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Abstract

Electrical energy is one of the most essential resources of the modern world.
Electrical energy systems usually have distributed structures with redundant
and recon�gurable elements, which grant the safe and reliable operation of the
system. The diagnosis of such a system is important because the failure of a
component has e�ect on the fault tolerance of the whole system. E�ective di-
agnosis methods may reduce the number of equipments and save maintenance
costs of a complex system. In this work di�erent kinds of model based di-
agnostic solutions are presented focused on energetic application areas, where
the electrical energy system is modelled and analyzed at di�erent levels of
hierarchy.

First a parameter estimation method of batteries is presented, that can be
a basis of a diagnostic method. A simple parametric temperature dependent
battery model is used for this purpose. A two-step method is used that includes
a parameter estimation step of the key parameters at di�erent temperatures
followed by a static optimization step that determines the temperature coe�-
cients of the corresponding parameters. The proposed method can be used as
a computationally e�ective way of determining the key battery parameters at
a given temperature, that can be used for battery health diagnosis.

Next, a diagnostic method is proposed for detecting and isolating non-
technical losses (illegal loads) in low voltage electrical grids. The proposed
method uses a simple static linear model of the network and it is based on
analyzing the di�erences between the measured and model-predicted voltages.
As a preliminary step of the diagnosis, the decomposition of the network is
proposed to make the computation e�cient. The uncertainty in the model
parameters and measurements are also taken into account to make the ap-
proach applicable in real-world cases. The proposed method is able to localize
multiple illegal loads in the network.

At last a new on-line fault identi�cation method of technological processes
is proposed that uses a qualitative dynamic model of the system and its colored
Petri net model. The diagnosis is based on searching the deviations between
the traces of the normal and the actual operation on the occurrence graph
of the model. In case of composite systems the occurrence graph can be ex-
tremely large, therefore a structural decomposition method is applied which
can manage increased computational e�ort and searching-time.

The presented methods can be applied in di�erent areas of electrical sys-
tem diagnosis. The battery parameter estimation method can be used for
estimating battery age and remaining life, the available capacity and state of
charge at di�erent temperatures. The decomposition based methods can be
used for diagnosing both static and dynamic systems. Using decomposition,
multiple fault diagnosis is possible. In addition it may has a positive e�ect on
the computational e�ort.
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Kivonat

A villamos energia napjaink egyik meghatározó energiaforrása. A fogyasz-
tók biztonságos és folyamatos ellátása érdekében, a villamos energetikai rend-
szerek általában elosztott struktúrájú, számos redundáns illetve rekon�gurál-
ható elemet tartalmazó rendszerek. A diagnosztika egy ilyen rendszerben nagy
szerepet kap, mivel az egyes komponensek meghibásodása a teljes rendszer
hibat¶r® képességét is befolyásolja. Hatékony diagnosztikai módszerek segít-
ségével a berendezések száma és a karbantartási költségek optimalizálhatók.
Jelen értekezésben különböz® modell alapú diagnosztikai módszerek kerülnek
bemutatásra, amelyek villamos energetikai rendszerek különböz® szint¶ vizs-
gálatához kapcsolódnak.

El®ször egy akkumulátorok paraméterbecslésére szolgáló módszer kerül be-
mutatásra, ahol az akkumulátor m¶ködését egy egyszer¶ parametrikus, h®-
mérsékletfügg® modell írja le. A javasolt kétlépéses paraméterbecslési mód-
szer segítségével az akkumulátor paraméterei és paraméterek h®mérséklet-
függ® karakterisztikái hatékonya megbecsülhet®k. A módszer felhasználható
akkumulátor-diagnosztikai alkalmazásokban, ahol az akkumulátor elhasználó-
dottságára, élettartamára kell következtetni.

Ezután egy, a villamos hálózatokban jelen lév® nem mért vételezés diag-
nosztikájára szolgáló módszer kerül bemutatásra. A módszer segítségével de-
tektálni és azonosítani lehet a hálózatban jelen lév® illegális fogyasztókat. A
javasolt diagnosztikai módszer pedig a mért és a hálózat statikus lineáris mo-
dellje által jósolt feszültségek és áramok összehasonlításán alapul. A kifejlesz-
tett módszer egyszerre több illegális fogyasztó azonosítására is képes, valamint
�gyelembe veszi a hálózat paramétereinek bizonytalanságát, és a mérési hi-
bákat is. A módszer hatékonyságának növelése érdekében a hálózat el®zetes
dekompozíciója javasolt.

Végül technológiai rendszerek kvalitatív modell alapú diagnosztikája kerül
ismertetésre. A diagnosztikai módszer a technológiai rendszer normál és hibás
m¶ködéseit leíró eseménysorai közötti eltérések vizsgálatán alapszik, felhasz-
nálva a rendszer színezett Petri háló modelljének elérhet®ségi gráfját. Összetett
rendszerek diagnosztikája esetében a rendszer el®zetes strukturális dekompozí-
ciója javasolt, a különböz® egységekben el®forduló hibák könnyebb azonosítása
érdekében.

A bemutatott módszerek különböz® területeken alkalmazhatóak. Az ak-
kumulátor paramétereinek becslése felhasználható az aktuális és a hátralév®
élettartam, az elérhet® kapacitás és töltöttségi szint becslésére különböz® h®-
mérsékleteken. A dekompozíció alapú módszerek statikus és dinamikus mo-
dellek esetében is alkalmazhatóak. Ezen kívül a dekompozíció lehet®vé teszi,
hogy többszörös hibák is könnyen azonosíthatóak legyenek, valamint a számí-
tási igényt is kedvez®en befolyásolja.
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Àííîòàöèÿ

Ýëåêòðè÷åñêàÿ ýíåðãèÿ � îäèí èç ñàìûõ âàæíûõ ðåñóðñîâ ñîâðåìåí-

íîãî ìèðà. Ñèñòåìû ýëåêòðè÷åñêîé ýíåðãèè îáû÷íî èìåþò ðàñïðåäåëåí-

íûå ñòðóêòóðû ñ ìíîãèìè èçáûòî÷íûìè ýëåìåíòàìè, êîòîðûå îáåñïå÷è-

âàþò áåçîïàñíóþ è íàä¼æíóþ ðàáîòó ñèñòåìû. Äèàãíîñòèêà òàêèõ ñèñòåì

î÷åíü âàæíàÿ, ïîòîìó ÷òî ïîâðåæäåíèå îäíîãî ýëåìåíòà âëèÿåò íà îòêà-

çîóñòîé÷èâîñòü âñåé ñèñòåìû. Ýôôåêòèâíûå ìåòîäû äèàãíîñòèêè ìîãóò

óìåíüøèòü êîëè÷åñòâî îáîðóäîâàíèé è ðàñõîäû íà òåõíè÷åñêîå îáñëóæè-

âàíèå ñëîæíûõ ñèñòåì. Â ýòîé äèññåðòàöèè ïðåäñòàâëÿþòñÿ ðàçíûå âèäû

äèàãíîñòèêè íà îñíîâå ìîäåëè ýíåðãåòè÷åñêèõ ñèñòåì.

Ñíà÷àëà ïðåäñòàâëÿåòñÿ ìåòîä îöåíêè ïàðàìåòðîâ àêêóìóëÿòîðà, êîòî-

ðûé ìîæåò áûòü îñíîâà ìåòîäà äèàãíîñòèêè. Äëÿ ýòîé öåëè èñïîëüçîâàíà

ïðîñòàÿ ìîäåëü àêêóìóëÿòîðà, çàâèñèìàÿ îò òåìïåðàòóðû. Ðàçðàáîòàííûé

ìåòîä ñîñòîèò èç äâóõ ýòàïîâ. Íà ïåðâîì ýòàïå îöåíèâàþòñÿ êëþ÷åâûå ïà-

ðàìåòðû àêêóìóëÿòîðà ïðè ðàçíûõ òåìïåðàòóðàõ. Íà âòîðîì ýòàïå îöå-

íèâàþòñÿ òåìïåðàòóðíûå êîýôôèöèåíòû ïàðàìåòðîâ ñ ïîìîùüþ ñòàòè÷å-

ñêîé îïòèìèçàöèè. Ïðåäëîæåííûé ìåòîä ìîæíî èñïîëüçîâàòü êàê âû÷èñ-

ëèòåëüíî ýôôåêòèâíûé ñïîñîá, ÷òîáû îöåíèòü ïàðàìåòðû àêêóìóëÿòîðà.

Ïîñëå ýòîãî, ïðåäñòàâëÿåòñÿ äèàãíîñòè÷åñêèé ìåòîä äëÿ äåòåêòèðîâà-

íèÿ è èçîëÿöèè íåòåõíè÷åñêèõ ïîòåðü â ýëåêòðè÷åñêèõ ñåòÿõ. Äëÿ ýòîé öå-

ëè èñïîëüçîâàíà ñòàòè÷åñêàÿ ëèíåàðíàÿ ìîäåëü ýëåêòðè÷åñêîé ñåòè. Ïðåä-

ëîæåííûé ìåòîä îñíîâûâàåòñÿ íà àíàëèçå èçìåðåííûõ è ïðåäñêàçàííûõ

íàïðÿæåíèé. Äëÿ òîãî ÷òîáû ñäåëàòü ìåòîä âû÷èñëèòåëüíî ýôôåêòèâ-

íûì, ïåðåä äèàãíîñòèêîé ïðåäëàãàåòñÿ äåêîìïîçèöèÿ ñåòè. Ðàçðàáîòàí-

íûé äèàãíîñòè÷åñêèé ìåòîä ìîæåò ëîêàëèçîâàòü íåñêîëüêî íåëåãàëüíûõ

ïîòðåáèòåëåé, ó÷èòûâàÿ ïîãðåøíîñòè èçìåðåíèÿ.

Íàêîíåö, ïðåäëàãàåòñÿ íîâûé îíëàéí ìåòîä äèàãíîñòèêè òåõíîëîãè÷å-

ñêèõ ïðîöåññîâ êîòîðûé èñïîëüçóåò êà÷åñòâåííóþ äèíàìè÷åñêóþ ìîäåëü

ñèñòåìû â ôîðìå öâåòíîé ñåòè Ïåòðè. Â ýòîì ñëó÷àå äèàãíîñòèêà îñíî-

âûâàåòñÿ íà ïîèñêå ðàçíèö ìåæäó ñëåäàìè íîðìàëüíîé è ðåàëüíîé îïåðà-

öèè íà ãðàôå äîñòèæèìîñòè. Ãðàôû äîñòèæèìîñòè ñëîæíûõ ñèñòåì ìîãóò

áûòü îãðîìíûìè, ïîýòîìó ïðåäëàãàåòñÿ ìåòîä ñòðóêòóðíîé äåêîìïîçèöèè,

êîòîðûé ìîæåò óïðàâëÿòü ïîâûøåííûìè âû÷èñëèòåëüíûìè óñèëèÿìè è

âðåìåíåì íà ïîèñê.

Ïðåäñòàâëåííûå ìåòîäû ìîãóò ïðèìåíÿòüñÿ â ðàçëè÷íûõ îáëàñòÿõ äè-

àãíîñòèêè ýëåêòðè÷åñêèõ ñèñòåì. Ìåòîä îöåíêè ïàðàìåòðîâ àêêóìóëÿòî-

ðà ìîæåò èñïîëüçîâàòüñÿ äëÿ îöåíêè ñðîêà ñëóæáû, åìêîñòè èëè óðîâ-

íÿ çàðÿäà àêêóìóëÿòîðà ïðè ðàçíûõ òåìïåðàòóðàõ. Ìåòîäû, îñíîâàííûå

íà äåêîìïîçèöèè, ìîãóò èñïîëüçîâàòüñÿ äëÿ äèàãíîñòèêè è ñòàòè÷åñêèõ è

äèíàìè÷åñêèõ ñèñòåì. Äåêîìïîçèöèÿ ïîçâîëÿåò äèàãíîñòèðîâàòü ìíîæå-

ñòâåííûå íåèñïðàâíîñòè, è, êðîìå òîãî, ïîëîæèòåëüíî âëèÿåò íà âû÷èñ-

ëèòåëüíîå óñèëèå.
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Chapter 1

Introduction

1.1 Background and motivation

Electrical energy plays a fundamental role in our everyday life. Industrial
processes, communication, household tasks, entertainment or transportation in
modern days would be inconceivable without electrical energy. The transmis-
sion of the electrical energy from the place of generation to the consumption
requires complex and extensive transmission and distribution networks, which
may even go beyond country borders. Therefore, research done in the area
of these transmission and distribution networks and their elements (electrical
machines, consumption equipments, batteries, power sources etc.), called as
electrical energy systems, are of great importance.

Electrical energy systems are usually distributed systems with high degree
of redundancy and recon�gurability. To grant the continuous operability of the
system and the availability of the energy, electrical energy systems are usually
equipped with backup systems therefore a single fault should not signi�cantly
a�ect the operation of the system. The diagnosis of the system components
is important because it a�ects the fault tolerance of the whole system. An
e�ective diagnostic method may reduce the number of necessary redundant
components and additional costs of (e.g. maintenance). Therefore the diag-
nosis of electrical energy systems is crucial for the maintainers, operators and
customers of the system.

The diagnosis of the electrical energy systems can be performed at di�erent
levels with di�erent capabilities. Sometimes it is only enough to detect the
presence of the fault, but usually the type and the location of the occurred
fault should be identi�ed. The situation may become even more complicated
if there are multiple faults in the system. Moreover an other advantage of the
model based diagnosis is that the model used for the diagnosis can be utilized
in other areas of the investigation of the system (e.g. veri�cation).

Electrical energy systems can be modelled and analyzed at di�erent levels
of hierarchy. At the top level network model a simple static linear model
may be enough to describe the main operation of the network [1]. Going
down to lower levels, such as distribution networks, local low-voltage networks,
consumers and devices, the models of the components become more complex
and detailed and o�er higher resolution in space and time [2]. For example a
local network can be modelled as a discrete event system [3]; or a low level
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1. INTRODUCTION

component, like a battery can be modelled by a nonlinear state space model
[4]. When modelling a certain part of the network one selects the appropriate
model type according e.g. to the modelling goal, the targeted application area
and the available computational resource.

In this work various model based fault diagnostic methods applied to elec-
trical energy systems are presented with di�erent approaches of the diagnostic
task. The presented methods vary in the applied method, the used system
model and the application area.

1.2 Model based diagnosis in dynamic systems

Each system has an expected way of operation that satis�es the purpose
for which it was created. However it can sometimes occur that the system op-
erates incorrectly because of di�erent reasons. The malfunction of the system
can be caused by a fault. The sign of the fault is the deviation between the ac-
tual (measured, observed or computed) and the nominal variables/parameters,
that is called error. If the error remains unnoticed and the fault is not handled
properly, then the situation may lead to the failure of the system. A failure
occurs when the system can no longer satisfy its original function, or its per-
formance is degraded [5]. Faults may change the structure, variables or the
parameters of the system model [6]. Model based diagnosis is one of the most
popular group of diagnostic methods [7].

The general diagnostic task can be described in the following way [8].
Given a set of faults F (where f0 ∈ F refers to the faultless mode), a dy-
namic system model including the possible fault models and the measured
input-output data: U = (u(0), u(1), . . . , u(k)), Y = (y(0), y(1), . . . , y(k)). The
diagnostic task is to �nd the fault f for a given input-output pair (U, Y ).

Di�erent levels of the diagnosis can be distinguished based on the depth
of resolution. The task of fault detection is to decide whether any fault has
occurred in the system or not. Fault isolation aims to determine the location
of the fault within the system. Fault identi�cation is used to determine exactly
which fault in F has occurred and estimate its magnitude.

In the following a short review of model based diagnostic methods that are
used in this thesis is given.

1.2.1 Diagnosis based on parameter estimation

The basic principle of the method is that the occurrence of a fault makes
changes in the variables or parameters of the system. Given the set of faults,
the parametrized system model, the measured input-output data, and a loss
function depending on the parameters, the task is to �nd those parameters
corresponding to a given fault that minimizes the loss function such that the
model output is as close as possible to the measured output [9].
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Several methods of parameter estimation can be used to solve this task.
One of the most popular methods is the least squares estimation and its vari-
ations because of their simplicity.

The parameter estimation based diagnosis is usually applied at component
level because of the complexity of the model and the number of parameters.
In [10] a parameter estimation based fault detection method was developed for
a DC motor where both electrical and mechanical parameters were estimated.
Recursive least squares are often used for real-time diagnosis exploiting the
reduced computational e�ort [11]. Nonlinear weighted least squares was used
to predict the degradation of a gas turbine [12]. Parameter estimation can also
be a part of a hybrid diagnoser as it was applied in [13], [14].

The parameter estimation methods can be applied with high reliability
only if the input is properly excited. Experiment design aims to create op-
timal conditions for parameter estimation. The papers [15] and [16] propose
an experiment design solution that is optimal from the parameter identi�ca-
tion point of view, where solution space is a sinusoidal signal family applied
as charging/discharging current. On the other hand, experiment design [17]
can also be used in order to maximize the information content of the battery
charging-discharging related measurement dataset in order to estimate battery
parameters more precisely.

Parameter estimation of nonlinear models can be computationally complex
since the loss function should be minimized numerically. Paper [18] overcomes
this problem by a parallel Java algorithm implemented on GPU (CUDA) archi-
tecture. The authors of [19] developed and compared three di�erent solutions
for the internal resistance estimation of lithium-ion batteries (direct resistance
estimation, Extended Kalman Filter (EKF), recursive Least Squares) and con-
cluded that EKF approach performed the best in terms of computational e�-
ciency.

The advantage of the parameter estimation based diagnosis is that all fault
diagnosis tasks (detection, isolation, identi�cation) can be realized with this
method. Besides that, with on-line parameter estimation methods faults can
be recognized at an early stage and the detection of multiple faults is also
possible.

1.2.2 Diagnosis based on analytical redundancy

Analytical redundancy based diagnosis methods use the idea that the actual
measured variables should be consistent with the model calculated variables
[20]. Analytical redundancy relations (ARR) are equations representing the
deviations between the measured and model variables that are zero in case of
normal operation and nonzero in case of at least one fault.
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1. INTRODUCTION

Analytical redundancy based diagnosers usually have two components. The
residual generator computes the the di�erence between measured and model
variables (residuals). Usually three di�erent approaches are used for residual
generation: the parity space, the observer and the Kalman �lter methods. The
decision system analyzes the residuals and complete the fault detection and
isolation tasks [21].

The fault detection task is relatively simple with analytical redundancy.
However the residuals being zero in/during normal operation is typically not
true in real world applications because of the presence of measurement noise.
Therefore the residuals are usually compared to a given threshold to detect
faults in the system[22]. When the measurement noise is signi�cant then in-
formation about the noise should be included in the model. Using a properly
designed �lter the e�ect of noise can be attenuated.

For fault isolation more than one residual is needed. The two main isola-
tion techniques that can be used are the method of structured residuals and
the �xed direction residuals [23]. In the �rst case the residuals can be divided
into subsets that are nonzero only if a speci�c fault has occurred. The pattern
of zero and nonzero elements of the residuals, which is called signature, char-
acterizes the fault. In the second case the direction of the residual vector can
be associated with the given fault.

Analytical redundancy is often used to diagnose sensor or actuator faults.
Application areas range from simple benchmark systems like the three tank
system in [24] to complex engineering systems and safety critical systems such
as nuclear power plants [25], jet engines [26], satellites [27] or aerospace [28].

The advantage of analytical redundancy based diagnosis in contrast to
hardware redundancy is that no duplication of sensors or physical components
is needed to realize a diagnostic method. This reduces the cost and weight
of the equipment. An other feature is that a variety of models can be served
as the basis of the diagnosis (e.g.ordinary di�erential equations, data-driven
models, expert systems) [29].

1.2.3 Diagnosis of discrete event systems

Discrete event systems are special kinds of dynamic systems with discrete
time and discrete valued variables. Events are the changes between the discrete
values of the variables. Typical models of discrete event systems are automata
models and their extensions, Petri nets or state machines.

Fault diagnosis of discrete event systems is usually based on the assumption
that faults are unobservable events, therefore only the e�ects of faults can be
noticed [30]. Since events related to faults are unobservable by assumption,
the detection and isolation problem must be solved based on the available
information of the observed non-faulty events. The diagnosability of discrete
event systems has been originally investigated in [31] using the methods of
automata theory.
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If the discrete event system is modelled by an automaton then the most
common solution of the diagnostic problem is the creation of the diagnoser au-
tomaton by eliminating the unobservable events. Although the diagnoser can
be constructed algorithmically, the issues of state explosion and high compu-
tational complexity are present. A solution to reduce the computational e�ort
was presented in [32].

Another way of diagnosis is performed by checking the consistency of the
observed input-output sequences and the state transition relations of the au-
tomaton model [33]. The method can be applied to quantised systems repre-
sented by discrete event models, too [34].

Discrete event systems can be represented by di�erent kinds of Petri nets,
too. A simple fault detection method based on the measurement of token
quantity in conservative Petri nets is given in [35]. In case of more complex
models more sophisticated diagnostic methods are needed. The construction
of a diagnoser Petri net, which is the copy of the original model without the
faulty transitions, is proposed in [36], [37]. Comparing the original model
output and the diagnoser output the di�erence between them indicates that
a fault has occurred. Besides that, the reachability or the coverability graph
of the Petri net is often used for diagnostic purposes, because it contains all
possible system states [38]. Other methods use the mathematical model of the
Petri net and the diagnostic problem is traced back to the solution of a set
of linear equations [39], [40]. Qualitative discrete event systems, which is in
the focus of Chapter 4, can be also modelled by ordinary or colored Petri nets
[41], [42]. The trace of the qualitative variables can be used for detecting and
identifying faults in the system, using a specially constructed colored Petri net
diagnoser [43].

The problems of the Petri net based diagnostic methods are similar to the
ones mentioned at the automata based methods.

1.3 Thesis structure

This thesis is divided into the following main chapters.

In Chapter 2 the parameter estimation method developed for the diagnosis
of batteries is presented. First the basic notions related to the battery op-
eration are introduced then the used temperature dependent battery model
is introduced. After that the experiment design process that is a necessary
prerequisite of the parameter estimation is described. The developed two-step
parameter estimation method is explained hereinafter. Finally, simulation re-
sults are presented and the achieved results are summarized.

In Chapter 3 the model based diagnosis of electrical networks is described
which is based on the comparison of nominal and measured current/voltage
values. First the model of the network and the basic concepts are introduced.
Then the decomposition of di�erent network structures is presented which is

9
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the key element of the diagnostic method. After that the proposed diagnos-
tic algorithms for non-technical loss diagnosis utilizing the network structures
are presented. The decomposition and diagnostic methods are illustrated on
simple examples. The results are summarized at the end of the chapter.

In Chapter 4 the colored Petri net based diagnostic method for process
systems is presented. At �rst the basic notions of ordinary and colored Petri
nets are introduced. The general colored Petri net model and its operation
is explained in the next section. After that the basic unit-wise diagnostic
algorithm is presented which uses the occurrence graph of the colored Petri
net model of the technological unit. The diagnosis of composite systems based
on structural decomposition is introduced in the next section. Finally, the
results of this work are summarized.

In Chapter 5 the main results of this research are summarized in three
thesis points. The relevant publications can also be found here.

Two detailed case studies illustrating the diagnostic methods presented in
Chapter 3 and Chapter 4 can be found in the Appendix.
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Chapter 2

Diagnosis of batteries using

parameter estimation

Lithium-ion batteries are popular energy sources of our everyday life be-
cause of their high energy density, low self-discharge and light weight. Portable
electronic devices (mobile phones, laptops), home electronics, electronic tools
and electric vehicles (EVs) all run on some type of lithium-ion battery. In ap-
plications like electrical vehicles, batteries are connected in parallel and series
in order to meet the power needs.

The optimal performance and safe operation of the set of battery cells are
managed by the battery management system (BMS). Another essential role of
the BMS is the state of charge (SOC) and state of health (SOH) estimation.
The former quantity informs the user on the remaining charge of the battery
bank (i.e. the remaining mileage that can be travelled with the electrical
vehicle), while the latter shows the ratio between the capacity of a new battery
in relation to the actual capacity of the battery. Just like any other battery,
the performance of the lithium-ion battery is not constant but slowly degrades
during the operation and strongly depends on the ambient temperature. The
battery health conditions cannot be measured directly therefore it should be
estimated based on measurable quantities.

The temperature does not only a�ect the aging process of a battery but its
short term performance, too. Therefore the thermal e�ects taking place in the
battery should also be taken into account when creating a battery model.

Thermal modelling and the analysis of lithium-ion batteries under di�erent
temperatures has been addressed by several authors. The thermal modelling
of batteries as well as the modelling without temperature dependency can be
classi�ed based on the scienti�c background (e.g. equivalent circuit models,
electrochemical models). The review [44] gives a thorough analysis not only
of the di�erent electrochemical models but also of the parameter identi�cation
methods.

In such applications where the computational complexity (i.e. time) is
crucial e.g. in BMSs, equivalent circuit models are widely used [45]. In our
previous work [46] we proposed a parameter estimation for lithium ion batteries
based on their �rst order equivalent circuit model. The results showed that
there is a linear dependency between some model parameters because of the
insu�cient excitation.
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2. DIAGNOSIS OF BATTERIES USING PARAMETER ESTIMATION

The aim of the work presented here is to diagnose the failure of the battery
related to the aging. Because the aging process a�ects the battery parameters
(e.g. decreased capacity), the condition of the battery can be estimated by
comparing the actual battery parameters with the parameters of a new bat-
tery. To do this the actual battery parameters should be determined. In the
following sections I propose a parameter estimation method which takes into
account the temperature dependency of the parameters, too. The tempera-
ture dependent battery operation is critical in automotive applications (e.g.
the available charge in a battery at 0 ◦C is less than at 25 ◦C).

In this chapter I generalize my previous work to the case when the tem-
perature dependence of the parameters are also taken into account. The way
of estimation of the temperature dependent parameters is important from the
viewpoint of applicability a simple parameter estimation is needed for primarily
the actual capacity for implementation in future BMSs. In this work a dif-
ferent equivalent circuit model is used instead of the one in [46], with physical
meanings of the parameters. The novelty of this work is the two-step param-
eter estimation method of the temperature dependent parameters. Before the
estimation of the parameters, proper experiment design was carried out to
ensure su�cient excitation and maximize the available information about the
parameters. The proposed method can be used as a basis of a battery health
diagnosis system.

2.1 Battery basic notions

In this section the basic notions related to the operation of Li-ion batteries
are summarized according to [47].

The battery is an electrochemical energy source that is composed of recharge-
able cells. The battery delivers voltage that depends on the cell chemistry. The
components of an electrochemical cell are the positive electrode , the negative
electrode and the electrolyte. In case of Li-ion battery the positive electrode
(cathode) is made from metal oxide, the negative electrode (anode) is made
from carbon (graphite) and the electrolyte is a liquid solvent with lithium salt.
The schematic structure of a Li-ion battery can be seen in Figure 2.1.

Batteries have two operation modes based on the direction of the current:
discharge and charge. During discharge the positive Li-ions move from the
negative electrode to the positive electrode through an external load. During
charge an external electrical power source is connected to the electrodes that
causes over-voltage. This forces the positive ions to move from the positive
electrode to the negative electrode.

The capacity of a battery is the amount of electric charge that a fully
charged battery can deliver during discharge. The capacity is de�ned as the
product of the constant discharge current and the time, and it is measured in
ampere-hours (Ah). For example a battery with 20 Ah capacity provides 20
A current for 1 hour.

The nominal capacity is the capacity of the battery when it is discharged
with the nominal current provided by the manufacturer.
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Figure 2.1: The schematic structure of a Li-ion battery

The charge/discharge current is often expressed with the C rate instead of
the actual magnitude. The C rate is a relative quantity that is de�ned as the
charge/discharge current related to the nominal capacity of the battery. For
example a 20 Ah battery can be discharged with 1 C (20 A) in 1 hour, or with
0.1 C (2 A) in 10 hours.

The State of Charge (SOC) is the actual available charge in the battery. It
is usually expressed as a percentage of the nominal capacity.

SOC(t) =
Q(t)

Qnom

· 100

The SOC is 100 % for a fully charged battery and 0 % for a fully discharged
battery. The SOC is a crucial information of the battery therefore accurate
SOC estimation is a major object in battery related researches [48]�[52].

The open circuit voltage (OCV) of the battery is the voltage between the
battery terminals when there is no current �ow, i.e. the battery is neither
charged or discharged. The open circuit voltage is a�ected by several factors,
for example state of charge, temperature and polarization.

Polarization is a side e�ect in batteries that occurs when the electrode
potential is displaced from the equilibrium potential due to a passage of current
through the cell. This e�ect is slowly developing over time and a�ects the open
circuit voltage.

The terminal voltage of the battery is the potential di�erence between
the battery terminals (denoted by + and - signs in Figure 2.1). The battery
terminal voltage is smaller than the OCV during discharge and greater than
the OCV during charge. This phenomenon is caused by the internal resistance.
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2. DIAGNOSIS OF BATTERIES USING PARAMETER ESTIMATION

All materials have some electrical resistance including the components of
the battery cells. The internal resistance of a battery comes from the resistivity
of the electrodes and the electrolyte.

The battery capacity degradation during usage is usually characterized by
the State of Health (SOH). The SOH of a battery is measured as the battery
capacity related to the initial nominal capacity in percentages:

SOH(t) =
Qnom(t)

Qnom(t0)
· 100

The battery reaches its end of life and considered degraded when the SOH
drops below 80 %. Di�erent methods of SOH estimation are presented in the
literature [48], [49], [53], [54].

2.2 Battery model

The parametric lithium-ion battery model that is the basis of the methods
to be proposed later is presented here. This is a modi�ed version of our model
used in [46]. The list of notations used in the battery model is given in Table
2.2.

2.2.1 Modelling assumptions

The following assumptions were made for the battery model [55] with tem-
perature dependency:

� The capacity of the battery does not change respective to amplitude of
the current (no Peukert e�ect).

� The self-discharge of the battery is not represented.

� The memory e�ect is less important from the viewpoint of ageing than
discharge/recharge strategy/policy.

� The voltage and the current can be in�uenced.

� The capacity depends on the ambient temperature.

� The electrode potential, the polarization coe�cient, the polarization re-
sistance and the internal resistance depend on the internal (cell) temper-
ature of the battery.

2.2.2 Temperature dependent battery model

From the potential modelling methodologies the equivalent electrical circuit
type was selected to create the basic battery model. The selected model is
originally developed in [55], in our previous work we described that model
without temperature e�ect [56].

The structure of the model can be seen in Figure 2.2.

14



2.2. BATTERY MODEL
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Figure 2.2: Equivalent electrical circuit model of the battery. Voltage voc(t) of
the controlled voltage source is di�erent in the case of charge and discharge.

The input of the model is the battery current (i) and the output is the bat-
tery terminal voltage (vb). The open circuit voltage (voc) is represented by a
controlled voltage source, and it is di�erent during charge and discharge. The
model was extended with temperature e�ects as it can be found in the Mat-
lab Simulink Battery block (Simulink/Simscape/Electrical/Specialized Power
Systems/Electric Drives/Extra Sources) [57]. The di�erence with respect to
the basic model [56] is that some of the parameters depend on the ambient or
cell temperature. As a result, the temperature dependent state space model
of the battery is obtained in the form of Eqs.(2.1-2.6) following [58] with the
notations collected in Table 2.1.

State equations :
d

dt
q(t) =

1

3600
i(t) (2.1)

d

dt
i∗(t) = −1

τ
i∗(t) +

1

τ
i(t) (2.2)

The state variables have the following meaning:

� q is the actual extracted capacity of the battery. The initial values are
q(t0) = 0, if the battery is fully charged and q(t0) = Q, if the battery is
fully discharged.

� i∗ is the polarization current. It can be computed by applying a low-pass
�lter to the battery current i, where τ is the time constant of the �lter
(see Eq. (2.2)).

Output equations :

� Charge model

vchoc (t, T, Ta) =E0(T )−K1(T )
Q(Ta)

q(t) + 0.1Q(Ta)
i∗(t)−

−K2(T )
Q(Ta)

Q(Ta)− q(t)
q(t) + A exp(−Bq(t))− Cq(t)

(2.3)

vchb (t, T ) = vchoc (t, T, Ta)−R(T )i(t) (2.4)
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� Discharge model

vdchoc (t, T, Ta) =E0(T )−K1(T )
Q(Ta)

Q(Ta)− q(t)
i∗(t)−

−K2(T )
Q(Ta)

Q(Ta)− q(t)
q(t) + A exp(−Bq(t))− Cq(t)

(2.5)

vdchb (t, T ) = vdchoc (t, T, Ta)−R(T )i(t) (2.6)

The output of the model is the battery terminal voltage vXb that is com-
posed of the open circuit voltage (vXoc) and the voltage drop across the internal
resistance (R(T )i(t)). X = {ch, dch} denotes the charge/discharge mode of
the battery.

The charge and discharge model di�ers in the open circuit voltage equation.
The open circuit voltage is composed of �ve main parts. E0 is the electrode po-
tential of the battery, The term K1(T ) Q(Ta)

q(t)+0.1Q(Ta)
i∗(t) and K1(T ) Q(Ta)

Q(Ta)−q(t)i
∗(t)

represents the polarization phenomenon in case of charge and discharge respec-
tively, where K1 is the polarization resistance and Q is the battery capacity.
The termK2(T ) Q(Ta)

Q(Ta)−q(t)q(t) describes the nonlinear variation of the OCV with
the SOC, where K2 is a polarization constant. The fourth term A exp(−Bq(t))
represents the rapid increase of the battery voltage when the battery is nearly
fully charged. Finally Cq(t) represents linear component of the discharge curve
of the battery.

The variables and parameters of the model with their meaning and units
can be seen in Table 2.1.

The indirect temperature dependency of the model de�ned by Eqs.(2.1-2.6)
is realized through a static temperature dependence of the model parameters.
The temperature dependency of the parameters can be described with the fol-
lowing equations [58]:

� The change of polarization coe�cient, polarization resistance and inter-
nal resistance with the battery temperature T can be derived from the
Arrhenius law:

K1(T ) = K1|Tref exp

(
α1

(
1

T
− 1

Tref

))
(2.7)

K2(T ) = K2|Tref exp

(
α2

(
1

T
− 1

Tref

))
(2.8)

R(T ) = R|Tref exp

(
β

(
1

T
− 1

Tref

))
(2.9)

� The temperature dependency of the capacity and the constant potential
can be written in the following form:

Q(Ta) = Q|Tref +
∆Q

∆T
(Ta − Tref ) (2.10)

16



2.2. BATTERY MODEL

E0(T ) = E0|Tref +
∂E

∂T
(T − Tref ) (2.11)

Table 2.1: Variables and parameters of the examined Samsung INR18650-20Q
Li-ion battery

Name Type Meaning Unit Value

i input variable battery current A -
i∗ state variable polarization current A -
q state variable extracted capacity Ah -
t independent variable time s -
voc variable open circuit voltage V -
vb output variable battery voltage V -

T external variable
battery cell
temperature

K -

Ta external variable ambient temperature K -

τ parameter
time constant of the

�lter
s 0.003

E0 parameter
constant potential of

the electrodes
V -

∂E/∂T parameter
reversible voltage

temperature coe�cient
V/K 0.002

R parameter internal resistance Ω -

β parameter
Arrhenius rate
constant for the
internal resistance

K 3839.8

K1 parameter polarization resistance Ω -

α1 parameter
Arrhenius rate
constant for the

polarization coe�cient
K 8415.3

K2 parameter polarization constant V/Ah -

α2 parameter
Arrhenius rate
constant for the

polarization resistance
K 8415.3

Q parameter battery capacity Ah -

∆Q/∆T parameter
maximum capacity

temperature coe�cient
Ah/K 0.016

A parameter exponential voltage V 0.1589
B parameter exponential capacity (Ah)−1 15.0

C parameter
nominal discharge

curve slope
V/Ah 0.2362
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2. DIAGNOSIS OF BATTERIES USING PARAMETER ESTIMATION

The parameters of the temperature dependent battery model with their
meaning and nominal values can be also found in Table 2.1. Our examined
battery is a Samsung INR18650-20Q type battery with 2000 mAh nominal ca-
pacity and 3.6 V nominal voltage. The nominal parameters of the battery were
extracted from the datasheet and the Matlab Simulink model [59]. The nomi-
nal values of the temperature dependent parameters at reference temperature
can be found in Table 2.2.

Table 2.2: Parameters of the examined Samsung INR18650-20Q Li-ion battery
at reference temperature.

Name Type Meaning Unit Value

Tref parameter nominal ambient temperature K 298.15

E0|Tref parameter
constant potential of the electrodes
at nominal ambient temperature

V 3.9388

R|Tref parameter
internal resistance at nominal

ambient temperature
Ω 0.005

K1|Tref parameter
polarization resistance at nominal

ambient temperature
Ω 0.0018

K2|Tref parameter
polarization constant at nominal

ambient temperature
V/Ah 0.0018

Q|Tref parameter
battery capacity at nominal

ambient temperature
Ah 2.0

Remark on the battery cell temperature
In order to obtain a simple model for parameter estimation, we have omitted
the energy balance and considered the battery cell temperature T as an external
variable. Simulation results showed that the cell temperature changed about
+2 ◦C with respect to the ambient temperature during a charge or discharge
operation.

2.3 Experiment design

The quality of the estimated parameters depends on the quality of the
available measurement data. With the help of experiment design the available
information about the parameters that can be extracted from the measure-
ments can be in�uenced. Techniques of experiment design include choosing
the proper input variables, the parameters to be estimated, creating input
signals to ensure su�cient excitation, �xing experimental conditions etc. In
this section two steps of experiment design are executed. In Section 2.3.1 the
parameters to be estimated are chosen based on the sensitivity analysis of
the model. Then the input signals used in the experiments are introduced in
Section 2.3.2. The simulation setup is described in Section 2.3.3.
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2.3.1 Parameter sensitivity analysis

As a �rst step of the parameter estimation, the parameter sensitivity of the
charge and discharge model of the battery has been analyzed. It is important to
note, that the temperature has an indirect e�ect on the model output through
the parameters which directly depend on the temperature. Instead of applying
the classical methods of sensitivity analysis involving sensitivity equations, the
method described in our previous work [46] was used for the sensitivity analysis.
In this method the parameter values were changed one by one with 10% with
respect to the nominal values, then the di�erence between the nominal and
the perturbed model was evaluated using a quadratic loss function:

Ws(θ̃) =
1

N

N∑
k=1

1

2

(
vb(θ; k)− vb(θ̃; k)

)2

(2.12)

where θ denotes the parameter vector, and θ̃ is the perturbed parameter vec-
tor. At �rst the step response of the model was simulated to get the time
constant of the system (τs). The sample time of the PRBS signal (Ts) was
chosen to be Ts = τs/5. The sensitivity analysis was repeated at 6 di�erent
temperatures: 0◦C, 10◦C, 20◦C, 30◦C, 40◦C and 50◦C. The battery was
charged/discharged between 0 − 100% state of charge with PRBS current in-
put (amplitude: charge {-2 A, -0.5 A}, discharge {0.5 A, 2 A}, sample time:
160 s). Both the charge and the discharge models were analyzed. The nominal
model was the charge/discharge model at the nominal ambient temperature
Tref = 25◦C.

The models were simulated in Matlab using the model equations Eqs. (2.1-
2.6). At each temperatures the nominal parameters were perturbed one-by-one
and the value of the loss function was computed. The result of the sensitivity
analysis of the charge and the discharge model can be seen in Table 2.3 and
Table 2.4. The graphical representation of the results is depicted in Figure 2.3.

Table 2.3: Values of the loss function in case of the parameter sensitivity
analysis of the charge model.

Parameter Change 0◦C 10◦C 20◦C 30◦C 40◦C 50◦C

E0
-10% 0.1100 0.0710 0.0728 0.0837 0.0922 0.0999
+10% 0.1342 0.0939 0.0830 0.0721 0.0652 0.0592

K1
-10% 0.0437 0.0047 0.0003 0.0003 0.0011 0.0020
+10% 0.0455 0.0051 0.0004 0.0003 0.0011 0.0020

K2
-10% 0.0365 0.0041 0.0003 0.0003 0.0011 0.0020
+10% 0.0537 0.0059 0.0004 0.0003 0.0011 0.0020

Q
-10% 0.0376 0.0069 0.0028 0.0013 0.0005 0.0007
+10% 0.0562 0.0054 0.0016 0.0025 0.0039 0.0055

R
-10% 0.0446 0.0049 0.0003 0.0003 0.0011 0.0020
+10% 0.0446 0.0049 0.0004 0.0003 0.0011 0.0020
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Table 2.4: Values of the loss function in case of the parameter sensitivity
analysis of the discharge model.

Parameter Change 0◦C 10◦C 20◦C 30◦C 40◦C 50◦C

E0
-10% 0.3795 0.1374 0.0912 0.0687 0.0591 0.0517
+10% 0.1305 0.0581 0.0680 0.0886 0.1013 0.1119

K1
-10% 0.1641 0.0184 0.0018 0.0011 0.0026 0.0042
+10% 0.1913 0.0220 0.0022 0.0011 0.0026 0.0042

K2
-10% 0.1578 0.0182 0.0017 0.0011 0.0026 0.0042
+10% 0.1982 0.0223 0.0023 0.0010 0.0026 0.0042

Q
-10% 0.1362 0.0408 0.0020 0.0002 0.0023 0.0042
+10% 0.1852 0.0346 0.0004 0.0015 0.0027 0.0042

R
-10% 0.1769 0.0200 0.0200 0.0011 0.0026 0.0042
+10% 0.1780 0.0203 0.0020 0.0011 0.0026 0.0042
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Figure 2.3: Results of the parameter sensitivity analysis of the charge and the
discharge model

It can be seen that the discharge model is a bit more sensitive to the change
of the parameters as the magnitude of the error is greater in that case. Both
the charge and the discharge models have similar characteristics with respect
to the parameter sensitivity:

� The models are highly sensitive to the constant potential E0.

� The models are less sensitive to K1, K2 and Q.

� The rate of sensitivity is similar in case of K1, K2 and Q.
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� The sensitivity of the models increases as the temperature decreases.

� At ambient temperatures greater than the nominal temperature, the ef-
fect of changing the parameters is really small (except for E0), especially
in case of the discharge model.

� The change of the internal resistance R at di�erent temperatures has no
e�ect on the models, as the errors related to the 10% change are almost
the same. In these cases only the temperature a�ects the models.

Based on these statements the parameters E0, K1, K2 and Q will be estimated
while R is �xed to its nominal value.

2.3.2 Input signal

The pseudo-random binary sequence (PRBS) is chosen as the input signal
for the parameter estimation. It is a widely used signal in the �eld of parameter
estimation [60] because it is easy to generate and provides su�cient excitation.
The PRBS has only two values in between the signal changes randomly. The
two parameters of the PRBS are the range (the upper and lower level of the
signal) and the frequency of the change that should be chosen considering the
system dynamics. In our case the clock frequency of the PRBS was chosen to
be 5 times the time constant of the system, the latter can be approximately
determined from the step response of system (see in Section 2.3.1).

An other important factor of our parameter estimation method is the am-
bient temperature. The experiments were carried out at di�erent ambient
temperatures that were hold constant during an experiment.

The minimum and maximum ambient temperatures of the experiments
were chosen according to the recommended operating temperatures of the ex-
amined battery. Then this range was evenly divided to get the list of ambient
temperatures at which the experiments were carried out. For example if the
operating temperature range of the battery is [0◦C, 50◦C] then the experimen-
tal ambient temperatures can be 0◦C, 5◦C, 10◦C, . . . , 50◦C.

A method for optimal design of experiments was developed in our previ-
ous work [56]. In that paper two di�erent input signals (CCCV (Constant
Current Constant Voltage) and PRBS charge/discharge pro�les) were investi-
gated in order to maximize the available information about the parameters to
be estimated.

2.3.3 Simulation setup

The parameter estimation methods were implemented and tested by sim-
ulation experiments in Matlab. To simulate the heat dissipation of the bat-
tery during charge/discharge, the battery model in Simulink/Simscape/ Elec-
trical/Specialized Power Systems/Electric Drives/Extra Sources (an extended
model) was used[57]. This model contains additional energy balance equations
that describe the temperature e�ects of the battery [61]. This means that the
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cell temperature and the heating/cooling e�ects of the battery (including self-
heating) during the operation can be simulated. It is important to note that
the model used for parameter estimation Eq. (2.1-2.11) is much more simple,
as it does not contain the internal energy balance equation. The advantage
of the Simulink model is that the battery cell temperature can be directly ex-
tracted from the model, which can be used as measurement data for the cell
temperature.

The simulated battery was a Samsung INR18650Q-20Q battery with 2000
mAh capacity whose nominal parameters can be seen in Table 2.1 and Table
2.2. The operating temperature range of the battery from the datasheet is
[0◦C, 50◦C] for charge and [−20◦C, 75◦C] for discharge. Based on these values,
the ambient temperature was set to be between 0 − 50◦C for the simulation.
The charge and the discharge of the battery was simulated at 11 di�erent
ambient temperatures with PRBS input signal between 1-99% state of charge.
The simulation setup in case of charge and discharge can be seen below.

Simulation setup for charge:

� PRBS input: Imin = −2A, Imax = −0.5A, Ts = 160s;

� initial values: q(t0) = 0.99Q, i∗(t0) = 0, T = Ta;

� ambient temperatures: Ta = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50◦C;

� stopping criterion: q(t) = 0.

Simulation setup for discharge:

� PRBS input: Imin = 0.5A, Imax = 2A, Ts = 160s;

� initial values: q(t0) = 0.01Q, i∗(t0) = 0, T = Ta;

� ambient temperatures: Ta = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50◦C;

� stopping criterion: q(t) = 0.99Q.

All the simulations were performed on a PC (Intel i5 CPU with 4GB RAM).

2.4 Methods for parameter estimation

The proposed parameter estimation method consists of two steps. At �rst
the battery is charged or discharged at di�erent constant ambient tempera-
tures. At each temperature the parameters E0, K1, K2 and Q of the battery
are estimated. In the second step the temperature coe�cients of these param-
eters are estimated using the estimated values of the parameters at di�erent
temperatures.
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2.4.1 Estimation of the battery parameters

The �rst step of the proposed method is the estimation of the battery pa-
rameters at di�erent constant ambient temperatures to see how these parame-
ters change with the temperature. The inputs of the parameter estimation are
the battery current and voltage at di�erent temperatures during a full charge
or discharge process. The result of the estimation is a set of battery parameters
at di�erent temperatures.

It can be seen from Eqs. (2.1-2.6) that the battery model has a nonlinear
output equation and four parameters to be estimated. The internal resistance
R was �xed to its nominal value because the sensitivity analysis (Section 2.3.1)
showed that the model is not sensitive to the parameter R. To estimate the
parameters of the model a suitable nonlinear parameter estimation method
should be chosen. In this work the nonlinear least-squares method was used
for parameter estimation.

Nonlinear parameter estimation problems are usually solved as nonlinear
optimization problems where a suitable cost function should be minimized. In
our case the cost function is the sum of squared deviation between the model
and the measurement data at every time instance (see Eq. (2.13) below).

W (θ) =
N∑
k=1

(
v̂Xb (k)− vXb (θ; k)

)2
(2.13)

X ∈ {ch; dch}

where v̂Xb (k) = v̂Xb (k Ts) is the measured value of the battery voltage at the
k-th sample, vXb (θ; k) is the output of the model (Eq. (2.4) or Eq. (2.6))
with the parameter vector θ = [E0, K1, K2, Q], and N is the total number of
samples.

As all of the parameters to be estimated have physical meaning, the range
and scale of the parameter values are usually known in advance. Therefore
upper and lower bounds for the parameters can be de�ned that is useful to limit
the searching space of the optimization. As a result, a constrained nonlinear
optimization problem should be solved. From the potential algorithms the
Trust Region Re�ective algorithm [62] was chosen in our work.

2.4.2 Estimation of the temperature dependency of the

parameters

The second step of the parameter estimation method is the estimation of the
reference values and the temperature dependency coe�cients of the parameters.
The inputs of this parameter estimation problem are the estimated parameters
at di�erent temperatures from the previous step (Section 2.4.1). It can be seen
from the temperature dependent battery model, that the parameters can be
divided into two groups based on the type of their temperature dependency:

� Parameters with linear temperature dependency: E0, Q;
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� Parameters with nonlinear (exponential) temperature dependency: K1,
K2.

Moreover it can be seen from Eqs. (2.7-2.11) that some of the parameters
(Q) depend on the ambient temperature and others (E0, K1, K2) depend on
the battery cell temperature. The problem is that the cell temperature is
not always measurable. In that case when the temperature is measured, the
temperature sensor is usually placed on the surface of the battery. In addi-
tion the charge/discharge current a�ects the heat generation of the battery,
too. Charging/discharging the battery at low C rates (0.5 C - 1 C rates) we
found, that the battery temperature does not increase signi�cantly (2◦C). The
rapid increase in the battery cell temperature can be experienced when charg-
ing/disharging the battery with high C rates (5-25 C) [63]. To overcome these
issues the following additional assumptions were made:

� The charge/discharge current of the battery is maximum 1 C (2 A), there-
fore the cell temperature does not change a lot during charge/discharge
(maximum 2◦C).

� The cell temperature is substituted by the average surface temperature
during charge/discharge.

� Initially the cell temperature and the ambient temperature are equal
(T (0) = Ta).

� The surface temperature of the battery is measured.

With the above assumptions the temperature coe�cients of the parameters
can be estimated. The coe�cients to be estimated are:

� E0|Tref and ∂E/∂T for the temperature dependency of E0;

� Q|Tref and ∆Q/∆T for the temperature dependency of Q;

� K1|Tref and α1 for the temperature dependency of K1;

� K2|Tref and α2 for the temperature dependency of K2.

The coe�cients of E0(T ) and Q(Ta) can be estimated with the simple linear
least squares method because equations Eq. (2.11) and (2.10) are linear.

The coe�cients of K1(T ) and K2(T ) can also be estimated by the least
squares method by transforming the equations and their dependent variables.

2.5 Simulation results

In this section the results of the simulation based experiments are intro-
duced and analyzed. In Section 2.5.1 the results of the estimation of the battery
parameters at 11 di�erent temperatures are presented. Then in Section 2.5.2
the results of the estimation of the temperature dependency of the battery
parameters are described.
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2.5.1 Estimated battery parameters

The battery parameters at di�erent temperatures were estimated using
the lsqnonlin function from Matlab Optimization Toolbox [64]. This function
needs at least two input arguments: a function to minimize and the vector of
initial parameter values. Additional input arguments such as lower and upper
bounds of the parameters and other options can be also de�ned. In our case
the following bounds were de�ned for the parameters:

0 ≤ E0 ≤ 5,
0 ≤ Q ≤ 3,
0 ≤ K1 ≤ 0.1,
0 ≤ K2 ≤ 0.1.

The function to minimize is the cost function in Eq. (2.13) and the parameters
to be estimated are θ = [E0, Q,K1, K2]T . The initial values of the parameters
were set to the nominal parameter values (see in Table 2.1).

The results of the parameter estimation can be seen in Table 2.5 and Table
2.6. The results are also depicted in Figures 2.4 -2.7 with black dots. It can be
noticed in Figure 2.5a that above 35 ◦C (T − Tref = 10) the battery reached
its maximum capacity during charge.

Table 2.5: Estimated battery parameters at di�erent temperatures during
charge.

Ta [◦C] 0 5 10 15 20 25 30 35 40 45 50
E0 [V ] 3.9175 3.9154 3.9190 3.9259 3.9343 3.9436 3.9532 3.9631 3.9651 3.9783 3.9893
Q [Ah] 1.6001 1.6800 1.7599 1.8399 1.9201 2.0004 2.0811 2.1623 2.1576 2.1579 2.1582
K1 [Ω] 0.0169 0.0099 0.0059 0.0036 0.0023 0.0015 0.0010 0.0007 0.0012 0.0008 0.0007
K2 [V/Ah] 0.0246 0.0140 0.0082 0.0049 0.0030 0.0019 0.0012 0.0008 0.0000 0.0000 0.0000

Table 2.6: Estimated battery parameters at di�erent temperatures during dis-
charge.

Ta [◦C] 0 5 10 15 20 25 30 35 40 45 50
E0 [V ] 3.8877 3.8980 3.9083 3.9185 3.9286 3.9388 3.9490 3.9591 3.9693 3.9795 3.9884
Q [Ah] 1.6010 1.6801 1.7599 1.8393 1.9188 1.9980 2.0764 2.1540 2.2300 2.3035 2.1583
K1 [Ω] 0.0239 0.0138 0.0081 0.0048 0.0029 0.0018 0.0011 0.0007 0.0004 0.0003 0.0000
K2 [V/Ah] 0.0243 0.0139 0.0081 0.0048 0.0029 0.0018 0.0011 0.0007 0.0005 0.0003 0.0000
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Figure 2.6: Estimation of the temperature dependency of K1

−2 0 2

·10−4

0

1

2

3

·10−2

1
T −

1
Tref

[
1
K

]

K
2

[V
/A

h
]

K2(T ) charge

estimated K2

�tted curve

(a) The �tted thermal characteristics of
parameter K2(T ) from the charge data.

−2 0 2

·10−4

0

1

2

·10−2

1
T −

1
Tref

[
1
K

]

K
2

[V
/A

h
]

K2(T ) discharge

estimated K2

�tted curve

(b) The �tted thermal characteristics
of parameter K2(T ) from the discharge
data.

Figure 2.7: Estimation of the temperature dependency of K2

It can be seen from the estimated values that they are in good agree-
ment with the nominal parameters of the investigated battery type, and co-
incide well with the parameters in the detailed dynamic battery model in
Simulink/Simscape/Electrical/Specialized Power Systems/Electric Drives/Extra
Sources.

The accuracy of the parameter estimation can be characterized by the co-
variance matrix of the estimation. In our results the elements of the covariance
matrices are really small (with orders between 10−8 and 10−12) in both charge
and discharge cases. This means that the parameter estimation is very accu-
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rate. Note, that the experimental data were obtained from the simulation of
the model equations of the extended model with energy balance equation and
not from real measurements, therefore no external noise or modelling errors
are included.

The uncertainty of the parameters can be characterized by the con�dence
region of the estimation. The con�dence region of the estimated parameters
can be approximated by the 1.05 ·Wmin contour line of the cost function W .
In order to analyze and illustrate the con�dence regions, the parameters were
analyzed in pairs in such a way that two of the parameters were �xed to
their estimated values then the value of the cost function was computed while
changing the other two parameter values around their estimated value. The
parameter pairs were chosen to be E0, Q and K1, K2. Some examples of the
con�dence regions in case of charge and discharge at di�erent temperatures are
illustrated on Figure 2.8 and Figure 2.9. The order of magnitude on the X and
Y axes are the same in Figures 2.8a-2.8d and Figures 2.9a-2.9c respectively.
In Figure 2.9d the axes are magni�ed for better visibility. Comparing the
con�dence regions at di�erent temperatures and operating modes the following
conclusions can be drawn:

� In case of both charge-discharge, the con�dence of Q increases while
E0 decreases as the temperature rises (see Figure 2.8a-2.8b, and Figure
2.8c-2.8d).

� E0 and Q are uncorrelated because the axes of the ellipse are almost
parallel with the X and Y axes.

� In case of charge, the con�dence region of K1, K2 becomes smaller as
the temperature rises (see Figure 2.9a and Figure 2.9b).

� A linear relationship between K1 and K2 can be assumed in case of
discharge (see Figure 2.9c and Figure 2.9d).

Looking at Figures 2.4-2.5 it is apparent that the estimated values of E0 and
Q are more uncertain in case of charge. This phenomenon can be explained by
the con�dence regions depicted in Figure 2.8. It can be seen that the con�dence
region is wider in case of charge, hence the uncertainty of the parameters are
greater. It can be also noticed that the shape of the con�dence region changes
with temperature. At low temperatures the con�dence of the estimated Q
is smaller than the con�dence of E0. On the contrary, at high temperatures
the con�dence of Q becomes greater while the con�dence of E0 decreases.
That is why we can better estimate Q at low temperatures and E0 at high
temperatures. Additionally the estimates are results of nonlinear optimization
which is a�ected by the initial values, stopping criteria, and the shape of the
cost function.
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(a) Charge at 5◦C (b) Charge at 30◦C

(c) Discharge at 5◦C (d) Discharge at 30◦C

Figure 2.8: Con�dence regions of the estimated parameters E0, Q during
charge/discharge at di�erent temperatures. X axis: E0, Y axis: Q, X axis
range: 1 · 10−3, Y axis range: 3.5 · 10−4, −: con�dence region, ×: estimated
parameter value.
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(a) Charge at 5◦C (b) Charge at 30◦C

(c) Discharge at 5◦C (d) Discharge at 30◦C

Figure 2.9: Con�dence regions of the estimated parameters K1, K2 during
charge/discharge at di�erent temperatures. X axis: K1, Y axis: K2, X axis
range: 1.25 · 10−4, Y axis range: 7 · 10−5, −: con�dence region, ×: estimated
parameter value.
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2.5.2 Estimated temperature dependent parameters

Having estimated the battery parameters at di�erent ambient tempera-
tures, the temperature dependency of the parameters was estimated with the
help of the Matlab Curve Fitting Toolbox [65]. Each parameter has two co-
e�cients that describe the temperature dependency: the parameter value at
the reference temperature and the temperature coe�cient. The independent
variables of the four di�erent parameter estimation tasks are the following:

� T − Tref , in case of E0(T );

� Ta − Tref , in case of Q(Ta);

�
1
T
− 1

Tref
in case of K1(T ) and K2(T ).

As it was mentioned in Section 2.4.2, the cell temperature T was substituted
by the average surface temperature of the battery. The dependent variables
are the estimated parameter values of the previous step that can be seen in
Table 2.5 and Table 2.6.

The coe�cients of the temperature dependency were estimated during both
charge and discharge. The results of the estimation can be seen in Tables
2.7 and Table 2.8. The 95% con�dence bounds shows the uncertainty of the
estimated coe�cients.

It can be seen that the estimated temperature dependency of E0 and Q is
close to the nominal values in both charge and discharge cases. The estimation
ofQ|Tref and ∆Q/∆T is better in case of charge because the di�erences between
the nominal and estimated parameter are smaller. However the estimation of
the other parameters is better in case of discharge.

Table 2.7: Estimated parameters of the temperature dependency of the battery
parameters during charge.

Parameter Nominal value Estimated value 95% con�dence bounds Unit
E0|Tref 3.9388 3.943 (3.94, 3.946) V
∂E/∂T 2.0 · 10−3 1.518 · 10−3 (1.314 ·10−3, 1.723 ·10−3) V/K
Q|Tref 2.0 2.001 (2.0, 2.001) Ah

∆Q/∆T 1.6 · 10−2 1.605 · 10−2 (1.601 ·10−2, 1.610·10−2) Ah/K
K1|Tref 1.8 · 10−3 2.735 · 10−3 (1.866·10−3, 3.604·10−3) Ω
α1 8415 5989 (4684, 7294) K

K2|Tref 1.8 · 10−3 1.545 · 10−3 (1.866·10−3, 1.987·10−3) V/Ah
α2 8415 9785 (8706, 10860) K
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Table 2.8: Estimated parameters of the temperature dependency of the battery
parameters during discharge.

Parameter Nominal value Estimated value 95% con�dence bounds Unit
E0|Tref 3.9388 3.939 (3.938, 3.939) V
∂E/∂T 2.0 · 10−3 2.025 · 10−3 (2.009·10−3, 2.041·10−3) V/K
Q|Tref 2.0 1.995 (1.993, 1.997) Ah

∆Q/∆T 1.6 · 10−2 1.568 · 10−2 (1.554·10−2, 1.581 ·10−2) Ah/K
K1|Tref 1.8 · 10−3 1.588 · 10−3 (1.418·10−3, 1.757·10−3) Ω
α1 8415 8908 (8528, 9289) K

K2|Tref 1.8 · 10−3 1.661 · 10−3 (1.542·10−3, 1.781·10−3) V/Ah
α2 8415 8793 (8538, 9048) K

The �tted curves of the temperature dependency can be seen in Figures
2.4-2.7 with red line.

The goodness of the �t was characterized by the r2 value that is computed
by:

r2 = 1−
∑

i(ŷi − yi)2∑
i(ŷi − ȳ)2

where ŷ is the measured data, y is the model predicted value, and ȳ is the
mean of the measured data. The results can be seen in Table 2.9. It can be
seen that the curve �tting is a bit more accurate in case of discharge, except
for Q.

Table 2.9: Goodness of curve �tting characterized by the r2 value.

Parameter E0 Q K1 K2

r2 (charge) 0.9691 1 0.9656 0.9925
r2 (discharge) 0.9999 0.9999 0.9995 0.9988

2.6 Discussion and future work

In practice the presented method can be used in battery management sys-
tems for example in automotive applications. The estimation of battery age
and remaining life, the available capacity and state of charge at di�erent tem-
peratures are possible �elds of use.

Further research directions include the use of this parameter estimation
method for determining the state of health of the battery, and to estimate the
temperature dependent state of charge during its life cycle. This is possible
through a suitable experiment policy that estimates the battery capacity from
well chosen charging operations under di�erent thermal conditions. Therefore,
extensive climate chamber experiments will be performed to validate the results
the presented work.
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Simulations will also be carried out to analyze the e�ect of temperature on
the aging of the battery. Matlab Simulink provides a battery model with both
temperature and aging e�ects, which can help to develop a proper diagnostic
method. Simulations with di�erent battery parameters can also be used to
demonstrate the capabilities of the diagnostic method.

The e�ect of rapid charge/discharge can also be part of further research.
In that case the temperature of the battery increases signi�cantly, therefore
the assumptions about the battery temperature are no longer valid. The high
variation of the cell temperature may a�ect the estimated values of the pa-
rameters, therefore the results will not be reliable. In that case the parameter
estimation method should be modi�ed.

2.7 Summary

An optimization based lithium-ion battery parameter estimation method
has been proposed in this chapter that is capable of describing the thermal
behaviour of batteries. The base of the method is a nonlinear charge and
discharge model which describes the temperature dependency as a parametric
function of temperature as an external variable.

Parameter sensitivity analysis has been carried out on the model to �nd
the parameters to be estimated, that are the electrode potential, the battery
capacity, and two polarization constants. The model output was found to be
non-sensitive to the internal resistance, thus it was not estimated.

The proposed parameter estimation method contains two steps. At �rst
the parameters E0, Q, K1, K2 are estimated from measured data of charg-
ing/discharging at di�erent constant ambient temperatures. In the second
step the temperature coe�cients of these parameters are estimated.

The proposed parameter estimation method is veri�ed by a set of simu-
lation experiments on an electro-thermal battery model capable of describing
the energy balance (i.e. the thermal behaviour) of the battery. The temper-
ature dependent parameter characteristics obtained by the proposed method
can be used as a way of determining the key battery parameters at a given
temperature. The novelty of the method is that the temperature dependent
parameter characteristics can be estimated from charging pro�les by the pro-
posed method, that enables to use it in practice for determining the key battery
parameters at a given temperature.
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Chapter 3

Model based diagnosis of electrical

networks

The demand of electrical energy is continuously increasing all over the
world. Electrical energy is generated by power plants or renewable energy
sources and is transmitted to the consumers through distribution stations and
power lines. During the transmission there are technical losses, which reduce
the e�ciency of the power delivery. They come from dissipation in the conduc-
tors, transmission lines, substation transformers and magnetic losses in trans-
formers. The amount of technical losses is about 20% of the total transmitted
energy.

Besides the technical losses there may be non-technical losses (NTLs) too.
These are unnecessary losses which are not expected and cannot be planned
ahead. The NTLs are usually related to energy theft and fraudulent consumer
behaviour. Electricity theft has been a widespread and major issue for many
years and various techniques of energy theft are present from unregistered users
to hacking the metering device [66]. NTLs caused by companies in the US were
estimated between 0.5% and 3.5% of annual gross revenues. The NTLs may
be more than 15% of the generated power in some other countries [67].

Following this unwanted phenomena, several methods for non-technical loss
detection appeared in the literature. It can be stated that there is no golden
rule for detecting electricity theft but there are several di�erent approaches
[68]. The papers [69] and [70] give very good review of the most frequently
used methods in the �eld.

The majority of the solutions available in the literature are based on the
analysis of consumption data using some statistical or machine learning meth-
ods. For example, the authors of [71] use a linear regression based procedure
that not only detects electricity theft but the defects of the smart meters can
also be detected. A probabilistic neural network based classi�cation approach
is presented in [72], where the Levenberg-Marquardt method is used for train-
ing the network. A support vector machine based solution is given in the work
[73], where a parallel computing architecture was proposed in order to enhance
computation.

Another direction of non-technical loss detection is based on the network
topology, such network-oriented methods use measurement data from grid sen-
sors and smart meters [74]. In [75] authors proposed a Kalman �lter state
estimator to �nd currents and biases in a microgrid network. The currents
and biases are estimated separately with two di�erent �lters. If the estimated
bias of a customer is larger than the prede�ned threshold then this user com-
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mitted fraud. The authors of [76] suggest a probabilistic power �ow approach
for NTL detection. The output of the algorithm is a probability distribution
of NTLs in the subnetwork. A combination of the above mentioned statistical
and network oriented approaches has appeared in a recent paper [77], where
the past consumption data were used as nominal data.

Almost all of the above mentioned approaches of non-technical loss de-
tection and localization belong to the class of model-based fault detection and
isolation, see e.g. in [8]. In this case the model of electrical networks are needed,
where both of their dynamic and steady-state models are used for diagnostic
purposes of di�erent kind.

In practical cases, however, one needs to consider the e�ect of uncertainties
and to cope with the situation when relatively rare measurements are avail-
able with possible measurement errors, and the available measurements are
not uniformly placed over the network. The uncertainties can be handled ei-
ther by using stochastic models or by considering interval-valued variables in
the model. In my previous work a Colored Petri Net model, that is a dy-
namic discrete event model, of electrical networks was developed [78]. Here
interval-valued variables turned out to be good for modelling the parameter
uncertainties. Moreover it was found, that a static model may be enough for
diagnosing non-technical losses based on measured data in the simplest case.

Decomposition o�ers the potential to reduce the complexity of model-based
optimization, prediction, control and diagnosis by accounting for the structure
and sparsity of the describing model. Motivated by the fact that the energy
systems, including electrical networks, are most often large scale complicated
systems, a rich and powerful collection of decomposition methods are avail-
able for di�erent purposes. The recent paper [79] proposes a decomposition of
electric power network based on its algebraic model for planning purposes. In-
telligent partitioning methods, that use heuristics besides of traditional math-
ematical methods are also available for smart grids [80]. Powerful graph-based
decomposition methods for model structures are also reported recently, see e.g.
[81], [82].

The aim of the work described in this Chapter was to develop a diagnos-
tic method for non-technical loss detection and localization. The conclusion
of our previous work, is that a static linear model is enough for the diagno-
sis. It was used in this work too, but in a di�erent representation form. The
approach followed belongs to the network-oriented class and it is based on an-
alyzing the di�erences between the measured and model-predicted "nominal"
voltages, i.e. an analytical redundancy based method is used for utilizing the
capabilities of smart meters. The novelty of the proposed method is that struc-
tural decomposition of the network is performed before the diagnosis. Utilizing
the network structure, the diagnosis can be performed in parallel on smaller
subnetworks. A novel fault isolation method is proposed that computes the
illegal currents of successive nodes and analyzes the change in their value. The
proposed diagnostic algorithm takes into account the uncertainty in the model
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parameters together with the measurement uncertainties to make the approach
applicable in real-world cases. Another advantage of the diagnostic method is
that, it is able to localize multiple faults in one step and approximate the fault
magnitude.

3.1 Electrical network models, basic assumptions

Electrical networks are composed of several electrical components that are
connected to each other. They can be modelled by each of the general model
types (static/dynamic, linear/nonlinear, discrete/continuous, deterministic/
non-deterministic) with di�erent capabilities. The classical models of electri-
cal networks are in the form of linear and/or nonlinear ordinary di�erential
equations in the dynamic, and of linear and/or nonlinear algebraic equations
in the static case (see e.g. in [83]�[85]). The e�ect of the model type on the
performance of the fault detection and isolation methods is also thoroughly
analyzed in the literature, see e.g. [86]�[89].

As the electrical network is a set of connected elements, graph theory can
be also used to create electrical network models. Graph models have the
advantage that they provide a graphical representation of the network structure
and graph algorithms can be applied to them [90]. In this thesis a simple static
linear model of the electrical network with directed graph representation is
used. The basic notions and assumptions about the model applied for detection
and isolation of non-technical losses are described in this section.

3.1.1 The model of the electrical network

The modelling approach of the electrical network used for model-based
diagnosis is described in this section by giving the modelling assumptions to-
gether with the model elements and their connections. The applied notations
are collected in Section 3.1.4.

Modelling assumptions

The role of electrical grids is to transfer the generated energy to the con-
sumers. The transmission is done in several stages: from power supplies to
distribution stations and then to customers. In this work the low voltage grid
of one transformer area is considered with a radius of 1-1.5 km. A typical ex-
ample of such transformer area is a transformer station, which supplies energy
to the customers in a few streets of a town.

During the work the following basic assumptions are made:

1. The model covers one transformer area that is composed of transformers,
loads (customers) and transmission lines.

2. A simple static linear model of the electrical network is used. The known
model parameters are the resistances of the transmission lines.
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3. The current and the voltage of the transformer is measured.

4. Smart meters are installed at every load to measure the current, voltage
and the consumed power.

5. There may be one or more loads in the network that have fraud meters
(for more information about fraud meters see Section 3.1.2).

6. The resistances of the wires between the loads and the junction points are
usually much smaller than the resistance of the main transmission line.
Therefore resistances of the wires between the loads and the junction
points are neglected.

7. The model uncertainties come from the resistances of the wires in the
main transmission lines.

8. The investigated grid is one point grounded.

Model elements and their connections

The investigated electrical networks are composed of the following basic
elements:

� Feeders represent the transformers in the network.

� Loads represent the registered users (consumers) in the network.

� Wires represent the transmission lines between the feeders and the loads.

The network is represented by a directed graph. The nodes of the graph are
the feeders, loads and the junction points of the wires. The edges between the
nodes represent the wires of the network. The edges are always between loads
and junction points, junction points and loads or between two junction points.
There are no direct edges between two loads or between loads and feeders. The
direction of the edges represent the direction of the current �ow.

The nodes and edges have di�erent attributes attached to them:

� Feeder: measured current and voltage of the feeder (IF , UF );

� Load: measured current and voltage of the load (Ii, Ui);

� Junction point: computed voltage of the node (Uj);

� Wire: resistance of the wire, computed current of the wire (Rwi
, Iwi

).

The minimal required data for computing all of the current and voltage
values of the network are the currents and voltages of the feeders, the currents
of loads and the resistances of the wires. The resistances of the wires are
not measured but they can be computed knowing the diameter, length and
resistivity, which are given by the utility provider. The problem is that these
values are temperature dependent:
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R = Rref (1 + α(T − Tref )), (3.1)

where R is the resistance of the wire at temperature T , Rref is the resistance
of the wire at reference temperature Tref and α is the temperature coe�cient
for the transmission line material. The temperature coe�cient for copper is
0.004041, for aluminium is 0.004308 at 20 ◦C, see e.g. [91]. Because the tem-
perature of the transmission line is varying the computed resistance depends
on the temperature, too. To handle this uncertainty caused by the tempera-
ture dependency, a percentage based parameter uncertainty of the resistances
was introduced. The typical value of this parameter uncertainty is about 2
% if the error of temperature estimation of the transmission line is 5◦C.

3.1.2 Technical and non-technical losses

There are several types of non-technical losses that usually originated from
improper usage. According to [70], the non-technical losses can be classi�ed
as follows.

� Before meter: tapping of the transmission lines;

� Meter: manipulating the meter in order to lower the registered consump-
tion (e.g. the meter is bypassed, disconnected or reversed);

� Billing: losses due to the inaccurate operation of the billing system,
unpaid bills, etc.

In this work it is assumed that the examined non-technical losses belong to
the second category (i.e. the loss is at the meter) including the following three
types of NTLs:

� fraud with the meter (reversing or hacking the meter hardware, software
or calibration);

� bypassing the meter;

� inaccurate measurement.

The users in the network may have a trusty or a fraud meter. In this paper
the terminology of legal and illegal loads are used to distinguish them.

� The legal loads have a registered and certi�ed meter. This meter shows
the real energy consumption of the user.

� The illegal loads have a fraud meter, i.e. the meter is reversed, bypassed,
or manipulated in such a way that the measured energy consumption is
less than the real consumption. The non-technical losses in the network
are resulted by the illegal loads.

� The illegal current is the extra current of the load that is not measured.

Note that all users are registered ones and unregistered users are not considered
in this work.
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3.1.3 Measurements

Measurement data is essential for the diagnosis of the network. In this
work the measured points are located at the loads and the feeders of the net-
work. The conventional electricity meters measure only the electrical energy
consumption. However, nowadays the smart meters become more common
both in residential and industrial environment. Smart meters can measure
real-time consumption data, active and reactive power and the average volt-
age and current of the customers over the measurement time intervals. The
data are recorded at every 15 minutes and can be sent automatically to the
electricity supplier. This sampling time is much greater than the time period
of the transient events, which are in the milliseconds range. Therefore a static
model is su�cient enough to compute the network variables. In the proposed
diagnostic method it is assumed that every load and feeder is equipped with a
smart meter, which measures the current and voltage of the load.

Any measurement always has a measurement error, which cannot be ig-
nored in real applications. The measurement error of smart meters usually
falls between 0.2% and 2%. Typical values of the measurement error of a
smart meter are:

� Voltage: 0.2% (50-830 VAC)

� Current: 0.2 % (0.1-1.1 I nominal)

� Power: 0.5% Full Scale

For more details about smart meter accuracy see standard EN 62053:2003.

3.1.4 Notations

Variables and parameters: Indices:

U nominal voltage Fi
ith feeder

Ũ measured voltage i ith load
∆U voltage di�erence wi

ith wire
I nominal current ki kth branch ith load
Ĩ measured current wki

kth branch ith wire
R resistance illi ith illegal load
εI current measurement error
εU voltage measurement error
εR uncertainty of resistance
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3.2 Decomposition of electrical networks

In this section the di�erent structural layouts of electrical networks and
their structural decompositions are introduced.

The decomposition of the network is a crucial part of the proposed diagnosis
method. The objective is to decompose the network into subnetworks with
basic one feeder layouts. During the decomposition it is determined which
loads belong to the same subnetwork then the NTLs are detected and localized
within these subnetworks. The advantage of the decomposition is that the
diagnosis can be performed in parallel on the subnetworks, that increase the
e�ciency of the method.

The four basic layouts are introduced in Section 3.2.1. Then the decom-
position algorithms for one and two feeder networks are introduced in Section
3.2.2. Finally the decomposition methods are illustrated on simple examples
in Section 3.2.3. The notations summarized in Section 3.1.4 are used in the
description.

3.2.1 Basic structures of electrical networks

There are four basic structural layouts of low voltage electrical networks
that are presented below.

One feeder layout

The simplest structure is the one feeder layout. It is composed of one feeder
and several loads connected to the feeder with one common transmission line.
The loads are supplied with electrical energy from the feeder through that
common transmission line. The structure of the network can be seen in Figure
3.1. The resistances and the currents of the ith wire of the transmission line
are denoted by Rwi

and Iwi
, while the jth load is characterized by its current

Ij. The voltage and current of the feeder is denoted by UF and IF .

I1 I2 I3 IN

IF , UF Iw1

Rw1

Iw2

Rw2

Iw3

Rw3

IwN

RwN

Figure 3.1: One feeder layout

Radial feeder layout

The radial feeder layout is a bit more di�cult than the one feeder layout. It
has one feeding point too, but there are branches on the main transmission line
with one or more loads on the branches. The loads are placed in a line similarly
to the one feeder layout. The directions of the edges are clearly de�ned as the
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current �ows from the feeder to the loads. The schematic drawing of a radial
feeder network can be seen in Figure 3.2, where the branches are indexed
starting from the feeder, and the ith wire of the transmission line of branch k
has the index identi�er wki, e.g. its resistance is Rwki

.

IF , UF

I11

I1N1

I21

I2N2

I31

I3N3

IM1

IMNm

Iw1

Rw1

Iw2

Rw2

Iw3

Rw3

IwM

RwMIw11

Iw1N1

Iw21

Iw2N2

Iw31

Iw3N3

IwM1

IwMNm

Rw11

Rw1N1

Rw21

Rw2N2

Rw31

Rw3N3

RwM1

RwMNm

Figure 3.2: Radial feeder layout

Two feeder layout

Sometimes one feeder is not enough to provide enough energy to a given
area or the energy supplier would like to build one transmission line with
redundant feeder point. In that case a new feeder can be added to the network
to provide the required energy. This structure is called the two feeder layout.
In this layout there are loads that are fed by either the �rst or the second
feeder and there may be one load that is fed by both feeders. The directions
of the edges are not clearly de�ned because the current direction depends on
the magnitude of the load currents. Therefore the directions of the edges can
be determined in parallel with the computation of the network variables. The
simplest form of this layout is the extension of the one feeder layout that can
be seen in Figure 3.3. Two feeders give safety service for the customers because
there is no dropout with one cut-o� point. Of course the radial network can
also be extended into a two feeder layout form by placing a second feeder to
the other end of the main transmission line resulting in a two feeder radial
layout.

Loop feeder layout

The last basic type of network structures is the loop feeder layout. In this
layout the two ends of the transmission line are connected to the same feeder.
This kind of network can be seen as a two feeder network where the two feeders
are identical. The simplest structure of the loop feeder layout can be seen in
Figure 3.4. There may be branches in the loop feeder layout too.
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I1 I2 I3 IN

IF1 , UF1 Iw1

Rw1

Iw2

Rw2

Iw3

Rw3

IwN

RwN

IwN+1

RwN+1

IF2 , UF2

Figure 3.3: Two feeder layout

I1 I2 I3

IN−1IN

IF , UF Iw1

Rw1

Iw2

Rw2

Iw3

Rw3

IwN−1

RwN−1

IwN

RwN

IwN+1RwN+1

Figure 3.4: Loop feeder layout

3.2.2 The decomposition method

The diagnosis of a complex system is always a di�cult problem. The faults
can be in di�erent parts of the system and the faults may have e�ects on other
subsystems too. Therefore it is always pro�table to perform the diagnosis in
a distributed way using smaller and simpler subsystems.

Fortunately, the electrical networks with all of the layouts introduced in
Section 3.2.1 can be decomposed into smaller subsystems, with the structure
of one feeder layout.

Decomposition of the one feeder radial network

The radial network is di�erent from the one feeder network in that there
are branches in the transmission line. The branches have one or more loads
connected to them or even new branches may be present. The decomposition
of a radial network is based on cutting o� the branches of the network until
there are no branches in the subsystems. The resulted subsystems are all
networks with one feeder layout. In the directed graph representation of a
radial network there are three types of nodes:

� The node with in-degree of 0 is the feeder.

� The nodes with out-degree of 0 are the loads.

� The nodes with out-degree more than 1 are the junction points.

The decomposed network has two types of subnetworks:

� Multiple load subnetworks where more than one loads belong to a sub-
network.
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� Single load subnetworks where only one load belongs to a subnetwork.

Algorithm 1 Decomposition of the radial network

1: G = (V,A)
2: function DecompRadial(G)
3: L = {v ∈ V : deg+(v) = 0} // load nodes

4: X = {v ∈ V : deg−(v) > 1} // junction nodes

5: J = ∅ // junctions whose successors are also junctions

6: JS = ∅ // successors of nodes in J

7: for all j ∈ J do
8: N = suc(j) // suc(j): successors of j in G

9: if N ⊆ X then
10: J = J ∪ {j}
11: JS = JS ∪N
12: end if
13: end for
14: A′ = A \ (J × JS) // remove edges between J and JS
15: G′ = (V,A′) // preliminary decomposed graph

16: C = {C1 = (VC1 , AC1), . . . , Cn = (VCn , ACn)}
17: // set of connected components of G′

18: i = 1
19: for k = 1 to n do
20: if ∃l ∈ VCk

∩ L then // components with at least one load

21: if ∃x ∈ VCk
∩ J then // components with at least one node in J

22: for ∀l ∈ VCk
∩ L do // separating single load subnetworks

23: Vk = {l, pred(l)} // pred(l): predecessors of l

24: Ak = (pred(l), l)
25: Si = (Vk, Ak) // subgraph of G′ with nodes l and p

26: i = i+ 1
27: end for
28: else // multiple load subnetworks

29: Si = Ck // subgraph of G′ with nodes in Ck
30: i = i+ 1
31: end if
32: end if
33: end for
34: return S
35: end function

The decomposition method is composed of two main steps:

1. Cut the graph along junction points, whose successors are also junction
points to get a preliminary decomposition. Determine the connected
components of the graph.
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2. Analyze the connected components and select the ones that have loads
in them. These components are either real subnetworks or can be de-
composed into single load subnetworks.

The decomposition algorithm of the networks with radial layout can be seen
in Algorithm 1.

At �rst the nodes of the graph are classi�ed as loads (L) or junctions (X).
(Feeders are not considered because they are irrelevant from the decomposition
point of view.) Then two sets are initialized as empty:

� J is the vector of those junction nodes, whose successors are also junc-
tions.

� JS is the vector of successors of J .

Having initiated these sets the appropriate junction nodes are added to the
J and JS. The preliminary decomposition step is based on the idea that the
edges between nodes in J and JS can be deleted from the graph because they
are connecting di�erent subnetworks. After this step the graph falls apart into
disconnected subgraphs, which are connected in themselves. The set of these
components are denoted by C and the connected components are denoted by
Ck = (VCk

, ACk
).

In the second part of the decomposition the Ck components are categorized
according to their nodes. At �rst, the subgraphs that have loads between
their nodes are selected. Then these subgraphs are further analyzed: if the
subgraph has at least one node in the set J , it means that this subgraph
is not fully decomposed. However it may occur only in that case when the
subgraph is composed of single load subnetworks. Therefore this subgraph is
decomposed in such a way that the loads (l) and their predecessors (pred(l))
are added to the ith subnetwork Si. In the other case, when the component
does not contain any nodes in J , then it is already a complete subnetwork and
no further decomposition is needed.

Decomposition of the two feeder network

The decomposition of the two feeder network is di�erent from the one
feeder case, because the directions of the edges are initially not known. The
two feeder network operates in such a way, that half of the network is fed by
the �rst feeder and the other half is fed by the second feeder. The point where
the two parts of the network meet can be determined during the computation
of the wire currents. Therefore the computation of the network variables,
the determination of the edge directions and the decomposition are done in
parallel in case of the two feeder network. Knowing the directions of the edges
the decomposition is quite straightforward. The steps of the decomposition
are the following.
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Algorithm 2 Decomposition of the basic two feeder network

1: G = (V,A)
2: function DecompTwoFeeder(G)
3: F = {v ∈ V : deg(v) = 1 ∧ I = ∅} = {F1, F2} // feeder nodes

4: X = {v ∈ V : deg(v) > 1} = {X1, . . . , XNL
} // junction nodes

5: L = {v ∈ V : deg(v) = 1 ∧ I 6= ∅} = {L1, . . . , LNL
} // load nodes

6: V1 = {F1}, A1 = ∅
7: V2 = {F2}, A2 = ∅
8: IF1 = Iw1 =

∑NL

i=1 Ii −
(∑NL

i=1

(
Ii
∑i

j=1 Rwj

))
/
∑NW

j=1 Rwj

9: // current of the �rst wire

10: i = 1, X0 = F1

11: while Iwi
> 0 do

12: V1 = V1 ∪Xi, Li
13: A1 = A1 ∪ {(Xi−1, Xi), (Xi, Li)}
14: Iwi+1

= Iwi
− Ii

15: i = i+ 1
16: end while
17: if Iwi

= 0 then
18: V2 = V \ V1

19: A2 = (A \ A1) \ (Xi−1, Xi)
20: S1 = (V1, A1)
21: S2 = (V2, A2)
22: elseIwi

< 0
23: I ′i−1 = Ii−1 + Iwi

, I ′′i−1 = −Iwi

24: V1 = (V1 \ {Li−1}) ∪ {L′i−1}, A1 = A1 ∪ {(Xi−1, L
′
i−1)}

25: V2 = (V \ V1 \ {Li−1}) ∪ {Xi−1, L
′′
i−1},

26: A2 = {(F2, XNL
), (XNL

, XNL−1), (XNL
, LNL

), . . . ,
27: (Xi, Xi−1), , (Xi−1, L

′′
i−1)}

28: S1 = (V1, A1)
29: S2 = (V2, A2)
30: end if
31: return S1, S2

32: end function

1. The feeders are those nodes in the graph whose degree is 1 but the current
of the node is not known. The currents of the feeders can be computed
knowing the currents of the loads and the resistances of the wires using
the equations:

IF1 + IF2 =

NL∑
i=1

Ii (3.2)

IF2

NW∑
j=1

Rwj
=

NL∑
i=1

(Ii

i∑
j=1

Rwj
) (3.3)

where NL is the number of loads and NW = NL + 1 is the number of
wires in the network.
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2. Starting from one of the feeders, the currents of the loads are subtracted
one by one from the current of the transmission line. The current of the
ith wire is computed with the equation below.

Iwi
= Iwi−1

− Ii−1

3. At some point a load (Li) is reached where the current becomes less or
equal to zero. If the current is equal to zero than it means that the feeder
cannot fed more loads after this load. Therefore the network should be
cut in half exactly after the load Li.

4. If the load current at Li is less than zero than it means that this load
is fed by both feeders, and the remaining (negative) current is supplied
by the other feeder. In that case the load is also divided into two loads
L′i and L

′′
i with proper parts of the feeder currents. Then the network is

cut in half in such a way that L′i belongs to the �rst subnetwork and L′′i
belongs to the second subnetwork.

5. The two resulting subnetworks are composed of one feeder and the loads
that are fed by that feeder.

If the two feeder network has radial layout then �rst it needed to be con-
verted into a basic two feeder layout network (such as in Figure 3.3) by cutting
out its branches. To do this the loads that are in a branch of the transmission
line are merged together.

In order to determine which branches should be merged the shortest path
between the two feeders need to be found. Then the loads of the branches
whose start node is in the path can be merged together. This merged load
substitutes the whole branch. The current of this load is the sum of the current
of the loads in the branch. The resulting network is a basic two feeder layout
but the loads are the merged loads of the branches. After that the currents
of the feeders can be computed and the two subnetworks can be created using
the method described above.

The algorithm of decomposing basic two feeder networks are given in Al-
gorithm 2.

3.2.3 Simple examples

In this section the decomposition methods of one and two feeder networks
are illustrated on simple examples.

Radial one feeder network

The �rst example is the decomposition of a radial one feeder network. The
directed graph of the example network can be seen in Figure 3.5a. The network
has 10 loads with node labels L1, . . . , L10. Node with label F1 is the feeder.
Nodes labelled by X are the junction points.

Algorithm 1 is used in the following steps.
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1. The algorithm �rst determines the vector of loads and junction points.
In this case L = [L1, L2, L3, L4, L5, L6, L7, L8, L9, L10] and
X = [X1, X2, X3, X4, X5, X6, X7, X8, X9].

2. Then the J and JS sets are created with J = {X1, X2, X6} and JS =
{X2, X9, X3, X5, X7, X8}. The nodes in J are denoted by squares in
Figure 3.5b and the nodes in JS are denoted by big blue circles. Note
that X2 is in both sets that is why it is denoted by a blue square.

3. In the next step the edges that start in in J and end JS are removed
from the graph, namely the edges between nodes (X1, X2), (X1, X9),
(X2, X3), (X2, X5), (X6, X7) and (X6, X8). The removed edges are
denoted by dashed lines in Figure 3.5b.

4. By removing the dashed edges the new G′ graph falls apart into some
connected graphs. The ith element of the set C contains the nodes of
one connected component of G′. In this example there are 7 components
after removing the speci�ed edges:
C1 = (VC1 , AC1), VC1 = {F1, X1}, AC1 = {(F1, X1)}
C2 = (VC2 , AC2), VC2 = {X2}, AC2 = ∅
C3 = (VC3 , AC3), VC3 = {X3, L3, X4, L2, L3},
AC3 = {(X3, L1), (X3, X4), (X4, L2), (X4, L3)}
C4 = (VC4 , AC4), VC4 = {X5, L4, X6}, AC4 = {(X5, L4), (X5, X6)}
C5 = (VC5 , AC5), VC5 = {X7, L5, L6}, AC5 = {(X7, L5), (X7, L6)}
C6 = (VC6 , AC6 , VC6 = X8, L7, L8), AC6 = {(X8, L7), (X8, L8)}
C7 = (VC7 , AC7), VC7 = {X9, L9, L10}, AC7 = {(X9, L9), (X9, L10)}

5. Then we go through these components and examine whether they contain
any loads. The components that do not contain any load, i.e. C1 and
C2, are not considered in the �nal decomposition.

6. The other components are examined whether they can be divided into
smaller components. C3 is already a good one feeder layout network, so
the �rst subnetwork S1 is equal to C3. C4 contains an extra junction
node (X6) that needs to be eliminated from the network to get a one
feeder layout. After that the second subnetwork is S2 = (V2, A2), where
V2 = {X5, L4} and A2 = {(X5, L4)}. The components C5, C6 and C7

are similar to C3 therefore the further subnetworks are S3 = C5, S4 = C6

and S5 = C7.

In conclusion we get the following subnetworks:

� Multiple load subnetworks: S1, S3, S4, S5

� Single load subnetwork: S2

The decomposed network with its subnetworks is displayed in Figure 3.5c.
The single load subnetwork is framed by dotted line and the multiple load
subnetworks are framed by solid line.
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(a) The graph of the simple example net-
work. The transmission lines with nonzero
resistance are highlighted with thick lines.
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(b) The preliminary decomposition of the
network. The edges with dashed lines are
removed.

(c) The �nal decomposition of the network. The multiple load and single load sub-
networks are framed with solid and dotted lines respectively.

Figure 3.5: The radial network of the simple example and its structural de-
composition.
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Two feeder networks

The decomposition of the two feeder layout is illustrated on two examples.

Basic two feeder network The �rst example is a basic two feeder network
without any branches in the transmission line. The network of this example
can be seen in Figure 3.6a. Note that the directions of the edges can also be
determined during the decomposition. The nodes with labels L1, L2, L3, L4
and L5 are the loads and their nominal currents are I1 = 3A, I2 = 7A, I3 =
5A, I4 = 4A, I5 = 8A respectively. The resistances of the wires are Rw1 =
0.1Ω, Rw2 = 0.05Ω, Rw3 = 0.07Ω, Rw4 = 0.03Ω, Rw5 = 0.08Ω, Rw6 = 0.07Ω.

As the �rst step of Algorithm 2, the currents of the feeders are computed
using Equations (3.2)-(3.3): IF1 = 11.77 A and IF2 = 15.23 A.

After that, the load where the network should be cut in half can be de-
termined in the second step. Then in every iteration the �rst subnetwork is
complemented with new nodes and edges and the current of the next wire is
computed:

1. initialization: V1 = {F1}, A1 = ∅, Iw1 = 11.77A, i = 1, X0 = F1

2. V1 = {F1, X1, L1}, A1 = {(F1, X1), (X1, L1)},
Iw2 = Iw1 − I1 = 8.77A, i = 2

3. V1 = {F1, X1, L1, X2, L2}, A1 = {(F1, X1), (X1, L1), (X1, X2), (X2, L2)},
Iw3 = Iw2 − I2 = 1.77A, i = 3

4. V1 = {F1, X1, L1, X2, L2, X3, L3},
A1 = {(F1, X1), (X1, L1), (X1, X2), (X2, L2), (X2, X3), (X3, L3)},
Iw4 = Iw3 − I3 = −3.23A i = 4

It can be seen that Iw4 is less than 0, which means the network should be
cut in half at the third load. This load is fed by both feeders therefore L3 is
substituted by two new nodes L′3 and L

′′
3. The current of L

′
3 is I

′
3 = I3 + Iw4 =

1.77A and the current of L′′3 is I ′′3 = −Iw4 = 3.23A. The nodes and the
connecting arcs are added to the corresponding subnetworks. The result of
the decomposition are two subnetworks:

� S1 = (V1, A1),
V1 = {F1, X1, L1, X2, L2, X3, L

′
3},

A1 = {(F1, X1), (X1, L1), (X1, X2), (X2, L2), (X2, X3), (X3, L
′
3)}

� S2 = (V2, A2),
V2 = {X3, L

′′
3, X4, L4, X5, L5, F2},

A2 = {(F2, X5), (X5, L5), (X5, X4), (X4, X3), (X3, L
′′
3)}

The two resulting subnetworks are displayed in Figure 3.6b and 3.6c.
Note that the point of the cut depends on the network parameters (load

currents and wire resistances).
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F1 X1 X2 X3 X4 X5 F2

L1 L2 L3 L4 L5

(a) The structure of the simple two feeder network

F1 X1 X2 X3 X4 X5 F2

L1 L2 L3' L4 L5

(b) The �rst subnetwork of the example

F1 X1 X2 X3 X4 X5 F2

L1 L2 L3'' L4 L5

(c) The second subnetwork of the example

Figure 3.6: The simple two feeder network and its decomposition
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Figure 3.7: The two feeder radial network example.

Two feeder network with radial layout The second example is a two
feeder network with radial layout that can be seen in Figure 3.7. The di�erence
from the previous example is that there is a branch in the transmission line
at node X6. Two loads (nodes L3 and L4) are connected to this branch with
currents of 2 A and 3 A.

The decomposition in this case means the reduction of the network to a
basic two feeder layout. To do this at �rst the loads L3 and L4 on a branch
should be merged into one load. The current of the merged load is the sum
of the loads, which is 2 + 3 = 5 A in this case. So the loads L3 and L4 are
substituted with a merged load at node X6. The converted network has the
same structure as the two feeder network in the previous example in Figure
3.6a. After that the decomposition into two one feeder networks can be done
in the same way as in the previous example.
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3.3 Diagnosis of electrical networks

In this section the method of detection and isolation of the illegal users in
the network is presented. The fault diagnosis of a system is usually composed
of two tasks [8]. In the detection task the occurrence of a fault is investigated.
If the presence of a faulty behaviour is detected the type of the occurred fault is
determined in the fault isolation task. In the context of diagnosis of electrical
networks with respect to non-technical losses, fault detection and fault isolation
has the following meaning:

� Fault detection means that the presence of non-technical losses is noticed.

� Fault isolation aims to determine the location and the magnitude of the
non-technical losses. If there are more than one non-technical losses then
each location and magnitude should be determined, if possible.

The fault isolation is usually more di�cult than the fault detection. The
presence of multiple faults adds additional di�culties, as one wants to clearly
isolate them. The novelty of the proposed diagnostic method lies in the fact
that structural decomposition of the network is used to locate non-technical
losses. This enables to isolate multiple NTLs in most of the cases.

The proposed fault detection and isolation method is presented as follows.
In Section 3.3.1 the principle of fault detection and fault isolation method is
presented. Because of its special theoretical and practical importance, the
multiple fault case is discussed in a separate section together with the e�ect
of measurement errors.

The fault diagnosis method is slightly di�erent in case of one feeder and
two feeder networks therefore they are presented separately in Section 3.3.2
and Section 3.3.3, respectively. The diagnosis method is illustrated on simple
case studies in both cases.

3.3.1 The principle of the method

It is important that it is assumed that the structure and the model of
the network is known, and the network is decomposed into simple one feeder
structures as introduced in Section 3.2.2. This implies that a preliminary
o�-line step of the diagnosis, a powerful electrical decomposition method is
assumed to be performed, which breaks down the overall network to subsystems
with one feeder layout.

Then the proposed fault diagnosis method is based on comparing the mea-
sured and the nominal values of the network at a given time. The nominal
values of the variables at the current time are either known or can be com-
puted using Kircho�'s laws and Ohm's law. The equations used to compute
the nominal values are collected here:

� Current of the feeder (one feeder network):

IF =

NL∑
i=1

Ii (3.4)

51



3. MODEL BASED DIAGNOSIS OF ELECTRICAL NETWORKS

� Current of the feeders (two feeder network, from Section 3.2.2):

IF1 + IF2 =

NL∑
i=1

Ii

IF2

NW∑
j=1

Rwj
=

NL∑
i=1

(Ii

i∑
j=1

Rwj
)

� Current of the wire:
Iwi

= Iwi−1
− Ii−1 (3.5)

� Voltage of the node:
Ui = Ui−1 − IiRi, (3.6)

where i is the current node, and i− 1 is its predecessor, Ii and Ri is the
current and the resistance of the wire between nodes i− 1 and i.

The measured values come from the smart meters installed at each load of
the network. The proposed fault detection and isolation methods are valid at
the current time of the measurement.

The inputs of the diagnosis are:

� Nominal values: currents of the loads and the feeder(s), voltage of the
feeder, computed voltages of the loads with a given uncertainty.

� Measured values: currents and voltages of the loads and the feeder(s)
with measurement error.

Fault detection

The �rst part of the diagnosis is the fault detection. The fault detection
method works on the whole (not decomposed) network. The measured currents
of the loads and the transformer are used to detect the non-technical losses
in the network. The measured currents of the loads are denoted by Ĩi, i =
1 . . . NL and the measured current of the feeder by ĨF . The error of the current
measurement is given in percentages and denoted by εI . Then the criterion of
detection is that the di�erence between the sum of the measured currents of
the loads and the measured current of the feeder is greater than the maximum
measurement error.

ĨF −
NL∑
i=1

Ĩi > εI(ĨF +

NL∑
i=1

Ĩi) (3.7)

It was assumed in Section 3.1.2 that the fraud meter shows less current than
the real one, while the current of the feeder is equal to the sum of the real
currents of the loads. Therefore the current of the feeder should be greater
than the currents of the loads in that case if a non-technical loss is present.
The maximum measurement error is computed as the sum of the measurement
errors of each meter.
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∆U1 ∆U2 ∆Ui ∆Ui+1 ∆UNL

Iill

Rw1

Iill

Rw2

Iill

Rwi
Rwi+1

RwNL

Iill

Figure 3.8: One illegal load in the network

Fault isolation: Voltage di�erence method

The more di�cult part of the diagnosis is the fault isolation. The proposed
fault isolation method works on the decomposed subnetworks. The proposed
method is based on analyzing the di�erence between the measured and the
nominal voltages of successive loads in the decomposed subnetworks.

The principle of the fault isolation method is that the increased current
of the illegal loads increases the voltage drop of all loads in the network with
respect to the nominal voltages. A similar approach was presented in [77],
where the voltage drop of successive nodes was analyzed by statistical methods
with respect to previous measurement data. The novelty of my proposed
fault isolation method is that the estimated magnitude of the illegal current
can be computed knowing the voltage di�erences and the resistances of the
wires. Instead of analyzing the voltage drop, the change in the computed
illegal current is taken into account.

Let the measured and the nominal voltages of the loads be denoted by
Ũi, i = 1 . . . NL and Ui, i = 1 . . . NL. Then the di�erence between the mea-
sured and the nominal voltages at each load can be computed as

∆Ui = Ũi − Ui, i = 1 . . . NL.

If there is any non-technical loss in the network the voltage di�erence has
negative value at each load.

The method is introduced with the help of a general example, which can
be seen in Figure 3.8.

Let us assume that there are NL loads in the same transmission line, and
let the ith user be an illegal user. Let the extra current of the illegal user be
denoted by Iill, so the real current of the illegal user is Ii + Iill. The voltage
di�erences at the loads are caused by the Iill current. The voltage di�erences
before the illegal load can be expressed using the illegal current:

∆U1 = −IillRw1

∆U2 = −Iill(Rw1 +Rw2)

...

∆Ui = −Iill(Rw1 + . . .+Rwi
)
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The voltage di�erences of the successive loads after the illegal load are
equal, because Iill = 0 on that section of the transmission line.

∆Ui = ∆Ui+1 = . . . = ∆UNL
(3.8)

The voltage di�erences can be expressed using the voltage di�erence of the
previous load:

∆U2 = ∆U1 − IillRw2

...

∆Ui = ∆Ui−1 − IillRwi

It can be seen that the magnitude of the illegal current can be computed
at every load:

Iill = −∆U1

Rw1

Iill =
∆U1 −∆U2

Rw2

...

Iill =
∆Ui−1 −∆Ui

Rwi

The voltage di�erences of the successive loads after the ith load are equal,
therefore the computed illegal current is 0 at these loads. It can be seen that
the computed illegal currents at the loads are equal before the illegal load, and
0 after it. From the above equations the localization of the illegal load looks
simple: the load after that the illegal current is 0 need to be found.

Measurement errors, multiple faults

Measurement errors In practice the e�ect of measurement errors should
be taken into account during the diagnosis. The current measurement error
has been already taken into account during the fault detection (see Section
3.3.1). However there are other measurement errors and parameter uncertain-
ties that a�ects the diagnosis. First of all, the nominal voltages are computed
by Equation (3.6) have a lower and an upper bound, which comes from the
uncertainty of the resistances.

Umini
= Ui−1 − Ii(1 + εR)Rwi

,

Umaxi = Ui−1 − Ii(1− εR)Rwi
,

where εR is the uncertainty of the resistances (in fractions). During the di-
agnosis it should be checked �rst, whether the measured voltages are in the
range of (Umini

, Umaxi). If the measured voltage is between the lower and upper
limits, it cannot be decided that the voltage deviation is the result of illegal
consumption or the parameter uncertainty.
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Figure 3.9: Two illegal loads in the network

The other e�ect of the measurement errors appears in the fault isolation
phase. Because of the measurement errors, the computed illegal currents are
not the exact values only approximations of the real illegal currents. There-
fore a reasonable threshold should be applied, when comparing the computed
illegal currents. An evident candidate for the error threshold could be the
computational error of the illegal current. It can be determined based on the
error of the voltage di�erences, because the illegal current is computed from
these values. The di�erence between the voltage di�erences can be written as

∆Ui −∆Ui+1 = Ũi − U1 − Ũi+1 + Ui+1

The voltage measurement errors on the right side of the previous formula are

εU Ũi − 0− εU Ũi+1 + 0,

therefore the error threshold can be chosen to εU(Ũi − Ũi+1).

The fault isolation method in that case need to be modi�ed in such a way,
that the di�erence between the successive computed illegal currents should be
larger than the error threshold.

Multiple faults If there is only one illegal load in the transmission line,
then the location of the illegal load could be determined only by analyzing
the voltage di�erences. The illegal load is that load, from that the voltage
di�erences are equal. But if there are more than one illegal load, only the last
one could be localized with that method. Iterating this step, the other illegal
loads in the branch can be discovered. The disadvantage of this method is that
the network should be simulated after each identi�ed illegal load. Therefore I
propose an alternative solution to localize multiple illegal loads.

The fault isolation method introduced in Section 3.3.1 can be used to lo-
calize more than one illegal loads in one step in a transmission line. The case
of multiple faults is introduced through the example of two illegal loads. The
example network with two illegal loads can be seen in Figure 3.9.
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Let us assume that the ith and the kth are illegal loads. The illegal current
of them is denoted by Iilli and Iillk , respectively. The voltage di�erences of the
loads can be written as:

∆U1 = −(Iilli + Iillk)Rw1

...

∆Ui = −(Iilli + Iillk)(Rw1 + . . .+Rwi
) = ∆Ui−1 − (Iilli + Iillk)Rwi

∆Ui+1 = −(Iilli + Iillk)(Rw1 + . . .+Rwi
)− IillkRwi+1

= ∆Ui − IillkRwi+1

...

∆Uk = −(Iilli + Iillk)(Rw1 + . . .+Rwi
)− Iillk(Rwi+1

+ . . .+Rwk
)

= ∆Uk−1 − IillkRwk

∆Uk = ∆Uk+1 = . . . = ∆UNL

The computed illegal currents at the loads are the following:

Iilli + Iillk = −∆U1

Rw1

Iilli + Iillk =
∆U1 −∆U2

Rw2

...

Iilli + Iillk =
∆Ui−1 −∆Ui

Rwi

Iillk =
∆Ui −∆Ui+1

Rwi+1

...

Iillk =
∆Uk−1 −∆Uk

Rwk

0 =
∆Uk −∆Uk+1

Rwk+1

= . . . =
∆UNL−1 −∆UNL

RwNL

To localize the illegal loads the place where the computed illegal current
changes its value need to be found. In the example above, there are two such
places in the sequence of the illegal currents. The �rst one is at the ith load:
up to this load the illegal current is Iilli +Iillk and Iillk beyond that. The second
one is at the kth load: up to that the illegal current is Iillk and 0 beyond that.
The magnitude of the illegal currents can be determined knowing Iillk and
Iilli + Iillk .

The method of two illegal users can be generalized for more illegal users
too. In this case the computation algorithm of the illegal loads consists of the
following steps.

1. Compute the di�erence between the measured and nominal voltages of
the loads.
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2. Compute the illegal current at each load.

3. Find the places where the magnitude of the illegal current changes.

4. The magnitude of the illegal currents can be computed in reversed order.

3.3.2 Fault detection and isolation for the one feeder ra-

dial layout

In this case the fault isolation part of the diagnosis is based on the voltage
di�erence principle introduced in Section 3.3.1. The structural decomposition
of the network is also utilized during the diagnosis. Di�erent cases of the di-
agnosis (for multiple and single load subnetworks) are distinguished according
to the number and locations of the illegal loads. The notation of single and
multiple load subnetworks introduced in Section 3.2.2 are used here.

The fault detection method is the same as it is described in Section 3.3.1.

Fault isolation in multiple load subnetworks

The �rst case is when there are one or more illegal loads and they are
located in multiple load subnetworks. Then the fault isolation method can
be applied separately to each multiple load subnetwork. The advantage of
the decomposition is that the fault isolation method can be applied to the
subnetworks in parallel and the complex problem can be traced back to a
simpler one.

There is only one minor modi�cation in the computation of the voltage
di�erences and the illegal currents in this case. After the decomposition there
is no feeder at the start of the subnetwork but the junction node of the branch
acts as a pseudo-feeder. Therefore, the voltage of the feeder is substituted by
the voltage of the junction node at the start of the branch. Let it be denoted
by UB. If the illegal load is the �rst one, then the voltage di�erence of the �rst
load can be computed by:

∆U1 = ∆UB − IillRw1

The problem is that the measurement points are at the loads. Therefore the
voltage of the junction node (UB) is not measured therefore ∆UB cannot be
computed. Without knowing the value of ∆UB the illegal current at the �rst
load cannot be computed. Therefore it is impossible to localize the illegal load
with this method if it is the �rst load of the subnetwork. In this case the method
presented in the next section can be applied to that load.

Fault isolation in single load subnetworks

It might happen that the illegal load is in a single load subnetwork. The
problem is that the single load subnetworks contain only one load therefore the
voltage di�erence cannot be compared to another load in the same subnetwork.
In this case the decomposition based method cannot be applied. Instead, the
original network is used in the diagnosis.
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In this case the voltage di�erence of the single load is compared to the
nearest load in both directions in the network. (It is assumed that these loads
are not illegal loads). The steps of the fault isolation method in this case are
the following:

1. The single load is denoted by Ls and the voltage di�erence at this load
is ∆ULs .

2. Go back to the previous junction from the single load. This node is the
predecessor of the single load in the directed graph.

3. Find the nearest load from that node backwards in the graph. This load
is denoted by Lb and the voltage di�erence at this load is ∆ULb

.

4. Find the nearest load from that load forward in the graph. This load is
denoted by Lf and the voltage di�erence at this load is ∆ULf

.

5. If ∆ULb
> ∆ULs < ∆ULf

then Ls is considered as an illegal load.

The exact value of the illegal current can be computed in this case if there are
no additional illegal loads in the network. The magnitude of the illegal current
is

∆ULb
−∆ULs

Rwbs
, where Rwbs

is the resistance of the wire between the start of the
branch of the Lb load and the single load. If there are more illegal loads, then
the computed current may not be accurate because it may be a�ected by the
currents of the other illegal loads.

Diagnostic algorithm for one feeder radial networks

The diagnostic algorithm of a one feeder radial network combines the de-
tection of the illegal loads and the localization of them whether they are in
multiple or single load subnetworks. There are two main parts of the diagnosis
method.

� First the illegal loads in multiple load subnetworks are localized using the
method described in Section 3.3.2. Then the currents of the found illegal
loads are updated with the currents of the illegal loads, and the network
is simulated with the updated currents. In these steps all illegal loads in
the multiple load subnetworks are discovered.

� If the criterion of the detection is still satis�ed after the simulation then
there are remaining illegal loads in the network. They should be in the
single load subnetworks. These illegal loads are localized in the second
part of the algorithm using the method described in Section 3.3.2.

The steps of the complete diagnostic method are the following.

1. Decompose the radial feeder network into single and multiple load sub-
networks.

2. Compute the nominal voltages and the minimal/maximal bounds of the
voltages using the measured currents and the resistances.
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Figure 3.10: A simple one feeder radial network and its decomposition.

3. Detect the illegal loads using Equation (3.7). If the inequality is true
then continue with analyzing the voltage di�erences.

4. Compute the di�erence between the measured and the nominal voltages.

5. If the di�erence is outside of the minimum/maximum bounds then con-
tinue with the localization of the illegal loads.

6. Find illegal loads in multiple load subnetworks.

7. Update the currents of the found illegal users with the computed illegal
current.

8. Compute the nominal voltages and the minimum/maximum bounds us-
ing the updated currents. Attach the computed values to the subnet-
works. The network does not need to be decomposed again.

9. Repeat Steps 3-5.

10. Find the illegal loads in single load subnetworks.

A simple one feeder radial network example

The diagnostic method is illustrated on a simple example. The network
can be seen in Figure 3.10a. It is the same network as in Section 3.2.2. The
decomposition of the network can be seen in Figure 3.10b. The resistances
of the wires can be seen on the edges of the graph. The uncertainty of the
resistances is 2%, the current and voltage measurement error is 0.2%. The
measured currents and voltages of the feeder and the loads are in Table 3.1 in
the rows Ĩ and Ũ .
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Table 3.1: Current and voltage values of the example.

F1 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Ĩ[A] 63 5 4 8 8 2 5 5 7 8 8
Ũ [V] 250 244.44 243.04 242.56 243.99 242.53 242.08 242.02 241.60 246.99 246.83
U [V] 250 244.78 243.58 243.10 244.34 242.85 242.40 242.34 241.92 247.08 246.92

∆U [V] 0 -0.34 -0.54 -0.54 -0.35 -0.32 -0.32 -0.32 -0.32 -0.09 -0.09

The steps of the diagnostic algorithm, the used and computed data and
the results of the steps in case of the example can be seen in Table 3.2. It can
be seen, that after the �rst part of the diagnosis (Steps 1-6) one illegal load
(L2) is found in a multiple load subnetwork with illegal current of 2A. After
that the network is updated and simulated with this current (Steps 7-8). The
computed voltages after Step 8 can be seen in Table 3.3. In the second part of
the diagnosis (Steps 9-10) an other illegal load (L4) is found in a single load
subnetwork with illegal current of 1A. In conclusion our diagnostic method
successfully detected and localized these loads, and determined the magnitude
of the illegal currents too.

A more complex case study can be found in Appendix A where the di-
agnostic method is demonstrated on a benchmark example. The case study
shows the application of the decomposition and diagnostic algorithms in an
almost real-world case, with simulated measurement errors.

3.3.3 Fault detection and isolation for the two feeder lay-

out

Diagnostic algorithm for two feeder networks

The principle of the diagnosis can be applied to networks with two feeder
layout, too. In this case the network should be �rst simpli�ed to a basic two
feeder layout (see Section 3.2.2). The measured current of a merged branch is
the sum of the measured currents in the branch. The measured voltage of a
branch is substituted by the measured voltage of the �rst load in the branch.
It is assumed that the resistance of the wire connecting the merged load and
the network can be neglected.

To detect the illegal loads the condition in Equation 3.7 should be modi�ed
to use the currents of both feeders:

ĨF1 + ĨF2 −
NL∑
i=1

Ĩi > εI(ĨF1 + ĨF2 +

NL∑
i=1

Ĩi) (3.9)

Then the voltage di�erences and the illegal currents can be computed starting
from one of the feeders.

In case of the two feeder network the illegal current changes its sign at
some point. This is the place of the illegal load.
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Ĩ 2
=

6A
(8
)

Si
m
ul
at
io
n
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Table 3.3: Current and voltage values after the simulation.

F1 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

Ĩ[A] 63 5 6 8 8 2 5 5 7 8 8
Ũ [V] 250 244.44 243.04 242.56 243.99 242.53 242.08 242.02 241.60 246.99 246.83
U [V] 250 244.54 243.14 242.66 244.14 242.65 242.20 242.14 241.72 247.02 246.86

∆U [V] 0 -0.1 -0.1 -0.1 -0.15 -0.12 -0.12 -0.12 -0.12 -0.03 -0.03

If there are more than one illegal loads then this is the place of the largest
illegal load. The other illegal loads can be found where the illegal current
changes its value. If the result of the fault isolation step is a merged branch
then the illegal load is in that branch. The exact location of it can be de-
termined by applying the diagnostic algorithm of the radial network to the
merged branch.

In summary, the diagnostic method consists of the following steps.

1. Convert the two feeder network into a basic two feeder layout.

2. Simulate the converted network with the measured currents and compute
the nominal voltages.

3. Use Equation (3.9) to detect the presence of illegal loads.

4. Compute the di�erence between the measured and the nominal voltages.

5. Compute the sequence of the illegal currents Iilli = ∆Ui−∆Ui+1

Ri+1
, i =

1, . . . , NL − 1.

6. Find the places where the illegal current changes its value, e.g. Iilli 6=
Iilli+1

. The illegal load is the i+ 1th load.

7. Compute the value of the illegal currents of the found loads: Iilli+1
=

Iilli − Iilli+1
.

8. If the illegal load is a merged branch, then apply the diagnostic method
of the one feeder radial network to this branch to �nd the exact location
of the illegal loads.

Simple example

The diagnostic method is illustrated on the simple example used at the
decomposition in Section 3.2.2. The network with the edge weights can be
seen in Figure 3.11. This is not a basic two feeder layout therefore a conversion
is needed �rst to obtain a simple two feeder network layout. The converted
network has the same structure as shown in Figure 3.6.

The measured currents and voltages of the converted network can be seen
in the �rst two rows of Table 3.4. The steps of the diagnosis of the example can
be seen in Table 3.5. It can be seen that the computed illegal currents change
value at two loads: L2 and X6 (Step 5-6). Therefore they are both illegal
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Figure 3.11: The two feeder network of the example.

loads with illegal currents 1A and 2A respectively. It can be seen that X6 is
a substitution of a branch, therefore the illegal load is in that branch. The
measured and nominal voltages of this subnetwork can be found in Table 3.6.
The illegal load in this subnetwork is localized in Step 8. In conclusion two
illegal loads are successfully detected and localized in the two feeder network.

Table 3.4: Measured and nominal values of the two feeder example.

F1 L1 L2 X6 L5 L6 F2

Ĩ[A] 13.3 3.0 7.0 5.0 4.0 8.0 16.7
Ũ [V] 250.0 248.67 248.16 247.99 248.14 248.83 250.0
U [V] 250.0 248.82 248.38 248.26 248.36 248.93 250.0

∆U [V] 0 -0.15 -0.22 -0.27 -0.22 -0.1 0

Table 3.5: Diagnosis steps of the two feeder example.

Step Action Data Result

(1) Network conversion graph of the network basic two feeder

(2) Simulation ĨF1, ĨF2, Ĩi,Rwi
, εR = 2% Ui

(3) Detection ĨF1 = 13.3A, ĨF2 = 16.7A, TRUE∑6
i=1 Ĩi = 27A, εI = 0.2%

(4) Compute voltage di�erence Ũi, Ui ∆Ui

(5) Compute illegal currents L1 L2 X6 L5 L6 sequence of

Iill[A] - 1.53 0.53 -1.47 -1.47 illegal currents

(6) Localization I. x x NTL=L2, X6

(7) Compute illegal currents 1.53A, 0.53A Iill,L2 = 1A

of L2 and X6 0.53A, −1.53A Iill,X6 = 2A

(8) Localization II. L3 L4 NTL=L4

Iill[A] - 2 Iill,L4 = 2A
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Table 3.6: Measured and nominal values of the subnetwork

L3 L4

Ũ [V] 247.99 247.63
U [V] 248.26 248.08

∆U [V] -0.27 -0.45

3.4 Discussion and future work

As it was mentioned earlier, the proposed diagnostic method is similar to
the power theft localization method described in [77], which is called normal-
ized voltage double di�erence technique (NVDD). Both methods are based on
the analysis of the voltage di�erences. However there are main di�erences
between the two methods:

� The NVDD method uses phasor values (i.e. complex voltage, current and
impedance values). However the phase angel between successive nodes
is usually really small, therefore the voltage drop can be approximated
by the real part of the impedance drop. In my method I use real valued
variables.

� The NVDD method uses measurements from reference days as nominal
voltage values, and detects the outliers compared to these data. In my
method a static model of the network is used to obtain the nominal
values of the network instead of historical data.

� In the NVDD method the voltage di�erences are normalized by the vari-
ations of the voltage di�erences. In my method the illegal currents of
successive loads are computed and analyzed to determine the location of
the illegal load.

The advantages of my presented method are:

� The disadvantage of the NVDD method is that it requires su�cient ref-
erence days, which may be hard to obtain (e.g. consumers with PV
plants may cause a variation in the load pro�les). The advantage of us-
ing a static network model is that it always gives the current state of the
network. Therefore variations in the load pro�les has no e�ect on the
e�ciency of the method. Repeating the simulation and the diagnosis at
consecutive time instances, the dynamic behaviour of the loads can be
inferred.

� In contrast to the NVDD method, the illegal loads that appear after the
beginning of the operation of the diagnostic system can be localized with
my method.

� Reference day measurements are not needed, because the nominal values
are computed by the network model.
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� The presence of multiple illegal loads and networks with two feeders are
not discussed in [77]. My proposed method is able to localize multiple
illegal loads and can be applied to two feeder networks, too.

� Multiple loads can be localized in one step.

The limitation of my method are:

� If the illegal load is in the single load subnetwork, and its neighbours are
also illegal loads, then it cannot be localized.

� Both methods depend on the measurement error. With the increase of
the measurement errors, one obtains more false illegal loads, but the real
illegal loads can still be detected and localized.

� The diagnostic accuracy is also in�uenced by the error threshold limit for
the computed illegal load current and the computed voltage di�erences.
With too low thresholds one obtains spurious illegal loads, while the
illegal loads cannot be localized using too loose limits.

Future work In the future work the e�ect of measurement error and param-
eter uncertainties on the diagnostic accuracy should be analyzed. Moreover in
the presented method it was assumed, that the voltage measurements are cor-
rect, and the current measurements can be manipulated. However there exist
such power theft methods, where the current measurements are not manipu-
lated. An interesting question is that how the basic principles of the method
could be applied to that case (e.g. using Kircho�'s voltage law for the detection
and computing the nominal currents for the localization).

Moreover, the e�ect of domestic power plants can also be investigated.
Nowadays PV plants become more common in low voltage networks, that can
be considered as either loads with negative consumption or generators (i.e.
feeders). These power plants may change the network structure (more than
two feeders are present) and the diagnostic method should be adapted to this
case. The application to three-phase network can also be a possible further
research direction.
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3.5 Summary

In this chapter the detection and localization of non-technical losses in
electrical networks were introduced. The electrical network is composed of
feeders, loads and transmission lines that is represented by a directed graph.
A simple static linear model of the network was used to compute the network
variables, knowing the measured currents of the loads and feeders, and the
resistances of the transmission lines (with parameter uncertainties). The mea-
sured values come from the smart meters that are located at every load and
provide consumption data with measurement errors. The illegal loads, which
we want to detect and localize, have fraud meters that show less than the real
consumption.

The aim of the work was to create a model-based diagnostic method to
detect and localize one ore more illegal loads in the electrical network. The
illegal loads are located in di�erent parts of the network. The diagnostic
method should estimate the magnitude of the illegal consumption too. The
measurement errors and parameter uncertainties were also taken into account.

To avoid the development of a complex global diagnostic algorithm, the
decomposition of the network was utilized in the proposed method. With the
help of the decomposition the illegal loads can be isolated locally in the decom-
posed subnetworks and the diagnosis can be performed on them in parallel. In
Section 3.2 di�erent kinds of network structures were introduced and two al-
gorithms were developed that successfully decompose the networks with radial
or two feeder layouts into smaller subnetworks with basic one feeder layouts.

The decomposition of the radial network can be done with Algorithm 1
that results in single or multiple load subnetworks that contain one or more
loads respectively. The decomposition of the two feeder network described
in Algorithm 2 is di�erent from that point of view, that the decomposition
process is done in parallel with the computation of the network variables.

The diagnostic method is based on analyzing the deviations between the
measured and the nominal values of the network. Two kinds of diagnostic
methods were introduced that apply to the radial or the two feeder networks.
Both methods use the measured and nominal currents for detection and the
voltages for fault isolation.

In the diagnostic algorithm for a network with one feeder radial layout
the illegal loads were localized in two stages: at �rst in the multiple load
subnetworks then in the single load subnetworks. In the diagnostic method
for two feeder networks the localization was also done in two stages: at �rst
in the (converted) basic two feeder network, then in the potential merged
subnetworks (in case of a radial two feeder network).

The proposed decomposition and the diagnostic algorithms were illustrated
on simple examples. A more complex case study with the IEEE 2015 Low
Voltage Test Feeder (that can be found in Appendix A) was also presented to
demonstrate the practical application of the diagnostic method.
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Chapter 4

Colored Petri net based diagnosis

of process systems

In this Chapter a diagnostic method is introduced that uses a qualitative
dynamic model of the system and its colored Petri net model. The diagnosis
is based on the deviations between normal and faulty operations and the oc-
currence graph of the colored Petri net model. In case of composite systems
structural decomposition is used to reduce the increasing computational e�ort
caused by the growing size of the model.

In many cases the normal or faulty operations of technological processes
can be characterized by a series of events having discrete or qualitative valued
variables. The occurring deviations can be generated by the comparison of
the normal and the actual events. The occurring faults can be detected and
identi�ed based on the observed deviations [92], [93].

In order to formally describe the events for diagnosis, the methods and tools
for discrete event dynamic systems are used [3], [8]. Technological systems can
often be represented as discrete event systems (DES). The solution (i.e. the
state space) of DES is usually generated by discrete event simulation. The
problem is that the state space of DES models can be extremely large even if
the system is relatively simple. Since the diagnosis of DES is usually based on
the exploration of the state space, it can be computationally hard task due to
the rapid increase of the state space. The decomposition of the system and
applying distributed diagnosis can help to solve this problem [94]�[96].

Di�erent kinds of Petri nets are popular tools for representing discrete
event systems. The structural and mathematical representation of Petri nets
both can be used for diagnostic purposes. Various techniques can be used for
diagnosis with Petri nets, for example the analysis of the occurrence graph,
marking estimation, linear algebra, integer linear programming, diagnoser nets
and reverse nets. The most frequently used methods are based on the idea of
unobservable transitions and use labeled Petri net models. Besides the observ-
ability of transitions, the set of places may have observable and unobservable
subsets, too. In [97] su�cient conditions of diagnosability are given and an
on-line fault detection algorithm is developed based on ILP and checking the
fault diagnosability conditions. To take into account the �ring times of the
transitions, the ILP based diagnoser algorithm was extended with timing con-
straints in [98]. The faults may a�ect the �ring times of transitions, too. In
[99] an observer scheme was designed to generate the residuals that can be
used for fault detection and isolation. In [100] the unobservable events may
correspond to the normal behaviour, too. The diagnosis is performed on a
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so called basis reachability graph that contains the markings reachable with
the observed transitions and the necessary unobservable ones. Colored Petri
nets were used to model and diagnose embedded systems in [101]. The inverse
CPN model with backward reachability was used to determine the source of
the occurred faults in the system.

In this Chapter a novel colored Petri net (CPN) based diagnostic method of
technological systems is presented. The novelty of the method is that a general
CPN model was constructed that is able to simulate the technological system
and simultaneously generate deviations between traces. An on-line diagnostic
method is proposed that is based on searching nodes with speci�c attributes on
the occurrence graph of the CPN model. Moreover, structural decomposition
of composite systems is proposed, which traces back the diagnosis of composite
systems to unit-wise diagnosis.

The structure of this Chapter is the following. At �rst the basic notions on
ordinary and colored Petri nets are given in the next section. Thereafter the
colored Petri net model used for diagnosis is introduced in Section 4.2, then
the diagnostic methods for single technological units and composite systems
are presented in Section 4.3 and Section 4.4. A case study illustrating the
proposed diagnostic method can be found in Appendix B.

4.1 Basic notions

A brief introduction of the basic concepts used in this Chapter is given
here. At �rst the concepts of qualitative discrete event models are presented
followed by the introduction of the basics of ordinary and colored Petri nets.

4.1.1 Qualitative range sets, events, traces and devia-

tions

In many cases it is not necessary to know the exact value of a variable, it is
enough to know whether a measured value is in a range speci�ed in advance.
For example, for a continuous sensor S the following basic range values can be
de�ned if the rough resolution is enough:

QS = {e−, 0S, LS, NS, HS, e
+, error} (4.1)

where 0S, LS, NS, HS refer to zero, low, normal and high value measured by
the sensor S, respectively, while e− and e+ may refer to outlier values caused
by a bias failure and error denotes the error signal provided by the sensor
when it is not working. During qualitative simulation it may occur that the
range of a variable cannot be decided exactly due to the growing uncertainty
caused by the interval arithmetic operations. Therefore in some cases we allow
the qualitative variables to be in the union of two neighbouring ranges, too.
For example the range value covering LS and NS is denoted by LNS.

The qualitative range value set of binary state actuators is as follows:

QB = {op, cl, ? } (4.2)
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where op and cl refers to the opened or closed state while ? denotes the un-
known state of the actuator.

Traces The dynamic evolution of a course of a process system with n inputs
andm outputs can be characterized by time dependent variables called signals.
Input variables (varin) are the actions performed by the operators and output
variables (varout) are the measured values. An event occurring at time τ is
an ordered list of a time stamp and the values of input and output variables
belonging to this time instance:

eventτ = (τ, varin1(τ), . . . , varinn(τ), varout1(τ), . . . , varoutm(τ)).

In this work, the time stamp denotes the order of the events instead of the
real occurrence time of the event. The real occurrence times can be unevenly
spaced values. The event list or operational procedure contains the possible
events during a course of a process system. The set of consecutive events is
called trace.

trace = (event1, event2, . . . , eventτ )

The traces can be categorized into three main groups:

� the nominal trace describes the normal (fault-free) operation of the sys-
tem;

� the characteristic traces are speci�c to each di�erent faulty operational
mode of the system;

� the measured trace is the actual recorded trace from the process.

Fault diagnosis methods are often based on the comparison of a nominal
trace and a measured trace. If there is a deviation between these traces then
the system works probably in a faulty mode. The deviations can be temporal
or quantitative types. The deviations occurring during the process are listed in
the form of keyword(eventτ). Assuming that the events in a trace are ordered
by the time stamps, the most important deviation types (and their keywords)
are the following:

� never-happened (NH)- if the coherent input-output values of the event
do not occur in the characteristic trace at any time stamp;

� chronological deviations: later (LAT) or earlier (EAR) - if the coherent
input-output values of the event are in the characteristic trace but with
a later or earlier time stamp than in the nominal trace;

� quantitative deviations: greater (GRE) or smaller (SML) - if the value of
an output variable is greater or smaller in the characteristic trace than
in the nominal trace at a given time instant.
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4.1.2 Petri nets

Petri nets are graphical and mathematical modelling tools that are often
used for modelling discrete event and discrete time systems. The advantage of
Petri nets is that they not only represent the structure of the system, but allows
us to simulate and analyze its behaviour too [102]. Petri nets are often used to
model such kinds of systems where parallel and concurrent events may occur.
Petri nets are represented with directed, weighted, bipartite graphs where two
types of nodes are used: places and transitions. Transitions represented by
rectangles refer to the events occurring in the system. Places represented by
circles refer to precondition and consequences of the events. To follow the
changes in the system, tokens (represented by black dots) can be assigned
to each place by a marking function. A token in a place means that the
precondition or consequence represented by the place is "true". The state of
the Petri net can be represented by the marking vector, that is composed of
the markings of the places. When a transition �res the tokens from its input
places disappear and the conditions become false. Meanwhile tokens appear
on the output places of the transition and the consequences become true. The
formal de�nition of a Petri net (PN) is the following [102].

PN = {P, T, F,W, µ0}

where

� P = {p0, p1, . . . , pm} is the �nite set of places;

� T = {t0, t1, . . . , tn} is the �nite set of transitions;

� F ⊆ (P × T ) ∪ (T × P ) is the set of arcs;

� W = F → Z+ is the weight function that assigns a positive integer to
the arcs;

� µ0 = [µ1, µ2, . . . , µm]T is the initial marking vector, where µi ∈ N is the
number of tokens in the ith place;

� P ∩ T = ∅ and P ∪ T 6= ∅.

Firing of transitions The dynamic operation of a Petri net can be described
by the �ring sequence of the transitions that move tokens between the places.
A transition tj is enabled and may �re when there are at least W (pi, tj) tokens
on all of its input places (i.e. all preconditions of the event are true):

µi ≥ W (pi, tj),∀i where pi is the input of tj.

The �ring of a transition removes tokens from its input places and put tokens in
its output places according to the weight function that leads to a new marking
vector. The �ring step of tj that changes the marking vector µi to µi+1 is
denoted by µi[tj > µi+1. The �ring sequence of more transitions is denoted
by µ0[tj0 > µ1[tj1 > . . . [tjk−1 > µk. If there exist such a �ring sequence that
leads from µ0 to µk then we say that µk is reachable from µ0.
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(a) The initial state of the Petri net
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(b) The state of the Petri net after �ring
t0

µ0 = [1, 1, 0]T

µ1 = [0, 0, 2]T

t0

(c) The reachability graph of the Petri net

Figure 4.1: A simple Petri net and its reachability graph

Reachability graph The state of the Petri net is characterized by its current
marking vector. The possible system states that may occur in the system
can be represented on a graph. The reachability graph of a Petri net is a
directed graph whose nodes are marking vectors and the edges are �rings of
transitions. There is a directed edge between µk and µl if µk[tj > µl. µl is
called reachable from µk, if there exists a �ring sequence that transforms µk to
µl. The reachability graph contains all of the marking vectors (system states)
that are reachable from a given initial marking vector.

Simple example A simple example showing the operation of a Petri net
can be seen in Figure 4.1. This simple Petri net is composed of three places
(P = {p0, p1, p2}) and one transition (T = {t0}). The set of arcs is F =
{(p0, t0), (p1, t0), (t0, p2)}. The value of the weight function is W (p0, t0) =
W (p1, t0) = 1 and W (t0, p2) = 2. The initial marking of the Petri net, which
is µ0 = [1, 1, 0]T , can be seen in Figure 4.1a. There is one token in p0 and p1

therefore t0 is enabled and can �re. The �ring of t0 removes one tokens from
p0 and p1 and puts two tokens into p2. The current state of the Petri net after
�ring t0 can be seen in Figure 4.1b. At this state t0 is not enabled any more
because there are no tokens in places p0 and p1. The reachability graph of this
simple Petri net contains only two nodes, that can be seen in Figure 4.1c.
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4.1.3 Colored Petri nets

Colored Petri nets (CPN) are the extensions of the ordinary Petri nets.
The advantage of CPNs that complex systems can be represented in a compact
form, which leads to the reduced size of the model. In contrast to the ordi-
nary Petri nets, where all tokens are the same, in CPNs the tokens may have
di�erent types and attributes, that is described by so called colors. Besides
that, functions can be attached to arcs and transitions that execute di�erent
operations on tokens. Another option is to �re the transitions with prede�ned
probability that makes the system operation stochastic.

Before giving the formal de�nition of a CPN some preliminary de�nitions
about multisets and variables are needed.

Multisets A multiset is the extension of an ordinary set in such a way that
multiple occurrences of the elements are allowed. It can be de�ned over a set
S as a function that attaches the number of appearances to the elements of S:
m : S → N. The multiset can be represented by a formal sum :

∑
s∈Sm(s)‘s,

where ` is an explicit operator between the coe�cients and the elements. The
set of all multisets over S is denoted by SMS and m(s), s ∈ S is the coe�cient
of element s.

Di�erent operations can be de�ned over multisets that are in fact operations
on functions:

� addition: m1 +m2 =
∑

s∈S(m1(s) +m2(s))‘s;

� scalar multiplication: n ·m =
∑

s∈S(n ·m(s))‘s;

� comparison:m1 6= m2 = ∃s ∈ S : m1(s) 6= m2(s)
m1 ≤ (≥,=)m2 = ∀s ∈ S : m1(s) ≤ (≥,=)m2(s)

� subtraction: m2 −m1 =
∑

s∈S(m2(s)−m1(s))‘s, if m2 ≥ m1;

Formal de�nition As it was mentioned before, di�erent expressions and
functions can be assigned to the transitions and arcs of colored Petri nets.
The expressions can be de�ned using variables and di�erent operations (logical,
arithmetical). Some basic notations corresponding to variables and expressions
are given here:

� TN is a type name;

� Type(v) is the type of the variable v;

� Type(expr) is the type of the expression expr;

� V ar(expr) is the set of variables in expression expr;

� b is a binding that is a function mapping each variable v ∈ V into a value
b(v) ∈ Type(v). Bindings usually denoted by < v1 = c1, . . . , vn = cn >
where vi and ci, i = 1, . . . , n are the variables and the corresponding
values.
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� expr < b > is a value, obtained by evaluating the expression expr in a
binding b

Now the formal de�nition of a CPN can be given in the following form �rst
introduced by Kurt Jensen [103]. The CPN is a tuple

CPN = (Σ, P, T, A,N,C,G,E, I)

with the following meaning:

� Σ is a �nite non-empty set of color sets;

� P is the �nite set of places;

� T is the �nite set of transitions;

� A is the �nite set of arcs, such that P ∩ T = P ∩ A = T ∩ A = ∅;

� N is the node function, N : A → (P × T ) ∪ (T × P ) that assigns arcs
into place-transition or transition-place pairs;

� C is the color function, C : P → Σ that assigns a color set to each place;

� G is the guard function that assigns a boolean expression (Expr) to each
transition, such that the variables in the guard must belong to a color
set in Σ,
G : T → Expr, such that Type(G(t)) = bool and Type(V ar(G(t))) ⊆ Σ;

� E is the arc expression function that assigns expressions (Expr) to each
arc, E : A → Expr, such that ∀a ∈ A : Type(E(a)) = C(p(a))MS and
Type(V ar(E(a))) ⊆ Σ, where p(a) is the place of N(a);

� I is the initialization function that de�nes number and color of initial
tokens in the places: I : P → Expr such that ∀p ∈ P : Type(I(p)) =
C(p)MS.

Firing of transitions The enabling and the �ring of the transitions in a
CPN is more di�cult than in ordinary Petri nets. The di�erence is that the
colors of tokens in the places should be taken into account. A transition in a
CPN is enabled, if there are tokens on its input places with the proper colors
such that binding the variables in the arc expressions to the available token
colors, the arc expression can be evaluated. Besides that, the arc expression of
the output arc should be evaluated to a multiset that is compatible with the
color set of the output place. Moreover the guard function must be evaluated
true with this binding of variables. Consequently the enabling of a transition
is always interpreted with respect to a speci�c binding.

The markingM in a CPN is interpreted as the number of colored tokens in
the places that is a multiset over the set of all (p, c) pairs, where p ∈ P and c ∈
C(p). A marking vectorM can be written asM = [M(p0),M(p1), . . . ,M(pn)]T ,
where M(pi) denotes the token distribution in place pi. In contrast to the
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ordinary Petri nets, a �ring of a transition in a CPN may lead to di�erent
markings according to the binding of the variables in the arc expressions. This
means that the transition with its current binding identi�es the �ring step.
A �ring step is de�ned as a non-empty and �nite multiset over the set of all
(t, b) pairs, where t is a transition and b is a binding of variables in t. A �r-
ing step is usually denoted by Y . The sequence of �ring steps is denoted by
M0[Y0 > M1[Y1 > . . . [Yk−1 > Mk.

Timing Colored Petri nets can be extended with the timing of the transi-
tions. Time delays can be assigned to the transitions that a�ect the execution
time of the transition. In timed CPNs the tokens have time stamps too, which
denotes the time when the token becomes available. For example if a token has
time stamp T1 it is not available until the simulation time is less than T1. The
�ring of a transition increments the time stamp of the tokens in the current
binding with the execution time of the transition.

Occurrence graph The behavioural analysis of a CPN can be done with
the help of the occurrence graph [103]. The occurrence graph contains all of
the reachable markings (system states) from the given initial marking in a
form of a directed graph. The nodes of the graph refer to the colored token
distribution of the places at the current state of the CPN model. The edges of
the occurrence graph refer to a (transition, binding) pair that takes the given
marking to the next marking, i.e. there is an edge between two nodes with
markings Mi and Mj, if there exists a �ring step Y such that Mi[Y > Mj.

The occurrence graph of a CPN can be constructed similarly to the ordinary
Petri nets. The di�erence is that the nodes are colored markings and the edge
labels are (t, b) transition-binding pairs.

Simple example The operation of colored Petri nets is illustrated on a
simple example that can be seen in Figure 4.2. The modelled process is the
emptying of a water tank that has the following steps. If the water level in
the tank is not empty then it may be emptied. To open the output valve (VA)
of the tank a button need to pressed to start the process. The places of the
CPN model are level, button and valve. The corresponding color sets that are
shown above the places are the following:

� QL = {0, L,N,H} represents the level of the water in the tank (zero,
low, normal, high);

� QB = {0, 1} represents the state of the button (0 - not pressed, 1 -
pressed);

� QV = {op, cl} represents the state of the valve (open, close).
The transition t0 represents the opening of the output valve. The guard

function of the transition is

g(l, b) =

{
true, if l 6= 0 ∧ b == 1

false, otherwise
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where l and b are two variables with Type(l) = QL and Type(b) = QB. The arc

level

QL

t0

g(l, b)

button

QB

valve

QV

1‘l

1‘b

1‘op

H 1 op

(a) The initial state of the CPN

level

QL

t0

g(l, b)

button

QB

valve

QV

1‘l

1‘b

1‘op

(b) The state of the CPN after �ring t0

M0 = [1‘H, 1‘1, empty]T

M1 = [empty, empty, 1‘op]T

(t0, < l = H, b = 1 >)

(c) The occurrence graph of the CPN

Figure 4.2: A simple colored Petri net and its occurrence graph

expressions are like edge weights in this case: 1‘l means that one token with
the color from QL should be moved from level. 1‘op means that one token
with color op is moved to valve.

Initially there is one token on level with the color H and a tokens on button
with color 1, as can be seen in Figure 4.2a. It can be seen that the binding
< l = H, b = 1 > makes the guard function true, therefore the transition is
enabled in this case. During the �ring of t0 one token with color H is removed
from level and one token with color 1 is removed from button. The transition
puts one token with color op in place valve. The resulted state of the CPN
can be seen in Figure 4.2b. The occurrence graph of this simple example can
be seen in Figure 4.2c. The markings are represented by the list of places and
the tokens on them.

4.2 Colored Petri net model of process systems

In this section the modelling methodology that can be used for creating
CPN models of process systems is given. The system to be modelled is given
with the set of traces that describes the di�erent operational modes.

The role of the CPN model is twofold. First of all, it is able to simulate
the normal and the di�erent faulty operational modes of the system. On the
other hand, the model also generates the deviations between the nominal and
characteristic traces, which is the basis of our diagnostic method.
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The inputs of the model are the nominal and characteristic traces. The
outputs of the model are the qualitative values of the variables and the gen-
erated deviations between the nominal and the simulated characteristic trace
at a given time. The diagnosis of the model can be done by the occurrence
graph, that can be automatically generated from the initial state.

4.2.1 Modelling assumptions

The basic modelling assumptions are the following.

� The nominal and the characteristic traces describing the nominal and
di�erent faulty operations of the process need to be known in advance.

� The faults possibly occurring in the process are known in advance. Only
these kinds of faults are included in the CPN model.

� In the simplest case only one fault occurs in the process.

� The occurring fault is present from the start of the process.

� The fault does not change during the process.

4.2.2 The structure of the CPN model

The CPN model that can be used for diagnosis of technological systems is
introduced here. The general structure of the model can be seen in Figure 4.3.

In order to use the CPN model for diagnostic purposes the following mod-
elling principles were used.

� The model simulates the operation of the technological system based on
the known nominal and characteristic traces.

� The input and output variables, the operational mode, the deviations
and the events of the nominal trace are assigned to places. The places
are represented by ellipses in Figure 4.3.

� Colors represent qualitative values of the variables, the type of the fault
and the emergent deviation from the nominal trace.

� A token with a given color at a place represents the actual qualitative
value of the variable.

� The transitions execute the timing of the system. The transitions are
represented by rectangles in Figure 4.3. The execution time of each
transition is equal to 1.

� The enabling of the transitions is controlled by the simulation time.

� The fault generation function is attached to the arc pointing from t1 to
fault, and it is evaluated when the transition �res.
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Figure 4.3: The structure of the CPN model

� The arc functions describe the change of qualitative values of the vari-
ables.

The declarations of color sets used in the model are the following:

� QF = {norm, fault1, . . . , faultf} is the color set of the possible opera-
tional modes, where norm is the normal operation and fault1, . . . , faultf
are the possible known faults;

� Qik = {q1
ik, . . . , q

jk
ik} is the color set of the kth input variable with the

qualitative values q1
ik, . . . , q

jk
ik , k = 1, . . . , n;

� Qol = {q1
ol, . . . , q

jl
ol} is the color set of the lth output variable with the

qualitative values q1
ol, . . . , q

jl
ol, l = 1, . . . ,m;

� INT is the color set of integers;

� E = INT ×Qi1 × . . .×Qin ×Qo1 × . . .×Qom is the color set of events;
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� KW = {NH,LAT,EAR, SML,GRE} is the color set of keywords used
in the deviations;

� DEV = KW × E is the color set of deviations;

� EL = list E is the color set of event lists (traces).

The declarations of variables that are used in the arc expressions are the
following:

� x ∈ QF ;

� ink ∈ Qik, k = 1, . . . , n;

� outl ∈ Qol, l = 1, . . . ,m;

� e ∈ E;

� y ∈ EL;

� T ∈ INT .
The nominal and the characteristic traces are declared as constants:

� trN = [event1N , event
2
N , . . . , event

T
N ] is the nominal trace of the process;

� trFi
= [event1Fi

, event2Fi
, . . . , eventTiFi

] is the characteristic trace of the ith
faulty operational mode, i = 1, . . . , f .

The descriptions of the used arc functions are the following:

� fault_gen() = { let mode=discrete(0,f:INT);
case mode = 0→ norm;
mode = 1→ fault1;
...
mode = f → faultf}
is the fault generation function that randomly generates the operational
modes with discrete uniform distribution;

� ink_tr(x : QF ) is the function that determines the value of the kth
input variable (k = 1, . . . , n) at the current time step from the trace of
the corresponding operational mode x;

� outl_tr(x : QF ) is the function that determines the value of the lth
output variable (l = 1, . . . ,m) at the current time step from the trace of
the corresponding operational mode x;

� remove(e : E, y : EL) removes the event e from the list of events y;

� dev(e : E, y : EL) generates the EAR,LAT,GRE, SML type deviations
between the current event e and the trace y;

� never(y : EL) generates the NH type deviations by attaching the NH
keyword to the event is in the list y;

� tr_length(x : QF ) determines the length of the trace corresponding to
the operational mode.

78



4.2. COLORED PETRI NET MODEL OF PROCESS SYSTEMS

4.2.3 The operation of the CPN model

The aim of the CPN model is to simulate the technological process and
generate the deviations between the nominal and the characteristic trace at
the same time.

The operation of the previously introduced general CPN model can be
divided into three sections based on the simulation time. The simulation time
is denoted by Ts in Figure 4.3.

At the beginning of the simulation ( (Ts = 0) the current operational mode
is generated and the variables are updated according to it. The only transition
that is enabled at Ts = 0 is t1. The �ring of t1 has the following e�ects:

� The operational mode (x) is generated using the function fault_gen and
the token with the color of the operational mode is put in place fault.

� The end time of the simulation is determined as the length of the char-
acteristic trace of the operational mode: T = tr_length(x).

� According to the operational mode, the values of the input and out-
put variables at the �rst time step are put in places varin1 , . . . , varinn ,
varout1 , . . . , varoutm using the functions ink_tr and outl_tr.

� If there is a deviation between the nominal trace and the �rst event
e = (1, varin1(1), . . . , varinn(1), varout1(1), . . . , varoutm(1)) then token(s)
with the deviation(s) are put in place deviation. The nominal trace is
declared as a constant (see Section 4.2.2).

� The event is removed from the nominal trace (if possible) and the re-
maining part of the nominal trace is put in place never by the function
remove.

� The simulation time is increased by 1.

The next time section interval lasts until the simulation time reaches the
end time: Ts < Tend. During this time the steps of technological process are
simulated. In this interval only t2 is enabled and �res several times in a row.
The e�ects of this transition are:

� The operational mode does not change in place fault.

� The values of the input and output variables are updated according to
the operational mode and the current time.

� The deviations between the current event and the nominal trace are
generated at each time step and the tokens with the proper colors are
put in place deviation.

� The events that occurred in the nominal trace are removed from it and
the remaining trace are put in place never.

� The simulation time is increased by 1 after each �ring of t2.
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At the end of the process (Ts = Tend) the events that never happened
remained in the place never. At this time the never happened type deviations
can be generated by t3. If there is any token in place never then t3 can �re
and attaches the NH keyword to the events in never and put these deviations
in place deviation.

(a)

(b)

Figure 4.4: The tank and its CPN model of during the simulation (Ts = 2)

Simple example In order to better understand the operation of the CPN
model a simple example is introduced. The modelled system is a tank with an
input and output valve (V A and V B) and a level sensor (LA) (see in Figure
4.4a). The qualitative range values of the level sensor and the valves are QS

and QB that were introduced in Section 4.1.1. The technological process is the
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�lling of the tank. The nominal trace of the process is
[(1, op, cl, 0), (2, op, cl, L), (3, op, op,N)]. It is assumed that only one fault may
occur in the system that is the leakage of the tank. The characteristic trace of
the leakage is [(1, op, cl, 0), (2, op, cl, 0), (3, op, op, 0)].

The CPN model of the tank can be seen in Figure 4.4b.
The model operates in the following way. At Ts = 0 the current operational

mode (normal or leak) is generated by t1 and the result is put in place fault.
Figure 4.4b represents that case when the tank has a leak. It can be seen that
there is a token with color leak in place fault. The end time of the simulation
(the length of the characteristic trace) is T = 3. The values of the valves and
the level sensor are also set to op, cl and 0 at Ts = 0. At this time there is no
deviation between the nominal and the characteristic trace.

In the next step transition t2 �res while Ts < Tend. During this time
the values of the valves and the level sensor are updated according to the
characteristic trace of leakage. Besides that the deviations are generated at
every time step. The current state of the CPN model at Ts = 2 can be seen
in Figure 4.4b. It can be seen that place V A, V B and LA has tokens with
color op, cl and 0. The deviations generated at Ts = 2 are LAT (1, op, cl, 0)
(because the current measured event is a later occurrence of the �rst nominal
event) and SML(2, op, cl, L) (because the current level is smaller than in the
second nominal event). The deviations can be found in place dev.. The never
happened events are (2, op, cl, L) and (3, op, op,N).

The process ends when the simulation time reaches Ts = 3. A new quan-
titative deviation is generated, which is SML(3, op, op,N). At this time the
never happened type deviations are generated too, which are NH(2, op, cl, L)
and NH(3, op, op,N).

4.2.4 Generating the occurrence graph

The CPN Tools software was used for the modelling, simulation and anal-
ysis of colored Petri nets [104]. To generate the occurrence graph of the model
that contains all possible states of the system in case of the known operational
modes, the nominal and the characteristic traces of di�erent faults are need
to be known. The nodes of the graph contain the colored token distribution
(i.e. the number and color of tokens) in the places of the CPN model. From
diagnostic point of view the following attributes of the nodes are important:

� Token in place fault. This is the operation mode of the process.

� Tokens on input and output variable places. These are the qualitative
values of the variables at the current state.

� Tokens in place deviation. This is the deviation list between the nominal
and the characteristic trace of a known fault at the current time of the
process.
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In the general case the occurrence graph of a colored Petri net may contain
cycles and multiple directed paths between two nodes. Fortunately in our
case the occurrence graph has tree structure, which follows from the special
construction of the CPN model. The root of the tree is the initial state and
each branch of the tree belongs to one operational mode.

4.2.5 Multiple faults, faults on the �y

In a real process system faults can occur at any time and not only one fault
can in�uence the course of the system. To ful�l these requirements the basic
model can be modi�ed in the following way.

For the management of the e�ect of two or more faults at the same time
new fault types were introduced. These new types were added to the list of
possible faults, so the adequate faulty operational mode can be generated at
the initialization of the system. The characteristic traces of these faulty modes
also need to be known and added to the set of traces.

To model the fault occurring at any time it is assumed that the system
works in normal way until this point of time. It is assumed that the fault
does not change until the end of course of the system. Using this assumption
the faulty operational mode has to be modelled from this point of time. For
the diagnosis the traces describing the events from this step should be gener-
ated and added to the model. The additional modelling assumptions are the
following.

� The fault occurs at a known time τ .

� The system operates in normal mode until τ .

� The course of the system is modelled from τ .

4.3 Unit-wise diagnosis

In this section the basic diagnostic method of one technological unit is
presented. The basic principles introduced here can be later adapted to the
case of diagnosis of composite systems.

4.3.1 Diagnosis using the occurrence graph

The basic idea of the diagnosis is that if a fault occurred in the system, then
there are deviations between the nominal and the measured trace. In case of
known faults, the deviations between the nominal and the characteristic traces
are also known, and the occurred fault can be identi�ed from the deviations.
If a measured trace from the system is available, then the deviations from the
nominal trace can be generated. These deviations can be compared to the
known deviations between the nominal and characteristic traces. If the two
deviations match then the occurred fault is that one whose characteristic trace
caused that deviations.
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In the proposed diagnostic method the occurrence graph of the CPN model
is used to store the deviations between the nominal and the known character-
istic traces. The diagnostic method can be realized as a searching on the
occurrence graph.

Let us assume that all the fault modes and the corresponding characteristic
traces of the modelled technological system are known and a measured trace
is available from the process. The steps of the diagnosis using the occurrence
graph are the following.

1. Generate the occurrence graph of the CPN model of the system. The
resulted occurrence graph contains all of the possible system states reach-
able from the initial state. This step can be done o�-line.

2. Generate the deviation list between the nominal and the measured trace.

3. Find the node having the same deviation list in the place deviation as it
was generated in the previous step. After �nding that node, the occurred
fault can be determined based on the token color on place fault at this
node. There may be three cases:

� There is only one node with the same deviations as the generated
deviation list. Then the occurred fault is clearly identi�ed.

� There are more than one node with the same deviations as the
generated deviation list. Then only the set of possible faults can be
identi�ed.

� If no token distribution refers to the generated deviation list then
an unknown fault occurred in the system. In this case the set of
diagnosed faults is empty, but the deviation list is not empty. This
combination indicates the presence of an unknown fault, which can
be detected but not identi�ed.

The diagnosis can be done on-line or o�-line. In case of on-line diagnosis
the full measured trace is not known, but a new event occurs at each time step.
In this case steps 2-3 are repeated at every time step. This means that the
deviations between the nominal and measured traces are updated after each
new event, and the resulted deviations are searched on the occurrence graph.

In case of o�-line diagnosis, the full measured trace is known. Therefore
the deviations need to be generated once and they can be searched between
the terminal nodes of the occurrence graph.

4.3.2 The diagnostic algorithm

The formal description of the steps of the diagnosis of one technological unit
are presented here. At �rst the algorithm that generates the deviations be-
tween two traces is introduced. Deviations between traces are used in HAZID
based methodologies [105]. In Algorithm 3 a di�erent version of the algorithm
generating deviations is presented using the notations of colored Petri nets.
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Algorithm 3 Generating deviations between two traces

1: Input:
2: trN = [event1N , event

2
N , . . . , event

T
N ] // nominal trace

3: eventtN = (t, varNin1
(t), . . . , varNinn

(t), varNout1(t), . . . , var
N
outm(t))

4: // event at time t in the nominal trace

5: trC = [event1C , event
2
C , . . . , event

TC
C ] // measured/characteristic trace

6: eventtM = (t, varCin1
(t), . . . , varCinn

(t), varCout1(t), . . . , var
C
outm(t))

7: // event at time t in the measured/characteristic trace

8: function DevGen(trC , trN , T )
9: D = ∅ // multiset of deviations (initially empty)

10: neverlist = trN // list of never happened events

11: TC=length(trC)
12: TN=length(trN)
13: for t = 1 to T do
14: if eventtC == eventtN then
15: remove(neverlist, eventtN)
16: //quantitative deviations:

17: else if (varCini
(t) == varNini

, i = 1, . . . , n) ∧ (∃ 1 ≤ j ≤ m :
18: (varCoutj(t) < varNoutj) then

19: D = D + 1‘SMLj(event
t
N)

20: else if (varCini
(t) == varNini

, i = 1, . . . , n) ∧ (∃ 1 ≤ j ≤ m :
21: (varCoutj(t) > varNoutj) then

22: D = D + 1‘GREj(event
t
N))

23: //chronological deviations:

24: else if ∃τ < t : (varCini
(t) == varNini

(τ))∧(varCoutj(t) == varNoutj(τ))
25: i = 1, . . . , n, j = 1, . . . ,m then
26: D = D + 1‘LAT (eventtN))
27: remove(neverlist, eventtN)
28: else if ∃τ > t : (varCini

(t) == varNini
(τ))∧(varCoutj(t) == varNoutj(τ))

29: i = 1, . . . , n, j = 1, . . . ,m then
30: D = D + 1‘EAR(eventtN))
31: remove(neverlist, eventtN)
32: end if
33: end for
34: if T == max(TN , TC) and neverlist 6= [ ] then
35: //never happened type deviations:

36: for i = 1 to length(neverlist) do
37: D = D + 1‘NH(neverlist(i)))
38: end for
39: end if
40: return D
41: end function
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Algorithm 3 describes the process of generating the deviations between two
traces: the measured or the characteristic trace (trC) and the nominal trace
(trN) up to time T for on-line diagnosis. The inputs of the DevGen function
are the measured/characteristic and the nominal traces and the time T up to
that the deviations are generated. The output is the multiset of deviations D.

The algorithm goes through the events of the measured/characteristic trace
and compare them with the events of the nominal trace. At �rst the quanti-
tative deviations (SML, GRE) are generated and added to the multiset D.
After that the chronological deviations (EAR, LAT ) are generated and added
to D. The events that implied chronological deviations are removed from the
list of never happened events. At the end of the algorithm the never happened
type deviations are created.

The diagnosis of a technological unit is done by searching the nodes of
the occurrence graph, whose marking in place deviation matches the devia-
tions between the measured and nominal traces. Algorithm 4 describes this
diagnostic process.

The inputs of the DiagUnit function are the deviations to be found (D),
the occurrence graph (G = (V,A)) of the CPN model and the current time T .
The output of the model is the multiset of occurred faults F .

During the diagnosis it is enough to perform the search between the nodes
with the time stamp T , which are in the set N . In the algorithm we go through
the nodes in N and compare the marking in place deviation with the current
deviations D. The marking in place deviation at the ith node is denoted by
Mi(deviation). If the two deviations are equal then the marking in place fault
of the ith node Mi(fault) is added to the set of faults F .

Algorithm 4 Diagnosis of a technological unit

1: Input:
2: D = DevGen(trc, trN , T ) // multiset of deviations

3: G = (V,A) // occurrence graph

4: function DiagUnit(D,G, T )
5: F = ∅ // multiset of occurred faults (initially empty)

6: N = {v ∈ V : time(v) == T}
7: // node with time stamp T of the occurrence graph

8: for i = 1 to |N | do
9: if Mi(deviation) == D then
10: F = F +Mi(fault)
11: end if
12: end for
13: return F
14: end function
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Simple example The unit-wise diagnostic method is illustrated on a simple
example. The examined system is the tank with a possible leak that was intro-
duced in Section 4.2.3. The occurrence graph of the CPN model can be seen in
Figure 4.5. It has two branches referring to the normal operation or the leakage.
Let us assume that the measured trace is [(1, op, cl, 0), (2, op, cl, 0), (3, op, op, 0)]
and the process has ended, i.e. the current time is T = 3. At �rst the de-
viations (D) between the nominal and the measured trace until T = 3 are
generated. The deviations can be seen below.

D = LAT (1, op, cl, 0), SML(2, op, cl, L), SML(3, op, op,N),

NH(2, op, cl, L), NH(3, op, op,N)

Then this deviation list is searched among the nodes of the occurrence
graph. Node No. 8 was found to have the same deviations in place dev (i.e.
the marking of this place is M8(dev) = D). The token distribution of node
No. 8 can be seen on the right of Figure 4.5. It can be seen that this node has
a token with color leak in place fault (i.e. M8(fault) = leak), therefore the
occurred fault in the system is F = {leak}.

Figure 4.5: Occurrence graph of the tank

4.4 Diagnosis with structural decomposition

The disadvantage of occurrence graph based method is the increasing size
of the graph with the increase of the size (i.e. number of places) of the CPN
model. Even in case of a simpler technological system, which contains three
or four units the occurrence graph of its CPN model can contain hundreds
of nodes depending on the number of sensors and actuators. The re�nement
of the qualitative measuring range of sensors or the application of control
valves instead of two-state actuators may also cause the growing of occurrence
graphs because their branches will be longer. With the growth of the size of the
graph, the computational e�ort and searching-time also increases. This is the
reason why the structural decomposition has crucial impact on the practical
application of the diagnostic process.
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4.4.1 Composite systems

A composite system is composed of more than one process units, which
are connected to each other. The structure of the system and the connections
between the individual units are usually known from technology diagrams. In a
composite system the units may connect to each other in parallel or sequential
structures. A unit may have one or more direct preceding or subsequent units.
In a composite system the number of possible faults can be much larger than
in an individual unit, and diagnosing them is a challenging task. The concepts
of faults in composite systems and their modelling are presented below.

Faults in composite systems

The main problem with the diagnosis of composite systems is that faults
may occur in each individual unit simultaneously and there may be faults that
a�ect the operation of other units. Each unit has its own fault types that
contributes the fault of the whole system. The global fault of the composite
system is originated from one or more of its units. However there may be
faults that exclude each other the number of possible combinations of faults
occurring in the units may be extremely large. To simulate all possible faults
and create the occurrence graph of the CPN model of the system, all traces
describing the e�ect of possible faults should be known in advance. During the
diagnosis of a composite system, both the location and the type of the fault
should be determined.

CPN model of composite systems

Instead of creating a global CPN model of the composite system, the system
was cut along the connection points of its units and the units of the system
are modelled one by one with individual CPNs. The CPN model of each unit
has the same structure as it was introduced in Section 4.2.

To take into account the e�ect of faults occurred in previous units, the
color set of faults was modi�ed. Let us assume that the composite system has
U number of units and each unit has ji number of faults. The new color set
contains both the faults and the identi�er of the unit where the fault occurred.
Formally this color set is the product of faults and unit identi�ers:

QFi
= {norm, faulti1, faulti2, . . . , faultiji}, i = 1, . . . , U

ID = {id1, id2, . . . , idU}
QF,ID = {(faulti, idi)|faulti ∈ QFi

, idi ∈ ID, i = 1, . . . , U}

where QFi
is the set of fault in the ith unit, ID is the set of unit identi�ers,

and QF,ID is the set of faults with unit identi�ers.
Let us consider one technological unit. If a fault has occurred in a preceding

unit with identi�er idi then this fault with the identi�er of that unit is added
to the place fault in the CPN model of the actual unit, as an initial condition.
For example if the unit with idi is the preceding unit of the actual unit and a
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faultij has occurred in it, then the token with color 1‘(faultij, idi) is added to
place fault. After that the actual fault in the unit can be generated and the
unit can be simulated taking into account the traces referring to the operation
mode of the faults in the current and previous units in the system.

4.4.2 Structural decomposition

As it was already mentioned, in a composite process system the structure
and the connections of components are usually known. Knowing the structure
of the system it seems evident to diagnose the system using structural decom-
position. Diagnosis with structural decomposition means that the composite
system is partitioned into basic individual units along the connection points
and then the diagnosis is performed on them separately. The �nal global di-
agnostic result can be concluded from the results of the unit-wise diagnosis.
Knowing the technological sequence of the units the diagnosis should be started
with the �rst unit and its result has to be taken into account when diagnosing
the connected units.

The advantage of the decomposition is that the diagnosis of the units is
usually simpler and faster than a global diagnostic procedure. Moreover the
previously introduced unit-wise diagnostic method (see Section 4.3.2) can be
easily adapted to the decomposed system.

Decomposition of traces

The events in the global trace contain all variables of the system. However
the operation of a unit can be described with only the variables corresponding
to the given unit. For the structural decomposition based diagnostic method
the full trace of the system should be decomposed too by selecting the variables
and time instances that describe the operation of single units. The input and
output variables of a unit can be determined from the technology diagram.
Moreover it may occur that a unit does not operate during the whole process
(e.g. in case of a sequential process). Therefore the starting and �nishing
time in between the unit operates also need to be determined. In the subtrace
of the unit relative time is used in such a way that the real time is shifted
back to 1. So in each subtrace belonging to a given unit, the operation of
the given unit starts at time step 1. The decomposition of the global trace
is presented in Algorithm 5. Let us assume that the composite system has U
number of units. The function UnitTrace extracts one subtrace of a unit
tru with variables in V arunit and with start time T S and �nish time T F . This
function is called for all units of the composite system with the corresponding
set of variables V aruniti and times T Si , T

F
i . The result of the algorithm is all

subtraces corresponding to separate units.
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Algorithm 5 Decomposition of the global trace

1: tr = (event1, event2, . . . , eventT )
2: V arunit = {varini1

, . . . , varinik
, varoutj1 , . . . , varoutjl}

3: // set of variables corresponding to the unit

4: function UnitTrace(tr, V arunit, T S, T F )
5: tru = [ ]
6: t = 1
7: for i = T S to T F do
8: eventtu = (t, varini1

(i), . . . , varinik
(i), varoutj1(i), . . . , varoutjl(i))

9: tru = [tru, event
t
u]

10: t = t+ 1
11: end for
12: return tru
13: end function
14: for i = 1 to U do
15: trui = UnitTrace(tr, V aruniti , T

S
i , T

F
i )

16: end for

Diagnostic algorithm

The diagnosis of the composite system is carried out in the technological
order of the units. The units are diagnosed one by one and the diagnosed
faults of a unit are taking into account at the following units.

To generate deviations corresponding to the examined unit, the nominal
and the measured trace should be decomposed �rst. Then the deviations
between the nominal and measured subtraces can be computed.

The diagnostic algorithm of a unit is similar to the unit-wise diagnosis
(Algorithm 4 in Section 4.3.2). The di�erence is that the faults occurred in
previous units can be taken into account at the generation of the occurrence
graph. As it was introduced in Section 4.4.1 the previously occurred faults
can be added as initial conditions to the CPN model. If a unit has more
preceding units (e.g. in a parallel structure), then the initial condition contains
the diagnosed faults in all previous units. Considering the initial conditions,
the occurrence graph of the unit can be generated that contains all reachable
states assuming the occurred faults in previous units. The deviation lists of
the nodes are the deviations between the nominal and characteristic subtraces.
To generate the deviations, the characteristic subtraces of the possible fault
combinations need to be known, too.

The diagnostic algorithm of composite systems is presented in Algorithm 6.
It is assumed that the units are ordered according to the technological order,
i.e. uniti precedes uniti+1 in the technological order. The parallel units can
be processed simultaneously in one diagnostic step.

The function DiagComp contains the diagnostic algorithm that uses the
previously introduced UnitTrace, DevGen and DiagUnit functions, too.
The diagnosed faults are collected in set F as (fault, unit) pairs, which repre-
sent the diagnosed fault and the unit where is occurred.
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Algorithm 6 Diagnosis of a composite system

1: trN = (event1N , event
2
N , . . . , event

T
N) // nominal trace

2: trM = (event1M , event
2
M , . . . , event

TM
M ) // measured trace

3: V ar = {V arunit1 , . . . , V arunitU} // set of variable sets of the units

4: T S = [T S1 , . . . , T
S
U ] // start times of the operation of the units

5: T F = [T F1 , . . . , T
F
U ] // �nish times of the operation of the units

6: function DiagComp(trN , trM , V ar, T S, T F , T )
7: F = ∅ // set of diagnosed faults

8: for i = 1 to U do
9: if T − T Si > 0 then
10: Fi = ∅ // set of diagnosed faults in uniti
11: truiN=UnitTrace(trN , V aruniti , T

S
i , T

F
i )

12: truiM=UnitTrace(trM , V aruniti , T
S
i , T

F
i )

13: if T Fi ≤ T then
14: TD = T − T Si
15: elseTD =length(truiM)
16: end if
17: Di=DevGen(tr

ui
M , tr

ui
N , T

D)
18: for all pf ∈ F1 × . . .× Fi−1 do // previous fault combinations

19: in the CPN model of uniti add pf to place fault
20: Gi = (V,A) // occurrence graph of uniti
21: f=(DiagUnit(Di, Gi, T

D),uniti)
22: Fi = Fi ∪ f
23: end for
24: end if
25: F = F ∪ Fi
26: end for
27: return F
28: end function

The main advantage of the described method is the smaller size of the
occurrence graphs of subsystems therefore the searching requires less time than
in case of the investigation of the whole technological system.

The structural decomposition based diagnostic method is explained on a
simple case study that can be found in Appendix B. The examined techno-
logical system is composed of three tanks in serial connection. However the
example is relatively simple the key features of the decomposition and the
diagnostic algorithm can be well observed.

4.5 Discussion and future work

Diagnosis based on event sequences and deviations are used in this chapter
for process system diagnosis. In this section two similar methods are compared
with the method presented here. The �rst method is called P-HAZID (Pro-
cedure HAZard IDenti�cation) and it uses backward reasoning in a P-HAZID
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table to �nd the root causes of the failures [105]. One row of a P-HAZID table
contains the deviations with their causes and consequences. The second one
is a clustering diagnoser that uses the distance of the nominal and character-
istic traces to identify the occurred faults [106]. In this method the traces are
converted into coordinate vectors, and the distance of the transformed traces
is used to compare traces instead of deviations. The traces having similar dis-
tances are collected in clusters, as they most likely belong to the same fault.
The similarities of these works and my diagnostic methods are the following:

� Qualitative event sequences are used to describe the processes.

� All methods are based on the comparison of nominal and characteristic
traces.

� The same basic assumptions are made for the faults: the faults are per-
manent and present at the beginning of the diagnosis.

� All methods have similar diagnostic capabilities. The problem with un-
known faults and not clearly identi�ed faults are the same at the three
methods.

� Faults that are dependent cannot be identi�ed.

� The clustering diagnoser has an o�-line training phase and an on-line
diagnoser phase, similarly to my proposed method.

The main di�erences between the methods are:

� The P-HAZID method can be applied o�-line, while my method is able
to identify faults on-line.

� The P-HAZID method uses a recursive backward reasoning algorithm to
obtain the root cause of the failure. In my method the fault mode is
present in the node of the occurrence graph, therefore there is no need
for reasoning.

� In the clustering diagnoser more slightly di�erent traces may belong to
the same fault. Therefore the disturbances have less e�ect on the e�-
ciency of the clustering diagnoser. My method can diagnose faults in
case of exact matching of the traces.

Advantages of my method:

� The nodes of the occurrence graph contains all important information
about the current state of the process: values of variables, deviations
and fault name.

� In contrast to the P-HAZID method, the occurred fault can be immedi-
ately identi�ed from the found node with the proper deviation list.
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� In the clustering diagnoser di�erent faults (with di�erent characteristic
traces) may have the same distance from the nominal trace (e.g. opposite
e�ects), which a�ects the diagnostic accuracy. In my method faults with
di�erent characteristic traces are always distinguished.

Future work In the presented work the examined technological processes
were simple serial processes. In real technological systems the technological
processes often contain loops or recirculation of materials (e.g. in chemical
processes). The problem is that the traces of such processes can be slightly
di�erent, which makes the nominal/characteristic traces uncertain. Therefore
the application of the developed diagnostic method in the present form could
be problematic. The extension of the method will be investigated in case of
such processes during the future work.

Another drawback of my approach is that the assumptions about the faults
are very strict. In reality faults are not necessarily present at the beginning of
the process but may occur at any time, which is usually not known in advance.
A possible solution of this problem and that of the uncertainty in the traces
could be the application of temporal logic [107],[108]. Using temporal logic the
occurrence of events at some point of the process, and their consequences can
be analyzed. With this approach the problem of time shifting of the events
could be handled.

4.6 Summary

In this chapter a colored Petri net based modelling and diagnostic method
of technological systems were presented. A general CPN modelling methodol-
ogy was developed to represent the technological units of the system. In the
CPN model qualitative range spaces were used for the characterization of the
values of the variables. The model is able to simulate the normal and di�erent
faulty operational modes of the technological unit. The di�erent operational
modes are represented with their traces. The CPN model also generates the
deviations between the nominal and the characteristic traces, which is essential
from the diagnostic point of view.

The presented on-line diagnostic method is based on the occurrence graph
of the CPN model. The basic idea of the diagnosis is that if a fault occurs
then there are deviations between the nominal and the characteristic trace.
The occurrence graph of the CPN model contains all possible reachable states
of the system together with the deviations between the normal and the given
faulty operational modes. Therefore the deviations can be searched on the
graph and the fault can be identi�ed from the token colors of the found node.
The diagnostic algorithm applicable to a single technological unit is given in
Algorithm 4.
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In case of composite systems the diagnosis can be performed using struc-
tural decomposition. The units of the technological system are diagnosed one
by one and the e�ects of faults in previous units are taken into account. As
a result of the structural decomposition the diagnosis has to be performed on
much smaller occurrence graphs. The diagnostic algorithm of composite sys-
tems is presented in Algorithm 6. This method could reduce the demand on
computational e�ort and searching time.

An illustrative case study of the proposed method can be found in Appendix
B. This simple case study illustrates the advantage of decomposition while the
e�ect of faults on the diagnostic accuracy can also be observed.
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Chapter 5

Theses

In this work di�erent kinds of model based diagnostic methods with ener-
getic applications were presented. The achieved new results are summarized
in the following thesis points.

5.1 Thesis 1 - Parameter estimation method for

temperature dependent battery parameters

(Chapter 2)

Relevant publications : [T1_17], [T1_18], [T1_19]

The aim of this work was the estimation of the battery parameters relevant
for the battery aging, especially the battery capacity. A special parameter esti-
mation method for diagnostic purposes was developed which uses the simplest
EECM model extended with temperature dependency [58].

T1.1 The temperature dependent battery model was analysed with respect to
parameter sensitivity. The parameter sensitivity analysis showed that
the model output is insensitive to the internal resistance while sensitive
to the electrode potential, battery capacity and the two polarization
constants. It was also shown that the battery capacity can be estimated
from charging/discharging pro�les.

T1.2 It was also found that the parameters can be estimated from the charging
pro�les only, which is essential from the application point of view as the
charging pro�le of the battery can be in�uenced by the user.

T1.3 A two-step parameter estimation method was developed to estimate the
temperature dependent parameters. In the �rst step of the method the
parameters at di�erent ambient temperatures are estimated. In the sec-
ond step the characteristics of the temperature dependency are estimated
using the results of the �rst step.
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5.2. THESIS 2 - NON-TECHNICAL LOSS DIAGNOSIS IN ELECTRICAL
NETWORKS (CHAPTER 3)

5.2 Thesis 2 - Non-technical loss diagnosis in

electrical networks (Chapter 3)

Relevant publications : [T2_18a], [T2_18b], [T2_19]

In this work non-technical loss diagnosis in low-voltage electrical networks
was investigated. The network was modelled by a simple static linear model.
The structure of the network was represented by a directed graph. The pro-
posed diagnostic method of electrical networks with complex structures is com-
posed of two steps: decomposition and diagnosis of the network.

T2.1 A decomposition algorithm of complex networks was developed that de-
composes the networks into a set of smaller basic one feeder subnetworks.

T2.1.a The decomposition of a radial one feeder network is based on cut-
ting o� the branches of the network. The resulted subnetworks
may be single load subnetworks with only one load or multiple load
subnetworks.

T2.1.b The decomposition of a two feeder network is done in parallel with
the computation of the network variables. The result of the de-
composition is two one feeder network. If the resulted network has
radial layout then it can be further decomposed with the method
in T2.1.a.

T2.2 A diagnostic algorithm that is able to detect and localize multiple illegal
loads in electrical networks with di�erent layouts was developed. The
method takes into account the parameter uncertainties and the measure-
ment errors in the network and also approximates the magnitude of the
illegal current. The principle of the method is the analysis of the dif-
ferences between the measured and the nominal values of the network.
The measured and nominal currents are used for fault detection while
the measured and nominal voltages are used for fault isolation.

T2.2.a The diagnosis of the radial one feeder network is performed on the
decomposed network. If illegal loads are detected then the localiza-
tion of them is done in two steps. At �rst illegal loads are localized
in multiple load subnetworks and then in single load subnetworks.
The localization within the subnetworks can be done in parallel.

T2.2.b The diagnosis of the two feeder network can be done with the con-
verted basic two feeder network. The localization of the illegal loads
is done by analyzing the computed illegal currents. If the illegal load
is in a merged branch then the diagnostic method in T2.2.a can be
applied to this branch.
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5.3 Thesis 3 - Colored Petri net based diagnosis

of technological systems (Chapter 4)

Relevant publications : [T3_14], [T3_16a], [T3_16b]

In this work a prediction based diagnostic method for technological systems
was developed. The principle of the method is that the faults can be char-
acterized by the deviations between the characteristic traces and the nominal
trace if the traces of known faults are known. The technological units were
modelled by colored Petri nets which is a dynamic discrete event model.

T3.1 A special colored Petri net (CPN) model was constructed that is able
to simulate the nominal and di�erent known faulty operations of the
technological unit. The model also generates the deviations between the
nominal and the characteristic traces. The occurrence graph of the CPN
model is used for the diagnosis and it can be generated o�ine.

T3.2 The on-line diagnostic method is based on searching the deviations be-
tween the nominal and the measured trace on the occurrence graph of
the CPN model. The occurred fault can be identi�ed from the token
colors of the found node. In case of composite systems the diagnosis is
done by structural decomposition. The units of the system are diagnosed
one by one taking into account the faults occurred in previous units.

5.4 Related publications

[T1_17] A. I. Pózna, A. Magyar, and K. M. Hangos: "Model identi�cation
and parameter estimation of lithium ion batteries for diagnostic purposes",
in 2017 International Symposium on Power Electronics (Ee), IEEE, 2017,
pp. 1-6. Citations: 4

[T1_18] A. I. Pózna, K. M. Hangos, and A. Magyar: "Design of experiments
for battery aging estimation", 10th Symposium on Control of Power and
Energy Systems (CPES2018) in IFAC-PapersOnLine, vol. 51, no. 28, pp.
386-391, 2018. Citations: 1

[T1_19] A. I. Pózna, K. M. Hangos, and A. Magyar: "Temperature depen-
dent parameter estimation of electrical vehicle batteries", Energies, vol. 12,
no. 19, p. 3755, 2019, IF=2.707.

[T2_18a] A. I. Pózna, A. Fodor, and K. Hangos: "Non-technical loss diag-
nosis in electrical networks with a radial layout", Hungarian Journal of
Industry and Chemistry, vol. 47, no. 1, pp. 3-9, 2018.
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Appendix

A Case study of model based diagnosis of elec-

trical networks

The whole decomposition and diagnostic method is illustrated on a case
study. The test network is the IEEE 2015 European Low Voltage Test Feeder
[109], that has a radial structure. The simulation, decomposition and the
diagnostic algorithm of the network were implemented in MATLAB [110].

A.1 Electrical network and its decomposition

The IEEE test network

The network is a three-phase network with one feeder and 55 loads. Phase
A,B and C has 21, 19 and 15 loads respectively. The consumed power of each
load is given with a load pro�le with one minute resolution. There are 905
transmission line segments and 906 buses in the network speci�cation. The
coordinates of the buses, the length, resistances of the lines and the speci�-
cation of the transformer are given in separate csv �les. The structure of the
network can be seen in Figure A.1.

Figure A.1: The IEEE 2015 Low Voltage European Test Feeder network
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Figure A.2: The Phase A network of the IEEE 2015 Low Voltage European
Test Feeder and its decomposition

To test the proposed diagnostic algorithm only one phase (Phase A) of
the network was used. Moreover, the original network contains a lot of lines
and buses, therefore it needs to be simpli�ed so that the decomposition and
diagnostic algorithms can be applied. The following steps are needed to convert
the original network into a tree-graph:

� The loads that are not in Phase A are deleted.

� There are end nodes in the network that are not loads and they have no
consumption data. These nodes are also deleted.

� The transmission lines are composed of several consecutive line segments
de�ned by the connecting buses. Therefore a transmission line between
two nodes is represented by consecutive edges in the original network.
The line segments between two real nodes (load or junction point) need
to be merged to get only one edge between two nodes. The resistance of
the merged edge is the sum of the resistances of the line segments.

� The resistance between the loads and the junction points are omitted.

The graph of the simpli�ed network can be seen in Figure A.2. This network
contains only 42 nodes and 41 edges.

99



APPENDIX

Decomposition of the network

At �rst the decomposition algorithm is applied to the simpli�ed graph
model of the network. The result of the decomposition is 12 subnetworks. The
subnetworks and the loads belonging to them can be seen in Table A.1 and in
Figure A.2.

Table A.1: Subnetworks and the contained loads

Subnetwork S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
L1 L4 L9 L14 L21 L20 L34 L25 L29 L46 L52 L51

Loads L3 L5 L22 L30 L31 L48 L55 L54
L49

It can be seen that there are 4 single load subnetworks (S3, S4, S5, S7) and
8 multiple load subnetworks (S1, S2, S6, S8, S9, S10, S11, S12) in the network.

A.2 Diagnosis of the illegal users

In this section the diagnostic algorithm is illustrated on the IEEE test
network. The measured values are generated by simulation of the network in
MATLAB. To simulate the presence of illegal users, the current of some loads
are increased with respect to their nominal values. Measurement errors with
zero mean Gaussian distribution are added to the simulated values to model
the real measurements. The current and voltage measurement error limits
are set to εI = εU = 0.2% of their nominal values. The uncertainty of the
resistances is 2% of their nominal values.

For performing the diagnosis, let us consider the case, when the measured
currents (Ĩ) and voltages (Ũ) of the feeder and the loads are known and they
are collected are in Table A.2. The nominal voltages (U) of the loads are
computed using the measured currents of the loads.

Illegal load detection - 1 The sum of the measured currents of the loads is
30.217 A. The measurement error limit is 0.002(35.565 + 30.217) = 0.132 A.
The di�erence between the current of the transformer and the loads is 5.348 A,
therefore illegal loads are detected in the network.

Then the di�erence between the measured and the nominal voltages are
computed. The voltage di�erences of the loads can be seen in Figure A.3 with
circle markers. The voltage di�erences are greater (in absolute value) than
the acceptable deviation caused by the resistance uncertainties in the model.
Therefore the voltage di�erences are caused by the illegal loads.

Localization of the illegal loads - 1 The diagnosis starts with the searching
for illegal loads in the multiple load subnetworks. The illegal currents are
calculated at the loads of the given multiple load subnetwork. Because the
illegal currents are calculated based on the voltage di�erences of subsequent
loads, the threshold of the illegal currents are set to εU(Ũi − Ũi+1) between
two loads. This means that only those currents are considered as the result of

100



A. CASE STUDY OF MODEL BASED DIAGNOSIS OF ELECTRICAL
NETWORKS

T
ab
le
A
.2
:
M
ea
su
re
d
an
d
no
m
in
al

va
lu
es

of
th
e
lo
ad
s
at

th
e
st
ar
t
of

th
e
di
ag
no
si
s.

L
oa
d
ID

F
1

L
1

L
3

L
4

L
5

L
9

L
14

L
20

L
21

L
22

L
25

Ĩ
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Ũ
[V
]

25
0.
25
5
25
0.
26
1
25
0.
25
7
25
0.
15
4
25
0.
33
4
25
0.
32
4
25
0.
31
9
25
0.
37
7
25
0.
26
5
25
0.
36
7
25
0.
25
4

U
[V
]

25
0.
53
8
25
0.
55
0
25
0.
54
5
25
0.
44
3
25
0.
64
7
25
0.
63
5
25
0.
63
0
25
0.
67
5
25
0.
56
5
25
0.
66
5
25
0.
55
0

101



APPENDIX

L
1

L
3

L
4

L
5

L
9

L
14

L
20

L
21

L
22

L
25

L
29

L
30

L
31

L
34

L
46

L
48

L
49

L
51

L
52

L
54

L
55

−0.5

−0.4

−0.3

−0.2

−0.1

Load ID

∆
U

[V
]

∆U at the start of the diagnosis
∆U after �nding the 1st illegal load
∆U after �nding the 2nd illegal load

Figure A.3: The di�erence between the measured and the nominal voltages of
the loads during the diagnosis.

illegal consumption that are greater than the given threshold. The result of
this part of the diagnosis is that there is an illegal load at L48 and the illegal
current is 2.656 A. The current of L48 is updated with the this illegal current
so the current of L48 is 3.772 A. After that the network is simulated assuming
the updated currents of the loads. The new nominal voltages can be seen in
Table A.3.

Illegal load detection - 2 The detection criterion is still true: 35.565 −
32.873 > 0.002(35.565 + 32.873) therefore there are more illegal loads in the
single load subnetworks. The di�erence between the measured and the new
nominal voltages can be seen in Figure A.3 with diamond markers.

Localization of the illegal loads - 2 To �nd the illegal load(s) in the single
load subnetworks, the voltage di�erence of the load is compared to the voltage
di�erence of its two nearest neighbours. The nearest neighbours are determined
using the length of the path (sum of the edge weights) between two nodes. If
the voltage di�erence of the single load is smaller than its two neighbours then
it is an illegal load. To take into account the e�ect of voltage measurement
error a threshold is determined, too. Here the threshold is set to εU(Ũi− Ũi+1),
because during the localization the voltage di�erences of neighbouring nodes
are compared. The single loads and their neighbours are:

� L9: L4, L14

� L14: L4, L20
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� L21: L14, L20

� L34: L25, L20

The result of this part of the diagnostic algorithm is an illegal load at L14.
The estimated magnitude of the illegal current 0.068V/0.035Ω = 1.9A.

After correcting the current of L14 and simulating the network with the
updated currents we get new nominal voltages. The di�erence between the
measured and the nominal voltages can be seen in Figure A.3 with square
markers. However the detection criterion based on comparing the currents is
still true, the diagnostic algorithm cannot �nd any new illegal loads. In case
of the multiple load subnetworks the computed illegal currents do not exceed
the error threshold limit. In case of the single load subnetworks there is no
local minimum between the voltage di�erence of the single loads and their
neighbours. The missing current may come from two sources. It may happen
that there are still illegal loads in the network but their current is too small.
Besides that the computed illegal currents of L48 and L14 are not the accurate
values but the approximations of the real values because of the measurement
errors. Therefore the missing current may come from the approximation error
too.

In conclusion two illegal loads are localized in the network. One of them
is in a multiple load subnetwork and the other is in a single load subnetwork.
The magnitude of the illegal currents are also estimated.
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B Case study of colored Petri net based diagno-

sis of process systems

The system consists of three tanks in serial connection. The tanks are
connected to each other with valves and pipes. Each tank has an input valve,
an output valve and a level sensor. The technological system can be seen in
Figure B.1 The variables belonging to each unit are listed below.

� TA: V A, V B,LA

� TB: V B, V C,LB

� TC: V C, V D,LC

Figure B.1: The technological example

The qualitative range spaces used for the valves and the sensors are the
following:

� valves: QV = {op, cl} with the meaning of op = 'open' and cl = 'close';

� level sensors: QL = {e−, 0, L,N,H, e+}, where the meaning of 0, L,N,H
are zero, low, normal, high and e−, e+ refer to the outlier values (below
zero or above high).

The possible faults that can occur in each tank are the following:

� positive bias error of the level sensor;

� negative bias error of the level sensor;

� leak of the tank;

� the output valve only half opened when opened;
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� the output valve stays closed when opened.

The examined technological process is the �lling of the three tanks in a row.
Initially all valves except V A are closed and the tanks are empty. The process
starts with the �lling of the �rst tank TA. After two time steps the water in
TA reaches the normal level and the output valve V B is opened. Then the
second tank TB starts �lling up similarly. At time step 5 the output valve V C
of the second tank is opened and the liquid �ows into the third tank. Then
the third tank is �lled and �nally its output valve V D is opened.

The nominal trace of the process can be seen in Table B.1 where each row
refers to an event. It can be seen that the start and �nish times of the units
are the following:

� TA: start:1, �nish: 3;

� TB: start:3, �nish: 5;

� TC: start:5, �nish: 7.

The nominal subtraces of the units after the decomposition are the following:

� TA: [(1, op, cl, 0), (2, op, cl, L), (3, op, op,N)];

� TB: [(1, op, cl, 0), (2, op, cl, L), (3, op, op,N)];

� TC: [(1, op, cl, 0), (2, op, cl, L), (3, op, op,N)].

Note, that the start time of each unit is shifted back to 1 to get the subtraces.
The decomposition of the trace (with the original time instances) can be

also seen in Table B.1 where the subtraces of TA, TB and TC are framed with
solid, dashed and dotted lines respectively.

Table B.1: The full nominal trace of the system and its decomposition.

Input variables Output variables
time V A V B V C V D LA LB LC
1 op cl cl cl 0 0 0
2 op cl cl cl L 0 0
3 op op cl cl N 0 0
4 op op cl cl N L 0
5 op op op cl N N 0
6 op op op cl N N L
7 op op op op N N N

Let us assume that the measured trace that can be seen in Table B.2 is
observed during the operation of the system. The measured trace can be
decomposed similarly to the nominal one:

� TA: [(1, op, cl, L), (2, op, cl, N), (3, op, op,H)],

� TB: [(1, op, cl, 0), (2, op, cl, 0), (3, op, op, 0)],
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Table B.2: The full measured trace of the system and its decomposition.

Input variables Output variables
time V A V B V C V D LA LB LC
1 op cl cl cl L 0 0
2 op cl cl cl N 0 0
3 op op cl cl H 0 0
4 op op cl cl H 0 0
5 op op op cl H 0 0
6 op op op cl H 0 0
7 op op op op H 0 0

� TC: [(1, op, cl, 0), (2, op, cl, 0), (3, op, op, 0)].

Now the diagnosis of the three tanks can be performed. Let us assume that
we apply the diagnostic algorithm to the system at time 7 when all three tanks
have �nished their operation.

The diagnostic algorithm starts with the �rst tank (TA). The deviations
between the nominal and the measured subtrace of this unit are the following:

EAR(2, opn, cl, L), GRE(1, opn, cl, null), GRE(2, opn, cl, L),

GRE(3, opn, opn,N), NH(1, opn, cl, null), NH(3, opn, opn,N)

The occurrence graph of the �rst tank can be seen in Figure B.2. The
deviations are searched on the nodes of the occurrence graph and the node
No. 21 is found with the same deviation list. The marking of this node is
displayed in Figure B.2 too. It can be seen that the place fault has a token
with color 1‘(pos_bias, TA) therefore the positive bias error of the level sensor
is identi�ed in this unit.

Figure B.2: Occurrence graph of the �rst tank

Then the diagnosis is continued with the second tank (TB). The deviations
between the nominal and measured subtraces of TB are the following:

LAT (1, opn, cl, null), SML(2, opn, cl, L), SML(3, opn, opn,N),

NH(2, opn, cl, L), NH(3, opn, opn,N)
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The positive bias error diagnosed in TA is added to place fault in the CPN
model of TB before the generation of the occurrence graph. The generated
occurrence graph can be seen in Figure B.3. In this graph the node No. 24
has the same deviations list. The marking of place fault at this node is
1‘(pos_bias, TA) + +1‘(leak, TB) therefore a leakage in the second tank has
occurred.

Figure B.3: Occurrence graph of the second tank

The last unit to be diagnosed is TC. The deviations at this tank are the
following:

LAT (1, opn, cl, null), SML(2, opn, cl, L), SML(3, opn, opn,N),

NH(2, opn, cl, L), NH(3, opn, opn,N)

In this case the previously occurred faults 1‘(pos_bias, TA)++1‘(leak, TB)
are added as initial tokens to the place fault in the CPN model of TC. Then
the occurrence graph is generated with these initial conditions. The occurrence
graph can be seen in Figure B.4. After searching the deviations on the graph
four nodes have found with the given deviations: nodes No. 21, 22, 23 and
24. The corresponding faults are (norm, TC), (leak, TC), (valve_half, TC),
(valve_cl, TC) which means that only a set of possible operation modes can
be diagnosed. The actual operational mode cannot be clearly determined, the
four possible operation modes are normal operation, leakage and two kinds of
output valve errors.
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Figure B.4: Occurrence graph of the third tank

In conclusion the following faults are diagnosed in the system:

� TA: positive bias sensor error;

� TB: leak;

� TC: operational mode is not clear: normal operation, leak, half opened
output valve or closed output valve are all possible.
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