Without stretching it any 

further, let us get into the merits! 
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2 Theoretical background 

This thesis involves studying various heterocatalytic reactions, namely the 

catalytic oxidation of HCl into Cl2 (the so-called Deacon process), vacuum gas oil 

(VGO) hydrocracking, and plastic waste pyrolysis (in case of the latter the 

exclusively thermal process is also part of the investigation; although this is not an 

essential consideration in the long run). I provide a brief introduction to these 

processes in Section 2.1. 

Hydrocracking and pyrolysis are not single heterocatalytic reactions but rather 

involve so many individual reactions that it often becomes a thorn in one’s side to 

model them individually. Fortunately, the well-proven lumping methods can come 

in handy here; I discuss the more common of these in Section 2.2. 

The application of discrete lumping is really straightforward; nevertheless, it 

involves some simplifications that can backfire if we apply it carelessly as the 

parameters of the reaction network become uncertain. And here comes the core of 

this thesis, namely how we can reduce the various uncertainties involving these 

lumped reaction networks. I will introduce various reduction methods in Section 

2.4. 

Before that, Section 2.3 deals with the heterocatalytic reactors themselves, 

involving the development of tools and methods to design such reactors, including 

the choice of the objective function for solving the model-based design problem 

and a case study on how to incorporate the effect of uncertain parameters 

(including the reaction kinetics) into the design problem as well. 

2.1 Heterocatalytic reactions 

A chemical reaction will be called heterocatalytic if the phase of the catalyst is 

different from the phase of the reactants or products. Heterocatalytic reactions are 

widely utilized in the chemical industry with some typical examples shown in 

Table 2.1. In most of these processes, the components flow through the reactor in 

gas and/or liquid phase while the catalyst is present as a solid (in the form of a 

fixed or fluidized bed or a structured arrangement (e.g., a mesh)). The main aim of 

my thesis is the model-based investigation of the said systems. 
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Table 2.1. Heterocatalytic reactions of industrial importance 

Process Alternate name Reactants Products Catalyst 

Ammonia 

synthesis 

Haber-Bosch 

synthesis 
N2, H2 NH3 

ferric oxides 

[2] 

Formaldehyde 

production [3] 
Formox process CH3OH, O2 CH2O, H2O 

ferric oxides / 

V 

HCl oxidation Deacon process HCl, O2 Cl2, H2O RuO2 

Hydrocracking 

and 

hydrotreating [4] 

 

Petroleum 

fractions, 

H2 

High-

quality 

fuels 

Zeolites [5] 

Nitric acid 

production 
Ostwald process NH3, O2 NO2 Pt-Rh [6] 

Olefin 

polymerization 

Ziegler-Natta 

polymerization 
C3H6 

 

TiCl3/MgCl2 

[7] 

Phosgene 

synthesis [8] 
 CO, Cl2 COCl2 

activated 

carbon 

Pyrolysis  varies 

energy 

carrier 

materials 

Zeolites [9], 

metal oxides 

[10] 

Removal of 

nitrogen oxides 
 NOx, NH3 N2, H2O V2O5 [11] 

Sulphuric acid 

production [12] 
Contact process SO2, O2 SO3 

vanadium 

oxides 

Syngas 

production [13] 
 CH4, H2O CO, H2 nickel 

In particular, my thesis considers three areas, the thermo-catalytic pyrolysis of 

real plastic waste, the Deacon process, and vacuum gas oil hydrocracking. The 

following three subsections provide a bit more detailed introduction to these 

topics. 

2.1.1 Plastic waste pyrolysis 

The large amount of waste produced is one of the major downsides of 

economic and technical development. As such, adequate waste treatment plays a 

crucial role in making sustainable development goals a reality. Various methods 

aim to reduce the amount of waste going to landfills. These are part of the waste 
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management hierarchy that lays down priorities regarding which methods are 

generally more preferable than others. They are in order: prevention of generation, 

re-use, recycling, recovery, and only lastly, disposal [14]. In these terms, pyrolysis 

is a recovery technique among other cracking and energy recovery methods, 

categorized by Singh et al. [15]. The aim of pyrolysis is to recover various 

compounds, mainly hydrocarbons from the given feedstock; therefore, it is an 

effective tool in organic waste treatment. For example, biomass [16,17], polymer 

waste [18,19] or waste tires [20,21] can be treated and co-pyrolysis of these are 

also used extensively [22,23]. 

What makes pyrolysis an attractive method despite its relatively low ranking in 

waste management hierarchy that it is not only capable of energy recovery, but its 

products also have a possible use as valuable feedstock for the petrochemical 

sector and refinery. Olefin-rich gaseous pyrolysis products can be further 

processed by oligomerization to produce bio-gasoline [24]. C3–C5 olefins obtained 

by pyrolysis or fluid catalytic cracking can be transformed into branched 

hydrocarbons with high octane number [25,26]. Pyrolysis oil can be blended with 

diesel oils to enhance its fuel properties [27], or it can be used as feedstock for 

hydrotreating in order for double bond saturation and heteroatom removal [28,29]. 

Using polymers as feedstock for pyrolysis could prove to be very important in 

handling the ever-growing amount of these not or slowly biodegradable materials 

[30]. Polyolefin materials, while certainly easier to be reused, do have their 

advantages when used as pyrolysis feedstock. Theoretically, the produced liquid 

oil has a much higher energy value than the energy consumed by the pyrolysis 

that makes the process energetically sustainable [31]. Moreover, polyolefins have 

negligible heteroatom content that is a significant advantage in fuel production. 

Catalytic pyrolysis of LDPE leads to the formation of a complex mixture of 

alkanes, alkenes, carbonyl group-containing compounds and aromatic compounds 

usable in the petrochemical industry [32]. Moreover, through advanced methods, 

a high percentage of monomer recovery can be achieved [33]. 

Product composition during pyrolysis can be significantly influenced by using 

different catalysts. In general, thermo-catalytic cracking results in higher quality 

products that need further processing to a lesser extent [30]. Marcilla et al. found 
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that the amount of gaseous products generated drastically increases when catalysts 

are employed compared to thermal pyrolysis. In addition, it was observed that 

while the coke:liquid:gas ratio remains roughly the same, the type of catalyst has 

an effect on the product composition of these fractions [34]. The presence of the 

catalyst also decreases the reaction time required for total cracking [35]. One 

major drawback of catalytic pyrolysis is that the catalyst is a subject for 

deactivation due to coke formation, while impurities of the polymer waste also 

contribute to this effect [36]. 

2.1.2 Vacuum gas oil hydrocracking 

Hydrocracking is a chemical process during which complex molecules, e.g., 

long-chain hydrocarbons are broken down into more simple and lighter products, 

e.g., light hydrocarbons in the presence of hydrogen. Hydrocracking reactors have 

increasing significance in the petroleum industry to process heavy oils into 

cleaner fuels. Hydrocracking usually takes place at high pressures under catalytic 

conditions. Table 2.2 compares the processing of vacuum gas oil under various 

conditions [4]. 

Table 2.2. Hydrotreating and hydrocracking: ranges of H2 partial pressure and 

conversion. 

Process H2 partial pressure [barg] 
Conversion 

[% (m/m)] 

Hydrotreating 50 – 140 5 – 15 

Mild hydrocracking 50 – 85 20 – 40 

Once-Through 

Hydrocracking 
100 – 140 60 – 90 

Recycle Hydrocracking 100 – 140 80 – 99 

Ebullated-bed 

hydrocracking 
140 80 – 99 

The application of hydrocracking makes the production of fuels from important 

nonconventional feedstocks, such as vacuum gas oil (VGO), various vegetable 

oils, or even waste cooking oil, possible with high quality [37]. These can also be 

co-processed or might be used in blends in different refinery technologies [38,39]. 

The importance of fuels from alternative feedstock has significantly increased 
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with the oil prices rising in the 2000s, and, although the market situation has since 

normalized, the so-called biofuels still have great importance. Beyond that, there 

are environmental as well as legal reasons, e.g., there is a mandatory target of a 

20% share of energy from renewable sources in overall energy consumption in the 

European Union by 2020 [40]. When calculating this share, plant-derived motor 

fuels count as a renewable source, and most of that is consumed in conventional 

and renewable source blends. 

Chemical kinetic modeling becomes increasingly difficult for complex 

processes such as the hydrocracking of VGO, where several thousands of 

individual species can be present, and between them, an even larger number of 

reactions can occur. While concentration measurement for individual components 

is a routine task nowadays and one can generate full reaction networks 

automatically, the identification of all kinetic parameters and the subsequent 

model reduction is usually not a viable method to find a solution. To address this 

problem, various lumping methods have been developed (see Section 2.2); I will 

investigate the applicability of these in Chapters 4-8. 

2.1.3 Recycling HCl into chlorine via oxidation: the Deacon process 

Chlorine (Cl2) is a widely used reactant in the chemical industry. It is mostly 

produced via electrolysis of rock salt in the chloralkali process industrialized in 

the late 19th century [41]. The two main types of this process are the mercury 

cathode and the diaphragm cell technologies; the share of the first is decreasing 

due to the Minamata Convention on Mercury with a deadline for 

decommissioning these plants by 2025 [42]. Another factor needs to be taken into 

consideration is isocyanate production which mostly takes place according to Eq. 

(2.1) [43]: 

R(NH2)2 + 2 COCl2 → R(NCO)2 + 4HCl (2.1) 

The resulting byproduct HCl has to be processed or sold in the form of 

hydrochloric acid solution. One of the methods of processing HCl is to convert it 

into Cl2 and recycle it in the process (Eq. (2.2). With this chlorine supply, it is 

possible to increase isocyanate production capacity while the volume of chlorine-

based products (e.g., hydrochloric acid or PVC) remains the same, or considering 
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the same capacity, the mercury cathode electrolysis cells can be shut down 

without the necessity of replacing it by diaphragm cells. 

2 HCl + 0.5 O2 ⇌ Cl2 + H2O ΔrH = -28560 kJ kmol-1
HCl (2.2) 

Although this so-called Deacon process has been known for more than 140 

years [44], its industrial application was long prevented by the lack of a suitable 

catalyst system. Deacon proposed the application of CuCl2 as a catalyst, but 

copper chloride starts evaporating above 400 °C. This caused rapid catalyst 

deactivation as the operating temperature range was 430-475 °C [45]. Shell 

Research B.V. introduced a CuCl2−KCl/SiO2 catalyst on a commercial scale, but 

eventually, it was abandoned due to low conversion rates and serious corrosion 

problems [46]. The MT-Chlor process developed by Mitsui Chemicals uses 

Cr2O3/SiO2 as an apparently stable catalyst; nevertheless, there is significant 

chromium loss because of unstable intermediates forming under reaction 

conditions [47]. More recently, Sumitomo Chemicals presented its solution for 

HCl conversion in 1995 [48,49] using a fixed-bed tubular reactor system with a 

divided shell area using TiO2-supported RuO2 as a catalyst [50]. Alternatively, 

Bayer Materialscience AG patented its own Ru-based Deacon catalyst with SnO2 

support [51]. The difference besides the catalyst between the Sumitomo and Bayer 

processes is the reactor design, as the latter utilizes an adiabatic fixed-bed reactor 

cascade with a much simpler design in contrast to the robust but more 

complicated multitubular reactor with partitioning from shell side suggested by 

Sumitomo Chemicals [52]. 

Another sufficiently stable catalyst can be formed that is based on CeO2, which 

is studied because of the rarity of ruthenium [53–55]. Cerium is the most abundant 

of rare earth minerals (unlike the name of the group, it is actually not considered a 

rare element), and it is a frequently used catalyst material in oxidation reactions 

[56–59]. While bulk CeO2 is a promising catalyst for HCl oxidation, a variety of 

support materials have also been studied for both technological and economic 

reasons. Moser et al. tested various supported CeO2 catalysts for gas-phase HCl 

oxidation, revealing that CeO2/ZrO2 is a long-term stable and industrially relevant 

alternative of RuO2, as the zirconia content reduced the apparent activation energy 

of the reaction considerably [60]. Further investigation of CeO2/ZrO2 catalysts in 
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both HCl and HBr oxidation showed that a catalyst with a ceria-zirconia molar 

ratio of 1:3 has both higher activity and higher stability than bulk CeO2 [61]. The 

disadvantage of using cerium dioxide as a catalyst is that the reaction takes place 

at higher temperatures than for RuO2 [62]. Another approach is to develop and 

apply a stable Cu-based catalyst (as the “original” one is CuCl2) [63,64]. 

2.2 Discrete lumping 

The lumping method most generally can be explained as a form of clustering, 

during which we take a complex chemical reaction network and replace two or 

more (or even hundreds) of chemical species with one pseudocomponent (aka. 

lump), thus greatly simplifying the chemical reaction network in question. We can 

do this multiple times, forming a lumped reaction network. There are two 

common methods for reaching this target [65]: a priori lumping, which is carried 

out based on empirical rules such as constraining the total number of species 

and/or reactions, and a posteriori lumping, where the detailed reaction network is 

generated first (although its parameters are not identified) and the component 

grouping is carried out based on the properties of the reaction network. The 

application of lumping methods in modeling complex reaction systems dates back 

to almost 50 years [66,67]. At first, it was classified as a problem related to the 

petroleum industry and was applied as an accessory tool, pointing out that some 

systems are only approximately lumpable. 

By and large, there are four main approaches of modeling processes involving 

complex reaction networks, from simple to sophisticated: single reaction models, 

discrete lumping, continuous lumping and detailed kinetic mechanisms. 

Single reaction models involve one power-law type equation in that the rate of 

conversion is expressed by a reaction rate coefficient and a function of conversion 

describing the type of the reaction [68,69]. Chandrasekaran et al. developed a 

kinetic model based on thermogravimetric analysis (TGA) results to determine 

and optimize pyrolysis process parameters (including the catalyst used in the 

reactor) that predicted the overall activation energy of the process on a given 

catalyst [70]. The apparent activation energy also indicates the difficulty of 

decomposing the polymer feedstock based on its composition [71]. A closely 
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related and more advanced approach is the Distributed Activation Energy Model 

(DAEM) that is also used for modeling the conversion of the feedstock, which 

consists of several different species, each having a contribution to the 

decomposition process described by a pseudo-nth-order rate equation, resulting in 

an activation energy distribution function [72]. Reaction enthalpy contributions 

can be taken into account as well, leading to detailed reactor simulations [73]. 

However, the application of single reaction models requires measuring the amount 

of remaining polymer in the reactor, and that were not available in the case 

investigated. 

During discrete lumping, components are grouped together in such a way that 

one compound can only be part of one pseudocomponent. Using this method, we 

can form multiple component groups that in turn will form a lumped reaction 

network where each predefined group (lump) is treated as a single component. 

These models can handle multiple products in an explicit form with relative ease, 

while both parallel and consecutive reactions steps can be identified with different 

rates. The lumping approach is commonly used to give researchers a better 

understanding of experimental data [74,75] or to model industrial-scale processes 

[76,77]. A great deal of reported applications comes from the oil industry. A five-

lump kinetic model for the hydrocracking of heavy oils under moderate conditions 

was proposed by Sánchez et al., which was capable of predicting component 

concentrations with an average absolute error of <5% at temperatures of 

380−420 °C and liquid hourly space velocity (LHSV) values of 0.33-1.5 h-1 [78]. 

The effect of pressure on the kinetics of hydrocracking can also be studied with 

the lumping approach [79]. An exhaustive review of heavy petroleum fraction 

hydrocracking, lumped reaction schemes, and kinetic data has been reported by 

Ancheyta et al. [80]. 

The process of catalytic upgrading of fuels, such as gasoline olefin content 

removal, can also be modeled with the lumping approach [81]. Wang et al. 

applied lumped kinetic simulation to optimize catalyst grading in shale oil 

hydrotreatment [82]. While the majority of publications involve quasi-

homogeneous phase models, the lumped kinetic modeling approach is applicable 

for describing multiphase systems in detail as well [83,84]. A detailed, two-
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dimensional, non-isothermal, heterogeneous model was established by Forghani et 

al., by applying two different reaction kinetic networks between four lumps that is 

also applicable for the scale-up of green diesel production [85]. Lumped kinetic 

models can also be used in the case of treating various oils from renewable 

sources, such as biomass tar cracking [86], catalytic cracking of vegetable oils 

[87,88], or waste cooking oil [89]. 

Moreover, this approach is not limited to the modeling of hydrocracking. 

Csukás et al. developed a dynamic simulation model for plastic waste pyrolysis in 

tubular reactors at laboratory and pilot-scale with 14 lumps collapsed into four 

measured groups. The vapor/liquid ratio along the reactor length was also 

determined [90]. An attempt was also made to incorporate a priori information 

into the determination of the reaction network, though there are several reaction 

mechanisms proposed in the literature that are not always based on the same 

considerations. One approach considers that products are mainly formed from the 

polymer feedstock directly, with interactions between the products to a degree 

[91,92]. Al-Salem et al. used such a mechanism that included the primary 

conversion of the feedstock into five different lumps with the further conversion 

of waxes to liquids and aromatics (also formed from the polymer) [93]. Another 

method is to use a more consecutive reaction scheme where lighter products can 

be formed from each heavier lump (e.g., gases can be formed from both polymer 

feedstock and liquid intermediates) [94,95]. In addition to that, Westerhout et al. 

suggested that PE and PP degrade randomly, producing a range of intermediates 

considered as a separate lump and the actual products are formed by further 

cracking in secondary (and ternary) steps [96]. In Section 3.1, I propose a similar 

mechanism that involves a cracked polymer intermediate. 

There are some remarks that kinetic models using discrete lumps are so 

elementary that their results cannot be reproduced because the feedstock and 

product compositions are not recognized in-depth sufficiently [97,98]. On the 

other hand, with appropriate selection of the pseudocomponents considered in the 

model, it is possible to describe the behavior of the system in detail, e.g., to model 

catalyst deactivation [99]. Furthermore, there are some cases, e.g., interim 

measurements or preliminary experimental design procedures, where more 
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complex methods are not applicable simply because there are no detailed 

measurement data available. 

In the case of continuous lumping, the reaction mixture is represented by a 

continuous function (such as a function of true boiling point (TBP)) that is then 

discretized in order to recover the concentration of the sought pseudo-components 

(defined by TBP range) [100,101]. The advantage of this approach is that any 

number of lumps can be defined and the reaction rate coefficient can be correlated 

to the normalized TBP, thus reducing the number parameters to be identified. The 

disadvantage is that some underlying ideas come directly from the field of 

hydrocracking (e.g., the form of the so-called yield distribution function); 

nevertheless, this method has found its way into the field of modeling other 

processes as well [102]. 

Lastly, it should be noted that methods based on detailed kinetic mechanisms 

are also applicable to model complex reaction systems. These involve a 

significantly higher number of species and reactions present that makes the 

identification of model parameters increasingly difficult. One of the possible 

solutions to this problem is to decompose the problem into smaller subtasks that 

can be solved sequentially [103]. This approach has been successfully applied to 

pyrolysis reactors previously [104]. Population balance models can also be used to 

determine the molecular weight distribution of a polymer during thermal 

degradation [105,106]. Still, more complex methods generally require more 

comprehensive measurement data and the acquisition of that is not always 

feasible. 

2.3 Uncertainties in reactor design 

Any reactor design procedure should cover, including but not limited to, the 

following aspects [107]: 

 stoichiometry of the reactions taking place in the reactor; 

 physical and chemical properties of the reactants and products; 

 reaction rates (preferably equation-based, as a function of 

concentrations, temperature, pressure, catalytic activity, among others); 

 the heat of reaction and reaction equilibrium; 
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 catalyst activity and deactivation, reactivation or replacement of spent 

catalyst; 

 phase equilibria, heat and mass transfer between phases; 

 operational mode (batch, semi-batch or continuous); 

 flow pattern; 

 stability and controllability of the system; 

 corrosion and safety hazards, environmental protection. 

There is more or less uncertainty present in all of the above areas. For example, 

we can choose an idealized flow pattern to model our reactor; nevertheless, it 

would never be ideal because of the reactor geometry and turbulence (the only 

question is how large the difference will be) [108]. Additionally, in the case of a 

lumped reaction network, the uncertainties can be much more prominent and 

diverse. What is the exact stoichiometry of a lumped reaction? How can we 

calculate the heat of a lumped reaction? And, above all, which and how many 

lumped reactions will cover the process that takes place in the reactor to be 

designed? I will introduce various methods to handle the uncertainties of a lumped 

reaction network (more on that topic in Section 2.4); moreover, I would like to 

present two case studies in that I investigate possible methods to deal with the 

uncertainties in connection with reactor design as well. The first case study 

involves a standard reaction (heterocatalytic oxidation of HCl to Cl2) whereas the 

second considers a lumped reaction network for VGO hydrocracking. 

2.3.1 Optimal design criteria of a fixed-bed HCl oxidation reactor 

As discussed in Section 2.1.1, HCl conversion is mildly exothermic and has a 

maximal conversion as a function of temperature [109]; furthermore, as catalysts 

are, in general, the process is sensitive to higher temperatures, thus maintaining an 

optimal temperature profile in the tubes of the fixed-bed reactor is essential. From 

the design viewpoint, we can influence the temperature of the reactor directly with 

cooling or indirectly by diluting the catalyst with an inert component, thus 

reducing the rate of the reaction. 

Luyben investigated the effect of catalyst dilution in tubular reactors using 

dynamic simulations and stated that with diluting the catalyst the dynamic 
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controllability of the reactor improves significantly as it can handle lower heat 

transfer coefficients, and although the size of the reactor increases, this effect 

could easily justify the higher investment costs [110]. With catalyst dilution, it is 

also possible to create an axial activity profile in a tubular reactor. This technique 

has been long known and used successfully [111]. The primary benefit of this 

approach is the ability to mitigate the dynamic temperature rise caused by a fast 

exothermic reaction such as the oxychlorination of ethylene [112]. 

Nie et al. determined the optimal activity distribution using a model-based 

approach with nonlinear programming (NLP) for ortho-xylene oxidation. The 

objective function was the maximum of productivity; the addition of a second 

activity zone lead to a 26.4% increase, which was boosted by a further 6.6% with 

the addition of a third zone [113]. Moser et al. studied HBr oxidation to Br2 

(which is in many ways similar to the HCl oxidation reaction) and implemented 

staged catalyst beds to overcome the problem of evolving hotspots due to the 

more exothermic nature of the reaction. Notably, they suggested mixing of 

CeO2/ZrO2 and RuO2/TiO2 catalysts in one bed to benefit from the advantages of 

both catalyst systems [114]. At the inlet of the reactor tube, CeO2/ZrO2 was used 

as its lower activity and higher stability counteract the hotspot formation due to 

the exothermic nature of the reaction, while further on full HBr conversion can be 

achieved on the RuO2/TiO2 bed as it has a high catalyst activity. 

A problem with the graded catalyst bed is that the activity decreases at 

different rates in each bed. This causes the reactor to become unbalanced over 

time. This effect has been observed for ruthenium-based catalysts [48]. To achieve 

constant operation, the reactor shell can be divided into multiple zones so that the 

temperature in each bed can be controlled individually. Consequently, the optimal 

design procedure of the reactor should take both catalyst dilution and zoned 

reactor cooling into consideration as well, as is the case in the work presented in 

Chapter 9. 

There is a point of interest on how to exactly define the optimal reactor design. 

Conveniently, it can be associated with the minimum of an objective function that 

integrates the various design criteria into a single scalar value. Chemical reactor 

design optimization problems have been successfully solved for numerous 
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reaction systems. In these problems, the objective function generally was the 

maximization of the amount of the desired product(s). Shahrokhi and Baghmisheh 

investigated methanol synthesis in a fixed-bed reactor and optimized the reactor 

feed composition and shell temperature to maximize methanol conversion [115]. 

Cheong et al. reached the highest conversion and selectivity for 1,3-butadiene 

production in a dual fixed-bed reactor system with the systematic variation of inlet 

composition and reactor temperature [116]. Vakili and Eslamloueyan applied a 

more sophisticated objective function for dimethyl ether (DME) production 

consisting of DME molar flow rate and various penalty parameters dealing with 

reactor temperature, pressure, and minimal product flow rate [117]. The formation 

of hotspots is usually avoided by defining a constant temperature maximum. 

Investigations for methanol synthesis were carried out by Montebelli et al. 

including catalyst load, coolant temperature and tube diameter as well [118]. 

On the basis of the literature review, it can be stated that a fixed-bed reactor is 

generally optimized for maximum conversion (and, if relevant, selectivity) and 

that the temperature of the reactor is only taken into consideration by applying 

upper bound or nonlinear constraints to it. However, the reactor ought to be 

designed so as to prevent thermal runaway. For cooled tubes, if an inflection point 

appears before the maximum temperature in function of conversion, then runaway 

will occur [119]. There are numerous criteria for reactor stability (e.g., generalized 

sensitivity criterion by Morbidelli and Varma [120], identifying nonstable steady-

states [121], or relating it to reactor measurement [122], among many others). 

These are not always sufficient to predict thermal runaway, as a low temperature 

gradient after the inflection point indicates that actual runaway is not observed in 

the reactor despite the criterion was fulfilled [123]. 

Suffice to say, temperature gradients are important because high values may 

lead to local overheating on a microscale because of insufficient cooling. 

Moreover, if the same conversion and selectivity can be achieved while 

temperature gradient remains low at the same time (so there are more hotspots in 

the reactor but hot-spot temperatures are lower), then thermal deactivation of the 

catalyst will significantly slower [124]. Consequently, in Chapter 9 I use different 

methods to smooth reactor temperature profile and calculate temperature gradients 
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while using them as an indicator to evaluate the performance of the various 

objective functions while placing a nonlinear constraint to the conversion value. 

This could be particularly useful because conversion maximum can be reached by 

various reactor designs that can be distinguished based on the temperature 

profiles. 

2.3.2 Design of a VGO hydrocracking reactor under uncertainties 

Most hydrocrackers are trickle-bed reactors in that the mixture of the feed and 

hydrogen flows downward through multiple fixed catalyst beds; additionally, 

slurry-phase or ebullating bed units can also be encountered [4]. The general 

structure of a trickle-bed hydrocracking unit is as follows. The feedstock and a 

part of the hydrogen are introduced to the first stage at the top of the reactor unit, 

and after each step, additional hydrogen is added, partly to enhance conversion 

and partially to quench the mixture and cool it back as the overall hydrocracking 

process is considered exothermic [101]. Due to this dual role of the hydrogen, 

which initiates cooling in a shorter term and then a mid-term heating resulting 

from the increased conversion, the control of the hydrocracking unit is somewhat 

more challenging; therefore, more sophisticated control methods such as model 

predictive control (MPC) are more often realized here [125]. 

As a complex process involving thousands of reactions, hydrocracking is often 

modeled using the lumping methods. These methods are in fact applicable during 

model-based reactor design and optimization of the hydrocracking unit [76,126]. 

Bhutani et al. employed such an approach to investigate an industrial 

hydrocracking unit, finding different ways to optimize the reactor, e.g., decreasing 

hydrogen makeup, or increasing kerosene or diesel yields [127]. There were a 

high number of decision variables present in this case, including feed and recycle 

flow rates whose control is not always feasible. On the contrary, Zhou et al. only 

varied the flow rate of the makeup hydrogen and still improved diesel and 

kerosene yields [128]. 

Nevertheless, using a lumped reaction network in reactor design involves the 

necessity to deal with a wide variety of uncertainties. A useful tool for this 

purpose is sensitivity analysis. Celse et al. compared the local (one-at-a-time) and 

a global approach to study the effect of various inputs and found that the results of 
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these are qualitatively similar and both can be used to identify model inputs 

responsible for the uncertainty of the output; so one can focus their attention to 

these variables to increase robustness [129]. In the case of a lumped reaction 

network, sensitivity analysis has a relatively low computational demand, with the 

drawback that such models involve a great deal of simplification, resulting in a 

broader range of uncertainties. Whereas, in the case of a detailed model, it is 

worth constructing a surrogate model for sensitivity analysis purposes [130,131]. 

Lesser sensitivity index values can also be translated to a more robust design, 

i.e., a parameter may still vary within the same range, but its effect on the output 

reduces significantly [132]. Therefore; in order to characterize reactor robustness, 

one would take a list of uncertain parameters with a possible effect on the output, 

eliminate those that can be described with lower influence on the model 

uncertainty (i.e., those associated with lower indices), then assess robustness 

regarding the remaining parameters [133]. Another model-based robustness 

criterion states that the deviation of the objective function caused by the variance 

of the uncertain parameter has to be minimal [134]. This is essentially an 

optimization problem. Steimel and Engell formulated this objective function as a 

sum of two terms. The first included the design variables that would be fixed after 

the realization of the system, and the second term summarized the costs of 

different operating scenarios, including their probabilities related to the chance 

that a specific uncertain condition would be actually met [135]. 

As process models are always affected by uncertainties (whether we 

acknowledge that explicitly or not), the topic has been widely discussed in the 

literature. The explicit depiction of uncertain parameters transforms the 

conventional deterministic mathematical model into a stochastic one [136]. 

Stochastic programming models consider the variability of possibly uncertain 

parameters so that we can optimize the expected (average) performance of the 

model based on the likeliness of these uncertain events [137]. The stochastic 

approach is commonly used for plant modeling (i.e., the interaction between 

several units) [138,139] or to model supply chains [140,141]. On the other hand, it 

is less often applied in designing a single reactor unit, mainly because at first 

glance, there is not much uncertainty in a model. The concept does appear in the 
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literature, e.g., Calderón and Ancheyta determined the sensitivity of a 

hydrocracking reactor to several uncertain parameters [142]; nevertheless, there 

was no apparent feedback from the sensitivity study to the initial modeling 

process. Moreover, Alvarez-Majmutov and Chen used a stochastic modeling 

approach to account for the uncertainties regarding the reactor heat balance, while 

also comparing the results to that of the conventional methods [143]. This could 

be important as the reactor temperature has a high impact on process performance. 

Reaction kinetics are usually not treated as uncertain parameters because in the 

case of conventional reactions, we have a strong theoretical basis on the reaction 

mechanism available. There are exceptions, especially when multiple side 

reactions are present. Mukkula and Engell studied the optimal operating 

conditions of a pilot-scale tube reactor with the assumption that there could be a 

mismatch between the assumed and actual reaction mechanism, providing a real-

time optimization solution that could handle the discrepancy [144]. Whereas, in 

the case of lumped networks the corresponding kinetic parameters are essentially 

obtained as a result of a parameter fitting to the experimental data. Therefore, it is 

worth investigating, and it might be as well worth considering the model 

sensitivity to the kinetics during the reactor design work. Despite that, based on 

our literature review, the uncertainty of lumped reaction networks usually does 

not get enough emphasis. In Chapter 10, I investigate how the uncertainties of the 

lumped reaction network affect the reactor design and how one can 

straightforwardly account for that. 

Yet another uncertain aspect of the hydrocracking reactor model, which is not 

inevitably recognized in full detail, is catalyst deactivation. The formation of coke 

and other carbonaceous deposits on the surface of the catalyst is one of the main 

drawbacks of residue hydrocracking. Due to their low volatility and strong 

adsorption properties, these components are retained on the surface of the catalyst, 

blocking (fouling) the active sites and thus deactivating the catalyst [145]. 

Mesoporous catalysts show higher resistance to fouling [146]; nevertheless, the 

phenomenon cannot be neglected during the reactor design. There is also a slower 

process present where the metal content of the feed and the adsorbed nitrogen 

compounds change the surface structure (called poisoning) [147]. Because of 
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catalyst deactivation, the temperature of the reactor must be increased in the long-

term to compensate for the activity loss and to maintain conversion, resulting in 

higher operating costs [148]. 

There are many deactivation models available in the literature, the more 

elementary equations describe the deactivation process as a function of Time-on-

Stream (ToS), whereas the complex models also include at least the concentration 

of the deactivating agent [149]. In the case of using a lumped reaction network, 

the latter is difficult to interpret as these molecules are not addressed separately. 

Therefore, catalyst deactivation is usually modeled by using an exponential decay 

function: 

𝜑 = exp(−𝛼 ∙ 𝑇𝑜𝑆) (2.3) 

The decay coefficient, α, is not necessarily constant, e.g., it can be influenced 

by the temperature [150]. Consequently, the application of the decay function is a 

powerful method with industrial applications as well [151]. On the other hand, it 

does not take the intrinsic kinetics into account; hence, its parameters might be 

uncertain. 

In Chapter 10, I investigate the effect of catalyst deactivation as a form of 

uncertainty as well. This way, we can eliminate the necessity of using 

computationally expensive dynamic models and simulations to account for 

deactivation. Moreover, we can investigate the effect of deactivation (which, as I 

said, can be an uncertain process) alongside with the effects of other possible 

uncertain parameters using a single modeling framework. 

Finally, I will point out that the application of a stochastic design method is not 

automatically advantageous; rather, its usefulness depends on how flexibly we can 

operate the designed reactor system. In order to investigate that, I compare the 

performance of the hydrocracking reactor designed by applying the conventional 

and stochastic methods and quantified the extent to which the optimal reactor 

operation could be maintained when exposing it to changes in the uncertain 

parameters. 
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2.4 Reducing the uncertainties in lumped reaction networks 

As mentioned earlier, the application of a lumped reaction network in reactor 

design is a source of uncertainty. Consequently, a large part of my thesis deals 

with the lattermost question, namely, how to construct a lumped reaction network 

that can be applied in the reactor design process with sufficient confidence. This 

could be imperative as the values of the various reactor design parameters can 

only be as reliable as the underlying kinetic model. Despite this, generally the 

kinetic identification step is separated more than it would be beneficial in the 

literature. There are numerous works dealing with the kinetic identification step 

[152–154], while one can also find papers abundantly on the topic of reactor 

modeling and design where reaction kinetics are considered as readily available 

without further consideration [155,156]; however, interactions in between are less 

frequently addressed, with some notable exceptions [157]. 

The first study in this thesis (Chapter 4) involves plastic waste pyrolysis and is 

based on the proper processing of the available measurement information. I will 

show that by following a well-defined order during the identification of the kinetic 

parameters of the same lumped reaction network on different catalysts, it becomes 

possible to compare the performance of these catalysts and to carry out the 

preliminary sizing of a pilot-scale reactor. The fundamentals of this research are in 

strong connection with the experimental setup; therefore, they are discussed in 

Section 3.1. 

Furthermore, I would like to present four different methods associated with 

reducing the uncertainties in lumped reaction networks. The first method 

(Section 2.4.1) comes from control theory and is based on the general rule that a 

given system is identifiable only if all of its states are observable. Interpreting the 

kinetic parameters as state variables, we can define the observability of the 

reaction network. This method is commonly applied in studying reaction networks 

but, surprisingly enough, it is seldom used to assess lumped reaction networks. 

The second method (Section 2.4.2) involves the application of global 

sensitivity analysis methods to determine the possible contribution of each 

reaction to the final product composition. 
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The third option (considered in Section 2.4.3) is to explicitly account for the 

correlation between the concentrations of the specified components. If certain 

conditions are met, these correlations can be strong enough to allow us to merge 

certain components, consequently reducing the size of the reaction network and 

the number of parameters to identify. 

The last method (in Section 2.4.4), which can be easily combined with any 

previous one, is that by applying multiple nonlinear optimization programs to 

identify these kinetic parameters, one can reduce the uncertainties of the 

identification step itself and can obtain a better answer for the question whether 

the actual global minimum of the optimization problem was reached or not. 

2.4.1 Ensuring observability 

In the case of chemical reaction networks, the objective of model reduction is 

to identify a reaction subsystem as sparse as possible for which the calculated 

concentration values still show reasonable agreement, compared to the full kinetic 

network. If the reaction network is dense, i.e., a large number of reactions are 

supposed to occur, there is an emerging possibility that the system becomes 

overspecified, which practically means that two or more identified kinetic 

parameter sets would become equivalent in the aspect that they would lead to the 

same composition profiles, shown later in Chapter 5. 

In order to investigate how reliable the results based on a specific dataset are, 

the determination of the observability of the system can be useful. The concept of 

observability, i.e., whether the states of a system can be observed (and, 

consequently, estimated), comes from control theory, where Bayesian state 

estimators, most notably the Kalman filter and its variants, are widely used to 

predict the states of the system from model output and measurements using state-

space models [158]. The system is called observable if the values of state 

variables can be determined within a finite time from the values of outputs 

[159,160]. State estimators can be effectively used to determine kinetic 

parameters from measured variables (such as concentrations or temperature) in an 

observable system [161,162]. They can be applied to study tubular reactors with 

unknown kinetics as well, although they require that the values of the measured 

states (such as concentrations) are available along the reactor [163]. 
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Despite this, the theoretical observability and identifiability of lumped reaction 

kinetic networks are almost never studied; hence, the results obtained using 

lumped kinetic models are often not applicable, for example, for process 

intensification. Consequently, in Chapter 5 I will show (in case of vacuum gas oil 

hydrocracking) that the observability of a lumped reaction network is a good 

indicator to choose between reduced reaction networks associated with (more or 

less) the same model error, thus reducing the uncertainties associated with the 

reaction network. 

2.4.2 Application of Global Sensitivity Analysis (GSA) 

The application of sensitivity analysis in the investigation of complex models 

is a common practice. It can aid the decision of which model parameters need to 

be fitted in a complex model to get an unbiased parameter subset that can be used 

to calibrate the model effectively [164]. Elementary microkinetic networks, large-

scale in nature, can be screened to identify inactive parts under certain operating 

conditions [165]. Local sensitivity analysis, where the derivative of a process 

target parameter is calculated within a distance of a base point (e.g., the normal 

operating point of the system investigated), is very effective in terms of 

computational demand but lacks the ability to explore the whole space of the input 

factors [166], that is, on the other hand, the aim of global sensitivity analysis 

(GSA) [167]. GSA has many applications; regarding kinetic models it is mainly 

used in the field of combustion (e.g. [168,169]), but it is seldom used for reducing 

kinetic networks directly. 

When building a lumped kinetic model, both the number of pseudocomponents 

and the number of reactions between them need to be determined. In the examples 

presented in Chapter 6, the former is consuidered as a fixed value, coming from 

previous studies. The number of reactions to be included, however, needs to be 

further investigated. In theory, the more reactions we consider the more 

identifiable parameters our model has that allow us to get a better model fit, 

represented by a lower minimum value of the objective function. On the other 

hand, the identification of an arbitrary complex kinetic model from limited 

measurement information is not always reasonable. The complexity of the kinetic 

model should be in parity with the available information; otherwise, the model 
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becomes uncertain. Firstly, if the complexity of the model increases, the 

numerical challenge of finding the actual global minimum of the objective 

function will occur. Secondly, the number of possible parameter combinations 

that give similar objective function values rapidly increases, which means we will 

obtain completely different kinetic parameter sets that all provide reasonable 

model fit. In conclusion, our ability to determine the true values of the identified 

kinetic parameters diminishes with the increase of the number of reactions taken 

into consideration, thus making the reduction of these kinetic models desired. 

I have investigated the possible application of five different GSA methods in 

reaction network reduction. The Elementary Effects Test (EET), or the Morris 

method, provides the so-called elementary effects of the search variables on the 

objective function by averaging its derivatives over the search space [170]. While 

it is a global method, the elementary effects are considered semi-quantitative, in 

other words, it can only be used to rank the model parameters relative to each 

other. It can be applied to kinetic parameter investigation [171,172], but it is 

seldom used in the case of lumped networks. 

Fourier Amplitude Sensitivity Test (FAST), Variance Based Sensitivity 

Analysis (VBSA) and High Dimensional Model Representation with Random 

Sampling (RS-HDMR) all fall into the category of the so-called variance- or 

momentum-based methods [166]. They use the second central momentum of the 

model output distribution (in other words, its variance) for characterization. The 

sensitivity index of a parameter is a quantitative indicator that gives its 

contribution to the total variance of the objective function, also called the Sobol 

index [173]. FAST uses a multidimensional Fourier-transformation of the 

objective function to decompose its variance as a function of the input [174,175]. 

For RS-HDMR, the objective function is expressed as a finite hierarchical 

expansion in terms of the input variables, initially proposed by Russian 

mathematician I. M. Sobol’ [176]. VBSA differs mainly on which estimators are 

used to compute the sensitivity indices: the VBSA method uses the approximation 

technique of Saltelli et al. [177], while in case of the RS-HDMR, the component 

functions are approximately represented by orthonormal polynomials whose 

coefficients can be used to calculate the partial variances [178]. There are 
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examples in the literature of using variance-based sensitivity analysis methods for 

studying hydrocracking [129] or pyrolysis [179,180], but it cannot be considered 

as a common practice in this field. Moreover, in the case of lumped kinetic 

networks, local methods are favored more often [181,182]. 

Lastly, the PAWN method, name derived from its authors, is a density-based 

sensitivity approach that uses the Cumulative Distribution Function (CDF) of the 

model output rather than its variance to compute sensitivity indices [183]. As it 

does not use a specific moment (such as the variance) to characterize the model 

output distribution, it can be applied regardless of its shape. Based on the review 

of the literature, it has not been applied in the case of kinetic studies previously. 

In Chapter 6, I explore the application of global sensitivity analysis methods. 

The proposed algorithm is based on the concept of Factors Fixing [184]; 

specifically, I aim to identify model parameters that have no significant influence 

on the objective function. In other words, sufficient model fit is provided on a 

wide range of these parameters, which means that their true values cannot be 

identified from the available data. In theory, if we can eliminate these parameters 

from the model, the number of uncertain values can be reduced significantly while 

the model fit is almost preserved. This is further discussed in Sections 6.2 and 6.3. 

In this way, we can obtain a reduced kinetic model with a lesser number of 

uncertain parameters. I regard this investigation as a step towards constructing 

reliable lumped kinetic models with a gradually increasing number of species 

included, while keeping the uncertainties in the model as low as possible. 

2.4.3 Accounting for correlations in the reaction network 

Because we talk about reaction networks, usually we have to estimate the 

kinetic parameters of a set of correlating reactions, e.g. if more light components 

are formed in hydrocracking, a lesser amount of heavier components will be 

produced, meaning that the corresponding reactions are also not independent from 

each other. There is one thing, though. This issue is seldom addressed in the 

literature. Therefore, the key idea is to merge the lumped components with the 

highest correlation in the reaction network, then calculate their concentrations 

based on this correlation.  
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While used extensively, the properties of lumped reaction networks are 

infrequently studied in the literature. In an early work on the lumping of complex 

reaction networks, it is stated that the core of the lumping process is that the 

species grouped together into a lump are strongly interacting on a shorter time-

scale [185]; i.e. the lumping method is not directly connected to the physical 

properties of the components; rather, it is related to the reactions themselves. The 

lumping process is a tradeoff between model prediction and precision (i.e. 

explicitly depicting as many components as possible to characterize the reaction 

mixture (fuel)) and the capabilities of the analytical techniques (i.e. we would 

want to use uncomplicated and fast methods) [65]. Therefore, it often comes in 

handy to lump together what we can to arrive at a more elementary model and use 

algebraic expressions later to express the concentrations of multiple components 

on the longer time-scale that are all part of the same lump. 

With this, we can also target what kind of measurement we need to follow a 

particular process. This could bear high significance. Even at a laboratory scale, 

the detailed composition of the reaction mixture is usually not often determined. 

There are some works in that the final product is analyzed using different 

methods, mainly gas chromatography. Calemma et al. applied GC-MS and 

13C NMR to analyze hydrocracking products of Fischer-Tropsch waxes [186]. 

Elordi et al. used both online GC and GC-MS techniques to measure product 

yields during HDPE pyrolysis [187]. Djokic et al. combined two-dimensional gas 

chromatography with Fourier Transform-Ion Cyclotron Resonance Mass 

Spectrometry [188]. On the other hand, detailed interim measurement is much less 

often carried out. Onwudili et al. investigated the effect of residence time on 

product composition during polyethylene and polystyrene pyrolysis and observed 

a significant effect [189]. The longer residence time provided an opportunity for 

secondary reactions to occur; hence, the average molecular weight of the pyrolysis 

oil decreased and the amount of pyrolysis gas and char increased. It should be 

noted that the process was carried out in a pressurized batch reactor and the 

volatile products have not been withdrawn continuously. 

The effect of residence time is more likely investigated in a tube reactor, e.g. in 

the work of Ying et al. and apparently the shorter the carbon chain gets, the lower 
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its reactivity becomes [190]. This indicates that if volatiles are continuously 

purged from the system, the importance of the secondary reactions will diminish. 

Zheng et al. also reached this conclusion, stating that the secondary reactions 

between the product lumps immediately stopped after quenching had been 

introduced [191]. This is also the reason behind that, in many cases, 

thermogravimetric analysis is enough to follow the process [192–194]. 

However, detailed intermediate and end-product analysis, if available, provides 

an excellent opportunity to identify specific correlations between the formations 

of different components. Hashimoto et al. identified such correlations in biomass 

pyrolysis between the rate parameters and solid residue yield and between lignin 

content and solid residue yield, indicating that these correlations can positively be 

used in the kinetic parameter estimation [195]. Detailed kinetic models utilize 

correlations between the reaction rate parameters to avoid the number of model 

parameters to be identified to be too high [196,197]. In the long run, exploring 

these correlations makes the parameter estimation of more complex reaction 

mechanisms from a more elementary set of measurement data possible. Both the 

correlations between kinetic parameters and the correlations between the amounts 

of products are worth to be explored. The former represents a direct reduction in 

the number of parameters to be identified, while the latter contributes to this 

indirectly as it gives an opportunity to consolidate the number of components that 

consequently comes with a smaller number of kinetic parameters to be 

determined. One might not consider this an advantage in itself, but it does give 

space to expand the reaction network in other dimensions, as shown in Chapter 7. 

In most works, the authors deal with one single lumped reaction network. This 

is perfectly logical as the modeling requirements can be met using that particular 

network; on the other hand, there can be underlying alternatives and the reasoning 

behind the final choice is usually fairly implicit. Nevertheless, there are a number 

of such works available in the literature. Arabiourrutia et al. investigated tire 

pyrolysis in a conical spouted bed reactor and compared two similar lumped 

kinetic models, one involving a secondary reaction between the volatiles, the main 

aim of which was to improve the fit of the model to the experimental results. It is 

worth noting that the activation energy of the secondary reaction was the highest 
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that is consistent with the assumption that the reactivity of volatile components 

during pyrolysis is significantly lower [198]. Puron et al. developed a four-lump 

kinetic model for vacuum residue hydrocracking and varied the number of 

reactions between four and nine; the intention of the kinetic modeling here was to 

obtain the best fit to the experimental data, but also involving the analysis of 

possible reaction pathways [199]. Santos et al. did a comparative study of kinetic 

models that can be derived from DTG (differential thermogravimetry) curves for 

bagasse pyrolysis, showing that the main degradation steps are parallel in nature 

[200]. Trejo et al. varied also the number of pseudocomponents in the kinetic 

model for the hydrocracking of asphaltenes by separating the feedstock into easy-

to-react asphaltenes and hard-to-react asphaltenes [201]. Félix and Ancheyta 

compared four lumped reaction networks for crude oil hydrocracking, 

highlighting that there can be reactions present in the networks that do not 

actually take place at given operating conditions [202]. 

Still, the possible correlations between the lumped components are rarely 

mapped out. And this is what our aim here; to vary the pseudocomponents 

included in the lumped reaction network and use the correlations identified by 

analyzing the experimental data to reach an optimal lumped reaction network in 

sense of capturing as many characteristics of the measurement as possible for a 

given number of reactions. 

2.4.4 Applying multiple algorithms for parameter identification 

In the case of any engineering-related optimization problem, it is vital to select 

the best-suited algorithm in order to reach such a solution that can be reasonably 

applied during process design, debottlenecking, or scale-up. For example, Gomez-

Gonzalez et al. modeled adsorption and used three different stochastic 

optimization routines to fit the adsorption isotherm parameters, here, a particle 

swarm algorithm stood out, because unlike the other methods, it gave a feasible 

solution every time [203]. However, the range of choice is quite extensive. Li et 

al. employed the Genetic Algorithm (GA) to identify the kinetics of the pyrolysis 

of fiberboards [204]. They suggested that the high computational demand of GA 

can be effectively countered by providing a good initial guess for the parameters 

using Kissinger’s method [205]; however, it is only applicable for 
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thermogravimetric analysis. Ghahraloud and Farsi also used a genetic algorithm to 

optimize the heterocatalytic process of methanol oxidation [206]. Kumar and 

Balasubramanian utilized Particle Swarm Optimization, followed by a gradient-

based step by the Levenberq-Marquardt algorithm for kinetic parameter 

estimation in case of hydrocracking of heavier petroleum feedstock [207]. Such 

combinations of heuristic and conventional search methods are promising to 

eliminate the randomness in the solution. 

Therefore, the question arises from time to time on how to find the best-suited 

algorithm to solve a particular problem. Unfortunately, in most works dealing 

with algorithm comparison, only benchmark problems are used instead of the ones 

related to chemical engineering. Rios and Sahinidis provided an extensive 

comparison of more than 20 derivative-free solvers on convex and non-convex 

test problems, reaching a similar conclusion that there is no solver exist that 

dominates all the others [208]. Though overall they found the performance of 

some commercial solvers (that are not considered in this work) outstanding, there 

is a handful of solvers available on the public domain that performed well (e.g., 

PSwarm). There are other, less-extensive comparisons in the literature dealing 

with test problems available [209,210]. These also indicated that there is no single 

best choice. 

In case of kinetic identification problems (i.e., the particular scope of this 

work), it is much less common to use multiple algorithms on one problem, and it 

is even rarer to compare them; usually, only the results of the leading algorithm 

are accepted, such as in the case of the VGO hydrocracking study of Zhang et al. 

[211]. Nevertheless, such works can be found, e.g., Baker et al. analyzed four 

popular global optimization methods in estimating the parameters of the upper 

part of glycolysis, emphasizing that balance has to be found between success and 

computational time [212]. Another good benchmark of optimization methods for 

kinetic parameter identification is the work of Villaverde et al. [213]. It only 

considers a limited number of methods but also deals with the scaling of the 

search variables, investigating the possible advantages of logarithmic scaling, 

showing that it has its advantages in the case of local and global optimization as 

well. 
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The solution of non-convex optimization problems (such as the kinetic 

identification problems considered in this paper) is likely to be non-unique. In 

other words, a finite set of experimental data can be fitted with multiple sets of 

adjustable parameter values [214]. It is possible to reformulate it to a convex 

optimization problem that in turn would have a unique global optimum [215,216]; 

nevertheless, such methods are less commonly used in the engineering practice 

due to their complexity. Alternatively, the application of statistical tools can be an 

effective way to compare the similar solutions [217]. 

The key idea here is that instead of choosing one best algorithm, we can apply 

several different methods simultaneously to obtain valuable information regarding 

the nature of the solution of the kinetic parameter identification problems. 

Through two examples (a lumped kinetic model for vacuum gas oil hydrocracking 

and a few-step kinetic model for ethane pyrolysis), we highlight the several 

advantages of this approach. Firstly, model variance and total model error can be 

calculated. Secondly, the uncertainty of the model can be quantified. Thirdly, 

further experimental work can be targeted to reduce model uncertainty. 
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3 Reactor models 

Each heterocatalytic reaction system introduced in Section 2.1 has a 

corresponding reaction and reactor model that I take as a basis in the subsequent 

chapters to identify kinetic parameters or to design a reactor that is optimal in 

some sense. These models are relatively simple, involving steady-state 

approximations and elementary flow models (ideally mixed tank and plug flow 

reactors). The simplifications are within reason as in case of parameter 

identification of nonlinear models the computational demand is relatively high 

that one would like to counter this way. 

Keeping that in mind, I provide the governing equations for four different 

systems in Chapter 3. 

1. Section 3.1 covers the dynamic model of a two-stage tank reactor in 

which the pyrolysis of real plastic waste was conducted. This is an 

original model I developed specifically to be able to provide further 

insight on the experimental work carried out at University of Pannonia. 

2. Section 3.2 cites a tube reactor model for vacuum gas oil (VGO) 

hydrocracking [218,219]. I extend this model to involve hydrogen 

consumption explicitly in Section 3.3. 

3. The model of a laboratory-scale fixed-bed tube reactor for conducting 

the Deacon process [220,221] is present in Section 3.4. 

4. A few-step kinetic model for the pyrolysis of ethane is described in 

Section 3.5 [222,223]. 

The last process has not been introduced earlier as the focus in this case is not 

on the reaction system itself, but rather this model is used in Chapter 8 to compare 

the performance of various programs in case of kinetic parameter identification. 

3.1 Dynamic model of a pyrolysis batch reactor system 

The investigation of the low-temperature pyrolysis of real plastic waste from 

end-of-life vehicles was conducted, and subsequently concluded at the MOL 

Department of Hydrocarbon and Coal Processing at the University of Pannonia. 

Special thanks are due to János Sója and Norbert Miskolczi for sharing the 

experimental results and for providing valuable insight about the measurement 
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data and the process overall. The elements of the experimental procedure are 

covered in Section 3.1.1. This is followed by the reactor model that I constructed 

and a method that I developed to effectively analyze the provided data using the 

model-based investigation method. 

3.1.1 Experimental setup 

I would like to present a brief summarization of the methods of the pyrolysis 

experiments that led to the acquisition of the data I used to model the process. For 

more information, refer to the detailed description by Miskolczi et al. [224]. 

Large, easy-to-remove plastic parts of end-of-life vehicles (ELV) were collected 

and then shredded in a laboratory miller. The average particle size was 

approximately 3 mm. The resulting raw material had a weight composition of 

41% (m/m) HDPE, 42% (m/m) PP and 17% (m/m) LDPE, with an approximately 

1.1% moisture content that was removed at 110 °C in a drying cabinet. The dry 

raw material had 5.2% ash content (mainly glass fiber from reinforced plastics), 

0.4% volatiles and 94.4% combustible, according to proximate analysis. Further 

analysis showed that the average carbon and hydrogen content was 85.5% and 

14.5%, respectively [225]. 

The experiment was carried out in a two-stage laboratory-scale reactor system 

shown in Figure 3.1. For each pyrolysis experiment, 50 g raw material was 

introduced in the first stage of the reactor (1) with 2.5 g zeolite-based catalyst 

(ZSM-5). The purpose of using a zeolite-based catalyst in the first reactor stage 

was to increase volatile yields and to modify their properties. Several different 

catalysts were studied, as shown in Table 3.1 (the leading chemical symbol in the 

abbreviation corresponds to the ion occupying the zeolite ion-exchange sites). The 

primary intention here was to study their effect on the product composition and 

apparent kinetics of the pyrolysis process. There are also experimental runs 

present in Table 3.1 where no catalyst was present (hereinafter referred to as 

thermal pyrolysis). The temperature of the first stage was maintained at 

425/455/485 °C, measured at the bottom of the vessel in the melted plastic. 
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Table 3.1. List of catalysts used in the two reactors during different runs. 

Number of experimental run 1st reactor 2nd reactor 

1. HZSM-5 Ni/Mo-Al2O3 

2. HZSM-5 none 

3. NiZSM-5 none 

4. CuZSM-5 Ni/Mo-Al2O3 

5. NiZSM-5 Ni/Mo-Al2O3 

6. FeZSM-5 Ni/Mo-Al2O3 

7. none Ni/Mo-Al2O3 

8. none none 

 

Figure 3.1. Pyrolysis process (1–1st reactor, 2–2nd reactor, 3 – heat exchanger, 4 – 

separator, 5 – gas flow meter, 6 – computer) [224]. 

As for the second stage (2), it contained a Raschig-ring package and 20 g 

alumina-supported Ni/Mo catalyst (the relatively large amount comes from its 
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reusability and the lower residence time of the reactants). The temperature of the 

second stage was maintained at 380 °C – that is controversially lower than of the 

first stage – as the foremost objective of the study mentioned above was to 

investigate the effect of Ni/Mo-Al2O3 catalyst on the hydrogen production and 

aromatization. Here, the lower temperature was chosen to avoid coke deposition 

and excess gas formation. With that, it became possible to produce liquid fuels 

(more precisely, liquid products that can be further processed into fuels) as main 

products at low temperatures. 

The process was carried out under nitrogen atmosphere at atmospheric 

pressure; the excess gas was continuously purged from the reactor by a 15 dm3 h-1 

nitrogen flow. The outlet of the reactor was cooled down to 50 °C by a tube-in-

tube water-cooled heat exchanger (3). The non-condensed gas was not subjected 

to a more in-depth analysis apart from measuring its flow rate (5); the liquid 

product, on the other hand, was sampled at constant time intervals and was 

analyzed by gas chromatography. Hence, the composition of the liquid product is 

known in great detail. Concentrations of components with carbon numbers 

ranging from six to 30 were determined separately for paraffins, olefins, and 

isomeric components. This makes the process modeling task challenging as we 

have to construct a kinetic model that can follow this many species accurately. On 

the other hand, the measured information is still sparse as neither the detailed 

composition of the feedstock is known nor its change was measured during the 

pyrolysis process experiments. At the end of the batch experiment, the remaining 

solid content in the two reactors was measured, reduced by the amount of 

catalysts used. The gas yield was calculated from the amount of initial polymer, 

pyrolysis oil produced and the remaining quantity of coke, the flow rate of the gas 

products was used to classify the integrity of the results using the mass balance. 

3.1.2 Reactor model 

In order to model the process described in the previous section, I developed a 

reaction network consisting of ten reactions between six lumps (Figure 3.2). The 

arrows representing the reactions were colored differently based on the reactants 

for the sake of better readability. I will introduce several modifications to this 

reaction network further along the way; therefore, the original version introduced 
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in this Section is identified as P-N0-R10. (Refer to Table S1 in the Appendix for 

all identifiers.) In the first step, plastic waste feedstock (P) decomposes, forming a 

cracked polymer intermediate (P–) with smaller molecular weight. The 

subsequent nine reactions follow a full-forward scheme in that a heavier 

pseudocomponent may decompose into any of the lighter ones (heavy liquid (L+), 

lighter liquid (L–), gas (G) and coke (C)). G and C are considered as end products, 

as the former has the smallest average molecular weight and the latter is a tailing 

product of the process. 

 

Figure 3.2. P-N0-R10 reaction network with ten reactions between six lumps. 

Based on my literature survey, this can be considered a more general lumped 

model with an average number of pseudocomponents and a dense reaction 

network. It involves both parallel and consecutive reactions; in other words, 

alternative pathways were permitted. This leaves room for model reduction, an 

aspect further investigated in Chapter 6. The number of pseudocomponents in the 

model is determined by the detail of measurement data. Gas, coke and polymer 

intermediate is characterized by one pseudocomponent each as the compositions 

of these were not measured; polymer feedstock is also represented by one lump – 

this may be further separated to represent raw material composition better albeit 

this is not a common practice for lumped models, therefore was not applied in this 

case either. L+ and L– were defined based on the gas chromatography results 

using the average carbon number of identified components to define them (L+: 

1 

2 3 

4 5 
6 

7 10 8 9 
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16–30, L–: 6–15). This gives room to refine the reaction network by increasing 

the number of pseudocomponents describing the liquid product composition (refer 

to Chapter 7 for more details). Aside from these lumps, nitrogen from reactor 

flush was modeled as an additional single component. P, P– and C were 

considered to be quasi-solid (steady phase) and the other pseudocomponents as 

gaseous. The mass transfer between the two phases was regarded as 

instantaneous, in other words, L+, L- and G are only present in the gas phase 

while P, P– and C form the steady phase. 

The reactions were considered as pseudo-first-order mass-based ones. The rate 

of the ith reaction in the jth reactor is described as a function of the reactant mass 

concentration (Eq. (3.1)). For the mass concentration calculation, the weight of 

the given lump (𝑚r
j
) was divided by the volume of the appropriate phase (𝑉ref,i

j
): 

the volume of the steady phase for P and P– and the gas phase for L+ and L–. 

Temperature dependence of reaction rate coefficients was assumed to follow the 

Arrhenius-law (Eq. (3.2)). 

𝑟i
j
= 𝑘i(𝑇

j) ∙
𝑚r

j

𝑉
ref,i
j

 (3.1) 

𝑘i = 𝑘0,i ∙ exp (
−𝐸𝑎,i

𝑅𝑇j
) (3.2) 

where k0,i is the pre-exponential factor and Ea,i is the activation energy of the ith 

reaction, R is the gas constant, and Tj is the absolute temperature of the jth reactor. 

Component sources were calculated from reaction rates and the stoichiometric 

matrix of the reaction network (Eq. (3.3)), the latter denoted in Table S2 in the 

Appendix. In order to maintain the mass balance, reaction rates were multiplied 

by the volume of the phase in which the reaction takes place (Eq. (3.4)). For 

thermo-catalytic pyrolysis, the volume ratio of the catalyst and the reference phase 

was also taken into consideration (Eq. (3.5)). 

𝑅𝑐
′𝑗

= 𝜈 ∙ 𝑟′j (3.3) 

𝑟′i
j
= 𝑉ref,i

j
∙ 휀ref,i

j
∙ 𝑟i

j
 (3.4) 

휀ref,i
j

=
𝑉cat

j

𝑉
ref,i
j

 (3.5) 
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Given the low volume of the reactors and the low residence times of the 

components in the gas phase (approx. 2 minutes), the reactor system can be 

considered as ideally mixed, and the component mass balance equation for a 

component c in the jth reactor is formalized as follows: 

𝑑𝑚c
j

𝑑𝑡
= �̇�c

j,in
− �̇�c

j,out
+ 𝑅c

′j
 (3.6) 

where m is the component mass, �̇� the component mass flow rate, t is the 

elapsed time and Rc is the component source. Flow rates of P, P– and C were 

assumed to be zero because of the immobility of the non-volatile components. In 

the case of the first reactor, there is no inflow except for the nitrogen flush. The 

inflow of the second reactor is equal to the outflow of the first reactor: 

�̇�c
2,in = �̇�c

1,out
 (3.7) 

Outlet mass flow from the reactors is a cumulative effect from different 

phenomena (Eq. (3.8)). Firstly, component mass is increased in the reactor due to 

the continuous inflow. Secondly, components are formed and depleted in the 

reactor that results in a change in the average density. Lastly, the volume ratio of 

the steady and gas phases changes in the reactors; this also has an effect on the 

extent of the outflow. 

�̇�c
j,out

= (∑
𝑅k

′j

𝑀k
k

+ ∑
�̇�k

j,in

𝑀k
k

+
𝑑𝑛g

j

𝑑𝑡
) ∙ 𝑥c

j
∙ 𝑀c (3.8) 

where M is the molecular weight, and x is the molar weight fraction. At 

constant pressure and temperature values, the molar mass change of the gas phase 

(
𝑑𝑛g

j

𝑑𝑡
) is a direct result of the alteration of the steady phase volume: 

𝑑𝑛𝑔
𝑗

𝑑𝑡
= −

𝑝

𝑅 ∙ 𝑇𝑗
∙ [

𝑑

𝑑𝑡
(
𝑚𝑃

𝑗

𝜌𝑃
) +

𝑑

𝑑𝑡
(
𝑚𝑃−

𝑗

𝜌𝑃
) +

𝑑

𝑑𝑡
(
𝑚𝐶

𝑗

𝜌𝑃
)] (3.9) 

where p is the reactor pressure (p = 101325 Pa), and ρ is the component 

density, calculated using Eq. (3.10). Individual component molecular weights and 

coefficients for calculating component densities are listed in Table S3 in the 

Appendix. Eq. (3.10) has a polynomial form, contrary to the hyperbolic function 

that can be derived from the ideal gas law. The reason behind this choice is the 

ambition to take the possible non-ideal behavior of the gas phase into 
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consideration. As the densities of most components present in the model depend 

linearly on the temperature between 425 °C and 485 °C, this choice is of little 

significance, and the actual densities can be calculated by using Eq. (3.10) with 

high accuracy. 

𝜌 = 𝑎𝑇2 ∙ 𝑏𝑇 + 𝑐 (3.10) 

 

Figure 3.3. Sequential solution of the proposed reactor system model. 

The governing differential equations for the two reactors were solved 

sequentially (Figure 3.3). At a given time step, first the component sources need 

to be calculated, then the component mass changes in the steady phase (this is 

possible because of the zero flow rates), followed by the gas phase molar mass 

change and the reactor outflow, and finally the component mass changes in the 



 Reactor models 

47 

gas phase can be determined. The reactor model was implemented in MATLAB 

2017a; for solving the differential equations, the built-in solver ode15s, a variable-

step, variable-order (VSVO) multistep solver was used [226,227]. 

3.2 Steady-state plug flow reactor model for VGO hydrocracking 

A quasi-homogeneous phase plug flow model of a pilot-scale hydrocracking 

reactor operating under isothermal conditions and its parameters were reported 

earlier by Sadighi et al. [218,219]. Identified as VGO-N0-R15 (Table S1), this 

reaction network applies six lumped components, i.e., unconverted vacuum gas oil 

or residue (VGO), diesel (D), kerosene (K), heavy naphtha (HN), light naphtha 

(LN), and gas (G), as denoted in Figure 3.4. The reaction network consists of 15 

reactions, including all pathways that might be encountered during that chemical 

decomposition. 

 

Figure 3.4. VGO-N0-R15 reaction network consisting of 6 component lumps and 

15 lumped reactions, labeled in different colors based on reactants 

The objective is to analyze the transitions between the lumped components; 

therefore, the reported experimental data under different conditions are applied 

here without any modifications. Assuming a steady-state operation and constant 

catalytic activity, the component mass balance equations of the system can be 

formalized as follows: 

𝑑 (𝑐 ∙ 𝓋(𝜌))

𝑑ℓ
= 𝜂 ∙ 휀′ ∙ 𝐿 ∙ 𝑐 (3.11) 
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where ℓ is the dimensionless length of the reactor, η is the effectiveness factor 

of the heterocatalytic reactions, and ε’ is the catalyst volume fraction. The values 

of η and ε’ are 0.8 and 0.264, respectively; each of these values was taken from 

the data supplied in the original article. Since the catalyst suffers from 

deactivation during the hydrocracking of heavy distillates, this assumption is only 

valid for a limited time operation. 𝑐 is the component concentration column 

vector: 

𝑐 = [𝑐𝑉𝐺𝑂 𝑐𝐷 𝑐𝐾 𝑐𝐻𝑁 𝑐𝐿𝑁 𝑐𝐺]𝑇 (3.12) 

The actual space velocity (𝓋) is calculated from the LHSV, considering the 

density change along the reactor length (see Eq. (3.13) – (3.15)). LHSV values 

reported by Sadighi et al. were 0.5, 1, 1.5, and 2 h-1 [218]. The average component 

density (𝜌) is obtained using the individual component densities and molecular 

weights of the components in c; these are given in Table S4 in the Appendix. 

𝓋(𝜌) = 𝐿𝐻𝑆𝑉 ∙
𝜌𝑖𝑛

𝜌𝑎𝑐𝑡
 (3.13) 

𝜌𝑎𝑐𝑡 = ∑(𝑤𝑗 ∙ 𝜌𝑗)

6

𝑗=1

 (3.14) 

𝑤𝑖 =
𝑐𝑖 ∙ 𝓋

∑ (𝑐𝑗 ∙ 𝓋)6
𝑗=1

 (3.15) 

In Eq. (3.11), 𝐿 is the Kirchhoff matrix of the reaction system [228]. For six 

components, 𝐿 is a 6-by-6 square matrix, the diagonal elements of which represent 

the reaction rate coefficients, where the ith component is consumed (hence, the 

negative sums in the main diagonal), while the off-diagonal elements contain the 

rate coefficients of the reactions where the ith product is formed from the jth 

reactant. Because of the mass conservation law, 𝐿 is a column conservation matrix 

(i.e., the element summary for each column is zero). 

𝐿 = 𝑎𝑖𝑗 = {
−∑𝑘𝑖𝑙

𝑙

𝑖𝑓 𝑖 = 𝑗

𝑘𝑗𝑖 𝑖𝑓 𝑖 ≠ 𝑗

 (3.16) 

where k is the reaction rate coefficient. Each reaction is hypothesized to be a 

pseudo-first-order reaction with Arrhenius-type temperature dependence of the 
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rate coefficient (Eq. (3.2)). The steady-state reactor model was implemented and 

solved in MATLAB R2011b using the single-step, second-order solver based on a 

modified Rosenbrock formula called ode23s [226]. 

3.3 Extended model for VGO hydrocracking with H2 consumption 

The hydrocracking model introduced in Section 3.2 does not calculate with H2 

consumption explicitly. The authors of that model provided a method to estimate 

the overall amount of hydrogen required during the process [229], but it is more 

advantageous to tie H2 consumption to the lumped reactions themselves. Hence, I 

modified the reactor model as follows. To begin with, the component mass 

balance from Eq. (3.11) can be more conveniently rewritten as 

𝑑𝑐

𝑑𝑙
=

1

𝑣(𝜌)
∙ 𝜂 ∙ 휀′ ∙ 𝑅𝑐 (3.17) 

where c is the component concentration vector, l is the reactor length, v is the 

linear flow velocity (depending on the component density, ρ), and 𝑅𝑐 is the 

component source vector. In my thesis, I rely on the previous works of Sadighi et 

al. [218]; therefore, the hydrogen-to-oil ratio was maintained at 1780 Nm3/Sm3 

without further considerations. The reason behind this that the kinetic model used 

here comes from the experimental results obtained using such conditions [219]. 

The boundary condition of Eq. (3.17) can be calculated from the reactor inlet 

flow following Eq. (3.18): 

𝑐𝑙=0 =

1
𝑀 ∘ 𝜌 ∘ �̇�𝑖𝑛

∑ �̇�𝑖,𝑖𝑛
7
𝑖=1

 (3.18) 

where M is the molecular weight vector and �̇�𝑖𝑛 is the volume inflow rate 

vector of the components; we can determine the latter from the LHSV value and 

the hydrogen-to-oil ratio. The flow velocity in the reactor (𝑣(𝜌)) is dependent on 

the density of the quasi-homogeneous phase similarly as in Eq. (3.13) with the 

exception that now the inflow velocity, vin, should be used as a base, which is 

itself determined by the inlet volume flow and the cross-section of the reactor. I 

chose the cross-section to size a pilot-scale fixed-bed tube reactor with a nominal 

vacuum gas oil load of 100 kg h-1 at LHSV value of 0.5 h-1. The L/D value of the 
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system was fixed at 20 to facilitate the evolution of the plug flow pattern. The 

main reactor dimensions are given in Table 3.2. 

Table 3.2. VGO hydrocracking reactor main dimensions. 

Size parameter Value 

𝑉𝑟
𝑛𝑒𝑡 (𝑉𝑐𝑎𝑡) 0.1063 m3 

dr 0.19 m 

Lr 3.78 m 

The VGO-N0-R15 reaction network from Figure 3.4 is extended to annex H2, 

arriving to the hybrid reaction network VGO-N1-R5 considering both classic and 

lumped components (Figure 3.5). Here, only five reactions are noted, each colored 

differently. I eliminated the other ten using a reduction method discussed in 

Chapter 5 in order to increase its reliability in reactor design. Each of the five 

reactions involves hydrogen consumption. The numbers denote the molar ratios of 

hydrogen to each reactant in the lumped reactions that were estimated based on 

the molecular weights of the respective reactants and products appearing in that 

reaction. This might seem elementary; nevertheless, the resulting hydrogen 

consumption is in alignment with the measured ~5% (m/m) values (kg H2 

consumption / kg VGO converted) [229]. 

 

Figure 3.5. VGO-N1-R5 reaction network of VGO hydrocracking, consisting of 

six lumps, H2 and five reactions. 

Given this reaction network and stoichiometric coefficients, the component 

sources in Eq. (3.17) can be calculated as follows: 

𝑅𝑐 = 𝜈 ∙ 𝑟 (3.19) 
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where 𝜈 is the stoichiometric matrix of the reaction network (denoted in Table 

S5 in the Appendix) and r is the reaction rate vector. For each of the five reactions 

(denoted by j in Eq. (3.20)), the standard rate equations are used, though they still 

remain lumped, hence the higher order: 

𝑟𝑗 = 𝑘𝑗 ∙ ∏ 𝑐
𝑖

−𝜈{𝑖,𝑗}

𝑖∈{reactants}

 (3.20) 

where kj can be calculated following Eq. (3.2). Given the nature of lumped 

reactions, the formulation of the reactor heat balance is unconventional to a 

certain degree. The governing equation of the reactor temperature (Eq. (3.21)) is 

based on the assumption that 42 MJ of heat is released per kmol of hydrogen 

consumed (∆𝑟𝐻 ≈ −4.2 ∙ 104 kJ kmolH2

−1) [230]. 

𝑑𝑇

𝑑𝑙
=

∆𝑟𝐻

∑ (𝑐𝑖 ∙ 𝑀𝑖)
7
𝑖=1 ∙ 𝑐𝑝

∙
𝑑𝑐𝐻2

𝑑𝑙
 (3.21) 

where the average heat capacity, 𝑐𝑝 can be calculated using Eq. (3.22). Individual 

heat capacities are listed in Table S4 in the Appendix. 

𝑐𝑝 = ∑(𝑤𝑖 ∙ 𝑐𝑝,𝑖)

7

𝑖=1

 (3.22) 

The reactor may contain more than one catalyst layer; in that case, additional 

hydrogen is introduced into the reactor after each layer but the last one. That 

changes both the component concentrations and the reactor temperature. We can 

recalculate the former using Eq. (3.18); here, H2 makeup is accounted for in the 

new �̇�𝑖𝑛 value of the next layer. The following mixing equation obtains the new 

inlet temperature of the kth layer: 

𝑇𝑖𝑛
𝑘 =

�̇�𝑜𝑢𝑡
𝑘−1 ∙ 𝑐𝑝𝑜𝑢𝑡

𝑘−1
∙ 𝑇𝑜𝑢𝑡

𝑘−1 + �̇�𝐻2

𝑘 ∙ 𝑐𝑝,𝐻2
∙ 𝑇𝐻2

(�̇�𝑜𝑢𝑡
𝑘−1 + �̇�𝐻2

𝑘 ) ∙ 𝑐𝑝𝑖𝑛

𝑘  (3.23) 

Eq. (3.23) is also used to determine the reactor inlet temperature (i.e., where 

k = 1). In that case, the first term of the denominator stands for the properties of 

the VGO inlet (mass flow rate, specific heat capacity and temperature, 

respectively), while the second term depicts the initial H2 introduced to the 

reactor. 
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The steady-state model of the plug flow reactor for was implemented and 

solved in MATLAB R2019a using the single-step, second-order solver based on a 

modified Rosenbrock formula called ode23s [226] called for each catalyst layer 

consecutively. 

3.4 Model of a steady-state single tube reactor for HCl oxidation 

Simulation of a single-tube reactor for HCl oxidation using CeO2−CuO/Y 

catalyst was reported earlier by Chen et al. [221]. Eq. (3.24) depicts the material 

balance as the HCl conversion itself as a function of the reactor length: 

𝑑𝑥𝐻𝐶𝑙

𝑑𝑧
= 𝑎

𝐴𝜌𝐵𝑟𝐻𝐶𝑙

𝐹𝐻𝐶𝑙,0
 (3.24) 

where A is the cross-section of the tube, ρB is the density of the catalyst bed and 

FHCl,0 is the molar inflow rate of the HCl. The constant a models catalyst dilution 

so that the activity of the catalyst bed is proportional to the amount of catalyst 

diluted. From the conversion, the partial pressures of the components can be 

expressed as: 

𝑝𝐻𝐶𝑙 =
𝑝 ∙ 𝑥𝐻𝐶𝑙,0 ∙ (1 − 𝑥𝐻𝐶𝑙)

1 + 𝛿 ∙ 𝑥𝐻𝐶𝑙,0 ∙ 𝑥𝐻𝐶𝑙
 (3.25) 

𝑝𝑂2
=

𝑝 ∙ 𝑥𝑂2,0 + 𝛿 ∙ 𝑝 ∙ 𝑥𝐻𝐶𝑙,0 ∙ 𝑥𝐻𝐶𝑙

1 + 𝛿 ∙ 𝑥𝐻𝐶𝑙,0 ∙ 𝑥𝐻𝐶𝑙
 (3.26) 

𝑝𝐶𝑙2 =
0.5 ∙ 𝑝 ∙ 𝑥𝐻𝐶𝑙,0 ∙ 𝑥𝐻𝐶𝑙

1 + 𝛿 ∙ 𝑥𝐻𝐶𝑙,0 ∙ 𝑥𝐻𝐶𝑙
 (3.27) 

𝑝𝐶𝑙2 = 𝑝𝐻2𝑂 (3.28) 

where δ = (1 + 1 − 2 − 0.5)/2 = −0.25 is the change of the total molecular 

number in the reaction (Eq. (2.2)).The reaction kinetics are reported by Tang et al. 

[220]: 

𝑟𝐻𝐶𝑙 = 𝜂

𝑘0 exp (−
𝐸𝑎

𝑅𝑇
)(𝑝𝐻𝐶𝑙

2 𝑝𝑂2
0.5 −

𝑝𝐶𝑙2
𝑝𝐻2𝑂

√𝐾/𝑝
)

(1 + 𝐾𝐻𝐶𝑙,0 exp (
𝑄𝐻𝐶𝑙

𝑅𝑇
) 𝑝𝐻𝐶𝑙 + 𝐾𝑂2,0 exp (

𝑄𝑂2

𝑅𝑇
) 𝑝𝑂2

0.5 + 𝐾𝐶𝑙2,0 exp (
𝑄𝐶𝑙2

𝑅𝑇
) 𝑝𝐶𝑙2)

3 (3.29) 

where η is the effectiveness factor of the shaped catalyst. The reaction 

equilibrium constant, K, was determined following the method of Arnold and 

Kobe [109]: 

log𝐾 =
5881.7

𝑇
− 0.93035 ∙ log 𝑇 + 1.37014 ∙ 10−4 𝑇 − 1.7584 ∙ 10−8  𝑇2 − 4.1744 (3.30) 
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The temperature balance of the reactor accounts for the reaction heat as a 

source and the heat transfer induced by cooling: 

𝑑𝑇

𝑑𝑧
=

𝜌𝐵(−∆𝑟𝐻)𝑟𝐻𝐶𝑙 − 4𝜅(𝑇 − 𝑇0)𝐷𝑖/(𝐷𝑖
2 − 𝐷𝑡

2)

𝑐𝑝(𝐺/𝑀)
 (3.31) 

where κ is the total heat transfer coefficient, T0 is the temperature of the heat 

transfer salt (HTS) used for cooling, cp and M are the average heat capacity and 

the average molecular weight of the mixed gas, respectively, while G is the 

overall mass flow rate of the gas in the reactor. Di is the internal diameter of the 

reactor, and Dt is the external diameter of a thermowell placed inside the tube. 

The pressure drop of the non-empty reactor tube was modeled using the 

following equation: 

𝑑𝑝

𝑑𝑧
= 𝑓

𝜌𝑔𝑣2(1 − 휀)

𝑑𝑝휀3
 (3.32) 

where f is the friction coefficient, ρg is the density of the gaseous reaction 

mixture, v is the linear flow velocity, ε is the catalyst bed void fraction, and dp is 

the pellet size of the shaped catalyst. All parameter values necessary to solve the 

balance equations are listed in Table S6 in the Appendix. The steady-state reactor 

model was implemented and solved in MATLAB R2011b using the variable-step, 

variable-order (VSVO) solver based on the numerical differentiation formulas 

called ode15s [226]. 

3.5 A few-step kinetic model for ethane pyrolysis (ETP) 

In Chapter 8, I apply multiple global nonlinear optimization programs to 

identify the kinetic parameters of the VGO hydrocracking model from Section 3.2 

and an ethane pyrolysis (ETP) model introduced here. This kinetic model involves 

real chemical reactions between regular components, describing the gas-phase 

autocatalytic pyrolysis of ethane, studied extensively by Nurislamova et al. [223] 

and Snytnikov et al. [222]. Table 3.3 lists the constituent reactions and the actual 

values of the corresponding kinetic parameters. There are multiple reasons behind 

the choice to investigate this reaction network more closely: 

 The size of the reaction network is (15 reactions between 12 

components, half of which are radicals) is comparable to the size of the 

previous examples. 
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 The reference values of the kinetic parameters are known – not just as 

identified parameters from elsewhere in the literature but supposedly 

with actual physical meaning as these reactions cover single 

microkinetic events (e.g. collision). 

Table 3.3. List of reactions and kinetic parameters for the ethane pyrolysis model 

Reaction 

Pre-exponential 

factor 

[s-1 or m3 mol-1 s-1] 

Activation 

energy 

[J mol-1] 

1 C2H6 → CH3• + CH3• 1016 3.6·105 

2 CH3• + C2H6 → CH4 + C2H5• 107 5·104 

3 C2H5• → C2H4 + H• 3.16·1013 1.7·105 

4 H• + C2H6 → H2 + C2H5• 108 4·104 

5 H• + C2H4 → C2H5• 2.51·107 8.4·103 

6 CH3• + C2H4 → C3H7• 7.94·107 3.3·104 

7 C3H7• → CH3• + C2H4 7.94·1013 1.37·105 

8 
C2H5• + C2H5• → C2H4 + 

C2H6 
107 8.4·103 

9 
C3H7• + C2H4 → C2H5• + 

C3H6 
2.51·104 2.76·104 

10 CH3• + C2H4 → CH4 + C2H3• 3.98·105 3.5·104 

11 CH3• + C2H3• → CH4 + C2H2 8.91·106 3.2·103 

12 C2H3• + H• → C2H2 + H2 107 - 

13 C2H4 → •C2H4• 6.31·1015 2.53·105 

14 
•C2H4• + C2H6 → CH3• + 

C3H7• 
5.01·1011 2.16·105 

15 •C2H4• → C2H4 2.40·105 - 

This means that, theoretically, if we generate a data set using these kinetic 

parameters and apply no further measurement noise, then use a global nonlinear 

optimization algorithm to identify the kinetic parameters of these 15 reactions 

from the generated data set, the program will ideally find the original values of the 

kinetic parameters associated with zero squared error. 

Actually, the problem turned out to be a bit more sophisticated (see Section 8.4 

for remarks.), but for the time being, I would like to introduce the reactor model 
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used to generate the data set. Assuming a steady-state operation and constant 

catalytic activity, the component mass balance equations of the system can be 

formalized as follows: 

𝑑𝑐

𝑑𝑙
=

1

𝑣
∙ 𝑅𝑐 (3.33) 

where l is the length of the reactor, 𝑐 is the component concentration column 

vector (Eq. (3.34)), v is the linear flow velocity, and  𝑅𝑐 is the component source 

vector (Eq. (3.19)). The main reactor dimensions are given in Table 3.4. 

Table 3.4. Ethane pyrolysis reactor main dimensions [223]. 

Size parameter Value 

Vr 6.03∙10-6 m3 

dr 0.016 m 

Ar 2.01∙10-4 m2 

Lr 0.030 m 

 

𝑐 =

[
 
 
 
 
 
 
 
 
 
 
 

𝑐𝐻∙

𝑐𝐻2

𝑐𝐶𝐻3∙

𝑐𝐶𝐻4

𝑐𝐶2𝐻2

𝑐𝐶2𝐻3∙

𝑐𝐶2𝐻4

𝑐∙𝐶2𝐻4∙

𝑐𝐶2𝐻5∙

𝑐𝐶2𝐻6

𝑐𝐶3𝐻6

𝑐𝐶3𝐻7∙ ]
 
 
 
 
 
 
 
 
 
 
 

 (3.34) 

The boundary condition of Eq. (3.33) can be calculated as follows: 

𝑐𝑙=0 =

1
𝑀 ∘ 𝑤𝑖𝑛

∑
𝑤𝑖,𝑖𝑛

𝜌𝑖

12
𝑖=1

 (3.35) 

where M is the molecular weight vector, win is the inlet weight fraction vector, 

and ρ is the component density, calculated using Eq. (3.10). The inlet composition 

was chosen to be 20% (m/m) CH4, 10% (m/m) C2H4 and 70% (m/m) C2H6 [222]. 

Individual component molecular weights and coefficients for calculating 

component densities are listed in Table S7 in the Appendix. The temperature of 
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the reactor (T) varied from 950 to 1020 K at 10 K intervals. This range is in 

agreement with the experimental conditions used in [223] to estimate the rate 

parameters in Table 3.3, thus ensuring the validity of the kinetic model. 

The linear flow velocity can be calculated from the initial GHSV value (0.05, 

0.1, 0.2, 0.4, 0.7, 1, 1.6, or 2 s-1) and the change in composition along the length 

of the reactor: 

𝑣 = 𝐺𝐻𝑆𝑉 ∙
𝑉𝑟

𝐴𝑟
∙

𝑐

𝑐𝑖𝑛
 (3.36) 

𝑐 = ∑(𝑋𝑖 ∙ 𝑐𝑖)

12

𝑖=1

 
(3.37) 

The reactor model was implemented and solved in MATLAB 2017a; using the 

built-in a variable-step, variable-order (VSVO) multistep solver called ode15s 

[226,227]. 
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4 Kinetic identification of plastic waste pyrolysis on zeolite-

based catalysts 

In the following Chapters I would like to present the results that will back up 

my theses. All but one topic will include kinetic parameter identification. 

Nevertheless, the identification procedure is only a tool and the focus of each 

Chapter will be something more novel. Chapter 4 builds on the experimental 

results and the pyrolysis reaction network introduced in Section 3.1. I propose a 

two-step iterative parameter identification method in Section 4.1 with that the 

values of the kinetic parameters can be straightforwardly determined without any 

a priori information of their range. Next, I show that the proposed lumped kinetic 

and reactor model is reasonably accurate and captures the key characteristics of 

the experimental system. The most important objective of this Chapter is to 

emphasize that the identified kinetic parameters of a lumped reaction network can 

be used to compare the various catalysts, and not only in the context of the 

experimental data. Section 4.4 answers how can we use the identified kinetic 

parameters to compare the performance of the catalysts in a scaled-up 

environment and how to choose a likely candidate to carry on to the actual scale-

up process. 

4.1 Identification strategy 

As covered in Section 3.1.1, low-temperature pyrolysis of real plastic waste 

was carried out in a two-stage laboratory-scale reactor system using several 

different catalysts (Table 3.1). The first aim of this chapter is to identify the 

kinetic parameters of the reaction network shown in Figure 3.2 for all different 

catalysts. The main objective function is to minimize the squared error between 

experimental data and model results by varying the parameters of Eq. (4.1). The 

squared error between measurement (exp) and calculation (cal) is summarized for 

three temperature levels (T), five pseudocomponents (c) and all sampling points 

(pt) (one for the sums of P, P–, C and G; four to six for L+ and L–): 

𝑓1(𝑥n) = ∑ ∑ ∑(𝑤exp − 𝑤cal)
2

ptcompT

 (4.1) 
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Input variables of Eq. (4.1) are the kinetic parameters of the ten reactions 

defined in Section 3.1 (Figure 3.2). However, there are some difficulties arising 

during the determination of the search space for the minimization of the defined 

objective function. There is no information available about slow and fast reactions 

and though the activation energy values might be approximated from previous 

studies, they have relatively large deviations. Therefore, I propose an algorithm 

consisting of two identification and one approximation step (Figure 4.1). 

 

Figure 4.1. Kinetic parameter identification strategy. 

In the first step, individual reaction rate coefficients (Eq. (3.1)) are determined 

at each temperature level, a total of 35 parameters (the different temperature level 

of the second reactor was also taken into consideration, but here only the last five 

reactions actually take place there). 

𝑥n,1 = [(𝑘425
n )

𝑇
(𝑘455

n )
𝑇
(𝑘485

n )
𝑇
(𝑘380

n )
𝑇
]
𝑇

 (4.2) 
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The superscript n in the decision variables indicates that the actual values were 

normalized between 0 and 1 for better convergence: 

𝑥act = 𝑥n ∘ (UB − LB) + LB (4.3) 

Between the variables, linear inequality constraints are formulated pairwise, 25 

in total, such as 

𝑘𝑖(𝑇𝑙𝑜𝑤𝑒𝑟) ≤ 𝑘𝑖(𝑇ℎ𝑖𝑔ℎ𝑒𝑟) (4.4) 

In this way, the input variables can be more independently varied because a 

given ki(T) value only has an effect on the mass concentrations at the given 

temperature level. If a parameter value from the solution of the optimization 

problem reached the value of the corresponding upper or lower bound, the 

optimization run was repeated using a set of modified constraints (±20%) but with 

the solution of the previous iteration as an initial guess. With this extension, rate 

coefficients with different magnitudes can be identified without any a priori 

information of the reaction rates. 

In the second step, Arrhenius-parameters were approximated based on the 

results of the first step based on the linearized Arrhenius equation and the least-

squares method. Lastly, the approximated values were used as an initial guess for 

searching for the final optimal values of Eq. (4.5). The decision variable vector 𝑥𝑛 

of Eq. (4.1) can be expressed in the second step by Eq. (4.5): 

𝑥n,2 = [(𝑘0
n)

𝑇
(𝐸𝑎

n)
𝑇
]
𝑇

 (4.5) 

The sequence in which the kinetic parameter identification should be carried 

out for the different experimental runs listed in Table 3.1 is not particularly 

straightforward. For example, if the kinetic parameters for thermal pyrolysis need 

to be identified, the corresponding experimental run (nr. 8 in Table 3.1) cannot be 

used alone because run nr. 7 is very similar (thermal pyrolysis in the 1st reactor 

but catalyst is present in the 2nd). On the other hand, the difference between the 

results of these two runs is related to the presence of catalyst in the 2nd reactor. 
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Therefore, kinetic parameters for different catalysts were identified in three 

phases (Table 4.1): 

Phase 1. Identify the rate coefficients for reactions on the structured Ni/Mo-

Al2O3 catalyst (kNiMo). In this case, the second step of the 

identification procedure cannot be carried out because of the 

constant temperature in the 2nd reactor. During this phase, 

experimental runs (7, 8); (1, 2) and (3; 5) had been coupled so the 

contribution of the second reactor could be observed from the 

difference in measurement data. This also means that the 

dimensionality of the optimization problem is increased to 40 

(because we deal with two catalysts at the same time). This is also 

the reason that the six experimental runs were not identified together. 

Final kNiMo values were obtained by averaging the results of the three 

pairs of experimental runs. The exact values of Arrhenius parameters 

for the other reactions were not identified in this step. 

Phase 2. In the knowledge of kNiMo, kinetic parameters for thermal pyrolysis 

can be identified from experimental runs 7 and 8, while Arrhenius 

parameters for reactions on CuZSM-5 (run 4) and FeZSM-5 catalysts 

(run 6) can also be parallelly determined. 

Phase 3. Arrhenius parameters for reactions on HZSM-5 (runs 1 and 2) and 

NiZSM-5 catalysts (runs 3 and 5) can be determined in parallel 

knowing kNiMo, 𝑘0
𝑡ℎ𝑒𝑟𝑚𝑎𝑙 and 𝐸𝑎

𝑡ℎ𝑒𝑟𝑚𝑎𝑙 values. 
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Table 4.1. Suggested kinetic parameter identification sequence. 

Phase 

Experimental runs used 

for identification 

(Table 3.1) 

Resulting kinetic 

parameters 

Number of 

decision variables 

(Figure 4.1) 

1. a 7, 8 

𝑘NiMo Step 1: 40 1. b 1, 2 

1. c 3, 5 

2. a 7, 8 
𝑘0

thermal Step 1: 35 

Step 2: 20 𝐸𝑎
thermal 

2. b 4 
𝑘0

CuZSM−5 

Step 1: 30 

Step 2: 20 

𝐸𝑎
CuZSM−5 

2. c 6 
𝑘0

FeZSM−5 

𝐸𝑎
FeZSM−5 

3. a 1, 2 
𝑘0

HZSM−5 

𝐸𝑎
HZSM−5 

3. b 3, 5 
𝑘0

NiZSM−5 

𝐸𝑎
NiZSM−5 

As noted in the introduction of Section 2.4, this coupling method can reduce 

the uncertainty of the identified kinetic parameters (because multiple experimental 

runs were used to estimate them). This would further reduce the effect of the noise 

of the experimental data on the identified model parameters. And this would open 

up the way to compare the catalysts themselves on the base of the identified 

parameters and to choose a reliable catalyst for processing such wastes. It can be 

stated that with the proper selection of pseudocomponents, the lumping approach 

is appropriate for catalyst evaluation and comparison, leading to a better 

understanding of the previous experimental results and the overall pyrolysis 

process. Hence, the results might also be used during process design or scale-up. I 

provide a detailed case study in Section 4.4. 

Due to the complexity of the identification task, the use of a global nonlinear 

optimization algorithm is necessary. There are multiple alternatives available that 

have been successfully applied in the case of kinetic parameter identification such 

as genetic algorithms [81,231], simulated annealing [232] or direct search [233]. 
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In this case, the NOMAD (Nonlinear Optimization by Mesh Adaptive Direct 

Search) software package was chosen that can be considered as an optimal 

tradeoff between speed and accuracy as it requires a relatively smaller number of 

function evaluations compared to other global optimization algorithms. NOMAD 

is intended for time-consuming black-box simulations with a relatively small 

number of variables [234,235]. It also has a MATLAB interface available that can 

be called directly from the OPTI Toolbox [236]. 

4.2 Reliability of the identified kinetic parameters 

Identified values of kinetic parameters for all cases are available in detail in the 

appendix (Table S8). To address the reliability of the identified parameters, a local 

sensitivity study was performed by means of ±25% perturbation of the pre-

exponential factors and ±5% perturbations of activation energies, on one 

parameter at a time [237]. In each step, the objective function (Eq. (4.1)) was 

evaluated; the obtained curves are shown in Figure 4.2. 

 

Figure 4.2. Local sensitivity analysis of calculated parameters for thermal 

pyrolysis. (a) pre-exponential factors; (b) activation energies. 
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Based on the results of the sensitivity analysis, it can be assumed that the 

suggested identification strategy and the NOMAD programming method give the 

optimal values of parameters since all curves have their minimum value at 0% and 

any modification of the given parameter leads to a higher objective function 

value. The model is the most sensitive to the changes in the values of kinetic 

parameters for the first three reactions (P→P–, P–→L+, P–→L–), firstly because 

the concentrations of the involved components are higher (as the volume of the 

steady phase used as reference is smaller than the gas phase volume), secondly 

because the products P–, L+ and L– are also important reactants for other 

reactions determining the final product composition. 

The root of mean squared errors (RMSE) between pseudocomponent mass 

percentages from experimental data and simulation results for each temperature 

level and the complete data set were calculated and are listed in Table 4.2. Higher 

model errors were obtained in case of thermal pyrolysis with structured Ni/Mo-

Al2O3 catalyst in the 2nd reactor, while model performance is the best for thermo-

catalytic pyrolysis on FeZSM-5–Ni/Mo-Al2O3 catalysts. The results indicate that 

the suggested model and identification strategy can reproduce the experimental 

results. RMSE values for the four thermo-catalytic cases are roughly the same 

with the exception of NiZSM-5–Ni/Mo-Al2O3 catalyst (run nr. 5). This outlier 

indicates a higher error in the experimental data, perhaps even systematic that is 

not easy to be discovered. Based on these results, the case of NiZSM-5–Ni/Mo-

Al2O3 catalyst is definitely worth to be revisited. From another viewpoint, this 

result also shows how useful and important the kinetic modeling of such processes 

can be. For thermal pyrolysis, the larger model errors might be connected with the 

longer run times of these experimental runs, resulting in the possible accumulation 

of both observational and model errors. 
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Table 4.2. Root-mean-square error (RMSE) between experimental and calculated 

data. 

Catalyst in 1st 

reactor 

Catalyst in 

2nd reactor 
425 °C 455 °C 485 °C 

Temperature 

aggregated 

- - 3.6% 3.6% 2.2 % 3.2% 

- Ni/Mo 3.8% 4.7% 5.0 % 4.3% 

HZSM-5 - 2.6% 1.2% 1.3 % 1.8% 

HZSM-5 Ni/Mo 1.7% 1.3% 1.2 % 1.3% 

NiZSM-5 - 1.6% 2.6% 3.1 % 2.4% 

NiZSM-5 Ni/Mo 3.0% 3.9% 2.6 % 3.1% 

CuZSM-5 Ni/Mo 1.3% 2.3% 1.6 % 1.7% 

FeZSM-5 Ni/Mo 1.1% 1.2% 1.6 % 1.2% 

4.3 Performance of the identified parameters 

Experimental and calculated mass fractions as a function of time for pyrolysis 

on FeZSM-5/Ni/Mo catalyst and on NiZSM-5/–, NiZSM-5/Ni/Mo catalysts at 

455 °C are shown in Figure 4.3 and Figure 4.4, respectively. The former 

represents a result with a fairly good agreement between experimental and 

simulated data, while in the case of the latter the root mean squared error is 

significantly higher. 

The main reason for the higher errors that the solution represented in Figure 4.4 

is a compromise from identifying the kinetic parameters from experimental runs 3 

and 5 simultaneously and the residual errors between experimental data and 

model results are contradictory in the two cases. Due to the low residence time 

and concentrations of the pseudocomponents in the 2nd reactor, the model results 

cannot give back the relatively large difference between the two measurements. 

Whether this is an observational or a model error needs further investigation. 

The difference between the experimental and model results might be also 

caused by the relatively simple flow model that has two assumptions: both 

reactors are ideally mixed, and all components are present only in one phase (P, 

P–, and C: solid / melted phase, L+ L–, G: gas phase). The former assumption is 

plausible given the shape of the reactor, the low volume, and low residence times 

of the components; the component mass transfer between the two phases, on the 
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other hand, is probably not instantaneous under the given experimental conditions. 

The inclusion of proper mass transfer in the reactor model might further increase 

its accuracy. Nevertheless, the gas yield increasing effect of the Ni/Mo catalyst 

can be clearly seen in Figure 4.4, meaning that the suggested model can 

sufficiently describe this phenomenon. 

For all three examples listed, component concentrations reach a constant value 

approaching the end of the run indicating the end of the batch pyrolysis run that 

gives room for the optimization of the duration of run time. 

 

Figure 4.3. Pseudocomponent mass fractions from run nr. 6 at 455 °C – 

experimental (markers) and simulation (lines). 
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Figure 4.4. Pseudocomponent mass fractions from run nr. 3 (a) and 5 (b) at 455 °C 

– experimental (markers) and simulation (lines). 

The results of the thermal pyrolysis at 425 °C are shown in Figure 4.5. 

Compared to the thermo-catalytic results shown previously, it can be seen that the 

thermal process is considerably slower, especially at lower temperatures, and the 

amount of gaseous products formed is lower, which corresponds to the 

preliminary assumptions and other literature results surveyed in Chapter 2. Part of 

the higher residual error comes from the fact that the concentrations of P and P– 

do not reach zero during the simulation run. 

The overall amount of solid products is significantly higher without the 

introduction of catalysts, while the amount of liquid products remains mostly the 

same. Under catalytic conditions, however, the ratio of L– and L+ is higher (more 

components with lower molecular weight are produced) that is a consequence of 

the fact that ZSM-5 catalysts have high efficiency in the formation of lighter 

hydrocarbons, as previously indicated [224]. At 425 °C, the calculated liquid 

fractions appear to be systematically higher than the actual measured values. 

However, as mentioned earlier, Arrhenius-type kinetic parameters were identified 

usable at all temperature levels and using multiple datasets (seen in Table 4.1). 
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This can result in higher errors in some cases; on the other hand, it should be not 

necessarily considered a model error. 

 

Figure 4.5. Pseudocomponent mass fractions from run nr. 8 at 425 °C – 

experimental (markers) and simulation (lines). 
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4.4 Comparing the various zeolite-based catalysts 

 

Figure 4.6. Rate of the P → P– reaction in case of thermal pyrolysis and in the 

presence of various catalysts at different temperatures 

Now that we have a reliable kinetic model to investigate the pyrolysis process, 

we can use it to grade the various catalysts that have been applied to carry out the 

experiments (again, these were listed back in Table 3.1). We will be able to obtain 

some insight into their activity, for example, if we compare the reaction rate of the 

first reaction (P → P–) on different catalysts. These reaction rates are shown in 

Figure 4.6 as a function of time. Note that the shapes of these functions are a bit 
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unconventional for a first-order reaction in the case of the thermo-catalytic 

processes; the reason behind this is the presence of the volume ratio of the catalyst 

and the reference phase in Eq. (3.4) that reaches high values as the conversion 

gets higher. It can also be seen that the reaction rates using the HZSM-5 or the 

FeZSM-5 catalysts are higher; therefore, the pyrolysis process overall is faster in 

these cases, making the application of these more favorable. 

Another aspect that needs to be taken into consideration is that the main liquid 

product of the process is the L– as the lighter hydrocarbons are more likely to be 

used as fuel. Consequently, the ratio of the P– → L+ and the P– → L– reactions 

can also be used to compare the catalysts investigated. This ratio is constant in the 

kinetic model given the nature of first-order reactions and the same reactant. The 

results for this comparison are listed in Table 4.3, using a further layer of coloring 

to distinct between the ratios more easily. Here the aim is to find the catalysts 

associated with lower values (i.e., where the rate of the P– → L– is higher). Such 

is the CuZSM-5 catalyst. This would mean that while its overall activity (that can 

be derived from Figure 4.6) is lower, the product composition that can be 

achieved by using it is more preferable. The final choice of catalyst would depend 

on the specific application purpose of the pyrolysis process and the liquid product. 

Nevertheless, the model-based comparison of the catalysts can be a powerful tool 

in aiding that decision. 

Table 4.3. Ratio of the rates of P– →L+ and P– →L– reactions in case of thermal 

pyrolysis and in the presence of various catalysts at different temperatures 

 Temperature  

Catalyst 425 °C 455 °C 485 °C 

 

none (thermal) 1.353 1.721 2.146 

HZSM 1.680 1.591 1.513 

NiZSM 1.521 1.607 1.690 

CuZSM 1.353 1.365 1.595 

FeZSM 1.682 1.622 1.570 
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There is one more thing. One can argue that the observations we have made by 

far on the catalysts using the developed lumped kinetic model and the calculated 

reaction rates can also be derived from the experimental data directly (although 

not so straightforwardly). This is a fair point of argument, but the identified 

kinetic parameters have much more use. For example, we can use to pave the way 

of the reactor scale-up process. Its major aspects are as follows: 

 Reactor layout. A possible layout of a reactor for processing shredded 

plastic waste is of a tubular design equipped with a screw to establish 

the flow of the partly solid components in the reactor. 

 Flow model. The most elementary method to model such equipment is 

to approximate it with a plug flow reactor model similar to the one 

discussed in Section 3.2. This is a major difference compared to the 

previous simulations that involved two ideally mixed reactors. 

 Size of the equipment, which is denoted in Table 4.4. The L/D value of 

the system was fixed at 10 to facilitate the evolution of the plug flow 

pattern. 

 Catalyst : polymer ratio remained the same as was during the 

experiments on laboratory-scale (1:20) to ensure the validity of the 

kinetic model. 

The velocity of the melted phase remained the same in the reactor (this would 

correspond to the rotational speed of the screw), while the velocity of the gaseous 

phase was calculated following Eq. (3.13). The catalyst was considered to be a 

separate component in the solid/melted phase. 

Table 4.4. Sizing of a pilot-scale pyrolysis reactor 

Parameter Value 

Lr:dr ratio [-] 10 

Vr [m
3] 0.05 

dr [m] 0.185 

Ar [m
2] 0.027 

Lr [m] 1.85 
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Given the reactor model established, we can calculate the stationary product 

composition after the reactor. We can also carry out the optimization of the 

reactor inlet LHSV value. For all possible catalysts, the maximum possible LHSV 

value was calculated so that the amount of L– is maximal in the product: 

max(𝑤𝐿−(𝐿𝐻𝑆𝑉, 𝑇)) (4.6) 

The results are shown in Table 4.5. This gives us a considerably more 

comprehensive insight on the problem of choosing the right catalyst as I have 

taken both the effect of the LHSV value and the temperature level into 

consideration and not only the rate of L– formation but the total amount formed 

from the feedstock is observed. And this is in fact the highest for the FeZSM-5 

catalyst; because, although the percentage of the light liquid pseudocomponent is 

lower in the product, the superior LHSV value easily compensates and surpasses 

this; i.e. the productivity of the FeZSM-5 catalyst is the highest. This is caused by 

the fact that here we can carry out the process at a higher temperature level 

without the risk of gasification of the feedstock. This is an effect that has not been 

taken into consideration when I have compared the overall reaction rates. 

Table 4.5. Maximizing the feedstock conversion (XP) and the amount of L– (wL–) 

in a tube reactor 

Catalyst LHSV [h-1] T [°C] XP wL– 

HZSM-5 2.84 425 99.99% 42.14% 

NiZSM-5 3.50 442 99.96% 38.93% 

CuZSM-5 4.80 458 99.99% 32.67% 

FeZSM-5 9.77 485 99.95% 40.24% 

In conclusion, these results indicate that, on one hand, the type of catalyst has a 

significant effect on the pyrolysis process. On the other hand, by identifying the 

kinetic parameters of a lumped reaction system using the experimental data 

obtained by the application of different catalysts and comparing the identified 

values more systematically greatly facilitate the selection of the appropriate 

catalyst. The method discussed here also involves reactor scale-up calculations, 

i.e., we can choose the appropriate catalyst while having regard to the next phase 

of the design process. 
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4.5 Chapter summary 

In this Chapter, I identified the kinetic parameters of the P-N0-R10 reaction 

network introduced in Section 3.1 in the case of several zeolite-based catalysts 

present, using a novel two-step identification process (Figure 4.1) whose 

application does not require any prior knowledge about the possible values of the 

kinetic parameters. The results indicate that the suggested model and 

identification strategy can reproduce the experimental results with the desired 

accuracy. In other words, the P-N0-R10 reaction network gives a good 

representation of the actual pyrolysis process; therefore, it can be used for 

pyrolysis modeling and supporting of scale-up and/or optimization tasks. I 

introduced a possible scenario for the scale-up process in Section 4.4 and showed 

that while the application of the CuZSM-5 catalyst results in a higher amount of 

lighter components in the liquid product, the productivity of the FeZSM-5 catalyst 

is higher because the lesser amount of gaseous products at high temperature 

levels. 

Although I did not emphasize in this Chapter, some reaction rates in the 

identified reaction network are significantly lower than others (as indicated by the 

activation energies listed in Table S8) that gives space to the reduction of the 

kinetic model, an idea further investigated in Chapter 6. More importantly, it 

might be possible to increase the number of pseudocomponents present in the 

model without increasing the number of reactions, thereby describing the 

experimental data in greater detail. The details are discussed in Chapter 7. 
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5 Identification and observability of lumped kinetic models 

The VGO-N0-R15 lumped reaction network shown in Figure 3.4 consists of no 

less than 15 reactions between six pseudocomponents. It includes every possible 

pathway on that a heavier compound can decompose into a lighter one, i.e., it is a 

form of safe-play for the kinetic modeling of hydrocracking. Moreover, the 

reaction network might be a little dense compared to the relative scarcity of the 

measurement data. Therefore, in this Chapter, I propose a systematic way to 

reduce the reaction network while preserving its ability to model the 

hydrocracking process with the required accuracy. Specifically, I did the 

following: 

 I developed three different strategies to reduce the size of the reaction 

network and identify its kinetic parameters at the same time. I present 

these strategies in Section 5.1. 

 In Section 5.2 I show that the reduction of the kinetic model is indeed 

necessary as several alternative networks exist that describe the 

experimental result at the same error level. In other words, the solution 

is uncertain. 

 I introduce the observability criterion coming from the field on control 

theory in Section 5.3 that I will use to construct a reduced reaction 

network whose all states (i.e., rate coefficients) are observable; 

therefore, identifiable. I show that this extent of kinetic network 

reduction is achievable using one of the developed identification 

strategies. 

5.1 Identification strategies 

The main objective is to minimize the difference between the measured and 

calculated compositions, which is defined as 

𝑓2(𝑥𝑛) = ∑ ∑ ∑ (
𝑐𝑚 − 𝑐𝑐

𝑐𝑚
𝑚𝑎𝑥 )

2

𝐿𝐻𝑆𝑉𝑐𝑜𝑚𝑝𝑇

 (5.1) 

where 𝑐𝑚 and 𝑐𝑐 are the measured and calculated mass concentration values, 

respectively, while 𝑦𝑚
𝑚𝑎𝑥 represents the maximum measured mass concentration 
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value for a specific component (comp), including all temperature (T) and LHSV 

values. Measured mass concentration values originate from the previously 

mentioned work of Sadighi et al. [218], also given in Table S9 in the Appendix. In 

the absence of any information about the accuracy of the measured data, I did not 

address the effect of measurement error on the model solution thoroughly. 

Instead, I focused on the solution of the model and the optimization problem. 

Interestingly, the quality of the experimental data can be broadly assessed, as 

shown later in this Chapter. To solve the optimization problem, the NOMAD 

software package was used (refer to Section 4.1). 

The objective function variables are the reaction kinetic parameters; however, 

one must address the fact that not all reactions are necessarily present in the 

system. Considering the full and all possible reduced networks, there are 32 777 

possible variants that cannot be evaluated on a reasonable time horizon. The 

solution presents itself as to assign existence variables to each reaction and solve 

the obtained MINLP problem; however, since the objective function for a lumped 

kinetic reaction network is highly nonlinear and no a priori information is 

available for the reactions present, finding the best solution as the global 

minimum is at least time-consuming and involves various trial-and-error searches, 

regarding the algorithm parameters, such as the initial function value. In order to 

overcome that obstacle, I evaluated three different approaches. 

The brief concept of the first, sensitivity-based selection strategy (shown in 

Figure 5.1) is described as follows: 

1. For each reaction, the objective function value was calculated in a 

sensitivity study by varying the kinetic parameters of that reaction only 

from 1% to 200% of the middle of the related search intervals. 

2. The reaction associated with the minimum objective function value was 

specified as part of the reaction network. 

3. The kinetic parameters of the reaction network were identified by 

minimizing the function value from Eq. (5.1). That means the 

dimension of the search space was increased by 2 in each step (from 2 

to 30 in total). The results from the previous run were used as initial 

values for the algorithm in the next iteration. 
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4. The specified reaction was marked so that it does not participate in 

further sensitivity studies. 

5. The second, third, …, 15th reaction was identified by repeating steps 1-

4. 

 

Figure 5.1. First reaction network identification strategy 

The second strategy (top-down elimination) consists of the following steps 

(shown in Figure 5.2): 

1. Identification of the kinetic parameters for the full reaction network. 

2. Identification of the kinetic parameters for each subsystems consisting 

of one less reaction. 

3. The elimination of that one reaction where the identified subsystem 

leads to the best results (i.e., minimum objective function value). 

4. Further reactions were eliminated stepwise by repeating steps 2 and 3. 

The parameter values identified in the previous step were used as initial 

values in the next step. 
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This strategy is significantly more computation-intensive than the previous one 

as more than 100 nonlinear edge search problems must be solved in total. 

However, it has better convergence when applying the results of an n-reaction 

subsystem as the initial values of the next in a given step. 

 

Figure 5.2. Second reaction network identification strategy 

Finally, a third strategy (shown in Figure 5.3) was defined that covers the 

conventional MINLP approach with a stepwise extension of the search space: 
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1. For the first step, there are 15 binary existence variables and 30 kinetic 

parameters. The reaction subnetwork to be identified consists of one 

reaction (e.g., the sum of existence variables is 1). The program 

searches for the reaction where the value of the objective function is at 

minimum and identifies the parameters of that reaction while keeping 

the values of all other kinetic parameters at zero at the same time. 

2. For each subsequent step, the number of existence variables is 

decreased by one as the program searches for an additional reaction to 

expand the reaction network to minimize the value of the objective 

function further. The kinetic parameters of that additional reaction, as 

well as those of the previously added reactions, are identified. 
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Figure 5.3. Third reaction network identification strategy 

The vector of search variables, x, from Eq. (5.1) has a general form that is 

expressed in Eq. (5.2). 

𝑥𝑛 = [𝑒𝑥𝑠𝑇 𝑘0
𝑛𝑇

𝐸𝑎
𝑛𝑇

]
𝑇

 (5.2) 

𝑥𝑛 is a column vector that consists of the existence variables  and the 

normalized values (refer to Eq. (4.3)) of pre-exponential factors and activation 

energies searched for in a given step of a given strategy (hence, the length of 𝑒𝑥𝑠 

is zero for the first two strategies). All variables were normalized between 0 and 1 

for faster and better convergence. The values of upper and lower bounds 
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(summarized in Table 5.1) were determined from a set of preliminary studies 

regarding the complete reaction network as no a priori data are available for the 

lumped reactions. 

Table 5.1. Lower and upper bounds of kinetic parameters of the specified 

reactions used in every identification strategy 

Reaction 
k0 [m3 h-1 mcat

-3] Ea [J mol-1] 

LB UB LB UB 

VGO → D 3.6·109 3.6·1010 

0 4·105 

VGO → K 3.6·1016 3.6·1017 

VGO → HN 360 3600 

VGO → LN 3.6·1013 3.6·1014 

VGO → G 360 3600 

D → K 3.6·1015 3.6·1016 

D → HN 36 360 

D → LN 3.6 36 

D → G 3.6 36 

K → HN 3.6·109 3.6·1010 

K → LN 360 3600 

K → G 360 3600 

HN → LN 3.6·108 3.6·109 

HN → G 0.36 3.6 

LN → G 3.6·107 3.6·108 

5.2 Performance of the reaction network reduction algorithms 

In the case of the initial reaction network identified as VGO-N0-R15 with 15 

reactions, the identified kinetic parameters are shown in Figure 5.4. (Refer to 

Table S1 for all variations of the hydrocracking reaction network.) This is the so-

called nominal case; the performance of every reduced reaction network should 

and will be compared to this. The numerical values of the kinetic parameters 

obtained using each identification strategy (three strategies and 15 steps – 45 

reaction networks overall) can be found in the appendix (in from Table S10 to 

Table S15), while this and the next section contain the analysis of the apparent 

trends. 
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Figure 5.4. VGO-N0-R15 reaction network consisting of 6 component lumps and 

15 lumped reactions 

Firstly, I would like to show the accuracy of these reaction networks. The 

values of the objective function (Eq. (5.1)), which can be interpreted as the sum of 

normalized error between measured and calculated yields for all six lumps, are 

shown in Figure 5.5. The objective function values decrease exponentially, 

depending on the number of reactions considered in the model, depicted by a 

purple dashed line that is a result of the regression of an exponential decay 

function to the averages of the three objective function values against each set of 

reactions present. The values from each of the strategies decrease monotonously, 

which suggests that the results are mostly free from numerical errors. The results 

from the sensitivity-based elimination strategy are the closest to the average, 

likely because of its relatively simple structure. For the second case, small 

objective function values were obtained, even for a smaller number of reactions 

than in case of the other two strategies as the search space in this case included a 

higher number of reaction network subsystems, leading to more accurate results 

(at the cost of being more resource-intensive, however). The results from the 

MINLP-based stepwise extension are the least accurate; for example, there is a 

plateau between five and seven reactions where the objective function value 

remains the same, which leads to the conclusion that, while it seems to be a 

somewhat evident choice, this is the least suitable for model reduction in our case. 
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Figure 5.5. Objective function values for reaction subnetworks obtained by 

different model reduction methods 

Although no sharp border can be drawn between accurate and inaccurate 

reaction networks, I have set up a threshold in Figure 5.5 above that the agreement 

of the identified system with the measured data rapidly lessens (up to the point 

where some of the lumps do not even appear). This was done after examining the 

different model results and obtained concentration profiles individually. The value 

of this limit is approximately 2.0 (marked with a solid blue line in Figure 5.5); 

two times higher than the lowest obtained objective function value. This is a soft 

threshold, i.e. an objective function value of 2.1 should not necessarily be 

discarded; moreover, this threshold value is an inherent part of the problem 

specified and cannot be considered as a general result. On the other hand, it can be 

used to indicate model accuracy. 

Based on Figure 5.5, it can be assumed that minimum five reactions are 

necessary to describe the concentration changes of each defined lump in the 

system. This was obtained using Method 2. At nine reactions, all methods present 

a viable solution. More than nine reactions do not further reduce the error of the 

model significantly. The square of Pearson correlation coefficients between 

measured and calculated data for each lump and the overall data series are listed 

in Table 5.2. The results are compared to the original work by Sadighi et al. [219], 

and show a considerable improvement, even for a five-reaction subsystem, 
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probably due to the use of more-complex optimization algorithms. With the 

correlation factors for individual components taken into consideration, the results 

for the nine reaction subsystem obtained from the third strategy can be assumed to 

be the best, predicting the yields of all lumps except Diesel (D) adequately. The 

latter may as well indicate some underlying errors in the measured data, because, 

as can be seen in Table S9, the measurement values for the Diesel component 

have no clear trend as a function of LHSV. The reactor model introduced in 

Section 3.2 is not able to reproduce such behavior, and it is arguable whether that 

would be necessary, or there are just some underlying errors in the mass 

concentration values. Nevertheless, the obtained correlation values still present an 

improvement compared to the original model. 

Table 5.2. Pearson correlations between measured and calculated data 

 

Original 

work 

5 reactions 9 reactions 

Method 2 Method 1 Method 2 Method 3 

VGO 0.852 0.906 0.912 0.912 0.909 

Diesel 0.018 0.409 0.346 0.318 0.401 

Kerosene 0.731 0.920 0.921 0.913 0.916 

Heavy Naphtha 0.814 0.893 0.890 0.892 0.897 

Light Naphtha 0.652 0.937 0.945 0.947 0.827 

Gas 0.816 0.753 0.796 0.789 0.841 

Overall 0.589 0.928 0.932 0.931 0.931 
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Figure 5.6. VGO-N0-R9 reaction networks consisting of 6 lumps and 9 reactions, 

obtained by (a) Method 1, (b) Method 2, and (c) Method 3. Reactions that are not 

present in all three networks are marked with dashed lines 
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Consequently, the nine-reaction subsystems identified with each strategy 

(VGO-N0-R9) have been investigated more thoroughly. (Refer to Table S1 for all 

variations of the hydrocracking reaction network.) The reduced reaction networks 

for all strategies are shown in Figure 5.6. (Again, refer to Table S10 to Table S15 

in the Appendix for the numerical values.) It can be seen that there are only five of 

the nine reactions (VGO→D, VGO→LN, VGO→G, D→K, and K→HN, 

highlighted with red directed lines) are present in all three subsystems; in other 

words, these reaction networks differ significantly from each other, even though 

the resulting pseudocomponent yields are actually the same. Some of the 

differences can be explained with underlying consecutive reactions, i.e., a 

VGO→K lumped reaction can be substituted with a VGO→D→K consecutive 

pathway by choosing the values of the rate coefficients appropriately, whereas, in 

the case of other reactions (i.e., LN→G), these substitutions cannot be carried out. 

5.3 Observability of the reaction networks 

The existence of different reaction networks leading to almost the same results 

might explain the numerical uncertainties encountered while solving the 

optimization problems; however, more importantly, this raises some doubt about 

whether there exists a proper solution in the case of subnetworks consisting of 

nine (or more) reactions such that the objective function value has a global 

minimum. 

In order to address this problem systematically and quantitatively, I 

investigated the observability of the extended state-space model. The reactor 

component balance equations expressed in Eq. (3.11) are similar to a state-space 

model in structure that has a general form as described in Eq. (5.3) and (5.4). 

Given that a plug-flow reactor model can be rewritten as a cascade of continuous 

stirred-tank reactors, the concentration changes along the axial coordinate of the 

reactor are mathematically equivalent to time derivatives. Therefore, in the case 

described here, residence time was defined as the ratio of reactor length and actual 

space velocity, eliminating the necessity of model conversion. 

𝑑𝑥

𝑑𝑡
= 𝐴 ∙ 𝑥 + 𝐵 ∙ 𝑢 (5.3) 
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𝑦 = 𝐶 ∙ 𝑥 (5.4) 

In the state-space model: 

 𝐴 is the system matrix (𝐴 = 𝜂 ∙ 휀′ ∙ 𝐿), 

 𝑥 is the state vector (𝑥 = 𝑐), 

 𝑦 is the output vector (𝑦 = 𝑐; the concentrations of all lumps are 

measured), 

 𝐶 is the output matrix (𝐶 = 𝐼), and 

 the term 𝐵 ∙ 𝑢  is negligible (there are no inputs). 

This state-space model was extended to include the reaction rate coefficients as 

states as well. In other words, the state vector includes six states, accounting for 

the six components, and one additional state for each reaction present (Eq. (5.5)). 

For example, the state-space representations of the nine-reaction networks from 

Figure 5.6 have 15 states, while the original reaction network (Figure 5.4) has 21. 

The output vector 𝑦 includes only the component concentrations in all cases 

because the rate coefficients are not measured. The output matrix was expanded 

with zero vectors to accommodate the increased number of states. 

𝑥𝑒 = [𝑐𝑇 𝑘𝑇]𝑇 (5.5) 

One of the main consequences of the extension of the state-space model that it 

becomes nonlinear, because 𝐿 contains state variables in this interpretation. 

Hence, it should be linearized in order to study the observability and 

identifiability of the system. This step was carried out using complex step 

differentiation, which has been described elsewhere [238] that is well-known for 

its accuracy, even for small step sizes. 

If the concentrations of six lumps are measured and 21 states are observable, 

all 15 reaction rate coefficients can be determined from the 6 states measured. 

However, if less than 21 states are observable, not all of the rate coefficients can 

be identified adequately. That has the practical consequence that two or more sets 

of parameter values in the model lead to the same output values. In other words, 

more kinetic parameters were identified in the given system than theoretically 

possible; therefore, that solution cannot be considered to be valid. 
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The number of observable states was determined by calculating the rank of the 

observability matrix (Eq. (5.6)), where A is the system matrix, C is the output 

matrix, and n is the number of states in the system: 

𝒪 =

[
 
 
 
 

𝐶
𝐶𝐴
𝐶𝐴2

⋮
𝐶𝐴𝑛−1]

 
 
 
 

 (5.6) 

The state-space model was linearized around the reactor outlet; the results for 

the component VGO at 380 °C for each LHSV values are shown in Figure 5.7. 

For the sake of better understanding, both the original and the linearized state-

space model were solved around the reactor outlet; naturally, the values for ℓ > 1 

bear no physical meaning. The figure indicates good agreement between the 

results from solving the actual and the linearized state-space models; therefore, 

the system matrix of the latter can be used for the calculation of the observability 

matrix. 

 

Figure 5.7. Results of the state-space model linearization at the outlet of the 

reactor for VGO at 380 °C 

In Figure 5.8, the number of observable states is depicted as a function of states 

for the three strategies and for all identified reaction subnetworks. The discrete 

values are connected with solid lines for better readability. The ideal number of 

observable states would equal the number of actual states in the model (marked 
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with the blue line). It can be seen that neither of the investigated methods 

produces a kinetic model that has more than 11 observable states. As there are six 

measured components present, the maximum number of the observable reactions 

is only five. It can also be seen that Method 2 did produce a reduced reaction 

network that has 11 states (i.e., five reactions) and 11 observable states, whereas 

the application of Methods 1 and 3 only resulted in 10 observable states out of 11. 

The reason behind the unsatisfactory performance of the latter two methods is that 

in these cases the remaining 10 reactions were eliminated in such a way that the 

remaining five are not independent of each other. Such elimination could occur 

because the strategies do not consider any criteria for observability. The lesser 

number of observable states might as well explain the high difference between the 

objective function values that resulted from different strategies shown in Figure 

5.5. 

In the case of the second top-down elimination strategy (Method 2), the 

number of observable states for the reaction subsystems containing one and two 

reactions (i.e., seven and eight states) is very low; this is because only one lump 

has other-than-zero concentration at the reactor outlet, which counts as an actual 

measurement when calculating the rank of the observability matrix. 

 

Figure 5.8. Observability of reaction networks consisting of 1-9 reactions, 

obtained using different methods 
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The final solution from the model reduction and identification, identified as 

VGO-N0-R5, is depicted in Figure 5.9. (Refer to Table S1 for all variations of the 

hydrocracking reaction network.) The model presented here somewhat disagrees 

with the well-known behavior of the hydrocracking reaction; in other words, the 

reactions do not follow a consecutive pattern (for example, Light Naphtha is 

produced from VGO instead of Heavy Naphtha). The main reason behind that 

observation is that the observability criterion strongly limits the number of 

reactions present in the final model; one pseudo-component can only be produced 

via one reaction pathway. In other words, there is only one possible 5-reaction 

subsystem where the consecutive reaction pathway occurs. 

 

Figure 5.9. VGO-N0-R5 reaction network consisting of 5 reactions, obtained by 

Method 2 

In order to gain more confidence in the goodness of the result in Figure 5.9, I 

also identified the kinetic parameters of the consecutive reaction network. The 

minimum objective function value associated with the consecutive pathway is 9.2, 

which is more than five times higher. Hence, there are two solutions. On the one 

hand, we could include more reactions, so the consecutive pathway is present and 

also the value of the objective function is acceptable. Alternatively, we might 

exclude some reactions from the consecutive pathway and in turn include the 

same number of nonconsecutive reactions, so the resulting model gives a good 

description of the concentration changes of the pseudo-components while the 

system remains also observable. 
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While the former approach describes the behavior of hydrocracking better, the 

latter ensures the certainty regarding the values of the identified kinetic 

parameters, which is more favorable in terms of process development and 

intensification. With the subsystem containing five reactions identified in the 

second strategy observable, the identified kinetic data represent an exact and 

unique solution that is the global minimum for 5 reactions, given that the 

performance of the optimization algorithm was good enough to find it. 

 

Figure 5.10. Pseudocomponent concentrations at the reactor outlet for different 

LHSV values at 410 °C. Data points represent measured data, dashed lines 

indicate the 15-reaction system results, and solid lines represent the 5-reaction 

system results. 

The measured and calculated product compositions as a function of LHSV at 

410 °C for 15 and 5 reactions present are shown in Figure 5.10. The shapes of the 

curves are mostly the same for the 5-reaction model and the original model 

consisting of 15 reactions. In some cases, the resulting curve from the former fits 

worse to the measured data (e.g., Gas); whereas, in other cases, the curve fitting is 

better (VGO). In some cases, somewhat poor correlation between measured and 

calculated data can be observed for both models (e.g., Diesel). However, the 

results of the sensitivity analysis on the kinetic parameters imply that this issue is 

related, at least in part, to measured data and could be overcome by the 
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application of different lumping strategies. This may well be part of a further 

investigation. 

5.4 Chapter summary 

An important issue regarding model reduction is that how many reactions can 

be identified from the data available. We can construct a reaction network that 

includes an arbitrary number of reactions. The VGO-N0-R15 reaction network 

investigated in this Chapter is a meaningful example because it includes every 

possible pathway on that a heavier compound can decompose into a lighter one. 

Firstly, I showed that this many reactions are a bit overkill in the sense of model 

error as at the worst case nine reactions are sufficient to describe the concentration 

changes in the experimental data. Secondly, I showed that the resulting VGO-N0-

R9 reaction network can still be overdetermined because it is not clear which nine 

reactions to include from the original 15 in the reduced model. To address this 

problem, I introduced the concept of observability in reaction systems for lumped 

components. I evaluated the state-space model representation of the system to 

determine whether a given reaction system is observable, i.e., all kinetic 

parameters are theoretically identifiable. The investigation led to the construction 

of the VGO-N0-R5 reaction network. I investigate the uncertainties associated 

with the VGO-N0-R15 and R5 models in greater detail in Chapter 8. 

Chapter 5 introduced the first method promised in Section 2.4 (Reducing the 

uncertainties in lumped reaction networks). The identification strategies proposed 

here, although very thorough, were very time-consuming and somewhat specific 

to the VGO hydrocracking problem. So in the next Chapter, I continue with a 

faster and more universal approach, namely, Global Sensitivity Analysis. 
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6 Reduction of lumped reaction networks using global sensitivity 

analysis 

In the previous Chapter, I have introduced the concept of reducing reaction 

networks, developed three different novel methods to achieve it and used the 

observability criterion to ensure parameter identifiability. Chapter 6 takes a 

slightly different approach and has a dual purpose. Firstly, it discusses the 

applicability of Global Sensitivity Analysis (GSA) in the reduction of lumped 

reaction networks. I compare the five different GSA methods reviewed in Section 

2.4.2 based on their performance, using the previously introduced case studies of 

real plastic waste pyrolysis (Section 3.1) and vacuum gas oil hydrocracking 

(Section 3.2). 

Secondly, I present another method in this Chapter that can be used to assess 

the uncertainty of the reaction network. I calculate the confidence bounds of the 

kinetic parameters of both the full and the reduced models and use these to 

quantify parameter uncertainty. The aim of this Chapter is to illustrate how GSA 

can be used to construct lumped reaction networks with fewer parameters to be 

estimated with narrower confidence intervals; i.e., to show that the uncertainty of 

lumped kinetic models can be significantly diminished. 

6.1 Choosing the right number of samples 

For my calculations, I used the RS-HDMR implementation in MATLAB called 

GUI-HDMR by Ziehn and Tomlin [239]. All other methods were accessed in 

MATLAB by using the SAFE (Sensitivity Analysis for Everybody) Toolbox 

[240]. Both programs were constructed so to make these methods readily 

available and applicable with no requirement of detailed knowledge of any of the 

GSA algorithms mentioned before. 

The key steps of the kinetic model reduction process can be summarized as 

follows: 

 assign sensitivity indices for all reactions using different GSA methods; 

 rank the reactions based on their sensitivity indices and eliminate as many 

reactions as possible while retaining a fair model fit; 
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 evaluate the performance of the proposed kinetic model reduction method; 

 assess the uncertainty of the identified model parameters with their 

respective confidence intervals: narrower intervals indicate higher 

confidence in the reduced kinetic model. 

To compute the sensitivity indices, the parameter space has to be sampled and 

the value of the objective function has to be calculated for each sample. In this 

Chapter, I have retained the use of the previously introduced objective functions 

(Eq. (4.1) and Eq. (5.1) for thermo-catalytic pyrolysis and VGO hydrocracking, 

respectively). I used uniform sample distributions, namely a one-at-a-time 

sampling strategy as described in [241] for EET, the search curve defined by 

Saltelli et al. [175] for FAST, and latin hypercube sampling for RS-HDMR, 

PAWN and VBSA. All methods result in a uniform sampling of the parameter 

space that is a reasonable approach because the model parameters are independent 

of each other, i.e., any combinations of the kinetic parameters can be used to 

evaluate the performance of the kinetic model (the experimental data and the 

corresponding minimum value of the objective function ultimately determine 

which combinations are actually applicable but this does not affect the sensitivity 

analysis itself). 

Apart from the sampling method, the size of the sample also needs to be 

determined. For each method, I examined the convergence of sensitivity indices 

as a function of the sample size. An example of the results of this study is given in 

Figure 6.1 for RS-HDMR. Kinetic parameters with significantly low sensitivity 

indices were omitted. If the sample size is small, the sample does not interpret the 

objective function properly; this results in a high variance of the sensitivity 

indices. I defined a minimum sample size in case of all methods where the 

sensitivity indices had reached a quasi-constant value. The chosen sample sizes 

can be seen in Table 6.1. It should be noted that in the case of the FAST method 

there is a minimum sample size defined by Cukier et al. [174], and the 

convergence analysis showed that for larger number of samples the calculated 

sensitivity indices do not change at all; hence, in this case the minimum sample 

size was used. 
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Figure 6.1. Convergence of RS-HDMR sensitivity indices in case of a) thermo-

catalytic pyrolysis, b) VGO hydrocracking 

Table 6.1. Sample sizes chosen for different GSA methods and case studies. 

 Thermo-catalytic pyrolysis VGO hydrocracking 

EET 2 000 6 400 

FAST 1 289 4 105 

PAWN 13 700 45 300 

RS-HDMR 1 000 3 000 

VBSA 1 870 6 460 

Using the determined sample sizes, I calculated the sensitivity indices, carried out 

the reduction of each lumped kinetic network and compared the results of the 

original and the reduced networks. Results for thermo-catalytic pyrolysis and 

VGO hydrocracking are discussed in Section 6.2 and Section 6.3, respectively. In 

Section 6.5, I discuss some further advantages of reaction network reduction and 

using global sensitivity analysis to that end. 
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6.2 Case study 1: thermo-catalytic pyrolysis 

The computed sensitivity indices for different GSA methods are shown in 

Table 6.2. The presence of the reaction occurring in the first step (P → P−) in the 

kinetic model is mandatory; therefore, the sensitivity of the model to it was not 

investigated. To achieve this, the associated kinetic parameters have to be fixed. 

Here I used the identified values from Chapter 4; alternatively, the sensitivity 

analysis could be implemented in two steps, where the first step involves all 

reactions, and the reaction rate coefficient of the first reaction can be 

approximated based on the behavior of the objective function. 

In the case of the EET, FAST, and RS-HDMR methods, the obtained 

sensitivity indices would show that the only reactions r2-r5 influence the objective 

function significantly. For the other two methods, the obtained GSA indices of 

these reactions are still higher than of r6-r10, but the magnitudes are similar. In 

Chapter 4, I performed a local sensitivity analysis (Figure 4.2), reaching the 

conclusion that the kinetic model is the most sensitive to the first three reactions. 

Given that the presence of the first five reactions in the kinetic model is 

theoretically enough to describe the concentration changes of all components, the 

most straightforward action is to eliminate r6-r10 from the original P-N0-R10 

reaction network, obtaining the P-N0-R5 reduced kinetic model (Refer to Table 

S1 for all variations of the pyrolysis reaction network.). In P-N0-R5, all products 

are formed from the polymer feedstock, and no interactions between light 

components are present. This can be reasoned with the atmospheric pressure of 

the reactor and the low residence time of these lumps, resulting in a low collision 

frequency of the underlying compounds in the gas phase.1 

  

                                                 
1 The low residence times of the L+ and L– lumps also implicate one another type of model 

reduction that I investigate in Chapter 7. 
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Table 6.2. Different GSA indices for thermo-catalytic pyrolysis. 

Reaction Reactant Product EET FAST PAWN 
RS-

HDMR 
VBSA 

r2 P– L+ 3 165 0.516 0.685 0.527 0.474 

r3 P– L– 1 820 0.181 0.368 0.190 0.298 

r4 P– G 1 593 0.122 0.273 0.129 0.277 

r5 P– C 1 420 0.087 0.310 0.088 0.193 

r6 L+ L– 1.515 2.90·10-4 0.078 1.63·10-5 0.110 

r7 L+ G 0.679 6.37·10-5 0.102 1.56·10-5 0.109 

r8 L+ C 2.926 4.46·10-5 0.098 0 0.109 

r9 L– G 0.687 8.18·10-5 0.077 0 0.109 

r10 L– C 1.746 7.09·10-5 0.095 0 0.109 

Figure 6.2a shows the reaction rate coefficients at 455 °C for the P-N0-R10 

network (I determined these values using the methods described in Chapter 4). 

Coloring of arrows represents the values of rate coefficients in s-1. Note that while 

although the reaction rate coefficients of r6 and r7 have high values, the 

contribution of these reactions to the process is low. The reason behind this is the 

low concentration of L+ in the reactor. This effect can also be detected by 

comparing the reaction rates instead of the rate coefficients; nevertheless it would 

not be straightforward because, unlike the sensitivity indices, they are dependent 

on time. 

Figure 6.2.b shows the identified P-N0-R5 reduced reaction network. The 

identification process of the reduced reaction network was carried out 

independently, i.e., I did not use the information available from the identification 

of the full reaction network. Numerical values are listed in Table S16 in the 

appendix. It can be seen that the rate coefficients of the remaining reactions 

compensate for the eliminated reactions as they have slightly larger values. On the 

other hand, the value of k1 is slightly lower that might as well counter this effect. 
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Figure 6.2. Identified reaction networks for thermo-catalytic pyrolysis at 455 °C 

a) P-N0-R10, b) P-N0-R5 (GSA results) 

Table 6.3. Root-mean-square error (RMSE) between experimental and calculated 

weight percentages of the component lumps. 

 
P-N0-R10 P-N0-R5 

P 0.06‰ 0.03‰ 

P– 0.06‰ 0.05‰ 

L+ 1.79% 1.52% 

L– 1.01% 1.07% 

G 0.88% 0.83% 

C 0.14% 0.33% 

Overall 1.23% 1.12% 

To address the performance of the P-N0-R5 reaction network, I calculated the 

root-mean-square-error (RMSE) values for all pseudocomponents (between the 

experimental and calculated mass fractions so RMSE values are also specified as 

percentages); results are shown in Table 6.3. It can be seen that there is no 

considerable difference between the ability of the P-N0-R10 and P-N0-R5 

reaction networks in predicting the product composition. In some cases, the error 

a) b) k [s-1] 
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value is even lower in the case of the reduced kinetic network; this might be due 

to the better performance of the optimization algorithm used for the identification 

in case of a lower number of decision variables. 

 

Figure 6.3. Pseudocomponent mass fractions in case of the reduced network for 

thermo-catalytic pyrolysis at 455 °C – experimental (markers); P-N0-R10 (dashed 

lines) and P-N0-R5 (solid lines) 

Comparison of the simulated data with the complete and reduced reaction 

networks against measured data is shown in Figure 6.3 that also confirms the good 

prediction ability of the reduced network, thus the legitimacy of the global 

sensitivity analysis for carrying out this model reduction step. I would like to 

emphasize that the application of GSA requires no prior knowledge about the 

kinetic parameters; the full reaction network is only present in this section for the 

sake of comparison. This means we can use an arbitrarily large set of possible 

reactions, screen this super-network using GSA, and take only the number of 

reactions into consideration that can be identified in reality, either from the aspect 

of structural identifiability or regarding the performance of the chosen (global) 

nonlinear optimization algorithm. 



Reduction of lumped reaction networks using global sensitivity analysis  

98 

6.3 Case study 2: VGO hydrocracking 

The second case study involves the VGO hydrocracking model from Section 

3.2 and is slightly more complex as there are 15 reactions present; all need to be 

taken into consideration in the sensitivity analysis. The resulting sensitivity 

indices are included in Table 6.4. I have shown in Chapter 5 that a reliable kinetic 

model can be constructed using five reactions, obtaining the VGO-N0-R5 reaction 

network. The first five reactions with the highest sensitivity indices are marked in 

Table 6.4; these are all the same except in the case of the PAWN method. 

However, these five reactions cannot be used to create a suitable reduced reaction 

network since only the LN and G pseudocomponents would appear in these as 

products. 

Table 6.4. Different GSA indices for VGO hydrocracking. 

Reaction Reactant Product EET FAST PAWN RS-HDMR VBSA 

r1 VGO D 30.1 3.1·10-5 0.082 6.51·10-4 0.036 

r2 VGO K 32.6 7.8·10-6 0.085 3.26·10-4 0.029 

r3 VGO HN 35.9 8.8·10-6 0.077 4.72·10-5 0.037 

r4 VGO LN 115 0.021 0.162 0.021 0.045 

r5 VGO G 122 0.024 0.153 0.026 0.101 

r6 D K 9.64 1.0·10-5 0.092 7.48·10-4 0.028 

r7 D HN 11.6 2.9·10-5 0.067 3.30·10-4 0.030 

r8 D LN 36.4 2.2·10-3 0.113 2.37·10-3 0.031 

r9 D G 28.9 1.4·10-3 0.080 1.75·10-3 0.016 

r10 K HN 17.5 6.1·10-5 0.087 3.68·10-4 0.026 

r11 K LN 68.7 8.0·10-3 0.175 7.84·10-3 0.030 

r12 K G 49.8 3.1·10-3 0.100 0 0.035 

r13 HN LN 139 0.027 0.315 0.028 0.093 

r14 HN G 86.1 0.011 0.142 9.08·10-3 0.037 

r15 LN G 528 0.515 0.680 0.703 0.548 

The baseline of the reduced reaction network should be constructed in such a 

way that all products are formed, and they are produced on the route to that the 

model shows the highest sensitivity. To formulate such a network, I applied 
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Dijkstra’s shortest path algorithm [242]. Here the shortest path to a product is 

considered as the path consisting of the reactions with the highest sensitivity 

indices. Using this method, the resulting five-reaction base network contains 

reactions r1, r6, r10, r13 and r15 in case of using any GSA method; that is to say, the 

solely consecutive pathway in the reaction network can be isolated. This is a 

reasonable result as reaction r13 and r15 are the two associated with the highest 

sensitivity indices. Nevertheless, it should not be considered as trivial. For the 

first case study, the same algorithm leads to the fully parallel reaction network 

already discussed, and it can be speculated that for more complex systems with 

second-order reactions, the results may vary even more. 

 

Figure 6.4. Root-mean-square-error for reaction subnetworks obtained using the 

sensitivity order obtained using different GSA methods 

The remaining open question is that whether the solely consecutive pathway is 

sufficient to describe the mass concentration changes in the experimental data 

(Table S9). In order to answer that question, I performed a full-scale 

identification, meaning that after the identification of the reduced network 

associated with the most sensitive pathway, further reactions had been added, the 

one with the highest sensitivity index from the remaining set in each step for all 

GSA methods, and the reaction network was identified to evaluate its ability to 
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reproduce measured data. Results are shown in Figure 6.4, where each result is 

represented by the average RMSE value between experimental and calculated 

mass fractions. 

It can be seen that the outcome for the investigated GSA methods are quite 

similar, with the exception of PAWN, in case of that the result is not as 

satisfactory as it is in case of other approaches. It also appears that eight or even 

nine reactions could be eliminated from the reaction network without substantially 

increasing model error. We can gain more insight if we look at the 

pseudocomponent RMSE values separately (Table 6.5). For seven reactions, the 

results do not differ from the results obtained using 15 reactions considerably. For 

six reactions, on the other hand, a major leap in the model error in case of G can 

be observed. Meanwhile, the absolute error in the case of LN might be a low 

value, but it represents a high relative error which is unfavorable because of the 

overall low concentration of this component (see Figure 6.6.b). On this basis, I 

have chosen the reduced network consisting of seven reactions, leading to the 

reduced reaction network VGO-N0-R7, shown in Figure 6.5b. (Refer to Table S1 

for all variations of the pyrolysis reaction network.). Nevertheless, using even six 

reactions could be suitable under certain circumstances. 

Table 6.5. Root-mean-square error (RMSE) between experimental and calculated 

mass fractions. 

 
15 reactions 7 reactions 6 reactions 5 reactions 

VGO 6.7% 6.9% 6.8% 9.2% 

D 5.2% 5.4% 5.5% 5.8% 

K 2.4% 3.2% 3.1% 3.6% 

HN 1.6% 2.3% 2.2% 2.7% 

LN 0.3% 0.4% 0.8% 0.7% 

G 3.9% 3.7% 5.8% 9.7% 

Overall 4.0% 4.2% 4.6% 6.2% 

Comparison of the full (VGO-N0-R15 from Figure 3.4) and the obtained 

reduced reaction network consisting of seven reactions (VGO-N0-R7) can be seen 

in Figure 6.5. Numerical values are listed in Table S17 in the appendix. As in the 

case of thermo-catalytic pyrolysis, the rate coefficients of the remaining reactions 
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have slightly higher values. The solely consecutive pathway, previously 

established as the maximally reduced reaction network using Dijkstra’s shortest 

path algorithm, is associated with the highest rate coefficients. This also implies 

the eligibility of the GSA-based model reduction method; on the other hand, two 

additional reactions need to be implemented to reach the required model 

precision. 

The average 4.0% and 4.2% error values for the complete and reduced reaction 

networks discussed above represent a moderate agreement between experimental 

data and simulation, as can be seen in Figure 6.6; therefore, the reduced network 

is capable of modeling the VGO hydrocracking process. It should be noted that 

the ability of the model to explain the changes in mass concentration in the case of 

the Diesel lump is somewhat unsatisfactory. On the other hand, the same can be 

observed for the full reaction network which indicates that this behavior of the 

reduced reaction network is inherent to the original model and can be overcome 

only by a different lumping strategy. These results also suggest that global 

sensitivity analysis can be effectively used to identify and subsequently eliminate 

reactions from an arbitrarily defined initial set. 

 

Figure 6.5. Identified reaction networks for VGO hydrocracking at 410 °C 

a) VGO-N0-R15, b) VGO-N0-R7 (GSA results) 

a) b) k [s-1]
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Figure 6.6. Pseudocomponent mass fractions in case of the reduced network for 

VGO hydrocracking at 410 °C – experimental (markers); complete (dashed lines) 

and reduced (solid lines) model 

6.4 Comparison of GSA methods 

Good practice in GSA application involves applying multiple methods on one 

problem [240]. Following Liu and Homma [243], I evaluated the GSA methods 

investigated, assessing some key features: 

 EET is only semi-quantitative that might not be favorable. On the other 

hand, only the sensitivity order of the reactions is taken into account here, 

in this case this is not considered as a disadvantage. 

 FAST is easy to implement, requires no parametrization, even the 

recommended minimum sample size is available. It also has a low time 

requirement (i.e., it is a fast method – see Section 6.5). 

 RS-HDMR comes with bundled variance reduction methods, making the 

computed sensitivity indices more stable (more independent on the actual 

sampling given the sample size). On the other hand, in some cases, the 

calculated sensitivity indices are actually zero, a property that is not 

exactly legitimate. 
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 PAWN requires a large number of samples. Both the unconditional and 

conditional CDFs are calculated, and that can be advantageous; on the 

other hand, this was not the case for the investigated examples. 

 For VBSA, I have found that the numerical stability of the sensitivity 

indices in the case studies reported here is quite low, meaning the results 

on a given sample size showed high variance and were in some cases 

unrealistic (i.e., negative indices were calculated). This effect did not 

diminish with increasing the sample size. 

On this basis, while also emphasizing that none of the methods can be ruled out 

based on two examples, I would prefer using EET, FAST and PAWN – three 

different methods with different theoretical backgrounds, giving reliable and 

stable results. 

6.5 Effectiveness and performance 

So far it has been ascertained that lumped reaction networks can be over-

parametrized, a fact that gives space for reducing the number of reactions present 

in the model. Eventually, one important question arises, namely, what do we gain 

with the model reduction? Kinetic models constructed using discrete lumping, in 

general, are already simple. The main advantage of kinetic model reduction is the 

higher confidence in the identified parameters. I applied bootstrapping on the 

lumped kinetic models to estimate the confidence intervals of the identified 

kinetic parameters. The procedure involves the following steps: 

1. Identify the parameters of the kinetic model (full or reduced network) 

using the experimental data available. 

2. Generate a set of experimental conditions using a normal distribution 

with the experimental data as expected values and a ±5% variation 

normally distributed (2σ confidence). I have chosen the reactor 

temperature (T) and the amount of raw material used in a batch (m0) in 

case of thermo-catalytic pyrolysis, and T and reactor feed liquid hourly 

space velocity (LHSV) in case of VGO hydrocracking. 
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3. Using the identified kinetic parameters in Step 1, generate a set of 

simulated experimental data using these experimental conditions, 

adding no further measurement error. 

4. Identify a kinetic parameter set for every generated data set. 

5. Because of Step 3, the value of the objective function can reach zero, 

and the location of this global minimum is known from Step 1. I have 

also established a threshold for the objective function and deemed the 

identification step successful if the value of the objective function was 

below this value (𝑓1(𝑥𝑛) ≤ 10 (Eq. (4.1)) for thermo-catalytic 

pyrolysis and 𝑓2(𝑥𝑛) ≤ 0.05 (Eq. (5.1)) for VGO hydrocracking). 

6. After reaching 100 successful identification steps, the algorithm was 

terminated. 

With this algorithm the confidence in the identified model parameters can be 

assessed separately since there is no measurement error (because of Step 3) and 

the error of the optimization algorithm was also eliminated (in Step 5). If the 

confidence of a model parameter is high, the identified values will be close to 

each other (low standard deviation) and vice versa. The 100 identified values for 

each kinetic parameter were used to fit a probability distribution function. I tried 

out different solutions; here I use a Weibull-distribution fitted to each parameter 

and give 95% confidence intervals relative to the expected values to characterize 

parameter uncertainty. Lakshmanan and White used Weibull-distribution to model 

the distribution of activation energy [244]. Sánchez et al. applied several 

distributions to approximate distillation curves of the products of VGO 

hydrocracking, reaching the conclusion that only distributions of at least three 

parameters could be fitted appropriately, highlighting the Weibull and γ 

distributions among them [245]. It should be noted that based on my review of the 

literature, there is no direct antecedent of the method presented in this Section; 

nevertheless, the application of the Weibull distribution definitely looks 

promising. 
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Table 6.6. Confidence intervals for the identified parameters for VGO 

hydrocracking. 

 
VGO-N0-R15 VGO-N0-R7 

 
Expected 95% confidence Expected 95% confidence 

k0,1 8.73·106 35% 9.14·106 25% 

k0,2 6.95·1013 42% 
  

k0,3 8.12·10-1 51% 
  

k0,4 7.66·1010 66% 8.98·1010 34% 

k0,5 6.42·10-1 84% 6.57·10-1 72% 

k0,6 8.85·1012 33% 6.01·1012 110% 

k0,7 6.11·10-2 88% 
  

k0,8 6.79·10-3 80% 
  

k0,9 6.54·10-3 81% 
  

k0,10 6.69·106 67% 7.88·106 63% 

k0,11 6.37·10-1 88%   

k0,12 5.85·10-1 104% 
  

k0,13 7.68·105 64% 9.33·105 21% 

k0,14 6.09·10-4 88% 
  

k0,15 6.38·104 81% 8.31·104 72% 

Ea,1 1.28·105 2% 1.27·105 1% 

Ea,2 2.23·105 2% 
  

Ea,3 5.43·104 17% 
  

Ea,4 1.98·105 3% 1.91·105 1% 

Ea,5 4.53·104 14% 4.57·104 11% 

Ea,6 2.07·105 1% 2.01·105 4% 

Ea,7 1.06·105 181% 
  

Ea,8 1.60·105 159% 
  

Ea,9 1.42·105 179% 
  

Ea,10 1.32·105 4% 1.28·105 3% 

Ea,11 1.05·105 156%   

Ea,12 3.67·104 23% 
  

Ea,13 1.57·105 76% 1.15·105 1% 

Ea,14 1.36·105 223% 
  

Ea,15 2.09·105 89% 9.14·104 6% 

The corresponding probability distribution functions of these 100 successful 

identification steps are shown in from Figure S1 to Figure S22 in the Appendix. 
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For the sake of the length of this section, only the parameters of the more complex 

VGO hydrocracking model are considered here. The expected values of the 

identified kinetic parameters and the respective confidence intervals are denoted 

in Table 6.6. The 95% confidence intervals are given relative to the expected 

values. Except for k0,6, the parameter confidence is retained, or, in many cases, 

become narrower for the reduced reaction network. Since the latter already has 

fewer parameters, this indicates higher confidence in the model itself. In order to 

demonstrate that, I have generated a set of 10,000 parameters using the fitted 

probability distributions and calculated the value of the objective function at each 

point. Results are plotted in histograms (Figure 6.7). 

  
Figure 6.7. Occurrence of objective function values calculated using the PDFs of 

the kinetic parameters for VGO hydrocracking a) complete network, b) reduced 

network 

For seven reactions, the objective function mostly returned the minimum value, 

in contrast to the results of the full reaction network. The reason behind this might 

be the correlation of the kinetic parameters (via the contributions of the related 

reactions to the same pseudocomponent mass concentrations); hence the 

probability distributions might not be the most accurate, yet the tendencies are 
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clear in comparison to the reduced model. In any case, the identification of 30 

kinetic parameters with high correlations could be problematic, and this can be 

clearly avoided if we eliminate as many correlated variables as possible. 

6.6 Chapter summary 

Global Sensitivity Analysis is an easy to use and powerful method to distinct 

between the more and the less important model parameters. In this Chapter, I have 

applied this technique to reduce the number of reactions present in the two 

lumped reaction networks introduced in Chapter 3. It is essential to note that the 

reduction of these networks would be not useful just because the model fit 

remains more or less the same. The usefulness of this development would be at 

least questionable in the light of the vast computing capacities available 

nowadays. 

Instead, based on the results discussed in this paper we can conclude that the 

reduction of these reaction networks greatly contributes to lessening the 

uncertainty in kinetic parameters, leading to more unbiased parameter estimation. 

The lower uncertainty of the underlying kinetic model is critical to achieve proper 

reactor design or operation and the proposed methods can contribute significantly 

to realize this objective. I showed that global sensitivity analysis is an effective 

tool in carrying out the model reduction step as it requires minimal information 

about the kinetic parameters; hence, it can be implemented before the actual 

parameter identification step. This is a major advantage compared to the methods 

described in Chapter 5 although I did not reach a reduced reaction network with 

all its states observable here. 

Accordingly, if we define a number of pseudocomponents, we can screen an 

arbitrary large set of reactions and only identify the relevant reaction pathways, 

thus automating the building up of the network. This will be a key step in 

automating the lumping process itself, i.e. determining which lumps have decisive 

roles in describing the behavior of the chemical system investigated. 
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7 Structure of lumped reaction networks with correlating 

parameters 

The previous two Chapters dealt with the reduction of lumped reaction 

networks and the related advantages. The results indicate that the application of 

sparse reaction networks (i.e., where the ratio of reactions to components is 

relatively low) is desired. On the other hand, the absolute number of reactions was 

manageable even before the reduction of the kinetic model. This leads to the idea 

to increase the number of pseudocomponents present. In the case of the P-N0-R10 

reaction network, this can be achieved with relative ease as the liquid product 

composition is available in a higher level of detail than just the introduced heavy 

and light liquid (L+ and L–) lumps. 

Furthermore; in a chemical reaction network, whether it is a lumped or detailed 

one, the kinetic parameters might correlate to some extent simply through the 

amount of products to be formed. If the formation of two or more products has a 

strong correlation, we might even combine the corresponding reactions to reduce 

the size of the reaction network. This modeling step instinctively occurs when we 

have thousands of reactions, but it is usually not carried out in case of a lumped 

model because of its elementary nature. 

In this Chapter I utilize both approaches. I show that the correlations between 

the amounts of liquid products can be utilized to increase both the number of 

correlated and uncorrelated lumps considered by applying some not so 

complicated structural modifications to the original model. This way, we can 

optimize the structure of the lumped reaction network so that we can capture the 

characteristics of the measurement rather efficiently without using an 

overcomplicated lumped reaction model full of uncertain parameters. 

7.1 Revisiting the pyrolysis reactor network (P-N0-R10) 

In the P-N0-R10 lumped reaction network constructed for studying the 

pyrolysis of real plastic waste (Figure 3.2), the mass concentrations of the liquid 

lumps can be reasonably independent of each other. This makes the network 

really flexible and generally applicable. On the other hand, if there is a correlation 

between the mass concentrations, the kinetic parameters of the reactions also 
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become highly correlated. Thus it becomes unnecessary to identify them 

separately, and the correlation might also affect the performance of the nonlinear 

optimization algorithm used for the identification. 

Taking a closer look at the ratio of these two liquid lumps at different 

temperature levels and different times (Figure 7.1a), we can reinforce our 

assumption on the matter of correlation. In Figure 7.1a, the black asterisks 

represent the measured values while the surface was estimated using biharmonic 

spline interpolation in MATLAB [246] to illustrate the effect in proper. It can be 

seen that the time dependence of the L+/L– ratio is much lower than its 

temperature dependence. In fact, the time dependence is minimal at 455 °C (7.5% 

change), moderate at 425 °C (32% change), and only at 485 °C is considerably 

high (77% change). This effect comes from the phenomena that the liquid 

composition remains roughly the same during the pyrolysis process at a given 

temperature, as can be seen in Figure 7.1b-d. Here the tendency is the same as the 

individual distribution curves of the samples collected at different times roughly 

overlap. The change in composition is more substantial at 485 °C than at the other 

two temperature levels; nevertheless, it still negligible. 
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Figure 7.1. a) mass ratio of the L+ and L– lumps as a function of reaction time 

and temperature level b – d) mass distribution of the liquid product at different 

temperature levels 

There are two main reasons behind the approximately constant liquid 

composition. On the one hand, the change in the composition of the polymer 

feedstock over time apparently does not affect the formation and release of the 

lighter products during the process. Although the polymer itself decomposes and 

shorter chains are formed, these intermediates are still non-volatile and remain 

part of the P– lump. On the other hand, the residence time of the liquid and 

gaseous components produced is meager due to the high nitrogen flow rate 
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(approx. 2 minutes); therefore, their influence in the reaction network is limited. 

The rate of the secondary reactions (with liquid lumps as reactants), thus their 

contribution to the final product composition is much lower, even negligible in 

some cases. 

Hence, the key idea of this Chapter is to merge the two liquid lumps and 

reconstruct the reaction network in such a way that only the mass change of the 

total liquid product would be calculated explicitly. However, what do we gain by 

reforming the reaction network? Surely, we can halve the number of reactions, 

thus the number of parameters to be identified; on the other hand, dealing with the 

original P-N0-R10 network in Chapter 4 did not involve an insurmountable 

identification problem in itself. Moreover, with this method, we would only take 

an average composition of the liquid product into consideration; therefore, the 

model would become less accurate, especially at a higher temperature level. In 

other words, this structural simplification does not make much sense in itself. 

However, three different and exciting aspects arise. In the subsequent sections, I 

will show that these benefits far outweigh the disadvantage that the liquid 

composition is not entirely independent of time. 

 Firstly, we are no longer restricted to calculate the amount of L+ and L– 

from the total liquid amount; we can derive an arbitrary set of liquid 

products. 

 Secondly, we can further modify the reaction network and include more, 

non-correlating components in our model. Specifically, I separated the 

liquid product into three lumps, paraffins, olefins, and isomers, based on 

the GC results. 

 Thirdly, we show that the observed property of the quasi-constant mass 

distribution of the liquid product can be effectively used to reduce the 

necessary experimental work needed to follow the progress of the 

pyrolysis reaction. For example, we would only have to measure the total 

amount of liquid produced without further sampling. 

The kinetic parameter identification problem formally remains the same as it 

was introduced in Section 4.1. The main difference here is in the reaction network 
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because in this Chapter I introduce multiple modified versions of the original P-

N0-R10 network and calculate the concentrations accordingly. 

7.2 First alternative reaction network (P-N1-R5) 

The first case study involves calculating the concentrations of the original two 

liquid lumps, L+ and L–, from the total amount of liquid product. Hence, the 

reconstruction of the P-N0-R10 reaction network involves merging these two 

components and eliminating the corresponding reactions. The modified structure 

of the P-N1-R5 network is shown in Figure 7.2, consisting of five reactions 

between five pseudocomponents. Note that the reaction corresponding to the coke 

formation from the liquid products was removed after some a priori reasoning on 

the nature of the experiments, i.e., the low residence time of the volatile products 

causes them to form insignificant amounts of coke directly. The removal was also 

supported by the fact that only trace amounts of solid products were found in the 

second stage of the batch reactor system. 

 

Figure 7.2. P-N1-R5 reaction network (N1) with the correlation between the L+ 

and L– lumps taken into consideration 

There are two possible scenarios available to estimate the amounts of L+ and 

L– from the total liquid product. The first one is to use one average liquid 

composition regardless of the temperature (𝑥) and the second is to apply one for 

each temperature level (�̅�𝑇). This way, the significance of the temperature 

dependence of the liquid product composition can be quantitatively assessed. The 

P 
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P– 

G C 

Liquid product 
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fractions of the L+ and L– lumps in the total amount of the liquid for the two 

scenarios are listed in Table 7.1. 

Table 7.1. Estimated fractions of the L+ and L– lumps in the liquid product in the 

N1 network 

Scenario L+ L– 

1. average for all temperatures (𝑥) 50.6% 49.4% 

2. 

425 °C average (𝑥425 °𝐶) 42.8% 57.2% 

455 °C average (𝑥455 °𝐶) 56.2% 43.8% 

485 °C average (𝑥485 °𝐶) 52.3% 47.7% 

 

Figure 7.3. Pseudocomponent mass fractions at a) 425 °C b) 485 °C using one 

average liquid composition for all temperature levels (first scenario). Markers: 

experimental, dashed lines: P-N0-R10 reaction network results, solid lines: P-N1-

R5 reaction network results 

Let me compare these two scenarios. Experimental and calculated mass 

fractions as a function of time on CuZSM-5 / Ni/Mo-Al2O3 catalyst can be seen in 

Figure 7.3 for the first, and in Figure 7.4 for the second scenario, both at 425 °C 

and 485 °C. It is apparent that the former involves one bit too much simplification 
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as the average 1:1 ratio of the two liquid lumps does not overlap with the actual 

proportions at different temperatures. Retrospectively, that might have been 

predicted from Figure 7.1a, but it also tests the modeling idea and shows that the 

model with correlating liquid lumps actually shows the same tendencies as those 

were apparent in the experimental results. 

 

Figure 7.4. Pseudocomponent mass fractions at a) 425 °C b) 485 °C using one 

average liquid composition at each temperature level (second scenario). Markers: 

experimental, dashed lines: P-N0-R10 reaction network results, solid lines: P-N1-

R5 reaction network results 

In Figure 7.4, the agreement between measurement and simulation improves 

significantly compared to Figure 7.3, confirming the assumption that the 

temperature dependence of the liquid product composition is not negligible. The 

results are less convincing at 485 °C than at 425 °C, but this also follows our 

previous observation from Figure 7.1 that the time dependence of the L+:L– ratio 

is much higher at 485 °C. As I have stated in Section 7.1, the main model 

assumption is that it should work in cases when the residence time of the volatile 

components is negligible. This assumption has a stronger foundation at 425 °C, 

where the pyrolysis time is 32 minutes than at 485 °C, where it takes only 
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10 minutes. In other words, the reaction rates become comparable to the residence 

time of the volatile products at high temperatures; therefore, the interaction 

between them becomes more apparent. Nevertheless, this only causes a higher 

error towards the end of the pyrolysis process, on the last 20% of the time 

horizon. 

As the interaction between the L+ and L– lumps is limited due to low residence 

times, this would mean that – in terms of the P-N0-R10 reaction network – the P–

 → L+ reaction is faster than the P– → L– reaction at a higher temperature. In 

other words, the activation energy of the former reaction would be higher. 

Accordingly, this is in line with my previous results [247]. 

To compare the two scenarios quantitatively, I also calculated the root of mean 

squared error (RMSE) values (listed in Table 7.2) between pseudocomponent 

mass percentages from experimental data and simulation results and compared 

them with the performance of the P-N0-R10 reaction network. The values indicate 

that the second scenario (i.e., one average liquid composition for each temperature 

level is used to express the amounts of L+ and L–) is comparable to the 

performance of the original reaction network. In fact, its performance is only 

worse at 485 °C. One can also observe this in Figure 7.4, most prominently in 

case of L+, but it is also detectable for the G and C lumps upon closer inspection. 

Nevertheless, the differences are well within the margin of error of the 

nonlinear optimization program used to estimate the kinetic parameters of the 

lumped reaction networks. In conclusion, these results indicate that the 

approximately constant mass distribution property of the liquid product can be 

effectively implemented into our model, thus significantly reducing the number of 

kinetic parameters to be identified. Though the composition of the liquid (fuel) 

product is not entirely time-independent in reality, this approximation does not 

significantly impact the accuracy of the model. 
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Table 7.2. Root-mean-square error (RMSE) between experimental and calculated 

data 

 
Original (N0) 

Modified (N1) 

First scenario Second scenario 

425 °C 1.27% 1.92% 0.92% 

455 °C 2.23% 2.64% 1.75% 

485 °C 1.53% 2.56% 2.06% 

Temperature aggregated 1.72% 2.40% 1.67% 

The identified kinetic parameters of the P-N1-R5 reaction network are listed in 

Table 7.3. The results from the two scenarios do not differ considerably; the main 

difference is in the estimated fractions of L+ and L–. The reaction between the L 

and G lumps has the highest activation energy, meaning that the interaction 

between the volatiles is limited (albeit observable) and only has a significant 

effect at higher temperatures. While the P-N1-R5 reaction network does not 

capture this, such weaker interactions might cause the observed higher variation in 

product composition over time at higher temperatures seen in Figure 7.1. 

Table 7.3. Identified kinetic parameters for plastic waste pyrolysis on CuZSM-

5 / Ni/Mo-Al2O3 catalysts for reaction network (N1) 

Reaction First scenario Second scenario 

Reactant Product k0 [s-1] Ea [J mol-1] k0 [s-1] Ea [J mol-1] 

P P– 2.73∙106 1.05∙105 1.61∙107 1.15∙105 

P– C 2.65∙101 4.59∙104 1.70∙10-1 1.53∙104 

P– L 1.31∙104 6.95∙104 4.95∙101 3.58∙104 

P– G 7.54∙103 6.68∙104 2.68∙101 3.26∙104 

L G 1.14∙1022 3.08∙105 9.78∙1021 3.11∙105 

7.3 Second alternative reaction network (P-N2-R9) 

So far, I have successfully reduced the number of components (from six to 

five) and reactions (from ten to five) in the P-N1-R5 network. This result in itself 

is not that significant since the size of the original P-N0-R10 network was already 

manageable. On the other hand, it is possible to reallocate these parameters, i.e., 

after reducing the network in one direction, we can extend it in another to gain 
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more information about the pyrolysis process. During the pyrolysis experiments, 

concentrations of liquid product components with carbon numbers ranging from 

six to 30 were determined separately for paraffins (p), olefins (o), and isomeric 

components (i) (see Section 3.1.1). Therefore, I separated the liquid product in the 

kinetic model into these three lumps. 

It still applies that given the average compositions of these three species 

(Figure 7.5a), we can express an arbitrary number of sub-components for each (in 

this case, heavy and light ends are present similar to in the case of the P-N1-R5 

network). The resulting reaction network, called P-N2-R9, is denoted in Figure 

7.5b, consisting of seven independent components and nine reactions between 

them, the latter is still one lesser than the reactions present in P-N0-R10. 

Furthermore, without the correlation taken into consideration, this reaction 

network would be much more complex. I have chosen the nine reactions present 

in the network from a larger set of possible pathways using Global Sensitivity 

Analysis, a powerful concept introduced in Section 2.4.2. For the sake of the 

length of the dissertation, the details are not presented here, but the procedure is 

very similar to the one discussed in Chapter 6. 

 

 

Figure 7.5. a) time-average liquid composition at 455 °C b) newly constructed 

reaction network (P-N2-R9) with six pairs of correlated liquid lumps. 
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As a drawback, we need information regarding the average composition of 

these three species at all three temperature levels, but this still does not require 

any interim measurement, only a detailed analysis at the end of each run that is 

already available. The P-N2-R9 reaction network considerably differs from P-N1-

R5; therefore, its parameters should be identified separately, repeatedly solving 

Eq. (4.1). As the same plastic waste pyrolysis process is investigated here, the 

resulting kinetic parameters are necessarily linked to the parameters of the P-N1-

R5 (and of P-N0-R10, by the way) network; however, for the sake of the length of 

this chapter, the discussion of these relations in detail here is omitted. Instead, I 

would like to emphasize that by using a reaction network of the same complexity, 

we can gain a much more detailed model regarding the nature of the primary 

liquid product (fuel). 

I expressed the mass concentrations of the two lumps from each liquid product 

type as well as the fractions of P, P –, G, and C in Figure 7.6. Again, the 

agreement between experimental data and simulation is more than acceptable. The 

isomer content of the liquid product (and the proportion of the lighter isomers 

within it) is high, making the application of this CuZSM-5 / Ni/Mo-Al2O3 catalyst 

system promising in terms of converting plastic wastes into liquid fuels via low-

temperature pyrolysis. Nevertheless, the calculations detailed here can be carried 

out on any data set, regardless of the catalyst; this method might even help to 

compare them more effectively. 



Structure of lumped reaction networks with correlating parameters  

120 

 

Figure 7.6. Pseudocomponent mass fractions at 425 °C for reaction network P-

N2-R9 using one average liquid composition at each temperature level (3) and 

each liquid product type (3) 

Table 7.4. Identified kinetic parameters for plastic waste pyrolysis on CuZSM-

5 / Ni/Mo-Al2O3 catalysts for reaction network P-N2-R9 

Reaction Kinetic parameters 

Reactant Product k0 [s-1] Ea [J mol-1] 

P P– 8.14∙105 9.72∙104 

P- C 2.13∙101 4.44∙104 

P- Lp 2.70∙104 8.25∙104 

P- Lo 7.82∙104 9.17∙104 

P- Li 8.23∙102 5.63∙104 

P– G 4.90∙103 6.43∙104 

Lp Lo 1.48∙105 6.85∙104 

Lo Li 6.69∙102 2.55∙104 

Lp Li 7.58∙104 5.68∙104 

The identified kinetic parameters for the P-N2-R9 reaction network are shown 

in Table 7.4. The values are in the same order of magnitude as were in the case of 
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P-N1-R5 (Table 7.3) because the underlying measurement has remained the same. 

The activation energies of the secondary reactions between the volatiles are lower, 

suggesting that these reactions have a more visible effect also at lower 

temperature levels, thus weakening the correlation between the three liquid 

groups, explaining why I have separated them in the kinetic model. 

At this point, we have a reasonably simple lumped reaction network with only 

nine reactions to identify that can be considered optimal in such a way that it is 

capable of capturing all main characteristics of the measurement. And the best 

part that it is nothing more complex than the initial reaction network P-N0-R10 

due to considering the correlations between product concentrations. 

7.4 Simplification of the experimental work 

Finally, there is one more way to make use of the nearly constant mass 

distribution of the liquid product. The original experimental work described in 

Section 3.1.1 involves the collection of liquid product samples at regular intervals, 

then analyzing them separately with gas chromatography, and then we still have 

to calculate the total product composition from the known sample compositions. 

This is rather tedious (especially when the sampling process is not automated) and 

time-consuming; so instead, it would be much easier if we collected the liquid 

product continuously and only analyze it after the plastic waste pyrolysis reaction 

was carried out. We can also couple this with the mass measurement of the liquid 

outlet. To validate this assumption, I remodeled the experimental data of plastic 

waste pyrolysis on FeZSM-5 / Ni/Mo catalyst system at 455 °C: 

 I calculated the amount of total liquid product vs. time: {(0 min, 0 g), 

(4 min, 4.25 g), (8 min, 16.2 g), (12 min, 25.75 g), (16 min, 28.7 g)}; 

 interpolated between the data points using cubic convolution in 

MATLAB with 1 s frequency; 

 added an approx. 3% time-invariant measurement noise to the 

interpolated data with normal distribution; 

 calculated the mass distribution of the end product to be able to 

estimate liquid fractions from the amount of the total liquid product. 
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The kinetic parameters of the lumped reaction network P-N1-R5 were 

identified using this generated data set. The identified values are listed in Table 

7.5. One noticeable aspect is that the rate of coke formation is nearly independent 

of the temperature. The reason behind this is more numerical than theoretical. In 

Figure 7.7.a, you can see that the calculated amounts of the gaseous and total 

liquid products are well within the related confidence bounds of the generated 

data set; only the amount of coke is higher than expected. This might further be 

improved if we modified the objective function because now the weight of 961 

(16x60+1) measurement points associated with the liquid product in the objective 

function completely overwhelm the one data point associated with the coke 

byproduct; nevertheless, these results are still suitable. 

Table 7.5. Identified kinetic parameters for plastic waste pyrolysis on FeZSM-

5 / Ni/Mo-Al2O3 catalysts for reaction network P-N1-R5 

Reaction Kinetic parameters 

Reactant Product k0 [s-1] Ea [J mol-1] 

P P– 4.90∙108 1.35∙105 

P– C 1.79∙10-2 1.44∙101 

P– L 1.31∙102 4.21∙104 

P– G 1.41∙10-1 3.28∙103 

L G 4.14∙108 2.56∙105 



 Structure of lumped reaction networks with correlating parameters 

123 

 

Figure 7.7. Pseudocomponent mass fractions at 455 °C for network P-N1-R5 for 

FeZSM-5 / Ni/Mo-Al2O3 catalysts identified using generated measurement data 

a) comparison with generated data b) comparison with original GC data 

The amounts of L+ and L– derived from the total liquid product (Lcal.) and the 

related values from the original experiment is shown in Figure 7.7.b. These are 

coinciding well with each other; therefore, it can be firmly suggested that the 

required experimental work to follow the plastic waste pyrolysis will be able to be 

cut down if the right conditions are met (this mainly corresponds to the low 

residence time of the volatile products). 

7.5 Chapter summary 

When carrying out the lumping process, it is crucial to band together all 

correlating components existing on the same time-scale while separating the non-

correlating species at the same time. With this in mind, we can construct a lumped 

reaction network optimal in the sense that it captures as many characteristics of 

the related measurement as possible, yet its complexity remains in line with the 

somewhat elementary nature of the interim measurement often only available to 

follow a process. 
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In this Chapter, I made several modifications to the original P-N0-R10 reaction 

network introduced in Section 3.1. These modifications could be accomplished 

given the low residence time of the product components in the reactor, which 

results in their nearly constant composition. I have shown that this approach has 

multiple advantages. The first step was to merge the L+ and L– lumps, which 

resulted in the P-N1-R5 reaction network. Comparing the mass concentration 

profiles obtained using this scheme and the previous one showed that the idea of 

correlated compositions is indeed viable, although the correlation becomes weaker 

as the temperature increases in the reactor system. 

The second step was to increase the number of uncorrelated components in the 

reaction network (P-N2-R9). This way, the concentrations of paraffin, olefin, and 

isomeric components can be described separately, resulting in a better 

representation of the experimental data, without increasing the number of 

reactions present compared to the P-N0-R10 reaction network. It also became 

possible to reconsider the experimental methods required to follow the process to 

develop an actual interim measurement method suitable for scale-up as well. 

Hence, I believe the concepts unfolded in this work can prove to be useful when 

one would like to use such lumped reaction networks in reactor design and scale-

up for fuel production, or wants to have a better understanding of the underlying 

chemical processes behind the measurement. 
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8 Kinetic identification problems and different optimization 

algorithms 

At this point, we are already familiar with the concept of reducing the number 

of reactions in the reaction network. Chapter 5 introduced the concept of the 

observability of the kinetic parameters that theoretically would ensure their 

identifiability. In Chapter 6, I have calculated the confidence bounds of the kinetic 

parameters of the VGO-N0-R7 reaction network and compared them to the 

original VGO-N0-R15 network, and those results indicated a higher confidence in 

the model itself. 

There are two aspects of kinetic parameter uncertainty that have not yet been 

addressed. Firstly, how much uncertainty is present in the original reaction 

network (i.e., VGO-N0-R15)? Clearly I have reduced it, but from what level, and 

might the original level be acceptable in itself? Secondly, to what extent the 

nonlinear optimization algorithm influences the solution? Following the idea from 

Section 2.4.4, I apply 23 different optimization algorithms on three different 

problems, the VGO-N0-R15 (Section 3.2), VGO-N0-R5 (Chapter 5), and the ETP 

model. The latter was introduced in Section 3.5 and has not yet been further 

investigated. In this Chapter, it serves as a reference to compare the optimization 

algorithms used for kinetic parameter identification because the exact solution is 

available (Table 3.3). This method leads to a third measure to quantify the 

uncertainty of the kinetic parameters and the model itself. 

One of the main motives behind this Chapter is to reason about why I used a 

particular optimization algorithm (so far the NOMAD (Nonlinear Optimization by 

Mesh Adaptive Direct Search) software package [234,235]) to identify the kinetic 

parameters of lumped reaction networks. Therefore, most importantly, I have kept 

a practical approach in mind instead of dwelling into the theory of operations 

research. 

8.1 Investigated kinetic models 

The first two kinetic models investigated in this Chapter are from the field of 

discrete lumping. Specifically, they are two different versions of the kinetic model 

constructed to study vacuum gas oil hydrocracking. The model itself was 
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originally introduced in Section 3.2 and contained 15 reactions between 6 

component lumps (VGO-N0-R15 in Figure 3.4). Secondly, in Chapter 5 I 

developed a method to eliminate reactions from the VGO-15 network to ensure its 

observability, ending up with a reduced kinetic model consisting of 5 reactions 

(VGO-N0-R5 in Figure 5.9). 

Using a lumped kinetic model for benchmarking optimization algorithms is 

genuinely challenging because, unlike the standard problems, the location and 

value of the global minimum is unknown as the kinetic parameters have no 

reference values. Moreover, if we have two points whose difference in the 

objective function value is in the same range as the error of the measurement, it 

will become difficult to decide which one is correct. Even in the case of global 

optimization, one should set a target on what is considered an acceptable or 

successful result [248]. In this sense, if we have multiple different acceptable 

solutions; therefore, in a way we end up with multiple global minima, even if the 

function values are not precisely the same. 

Thirdly, I investigate the few-step kinetic model for ethane pyrolysis (ETP) 

introduced in Section 3.5 that involves conventional chemical reactions between 

regular components. As stated there, I chose this problem because its kinetic 

parameters are known (Table 3.3). That makes the evaluation of the performance 

of the nonlinear optimization algorithms, at least at a first glance, quite easy, as all 

we would have to consider is whether we find these values during the 

identification or not. 

8.2 The optimization target 

Here I retain the use of the objective function from Chapter 5 because Eq. (5.1) 

performed well in the case of VGO hydrocracking. I have also applied it in case of 

the ETP model for the sake of simplicity and better comparison. Nevertheless, 

there are many options for an objective function to choose from and it certainly 

could affect the results. Unfortunately, comparing 23 algorithms and multiple 

objective functions at the same time would be impracticable within a reasonable 

time. A number of good quality studies have been carried out regarding the 

objective function. Siouris and Blakey compared nine different objective 
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functions, evaluating their performance under a genetic algorithm in case of a 

kinetic identification problem and concluded that there are two main types of 

objective functions regarding whether we treat all component concentrations as 

equally important or not [249]. The case discussed here is the latter because it 

would be disadvantageous if the algorithm “overlooked” some species because of 

their low concentrations. In my opinion, Eq. (5.1) is a valid and somewhat evident 

choice for this; on the other hand, there are some less apparent but seemingly also 

very suitable choices derived by the authors themselves. 

For the formulation of the optimization problem, the lower and upper bounds 

of the kinetic parameters also have to be defined as most algorithms deal with 

constrained problems. These are listed in Table 8.1 to Table 8.3. In case of the 

ETP model, the constraints were defined following a preliminary sensitivity study 

starting out from the true values, whereas in case of the VGO-N0-R15 and VGO-

N0-R5 models I mainly defined a wide radius based on the original values 

identified by Sadighi and Reza Zahedi [219], aiming to set the lower and upper 

bounds in a way that they will pose the smallest limitation as possible in practice. 

Hence, these constraints might differ from the ones listed in Table 5.1. 
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Table 8.1. Lower and upper bounds of kinetic parameters of the reactions in the 

VGO-N0-R15 model. 

Reaction 

Pre-exponential factor 

[s-1] 

Activation energy 

[J mol-1] 

LB UB LB UB 

VGO → D 101 104 104 4·105 

VGO → K 1011 1014 104 4·105 

VGO → HN 107 1010 104 4·105 

VGO → LN 1014 1017 104 4·105 

VGO → G 104 107 104 4·105 

D → K 104 107 104 4·105 

D → HN 1019 1022 104 4·105 

D → LN 103 106 104 4·105 

D → G 10-6 10-3 104 4·105 

K → HN 105 108 104 4·105 

K → LN 10-6 10-3 104 4·105 

K → G 10-5 10-2 104 4·105 

HN → LN 10-4 10-1 104 4·105 

HN → G 10-5 10-2 104 4·105 

LN → G 10-4 10-1 104 4·105 

Table 8.2. Lower and upper bounds of kinetic parameters of the reactions in the 

VGO-N0-R5 model 

Reaction 

Pre-exponential factor 

[s-1] 

Activation energy 

[J mol-1] 

LB UB LB LB 

VGO → D 106 109 104 4·105 

VGO → LN 1010 1013 104 4·105 

D → K 1012 1015 104 4·105 

K → HN 106 109 104 4·105 

K → G 10-1 102 104 4·105 
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Table 8.3. Lower and upper bounds of kinetic parameters of the reactions in the 

ETP model 

Reaction 

Pre-exponential factor 

[s-1 or m3 mol-1 s-1] 

Activation energy 

[J mol-1] 

LB UB LB UB 

C2H6 → CH3• + CH3• 6·1015 1.4·1016 3.1·105 5·105 

CH3• + C2H6 → CH4 + C2H5• 6·106 1.4·107 3·104 7·104 

C2H5• → C2H4 + H• 1.9·1013 4.4·1013 105 2.4·105 

H• + C2H6 → H2 + C2H5• 6·107 1.4·108 2.4·104 5.6·104 

H• + C2H4 → C2H5• 1.5·107 3.5·107 5·103 1.2·104 

CH3• + C2H4 → C3H7• 4.7·107 1.1·108 2·104 4.6·104 

C3H7• → CH3• + C2H4 4.7·1013 1.1·1014 8.2·104 1.67·105 

C2H5• + C2H5• → C2H4 + C2H6 6·106 1.4·107 5·103 1.2·104 

C3H7• + C2H4 → C2H5• + C3H6 1.5·104 3.5·104 1.6·104 3.8·104 

CH3• + C2H4 → CH4 + C2H3• 2.4·105 5.6·105 2.1·104 4.9·104 

CH3• + C2H3• → CH4 + C2H2 5.4·106 1.25·107 1.9·103 4.5·103 

C2H3• + H• → C2H2 + H2 6·106 107 0 8·10-1 

C2H4 → •C2H4• 3.8·1015 8.8·1015 2.2·105 3.5·105 

•C2H4• + C2H6 → CH3• + C3H7• 3·1011 7·1011 1.9·105 3·105 

•C2H4• → C2H4 1.4·105 3.4·105 0 8·10-1 

It varies whether a specific algorithm can handle the different order of 

magnitude of the search variables. For the sake of simplicity, I used linearly 

normalized variables (�̅�𝑛) between 0 and 1 (Eq. (4.3)) to assure that this does not 

affect the convergence of the algorithms. 

The kinetic identification problems discussed in this section do not include 

more sophisticated linear and nonlinear constraints. Most of these algorithms 

cannot handle such problems; nevertheless, there would be some options 

available, even if not this many. 

8.3 Identification methods 

The algorithms discussed in this section have been chosen based on the 

following aspects: 
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 It is considered as a global optimization method or a metaheuristic one. 

If not, it was already applied in solving kinetic parameter identification 

problems in the literature. For example, the Active-Set Optimization or 

Levenberg-Marquardt algorithm is widely used in such works 

[82,250,251]. 

 For the sake of simplicity, we have only considered such algorithms 

that have a compatible interface with the implemented kinetic models. 

In general, the aim is to draw attention to the fact that there are several 

programs which we can choose from to solve the optimization problem, 

and it is beneficial to apply more than one in parallel. 

The final list of the algorithms is shown in Table 8.4. There are at least two 

things that were not essential in compiling this list. Firstly, although I intended to 

make a comprehensive overview and to take all major types of algorithms into 

consideration, Table 8.4 is not a review of all possible choices. Secondly, I did not 

deal with the novelty of these algorithms in terms of operations research. I was 

aware of the explosion in the field of “novel” metaheuristic algorithms, i.e., in 

some cases, only the nomenclature of the proposed algorithm shows some 

novelty, and any natural phenomenon could be an inspiration [252]. The most 

obvious example of this is the Harmony Search algorithm picked to pieces by 

Weyland [253]. On the other hand, the main idea of this Chapter is not to make a 

comparative study (mainly because the results would absolutely depend on the 

case studies), but to point out how the application of multiple algorithms gives a 

much better understanding of a given complex problem. Furthermore, the aim is 

to consider two (or more) algorithms that have two (or more) different outcomes, 

even if the underlying math happens to be the same. (In this sense, the application 

of only one metaheuristic algorithm might also be satisfactory.) 
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Table 8.4. List of nonlinear optimization algorithms considered for comparison. 

Nr. Name Short name Type 

1 Active-Set Optimization [254,255] active-set 
derivative-

based 

2 
Biogeography-Based Optimization 

[256,257] 
BBO evolutionary 

3 Bees Algorithm [258,259] BeA swarm-based 

4 Cultural Algorithm [260,261] CA evolutionary 

5 
Evolution Strategy with Covariance Matrix 

Adaptation [262] 
CMA-ES evolutionary 

6 
Controlled Random Search with local 

mutation [263,264] 
CRS2 evolutionary 

7 SCH Evolutionary Algorithm [263,265] ESCH evolutionary 

8 Enhanced Scatter Search [266,267] eSS scatter search 

9 Firefly Algorithm [268,269] FA swarm-based 

10 Genetic Algorithm [270] GA evolutionary 

11 Harmony Search [271,272] HS evolutionary 

12 Interior Point Algorithm [255,273] interior-point 
derivative-

based 

13 
Improved Stochastic Ranking Evolution 

Strategy [263,274] 
ISRES evolutionary 

14 Levenberg-Marquardt [275,276] LM 
derivative-

based 

15 
Nonlinear Optimization with Mesh 

Adaptive Direct Search [234–236] 
NOMAD direct search 

16 
MATLAB Particle Swarm Optimization 

[277,278] 
particleswarm swarm-based 

17 Pattern Search [279,280] patternsearch direct search 

18 
Constrained Particle Swarm Optimization 

[281] 
psopt swarm-based 

19 Particle Swarm Pattern Search [282–284] PSwarm swarm-based 

20 Shuffled Complex Evolution [285,286] SCE-UA evolutionary 

21 Constrained Simplex Method [287] simplex direct search 

22 Simulated Annealing [288,289] simulanneal direct search 

23 
Sequential Quadratic Programming 

[255,290] 
sqp 

derivative-

based 
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For the sake of keeping the size of the comparison study at bay, most options 

of these algorithms were left on their default values. This way, the “raw” 

efficiency of the algorithms can be compared. One exception is the sample size of 

the initial values that was standardized as 40 for the VGO-N0-R15 and VGO-N0-

R5 models, and 100 for the ethane pyrolysis model. In the case of the algorithms 

that work with one initial value vector, that resulted in a multi-start approach 

using each initial value as a starting point. In the case of population-based 

algorithms, the sample size corresponds to the size of the initial population. Due 

to the stochastic nature of these algorithms, parallel runs were conducted starting 

from the same population. The number of parallel runs was chosen to be three and 

ten for the VGO and ETP models, respectively. In all cases, the result associated 

with the minimum objective function value was accepted. 

8.4 Reaching the optimization target 

I compared the solutions of the applied optimization algorithms from a fixed-

target viewpoint. A zero objective function value in Eq. (5.1) corresponds to a 

case where there is no residual error between the experimental and model results. 

It is not necessarily the goal to reach a zero value, especially if measurement noise 

is present, but this provides a joint reference, making the comparison of the results 

from different kinetic models possible. Figure 8.1 shows the objective function 

values reached in the case of the VGO model as a function of the computational 

time, while Figure 8.2 shows these values for the ETP model. For all kinetic 

models, there is a group of successful algorithms that can be separated from the 

others because they are associated with significantly lower objective function 

values (an approximate value of 2 in the case of the VGO models, and below 1 in 

the case of the ETP model). Each successful solution of the optimization problem 

can be interpreted as a slightly different realization of the same kinetic model, but 

with different parameters. 

It can be seen in Figure 8.1 that noticeably more algorithms were successful in 

the case of the VGO-N0-R15 model and the associated objective function values 

are generally lower; on the other hand, the variance of the results is higher. This is 

a classic case of the bias-variance tradeoff between the two models with different 
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complexity. Hence, the total model error can be estimated. Assuming a normal 

distribution of the results from the successful runs, the errors are 𝑓(𝑥𝑛) = 0.84 ±

0.32 and 𝑓(𝑥𝑛) = 1.87 ± 0.12 for the full and the reduced reaction networks, 

respectively. This representation of the total model error combines the actual error 

(represented by the objective function value in the case of a particular algorithm) 

with the uncertainty of the model; the latter is represented by the several solutions 

that produce similar model errors. This observation justifies the assumption from 

Chapter 1 that the error of the model can be reasonably low even in the case 

where the values of the model parameters cannot be identified with high certainty. 

 

Figure 8.1. Performance of different algorithms for VGO hydrocracking a) VGO-

N0-R15 b) VGO-N0-R5. 

Figure 8.2, which shows the performance of the algorithms in the case of the 

ETP model, is analogous to Figure 8.1. Because here reaching 𝑓(𝑥𝑛) = 0 is a 

realistic target due to lack of measurement noise, the performance of the 

successful algorithms is associated with significantly lower objective function 

values. The number of successful algorithms (six), however, is significantly 

smaller than in the previous cases, mainly because second-order reactions are also 

present in the system, increasing its complexity. This is also the reason behind the 
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higher computational time requirements, with the exception of the eSS (8) 

algorithm, indicating the advantages of combined global and local optimization 

approaches, as pointed out elsewhere [207]. The acceptable error level of the 

model is 𝑓(𝑥𝑛) = 0.07 ± 0.11, in line with the expected target value. 

 

Figure 8.2. Performance of different algorithms for ethane pyrolysis. 

As mentioned earlier, in the case of the VGO hydrocracking models, the 

location and the value of the global minimum are unknown. However, at this 

point, it can be suggested that the error level of the VGO-N0-R15 and VGO-N0-

R5 models reported above quantifies the global minimum. Firstly, the size and 

nature of the optimization problems are very similar, i.e., they are kinetic 

identification problems with the same number of parameters to be identified for 

the ETP and VGO-N0-R15 model. Secondly, the complexity of the VGO-N0-R15 

and VGO-N0-R5 models is lower. Given that the performance of the successful 

algorithms characterizes the global optimum in the case of the more complex ETP 

problem, it stands to reason to suggest that the estimated total error values of the 

VGO-N0-R15 and VGO-N0-R5 models also correspond to the global optimum. In 

conclusion, the application of different nonlinear optimization methods on the 
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same kinetic identification problem provides a convenient way to estimate the 

location of the global minimum and the total model error with high certainty. 

8.5 The importance of model reduction 

As mentioned in Section 8.4, the VGO-N0-R15 model has a lower error but 

also higher variance. Figure 8.1 only shows this in the case of the objective 

function values, but it is also worth examining how the identified kinetic 

parameter sets differ from each other. To that end, their correlation should be 

examined, because high correlation would indicate that the kinetic parameters 

obtained by the application of different GNLOPT algorithms are similar. The 

correlation coefficient of two kinetic parameters (denoted as A and B) can be 

calculated using the following equation: 

𝜌(𝐴, 𝐵) =
1

𝑁 − 1
∑(

𝐴𝑖 − 𝜇𝐴

𝜎𝐴
) (

𝐵𝑖 − 𝜇𝐵

𝜎𝐵
)

𝑁

𝑖=1

 (8.1) 

where μ and σ are the mean and standard deviation of the parameters, and N is 

the number of observations (i.e., the number of kinetic parameter sets obtained in 

the successful runs). Graphical representations of the obtained correlation 

matrices in the case of the VGO-N0-R15 and VGO-N0-R5 models can be seen in 

Figure 8.3. Here, the tendency is the same as earlier, namely, the VGO-N0-R15 

results show significantly higher variation; in fact, the correlation values are close 

to zero. This result is inconsistent with the very nature of the reaction network 

from Figure 3.4 as the reactions should correlate through the concentrations of the 

component lumps. At the very least, the pre-exponential factors and activation 

energy values corresponding to the same reaction should be strongly correlated. 

The lack of this indicates high uncertainty in the identified kinetic parameters. 
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Figure 8.3: Correlation between the identified parameters in the case of the a) 

VGO-N0-R15 and b) VGO-N0-R5 model 

On the other hand, the correlation matrix of the kinetic parameters of the VGO-

N0-R5 model in Figure 8.3b has significantly higher values, in other words, the 

identified parameters have lesser uncertainty. This is an important result because 

lumped reaction networks are generally dense like the VGO-N0-R15 example. It 

is possible to identify the kinetic parameters of such networks so that the error of 

the model is reasonably low; nevertheless, the uncertainty of the identified 

parameters would stuck at a high level, hindering the application of these models 

to solve reactor scale-up and design problems. Instead, it is important to reduce 

the reaction network to keep the uncertainties in the model as low as possible even 

if the error of the model is acceptable as it is in the case of the results obtained 

using the VGO-N0-R15 model. 

8.6 Differences between the identified kinetic parameters 

So far only the overall performance of the identified kinetic parameters has 

been evaluated based on Eq. (5.1). For example, there were 16 successful 

optimization methods in the case of the VGO-N0-R5 model in Figure 8.1b, 

associated with approximately the same objective function values. In addition, it 

is worth to investigate the possible difference between the results more in-depth. 

An effective way to do that is to compute the difference between the concentration 

profiles obtained using the identified kinetic parameters. The standard deviation 

of the simulated pseudocomponent mass concentrations was calculated in case of 

a) b) 
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the VGO-N0-R5 model (using the ESCH, eSS, GA, HS, NOMAD, and PSwarm 

algorithms) by the following equation: 

𝑆𝑇𝐷 = √
1

𝑁 − 1
∑(𝑐𝑖,𝑐𝑎𝑙 −

1

𝑁
∑𝑐𝑗,𝑐𝑎𝑙

𝑁

𝑗=1

)

2
𝑁

𝑖=1

 (8.2) 

where N is the number of observations, i.e., the number of calculated mass 

concentrations from each global minimum at a given temperature and LHSV 

value. The resulting standard deviations are the highest in the case of the VGO 

and D lumps, as depicted in Figure 8.4. Therefore, even though the value of the 

objective function is nearly the same, the calculated mass concentrations can 

differ considerably under certain operating conditions. 

 

Figure 8.4. Standard deviation of mass concentrations calculated using kinetic 

parameters at different global minima 

High standard deviation values highlight the possible experimental conditions 

where further measurements would be advantageous [47].  For example, the 

results of carrying out the hydrocracking experiment at 380 °C anew, and 

subsequently identifying of the kinetic parameters would enhance the 
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performance of the kinetic model. This is a further advantage of the application of 

multiple algorithms during the kinetic parameter identification. 

8.7 Chapter summary 

Studies assessing the performance of nonlinear optimization algorithms in 

kinetic model identification are scarce in the literature, and the reason behind this 

is simple: there is no one “best” algorithm for all cases. Even in the case of the 

three identification problems discussed in this Chapter, some algorithms 

performed well in one case and not so well in the other. On the other hand, the 

application of multiple algorithms in connection with the same identification 

problem might as well provide further insight on its nature. The difference 

between the objective function values can characterize the variance of the model. 

Moreover, the difference between the solutions behind the objective function 

values (i.e., the kinetic parameter sets) can characterize the uncertainty of the 

model. This type of characterization provides an absolute measure, in contrast to 

the methods discussed in the previous Chapters. 
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9 Optimal temperature profile of a fixed-bed heterocatalytic 

reactor 

So far, I have dealt with reaction networks, kinetic identification problems and 

the uncertainties related to them. Nevertheless, a heterocatalytic process is much 

more than just the reactions. Hence, the last two Chapters of my dissertation aim 

to broaden the scope and focus on reactor design. This can be formulated as an 

optimization problem as well, but in order to do that, we need to express the 

optimal design as a single scalar value, i.e., we have to formulate the related 

objective function. As I have already mentioned in Section 8.2, this is not obvious 

even in the case of kinetic parameter identification, not to mention the reactor 

design. 

The case study investigated in this Chapter is the process of HCl oxidation, 

introduced in Sections 2.1.3 and 2.3.1, which is a mildly exothermic reaction 

leading to equilibrium. Increasing the temperature of the reactor increases the 

reaction rate but lowers the equilibrium conversion. Moreover, we can have 

multiple catalyst layers with different activities, and we can split the cooling 

system of the reactor to have a multi-zoned temperature control; in other words, 

we have several different ways to design the reactor. Therefore, the main question 

to be answered in Chapter 9 is how can we define the optimal design of the 

reactor and how can we translate that definition into a single objective function. 

 I show in Section 9.3 that the maximization of the conversion (the 

straightforward or naive approach) is a bit underwhelming as we can 

end up with different reactor designs without the tools to differentiate 

between them. 

 In Section 9.4 I define three other optimization cases whose aim is to 

optimize the reactor temperature profile whilst maintaining a sufficient 

conversion level. The optimal temperature profile of the fixed-bed HCl 

oxidation reactor is the key to select optimal reactor design because it 

can directly affect the lifespan of the catalyst used in the system. 
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The method suggested here is expected to be applicable regardless of the 

catalyst present, given that the detailed kinetic model for HCl conversion over the 

particular catalyst is available. 

9.1 The reactor design problem 

In this chapter I investigate a fixed-bed reactor for HCl oxidation loaded with 

CeO2/CuO catalyst. This is a reasonable coupling as the catalytic activity of CeO2 

and CuO are in the same order [291] and the compound has been proven to be 

stable in long-term [53,220]. Chen et al. investigated such a process in a 

laboratory-scale reactor using a graded catalyst bed utilizing 11 stages (plus 2 

inert sections as the top and the bottom of the reactor filled with alumina spheres 

1.2 and 0.6 m long, respectively) [221]. The catalyst activity of the stages 

alternated between values 1 and 0.3, as can be seen in Figure 9.1 on the overall 

activity profile of the reactor. The refrigerant on the shell side is the molten 

mixture of KNO3, NaNO2 and NaNO3 53%:40%:7% (m/m) in two independent 

circuits, equally divided with respect to the length of the reactor; the temperature 

of the two stages set to 380 and 410 °C, respectively. 

 

Figure 9.1. Original catalyst activity profile of the reactor. Light gray: zero 

activity (alumina spheres); dark gray: low activity (0.3); black: high activity (1) 

With this design, they reached an HCl conversion value above 83% (n/n) in the 

reactor. It can be assumed that the catalyst activity profile was designed in such a 

relatively complicated way in order to facilitate temperature control, avoid local 

overheating, and allow the system to cool back to a manageable temperature. 

In spite of these precautions, temperature gradients above 250 °C m-1 can be 

observed in their work. Moreover, introducing the catalyst in 11+2 layers per tube 

into an industrial reactor with approximately 10 000 tubes would be extremely 

time-consuming, not to mention the high possibility of making an error while 

carrying out such a monotonous task. Therefore, the aim of my work was the 
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systematic optimization of the reactor design and conversion process, searching 

for a possible simplification of this design. 

9.2 Optimization strategy 

On the basis of preliminary studies, I formulated three different approaches of 

reactor design that are technically feasible. 

 Method A: the reactor can be filled with catalyst layers with different 

activities, while the reactor remains undivided from the shell side with 

only one cooling circuit. 

 Method B: the reactor can be filled with only one layer of catalyst 

(with a defined activity), while the reactor shell side will be divided 

into multiple zones with different temperature stages each. 

 Method C: the previous two methods can be combined so that each 

shell zone is coupled with a catalyst layer in the reactor with a certain 

activity and with a length equal to the length of the shell zone. 

The general number of catalyst layers (or cooling zones), N, varied from 1 to 6 

in our investigations; this has been proved sufficient as can be seen later. The 6 m 

reactor length and the lengths of the two inert sections were considered as given 

values and therefore remained constant, leaving 4.2 m of effective reactor length 

in the optimization problems solved. For solving the optimization problem, the 

NOMAD software package was used (refer to Section 4.1). 

9.3 Maximizing HCl conversion 

In case 1, the objective function for optimization was to maximize HCl 

conversion by all three methods. The optimization problem is formalized as 

max(𝑥𝐻𝐶𝑙(𝑧 = 4.2)) (9.1) 

One important process constraint was considered (i.e., the overall temperature 

maximum in the reactor (Eq. (9.2)). This coincides with previous studies 

investigating the performance of CuO−CeO2 catalysts. 

𝑇𝑚𝑎𝑥 ≤ 437 °C (9.2) 

The degrees of freedom are the length and activity of each catalyst layer plus 

the temperature of the cooling zone (method A); the length and temperature of 
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each shell zone plus the overall activity of the catalyst layer (method B); and 

finally, the length of zones, plus the temperature of the cooling zone and catalyst 

activity in each layer (method C). 

The achievable conversion values as functions the number of zones in case 1 

are located along a saturation curve, as shown in Figure 9.2. (The saturation curve 

is drawn as a dashed line as these functions actually have discrete domains.) A 

plateau of 82.3% (n/n) emerges that means the reaction becomes controlled by the 

equilibrium conversion. Theoretically, lowering the reactor temperature would 

lead to higher conversion values; however, the resulting decrease in the reaction 

rate compensates for this effect. Therefore, it can be stated that the achieved 

conversion value is a practical maximum in this system. 

 

Figure 9.2. Maximum achievable HCl conversion in the reactor by dividing it to 

N ∈ [1, 6] zones 

Given that three zones are satisfactory to reach the desired conversion value, I 

compared the reactor temperature profiles for the solutions given by methods A-

C. Figure 9.3 shows the temperature profiles for a three-zone reactor. It can be 

clearly seen that there is a difference between the results of each method. Method 

A has two local maxima in reactor temperature. That is actually a result of the fact 

that the last two catalyst zones have equal activity values (a numeric value of 1). 

More notably, the overall temperature change is around 40 °C, as opposed to 

those in the other two methods that have a difference 2-fold larger, and the 
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temperature also increases more rapidly along the first 0.5 m of the reactor, which 

could indicate the possibility of the formation of hotspots. 

 

Figure 9.3. Temperature profiles of a three-zoned reactor optimized for maximum 

conversion 

9.4 Optimizing reactor temperature profile 

The previously described recognition leads to the wish to reformulate the 

objective function in order to better address the temperature changes occurring in 

the reactor. Our aim was to smooth the reactor temperature profile; hence, I 

constructed three objective functions (summarized in Table 9.1) that can be 

capable of addressing this problem. 

 Case 2: reactor temperature maximum minimization. If the maximum 

temperature is low, then high temperature rises cannot occur in the 

reactor. 

 Case 3: standard temperature maxima in each zone in the reactor. If the 

difference between temperature maxima is low, then this would indicate 

the smoothness of the temperature profile. Standard deviation was 

calculated from 

𝑆𝑇𝐷 = (
1

𝑁 − 1
∑(𝑇𝑖 − �̅�)2

𝑛

𝑖=1

)

1
2

 (9.3) 
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 Case 4: a more sophisticated version of case 3. Here the standard 

deviation of reactor temperature was taken as the objective function. 

Temperature values were obtained at 0.01 m intervals; the standard 

deviation of this set was calculated with Eq. (9.3). This case is an 

exception, as not only the effective reactor length but also the whole 

6 m length was considered in the objective function. 

The newly constructed objective functions do not involve an explicit 

temperature constraint such as Eq. (9.2) because the presence of an increasing 

number of nonlinear constraints affects the performance of the optimization 

algorithm negatively. Moreover, the results of the temperature profile 

optimization also satisfy Eq. (9.2) in most cases, as you will see later. 

Table 9.1. Developed objective functions for the optimization of the reactor 

temperature profile. 

 case 2 case 3 case 4 

objective function 𝑄 = 𝑇𝑚𝑎𝑥 
𝑄 = 𝑆𝑇𝐷({𝑇𝑖,𝑚𝑎𝑥}) 

i: zone nr. 

𝑄 = 𝑆𝑇𝐷({𝑇𝑧=𝑧𝑛
}) 

𝑧𝑛 = 0.01𝑛 
𝑛 = 0, 1, … 600 

nonlinear constraint 0.82 ≤ 𝑥𝐻𝐶𝑙 ≤ 1 

The minimized values of the objective functions for each case, including the 

three methods for reactor zoning described earlier, are shown in Table 9.2. These 

values cannot be compared directly to each other for different cases as values of 

maximum temperature in case 2 are much higher than values of temperature 

deviations in cases 3 and 4; however, all these cases were formulated to smooth 

the temperature profile. Therefore, that will be analyzed both qualitatively and 

quantitatively hereinafter. 
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Table 9.2. Minimized values of objective functions for the optimization of the 

reactor temperature profile. 

 
Zone nr. 

case 2 

[°C] 

case 3 

[°C] 

case 4 

[°C] 

Division of layers 

(Method A) 

1 482.9 70.0 25.9 

2 450.1 25.7 11.7 

3 435.7 16.0 11.2 

4 447.9 15.4 11.3 

5 435.7 15.2 11.1 

6 423.9 12.9 11.8 

Reactor shell split 

(Method B) 

1 474.0 68.3 25.5 

2 410.8 28.8 17.4 

3 395.9 31.2 17.4 

4 393.6 34.9 17.4 

5 404.3 33.8 18.1 

6 414.6 35.1 19.5 

Division of layers with reactor 

split 

(Method C) 

1 476.5 69.1 26.0 

2 436.9 18.7 16.4 

3 405.3 17.6 9.5 

4 424.9 10.5 6.3 

5 402.8 11.8 10.9 

6 426.1 16.1 16.5 

For quantitative analysis, the results were elevated based on how rapidly the 

temperature changes in the reactor as a rapid increase may lead to the local 

overheating in the reactor as stated earlier. The differential quotient of the 

temperature and the reactor length was calculated on a 0.01 m basis to obtain the 

approximation of the temperature gradient: 

grad 𝑇 ≈
Δ𝑇

Δ𝑥
 (9.4) 

The maximum gradients, as well as the maximum temperatures for each case 

and method, are listed in Table 9.3. 

It would appear that none of the three objective functions can be selected as the 

best one, as the minimum value for each method was obtained in different cases. 
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This could indicate that the causation between temperature deviation and the 

gradient is not as strong as was expected. There is a possibility of the existence of 

another objective function that is more suitable to address temperature changes in 

the reactor, leaving room for future improvements. The results from each case for 

a given method and number of zones sometimes differ considerably. Because of 

the motive for designing the cases is the same, I decided to treat the 18 results per 

a given method as one group and selected the minimum value of temperature 

gradient maximum regardless of the case. 

In general, the number of zones and the maximum temperature gradients are 

inversely proportional. This was expected as with a higher number of zones the 

degrees of freedom of the system increase which in turn should lead to better 

temperature control. With the addition of another zone, the trivial solution is to 

duplicate one zone from the previous solution; therefore, the solution should be 

the same or better. Nevertheless, in some cases the gradients become higher with 

the addition of another zone. This comes presumably from the specific behavior 

of the NOMAD algorithm. 
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Table 9.3. Maximum values of temperatures and gradients in case of optimized 

temperature profiles in the reactor 
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Apparently, the lowest gradient values are obtained as a result of case 2 and 

method A. For only one zone in the reactor (i.e., without a graded catalyst bed), 

the optimization algorithm is not effective since the only variable is the catalyst 

activity and there is a minimum value for HCl conversion is defined. Moreover, 

the maximum temperature exceeds the limitation. I compared the obtained 

temperature profiles from 2 to 6 zones (Figure 9.4.). For two layers of catalyst, the 

temperature maximum and the slope drop drastically. The addition of a third layer 

further decreases the value of the maximum temperature gradient. Upon further 

increasing the number of search variables, the slopes become slightly more gentle 

except for that with five layers where the temperature gradient maximum becomes 

higher again. The number of hot-spots is not equivalent to the number of layers. 

The reason is that the activities of two catalyst layers are permitted to be the same, 

for example, in the case of five layers the activities of the first and second layers 

are both around 0.15. As the maximum temperature gradients for 4, 5, and 6 

layers are almost the same, it can be assumed that the minimum value can be 

reached with the introduction of four layers in the catalyst bed. 

 

Figure 9.4. Reactor temperature profiles obtained by minimizing the standard 

deviation of the overall temperature profile of the reactor with zoning the catalyst 

bed 

For method A, the lowest temperature gradient was provided using the 

objective function in case 3; for methods B and C, case 2 was the most successful. 
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The possible best solutions were emphasized in Table 9.3. The respective 

temperature profiles and temperature gradients are shown in Figure 9.5. 

 
Figure 9.5. Temperature profiles (a) and gradients (b) of reactors resulting 

temperature profile optimization 

In the case of methods B and C, the results show great similarities apart from 

that the temperature gradient toward the third maximum being lower for method 

B. For method A, gradients are significantly lower, whereas the temperature itself 

is higher. The reason behind the higher temperatures is that in this case, the 

reactor shell is not split into multiple zones, resulting in an overall higher 

temperature profile to achieve the desired conversion at the reactor outlet. On the 

other hand, the presence of four catalyst layers with different activities ensures 

that the reactor temperature will not shoot up due to the heat of reaction released. 

As it was described previously, the CeO2-based catalysts are less sensitive to 

high temperatures. (In the catalyst stability tests carried out by Tang et al., it was 

stated that there is no obvious change in activity at 430 °C for 1200 h.) [62]. In 

other words, this advantage has a lesser priority. This implies that splitting the 

reactor shell is not necessary for temperature profile optimization in HCl 

conversion unless the catalyst activity decreases considerably during continuous 
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operation. This scenario should be further investigated; e.g., catalyst deactivation 

model(s) should be integrated into the simulator. 

Table 9.4. Optimized reactor configuration of reactors resulting temperature 

profile optimization 

  
zone 1 zone 2 zone 3 zone 4 

Division of layers 

(Case 3, 

Method A) 

Catalyst activity [-] 0.15 0.20 0.42 1 

Catalyst bed length [m] 0.73 0.67 0.72 2.08 

Shell temperature [°C] 399 

Reactor shell split 

(Case 2, 

Method B) 

Catalyst activity [-]2 1 

Shell zone length [m] 1.03 0.84 0.82 1.51 

Shell zone temperature 

[°C] 
341 374 384 387 

Division of layers 

with reactor split 

(Case 2, 

Method C) 

Catalyst activity [-] 1 0.99 1 -3 

Zone length [m] 0.97 1.18 2.05 -3 

Shell zone temperature 

[°C] 
341 374 387 -3 

The final values of optimization variables are summarized in Table 9.4. This 

shows the reason behind the similarity of the temperature profiles for methods B 

and C, as the catalyst activity does not actually change in method C, indicating 

that the effect of this variable has significantly less effect to the absolute value of 

the objective function than reactor shell temperature, as a result, the catalyst 

activity is only lower than 1 in case of method A, where the shell temperature has 

less impact. On this basis, controlling the reactor shell temperature for each zone 

seems to be more effective. Meanwhile, it can be altered without shutting down 

the reactor and changing the catalyst layers, and deactivation of the catalyst can be 

compensated for with the increase of the temperature for a given zone. In 

conclusion, while splitting the reactor shell is not necessary for temperature 

profile optimization in HCl conversion, it might be considered as it results in a 

more flexible system. 

                                                 
2 Not a degree of freedom. 
3 Not present. 
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9.5 Chapter summary 

In this Chapter, I investigated the heterocatalytic oxidation of HCl into Cl2 (the 

Deacon process), carried out in a fixed-bed tubular reactor. I considered three 

different design methods: the application of graded catalyst beds, multiple cooling 

zones, and finally, the coupling of the previous two into a generalized reactor 

zone. The number of zones (N) varied from 1 to 6 in the investigations. The 

results obtained by using the initial objective function for HCl conversion 

maximization have shown that while reaching the equilibrium conversion is 

possible, this method does not properly address the temperature changes occurring 

in the reactor. 

Hence, I constructed three new objective functions, evaluated their results 

using the axial temperature gradient of the reactor temperature as a main indicator. 

With this method, the temperature deviation along the reactor length can be 

reduced to a reasonably low level using four catalyst beds with different activities. 

While splitting of the reactor shell is not necessary, a more flexible system can be 

achieved with it as shell side temperature may be altered during the course of 

normal operation of the reactor in order to counter catalyst deactivation. This 

brings us to the weak point of the investigation presented in this Chapter, as it 

does not involve this phenomenon. Therefore, a final case study is coming in the 

next Chapter, which, among other uncertain parameters, also takes deactivation 

into account. 
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10 Uncertainties of lumped reaction networks in reactor design 

The final problem investigated in my thesis connects the topic of lumped 

reaction networks and reactor design. Lumped reaction networks are extensively 

used to model complex processes such as hydrocracking. Despite this, studies on 

the further applicability of these networks during reactor scale-up and design are 

notably sparser. The application of a lumped reaction network to solve such 

problems requires dealing with a wide range of uncertainties, e.g., reaction 

kinetics, the heat of reaction, or pseudocomponent densities. In this Chapter, the 

design procedure of a trickle-bed hydrocracking reactor with multiple catalyst 

layers is carried out using a few-step lumped reaction network. The uncertain 

parameters are considered in a stochastic objective function using uniform 

probability distributions. Moreover, I extend this approach to catalyst deactivation 

as well, pointing out that this phenomenon can also be interpreted as a form of 

uncertainty, instead of estimating the activity using more complex and resource-

intensive dynamic simulations. The results obtained by the application of the 

stochastic design method are compared to the performance of the conventional 

model-based design as well. An improved test of robustness is applied to evaluate 

the performance of the reactors under various uncertain conditions. The results 

indicate that the application of the suggested methods can simplify the structure of 

the hydrocracking reactor. For example, a fewer number of catalyst layers will be 

required while retaining the robustness of the reactor at the same time. 

10.1 Conventional design method 

The layout of the reactor to be designed, which is a general trickle-bed unit 

(see Section 2.3.2 and Section 3.3), is illustrated in Figure 10.1, including the 

notation of the design variables that should be determined. These can be divided 

into two groups: operating variables (1-3) with controllable values, and structural 

parameters (4) that are not dynamically scalable with the reactor load during 

normal operation. Since the reactor should be designed so that it can be operated 

at different load levels, the former were determined at four distinct LHSV values 

(0.5; 1; 1.5; and 2 h-1). The design variables are the following: 

 The inlet temperature of the vacuum gas oil (TVGO); 
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 The inlet temperature of the hydrogen (𝑇𝐻2
in Eq. (3.23)). Here, the 

same value has been applied for every H2 inlet. It would be possible to 

set different values before each layer; however, the preliminary results 

had shown that it would not affect the solution significantly. (The 

difference is illustrated in Table S21 and Table S22 in the Appendix.) 

 The proportion of H2 that is introduced before each catalyst layer, from 

which �̇�𝐻2

𝑘  can be calculated that is in turn used in Eq. (3.18)) and Eq. 

(3.23). Since the sum of these should be 1, the number of degrees of 

freedom is one less than the number of operating variables. 

 Lastly, the ratio of the length of each layer to the total length (L1/Lr, 

L2/Lr … Ln/Lr) should also be determined. Similarly, the number of 

degrees of freedom is one less than the number of catalyst layers since 

the value of Lr has been fixed. 

 

Figure 10.1. Schematics of the VGO hydrocracking reactor with the design 

variables. 

The estimation of the design variables can be formulated as an optimization 

problem (Eq. (10.1)) to determine them as such to achieve optimal operation of 

the hydrocracking unit, defined as follows: 

 the amount of residual VGO needs to be minimized; 

 the amount of diesel produced needs to be maximized; 
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 the maximum temperature of the reactor should be lower than 410 °C to 

prevent catalyst deactivation and thermal runaway [292]; 

 for the same reasons, the maximum temperature elevation on one 

catalyst layer should be under 50 °C [293]. 

𝑓(𝑥) = ∑ {
1.5 𝑤𝑉𝐺𝑂% − 𝑤𝐷%

𝑖𝑓 𝑇𝑚𝑎𝑥 ≤ 410

& Δ𝑇𝑚𝑎𝑥
𝑘 ≤ 50

2000 otherwise𝐿𝐻𝑆𝑉

 (10.1) 

where x is the vector of design variables to be determined, w is the weight 

percentage of a component lump in the product, Tmax is the maximum temperature 

of the reactor, and Δ𝑇𝑚𝑎𝑥
𝑘  is the maximum of the elevations of the temperature 

calculated for each catalyst layer. We considered the minimization of the 

remaining VGO 1.5 times more important and took the amount of diesel with a 

negative sign into an account in order to maximize its production. If either of the 

two temperature constraints is not satisfied, the calculated result from the reactor 

model will be discarded, and the objective function will return a large value. This 

way, solutions with inadmissible temperature profiles will be ignored. Catalyst 

deactivation or cycle length does not appear in the objective function at this point, 

because catalyst time-on-stream is not included in the reactor model. A possible 

workaround solution is introduced in the next section. 

Lower and upper bounds of model variables are listed in Table 10.1. 

Additionally, linear inequality constraints have been placed to ensure that the sum 

of hydrogen makeup and catalyst layer length ratios remain below 1 (0.95, to be 

more precise) so that by all means, we will get a valid final value if we subtract 

the sum of these from 1. 

Table 10.1. Lower and upper bounds of search variables for constrained 

optimization. 

Variable Lower Bound Upper Bound 

TVGO 380 °C 420 ˘C 

𝑇𝐻2
 50 °C 350 °C 

�̇�𝐻2

𝑘 �̇�𝐻2
⁄  0.05 0.85 

Lk / Lr 0.05 0.85 
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Eq. (10.1) focuses on the output of the reactor and does not consider capital 

and operational expenditures. The reason behind this that the size of the reactor is 

not on the industrial scale and this investigation is only one aspect of the scale-up 

process. Furthermore, the inclusion of cost estimations would introduce another 

layer of uncertainty that in turn would make the assessment of uncertainties 

associated with lumped reaction networks more difficult. Nevertheless, the effect 

of economic estimations needs further investigation. 

10.2 Stochastic design method 

There are a number of additional model parameters whose values cannot be 

relied on with strong confidence. Most of these are inherent to the fact that a 

lumped reaction network is used, which involves a great deal of simplification. 

 Catalyst deactivation. As the components contributing to deactivation 

are not addressed separately, a simple deactivation function (Eq. (2.3)) 

should be used, and, for the same reason, the value of α is not known 

with full confidence. 

 Reaction kinetics. In Chapters 5-8 I have developed several different 

methods to reduce the uncertainties associated with lumped reaction 

networks; however, as was shown particularly in Chapter 8, it is not 

possible to eliminate all of them. So the question here is how the 

existence of multiple possible kinetic parameter sets that provide more 

or less the same fit to the experimental data affects the design process. 

 The heat of reaction. The rule of thumb used in Eq. (3.21) leaves room 

for some guesswork even if theoretical calculations support this value. 

Moreover, it could strongly affect the operation of the hydrocracking 

unit as the heat of reaction directly influences the reactor temperature. 

 Component densities. The reactor model assumes a quasi-homogeneous 

phase, mainly because, in the case of lumped components, it is quite the 

headache to calculate gas-liquid equilibrium. On the other hand, the 

presence of the gas phase can be accounted for by varying the density 

of the components in a broader range. 
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Another effect that has not been considered during the conventional reactor 

design is catalyst time-on-stream (ToS in Eq. (2.3)). The standard method to 

calculate with ToS is to implement it in a dynamic simulator; on the other hand, 

such simulators are more complex and resource-intensive. Instead, we have 

formalized it as an uncertain parameter. A convenient way to think about this is 

by realizing that the time-on-stream is not directly observable; therefore, it can 

formally be handled as an uncertain value. 

The stochastic design method includes an objective function in that, before 

solving the reactor model, uniformly sampled random variables are generated that 

affect the solution of the model between the limits listed in Table 10.2. The limits 

of the deactivation parameter were determined based on the work of Rashidzadeh 

et al. [151]. The catalyst activity coefficient, φ, was calculated using the generated 

α and ToS values, and then it was used as an additional multiplying factor in Eq. 

(3.17). The heat of reaction and the component densities were multiplied by a 

random correction factor to account for their uncertainties. This way, the uncertain 

parameters may change in a wide range. The actual ranges are probably smaller; 

therefore, this assumption can be considered as a form of safety margin during the 

reactor design process. 

I assessed the uncertainties of the reaction kinetics in a slightly different way. 

Firstly, I repeatedly identified the kinetic parameters against the measured values 

reported in the work of Sadighi et al. [218] mentioned above, using four different 

derivative-free optimization algorithms (Enhanced Scatter Search (eSS) 

[266,267], MATLAB Genetic Algorithm (ga) [270], MATLAB Particle Swarm 

Optimization (particleswarm) [277,278], Nonlinear Optimization with Mesh 

Adaptive Direct Search (NOMAD) [234,235]). I conducted ten runs using each 

program. The identified 40 sets of kinetic parameters are listed in Table S18 and 

in Table S19 in the Appendix. The key idea here that although the root of mean 

squared error (RMSE) values associated with the separate runs (also listed in 

Table S3) are reasonably small, the identified parameters themselves vary on a 

broader scale. Therefore, there may be such temperature and LHSV ranges where 

the results calculated with different kinetic parameter sets locally deviate from 

each other, resulting in a form of uncertainty. Because the kinetic parameters of 
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the five reactions are not independent of each other, one set was chosen randomly 

before solving the reactor model, denoted as a uniform random integer between 1 

and 40. 

Table 10.2. Lower and upper bounds of uncertain parameters of the reactor model. 

Uncertain Parameter Lower Limit Upper Limit 
Nominal 

value 

α [h-1] 5∙10-5 1.5∙10-4 9.172·10-5 

ToS [h] 0 8000 0 

ID of the reaction kinetic 

parameter set 
1 40 27 

ΔrH perturbation -20% 20% 0% 

ρ perturbation (separately for 

the six lumps) 
-40% 10% 0% 

To solve the reactor design optimization problem (both the conventional 

(deterministic) and stochastic cases), the MATLAB R2019a Genetic Algorithm 

[270] was used that is a nondeterministic, population-based, global nonlinear 

optimization (GNLOPT) method suitable for minimizing highly nonlinear 

functions such as our case study. We chose the population size as 50 times the 

number of decision variables in the case of the conventional method, while in the 

case of the stochastic method, the multiplying factor was chosen to be 100. 

10.3 Conventional design results 

One of the first decisions that have to be made in connection with the 

hydrocracking reactor design is the number of catalyst layers because the 

optimization problems formed above actually get separated on the axis of this 

decision. In other words, each choice of the number of layers has its own 

objective function with an increasing number of decision variables. In the case of 

a reactor with no layering, we get eight decision variables, while in the case of six 

layers, we get 33. For each number of layers considered, we carried out the 

optimization problem three times using different random seeds, denoting the 

results of the run associated with the minimum objective function value in Table 

10.3. (The values of the design variables associated with each column can be seen 

in Table S20 to Table S26 in the Appendix.) Results exhibit diminishing returns, 
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i.e., while both the conversion and the amount of Diesel produced increases with 

the number of layers, the benefit from introducing another catalyst layer to the 

reactor becomes lesser for each new layer. 

Table 10.3. Nominal operating conditions of the hydrocracking reactor designed 

using a conventional method in case of different numbers of catalyst layers and 

averaged over LHSV values. 

Number of Layers 1 2 3 4 5 6 

Objective Function Value 255.1 213.4 155.2 138.4 130.1 120.9 

𝑤𝑉𝐺𝑂 [% (m/m)] 62.1% 56.9% 47.4% 46.0% 44.9% 43.4% 

𝑤𝐷 [% (m/m)] 29.4% 32.0% 32.3% 34.4% 34.9% 34.9% 

𝑇𝑚𝑎𝑥 [°C] 403.9 401.7 401.2 404.4 407.6 409.4 

Δ𝑇𝑚𝑎𝑥
𝑘̅̅ ̅̅ ̅̅ ̅̅  [°C] 48.0 33.2 42.0 29.7 24.0 21.0 

 

Figure 10.2. Temperature profiles of the hydrocracking reactor designed using a 

conventional method in case of different numbers of catalyst layers and different 

LHSV values – a) 0.5 h-1, b) 2 h-1. 

Reactor temperature profiles are shown in Figure 10.2 in the case of LHSV 

values of 0.5 h-1 and 2 h-1. For intermediate LHSV values, refer to Figure S23 in 

the Appendix. The difference between the reactors designed is much more 
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prominent at a higher load level. Furthermore, increasing the number of layers 

from four to five gives a smaller additional benefit than the inclusion of the fourth 

layer compared to the case of three, apart from the temperature profile getting 

smoother to some extent. On this basis, the optimal number of catalyst layers 

seems to be between three and five, consistent with the industrial practice for a 

single reactor. Taking into consideration the CAPEX as well, three layers could be 

a reliable answer. However, the conventional design method does not calculate 

with several additional uncertain parameters; hence the results might not be 

sufficiently accurate. 

10.4 Reactor sensitivity to uncertain parameters 

One way to differentiate between the solutions shown in Figure 10.2 is to 

assess their sensitivity to the various uncertain parameters introduced in Section 

10.2. To achieve this, I calculated the corresponding sensitivity indices using the 

Fourier Amplitude Sensitivity Test (FAST) (see Section 2.4.2). The sensitivity 

indices are shown in Figure 10.3. It can be seen that only the four parameters 

denoted on the left side have a considerable effect on the objective function in the 

range specified in Table 10.2. In other words, the designed reactor already shows 

high robustness against the uncertainty in reaction kinetics and the majority of the 

pseudocomponent densities. 

The behavior of the reactor will be less sensitive to catalyst deactivation if 

more catalyst layers are present (although there is a minor increase in the case of 

five layers), and the tendency is the same for the heat of reaction. These results 

meet with the expectations – more layers result in lower temperature gradients and 

steadier reaction rates, and both of these could contribute to a decline of 

sensitivity to the uncertain parameters in connection with the reactions. The only 

parameter sticking out of the queue is the sensitivity to the feedstock density 

(ρVGO). This value affects the reactor performance on a high level, influencing 

both the flow velocity and mass concentrations, explaining the high sensitivity 

index that does not really become lower in case of more layers. It can be assumed 

that the effect of lower density, thus higher velocity and lower residence time 
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could only be countered by a higher reactor length (volume), but that is a fixed 

value in our investigation. 

 

Figure 10.3. Sensitivity indices of the hydrocracking reactor designed using the 

conventional method to different uncertain parameters. 

I have also performed a local sensitivity analysis to illustrate the effect of each 

uncertain parameter. We used a one-at-a-time approach, varying only one 

uncertain parameter per run and leaving all the others at their nominal value given 

in Table 10.2. Results are given in Figure 10.4 for the hydrocracking reactor with 

four catalyst layers. (Cases of three and five layers are shown in Figure S24 and 

Figure S25 in the Appendix due to the high degree of similarity.) It can be seen 

that the behavior of the reactor is most sensitive to the heat of reaction and to the 

VGO density. Under certain conditions, the objective function reaches zero that 

indicates a thermal runaway (the mass concentrations of VGO and D both reaches 

zero), or at least such part of the domain where the reactor model is not valid. It is 

important to mention that the chance of actual runaway is less than that Figure 

10.4 indicates as several operating variables are present that could be used to 

control the reactor (e.g., the temperature of H2 could be lowered). Nevertheless, 

this should be taken into account to test reactor robustness. 
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Figure 10.4. Local sensitivity analysis of the hydrocracking reactor with four 

catalyst layers to different uncertain parameters designed using the conventional 

method. 

In conclusion, the uncertainty analysis showed that designing the 

hydrocracking reactor with at least four catalyst layers instead of three would 

increase its robustness. Moreover, I have identified four parameters to that all 

reactor designs investigated are highly sensitive. In the second half of the 

discussion, I evaluate the stochastic design approach and how it affects the 

robustness of the reactor. 

10.5 Stochastic design results and comparison 

In the case of stochastic design, for each number of layers considered, we 

carried out the optimization step 20 times using different random seeds and 

averaged the results. At this point, the cumulative average became nearly 

constant. The resulting design variables characterize the average performance of 

the reactor under various uncertain conditions. Design variables obtained by the 

conventional and the stochastic methods are compared in Figure 10.5. (Similar 
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outcomes of cases with three and five layers can be found in Figure S26 and 

Figure S27 in the Appendix.) The heights of the bars were normalized between 

the lower and upper bound of the search variables (Table 10.1) for the sake of 

better visibility. A significant difference in the results is that the contribution of 

the last catalyst layer appears to be smaller, given its shorter length and the lower 

amount of hydrogen introduced. The change can be related to, for example, that 

the catalyst deactivation phenomenon was taken into account during the stochastic 

design, which results in lower average reaction rates, hence the higher amount of 

hydrogen make-ups and longer catalyst layers. 

 

Figure 10.5. Nominal values of design variables of the hydrocracking reactor with 

four catalyst layers in case of different LHSV values  – a) 0.5 h-1, b) 1 h-1, c) 1.5 h-

1, d) 2 h-1. 

10.6 Robustness of reactor design 

It also needs to be investigated whether the stochastic design method represents 

an improvement. One method to measure this is to calculate the deviation of the 
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objective function caused by the variation of the uncertain parameters. Here, a 

lower deviation represents a more robust solution [134]. The objective function 

was evaluated at the sampling points denoted in Table 10.4 using a uniform 

sampling method. The number of sampling points for each uncertain parameter is 

proportional to its GSA index. 

Table 10.4. Maps of the uncertain parameter space for the tests or robustness. 

Uncertain Parameter Lower Limit Upper Limit Sample size 

α 4∙10-5 1.5∙10-4 3 points 

ToS 0 8000 7 points 

Δ𝑟𝐻 perturbation -20% 20% 3 points 

𝜌𝑉𝐺𝑂 perturbation -40% 10% 8 points 

Total   504 

We should not overlook the fact that we have multiple design variables (e.g., 

inlet temperatures, makeup H2 ratios) that can be modified during the course of 

normal operation. In order to take this effect into account, we can recalculate the 

values of the operating variables by solving the same GNLOPT problem and 

objective function. The previously identified layer length values remained the 

same, simulating an already constructed reactor rather than designing a new one 

for each uncertain parameter. 

Further exploring this idea, the usage of the same constraints as in Table 10.1 

would be disadvantageous because these cover a wide range, and during normal 

operation, such substantial changes in the values of process variables cannot be 

carried out (at least on a reasonable time horizon). Therefore, we defined a 

distance metric between two uncertain parameter sets as follows: 

𝑑𝑢 = √∑((𝑢𝑗
𝑛 − 𝑢𝑗,𝑛𝑜𝑚

𝑛 ) ∙ 𝑆𝑖𝑗)
2

4

𝑗=1

 (10.2) 

where uj is the actual value of the jth uncertain parameter in the small map, 

uj,nom is the nominal value, Sij is the corresponding global sensitivity index. The 

superscript n denotes that the values of the uncertain parameters have been 

normalized between 0 and 1 using their corresponding lower and upper bounds 
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from Table 10.1. Using the distance metrics, the corresponding constraints can be 

defined as: 

𝐿𝐵𝑎𝑐𝑡 = 𝐿𝐵𝑚𝑖𝑛 ∙
𝑑𝑢,𝑎𝑐𝑡

𝑑𝑢,𝑚𝑎𝑥
 (10.3) 

𝑈𝐵𝑎𝑐𝑡 = 𝑈𝐵𝑚𝑎𝑥 ∙
𝑑𝑢,𝑎𝑐𝑡

𝑑𝑢,𝑚𝑎𝑥
 

(10.4) 

In other words, we have narrowed the search intervals based on the extent to 

that an uncertain parameter combination differs from the nominal values listed in 

Table 10.2. Narrowing the search intervals might contribute to lesser capital 

expenditure and a shorter payback period as well because it essentially translates 

into narrower control regions of the inlet temperatures that in turn would result in 

the need for a less powerful auxiliary heat exchanger to maintain process control. 

The minimum lower and the maximum upper deviations of the operating 

variables (LBmin and UBmax, respectively) were determined as follows: 

 the constraints for the VGO inlet temperature would remain the same as 

in Table 10.1 considering the relatively narrow interval; 

 in the case of the temperature of the H2 inlet, LBmin is 25 °C lower, and 

UBmax is 25 °C higher than the value associated with the nominal case. 

The values of the operating parameters at the nominal uncertainty level 

are denoted in Table S27 in the Appendix. 

 Finally, in the case of the H2 makeup ratios, a ±10% constraint was 

applied in the same manner. 

After formulating and solving the optimization problems, I calculated the 

probability densities of the objective function in each case. These are depicted in 

Figure 10.6. 
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Figure 10.6. Probability density of the optimized objective function values in the 

space of uncertain parameters in case of the hydrocracking reactor with a) three b) 

four c) five catalyst layers. 

The plots are notably different, as in the case of four layers a definite 

improvement is visible, while in the case of five layers, there is none – one could 

say the stochastic design method actually presents a setback. The reason behind 

this is that a hydrocracking reactor with more catalyst layers is fundamentally 

more robust because there are more control options that could negate the effects of 

uncertainties. Consequently, in the case of a reactor with a fewer number of 

catalyst layers, the investigation on the effects of uncertain parameters is 

beneficial, resulting in a reactor design where the operation is less sensitive to the 

fluctuations of the uncertain parameters. On the other hand, if more catalyst layers 

are present, the advantages of the stochastic design methods will dissipate. They 

are not inherently better than conventional methods. In my opinion, this is a 

significant result; nevertheless, based on our literature review, it is seldom 

emphasized. 
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10.7 Chapter summary 

The so-called lumping approach is a powerful tool to model the kinetics of 

complex processes such as hydrocracking. On the other hand, such reactor models 

have several uncertain parameters that do not always get the proper attention. In 

order to deal with these uncertain parameters, I applied a stochastic design 

approach. Although stochastic methods are commonly used for plant modeling, 

they are seldom applied to design a single unit. On the other hand, I found that 

stochastic optimization is well suited to handle the uncertainties of lumped 

reaction networks. I also investigated whether the stochastic approach represents 

an improvement over the conventional method. I applied GSA to measure the 

robustness of the reactor design. An improved test of robustness was also 

developed, consisting of the sampling of the uncertain parameter space and then 

testing whether the operating variables can be used to control the designed reactor 

in order to maintain optimal operation (conversion, product composition, and 

reactor temperature profile). 

In conclusion, it can be stated that the application of a stochastic design method 

can simplify the reactor design. In the specific case investigated, this would mean 

a fewer number of catalyst layers or a more effective heat exchanger explicitly 

designed for a narrower temperature interval to control reactor inlet temperature. 

All of these might contribute to lesser capital expenditure and a shorter payback 

period. Nevertheless, the application of a stochastic design method is not 

automatically advantageous; rather, its usefulness depends on how flexibly the 

designed reactor system can be operated. If more control options are available to 

negate the effects of uncertainties, the performance of the conventionally designed 

reactor will also be satisfactory. The limit to that a stochastic design approach 

holds advantages over the conventional method still needs to be investigated; 

nevertheless, the case study presented in this Chapter provides a good starting 

point to assess and counter the effect of uncertainties during the design of 

heterocatalytic processes. 
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11 Final remarks and farewell 

This dissertation can be separated into two major parts. The first one is about 

the nature of lumped reaction networks. I used two of such case studies, involving 

the pyrolysis of real plastic waste and the hydrocracking of vacuum gas oil. 

Chapter 4 introduces the basic outline of how to identify the kinetic parameters 

given the nature of the available experimental data. I developed a lumped reaction 

network and a two-step identification strategy to determine the kinetic parameters 

under various catalytic conditions without any a priori information available on 

the activation energies. More importantly, this chapter introduces a model-based 

scale-up approach to evaluate the performance of the various zeolite-based 

catalysts used in the experimental work. 

One of the key observations of my work was that lumped reaction networks 

usually tend to be overparametrized, i.e., the number of lumped reactions included 

in the kinetic model is too much compared to how detailed the related 

experimental data is. That in turn results in parametric uncertainty that should be 

dealt with before we can apply a lumped reaction network in reactor design. 

Therefore, I introduced multiple methods to quantify and reduce these 

uncertainties, presented in Chapters 5-8. 

In Chapter 5, I developed a kinetic parameter identification strategy that 

produces a reduced lumped reaction network whose all states are observable. 

Starting from the VGO-N0-R15 reaction network, I carried out sequential 

identification and reaction network reduction steps to select those that 

significantly influence the product composition under the given experimental 

conditions. By examining the state-space model representation of the resulting 

reduced reaction networks, I successfully found the VGO-N0-R5 network with all 

parameters observable and therefore identifiable. 

In Chapter 6, I proved that the reduction of the reaction network increases the 

confidence of the kinetic parameters. Applying global sensitivity analysis 

methods, I have confirmed that the elimination of the reactions whose kinetic 

parameters the model is not sensitive to, the confidence intervals characterizing 

the remaining model parameters is typically become narrower. I concluded that 

even if we identify the kinetic parameters of several reactions from a relatively 
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low-resolution experimental data, the high uncertainties of the identified values 

significantly influence the possible future application of the model in process 

design. 

By examining the experimental data of the pyrolysis of real plastic waste, I 

recognized that under certain conditions the liquid product composition remains 

constant. I utilized the correlations between the amounts of liquid products in 

Chapter 7 to increase the number of pseudocomponents without increasing the 

number of reactions present in the lumped reaction network. 

I took the characterization of kinetic parameter uncertainty one step further in 

Chapter 8 and quantified the uncertainty of the reaction networks not just relative 

to each other by estimating the variance of the objective function. To that end, I 

used 23 different nonlinear optimization algorithms per identification problem, 

using the VGO-N0-R15 and VGO-N0-R5 reaction networks, and a more regular 

few-step kinetic model for ethane pyrolysis that could be used as a reference on 

the performance of the algorithms as the exact values of the parameters to be 

identified were already available prior to the investigation (Table 3.3). In the case 

of the specific examples, I deemed the performance of the Enhanced Scatter 

Search, Genetic, and Particle Swarm Optimization algorithms as best. 

I showed that the correlation between the identified kinetic parameter sets 

provides a measure to parameter uncertainty. If the correlations are low, the 

difference between the identified kinetic parameter sets will be high regardless the 

reasonably low model error. Generally this would be unfavorable because it 

means that the true values of the parameters cannot be determined. Finally, 

starting out from the underlying differences between the calculated product 

compositions, I was able to point out the direction where further experimental 

work should be carried out in order to increase the reliability of the kinetic model. 

The second major part of my dissertation turns to the design of heterocatalytic 

processes. In Chapter 9 I conducted a case study where the process itself was not 

uncertain (instead, the kinetics HCl oxidation to Cl2 is well known), but the 

question of how to define the optimal heterocatalytic reactor design remained 

open. It would be unwise to assume that my answer to that question is the only 

correct one; nevertheless, it is adequate and has been recognized for its novelty. 
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Finally, in Chapter 10 I combined the topic of lumped reaction networks (with 

uncertain parameters) and heterocatalytic reactor design and carried out both the 

conventional and stochastic model-based design process of a trickle-bed 

hydrocracking reactor. Here I have come up with the conclusion that the 

advantage of the stochastic approach (i.e., design under uncertainty) will diminish 

if we the flexibility of the reactor increases (such as in the case of adding another 

catalyst layer and thus increasing the number of process variables we can use to 

control its operation). 

Throughout my dissertation, I introduced several alternative reaction networks 

to describe the same process (summarized in Table S1), and this inevitably raises 

the question whether a “best” choice exists. In my opinion there is no such 

network. Nevertheless, Global Sensitivity Analysis was proved to be the most 

versatile tool. Aside from its use in Chapter 6, I have applied it during the 

construction of P-N2-R9 (Figure 7.5b); moreover, I was able to use the same 

method to assess reactor sensitivity to all possible sources of uncertainties, 

determining the key uncertain parameters needs to be addressed in order to 

achieve robust design. On this ground, the application of P-N0-R5, P-N2-R9, and 

VGO-N0-R7 reaction networks is more favorable as these could be determined 

with relative ease. On the other hand, I purposefully carried on the VGO-N0-R5 

network in reactor design (thus constructing VGO-N1-R5 in Section 3.3) mainly 

because it did meet the observability criterion established in Section 5.3, which, in 

my opinion, indicates strong reliability. It would be very useful to compare the 

VGO-N0-R5 and VGO-N0-R7 reaction networks in terms of model variance 

(Chapter 8) and applicability during reactor design (Chapter 10); unfortunately, 

this is beyond the score of this dissertation. 

Research work associated with obtaining any kind of academic degree can 

never be completed but only halted. While I am certain that my dissertation is 

coherent as I tied the loose ends to the best of my knowledge, there are many 

points of interest that one can explore: 

 The question of how many discrete lumps to include in the kinetic 

model is only briefly explored in Chapter 7 (that instead focused on the 

correlations between them) and how should we define them as the 
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introduction of L+ and L– in the pyrolysis reaction network in Section 

3.1.2 was somewhat arbitrary. 

 Global sensitivity analysis, in theory, could be used to automate the 

lumping process itself, i.e., one might determine which lumps have 

decisive roles in describing the behavior of the chemical system 

investigated. 

 I only mentioned in Section 8.2 that the formulation of the objective 

function can also have an effect on the uncertainty of the kinetic model, 

but I have actually not yet been able to investigate it. 

 It would also be beneficial to study the dynamic behavior and 

controllability of the heterocatalytic reactors designed in Chapters 9 and 

10, especially to investigate the effect of catalyst deactivation more in-

depth. 

That is to say, there is still much to do. But like most scientific texts, this one 

has already become long and dry, so this would be the end for now. I hope that the 

scientific community will find my contribution to the topics included in my 

dissertation useful. With that, it is time to say goodbye. Have fun with reducing 

uncertainties! 

 



 Theses 

173 

Theses 

From the bird’s eye view, I investigated four distinct topics using four case 

studies in my dissertation. I summarized the related results in four theses. The 

relations between the theses and the various sections of my dissertation are 

denoted in Table 12.1. It goes without saying that the references in this table are 

not necessarily comprehensive; rather, their main purpose is to facilitate 

navigation throughout this work. 

Table 12.1. Relations between major topics, reactor models and theses. 

 

Pyrolysis of 

real plastic 

waste 

Vacuum gas oil 

hydrocracking 

HCl 

oxidation 

Ethane 

pyrolysis 

Process model 

development4 

Section 3.1 

Section 4.3 

Thesis #35 

Section 3.3 

 

Thesis #4 

  

Reduction of 

reaction network 

Section 6.2 

Section 7.2 

Thesis #1 

Thesis #3 

Section 5.2 

Section 6.3 

Thesis #1 

  

Parameter 

identifiability 

 Section 5.3 

Section 6.5 

Section 8.4 

Section 8.5 

Thesis #1 

Thesis #2 

 Section 8.4 

 

 

 

Thesis #2 

Reactor design Section 4.4 

Thesis #3 

Chapter 10 

Thesis #4 

Chapter 9 

Thesis #4 

 

 

                                                 
4 Reactor models taken from the literature are not present in this list. 
5 i.e., thesis statement 
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Thesis #1. I developed new strategies that can be applied to reduce uncertainties 

associated with the kinetic parameters of lumped reaction networks. 

 I reduced the number of reactions present in the reaction network to 

ensure the observability of all kinetic parameters, following the 

definition from the field of control theory. Such a reaction network is 

identifiable with high certainty. 

 I applied Global Sensitivity Analysis to identify and eliminate such 

reactions whose influence on the final product composition is low. 

Although an arbitrary complex lumped reaction network can be 

constructed from a given experimental data set, the associated 

parameter uncertainty also increases with the complexity, placing a soft 

upper limit on the number of identifiable parameters. 

Related publications: 1, 2, 8, 11 

Thesis #2. I applied multiple global nonlinear optimization algorithms to identify 

the kinetic parameters of the same reaction network parallel and concluded that 

the different performance of the algorithms is related to the uncertainty of the 

model. 

 I quantified the model variance and total model error in the case of 

lumped reaction kinetic models. 

 I showed that the uncertainty of the kinetic model can be characterized 

with the correlation of the identified parameter sets. 

 The underlying differences between the calculated mass concentration 

profiles point out the direction where further experimental work should 

be carried out to increase the reliability of the model. 

Related publications: 3, 9 
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Thesis #3. After studying the thermo-catalytic pyrolysis of real plastic waste, I 

developed a model-based method for catalyst comparison. 

 I developed a lumped reaction network and a two-step identification 

strategy to determine the kinetic parameters of the lumped reaction 

network without any a priori information available on the activation 

energies. 

 I utilized the correlations between the amounts of liquid products to 

increase the number of pseudocomponents without the necessity of 

including additional reactions. 

 I compared the performance of the catalysts using the model-based 

approach and a reactor model inspired by the possible scale-up method 

of the real plastic waste pyrolysis process. 

Related publications: 4, 5, 10, 12, 13 

Thesis #4. I developed new methods for the model-based design of fixed-bed 

heterocatalytic reactors, with special regard to parameter uncertainties and 

operation aspects. 

 I investigated the conditions under that we can use lumped reaction 

networks in the design procedure. I mapped out the various uncertain 

parameters in a stochastic objective function during the model-based 

design and optimization of the reactor. Moreover, I extended this 

approach to catalyst deactivation as well; pointing out that this 

phenomenon can also be interpreted as a form of uncertainty. 

 I constructed new objective functions to define the optimal operation of 

a fixed-bed heterocatalytic reactor for HCl oxidation. I have developed 

a method that can be used to optimize the reactor temperature profile as 

well as the yield, using the temperature gradient and standard deviation, 

achieving a smooth temperature profile that can extend the lifespan of 

the applied catalyst. 

Related publications: 6, 7, 14, 15 
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Publications related to theses 

Articles in international journals 

1. Z. Till, T. Varga, L. Szabó, T. Chován, Identification and Observability 

of Lumped Kinetic Models for Vacuum Gas Oil Hydrocracking, Energy 

Fuels 31 (2017) 12654-12664. 

https://doi.org/10.1021/acs.energyfuels.7b02040. SCImago Journal 

Ranking: Q1, Impact factor: 3.024 

2. Z. Till, T. Varga, J. Sója, N. Miskolczi, T. Chován, Reduction of 

lumped reaction networks based on global sensitivity analysis. Chem. 

Eng. J. (Amsterdam, Neth.) (2019), 121920. 

https://doi.org/10.1016/j.cej.2019.121920. SCImago Journal Ranking: 

Q1 (D1), Impact factor: 10.652 

3. Z. Till, T. Chován, T. Varga. Improved understanding of reaction 

kinetic identification problems using different nonlinear optimization 

algorithms. J. Taiwan Inst. Chem. Eng. 111 (2020), 73-79. 

https://doi.org/10.1016/j.jtice.2020.05.013. SCImago Journal Ranking: 

Q1, Impact factor: 4.794 (2019) 

4. Z. Till, T. Varga, J. Sója, N. Miskolczi, T. Chován, Kinetic 

identification of plastic waste pyrolysis on zeolite-based catalysts. 

Energy Convers. Manage. 173 (2018), 320-330. 

https://doi.org/10.1016/j.enconman.2018.07.088. SCImago Journal 

Ranking: Q1 (D1), Impact factor: 7.181 

5. Z. Till, T. Varga, J. Sója, N. Miskolczi, T. Chován, Structural 

assessment of lumped reaction networks with correlating parameters. 

Energy Convers. Manage. 209 (2020), 112632. 

https://doi.org/10.1016/j.enconman.2020.112632. SCImago Journal 

Ranking: Q1 (D1), Impact factor: 8.208 (2019) 

https://doi.org/10.1021/acs.energyfuels.7b02040
https://doi.org/10.1016/j.cej.2019.121920
https://doi.org/10.1016/j.jtice.2020.05.013
https://doi.org/10.1016/j.enconman.2018.07.088
https://doi.org/10.1016/j.enconman.2020.112632
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6. Z. Till, T. Varga, J. Réti, T. Chován, Optimization Strategies in a 

Fixed-Bed Reactor for HCl Oxidation. Ind. Eng. Chem. Res. 56 (2017), 

5352-5359. 

https://doi.org/10.1021/acs.iecr.7b00750. SCImago Journal Ranking: 

Q1, Impact factor: 3.141 

7. Z. Till, T. Chován, T. Varga, Uncertainties of lumped reaction networks 

in reactor design. Ind. Eng. Chem. Res. 59 (2020), 10531-10541. 

https://doi.org/10.1021/acs.iecr.0c00549. SCImago Journal Ranking: 

Q1, Impact factor: 3.573 (2019) 

Articles in conference publications 

8. Z. Till, T. Varga, T. Chován, Kinetic identification of reaction network 

consisting chemical lumps for vacuum gas oil hydrocracking. In 

Műszaki Kémiai Napok 2017: Chemical Engineering Conference 2017, 

Veszprém, Hungary, Apr. 25-27, 2017; J. Abonyi, M. Klein, A. Balogh, 

Eds.; University of Pannonia: Veszprém, Hungary (2017), 23-28. 

9. Z. Till, T. Varga, T. Chován, Comparing nonlinear optimization 

algorithms in the identification of lumped reaction networks. In 

Konferencia Kiadvány, Műszaki Kémiai Napok, Veszprém, Hungary, 

Apr. 16-18, 2019; A. Balogh, M. Klein, Eds.; University of Pannonia: 

Veszprém, Hungary (2019), 89-94. 

10. Z. Till, T. Varga, J. Sója, N. Miskolczi, T. Chován, Kinetic 

Identification of Plastic Waste Pyrolysis on Zeolite-based Catalysts. In 

Műszaki Kémiai Napok, Veszprém, Hungary, Apr. 24-26, 2018; A. 

Balogh, M. Klein, Eds.; University of Pannonia: Veszprém, Hungary 

(2018), 93-98. 

https://doi.org/10.1021/acs.iecr.7b00750
https://doi.org/10.1021/acs.iecr.0c00549
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Conference abstracts 

11. Z. Till, T. Varga, T. Chován, Reduction of Lumped Reaction Networks 

Based on Global Sensitivity Analysis. In XXIII International 

Conference on Chemical Reactors (CHEMREACTOR-23), Ghent, 

Belgium, Nov. 5-8, 2018; A. Noskov, G. Marin, A. Zagoruiko, K. Van 

Geem, Eds.; Boreskov Institute of Catalysis of the Siberian Branch of 

the Russian Academy of Sciences: Novosibirsk: Russia (2018), 37-38. 

12. Z. Till, T. Varga, J. Sója, N. Miskolczi, T. Chován, Dealing with 

Structural Uncertainties in Lumped Reaction Networks. In Book of 

Abstracts: 12th European Congress of Chemical Engineering. 5th 

European Congress of Applied Biotechnology, Florence, Italy, Sep. 15-

19, 2019; Italian Association of Chemical Engineering (AIDIC): Italy 

(2019), 1060-1061. 

13. Z. Till, T. Varga, J. Sója, N. Miskolczi, T. Chován, 

Pszeudokomponensekből álló reakcióhálózatok strukturális 

bizonytalanságának vizsgálata. In Absztraktkötet. Tavaszi Szél 

Konferencia 2019. Nemzetközi Multidiszciplináris Konferencia, 

Debrecen, Hungary, May 3-5, 2019; K. Németh, Ed.; Association of 

Hungarian PhD and DLA Students: Budapest, Hungary (2019), 320. 

14. Z. Till, T. Chován, T. Varga, Kísérleti üzemi sósav oxidációs reaktor 

köpenytér kialakításának optimalizálása. In XXII. Nemzetközi 

Vegyészkonferencia, Timișoara, Romania, Nov. 3-6, 2016; K. Majdik, 

Ed.; Hungarian Technical Scientific Society of Transylvania (HTSST): 

Cluj-Napoca, Romania (2016). 

15. Z. Till, T. Varga, T. Chován, Model-based optimization of HCl 

oxidation. In Tavaszi Szél Konferencia 2017: Nemzetközi 

Multidiszciplináris Konferencia: Absztraktkötet, Miskolc, Hungary, 

March 31 - Apr. 2., 2017; G. Keresztes, Zs. Kohus, K. Szabó P., D. 

Tokody, Eds.; Association of Hungarian PhD and DLA Students: 

Budapest, Hungary: Budapest, Hungary (2017), 340. 
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Publications not related to theses 

Articles in international journals 

16. O. P. Hamadi, T. Varga, Z. Till, Z. Eller, J. Hancsók, Model based 

investigation of catalyst fouling in case of special hydrocracking of 

sunflower oil and kerosene mixture, Energy Fuels 33 (3) (2019), 2575-

2853. 

https://doi.org/10.1021/acs.energyfuels.8b04085. SCImago Journal 

Ranking: Q1, Impact factor: 3.421 

Articles in Hungarian journals 

17. Z. Till, B. Molnár, A. Egedy, T. Varga, CFD Based Qualification of 

Mixing Efficiency of Stirred Vessels, Period. Polytech., Chem. Eng. 63 

(1) (2019), 226-238. 

https://doi.org/10.3311/PPch.12245. SCImago Journal Ranking: Q2, 

Impact factor: 1.257 

Articles in conference publications 

18. Z. Till, T. Varga, J. Sója, N. Miskolczi, T. Chován, Kinetic Modeling of 

Plastic Waste Pyrolysis in a Laboratory Scale Two-stage Reactor. In 

Computer-Aided Chemical Engineering (43), Graz, Austria, Jun. 10-13. 

2018; A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, T. Wallek, Eds.; 

28th European Symposium on Computer Aided Process Engineering 

Part A.; Elsevier: Amsterdam, Netherlands (2018), 349-354. 

Conference abstracts 

19. O. P. Hamadi, T. Varga, Z. Till, Z. Eller, J. Hancsók, Kinetic model 

development of special hydrocracking of sunflower oil and petroleum 

mixture. In Book of Abstracts: 12th European Congress of Chemical 

Engineering. 5th European Congress of Applied Biotechnology, 
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Engineering (AIDIC): Italy (2019), 1070-1071. 
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vizsgálata numerikus áramlástani szimuláció alkalmazásával. In 
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Appendix 

 

Figure S1. Identified kinetic parameters of the 1st reaction for every generated data 

set using bootstrapping and the fitted Weibull-distribution in case of the complete 

reaction network for VGO hydrocracking. 
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Figure S2. Identified kinetic parameters of the 2nd reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 

 

Figure S3. Identified kinetic parameters of the 3rd reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 
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Figure S4. Identified kinetic parameters of the 4th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 

 

Figure S5. Identified kinetic parameters of the 5th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 
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Figure S6. Identified kinetic parameters of the 6th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 

 

Figure S7. Identified kinetic parameters of the 7th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 
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Figure S8. Identified kinetic parameters of the 8th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 

 

Figure S9. Identified kinetic parameters of the 9th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 
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Figure S10. Identified kinetic parameters of the 10th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 

 

Figure S11. Identified kinetic parameters of the 11th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 
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Figure S12. Identified kinetic parameters of the 12th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 

 

Figure S13. Identified kinetic parameters of the 13th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 
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Figure S14. Identified kinetic parameters of the 14th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 

 

Figure S15. Identified kinetic parameters of the 15th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

complete reaction network for VGO hydrocracking. 
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Figure S16. Identified kinetic parameters of the 1st reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

reduced reaction network for VGO hydrocracking. 

 

Figure S17. Identified kinetic parameters of the 4th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

reduced reaction network for VGO hydrocracking. 
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Figure S18. Identified kinetic parameters of the 5th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

reduced reaction network for VGO hydrocracking. 

 

Figure S19. Identified kinetic parameters of the 6th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

reduced reaction network for VGO hydrocracking. 
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Figure S20. Identified kinetic parameters of the 10th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

reduced reaction network for VGO hydrocracking. 

 

Figure S21. Identified kinetic parameters of the 13th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

reduced reaction network for VGO hydrocracking. 
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Figure S22. Identified kinetic parameters of the 15th reaction for every generated 

data set using bootstrapping and the fitted Weibull-distribution in case of the 

reduced reaction network for VGO hydrocracking. 
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Figure S23. Temperature profiles of the hydrocracking reactor designed using a 

conventional method in case of different numbers of catalyst layers and different 

LHSV values – a) 0.5 h-1, b) 1 h-1, c) 1.5 h-1, d) 2 h-1. 
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Figure S24. Local sensitivity analysis of the hydrocracking reactor with three 

catalyst layers to different uncertain parameters designed using the conventional 

method. 
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Figure S25. Local sensitivity analysis of the hydrocracking reactor with five 

catalyst layers to different uncertain parameters designed using the conventional 

method. 
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Figure S26. Nominal values of design variables of the hydrocracking reactor with 

three catalyst layers in case of different LHSV values  – a) 0.5 h-1, b) 1 h-1, c) 

1.5 h-1, d) 2 h-1. 
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Figure S27. Nominal values of design variables of the hydrocracking reactor with 

five catalyst layers in case of different LHSV values  – a) 0.5 h-1, b) 1 h-1, c) 1.5 h-

1, d) 2 h-1. 
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Table S1. Identifiers of the different lumped reaction networks introduced in the 

thesis. 

Number 

of 
reactions 

Number of components 

Plastic Waste Pyrolysis VGO hydrocracking 

5 6 7 6 7 

5 
P-N1-R5 

Figure 7.2 

P-N0-R5 

Figure 6.2b  

VGO-N0-R5 

Figure 5.9 

VGO-N1-R5 

Figure 3.5 

7 
   

VGO-N0-R7 

Figure 6.5b  

9 
  

P-N2-R9 

Figure 7.5b 

VGO-N0-R9 

Figure 5.6  

10 
 

P-N0-R10 

Figure 3.2 

Figure 6.2a    

15 
   

VGO-N0-

R15 

Figure 3.4 

Figure 5.4 

Figure 6.5a 

 

 

Table S2. Stoichiometric matrix of the reaction network from Figure 3.2. 

 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 

P -1          

P– 1 -1 -1 -1 -1      

L+  1    -1 -1 -1   

L–   1   1   -1 -1 

G    1   1  1  

C     1   1  1 
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Table S3. Physical properties of the components included in the plastic waste 

pyrolysis reactor model (Section 3.1). 

Components M [kg kmol-1] 
ρ [kg m-3] 

a b c 

P 200 000 0 0 937.83 

P– 100 000 0 0 937.83 

L+ 312 0 -9.48∙10-3 12.42 

L– 157 0 -4.63∙10-3 6.02 

G 15 0 -4∙10-4 0.54 

C 12 0 0 937.83 

N2 28 2.6∙10-6 -4.14∙10-3 2.11 
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Table S4. Physical properties of the components included in the VGO 

hydrocracking reactor model (Section 3.2 and 3.3). 

Components M [kg kmol-1] ρ [kg m-3] cp [J kg-1 K-1] 

VGO 732.3 942.2 3512.3 

D 222.7 835.5 3465.6 

K 178.1 812.3 3448.1 

HN 130.5 772.7 3435.4 

LN 81.69 701.1 3563.7 

G 33.48 81.44 3439.6 

H2 2.02 5.02 14566 

 

Table S5. Stoichiometric matrix of the reaction network from Figure 3.5. 

 r1 r2 r3 r4 r5 

VGO -1 -1    

D 3.3  -1   

K   1.3 -1 -1 

HN    1.4  

LN  9    

G     5.3 

H2 -6.6 -17.9 -2.5 -2.7 -10.6 

 

Table S6. HCl oxidation reactor model constants and variables (Section 3.1). 

Notation Type Description Unit Value or formula 

A constant 
reactor tube 

cross-section 
m2 3.52·10-4 

a variable 
catalyst bed 

activity 
- 

optimization variable 

(0 ≤ a ≤ 1) 

cp variable 

average heat 

capacity of gas 

mixture on molar 

basis 

kJ kmol-1 

K-1 

𝑐𝑝 =
∑ 𝑝𝑖𝑐𝑝,𝑖𝑐𝑜𝑚𝑝

𝑝
 

Individual heat 

capacities are calculated 

as in [221] 

Di constant reactor diameter m 0.022 
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Notation Type Description Unit Value or formula 

dp constant 
average diameter 

of catalyst pellet 
m 0.003 

dt constant 
thermowell 

diameter 
m 0.006 

δ constant 

change of the 

total molecular 

number 

- 0.25 

Ea constant activation energy kJ mol-1 82 100 

f constant friction factor - 1.75 

FHCl,0 constant HCl gas inlet kmol s-1 1.75·10-5 

G constant Inlet mass flow kg m-2 s-1 2.61 

ΔrH variable 
enthalpy of 

reaction 
kJ kmol-1 

−0.996 ∙ 𝑇 − 28381 
empirical correlation 

using data from Aspen 

8.8 

ΔrH
o constant 

enthalpy of 

reaction at 

standard state 

kJ kmol-1 -28 560 

k0 constant 
pre-exponential 

factor 

kmol 

kgcat.
-1 s-1 

85 300 

𝐾𝐶𝑙2,0 constant 

adsorption 

equilibrium 

constant of Cl2  

kPa-0.5 4.79 

KHCl,0 constant 

adsorption 

equilibrium 

constant of HCl 

kPa-1 3.65 

𝐾𝑂2,0 constant 

adsorption 

equilibrium 

constant of O2, 

kPa-1 1.854 

M variable 

average molar 

weight of gas 

mixture 

kg kmol-1 𝑀 =
∑ 𝑝𝑖𝑀𝑖𝑐𝑜𝑚𝑝

𝑝
 

p variable reactor pressure kPa solution of Eq. (3.32) 

𝑄𝐶𝑙2 constant 

adsorption 

activation energy 

of Cl2 

kJ mol-1 2 277 

QHCl constant 

adsorption 

activation energy 

of HCl 

kJ mol-1 966 
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Notation Type Description Unit Value or formula 

𝑄𝑂2
 constant 

adsorption 

activation energy 

of O2 

kJ mol-1 238 

rHCl variable 
reaction rate of 

HCl oxidation 

kmol 

kgcat.
-1 s-1 

solution of Eq. (3.29) 

R constant gas constant 
kJ kmol-1 

K-1 
8.314 

T variable 
reactor 

temperature 
K solution of Eq. (3.31) 

T0 variable shell temperature K optimization variable 

u constant gas velocity m s-1 1.71 

xHCl variable 
molar HCl 

conversion 
- solution of Eq. (3.24) 

z variable 
reactor axial 

coordinate 
m independent variable 

ε constant 
catalyst bed void 

fraction 
- 0.35 

η variable 

internal 

effectiveness 

factor of the 

shaped catalyst 

- η ≈ 3.54 

κ constant 

overall heat 

transfer 

coefficient 

kW m-2 K-

1 
0.15 

ρB constant 
density of 

catalyst bed 
kg m-3 780 

ρg constant gas density kg m-3 1.53 
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Table S7. Physical properties of the components included in the ethane pyrolysis 

reactor model. 

Components M [kg kmol-1] 
ρ [kg m-3] 

a b c 

H• 1.01 1.95∙10-8 -5.74∙10-5 0.050 

H2 2.02 3.91∙10-8 -1.15∙10-4 0.099 

CH3• 15.03 2.92∙10-7 -8.57∙10-4 0.741 

CH4 16.04 3.11∙10-7 -9.14∙10-4 0.790 

C2H2 26.04 5.05∙10-7 -1.48∙10-3 1.283 

C2H3• 27.05 5.25∙10-7 -1.54∙10-3 1.332 

C2H4 28.05 5.44∙10-7 -1.60∙10-3 1.382 

•C2H4• 28.05 5.44∙10-7 -1.60∙10-3 1.382 

C2H5• 29.06 5.64∙10-7 -1.66∙10-3 1.432 

C2H6 30.07 5.83∙10-7 -1.71∙10-3 1.481 

C3H6 42.08 8.16∙10-7 -2.40∙10-3 2.073 

C3H7• 43.09 8.36∙10-7 -2.46∙10-3 2.122 

 

  



Appendix  

238 

Table S8. Identified pre-exponential factors and activation energies for plastic 

waste pyrolysis (Chapter 4). 

 
Thermal 

pyrolysis 

Catalytic pyrolysis 

HZSM-5 NiZSM-5 CuZSM-5 FeZSM-5 

k0,1 2.86·106 7.20·105 7.33·105 9.52·105 5.71·105 

k0,2 4.10·108 3.43·102 1.24·106 9.36·102 1.02·106 

k0,3 8.93·105 7.67·102 2.17·105 1.35·101 1.47·106 

k0,4 1.45·10-3 7.16·102 2.16·105 1.14·104 3.14·104 

k0,5 3.97 1.13·101 1.60·104 5.37 2.28·103 

k0,6 9.49·10-3 5.17·1022 1.00·1021 6.41·1021 6.89·104 

k0,7 8.10·10-1 1.05·1022 4.47·1021 7.16·1021 1.22·1018 

k0,8 4.17·10-3 3.06·1022 9.22·1021 2.38·1022 4.88·1022 

k0,9 9.51·1021 1.35·1022 1.02·1017 9.04·1021 1.34·1015 

k0,10 2.31·10-2 1.42·1021 1.00·1021 5.49·106 1.45·1016 

Ea,1 1.23·105 9.69·104 9.83·104 9.98·104 9.57·104 

Ea,2 1.56·105 4.85·104 9.89·104 5.69·104 9.97·104 

Ea,3 1.22·105 5.61·104 9.12·104 3.31·104 1.05·105 

Ea,4 7.27·103 5.64·104 9.11·104 7.20·104 8.21·104 

Ea,5 4.99·105 4.10·104 8.64·104 3.71·104 7.56·104 

Ea,6 3.72·102 3.18·105 5.84·105 7.30·105 6.18·104 

Ea,7 1.82·104 3.05·105 2.97·105 4.01·105 2.56·105 

Ea,8 2.35·101 5.32·105 3.09·105 3.16·105 7.31·105 

Ea,9 5.90·105 5.61·105 9.97·105 9.14·105 7.15·105 

Ea,10 8.46 4.04·106 5.62·105 2.86·105 5.41·105 
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Table S9. Measured mass concentration values for VGO hydrocracking [218]. 

T [°C] LHSV [h-1] 
Product composition [% (m/m)] 

VGO D K HN LN G 

380 

0.5 35% 37% 13.5% 2% 1.0% 12% 

1 46% 25.5% 7.5% 1% 0.6% 9.5% 

1.5 57% 28% 6.0% 1.5% 0.4% 7.0% 

2 66% 22.5% 2% 0.6% 0.1% 5% 

400 

0.5 25% 26% 24.5% 7.2% 2.4% 14.5% 

1 38% 25% 19.5% 5.4% 1.9% 11.0% 

1.5 48% 23% 14% 4% 1.5% 8.5% 

2 61% 25% 10.5% 2.5% 0.5% 6% 

410 

0.5 8% 22% 25.5% 14.5% 3.1% 26.5% 

1 29% 21% 20% 9% 2.2% 19.5% 

1.5 41% 18% 17.5% 6.5% 1.9% 14% 

2 50% 20% 14.5% 6% 1.6% 7.5% 

420 

0.5 0% 11% 29.5% 21.5% 3.8% 34% 

1 14% 20% 28.5% 12.5% 2.6% 28% 

1.5 21% 23% 26.5% 9.5% 2.5% 17.5% 

2 24% 31% 24.5% 8% 2.3% 9.5% 

 

 



 

 

Table S10. Pre-exponential factors for reactions in reaction networks identified with Method 1 from Section 5.1. 

R. 
Pre-exponential factor [m3 h-1 mcat

-3 ] 

F→D F→K F→HN F→LN F→G D→K D→HN D→LN D→G K→HN K→LN K→G HN→LN HN→G LN→G 

1 
 

3.60·1016 
             

2 
 

3.60·1016 
 

2.21·1014 
           

3 
 

3.60·1016 
 

1.28·1014 
     

2.74·1010 
     

4 
 

3.60·1016 
 

2.08·1014 
 

4.66·1015 
   

3.52·1010 
     

5 2.88·1010 6.27·1016 
 

3.56·1014 
 

4.29·1015 
   

2.12·1010 
     

6 3.60·109 2.83·1017 
 

3.45·1014 
 

3.62·1016 
   

2.64·1010 
    

4.08·107 

7 2.52·1010 2.31·1017 
 

3.52·1014 3.60·103 3.13·1016 
   

2.61·1010 
    

2.07·108 

8 3.60·109 1.79·1017 3.60·103 3.58·1014 3.60·103 1.92·1016 
   

3.58·1010 
    

3.43·108 

9 2.43·1010 3.25·1017 3.60·103 3.59·1014 1.97·103 3.50·1016 
   

1.92·1010 
 

3.39·103 
  

3.55·108 

10 1.63·1010 3.48·1017 1.65·103 2.98·1014 3.60·103 3.09·1016 
   

3.60·1010 3.58·103 2.75·103 
  

3.57·108 

11 3.60·109 1.44·1017 1.71·103 3.57·1014 3.60·103 3.19·1016 126.1 
  

3.60·1010 2.91·103 3.60·103 
  

2.76·108 

12 3.60·109 3.54·1017 3.00·103 3.46·1014 3.60·103 8.79·1015 360.0 
 

29.6 3.57·1010 2.39·103 1.23·103 
  

3.48·108 

13 3.60·109 3.60·1017 3.14·103 3.59·1014 3.32·103 9.27·1015 326.8 
 

19.5 3.33·1010 3.53·103 1.50·103 6.77·108 
 

1.97·108 

14 3.60·109 3.42·1017 3.60·103 3.48·1014 3.44·103 3.33·1016 38.7 33.24 3.6 3.59·1010 3.60·103 2.41·103 4.49·108 
 

3.60·108 

15 7.27·109 2.53·1017 2.61·103 1.90·1014 3.60·103 3.32·1016 360.0 34.17 31.5 3.47·1010 3.56·103 3.11·103 3.18·109 0.71 1.19·108 

___________________ 

R.: Number of reactions present in the subnetwork 

  



 

 

Table S11. Activation energies for reactions in reaction networks identified with Method 1 from Section 5.1. 

R. 
Activation energy [J mol-1] 

F→D F→K F→HN F→LN F→G D→K D→HN D→LN D→G K→HN K→LN K→G HN→LN HN→G LN→G 

1 
 

2.14·105 
             

2 
 

2.14·105 
 

2.00·105 
           

3 
 

2.12·105 
 

1.96·105 
     

1.33·105 
     

4 
 

2.12·105 
 

1.98·105 
 

2.07·105 
   

1.34·105 
     

5 1.31·105 2.13·105 
 

1.99·105 
 

3.99·105 
   

1.31·105 
     

6 1.17·105 2.26·105 
 

1.86·105 
 

1.96·105 
   

1.31·105 
    

7.77·104 

7 1.28·105 2.24·105 
 

1.99·105 4.40·104 2.10·105 
   

1.32·105 
    

3.85·105 

8 1.17·105 2.23·105 5.42·104 1.99·105 4.40·104 2.07·105 
   

1.35·105 
    

1.21·105 

9 1.27·105 2.26·105 5.42·104 1.99·105 4.49·104 2.07·105 
   

1.31·105 
 

4.00·104 
  

3.98·105 

10 1.25·105 2.26·105 4.98·104 1.98·105 4.81·104 2.07·105 
   

1.35·105 3.96·105 3.89·104 
  

3.77·105 

11 1.16·105 2.21·105 4.99·104 2.00·105 4.79·104 2.07·105 3.18·105 
  

1.35·105 5.13·104 4.11·104 
  

1.06·105 

12 1.16·105 2.26·105 5.30·104 1.99·105 4.81·104 2.00·105 2.96·105 
 

2.69·105 1.35·105 5.86·104 3.43·104 
  

3.40·105 

13 1.16·105 2.26·105 5.33·104 1.99·105 4.77·104 2.00·105 3.95·105 
 

2.70·105 1.35·105 3.75·105 3.54·104 3.94·105 
 

3.53·105 

14 1.16·105 2.26·105 5.40·104 1.99·105 4.78·104 2.07·105 2.67·105 3.93·105 3.97·105 1.35·105 6.11·104 3.82·104 3.61·105 
 

4.00·105 

15 1.20·105 2.24·105 2.96·105 1.89·105 4.83·104 2.08·105 4.02·104 3.53·104 3.65·105 1.30·105 4.00·105 3.05·105 1.15·105 4.00·105 8.69·104 

___________________ 

R.: Number of reactions present in the subnetwork 

  



 

 

Table S12. Pre-exponential factors for reactions in reaction networks identified with Method 2 from Section 5.1. 

R. 
Pre-exponential factor [m3 h-1 mcat

-3 ] 

F→D F→K F→HN F→LN F→G D→K D→HN D→LN D→G K→HN K→LN K→G HN→LN HN→G LN→G 

1 6.95·109 
              

2 6.95·109 
          

3.13·103 
   

3 6.95·109 
    

1.31·1016 
     

3.13·103 
   

4 3.09·109 
  

3.60·1014 
 

1.44·1016 
     

1.65·103 
   

5 1.07·1010 
  

2.62·1014 
 

6.14·1015 
   

3.57·1010 
 

3.59·103 
   

6 3.50·1010 
  

3.54·1014 5.03·102 3.61·1015 
   

3.57·1010 
 

3.60·103 
   

7 1.04·1010 
  

3.04·1014 3.60·103 3.59·1016 
  

22.39 1.60·1010 
 

1.99·103 
   

8 3.59·1010 
  

3.60·1014 2.22·103 1.41·1016 351.6 
 

35.85 3.44·1010 
 

3.55·103 
   

9 3.22·1010 1.45·107 
 

3.25·1014 4.34·102 2.14·1016 327.1 
 

34.36 3.59·1010 
 

3.60·103 
   

10 9.51·109 2.39·107 
 

3.47·1014 3.60·103 2.26·1016 360.0 
 

36.00 2.77·1010 
 

1.55·103 
  

3.56·108 

11 2.59·1010 3.04·107 
 

3.33·1014 1.75·103 3.40·1016 358.9 
 

35.88 3.03·1010 3.42·103 3.59·103 
  

2.21·108 

12 2.70·1010 3.18·107 
 

8.50·1013 2.70·103 3.57·1016 347.6 
 

34.01 3.59·1010 6.70·102 3.38·103 
 

3.60 1.62·108 

13 3.99·109 3.48·107 3.58·103 3.31·1014 3.60·103 2.56·1016 356.5 
 

35.91 2.79·1010 2.79·103 3.08·103 
 

3.60 3.39·108 

14 1.05·1010 1.89·107 2.75·107 3.57·1014 3.60·103 3.16·1016 360.0 3.80 22.06 3.04·1010 2.14·103 3.42·103 
 

3.58 3.58·108 

15 2.57·1010 3.45·107 3.60·107 3.51·1014 3.60·103 3.12·1016 360.0 34.16 35.95 2.45·1010 3.43·103 3.59·103 3.30·109 3.52 3.60·108 

___________________ 

R.: Number of reactions present in the subnetwork 

  



 

 

Table S13. Activation energies for reactions in reaction networks identified with Method 2 from Section 5.1. 

R. 
Activation energy [J mol-1] 

F→D F→K F→HN F→LN F→G D→K D→HN D→LN D→G K→HN K→LN K→G HN→LN HN→G LN→G 

1 0 
              

2 0 
              

3 1.19·105 
    

1.98·105 
     

3.63·104 
   

4 1.27·105 
  

2.00·105 
 

1.99·105 
     

3.26·104 
   

5 1.21·105 
  

1.97·105 
 

1.93·105 
   

1.33·105 
 

3.75·104 
   

6 1.28·105 
  

1.99·105 3.71·104 1.91·105 
   

1.33·105 
 

3.99·104 
   

7 1.21·105 
  

1.98·105 4.77·104 2.04·105 
  

8.32·104 1.29·105 
 

3.69·104 
   

8 1.28·105 
  

1.99·105 4.50·104 1.99·105 3.63·104 
 

3.94·105 1.35·105 
 

4.01·104 
   

9 1.28·105 2.21·105 
 

1.98·105 3.67·104 2.05·105 3.69·104 
 

4.00·105 1.35·105 
 

4.01·104 
   

10 1.21·105 2.23·105 
 

1.98·105 5.28·104 2.13·105 3.63·104 
 

1.42·104 1.34·105 
 

3.95·104 
  

3.79·105 

11 1.27·105 2.25·105 
 

1.99·105 4.43·104 2.08·105 3.76·104 
 

1.04·105 1.34·105 6.02·104 4.03·104 
  

2.98·105 

12 1.28·105 2.25·105 
 

1.90·105 4.58·104 2.08·105 3.18·105 
 

2.63·105 1.31·105 3.92·105 4.39·104 
 

0.53 2.77·105 

13 1.17·105 2.26·105 4.00·105 1.99·105 4.74·104 2.06·105 3.91·104 
 

3.96·105 1.31·105 5.95·104 4.35·104 
 

0 3.71·105 

14 1.22·105 2.23·105 5.20·104 1.99·105 4.79·104 2.07·105 2.60·105 3.85·105 3.72·105 1.32·105 5.30·104 4.29·104 
 

1.80·103 1.12·105 

15 1.27·105 2.26·105 5.43·104 1.99·105 4.81·104 2.07·105 3.98·105 4.14·104 2.51·105 1.33·105 4.00·105 4.03·104 1.36·105 3.89·105 2.10·105 

___________________ 

R.: Number of reactions present in the subnetwork 

  



 

 

Table S14. Pre-exponential factors for reactions in reaction networks identified with Method 3 from Section 5.1. 

R. 
Pre-exponential factor [m3 h-1 mcat

-3 ] 

F→D F→K F→HN F→LN F→G D→K D→HN D→LN D→G K→HN K→LN K→G HN→LN HN→G LN→G 

1 2.25·1010 
              

2 3.39·1010 
    

7.84·1015 
         

3 3.39·1010 
  

3.23·1014 
 

7.84·1015 
         

4 3.23·1010 
  

3.60·1014 
 

2.27·1016 
        

1.01·108 

5 3.55·1010 
  

3.60·1014 
 

2.83·1016 
    

360.0 
   

1.06·108 

6 3.57·1010 
  

3.60·1014 360.8 2.67·1016 
    

360.0 
   

1.01·108 

7 3.60·1010 
  

3.60·1014 360.0 2.75·1016 
    

360.0 
 

3.60·108 
 

1.01·108 

8 3.60·1010 
  

2.62·1014 412.6 3.60·1016 
   

4.13·109 517.7 
 

3.60·109 
 

7.42·107 

9 3.60·1010 
 

360.0 1.65·1014 598.0 3.60·1016 
   

7.19·109 3.60·103 
 

2.78·109 
 

8.21·107 

10 3.44·1010 3.60·1017 360.0 1.49·1014 598.0 3.24·1016 
   

7.19·109 3.60·103 
 

2.56·109 
 

8.21·107 

11 3.44·1010 3.60·1017 360.0 1.53·1014 598.0 3.24·1016 36.0 
  

7.19·109 3.60·103 
 

2.56·109 
 

8.21·107 

12 3.44·1010 3.60·1017 360.0 1.53·1014 598.0 3.24·1016 36.0 
  

7.19·109 3.60·103 
 

2.56·109 0.36 8.21·107 

13 3.40·1010 3.60·1017 403.2 1.53·1014 626.8 3.26·1016 40.1 
  

7.18·109 3.60·103 441.1 2.54·109 1.14 8.25·107 

14 3.36·1010 3.59·1017 403.2 1.56·1014 626.6 3.26·1016 36.0 3.80 
 

7.18·109 3.60·103 441.3 2.52·109 1.29 8.25·107 

15 3.36·1010 3.60·1017 405.9 1.56·1014 625.0 3.21·1016 36.1 3.82 3.61 7.19·109 3.60·103 752.0 2.52·109 1.29 8.26·107 

___________________ 

R.: Number of reactions present in the subnetwork 

  



 

 

Table S15. Activation energies for reactions in reaction networks identified with Method 3 from Section 5.1. 

R. 
Activation energy [J mol-1] 

F→D F→K F→HN F→LN F→G D→K D→HN D→LN D→G K→HN K→LN K→G HN→LN HN→G LN→G 

1 1.32·105 
              

2 1.30·105 
    

2.00·105 
         

3 1.30·105 
  

2.00·105 
 

2.00·105 
         

4 1.30·105 
  

2.00·105 
 

2.06·105 
        

1.01·104 

5 1.30·105 
  

1.87·105 
 

2.06·105 
    

4.00·105 
   

8.29·104 

6 1.30·105 
  

1.87·105 2.00·105 2.06·105 
    

4.00·105 
   

8.28·104 

7 1.30·105 
  

1.87·105 4.03·104 2.06·105 
    

4.00·105 
 

3.98·105 
 

8.28·104 

8 1.30·105 
  

1.87·105 4.03·104 2.06·105 
   

1.21·105 4.00·105 
 

1.66·105 
 

8.28·104 

9 1.28·105 
 

3.41·105 1.87·105 3.86·104 2.05·105 
   

1.21·105 3.80·105 
 

1.14·105 
 

8.44·104 

10 1.28·105 2.30·105 3.41·105 1.87·105 3.86·104 2.05·105 
   

1.21·105 6.02·104 
 

1.14·105 
 

8.44·104 

11 1.28·105 2.30·105 3.41·105 1.87·105 3.86·104 2.05·105 2.80·105 
  

1.21·105 6.02·104 
 

1.14E·105 
 

8.44·104 

12 1.28·105 2.30·105 3.41·105 1.87·105 3.86·104 2.05·105 2.80·105 
  

1.21·105 6.02·104 
 

1.14·105 2.24·105 8.44·104 

13 1.28·105 2.29·105 3.48·105 1.88·105 3.88·104 2.06·105 2.80·105 
  

1.21·105 5.30·104 4.00·105 1.14·105 2.20·105 8.43·104 

14 1.28·105 2.29·105 3.48·105 1.88·105 3.89·104 2.06·105 2.80·105 3.90·105 
 

1.21·105 5.30·104 4.00·105 1.14·105 2.21·105 8.43·104 

15 1.28·105 2.29·105 3.45·105 1.88·105 3.89·104 2.06·105 2.80·105 3.90·105 3.04E+05 1.21·105 5.29·104 4.00·105 1.14·105 2.31·105 8.44·104 

___________________ 

R.: Number of reactions present in the subnetwork 
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Table S16. Identified kinetic parameters of the thermo-catalytic pyrolysis reaction 

networks (from Section 6.2). 

Reaction 

Pre-exponential factor [s-1] Activation energy [J mol-1] 

Complete 

network 

Reduced 

network 

Complete 

network 

Reduced 

network 

P → P- 5.71∙105 7.01∙107 9.57∙104 1.25∙105 

P- → L+ 1.02∙106 2.55∙102 9.97∙104 4.92∙104 

P- → L- 1.47∙106 3.88∙102 1.05∙105 5.44∙104 

P- → G 3.14∙104 1.44∙101 8.21∙104 3.50∙104 

P- → C 2.28∙103 1.04 7.56∙104 2.83∙104 

L+ → L- 6.89∙104 n.a. 6.18∙104 n.a. 

L+ → G 1.22∙1018 n.a. 2.56∙105 n.a. 

L+ → C 4.88∙1022 n.a. 7.31∙105 n.a. 

L- → G 1.34∙1015 n.a. 7.15∙105 n.a. 

L- → C 1.45∙1016 n.a. 5.41∙105 n.a. 
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Table S17. Identified kinetic parameters of the vacuum gas oil hydrocracking 

reaction networks (from Section 6.3). 

Reaction 

Pre-exponential factor [s-1] Activation energy [J mol-1] 

Complete 

network 

Reduced 

network 

Complete 

network 

Reduced 

network 

VGO → D 7.15∙106 4.21∙106 1.27∙105 1.23∙105 

VGO → K 9.59∙1013 n.a. 2.26∙105 n.a. 

VGO → HN 1.00 n.a. 5.43∙104 n.a. 

VGO → LN 9.75∙1010 9.86∙1010 1.99∙105 1.91∙105 

VGO → G 9.99∙10-1 1.25∙10-1 4.81∙104 3.75∙104 

D → K 8.68∙1012 1.02∙1012 2.07∙105 1.91∙105 

D → HN 1.00∙10-1 n.a. 3.98∙105 n.a. 

D → LN 9.49∙10-3 n.a. 4.14∙104 n.a. 

D → G 9.99∙10-3 n.a. 2.51∙105 n.a. 

K → HN 6.82∙106 8.59∙106 1.33∙105 1.29∙105 

K → LN 9.53∙10-1 n.a. 4.00∙105 n.a. 

K → G 9.97∙10-1 n.a. 4.03∙104 n.a. 

HN → LN 9.17∙105 1.02∙105 1.36∙105 1.02∙105 

HN → G 9.78∙10-4 n.a. 3.89∙105 n.a. 

LN → G 1.00∙105 1.20∙104 2.10∙105 8.06∙104 
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Table S18. Identified pre-exponential factors of the reaction network from Figure 

3.5. 

Set k0,1 k0,2 k0,3 k0,4 k0,5 RMSE6 

1 3.56∙1013 2.18∙1018 7.97∙1017 9.5∙1013 1.64∙107 5.61% 

2 1.73∙1013 2.17∙1018 8.13∙1016 8.84∙1013 7.44∙107 5.52% 

3 4.53∙1013 2.21∙1018 1.21∙1017 9.27∙1013 4.34∙106 5.50% 

4 3.06∙1013 2.19∙1018 6∙1017 9.06∙1013 4.23∙107 5.60% 

5 3.46∙1013 2.2∙1018 1.93∙1017 5.86∙1013 1.81∙107 5.53% 

6 7.63∙1013 7.39∙1017 2.05∙1017 2.36∙1013 1.08∙107 5.50% 

7 8.44∙1013 2.26∙1018 2.59∙1016 9.74∙1013 4.90∙106 5.40% 

8 2.62∙1013 2.19∙1018 2.24∙1017 5.58∙1013 1.32∙107 5.55% 

9 3.43∙1013 2.20∙1018 1.46∙1017 6.7∙1013 3.26∙107 5.51% 

10 1.25∙1013 2.15∙1018 2.32∙1017 1.53∙1013 3.10∙107 5.59% 

11 2.31∙1012 2.13∙1018 1.09∙1015 9.97∙1013 1.63∙105 5.41% 

12 6.8∙1013 2.18∙1018 2.35∙1016 5.2∙1013 1.55∙107 5.40% 

13 1014 2.15∙1018 6.93∙1017 9.99∙1013 9.98∙107 5.55% 

14 9.95∙1013 1.8∙1018 9.37∙1017 8.84∙1013 8.82∙107 5.57% 

15 9.51∙1013 7.14∙1017 9.84∙1017 9.77∙1013 108 5.57% 

16 1014 2.34∙1018 1.04∙1015 6.11∙1013 6.65∙106 5.27% 

17 2.61∙1013 1.67∙1018 6.28∙1017 1.72∙1013 1.33∙107 5.61% 

18 9.91∙1013 1.88∙1018 8.14∙1016 2.45∙1013 1.45∙106 5.45% 

19 9.39∙1012 2.20∙1018 1.04∙1015 9.26∙1013 1.16∙105 5.36% 

20 4.65∙1013 2.15∙1018 6.33∙1017 7.67∙1013 5.86∙106 5.58% 

21 1014 2.32∙1018 1015 1.3∙1012 108 5.26% 

22 5.11∙1013 1017 1015 3.47∙1013 6.01∙107 5.28% 

23 1014 2.27∙1018 1015 1011 108 5.26% 

24 9.22∙1013 1017 1015 1.83∙1012 9.93∙107 5.26% 

25 1014 2.31∙1018 1015 1011 108 5.26% 

26 5.9∙1013 1017 1015 1011 9.93∙107 5.27% 

27 1014 2.3∙1018 1015 5.04∙1011 108 5.26% 

28 1014 1017 1015 1.11∙1012 7.84∙107 5.28% 

                                                 
6 Root of mean squared error between pseudocomponent mass percentages from experimental 

data and simulation results (aggregated data for all temperatures, pseudocomponents and LHSV 

values) 



 Appendix 

249 

Set k0,1 k0,2 k0,3 k0,4 k0,5 RMSE6 

29 1014 2.3∙1018 1015 7.44∙1011 9.99∙107 5.26% 

30 1014 2.31∙1018 1015 4.03∙1012 9.99∙107 5.26% 

31 1014 1018 1015 9.96∙1013 7.83∙107 5.31% 

32 1014 1.37∙1018 9.98∙1017 3.12∙1013 9.77∙107 5.59% 

33 2.19∙1013 1017 9.48∙1017 9.89∙1013 108 5.64% 

34 6.76∙1013 1.33∙1018 5.85∙1017 1014 9.37∙107 5.56% 

35 2.75∙1012 2∙1018 1015 2.19∙1013 1.21∙106 5.41% 

36 4.67∙1013 4.25∙1017 1.84∙1016 8.33∙1012 4.27∙107 5.40% 

37 1014 1017 9.63∙1017 9.79∙1013 105 5.60% 

38 1.38∙1013 2.17∙1018 7∙1016 6.89∙1013 5.86∙106 5.52% 

39 2.81∙1012 1017 7.1∙1017 8.94∙1013 3.49∙107 5.75% 

40 1014 1.03∙1017 5.14∙1016 9.97∙1013 8.78∙107 5.50% 

 

Table S19. Identified activation energies of the reaction network from Figure 3.5. 

Set Ea,1 Ea,2 Ea,3 Ea,4 Ea,5 

1 1.86∙105 3∙105 2.3∙105 1.86∙105 1.08∙105 

2 1.81∙105 3∙105 2.17∙105 1.86∙105 1.17∙105 

3 1.87∙105 3∙105 2.19∙105 1.86∙105 1.01∙105 

4 1.85∙105 3∙105 2.28∙105 1.86∙105 1.14∙105 

5 1.85∙105 3∙105 2.22∙105 1.83∙105 1.09∙105 

6 1.9∙105 2.94∙105 2.22∙105 1.78∙105 1.06∙105 

7 1.9∙105 3∙105 2.11∙105 1.86∙105 1.01∙105 

8 1.84∙105 3∙105 2.23∙105 1.83∙105 1.07∙105 

9 1.85∙105 3∙105 2.20∙105 1.84∙105 1.12∙105 

10 1.8∙105 3∙105 2.23∙105 1.76∙105 1.12∙105 

11 1.7∙105 3∙105 1.93∙105 1.86∙105 8.20∙104 

12 1.89∙105 3∙105 2.1∙105 1.83∙105 1.08∙105 

13 1.91∙105 3∙105 2.29∙105 1.86∙105 1.18∙105 

14 1.91∙105 2.99∙105 2.31∙105 1.86∙105 1.18∙105 

15 1.91∙105 2.94∙105 2.31∙105 1.86∙105 1.18∙105 

16 1.91∙105 3∙105 1.92∙105 1.83∙105 1.02∙105 

17 1.84∙105 2.99∙105 2.29∙105 1.76∙105 1.07∙105 
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Set Ea,1 Ea,2 Ea,3 Ea,4 Ea,5 

18 1.91∙105 2.99∙105 2.17∙105 1.78∙105 9.41∙104 

19 1.78∙105 3∙105 1.92∙105 1.86∙105 7.97∙104 

20 1.87∙105 3∙105 2.29∙105 1.85∙105 1.02∙105 

21 1.91∙105 3∙105 1.92∙105 1.61∙105 1.18∙105 

22 1.87∙105 2.82∙105 1.92∙105 1.80∙105 1.15∙105 

23 1.91∙105 3∙105 1.92∙105 1.47∙105 1.18∙105 

24 1.91∙105 2.82∙105 1.92∙105 1.63∙105 1.18∙105 

25 1.91∙105 3∙105 1.92∙105 1.47∙105 1.18∙105 

26 1.88∙105 2.82∙105 1.92∙105 1.47∙105 1.18∙105 

27 1.91∙105 3∙105 1.92∙105 1.56∙105 1.18∙105 

28 1.91∙105 2.82∙105 1.92∙105 1.6∙105 1.17∙105 

29 1.91∙105 3∙105 1.92∙105 1.58∙105 1.18∙105 

30 1.91∙105 3∙105 1.92∙105 1.68∙105 1.18∙105 

31 1.91∙105 2.96∙105 1.92∙105 1.86∙105 1.17∙105 

32 1.92∙105 2.98∙105 2.32∙105 1.8∙105 1.19∙105 

33 1.83∙105 2.83∙105 2.31∙105 1.86∙105 1.19∙105 

34 1.89∙105 2.97∙105 2.28∙105 1.86∙105 1.18∙105 

35 1.71∙105 3∙105 1.92∙105 1.78∙105 9.35∙104 

36 1.87∙105 2.91∙105 2.09∙105 1.72∙105 1.13∙105 

37 1.91∙105 2.83∙105 2.31∙105 1.86∙105 7.93∙104 

38 1.8∙105 3∙105 2.16∙105 1.84∙105 1.02∙105 

39 1.71∙105 2.83∙105 2.29∙105 1.86∙105 1.13∙105 

40 1.92∙105 2.83∙105 2.15∙105 1.86∙105 1.18∙105 
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Table S20. Nominal operating conditions of the hydrocracking reactor designed 

using a conventional method in case of one catalyst layer. 

Operating variable LHSV = 0.5 LHSV = 1 LHSV = 1.5 LHSV = 2 

TVGO 412 401 408 395 

𝑇𝐻2
 228 279 287 321 

�̇�𝐻2

𝑘

�̇�𝐻2

 1 1 1 1 

wVGO 62.2% 61.3% 61.4% 63.5% 

wD 29.5% 29.8% 29.7% 28.6% 

Tmax 392 404 410 410 

Δ𝑇𝑚𝑎𝑥
𝑘  50 50 49 44 

𝑓(𝑥) 63.84 62.14 62.48 66.64 

 

Table S21. Nominal operating conditions of the hydrocracking reactor designed 

using a conventional method in case of two catalyst layers. 

Operating 

variable 
layer LHSV = 0.5 LHSV = 1 LHSV = 1.5 LHSV = 2 

TVGO all 407 381 412 396 

𝑇𝐻2
 all 204 224 258 278 

�̇�𝐻2

𝑘

�̇�𝐻2

 
1 75.1% 38.2% 80.0% 59.1% 

2 24.9% 61.8% 20.0% 40.9% 

𝐿𝑘

𝐿𝑟
 

1 49.1% 

2 51.9% 

wVGO 56.5% 55.8% 58.0% 57.2% 

wD 32.4% 32.0% 31.7% 31.9% 

Tmax 394 392 410 410 

Δ𝑇𝑚𝑎𝑥
𝑘  50 50 44 44 

𝑓(𝑥) 52.39 51.80 55.29 53.95 
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Table S22. Nominal operating conditions of the hydrocracking reactor designed 

using a conventional method in case of two catalyst layers with independent H2 

inlet temperatures. 

Operating 

variable 
layer LHSV = 0.5 LHSV = 1 LHSV = 1.5 LHSV = 2 

TVGO all 407 419 417 407 

𝑇𝐻2
 

1 196 172 252 260 

2 233 278 130 172 

�̇�𝐻2

𝑘

�̇�𝐻2

 
1 75.8% 62.7% 81.9% 65.0% 

2 24.2% 37.3% 18.1% 35.0% 

𝐿𝑘

𝐿𝑟
 

1 15.7% 

2 84.3% 

wVGO 52.2% 53.9% 55.3% 53.9% 

wD 33.8% 33.1% 32.9% 32.8% 

Tmax 407 410 410 410 

Δ𝑇𝑚𝑎𝑥
𝑘  50 45 34 42 

𝑓(𝑥) 44.60 47.73 50.14 47.98 
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Table S23. Nominal operating conditions of the hydrocracking reactor designed 

using a conventional method in case of three catalyst layers. 

Operating 

variable 
layer LHSV = 0.5 LHSV = 1 LHSV = 1.5 LHSV = 2 

TVGO all 398 399 395 397 

𝑇𝐻2
 all 124 92 104 139 

�̇�𝐻2

𝑘

�̇�𝐻2

 

1 39.3% 24.9% 15.9% 17.0% 

2 37.5% 46.0% 58.7% 65.2% 

3 23.2% 29.1% 25.4% 17.8% 

𝐿𝑘

𝐿𝑟
 

1 35.7% 

2 40.7% 

3 23.7% 

wVGO 47.7% 46.1% 47.7% 48.1% 

wD 34.3% 32.4% 30.8% 31.6% 

Tmax 395 398 405 407 

Δ𝑇𝑚𝑎𝑥
𝑘  50 50 50 50 

𝑓(𝑥) 37.32 36.65 40.74 40.48 
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Table S24. Nominal operating conditions of the hydrocracking reactor designed 

using a conventional method in case of four catalyst layers. 

Operating 

variable 
layer LHSV = 0.5 LHSV = 1 LHSV = 1.5 LHSV = 2 

TVGO all 392 411 401 402 

𝑇𝐻2
 all 116 140 117 159 

�̇�𝐻2

𝑘

�̇�𝐻2

 

1 34.1% 39.4% 25.2% 28.3% 

2 19.5% 20.9% 16.5% 14.6% 

3 15.9% 22.4% 26.5% 21.7% 

4 30.5% 17.4% 31.9% 35.4% 

𝐿𝑘

𝐿𝑟
 

1 28.6% 

2 18.1% 

3 30.8% 

4 22.6% 

wVGO 46.9% 45.8% 44.6% 46.6% 

wD 34.4% 35.0% 33.9% 34.2% 

Tmax 392 409 407 410 

Δ𝑇𝑚𝑎𝑥
𝑘  50 50 50 47 

𝑓(𝑥) 36.03 33.76 32.97 35.62 
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Table S25. Nominal operating conditions of the hydrocracking reactor designed 

using a conventional method in case of five catalyst layers. 

Operating 

variable 
layer LHSV = 0.5 LHSV = 1 LHSV = 1.5 LHSV = 2 

TVGO all 390 393 400 396 

𝑇𝐻2
 all 145 145 158 132 

�̇�𝐻2

𝑘

�̇�𝐻2

 

1 37.1% 27.4% 25.8% 17.8% 

2 14.0% 16.9% 27.1% 12.6% 

3 12.4% 20.7% 11.9% 39.2% 

4 19.9% 11.3% 24.7% 20.9% 

5 16.6% 23.7% 10.5% 9.6% 

𝐿𝑘

𝐿𝑟
 

1 15.9% 

2 25.0% 

3 24.8% 

4 18.2% 

5 16.1% 

wVGO 45.7% 44.3% 45.7% 44.1% 

wD 35.2% 35.0% 35.2% 34.2% 

Tmax 402 409 410 410 

Δ𝑇𝑚𝑎𝑥
𝑘  50 50 44 45 

𝑓(𝑥) 33.40 31.41 33.28 31.99 
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Table S26. Nominal operating conditions of the hydrocracking reactor designed 

using a conventional method in case of six catalyst layers. 

Operating 

variable 
layer LHSV = 0.5 LHSV = 1 LHSV = 1.5 LHSV = 2 

TVGO all 403 390 401 392 

𝑇𝐻2
 all 100 182 116 125 

�̇�𝐻2

𝑘

�̇�𝐻2

 

1 31.5% 28.6% 23.2% 11.0% 

2 23.6% 21.8% 10.2% 27.6% 

3 9.7% 19.1% 16.4% 15.4% 

4 13.2% 9.7% 16.2% 15.5% 

5 7.8% 7.2% 21.1% 17.1% 

6 14.3% 13.6% 12.9% 13.3% 

𝐿𝑘

𝐿𝑟
 

1 11.8% 

2 24.5% 

3 8.4% 

4 21.8% 

5 16.7% 

6 16.8% 

wVGO 44.6% 46.2% 42.9% 43.8% 

wD 35.3% 35.3% 34.8% 34.8% 

Tmax 398 410 410 406 

Δ𝑇𝑚𝑎𝑥
𝑘  50 50 47 50 

𝑓(𝑥) 31.59 33.91 29.63 30.85 
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Table S27. Nominal values of operating variables of the hydrocracking reactor at 

the base uncertainty level. 

Operating 

variable 

Traditional Stochastic 

3 

layers 

4 

layers 

5 

layers 

3 

layers 

4 

layers 

5 

layers 

𝑇𝑉𝐺𝑂
𝐿𝐻𝑆𝑉=0.5 [°C] 398 392 390 403 398 404 

𝑇𝑉𝐺𝑂
𝐿𝐻𝑆𝑉=1 [°C] 399 411 393 396 392 399 

𝑇𝑉𝐺𝑂
𝐿𝐻𝑆𝑉=1.5 [°C] 395 401 400 399 400 400 

𝑇𝑉𝐺𝑂
𝐿𝐻𝑆𝑉=2 [°C] 397 402 396 396 406 390 

𝑇𝐻2

𝐿𝐻𝑆𝑉=0.5 [°C] 124 116 145 121 143 111 

𝑇𝐻2

𝐿𝐻𝑆𝑉=1 [°C] 92 140 145 161 82 96 

𝑇𝐻2

𝐿𝐻𝑆𝑉=1.5 [°C] 104 117 158 161 108 133 

𝑇𝐻2

𝐿𝐻𝑆𝑉=2 [°C] 139 159 132 188 126 84 

�̇�𝐻2

1,𝐿𝐻𝑆𝑉=0.5 �̇�𝐻2
⁄  

[% (m/m)] 
39% 34% 37% 44% 43% 41% 

�̇�𝐻2

1,𝐿𝐻𝑆𝑉=1 �̇�𝐻2
⁄  

[% (m/m)] 
25% 39% 27% 35% 20% 25% 

�̇�𝐻2

1,𝐿𝐻𝑆𝑉=1.5 �̇�𝐻2
⁄  

[% (m/m)] 
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�̇�𝐻2
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⁄  
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�̇�𝐻2
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⁄  

[% (m/m)] 
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�̇�𝐻2

2,𝐿𝐻𝑆𝑉=2 �̇�𝐻2
⁄  

[% (m/m)] 
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�̇�𝐻2

3,𝐿𝐻𝑆𝑉=0.5 �̇�𝐻2
⁄  

[% (m/m)] 
23% 16% 12% 26% 14% 11% 

�̇�𝐻2

3,𝐿𝐻𝑆𝑉=1 �̇�𝐻2
⁄  29% 22% 21% 27% 18% 33% 
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Traditional Stochastic 

3 

layers 

4 

layers 

5 

layers 

3 

layers 

4 

layers 

5 

layers 

[% (m/m)] 

�̇�𝐻2

3,𝐿𝐻𝑆𝑉=1.5 �̇�𝐻2
⁄  

[% (m/m)] 
25% 26% 12% 45% 34% 11% 

�̇�𝐻2

3,𝐿𝐻𝑆𝑉=2 �̇�𝐻2
⁄  

[% (m/m)] 
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�̇�𝐻2

4,𝐿𝐻𝑆𝑉=0.5 �̇�𝐻2
⁄  

[% (m/m)] 
n.a 30% 20% n.a 17% 15% 

�̇�𝐻2

4,𝐿𝐻𝑆𝑉=1 �̇�𝐻2
⁄  

[% (m/m)] 
n.a 17% 11% n.a 29% 20% 

�̇�𝐻2

4,𝐿𝐻𝑆𝑉=1.5 �̇�𝐻2
⁄  

[% (m/m)] 
n.a 32% 25% n.a 18% 10% 

�̇�𝐻2

4,𝐿𝐻𝑆𝑉=2 �̇�𝐻2
⁄  

[% (m/m)] 
n.a 35% 21% n.a 28% 42% 

�̇�𝐻2

5,𝐿𝐻𝑆𝑉=0.5 �̇�𝐻2
⁄  

[% (m/m)] 
n.a n.a 17% n.a n.a 22% 

�̇�𝐻2

5,𝐿𝐻𝑆𝑉=1 �̇�𝐻2
⁄  

[% (m/m)] 
n.a n.a 24% n.a n.a 10% 

�̇�𝐻2

5,𝐿𝐻𝑆𝑉=1.5 �̇�𝐻2
⁄  

[% (m/m)] 
n.a n.a 10% n.a n.a 33% 

�̇�𝐻2

5,𝐿𝐻𝑆𝑉=2 �̇�𝐻2
⁄  

[% (m/m)] 
n.a n.a 10% n.a n.a 20% 
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