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Abstract

In this PhD thesis research about human-computer interaction using virtual reality
and augmented reality devices are presented. Human-computer interaction not only
differs from device to device, but from application to application as well. Thus,
with the increasing number of both virtual reality and augmented reality devices
and their applications, it is important to assess human-computer interaction and to
propose new design choices with the goal to make the interaction easier for the users.
Therefore, two different parts of human-computer interaction were investigated.

Spatial ability is essential when using virtual reality and augmented reality ap-
plications as the user is placed in a four-dimensional space. While the spatial skills
of the users can be negatively affected by a poorly designed virtual environment,
they can actually be enhanced by a well-designed one. Therefore, the first part of
this research is about assessing and enhancing the spatial skills of the users in vir-
tual environments in case of two different display devices: a desktop display device
and the Gear VR head-mounted display device. For this, a spatial ability measuring
application using three spatial ability test types has been developed and the skills
of 240 and 61 students using the desktop display and the Gear VR were measured,
respectively. In this research, three different aspects have been investigated based
on their results on the tests: the first is about which attributes of the virtual en-
vironment and the display device used enhance the spatial ability of the users by
increasing their probabilities of correct answers. The second is about which skills of
the users and the display device used influence the completion times on the spatial
ability tests and the third is to find which device used correlates with which human
skill.

According to the results of this research of spatial skills, the optimal preference
for the virtual environments to positively influence the correct answers on the spatial
ability tests by affecting the human–computer interaction is a perspective camera
type, a camera rotation of -45° or 0° or 45°, a contrast ratio of 1.5:1 or 3:1, and
the Gear VR display device. Also, the probabilities of the correct answers and test
completion times are not independent and the latter is significantly affected by the
used display device, the test type and the gender of the user. Lastly, compared
to the desktop display, the results of female or left-handed or older students are
significantly improved with the use of the Gear VR. With it, the Purdue Spatial
Visualization Test is also made significantly easier.

The second part of this research focuses on the use of the Kinect sensor in medical
applications, mainly in physical rehabilitation. In this part of the research two vari-
ous aspects have been investigated: the first aspect is about whether more expensive
sensors can be substituted by the Kinect. This is a crucial aspect in telerehabilita-
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tion as the hospitals have became overcrowded nowadays and rehabilitation can be
more convenient in the homes of the patients. Low-cost sensors such as the Kinect
can also be affordable for the families of the patients. To make physical rehabili-
tation easier in home environments, the Asynchronous Prediction-Based Movement
Recognition algorithm has been developed. The gesture descriptors of four groups
of people were measured and the results were evaluated both in real-time and from
a file. All evaluations were done in three acceptance domains using two computers
and six mean techniques.

Based on the evaluation of the algorithm, the prediction-based gesture recogni-
tion method is viable and usable in a home environment with the Kinect v1. By
comparing to the previous algorithm it was based on, it can be concluded that
the prediction-based algorithm has an increased average gesture acceptance rate by
358.2%-535.3% in the ±0.05 m acceptance domain depending on the used mean
technique. The increase in the ±0.10 m and the ±0.15 m acceptance domains is
87.8%-125.4% and 22.7%-47.3%, respectively.

With this research the aim of the author is to make the human-computer inter-
action easier, therefore the output of this research is dual: the first is to form a new
recommendation in the design of virtual environments which can enhance the spatial
skills of the users and the second is to present a new, easy-to-use gesture recogni-
tion algorithm which can help the physical rehabilitation of people with movement
disabilities in their homes.
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Tartalmi kivonat

A doktori értekezésemben azt vizsgálom, hogy virtuális és kiterjesztett valóság esz-
közök használata során miképpen zajlik az ember és gép közti interakció (human-
computer interaction). Az interakció fajtája változik eszközről eszközre, alkalma-
zásról alkalmazásra. Nem beszélve arról, hogy a virtuális valóság és kiterjesztett
valóság alapú eszközök és azok alkalmazásai napról napra nőnek. Ezek miatt fon-
tosnak tartom az ember és gép közti interakció vizsgálatát, aminek kimeneteképpen
új tervezési ajánlásokat fogalmazhatok meg, hogy könnyebbé tegyem az ember és
gép közti interakciót. A doktori értekezésemben ezen interakció két különböző részét
vizsgáltam.

Mivel a felhasználót egy négydimenziós térbe helyezzük a virtuális- és kiter-
jesztett valóság használata során, ezért a térérzékelés képessége létfontosságú. Egy
rosszul megtervezett virtuális környezet ronthatja a felhasználó térérzékelési képes-
ségeit, de egy jól megtervezett pedig fokozhatja azt. Utóbbit vizsgálom a kutatásom
első felében. Ehhez egy asztali monitort és a Gear VR fejre helyezhető virtuális va-
lóság kijelzőt használtam. Fejlesztettem egy alkalmazást, ami képes felmérni a fel-
használó térérzékelési képességét. Ezt három különböző térérzékelést vizsgáló teszt
típussal teszi meg. Monitorral 240, a Gear VR használatával pedig 61 egyetemi
hallgató térérzékelési képességeit mértem fel. Kutatásaim során három különbö-
ző aspektust vizsgáltam az eredményeik alapján: az első, hogy melyik eszköz és a
virtuális környezet melyik paramétere fokozza a térérzékelést azzal, hogy növeli a
felhasználók jó válaszainak valószínűségét. A második, hogy melyik emberi tulaj-
donság és megjelenítési eszköz befolyásolja a térérzékelési teszt teljesítési idejét és
a harmadik, hogy milyen kölcsönhatás van az eszközök és az emberi tulajdonságok
között.

A térérzékeléssel kapcsolatos kutatási eredményeim azt bizonyítják, hogy a vir-
tuális környezet optimális felépítése pozitívan befolyásolja a térérzékelési teszteken
elért jó válaszokat és ezáltal az ember és gép közti interakciót is. Ez az optimális
felépítés nem más, mint egy perspektivikus kamera, ami vagy -45°-kal, vagy 0°-kal,
vagy 45°-kal kerül elforgatásra, illetve egy 1,5:1 vagy egy 3:1 kontrasztarány, és a
Gear VR megjelenítő használata. Ezen felül, a jó válaszok valószínűsége és a teszt
teljesítési idők nem függetlenek egymástól és az utóbbit szignifikánsan befolyásolja a
használt megjelenítő, a teszt típusa és a felhasználó neme. Végül, a Gear VR hasz-
nálata szignifikánsan javítja a jó válaszok arányát női vagy balkezes vagy idősebb
hallgatók esetén, illetve könnyebbé teszi a Purdue Spatial Visualization Test nevű
teszt típust.

A kutatásom második része a Kinect szenzor egészségügyi – főként mozgásreha-
bilitációs – felhasználására fókuszál. Ezt a részt két különböző nézőpontból vizsgál-
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tam, amiből az első, hogy a Kinect helyettesíteni tud-e nála drágább szenzorokat.
Ez egy kritikus része a telerehabilitációnak, hiszen manapság túlzsúfoltak a kórhá-
zak, aminek következtében a rehabilitáció hatásosabb lehet a páciensek otthonában.
A Kinecthez hasonló olcsó szenzorok könnyen elérhetőek a családok számára. Hogy
könnyebbé tegyem a rehabilitációt otthoni környezetben, létrehoztam az Aszinkron
Predikció Alapú Mozgásfelismerő (Asynchronous Prediction-Based Movement Re-
cognition) algoritmust. Négy felhasználói csoport gesztusleíróit mértem és értékel-
tem ki valós időben és fáljból is. Minden kiértékelés három elfogadási tartományban
történt, két számítógéppel és hat átlagolási technikával.

A kiértékelést követően arra a konklúzióra jutottam, hogy a predikció-alapú moz-
gásfelismerő módszer hasznos és használható otthoni környezetben a Kinect v1 szen-
zorral. Mivel egy korábbi algoritmus továbbfejlesztése ez a módszer, így összehason-
lításra került vele. Az eredmények azt mutatják, hogy a predikció-alapú algoritmus
esetében – a használt átlagolási technikától függően – 358,2%-535,3%-kal nőtt az
átlagos gesztus elfogadási ráta a ±0, 05 méteres elfogadási tartományban. Ez a
növekedés a ±0, 10 méteres elfogadási tartományban 87,8%-125,4%, míg a ±0, 15
méteres elfogadási tartományban 22,7%-47,3%.

A célom, hogy könnyebbé tegyem az ember és gép közti interakciót, tehát a ku-
tatásom kimenete kettős: egy olyan ajánlás megfogalmazása, amivel térérzékelési
képességet fokozó virtuális környezetek tervezhetőek, illetve egy egyszerű, ottho-
ni környezetben használható, mozgásrehabilitációs célú, gesztusfelismerő algoritmus
bemutatása.

iv



Estratto di contenuto

Nelle mie tesi di dottorato sto analizzando, come funziona la interazione tra umano
e computer (human-computer interaction) durante uso degli strumenti della realtà
virtuale e della realtà aumentata. Il tipo di interazione si sta modificando per ogni
tipo di strumento e per ogni tipo di applicazione. Per non parlare di quello che
stanno crescendo gli strumenti in base della realtà virtuale e della realtà aumentata
ed anche le loro applicazioni. Per questo tengo importante analizzara le interazioni
tra umano e computer, e dopo posso proporre raccomandazioni di progettazione
per facilitare la interazione tra umano e computer. Nelle mie tesi di dottorato ho
esaminato le due parti di queste interazioni.

Abbiamo posizionato l’utente in uno spazio quadridimensionale durante uso la
realtà virtuale ed aumentata. Un’ambiente progettata male potrebbe potrebbe peg-
giorare la capacità di percezione dello spazio dell’utente, mentre un’ambiente pro-
gettata giustamente potrebbe migliorarla. Sto esaminando quest’ultimo nella prima
parte della mia ricerca. Uso uno schermo del computer e un display Gear VR della
realtà visiva montato sulla testa. Ho sviluppato un’applicazione che controlla la
capacità della percezione dello spazio dell’utente, che lo fa con tre diversi tipi di
test della percezione dello spazio. Ho controllato le capacità della percezione dello
spazio di 240 studenti con monitor e 61 studenti con Gear VR. Nelle mie ricerche
ho esaminato tre diversi aspetti in base delle risulte: per primo: quale parametro di
quale strumento e di quale ambiente virtuale aumenta percezione e di conseguenze
si aumenta la probabilità delle risposte buone. Per sedondo: quale proprietà umano
e strumeno influenza la durata del test della percezione, e per terzo: che tipo di
interazione esiste tra le proprietà umano e strumenti.

I risultati delle mie ricerche delle percezioni dello spazio dimostrano, che la con-
truzione ottimo dell’ambiente virtuale influenza positivamente le risposte giuste nei
test della percezione dello spazio, e così anche l’interazione tra umano e computer.
La costruzione ottimo nientemeno che una camera prospettiva, che si gira -45° o 0°
oppure 45°, e rapporto di contraso 1,5:1 oppure 3:1, ed uso di Gear VR. Inoltra la
probabilità delle risposte e tempi di test non sono indifferenti, e questi sono stati
influenzati dal dispositivo di visualizzazione, il tipo di test e il sesso dell’utente.
Infine l’uso di Gear VR migliora significamente il rapporto delle risposte giuste nei
casi delle donne oppure dei mancini, oppure dei più vecchi studenti, intanto migliora
anche il tipo di test di Purdue Spatial Visualization Test.

La seconda parte delle mie ricerche messa a fuoco all’uso sanitario – principal-
mente per la riabilitazione – di sensore Kinect. L’ho esaminato da due punto di
vista, nel primo ho controllato se il sensore Kinect possa sostituire i sensori più
costosi. Questa parte è la più sensibile del teleriabilitazione, perché oggi come oggi

v



gli ospedali soso pieni, conseguentemente la riabilitazione potrebbe essere più effi-
cace nelle case dei pazienti. I sensori simili al sensore Kinect sono più accessibili
per le famiglie. Per facilitare la riabilitazione nell’ambito domestico ho creato un
algoritmo: Asincrono Base di Predizione Riconoscimento di Movimento (Asynchr-
nous Prediction-Based Movement Recognition). Ho misurato descrittori di gesti di
quattro gruppi ed ho analizzato in tempo reale e dei file. Tutti tre valutazioni sono
stati fatti in tre gamme di accettazione, con due computer e con sei tecniche della
media.

Dopo l’analisi sono arrivato alla conclusione, che il metodo di riconoscimento di
movimento in base di predizione è molto utile, e può essere utilizzato con sensore
Kinect v1 in un ambiente domestico. Siccome questo metodo è un ulteriormente
sviluppato di un algoritmo precedente, ed è stato confrontato con quello. I risultati
sono in caso di algoritmo di base di predizione – dipende quale tecnica della media
usata – aumentato il tasso medio di accettazione dal 358,2% al 535,3%, nella gamma
di accettazione di ±0, 05 metro. Quest’aumentazione nella gamma di accettazione
di ±0, 10 metro è da 87,8% al 125,4%, mentre nella gamma di accettazione di ±0, 15
metro aumentato da 22,7% al 47,3%.

Il mio scopo è migliorare l’interazione tra umano e computer, quindi l’uscita
della mia ricerca è duale: una formulazione di una raccomandazione, con quale si
progetta gli ambiti virtuali di intensificatore delle capacità di percezione dello spazio,
intanto la presentazione un algoritmo di riconoscimento di movimento, che si utilizza
semplicemente nell’ambito domestico per la riabilitazione del movimento.
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Chapter 1

Introduction

Information technology (IT) has multiple fields which are growing each day, but
virtual reality (VR) [1] is one of its most dynamically growing areas. Since then,
augmented reality (AR) [2] and mixed reality (MR) [3] also appeared and grown
drastically in popularity as well. According to eMarketer [4], the user-base of VR
and AR was 22.5 million and 37.6 million in 2016, respectively. These two realities
are expected to reach 57.1 million and 85.0 million users by 2021, respectively.
According to Business Wire [5], the market of AR and MR was valued at 2.98
billion dollars in 2019. It is expected to reach 27.44 billion dollars by 2025.

Another fact is that as the technology becomes stronger and progresses forward,
sensors and applications become easier to develop. The sensors can also use more
functionalities as the time progresses. For example, the Valve Index which is avail-
able since early-2020 can measure the power of the grip of the users and this feature
was not available in the earlier head-mounted displays (HMDs) such as the HTC
Vive. Not only the devices and the applications are more popular, but the userbase
of these sensors and applications is also increasing every day. This is due to the
technological advancements in the sensors as the user interaction becomes easier.

Since VR, AR and MR are widespread in this day and age, new possibilities
became available: they are popular in multiple areas such as education [6, 7, 8],
medical applications [9, 10], training [11, 12, 13], military [14] and even in entertain-
ment [15, 16]. These realities are mostly simple to use and are located on different
parts of a so-called "reality-scale" which is shown in Figure 1.1 and defined in [17].

Figure 1.1: Reality-scale from the real to virtual environment.

VR may be the simplest to use as it is a synthetic reality and is made up of six
parts: the environment itself, a computer, a network, the input, the output devices
and the users themselves. Due to this definition the objects in VR can be interacted
with. AR is different than VR as it expands upon our reality: objects are placed
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in the real-world by it (through glasses for example), but those objects cannot be
interacted with. MR is between VR and AR. With MR, interaction is allowed.
Human-computer interaction (HCI) is an essential element in these realities.

The interaction and the behavior of the humans with the computer depend on
the tasks, the tools that are available and even the application design [18]. Using the
HCI principles, applications can be designed for different purposes, such as learning
applications [19, 20], mobile applications [21], helping with assistive technologies
[22], serious games with gamification elements [23, 24], entertainment applications
[25], interfaces in VR [26], and even the virtual environments (VEs) themselves [27].
It is also indicated by the preceding paper that there is no ideal HCI principle for
VR, as this depends greatly on the application type. The opinion of its authors
is that user-centric development has proven useful in the past and thus, should be
used [28].

There is a possibility that HCI can be made easier with the use of motion tracking
sensors besides following a user-centric development. These sensors can either be
found inside HMDs which allow the head of the user to be tracked with their inertial
accelerometer(s) and gyroscope(s), or can be whole body tracking sensors such as
the Microsoft Kinect which uses its depth cameras and microphones.

1.1 Motivation and aims
As can be suspected, human motion tracking and its applications is a vast field of
research. It is a quite relevant field as according to Aditya et al. the standard key-
board, mouse and other traditional input devices will become obsolete due to motion
tracking sensors [29]. This means that new types of interaction between the human
and the computer will emerge. This fact is important in all fields which involve
motion analysis, mainly in medical applications [30]. The spatial skills of the users
are important as well. Not only because well-developed spatial skills are required by
most jobs, but these skills are also important during physical rehabilitation. Sadly,
post-stroke patients can have difficulties seeing and they need to have a good spatial
sense to successfully complete certain movements during rehabilitation. Since the
world is transitioning into a digital age, these facts are needed to be investigated
inside VEs.

Therefore, the aim of the author is to make the HCI easier for the user. Thus,
this goal is focused on in this PhD dissertation. To achieve this, the previously
mentioned two different areas of HCI were investigated during this PhD research.
The first area – shown in subsection 1.1.1 – presents a short introduction and research
motivation regarding the spatial skills of the users with the goal to prove that HMDs
have a positive effect on the spatial skills of the users. To achieve this, three various
aspects regarding the spatial skills in VEs were investigated: the influence of display
parameters and display devices on the probabilities of correct answers on the tests;
how the rates of correct answers are affected by the display devices; and the effect
of the skills of the users on the completion times. The second area of research is
presented in subsection 1.1.2. In this research, the Kinect sensor is investigated.
This research has two outputs: the first is to prove that the Kinect is still useful to
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this day and can substitute more expensive sensors in different fields of research and
the other is to present an easy-to-use "motion predictor" algorithm that can help
patients in physical rehabilitation in their homes. As the research of the author is
about two areas of HCI, the structure of this PhD work is shown in section 1.2.

1.1.1 The importance of spatial skills in engineering and med-
ical applications

Spatial ability is a cognitive skill [31] which is made of the concept of definitions,
originally by three: mental rotation which activates areas of the brain which in-
volves motor stimulation [32]; spatial perception which involves the parietal lobe
and the human visual system in the brain [33]; and spatial visualization. Accord-
ing to [34] people who used spatial visualization, the brain activities in the lateral
occipital complex, in the right superior parietal, dorsolateral prefrontal cortex and
in the right ventrolateral pre-frontal cortex were greater than objects visualizers.
Later, Maier expanded the definition of spatial ability and therefore, of spatial in-
telligence [35]. According to his study, spatial ability is made of the concept of five
definitions: spatial perception; visualization; mental rotation; spatial relations and
spatial rotations.

A well-developed spatial ability is essential in the life of an engineer, mainly
in tasks that require design and creation. Subjects such as descriptive geometry
and technical representation are taught by several universities to train the spatial
skills of engineering students. Due to these training courses, the spatial skills of
engineering students are better than the spatial skills of non-engineering students
as the engineering students outperformed the female engineering students and the
non-engineering students as well [36]. It is also shown by the studies in [37, 38] that
the spatial skills of males are better than of females.

Spatial ability is also essential in physical rehabilitation in the case of post-stroke
patients as they can suffer from sensory deficits besides movement disabilities [39].
Due to this, post-stroke patients can lose their spatial skills as well. According to Lee
[40], VR-based spatial ability training can return the spatial sense of the patients
to some degree.

Therefore, it is possible to train the spatial ability of people with or without
disabilities. It can be trained by doing everyday activities that require spatial skills
and by solving geometric problems of which many exist. The geometric problems
include the Mental Rotation Test (MRT) [41, 42, 43, 44], the Mental Cutting Test
(MCT) [45, 42, 46, 47, 48, 49, 50], the Purdue Spatial Visualization Test (PSVT)
[51, 42, 52], the Heinrich Spatial Visualization Test (HSVT) [53] and the Surface
Development Test (SDT) [54]. It can also be trained by playing video games. Ac-
cording to [55, 56], the spatial skills of the users can also be improved by playing
"Tetris" and first-person shooter games, even if these types of games are not devel-
oped with the goal to train spatial ability. This is an interesting conclusion, as VR
is used by computer games.

This opens up the possibility that VR has the ability to enhance and train
spatial ability as there is no good HCI in VR without spatial ability. With this fact,
three goals are formed in this PhD dissertation regarding spatial skills in VEs. The
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first is to find the optimal user-centric preference in VR by using different display
parameters and devices. With this, it can be investigated whether the spatial skills
of the users can be enhanced by using HMDs. The second is to see how the time of
doing tasks in VR is affected by the used display device and the skills of the users.
Lastly, to examine and find the influence of certain skills and studies of the users on
their spatial skills. Therefore, following are hypothesized:

1. The spatial skills of the users can be affected by the parameters of the VE and
the used display devices.

2. The spatial ability test completion times can be affected by the used display
devices and the human skills.

3. The ratio of correct answers on the tests can be affected by the used display
devices and the human skills.

1.1.2 The use of motion tracking devices in medical applica-
tions

As mentioned previously in this introductory section, the aim of the author is dual
with the Kinect: the first is to prove that expensive sensors can be substituted by
the Kinect and that it can still be used to this day. The second is to present a
"motion predictor" algorithm which allows people with movement disabilities to do
physical rehabilitation exercises in their homes.

The use of motion sensors is essential in medical applications. For example, due
to stroke, patients can lose their skills to move – sometimes partially, sometimes
fully. An early physical rehabilitation is needed to prevent muscular dystrophy
as the muscles that are not used can stiffen or even shorten. Due to these, the
muscles can be locked in a wrong position. Muscular dystrophy can also happen
when the muscles are not used in a long time. This condition can be prevented by
physical rehabilitation as motor coordination is its focus and thus, the muscles can be
strengthened by it. First, the instructions are shown to the patient by the therapist
and after that, rehabilitation training can be started in the hospital. Afterwards,
the training can be done at home using a (possibly low-cost) motion sensor.

Telemedicine can also be an important factor [57, 58, 59]. Nowadays, it is more
important than previously, as the hospitals are overcrowded, mainly in the current
situation. Therefore, rehabilitation at the home of the patients is much more con-
venient and safer for both the patient and the therapist. VR applications that can
be used at home can help the work of medical experts as well. For the developers,
it is easier to build upon existing professional applications when creating a VR one
[60, 61]. Since expensive sensors do not exist in the homes of the users and cannot
be taken out of the hospitals, these sensors should be substituted by less expensive
ones, such as the Kinect [62, 63, 64]. It looks like the substitution is possible, but a
literature review is conducted in section 2.2 in order to find the answers to the first
goal [65].

Since most of the stroke patients are of the elderly generation, their needs have
to be assessed when developing the applications [66]: the graphical user interface
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(GUI) have to be understandable, logical, easy to navigate and the application itself
has to be easy to use. There are many neurorehabilitation techniques based on
VR technology that promised to help people with phobias or reduce frustration
[67, 68, 69, 70, 71, 72, 73, 74], however they did not spread across the field of
healthcare. The main reasons were that they were difficult to use and to customize,
thereby the patient lost motivation [75].

In the past, multiple algorithms have been developed by the author and his
co-authors [76, 77]. These algorithms are easy to use and serve as a basis to this
research. Using these algorithms, first the information is presented to the patient
by the therapist, then the algorithm is taught the gesture that have to be repeated
by the patient. This allows the patient to do the physical rehabilitation exercises at
home. In [76, 77] it is concluded that the acceptance domain-based gesture classi-
fication can be used in real-time with the Kinect. This could adapt to the current
capabilities of the patient, while maintained their motivation in the rehabilitation
process. However, it was not always accurate. Therefore, due to these reasons,
the Asynchronous Prediction-Based Movement Recognition (APBMR) algorithm is
proposed in the PhD dissertation of the author. Its accuracy is evaluated and it is
compared to one of the previous algorithms that it is based upon.

The next movement of the user is "predicted" by the APBMR algorithm. It
is done by evaluating the previous three and it is decided whether the next user-
input gesture can be considered the same movement with the goal to maintain
motivation. To make the decision of accepted gestures easier, the position of the
user is also followed by it and their speed is also matched. Therefore, the following
is hypothesized:

• The average of accepted gestures is larger with the APBMR algorithm than in
the case of the previous algorithm it was based upon and it can also be used
for telerehabilitation.

1.2 Structure of the thesis
In the PhD dissertation of the author two different parts of HCI were investigated
while using VR/AR devices, therefore it is structured as the following: after this
short introductory chapter, a literature review is conducted of both parts of the
research of the author in chapter 2. The materials and methods that were used
during the research are presented in chapter 3. In chapter 4 the results of the
measurements are shown. The discussions and the conclusions can be seen in chapter
5 and the application of the new scientific results are presented in chapter 6.

The theses of the author are focused on in chapter 7 as they are summarized in
its first section. Not only these theses are summarized, but the respective publica-
tions of the author are also assigned to them. In the second section of chapter 7,
possible future research in these fields are shown. The publications of the author
are presented in the last section of chapter 7, split into three groups: publications
that are directly relevant to this PhD dissertation; publications that are indirectly
relevant to this PhD dissertation; and publications that are not relevant to this PhD
dissertation.
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Chapter 2

State of the art

In this chapter the state of the art of human spatial skills in VEs and the litera-
ture regarding the Kinect sensors are assessed. Both are important in the case of
healthcare, usability and even the accessibility of a VR-based application. After
observing the state of the art in both cases and investigating the pros and cons of
each, methods are formulated at the end of the chapter not only to solve problems
regarding HCI, but to enhance it as well.

2.1 Human spatial skills and their enhancement in
virtual environments

A theory is proposed by Gardner in 1983, saying that every human has multiple
types of intelligence and spatial intelligence is one of them [78]. This theory was
built upon by Maier and it was concluded that spatial intelligence is made up of
five different parts [35]: spatial perception, visualization, mental rotation, spatial
relations and spatial rotations. According to Miller and Bertoline, this ability is
not a biological susceptibility, but can be improved through time [79]: improve-
ment can occur simply by life experiences or by being exposed to certain learning
environments. It has been suggested in [80] that spatial ability training should be
included in the curriculum of engineering studies. According to Ghiselli, the success
in the fields of engineering, mathematics and architecture is related to the spatial
skills of the person [81]. However, the spatial skills of non-engineering students were
measured by Sorby et al. and the improvement of spatial skills of both engineering
and non-engineering students was also investigated in their study [82]. According
to their results, the improvements were the same between the two groups when
comparing results of the pre-tests and the post-tests. In some cases, the improve-
ments of non-engineering students were better than the improvements of engineering
students.

A considerable amount of tests was developed through the years to improve the
spatial intelligence and ability of the people. These tests are the following: Cards
Rotation Test and the Paper Folding Test [54], Embedded Figures Test [83], Water
Level Test [84], Identical Blocks Test [85], Rod-and-frame test [86], Paper Form
Board [87]. However, there are more elements in this list: the MRT, MCT, PSVT,
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HSVT and SDT test types were already mentioned in the introductory section, but
as can be suspected, the spatial skills of the people can be improved by these tests.
There is a possibility that even more of these tests exist.

Spatial ability can be improved even without solving these tests: according to
the study of Hijazi, simply by fencing can increase the spatial perception of the
player [88], or according to the study of Romeas and Faubert, simply by playing
soccer can also increase spatial perception [89]. Mental rotation skills can also be
improved by solving the Rubik’s Cube [90], or by playing video games which have
gameplay about rotation such as Tetris or first-person shooter video games such as
Unreal Tournament [91].

As can be seen, the number of spatial ability improving methods is huge, even
if only the tests are taken into account. This is due to it being an important skill
to have in the modern day and age. A well-developed spatial ability is required
by several jobs [92]. As such, it is an important skill for multiple disciplines, for
example the engineering discipline: it is essential during design and development
phases. If this ability is well-developed, the spatial relationships between objects
and space can more easily be understood by the person.

The methods that improve spatial ability – such as these tests – mostly exist on
paper. The Paper Folding Test has been implemented in VR in [93]. This is good
as it is shown by the previous studies that the learning skills [94, 95, 96] and even
the spatial skills [97, 98, 99, 100, 101, 102, 103] of people can be improved by VR.
It is concluded by the last two studies that the mental rotation of males are better
than of females in VR and in AR. Also, it is suggested by the last study that AR
could be a good tool for improving spatial ability.

Positively affecting learning in VR became easier since the inception of Cogni-
tiveInfoCommunications (CogInfoCom) [104, 105, 106]. This is due to new human-
computer interfaces [107, 108, 109, 110, 111], virtual laboratories [112] and virtual
learning spaces [113]. As the user is placed in VR by the CogInfoCom environment,
new possibilities of research regarding spatial ability emerge.

When the users step into VR, new factors must be considered such as the HCI
and the display parameters in the VE. To help the users with HCI, a toolkit was
developed by Takala which makes it easier to create VR applications using building
blocks [114]. Developers using the toolkit can create applications for HMDs and
even for the Kinect device. In the study the spatial GUI ideas of the students
are presented and the toolkit is evaluated. According to them, the toolkit and the
spatial GUIs received positive feedback.

Since most tests that train spatial ability are paper-based, the literature is scarce
about VR applications that were developed with the aim to improve the spatial
skills of the users. In subsection 2.1.1 existing VR applications that improve the
spatial skills of the users are presented, in subsection 2.1.2 it is assessed whether the
spatial skills of the users can be enhanced by the design of a VR application and in
subsection 2.3.1 the literature review is concluded.

7



2.1.1 Existing virtual reality applications that improve spa-
tial ability

A web-based VR application was developed by Rafi et al. which can be used to test
and to improve the spatial skills of the users [115]. The mental rotation and spatial
visualization tasks were used by them. In their study, a pre-test and a post-test were
conducted. According to their results, the spatial skills of the users were improved
by using their web-based VR application.

According to a study of Chang et al., a perspective-test was developed in VR
to measure the spatial skills of the users [116]. Similarly, to the previous study,
pre-tests and post-tests were conducted on three groups: users who interacted with
the application with motion; users who interacted with a keyboard and a mouse;
and users who interacted with motion, but used non-spatial tasks. Their conclusion
was that the first two groups improved between the tests. However, significant
improvements were only found in the case of the first group.

The results of two groups which done the MRT test type were compared by
Jiang and Laidlaw [117]: a desktop environment was used by one group and a
VR environment by the other. According to them, low spatial ability participants
benefited from learning between the pre-test and the post-test. Their conclusion
was that the results on the MRT test were not significantly affected by VR.

In the study of Oman et al. it was found out that the performance of users who
used HMDs was slightly better than of those who did not use HMDs [118]. Their
conclusion was that VR can be used for training the spatial skills of the users and
thus, is excellent for this purpose. The spatial perception of users was compared by
Schnabel and Kvan in their study [119]: real 2D environments, a desktop display
(DD) and an HMD were used. It was tested whether the users could understand
spatial volumes. When rebuilding the volume, the highest accuracy was reached by
the engineering students out of all groups. If the HMD was used, the volume and its
building blocks could be understood by the students. Therefore, it was concluded
that with the use of the HMD, the complexity of the volume would be easier to be
understood by the users.

According to Passig and Eden, that the mental rotation of children with hearing
difficulties was improved by playing 3D Tetris in VR [120]. It was also mentioned
that these types of games require mental rotation. This is true, as according to
Johnson, five stages of mental rotation exist [121]: the creation of the mental picture;
the mental rotation itself; the mental comparison between the rotated object and
the original; the decision whether the two are the same object; and lastly, the
acceptation. These stages happen during a game of Tetris, as the falling object has
to be mentally rotated by the player.

The PSVT-R test in VR was created and evaluated by Molina et al. [99]. Two
groups of users were tested with. A DD was used by one group and an HMD was
used by the other one. Pre-tests and post-tests were done by both groups. In
the study, the conclusion was that there is improvement in spatial skills with both
groups, but the improvement is significant with the HMD.

Studies exist that only present the design of VR spatial ability tests and the
research plan of the authors. An MCT test in VR was developed by Hartman et
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al. with the goal to help other scientist in the creation of future MCT tests [122].
A testing method was outlined by presenting the procedure and the data analysis.
As the study is about the creation of VR MCT tests, the results of the tests are
not published in this study. A VR MRT test outline was created by Rizzo et al. by
presenting their future plan [123]. Later, their preliminary results of the tests were
published [124]. According to their preliminary results, the VR MRT test helped
the users as their results were improved on the post-tests.

Summarizing the studies mentioned in this subsection, it can be noted that only
a few VR-based spatial ability tests were developed during the years. These tests
include a web-based application, a perspective-test, MRT tests, a PSVT-R test, a
spatial perception test of volumes. A study said that even by playing 3D Tetris
the spatial skills of the users can be improved. In most of the mentioned studies
pre-tests and post-tests were used to determine the improvements of spatial skills.
It is concluded in all but one study [117] that contain pre-tests and post-tests that
by using VR the spatial skills of the users can be significantly improved. According
to the few tests that used an HMD, the improvements are larger when using an
HMD than when using other display devices.

2.1.2 How the design of a virtual reality application can help
the spatial skills of the users

The design of the VR application is important, because if the VR application is
carefully designed, the spatial skills of the users can be enhanced. This is due to
VR having two advantages: the interaction and the spatial visualization inside the
VE are different than in reality, therefore HCI and human-computer interfaces can
be redefined [125]. The spatial skills of the users can be improved by the existence
of these mentioned advantages [126].

To test the importance of design in VR applications, it was investigated by
Cutmore et al. whether the spatial skills of the users can be improved by a 2D
projection of a room in VR [127]. In the study it was found out that the performance
of the users was better in dynamic environments. Similarly, to enhance the spatial
skills of the users in VR, the design of three different VEs was researched by Naceri
and Chellali [128]. According to them, with the use of an HMD the users can
correctly tell the distance of objects up to 55 cm in a rich VE. Similarly, VEs were
assessed using three different effects and an HMD in a study of Cidota et al. [129].
These three effects were the blur effect, the fade effect and the standard environment.
Although the presence of the user was decreased by the effects, the performance of
the users was positively affected. In AR it was affected by the standard environment
and in VR it was affected by the blurry and the faded environments.

According to Renner et al. the distances in VR applications are usually underes-
timated by the users [130]. In their study the conclusion was that binocular disparity
should be provided, but high quality graphics in a rich VE should be used with a
carefully adjusted virtual camera to enhance the sense of presence of the users. With
these, the spatial skills of the users could be increased. It was also concluded by
Armbrüster et al. that the distances in VEs can be underestimated by the users
[131]. Better estimations are provided in peripersonal space than in extrapersonal
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space. According to the research, a closed room environment is preferred by the
users.

A study on visual and audio cues was conducted by Rébillat et al. with a similar
aim to increase the spatial perception in VR. However, according to their results,
the depth perception of the users was not influenced by the audio cues as the audio
source was overestimated [132]. In another study by Abdullah et al. a system is
proposed to help the spatial perception of users by sending haptic feedback [133].
Their conclusion was that when using their system, less spatial mistakes are made
by the users. A CAVE system which allows the freedom of movement was studied
by Ng et al., but the spatial perception of the users was not enhanced by it [134].

The effect of depth cues both on a DD and an HMD was researched by Gerig et
al. [135]. According to them, the impact that was made by the depth cues was minor
on the performance of the users and motivational aspects should be used instead.
However, it was also concluded that the performance of the users was better when
using an HMD and in this case, fewer wrong moves were produced by the users.
This also means that the spatial skills of the users can be enhanced by using HMDs.

To summarize, the design of the VR applications is important as the spatial
skills of the users can be affected by it. According to the authors of these studies,
binocular disparity should be provided with a carefully adjusted camera. Also,
human perception can be positively affected by the dynamic, blurry, faded, rich
environments. It can even be influenced by motivation. However, the distance of
objects can only be correctly perceived up to 55 cm.

2.2 Using the Kinect for physical rehabilitation
According to Zhou and Hu the sensors used in motion tracking can be divided
into three classes [136]: "non-visual tracking," "visual-tracking" and "robot-aided
tracking". These three classes are defined by them as the main motion tracking
sensor classes and all of these main classes have separate subclasses. Also, in their
classification study a survey was conducted on the use of sensors in the field of
rehabilitation. Several sensors from all three key groups were surveyed with the
exception of the Kinect as it did not exist in 2008 yet. It was concluded that they
are not only not patient-oriented, but home use is not allowed by them and are
expensive. In contrast to the sensors that were surveyed by them, the Kinect is a
low-cost sensor and can be used in a home environment if home use is allowed by
the therapist.

As mentioned, the Kinect sensor did not exist in the time of writing the men-
tioned survey, but based on the classes, the Kinect could be classified as a marker-free
visual-based sensor. According to the authors of the survey, the sensors that are
placed in this class have inefficient computation, high compactness, high precision,
cheaper and occlusion is their only drawback.

The Kinect arrived to the consumer market in November 2010 and was well-
received by the scientists as according to Hondori and Khademi, the number of pa-
pers indexed by PubMed drastically increased from 2011 [137]. Although the Kinect
was still young in 2011, its educational usefulness was quickly assessed, yielding skep-
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tical, but still optimistic results [138]. In 2014, an analysis of AR developments was
done by Bacca et al. and it was noted that demand exists for educational Kinect
applications in AR. It was concluded in the study that its tracking of objects could
be enhanced algorithmically [139]. According to the conclusion of Da Gama et al.,
motor rehabilitation is possible with the Kinect, but the tracking of its skeleton
stream should be improved [140]. According to Reis et al., only the rehabilitation of
upper limbs is focused on in most studies. Also, according to them, serious games
are focused on more in these studies by using the Kinect to entertain and motivate
the users during rehabilitation and education [141].

As the reader may suspect, the Kinect is used in many fields of research. It can
be used in interactive virtual laboratories for educational purposes [142], children
with special educational needs can be supported with it [143], as well as moderate
cognitive impairment can be measured and enhanced using it [144] and even moti-
vation can be increased with it [145]. It can also be used for VR therapies [146, 147],
exercise gaming [148], creating gesture-controlled systems for people with disabilities
[149] and even the performance of people with physical disabilities can be evaluated
in medical applications [150, 151].

It has to be noted that since the Kinect is a marker-free visual-based sensor, only
the motion that is in front of it can be tracked. This means that the movements
have to be done in its field of view (FoV). An indoor localization study was done
by Song et al. [152] to increase the FoV of the Kinect. In the study, three different
Kinect sensors were connected at various angles. The user stood in front of the
sensors. The monitoring of the user was started by one of the three Kinect sensors,
based on their position and angle. However, the monitoring was only done by one
Kinect at a given time. The Kinect which does the monitoring is selected by two
methods: the bivariate gaussian probability density function and the maximum
likelihood estimation methods. It was concluded in the study that more expensive
sensors can be substituted by the Kinect. Another conclusion was that it is a precise
sensor even though it is marker-free visual-based.

Before conclusions are made about the Kinect, it is introduced first and then
its specifications are summarized in subsection 2.2.1. Afterward, it is compared to
other motion sensors in subsection 2.2.2 and its precision and accuracy are assessed
in subsection 2.2.3. The conclusions that are based on these facts are made in
subsection 2.3.2.

2.2.1 A brief summary of the Kinect

Two versions of the Kinect exist: the Kinect v1 and the Kinect v2. Both are able
to track the whole human body. Two depth cameras are used by each version of the
sensors. This means two forms of depth mapping techniques are combined: focused
and stereo mapping. Focused mapping means that the objects become more blurry
if they move away from the depth camera. To improve the accuracy, astigmatic
lenses of different focal lengths on the x and y axes are used by both versions of
the Kinect [153]. With their stereo mapping, the depth from the disparity can
be calculated [154]. Each of the Kinect sensors has a microphone array consisting
of four microphones, in addition to the depth cameras. The microphones have a
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multichannel echo cancellation feature and the position of sounds can be detected as
well. Noise can also be reduced and even suppressed. Apart from these, the hardware
of both Kinects differ from each other. The Kinect v1 has a 64 MB DDR2 SDRAM
and uses a PrimeSense PS1080-A2 chip that allows data to be processed before it
is transmitted [155]. This architecture is presented in Figure 2.1. The infrared (IR)
emitter of the Kinect has a laser diode of 60 mW, and works at a wavelength of 830
nm. The Kinect v2 is fitted with a Samsung K4B1G1646 G 128MB DDR3 SDRAM
and a Microsoft X871141-001 chip instead of the PrimeSense PS1080-A2 [156].

Figure 2.1: The architecture of the Kinect v1.

Both versions of the Kinect devices mainly function as depth sensors. As opposed
to their hardware, both are similar in the way they use depth mapping. However,
their strategies for mapping the depth are different. In case of the Kinect v1, IR dots
are emitted by its IR emitter and the distance is measured based on their distortions
[157]. In contrast to the first version, a Time-of-Flight (ToF) method is used by the
Kinect v2. This means that distance is calculated by measuring the round trip time
of the artificial light signal provided by the sensor [158].

Another way exists to track human motion with both versions of the Kinect:
Software Development Kits (SDKs) were published by Microsoft for both Kinects
and by using them, a so-called "skeleton stream" can be accessed in real-time. This
allows the developers to track the whole body or even just certain "joints" (meaning
body parts) in real-time. According to the official specifications, the number of
tracked people with the skeleton stream is two in the case of the Kinect v1 and six
in the case of the Kinect v2. Also, twenty joints of the user can be tracked with the
Kinect v1, while twenty-five can be tracked with the Kinect v2.

Sadly, the Kinect sensors were discontinued by Microsoft in the fall of 2017 and
the USB adapter for the Kinect devices was also discontinued on 01.02.2018. This is
important as the sensors could not connect to a PC without the adapter. One of the
reasons behind the discontinuation was that there were not enough decent games
that use the Kinects. Even though the entertainment industry was not satisfied with
the use of the Kinect, researchers were and the sensors are still used to this day.
Nearly 30 million units have been sold over the lifetime of the Kinect sensors, with
23 million being the Kinect v1 and the remainder being the Kinect v2 [159, 160].
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2.2.2 Comparing the Kinect to other motion sensors

Comparing the Kinect to similar price-range motion sensors

The Kinect v1 was compared to the Asus Xtion in a study by Gonzalez-Jorge et al.
[161]. The Xtion sensor also features a depth camera [162] and therefore, functions
similarly to the Kinect v1: IR dots are projected by both sensors using their depth
camera which allow them to calculate the depth. This is not the only similarity
between the sensors as both use the PrimeSense IR measuring unit. However, there
is one difference: an external power supply is required by the Kinect v1, contrary to
the Xtion. In the case of the latter, the power is received through the USB port of
the computer. In this study, artefacts were measured in three different angles and
the precision and accuracy of both sensors were not affected by the angles. However,
an image over 7 m was not generated by the sensors. The two versions of the Kinect,
the Xtion Pro Live and the Intel RealSense SR300 were compared to each other in
the study of Breedon et al. [163]. The Xtion Pro Live has a better depth camera
than the Kinects, although it did not offer many improvements over the two Kinect
sensors. The resolution of the depth camera of the Xtion Pro Live is 640 × 480,
while the resolution of the depth camera of the Kinect v2 is 512× 424. Similarly, to
both Kinects, the Xtion Pro Live was also discontinued.

In 2018, the new version of its RealSense sensor, called the D415 was released
by Intel. This was compared to its predecessor and to the Kinect v2 in a study by
Carfagni et al. [164]. According to the study, fewer probing form and probing size
errors, less sphere spacing errors and less flatness errors are provided by its raw data
than by the raw data of the Kinect v2. The conclusion of the study is that the Intel
RealSense D415 can be used as a low-cost device in 3D-scanning applications and
in motion tracking. Therefore, it can be used for gesture recognition as well.

According to the comparison between the similar price-range motion sensors,
a better resolution is provided by the color camera of the Kinect v1 than by the
color camera of the Xtion sensor. Its specified measuring distance is better as well.
Similarly, a better resolution is provided by the color camera of the Kinect v2 than
by the color camera of the Xtion Pro Live, while the resolution of its depth camera is
worse. Its specified measuring distance is larger. Another fact is that both RealSense
sensors outperform both Kinect sensors. This is because the RealSense sensors are
newer than both Kinect sensors, meaning that their hardware is more advanced. A
summary of these comparisons is presented in Table 2.1. In the table, SMD stands
for specified measuring distance.

Table 2.1: The comparison of similar price-range motion sensors.
Color camera Depth camera Depth technology FoV SMD Connectivity

Kinect v1 1280× 720 at 12 fps,
640× 480 at 30 fps 320× 240 at 30 fps IR 57° H, 43° V 0.4 m or

0.8 m – 4 m USB 2.0 or 3.0

Kinect v2 1920× 1080 at 30 fps 512× 424 at 30 fps ToF 70° H, 60° V 0.5 m – 4.5 m USB 3.0
Xtion 640× 480 at 30 fps 320× 240 at 30 fps IR 58° H, 45° V 0.8 m – 3.5 m USB 2.0

Xtion Pro
Live

1280× 1024 at 15 fps,
640× 480 at 60 fps

640× 480 at 30 fps,
320× 240 at 60 fps IR 58° H, 45° V 0.8 m – 3.5 m USB 2.0

RealSense
SR300

1920× 1080 at 30 fps,
1280× 720 at 60 fps 640× 480 at 30 fps Coded light 73° H, 59° V 0.3 m – 2 m USB 3.0

RealSense
D415 1920× 1080 at 60 fps 1280× 720 at 90fps Stereoscopic active

IR 69.4° H, 42.5° V 0.16 m – 10 m USB 3.0 Type-C
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Comparing the Kinect to more expensive motion sensors

In a study of Romero et al. [165], it was investigated whether the Polhemus Lib-
erty Latus (PLL) wireless system [166] could be replaced with the Kinect v1 when
assessing the motor skills of children with autism spectrum disorder (ASD). It was
concluded in the study that the PLL can be replaced by the Kinect v1 in some
respects. However, it cannot be replaced in others: with its electromagnetic (EM)
field position and rotation mapping, a more accurate measurement is offered by the
PLL than by the Kinect v1. Therefore, it is superior to the Kinect v1 sensor in
this regard. The measuring skills of the PLL is better suited to small-scale, high-
precision activities than the Kinect v1. However, on larger scales, meaning that if
the patient moves multiple limbs or whole-body tracking is used, better results are
provided by the Kinect v1. Also, the data of the Kinect v1 is easier to use.

According to Sun et al. [167], gesture recognition is possible by using the Kinect
with its color camera and surface electromyography (sEMG) together. Both sensors
were used simultaneously, fusing the data collected. The Fourier transformation
and a characteristic line method were used with the Kinect, and the results were
modeled on a histogram. Also, the noise had to be filtered from the video, since the
color camera was used. First, a polygonal approximation was used to achieve this,
afterward the Douglas-Peucker (D-P) algorithm was used. Fifty training samples
and another fifty as samples of silhouettes were collected prior to the study. Two
hand, four wrist, and four finger gestures were tested. There were twenty of each
gesture in five separate groups. This means that minimum 100 movement descriptors
were tested for each gesture. The conclusion is that the Kinect is superior to sEMG.
The use of the Kinect resulted in an average of 80-90 gestures, while the use of the
sEMG resulted in an average of 60-65 gestures.

A firearms training simulator was developed by Bogatinov et al. with the goal
to replace existing simulators on the market that are more expensive [168]. With
the use of the Flexible Action and Articulated Skeleton (FAAST) toolkit [169],
the movements within the framework have been created. According to them, their
firearms training simulator is better and cheaper than the MINT-PD for example,
which is another military simulator [170]. They say that their system should be used
with nine calibration points and the user has to stand 2.5 m away from the Kinect
sensor. Contrary to this, it is more expensive than the MINT-PD as it requires a
complete controlled environment to be set-up: it consists of a laser, a laser-tracker
and a microphone for speech recognition. A tablet can also be used for special input.

Not only human motion tracking is possible with the Kinect sensor but it can
also be used for environmental tracking. The Kinect v2 was used by Rosell-Polo et
al. for outdoor agricultural applications [171]. This is interesting as Light Detection
and Ranging (LiDAR) sensors that consist of Terrestrial Laser Scanners (TLS) or
Mobile Terrestrial Laser Scanners (MTLS) are usually used in this area. Because of
their color and depth cameras, the conclusion is that the Kinect v2 sensor is similar
to both TLS and MTLS. While they are similar, there are some differences: a shorter
range and a smaller FoV were provided by the Kinect v2 than the LiDARs. In the
mentioned study the Kinect v2 sensor was combined with a real-time kinematic
Global Navigation Satellite System (GNSS). Various FoVs with varying sampling
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rates were used: 5.15 Hz with a single column FoV, 0.75 Hz with partial FoV and 0.15
Hz with maximum FoV. Naturally, the best performance and output are provided
by using the 5.15 Hz option, but errors may occur up to 1.5%. It is concluded that
the authors of the study have created a low-cost and efficient replacement for LiDAR
sensors. It is shown in research of Keightley and Bawden that the ILRIS 3D LiDAR
sensor can be used to monitor the environment [172]. This allows for comparison
between the Kinect v2 and a LiDAR.

According to the reviewed comparisons, more expensive sensors can be substi-
tuted by the Kinect. The sensors that can be substituted are the PLL, sEMG,
MINT-PD, and LiDARs. These comparisons were mostly done during human mo-
tion tracking. However, environmental tracking was used in the case of the LiDAR
sensors.

Comparing the Kinect to all mentioned motion sensors

A summary of the mentioned motion sensors is provided by Table 2.2. Four columns
can be found in the table: the name of the sensor, its method of mapping, its
sampling rate and its price. The PLL, the sEMG, and the ILRIS 3D are, as expected,
highly expensive. There is no information available on the cost of the MINT-PD as
it was designed for the military. It must also be noted that the first four sensors
in Table 2.2 are discontinued. Therefore, there are only used ones available on the
market, so the price could vary between sellers.

Table 2.2: Comparison of all mentioned motion sensors.

Name Mapping Sampling rate Cost
Kinect v1 Depth (IR) 30 Hz US$99.95
Kinect v2 Depth (ToF) 30 Hz US$99.99
Xtion Depth (IR) 30 Hz €50

Xtion Pro Live Depth (IR) 15 Hz US$140
Intel RealSense SR300 Depth (Coded light) 30 Hz €68.12
Intel RealSense D415 Depth (Stereo active IR) 90 Hz US$149

PLL EM field 188 Hz or 94 Hz US$12 500–US$600 002
sEMG Electrodes 800 Hz – 1 kHz US$250 004

MINT-PD Laser No information. Not available.
ILRIS 3D Laser 2500 points/s €16 000

2.2.3 Assessing the accuracy and the precision of the Kinect

The depth sensor

In a study of Wasenmüller and Stricker [173], the depth camera of the Kinect v1 was
compared to the Kinect v2. As mentioned earlier, IR dots are projected by the IR
emitter that can be found in the Kinect v1. Due to the distortion of the IR dots, the
depth is calculated. In contrast, a ToF method is used by the Kinect v2. Similarly,
IR light is projected by it into the environment. However, the depth is not measured
based on the distortion of the IR dots, instead, the speed of the IR light is measured
back and forth. In the mentioned study of Wasenmüller and Stricker, a set of 300
depth images of the same environment was captured with a camera. However, the
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sensed depth can be affected in case of both Kinects by the current temperature of
the sensor. According to them, the mean depth of the Kinect v1 can decrease to
less than 2 mm. In the case of the Kinect v2, the seen distance can increase to 20
mm after 16 minutes of use. However, it can decrease to 3 mm when its 5 V DC fan
(labeled U40R05MS1A7-57A07A [156]) turns on. Afterward, it can increase slightly
when the fan rotates with the same speed. Due to these facts, it is advised to turn
on the Kinect v2 16-20 minutes before using it. The accuracy and the precision of
the Kinect v1 are less when detecting depth at an increasing distance as the offset
increases exponentially: the offset is below 10 mm at 0.5 m away from the sensor,
however, it can be more than 40 mm at 1.8 m away. Also, a stripe pattern appears
on the depth image of the Kinect v1 with the increasing distance. The number of the
stripes increases with the distance as well. The precision of the Kinect v2 decreases
in the case of the different distances, but the accuracy remains the same with an
offset of -18 mm: the central pixels are the same, while the ones in the corners could
be incorrect. If the plane is flat, the precision is greater in the case of the Kinect
v1. In the case of the Kinect v2, the precision is less and flying pixels could appear
if the plane is not flat or if discontinuities exist. Since the Kinect v1 does not have
a ToF camera, flying pixels are not present in its case. The depth estimation of the
Kinect v2 can also be affected by the environment color as black colors have 10 mm
more depth value. Multipath interference also exist in the case of the Kinect v2.
This means that the concave geometry is represented with bulges.

The accuracy and the precision of both Kinect versions were studied by Gonzales-
Jorge et al. by measuring an artefact at multiple angles [174]. The measurements
were conducted at the angles of 45°, 90° and 135°, but the accuracy and the precision
were not affected by the angles. A similar conclusion was made when the Kinect
was compared to the Xtion sensors in an earlier study [161]. Multiple distances were
also used during the measurements: 1 m was the closest and 6 m was the farthest.
According to the conclusions of the measurements, the Kinect v1 can sense up to
the range of 6 m and the Kinect v2 can only sense up to 4 m. As can be seen, the
range of the Kinect v1 is larger than the range of the Kinect v2. However, the first
version is less accurate. In the case of both sensors, the precision worsens as the
range increases. Although, the differences in precision are always larger in the case
of the first version of the Kinect sensor: with the increasing range, the precision
of the Kinect v1 decreases with the second order polynomial. For the decreasing
precision, no mathematical model can be found for the Kinect v2, however, similar
results can be achieved with an equation. The precision values of both versions of
the Kinect sensor can be defined with the following two equations (2.1 and 2.2):

yKinect1 = 2.0399Z2 − 2.016Z + 2.0957 (2.1)

yKinect2 = 0.5417Z2 − 0.885Z + 2.7083 (2.2)

A study was conducted by Khoshelham and Elberink where it is mentioned that
when measuring the depth with the Kinect v1, the error can increase quadratically
to 4 cm at the range of 5 m, while the resolution of the depth decreases quadratically
[175]. According to their study, the Kinect v1 has a standard deviation of approxi-
mately 15 mm in its depth accuracy. It is concluded that the depth measurements
with the Kinect v1 should be done between 1-3 m.
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In case of the Kinect v2, the aim of Yang et al. was to improve its depth accuracy
[176]. According to the authors of the study, until the user is 3 m away from the
sensor, the average depth accuracy error is less than 2 mm. The average depth
accuracy error is between 2 mm and 4 mm if the user is between 3 m and 4 m away
from the sensor. If the user is at least 4 m away from the sensor, the average depth
accuracy error is more than 4 mm. However, this is only the case if the user stands
directly in front of the Kinect v2. The average depth accuracy error increases when
the user steps sideways. A study was conducted by Bragança et al. to assess how
precise the Kinect sensor is [177]. A 3D scanner system was made out of four Kinect
sensors by them. To assess how precise the sensor is, measuring tapes were used and
their manual measurements were compared to their 3D scanner system. According
to their comparison, the use of the Kinect sensors is a viable solution for lower levels
of precision. Also, their conclusion was that the software is as equally important as
the hardware for precision. Similar conclusions were made by Mankoff and Russo
[178]. It is mentioned in their study that the actual distance to an object is less
than the distance that is sensed by the Kinect.

The volume of eggs was calculated by Chan et al. using the Kinect v2 [179]. The
eggs were at least 70 cm away from the sensor. In the study, the Kinect v2 sensor
was placed in four different positions in multiple angles of 45° and it always faced
the eggs. According to them, the best distance to measure the volumes of eggs is
between 70-78 cm, but the best results are with 74 cm. Without shear parameters
the deviation of volume estimation is between ±1.74 ml and ±3.62 ml, while with
shear parameters the volume estimation is between ±0.05 ml and ±9.54 ml, but
these depend on the size of the egg. It was concluded that the worst accuracy of
the Kinect v2 was 84.7% and the best was 97.9% with an average of 93.3%.

The specifications of both Kinect sensors were studied by Kadambi et al. [180].
According to them, the depth of both Kinect sensors can depend on the environmen-
tal conditions, although these depth ranges were not tested by them in the study.
Their conclusion is that Kinect v1 should be used between 0.4 m - 3.0 m or 0.8 m -
4.0 m and the Kinect v2 should be used between 0.5 m - 4.5 m.

According to the reviewed studies regarding the depth camera of both Kinect
sensors, the precision and the accuracy of both decrease or change at different dis-
tances. Also, the depth seen by the Kinect sensors can be affected by multiple
environmental factors. Therefore, when measuring with the Kinect sensors, these
factors should be taken into account. During reviewing these studies, data has also
been collected regarding both Kinect versions. These technical specifications can be
seen in Table D1 in the appendix.

The skeleton stream

In the case of the Kinect v1, it was concluded by Livingston et al. that the skeleton
steam can be acquired between 0.85 m - 4 m [181]. This differs from the range
recommended by Microsoft which is 0.5 m - 4 m. According to the authors of
the study, this range is similar in the case of the depth sensor. Naturally, data is
not returned outside of these bounds. This information contradicts the bound of
6 m where the SDK was not used. However, not only the range of the sensor was
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measured, but the noise of the skeleton stream as well: at 1.2 m away from the
sensor, the noise was 1.3 m with a standard deviation of 0.75 mm and at 3.5 m away
from the sensor, the noise was 6.9 mm with a standard deviation of 5.6 mm. In the
case of the Kinect v1, the average noise varies from dimension to dimension: x =
4.11 mm, y = 6.2 mm and z = 8.1 mm. According to the study, the right wrist and
the right hand have the most noise. The accuracy of the skeleton stream was tested
as well and it averages at 5.6 mm with a standard deviation of 8.1 mm. In case of
the accuracy, no difference was found between the dimensions. Another fact is that
the noise can change depending on the number of people that use the Kinect v1: if
it is used by one person, the error in the accuracy is 1.4 mm, while it is 1.8 mm in
the case of two people. Even though officially the Kinect v1 is only able to track two
people, when it was tested with three people, the error became 2.4 mm. The mean
latency with one skeleton is 146 ms and with two skeletons is 234 ms, but according
to the authors of the study this largely depends on the hardware of the computer
and on other, simultaneously running applications.

According to Otte et al., the range of the skeleton stream of the Kinect v2 is
between 0.5 m - 4.5 m [182]. This range is slightly larger than the range of the
skeleton stream of the Kinect v1. While the data of Kinect v2 in the study was not
smoothed, their conclusion was that adequate results are yielded by the skeleton
stream of the Kinect v2. Also, the according to them, the sensor has a harder time
differentiating between the feet of the user and the ground.

Upper extremity movements were measured using the skeleton stream in the
study of Reither et al. [183]. Both Kinect versions were evaluated during this study.
The results were compared to a Video Motion Capture (VMC) system. A fourth
order Butterworth filter was used at 6 Hz to filter the data. The reliability of both
Kinect versions was good, although the range of motion (RoM) was underestimated
by the Kinect v1 in the case of the reaching type gestures and overestimated for the
angular gestures. In the case of the Kinect v2, it performed well for the reaching type
gestures, however, its performance for the side gestures was not as good. Similarly,
to the Kinect v1, the angular gestures were overestimated by the Kinect v2 as well.
While the ROMs that were measured were different than the VMCs, both Kinect
versions measured movements very well. According to the authors, by transforming
the skeleton data of the Kinect to be more similar to the data of the VMC, it could
be used in medical applications.

In a study of Huber et al., the Kinect v1 was compared to a magnetic tracking
system and a goniometer where joint angles were tested [184]. Frontal and side views
were assessed in the study. The mean difference from the goniometer was between
-4.1° and 17.8° during the gestures, and the mean difference from the 3D magnetic
tracker was between -24.2° and 20.6°. Their conclusion was that the Kinect can be
a reliable sensor when the shoulder joints are not occluded.

Three types of gestures are done by ten subjects in the study of Elgendi et al.:
slow, medium and fast [185]. These gestures had to be done with a shift of 45° to
the right, as the authors of the study wanted to make sure that the body does not
interfere with the hand movements. A first order Butterworth low-pass filter was
used with a cutoff frequency of 2 Hz. The goal was to reduce bodily or environmental
noise from the skeleton stream. Their conclusion was that even without the low-pass
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filter the hand is the most reliable for detecting speed. Its lowest error rate is 9.33%
without the low-pass filter and 8% with the low-pass filter.

The Extended Body-Angles Algorithm was developed with the goal to increase
gesture recognition with the skeleton stream [186]. This algorithm was used in
the study of Gutiérrez-López-Franca et al. in 2018 [187]. According to them, the
number errors is affected by the number of measured joints: while fewer errors are
produced by the global movements, more computational power is required by them.
The number of errors is larger in the case of the bounded movements, as the position
of the neighbouring joints can affect the ones next to them. However, the required
computational power is less than in the case of the global movements.

According to the reviewed studies, the skeleton stream of both Kinect sensors
can be used for gesture classification purposes. However, the noise inside the stream
has to be taken into account. Different amount of noise exists between axes, the
Kinect versions and the number of people in front of the sensor. While it is not an
inaccurate stream on its own, multiple methods were created to improve its accuracy
and to decrease its noise. However, due to it being easy to use, the skeleton stream
is popular with researchers.

2.3 Conclusions on the literature review
After the assessment of the state of the art of two parts of HCI, it can be concluded
that both are equally important regarding user interaction. This means that a well-
designed application or a well-implemented algorithm can enhance the interaction
between the human and the machine. In the following two subsections the findings
are concluded and detailed goals of this research are formulated based on them.

2.3.1 Concluding on the importance of spatial skills in virtual
environments

Spatial ability is a complex field as it consists of five different concepts and it is
a quite new research field in VR. The paper-based tests are still used by many
researchers, although some tests are created in VEs. However, according to the
little VR spatial ability literature available, the spatial skills of the users can be
enhanced with the help of VR and VEs.

According to the earlier, paper-based studies that are mentioned in the previous
subsections, the results on the spatial ability tests are in favor of men or right-
handed people. This means that on the paper-based tests, the performance of men
is significantly better than of women, while the performance of right-handed people is
better than of their left-handed counterparts. In case of the VR-based spatial ability
tests, these facts are not focused on – yet. Within these VR studies, pre-tests and
post-tests are done and the results are compared. According to their authors, there
are significant improvements between pre-tests and post-tests. When using a DD or
an HMD, these are the improvements that are noticeable in the literature.

Also, based on the previous studies, the design of VEs is also important when
assessing the spatial skills of the users. According to the studies, binocular disparity
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should be provided. This is confirmed by other studies in which HMDs are used. As
stereo image is used by HMDs, binocular disparity is provided to the user as well. A
carefully calibrated virtual camera, rich environments, blurry or faded images also
help the user. Also, motivation can have a positive effect.

Therefore, the VEs have to be carefully designed and used with an HMD to have
a positive influence. In this PhD research such positive influences are planned to be
found and for this goal, VR versions of the MRT, MCT and the PSVT tests were
developed and the spatial skills of 240 and 61 students were measured using a DD
and a Gear VR (GVR) HMD, respectively. Analyzing their results, three different
types of outputs are planned in the following categories:

1. Which attributes of the VE and which used display device influence the prob-
abilities of correct answers on the test types. With this output it can be seen
which attributes and used display device have influence on each other and how
they interact as well. The output is to propose new design choices for VEs to
enhance the spatial skills of the users [188].

2. Which skills of the users and used device influence the completion times of
the test types. With this output it can be seen which used display device and
human skill increase or decrease the completion time of each test [189].

3. Which used device correlates with which human skill on all three test types.
With this output, it can be concluded that which display device is more suited
for VR spatial ability tests. Also, which groups of students experienced the
most improvement in their spatial skills using each display device [190].

As can be seen, what is investigated in this PhD dissertation is different than the
reviewed studies in the literature. Mostly pre-tests and post-tests are contained in
these studies and other parts of spatial perception in VEs are focused on in them.
Therefore, the mentioned three categories are investigated in this PhD dissertation
by analyzing the results of students who either the used the DD or the GVR while
evaluating their spatial skills with the MRT, the MCT and the PSVT tests.

2.3.2 Concluding whether the Kinect can substitute more ex-
pensive sensors

When analyzing the studies, it became apparent that both versions of the Kinect
are popular. According to the number of studies available and the units sold, the
conclusion is that the later Kinect v2 is not as popular as the Kinect v1. Even
in late-2018, the Kinect v1 used by most researchers in their studies. It is not
mentioned in the studies why the Kinect v1 is more popular than its later version.
After assessing the two versions, the conclusion is that the pros of the first version
of the Kinect outweigh the pros of the second version: its depth precision is higher,
it has a weak correlation to the temperature and the depth estimation of the sensor
is not affected by the environment color. In contrast, when using the second version
of the Kinect, more attention must be paid to the test environment.

It can be concluded that the Kinects are two of the most accurate low-cost
whole human body motion sensors that are available. Due to this, the two versions
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of the Kinect sensors are suitable in multiple fields of research such as rehabilitation,
gesture recognition, education, entertainment, et cetera. Therefore, more expensive
sensors in the industry or on the market can be replaced by the two Kinect sensors.
Although, they are accurate sensors on the own, their accuracy can be improved
by multiple software methods. Thus, the answer to the first goal of the author was
found.

Even though the two versions of the Kinect can substitute more expensive sen-
sors, two problems exist with them regarding gesture recognition: the first is that
when the user stands at a different distance from the sensor than before, the (x, y, z)
coordinates that are sensed by the sensor are also different. Therefore, when repeat-
ing the same gestures at another position, it may be recognized as another gesture.
Another problem is the speed of the gesture: when the same gestures are done with
a different speed, they may not be recognized as well.

Therefore, to solve this problem, the Asynchronous Prediction-Based Movement
Recognition (APBMR) algorithm was developed [191] and was evaluated with four
groups of people. The same four gestures had to be done by each of these groups
at least ten times. Six different mean techniques (MTs) are used by the APBMR
to decide whether the gestures could be accepted. Even though the APBMR is
developed for the Kinects; in principle, it can be used with any sensor that returns
movement descriptor data in real-time and evaluates gestures by using coordinates.
The output of this research is to find the MT that gives the optimal gesture accep-
tance rate and to present an easy-to-use algorithm that can be used in the homes
of the patient.

2.4 Summary of the state of the art
According to state of the art, a large number of spatial ability test types mostly
exists on paper at the time of writing this PhD dissertation. However, VR-based
versions of some test types are already created by a few researchers. Pre-tests and
post-tests are included in their studies, while mostly using a DD. HMDs are only
used in a few studies. According to the results, the use of VR can increase the
spatial skills of the users and for this, the design of the VE is important as well.
Thus, in this PhD dissertation, research is conducted in three different categories
regarding spatial skills as mentioned in subsection 2.3.1.

Regarding both versions of the Kinect sensors, they are still used to this day. By
assessing their accuracy, precision and by comparing them to other, more expensive
sensors, the conclusion is that both can be used in telerehabilitation. Based on
previous algorithms, a new algorithm was developed to help the users during physical
rehabilitation and to retain motivation. Therefore, in this PhD dissertation, research
is conducted in this regard as mentioned in subsection 2.3.2.

After conducting a literature review regarding the spatial skills of the users in
VEs and the suitability of the Kinect, the following conclusion is made: both the
spatial skills of the users in VEs and gesture classification are equally important in
HCI. Therefore, by analyzing the design of a VR application, forming a recommen-
dation and developing a user-centered algorithm, HCI can be enhanced.
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Chapter 3

Materials and methods

In this chapter the materials and methods are presented regarding the spatial skills
of the users in VEs and the APBMR to enhance HCI. The RQs and the Hs are
shown in section 3.1 where four groups of RQs and Hs are presented. These are
based on the planned outputs that are shown in section 2.3. The spatial skills of the
users are in the focus of the first three groups, while the evaluation of the APBMR
is in the focus of the fourth one. The methodology used is shown in section 3.2.

3.1 Research questions and hypotheses
During the research, four groups of RQs and Hs were formed. The first group (1RQ
and 1H) is about finding the optimal user-centric VE design. The second group
(2RQ and 2H) is about investigating the effects of the display device and the human
skills on the completion time, while the correlation between the device used and the
human skills is investigated in the third group (3RQ and 3H). In the last, fourth
group (4RQ and 4H) the APBMR algorithm is assessed. These RQ and H groups
are presented in subsections 3.1.1, 3.1.2, 3.1.3 and 3.1.4, respectively.

3.1.1 Finding the optimal user-centric virtual environment
design

As it was mentioned in the previous sections, the first goal of the investigation
was to examine if HCI could be positively or negatively affected by certain display
parameters and display devices. To achieve this, the MRT, MCT and PSVT spatial
ability test types were used as a starting point. In 1RQ and 1H, seven RQs and Hs
were set up during the investigation, respectively. The RQs are as follows:

• 1RQ1: Is the probability of correct answers on the tests influenced by the
different camera types?

• 1RQ2: Is the probability of correct answers on the tests influenced by the
different camera FoVs?

• 1RQ3: Is the probability of correct answers on the tests influenced by the
different camera rotations?
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• 1RQ4: Is the probability of correct answers on the tests influenced by the
different contrast ratios?

• 1RQ5: Is the probability of correct answers on the tests influenced by the
presence of the shadows?

• 1RQ6: Is the probability of correct answers on the tests influenced by the
device used?

• 1RQ7: What are the optimal preferences for these factors for achieving the
largest probability of correct answers on the tests?

After the RQs were set up, the Hs were formulated based on them. Since the
statistical H testing test the equality, and the alternative H is the nonequality, the
following Hs are formulated:

• 1H1: The probability of correct answers is not affected by the camera type;
opposite to: the probability of correct answers on the tests is positively influ-
enced by the perspective camera type.

• 1H2: The probability of correct answers is not affected by the different FoVs;
opposite to: the probability of correct answers on the tests is positively influ-
enced by changing the camera FoV to a higher degree.

• 1H3: The probability of correct answers is not affected by the camera rotation;
opposite to: the probability of correct answers on the tests is increased by
changing the camera rotation.

• 1H4: The probability of correct answers is not affected by the contrast ra-
tio; opposite to: the probability of correct answers on the tests is positively
influenced by changing the contrast ratio from a higher ratio to a lower one.

• 1H5: The probability of correct answers on the tests is not affected by the
presence of shadows; opposite to: the probability of correct answers on the
tests is affected by the presence of shadows.

• 1H6: Using a DD or the GVR, the probabilities of correct answers are equal;
opposite to: using the GVR the probability of correct answers is larger.

• 1H7: Based on the previous hypotheses, the optimal preferences are the per-
spective camera type, higher field of view, some rotation, lower contrast ratio
while also using the GVR.

3.1.2 Investigating the effects of the display device and the
human skills on the completion time

The second goal was to determine which skills of the users and the device used affect
the completion times of the test types. For this goal, seven RQs were set up in 2RQ.
These RQs are the following:
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• 2RQ1: Are the completion times and the probabilities of correct answers in-
dependent of each other?

• 2RQ2: Are the completion times significantly affected by the gender of the
user?

• 2RQ3: Are the completion times significantly affected by the primary hand of
the user?

• 2RQ4: Are the completion times significantly affected by the type of the test?

• 2RQ5: Are the completion times significantly affected by the device used?

• 2RQ6: Which combination of the mentioned factors results in the largest test
completion time?

• 2RQ7: Which combination of the mentioned factors results in the smallest test
completion time?

Afterwards, the same number of Hs was formulated in 2H. The null-Hs and the
alternatives are contained in these seven set-up Hs. These Hs are the following:

• 2H1: The completion times and the probabilities of the correct answers are
independent of each other; opposite to: the completion times and the proba-
bilities of the correct answers are dependent.

• 2H2: The test completion times are not affected significantly by the gender of
the user; opposite to: the test completion times are significantly affected by
the gender of the user.

• 2H3: The test completion times are not affected significantly by the primary
hand of the user; opposite to: the test completion times are significantly af-
fected by the primary hand of the user.

• 2H4: The test completion times are not affected significantly by the type of
the test; opposite to: the test completion times are significantly affected by
the type of the test.

• 2H5: The test completion times are not affected significantly by the device
used; opposite to: the test completion times are significantly affected by the
device used.

• 2H6: Based on the previous hypotheses, the same average completion time
is required by all users and all test types; opposite to: significantly larger
completion times are yielded by the male users, who are right-handed and do
the MRT test type with the GVR.

• 2H7: Also based on the previous hypotheses; the same average completion
time is required by all users and all test types; opposite to: significantly smaller
completion times by the female users, who are left-handed and do the PSVT
test type with the DD.
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3.1.3 Looking for the correlation between the device used and
the human skills

The third goal was to see whether correlation could be found between the device
used and the human skills on all three test types. Therefore, 11 RQs and the same
number of Hs were formulated in the 3RQ and 3H groups, respectively. The first
five are about the tests on the DD, the next five are about the tests on the GVR
HMD, and the last one is about comparing the display devices. The RQs regarding
this goal are the following:

• 3RQ1: Which test mode is the easiest and the hardest when using a DD?

• 3RQ2: Is there any difference between the male and female performances using
a DD?

• 3RQ3: Are the results on the tests influenced by the primary hand of the user
when using a DD?

• 3RQ4: Are the results on the tests affected by the age of the user when using
a DD?

• 3RQ5: Are the results on the tests affected by the major of the user when
using a DD?

• 3RQ6: Which test mode is the easiest and the hardest with the GVR?

• 3RQ7: Is there any difference between the male and female performances on
the tests with the GVR?

• 3RQ8: Are the results on the tests influenced by the primary hand of the user
when using the GVR?

• 3RQ9: Are the results on the tests affected by the age of the user when using
the GVR?

• 3RQ10: Are the results on the tests affected by the major of the user when
using the GVR?

• 3RQ11: With which device are better results achieved on the tests?

After the RQs were set up, the same number of Hs was formulated. Similarly, to
before, the null-Hs and the alternatives are contained in these Hs. The Hs are the
following:

• 3H1: In the case of DD, the average rates of correct answers are the same in
case of all types of tests; opposite to: they depend on the test type. In case of
different values of average rates, are they the same with both display devices?
Do the statistical evaluations reflect the subjective opinions of students: "The
MCT mode is the hardest and the PSVT mode is the easiest when using a
DD".
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• 3H2: The performances of males and females are equal; opposite to: the
performance of males is better on the tests when using a DD.

• 3H3: The performances of left-handed and right-handed people are equal;
opposite to: the performance of left-handed people is better on the tests when
using a DD.

• 3H4: The performance of older people is equal to younger people; opposite to:
the performance of older people is better on the tests when using a DD.

• 3H5: The performances of the students with different major are equal; opposite
to: they differ when using a DD.

• 3H6: The average rates of correct answers are the same in case of all types of
test; opposite to: they depend on the test type when using the GVR. Do the
statistical evaluations reflect the subjective opinions of students: "The MCT
mode is the hardest and the PSVT mode is the easiest when using the GVR".

• 3H7: The performances of males and females are equal; opposite to: the
performance of males is better on the tests when using the GVR.

• 3H8: The performances of left-handed and right-handed people are equal;
opposite to: the performance of left-handed people is better on the tests with
the GVR.

• 3H9: The performances of older people are equal to younger people; opposite
to: the performance of older people is better on the tests with the GVR.

• 3H10: The performances of the students with different major are equal; oppo-
site to: they differ when using the GVR.

• 3H11: The average rates of correct answers are equal if the DD and GVR are
used; opposite to: better results are achieved by the users who use the GVR.

3.1.4 Assessing the APBMR algorithm

Afterward, the APBMR algorithm is evaluated using different perspectives. There-
fore, eight RQs and eight Hs were formed in the fourth RQ and H group (4RQ and
4H). First, the RQs are defined:

• 4RQ1: Are the best average acceptance rates given by the same MTs in case
of each gesture?

• 4RQ2: Are the worst average acceptance rates given by the same MTs in case
of each gesture?

• 4RQ3: Is there a MT that gives an optimal average acceptance rate for gesture
recognition using predictive motion analysis?

• 4RQ4: Is there a MT that should not be used for gesture recognition using
predictive motion analysis?

26



• 4RQ5: Is there a difference between the average acceptance rates of different
gestures?

• 4RQ6: Is there a difference between the average acceptance rates on different
axes?

• 4RQ7: Is the file-based gesture prediction faster than real-time gesture pre-
diction when using the APBMR algorithm?

• 4RQ8: Is a better average acceptance rate provided by the APBMR algorithm
than the previous algorithm that it was based on?

The next to define are the Hs, which are the following:

• 4H1: The best average acceptance rate is given by the same MT in case of
each gesture; opposite to: the best average acceptance rate is given by different
MTs in case of each gesture.

• 4H2: The worst average acceptance rate is given by the same MT in case
of each gesture; opposite to: the worst average acceptance rate is given by
different MTs in case of each gesture.

• 4H3: There is a MT that gives an optimal average acceptance rate for gesture
recognition using predictive motion analysis; opposite to: there is no MT
that gives an optimal average acceptance rate for gesture recognition using
predictive motion analysis.

• 4H4: The Geometric and the Cubic MTs should not be used for gesture recog-
nition using predictive motion analysis; opposite to: the Geometric and the
Cubic MTs should be used for gesture recognition using predictive motion
analysis.

• 4H5: There are differences between the average acceptance rates of different
gestures; opposite to: there are no difference between the average acceptance
rates of different gestures.

• 4H6: There are differences between the average acceptance rates on different
axes; opposite to: there is no difference between the average acceptance rates
on different axes.

• 4H7: The file-based gesture prediction is faster than real-time gesture predic-
tion; opposite to: real-time gesture prediction is faster than file-based gesture
prediction.

• 4H8: A better average acceptance rate is provided by the APBMR algorithm
than the previous algorithm that it was based on; opposite to: a better average
acceptance rate is not provided by the APBMR algorithm than the previous
algorithm that it was based on.

27



3.2 Methodology
After the RQs and the Hs were formulated, the methodology was created to provide
answers to the Hs. The methodology is presented in the following subsections.
Regarding the spatial skills of the users in VEs, the methodology is presented in
detail in subsection 3.2.1, while regarding the APBMR algorithm it is presented in
subsection 3.2.2.

3.2.1 Presenting the methodology for the spatial ability tests
and measurements

The methodology regarding the spatial skills of the users in VEs consists of multiple
parts and these are detailed in the following subsubsections. First, an application
was developed for two platforms in which the MRT, MCT and PSVT test types
are contained. Then, the colors had to be converted to the RGB color space as the
sRGB color space is used by the Unity engine. After the conversion, the data could
be collected and analyzed.

Summary of the developed application

Before the research commenced, the application for the measurements was designed
and was developed in the first half of 2019 [192]. The application was programmed
using the Unity game engine [193] with version 2018.3.14f and Visual Studio was
used alongside Unity to write the codes in the C# programming language. As it is
suggested by the "game engine" phrase, Unity is mainly used for game development.
However, it is quite popular in the scientific community [194, 195, 196, 197, 198].

The spatial skills of the users are measured by the application as the aforemen-
tioned three types of spatial ability tests are in the focus of this research. Therefore,
the three test types have been implemented inside the application, each type having
ten different rounds of problems. The spatial ability problems and solutions that
were implemented were based on existing paper-based ones. The following three
examples of the tests are presented in the following figures: the MRT, the MCT
and the PSVT test types are shown in Figures 3.1, 3.2 and 3.3, respectively. Their
paper-based versions are taken from [199, 45, 51].

Figure 3.1: The paper-based MRT test (left) and its VR version with an orthographic
camera, 7:1 contrast ratio, shadows turned on and no extra rotation (right).
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Figure 3.2: The paper-based MCT test (left) and its VR version with a perspective
camera, a 60° FoV, 3:1 contrast ratio, shadows turned on and no extra rotation
(right).

Figure 3.3: The paper-based PSVT test (left) and its VR version with a perspective
camera, a 45° FoV, 1.5:1 contrast ratio, without shadows and extra rotation (right).

As can be seen in the previous figures (3.1 and 3.2), the tests have different
display parameters: the virtual camera type, its FoV, its rotation and the contrast
ratio can be changed, although the rotation was not changed in the figures. The
existence of shadows can also be turned off or turned on. By turning off the shadows,
the users get the white colored objects that are present in Figure 3.3. It should be
noted that these white objects, a white background and an orthographic camera is
the "standard" that is used in the case of the paper-based tests.

These display parameters could be changed by the users if they wanted to cus-
tomize their tests. However, predefined options also exist in the application and
during the testing, these predefined options were the ones that were used. The
display parameters that can be selected in the main menu of the application are
presented in Table 3.1. Naturally, these were also the display parameters that were
measured by the application.

Since the goal was to investigate and compare the results on a DD and the GVR
HMD, two versions of the application were developed. One is a desktop version
which can be used with a Windows 7 or newer operating system and the other one
is a GVR version which uses Android. Multiple versions of the GVR exist, but the
SM-R322 version was used for the tests [200]. For Android, version 7.0 is required at
least. Also, a smartphone had to be placed inside the GVR, and a Samsung Galaxy
S6 Edge+ [201] was used for this purpose.
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Table 3.1: The display parameters that can be selected.

Virtual camera type Perspective, Orthographic
Virtual camera FoV 45°, 60°, 75°, 90°

Rotation of objects to the camera -45°, -30°, -15°, 0°, 15°, 30°, 45°
Object to background contrast ratio 1.5:1, 3:1, 7:1, 14:1, 21:1

Shadows in the scene Turned off, Turned on

Gathering the color data in Unity - Conversion to RGB color space

It is possible to obtain the color data of objects in Unity, but as mentioned, the
sRGB color space is used by it. It is not a problem by default, but it has to be
converted to the RGB color space to calculate the relative luminance values of the
object and the background. The contrast ratio can be calculated with the relative
luminance values. Before starting the conversion, the sRGB and RGB color spaces
should be defined. These definitions can be seen in equations (3.1 and 3.2):

RsRGB ∈ [0; 1], GsRGB ∈ [0; 1],BsRGB ∈ [0; 1] (3.1)

RRGB ∈ [0; 1], GRGB ∈ [0; 1],BRGB ∈ [0; 1] (3.2)

The reader may notice that all color values are between 0 and 1, but usually they
are between 0 and 255 as the hexadecimal notation is used. This is because float
variable types are used by Unity to store the color values. These float variables can
be converted to the standard hexadecimal notation, however this results in extra
computational steps because the same results are yielded by using the hexadecimal
notation as in the case of the float variables.

First, the albedo color of an object in Unity was determined using the GameOb-
ject[i].GetComponent<Renderer>().material.GetColor("_Color") function, where i
is the current round of the measurements. The albedo is a diffuse color without any
lighting baked into it: in the case of the objects it is white. By looking at Figures
3.1 and 3.2 it can be observed that the color values are not exactly white. This is
because there is ambient lighting in a scene in Unity and lighting is not baked into
the objects in the case of the albedo color. Therefore, the returned albedo color val-
ues had to be corrected by using the following transformation as shown in equation
(3.3):

wcorr = wobj × wal × Intensityal (3.3)

, where wobj is the albedo color of the object, wcorr is its corrected value. The
color value of the ambient light is marked with wal and its intensity is Intensityal.
These two values can be returned easily with the RenderSettings.ambientLight and
RenderSettings.ambientIntensity built-in functions.

After the color correction, the only step remaining was the conversion to the
RGB color space. For this conversion, a new variable called q was defined. The
R, G, B values are contained in this variable. This variable is similar to w as it
contained the sR, sG and sB values. To convert from sRGB color space to the RGB
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color space, the following equation (3.4) that is defined in the IEC 61966-2-1:1999
standard [202] was used:

q =


wcorr
12.92

wcorr ≤ 0.0405(
wcorr + 0.055

1.055

)2.4

otherwise
(3.4)

After this conversion, the correct data of color values could be gathered. With this,
the relative luminance values and the contrast ratio can be calculated. By using
this conversion not only the color spaces are changed, but the color values are not
gamma-compressed anymore as they are converted to gamma-expanded (or linear)
color values. It should be noted that equation (3.4) was used because an older
version of this equation exists as well [203], but it contains small rounding errors.
This means that 0.03928 was used previously instead of the 0.0405 constant.

Calculating the correct values of the contrast ratio in Unity

Since the q has been calculated, it is possible to receive the contrast ratio between
the foreground object and the background, However, the relative luminance values
have to be calculated as it is essential to get the contrast ratio. This is possible by
using a formula in which the luminosity function is reflected. This formula is defined
in [203] and shown in the following equation (3.5):

L = 0.2126R + 0.7152G+ 0.07272B (3.5)

Afterward, the contrast ratio can be measured with the help of the relative luminance
values as shown in [204] and in equation (3.6):

contrast =
Lforeground +0.05

Lbackground +0.05
(3.6)

Using these formulas, the contrast ratio can be extracted correctly from the appli-
cation, and thus, be measured.

Data collection

The testing and the data collection were conducted at two different universities.
The first part of the testing was at the University of Pannonia in early-September
2019. In these tests, the GVR was used and the spatial ability of 61 students was
measured. These testers were mainly consisted of IT students, but the spatial skills
of other, non-IT students were measured as well. Non-IT students include chemical
engineer, business and arts students; some were in their bachelor studies and some
were in their master years. This means that the students who came to the tests were
23.5 years old on average with a dispersion of 3.1 years. The time of the tests was
three weeks long as only one GVR was available at the University. This means that
the testers had to come in a sequential order, one-by-one. Each tester required at
least thirty minutes and an hour at most to complete the tests. Therefore, the skills
of eight students were measured at most per day and the smallest number of testers
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per day was two. As they were students, their appointments were made according
to their classes so they could come to the tests before or after their classes.

The second part of the tests was conducted at the University of Debrecen in
late-September 2019. These tests were different than the ones at the University
of Pannonia. First of all, they were greater in numbers as the spatial skills of
240 students were measured. Also, instead of the GVR, an LG 20M37A (19.5")
DD device [205] was used by the students who either were architectural and social
engineering students or mechanical engineering students. The skills of these students
were measured mostly in their first years, thus, these students were 19.7 years old
on average with a dispersion of 1.5 years. For the tests, a computer laboratory was
used. Due to it being small, twelve groups of twenty students were made. Testing
was done during the course of three weekdays and thus, were done within a week.

Regarding the students at the two universities, every person who was willing to
do the tests could join. This means that there was no selection criteria applied. Also,
since the spatial skills of the students were measured, no information was gathered
of their height and body weight. To respect their anonymity, their names were not
gathered.

During the measurements each test type had to be done three times: at the first
sequence of testing, the MRT test type was the first to be done by the students,
then the MCT test type was the second to be done and lastly the PSVT test type
was done. As each test type consisted of ten rounds, this first test consisted of thirty
questions in total. Then, the users could rest – if they wanted to – and after that
they started the second sequence of testing. The second sequence consisted of the
same test types, but the solutions to the spatial ability problems and the display
parameters were changed using the randomization technique. This sequence also
had thirty questions in total. After completing this second sequence, the students
could rest again if they wanted to and afterward, the third – and final – sequence
could be started. Similarly, to the second one, the solutions to the problems and
the display parameters were changed by the randomization technique.

However, there was a reason to why the students had to do the tests in three
different sequences. There were many parameters to test and testing three times
were not enough to measure the spatial skills of the students when using these
parameters. A huge amount of data was needed to investigate the influences and
interactions of the display parameters and the devices. Therefore, the mentioned
randomization technique was used. Using this technique, sufficient amount of data
was gathered.

Technical information of the display parameters, the user-related information
and information about the tests can be found in this data. These are saved into a
.csv file by the application after a test type was completed. These are the following:

• Information about the display parameters, which are the virtual camera type,
its FoV, its rotation and the contrast ratio in the scene. Also, it is logged
whether the shadows are turned off.

• Information about the users which consists of their gender, age, and primary
hand. The number of years spent at a university and their studies are gathered
as well.
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• Information about the type of the test, its completion time. The number of
correct and incorrect answers of the user is also logged.

Due to this, a considerable amount of data is generated and saved either into the file
of the DD or the GVR. To better visualize the data, its structure is shown in Table
3.2. In the mentioned table, the data of a user can be seen after completing a test
type. As shown in Table 3.2, the data of one test is very descriptive and respects
anonymity. However, the data does not contain the device used, instead it is stored
in the name of the file: when using the GVR for the tests, the measurements are
saved into a file called data_gearvr.csv and in case of the DD, it is saved into a file
called data_desktop.csv. Thus, all information that is required for the three types
of investigation can be seen in the data:

• The influence of the display parameters and display devices on the probabilities
of correct answers to find the optimal user-centric preference.

• The effect of parameters and display devices on the test completion times.

• How the rates of correct answers are affected by the human factors and the
display devices?

Table 3.2: Data structure of a user after completing a test type.

ID 3
Age 18

Gender M
Hand Right-handed

Majoring in Architectural Engineering
University years 1st year
Camera type Perspective

Camera field of view 45°
Camera rotation 30°
Contrast ratio 7:1

Shadows on or off 1
Test type MRT
Test time 5:47.98

Correct answers - Round 1 2
Correct answers - Round 2 2
Correct answers - Round 3 2
Correct answers - Round 4 2
Correct answers - Round 5 0
Correct answers - Round 6 2
Correct answers - Round 7 1
Correct answers - Round 8 2
Correct answers - Round 9 2
Correct answers - Round 10 2

Total correct answers 17
Total incorrect answers 3
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Data analysis of the spatial ability test results

After gathering sufficient amount of data, it was analyzed. Depending on the goal
of the research, different analysis methods were used. When analyzing the influence
of display parameters and display devices to find the optimal user-centric prefer-
ence, logistic regression analysis was used [206]. When investigating the effects of
parameters on the completion times, logistic regression and linear regression meth-
ods were used [207]. In the case of the correlation between the device used and the
human skills, F-tests, t-tests or Welch-test was used [208]. These are presented in
the following subsubsections.

Analyzing the influence of display parameters and display devices to find
the optimal user-centric preference

The results of the measurements were grouped into groups of ten. In these groups
of ten, nine results were of the same person. The number of display parameters and
display devices were in another group, but their numbers are fixed. Due to this, the
number of relative frequencies in the investigation was 240× 9 + 61× 9 = 2709. In
the knowledge of the values of the parameters, the probability of correct answers on
the spatial ability tests can be estimated as the aim of this research was to clarify
the influence of the display parameters and the display devices on the mentioned
probabilities. To calculate the probabilities and verify the influence of the display
parameters and the display devices, the logistic regression analysis was used.

Logistic regression analysis is a well-developed statistical method for detecting
the effects of in themselves, additively or by taking their interactions into account.
The probabilities are transformed into the interval by a monotone increase and
invertible transformation (− 8, 8), and linear regression models are fitted to the
transformed values. The estimated coefficients of the variables are checked as to
whether they can be interpreted as zero (no effect), or whether they vary significantly
from zero (an effect exists). The direction of the effect can be revealed by the sign
of the estimated value, for example it can tell whether there is an improvement or
waste in the probabilities. The influences of the variables were analyzed one-by-one,
in pairs, in triplets and also in a quartet. The numerical calculations were performed
by statistical software called R [209].

The effects of parameters on the completion times

The goal was to identify the effects of certain factors on the test completion times.
These factors are the gender of the user, the primary hand of the user, the test type
and the used device. The connection between the probability of correct answers
and the completion times of the test was also looked into. The logistic regression
analysis method was used to determine the connection between the probabilities and
the completion times. To examine the influence of the variables on the completion
times, linear regression analysis methods were used. To help with the calculations
for this goal, the statistical program package R was used in this investigation.
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The correlation between the device used and the human skills

The ratios of the correct answers of the students were studied. The Hs of stan-
dard (Gauss) distribution was tested by Kolmogorov-Smirnov tests. Afterward, the
equality of standard deviations (dispersions) and the expectations was checked. In
the cases of the dispersions, F-tests and t-tests or Welch-test were applied to check
the equality of expectations. Similarly, to the previous calculations, the statistical
program package R was used in this investigation as well.

3.2.2 Presenting the APBMR algorithm and the methodol-
ogy used during its evaluation

In this subsection the methodology regarding the evaluation of the APBMR algo-
rithm is presented. In the first subsubsection the algorithm is presented in more
detail than it was presented in [191] and its pros and cons are assessed as well.
After defining the APBMR algorithm in the first subsubsection, the data collection
and analysis are presented in the subsubsection afterwards.

How the algorithm works

Before the steps of the algorithm are defined, two things should be noted. The first is
that only one axis is evaluated by the algorithm at a given time. After the evaluation
of one axis is done, it is started on another. When all three are evaluated, then it
is concluded whether the gesture is accepted. The second is that repeating gestures
are looked for by the algorithm in the movement descriptors. The algorithm is built
this way because repeating gestures are used in physical rehabilitation. Thus, from
the starting coordinate the farthest and the closest coordinates are searched for on
the axis that is currently evaluated. This is illustrated in Figure 3.4.

Figure 3.4: Calculating the number and the length of the gestures using the APBMR.
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For example, the starting coordinate of the first gesture is denoted by the leftmost
X in the figure. It is decided by the algorithm whether the starting coordinate is
at the top or at the bottom of a "slope". Afterward, the farthest coordinate from
the starting coordinate is searched for (shown with the second X): in Figure 3.4 the
starting coordinate is at 0.5220696 and the farthest is at 0.1476125. In this example,
the starting coordinate is at a top of a "slope", therefore the farthest coordinate is
searched for at the bottom. The gesture is about halfway done when this coordinate
is reached. Then, the coordinate which is the closest to the starting coordinate is
investigated. This is shown with the third X in the figure. In this example, the
coordinate is at 0.5437541. This coordinate is not the closest numerically, as finding
this coordinate has a few criteria: when the starting coordinate is at the top of a
"slope", then the closest coordinate also has to be at the top of another "slope".
Naturally, when the starting coordinate is at the bottom of a "slope", then the closest
coordinate has to be at the bottom of another "slope" as well. Another criterion is
that the closest coordinate must be located after the previous farthest coordinate.
When the closest coordinate is reached, then it can be concluded that the end of
the first gesture is also reached. Then, this closest coordinate is renamed to the new
starting coordinate of the next gesture. Afterward, these steps are repeated.

The steps of the algorithm are the following:

1. First, the number of gestures is calculated by searching for the closest and
farthest coordinates from the starting coordinate. These points are referred
to as clofarpoint.

2. Then, the average length of the found gestures is calculated.

3. Afterward, based on the last three gestures, the possible next movement of the
user is predicted on the x axis and its acceptance domains (ADs) are calculated
using MTs. This step consists of multiple substeps:

(a) While i < clofarpointnumber−6, the length of the previous three move-
ments (x1, x2, x3) are calculated using equations (3.7, 3.8 and 3.9):

x1 = clofarpointi+2 − clofarpointi (3.7)

x2 = clofarpointi+4 − clofarpointi+2 (3.8)

x3 = clofarpointi+6 − clofarpointi+4 (3.9)

, where clofarpointnumber equals to the number of all clofarpoint in
the movement descriptors. In each cycle, variable i is incremented by 2.

(b) An average length is calculated from the length of the previous three
gestures (x1, x2, x3) by using one of the following operations (mtk), which
can be seen in equation (3.10). These operations are based on various
MTs and can be selected by the user (k ∈ [1, 6]). mt1 is based on the
arithmetic mean, mt2 is based on the geometric mean, mt3 is based on the
special case of harmonic mean in case of three numbers, mt4 is based on
the contraharmonic mean, mt5 is based on the quadratic mean and mt6
is based on the cubic mean. The use of the special case of harmonic mean
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was essential, because the use of the regular harmonic mean resulted in
“Not a Number” (NaN) during prediction.

mt1 =
1

3

3∑
l=1

xl, mt2 =
3

√√√√ 3∏
l=1

xl,

mt3 =
3x1x2x3

x1x2 + x1x3 + x2x3

, mt4 =
x2
1 + x2

2 + x2
3

x1 + x2 + x3

,

mt5 =

√√√√1

3

3∑
l=1

x2
l , mt6 =

3

√√√√1

3

3∑
l=1

x3
l

(3.10)

(c) Afterward, a new coordinate named predictedcj is generated at every
frame j, while j < mtk and clofarpointi+4 + j + 1 < xi. For this, one of
the mentioned operations that are based on the MTs and the following
rules are used as shown in equations (3.11 and 3.12):

y1 =


cclofarpointi+j,

xi − j

mtk
≥ mtk − j

mtk
cclofarpointi+j + cclofarpointi+j+1

2
, otherwise

y2 =


cclofarpointi+2+j,

xi − j

mtk
≥ mtk − j

mtk
cclofarpointi+2+j + cclofarpointi+2+j+1

2
, otherwise

y3 =


cclofarpointi+4+j,

xi − j

mtk
≥ mtk − j

mtk
cclofarpointi+4+j + cclofarpointi+4+j+1

2
, otherwise

(3.11)

predictedcj =



1

3

3∑
l=1

yl, k = 1

3

√√√√ 3∏
l=1

yl, k = 2

3y1y2y3
y1y2 + y1y3 + y2y3

, k = 3

y21 + y22 + y23
y1 + y2 + y3

, k = 4√√√√1

3
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3

√√√√1

3

3∑
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y3l , k = 6

(3.12)
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, where the coordinates of the previous gestures are contained by c.
(d) Then, for each predictedcj coordinate, three ADs are created. A very

strict AD (predictedcj±0.05 m), a medium strict AD (predictedcj±0.10
m) and a least strict AD (predictedcj ± 0.15 m) are created.

(e) With the previous step, the evaluation on one axis is completed. After-
ward, the evaluation is started on one of the remaining axes (y or z). The
previous steps are repeated until all axes are evaluated.

(f) Afterward, the percentage of the coordinates is calculated inside all three
ADs on all axes. It is also evaluated whether the gesture is accepted.

(g) Lastly, the APBMR waits until another gesture is done by the user. Then,
the earliest gesture descriptor is pulled from the stack and the prediction
is started over again with the remaining descriptors in the stack.

(h) The algorithm runs until it is turned off.

The sequence diagram of the APBMR algorithm is presented in Figure 3.5. In the
figure, the interaction between the user and the algorithm can be seen.

Figure 3.5: Sequence diagram of the APBMR algorithm.
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According to substep 3/e, not only the next gesture is predicted, but its multiple
ADs as well. In Figure 3.6 it is shown how the algorithm looks like with its ADs
on the x axis using the arithmetic MT. In the figure, the ADs are represented by
six thin blue lines, while the original gesture is shown with a black line and the
predicted one with an orange line.

This algorithm has three strengths: the first is that to calculate the next move-
ment and to create its ADs, six various MTs are used. The results of the predictions
with each MT are presented in Figure 3.7, where the original movement descriptors
are shown with a black line, while the predicted ones are shown with different colors.
The ADs are not shown in Figure 3.7.

Figure 3.6: Comparing the user-input gesture to the predicted one, while also show-
ing its ADs on the x axis.

Figure 3.7: The results of the different MTs of the APBMR algorithm on the x axis.

According to Figure 3.7, the use of the geometric and the cubic MTs can present
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errors: they do not have gesture descriptors between frames 15 - 34, 63 - 85, 113 -
132. More errors are produced by the geometric MT, as gesture descriptors do not
exist between frames 133 - 135 as well. These missing coordinates mean that the
original movement descriptors are in the negative area.

The remaining two strengths of the algorithm are presented in Figures 3.8 and
3.9 showing only the strictest AD. The former of the strengths is that the same
gestures can be accepted when done in a different position. This is a problem with
the use of the Kinect, as only those gestures are accepted that are done in the
same position as the previous gestures due to its built-in 3D coordinate system. In
contrast, the position is followed by the APBMR algorithm. Therefore, the position
of the possible following gesture can be predicted.

Figure 3.8: How the APBMR reacts to the changing position.

Figure 3.9: How the APBMR reacts to the changing speed.

The latter of the two strengths is that this algorithm is asynchronous. This
means that when the movements have fewer frames due to various speeds, they are
accepted as well. This is shown in Figure 3.9, where the first three gestures are done
with "normal" speed, while the following six are done faster and the last few are
slower. Only the strictest AD is shown in the figure.
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Data collection

In the second half of 2019, data was collected at the University of Pannonia. The
measurements were done with four groups of people: real-time data was collected
with two groups and the data of the other two was logged into a file. The results
of the measurements are presented in Table 3.3. The algorithm was used with
two various computers. These will be referred to as general computer (GC) or
advanced computer (AC). Their main specifications are the following, however, only
their central processing unit (CPU), random access memory (RAM) and graphics
processing unit (GPU) are listed:

• GC: CPU: Intel Core i7-720QM 1.60 GHz, RAM: 6 GB DDR3 1333 MHz,
GPU: ATI Mobility Radeon HD 5850 1 GB

• AC: CPU: Intel Core i9-9900K 3.60 GHz, RAM: HyperX 32 GB Predator
DDR4 3200 MHz, GPU: ASUS ROG Strix GeForce RTX 2080 8 GB GDDR6
SUPER

Table 3.3: Data collection using the Kinect.

Computer Number of
people Gestures Repetition Evaluation Algorithm

AC 16 4 10 File APBMR
AC 32 4 10 Real-time APBMR
GC 32 4 10 Real-time APBMR

AC 32 4 10 File APBMR and
RDSMR/RDAMR

According to the data shown in Table 3.3, 16 × 4 × 10 + 32 × 4 × 10 + 32 × 4 ×
10 + 32 × 4 × 10 = 4480 cases were gathered and with these the accuracy and the
speed of the APBMR algorithm can be evaluated. Each case was evaluated with six
different MTs, meaning that the actual number of the cases is 4480 × 6 = 26880.
Therefore, 32 × 4 × 10 × 2 × 6 = 15360 cases were evaluated in real-time and the
evaluation of 16× 4× 10× 6 + 32× 4× 10× 6 = 11520 cases were file-based.

It should also be noted that in the second and the third row, the users who
participated in the measurements were the same people. This means that 80 different
people participated in the measurements. Out of the participants, 59 were male and
21 were female. They were 22.7 years old on average with a dispersion of 2.7 years
as they were either in their bachelor studies or in their master studies. Their average
height was 176.2 cm with a dispersion of 9.5 cm, while their average weight was 72.5
kg with a dispersion of 10.6 kg. There were no selection criteria applied to join the
research, thus every person who was willing could help with the measurements.

During the measurements one Kinect v1 sensor was used, therefore the partici-
pants had to come sequentially. Similarly to the tests regarding the spatial skills of
the users in VEs and because most of them were students, their appointments were
made according to their classes. If only the gesture recognition is counted, the tests
were 5 minutes long at most. However, instructions were given to the participants
before each gesture, therefore one test could be as long as 15 minutes.
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Regarding the measured gestures, they were also the same as well in each case:
a circular gesture, a waving gesture, a diagonal gesture forwards and a diagonal
gesture upwards. In the case of each gesture, the user starts the movement by
standing in front of the sensor and facing it. The mentioned four gestures are shown
in Figure 3.10 and are defined as the following:

• Circular gesture: the right hand of the participant is moved at shoulder height
in a circular motion. When a circle is completed, a repetition ends.

• Waving gesture: the right hand of the participant is moved above shoulder
height first from left to right and then from right to left with a waving motion.
Afterward, a repetition ends.

• Forward-diagonal gesture: the right hand of the participant is at ease in the
beginning. Then, the right hand is raised to shoulder height and extended
forward, diagonally to the right. Lastly, the right hand has to be lowered.
This is when one repetition ends.

• Upward-diagonal gesture: this gesture starts similarly to the forward-diagonal
gesture. However, in this case the right hand is raised above shoulder height.
Then, it is extended both forward and upward, diagonally to the right. Lastly,
the right hand has to be lowered and then, one repetition is over.

Figure 3.10: 200 frames of the circular (upper left), waving (upper right), forward-
diagonal (lower left) and upward-diagonal (lower right) gestures.
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In the fourth row of Table 3.3 it is shown that both algorithms were assessed in
that case. During this comparison, the gesture descriptors were recorded and they
were saved into a file, because it was critical to assess the same coordinates of the
gestures. Therefore, to compare the two algorithms, the data was loaded from the
mentioned file and was evaluated by both algorithms.

Data analysis

First, it was evaluated by the APBMR algorithm whether a gesture is accepted
using each of the MTs. Then, the percentage of the acceptance (or rejection) inside
all three ADs on all axes is logged into a .csv file. The time in milliseconds of each
decision is logged as well. This means that 12 columns of data exist in the case of
each MT. The format of the data is the following as presented in Table 3.4. Since
six MTs are used by the algorithm, only one is shown in the table.

Table 3.4: Data structure of one MT, containing the acceptance percentage and the
decision times (ms) of ten classified gestures in three ADs.
±0.05 m (x) ±0.10 m (x) ±0.15 m (x) Time (x) ±0.05 m (y) ±0.10 m (y) ±0.15 m (y) Time (y) ±0.05 m (z) ±0.10 m (z) ±0.15 m (z) Time (z)

1.000 1.000 1.000 0.404 0.279 0.7441 0.953 0.173 0.777 0.866 0.866 8.765
1.000 1.000 1.000 0.195 0.342 0.789 1.000 0.161 0.755 1.000 1.000 0.454
1.000 1.000 1.000 0.522 0.097 0.219 0.365 0.173 0.526 1.000 1.000 0.147
1.000 1.000 1.000 0.269 0.431 0.727 0.954 0.221 0.976 1.000 1.000 0.180
1.000 1.000 1.000 0.311 0.125 0.175 0.250 0.200 0.775 1.000 1.000 0.223
1.000 1.000 1.000 0.181 0.076 0.128 0.179 0.261 0.960 1.000 1.000 0.445
0.381 0.981 1.000 0.302 0.196 0.470 0.901 0.235 0.843 1.000 1.000 0.204
0.666 1.000 1.000 0.206 0.735 1.000 1.000 0.230 0.895 1.000 1.000 0.184
0.596 1.000 1.000 0.249 0.173 0.288 0.442 0.282 1.000 1.000 1.000 0.212
1.000 1.000 1.000 0.261 0.893 1.000 1.000 0.205 0.900 1.000 1.000 0.201

As can be suspected from the previous table, the amount of gathered data is huge.
Since no advanced statistical evaluations were required for the goal of this research,
Microsoft Excel was used for the investigation instead of the R program package.
This means that the data was analyzed inside of it using its built-in functions. Each
gesture type was given its own worksheet for easier analysis.

The gestures in each worksheet were grouped by the ID of users (since no name
was gathered to respect anonymity). As ten repetitions were done by a user, a row
was left blank after ten rows for easier navigation through the data. The averages
and the deviations were evaluated at the bottom of each worksheet. The percentages
of acceptance were evaluated on one axis first, then on three pairs of two axes and
lastly, on all three axes. After the evaluations on all worksheets were completed, a
final worksheet was made. In this worksheet, all data were summarized and plotted.
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Chapter 4

Results of the measurements

After defining the materials and methods in both parts of the research, the results
of the measurements are presented in this chapter. There are two subsections in
this chapter. The results on the spatial ability tests are presented and evaluated
in section 4.1, while the APBMR algorithm is presented, tested and evaluated in
section 4.2.

4.1 Analyzing the results on the spatial ability tests
In this section the results on the spatial ability tests are investigated. Since there
were three goals in the research of the author regarding the spatial skills of the
users in VEs, this section is split into three subsections. In subsection 4.1.1 the
influence of display devices and display parameters on the spatial ability tests in VR
is analyzed. The effects of display devices and human skills on the spatial ability
test completion times are investigated in subsection 4.1.2. In subsection 4.1.3, the
correlation between the used display devices and the human skills is assessed.

4.1.1 The influence of display devices and display parameters
on the spatial ability tests in virtual reality

Results of the analyses of a single factor’s effects

The virtual camera type was the first factor to be analyzed. Two types of virtual
camera exist. The first type is called perspective camera which is similar to the hu-
man eye. The second type of virtual camera is orthographic, meaning orthographic
projection is used by it: 3D objects are depicted in two dimensions [210]. Because
of the randomization of the camera type variable, 1418 perspective camera tests
were performed and 1291 orthographic camera tests were performed (as seen in Ta-
ble B1 in the appendix). The logistic regression analysis results are shown in table
A1 which can be found in the appendix as well. The estimated coefficients can be
found in Figure 4.1 in the form of 95% confidence intervals (CIs) at the end of this
subsection.

When using the logistic regression analysis method, a basis variable has to be
selected. This variable is always indicated with the Intercept name. Here, when
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investigating the camera type, the orthographic camera type was used as the basis.
The difference is significant, based on the p-value = 2.57× 10−12. This value can
be found in the Pr(>|z|) column as it defines whether the estimate of the coefficient
point is significantly different from zero. Therefore, it can be concluded that the
type of the camera has an effect on the probability of correct answers: better results
are produced by the perspective camera type than the orthographic camera type.

The FoV of the virtual camera was the second factor to be analyzed. The default
FoV in Unity is 60°, but this value can be easily modified in both the Unity editor
and the developed spatial ability measuring application. Several FoVs, such as 45°,
60°, 75°, 90° were investigated. There were 1049 measurements performed using the
45° option, 120 using the 60° option, 134 using the 75° option, and 115 using the 90°
option. The FoV is undefined in the case of an orthographic camera type due to its
method of projection. With the orthographic camera type, 1291 measurements were
made. This numerical data can be seen in Table B2 in the appendix. The results of
the logistic regression analysis are presented in Table A2 in the appendix as well.

The basis value was -1 which means undefined in the measured data: the ortho-
graphic camera type is symbolized by this value of -1. All coefficients are estimated
to be positive. Due to the p-values, every probability is significantly greater in the
case of all FoVs of the perspective camera type. Moreover, due to the results shown
in Table A1, it can be concluded that better probabilities are produced using the
perspective camera type. Therefore, the data belonging to the orthographic camera
type (value of -1) was eliminated. Then, it was investigated whether the results have
different probabilities using various levels of FoVs in case of the perspective camera
type. This means that the results were also investigated after the -1 was taken out.
The results of the analysis based on this restricted data set are contained in Table
A3 in the appendix, while the estimated coefficients can be seen in Figure 4.1.

For the analysis, the basic level was actually 45°. It is shown by the signs of
the estimated coefficients that each further level is better. The difference is not
significant, except for 90°. On the basis of p-value = 0.0225, a significantly better
probability of correct answers was presented by the FoV of 90° than the others,
at the level 0.05. However, the difference is not significant at the level 0.01. As
the amount of data is quite large, it can be accepted that the effect of the variable
named FoV is not significant in the case of the perspective camera type. Therefore,
the variable named FoV is omitted from further analyses.

The next factor to be analyzed was the rotation of the camera. Thus, it was
investigated whether the probabilities were affected by the virtual camera rotation.
106 measurements were carried out with a rotation of -45°, 294 with -30°, 294 with
-15°, 1251 with no rotation, 312 with 15°, 313 with 30° and 139 with 45°. These
numerical data can be seen in Table B3 in the appendix. The results of the logistic
regression analysis are presented in Table A4 in the appendix.

The basic level was -15°. Significant increases in the probability of the correct
answers are shown in the case of the -45°, 0°, 45° rotations to those of -15°, according
to the p-values. The latter rotation is not significant at the 0.01 level. However, it is
close to being significant. Two groups were created for the results, in order to further
verify the findings. Those rotations which positively affected the probabilities are
contained in the first group named "IMP_R". These are the rotations of -45°, 0°,
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45°. In the other group which is called "NO_R", rotations which had no significant
positive influence are included. 1496 tests are in the group IMP_R and 1213 tests
are in the group NO_R (see Table B4 in the appendix). These two groups were
investigated with the logistic regression analysis method. The results of the analysis
are shown in Table A5 in the appendix, while the estimated coefficients can be seen
in Figure 4.1. In this case the point of reference was NO_R. It is indicated by Table
A5 that there were substantially different probabilities for the two groups previously
described in this subsubsection. It is shown by these results that the two groups are
distinguishable from each other. Therefore, from this point forward, these groups of
camera rotations are used.

The next to analyze was the effect of the contrast ratio on the probabilities. Five
contrast ratios were used for the calculations: 1.5:1, 3:1, 7:1, 14:1 and 21:1, The
number of the results of students who tested with these contrast ratios are 1066,
167, 1121, 164, 191, respectively. This numerical data can be seen in Table B5 in the
appendix. The regression coefficients were determined using logistic regression and
the test statistics (testing their zero values). The respective p-values of the results
can be seen in Table A6 in the appendix.

As can be seen, the results were compared to the 1.5:1 contrast ratio. According
to the comparison, significantly worse probabilities are produced by the 7:1, 14:1
contrast ratios, even the contrast ratio of 21:1 is on the 0.05 level. Therefore, two
groups were created for the contrast ratios: IMP_C, containing the ratios of 1.5:1
and 3:1, and the other, NO_C, containing the ratios of 7:1, 14:1 and 21:1. There are
1233 results on the tests in IMP_C, while there are 1476 in NO_C. This numerical
data is presented in Table B6 in the appendix. According to p-value = 2.56× 10−6

in Table A7, a significantly better probability of correct answers is produced by the
contrast ratio group of IMP_C than the group of NO_C. Therefore, better results
are given by the VEs with a bright background and bright foreground objects. The
estimated coefficients of these contrast ratio groups can also be seen in Figure 4.1.

The next factor analyzed was the presence of shadows in the VE. Only two levels
exist of this variable: when their existence is turned on and when it is turned off.
There were 1414 measurements of the former, and 1295 of the latter as can be seen
in Table B7 in the appendix. The results of the logistic regression analysis are shown
in Table A8 also in the appendix, while the estimated coefficients can be seen in
Figure 4.1. The point of reference was "Turned off". According to p-value = 0.204,
the probability of correct answers on the tests is not affected by the shadows.

The last factor to analyze was the display device used by the students during
the tests. As mentioned in the "Data collection" subsubsection, two display devices
were used during the spatial ability tests. One of the two devices was an LG 20M37A
(19.5") DD, the other was the Samsung GVR HMD. 2160 measurements were done
using the DD and 549 using the GVR as can be seen in Table B8 in the appendix.
The results of the logistic regression analysis of the display devices used are presented
in Table A9, where it can be seen that the point of reference was DD. According to
the estimated coefficient of 0.07595 and the p-value = 0.00677, the probability of
correct answers on the tests is significantly larger when the GVR is used in the VE.

To better visualize the data, the 95% CIs of the estimated coefficients of all
mentioned variables are shown in Figure 4.1. It is possible to deduce which variables

46



affect significantly the probabilities of correct answers: if the estimation of a variable
reaches zero, then there is no significant influence. As could be seen from the results
presented in the tables and from the following figure, there is no significant influence
on the probabilities when the FoV is 60° or 75° or when the shadows are turned on.

Figure 4.1: 95% CIs of the estimated coefficients in the case of one analyzed variable.

Results of the analyses of effects of two factors without interactions

In this subsubsection, the effects of the display parameters were analyzed in pairs
without taking their interactions into account. Those variables were omitted that do
not significantly affect the probabilities in themselves. Therefore, based on Tables
A3 and A8, neither the influence of shadows nor the influence of camera FoV are
examined further. The effects of the camera type, camera rotation, contrast ratio,
and the device used variables were analyzed by pairing them in all possible com-
binations. This resulted in the following pairs: camera type and camera rotation;
camera type and contrast ratio; camera type and the device used; camera rotation
and contrast ratio; camera rotation and the device used; and contrast ratio and the
device used. The numerical results of the possible pairs can be seen in Table B9,
while the results of the logistic regression analysis are presented in Table A10. Both
tables can be found in the appendix. 95% CIs of the estimated coefficients (Figure
4.2) can be found at the end of this subsubsection.

The pair of the camera type and camera rotation variables was the first to be an-
alyzed. During the investigation, the previously defined camera rotation groups were
used to make the calculations easier. Every level of camera type variable was paired
with every level of camera rotation group. Therefore, the number of pairs equals
to four; the first pair is called "Orthographic, NO_R". 611 measurements were
made using this pair. The remaining pairs are "Orthographic, INC_R", with 680
measurements; "Perspective, NO_R", with 602 measurements; and "Perspective,
INC_R", with 816 measurements. According to the p-values, significantly better
results are produced by every other pair than the pair of "Orthographic, NO_R".
No significant difference is detected between the pairs of "Orthographic, INC_R"
and "Perspective, NO_R". This difference was calculated by means of a t-test and
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its p-value = 0.7126. The optimal result out of the pairs is provided by the pair of
"Perspective, INC_R", and the improvement compared to "Perspective, NO_R" is
significant (p-value = 0.0033).

The second pair to investigate was the type of camera and the contrast ratio.
As in the case as the camera rotation groups, the groups of contrast ratios that
were established previously were used. In "Orthographic, NO_R", 696 tests were
performed; in "Orthographic, INC_C", 595 tests; in "Perspective, NO_C", 780;
and in "Perspective, INC_C", 638 tests. According to results presented in Table
A10, the pair of "Orthographic, NO_C", is significantly worse than the other pairs.
However, no significant differences exist among the other three.

The pair of the camera type and the device used variables was the third to be
examined. 1065 tests were performed in "Orthographic, DD", 226 tests in "Or-
thographic, GVR", 1095 tests in "Perspective, DD", and 323 tests in "Perspective,
GVR". The worst results are produced when using a DD with an orthographic
virtual camera type. When using the GVR with an Orthographic virtual camera
type, there is no significant improvement either. However, the results of the mea-
surements when using the DD or a GVR with a perspective virtual camera type
are significantly better than when using the DD with an orthographic camera. The
difference between a DD with an orthographic camera or a perspective camera and
using a GVR with a perspective camera cannot be distinguished.

The pair of camera rotation and the contrast ratio was examined next. There
are 1005 tests in the "NO_R, NO_C" group, 208 tests in the "NO_R, INC_C"
group, 471 tests in the "INC_R, NO_C" group, and 1025 tests in the "INC_R,
INC_C" group. Based on the results of the logistic regression analysis, better
probabilities are yielded by every pair than by "NO_R, NO_C". Also, a difference
was not indicated by the t-test between the pairs of "NO_R, NO_C" and "NO_R,
INC_C", but differences can be seen among "NO_R, NO_C", "INC_R, NO_C"
and "INC_R, INC_C". These last pairs are not distinguishable.

The next pair to be examined was the camera rotation and device used. The
numbers of measurements were 1062 for the group named "NO_R, DD", 151 for
the group "NO_R, GVR", 1098 for the group "INC_R, DD", and 398 for the group
"INC_R, GVR". The group of "NO_R, DD" was the reference point. Since the
sign of the estimation of the coefficient is negative, it can be observed that the
probabilities of the correct answers are a bit smaller in the group called "NO_R,
GVR", but the difference is not significant (p-value = 0.385). There are significantly
greater probabilities in the remaining two groups and there is a significant difference
between the groups of "NO_R, GVR" and "INC_R, GVR".

The pair of contrast ratio and the device used variables was the last one to be
examined. After the creation of the pairs, the pairs of "NO_C, DD" consisted of
1183 tests, "NO_C, GVR" of 293 tests, "INC_C, DD" of 977 tests, and "INC_C,
GVR" of 256 tests. In the case of the contrast ratio and the device used pair, the
group "NO_C, DD" was the reference point. According to the results of the logistic
regression analysis, a significant improvement is not produced by the use of the GVR
in the case of the "NO_C" contrast group. However, in the case of the "INC_C"
contrast group, significantly better results are yielded. Moreover, if the "INC_C,
DD" and "INC_C, GVR" are compared, it can be seen that the differences between
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the average rates are large, however, these are not significant (p-value = 0.06332).
This is due to the relatively small number of tests (256 tests). Moreover, a significant
difference is provided by the difference between the average rates of "NO_C, DD"
and "INC_C, DD" as the numbers of the samples are higher. It is suspected that
if more data existed with the GVR, the difference would have become significant.

Figure 4.2: 95% CIs of the estimated coefficients in the case of the investigated
variable pairs without interactions.

Results of the analyses of effects of two factors with interactions

The additive models were investigated on the basis of the pairs of the variables by
allowing their interaction. Alike to the analyses without the interactions, the pairs
are combined in every possible combination. The sequence of analyzing the pairs is
the same as in the previous subsubsection: the first pair is the camera type and the
camera rotation; the second is the camera type and the contrast ratio; the third is
the camera type and the device used; the fourth is the camera rotation and contrast
ratio; the fifth is the camera rotation and the device used; and the last one is the
contrast ratio and the device used. The results of the logistic regression analyses
of all possible pairs allowing interactions are shown in Table A11 in the appendix,
while their estimated coefficients can be seen in Figure 4.3 on the next page.

Thus, the first pair to be analyzed is the camera type and the camera rotation
variables. Due to the results of the logistic regression analysis shown in Table A11,
an influence can be detected by both the camera type and the camera rotation. This
is indicated by the estimated coefficients. Also, the p-value = 0.0459, meaning that
a significant interaction exists as well. The negative sign of -0.08995 was a surprise,
but this is due to the speed of improvement. The measures of the improvement
cannot be summed, the result is a little bit lower than that caused additively.
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The next to analyze was the pair of the camera type and the contrast ratio
variables. As seen in the table, both the camera type and the contrast ratio variables
have significant influences on the probability of correct answers. The significance
of the analyzed contrast ratio group is stronger than the type of the camera. Also,
there is a significant interaction (p-value = 8.91× 10−5) between the two variables.

The camera type and the device used is the next pair to be investigated by the
logistic regression analysis method. In addition to the camera type variable, no
significant influence (p-value = 0.0647) has been detected in the results of the tests
by investigating the device used. Significant interaction does not exist between the
two variables (p-value = 0.6164).

The next pair to mention is the camera rotation and contrast ratio. The influence
of INC_R is strong and is very significant with p-value = 3.97× 10−6. In contrast
to the INC_R, the effect of the INC_C is smaller: the estimation of the coefficient
equals to 0.09323, but it is also significant with p-value = 0.0376. However, there
is no significant interaction (p-value = 0.1667) between the two variables.

The next pair to analyze was the camera rotation and the device used. Ac-
cording to the logistic regression analysis results in the table, a significant influence
(p-value = 2.97× 10−6) is produced by the camera rotation in itself. When talking
about only the influence of the device used variable, its influence is not significant
(p-value = 0.3847). However, when the two variables are paired together, a signifi-
cant interaction at the 0.05 level of significance appears (p-value = 0.0326).

The last pair to analyze is the contrast ratio and the device used variables.
According to the last pair in Table A11, a significant effect (p-value = 0.000583)
is produced by the contrast ratio. However, aside from the described influence,
the influence of the device is not significant (p-value = 0.396699) and interaction
between the two variables has not been detected (p-value = 0.094199).

Figure 4.3: 95% CIs of the estimated coefficients in the case of the investigated
variable pairs with interactions.
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More investigations on the same pairs using the ANOVA dispersion analysis
have also been done. With the ANOVA analysis, the interactions of the pairs of the
variables can also be investigated. The logistic regression analysis and the ANOVA
analysis were compared and similar results are produced. Using the results of the
ANOVA analysis, it was also compared whether the interactions of the factors pro-
vide a stronger, but significant influence. The results of the ANOVA method can
be observed in Table A12 which can be found in the appendix.

According to the results of Table A12, it can be concluded that a better probabil-
ity (p-value = 0.0459) is provided by the model in which the interactions are taken
into account in the case of the camera type and rotation variable pair. Significant
probabilities are yielded by both the ANOVA analysis and the logistic regression
analysis that are presented in Table A11.

In case of the next pair of the camera type and the contrast ratio variables, there
is a little difference between the p-values of the ANOVA analysis and the logistic
regression analysis: in case of the former, the p-value = 8.895× 10−5 and in the
case of the latter, the p-value = 8.91× 10−5. Both significances are very strong.
According to these p-values of the pair of the camera type and contrast ratio in
case of both analyses, it can be concluded that significantly better probabilities are
provided by the model that takes interactions into account than the additive model.

The third pair to analyze was the camera type and the device used variables.
Due to p-value = 0.6164 in the column of Pr (>Chi) and to the same p-value from
the results of the logistic regression in Table A11, the conclusion is the following:
according to the results of both the ANOVA analysis and the logistic regression
analysis in the case of the camera type and the device used variable pairs, the model
in which the interactions are taken into account does not provide a better probability
than the additive model.

In the case of the pair of the camera rotation and contrast ratio, the p-values with
the ANOVA analysis and the logistic regression analysis is different in the additive
model. Using ANOVA analysis, the p-value = 0.1661 and in the additive model, the
p-value = 0.1667. Therefore, based on the p-values, in the case of the pairs of camera
rotation and contrast ratio, it can be concluded that no significant probabilities are
provided by both models. Since both probabilities are not significant, the model in
which the interactions are taken into account does not provide a better probability
than the additive model.

The next pair to analyze was the camera rotation and the device used variables.
According to results of the ANOVA analysis, the p-value = 0.0329 and according
to the results of the logistic regression, the p-value = 0.0326 in the additive model.
Both p-values are on the same level of significance. Therefore, it can be concluded
that a significantly better probability is provided by the model in which the inter-
actions are taken into account than it is provided by the additive model.

Lastly, in the case of the contrast ratio and the device used, the p-values are not
significant in each model. They are 0.094199 in the additive model and 0.09403 in
the model where the interactions are taken into account. Since both p-values are
not significant, the conclusion is the following: in contrast to the additive model, a
significantly better probability is not provided by the model in which the interactions
are taken into account.
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Results of the analyses of effects of three factors without interactions

When the investigation of all possible pairs were finished, the variables were grouped
in triplets. Similarly, to the previous subsubsections, the analyses were performed
in two different ways: firstly, without interactions, and afterward, with interactions.
All possible triplets were created from the levels of variables and these triplets were
the following:

• Camera type, camera rotation and contrast ratio

• Camera type, camera rotation and the device used

• Camera type, contrast ratio and the device used

• Camera rotation, contrast ratio and the device used

After the creation of the mentioned four triplets, the logistic regression analysis was
performed on them. Both the results of the logistic regression analysis of the triples
and the numerical results can be seen in the appendix, inside Tables A13 and B10,
respectively. The 95% CIs of the estimated coefficients are shown in Figure 4.4 in
the end of this subsubsection.

The camera type, camera rotation and the contrast ratio was the first variable
triplet to be investigated. First, 2 × 2 × 2 = 8 groups were formed according
to the levels of the variables. The point of reference was "Orthographic, NO_R,
NO_C" in the logistic regression analysis. According to the results presented in the
table, the probability of "Orthographic, INC_R, INC_C" and the probability of
all triplets containing the perspective camera type are significantly better than the
"Orthographic, NO_R, NO_C". Therefore, the results were checked, and it was
concluded that the "Orthographic, INC_R, INC_C" and the perspective rows are
not distinguishable.

The investigation continued with the camera type, rotation, and device used
variable triplet. The point of reference was "Orthographic, NO_R, DD". Due
to the results presented in the table, the triplet of "Orthographic, NO_R, GVR"
has some, but not significant decrease in the results compared to "Orthographic,
NO_R, DD". The probabilities in the other combinations of the camera type,
rotation and device used variable triplet are significantly stronger. The smallest
improvement can be observed in the case of the "Perspective, NO_R, GVR" triplet
and the greatest improvements can be noticed in "Perspective, INC_R, DD" and
"Perspective, INC_R, GVR" triplets. It should be noted that the difference between
the two best cases is not significant (p-value = 0.3012).

The camera type, contrast ratio, and the device used variable triplet was the
following to be investigated. In this case, the point of reference was "Orthographic,
NO_C, DD". According to the results of the logistic regression analysis, the "Or-
thographic, NO_C, GVR" tiplet was not significantly better than "Orthographic,
NO_C, DD". The combinations that remain were significantly stronger than the
point of reference and the previously mentioned "Orthographic, NO_C, GVR"
triplet. However, the remaining combinations cannot be distinguished from each
other.
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Lastly, the camera rotation, contrast ratio and the device used variable triplet
is the one remaining combination to be investigated. According to the results of
the logistic regression analysis, no detectable significant difference is found be-
tween "NO_R, NO_C, DD" and "NO_R, NO_C, GVR" triplets as the p-value =
0.82046. Also, the cut is not significant in the row of "NO_R, INC_C, GVR". This
fact requires clarification, since the average rates of correct answers are 0.602 and
0.561, respectively. However, in case of "NO_R, INC_C, GVR", the data that is
available is very low. The number of the measurements was 23 and the dispersion
of the correct answers is high. Thus, further measurements are needed to be able to
reject the H of the equality of the average rates. In the remaining other cases, signif-
icant improvements exist. The largest improvement is in the case of the "INC_R,
INC_C, GVR" triplet and it is the strongest significantly. This means that the
results of this case are significantly better than the results of any other case.

Figure 4.4: 95% CIs of the estimated coefficients in the case of the investigated
variable triplets without interactions.

Results of the analyses of effects of three factors with interactions

The first variable triplet analyzed was the camera type, camera rotation and the
contrast ratio. For this, the ANOVA dispersion analysis method was used. Sim-
ilarly, to the analysis of pairs with interactions, comparisons were made between
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the models. However, in this case, the number of models was three. Therefore, a
comparison was made between the logistic regression models with additive property
without interactions (I), the models with interactions between two variables (II),
and the models allowing interactions among all three variables (III).

According to the results of the comparison between models I and II, the model
that took into account the interactions of the camera type and camera rotation,
moreover the interaction of camera type and contrast ratio gave significantly better
results than the logistic regression models without interactions (p-value = 0.001258).
The interaction of camera rotation and contrast ratio was not significant, as was
presented in the previous section; therefore, it was omitted in this section. Similar
results (p-value = 0.002387) are yielded by the comparison of models I and III as
the comparison between models I and II. Then, the comparison of models II and
III commenced. However, after the comparison, it can be concluded that the model
in which the interaction of all three variables is built in does not give better results
than model II (p-value = 0.2049). The results of the ANOVA analysis method are
presented Table A14 in the appendix.

Thus, the results of the logistic regression analysis are presented in the case of
model II which is the most appropriate one. The results, and therefore the effects
of the factors according to model II are presented in first block of Table A15. This
table can be found in the appendix, while the 95% CIs of the estimated coefficients
can be seen in Figure 4.5 on the next page. According to these results, every variable
has an influence, and the interaction in the case of the camera type and the contrast
ratio is significant. To double-check the calculations and the results as well, the
model in which the interactions of the camera type and rotation, as well as the
interactions of the camera type and contrast ratio were built in was compared to
the model where the interaction of the camera type and contrast ratio were built
in. According to the results of the double-check, worse results were not provided by
the means of this reduction (p-value = 0.99).

The next variable triplet was the camera type, camera rotation and the device
used. In the case of this triplet, similar models were compared as previously. When
comparing the model in which interactions are not allowed (I), and the model in
which the interactions of two variables are allowed (II) and the model in which
the interaction of all variables are allowed (III), model II is significantly better
than model I (p-value = 0.01175), and model III is not significantly better than
model I (p-value = 0.0502). Between model II and model III, there is no significant
difference (p-value = 0.7445). When analyzing model II by logistic regression, the
results of the analysis are presented in Table A15 in the second block. According
to the results presented in the table, it can be concluded that the influence of the
device itself disappeared (p-value = 0.2649), but its interactions are still relevant
(see p-values 0.0322 and 0.0286). This means that the display device that was used
during the tests should be taken into account when analyzing the data.

The third variable triplet was investigated in the same way. When comparing
the model with the variables camera type, contrast ratio, and device used without
interactions (I), the model in which interactions of pairs are allowed (II), and the
model in which interactions of all three variables are allowed (III), the results were
the following: model II is significantly better than model I (p-value = 0.0001132),
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model III is significantly better than model I (p-value = 0.000546), and no significant
difference exists between models II and III (p-value = 0.1792). When using model
II, the logistic regression analysis results are the following, as presented in the third
block of Table A15. According to the results presented in the table, the influence of
every parameter is significant, and the interaction of the camera type and contrast
ratio is also detectable (p-value = 0.000113).

The last variable triplet to investigate was the camera rotation, contrast ratio
and the device used. A similar way of analysis was used in the case of these variable
triplets: when comparing the model investigating the effects of the variables without
interactions (I), the model investigating the effects of variables allowing the interac-
tion of rotation and used devices (II), and the model allowing the interactions of all
three variables (III), the following conclusions can be drawn: II is significantly better
than I (p-value = 0.02568), III is significantly better than I (p-value = 0.0001853)
and is also significantly better than II (p-value = 0.0006448). When using model III,
the logistic regression analysis yields the results that are presented in the last block
of Table A15. According to these results, the unique influence of the device disap-
pears, but it has an interaction with the contrast ratio, and even triple interactions
can be detected.

Figure 4.5: 95% CIs of the estimated coefficients in the case of the investigated
variable triplets with interactions.

Concluding the analyses of the effects of triplets of variables, the following factors
should be considered: camera type, rotation, contrast ratio, and the device used.
According to the 95% CIs of the estimated coefficients in Figure 4.5 and to the
results presented in Table A15, the most important interactions are between the
following factors:

• Camera type – Camera rotation
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• Camera type – Contrast ratio

• Camera rotation – Device used

• Camera rotation – Contrast ratio – Device used

Results of the analyses of effects of four factors without interactions

After concluding the analysis of triplets of factors, one more analysis remains: the
analysis of all four significant factors. Therefore, the influence of the camera type,
camera rotation, contrast ratio and the device used was assessed by combining these
factor into a quartet. If the groups are constructed based on the possible quartets
using the levels of the variables, 24 = 16 groups are formed. Both the results of the
logistic regression analysis and the numerical results are presented in the appendix
in Tables A16 and B11, respectively. The 95% CIs of the estimated coefficients can
be seen in Figure 4.6.

Figure 4.6: 95% CIs of the estimated coefficients in the case of the investigated
variable quartet in which interactions are not allowed.

The point of reference was "Orthographic, NO_R, NO_C, DD". According
to the results of logistic regression analysis, there is a significant improvement in
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every quartet that has a perspective value except "Perspective, NO_R, INC_C,
GVR" compared to "Orthographic, NO_R, NO_C, DD". No significant influences
are detected in the case of the variable quartets of "Orthographic, NO_R, NO_C,
GVR", "Orthographic, NO_R, INC_C, GVR", "Orthographic, INC_R, NO_C,
DD" and "Orthographic, INC_R, NO_C, GVR". The greatest improvements are in
the case of "Perspective, INC_R, NO_C, DD" and "Perspective, INC_R, INC_C,
GVR". The average rates belonging to these groups can be considered to be equal
(p-value = 0.7627) in any case.

Results of the analyses of effects of four factors with interactions

To investigate the interaction of the variable quartet, a comparison was carried out
between the different additive models. The model that uses 4 variables but in which
interactions are not allowed (I), the model that uses 4 variables and in which the
interactions of pairs are allowed (II), the model in which the interactions of three
variables are allowed (III), and finally the model in which the interactions of all
variables are allowed (IV). After comparison on the basis of the ANOVA analysis,
model II proved to be significantly better than model I (p-value = 0.0004441), model
III was significantly better than model I (p-value = 2.147× 10−6), and model III
was also significantly better than model II (p-value = 0.0003342). Finally, IV was
not significantly better than III (p-value = 0.1701). According to model III, the
logistic regression analysis results are the following that are shown in Table A17 in
the appendix. The 95% CIs of the estimated coefficients can be seen in Figure 4.7.

Figure 4.7: 95% CIs of the estimated coefficients in the case of the investigated
variable quartet in which interactions are allowed.

Based on the logistic regression analysis results that are presented in Table A17,
it can be concluded that the influence of the display devices in themselves cannot
be detected (p-value = 0.987212). However, their interactions with other factors
can be detected. In the end, after examining each factor on their own and in pairs,
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triplets and in a quartet, the final conclusion is the optimal results are provided by
the quartet of "Perspective, INC_R, INC_C, GVR". This means that the spatial
skills of those users who observe the VEs using the GVR HMD can be enhanced by
the design of the VEs. Thus, the optimal spatial ability enhancement is achieved
with the use of the GVR and with the following parameters in a VE: a virtual
perspective camera with -45° or 0° or 45° rotations and 1.5:1 or 3:1 contrast ratios.

4.1.2 Investigating effects of display devices and human skills
on the spatial ability test completion times

In this subsection, the effects of display devices and human skills on the spatial
ability test completion times are analyzed. The test completion times are measured
in seconds. A completion time of a test type is logged by the application after ten
questions are completed by the user. This is due to one test type containing ten
questions in the application. The smallest recorded completion time is 7.9 seconds
and the largest recorded one is 1168.43 seconds which is approximately 20 minutes.
The average of completion times on the tests is 200.388 seconds with a dispersion
of 123.279 seconds.

The independence of time

It was analyzed whether the completion times are independent of the probabilities of
correct answers on the tests. For this, the distribution of the completion times was
investigated first. It is proven by the results of the investigation that the distribution
of completion times is not normal as according to the results of the Kolmogorov-
Smirnov test the p-value < 2.2×10−16. Due to this, the H of normal distribution is
rejected. The histogram of the test completion times is presented in Figure 4.8.

Figure 4.8: The histogram of the spatial ability test completion times.

Since both the probabilities of completion times and the correct answers are
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numerical values, the correlation coefficient can be used to evaluate whether there
is a correlation between them or they are independent of each other. The numerical
value of the correlation of completion times and probability of correct answers equals
0.223. Performing a test to check whether it can be considered zero or not, p-value <
2.2×10−16 was received as a result, therefore the H of the zero value of correlation is
rejected. This rejection means that these variables are not independent of each other.
The positive sign of the correlation coefficient means that when the completion time
increases, the probability increases as well. It is shown by the value of the correlation
coefficient that the linear relationship is not strong between the two variables. When
the correlation coefficient of the logarithm of the time and the probabilities is looked
at, a somewhat larger correlation is yielded, which is 0.299. The relations between
the completion times and the factors are analyzed by regression as seen in Table 4.1.

Table 4.1: Results of the logistic regression analysis of the relation between the
completion times and the probabilities of correct answers.

Estimate Standard Error z Value Pr (>|z|)
Intercept 0.232039 0.022724 10.21 <2×10−16

Time 0.002307 0.000099 3.19 <2×10−16

Due to the results presented in Table 4.1, the influence of the completion times
is significant (p-value <2× 10−16). Meanwhile, the positive sign of the estimated
coefficient is 0.002307. It is shown by this estimated coefficient that when the
completion time increases the probability increases as well, in tendency. Then, the
logarithm of the test completion times was investigated with the logistic regression
analysis and the coefficients are shown in Table 4.2. It is also presented in Tables
4.1 and 4.2 that the p-values are equal. Both p-values of the completion times and
the logarithm of the completion times are the same (p-value < 2×10−16).

Table 4.2: Results of the logistic regression analysis of the logarithm of the comple-
tion times.

Estimate Standard Error z Value Pr (>|z|)
Intercept -2.18981 0.08886 -24.64 <2×10−16

log(Time) 0.56389 0.01726 32.68 <2×10−16

Results of the analyses of a single factor’s effects

In this subsubsection, the effect of a single factor on the completion times is eval-
uated. These factors are the following: the gender of the user, the primary hand
of the user, the test type and the display device used. To calculate this, regression
analysis was used in each case. Both the results of the regression analyses and the
numerical results of all four variables can be seen in the appendix inside Tables A18
and B12-B15, respectively. The 95% CIs of the estimated coefficients can be seen
in Figure 4.9 in the end of this subsubsection.

According to the results of the regression analysis, an effect on the completion
times is produced by the gender of the user. This effect is also significant (p-value =
2.97× 10−5). It is shown by the negative value of the coefficient that belongs to male
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students (-27.451) that the completion times of the male users are less than that of
the female users.

The next to analyze was the primary hand of the user. The numerical averages of
both the left-handed and right-handed users are almost the same: 199.535 seconds
for the left-handed and 200.504 seconds for the right-handed students. Therefore,
it is expected that there is no significant relation between the completion times
and the primary hand of the users. After performing the regression analysis, these
expectations are proved to be true (p-value = 0.894). Due to the results the com-
pletion times are not significantly affected by the primary hand of the users, thus
this variable was omitted from further analyses. Therefore, it will not be paired or
grouped in triplets with other factors.

When investigating the test types, it can be seen that the average is numerically
larger in the case of the MRT test type. The numerical averages are 245.701 seconds,
176.156 seconds and 179.307 seconds, for the MRT, MCT and PSVT test types,
respectively. It is shown by the results of the regression analysis that the average
completion time of the MRT test is significantly larger (p-value < 2× 10−16) than
the average completion time of the others. When analyzing the average completion
times of the MCT and the PSVT test types, no significant difference is detected
between them (p-value = 0.574).

The last factor to be analyzed is the device used. It can be suspected from the
numerical results as well, but according to the results of the regression analysis,
a detectable difference in the test completion times exist in the case of the DD
and the GVR. The spatial ability test completion times are significantly (p-value <
2× 10−16) increased by the use of the GVR

Figure 4.9: 95% CIs of the estimated coefficients in the case of one analyzed variable.

Results of the analyses of effects of two factors without interactions

After evaluating the effect of single variables, the investigation was continued in
pairs. Since the primary hand of the user was omitted from further analyses due to
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having no significant effects on the completion times, only three pairs were made:
the pair of gender and the test type; the pair of gender and the device used; and the
pair of the test type and the device used. Similarly, to the previous subsubsection,
both the results of the regression analyses and the numerical data are shown in
the appendix in Tables A19 and B16, respectively. The 95% CIs of the estimated
coefficients can be seen in Figure 4.10 in the end of this subsubsection.

In the case of the gender and the test type variable pairs, the results are the
following: there are no significant differences in the completion times in the case of
the MCT tests which are done by females and in the case of the PSVT tests which
are done by females. Also, significant differences exist in the case of all the other
pairs. Significantly smaller completion times are yielded by males who did the MCT
tests and males who did the PSVT tests, while significantly larger completion times
are yielded by females who did the MRT tests and males who did the MRT tests.

The next pair to investigate was the gender and the device used variable pair. Ac-
cording to the regression calculations, the females who used the GVR and the males
who used the GVR have significantly (p-value = 0.016046 and p-value = 0.000313)
increased completion times, when compared to the females who used the DD. How-
ever, significantly (p-value = 0.000671) smaller completion times are received by
males who used the DD. Instead, by using the GVR, no significant difference could
be found between the females who used the GVR and the males who used the GVR,
as the p-value = 0.3414.

The last pair to investigate was the test type and the device used variable pair.
In this case, the point of reference was the MCT and the DD pair. When comparing
the other pairs to it, the following conclusion can be drawn: the completion times
are significantly affected by every pair except the PSVT test type and use of the
DD ("PSVT, DD").

Figure 4.10: 95% CIs of the estimated coefficients in the case of the investigated
variable pairs in which interactions are not allowed.
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Results of the analyses of effects of two factors with interactions

The next to investigate was the interactions of the pairs. Similarly, to the previous
subsubsection, the first pair to analyze was the gender of the user and the test type.
After comparing the linear regression model which contains only the two factors to
the model in which their interactions are taken into account, it can be concluded
that the two models do not significantly differ from each other. The model in which
the interactions are taken into account is analyzed by regression and the results
are presented in Table A20 in the appendix, while the 95% CIs of the estimated
coefficients can be seen in Figure 4.11.

Figure 4.11: 95% CIs of the estimated coefficients in the case of the investigated
variable pairs in which interactions are allowed.

The pair of the gender of the user and the test types was the first to be inves-
tigated by regression. According to the results, it can be concluded that the test
completion times are significantly affected by the gender of the user and the MRT
test type. However, no significant interactions exist between these two variables as
can be seen from Table A20 and in Figure 4.11.

The pair of the gender of the user and the device used was investigated next.
Thus, comparison was done between two models: in one model only the two factors
are taken into account (I), while in the other their interactions are taken into account
as well (II). Variance analysis resulted in p-value = 0.02107. This means that
the model in which interactions are allowed is more appropriate. According to
the regression analysis results presented in Table A20, the completion times are
significantly affected by both the gender of the user and the device used. Besides
the effects, interaction between them is also detectable. This coincides with the
statement that the model allowing interactions describes better the phenomenon
than the model in which interactions are not allowed. Moreover, due to the value of
the estimated coefficient 32.309 the interaction of the gender and device used is very
strong. Thus, it can be concluded that with use of the GVR, in case of male users,
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the completion times increase much more than in the case of the female users.
The last pair was the test type and the device used variable pair. Similarly, to the

previous pair, the linear model in which only the factors are taken into account (I)
was compared to the linear model in which their interactions are taken into account
(II) as well. The latter model proved to be superior with p-value = 0.04093. The
results of the regression analysis are presented in the third block of Table A20.

Therefore, according to the results presented in Table A20 it is shown that both
factors have effects and interactions exist between them. The only one exception is
when the PSVT test type and the DD are paired. It is shown by the negative sign
of the estimated coefficient -29.243 that the increase in completion times is less in
case of MRT test type using the GVR, than it would be expected by the sum of
separate effects of test type and device used.

Results of the analyses of effects of all factors without interactions

After analyzing the pairs with and without interactions, the investigation of the
effects of three variables is the next step. However, since only three variables remain
after omitting the primary hand of the user, only one variable triplet can be created:
the gender of the user, the test type and the device used. Both the results of the
regression analysis and the numerical results are presented in the appendix in Tables
A21 and B17, respectively. The 95% CIs of the estimated coefficients are shown in
Figure 4.12.

Figure 4.12: 95% CIs of the estimated coefficients in the case of the investigated
variable triplets in which interactions are not allowed.

The point of reference was the "F, MCT, DD" triplet. Therefore, the remaining
combinations were compared to it and the results are the following: the completion
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times are significantly smaller in the case of males who did the MCT test type with
the DD (M, MCT, DD), while the completion times are significantly larger in the
cases of females who did the MCT tests with the GVR (F, MCT, GVR), females
who did the MRT tests with either the DD or the GVR (F, MRT, DD; F, MRT,
GVR), males who did the MCT tests with the GVR (M, MCT, GVR) and males
who did the MRT tests with either the DD and the GVR (M, MRT, DD; M, MRT,
GVR). The largest increase of completion times is when the MRT test type is done
by males using the GVR (M, MRT, GVR).

Results of the analyses of effects of all factors with interactions

What remains to be investigated is the only triplet with interactions. Therefore,
comparisons were done between three models: the model in which the effects of the
factors without interactions are investigated (I), the model in which the effects of
variables are investigated, while interactions are also allowed (II), and the model
in which the interactions of all factors are allowed (III). From the comparisons, it
can be concluded that out of models I and II, model II is significantly better with
p-value = 0.0069. However, there is no significant (p-value = 0.9043) difference
between model II and III. Therefore, the results of the regression analysis of model
II are presented in Table A22 in the appendix, while the 95% CIs of the estimated
coefficients can be seen in Figure 4.13.

Figure 4.13: 95% CIs of the estimated coefficients in the case of the investigated
variable triplets in which interactions are allowed.

It is shown by the results of the linear regression that out of the genders, the
completion times are significantly decreased by the male users. Out of the test types,
the completion times are significantly increased by the MRT test type. Similarly,
out of the used display devices, the completion times are significantly increased by
the use of the GVR. It can be concluded again that in the case of the male user,
the completion times increases much more if the GVR is used, than in the case of
a female user. Moreover, when using the GVR, the increase in completion times is
smaller in the case of the MRT and the PSVT test types compared to the MCT test
type.
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4.1.3 Assessing the correlation between the used display de-
vices and the human skills

In this subsection, the correlation between the used display devices and the human
skills is analyzed. Five different aspects were investigated, grouped by display de-
vice: the difficulty of the tests; the rates of correct answers; the rates of correct
answers regarding the gender; the rates of correct answers regarding the primary
hand of the user; the rates of correct answers regarding age groups; and the rates
of correct answers regarding the studies of the users. These are investigated in the
next subsubsections.

The difficulty of the tests by display device

Based on the results on the tests, every test type is distinguishable from each other
when using the DD or the GVR. There are significant differences between the test
types. Although these differences can be seen in Tables C1-C4 in the appendix,
it is suggested by the scores of the students as seen in Table 4.3 that the MCT is
the hardest type of test. The MRT type is the easiest and the PSVT test stands
between MRT and MCT in terms of difficulty. However, with the GVR, comparing
only the dispersions, significant differences can be found between in some cases.

The equality of the standard deviations is accepted in the cases of "MRT, DD"
and "MRT, GVR" (p-value = 0.5476), "MCT, DD" and "MCT, GVR" (p-value =
0.2454) and "PSVT, DD" and "PSVT, GVR" (p-value = 0.8456). However, the
equality of average rates is only accepted in the first two cases: "MRT, DD" and
"MRT, GVR" (p-value = 0.8336) and "MCT, DD" and "MCT, GVR" (p-value =
0.1924). In the case of "PSVT, DD" and "PSVT, GVR", the H of equality is rejected
(p-value = 0.0001766), therefore the performance of the students who used the GVR
is significantly better on the PSVT tests when compared to students who used the
DD.

Table 4.3: The difficulty of the tests.

Variables Number of
students Min Max Average rates Dispersion

MRT, DD 240 0.4167 1.0000 0.8041 0.1334
MRT, GVR 61 0.4833 0.9833 0.8003 0.1248
MCT, DD 240 0.1333 0.9667 0.4389 0.1540
MCT, GVR 61 0.0000 0.8000 0.4071 0.1723
PSVT, DD 240 0.1333 0.9667 0.6168 0.1932
PSVT, GVR 61 0.0667 1.0000 0.7230 0.1886

The rates of correct answers by display device

The next to investigate was the rates of correct answers themselves. Normality
analyses were done for both devices. The p-value = 0.6335 for DD and the p-value =
0.2548 for the GVR. This means that the Hs of Gauss distributions were accepted in
the cases of both display devices. The Hs of the equality of the dispersions and the
expectations are accepted (p-value = 0.8786, and p-value = 0.3332, respectively)
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thus there is no significant difference of the correct answers between the two devices.
The rates of correct answers by display device are presented both in a numerical
form in Table 4.4 and in a graphical form by plotting their empirical cumulative
distribution functions (ECDFs) in Figure E1 in the appendix.

Table 4.4: The rates of correct answers by display device.

Variables Number of
students Min Max Average rates Dispersion

DD 240 0.3083 0.9667 0.6660 0.1185
GVR 61 0.3667 0.9000 0.6827 0.1199

The comparison of the rates of correct answers regarding the gender of
the user by display device

The rates of correct answers regarding the gender of the user are also presented
in a numerical form in Table 4.5, while the ECDFs can be seen in Figure E2 in
the appendix. According to the results, in the case of the students who used the
DD, the type of distribution was tested regarding their genders. The H of normal
distribution was accepted with p-value = 0.4846 in the case of males and with
p-value = 0.9707 in the case of females. Afterward, the equality of deviations is
accepted with p-value = 0.2213, but the equality of average rates is rejected on
the level of significance 0.00004. This means that the ratio of correct answers is
significantly better for males in the case of the DD.

Next, the results on the GVR were investigated. A normality analysis was done
with p-value = 0.5377 for males and with p-value = 0.6657 for females. The equality
of the dispersions is accepted (p-value = 0.5757), and the equality of average rates
is also accepted at a high-level of significance (p-value = 0.6875). Therefore, there
is no significant difference between the results of the two genders.

Table 4.5: The comparison of the rates of correct answers regarding the gender of
the user by display device

Variables Number of
students Min Max Average rates Dispersion

DD, Male 211 0.3083 0.9667 0.6769 0.1172
GVR, Male 44 0.3667 0.9000 0.6790 0.1247
DD, Female 29 0.4417 0.7833 0.5865 0.0965
GVR, Female 17 0.4417 0.8000 0.6922 0.1092

When comparing the results of males who used the DD to the results of males
who used the GVR, the equality of the standard deviations (p-value = 0.5609) and
the equality of the average rates (p-value = 0.9193) are both accepted. Moreover,
the distribution of the two groups is tested, the equality of the distributions is
accepted (p-value is 0.7931). Therefore, no significant difference exists between the
two male groups. However, different results are yielded between the two female
groups. When looking at the standard deviations, the equality is accepted with
p-value = 0.5513, but when looking at the average rates, the equality is rejected
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with (p-value = 0.0024). According to the results, there is a significant improvement
in the results when the GVR is used by female students. When the equality of the
two distributions is tested, it is refused with p-value = 0.02125. Compared to
the DD, the rates of correct answers of female students who used the GVR were
significantly improved by 18.022% on average.

The comparison of the rates of correct answers regarding the primary
hand of the user by display device

Next, the effect of the primary hand of the users was investigated and the results are
presented in a numerical form in Table 4.6 in the end of this subsubsection and in a
graphical form by plotting their ECDFs in Figure E3 in the appendix. In the table,
the right-handed users are abbreviated as RH and the left-handed users are as LH.
According to the results that are presented in the table, in the case of the DD, the H
of normal distribution was accepted for both cases. For right-handed users, the H of
normal distribution was accepted with p-value = 0.5343 and with p-value = 0.9313
for the left-handed users. The equality of dispersions was accepted with p-value =
0.6567 and the equality of the expected values is also accepted with p-value = 0.2796.
Due to the results, no significant difference was found between the right-handed and
left-handed users when using a DD. In the case of the GVR, a normality analysis
was also done: the H of Gauss distribution is accepted at high levels of significance
(p-value = 0.3623 for the right-handed and p-value = 0.9937 for the left-handed
users). The equality of the standard deviations is accepted (p-value = 0.4826),
but the equality of average rates is rejected on the level of significance 0.05, due to
p-value = 0.02201. Thus, with the use of the GVR, the performance of left-handed
users was significantly better than their right-handed counterparts.

After analyzing the results separately by the device used, the next step was to
compare them. Firstly, the two right-handed groups were compared to each other.
The equality of the standard deviations and also of the average rates are accepted
on very high levels (p-value = 0.8633 and p-value = 0.9991, respectively) and the
equality of the distributions is also accepted (p-value = 0.7086). Therefore, no
significant difference can be found between the two right-handed groups. However,
different results are yielded between the two left-handed groups: the equality of the
standard deviations is accepted (p-value = 0.4164), but the equality of average rates
is rejected (p-value = 0.006949). This means that there is a significant improvement
with the use of GVR in the case of the left-handed group.

Table 4.6: The comparison of the rates of correct answers regarding the primary
hand of the user by display device.

Variables Number of
students Min Max Average rates Dispersion

DD, RH 213 0.3083 0.9667 0.6691 0.1177
GVR, RH 52 0.3667 0.8583 0.6691 0.1193
DD, LH 27 0.4417 0.8833 0.6414 0.1242
GVR, LH 9 0.6000 0.9000 0.7611 0.0938
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The comparison of the rates of correct answers regarding the age groups
by display device

The next to investigate was the age of the users. When analyzing the display devices
separately, the following significant differences were found. In the case of the DD,
significant differences appeared when comparing the results of the students who are
less than or equal 18 years of age to students who are over 18 years of age. In the
case of the GVR, the significant difference was between who are under or equal to
23 and who are over 23. Therefore, four age groups were made:

• DDU18: Students, who are aged 18 or are under and used the DD

• DDO18: Students, who are over 18 and used the DD

• GVRU18: Students, who are aged 23 or are under and used the GVR

• GVRO18: Students, who are over 23 and used the GVR

To investigate these age groups, the equality of standard deviations is accepted
(p-value = 0.739) in category DDU18, GVRU23, and it is also accepted in category
DDO18 and GVRO23 (p-value = 0.1794). The equality of expected rate values
is accepted (p-value = 0.2784) in category DDU18, GVRU23. However, there is
a significant difference between the DDO18 and GVRO23 categories (p-value =
0.02259). Therefore, the users who are over 23 and used the GVR during the tests
are significantly better than the users who used the DD during the tests and are
over 18. The results of the students in these age groups are presented in Table 4.7,
while the age groups are more detailed in Tables C5-C8 in the appendix.

Table 4.7: The comparison of the rates of correct answers regarding the age groups
by display device.

Variables Number of
students Min Max Average rates Dispersion

DDU18 34 0.3083 0.8583 0.6245 0.1224
GVRU23 37 0.3667 0.9000 0.6572 0.1297
DDO18 206 0.4083 0.9667 0.6728 0.1167
GVRO23 24 0.5417 0.8667 0.7219 0.0921

The comparison of the rates of correct answers regarding the studies of
the user by display device

The last factor to compare was the rates of correct answers regarding the studies
of the users. Since the students who tested using the DD were architectural/social
engineering and mechanical engineering students, and the ones who tested with the
GVR were IT and non-IT students, direct comparisons could not be made. However,
the results on the different devices could be investigated separately. The rates of
correct answers regarding the studies of the students can be seen in Table 4.8, where
architectural/social engineering students are abbreviated as AE and the mechanical
engineering students as ME.
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Table 4.8: The comparison of the rates of correct answers regarding the studies of
the user by display device.

Variables Number of
students Min Max Average rates Dispersion

AE 62 0.4083 0.8500 0.6460 0.1127
ME 178 0.3083 0.9667 0.6729 0.1200
IT 21 0.4417 0.8667 0.6845 0.1103

Non-IT 40 0.3667 0.9000 0.6817 0.1259

In the case of the use of the DD, normality analyses were executed. For architec-
tural/social engineering students, the p-value = 0.8103 and for mechanical engineer-
ing students, the p-value = 0.8763. The results of the analyses are accepted. The
equality of the standard deviations is accepted with p-value = 0.5774. The equality
of average rates is also accepted with p-value = 0.1133. Therefore, as can be seen,
no significant difference is detected between the results of architectural/social engi-
neering and mechanical engineering students. In the case of the use of the GVR,
the Hs of Gauss distribution were accepted (p-value = 0.9854 for IT students and
p-value = 0.2599 for non-IT students). The equality of the dispersions is accepted
(p-value = 0.5338), and so is the equality of the average rates (p-value = 0.9275).
Therefore, there is no significant difference concerning the spatial skills measured
by the tests in VEs between IT students and non-IT students.

4.2 Evaluating the APBMR algorithm
Since multiple types of evaluations were done, five subsections are contained in this
section. In subsection 4.2.1, the real-time results of both computers are presented,
while the results of the file-based evaluation is contained in subsection 4.2.2 and their
execution times is compared in subsection 4.2.3. Afterward, the APBMR algorithm
is compared to the previous one that it was based upon in subsection 4.2.4. Finally,
all results are evaluated in subsection 4.2.5 using every piece of data.

Starting from this point, abbreviations will be used instead of the frequently
occurring words or phrases. These abbreviations are the following:

• Average Gesture Acceptance Rate (AGAR)

• Arithmetic Mean Technique (AMT)

• Geometric Mean Technique (GMT)

• Harmonic Mean Technique (HMT)

• Contraharmonic Mean Technique (CHMT)

• Quadratic Mean Technique (QMT)

• Cubic Mean Technique (CMT)

69



4.2.1 Real-time results

As could be seen in Table 3.3 in the data collection subsubsection, 4 gestures were
performed 10 times by each of the 32 people using the GC and by each of the 32
people using the AC. The results of both evaluations are shown in Tables D2 and
D3, respectively, in the appendix. The results are also shown in Figures 4.14 and
4.15 in their respective subsubsections.

Real-time results with the general computer

In the case of the circular gestures as seen in the first block of D2, the best AGAR
is provided by CHMT in the ±0.05 m AD (27.0%). In the ±0.10 m AD, the best
AGAR is provided by the HMT (64.1%). The best AGAR in the ±0.15 m AD is
provided by the AMT (87.1%). After the circular gesture, the waving gesture was
investigated next and the results are shown in the second block of Table D2: in
the ±0.05 m and ±0.10 m ADs the best AGARs are provided by the HMT with
76.2% and 95.7%, respectively. Contrary, the optimal AGAR of 97.3% is provided
by the CHMT in the ±0.15 m AD. In the case of the forward-diagonal gestures, it
is shown by the results that are presented in third block of Table D2 that the best
AGARs are provided by the CHMT in both the ±0.05 m and the ±0.10 m ADs
with 84.8% and 99.2%, respectively. In the case of the ±0.15 m AD, every forward-
diagonal gesture is accepted with the HMT. The last gesture to be evaluated was
the upward-diagonal gesture as seen in the last block of Table D2. According to the
results, the best AGAR of 19.9% was provided by the CHMT in the ±0.05 m AD.
In the remaining ADs of ±0.10 m and ±0.15 m, the best AGARs are returned by
the AMT with 52.3% and 75.4%, respectively.

Figure 4.14: Real-time results using the GC.

Real-time results with the advanced computer

In the case of the circular gestures (first block of Table D3), the best AGAR is
provided by the CHMT in the ±0.05 m AD with 23.4%. Contrary, the best AGARs
of 73.0% and 98.4% are provided by the QMT in the ±0.10 m and the ±0.15 m
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ADs, respectively. In the second block of Table D3 the case of the waving gesture is
shown. According to the results, the best AGAR is provided by the CHMT in the
±0.05 m AD with 79.3%, while the best AGAR of 96.9% is provided by the AMT
in ±0.10 m AD. In the case of the ±0.15 m AD, the best AGAR is provided by
the HMT with 99.6%. In the case of the forward-diagonal gesture as seen in third
block of Table D3, the best AGARs are provided by the CHMT in the ±0.05 m
(65.6%) and in the ±0.10 m (92.2%) ADs, while the best AGAR is provided by the
AMT in the case of the ±0.15 m AD with 96.1%. In the case of the upward-diagonal
gestures, it is shown in the last block of Table D3 that the best AGARs are provided
by the CHMT in all ADs: 48.8%, 89.8% and 94.9%, respectively. However, in the
±0.15 m AD, the same AGAR is provided by the HMT as the CHMT.

Figure 4.15: Real-time results using the AC.

4.2.2 File-based results

Contrary to the real-time measurements, during the file-based investigation 4 ges-
tures were done 10 times by each of the 48 people as mentioned in the data collection
subsubsection. In this case, the gesture descriptors were saved into a file and were
evaluated by the APBMR algorithm. The results are shown in Figure 4.16 and are
presented in a numerical form in Table D4 in the appendix.

In the case of the circular gestures, the best AGAR is provided by the CHMT
in the ±0.05 m AD with 37.5%, while in the ±0.10 m AD, it is provided by the
AMT with 64.3%. In the ±0.15 m AD it is provided by the QMT with 84.9%. In
the case of the waving gestures, the best AGAR is provided by the HMT in the
±0.05 m AD with 62.9%, while in the remaining two ADs the best AGARs are
provided by the CHMT with 91.5% and 97.1%, respectively. The latter is also equal
to the AGARs in the case of the HMT and the CMT. According to the results of
the forward-diagonal gestures, the AGARs are the best with the use of the CHMT
in the ±0.05 m and ±0.10 m ADs with 72.1% and 88.3%, respectively. In the ±0.15
m AD, the best AGAR is provided by the AMT (94.8%). It is shown by the results
of the upward-diagonal gestures that the best AGARs are provided by the CHMT
in the ±0.05 m and ±0.10 m ADs with 45.5% and 76.6%, respectively. In contrast,
the best AGAR is provided by the HMT in the ±0.15 m AD with 86.7%.
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Figure 4.16: File-based results using the AC.

4.2.3 Comparing the real-time and the file-based execution
time of the algorithm

The results of the execution time comparison can be seen in Figure 4.17. For the
numerical form, see Table D5 in the appendix. According to Figure 4.17 and to
the first block of Table D5, the real-time average execution times are faster than
the file-based ones of the APBMR algorithm using the AC. This is an unexpected
result. The largest execution time decrease is with the QMT (96.7%) and the least
execution time decrease is 81.6% with the CMT. It is shown in the second block
of Table D5 that even by using the GC, the algorithm is still superior in real-time,
except in one case. The largest execution time decrease is with the QMT (87.5%),
while the least execution time "decrease" is -23.8% with the CHMT which is the
mentioned exception. Naturally, the minus sign means that the execution time
increases. According to the results, there is a possibility that the file-based usage of
the algorithm can be more time-consuming than when using it in real-time.

Figure 4.17: Comparing the execution time of the APBMR algorithm.
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4.2.4 Comparing the APBMR to the RDAMR

The APBMR and the RDSMR/RDAMR algorithms are compared in this subsec-
tion. Although, the RDSMR is omitted from the comparison as its results can be
influenced by the elapsed time between two gesture descriptors. Contrary, with the
use of the RDAMR, the results cannot be influenced by the elapsed time. By this
definition alone, a better rate of accepted gestures is provided by the RDAMR than
the RDSMR.

As was mentioned earlier, the APBMR is built on the RDAMR. Therefore, the
RDAMR works similarly: ADs are created as in the case of the APBMR, but only the
first three gestures are used for their creation. Thus, during gesture recognition the
ADs do not change. According to [76, 77] the RDAMR works and usable, however
the not-changing ADs can cause problems, because the speed and the position of the
user are not followed by the algorithm. In the case of the RDAMR, the same gesture
is not accepted even if one of these factors changes. There is another difference
between the two algorithms: with the APBMR, the gesture is evaluated when one
is finished, while with the RDAMR, the gesture is evaluated during the movement.

To compare these two algorithms, the AGARs of the RDAMR algorithm and of
each MTs of the APBMR algorithm were analyzed. It should be noted that only
three ADs (±0.05 m, ±0.10 m and ±0.15 m) are generated and evaluated by the
APBMR. However, it can be quickly observed that improved results are returned by
the APBMR than by the RDAMR. Thus, the radius of the ADs with the RDAMR
algorithm was increased until similar AGARs were received as with the APBMR.
Since the gesture is evaluated differently, their execution times were not compared.

During the comparison, 4 gestures were done 10 times by each of the 32 people.
To compare the algorithms, the results of the measurements were written into a
file. Afterward, both algorithms evaluated the same movement descriptors from the
file. The results of the comparisons can be seen in Figure 4.18 and they are also
presented in a numerical form in Table D6 in the appendix.

Figure 4.18: Comparing the MTs of the APBMR to the RDAMR algorithm.

Similarly, to before, the circular gesture was the first to be compared. According
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to the numerical data in the first block of Table D6, better AGARs are provided
by all MTs of the APBMR than the by the use of the RDAMR algorithm. The
difference between the AGARs of the two algorithms is very high in the cases of
the AMT, HMT and CHMT. The AGARs when the GMT, QMT and the CMT are
used are quite similar. Therefore, the APBMR is superior to the RDAMR in case of
the circular gestures. Although, the results are more interesting in the case of the
waving gesture. According to the numerical data in the second block of the table,
the difference of the AGARs of the RDAMR between the ±0.05 m and ±0.10 m
ADs is quite large. Also, the AGAR of the RDAMR in the ±0.10 m AD (66.0%)
is similar to the AGARs of the APBMR algorithm in the ±0.05 m AD (61.7% -
67.5%, depending on the used MT). Contrary, in the case of the circular gesture,
the ADs of the RDAMR are needed to be increased to ±0.15 m to have the same
AGARs as the APBMR in the ±0.05 m AD. In the case of the forward-diagonal
gesture as presented in the third block of Table D6, worse AGARs are returned
by the RDAMR than in the case of the waving gesture. An AGAR of 88.7% is
provided by the APBMR with the use of the CHMT in the ±0.05 m AD which is
the optimal MT to be used in this case. Meanwhile, a similar AGAR is provided by
the RDAMR with 87.5% in the ±0.20 m AD, which is quite a large AD. Similarly,
to the forward-diagonal movement, the results of the upward-diagonal are alike to
it. These results can be seen numerically in the fourth block of Table D6. In the
±0.20 m AD, an AGAR of 68.4% can be reached with the RDAMR algorithm which
is slightly better than the ones in the ±0.05 m AD using the APBMR algorithm.
The AGARs of the latter are between 58.6%-62.8% depending on the MT used.

According to Figure 4.18 and to the last block of Table D6, the results of all four
gestures are summarized in case of both algorithms. As can be suspected, superior
AGARs are provided by the APBMR. In the ±0.05 m AD, the increase of AGARs
is between 358.2%-535.3% depending on the MT used, while in the ±0.10 m and
±0.15 m ADs it is 87.8%-125.4% and 22.7%-47.3%, respectively.

4.2.5 Evaluating all movement descriptors

All gesture descriptors that are evaluated with the APBMR algorithm are sum-
marized in this subsection. This means that – according to Table 3.3 in the data
collection subsubsection – 26880 lines of data are evaluated. The file-based mea-
surements are included as well, meaning that the execution time of the algorithm
can be a little higher. The results of the evaluation of all gesture descriptors are
presented graphically in Figure 4.19, while the numerical results can be found in
Table D7 in the appendix.

According to the results, it can be concluded that the best AGARs of 53.4% and
79.6% are provided by the CHMT in the ±0.05 m and ±0.10 m ADs. In the ±0.15 m
AD, the optimal AGAR is of the AMT with 89.6%. In case of the AMT, HMT and
CHMT, the dispersions are larger in the ±0.05 m AD, while they start to decrease
when the AD is increased. In contrast, the dispersions of the other three MT increase
when the ADs increase. Regarding their average execution times, the QMT and the
AMT have the largest average with 4.655 ms and 4.424 ms, respectively. Although,
their time dispersions are high as well.
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The first AD to look at is the ±0.05 m AD. According to the numerical data, in
case of the circular and upward-diagonal gestures, worse AGARs are returned than in
the case of the waving and the forward-diagonal gestures. The best AGARs are pro-
vided by the CHMT in the ±0.05 m AD in the case of the circular, forward-diagonal
and upward-diagonal gestures, which are 30.5%, 73.9% and 39.1%, respectively. In
the case of the waving gesture, the best AGAR of 71.2% in the same AD is with the
HMT.

The second AD to be evaluated is the ±0.10 m AD. In the case of the circular
movements in the ±0.10 m AD, the best AGAR of 61.9% is provided by the AMT.
In the same AD, the best AGARs are provided by the HMT in the case of the waving
gesture and by the CHMT in the case of the forward-diagonal and upward-diagonal
gestures with 94.1%, 92.5% and 72.3%, respectively. This means, that the optimal
AGARs are provided by the CHMT in both the ±0.05 m AD and the ±0.10 m AD.
It also can be seen that the optimal MT changes from HMT to AMT in the case of
the waving gestures.

Lastly, in the ±0.15 m AD, the best AGARs of 83.7% and 96.4% are provided by
the AMT in the case of the circular and forward-diagonal movements, respectively.
For the waving and upward-diagonal gestures, the best AGARs are provided by the
HMT with 97.8% and 83.4%, respectively. According to the results, the AGARs of
the CHMT are better in the stricter ADs than in the ±0.15 m AD, while the AMT
and the HMT prove to be superior in the ±0.15 m AD.

Figure 4.19: The results of the evaluation of all gesture descriptors with the APBMR.

Up to this point, all three axes were taken into account when evaluating the
gesture descriptors. This was done because of the author’s definition of accepted
gestures. This definition is the following: the gestures are only considered accepted if
more than 50% of their descriptors are inside the ADs on each axis. However, during
this research only two axes at most are needed in the case of the evaluated gestures.
Only the x, y axes are required by the circular, the waving and the upward-diagonal
gestures, while only the x, z axes are required by the forward-diagonal gesture.
Figure 4.20 presents the results of the evaluation on two axes, while the numerical
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data can be found in Table D8 in the appendix.

Figure 4.20: Evaluating the gesture descriptors with the APBMR on two axes.

What can be seen in the figure is that if only two axes are evaluated, the AGARs
are higher than in the case of evaluating on three axes. The other thing that can be
observed is that when the y axis is paired with another, the AGARs are lower than
in the case of the x, z pair of axes. It is shown by the results of the evaluation of
one axis (Figure 4.21) that the y axis has worse AGARs than the other axes. The
numerical data can be seen in Table D9 in the appendix.

Figure 4.21: Evaluating the gesture descriptors with the APBMR on one axis.
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Chapter 5

Discussion and conclusions

After presenting the results in the previous chapter, the discussion and the conclu-
sions are done in this chapter. The results regarding the spatial skills of the users
in VEs are discussed and concluded in section 5.1, while the APBMR is discussed
and concluded in section 5.2. In each case, the RQs will be answered, and based on
the Hs, theses (Ts) will be formulated.

5.1 Discussing the results on the spatial ability tests
In this section the results on the spatial ability tests in VEs are discussed. Since
three groups of RQs and Hs were made regarding this part of HCI, this section is split
into three subsections: in subsection 5.1.1 the factors that influence the probability
of the results in VEs are discussed, in subsection 5.1.2 the factors that have an effect
on the completion times are discussed and in subsection 5.1.3 the skills that can be
affected by the display devices are discussed.

5.1.1 The factors that influence the probability of the results
in virtual environments

Transitioning from paper to virtual is always difficult and this is not an exception
in the case of the spatial ability tests. A different type of interaction is presented to
the user by this new environment, namely by the VE. When designing VEs, it has
to be kept in mind that interacting with virtual space and objects is not the same
as interacting with real ones. These VEs are built differently and have graphics that
are unlike reality. The goal of the author of this PhD dissertation was to make this
HCI easier, and in order to achieve that, to present an optimal solution to make
HCI in VR more effective.

According to the research data, an optimal solution was found, and the RQs were
clearly answered in the first group. The effects of the parameters were demonstrated,
and therefore, 1H5 was accepted, while 1H1, 1H2, 1H4, 1H6 were rejected and mixed
cases are presented by 1H3, 1H7. These are elaborated in detail in the following
subsubsections.
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Rejected hypotheses - Detected influences

The first rejected hypothesis to discuss is 1H1. Originally, it was suspected that the
probability of correct answers is influenced by the perspective camera type. The
null H was that there is no effect, and the alternative H was that there exists some
effect. According to Table A1, this latter proved to be the case. The probability
of correct answers is positively influenced by the perspective camera type. How-
ever, as can be seen from Tables A10, A11, A12, A13, A15, A16 and A17, the
results slightly changed when multiple factors were taken into account. This is due
to VR being a complex, synthetic environment: in VR, no VE is made of only a
single factor. Therefore, it is safe to assume that when the users are taken into
the virtual space, multiple factors should be considered. That is why all factors
are analyzed in pairs, triplets, and a quartet. After investigating every possible
combination with the camera type, the perspective camera was demonstrated to be
superior in all tests, and this was always an important factor. Therefore, 1T1 is
formed: when using a perspective camera, the performance of the users was signifi-
cantly (p-value = 2 .57 × 10−12 ) influenced in terms of increasing their probability
of answering correctly; and in pairs, it exhibited significant (p-value = 0 .0459 ) in-
teractions with -45°, 0°, 45° camera rotations or significant (p-value = 8 .91 × 10−5 )
interactions with the 1.5:1 and 3:1 contrast ratios; in triplets, it had no significant
interactions; but in fours it exhibited significant (p-value = 0 .000133 ) interactions
with -45°, 0°, 45° camera rotations, 1.5:1, 3:1 contrast ratios, and the GVR.

The existence of 1T1 is interesting, because when looking at the paper-based tests
of all three types, the objects on the paper are drawn on the basis of orthographic
projection. This fact can also lead to the question as to whether if the tests on the
paper were changed to the projection of perspective type, would it also change the
probability of the results of the testers?

The following rejected H is 1H2. Recall that the null H is that there is no effect;
therefore, rejecting it means that its effect can be realized. This fact is interesting,
because the camera has two types. For orthographic cameras, the FoV is undefined
in VEs. For perspective cameras, the 45°, 60°, 75° and 90° FoVs are analyzed. Since
it is stated by 1T1 that the perspective camera type is better than the orthographic
type. It also is proven by Table A2 with respect to the FoVs, the main comparison
was only carried out among the FoVs of the perspective camera as seen in Table
A3. Due to these results, 1T2 is formed: the performance of the users is influenced
by the field of view of 90°, meaning that their probability of answering correctly is
increased. This is a significant difference on the level 0.05, but not on the level 0.01
(p-value = 0 .0225 ).

The next rejected H to examine is 1H4. The contrast ratios are dealt by this
H. According to logistic regression analysis results in Table A6, better probabilities
of correct answers are produced by the smaller contrast ratios (1.5:1 and 3:1) than
the larger ones (7:1, 14:1, 21:1). This was also confirmed by Table A7, in which
the contrast ratios were grouped into two groups. In Tables A10, A11, A12, A13,
A15, A16 and A17, the contrast ratios were examined in detail. Since this factor
has a great influence on VEs, the interaction of the contrast ratio groups was also
assessed. 1T4 is comprised by these facts: the contrast ratios of 1.5:1 and 3:1 signifi-
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cantly (p-value = 2 .56 × 10−6 ) influence the performance of the users by increasing
their probability of answering correctly, and in pairs they significantly (p-value =
8 .91 × 10−5 ) interact with the perspective camera type, and in triplets they signif-
icantly (p-value = 0 .000237 ) interact with the -45°, 0°, 45° camera rotations and
the Gear VR, while in fours they significantly (p-value = 0 .000133 ) interact with
the perspective camera type, the -45°, 0°, 45° camera rotations and the Gear VR.

After forming 1T4, let’s think back to the paper-based tests. There are no
contrast ratios on the paper-based tests. Everything is white, only the edges of the
objects are black. A VE was made with brighter colors which is similar to the paper-
based tests. However, the idea of using even brighter contrast ratios was discarded,
as the eyes testers who used the GVR hurt after a few minutes with the use of the
contrast ratio of 1.5:1. It is interesting to note that the best results are provided by
using this contrast ratio in the VE, even numerically.

The last rejected H is 1H6. This was one of the most interesting Hs, as the
aim was to compare the DD and the GVR HMD. According to Table A9, the GVR
had a significant influence (and also, improvement) over the DD, as its HCI level
was different. Since the display device used was one of the most important fac-
tors, and was influential, it was also examined in pairs, triplets, in fours, and its
interactions were also assessed in Tables A10, A11, A12, A13, A15, A16 and A17.
According to the results, when talking about unique influences of the display device
used when investigated with more factors than one, it disappears in most cases,
but its interactions remain. On the basis of these facts, 1T6 is formed: in contrast
to the desktop display, the use of the Gear VR significantly (p-value = 0 .00677 )
increased the probability of correct answers on the tests and in pairs it signifi-
cantly (p-value = 0 .0326 ) interacted with the -45°, 0°, 45° camera rotations; in
triplets it significantly (p-value = 0 .000237 ) interacted with the -45°, 0°, 45° cam-
era rotations and the 1.5:1 and 3:1 contrast ratios; and in fours it significantly
(p-value = 0 .000133 ) interacted with the perspective camera type, the -45°, 0°, 45°
camera rotations, and the 1.5:1, 3:1 contrast ratios.

Mixed cases

The first H that was mixed is 1H3. This is mixed because it was hypothesized that
some rotation would help the users. This H was demonstrated to be true, but when
no rotation occurred, it was also true. When the rotation was smaller than 45° in
a given direction, the H is shown to be false by the results except in the case of 0°.
It can be stated that the greatest influence on the results takes place when no, or
a large rotation occurs. For this, see Table A4 and Table A5. Since the rotation is
influential, it was also analyzed in pairs, triplets, and in fours, and its interactions
were assessed in Tables A10, A11, A12, A13, A15, A16 and A17. Due to the results
presented in the Tables, 1T3 was formed: when rotating the camera -45°, 0°, 45°, the
performance of the users will be significantly increased (p-value = 1 .12 × 10−10 ),
increasing their probability of answering correctly and in pairs; it will significantly
(p-value = 0 .0459 ) interact with the perspective camera type; and in triplets it will
significantly (p-value = 0 .000237 ) interact with the 1:5.1, 3:1 contrast ratios and
the Gear VR; and in fours it will have significant (p-value = 0 .000133 ) interactions
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with the perspective camera type, the 1.5:1, 3:1 contrast ratios and the Gear VR.
The second and final mixed-case H was 1H7, which is related to the optimal

preferences in VEs for achieving the best HCI results. This H is only a mixed
case, because originally the FoV of the camera was put into this H. However, for
the optimal preferences due to similar results between the perspective camera type
and the FoV, the latter was discarded and only the former was left in. Therefore,
1T7 is formed: based on the previous theses, the optimal preference for the virtual
environments to positively influence the correct answers on spatial ability tests by
affecting the human–computer interaction is a perspective camera type, a camera
rotation of -45° or 0° or 45°, a contrast ratio of 1.5:1 or 3:1, and the Gear VR
display device.

Accepted hypothesis - No differences detected

The first and only accepted H is 1H5, which deals with the presence of shadows in the
VE. On the paper-based tests, there are no shadows, thus it was investigated whether
the probability of correct answers were changed by their presence. According to
Table A8, the probability of correct answers is not influenced significantly by the
shadows. Therefore, the shadows were omitted from the multiple factor analyses.
On this basis, 1T5 is formed: the performance of the users is not significantly
(p-value = 0 .204 ) influenced by the shadows of the object in the virtual environment.

5.1.2 The factors that have an effect on the completion times

According to the results in the previous chapter, only one H is accepted, four are
rejected and two are mixed cases in the second group. The only H that is accepted
is 2H3. The ones that are rejected are 2H1, 2H2, 2H4 and 2H5, while 2H6 and 2H7
are the Hs that are mixed cases. Therefore, this subsection is divided into three
subsubsections: the rejected Hs, the mixed cases and the one accepted H.

Rejected hypotheses - Detected effects

The first H to be rejected is 2H1 which talks about the probabilities of the correct
answers and the completion times being independent of each other. This was rejected
since the correlation test resulted in 0.223 with p-value < 2.2×10−16, therefore it
can be concluded that the two probabilities are not independent of each other. The
same result (dependency) was concluded by logistic regression analyses in Tables
4.1 and 4.2. Therefore, 2T1 is formed: the probabilities of the correct answers and
the completion times are not independent of each other as the correlation coefficient
is 0.223 and the p-value < 2 .2 × 10−16 .

The second H to be rejected is 2H2 in which it is stated that a significant effect
is produced by the gender of the user on the test completion times. This H was
rejected due to the results presented in the first block of Table A18. It is proposed
by the coefficient of -27.451 in the case of male users that the males have smaller
test completion times than females. According to the p-value = 2.97×10−5, the
effect of gender on test completion times is significant. Therefore, out of 2H2, 2T2
is formed: not only the spatial ability average test completion times are smaller
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numerically by 12.274% in the case of male users, but the completion times are
significantly (p-value = 2 .97 × 10−5 ) affected by the gender of the users, making
the completion times of male users smaller than that of female users.

The third rejected H is 2H4. It is expressed by this H that the spatial ability
test completion times of the users are affected by the type of the test. The largest
average of time is provided by the MRT test type. There is a 39.479% increase in
time between the MRT and the MCT test type, a 37.028% increase between the
MRT and the PSVT test type and an 1.788% between the MCT and the PSVT test
type. After the regression analysis, it can be proved by the results in the third block
of Table A18 that the test completion time is significantly (p-value < 2× 10−16)
increased by the MRT test type. Therefore, 2T4 is formed: the test completion
times are significantly (p-value < 2 × 10−16 ) increased by the MRT spatial ability
test type with an increment of 37.028% and 39.479%, when comparing it to the MCT
and PSVT test types, respectively.

The last H to reject is 2H5 in which the significant effect of different display
devices is hypothesized. This is proved by the regression analysis with p-value <
2× 10−16, which is seen in the fourth block of Table A18. Thus, 2T5 is formed: com-
pared to the desktop display, the spatial ability test completion times are significantly
(p-value < 2 × 10−16 ) increased by 30.330% when using the Gear VR.

Mixed cases

The first mixed case is 2H6, in which it is hypothesized that the largest completion
times are achieved in the case of the MRT test type by male users who are right-
handed and used the GVR. This is a mixed case, because from the first block of Table
A18, it can be concluded that a significantly (p-value = 2.97× 10−5) smaller average
of completion times is achieved by the male users than the female users. Also, since
it is proven by the results in the second block of Table A18 that the completion times
are not significantly (p-value = 0.894) affected by the primary hand of the user, this
can be omitted from this statement. However, according to the other part of the H
in which it is suspected that the completion times are significantly increased by the
MRT test type and by the use of the GVR. This suspicion is proved to be true in
the third and fourth blocks of Table A18 with p-value < 2× 10−16 in both cases.

Even though the completion time is decreased by the male gender in itself, when
it is paired with the MRT test type (the first block of Table A19), the completion
time of the tests is actually increased. When grouped into a triplet with the GVR
and the MRT test type in Table A21, it has the largest increase in completion
times as well. Therefore, due to these facts, 2T6 is formed: the spatial ability test
completion times are significantly (p-value = 2 .51 × 10−10 ) increased by combining
the male gender, the MRT test type and the use of the Gear VR. This triplet is also
the largest increment.

The second and last mixed case is 2H7, in which the inverse of 2H6 is suspected.
As 2H6 is a mixed case, this is as well. As it is known from the previous results,
the completion times are not significantly (p-value = 0.894) affected by the primary
hand of the user. To form a thesis, the factors that decrease the completion times are
needed to be known: in itself, the completion times are only decreased if the user is
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male (first block of Table A18). When paired with the MCT or the PSVT test type,
the test completion times are significantly decreased with p-value = 0.009941 and
p-value = 0.018158, respectively. If paired with the DD (Table A19), the completion
times are significantly (p-value = 0.000671) decreased. To get the final result, it
has to be grouped into a triplet. Therefore, from Table A21, it can be concluded
that when the MCT and PSVT test types are done by using a DD, a decrease can
be observed in the completion times. However, a significant (p-value = 0.047586)
decrease in the completion times can only be found if the MCT test type is in the
triplet as well. Also, this decrease is larger than in the case of the triplet with the
PSVT test type. Therefore, from these facts, 2T7 is formed: the spatial ability
test completion times are significantly (p-value = 0 .047586 ) decreased by the male
gender, the MCT test type and the use of the DD which is also the largest decrease.

Accepted hypothesis - No effect detected

In this group of Hs, 2H3 is the only one to be accepted. After the regression
analysis, it is shown in the second block of Table A18 that the completion times
are not significantly (p-value = 0.894) affected by the primary hand of the user.
Due to this fact, 2T3 is formed: the spatial ability test completion times are not
significantly (p-value = 0 .894 ) affected by the primary hand of the user.

5.1.3 The skills that can be affected by the display devices

After analyzing the results on the correlation between the display devices and the
human skills in the previous chapter, it can be concluded that a correlation was
found. Regarding the Hs, the following can be concluded in the third H group: 3H3,
3H5, 3H7, 3H10, and 3H11 are accepted. Mixed cases are presented by 3H1 and
3H6, while 3H2, 3H4, 3H8, 3H9 are rejected.

Rejected hypotheses

The first H to reject is 3H2. During the investigation of 3H2, Table 4.5 is taken
into account. Based on the statistical results, 3T2 is formed: when using a desktop
display, there is a significant difference between the results of males and females,
meaning that the average performance of males on the tests is better than of females
by 15.41%. This fact is similar to older studies not featuring VR, such as [37],
where it is proven that males have better spatial skills than females. When using
the GVR, however, this significant difference disappears, meaning that the average
performance of females on the tests is better than of males by 1.94%. This means
that especially the women’s achievements are improved by the GVR, which is an
interesting result.

According to the results as can be seen in Table 4.7, the second H to be rejected
is 3H4 in which the correlation between the age the DD is hypothesized. 3T4 is
formulated according to the results: the performance of the users who used a desktop
display and are over 18 years of age is better by 7.73% on average than their younger
counterparts.
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3H8 is also rejected. According to the results of the investigation of 3H8, 3T8
can be formed: there is a significant difference in the performance of the left-handed
and right-handed people who used the Gear VR. The difference is quite large, it is
about 7%. This means that the performance of the left-handed people was increased
significantly by the Gear VR: the increment is about 13%. This result is quite
different from older studies not featuring VR, such as [38] where it is concluded
that the performance of right-handed people is better than of left-handed people. It
seems like by using a DD their performance is made equal and by using the GVR,
the performance of left-handed people is made better than of the right-handed ones.

Similarly, to 3H4, 3H9 is rejected as well due to the results presented in Table 4.5.
3T9 is formed: the performance of the users who used the Gear VR and are over 23
years of age is significantly better than of their younger counterparts (The difference
is 9.4% numerically). Comparing the displays, the performance of the users who
used the Gear VR users and are over 23 years of age is significantly better than of
the users who are over 18 years of age and used a desktop display (the difference is
7.29% on average).

Mixed cases

Mixed cases are presented by both 3H1 and 3H6. What can easily be seen in Table
4.3 that the MCT test type is found the hardest and the MRT test type is found
the easiest. Thus, the first half of both 3H1 and 3H6 is rejected, and the second
half is accepted. Due to the results, 3T1 is formed: the MCT test type is found the
hardest, and the MRT is found the easiest in case of both display devices.

When comparing the display devices, it can be concluded that a significantly
better performance is achieved on the PSVT tests by the users who used the GVR
than by their counterparts who used a DD. Therefore, 3T6 is the following: while
there are no significant changes in the ratio of correct answers in the MRT, MCT
test types when comparing the desktop display to the Gear VR, the users who tested
with the latter performed significantly better (17.217%) in the PSVT test type.

Accepted hypotheses

Since the right side of the brain of the left-handed users is more often used, it is
suspected that the performance of the left-handed people is better on the tests (al-
ternative Hs of 3H3 and 3H8). However, according to Table 4.6 3H3 is accepted.
Therefore, 3T3 can be formed: there is no significant difference between the perfor-
mances of left-handed and right-handed people who used a desktop display. Concern-
ing 3H5 and 3H10, the statistics can be seen in Table 4.8. Both 3H5 and 3H10 can be
accepted. According to the results, 3T5 is formed: there is no significant difference
in the performance of architectural engineering and mechanical engineering students
when using a desktop display. Similarly, to 3H5, out of 3H10, 3T10 is formed: there
is no significant difference in the performance between IT and non-IT students when
using the Gear VR. Since the tests were conducted at two different universities, the
majors of the students differ. However, it can be assumed after forming 3T5 and
3T10 that the performance of the users is not influenced by their majors.
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Concerning 3H7, by using the GVR, no significant difference can be detected
between the performances of male and female students. This is a different result
in comparison to the results in the case of the DD. Thus, 3T7 is formed: female
users perform better numerically on the spatial ability tests than males by 1.94% on
average with the Gear VR.

Taking 3RQ11 and 3H11 into account when formulating 3T11, it can be seen
from Table 4.4 that when using the GVR, better results are achieved on the tests.
Therefore, 3H11 is accepted. Based on these facts, 3T11 is yielded: there is no
significant difference in the ratio of correct answers when comparing desktop displays
with the Gear VR, but with the latter, the users produced numerically a better average
of correct results by 2.5%.

5.1.4 Comparing the results to the literature

As mentioned in chapter 2, the number of spatial ability tests in VEs is scarce and
most studies only exist on paper. According to the paper-based results, the spatial
skills of males are better than the spatial skills of females [37]. This is similar in
the case of right-handed and left-handed people, meaning that the former group of
people scored better on the tests than the latter group of people [38]. Another fact
is that when using an HMD, significant improvements appear between two PSVT
tests [99].

It is proven by the research that is presented in this PhD dissertation that the
results which are similar to the paper-based tests can be gathered when using a DD.
However, when using an HMD such as the GVR, the results change significantly.
This means that when using a DD, there is a significant difference between the
results of males and females. However, this significant difference disappears when
using the GVR. A similar phenomenon can be observed between the right-handed
and left-handed users. When using a DD, the performance of right-handed people
on the tests is better than of their left-handed counterparts. However, with the use
of the GVR, significantly better results are achieved on the tests by the left-handed
users than the right-handed users. Also, according to the results presented in this
PhD dissertation, the ratio of correct answers of the students who used the GVR is
significantly better than their counterparts who used a DD.

According to the literature, the spatial skills of the users can be enhanced by a
carefully designed VE: the camera should be carefully adjusted and binocular dis-
parity should be provided to the users. Dynamic, blurry, faded, rich environments
and motivation are also helpful in this regard. While different parts of VEs are ana-
lyzed in this PhD dissertation, it is proven by the results that the optimal preference
for enhancing spatial skills is a combination of a perspective camera with a rotation
of -45° or 0° or 45°, a contrast ratio of 1.5:1 or 3:1 and the use of the GVR.

Regarding the remaining results that are presented in this PhD dissertation, no
study was found to compare them to. This is because the number of studies of
spatial ability tests in VEs is small. However, according to the results, the spatial
skills of the users can be enhanced by a carefully designed VE and with the use of
the GVR. Therefore, HCI can be enhanced as well.
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5.2 Discussing the results of the evaluation of the
APBMR algorithm

The RQs in the fourth group were answered according to the results. In the previous
section, the APBMR algorithm was evaluated with four gestures in real-time using
the GC and the AC. File-based evaluation was also conducted. Therefore, based
on the results, 4H2, 4H3, 4H5, 4H6 and 4H8 are accepted, while 4H1 is rejected.
The mixed cases are 4H4 and 4H7. The one rejected H, the mixed cases and the
accepted Hs are presented in subsections 5.2.1, 5.2.2 and 5.2.3, respectively.

5.2.1 Rejected hypothesis regarding the APBMR

The first and only rejected H is 4H1, because depending on the gestures, the best
AGARs are produced by different MTs as can be seen in Table D7. In the case of
the circular gesture in the ±0.05 m AD, the best AGAR of 30.5% is produced by
the CHMT, while in the remaining two ADs, the best AGARs are provided by the
AMT with 61.9% and 83.7%, respectively. In the case of the waving gesture, the best
AGARs in every AD is provided by the HMT with 71.2%, 94.1% and 97.8%. With
the forward-diagonal gesture, the best AGARs of 73.9% and 92.5% are provided by
the CHMT in the ±0.05 m and ±0.10 m ADs, respectively. In contrast, the best
AGAR is provided by the AMT in the ±0.15 m AD with 96.4%. In the case of the
upward-diagonal gesture, the best AGARs in the ±0.05 m and ±0.10 m ADs are
provided by the CHMT with 39.1% and 72.3%, respectively, while the best AGAR
in the ±0.15 m AD is produced by the HMT with 83.4%. Due to these facts, 4T1 is
formed: the best AGARs are provided by different mean techniques in case of each
gesture and each AD: in the ±0 .05 m AD, the best AGARs in three out of four
gestures are provided by the CHMT, while in the case of the remaining gesture, the
best AGAR is provided by the HMT. In the ±0 .10 m AD, the best AGARs in two out
of four gestures are provided by the CHMT, while in the case of the remaining two
gestures, they are provided by the AMT and the HMT, respectively. In the ±0 .15
m AD, the best AGARs in two out of four gestures are provided by the HMT, while
in the case of the remaining two gestures, they are provided by the AMT.

5.2.2 Mixed cases regarding the APBMR

The first mixed case is 4H4. It was originally suspected that the GMT and CMT
should not be used for prediction-based gesture recognition. However, similar results
are produced by the QMT. It can be suspected that these bad results are due to the
negative values of the movement descriptors. In the case of the Kinect, if the gestures
are done left to the sensor or lower than it, the values of the gesture descriptors
become negative values. One example is in the second block of Table D4, where
the waving gesture was performed and similar AGARs were produced by the GMT
as the other MTs. In the case of this measurement, the users stood in front of the
Kinect, faced the sensor and the gestures were done on the right side of it, and in a
higher position than it.
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In contrast, the other waving gesture that is presented in the second block of
Table D2 resulted in AGARs of 0% in all ADs. This is because the users were closer
to the center the Kinect during these measurements, therefore mostly negative values
were assigned to the gesture descriptors. Thus, 4T4 is formed: the GMT, QMT and
CMT should not be used for prediction-based gesture recognition as better AGARs
are provided by the AMT, HMT and CHMT. From the ±0 .05 m AD to the ±0 .15
m AD, the AGARs of the former are 24.1%, 43.5% and 50.8%, while of the middle
are 29.3%, 56.8% and 70.9%; and of the latter are 26.3%, 48.0% and 57.4%.

The results regarding 4H7 are very interesting and came as a surprise. As can
be seen in Table D5, this is only a mixed case because of the "GC 2 and File 2"
columns. According to the results in the case of the waving gesture, the file-based
gesture prediction and acceptation are faster by 23.8% using the CHMT. In the
remaining cases, the execution times of the algorithm are decreased in real-time
using either the GC and the AC. In the case of both computers, the decrease in
the execution times is the smallest using the CMT, while the largest is in the case
of the QMT. Therefore, 4T7 is formed: except for using CHMT to evaluate the
waving movement using the general computer, the use of the real-time feature of the
APBMR algorithm can decrease the execution time compared to file-based usage by
at least 6.9% to 96.7% at most.

5.2.3 Accepted hypotheses regarding the APBMR

4H2 is the first H to be accepted. According to the first block of Table D7, the worst
AGARs are produced by the GMT in every AD: for the ±0.05 m AD it is 24.1%,
for the ±0.10 m AD it is 43.5% and for the ±0.15 m it is 50.8%. Worse AGARs
are also returned by two other MTs than the remaining three. These two are the
QMT (29.3%, 56.8%, 70.9%) and the CMT (26.3%, 48.0%, 57.4%). From the results
presented in the blocks of Table D7, it can be concluded that the worst AGARs are
provided by the GMT in case of every gesture. Due to the results, 4T2 is formed:
the worst AGARs are provided by the GMT in case of every gesture: for the circular
movements, the AGARs of the GMT are 11.3%, 28.0% and 39.4% in the ±0 .05
m, ±0 .10 m and ±0 .15 m ADs, respectively. In case of the waving gestures, the
AGARs are 34.7%, 55.1% and 59.5% in the same respective ADs. For the forward-
diagonal gestures, the AGARs are: 21.3%, 39.4% and 43.4% in the same respective
ADs. In case of the upward-diagonal gesture, the AGARs are 29.0%, 51.3% and
60.8% in the same respective ADs.

To assess 4H3, the first block of Table D7 should be taken into account. Accord-
ing to the table, the best AGARs are provided by the CHMT in both the ±0.05
m and ±0.10 m ADs with 53.4% and 79.6%, respectively. In the ±0.15 m AD, the
best AGAR is provided by the use of the AMT with 89.6%. Due to these facts, 4T3
is formed: when using the APBMR algorithm for prediction-based motion analysis,
the optimal AGARs are provided by the CHMT in both the ±0 .05 m and ±0 .10 m
ADs with 53.4% and 79.6%, respectively. In case of the ±0 .15 m AD, the optimal
AGAR of 89.6% is resulted by the use of the AMT.

The next accepted H is 4H5, for which the answer can be calculated from each
gesture that is presented in the blocks of Table D7. In the case of the circular gesture,
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the largest numerical difference between the ±0.05 m and ±0.15 m ADs is 0.584
when using QMT and the smallest is 0.281 when using the GMT. For the waving
gesture the largest numerical difference between the same two respective ADs is 0.322
with the QMT and the smallest is 0.227 with the CMT. In case of the forward-
diagonal gesture, the largest numerical difference is 0.357 with the QMT, while
the smallest difference is 0.216 with the CHMT. For the upward-diagonal gesture,
the largest numerical difference is 0.469 with the HMT and the smallest is 0.318
with the GMT. 4T5 is formed due to these results: different numerical differences
exist between the AGARs in case of each gesture: with the circular movements, the
numerical differences are between 0.281 - 0.584. In the case of the waving gestures,
the numerical differences are between 0.227 - 0.322. With the forward-diagonal
gesture, the numerical differences are between 0.216 - 0.357, while the numerical
differences are between 0.318 - 0.469 with the upward-diagonal gesture.

4H6 is the following H to be accepted. All gestures had to be evaluated on each
axis for it to be accepted and the data regarding it can be seen in Table D9. On the
x axis, the largest numerical difference is 0.201 with the CMT, while the smallest
numerical difference is in the case of the CHMT with 0.174. On the y axis, the
largest numerical difference is in the case of the QMT with 0.341 and the smallest
numerical difference is in the case of the GMT with 0.191. On the z axis, the largest
numerical difference is with the CMT (0.072), however the CHMT is a close second
(0.071). Here, the smallest numerical difference is in the case of the QMT with
0.068, however the numerical difference of 0.069 is yielded by the remaining three
MTs. Thus, 4T6 is formed: numerical differences exist between the AGARs on each
axis: on the x axis, the numerical differences are between 0.174 - 0.201, while the
numerical differences are between 0.191 - 0.341 and 0.068 - 0.072 on the y and z
axes, respectively.

The last H that is accepted is 4H8, due to the results presented in Table D6.
According to the table, all MTs of the APBMR in case of all gestures have better
AGARs in every AD than the AGARs of the RDAMR. Even with the worst AGAR
in case of all gestures using the GMT, still better AGARs are provided by the
APBMR than they are provided by the RDAMR in each AD. Due to the results,
4T8 is formed: in the ±0 .05 m AD, the AGARs of the APBMR algorithm are
between 45.2%-62.7% depending on the used MT, while the AGAR of the RDAMR
algorithm is only 9.9%. In the ±0 .10 m AD, the AGARs of the APBMR algorithm
are between 70.4%-84.5% depending on the used MT, while they are 37.5% in the
case of the RDAMR algorithm. In ±0.15 m AD, the AGARs of the APBMR are
between 76.7%-92.6% depending on the used MT, while in the case of the RDAMR
algorithm it is only 62.5%. However, in the ±0 .25 m AD, a similar AGAR to the
AGAR of the APBMR in the ±0.15 m AD is reached by the RDAMR algorithm.

Therefore, worse AGARs are provided by the RDAMR than by the APBMR
because the gestures are "taught" to the algorithm using only the first three gestures.
In the case of each future gesture, only the first three gestures are referenced. Thus,
the generated ADs will keep on repeating. Also, the same speed of the first three
gestures has to be matched by the user. If the user can do this, a good AGAR
could be reached with the RDAMR. However, if the speed is different, then the
same gestures are not accepted by the RDAMR algorithm.
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5.2.4 Comparing the APBMR algorithm to the literature

The APBMR and its predecessor (the RDAMR) were developed to maintain moti-
vation because it is crucial in rehabilitation. A lack of motivation can appear as a
generator and/or as a consequence of depression. A failure in rehabilitation can be
caused by the effect of these two [211, 212]. Therefore, to increase or to maintain
motivation it is important for the application to adapt to the skills of the users. Ac-
cording to [213], if the application is calibrated beforehand or correction values are
set, the application could not adapt well to the skills of the users. However, since all
users are different and all can be in different phases of rehabilitation, not to mention
that telerehabilitation is in the focus of this part of this research, an algorithm was
needed to adapt to the skills of the users "on the fly". This means that an algorithm
which can run on a "general computer" and which does not require a prior data set
(or only a small amount of data should be used) to not demotivate the users.

Therefore, before the APBMR the RDAMR was developed [76, 77] and according
to the referenced studies, it is a viable algorithm to maintain motivation. However,
there were problems regarding the position of the user in front of the Kinect sensors
and the speed of the gestures. To solve these problems, the APBMR was developed.
Not only the problems were solved by the APBMR, but its AGARs are far superior
to the RDAMR algorithm.

5.3 Conclusions
It is important to develop spatial skills in the modern day and age. In the last
century, mostly paper-based methods were available, although their number is many.
Since the world is transitioning into a digital age, virtual versions of these tests can
be created or they can even be improved upon. Therefore, a VR application was
designed and developed. Three old methods (the MRT, MCT and the PSVT test
types) are presented in a new context by this application. The measurements could
be gathered in real-time from the spatial ability tests and the application is also
available on two platforms: PC and Android. This application was tested by 61
students on the Android platform with the GVR and by 240 students on the PC
platform with an LG DD. Data were gathered from the users and were analyzed.
The data regarding the users consisted of the age of the user, gender of the user,
primary hand of the user, the number of years spent at the university and what the
student is majoring in. Technical data was also gathered such as the virtual camera
type, its FoV, its rotation, the contrast ratio and the existence of shadows. The test
type, its completion time and the number of correct answers were logged as well.

After presenting and investigating the results of these measurements, three things
can be concluded:

1. The optimal user-centric preference in VEs, presented in subsection 5.3.1.

2. The independence and the effect on completion times in VEs, shown in sub-
section 5.3.2.

3. The correlation between the display devices and the human skills, as can be
seen in subsection 5.3.3.
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Not only the spatial skills of the users are important in VEs, but the HCI – mainly
in rehabilitation – as well. Therefore, in this PhD dissertation a new method is
proposed. This is called the Asynchronous Prediction-Based Movement Recognition
algorithm with the aim to help the physical rehabilitation of people with movement
disabilities using sensors. After the implementation, it was tested with the Kinect v1
at the laboratory. While it was only tested with the Kinect v1 sensor, in principle,
it can be used with any motion sensor that returns coordinates in real-time. For
the research, four gestures had to be done by four groups of users and each gesture
had to be repeated ten times. Afterward, the data was evaluated with six MTs.
After presenting and evaluating the results, it can be concluded in subsection 5.3.4
whether the APBMR is viable and usable for telerehabilitation.

5.3.1 The optimal user-centric preference in virtual environ-
ments

Designing VEs is not an easy task, even if the VE is a virtual version of something
in reality. The aim of this research was to find the factors which positively influence
users in VR. The virtual camera types, FoVs, and rotations, the contrast ratios
were analyzed between the foreground object and the background, the existence
of shadows, and the display device used. This was investigated with the logistic
regression analysis. It is shown by the results that HCI can be affected by the display
factors and devices. While these factors and devices all have a unique influence, it has
to be kept in mind that no VE exists comprising only one of these factors. Therefore,
these factors will always be in effect with multiple others. On this basis, these factors
were analyzed in pairs, in triplets and in fours. Some lost their unique influences,
but interactions emerged between them. These interactions change depending on
the number of examined factors. Many retain their interactions, but most of their
significances are lost. Thus, VEs should be carefully designed.

In conclusion, the users can be positively influenced in their tasks by a carefully
designed VE: according to the results, a perspective camera type, a camera rotation
of -45° or 0° or 45°, a contrast ratio of 1.5:1 or 3:1 and the Gear VR HMD proved to
be the optimal factors in VEs. When the user is in the VE with these factors and
display devices, their probability of correct interaction, and even the results, can be
increased.

5.3.2 The independence and the effect of completion times in
virtual environments

The completion time of the spatial ability is not affected by one investigated factor
only. Therefore, the factors were evaluated one-by-one, in pairs and in a triplet.
From the one-by-one analyses, it was found out that the test completion times of
males is significantly less than of females. Also, the completion times of the users
are significantly increased by the MRT test type or the use of the GVR.

While the skills of the users are improved with the use of the GVR, the completion
time of the tests is also increased by it. This means, that the interaction is less time-
consuming with the traditional keyboard and mouse than with the touchpad on the
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right side of the GVR. However, it is possible that this interaction time can still
be decreased in the future with new input devices. Even though the interaction
with the GVR is more time consuming than with a DD, it should be noted that the
increase in completion times between the test types is less in the case of the GVR.

However, no VE exists with only one factor and even the human factors should
be considered: in this case, this human factor is the gender of the user. The other
factors that should be considered are the test type and the used device. When
adding these factors together, the following can be concluded: the largest increase
in interaction time in VR during the spatial ability tests is when the user is male
and the MRT tests are done with the use of the GVR, while the largest decrease
in interaction time is when the user is male and the MCT tests are done with the
use of DD. These are the factors that have significant effects on the spatial ability
test completion times. It also has to be kept in mind that the probabilities of
correct answers and the completion times are not independent of each other. A
larger completion time results in a higher probability of correct answers. Due to the
results, it can be concluded that the interaction times of males in VEs are increased
by the GVR in a larger degree than in the case of females. Moreover, with the GVR,
the interaction time of males and females became similar to each other.

5.3.3 The correlation between the display devices and the
human skills

According to the results on the spatial ability tests, a correlation can be found
between the used display devices and the human skills. It can be concluded that
the spatial performances of female users or left-handed users or older users are
significantly improved by the use of GVR. The difficulty of the PSVT test type is
also made significantly easier when using the GVR. Also with the GVR, the number
of correct answers increased in the case of the female, left-handed and older users.
The results of female students significantly improved and reached the level of the
results of the male students. The spatial skills of left-handed students are increased
the by use of the GVR so much that right-handed students are outperformed by
them. Lastly, in the case of students who are over 23 and used the GVR, they
outperformed the ones who are over 18 and used the DD.

According to the results, the spatial skills of the users are positively influenced
by the GVR HMD. This is good, as most education for engineers at universities
contains subjects such as technical representation or descriptive geometry and a
well-developed spatial ability is necessary for successful studies. In conclusion, it
can be safely stated that the use of VEs and VR can help with enhancing the
spatial skills of students. Also, these results strengthen the fact that VR has a
future in education.

5.3.4 The usability of the Asynchronous Prediction-Based
Movement Recognition algorithm

The APBMR algorithm works by predicting the next gesture of the user. The
prediction is based on the previous three gestures of the user and the next gesture
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is predicted by using six different MTs. Not only the next gesture is predicted, but
three different ADs are generated for it was well. Afterward, it is decided by the
algorithm whether the next user-input movement is accepted based on its percentage
inside the ADs. The speed and the position of the user can also be followed. Due
to this feature, a decision could be made whether to accept the next gesture easier.

According to the results, to get the optimal AGARs, the MT that should be
used differs from gesture to gesture as well as from AD to AD, while the MTs not
to use are the same in each case. It can be concluded that the AMT, HMT and
CHMT should be used for prediction-based gesture recognition, but depending on
the gesture and the AD, these MTs should be changed. It is summarized by Table
5.1 that which MT should be used in the case of different gestures and ADs when
evaluating on all three axes.

Table 5.1: Which MT to use in case of different gestures and ADs when evaluating
on all three axes?

AD Circular Waving Forward-diagonal Upward-diagonal
±0.05 m CHMT (0.305) HMT (0.712) CHMT (0.739) CHMT (0.392)
±0.10 m AMT (0.619) HMT (0.941) CHMT (0.925) CHMT (0.723)
±0.15 m AMT (0.837) HMT (0.978) AMT (0.964) HMT (0.834)

After the evaluation of all three axes, it was concluded that in the case of simpler
gestures such as the waving movement where only one axis is necessary most of the
time, that the best AGARs are provided by the HMT. In the remaining cases, where
more axes are required by the gestures to be correctly evaluated, the best AGARs
are provided by the CHMT and the AMT in most cases. If the whole database
of gestures that was gathered during this research are considered, then it can be
concluded that the optimal AGARs out of the six MTs in the ±0.05 m and ±0.10
m ADs are provided by the CHMT with 53.4% and 79.6%, respectively. Contrary,
in the ±0.15 m AD, the optimal AGAR is provided by the AMT with 89.6%.

It should be noted that the Kinect was used for the file-based and real-time
measurements and the Kinect has its own coordinate system. Positive and negative
values exist in this coordinate system. Due to the possible negative values, the
results of the GMT, QMT and CMT were worse than the results of the other three
MTs. There is a possibility that better results may be provided by using other
sensors – which do not return negative coordinate values – or with the creation of
some methods that shift the returned coordinates of the Kinect.

It can be concluded that the prediction-based gesture recognition method is su-
perior to the older (RDAMR) algorithm and therefore, it is more accurate as well
as it can adapt to the current capabilities of the user, which is a criterion for main-
taining motivation in the patients and for successful physical rehabilitation. Since
the RDAMR algorithm could be used at home, the APBMR algorithm can be as
well, making the rehabilitation process easier for both the therapist and the pa-
tient. By developing this algorithm, an alternative method was presented. Thus,
the workers in the field of healthcare could have one more, easy-to-use gesture recog-
nition method to choose from. Based on the results, the APBMR is both viable and
suitable for gesture recognition in telerehabilitation with the Kinect v1.
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Chapter 6

Application of the new scientific
results

In the PhD dissertation of the author, two parts of HCI were investigated: the spatial
skills of the users in VEs and the use of the APBMR in gesture classification and
in physical rehabilitation. According to the reviewed literature and to the results
of this research, both are equally important parts of HCI. Therefore, based on the
results of the author, four thesis groups were formulated.

It is shown by the 1st thesis group that HCI can be affected by the display factors
and devices. While these factors and devices all have a unique influence, it has to be
kept in mind that no VE exists comprising only one of these factors. Therefore, these
factors will always be in effect with multiple others, meaning that VEs should be
carefully designed. Since spatial ability is important in VR as the user is placed into
a four-dimensional space, the designers of VEs can take these results into account.
With the use of these parameters, VEs can be designed in a way that the spatial
skills of the users can be enhanced. With these results, the education of engineers
and the rehabilitation of people with movement difficulties can be more effective.

Several factors that increase the test completion times are presented by the 2nd
thesis group. One of the most important factors that increase the times is the use
of the GVR. Also, the completion times and the probabilities of correct answers
are not independent of each other. This means that if the users are given too
much time for test completion, their probability of answering correctly becomes
higher. However, since the completion times are increased by the use of the GVR
as it needs to be interacted with differently than a traditional keyboard and mouse,
more time on the tests have to be given to the users. This means that the test
examination committee has to give enough, but not too much time for the testers.
This also presents the following future research possibility: which is the optimal test
deadline? Therefore, the results presented in this thesis group can also be used in
the education of engineers and other jobs that require spatial skills.

It is shown by the 3rd thesis group that there is a correlation between the used
display devices and the human skills. It can be concluded that significant improve-
ments are made by using the GVR. This means that the spatial performances of
female users, left-handed users, and older users are improved with its use. Also, the
PSVT test type is made significantly easier with the use of the GVR. This means
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that the spatial skills of the user are positively influenced by the GVR HMD. This
is good, as most education for engineers at universities contain subjects such as
technical representation or descriptive geometry and a well-developed spatial ability
is necessary for successful studies. The fact that VR has a future in education is
strengthened by these results. Therefore, according to the results presented in the
form of theses in this thesis group, the GVR should be used in education.

Based on the results that the 4th thesis group is formulated on, it can be con-
cluded that the APBMR algorithm is easy-to-use and viable in gesture recognition
with the Kinect v1. This algorithm can adapt to the current capabilities of the user
without the help of any external factors. Therefore, motivation is not lost by the
user and telerehabilitation can be conducted using this algorithm. This means that
the presence of a therapist is not required during the actual physical rehabilitation,
only when consultation is needed. Thus, the physical rehabilitation of people with
movement disabilities are made more convenient and safer due to being in a home
environment.

Summarizing the application of the results that are presented in the form of four
thesis groups, it can be said that all results of the research of the author can help
the users in some way. The results of the research regarding the spatial skills of
the users in VEs can be used in the design of VEs, in education and in cognitive
rehabilitation. Regarding the research of gesture classification, it can be concluded
that the APBMR algorithm can used in physical telerehabilitation. With it, by
time, the burden could be taken off of the hospitals.
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Chapter 7

Theses summary

In this chapter, new scientific results are presented in the form of thesis groups since
the theses were discussed in the previous discussion sections. Afterward, the possible
future work is also presented.

7.1 New scientific results
1st thesis group: The optimal preference for the virtual environments to pos-

itively influence the correct answers on spatial ability tests by affecting the
human–computer interaction is a perspective camera type, a camera rotation
of -45° or 0° or 45°, a contrast ratio of 1.5:1 or 3:1, and the Gear VR display
device.

(Own publications regarding this thesis group: [P1], [P2], [P3])

The results on the spatial ability tests were investigated with logistic regression
analysis to determine how the probabilities of correct answers on the tests were
influenced by the display parameters and display devices. The factors were
investigated by themselves, in pairs, in triplets and in a quartet. According
to the results, 7 theses were formed which can be found in subsection 5.1.1.
The conclusion is that the probabilities of correct answers are not significantly
influenced by the field of view of the virtual camera and the existence of
shadows. However, they are significantly (p-value = 4.62× 10−13) influenced
by the perspective camera type, a camera rotation of -45° or 0° or 45°, a
contrast ratio of 1.5:1 or 3:1, and the Gear VR. Significant (p-value = 0.00013)
interaction can also occur between them.

2nd thesis group: The probabilities of the correct answers and test completion
times are not independent and the latter is significantly affected by the used
display device, the test type and the gender of the user.

(Own publication regarding this thesis group: [P5])

The completion times on the spatial ability tests were analyzed and the effects
of multiple factors on them were analyzed as well. The effects of factors were
investigated one by one, in pairs and in a triplet. According to the results, 7
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theses were formed which can be found in subsection 5.1.2. Due to the corre-
lation coefficient of 0.223 and p-value < 2.2× 10−16, the probabilities of the
correct answers and the completion times are not independent of each other.
Although the latter is not significantly affected by the primary hand of the
user, it is significantly influenced by the gender of the user, the test type and
the display device which even interact with each other. The completion times
are significantly (p-value = 2.51× 10−10) increased by the combining factors
of the male gender, the MRT test type and the use of the Gear VR, while it is
significantly (p-value = 0.047586) decreased by the combining factors of the
male gender, the MCT test type and the use of the desktop display.

3rd thesis group: The ratio of correct answers of female, left-handed, older stu-
dents are significantly improved and the PSVT test type is made significantly
easier by using the Gear VR.

(Own publications regarding this thesis group: [P2], [P3], [P6])

The results of 240 and 61 students were investigated who used the desktop
display and the Gear VR, respectively. According to the results, 11 theses
were formed which can be seen in subsection 5.1.3. The conclusion of this
research is that compared to the desktop display, the results of female, left-
handed, older students are significantly improved with the use of the Gear VR
by 18.022%, 13%, 7.29%, respectively. With it, the PSVT test type is also
made significantly easier by 17.217%.

4th thesis group: The APBMR algorithm is viable and usable in a home envi-
ronment for telerehabilitation with the Kinect v1 sensor.

(Own publications regarding this thesis group: [P4], [P7])

A new gesture recognition method was designed and developed by building on
a previous algorithm (RDAMR) and it was tested with four groups of people
using the Kinect v1. It was also compared to the RDAMR algorithm that it
was based upon. Since mean techniques are used by the new, prediction-based
method to predict the next gesture of the user, the average gesture acceptance
rate was evaluated with each mean technique. According to the results, 8
theses were formed which can be found in section 5.2. The optimal mean
techniques are found in the case of each evaluated four gestures. Compared
to the previous algorithm, the prediction-based algorithm has an increased
average gesture acceptance rate by 358.2%-535.3% in the ±0.05 m acceptance
domain depending on the used mean technique. The increase in the ±0.10
m and the ±0.15 m acceptance domains are 87.8%-125.4% and 22.7%-47.3%,
respectively. Therefore, the prediction-based gesture recognition method is
viable and usable in a home environment for telerehabilitation with the Kinect
v1.
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7.2 Future plans
Naturally, the results that were presented and the theses that were formed are not
the end of this scientific work. Thus, it can be continued in the following ways:

1. The effects of the display parameters on the test completion times:

• While the display parameters can improve the probabilities of correct
answers by enhancing the spatial skills of the users, they can also affect
the completion times. Further examination of this fact is possible.

2. Post-test with the spatial ability application:

• By performing a post-test in the end of the same semester with the same
architectural and mechanical engineering students, it can be investigated
whether their studies at the university improved their spatial skills.

• This research is in progress as the post-test has been performed. Only
the data have to be analyzed.

3. Introducing filtering into the APBMR algorithm:

• The movement descriptors that are returned by the Kinect are noisy by
default, therefore filtering should be used. Based on the literature, the
Kalman filter has the possibility to improve the average gesture accep-
tance rate of an algorithm. Therefore, it is planned to integrate the
Kalman filtering into the APBMR.

• While the Kalman filter has the possibility to improve the average gesture
acceptance rate, it can increase the execution time of the algorithm. It
can also be investigated whether the use of the filter is worth it based on
the required computational power.

7.3 Publications of the author
The main results of this PhD dissertation are published in multiple international
journals and some are presented at national and international conferences. In the
following group those publications are shown in which the results of this research
are presented. The number of the respective thesis group is shown in parentheses.
The publications are sorted by year in a decreasing order.

[P1] Tibor Guzsvinecz, Cecilia Sik-Lanyi, Eva Orban-Mihalyko, Erika Perge:
The Influence of Display Parameters and Display Devices over Spatial Ability Test
Answers in Virtual Reality Environments, Applied Sciences, 10(2): 526, 2020. DOI:
10.3390/app10020526 (IF2019: 2.474) (1st thesis group)

[P2] Tibor Guzsvinecz, Cecilia Sik-Lányi, Éva Orbán-Mihálykó, Erika Perge:
Improvements on Spatial Ability Tests Using Virtual Reality. 7th Winter School for
PhD Students in Informatics and Mathematics. Association of Hungarian PhD and
DLA Students, pp. 26, 2020. (1st and 3rd thesis groups)
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[P3] Guzsvinecz Tibor: A megjelenítési paraméterek és eszközök által befolyá-
solt eredmények a virtuális valóság alapú térérzékelési teszteken, XXIII. Tavaszi Szél
Konferencia, pp. 321, 2020. (1st and 3rd thesis groups)

[P4] Tibor Guzsvinecz, Veronika Szucs, Attila Magyar: Preliminary results of
evaluating a prediction-based algorithm for movement pattern recognition and clas-
sification. 11th IEEE International Conference on Cognitive Infocommunications,
pp. 39-44, 2020. (4th thesis group)

[P5] Tibor Guzsvinecz, Éva Orbán-Mihálykó, Cecília Sik-Lányi, Erika Perge:
Investigation of Spatial Ability Test Completion Times in Virtual Reality using a
Desktop Display and the Gear VR, Virtual Reality (Under review, IF2019: 3.634)
(2nd thesis group)

[P6] Tibor Guzsvinecz, Éva Orbán-Mihálykó, Erika Perge, Cecília Sik-Lányi:
Analyzing the Spatial Skills of University Students with a Virtual Reality Applica-
tion using a Desktop Display and the Gear VR, Acta Polytechnica Hungarica, 17(2),
pp. 35-56, 2020. DOI: 10.12700/APH.17.2.2020.2.3 (IF2019: 1.219) (3rd thesis
group)

[P7] Tibor Guzsvinecz, Veronika Szucs, Attila Magyar: Evaluating the
APBMR Algorithm with the Kinect for Gesture Recognition in Physical Rehabil-
itation, Applied Sciences (Under review, IF2019: 2.474) (4th thesis group)

The following group of publications is not directly related to the theses of the author:

[N1] Veronika Szucs, Tibor Guzsvinecz, Attila Magyar: Movement Pattern
Recognition in Physical Rehabilitation - Cognitive Motivation-based IT Method
and Algorithms, Acta Polytechnica Hungarica, 17(2), pp. 211-235, 2020. DOI:
10.12700/APH.17.2.2020.2.12 (IF2019: 1.219)

[N2] Veronika Szucs, Cecilia Sik-Lanyi, Tibor Guzsvinecz: Presenting the
User’s Focus in Needs & Development (UFIND) method and its comparison to
other design methods. 11th IEEE International Conference on Cognitive Infocom-
munications, pp. 89-95, 2020.

[N3] Tibor Guzsvinecz, Veronika Szucs, Cecilia Sik-Lanyi: Suitability of the
Kinect Sensor and Leap Motion Controller - A Literature Review, Sensors, 19(5),
1072, 2019. DOI: 10.3390/s19051072 (IF2019: 3.275)

[N4] Cecilia Sik-Lanyi, Veronika Szucs, Shervin Shirmohammadi, Petya Grudeva,
Boris Abersek, Tibor Guzsvinecz, Karel Van Isacker: How to Develop Se-
rious Games for Social and Cognitive Competence of Children with Learning
Difficulties, Acta Polytechnica Hungarica, 16(6), pp. 149-169, 2019. DOI:
10.12700/APH.16.6.2019.6.10 (IF2019: 1.219)
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[N5] Veronika Szucs, Tibor Guzsvinecz, Attila Magyar: Improved algorithms
for movement pattern recognition and classification in physical rehabilitation, 10th
IEEE International Conference on Cognitive Infocommunications, pp. 417-424,
2019. DOI: 10.1109/CogInfoCom47531.2019.9089987

[N6] Tibor Guzsvinecz, Monika Szeles, Erika Perge, Cecilia Sik-Lanyi: Prepar-
ing spatial ability tests in a virtual reality application, 10th IEEE International Con-
ference on Cognitive Infocommunications, pp. 363-368, 2019. DOI: 10.1109/CogIn-
foCom47531.2019.9089919

[N7] Tibor Guzsvinecz, Veronika Szucs, Cecilia Sik-Lanyi: Designing gamified
virtual reality applications with sensors - A gamification study, Proceedings of the
Pannonian Conference on Advances in Information Technology (PCIT’2019), pp.
105-112, 2019.

[N8] Tibor Guzsvinecz, Bence Jandas, Veronika Szucs, Cecilia Sik-Lanyi: De-
velopment of a Wingsuit-style gamified application, Orvosi Informatika 2018. A
XXXI. Neumann Kollokvium konferencia-kiadványa, pp. 122-127, 2018.

[N9] Tibor Guzsvinecz, Csaba Kovacs, Dominik Reich, Veronika Szucs, Cecilia
Sik-Lanyi: Developing a virtual reality application for the improvement of depth
perception, 9th IEEE International Conference on Cognitive Infocommunications,
pp. 417-424, 2018. DOI: 10.1109/CogInfoCom.2018.8639935

[N10] Metka Abersek, Boris Abersek, Kosta Dolenc, Cecilia Sik-Lányi, Shervin
Shirmohammadi, Karel Van Isacker, Petya Grudeva, Veronika Szűcs, Tibor
Guzsvinecz: Intelligent Serious Games for Learning in Informal Learning Environ-
ments, 2nd International Scientific Conference on Philosophy of Mind and Cognitive
Modelling in Education, 2018.

[N11] Sikné Lányi Cecília, Szücs Veronika,Guzsvinecz Tibor: A VR/AR jelen-
legi, illetve prognosztizált felhasználási területei az egészségügyben, XV. Jubileumi
Országos Infokommunikációs Konferencia, 2017.

[N12] Cecilia Sik-Lanyi, Shervin Shirmohammadi, Tibor Guzsvinecz, Boris
Abersek, Veronika Szucs, Karel Van Isacker, Petya Grudeva, Andrean Lazarov: How
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Learning Difficulties, 8th IEEE International Conference on Cognitive Infocommu-
nications, pp. 321-326, 2017. DOI: 10.1109/CogInfoCom.2017.8268264

[N13] Eva A. Barta, Tibor Guzsvinecz, Cecilia Sik Lanyi, Veronika Szucs:
Android-Based Daily Routine Organizing Application for Elementary School Stu-
dents Living with ASD, Harnessing the Power of Technology to Improve Lives, pp.
283-290, 2017. DOI: 10.3233/978-1-61499-798-6-283

[N14] Gyula Hajdics, Tibor Guzsvinecz, Veronika Szucs, Cecilia Sik-Lanyi:
Development of Mathematical Skills Developing Game Software, Harnessing the
Power of Technology to Improve Lives, pp. 1005-1008, 2017. DOI: 10.3233/978-1-
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[N15] Tibor Guzsvinecz, David Koszegi-Vigh, Veronika Szucs, Sik-Lanyi Ce-
cilia: "Sliders" Android Game - Improving Logical Skills of People with Disabilities.,
Harnessing the Power of Technology to Improve Lives, pp. 279-282, 2017. DOI:
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[O1] Cecilia Sik-Lanyi, Tibor Guzsvinecz, Norbert Doszkocs, Imre Mark
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effect research. 11th IEEE International Conference on Cognitive Infocommunica-
tions, pp. 45-50, 2020.
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Appendix

Tables regarding the research of spatial skills in vir-
tual environments
This section of the appendix is split into three subsections. In the first the results
of the logistic regression, linear regression analysis methods can be found and the
results of the ANOVA dispersion analyses are also contained. In the second subsec-
tion the numerical results can be found which were a basis for the analyses that are
done in the first subsection. In the third subsection, supplementary data regarding
the rates of correct answers are presented.

Results of various analysis methods

It should be noted that in the tables where the results of linear regression analysis
are presented, the estimated coefficients, the standard error, the test statistics (t
value) and the p-value (the probability of the type I. error (Pr(>t))) are shown. In
the those tables where the results of logistic regression analysis are presented, the z
values are shown instead of t values.

Table A1: Logistic regression results by investigating the effect of camera type.

Camera Type Estimate Standard Error z Value Pr (>|z|)
Intercept 0.62452 0.01597 39.113 <2× 10−16

Perspective 0.15670 0.02239 6.999 2.57× 10−12

Table A2: Logistic regression results of the effect of the FoV of the virtual camera.

FoV Estimate Standard Error z Value Pr (>|z|)
Intercept 0.62452 0.01597 39.113 <2× 10−16

45° 0.14423 0.02423 5.952 2.64× 10−9

60° 0.14988 0.05595 2.679 0.00739
75° 0.15676 0.05351 2.93 0.00339
90° 0.27871 0.05830 4.781 1.75× 10−6
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Table A3: Logistic regression analysis results of the camera FoV without the ortho-
graphic FoV.

FoV Estimate Standard Error z Value Pr (>|z|)
Intercept 0.768746 0.018226 42.179 <2× 10−16

60° 0.005655 0.056640 0.100 0.9205
75° 0.012530 0.054223 0.231 0.8172
90° 0.134485 0.058957 2.281 0.0225

Table A4: Logistic regression analysis results of the camera rotation.

Camera Rotation Estimate Standard Error z Value Pr (>|z|)
Intercept 0.620184 0.33839 18.327 <2× 10−16

-45° 0.176147 0.06557 2.686 0.00722
-30° -0.009832 0.047978 -0.205 0.83763
0° 0.147985 0.03769 3.926 8.62× 10−5

15° 0.015393 0.047061 0.327 0.7436
30° 0.012121 0.046995 0.258 0.79646
45° 0.145807 0.059162 2.465 0.01372

Table A5: Logistic regression analysis results of the camera rotation groups.

Groups Estimate Standard Error z Value Pr (>|z|)
Intercept 0.62498 0.01664 37.57 <2× 10−16

IMP_R 0.14503 0.02248 6.45 1.12× 10−10

Table A6: Logistic regression analysis results of the contrast ratio.

Contrast Ratio Estimate Standard Error z Value Pr (>|z|)
Intercept 0.77059 0.01801 42.779 <2× 10−16

3:1 -0.05359 0.04876 -1.099 0.2717
7:1 -0.11437 0.02493 -4.588 4.47× 10−6

14:1 -0.12867 0.04912 -2.620 0.0088
21:1 -0.09264 0.04554 -2.034 0.0419

Table A7: Logistic regression analysis results of the contrast ratio groups.

Groups Estimate Standard Error z Value Pr (>|z|)
Intercept 0.65750 0.01504 43.712 <2× 10−16

IMP_C 0.10584 0.02250 4.703 2.56× 10−6

Table A8: Logistic regression analysis results of the existence of shadows.

Shadows Estimate Standard Error z Value Pr (>|z|)
Intercept 0.69046 0.01612 42.83 <2× 10−16

Turned on 0.02864 0.02239 1.271 0.204

Table A9: Logistic regression results of the device used.

Device Used Estimate Standard Error z Value Pr (>|z|)
Intercept 0.69002 0.01249 55.231 <2× 10−16

GVR 0.07595 0.02805 2.708 0.00677
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Table A10: Logistic regression analysis results of the pairs without interactions.

Camera type and its rotation
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.52784 0.02309 22.864 <2× 10−16

Orthographic, INC_R 0.18323 0.03199 5.728 1.02× 10−8

Perspective, NO_R 0.19943 0.03334 5.982 2.21× 10−9

Perspective, INC_R 0.29271 0.03102 9.437 <2× 10−16

Camera type and contrast ratio
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.53467 0.02150 24.873 <2× 10−16

Orthographic, INC_C 0.19765 0.03215 6.148 7.85× 10−10

Perspective, NO_C 0.23707 0.03014 7.867 3.64× 10−15

Perspective, INC_C 0.25819 0.03181 8.117 4.80× 10−16

Camera type and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.61105 0.01752 34.87 <2× 10−16

Orthographic, GVR 0.07859 0.04255 1.847 0.0647
Perspective, DD 0.15872 0.02501 6.347 2.20× 10−10

Perspective, GVR 0.20891 0.03735 5.593 2.23× 10−8

Camera rotation and contrast ratio
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.60941 0.01821 33.469 <2× 10−16

NO_R, INC_C 0.09323 0.04483 2.08 0.0376
INC_R, NO_C 0.14922 0.03235 4.613 3.97× 10−6

INC_R, INC_C 0.16594 0.02584 6.421 1.36× 10−10

Camera rotation and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.63039 0.01778 35.465 <2× 10−16

NO_R, GVR -0.04388 0.05049 -0.869 0.385
INC_R, DD 0.11682 0.0250 4.673 2.97× 10−6

INC_R, GVR 0.20364 0.03461 5.883 4.02× 10−9

Contrast ratio and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.65115 0.01679 38.786 <2× 10−16

NO_C, GVR 0.03204 0.0378 0.848 0.396699
INC_C, DD 0.08647 0.02514 3.44 0.000583
INC_C, GVR 0.21296 0.04108 5.184 2.18× 10−7
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Table A11: Logistic regression analysis results of the pairs with interactions (additive
model).

Camera type and rotation
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.52784 0.02309 22.864 <2× 10−16

Perspective 0.19943 0.03334 5.982 2.21× 10−9

INC_R 0.18323 0.03199 5.728 1.02× 10−8

Perspective and INC_R -0.08995 0.04507 -1.996 0.0459

Camera type and contrast ratio
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.53467 0.0215 24.873 <2× 10−16

Perspective 0.23707 0.03014 7.867 3.64× 10−15

INC_C 0.19765 0.03215 6.148 7.85× 10−10

Perspective and INC_C -0.17653 0.04505 -3.919 8.91× 10−5

Camera type and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.61105 0.01752 34.87 <2× 10−16

Perspective 0.15872 0.02501 6.347 2.2× 10−10

GVR 0.07859 0.04255 1.847 0.0647
Perspective and GVR -0.02841 0.05672 -0.501 0.6164

Camera rotation and contrast ratio
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.60941 0.01821 33.469 <2× 10−16

INC_R 0.14922 0.03235 4.613 3.97× 10−6

INC_C 0.09323 0.04483 2.08 0.0376
INC_R and INC_C -0.07651 0.05533 -1.383 0.1667

Camera rotation and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.63039 0.01778 35.465 <2× 10−16

INC_R 0.11682 0.025 4.673 2.97× 10−6

GVR -0.04388 0.05049 -0.869 0.3847
INC_R and GVR 0.1307 0.06115 2.137 0.0326

Contrast ratio and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.65115 0.01679 38.786 <2× 10−16

INC_C 0.08647 0.02514 3.44 0.000583
GVR 0.03204 0.0378 0.848 0.396699

INC_C and GVR 0.09445 0.05644 1.674 0.094199
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Table A12: Comparison of the variable pairs by ANOVA.

Camera type and rotation
Resid. Df Resid. Dev Df Deviance Pr (>Chi)

1 2706 10.070 - - -
2 2705 10.066 1 3.9852 0.0459

Camera type and contrast ratio
Resid. Df Resid. Dev Df Deviance Pr (>Chi)

1 2706 10.085 - - -
2 2705 10.069 1 15.358 8.895× 10−5

Camera type and the device used
Resid. Df Resid. Dev Df Deviance Pr (>Chi)

1 2706 10.103 - - -
2 2705 10.102 1 0.25097 0.6164

Camera rotation and contrast ratio
Resid. Df Resid. Dev Df Deviance Pr (>Chi)

1 2706 10.112 - - -
2 2705 10.111 1 1.9179 0.1661

Camera rotation and the device used
Resid. Df Resid. Dev Df Deviance Pr (>Chi)

1 2706 10.113 - - -
2 2705 10.108 1 4.5511 0.0329

Contrast ratio and the device used
Resid. Df Resid. Dev Df Deviance Pr (>Chi)

1 2706 10.128 - - -
2 2705 10.125 1 2.804 0.09403
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Table A13: Logistic regression analysis results of the triplets without interactions.

Camera type, camera rotation and contrast ratio
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.51019 0.02512 20.309 <2× 10−16

Ortho., NO_R, INC_C 0.11228 0.06379 1.760 0.0784
Ortho., INC_R, NO_C 0.09065 0.04857 1.866 0.0620
Ortho., INC_R, INC_C 0.24358 0.03629 6.712 1.92× 10−11

Persp., NO_R, NO_C 0.20626 0.03651 5.649 1.61× 10−8

Persp., NO_R, INC_C 0.26714 0.06260 4.268 1.98× 10−5

Persp., INC_R, NO_C 0.35544 0.04310 8.246 <2× 10−16

Persp., INC_R, INC_C 0.28576 0.03593 7.952 1.83× 10−15

Camera type, camera rotation and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.53653 0.02449 21.907 <2× 10−16

Ortho., NO_R, GVR -0.07870 0.07340 -1.072 0.2836
Ortho. INC_R, DD 0.15114 0.03508 4.308 1.65× 10−5

Ortho., INC_R, GVR 0.25496 0.05299 4.811 1.50× 10−6

Persp., NO_R, DD 0.19570 0.03564 5.490 4.01× 10−8

Persp., NO_R, GVR 0.15942 0.06935 2.299 0.0215
Persp., INC_R, DD 0.26674 0.03473 7.680 1.59× 10−14

Persp., INC_R, GVR 0.32541 0.04549 7.154 8.44× 10−13

Camera type, contrast ratio and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.53024 0.02342 22.644 <2× 10−16

Ortho., NO_C, GVR 0.02804 0.03534 0.475 0.635
Ortho., INC_C, DD 0.18131 0.03534 5.130 2.90× 10−7

Ortho., INC_C, GVR 0.29212 0.06042 4.835 1.33× 10−7

Persp., NO_C, DD 0.24482 0.03365 7.275 3.45× 10−13

Persp., NO_C, GVR 0.23070 0.04936 4.674 2.96× 10−6

Persp., INC_C, DD 0.23317 0.03533 6.600 4.11× 10−11

Persp., INC_C, GVR 0.36797 0.05587 6.587 4.50× 10−11

Camera rotation, contrast ratio and the device used
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.60785 0.01946 31.238 <2× 10−16

NO_R, NO_C, GVR 0.01252 0.05517 0.227 0.82046
NO_R, INC_C, DD 0.13403 0.04789 2.799 0.00513
NO_R, INC_C, GVR -0.20239 0.11945 -1.694 0.0902
INC_R, NO_C, DD 0.16645 0.03855 4.317 1.58× 10−5

INC_R, NO_C, GVR 0.12203 0.04894 2.494 0.01265
INC_R, INC_C, DD 0.12882 0.02841 4.534 5.78× 10−6

INC_R, INC_C, GVR 0.30462 0.04418 6.895 5.37× 10−12
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Table A14: Comparison of model II and III by ANOVA.

Resid. Df Resid. Dev Df Deviance Pr (>Chi)
1 2703 10.053 - - -
2 2701 10.050 2 3.1703 0.2049

Table A15: Logistic regression analysis results of the triplets with interactions.

Camera type, camera rotation and contrast ratio (model II)
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.5062478 0.0238618 21.216 <2× 10−16

Persp. 0.2259740 0.0344853 6.553 5.65× 10−11

INC_R 0.1054279 0.0388003 2.717 0.006584
INC_C 0.1378076 0.0389859 3.535 0.000408

Persp. and INC_R 0.0006636 0.0528045 0.013 0.989973
Persp. and INC_C -0.1653400 0.0528044 -3.131 0.001741

Camera type, camera rotation and the used device (model II)
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.53406 0.02376 22.479 <2× 10−16

Persp. 0.20095 0.03337 6.022 1.72× 10−9

INC_R 0.15942 0.03339 4.774 1.80× 10−6

GVR -0.05639 0.05059 -1.115 0.2649
Persp. and INC_R -0.09672 0.04515 -2.142 0.0322
Persp. and GVR 0.13418 0.06130 2.189 0.0286

Camera type, contrast ratio and the used device (model II)
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.53024 0.02342 22.644 <2× 10−16

Ortho., NO_C, GVR 0.02804 0.03534 0.475 0.635
Ortho., INC_C, DD 0.18131 0.03534 5.13 2.90× 10−7

Ortho., INC_C, GVR 0.29212 0.06042 4.835 1.33× 10−7

Persp., NO_C, DD 0.24482 0.03365 7.275 3.45× 10−13

Persp., NO_C, GVR 0.23070 0.04936 4.674 2.96× 10−6

Persp., INC_C, DD 0.23317 0.03533 6.600 4.11× 10−11

Persp., INC_C, GVR 0.36797 0.05587 6.587 4.50× 10−11

Camera rotation, contrast ratio and the used device (model III)
Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.60785 0.01946 31.238 <2× 10−16

NO_R, NO_C, GVR 0.01252 0.05517 0.227 0.82046
NO_R, INC_C, DD 0.13403 0.04789 2.799 0.00513
NO_R, INC_C, GVR -0.20239 0.11945 -1.694 0.0902
INC_R, NO_C, DD 0.16645 0.03855 4.317 1.58× 10−5

INC_R, NO_C, GVR 0.12203 0.04894 2.494 0.01265
INC_R, INC_C, DD 0.12882 0.02841 4.534 5.78× 10−6

INC_R, INC_C, GVR 0.30462 0.04418 6.895 5.37× 10−12
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Table A16: Logistic regression analysis results investigating the effects of the camera
type, rotation, contrast ratio, and device used without interactions.

Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.51385 0.02670 19.246 <2× 10−16

Ortho., NO_R, NO_C, GVR -0.03202 0.07884 -0.406 0.6847
Ortho., NO_R, INC_C, DD 0.14107 0.06717 2.100 0.0357
Ortho., NO_R, INC_C, GVR -0.22087 0.19458 -1.135 0.2563
Ortho., INC_R, NO_C, DD 0.07053 0.05559 1.269 0.2045
Ortho., INC_R, NO_C, GVR 0.13040 0.08391 1.554 0.1202
Ortho., INC_R, INC_C, DD 0.21036 0.03966 5.305 1.13× 10−7

Ortho., INC_R, INC_C, GVR 0.35379 0.06417 5.513 3.52× 10−8

Persp., NO_R, NO_C, DD 0.19790 0.03904 5.069 4.00× 10−7

Persp., NO_R, NO_C, GVR 0.23262 0.07695 3.023 0.0025
Persp., NO_R, INC_C, DD 0.31400 0.06772 4.637 3.54× 10−6

Persp., NO_R, INC_C, GVR -0.04214 0.15152 -0.278 0.7809
Persp., INC_R, NO_C, DD 0.41798 0.05303 7.882 3.22× 10−15

Persp., INC_R, NO_C, GVR 0.25528 0.06062 4.211 2.54× 10−5

Persp., INC_R, INC_C, DD 0.23513 0.03959 5.94 2.86× 10−9

Persp., INC_R, INC_C, GVR 0.43645 0.06032 7.236 4.62× 10−13

Table A17: Logistic regression analysis results investigating the effects of the camera
type, rotation, contrast ratio, and device used with interactions.

Variables Estimate Standard error z Value Pr (>|z|)
Intercept 0.4997428 0.0252612 19.783 <2× 10−16

Persp. 0.2281487 0.0345391 6.606 3.96× 10−11

INC_R 0.1501627 0.0475111 3.161 0.001575
INC_C 0.2106181 0.0547860 3.844 0.000121
GVR 0.0008861 0.0552796 0.016 0.987212

Persp., INC_R -0.0028185 0.0532272 -0.053 0.95777
Persp., INC_C -0.1660764 0.0532649 -3.118 0.001821
INC_R, GVR -0.0746026 0.0788879 -0.946 0.344313

INC_R, INC_C -0.1535519 0.0619693 -2.478 0.013217
INC_C, GVR -0.3450059 0.1374857 -2.509 0.012094

INC_R, INC_C, GVR 0.5920143 0.1374857 3.821 0.000133
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Table A18: Regression analysis results of the influence of one factor on the comple-
tion times.

Gender of the user
Variable Estimate Standard Error t Value Pr(>|t|)
Intercept 223.644 6.040 37.024 <2×10−16

Male -27.451 6.563 -4.183 2.97×10−5

Primary hand of the user
Variable Estimate Standard Error t Value Pr(>|t|)
Intercept 199.5352 6.8501 29.129 <2×10−16

RH 0.9685 7.3006 0.133 0.894

Test type
Variable Estimate Standard Error t Value Pr(>|t|)
Intercept 176.156 3.963 44.454 <2×10−16

MRT 69.545 5.604 12.410 <2×10−16

PSVT 3.151 5.604 0.562 0.574

The device used
Variable Estimate Standard Error t Value Pr(>|t|)
Intercept 188.784 2.606 72.43 <2×10−16

GVR 57.259 5.790 9.89 <2×10−16
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Table A19: Results of the regression analysis of the influence of the pairs without
interactions on the completion times.

Gender of the user and the test type
Variables Estimate Standard Error t Value Pr(>|t|)
Intercept 200.152 10.106 19.805 <2×10−16

F, MRT 63.000 14.292 4.408 1.08× 10−5

F, PSVT 7.476 14.292 0.523 0.600945
M, MCT -28.324 10.980 -2.580 0.009941
M, MRT 42.401 10.980 3.862 0.000115
M, PSVT -25.954 10.980 -2.364 0.018158

Gender of the user and the device used
Variables Estimate Standard Error t Value Pr(>|t|)
Intercept 212.681 7.484 28.417 <2×10−16

F, GVR 29.663 12.312 2.409 0.016046
M, DD -27.182 7.982 -3.405 0.000671
M, GVR 34.790 9.640 3.609 0.000313

Test type and the device used
Variables Estimate Standard Error t Value Pr(>|t|)
Intercept 160.512 4.351 36.889 <2×10−16

MCT, GVR 77.197 9.666 7.987 2.03×10−15

MRT, DD 75.471 6.154 12.265 <2×10−16

MRT, GVR 123.425 9.666 12.769 <2×10−16

PSVT, DD 9.346 6.154 1.519 0.129
PSVT, GVR 55.971 9.666 5.791 7.82×10−9
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Table A20: Results of the regression analysis of the influence of pairs with interac-
tions on the completion times.

Gender of the user and the test type
Variables Estimate Standard Error t Value Pr(>|t|)
Intercept 200.152 10.106 19.805 <2×10−16

M -28.324 10.980 -2.580 0.00994
MRT 63.000 14.292 4.408 1.08×10−5

PSVT 7.476 14.292 0.523 0.60095
M, MRT 7.725 15.528 0.498 0.61885
M, PSVT -5.106 15.528 -0.329 0.74231

Gender of the user and the device used
Variables Estimate Standard Error t Value Pr(>|t|)
Intercept 212.681 7.484 28.417 <2×10−16

M -27.182 7.982 -3.405 0.000671
GVR 29.663 12.312 2.409 0.016046

M, GVR 32.309 14.007 2.307 0.021150

Test type and the device used
Variables Estimate Standard Error t Value Pr(>|t|)
Intercept 160.512 4.351 36.889 <2×10−16

MRT 75.471 6.154 12.265 <2×10−16

PSVT 9.346 6.154 1.519 0.1289
GVR 77.197 9.666 7.897 2.03×10−15

MRT, GVR -29.243 13.669 -2.139 0.0325

Table A21: Results of the regression analysis of the influence of all triplets without
interactions on the completion times.

Variables Estimate Standard Error t Value Pr(>|t|)
Intercept 183.74 12.50 14.700 <2×10−16

F, MCT, GVR 44.41 20.56 2.160 0.030886
F, MRT, DD 70.33 17.68 3.979 7.11×10−5

F, MRT, GVR 94.90 20.56 4.615 4.11×10−6

F, PSVT, DD 16.49 17.68 0.933 0.351047
F, PSVT, GVR 36.51 20.56 1.776 0.075911
M, MCT, DD -26.42 13.33 -1.982 0.047586
M, MCT, GVR 57.66 16.10 3.581 0.000348
M, MRT, DD 49.76 13.33 3.732 0.000194
M, MRT, GVR 102.24 16.10 6.350 2.51×10−10

M, PSVT, DD -18.06 13.33 -1.355 0.175688
M, PSVT, GVR 31.29 16.10 1.943 0.052091
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Table A22: Results of the regression analysis of the influence of all triplets with
interactions on the completion times.

Variables Estimate Standard Error t Value Pr(>|t|)
Intercept 184.409 8.037 22.944 <2×10−16

M -27.182 7.692 -3.534 0.000417
MRT 75.471 6.141 12.289 <2×10−16

PSVT 9.346 6.141 1.522 0.128172
GVR 49.601 14.241 3.483 0.000504

M, GVR 32.309 13.499 2.394 0.016756
MRT, GVR -29.243 13.642 -2.144 0.032161
PSVT, GVR -30.572 13.642 -2.241 0.025112

Numerical results of the users

Table B1: Numerical results of the users regarding the camera type.

Camera type Number of tests Average rate Dispersion
Orthographic 1291 0.606 0.240
Perspective 1418 0.642 0.247

Table B2: Numerical results of the users regarding the camera FoV.

FoV Number of tests Average rate Dispersion
-11 1291 0.606 0.240
45° 1049 0.639 0.245
60° 120 0.637 0.280
75° 134 0.640 0.256
90° 115 0.673 0.218

1-1 is undefined in the case of the orthographic camera.

Table B3: Numerical results of the users regarding the camera rotation.

Camera rotation Number of tests Average rate Dispersion
-45° 106 0.651 0.235
-30° 294 0.603 0.241
-15° 294 0.606 0.232
0° 1251 0.639 0.247
15° 312 0.611 0.247
30° 313 0.607 0.240
45° 139 0.632 0.259

Table B4: Numerical results of the users regarding the camera rotation groups.

Camera rotation groups Number of tests Average rate Dispersion
IMP_R 1496 0.639 0.247
NO_R 1213 0.607 0.240
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Table B5: Numerical results of the users regarding the contrast ratio.

Contrast ratio Number of tests Average rate Dispersion
1.5:1 1066 0.639 0.247
3:1 167 0.628 0.249
7:1 1121 0.615 0.239
14:1 164 0.609 0.247
21:1 191 0.616 0.248

Table B6: Numerical results of the users regarding the contrast ratio groups.

Contrast ratio groups Number of tests Average rate Dispersion
IMP_C 1233 0.637 0.241
NO_C 1476 0.614 0.247

Table B7: Numerical results of the users regarding the shadows in the scene.

Shadows Number of tests Average rate Dispersion
Turned on 1414 0.628 0.242
Turned off 1295 0.621 0.247

Table B8: Numerical results of the users regarding the device used.

Device used Number of tests Average rate Dispersion
DD 2160 0.620 0.242
GVR 549 0.643 0.252
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Table B9: Numerical results of the users regarding the pairs of variables.

Variables Number of tests Average rate Dispersion
Orthographic, NO_R 611 0.583 0.235
Orthographic, INC_R 680 0.626 0.243
Perspective, NO_R 602 0.631 0.243
Perspective, INC_R 816 0.650 0.249
Orthographic, NO_C 696 0.585 0.235
Orthographic, INC_C 595 0.630 0.244
Perspective, NO_C 780 0.640 0.244
Perspective, INC_C 638 0.644 0.250
Orthographic, DD 1065 0.601 0.237
Orthographic, GVR 226 0.626 0.252
Perspective, DD 1095 0.638 0.246
NO_R, NO_C 1005 0.603 0.237
NO_R, INC_C 208 0.625 0.253
INC_R, NO_C 471 0.638 0.248
INC_R, INC_C 1025 0.640 0.246

NO_R, DD 1062 0.607 0.238
NO_R, GVR 151 0.603 0.251
INC_R, DD 1098 0.632 0.245
INC_R, GVR 398 0.659 0.251
NO_C, DD 1183 0.611 0.239
NO_C, GVR 293 0.626 0.249
INC_C, DD 977 0.630 0.245
INC_C, GVR 256 0.663 0.254
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Table B10: Numerical results of the users regarding the variable triplets.

Variables Number of tests Average rate Dispersion
Orthographic, NO_R, NO_C 511 0.579 0.234
Orthographic, NO_R, INC_C 100 0.606 0.235
Orthographic, INC_R, NO_C 185 0.603 0.235
Orthographic, INC_R, INC_C 495 0.635 0.246
Perspective, NO_R, NO_C 494 0.628 0.238
Perspective, NO_R, INC_C 108 0.643 0.268
Perspective, INC_R, NO_C 286 0.661 0.254
Perspective, INC_R, INC_C 530 0.664 0.247
Orthographic, NO_R, DD 541 0.584 0.232
Orthographic, NO_R, GVR 70 0.574 0.255
Orthographic INC_R, DD 524 0.619 0.242

Orthographic, INC_R, GVR 156 0.650 0.248
Perspective, NO_R, DD 521 0.631 0.243
Perspective, NO_R, GVR 81 0.629 0.246
Perspective, INC_R, DD 574 0.644 0.248
Perspective, INC_R, GVR 242 0.664 0.252
Orthographic, NO_C, DD 585 0.583 0.232
Orthographic, NO_C, GVR 111 0.595 0.251
Orthographic, INC_C, DD 480 0.623 0.242
Orthographic, INC_C, GVR 115 0.657 0.251
Perspective, NO_C, DD 598 0.639 0.243
Perspective, NO_C, GVR 182 0.645 0.247
Perspective, INC_C, DD 497 0.637 0.248
Perspective, INC_C, GVR 141 0.668 0.257

NO_R, NO_C, DD 877 0.602 0.236
NO_R, NO_C, GVR 128 0.611 0.245
NO_R, INC_C, DD 185 0.633 0.248
NO_R, INC_C, GVR 23 0.561 0.287
INC_R, NO_C, DD 306 0.638 0.246
INC_R, NO_C, GVR 165 0.638 0.253
INC_R, INC_C, DD 792 0.630 0.245
INC_R, INC_C, GVR 233 0.673 0.248
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Table B11: Numerical results of the users regarding the camera type, rotation,
contrast ratio, device used.

Variables Number of tests Average rate Dispersion
Orthographic, NO_R, NO_C, DD 450 0.579 0.232
Orthographic, NO_R, NO_C, GVR 61 0.578 0.251
Orthographic, NO_R, INC_C, DD 91 0.612 0.230
Orthographic, NO_R, INC_C, GVR 9 0.544 0.296
Orthographic, INC_R, NO_C, DD 135 0.598 0.229
Orthographic, INC_R, NO_C, GVR 50 0.615 0.253
Orthographic, INC_R, INC_C, DD 389 0.626 0.246
Orthographic, INC_R, INC_C, GVR 106 0.667 0.246

Perspective, NO_R, NO_C, DD 427 0.626 0.238
Perspective, NO_R, NO_C, GVR 67 0.641 0.236
Perspective, NO_R, INC_C, DD 94 0.654 0.264
Perspective, NO_R, INC_C, GVR 14 0.571 0.291
Perspective, INC_R, NO_C, DD 171 0.670 0.255
Perspective, INC_R, NO_C, GVR 115 0.648 0.253
Perspective, INC_R, INC_C, DD 403 0.633 0.244
Perspective, INC_R, INC_C, GVR 127 0.679 0.252

Table B12: Numerical results of the users regarding their gender.

Gender of the user Number of tests Average time (sec) Dispersion (sec)
Female 414 223.644 123.214
Male 2295 196.193 122.850

Table B13: Numerical results of the users regarding their primary hand.

Primary hand Number of tests Average time (sec) Dispersion (sec)
Left-handed 324 199.535 118.589
Right-handed 2385 200.504 123.926

Table B14: Numerical results of the users regarding the type of the tEstimate

Test type Number of tests Average time (sec) Dispersion (sec)
MCT 903 176.156 129.959
MRT 903 245.701 127.911
PSVT 903 179.307 96.374

Table B15: Numerical results of the users regarding the device used.

Device used Number of tests Average time (sec) Dispersion (sec)
DD 2160 188.784 121.389
GVR 549 246.043 120.117
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Table B16: Numerical results of the users regarding the pairs of variables.

Variables Number of tests Average time (sec) Dispersion (sec)
F, MCT 138 200.152 135.476
F, MRT 138 263.152 123.841
F, PSVT 138 207.628 98.435
M, MCT 765 171.827 128.554
M, MRT 765 242.553 128.458
M, PSVT 765 174.198 95.169
F, DD 261 212.681 125.440
F, GVR 153 242.344 117.373
M, DD 1899 185.499 120.486
M, GVR 396 247.472 121.276
MCT, DD 720 160.512 122.476
MCT, GVR 183 237.708 140.238
MRT, DD 720 235.983 130.113
MRT, GVR 183 283.937 111.186
PSVT, DD 720 169.858 94.485
PSVT, GVR 183 216.483 94.980

Table B17: Numerical results of the users regarding all factors.

Variables Number of tests Average time (sec) Dispersion (sec)
F, MCT, DD 87 183.741 135.609
F, MCT, GVR 51 228.147 131.875
F, MRT, DD 87 254.074 128.061
F, MRT, GVR 51 278.636 115.875
F, PSVT, DD 87 200.229 100.221
F, PSVT, GVR 51 220.250 94.948
M, MCT, DD 633 157.319 120.327
M, MCT, GVR 132 241.403 143.653
M, MRT, DD 633 233.496 130.296
M, MRT, GVR 132 285.985 109.705
M, PSVT, DD 633 165.683 92.979
M, PSVT, GVR 132 215.028 95.313
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Supplementary data regarding the rates of correct answers

Table C1: Comparisons of standard deviations of the ratios of correct answers with
a DD.

MRT MCT PSVT
Trial stat. Significance Q? Trial stat. Significance Q? Trial stat. Significance Q?

MRT 0 1 Yes 0.7503 0.0268 No 0.4764 0 No
MCT 0.7503 0.0268 No 0 1 Yes 0.6349 0.0005 No
PSVT 0.4764 0 No 0.6349 0.0005 No 0 1 Yes

In the header of the table, "Q?" stands for "Distinguishable?".

Table C2: Comparisons of the average rates of the ratios of correct answers with a
DD.

MRT MCT PSVT
Trial stat. Significance Q? Trial stat. Significance Q? Trial stat. Significance Q?

MRT 0 1 Yes 27.775 0 No 12.358 0 No
MCT 27.775 0 No 0 1 Yes -11.155 0 No
PSVT 12.358 0 No -11.155 0 No 0 1 Yes

In the header of the table, "Q?" stands for "Distinguishable?".

Table C3: Standard deviations of rates of correct answers with the GVR.
MRT MCT PSVT

Trial stat. Significance Q? Trial stat. Significance Q? Trial stat. Significance Q?
MRT 1 1 Yes 0.5247 0.0136 No 0.4376 0.0016 No
MCT 0.5247 0.0136 No 1 1 Yes 0.8340 0.4842 Yes
PSVT 0.4376 0.0016 No 0.8340 0.4842 Yes 1 1 Yes

In the header of the table, "Q?" stands for "Distinguishable?".

Table C4: Comparison of average rates of correct answers with the GVR.
MRT MCT PSVT

Trial stat. Significance Q? Trial stat. Significance Q? Trial stat. Significance Q?
MRT 0 1 Yes 14.437 0 No 2.6704 0.0087 No
MCT 14.437 0 No 0 1 Yes -9.657 0 No
PSVT 2.6704 0.0087 No -9.657 0 No 0 1 Yes

In the header of the table, "Q?" stands for "Distinguishable?".
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Table C5: Statistical data of the rates of correct answers by age groups using a DD.

Age Students in group Group average Group dispersion
17 1 0.666 0.000
18 33 0.623 0.124
19 89 0.667 0.116
20 75 0.680 0.111
21 29 0.673 0.125
22 6 0.573 0.087
23 2 0.750 0.087
24 2 0.612 0.205
25 1 0.808 0.000
27 1 0.758 0.000
32 1 0.866 0.000

Table C6: Comparing different age groups who used a DD.

Age G1 Average rate
of G1 G2 Average rate

of G2 p-value Significant
difference?

<= 17 & >17 1 0.6667 239 0.6660 0.9277 No
<= 18 & >18 34 0.6245 206 0.6728 0.0375 Yes
<= 19 & >19 123 0.6556 117 0.6769 0.1656 No
<= 20 & >20 198 0.6652 42 0.6696 0.8357 No
<= 21 & >21 227 0.6662 13 0.6615 0.9047 No
<= 22 & >22 233 0.6638 7 0.7369 0.1801 No
<= 23 & >23 235 0.6646 5 0.7317 0.3885 No
<= 24 & >24 237 0.6641 3 0.8111 0.0359 Yes
<= 25 & >25 238 0.6647 2 0.8125 0.2179 No
<= 27 & >27 239 0.6651 1 0.8667 0.0000 Yes

In the header of the table, "G1" refers to Group 1 which is on the left side of the "&" symbol,
while "G2" refers to Group 2 which is on the right side of the "&" symbol.
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Table C7: Statistical data of the rates of correct answers by age groups using the
GVR.

Age Students in group Group average Group dispersion
19 3 0.7306 0.1008
20 4 0.6000 0.1763
21 9 0.6296 0.1176
22 10 0.6667 0.1153
23 11 0.6720 0.1492
24 8 0.6938 0.1006
25 4 0.7250 0.1369
26 3 0.6944 0.0376
27 3 0.7500 0.1228
28 2 0.7542 0.0412
30 1 0.8083 0
31 1 0.6583 0
32 1 0.8083 0
34 1 0.7583 0

Table C8: Comparing different age groups who used the GVR.

Age G1 Average rate
of G1 G2 Average rate

of G2 p-value Significant
difference?

<= 19 & >19 3 0.7306 58 0.6802 0.4812 No
<= 20 & >20 7 0.6560 54 0.6861 0.6330 No
<= 21 & >21 16 0.6411 45 0.6974 0.1396 No
<= 22 & >22 26 0.6510 35 0.7062 0.0792 No
<= 23 & >23 37 0.6572 24 0.7219 0.0266 Yes
<= 24 & >24 45 0.6637 16 0.6637 0.0163 Yes
<= 25 & >25 49 0.6687 12 0.6687 0.0155 Yes
<= 26 & >26 52 0.6702 9 0.6702 0.0140 Yes
<= 27 & >27 55 0.6745 6 0.6745 0.0157 Yes
<= 28 & >28 57 0.6773 4 0.6773 0.0996 No
<= 30 & >30 58 0.6796 3 0.6796 0.2915 No
<= 31 & >31 59 0.6792 2 0.6792 0.0753 No
<= 32 & >32 60 0.6814 1 0.6814 0.0000 Yes

In the header of the table, "G1" refers to Group 1 which is on the left side of the "&" symbol,
while "G2" refers to Group 2 which is on the right side of the "&" symbol.
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Tables regarding the research of gesture classification

Table D1: Comparing the technical specifications of both Kinect sensors.

Kinect v1 Kinect v2

Dimensions 27.94 cm × 6.35 cm
× 3.81 cm

24.9 cm × 6.6 cm
× 6.7 cm

Color camera
resolution and fps

640 × 380 at 30 fps,
1280 × 720 at 12 fps 1920 × 1080 at 30 fps

IR resolution and fps 640 × 480 at 30 fps 512 × 424 at 30 fps
Depth resolution and fps 320 × 240 at 30 fps 512 × 424 at 30 fps

Field of view 57° horizontal,
43° vertical

70° horizontal,
60° vertical

Specified
min. distance 0.4 m or 0.8 m 0.5 m

Recommended
min. distance 1.8 m 1.4 m

Tested
min. distance 1 m 0.7 m

Specified
max. distance 4 m 4.5 m

Tested
max. distance 6 m 4 m

Active infrared Not available Available
Measurement method Infrared structured light Time of Flight
Minimum latency 102 ms 20 ms
Microphone array 4 microphones, 16 kHz 4 microphones, 48 kHz

Tilt-motor Available, ±27° Not available
Temperature Weak correlation Strong correlation
More distance Less accuracy Same accuracy

Striped depth image Increases with depth No stripes on image
Depth precision Higher Less

Flying pixels Not present Present if surface
is not flat

Environment color Depth estimation
is unaffected

Affects depth
estimation

Multipath interference Not present Present
Angles affect precision No No

Precision decreasing Second order
polynomial

No mathematical
behavior
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Table D2: Real-time results using the general computer.
Circular movements (GC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.207, 0.594, 0.871 0.202, 0.227, 0.163 3.047 14.476
GMT 0.004, 0.031, 0.066 0.022, 0.071, 0.095 1.673 3.811
HMT 0.238, 0.641, 0.762 0.232, 0.375, 0.297 1.194 0.377
CHMT 0.270, 0.609, 0.723 0.244, 0.362, 0.322 1.575 0.533
QMT 0.008, 0.121, 0.293 0.031, 0.166, 0.341 1.525 0.470
CMT 0.000, 0.012, 0.039 0.000, 0.037, 0.081 0.985 0.511

Waving movements (GC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.734, 0.926, 0.965 0.224, 0.126, 0.057 3.048 6.061
GMT 0.000, 0.000, 0.000 0.000, 0.000, 0.000 1.965 1.443
HMT 0.762, 0.957, 0.969 0.225, 0.098, 0.078 1.878 1.754
CHMT 0.719, 0.930, 0.973 0.262, 0.100, 0.061 3.529 3.872
QMT 0.000, 0.035, 0.195 0.000, 0.177, 0.324 2.983 2.915
CMT 0.000, 0.000, 0.000 0.000, 0.000, 0.000 3.199 2.895

Forward-diagonal movements (GC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.820, 0.980, 0.992 0.177, 0.056, 0.031 1.466 5.720
GMT 0.000, 0.000, 0.000 0.000, 0.000, 0.000 0.919 0.647
HMT 0.820, 0.988, 1.000 0.177, 0.037, 0.000 0.825 0.366
CHMT 0.848, 0.992, 0.996 0.158, 0.031, 0.022 0.925 0.337
QMT 0.004, 0.051, 0.141 0.022, 0.179, 0.297 0.901 0.365
CMT 0.000, 0.004, 0.004 0.000, 0.022, 0.022 0.955 0.288

Upward-diagonal movements (GC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.188, 0.523, 0.754 0.165, 0.157, 0.154 1.771 7.031
GMT 0.043, 0.195, 0.277 0.093, 0.215, 0.296 1.023 0.372
HMT 0.184, 0.465, 0.668 0.155, 0.188, 0.151 0.896 0.381
CHMT 0.199, 0.484, 0.648 0.168, 0.212, 0.202 1.221 0.560
QMT 0.090, 0.293, 0.457 0.143, 0.299, 0.392 1.164 0.502
CMT 0.078, 0.270, 0.410 0.122, 0.303, 0.431 1.324 0.813
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Table D3: Real-time results using the advanced computer.
Circular movements (AC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.207, 0.609, 0.832 0.200, 0.224, 0.189 0.603 2.255
GMT 0.055, 0.300, 0.516 0.100, 0.237, 0.273 0.384 0.127
HMT 0.211, 0.523, 0.664 0.186, 0.255, 0.255 0.355 0.313
CHMT 0.234, 0.555, 0.684 0.228, 0.242, 0.244 0.454 0.166
QMT 0.148, 0.730, 0.984 0.221, 0.227, 0.042 0.410 0.137
CMT 0.140, 0.578, 0.820 0.210, 0.299, 0.206 0.272 0.135

Waving movements (AC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.754, 0.969, 0.992 0.276, 0.064, 0.031 0.549 2.011
GMT 0.324, 0.578, 0.641 0.306, 0.386, 0.419 0.340 0.125
HMT 0.785, 0.965, 0.996 0.238, 0.085, 0.022 0.323 0.268
CHMT 0.793, 0.949, 0.965 0.237, 0.089, 0.073 0.433 0.172
QMT 0.566, 0.953, 0.984 0.331, 0.082, 0.042 0.393 0.151
CMT 0.383, 0.609, 0.660 0.328, 0.403, 0.423 0.414 0.163

Forward-diagonal movements (AC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.613, 0.906, 0.961 0.186, 0.156, 0.103 0.486 1.987
GMT 0.234, 0.480, 0.543 0.257, 0.410, 0.423 0.304 0.265
HMT 0.621, 0.910, 0.945 0.214, 0.146, 0.110 0.266 0.074
CHMT 0.656, 0.922, 0.941 0.203, 0.141, 0.110 0.326 0.081
QMT 0.305, 0.637, 0.832 0.267, 0.387, 0.235 0.309 0.095
CMT 0.230, 0.488, 0.547 0.244, 0.406, 0.430 0.333 0.171

Upward-diagonal movements (AC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.465, 0.809, 0.934 0.248, 0.203, 0.152 0.452 1.888
GMT 0.367, 0.672, 0.762 0.286, 0.312, 0.261 0.271 0.187
HMT 0.445, 0.852, 0.949 0.218, 0.189, 0.134 0.245 0.075
CHMT 0.488, 0.898, 0.949 0.251, 0.172, 0.130 0.306 0.193
QMT 0.418, 0.746, 0.902 0.278, 0.251, 0.145 0.297 0.187
CMT 0.383, 0.695, 0.797 0.280, 0.313, 0.276 0.315 0.176
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Table D4: File-based results using the advanced computer.
Circular movements (AC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.362, 0.643, 0.818 0.238, 0.247, 0.161 9.826 7.096
GMT 0.224, 0.435, 0.531 0.287, 0.361, 0.331 2.393 4.068
HMT 0.354, 0.630, 0.773 0.250, 0.263, 0.214 2.523 4.273
CHMT 0.375, 0.635, 0.771 0.247, 0.244, 0.224 2.556 3.980
QMT 0.234, 0.630, 0.849 0.275, 0.249, 0.179 9.763 7.108
CMT 0.227, 0.521, 0.711 0.288, 0.327, 0.328 3.274 4.632

Waving movements (AC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.570, 0.875, 0.932 0.241, 0.144, 0.108 9.979 7.600
GMT 0.578, 0.880, 0.940 0.244, 0.141, 0.104 2.812 4.270
HMT 0.629, 0.915, 0.971 0.251, 0.141, 0.083 2.786 4.055
CHMT 0.627, 0.915, 0.971 0.235, 0.141, 0.087 2.850 4.193
QMT 0.619, 0.907, 0.961 0.239, 0.144, 0.105 12.072 9.624
CMT 0.627, 0.915, 0.971 0.248, 0.141, 0.087 3.503 4.705

Forward-diagonal movements (AC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.680, 0.875, 0.948 0.319, 0.208, 0.131 6.185 4.938
GMT 0.341, 0.599, 0.651 0.342, 0.393, 0.373 2.722 4.107
HMT 0.677, 0.878, 0.922 0.327, 0.212, 0.176 2.863 3.899
CHMT 0.721, 0.883, 0.938 0.304, 0.215, 0.161 2.977 3.996
QMT 0.451, 0.737, 0.841 0.356, 0.359, 0.275 7.230 5.344
CMT 0.381, 0.592, 0.679 0.332, 0.390, 0.375 2.917 4.273

Upward-diagonal movements (AC)

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.424, 0.672, 0.779 0.324, 0.332, 0.289 7.687 6.528
GMT 0.403, 0.620, 0.727 0.351, 0.381, 0.324 2.775 4.002
HMT 0.432, 0.740, 0.867 0.317, 0.312, 0.260 2.806 4.330
CHMT 0.455, 0.766, 0.862 0.336, 0.318, 0.287 2.903 4.079
QMT 0.408, 0.654, 0.773 0.354, 0.367, 0.290 9.058 7.208
CMT 0.412, 0.680, 0.815 0.355, 0.361, 0.279 3.915 5.503
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Table D5: Comparing the execution time of the APBMR algorithm (ms).

Comparing the averages of time.
MT AC 1 AC 2 AC 3 AC 4 File 1 File 2 File 3 File 4
AMT 0.603 0.549 0.486 0.452 9.826 9.979 6.185 7.687
GMT 0.384 0.340 0.304 0.271 2.393 2.812 2.722 2.775
HMT 0.355 0.323 0.266 0.245 2.523 2.786 2.863 2.806
CHMT 0.454 0.433 0.326 0.306 2.556 2.850 2.977 2.903
QMT 0.410 0.393 0.309 0.297 9.763 12.072 7.230 9.058
CMT 0.272 0.414 0.333 0.315 3.274 3.503 2.917 3.915

Comparing the averages of time.
MT GC 1 GC 2 GC 3 GC 4 File 1 File 2 File 3 File 4
AMT 3.047 3.048 1.466 1.771 9.826 9.979 6.185 7.687
GMT 1.673 1.965 0.919 1.023 2.393 2.812 2.722 2.775
HMT 1.194 1.878 0.825 0.896 2.523 2.786 2.863 2.806
CHMT 1.575 3.529 0.925 1.221 2.556 2.850 2.977 2.903
QMT 1.525 2.983 0.901 1.164 9.763 12.072 7.230 9.058
CMT 0.985 3.199 0.955 1.324 3.274 3.503 2.917 3.915

In the header of the table, “1” refers to the circular, “2” to the waving, “3” to the forward-diagonal
and “4” to the upward-diagonal gestures.
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Table D6: Comparing the APBMR to the RDAMR algorithm.

Comparing the AGARs of the circular movements.
AD AMT GMT HMT CHMT QMT CMT RDAMR

±0.05 m 0.305 0.082 0.273 0.316 0.105 0.094 0.078
±0.10 m 0.559 0.238 0.523 0.539 0.543 0.379 0.227
±0.15 m 0.789 0.359 0.699 0.684 0.816 0.605 0.352
±0.20 m - - - - - - 0.555
±0.25 m - - - - - - 0.754
±0.30 m - - - - - - 0.852

Comparing the AGARs of the waving movements.
AD AMT GMT HMT CHMT QMT CMT RDAMR

±0.05 m 0.617 0.617 0.667 0.675 0.635 0.655 0.180
±0.10 m 0.926 0.930 0.943 0.940 0.935 0.940 0.660
±0.15 m 0.977 0.980 0.988 0.992 0.980 0.992 0.965
±0.20 m - - - - - - 1.000

Comparing the AGARs of the forward-diagonal movements.
AD AMT GMT HMT CHMT QMT CMT RDAMR

±0.05 m 0.855 0.508 0.863 0.887 0.652 0.547 0.062
±0.10 m 0.980 0.793 0.965 0.969 0.945 0.773 0.344
±0.15 m 0.996 0.809 0.980 0.977 0.980 0.840 0.707
±0.20 m - - - - - - 0.875
±0.25 m - - - - - - 0.992

Comparing the AGARs of the upward-diagonal movements.
AD AMT GMT HMT CHMT QMT CMT RDAMR

±0.05 m 0.586 0.600 0.597 0.628 0.605 0.611 0.074
±0.10 m 0.832 0.855 0.902 0.934 0.883 0.910 0.270
±0.15 m 0.922 0.918 0.996 0.996 0.926 0.973 0.477
±0.20 m - - - - - - 0.684
±0.25 m - - - - - - 0.879

Comparing the AGARs of all movements.
AD AMT GMT HMT CHMT QMT CMT RDAMR

±0.05 m 0.591 0.452 0.600 0.627 0.499 0.477 0.099
±0.10 m 0.824 0.704 0.833 0.845 0.827 0.750 0.375
±0.15 m 0.921 0.767 0.916 0.912 0.926 0.852 0.625
±0.20 m - - - - - - 0.778
±0.25 m - - - - - - 0.875

XXVI



Table D7: The results of all movement descriptors.
All movements

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.505, 0.782, 0.896 0.319, 0.250, 0.173 4.424 7.546
GMT 0.241, 0.435, 0.508 0.308, 0.404, 0.412 1.638 3.083
HMT 0.515, 0.789, 0.876 0.323, 0.275, 0.213 1.604 2.958
CHMT 0.534, 0.796, 0.871 0.324, 0.270, 0.222 1.835 3.084
QMT 0.293, 0.568, 0.709 0.328, 0.399, 0.380 4.655 6.642
CMT 0.263, 0.480, 0.574 0.316, 0.410, 0.432 2.076 3.521

Circular movements

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.273, 0.619, 0.837 0.235, 0.237, 0.172 5.254 9.962
GMT 0.113, 0.280, 0.394 0.245, 0.323, 0.307 1.613 3.452
HMT 0.280, 0.603, 0.739 0.236, 0.263, 0.236 1.524 2.955
CHMT 0.305, 0.605, 0.732 0.248, 0.245, 0.234 1.678 2.762
QMT 0.145, 0.513, 0.729 0.257, 0.248, 0.155 4.737 6.390
CMT 0.137, 0.392, 0.550 0.262, 0.315, 0.289 2.005 3.270

Waving movements

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.676, 0.925, 0.968 0.267, 0.124, 0.088 5.305 7.324
GMT 0.347, 0.551, 0.595 0.300, 0.310, 0.316 1.864 3.075
HMT 0.712, 0.941, 0.978 0.256, 0.123, 0.067 1.823 2.996
CHMT 0.701, 0.923, 0.970 0.248, 0.123, 0.081 2.353 3.655
QMT 0.427, 0.671, 0.749 0.279, 0.124, 0.085 6.138 8.334
CMT 0.378, 0.566, 0.605 0.306, 0.314, 0.318 2.534 3.699

Forward-diagonal movements

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.701, 0.914, 0.964 0.274, 0.188, 0.120 3.208 5.260
GMT 0.213, 0.394, 0.434 0.314, 0.402, 0.395 1.516 2.916
HMT 0.702, 0.919, 0.951 0.287, 0.188, 0.153 1.539 2.812
CHMT 0.739, 0.925, 0.955 0.269, 0.189, 0.142 1.633 2.877
QMT 0.281, 0.512, 0.638 0.323, 0.371, 0.258 3.444 4.804
CMT 0.229, 0.394, 0.448 0.307, 0.397, 0.400 1.618 3.028

Upward-diagonal movements

MT AGAR
±0.05 m, ±0.10 m, ±0.15 m

Dispersion
±0.05 m, ±0.10 m, ±0.15 m

Average
Time (ms)

Dispersion of
Time (ms)

AMT 0.368, 0.669, 0.816 0.295, 0.294, 0.254 3.929 6.648
GMT 0.290, 0.513, 0.608 0.325, 0.354, 0.299 1.559 2.845
HMT 0.365, 0.693, 0.834 0.280, 0.274, 0.221 1.529 3.058
CHMT 0.391, 0.723, 0.826 0.304, 0.276, 0.240 1.681 2.909
QMT 0.320, 0.577, 0.720 0.324, 0.327, 0.250 4.300 6.279
CMT 0.308, 0.567, 0.694 0.325, 0.340, 0.276 2.146 3.956
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Table D8: Evaluating the gesture descriptors with the APBMR on two axes.

MT AGAR (x, y)
±0.05 m, ±0.10 m, ±0.15 m

AGAR (x, z)
±0.05 m, ±0.10 m, ±0.15 m

AGAR (y, z)
±0.05 m, ±0.10 m, ±0.15 m

AMT 0.566, 0.810, 0.918 0.746, 0.949, 0.985 0.632, 0.837, 0.927
GMT 0.264, 0.436, 0.499 0.736, 0.935, 0.979 0.295, 0.446, 0.499
HMT 0.577, 0.811, 0.888 0.761, 0.962, 0.991 0.640, 0.826, 0.890
CHMT 0.598, 0.818, 0.881 0.763, 0.957, 0.991 0.653, 0.834, 0.881
QMT 0.324, 0.582, 0.711 0.746, 0.954, 0.991 0.355, 0.593, 0.712
CMT 0.290, 0.483, 0.564 0.739, 0.952, 0.993 0.322, 0.493, 0.560

Table D9: Evaluating the gesture descriptors with the APBMR on one axis.

MT AGAR (x)
±0.05 m, ±0.10 m, ±0.15 m

AGAR (y)
±0.05 m, ±0.10 m, ±0.15 m

AGAR (z)
±0.05 m, ±0.10 m, ±0.15 m

AMT 0.798, 0.953, 0.987 0.664, 0.842, 0.928 0.930, 0.994, 0.999
GMT 0.785, 0.940, 0.979 0.308, 0.448, 0.499 0.930, 0.994, 0.999
HMT 0.816, 0.968, 0.993 0.672, 0.829, 0.891 0.930, 0.994, 0.999
CHMT 0.819, 0.963, 0.993 0.688, 0.839, 0.882 0.927, 0.993, 0.998
QMT 0.797, 0.960, 0.993 0.372, 0.598, 0.713 0.931, 0.993, 0.999
CMT 0.793, 0.958, 0.994 0.338, 0.496, 0.561 0.927, 0.993, 0.999

Supplementary figures

Figure E1: ECDFs of the rates of correct answers in the case of the DD (left) and
the GVR (right).
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Figure E2: ECDFs of the rates of correct answers in the case of the genders.
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Figure E3: ECDFs of the rates of correct answers in the case of the primary hand
of the users.

XXX



Bibliography

[1] William R. Sherman and Alan B. Craig. Understanding virtual reality: Inter-
face, application, and design. Morgan Kaufmann Publishers: San Francisco,
CA, USA, 2002.

[2] Greg Kipper and Joseph Rampolla. Augmented Reality: an emerging tech-
nologies guide to AR. Syngress: Waltham, MA, USA, 2012.

[3] Hideyuki Tamura, Hiroyuki Yamamoto, and Akihiro Katayama. Mixed reality:
Future dreams seen at the border between real and virtual worlds. IEEE
Computer Graphics and Applications, 21(6):64–70, 2001.

[4] Virtual and Augmented Reality Users 2019 - eMarketer Trends,
Forecast & Statistics. https://www.emarketer.com/content/
virtual-and-augmented-reality-users-2019.

[5] Global Augmented Reality & Mixed Reality Market: Growth, Trends
and Forecasts to 2025 - ResearchAndMarkets.com | Business Wire.
https://www.businesswire.com/news/home/20200515005267/en/
Global-Augmented-Reality-Mixed-Reality-Market-Growth.

[6] Joseph Psotka. Immersive training systems: Virtual reality and education and
training. Instructional science, 23(5-6):405–431, 1995.

[7] Jannat Falah, Soheeb Khan, Tasneem Alfalah, Salsabeel F.M. Alfalah, War-
ren Chan, David K. Harrison, and Vassilis Charissis. Virtual reality medical
training system for anatomy education. In 2014 Science and Information Con-
ference, pages 752–758. IEEE, 2014.

[8] Laura Freina and Michela Ott. A literature review on immersive virtual reality
in education: state of the art and perspectives. In The International Scientific
Conference eLearning and Software for Education, volume 1, 2015.

[9] Richard M. Satava. Medical applications of virtual reality. Journal of Medical
Systems, 19(3):275–280, 1995.

[10] Willem I.M. Willaert, Rajesh Aggarwal, Isabelle Van Herzeele, Nicholas J.
Cheshire, and Frank E. Vermassen. Recent advancements in medical simu-
lation: patient-specific virtual reality simulation. World journal of surgery,
36(7):1703–1712, 2012.

XXXI

https://www.emarketer.com/content/virtual-and-augmented-reality-users-2019
https://www.emarketer.com/content/virtual-and-augmented-reality-users-2019
https://www.businesswire.com/news/home/20200515005267/en/Global-Augmented-Reality-Mixed-Reality-Market-Growth
https://www.businesswire.com/news/home/20200515005267/en/Global-Augmented-Reality-Mixed-Reality-Market-Growth


[11] Neal E. Seymour, Anthony G. Gallagher, Sanziana A. Roman, Michael K.
O’brien, Vipin K. Bansal, Dana K. Andersen, and Richard M. Satava. Virtual
reality training improves operating room performance: results of a random-
ized, double-blinded study. Annals of surgery, 236(4):458, 2002.

[12] Gunnar Ahlberg, Lars Enochsson, Anthony G. Gallagher, Leif Hedman, Chris-
tian Hogman, David A. McClusky III, Stig Ramel, C. Daniel Smith, and Dag
Arvidsson. Proficiency-based virtual reality training significantly reduces the
error rate for residents during their first 10 laparoscopic cholecystectomies.
The American journal of surgery, 193(6):797–804, 2007.

[13] Julie Dugdale, Bernard Pavard, Nico Pallamin, Mehdi El Jed, and Comman-
der Laurent Maugan. Emergency fire incident training in a virtual world.
Proceedings ISCRAM, 167, 2004.

[14] Ajey Lele. Virtual reality and its military utility. Journal of Ambient Intelli-
gence and Humanized Computing, 4(1):17–26, 2013.

[15] Joseph Bates. Virtual reality, art, and entertainment. Presence: Teleoperators
& Virtual Environments, 1(1):133–138, 1992.

[16] Michael Zyda. From visual simulation to virtual reality to games. Computer,
38(9):25–32, 2005.

[17] Bimo Sunarfri Hantono, Lukito Edi Nugroho, and P. Insap Santosa. Review
of augmented reality agent in education. In 2016 6th International Annual
Engineering Seminar (InAES), pages 150–153. IEEE, 2016.

[18] Philip Kortum. HCI beyond the GUI: Design for haptic, speech, olfactory, and
other nontraditional interfaces. Elsevier: Burlington, MA, USA, 2008.

[19] Domenica Mirauda, Nicola Capece, and Ugo Erra. Streamflowvl: A virtual
fieldwork laboratory that supports traditional hydraulics engineering learning.
Applied Sciences, 9(22):4972, 2019.

[20] Zahra Al Mahdi, Vikas Rao Naidu, and Preethy Kurian. Analyzing the role of
human computer interaction principles for e-learning solution design. In Smart
Technologies and Innovation for a Sustainable Future, pages 41–44. Springer,
2019.

[21] Pu Liu, Sidney Fels, Nicholas West, and Matthias Görges. Human Computer
Interaction Design for Mobile Devices Based on a Smart Healthcare Architec-
ture. arXiv e-prints, page arXiv:1902.03541, February 2019.

[22] Zhijuan Zhu, Wenzhen Pan, Xin Ai, and Renjun Zhen. Research on human-
computer interaction design of bed rehabilitation equipment for the elderly. In
International Conference on Applied Human Factors and Ergonomics, pages
275–286. Springer, 2019.

XXXII



[23] Cecilia Sik-Lanyi, Veronika Szucs, Shervin Shirmohammadi, Petya Grudeva,
Boris Abersek, Tibor Guzsvinecz, and Karel Van Isacker. How to develop
serious games for social and cognitive competence of children with learning
difficulties. Acta Polytechnica Hungarica, 16(9):149–169, 2019.

[24] Tibor Guzsvinecz, Veronika Szucs, and Cecilia Sik-Lanyi. Designing gamified
virtual reality applications with sensors - a gamification study. In Proceed-
ings of the Pannonian Conference on Advances in Information Technology
(PCIT’2019), pages 105–112, 2019.

[25] Tao Ding and Duanzhen Zhu. Applications of the human-computer interaction
interface to moba mobile games. In Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, volume 11071, 2019.

[26] Hind Kharoub, Mohammed Lataifeh, and Naveed Ahmed. 3d user interface
design and usability for immersive vr. Applied Sciences, 9(22):4861, 2019.

[27] Alistair G. Sutcliffe, Charalambos Poullis, Andreas Gregoriades, Irene Kat-
souri, Aimilia Tzanavari, and Kyriakos Herakleous. Reflecting on the de-
sign process for virtual reality applications. International Journal of Human–
Computer Interaction, 35(2):168–179, 2019.

[28] George Drettakis, Maria Roussou, Alex Reche, and Nicolas Tsingos. Design
and evaluation of a real-world virtual environment for architecture and urban
planning. Presence: Teleoperators and Virtual Environments, 16(3):318–332,
2007.

[29] Kunwar Aditya, Praise Chacko, Deeksha Kumari, Divya Kumari, and Saurabh
Bilgaiyan. Recent trends in hci: A survey on data glove, leap motion and
microsoft kinect. In 2018 IEEE International Conference on System, Compu-
tation, Automation and Networking (ICSCA), pages 1–5. IEEE, 2018.

[30] Lucas Medeiros Souza do Nascimento, Lucas Vacilotto Bonfati, Melissa
La Banca Freitas, José Jair Alves Mendes Junior, Hugo Valadares Siqueira,
and Sergio Luiz Stevan. Sensors and systems for physical rehabilitation and
health monitoring—a review. Sensors, 20(15):4063, 2020.

[31] Marcia C. Linn and Anne C. Petersen. Emergence and characterization of
sex differences in spatial ability: A meta-analysis. Child development, pages
1479–1498, 1985.

[32] Jeffrey M. Zacks. Neuroimaging studies of mental rotation: a meta-analysis
and review. Journal of cognitive neuroscience, 20(1):1–19, 2008.

[33] Marc Jeannerod and Pierre Jacob. Visual cognition: a new look at the two-
visual systems model. Neuropsychologia, 43(2):301–312, 2005.

[34] Michael A. Motes, Rafael Malach, and Maria Kozhevnikov. Object-processing
neural efficiency differentiates object from spatial visualizers. Neuroreport,
19(17):1727–1731, 2008.

XXXIII



[35] Peter Herbert Maier. Spatial geometry and spatial ability–how to make solid
geometry solid. In Selected papers from the Annual Conference of Didactics
of Mathematics, pages 63–75, 1996.

[36] Michael Peters, Peter Chisholm, and Bruno Laeng. Spatial ability, student gen-
der, and academic performance. Journal of Engineering Education, 84(1):69–
73, 1995.

[37] Sarah A. Burnett, David M. Lane, and Lewis M. Dratt. Spatial ability and
handedness. Intelligence, 6(1):57–68, 1982.

[38] Walter F. McKeever. The influences of handedness, sex, familial sinistral-
ity and androgyny on language laterality, verbal ability, and spatial ability.
Cortex, 22(4):521–537, 1986.

[39] S.B. O’Sullivan, T.J. Schmitz, and G.G. Fulk. Physical rehabilitation 6th ed
(p. 661). Philadelphia, PA: FA Davis, 2014.

[40] Hye-Sun Lee, Jae-Heon Lim, Byeong-Hyeon Jeon, and Chiang-Soon Song.
Non-immersive virtual reality rehabilitation applied to a task-oriented ap-
proach for stroke patients: A randomized controlled trial. Restorative Neurol-
ogy and Neuroscience, (Preprint):1–8, 2020.

[41] Steven G. Vandenberg and Allan R. Kuse. Mental rotations, a group test of
three-dimensional spatial visualization. Perceptual and motor skills, 47(2):599–
604, 1978.

[42] Holly K. Ault and Samuel John. Assessing and enhancing visualization skills of
engineering students in africa: A comparative study. The Engineering Design
Graphics Journal, 74(2), 2010.

[43] Rita Nagy-Kondor and Csilla Sörös. Engineering students’ spatial abilities in
budapest and debrecen. In Annales Mathematicae et Informaticae, volume 40,
pages 187–201, 2012.

[44] Kumiko Shiina, Dennis R. Short, Craig L. Miller, and Kenjiro Suzuki. De-
velopment of software to record solving process of a mental rotations test.
Journal for Geometry and Graphics, 5(2):193–202, 2001.

[45] College Entrance Examination Board (CEEB). Special aptitude test in spatial
relations, developed by the college entrance examination board, 1939.

[46] Agnes Bosnyak and Rita Nagy-Kondor. The spatial ability and spatial ge-
ometrical knowledge of university students majored in mathematics. Acta
Didactica Universitatis Comenianae, 8:1–25, 2008.

[47] Folkert Hendrik Haanstra. Effects of art education on visual-spatial ability
and aesthetic perception: two meta-analyses. 1994.

XXXIV



[48] Brigitta Németh, Csilla Sörös, and Miklós Hoffmann. Typical mistakes in
mental cutting test and their consequences in gender differences. Teaching
Mathematics and Computer Science, 5(2):385–392, 2007.

[49] Emiko Tsutsumi, Kanakao Shiina, Ayako Suzaki, Kyoko Yamanouchi, Saito
Takaaki, and Kenjiro Suzuki. A mental cutting test on female students using
a stereographic system. Journal for Geometry and Graphics, 3(1):111–119,
1999.

[50] Melih Turgut and Rita Nagy-Kondor. Comparison of hungarian and turkish
prospective mathematics teachers’ mental cutting performances. Acta Didac-
tica Universitatis Comenianae, 13:47–58, 2013.

[51] Roland B. Guay. Purdue spatial visualization test - visualization of rotations.
W. Lafayette, IN. Purdue Research Foundation, 1977.

[52] Theodore J. Branoff and Patrick E. Connolly. The addition of coordinate axes
to the purdue spatial visualization test-visualization of rotations: A study at
two universities. In Proc. of ASEE Annual Conference & Exposition, pages
1–9, 1999.

[53] Vivian Lee Seiver Heinrich. The development and validation of a spatial per-
ception test for selection purposes. PhD thesis, The Ohio State University,
1989.

[54] Ruth B. Ekstrom, Diran Dermen, and Harry Horace Harman. Manual for kit
of factor-referenced cognitive tests, volume 102. Educational testing service
Princeton, NJ, 1976.

[55] Christopher A. Sanchez. Enhancing visuospatial performance through video
game training to increase learning in visuospatial science domains. Psycho-
nomic Bulletin & Review, 19(1):58–65, 2012.

[56] Sijing Wu and Ian Spence. Playing shooter and driving videogames improves
top-down guidance in visual search. Attention, Perception, & Psychophysics,
75(4):673–686, 2013.

[57] Veronika Szücs and Cecilia Sik-Lanyi. Abilities and limitations of assistive
technologies in post-stroke therapy based on virtual/augmented reality. In
Assistive Technology: From Research to practice, 12th European AAATE con-
ference, IOS Press, pages 1087–1091, 2013.

[58] Cecilia Sik-Lanyi and Veronika Szücs. Stroke care systems games applied
for therapy in stroke tele-rehabilitation: Wsc-1477. International Journal of
Stroke, 9, 2014.

[59] Cecilia Sik-Lanyi and Veronika Szucs. Motivating rehabilitation through com-
petitive gaming. In Modern Stroke Rehabilitation Through e-Health-Based
Entertainment, pages 137–167. Springer, 2016.

XXXV



[60] Veronika Szucs, Silvia Paxian, and Cecilia Sik-Lanyi. Augmented reality–
where it started from and where it’s going. The Thousand Faces of Virtual
Reality. London: Intech Open, pages 37–63, 2014.

[61] Michael Yates, Arpad Kelemen, and Cecilia Sik-Lanyi. Virtual reality gam-
ing in the rehabilitation of the upper extremities post-stroke. Brain injury,
30(7):855–863, 2016.

[62] Chuan-Jun Su, Chang-Yu Chiang, and Jing-Yan Huang. Kinect-enabled home-
based rehabilitation system using dynamic time warping and fuzzy logic. Ap-
plied Soft Computing, 22:652–666, 2014.

[63] Kathryn LaBelle. Evaluation of kinect joint tracking for clinical and in-home
stroke rehabilitation tools. Undergraduate Thesis, University of Notre Dame,
2011.

[64] Wenbing Zhao, Hai Feng, Roanna Lun, Deborah D. Espy, and M. Ann
Reinthal. A kinect-based rehabilitation exercise monitoring and guidance sys-
tem. In 2014 IEEE 5th International Conference on Software Engineering and
Service Science, pages 762–765. IEEE, 2014.

[65] Tibor Guzsvinecz, Veronika Szucs, and Cecilia Sik-Lanyi. Suitability of
the kinect sensor and leap motion controller—a literature review. Sensors,
19(5):1072, 2019.

[66] Veronika Szucs, Cecilia Sik-Lanyi, and Tibor Guzsvinecz. Presenting the user’s
focus in needs & development (UFIND) method and its comparison to other
design methods. In 11th IEEE International Conference on Cognitive Info-
communications, pages 89–95, 2020.

[67] Barbara Olasov Rothbaum, Larry Hodges, Samantha Smith, Jeong Hwan
Lee, and Larry Price. A controlled study of virtual reality exposure ther-
apy for the fear of flying. Year Book of Psychiatry and Applied Mental Health,
2002(1):109–111, 2002.

[68] Mónica S Cameirão, Sergi Bermúdez i Badia, Esther Duarte Oller, and
Paul FMJ Verschure. Neurorehabilitation using the virtual reality based reha-
bilitation gaming system: methodology, design, psychometrics, usability and
validation. Journal of neuroengineering and rehabilitation, 7(1):48, 2010.

[69] Amy Henderson, Nicol Korner-Bitensky, and Mindy Levin. Virtual reality in
stroke rehabilitation: a systematic review of its effectiveness for upper limb
motor recovery. Topics in stroke rehabilitation, 14(2):52–61, 2007.

[70] Joong Hwi Kim, Sung Ho Jang, Chung Sun Kim, Ji Hee Jung, and Joshua H
You. Use of virtual reality to enhance balance and ambulation in chronic
stroke: a double-blind, randomized controlled study. American Journal of
physical medicine & rehabilitation, 88(9):693–701, 2009.

XXXVI



[71] Kate E Laver, Belinda Lange, Stacey George, Judith E Deutsch, Gustavo
Saposnik, and Maria Crotty. Virtual reality for stroke rehabilitation. Stroke,
49(4):e160–e161, 2018.

[72] Alma S Merians, Eugene Tunik, and Sergei V Adamovich. Virtual reality
to maximize function for hand and arm rehabilitation: exploration of neural
mechanisms. Studies in health technology and informatics, 145:109, 2009.

[73] Yu-Hyung Park, Chi-ho Lee, and Byoung-Hee Lee. Clinical usefulness of the
virtual reality-based postural control training on the gait ability in patients
with stroke. Journal of exercise rehabilitation, 9(5):489, 2013.

[74] Albert A Rizzo, Maria Schultheis, Kimberly A Kerns, and Catherine Mateer.
Analysis of assets for virtual reality applications in neuropsychology. Neu-
ropsychological rehabilitation, 14(1-2):207–239, 2004.

[75] Ksenia I Ustinova, Wesley A Leonard, Nicholas D Cassavaugh, and Christo-
pher D Ingersoll. Development of a 3d immersive videogame to improve arm-
postural coordination in patients with tbi. Journal of NeuroEngineering and
Rehabilitation, 8(1):61, 2011.

[76] Veronika Szucs, Tibor Guzsvinecz, and Attila Magyar. Improved algorithms
for movement pattern recognition and classification in physical rehabilita-
tion. In 10th IEEE International Conference on Cognitive Infocommunica-
tions, pages 417–424, 2019.

[77] Veronika Szücs, Tibor Guzsvinecz, and Attila Magyar. Movement pattern
recognition in physical rehabilitation-cognitive motivation-based it method
and algorithms. Acta Polytechnica Hungarica, 17(2), 2020.

[78] Howard Gardner. Frames of mind: The theory of multiple intelligences. Basic
Books, New York, 1983.

[79] Craig L. Miller and Gary R. Bertoline. Spatial visualization research and
theories: Their importance in the development of an engineering and techni-
cal design graphics curriculum model. Engineering Design Graphics Journal,
55(3):5–14, 1991.

[80] Craig L. Miller. Enhancing visual literacy of engineering students through
the use of real and computer generated models. Engineering Design Graphics
Journal, 56(1):27–38, 1992.

[81] Edwin E. Ghiselli. The validity of aptitude tests in personnel selection. Per-
sonnel Psychology, 26(4):461–477, 1973.

[82] Sheryl Sorby, Thomas Drummer, Kedmon Hungwe, and Paul Charlesworth.
Developing 3 d spatial visualization skills for non engineering students. In
2005 Annual Conference, pages 10–428, 2005.

[83] Herman A. Witkin. Individual differences in ease of perception of embedded
figures. Journal of personality, 19(1):1–15, 1950.

XXXVII



[84] Jean Piaget and Bärbet Inhelder. Child’s Conception of Space: Selected Works
vol 4, volume 4. Routledge: Abingdon, Oxon, United Kingdom & New York,
NY, USA, 2013.

[85] Richard E. Stafford. Sex differences in spatial visualization as evidence of
sex-linked inheritance. Perceptual and motor skills, 13(3):428–428, 1961.

[86] Herman A. Witkin and Solomon E. Asch. Studies in space orientation. iv.
further experiments on perception of the upright with displaced visual fields.
Journal of experimental psychology, 38(6):762, 1948.

[87] William H Quasha and Rensis Likert. The revised minnesota paper form board
test. Journal of Educational Psychology, 28(3):197, 1937.

[88] Mona Mohamed Kamal Hijazi. Attention, visual perception and their relation-
ship to sport performance in fencing. Journal of human kinetics, 39(1):195–
201, 2013.

[89] Thomas Romeas and Jocelyn Faubert. Assessment of sport specific and non-
specific biological motion perception in soccer athletes shows a fundamental
perceptual ability advantage over non-athletes for reorganizing body kinemat-
ics. Journal of vision, 15(12):504, 2015.

[90] Maryam Delavar, Iryna V. Kolesnikova, Beheshte Rahimzade, Mahdi Ghah-
hari, Alimorad Mosapuor, and Ali Moradi. Development of mental rotation
ability at primary school level. World Scientific News, 101:77–88, 2018.

[91] Andrew J. Latham, Lucy L.M. Patston, and Lynette J. Tippett. The vir-
tual brain: 30 years of video-game play and cognitive abilities. Frontiers in
psychology, 4:629, 2013.

[92] Best Jobs with Good Visual and Spatial Skills|LoveToKnow. https://jobs.
lovetoknow.com/Best_Jobs_with_Good_Visual_and_Spatial_\Skills.

[93] Károly Hercegfi, Anita Komlódi, Bálint Szabó, Máté Köles, Emma Lógó,
Balázs P. Hámornik, and Gyöngyi Rózsa. Experiences of virtual desktop
collaboration experiments. In 2015 6th IEEE International Conference on
Cognitive Infocommunications (CogInfoCom), pages 375–379. IEEE, 2015.

[94] Ildikó Horváth. Innovative engineering education in the cooperative vr envi-
ronment. In 2016 7th IEEE International Conference on Cognitive Infocom-
munications (CogInfoCom), pages 359–364. IEEE, 2016.

[95] Attila Kovari. Coginfocom supported education: A review of coginfocom based
conference papers. In 2018 9th IEEE International Conference on Cognitive
Infocommunications (CogInfoCom), pages 233–236. IEEE, 2018.

[96] Adam Wilson. Analysis of current virtual reality methods to enhance learning
in education. Sel. Comput. Res. Pap, 8:61–66, 2019.

XXXVIII

https://jobs.lovetoknow.com/Best_Jobs_with_Good_Visual_and_Spatial_\Skills
https://jobs.lovetoknow.com/Best_Jobs_with_Good_Visual_and_Spatial_\Skills


[97] Jordi Torner Ribé, Francesc Alpiste Penalba, and Miguel Ángel Brigos Her-
mida. Virtual reality application to improve spatial ability of engineering
students. In WSCG’2016-24th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision’2016 proceedings are
published in Computer Science Research Notes [CSRN] ISSN 2464-4617, pages
69–77, 2016.

[98] Rafael Molina-Carmona, María Luisa Pertegal-Felices, Antonio Jimeno-
Morenilla, and Higinio Mora-Mora. Assessing the impact of virtual reality on
engineering students’ spatial ability. The Future of Innovation and Technology
in Education: Policies and Practices for Teaching and Learning Excellence,
pages 171–185, 2018.

[99] Rafael Molina-Carmona, María Luisa Pertegal-Felices, Antonio Jimeno-
Morenilla, and Higinio Mora-Mora. Virtual reality learning activities for mul-
timedia students to enhance spatial ability. Sustainability, 10(4):1074, 2018.

[100] Thomas D. Parsons, Peter Larson, Kris Kratz, Marcus Thiebaux, Brendon
Bluestein, J. Galen Buckwalter, and Albert A. Rizzo. Sex differences in men-
tal rotation and spatial rotation in a virtual environment. Neuropsychologia,
42(4):555–562, 2004.

[101] Miroslav Macik. Cognitive aspects of spatial orientation. Acta Polytechnica
Hungarica, 15(5):149–167, 2018.

[102] Andreas Dünser, Karin Steinbügl, Hannes Kaufmann, and Judith Glück. Vir-
tual and augmented reality as spatial ability training tools. In Proceedings
of the 7th ACM SIGCHI New Zealand chapter’s international conference on
Computer-human interaction: design centered HCI, pages 125–132, 2006.

[103] Hilary Mclellan. Cognitive issues in virtual reality. Journal of Visual literacy,
18(2):175–199, 1998.

[104] Peter Baranyi, Adam Csapo, and Peter Varlaki. An overview of research
trends in coginfocom. In IEEE 18th International Conference on Intelligent
Engineering Systems INES 2014, pages 181–186. IEEE, 2014.

[105] Péter Baranyi, Adam Csapo, and Gyula Sallai. Cognitive Infocommunications
(CogInfoCom). Springer, 2015.

[106] Ádám B. Csapó, Ildikó Horváth, Péter Galambos, and Péter Baranyi. Vr as
a medium of communication: from memory palaces to comprehensive mem-
ory management. In 2018 9th IEEE International Conference on Cognitive
Infocommunications (CogInfoCom), pages 389–394. IEEE, 2018.

[107] Gergely Sziladi, Tibor Ujbanyi, Jozsef Katona, and Attila Kovari. The analysis
of hand gesture based cursor position control during solve an it related task.
In 2017 8th IEEE International Conference on Cognitive Infocommunications
(CogInfoCom), pages 413–418. IEEE, 2017.

XXXIX



[108] Cristina Costescu, Adrian Rosan, Brigitta Nagy, Ilona Heldal, Carsten Helge-
sen, Attila Kővári, József Katona, Serge Thill, Róbert Demeter, and Igor
Efrem. Assessing visual attention in children using gp3 eye tracker. In Pro-
ceedings of the 10th IEEE International Conference on Cognitive Infocommu-
nications, pages 343–348, 2019.

[109] Jozsef Katona, Tibor Ujbanyi, Gergely Sziladi, and Attila Kovari.
Electroencephalogram-based brain-computer interface for internet of robotic
things. In Cognitive Infocommunications, Theory and Applications, pages 253–
275. Springer, 2019.

[110] Attila Kovari, Jozsef Katona, and Cristina Costescu. Evaluation of eye-
movement metrics ina software debbugingtask using gp3 eye tracker. Acta
Polytechnica Hungarica, 17(2), 2020.

[111] Attila Kovari, Jozsef Katona, and Cristina Costescu. Quantitative analysis of
relationship between visual attention and eye-hand coordination. Acta Poly-
technica Hungarica, 17(2), 2020.

[112] Tamás Budai and Miklós Kuczmann. Towards a modern, integrated virtual
laboratory system. Acta Polytechnica Hungarica, 15(3):191–204, 2018.

[113] László Bognár, Éva Hamar Fáncsikné, Péter Horváth, Antal Joós, Bálint Nagy,
and Györgyi Strauber. Improved learning environment for calculus courses.
Journal of Applied Technical and Educational Sciences, 8(4):35–43, 2018.

[114] Tuukka M. Takala. Ruis: A toolkit for developing virtual reality applications
with spatial interaction. In Proceedings of the 2nd ACM symposium on Spatial
user interaction, pages 94–103, 2014.

[115] Ahmad Rafi, Khairul Anuar, Abdul Samad, Maizatul Hayati, and Mazlan
Mahadzir. Improving spatial ability using a web-based virtual environment
(wbve). Automation in construction, 14(6):707–715, 2005.

[116] Jack Shen-Kuen Chang, Georgina Yeboah, Alison Doucette, Paul Clifton,
Michael Nitsche, Timothy Welsh, and Ali Mazalek. Evaluating the effect of
tangible virtual reality on spatial perspective taking ability. In Proceedings of
the 5th Symposium on Spatial User Interaction, pages 68–77, 2017.

[117] Elaine Jiang and David H. Laidlaw. Practicing in virtual reality improves
mental rotation ability: Lower scorers benefit more.

[118] Charles M. Oman, Wayne L. Shebilske, Jason T. Richards, Travis C. Tubré,
Andrew C. Beall, and Alan Natapoff. Three dimensional spatial memory and
learning in real and virtual environments. Spatial Cognition and computation,
2(4):355–372, 2000.

[119] Marc A. Schnabel and Thomas Kvan. Spatial understanding in immer-
sive virtual environments. International Journal of Architectural Computing,
1(4):435–448, 2003.

XL



[120] David Passig and Sigal Eden. Virtual reality as a tool for improving spatial ro-
tation among deaf and hard-of-hearing children. CyberPsychology & Behavior,
4(6):681–686, 2001.

[121] A. Michael Johnson. Speed of mental rotation as a function of problem-solving
strategies. Perceptual and motor skills, 71(3):803–806, 1990.

[122] Nathan W. Hartman, Patrick E. Connolly, Jeffrey W. Gilger, Gary R. Berto-
line, and Justin Heisler. Virtual reality-based spatial skills assessment and its
role in computer graphics education. In ACM SIGGRAPH 2006 Educators
program, pages 46–53. 2006.

[123] Albert A. Rizzo, J. Galen Buckwalter, Ulrich Neumann, Carl Kesselman, Mar-
cus Thiébaux, Peter Larson, and Andre van Rooyen. The virtual reality men-
tal rotation spatial skills project. CyberPsychology & Behavior, 1(2):113–119,
1998.

[124] Albert “Skip” Rizzo, J. Galen Buckwalter, Peter Larson, Andre van Rooyen,
K. Kratz, Ulrich Neumann, Carl Kesselman, and Marcus Thiébaux. Prelim-
inary findings on a virtual environment targeting human mental rotation /
spatial abilities. 2002.

[125] I.F. Capanema, F.L. Santos Garcia, and G. Tissiani. Implications of virtual
reality in education. Virtual Reality in Education: Online Survey, 2001.

[126] Bruce W. Field. A course in spatial visualisation. Journal for Geometry and
Graphics, 3(2):201–209, 1999.

[127] Tim R.H. Cutmore, Trevor J. Hine, Kerry J. Maberly, Nicole M. Langford,
and Grant Hawgood. Cognitive and gender factors influencing navigation in
a virtual environment. International Journal of Human-Computer Studies,
53(2):223–249, 2000.

[128] Abdeldjallil Naceri, Ryad Chellali, and Thierry Hoinville. Depth perception
within peripersonal space using head-mounted display. Presence: Teleopera-
tors and Virtual Environments, 20(3):254–272, 2011.

[129] Marina A. Cidota, Rory M.S. Clifford, Stephan G. Lukosch, and Mark
Billinghurst. Using visual effects to facilitate depth perception for spatial tasks
in virtual and augmented reality. In 2016 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR-Adjunct), pages 172–177. IEEE, 2016.

[130] Rebekka S. Renner, Boris M. Velichkovsky, and Jens R. Helmert. The percep-
tion of egocentric distances in virtual environments-a review. ACM Computing
Surveys (CSUR), 46(2):1–40, 2013.

[131] Claudia Armbrüster, Marc Wolter, Torsten Kuhlen, Will Spijkers, and Bruno
Fimm. Depth perception in virtual reality: distance estimations in peri-and
extrapersonal space. Cyberpsychology & Behavior, 11(1):9–15, 2008.

XLI



[132] Marc Rébillat, Xavier Boutillon, Étienne Corteel, and Brian F.G. Katz. Audio,
visual, and audio-visual egocentric distance perception by moving subjects
in virtual environments. ACM Transactions on Applied Perception (TAP),
9(4):1–17, 2012.

[133] Che Abdullah, Glyn Lawson, and Tessa Roper. A virtual environment with
haptic feedback for better distance estimation. In Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pages
87–92, 2017.

[134] Adrian K.T. Ng, Leith K.Y. Chan, and Henry Y.K. Lau. Depth perception in
virtual environment: The effects of immersive system and freedom of move-
ment. In International Conference on Virtual, Augmented and Mixed Reality,
pages 173–183. Springer, 2016.

[135] Nicolas Gerig, Johnathan Mayo, Kilian Baur, Frieder Wittmann, Robert
Riener, and Peter Wolf. Missing depth cues in virtual reality limit performance
and quality of three dimensional reaching movements. PLoS one, 13(1), 2018.

[136] Huiyu Zhou and Huosheng Hu. Human motion tracking for rehabilitation—a
survey. Biomedical Signal Processing and Control, 3(1):1–18, 2008.

[137] Hossein Mousavi Hondori and Maryam Khademi. A review on technical and
clinical impact of microsoft kinect on physical therapy and rehabilitation.
Journal of medical engineering, 2014, 2014.

[138] Hui-mei Justina Hsu. The potential of kinect in education. International
Journal of Information and Education Technology, 1(5):365, 2011.

[139] Jorge Bacca, Silvia Baldiris, Ramon Fabregat, Sabine Graf, et al. Augmented
reality trends in education: a systematic review of research and applications.
2014.

[140] Alana Da Gama, Pascal Fallavollita, Veronica Teichrieb, and Nassir Navab.
Motor rehabilitation using kinect: a systematic review. Games for health
journal, 4(2):123–135, 2015.

[141] Helena Reis, Seiji Isotani, and Isabela Gasparini. Rehabilitation using kinect
and an outlook on its educational applications: A review of the state of the
art. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro
de Informática na Educação-SBIE), volume 26, page 802, 2015.

[142] Mingshao Zhang, Zhou Zhang, Yizhe Chang, El-Sayed Aziz, Sven Esche, and
Constantin Chassapis. Recent developments in game-based virtual reality ed-
ucational laboratories using the microsoft kinect. International Journal of
Emerging Technologies in Learning (iJET), 13(1):138–159, 2018.

[143] Maria Kourakli, Ioannis Altanis, Symeon Retalis, Michail Boloudakis, Dim-
itrios Zbainos, and Katerina Antonopoulou. Towards the improvement of the
cognitive, motoric and academic skills of students with special educational

XLII



needs using kinect learning games. International Journal of Child-Computer
Interaction, 11:28–39, 2017.

[144] Imran Amjad, Hamza Toor, Imran Khan Niazi, Sanna Pervaiz, Mads Jochum-
sen, Muhammad Shafique, Heidi Haavik, and Touqeer Ahmed. Xbox 360
kinect cognitive games improve slowness, complexity of eeg, and cognitive
functions in subjects with mild cognitive impairment: A randomized control
trial. Games for health journal, 8(2):144–152, 2019.

[145] Amir Matallaoui, Jonna Koivisto, Juho Hamari, and Ruediger Zarnekow. How
effective is “exergamification”? a systematic review on the effectiveness of gam-
ification features in exergames. In Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017.

[146] HyeonHui Sin and GyuChang Lee. Additional virtual reality training using
xbox kinect in stroke survivors with hemiplegia. American journal of physical
medicine & rehabilitation, 92(10):871–880, 2013.

[147] GyuChang Lee. Effects of training using video games on the muscle strength,
muscle tone, and activities of daily living of chronic stroke patients. Journal
of physical therapy science, 25(5):595–597, 2013.

[148] Fernando Mateo, Emilio Soria-Olivas, Juan J. Carrasco, Santiago Bonanad,
Felipe Querol, and Sofía Pérez-Alenda. Hemokinect: a microsoft kinect v2
based exergaming software to supervise physical exercise of patients with
hemophilia. Sensors, 18(8):2439, 2018.

[149] Oskar M. Szczepaniak and Dariusz J. Sawicki. Gesture controlled human–
computer interface for the disabled. Med. Pr, 68(1):11–21, 2017.

[150] Laurie A. Malone, Jennifer L. Rowland, Rebecca Rogers, Tapan Mehta,
Sangeetha Padalabalanarayanan, Mohanraj Thirumalai, and James H. Rim-
mer. Active videogaming in youth with physical disability: Gameplay and
enjoyment. Games for health journal, 5(5):333–341, 2016.

[151] Péter Müller, Anett Nagyváradi, Levente Szabó, Miklós Gerzson, and Ádám
Schiffer. Gait cycle recording using kinect one sensor. In Pannonian Con-
ference on Advances in Information Technology (PCIT 2020), pages 56–61,
2020.

[152] Wei Song, Liying Liu, Yifei Tian, Guodong Sun, Simon Fong, and Kyungeun
Cho. A 3d localisation method in indoor environments for virtual reality
applications. Human-centric Computing and Information Sciences, 7(1):39,
2017.

[153] How Does the Kinect Work? – kinect.pdf. ftp://labattmot.ele.ita.br/
ele/jricardo/Leitura/Kinect/kinect.pdf.

[154] Slide 1 – Lecture 22 – How the Kinect works – CP Fall 2017.pdf. https:
//courses.engr.illinois.edu/cs445/fa2017/lectures/Lecture%2022%
20-%20How%20the%20Kinect%20Works%20-%20CP%20Fall%202017.pdf.

XLIII

ftp://labattmot.ele.ita.br/ele/jricardo/Leitura/Kinect/kinect.pdf
ftp://labattmot.ele.ita.br/ele/jricardo/Leitura/Kinect/kinect.pdf
https://courses.engr.illinois.edu/cs445/fa2017/lectures/Lecture%2022%20-%20How%20the%20Kinect%20Works%20-%20CP%20Fall%202017.pdf
https://courses.engr.illinois.edu/cs445/fa2017/lectures/Lecture%2022%20-%20How%20the%20Kinect%20Works%20-%20CP%20Fall%202017.pdf
https://courses.engr.illinois.edu/cs445/fa2017/lectures/Lecture%2022%20-%20How%20the%20Kinect%20Works%20-%20CP%20Fall%202017.pdf


[155] Kinect Sensor for Xbox Gaming – download. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.476.2368&rep=rep1&type=pdf.

[156] Xbox One Kinect Teardown—iFixit. https://www.ifixit.com/Teardown/
Xbox+One+Kinect+Teardown/19725.

[157] How It Works: Xbox Kinect. https://www.jameco.com/jameco/workshop/
howitworks/xboxkinect.html.

[158] Gamasutra: Daniel Lau’s Blog—The Science Behind Kinects or Kinect 1.0 ver-
sus Kinect 2.0. http://www.gamasutra.com/blogs/DanielLau/20131127/
205820/The_Science_Behind_Kinects_or_Kinect_10_versus_20.php.

[159] Kinect Sales Reach 24 Million—GameSpot. https://www.gamespot.com/
articles/kinect-sales-reach-24-million/1100-6403766/.

[160] Why Xbox Kinect didn’t Take Off—Business In-
sider. https://www.businessinsider.com/
why-microsoft-xbox-kinect-didnt-take-off-2015-9.

[161] Higinio Gonzalez-Jorge, Belén Riveiro, Esteban Vazquez-Fernandez, Joaquín
Martínez-Sánchez, and Pedro Arias. Metrological evaluation of microsoft
kinect and asus xtion sensors. Measurement, 46(6):1800–1806, 2013.

[162] Xtion. 3D Sensor. ASUS Global. https://www.asus.com/3D-Sensor/Xtion/
specifications/.

[163] Philip Breedon, Bill Byrom, Luke Siena, and Willie Muehlhausen. Enhancing
the measurement of clinical outcomes using microsoft kinect. In 2016 Inter-
national Conference on Interactive Technologies and Games (ITAG), pages
61–69. IEEE, 2016.

[164] Monica Carfagni, Rocco Furferi, Lapo Governi, Chiara Santarelli, Michaela
Servi, Francesca Uccheddu, and Yary Volpe. Metrological and critical charac-
terization of the intel d415 stereo depth camera. Sensors, 19(3):489, 2019.

[165] Veronica Romero, Joseph Amaral, Paula Fitzpatrick, RC Schmidt, Amie W
Duncan, and Michael J Richardson. Can low-cost motion-tracking systems
substitute a polhemus system when researching social motor coordination in
children? Behavior research methods, 49(2):588–601, 2017.

[166] Liberty Latus Brochure. https://polhemus.com/_assets/img/LIBERTY_
LATUS_brochure_1.pdf.

[167] Ying Sun, Cuiqiao Li, Gongfa Li, Guozhang Jiang, Du Jiang, Honghai Liu,
Zhigao Zheng, and Wanneng Shu. Gesture recognition based on kinect and
semg signal fusion. Mobile Networks and Applications, 23(4):797–805, 2018.

[168] Dimitar Bogatinov, Petre Lameski, Vladimir Trajkovik, and Kate-
rina Mitkovska Trendova. Firearms training simulator based on low cost mo-
tion tracking sensor. Multimedia tools and applications, 76(1):1403–1418, 2017.

XLIV

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.2368&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.2368&rep=rep1&type=pdf
https://www.ifixit.com/Teardown/Xbox+One+Kinect+Teardown/19725
https://www.ifixit.com/Teardown/Xbox+One+Kinect+Teardown/19725
https://www.jameco.com/jameco/workshop/howitworks/xboxkinect.html
https://www.jameco.com/jameco/workshop/howitworks/xboxkinect.html
http://www.gamasutra.com/blogs/DanielLau/20131127/205820/The_Science_Behind_Kinects_or_Kinect_10_versus_20.php
http://www.gamasutra.com/blogs/DanielLau/20131127/205820/The_Science_Behind_Kinects_or_Kinect_10_versus_20.php
https://www.gamespot.com/articles/kinect-sales-reach-24-million/1100-6403766/
https://www.gamespot.com/articles/kinect-sales-reach-24-million/1100-6403766/
https://www.businessinsider.com/why-microsoft-xbox-kinect-didnt-take-off-2015-9
https://www.businessinsider.com/why-microsoft-xbox-kinect-didnt-take-off-2015-9
https://www.asus.com/3D-Sensor/Xtion/specifications/
https://www.asus.com/3D-Sensor/Xtion/specifications/
https://polhemus.com/_assets/img/LIBERTY_LATUS_brochure_1.pdf
https://polhemus.com/_assets/img/LIBERTY_LATUS_brochure_1.pdf


[169] Evan A. Suma, Belinda Lange, Albert Skip Rizzo, David M. Krum, and Mark
Bolas. Faast: The flexible action and articulated skeleton toolkit. In 2011
IEEE Virtual Reality Conference, pages 247–248. IEEE, 2011.

[170] Helene Fournier, Jean-Francois. Lapointe, Irina Kondratova, Bruno Emond,
and Cosmin Munteanu. Crossing the barrier: a scalable simulator for course
of fire training. In Interservice/Industry Training, Simulation & Education
Conference (I/ITSEC), number 1, 2012.

[171] Joan R. Rosell-Polo, Eduard Gregorio, Jordi Gené, Jordi Llorens, Xavier Tor-
rent, Jaume Arnó, and Alexandre Escola. Kinect v2 sensor-based mobile
terrestrial laser scanner for agricultural outdoor applications. IEEE/ASME
Transactions on Mechatronics, 22(6):2420–2427, 2017.

[172] Keir E. Keightley and Gerald W. Bawden. 3d volumetric modeling of
grapevine biomass using tripod lidar. Computers and Electronics in Agri-
culture, 74(2):305–312, 2010.

[173] Oliver Wasenmüller and Didier Stricker. Comparison of kinect v1 and v2 depth
images in terms of accuracy and precision. In Asian Conference on Computer
Vision, pages 34–45. Springer, 2016.

[174] Higinio Gonzalez-Jorge, Pablo Rodríguez-Gonzálvez, Joaquín Martínez-
Sánchez, Diego González-Aguilera, Pedro Arias, Manuel Gesto, and Lucía
Díaz-Vilariño. Metrological comparison between kinect i and kinect ii sensors.
Measurement, 70:21–26, 2015.

[175] Kourosh Khoshelham and Sander Oude Elberink. Accuracy and resolution of
kinect depth data for indoor mapping applications. Sensors, 12(2):1437–1454,
2012.

[176] Lin Yang, Longyu Zhang, Haiwei Dong, Abdulhameed Alelaiwi, and Abdul-
motaleb El Saddik. Evaluating and improving the depth accuracy of kinect
for windows v2. IEEE Sensors Journal, 15(8):4275–4285, 2015.

[177] Sara Bragança, Pedro Arezes, Miguel Carvalho, Susan P Ashdown, Ignacio
Castellucci, and Celina Leão. A comparison of manual anthropometric mea-
surements with kinect-based scanned measurements in terms of precision and
reliability. Work, 59(3):325–339, 2018.

[178] Kenneth David Mankoff and Tess Alethea Russo. The kinect: a low-cost, high-
resolution, short-range 3d camera. Earth Surface Processes and Landforms,
38(9):926–936, 2013.

[179] Ting On Chan, Derek D Lichti, Adam Jahraus, Hooman Esfandiari, Herve
Lahamy, Jeremy Steward, and Matthew Glanzer. An egg volume measurement
system based on the microsoft kinect. Sensors, 18(8):2454, 2018.

[180] Achuta Kadambi, Ayush Bhandari, and Ramesh Raskar. 3d depth cameras
in vision: Benefits and limitations of the hardware. In Computer Vision and
Machine Learning with RGB-D Sensors, pages 3–26. Springer, 2014.

XLV



[181] Mark A. Livingston, Jay Sebastian, Zhuming Ai, and Jonathan W. Decker.
Performance measurements for the microsoft kinect skeleton. In 2012 IEEE
Virtual Reality Workshops (VRW), pages 119–120. IEEE, 2012.

[182] Karen Otte, Bastian Kayser, Sebastian Mansow-Model, Julius Verrel, Friede-
mann Paul, Alexander U Brandt, and Tanja Schmitz-Hübsch. Accuracy and
reliability of the kinect version 2 for clinical measurement of motor function.
PloS one, 11(11), 2016.

[183] Lydia R. Reither, Matthew H. Foreman, Nicole Migotsky, Chase Haddix, and
Jack R. Engsberg. Upper extremity movement reliability and validity of the
kinect version 2. Disability and Rehabilitation: Assistive Technology, 13(1):54–
59, 2018.

[184] Meghan E. Huber, Amee L. Seitz, Miriam Leeser, and Dagmar Sternad. Va-
lidity and reliability of kinect skeleton for measuring shoulder joint angles: a
feasibility study. Physiotherapy, 101(4):389–393, 2015.

[185] Mohamed Elgendi, Flavien Picon, and Nadia Magenant-Thalmann. Real-
time speed detection of hand gesture using, kinect. In Proc. Workshop on
Autonomous Social Robots and Virtual Humans, The 25th Annual Conference
on Computer Animation and Social Agents (CASA 2012), 2012.

[186] Carlos Gutiérrez López de la Franca, Ramón Hervás, Esperanza Johnson,
Tania Mondéjar, and José Bravo. Extended body-angles algorithm to recognize
activities within intelligent environments. Journal of Ambient Intelligence and
Humanized Computing, 8(4):531–549, 2017.

[187] Carlos Gutiérrez-López-Franca, Ramón Hervás, and Esperanza Johnson.
Strategies to improve activity recognition based on skeletal tracking: Ap-
plying restrictions regarding body parts and similarity boundaries. Sensors,
18(5):1665, 2018.

[188] Tibor Guzsvinecz, Cecilia Sik-Lanyi, Eva Orban-Mihalyko, and Erika Perge.
The influence of display parameters and display devices over spatial ability test
answers in virtual reality environments. Applied Sciences, 10(2):526, 2020.

[189] Tibor Guzsvinecz, Éva Orbán-Mihálykó, Cecília Sik-Lányi, and Erika Perge.
Investigation of spatial ability test completion times in virtual reality using a
desktop display and the gear vr. Virtual Reality. Under review.

[190] Tibor Guzsvinecz, Éva Orbán-Mihálykó, Erika Perge, and Cecilia Sik-Lányi.
Analyzing the spatial skills of university students with a virtual reality appli-
cation using a desktop display and the gear vr. Acta Polytechnica Hungarica,
17(2), 2020.

[191] Tibor Guzsvinecz, Veronika Szucs, and Attila Magyar. Preliminary results of
evaluating a prediction-based algorithm for movement pattern recognition and
classification. In 11th IEEE International Conference on Cognitive Infocom-
munications, pages 39–44, 2020.

XLVI



[192] Tibor Guzsvinecz, Monika Szeles, Erika Perge, and Cecilia Sik-Lanyi. Prepar-
ing spatial ability tests in a virtual reality application. In 10th IEEE Interna-
tional Conference on Cognitive Infocommunications, pages 363–368, 2019.

[193] Unity Real-Time Development Platform|3D, 2D VR & AR Visualizations.
https://unity.com.

[194] Sa Wang, Zhengli Mao, Changhai Zeng, Huili Gong, Shanshan Li, and Beibei
Chen. A new method of virtual reality based on unity3d. In 2010 18th inter-
national conference on Geoinformatics, pages 1–5. IEEE, 2010.

[195] Jonathan Linowes. Unity virtual reality projects. Packt Publishing Ltd: Birm-
ingham, United Kingdom, 2015.

[196] Vinh T Nguyen and Tommy Dang. Setting up virtual reality and augmented
reality learning environment in unity. In 2017 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR-Adjunct), pages 315–320. IEEE,
2017.

[197] Christopher G. Coogan and Bin He. Brain-computer interface control in a
virtual reality environment and applications for the internet of things. IEEE
Access, 6:10840–10849, 2018.

[198] Moch Fachri, Ali Khumaidi, Nur Hikmah, and Nuke L Chusna. Performance
analysis of navigation ai on commercial game engine: Autodesk stingray and
unity3d. Jurnal Mantik, 4(1, May):61–68, 2020.

[199] Mental Rotation Quiz Questions - ProProfs Quiz. https://www.proprofs.
com/quiz-school/story.php?title=mental-rotation-task.

[200] Gear VR SM-R322 Support & Manual|Samsung Business. https://www.
samsung.com/us/business/support/owners/product/gear-vr-sm-r322/.

[201] Samsung Galaxy S6 Edge Plus—The Official Samsung Galaxy Site. https:
//www.samsung.com/global/galaxy/galaxy-s6-edge-plus/.

[202] How to interpret the sRGB color space (specified in IEC 61966-2-1) for ICC
profiles. http://color.org/chardata/rgb/sRGB.pdf.

[203] Matthew Anderson, Ricardo Motta, Srinivasan Chandrasekar, and Michael
Stokes. Proposal for a standard default color space for the internet—srgb.
In Color and imaging conference, volume 1996, pages 238–245. Society for
Imaging Science and Technology, 1996.

[204] Cecilia Sik-Lanyi. Choosing effective colours for websites. In Colour Design,
pages 619–640. Elsevier, 2017.

[205] LG LED Monitor 20M37A|19.5 LG LED Monitor—LG Electronics UK.
https://www.lg.com/uk/monitors/lg-20M37A.

XLVII

https://unity.com
https://www.proprofs.com/quiz-school/story.php?title=mental-rotation-task
https://www.proprofs.com/quiz-school/story.php?title=mental-rotation-task
https://www.samsung.com/us/business/support/owners/product/gear-vr-sm-r322/
https://www.samsung.com/us/business/support/owners/product/gear-vr-sm-r322/
https://www.samsung.com/global/galaxy/galaxy-s6-edge-plus/
https://www.samsung.com/global/galaxy/galaxy-s6-edge-plus/
http://color.org/chardata/rgb/sRGB.pdf
https://www.lg.com/uk/monitors/lg-20M37A


[206] David W. Hosmer Jr, Stanley Lemeshow, and Rodney X. Sturdivant. Applied
logistic regression, volume 398. John Wiley & Sons, 2013.

[207] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye.
Probability & statistics for engineers & scientists. Pearson Prentice Hall, 2011.

[208] András Prékopa. Valószínűségelmélet műszaki alkalmazásokkal. Műszaki Ki-
adó, 1974.

[209] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2018.

[210] Patrick Maynard. Drawing distinctions: the varieties of graphic expression.
Cornell University Press, 2018.

[211] David Webster and Ozkan Celik. Systematic review of kinect applications
in elderly care and stroke rehabilitation. Journal of neuroengineering and
rehabilitation, 11(1):108, 2014.

[212] Kelly J Bower, Julie Louie, Yoseph Landesrocha, Paul Seedy, Alexandra Gore-
lik, and Julie Bernhardt. Clinical feasibility of interactive motion-controlled
games for stroke rehabilitation. Journal of neuroengineering and rehabilitation,
12(1):63, 2015.

[213] Arin Ghazarian and S Majid Noorhosseini. Automatic detection of users’ skill
levels using high-frequency user interface events. User Modeling and User-
Adapted Interaction, 20(2):109–146, 2010.

XLVIII


	Abstract
	Tartalmi kivonat
	Estratto di contenuto
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation and aims
	The importance of spatial skills in engineering and medical applications
	The use of motion tracking devices in medical applications

	Structure of the thesis

	State of the art
	Human spatial skills and their enhancement in virtual environments
	Existing virtual reality applications that improve spatial ability
	How the design of a virtual reality application can help the spatial skills of the users

	Using the Kinect for physical rehabilitation
	A brief summary of the Kinect
	Comparing the Kinect to other motion sensors
	Assessing the accuracy and the precision of the Kinect

	Conclusions on the literature review
	Concluding on the importance of spatial skills in virtual environments
	Concluding whether the Kinect can substitute more expensive sensors

	Summary of the state of the art

	Materials and methods
	Research questions and hypotheses
	Finding the optimal user-centric virtual environment design
	Investigating the effects of the display device and the human skills on the completion time
	Looking for the correlation between the device used and the human skills
	Assessing the APBMR algorithm

	Methodology
	Presenting the methodology for the spatial ability tests and measurements
	Presenting the APBMR algorithm and the methodology used during its evaluation


	Results of the measurements
	Analyzing the results on the spatial ability tests
	The influence of display devices and display parameters on the spatial ability tests in virtual reality
	Investigating effects of display devices and human skills on the spatial ability test completion times
	Assessing the correlation between the used display devices and the human skills

	Evaluating the APBMR algorithm
	Real-time results
	File-based results
	Comparing the real-time and the file-based execution time of the algorithm
	Comparing the APBMR to the RDAMR
	Evaluating all movement descriptors


	Discussion and conclusions
	Discussing the results on the spatial ability tests
	The factors that influence the probability of the results in virtual environments
	The factors that have an effect on the completion times
	The skills that can be affected by the display devices
	Comparing the results to the literature

	Discussing the results of the evaluation of the APBMR algorithm
	Rejected hypothesis regarding the APBMR
	Mixed cases regarding the APBMR
	Accepted hypotheses regarding the APBMR
	Comparing the APBMR algorithm to the literature

	Conclusions
	The optimal user-centric preference in virtual environments
	The independence and the effect of completion times in virtual environments
	The correlation between the display devices and the human skills
	The usability of the Asynchronous Prediction-Based Movement Recognition algorithm


	Application of the new scientific results
	Theses summary
	New scientific results
	Future plans
	Publications of the author
	Appendix
	Tables regarding the research of spatial skills in virtual environments
	Results of various analysis methods
	Numerical results of the users
	Supplementary data regarding the rates of correct answers

	Tables regarding the research of gesture classification
	Supplementary figures

	Bibliography



