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Abstract 

Electroencephalography (EEG) is one of the most frequent tools used for brain activity analysis. 

Its high temporal resolution allows us to study the brain at rest or during task execution with 

details not available in traditional imaging modalities. The low cost and simple mode of 

application enable EEG to be used for studying patient populations to help in the diagnosis and 

treatment of various brain injuries and disorders such as stroke, Alzheimer’s or Parkinson’s 

disease.  

Unfortunately, EEG signals are frequently contaminated by undesirable noise and physiological 

artifacts, which may distort the underlying true neural information and lead to false diagnoses or 

unreliable experimental data that cannot be used for valid scientific studies. Consequently, 

artefact removal is a key step in EEG signal processing, and due to the complexity of the problem, 

it is still an active, open research area. This thesis presents novel methods developed to solve 

problems in EEG artifact removal. The fully automatic methods allow us to remove eye 

movement, blink (EOG) and heart-related (ECG) artifacts without using additional reference 

channels. Independent Component Analysis (ICA) was applied to the measured data, and the 

Independent Components (ICs) were examined for the presence of both ECG and EOG. An 

adaptive threshold based QRS detection algorithm was applied to the ICs to identify ECG activity 

using a rule-based classifier. EOG artifacts were removed from ocular artifact ICs in a selective 

way using wavelet decomposition minimising the loss of neural information content during the 

artifact removal process.  

The second part of the thesis focuses on functional connectivity methods that allow the 

construction of resting state and task-related brain activity networks. First, resting state 

connectivity methods were used to analyse stroke patient brain activity in order to discover 

potential biomarkers for stroke recovery. Data set was recorded form healthy volunteers and 

stroke patients during resting state and functional connectivity graphs were created for the delta, 

theta, alpha and beta frequency bands. A comparison was performed between patients and control 

subjects as well as between start and end of the stroke rehabilitation period. The results showed 

differences in the graph degree, clustering coefficient, global and local efficiency that correlate 

with brain plasticity changes during stroke recovery, and that these can be used as biomarkers to 

identify stroke severity and outcome of recovery. 

To uncover changes in the connectivity network during task execution, Dynamic Brain 

Connectivity (DBC) methods must be used. Traditional techniques to reveal temporal changes 

are based on the Short-Time Fourier Transform or wavelet transformation, which have limits on 

temporal resolution due to the time-frequency localization trade-off. In this work, a high time-

frequency resolution method using Ensemble Empirical Mode Decomposition was proposed that 

generates phase-based dynamic connectivity networks based on the instantaneous frequency of 

the signals. A comparison with sliding-window techniques was conducted to validate the 

accuracy of the method. The results showed that the new method can track fast changes in brain 

connectivity at a rate equal to the sampling frequency.   
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Összefoglaló 

Az EEG (elektroenkefalográfia) az egyik leggyakrabban használt eszköz az agy aktivitásának 

vizsgálatára. Nagy időbeli felbontásának köszönhetően lehetővé teszi az agy nyugalmi és feladat-

végrehajtás közbeni működésének olyan részletességű vizsgálatát, ami más képalkotó 

módszerekkel nem lehetséges. Alacsony költsége és egyszerű alkalmazhatósága miatt nagy 

jelentősége van különböző idegrendszeri betegségek és agysérülések (sztrók, epilepszia, 

Alzheimer és Parkinson betegség) diagnosztikájában és kezelésében.  

Sajnos az EEG mérési jelek gyakran tartalmaznak nemkívánatos zajokat és műtermékeket, amik 

eltorzíthatják az eredeti idegi működésre jellemző információt és így hamis diagnózist adhatnak, 

vagy az adat annyira megbízhatatlan lehet, hogy az alkalmatlan tudományos vizsgálatokra. 

Emiatt a zaj- és műtermék-mentesítés egy fontos lépés az EEG jelfeldolgozás során. A probléma 

komplexitása miatt ez jelenleg is aktív kutatási terület. Ez a disszertáció új műtermék eltávolítási 

módszereket ismertet, amik a jelenleg ismerteknél jobb eredményeket nyújtanak. A teljesen 

automatikus eljárások lehetővé teszik a szemmozgások, pislogás és a szívműködés okozta 

műtermékek eltávolítását a megszokott extra referencia elektródák (EOG, EKG) használata 

nélkül. Független komponens analízist alkalmazva, a mért adatok független komponensekre 

bontása után, a szemmozgás és EKG műtermékeket reprezentáló komponenseket azonosítom és 

eltávolítom. Az EOG műtermék komponens esetén nem a teljes komponenst távolítom el a jelből, 

hanem wavelet dekompozíciót alkalmazva, szelektíven tisztítom meg a szemmozgás 

műtermékektől, így minimalizálva a jelben található neurális információ minimális torzulását.   

A disszertáció második része a funkcionális konnektivitási módszerekre fókuszál, melyek 

lehetővé teszik az agyi nyugalmi hálózatok, illetve a feladat végrehajtás közben kialakuló 

hálózatok feltérképezését. Elsőként a nyugalmi hálózatok létrehozására alkalmas módszereket 

vizsgáltam meg a sztrók rehabilitációt elősegítő biomarkerek azonosítása céljából. Egészséges és 

beteg EEG adatok felhasználásával konnektivitási hálózatokat készítettem a delta, théta, alfa és 

béta frekvencia sávokban. A sztrók beteg nyugalmi hálózatait összehasonlítottam a kontrol 

személyekével és megvizsgáltam a különbséget a sztrók bekövetkezése után egy héttel és három 

hónappal. Az eredmények azt mutatják, hogy a konnektivitási gráf fokszáma, a klaszterezési 

együttható, a globális és lokális hatékonyság korrelál a sztrók alatt lezajló agyi plaszticitás 

mértékével, és felhasználható biomarkerként a sztrók súlyosságának és a javulás mértékének 

előrejelzése céljából.  

A feladat-végrehajtás agyi mechanizmusainak pontosabb megértését segítheti a dinamikus 

funkcionális konnektivitás (DBC) módszer alkalmazása. A hagyományos módszerek, melyek a 

konnektivitási gráf időbeli változásait határozzák meg, általában a rövid idejű Fourier 

transzformációra (STFT) alapulnak. Ezeknek a pontosságát behatárolja az idő-frekvencia 

felbontás határozatlansági tulajdonsága. A dolgozatban egy olyan új, nagy időbeli felbontást 

eredményező módszert fejlesztettem ki, ami az empirikus dekompozícióra alapulva, a jelek 

azonnali fázis információját képes meghatározni, amiből minden mintavételi időpillanatra meg 

lehet határozni a funkcionális konnektivitási gráfot. A csúszóablakos módszerrel történő 

összehasonlítás eredménye megmutatta a módszer pontosságát és alkalmazhatóságát gyors agyi 

folyamatok hálózatainak vizsgálatára.    
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1 Introduction  

Electroencephalography (EEG) is a non-invasive method used to measure the bioelectric activity 

of the brain using electrodes placed on the scalp. The simplicity of the measurement and the high 

temporal resolution of the recorded signal make EEG essential e.g. in epilepsy diagnosis, 

cognitive or sensorimotor experiments, where rapid activity changes must be examined. The 

source of the activity is the change in the postsynaptic potentials of cortical neurons acting as 

tiny current generators placed in a direction perpendicular to the cortical surface. When a 

sufficiently large population of nearby neurons is activated simultaneously, the generated current 

fluctuations cause detectable changes in the electrical field of the brain [1].  

The scalp potential distribution, generated by this electric field, can be measured by a suitable 

EEG measurement device and a set of scalp electrodes, and can be stored in a computer for later 

processing and analysis. The number and layout of the electrodes used in practice can vary 

greatly, but high-density 64 or 128-electrode systems arranged in the universal 10/10 or 10/5 

layout [2] are the most common in research laboratories. The main advantage of EEG over other 

brain imaging methods (e.g. fMRI, PET) is its superior temporal resolution. Typical EEG 

sampling rates are in the range of 512 to 4096 Hz, which enable us to follow the time course of 

brain activity at millisecond or sub-millisecond resolution.  

1.1 EEG Artifacts 

The measured EEG signals are regularly contaminated by equipment and environmental noise as 

well as artifacts caused by extracerebral physiological sources. Among the latter types, ocular, 

muscle and cardiac artifacts are especially problematic due to their high amplitude and non-

periodic (ocular, muscle) or quasi-periodic (cardiac) nature. Other kinds of artifacts generate 

physical noises that appear as power line noise or variations in electrode-skin conductivity. 

Artifacts can easily turn valuable EEG measurements unusable. The quality of measured data 

can further reduce due to the presence of low-quality sensors (electrodes) or bad trials. A trial 

here refers to a data segment whose location in time is typically locked or related to certain 

experimental protocol. In other cases, in a task-free protocol such as resting state, a trial represent 

a data segment of certain length of time. 

Ignoring the presence of low-quality data (a bad trial or bad sensor, etc..) can have an adverse 

effect on downstream performance of the desired experiment. For example, when averaging 

multiple trials time-locked to the stimulation to estimate an evoked response, a single bad trial  

can corrupt the final averaged EEG signal. Bad channels are also potential problems, as artifacts 

present on a single bad sensor can spread to other sensors due to spatial projection. Normal 

filtering techniques [3] can often suppress many low frequency artifacts, but turn out to be 

insufficient for broadband artifacts since the artifacts usually have frequencies overlapping with 

the signal frequency, which makes artifact removal a key step in every EEG processing pipeline.  

Early attempts to remove ECG artifacts from EEG included subtraction and ensemble average 

subtraction (EAS) [4] methods. Current mainstream methods are based on adaptive filtering [5,6] 

and blind source separation such as Independent Component Analysis (ICA) [7,8] which is 
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widely used in the field of EEG signal processing for artifacts suppression, since it can separate 

a signal mixture into its main sources, such as EOG, ECG, EEG, etc. components. Wavelet 

transform (WT) is increasingly used [9,10] in the EEG noise removal and it is more often used 

in combination with (ICA)-based methods [11,12]. 

The simplest method is to discard parts of the data that are contaminated by artifacts. This 

approach requires visual inspection and manual rejection of artifact contaminated data segments 

or epochs. This is a labour-intensive task that requires a trained expert to go through each 

individual dataset to mark artifacts, and it excludes the possibility of automatic and high-speed 

analysis of large-scale EEG experiments. Although the annotation of bad EEG data is likely to 

be accepted by trained experts, their decision is subject to variability and cannot be replicated. 

Their assessment may also be skewed due to prior experience with specific experimental setup 

or equipment, not to mention the difficulty these experts have in allocating enough time to review 

the raw data collected daily. 

Since visual inspection is slow, tiring and requires an expert assistant, several authors proposed 

methods for semi or fully automatic component detection, which resulted in automated analysis 

pipelines [13]. The automation approach not only saves time, but also allows flexible analysis 

and reduces the barriers to reanalysis of data, thus facilitating reproducibility. One semi-

automated method using ICA for identifying artifact components is presented by Delorme et al. 

in [14]. Various statistical measures (entropy, kurtosis, spatial kurtosis) are calculated for each 

independent component to label them automatically as artifact, but validation and rejection is 

performed manually. Since the method is based on statistical analysis of the components, which 

does not consider the physiological model of artifacts, the performance of the method is not 

perfect. A similar statistical approach is followed in the FASTER [15] and ADJUST [16] artifact 

removal toolboxes. 

Brainstorm, EEGLAB, FieldTrip, MNE,[17–20] are popular tools used for rejection of EEG 

artifacts  based on simple metrics such as differences in peak-to-peak signal amplitude that are 

compared to a manually set threshold value. When the peak-to-peak amplitude differences in the 

EEG exceeds a certain threshold, the given segment is considered bad that should be excluded 

from the experiment. Kurtosis, standard division, mean, skewness etc. are used to set the proper 

threshold and remove the peaks or trials greater than the threshold e.g. trial has kurtosis >5 is 

rejected. Although this seems to be very easy to understand and easy to use from the point of 

view of a practitioner, it is not always convenient. Moreover, a good peak-to-peak signal 

amplitude threshold is data-specific, meaning that setting it involves a certain amount of testing 

and error. Rejection of data epochs can result in significant loss of data which in turn can have 

adverse effects in Event Related Potential (ERP) studies. Using only a small number of remaining 

epochs can result in critically low signal-to-noise ratio. 

More sophisticated artifact removal methods rely on cross-correlation based filtering which 

require the use of reference channels, in the form of e.g. horizontal-vertical eye movement (EOG) 

or ECG electrodes. These can be acceptable in strictly controlled laboratory situations, but extra 

electrodes can be problematic in clinical settings due to patient discomfort or interference with 

other equipment. Numerous researches have therefore been directed towards creating automatic 

artifact removal methods that work without external electrodes and can be performed without 

manual inspection. The most successful ones of such methods are based on the application of 

Independent Component Analysis (ICA) [8] that can separate a signal mixture into its original 

sources or components, based on the condition of statistical independence.  
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Bad channel artifacts generate high amplitude and non-periodic signal effects, which distort raw 

EEG data, making EEG calculations untrustworthy. Rejecting the trial which has drifts is not 

practical solution because if there is one bad channel displayed on the data, it means most of the 

trials would be rejected [21]. Consequently, only the bad channel has to be automatically marked 

and interpolated to avoid rejecting entire trials. The traditional artifact removal approach based 

on visual inspection has no standard measure from one to another about how we define and reject 

the artifacts. In the manual inspection protocol, the electrode offset has to be checked before 

starting the real experiment to mark the bad channels. The pre-defined information about the bad 

channel list needs to be updated if one of the channels contains bad records in the middle of the 

measurements, and this can be hard to detect during the recordings if no significant variance can 

be detected in the channels. 

In this thesis, fully automatic methods for removing EOG and ECG artefacts from EEG signals 

are proposed. A new wavelet-based method is presented for EOG artifact removal that cleans 

EOG independent components selectively, leaving non-contaminated parts of the component 

untouched. The novel ECG artefact removal algorithm uses a sophisticated approach to identify 

automatically the ECG components without the need for a reference ECG channel, thus it can be 

used in situations where ECG data is not available. The method can also detect and remove ECG 

artefacts generated by pathological cardiac activities which makes the method more robust when 

analysing EEGs of elderly patient. The results show that the proposed methods outperform state-

of-the-art methods for EOG-ECG removal in its accuracy both in the time and the spectral 

domain, which is considered an important step towards the development of accurate, reliable and 

automatic EEG artifact removal methods. 

1.2 Brain Connectivity  

The human brain comprises close to hundred billion neurons, each establishing several thousand 

synaptic connection matrices which can be mathematically modelled in several scales micro- 

meso-macro-scale levels, with nodes or regions and links. Connectivity refers to the anatomical 

connected patterns (networks pathways) of the nervous system ("anatomical connectivity"), 

which have statistical dependencies ("functional connectivity") or these patterns have causal 

interactions ("effective connectivity") between distinct regions within a nervous system. To go 

beyond these networks and decode the meaning of connectivity links between the nervous cells 

or regions is one of the goals of neuroimaging. Studying these links is crucial to elucidating the 

strength of connection and describing the direct and indirect information flow at different scales 

such as individual synaptic neurons at the microscale or pathways between regions at the 

macroscale. Properties of the connectivity network may help in deciding whether certain neural 

regions are normal or contain unexpected features caused by functional deficits or 

neuropsychiatric disorders.  

Through identifying anatomical and functional associations of brain regions on the same map 

using an integrated approach, brain mapping techniques, network analysis becomes a powerful 

tool for investigating structural-functional mechanisms. It is able to present the brain connectivity 

and to reveal etiological relationships that link abnormalities of connectivity with 

neuropsychiatric disorders. 
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1.3 Brain Connectivity Biomarkers of Diseases  

Ischemic stroke is one of the major causes of death or permanent disability with increasing 

frequency of occurrence as the population in developed countries is aging. Prompt and effective 

treatment can speed up recovery and improve rehabilitation outcome. Timely treatment of stroke 

starts with an MRI and/or CT scan to identify the location and extent of brain damage. After 

diagnosis, treatment starts and the condition of the patient is monitored by the medical staff based 

on external symptoms using standardized stroke scales (NIHSS, BI, etc.) [22,23]. A second MRI 

scan might be performed on patient dispatch to confirm recovery status. Unfortunately, 

complications can develop in the hospital, e.g. Delayed Cerebral Ischemia (DCI), which can only 

be discovered once symptoms worsen [24]. Also, efficiency of the treatment is difficult to assess 

without monitoring quantitative stroke metrics. These metrics could help in selecting the best 

treatment path, and be used as predictors for the level of recovery at the end of the rehabilitation 

period [25–28].  

Continuous monitoring of patients and the use of mainly frequency-domain quantitative 

measures have already been suggested [28–31]. It is known that these metrics can detect stroke-

related status changes well before symptoms develop [28]. The reported methods all rely on the 

calculation of a single metric from measurements using a standard 19-electrode clinical EEG 

system. This process could be more efficient with using high density electrode-cap of 128 or 256 

channels with more metrics describing the properties in-between the different brain regions. 

This thesis develops brain connectivity metrics based on high-density EEG measurements that 

can depict the location and extent of stroke lesions similar to MRI scans. Monitoring brain 

connectivity changes could help in verifying treatment effectiveness as well as measuring 

progress of recovery. A comparison of connectivity measures is performed between patients and 

control group as well as between start and end of the stroke rehabilitation interval. The results 

show differences in the small-world, graph degree, clustering coefficient, global and local 

efficiency metrics that correlate with brain plasticity changes during stroke recovery and can be 

used as biomarkers to quantify stroke severity and outcome of recovery. 

1.4 High Resolution Brain Connectivity  

Precise and accurate analysis of the non-stationary spectral variations in EEG is a long-standing 

problem. Dynamic Functional Connectivity (DFC) is an emerging subfield of functional brain 

connectivity analysis whose goal is to uncover and track the changes in functional connectivity 

over time. Traditional connectivity methods assumed that the connectivity network representing 

cortical activity is stationary. Dynamic connectivity can provide new insights about the large-

scale neuronal communication in the brain and help to track the progress of recovery of many 

neurological disorders and brain diseases such as epilepsy, Alzheimer’s disease, stroke, and 

predict outcome to many other deficits related to the brain. The crucial part of calculating DFC 

is the time-frequency decomposition.  

The Fast Fourier Transform (FFT) has been used to efficiently estimate the frequency content of 

a discrete and finite time series but it assumes the input signal is stationary. The most important 

issue in the time-frequency analysis of an EEG signal is the principle of uncertainty, which 

stipulates that one cannot locate a signal with an absolute precision both in time and frequency. 

Over the past 30 years, several methods have been developed to extend Fourier's research to non-

stationary signals, resulting in a body of work called "time-frequency" (TF) representation 
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methods. They include linear TF methods as Short Time Fourier Transform (STFT), Wavelet 

Transform (WT) that involve phase and magnitudes contributions. 

The Short-time Fourier and the wavelet transforms also show some resolution limitations 

(localization limit) due to the trade-off between time and frequency localizations and smearing 

due to the finite size of their templates. STFT is the extension of FT which was modified to show 

nonstationary components of the signal in time. It is indeed the FFT of the successive, overlapped 

windows of the signal, where each frequency distribution is being correlated with each window's 

central time. Usually there is a peak smeared around the peak of the main frequency with 

decaying side lobes on the selected window. However, side lobes attenuation is associated with 

increasing of the window [32]. The spectral smearing can be reduced by increasing the length of 

the time window, but this also reduces the time localization accuracy by imposing increased 

stationarity. Thus, high time localization comes at the expense of the spectral smearing. 

Wavelet transformation was established for the time varying spectral estimate to overcome the 

spectral smearing. It uses variable time window lengths which are inversely proportional to the 

frequency of the central target. So, long windows used for low frequencies therefore have good 

frequency, but limited time, while short windows used for high frequencies have good time but 

limited range of frequency resolution [33]. WT showed accepted temporal resolution on the high 

frequencies, while poor temporal resolution was located in the low frequencies [34]. The chosen 

wavelet function should be carefully selected with specific characteristics to improve the signal 

representation. 

Functional connectivity emerging from phase synchronization of neural oscillations of different 

brain regions provides a powerful tool for investigations. While the brain manifests highly 

dynamic activation patterns, most connectivity work is based on the assumption of signal 

stationarity. One of the underlying reasons is the problem of obtaining high temporal and spectral 

resolution at the same time. Dynamic brain connectivity seeks to uncover the dynamism of brain 

connectivity, but the common sliding window methods provide poor temporal resolution, not 

detailed enough for studying fast cognitive tasks. In this work, I propose the use of the Complete 

Ensemble Empirical Mode Decomposition (CEEMD)  followed by Hilbert transformation to 

extract instantaneous frequency and phase information, based on which phase synchronization 

functional connectivity between EEG signals can be calculated and detected in every time step 

of the measurement. The work demonstrates the suboptimal performance of the sliding window 

connectivity method and shows that the instantaneous phase-based technique is superior to it, 

capable of tracking changes of connectivity graphs at millisecond steps and detecting the exact 

time of the activity changes within a few milliseconds margin. The results can open up new 

opportunities in investigating neurodegenerative diseases, brain plasticity after stroke and 

understanding the execution of cognitive tasks. 

1.5 Thesis Organization 

This section describes the structure of the thesis, starting from Chapter 2 which presents an 

introduction to the characteristics of EEG, the measurement process and required equipment, and 

the steps to record an acceptable EEG measurement. Then, it gives an overview about the pre-

processing approaches used in EEG signal processing. 
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Chapter 3 starts with defining the different types of EEG artifacts, which can be formed by 

biological or external sources, followed by an overview of the state-of-the-art techniques for EEG 

artifacts removal. 

In Chapter 4, I provide an improved, fully automatic ICA and wavelet based EOG artifact 

removal method that cleans EOG independent components selectively, leaving other parts of the 

component almost untouched.  

A novel automatic method for cardiac artifact removal from EEG is discussed in Chapter  5. 

Both proposed methods work without manual intervention (visual inspection), and thus 

accelerates pre-processing steps and lay the groundwork for potential online and real-time EEG 

analysis (e.g. BCI and task related application, finger tapping, visual - auditory evoked 

potentials). 

A high-resolution EEG technology as an aid for monitoring and quantifying patient recovery 

progress, complementing the use of clinical stroke scales is introduced in the first part of Chapter 

6. Connectivity network metrics are calculated as an aid for monitoring and quantifying patient 

recovery progress, complementing the use of clinical stroke scales. It shows changes of 

functional connectivity measures in stroke patients to identify reliable biomarkers that 

characterize progress of recovery and predict outcome. To overcome the trade-off between time 

and frequency resolution and localization smearing, in Chapter 7, I propose the use of the 

Complete Ensemble Empirical Mode (EEMD) Decomposition followed by Hilbert 

transformation to extract instantaneous frequency and phase information. The results showed that 

the introduced method is able to track the fast-dynamic brain connectivity changes in time and 

frequency resolution at rate of sampling frequency.  

Finally, in Chapters 8 and 9, I conclude the results of the thesis work and list my publications 

related to the presented work. 
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2 Introduction to EEG signal Processing 

I start this chapter with discussing the characteristics of EEG data, the process of EEG 

measurements, the equipment needs for the measurement, and the steps to record an accepted 

EEG measurement. Then, I give an overview of the pre-processing approaches used with EEG 

measurements, the extracted features used to show the characteristics of the measured signal in 

the time and frequency domain and the concept of source localization and brain connectivity and 

their impact for neuroimaging sciences. 

The history of EEG started around the end of the 19th century when an English researcher, 

Richard Caton (1842–1926) was able to detect electrical impulses of the brain using the exposed 

cortex of monkeys and rabbits [35]. He used a sensitive galvanometer to detect the fluctuations 

of the brain in different stages, sleep and absence of activity following death. Adolf Beck, (1863-

1939), a Polish physiologist did similar measurements, followed by Russian physiologist 

Pravdich-Neminski (1879-1952) who presented a photographic record. The German psychiatrist  

Hans Berger [36], in 1924, was the first researcher who recorded EEG measurements from a 

human. This led to measurements on epileptic patients (Fisher and Lowenback, 1934). Gibbs, 

Davis, and Lennox [37] in 1935 described interictal epileptiform discharge wave patterns during 

clinical seizures. The English physician Walter Grey in the 1950's developed EEG tomography 

which provided a means for mapping electrical activity across the surface of the brain. It gained 

its prominence during the 80's primarily as an imaging technique in research settings.  

2.1 Overview of the Measurement Process 

The measured EEG signal is the sum of all the synchronous activity of all cortical sources 

including areas potentially far away from a given electrode. The scalp potential distribution, 

generated by this electric field, can be measured by a suitable EEG measurement device and a 

set of scalp electrodes, and can be stored in a computer for later processing and analysis. The 

recording system consists of electrodes, amplifiers with filters, A/D converter and recording 

device. Electrodes are used to record the signal from the head surface, then the recorded signals 

are fed into amplifiers. The signals are converted from analogue to digital form, and finally, a 

computer displays and stores the obtained data.  

       
Electrodes EEG Instrument (A/D box) Graphical output  

Figure 2-1: Main components of an EEG measurement system1. 

There are different types of electrodes, reusable disc electrodes, electrode caps, needle electrodes 

and saline-based electrodes. Each one of it has its own function; for example needle electrodes 

 
1 image source: https://www.biosemi.com/. 

https://www.biosemi.com/
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are used invasively where they are inserted under the scalp for long recordings while electrodes 

cap are preferred for multichannel montages, where they are installed non-invasively on the scalp 

surface. Commonly, scalp electrodes consist of Ag-AgCl disks, of diameter between 1 to 3 mm, 

and long flexible leads are plugged into an amplifier. The number of electrodes used in practice 

varies. In clinical practice, 19 electrodes are used. In research experiments, 32 to 256 electrodes 

may be used. There are several electrode layouts in use, such as the 10/20, 10/10 or 10/5 

international systems, or the Biosemi ABC radial layout [2] as shown in Figure 2-2 and Figure 

2-3 . The channel configurations can comprise up to 64 -128 or 256 active electrodes. 

 

Figure 2-2: The international 10-20 electrode layout. 

 

Figure 2-3: Biosemi cap, 128-channel ABC radial layout. 

The main advantage of EEG over other brain imaging methods (e.g. fMRI, PET) is its superior 

temporal resolution. Typical EEG sampling rates are in the range of 512 to 4096 Hz, which enable 

us to follow the time course of brain activity at millisecond or sub-millisecond resolution. The 

head is made up of various tissues (white and grey matter, cerebrospinal fluid, skull, scalp) with 

varying conductivity properties. When the generated current flows from the cortex to the scalp, 

it must pass through the skull which has a relatively low conductivity (high resistivity). As a 

result, the current spreads out laterally within the skull instead of passing straight through to the 

scalp. The result of this so-called volume conduction effect is the reduced spatial resolution and 
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the ‘smeared’ or ‘blurred’ appearance of activation sources on the scalp potential distribution 

image.  

EEG is widely used in many applications as part of diagnosis and monitoring of epilepsy [38], 

Parkinson's disease [39], Alzheimer’s disease [40], Huntington's disease [41], events detection 

in healthy human sleep EEG [42], brain-computer interface (BCI) [43] and can help in the 

localisation of the exact cortical source of the activity or disease [44].  

2.2 EEG Processing Pipeline 

EEG data is normally processed in a pipeline fashion, starting with data pre-processing including 

filtering, artifact removal, re-referencing, followed by feature extraction (Event-Related 

Potential, time-frequency, cortical source or connectivity features) followed by classification or 

pattern recognition. 

 

 

Figure 2-4: EEG processing pipeline 

2.2.1 Pre-processing 

One of the most critical steps to obtain a clean EEG data is the pre-processing phase. Noise, 

unwanted artifacts, and other disturbances must be removed from the signal in order to produce 

reliable results. The EEG signal can contain physiological and non-physiological noise and 

artifacts, e.g. effects of eye and body movements, muscle contraction induced noise, heart and 

pulse artifacts, superimposed mains power line noise of 50 or 60 Hz and its harmonics, and 

amplitude variations by changes at the tissue/electrodes interface (due to skin resistance variation 

or contact problems). 

Bandpass/band stop filtering is one of the classical and simple attempts to remove artifacts from 

an observed EEG signal. This method works reliably only when the artifacts have a narrow 

frequency band, e.g. power line artifact (50/60 Hz, see Figure 3-1), and the spectrum of the 

artifacts do not overlap with the signal frequency. Band pass filtering from 0.1 to 70 Hz is used 

to initially to keep only the meaningful frequency range of the EEG signal. However, in some 

cases, fixed-gain filtering is not working efficiently for biological artifacts because it will 

attenuate EEG interesting signal and change both amplitude and phase of signal [45]. Adaptive 

filtering [46] is an alternative approach to the normal filtering method, which assumes that the 

EEG and the artifacts are uncorrelated, and the filter parameters are adjusted in a feedback loop. 

Adaptive filtering, however, requires a reference signal for correct operation. 

Wiener filtering is considered also an optimal filtering technique used as the adaptive filtering. 

It uses a linear statistical filtering technique to estimate the true EEG data with the purpose to 

create a linear time invariant filter to minimize the mean square error between the EEG data and 

the estimated signal [47]. Since there is no a priori knowledge on the statistics [48], the linear 

filter estimates the power spectral densities of the observed signal and the artifact signal, 

moreover it eliminates the limitation of using extra reference channels, but the requirement of 

calibration can add the complexity of its application. 

EEG data Pre-processing
Feature 

Extraction
Classification/

Pattern recognition
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Figure 2-5: EEG raw data contaminated with EOG and ECG artifacts. 

Since the electrical potential of the physiological artifacts have frequency characteristics 

overlapping with the EEG signal, the removal of such kind of artifacts needs more efficient 

methods since the traditional signal processing techniques such as normal filtering method fail 

to clean them. Researchers have developed different methods for artifact removal, including 

adaptive filtering and component-based method. In the adaptive filtering-based method, a 

recursive algorithm is used for updating filter coefficients. The coefficients are modified until 

the output has been minimized according to a given signal property (e.g. time and frequency 

domain features) to remove the noises out of the signal [45]. Thus, a reference signal, has to 

supplied besides the recorded signal (Figure 2-6). 
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Figure 2-6: Overview of the adaptive signal filtering method [46]. 

Independent Component Analysis (ICA) is one of the component-based approaches that are 

commonly used in the pattern analysis and biosignal analysis [49]. ICA is able to separate the 

artifacts from the signals by decomposing the EEG signals into several independent components 

based on statistical independence of signals. One of the main advantages of this method that it 

does not need an external reference channel, as the algorithm itself does not need a priori 

information. Once the signal is decomposed into independent components, one or more 

components will represent the artifacts. If these components are removed before reconstructing 

the signal from the components, we will get an artifact-free signal. There are two methods for 

identifying and removing artifact components, i) manual visual inspection where an expert 

searches for the bad component to reject, and ii) automatic detection where the component is 

compared with a pre-defined threshold [15,50]. The manual component inspection is time 

consuming and cumbersome. Automatic component detection depends on passing the signal to a 

sophisticated algorithm using the pre-defined threshold or reference channels to help in 

identifying artifact components. The details of each method are described in the Chapter 3. 

2.2.2 Feature Extraction 

After artifact removal, the significant features of the cleaned EEG signals will be extracted by 

using feature selection methods. The feature extraction and selection methods are important to 

identify certain properties to be used effectively in classifying the EEG signals. In addition, it 

also reduces the amount of resources needed to describe a huge set of data accurately. Hence, 

feature extraction is considered the most critically significant step in EEG data classification. 

Several methods are used in feature extraction including time-domain, frequency domain and 

time-frequency domain. In the time-domain, the commonly used features are, mean, minimum, 

maximum, variance, entropy, etc. The drawback of the time-domain approach is its high 

sensitivity to variations of the signal amplitude.  
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In the frequency domain, the signal is transformed into frequency domain using Fast Fourier 

Transform (FFT). Frequency characteristics are dependent on neuronal activity and grouped into 

multiple bands (delta:1-4 Hz, theta:4-8 Hz, alpha:8-12 Hz, beta:12-30 Hz, and gamma :>30 Hz) 

corresponding to a cognitive process. In some cases, frequency characteristics are not enough to 

provide signal characteristic for classification using only frequency information, which makes 

the time-frequency domain the alternative to improve the classification performance [51]. These 

include wavelet transform (WT) which is highly effective for non-stationary EEG signals 

compared to the short-time Fourier transformation (STFT). Several feature extraction methods 

have been used based on the time-frequency domain approaches as Power Spectrum Density, 

Phase Values Signal Energy. Calculating the coherence between the different time-frequency 

signals refers to an important feature called connectivity. These connectivity features include 

Magnitude Squared Coherence, Phase Synchronization, Phase Locked Value, etc. The most 

important issue in the time-frequency analysis of the EEG signal is the principle of uncertainty, 

which stipulates that one cannot localize a signal with absolute precision both in time and 

frequency. This principle controls the time-frequency characteristics and is considered as a 

cornerstone in the interpretation of Dynamic Functional Connectivity (DFC).  

2.2.2.1 Event Related Potential (ERP) computation 

The amplitude of the EEG signal measured on the scalp is normally within the range of ± 50 μV. 

The biologically meaningful small-amplitude signal is usually embedded in relatively high level 

of noise generated by various biophysical sources (muscle activity, ECG, eye movement, blinks), 

skin resistance changes, electrode malfunction, and so on, making the detection of small 

amplitude changes difficult. A well-established method for this problem is signal averaging. 

Assuming that noise is a random process with zero mean, the sample-wise averaging of a 

sufficiently large number (>100) of EEG trials (time window of task of interest) in a stimulus-

synchronised manner will cancel out noise and leave only the stimulus-locked components in the 

resulting signal [52]. Successful averaging requires very precise synchronisation of the datasets 

of the repeated experiments; therefore, stimulus presentation and response triggers are used to 

mark the start and end of the experiment trials. Depending on which trigger is used for averaging, 

we can distinguish between stimulus or response-locked averaging. The resulting trigger-based 

average potentials are called event related potentials (ERP). Depending on the applied stimulus 

type, we can examine visual, auditory, sensory and other cognitive tasks with this method. 

The execution of cognitive tasks involves various sensory, cognitive and motor processes. The 

sum of these processes appears in the averaged ERP waveforms in the form of components. 

Components are distinct positive or negative potential peaks, as illustrated in Figure 2-7, named 

by the polarity (negative/positive) and the order or time stamp of the peak, e.g. N1, N2, P1, etc. 

or N100, P300 or P500. The analysis of these waveforms allows us to compare ERPs obtained 

under different conditions and consequently test scientific hypotheses. 



13 

 

 

Figure 2-7: Typical ERP components: positive and negative peaks designated by their order P1, 

P2, P3 or the time they appear, e.g. P100, N400. ERP is often displayed with reversed polarity 

showing negative peaks pointing upwards. (Source: https://en.wikipedia.org/wiki/ Event-related 

potential). 

2.2.2.2 EEG Source Localization and Connectivity 

EEG source localization can be used to uncover the location of the dominant sources of the brain 

activity using scalp EEG recordings. It provides useful information for study of brain's 

physiological, mental and functional abnormalities by solving inverse problem. The process 

involves the prediction of scalp potentials from the current sources in the brain (forward solution) 

and the estimation of the location of the sources from scalp potential measurements (termed as 

inverse solution) [53]. The accurate source localization is highly dependent on the electric 

forward solution which includes, head model, the geometry and the conductivity distribution of 

the model tissue sections (scalp, skull, brain grey, cerebrospinal fluid, and white matter, etc.).  

In EEG connectivity analysis, methods based spectral coherence  such as Phase Lock Value, 

Phase Lock Index, etc. [54] replace amplitude correlation to mitigate the effect of noise and 

reduce spurious connections caused by volume conduction. Connectivity can be computed in the 

sensor (electrodes) space or in the source (cortex) space. Connectivity in source level requires 

accurate 3D head models and sophisticated inverse problem solvers needs it also requires a lot 

of complicated work includes first doing forward solution which needs information about the 

anatomical structural of the brain as: 

• Head model which contains the voxels and the connectivity of the brain layers. 

• Source model: which contains the information about the dipole’s positions and 

orientations. 

The above steps need information about the anatomical data and anatomical marks to align the 

sensors with the anatomical marks before starting source reconstruction. Preparing the head 

model dependent on the used method for preparing the volume conduction such as Boundary 

Element Method (BEM) and Finite Element Method (FEM). BEM calculates the model on the 

boundary of the head (scalp, skull, brain), while FEM calculates the model on all points of the 

head. The calculation of the connectivity is slow due to many arguments need to be defined. The 

increasing in the source depth deteriorates the accuracy of the connectivity estimations due to the 

decreased accuracy of source localization and size. A problem of source reconstruction in EEG 

is that the sources may not be fully spatially determined, but rather are smeared out across a 

https://www.sciencedirect.com/topics/engineering/electroencephalography
https://www.sciencedirect.com/topics/engineering/localisation
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relatively large brain volume. This problem arises mainly from inaccurate forward solution and 

the ill-posed nature of the inverse EEG problem, which projects data from relatively few 

electrodes to many possible source locations. This might result in two uncorrelated sources 

having their reconstructed time courses erroneously correlated. Ignoring this can artificially 

inflate the level of connectivity between two sources. The way leakage propagates across the 

source space is non-trivial, and solutions are required to be implemented to decrease this effect 

on functional connectivity [55]. Since connectivity in the source space cannot be calculated 

without the anatomical information of the brain, calculating connectivity in sensor space is a 

much faster approach, however, with reduced spatial resolution. 

2.3 Current State-of-the-Art Methods 

Event-related and time-frequency analysis methods can be used to verify hypothesis based on 

various experimental conditions and to explore the temporal/spectral/spatial characteristics of the 

EEG data. Time-frequency analysis methods provide a more advanced set of tools that provide 

information of activity in different frequency bands and lend themselves naturally to the 

examination of oscillations and phase properties of the given cognitive process. It allows us to 

better separate the components of a task that contain perceptual, cognitive and decision subtasks. 

Time-frequency analysis results also more naturally connect with neural mechanisms at lower 

spatial scales. They do not, however, provide information about the nature and operation 

mechanisms of the distributed cortical networks underlying the given cognitive processes. On 

the other hand, finding the correlation between the calculated frequency characteristics give a 

clear insight where understanding brain function involves not only gathering information from 

active brain regions but also studying functional interactions among neural assemblies which are 

distributed across different brain regions. This frequency correlation is well known as brain 

connectivity and widely used to aid diagnosis of neural and brain diseases such as stroke, 

Alzheimer’s disease, epilepsy, etc. It provides important biomarkers for understanding 

pathological underpinnings, in terms of the topological structure and connection strength and 

opens the way to the network analysis which has become an increasingly useful method for 

understanding the cerebral working mechanism and mining sensitive biomarkers for neural or 

mental problems as language processing [56,57]. 

Connectivity analysis, the collections of methods for investigating the interconnection of 

different areas of the brain – provides the theoretical basis as well as the practical tools describing 

the operation of these networks [58]. Different areas of the brain are connected by neural fibres 

or tracts of the white matter, transmitting information between distant brain regions. This type of 

connectivity, the Structural Connectivity, describes the anatomical connections in the brain. 

Diffusion Tensor Imaging [59] can be used to detect anatomical fibres and construct structural 

networks. Structural connectivity, however, presents a rather static and limited view of the brain; 

it cannot fully describe the short-range, dynamic and plastic interconnection and activation 

mechanisms found in brain processes. Functional and Effective Connectivity networks provide 

this crucial additional information for us [60]. Functional Connectivity describes the temporal 

correlations in activity between pairs of brain regions. The connectivity may reflect linear or 

nonlinear interactions, but it ignores the direction of the connection. Effective Connectivity, on 

the other hand, uses measures that enable it to describe causal influences of one region on another, 

hence explore dependencies in our network. 
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Figure 2-8: Varying information content extracted by different connectivity analysis methods2. 

Connectivity is described by networks, which are in fact graphs, consisting of nodes (brain 

regions) and edges (connections) [61]. Nodes ideally should represent coherent structural or 

functional brain regions without spatial overlap, while links represent anatomical, functional, or 

effective connections (link type) but can also have weight and direction associated with them. 

Binary links only represent the presence or absence of a connection. Weighted links, on the other 

hand, can represent various properties. In anatomical networks, weights may represent the size, 

density, or coherence of anatomical tracts, while weights in functional and effective networks 

may represent respective magnitudes of correlational or causal interactions. In functional and 

effective connectivity networks, links with low weights may represent spurious connections that 

obscure the topology of strong connections. These can be filtered out using suitable thresholding 

policies. 

To use these constructed networks in a quantitative manner, network measures/metrics are 

needed [61]. Measures can characterise the properties of local or global connections in the 

network, detect various aspects of functional integration and segregation, or quantify importance 

of individual brain regions. Measures exist at the individual element level or globally as 

distributions of individual measures. The degree of a node is the number of its links, i.e. the 

number of its neighbours, representing the importance of a node. The degrees of all nodes create 

a degree distribution which is important to describe e.g. the resilience of the network. The mean 

of this distribution gives the density of the network. Other measures, e.g. the number of triangles 

in the network, or the number of triangles around a given node (clustering coefficient) describe 

the level of functional segregation – the presence of functional groups/clusters – in the network. 

Path length and average shortest path length provide information about the ability of the network 

to combine information quickly from distant brain regions. Further specific measures can be 

found in [61]. 

  

 
2 image source: http://www.scholarpedia.org/article/Brain_connectivity 

http://www.scholarpedia.org/article/Brain_connectivity
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3 Literature review of EEG artifacts and possible 
removal 

This chapter starts with defining the different types of EEG artifacts, which can be formed by 

biological and external sources, then it gives an overview of the state-of-the-art used techniques 

for EEG artifacts removal. Since the measured EEG signals are regularly contaminated by ocular 

EOG, and cardiac artifacts (ECG) that are especially problematic due to their high amplitude and 

non-periodic (ocular) or quasi-periodic (cardiac) nature, they can easily turn valuable EEG 

measurements unusable. Thus, I focus here on the state-of-the-art used techniques for removing 

the EOG-ECG artifacts from the EEG signal. 

3.1 Noise and Artifacts 

The measured EEG signals are regularly contaminated by equipment and environmental noise. 

These noises vary between physiological or non- physiological sources. The non-physiological 

sources are represented by power-line noise, bad location of electrodes, unclean scalp, varying 

impedance of electrodes over the head, etc. as shown in Figure 3-1and Figure 3-2. 

 

Figure 3-1: 60 Hz power line noise on channel 8 (affecting channels 1-7) and EOG artifacts 

(red highlight) spread over channels 1 to 7  (PhysioNet dataset- s01 rc02) [62,63]. 
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Figure 3-2: Illustration of a bad channel in a recording (electrode A25: potential drift, left 

panel) and its appearance in the scalp potential distribution (red spot in  

the topoplot on the right panel). 

The second kind of artifacts caused by extracerebral physiological sources such as ocular, muscle 

and cardiac artifacts that are especially problematic due to their high amplitude. The artifacts are 

either non-periodic (ocular- vertical or horizontal eyes movements, muscle) or quasi-periodic 

(cardiac) nature that can easily turn valuable EEG measurements unusable. Eye blinks - eye 

movements are the most common artifacts in EEG recordings. Eye movement generates changes 

in the resting potential of the retina during eye- movements and eye- blinks, besides the muscle 

activities of the eyelid within blinks produces disturbances in EEG recordings. The amplitude of 

EOG is generally much greater than the EEG and its frequency spectrum overlaps that of the 

EEG signals. They are mainly presented in low frequency components of the EEG, that is in 

between 2-10 Hz. 

 

Figure 3-3: EOG physiological artifacts (horizontal and vertical eye movements)  

in the independent component (IC) space and their typical frontal high-amplitude pattern. 

The heart also generates an electrical signal which can be recorded in numerous locations on the 

body, including the head which is called electrocardiograph (ECG) and has frequency band 0.5 - 

100 Hz that overlaps with the EEG frequency [64]. Also, the heart during beating produces 
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artifacts that stem form voltage changes as blood vessels contract and and expand. This also 

generates low frequency components in the range of 0.5-3Hz affecting the characterization of K-

complexes observed during stage N2 of NREM sleep and deep or slow-wave sleep (stage N3 of 

NREM). 

 

Figure 3-4: ECG physiological artifacts in the ICs space and the scalp potential distribution of 

the QRS peak. Note the superimposed high-amplitude area in the left-occipital region. 

The muscle artifacts from face, neck, and jaw generate an electrical activity called 

electromyography (EMG) that has high impact on EEG quality [64]. When jaw muscles are 

activated (teeth clenching and chewing) or if the head moves that involve neck muscle 

contractions, high amplitudes (in the order of mV) can be observed on the EEG measurements in 

the 20-30 Hz frequency range. Because head muscle activations are an inherent part of normal 

daily routines, solutions are needed that handle such artifacts. ICA might be considered an 

appropriate method to remove EMG contamination since both EMG contamination and EEG 

have substantial statistical independence from each other both temporally and spatially [65,66]. 

Changes in the quality of the electrical contact of channels over the skin produce the largest 

disturbance in the EEG. These kinds of artifacts are called motion artifacts, which influence the 

contact surface size, introduce skin deformation, and cause changes to the interface layer due to 

changes in conductive gel thickness or amount of sweat, resulting in electrical impedance change 

in turn. Artifacts of movement produced during normal activity, including locomotion, may have 

amplitudes greater than the signals produced by brain activity. 
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Figure 3-5: (a) Superposition of the true EEG signal (red) and the contaminating artifacts 

(blue). (b) Zoomed in view of the second contaminated signal section [67]. 

Unlike the artifacts mentioned above, which usually show stereotypical behaviour, movement or 

motion artifacts are non-stationary electrical signals. This makes cleaning of such artifacts one 

of EEG's major challenges. While the automated reduction of the artifacts has made substantial 

progress, there are only a few approaches that provide fully automatic artifacts handling methods 

for physiological artifacts [68]. 

3.2 Artifact Removal Methods 

Artifact removal is a process of recognizing artifact components in the EEG signal and separating 

them from the neuronal sources. These strategies may use only EEG signals during artifacts 

rejection but may also rely on information from sources capturing physiological signals such as 

EOG, ECG, EMG. Most artifact rejection methods assume that the recorded signal is a 

combination of the signal of interest and the artifact signal, and the combination is additive in 

nature. Based on this fact, methods that are applied for artifact removal include regression, blind 

source separation (BSS : ICA and PCA), empirical mode decomposition (EMD), and wavelet 

transforms (WT) and in some cases, a combination of these methods is used  [69,70].  

A review of the most common EEG artefacts removal methods [71] provides a chart about 

percentage of the number of papers in the literature over the past five years (2015-2019), shown 

in Figure 3-6. It shows that Independent Component Analysis is the most frequently used method, 

moreover it was introduced with regression, WT, etc. as known as hybrid method to enhance the 

performance. Although there was an extensive research centred on artifact detection and removal 

of EEG signals reported in many literatures to date, there is no consensus on an optimal solution 

for all forms of artifacts, and the topic is still an open research problem [71]. 
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Figure 3-6: Percentage of the number of literatures published during the past five years [71]. 

Visual inspection is one of the traditional methods used to remove artifacts; artifact contaminated 

or bad channel data segments (epochs) are simply rejected. This approach is laborious and can 

potentially lose useful neural information. Epoch rejection can largely reduce the number of 

usable epochs and reduce the signal-to-noise ratio. Manual inspection prevents the automatic and 

high-speed analysis of large-scale EEG experiments. The ICA-based source separation methods  

[72] could help in bad channel detection too, since bad channels show up as easily identifiable 

components as illustrated in Figure 3-7.  

 

Figure 3-7: Bad channels (A25, D31) detected in the independent component space. 

Spatial correlation with the other channels can be used to identify the bad channels [16,73,74] 

but if correlation is low, these algorithms cannot identify the bad channel correctly. The 

correlation is mainly dependent on the distance between the electrodes: two distant electrodes 

might show low correlation although they might be phase-correlated. Automatic selection criteria 

based on statistical features are used in the FASTER [15] and EEGLAB [75]packages using pre-

defined threshold such as z-score [15,18], which is still not robust since not all bad channel 

features can be described by the implemented features.  

The DETECT package [50] is a MATLAB toolbox for detecting irregular event time intervals 

by training a model on multiple classes. The method showed results close to what they manually 
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identified, but is still dependent on the supervised learning method. An automatic bad intracranial 

EEG (iEEG) recordings was introduced by Viat et al, [74], using machine learning algorithm of 

seven signal features. The machine learning algorithm is supervised learning dependent and 

needs a large number of datasets and a variety of conditions for the training session. Correlation, 

variance, gradient, etc., were used as marker features identifying the deviation between the 

channels, however the method is dependent on supplying seven features to the trained network. 

This implies that the data has to be pre-recorded to extract the features from the raw data, and 

consequently lose the real-time processing.  

More sophisticated artifact removal methods rely on cross-correlation based filtering that require 

the use of so-called reference channels that record horizontal, vertical eye movements (EOG) and 

ECG activity. The use of reference electrodes can be acceptable in strictly controlled laboratory 

situations, but they can be problematic in clinical settings due to patient discomfort or movement.  

3.2.1 Independent Component Analysis  

Independent Component Analysis (ICA) [72] was originally developed for solving the Blind 

Source Separation (BSS) problem, which is considered a robust method for artifact removal able 

to minimize the mutual information between the different sources. ICA decomposes the EEG 

signals into independent components assuming that the sources are instantaneous linear mixtures 

of cerebral and artifactual sources. The two main approaches for measuring the independent 

sources are: minimization of mutual information and maximization of non-Gaussianity. The 

mutual information approach, informs how much information about the variable X could be 

gained from the information about the variable Y. The smaller value of mutual information means 

that more information about a given system is stored in the variables [76], so ICA algorithms 

based on mutual information approach are used to minimize the mutual information of the system 

outputs [19]. In the maximization approach, the algorithm has to modify the components in such 

a way to obtain the source signals of high non-Gaussian distribution (using the fact that: the 

stronger the non-Gaussian, the stronger the independence [76]). Different kind of metrics are 

used for maximization calculation as kurtosis, entropy, negentropy, approximations of 

negentropy and others [72]. 

Since ICA has unsupervised learning characteristics and works without a priori information and 

extra reference channels, it is used widely in the field of EEG noise (such as ECG and EOG 

artifacts) [11,21,70,77,78] removal. After source separation, estimated sources have to be 

identified as neuronal or artifactual sources to reconstruct the artifact-free EEG matrix where the 

unwanted artifacts (components) can be rejected by visual or automatic inspections.  

 

Figure 3-8: Independent component analysis. 
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The recorded signal can be described as a linear combination of independent sources 

(components) and mixing information as shown in the following equation: 

   x𝑡 = As𝑡 ( 3.1) 

where x𝑡 is the vector of observed signals, s𝑡 is the vector of original source signals, and A is 

the mixing matrix (square spatial weight matrix, channel×components). The original unmixed 

sources can be recovered using the following equation:  

   ŝ𝑡 = Wx𝑡 ( 3.2) 

and W = A-1 is the “unmixing matrix” which must be obtained in order to calculate the estimate ŝ𝑡 

of the original sources.   

ICA algorithm was applied for the first time to analyse EEG and EPR signals by Makeig et al. 

[47]. Unlike traditional approaches to cancelling artifacts, Vigaro et al. tested the ICA method 

on simulated and experimental data and demonstrated good performance in separating signals 

from their linear mixtures and extracting the eye information present in EOG signals [48]. 

In 2000, Jung et al. extended the ICA approach and effectively improved the results by combining 

it with regression algorithm to remove artifacts from EEG [79]. In different sleep stages, Romero 

et al. applied ICA to reduce EOG artifacts, and a bidirectional property of EEG and EOG was 

found, which had little effect on ICA [80]. Probability approach, pre-defined threshold, and 

machine learning algorithms with extracted features from the estimated components have been 

used for automatically identifying artifacts to save efforts and time [16]. Delorme devised a semi-

automatic method using probability and kurtosis as feature extraction from the estimated 

components to eliminate the artifacts [14]. 

A state-of-the-art published review in 2015 reported that the information maximization 

(Infomax) and second order blind interference (SOBI) algorithms are the most popular algorithms 

used for EEG signal processing [81]. ICA was used with multivariate empirical mode 

decomposition (MEMD) to remove the EOG and keep the EEG information. However, much 

EEG information was lost using this method and the results showed range of values of Root Mean 

Square Error (RMSE) around 18 µV to 22 µV between the corrected and original signals. Hence, 

using the traditional method based on rejection the artifactual component, makes the 

reconstructed signal different from the original data and might cause distortion in the signal 

spectrum that can lead to an overestimation of the coherence between different cortical sites 

[70,82]. 

Automatic and unsupervised component identification algorithm has still been an active research 

area to characterize more precisely and flexibly [83–86]. Automation not only saves time, but 

also allows scalable analysis and reduces the barriers to reanalysis of data, thus facilitating 

reproducibility and help for real time data processing [87]. Joyce et al. developed a fully 

automatic method applied to the estimated ICs to remove eye artifacts and avoid the errors 

introduced by manually selected components [88].  It has been reported that wavelet-transform  

based ICA is a superb method for artifact rejection [89], therefore, a number of researchers 

focused on them in recent years. ICA merged with WT for artifacts rejection increased in many 

application [11,12] either applied the ICA to the decomposed WT signal (AWICA) [69] or 

applying the WT to the artifacts IC components (wICA) [70] and finally inverse the calculation 

to reconstruct the cleaned signal. Kurtosis and Renyi’s entropy were introduced as markers to 

measure the artifactuality on the AWICA method as previously proposed in [90]. However, in 

higher dimensions Renyi’s entropy requires time-consuming calculations due to the kernel 

density needed for the component [91]. 
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Enhanced Empirical Mode Decomposition (EEMD) was combined with ICA by Wilson et al. for 

the first time in 2006 to remove EMG and ocular artifact from EEG [79]. The proposed algorithm 

was compared with single-channel ICA and WT-ICA on real EEG signals and showed that the 

EEMD-ICA algorithm has the best performance. 

ICA and Support Vector Machine (SVM) were combined to remove the identified components 

where the temporal, spatial and statistical features are extracted from the estimated components 

and passed as input to a set of linear SVM classifier. Once the classifier identifies the artifact 

components, the remaining components are used to reconstruct the artifact-free data [81]. Shoker 

et al. used this algorithm to remove eye-blinking [92], while Halder used it to remove the EMG 

artifacts from EEG [93]. 

3.2.2 Regression Method 

The most commonly used method in artifacts removal was the regression algorithm until the mid-

1990s [94]. An observed EEG signal 𝑿(𝒏) and the artifacts 𝑿𝒂𝒓𝒕 should be supplied to this 

method. The artifact would be corrected by estimating propagation factors to calculate the 

relationship between the observed EEG signal and the reference signal 𝑿𝒓𝒆𝒇(𝒏) and subtracting 

the regressed portion. Thus, this algorithm needs exogenous reference channels (i.e., ECG, 

VEOG-HEOG) to cancel different artifacts.  

Hillyard et al. [95] proposed regression method in the time-domain to remove the ocular activity. 

Whitton [95] modified this method in the frequency domain and combined it with other EEG 

detection methods. Since the ocular potential contaminates EEG data, EEG data can also 

contaminate ocular recording, so in time-frequency domain bidirectional methods affect such 

regression approaches [96]. Consequently, Wallstrom applied filtering method prior to 

calculating the adaptive regression splines [97] thus, the bidirectional contamination issue was 

substantially reduced. Despite the simplified model and the reduction of computational demands 

of the regression methods, the need for one or more strong regression reference channels limits 

their ability to eliminate EOG and ECG artifacts [81]. 

If eye movement is recorded with special electrodes, this reference EOG signal can be used in 

ICA in combination with regression methods to automatically identify and remove the EOG 

artifacts from the contaminated signal, and as a result, increase the signal-to-noise ratio (SNR) 

[98,99]. A similar protocol introduced ICA with the Auto-Regressive exogenous (ICA-ARX) 

[100] to remove the ocular artifacts using EOG reference signal. 

3.2.3 Wavelet Transform (WT) 

Wavelet transformation [101] has emerged as one of the best techniques to analyse non-stationary 

signals such as EEG. Its ability to transform a time-domain signal into time and location of 

frequencies helps to better understand a signal's behaviour. Also, it was used to remove the EOG 

and other kind of artifacts from EEG in many applications [70,90,102]. It performs low-high pass 

filtering to generate low-high frequency components. Once the signal is decomposed, a threshold 

is applied to discard the signal that contains artifacts and the remaining details are used to 

reconstruct the clean signal [43]. Amorim et al. applied the Discrete Wavelet Transform (DWT) 

in the raw data space to remove the EEG artifacts by decomposing the measured signal using one 

of the basis functions of the wavelet families such as Symlets, Coifs, Haar etc.,[103]. Others 

combined it with the statistical approach, to extract the artifacts features from the decomposed 

EEG raw signal using Symlets as basis functions [104,105] giving an absolute average error of 

14 to 24 dB between the cleaned and the noise free signal. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427454/#B43-sensors-19-00987
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In spite of its versatility for artifact attenuation, the DWT does not fully identify artifacts with 

overlapping spectral properties, so recent work prefers to combine DWT with other methods, 

such as ICA [70,90]. In many applications, DWT was merged with ICA for artifacts rejection 

[11,12] either applied the ICA to the decomposed DWT signal AWICA [69] or applying the 

DWT to the artifacts IC components as in the wICA method [70] and finally inverse the 

calculation to reconstruct the cleaned signal. Other approach was proposed by Kelly et al. [91] 

where the artifactual coefficients above a threshold were replaced by the median of a set of 

coefficients outside the artifacts.  

An adaptive threshold based on DWT was used to identify and remove the EOG [106] without 

losing the related EEG information. This approach was slightly modified by Nguyen et al., [107] 

who introduced Wavelet Neural Network (WNN) (clean and contaminated EEG data is used to 

train the network) and achieved 9.07 µV Root Mean Square Error (RMSE) between the cleaned 

and the noise free data. Their method works without a reference EOG signal that is normally 

required in the linear regression based methods [98].  

3.3 Literature Review of EOG Artifacts Removal 

Removing EOG artifacts from the EEG signal by manual inspection and rejection is not a 

recommended approach since removing contaminated trials by setting a rejection amplitude 

threshold [108] may remove too many trials and lead to losing important EEG-related 

information. Since the EOG spectrum overlaps with that of the underlying EEG signals, normal 

filtering methods are unable to entirely remove their effects [109].  

Avoiding artifacts, i.e., reducing the occurrence of these artifacts by asking subjects to refrain 

from or minimize blinks and eye movements might be an alternative, but it introduces 

unnecessary stress on the subjects that results in undesirable activities that affect Event Related 

Potential (ERP) components [110]. Moreover, this method cannot be used with children and 

clinical patients where movement control might be problematic. Another removal approach is 

based on the use of reference EOG channels [98] to record eye movements which information 

then can be used to subtract artifacts from the recorded EEG using adaptive filtering based on 

autoregressive models. These methods however do not take into consideration that the reference 

EOG channels are also contaminated by EEG data which introduces problems in obtaining an 

accurate estimate of EOG effect [108].  

Joyce et al. [111] proposed the use of ICA for automatic EOG artifact removal. Their approach 

was based on rejecting those sources (components) that correlated highly with the reference EOG 

channel. Zeng et al. [112] claimed that using a stationary subspace analysis (SSA) algorithm to 

the BSS problem concentrates artifacts in fewer number of components than BSS and it requires 

neither the independence nor the uncorrelation ICA restrictions among the sources. This method, 

however, results in loss of EEG information as reported in [113]. While ICA-based methods 

show encouraging results in EOG artifacts removal, it has been shown that ocular sources are not 

entirely separated from neural sources [111], which makes the full rejection method a non-

preferred solution. Consequently, ICA should be integrated with more sophisticated methods to 

achieve more accurate artifact removal.  

FASTER [15] and DETECT [50] are automatic MATLAB-based processing pipelines for 

complex artifact removal. They include an EOG removal step that relies on statistical properties 

and EOG reference channel data. The ADJUST [16] tool uses a similar approach by extracting 
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statistical features such as kurtosis, average variance, etc. to automatically remove the EOG 

artifacts with reported 95% accuracy [114]. 

Burger and van den Heever [78] improved on this method, however, their solution can only 

remove eye blinks, and it does not work for eye movements. In  another application, a 

combination of ICA and DWT (wICA) [70] was used, based on the fact that wavelet coefficients 

of the artifact component typically have higher amplitudes than that of the cerebral activity 

components, so by setting the coefficients greater than a certain threshold to zero value, EOG 

artifacts can be removed from the signal.  

3.4 Literature Review of ECG Artifacts Removal 

Early ECG removal attempts included subtraction and ensemble average subtraction (EAS) [4] 

methods. Current mainstream methods are based on adaptive filtering [5,6] blind source 

separation (such as ICA) [7,8] or wavelet decomposition [9,10] methods, although wavelets are 

increasingly more often used in combination with ICA-based methods [11,12]. The works of 

Dora and Biswal [9] and Jiang et al. [10] use wavelet decomposition-based ECG detection 

methods. In both cases, the Continuous Wavelet Transform is used to detect QRS waves in the 

EEG signal. In the first case, a reference ECG channel and linear regression are used to remove 

the detected QRS waves. Reported sensitivity varies between 91 and 100% depending on the 

input dataset, providing lower values in more difficult cases, such as sinus arrhythmia. In the 

second case, no reference channel is used; the detected artifact signal (wavelet coefficients) is 

subtracted from the original signal to obtain the clean one. Although the reported detection 

performance of this method is above 97.5%, the method ignores the removal of the P and T waves 

that may also contaminate EEG data. 

Hamaneh et al. [11] use an automatic ICA-based approach. A reference spatial distribution 

template of the ECG artifact [77] and a Continuous Wavelet Transform-based periodicity test are 

used in combination to identify ECG independent components. If a component shows correlation 

with the spatial template (threshold > 0.6) and passes the wavelet periodicity test, it is marked 

for removal. The spatial ECG template was used as reference ECG signal. While the method 

provides good true detection rate (95-99% depending on the ECG contamination rate), the 

required spatial ECG component template has to be created by averaging manually selected ECG 

components of several subjects, which reduces the level of possible automation.  

Mak et al. [12] propose an automatic ECG removal method for EMG (Electromyography) signal 

cleaning. Similarly to others, the wavelet transform is used to detect R peaks, after which a set 

of decision rules are applied to the candidate component (checking heart rate, RR interval, 

variance of RR interval) to detect the ECG component. Although the method is developed for 

cleaning trunk muscle signals instead of EEG, the reported excellent ECG detection sensitivity 

(100%) makes it worth mentioning. Unfortunately, there are no testing results for detecting 

pathological ECG artifacts. 
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Figure 3-9: Annotated measurement from the MIT-BIH Polysomnographic database showing 

ECG, Blood Pressure and EEG signals. Note the pronounced ECG artifact contamination on the 

EEG channel (data record: https://physionet.org – slpdb/slp32). 
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4 Removal of EOG Artifacts 

This chapter focuses on the automatic removal of ocular artifacts. Eye movements and blinks are 

transient activities occurring relatively infrequently but unfortunately, they generate very high 

amplitude peaks. These might be located visually by checking the corresponding component. The 

usual approach is to reject an independent component entirely if it contains EOG artifacts. This, 

however, may lead to loosing important EEG data present in the component [78,100,111]. 

Building on the Wavelet-enhanced ICA method proposed by Castellanos and Makarov [70], I 

developed a method to selectively remove EOG artifacts from ICA components instead of 

rejecting the entire component. This will keep most of the relevant EEG information in the 

component. The proposed method does not require visual inspection and manual intervention, 

which can significantly speed up pre-processing steps and can lay the foundation for online and 

potentially real-time EEG analysis. 

4.1 Subject and Motivation 

EOG artifacts are random, high-amplitude distortions in EEG recordings that, if appear 

frequently, can make entire measurements unusable. Due to the unpredictable nature of artifacts, 

traditional artifact removal is based on manually data inspection and rejection of contaminated 

data segments. This process is both time-consuming and prone to human errors. The introduction 

of Independent Component Analysis for artifact removal [115] revolutionized the field, first by 

providing a theoretical framework for separating artifacts, then secondly, by paving the way to 

automatic, intervention-free implementations. Unfortunately, the strong statistical independence 

assumption of ICA does not always hold in practice, resulting in neural data leaking into artifact 

components. In these cases, independent component rejection-based artifact removal methods 

lose valuable neural activity information.  

The literature reviews gave different solutions for EOG artifacts removal. Some of them used a 

reference channel for the processing which make this protocol impossible without the EOG 

reference channel, others used a statistical threshold which removed a lot of EEG information, 

and other rejected the ICAs-EOG related component which removed EEG related information in 

the rejected component. The aim of my proposed ICA-based artifact removal method is to clean 

the EEG from the EOG artifacts without reference information and to keep as much neural 

information of the original signal as possible during removal.  

4.2 Method Details 

The main steps of my method is described first in algorithmic form, also illustrated as a flowchart 

in Figure 4-1, then a detailed description of each step follows. The algorithm form of the proposed 

method is shown in the following steps: 

1. Each measured dataset (recorded signals in 128 channels) is bandpass filtered (1-47Hz, zero 

phase 4th order Butterworth), then re-referenced to the average reference. 

2. Infomax ICA is applied to the dataset to estimate the source components.  

3. Automatic identification of the EOG component (EOG source in the EEG signal): the EOG 

component is identified based on the correlation between each component and data of each 

frontal EEG channel. The component with the highest correlation and above a threshold 

weight is selected as an EOG component. 
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4. The identified EOG components are searched for EOG peaks. 

5. One-second windows are placed around the detected EOG peaks. 

a. If the windows cover more than 60 percent of the given component (Greater than 

60 percent means the component worth to be rejected, this usually did not occur 

since EOG are just few peaks in the identified component), the entire component 

is marked for rejection. Continue at Step 7. 

b. Otherwise, the windowed areas of the component are the target of the artifact 

removal.  

6. Wavelet decomposition using Symlet sym4 [10,103,105] wavelets of 5 levels is applied to 

decompose signals in each target window to different wavelet components, and only the 

high frequency components are retained for the signal reconstruction process (low frequency 

of the EOG peaks are rejected, while the other peaks in the EOG component are left 

untouched). These retained components are used in the inverse wavelet transform to 

reconstruct the cleaned independent component. 

7. Using the inverse ICA process, the artifact free signals are estimated from the corrected 

components. 

 

 

Figure 4-1: The data processing flowchart of the proposed EOG removal method. 

EEG frequency of interest is located in this band (Delta 1:4, Theta 4:8, Alpha:8:12, Beta:12:30, 

Gamma:30:45)[116]. This band avoids the appearance of the power line noise 50 and 60 Hz. 

Also, it is known that alpha frequency activity decreases in stroke patients, while low frequency, 

especially delta band, increases, so this was selected for the connectivity calculation. 
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Once the input signal is filtered and the ICA process is executed, the first step is to identify which 

component shows signs of EOG artifacts. This is carried out by computing the Pearson 

correlation R𝑋,𝑌  between a given independent component Y and each of the frontal channels X 

(shown in Figure 4-2). The underlying assumption is that EOG artifacts appear primarily in the 

frontal channels and the component describing EOG activity should have high correlation with 

some of these channels. Pearson correlation is computed by the following formula: 

 
R𝑋,𝑌 =

𝐶𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

( 4.1) 

 

where 𝜎𝑋and 𝜎𝑌 are the standard deviations of channel X and component Y, respectively. 

Components with the highest 𝑅 value are identified as candidate EOG components to be 

examined further. Naturally, a different set of frontal electrodes must be selected for different 

electrode layouts. The number of frontal channels does not affect the accuracy of the proposed 

method as long as there are at least two frontal channels on the forehead, one close to the left and 

one to the right eye. This ensures that high correlation between ocular artifacts and EOG 

components can be found. 

 

Figure 4-2: Frontal channels (marked by red circles) used for correlation calculation in EOG 

independent component identification. Top view of scalp with nose pointing upwards, 128-

channel Biosemi ABC electrode layout. 

The candidate components are further examined for weight value distribution and only those with 

weights greater than a threshold are kept as EOG components. Elements of the weight vector w 

are defined as: 

 

�̅�𝑗 =
1

𝐾
∑ |𝑤𝑖𝑗|

𝐾

𝑖=1

,     𝑗 = 1,2, … , 𝑁, 
( 4.2) 

where �̅�𝑗 is the average weight of component j over the frontal channels, 𝑤𝑖𝑗 is the weight 

element of the mixing matrix A, K is the number of the frontal channels and N is the number of 

components. The distribution of values in the weight vectors are used to calculate a statistical 

threshold. The distributions are shown for all three datasets in Figure 4-3, Figure 4-4 and Figure 

4-5 as boxplots. Red crosses represent weights for the EOG components. Note that the maximum 

value of each distribution acts as a reliable threshold for detecting the EOG component (outliers). 
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4.2.1 EEG Datasets 

Three different EEG datasets have been selected for the evaluation of the proposed method. 

These include publicly available datasets, as well as data recorded in our laboratory.  

Semi-simulated dataset: The publicly available Klados EEG dataset [117] was created for the 

purpose of EOG artifact removal validations; to serve as a reference dataset that can be used for 

comparison purposes. Data were recorded from 27 subjects (males and females), using the 

standard 19 electrode 10-20 layout EEG system, with sampling frequency of 200 Hz, resulting 

in 54 datasets. Simulated EOG artifacts were then added to the pure, artifact-free data using the 

following expression: 

 Contaminated_EEG𝑖,𝑗 = Pure_EEG𝑖,𝑗 + a𝑗𝑉𝐸𝑂𝐺 + b𝑗𝐻𝐸𝑂𝐺  , (4.3) 

where Pure_EEG𝑖,𝑗 is the signal obtained with eyes closed (no EOG artifacts), and the 𝑉𝐸𝑂𝐺 and 

𝐻𝐸𝑂𝐺 terms are the additive vertical and horizontal EOG activities.  

PhysioNet EEG datasets: The PhysioNet database contains Brain-Computer Interface datasets 

[62,63] that were recorded during BCI experiments to measure the event-related potential (ERP) 

of the P300 waves in a spelling experiment. Data were collected using the BioSemi Active Two 

EEG system, with 64 EEG electrodes and additional VEOG, HEOG ocular electrodes at 2048 

Hz sampling rate. 

Laboratory resting-state dataset: I have recorded 2-3 minute closed and open-eye resting state 

EEG in our laboratory from 22 adult volunteers (males, age from 16 to 21 years). During the 

experiment, subjects had to sit and relax in a silent room. Data were recorded using a Biosemi 

ActiveTwo EEG system (fs = 2048 Hz) using 128 active electrodes arranged in the ABC radial 

electrode layout. The volunteers gave their written consent for participating in the experiments. 

The entire klados’ datasets were tested and Figure 4-3, only shows 20 datasets to fit with the 

figure width.  

 
Figure 4-3: Distribution of the normalized weights of the components of 20 EOG contaminated 

measurements (datasets) selected from the Klados datasets. The red crosses represent the 

weight of the EOG (Horizontal EOG, Vertical EOG) components. 

Two EOG components are located in each record in Klados datasets related to the VEOG and 

HEOG, where these components are artificially added to each dataset for creating semi-simulated 

datasets to be used by artifacts removal algorithms, however, in the normal EEG measurements, 

usually there is one strong EOG component appears in the datasets as shown in the following 

figures. 
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Figure 4-4: Distribution of the normalized ICA component  

weights of 10 selected PhysioNet datasets. 

 

Figure 4-5: Distribution of the normalized ICA component  

weights of the 22 datasets obtained in our laboratory. 

The threshold is computed from the distribution of weights and each weight vector element is 

tested against it to decide whether the component is, in fact, an EOG component:  

 Yi is EOG, if �̅�𝑖 > 𝑄3(𝐰) + 1.5 ∗ 𝐼𝑄𝑅(𝐰) , 𝑖 = 1. . 𝑁, ( 4.4) 

where �̅�𝑖 is the weight of component Yi, w is the averaged weight vector, and 𝑄3, 𝐼𝑄𝑅 are the 

upper quartile and interquartile range, respectively [118]. The result of this step is illustrated in 

Figure 4-6 and Figure 4-7. Figure 4-6 shows the independent components of a selected dataset. 

Components 1 and 2 contain EOG artifacts (blinks and eye movements, respectively). Figure 4-7 

shows the result of the component selection and threshold application that identified the EOG 

components for the sample datasets 1-4. 

The next step in the algorithm (Step 4) is the detection of EOG peaks within the components. 

First a normal peak detection is performed on the component values (finding local maxima 

[119]), then the peaks are further examined whether they are, in fact, EOG peaks. The decision 

whether a local maximum 𝑚𝑘 belongs to the set of EOG peaks P is made using the following 

rule containing amplitude and duration constraints.  
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 𝑃 = {𝑚𝑘  | |𝑌𝑖(𝑚𝑘)| > 3 ∙ 𝐸{|𝑌𝑖|} and 𝑡(𝑌𝑖(𝑚𝑘)) − 𝑡(𝑌𝑖(𝑚𝑘−1)) ≥ 0.5sec } ( 4.5) 

where 𝑚𝑘 is kth peak in component 𝑌𝑖 and 𝐸{|𝑌𝑖|} is the expected value of the component vector 

𝑌𝑖, and 𝑡 refers to the timestamp of peak 𝑚𝑘. Each two consecutive selected peaks must satisfy 

the peak amplitude condition and the between-peak time distance of 0.5 second to correctly 

classify peaks as EOG artifacts. 

 

Figure 4-6: ICA components (Decomposed original sources of the recorded EEG signal) of a 

selected Klados dataset. 

 

Figure 4-7: Sample sections of VEOG (blue) and HEOG (red) EOG components from four 

selected Klados datasets, Y axis  is the weight of the calculated components, which has to be 

adjusted to transform it to normal potential values in micro volts. 

After locating the EOG peaks, target windows are placed around the peaks for EOG artifact 

removal (Algorithm: Step 5). A window size of 1 second duration is used, as this spans the length 

of the EOG artifact waveforms [120,121]). These windows will equally designate vertical-EOG 
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(VEOG) and horizontal-EOG (HEOG) sections. Figure 4-8 illustrates the results of this step 

showing the windows marking blink and eye movement EOGs, respectively.  

 

  

Figure 4-8: Correction target windows around the detected VEOG blink (top) and HEOG eye 

movement (bottom) peaks in the EOG ICA components. 

Artifact removal is performed on the EOG components selectively, only within the target 

windows, using wavelet decomposition (Algorithm: Step 6). The discrete wavelet transform 

(DWT) of a signal f(t) is defined as 

 

F𝑊(j, k) =
1

√2𝑗
∑ 𝑓(𝑡)

𝑁

𝑡=0

𝜑 (
𝑡 − 𝑘2𝑗

2𝑗
) 

( 4.6) 

where 𝜑 is the wavelet basis function, j is the scale parameter and k is the shift parameter. The 

success of EOG detection in a component is dependent on the choice of wavelet basis function 

[103] and the level of decomposition [122]. Several wavelet basis functions, e.g. Haar, 

Daubechies, Coiflet, Symlet, can be used to detect and correct EOG waveforms [104,105,123]. 

It has been shown [123] that the Symlet wavelet family (sym2 to sym20) is the most suitable for 

EOG peaks and has been used successfully in several artifact removal applications. The sym-4 

wavelet was selected as final basis function due to its smallest error (RMSE) between the 

corrected and artifact-free signals [123]. My tests with the Symlet wavelets confirmed the same 

results (mean RMSE -- Haar: 9.85, db4: 7.42, sym3: 7.37, sym4: 6.29, sym5: 6.54, sym6: 6.96).  

 

Figure 4-9: Avg. RMSE for different used wavelet functions. 

The ICA component signal is decomposed into wavelet components by passing through a 

quadrature mirror filter performing low-pass and high-pass filtering followed by down-sampling 
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the input signal at each level of decomposition and generating the output coefficients related to 

lower and higher frequencies [124]. The details of this process is shown in Figure 4-10.  

   

 
Figure 4-10: The wavelet decomposition process and calculation of coefficients. 

In order to find the optimal parameters, different levels of wavelet decomposition were tested. 

Five levels of DWT were used to decompose the component into detail (D1:D5) and 

approximation coefficients (A), as illustrated in Figure 4-11. Coefficients D1:D3 represent the 

higher frequency components while coefficients D4:D5 while A represent low frequency 

components. Since the spectrum of the EOG artifacts is concentrated in the frequencies below 7 

Hz [125], the signals were reconstructed only from coefficients D1:D3, which represent the high 

frequencies related to the EEG signal; the other components were discarded. The reconstructed 

signals are then projected back to the EOG components and inverted to obtain the artifact free 

data.  

 
Figure 4-11: Wavelet decomposition of a target EOG peak signal window  

within an EOG artifact independent component. 

4.2.2 Performance Metrics 

The quality of artifact removal methods can be quantified by two basic types of metrics; metrics 

which describe the amount of artifact removed by a given cleaning method, and metrics that 

measure the distortion introduced in the signal by the cleaning process [126]. Two metrics of the 

first type are the artifact removal percentage 𝜆 and the signal-to-noise ratio difference [127]. 
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When the true, uncontaminated EEG and the added artifact signals are known, the artifact 

removal percentage can be calculated as  

 
𝜆 = 100 (1 −

𝑅𝑟𝑒𝑓 − 𝑅𝑐𝑙𝑒𝑎𝑛𝑒𝑑

𝑅𝑟𝑒𝑓 − 𝑅𝑐𝑜𝑛𝑡𝑎𝑚
) 

( 4.7) 

where 𝑅𝑟𝑒𝑓 is the autocorrelation of the true EEG signal with time lag 1, 𝑅𝑐𝑙𝑒𝑎𝑛𝑒𝑑 is correlation 

between the true EEG and the cleaned signals, while 𝑅𝑐𝑜𝑛𝑡𝑎𝑚 is the correlation between the true 

EEG and the artefactual signals. When 𝑅𝑐𝑙𝑒𝑎𝑛𝑒𝑑 is close to the reference 𝑅𝑟𝑒𝑓, the negative term 

tends to 0, hence a high lambda value indicates high efficacy in artifact removal. The difference 

in signal-to-noise ratio Δ𝑆𝑁𝑅 [127] is a similar measure characterizing the amount of artifact 

removed from the signals. It is defined as   

 
𝛥𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (

𝜎𝑥
2

𝜎𝑒𝑐𝑙𝑒𝑎𝑛𝑒𝑑
2   

) − 10 𝑙𝑜𝑔10 (
𝜎𝑥

2

𝜎𝑒𝑐𝑜𝑛𝑡𝑎𝑚
2 ) , 

( 4.8) 

 

where 𝜎𝑥
2 is the variance of the true EEG signal, and 𝜎𝑒𝑐𝑜𝑛𝑡𝑎𝑚

2  and 𝜎𝑒𝑐𝑙𝑒𝑎𝑛𝑒𝑑
2  are the variances of 

the error signals 𝑒𝑐𝑜𝑛𝑡𝑎𝑚(𝑛) = 𝑟(𝑛) − 𝑥(𝑛) and 𝑒𝑐𝑙𝑒𝑎𝑛𝑒𝑑(𝑛) = 𝑟’(𝑛) − 𝑥(𝑛) with 𝑥(𝑛), 𝑟(𝑛) 

and 𝑟′(𝑛) representing the true EEG, contaminated and the artifact cleaned signals, respectively. 

Distortion in the time-domain can be quantified using the root mean square error calculated 

between the true EEG 𝑥(𝑛) and the cleaned signals 𝑟’(𝑛).     

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑟’(𝑛) − 𝑥(𝑛))2

𝑁

𝑛=1

 

( 4.9) 

Spectral distortion can be measured by the magnitude squared coherence (𝑀𝑆𝐶) [128] that 

computes the frequency-domain correlation between the pure and the cleaned EEG signals:    

 
𝑀𝑆𝐶 = 𝐶𝑥𝑦(𝑓) =

|𝑅𝑥𝑦(𝑓)|
2

𝑅𝑥𝑥(𝑓)𝑅𝑦𝑦(𝑓)
 , 

( 4.10) 

where 𝑅𝑥𝑦(𝑓) is the cross spectral density between the two signals x and y at frequency 𝑓, and 

𝑅𝑥𝑥(𝑓), 𝑅𝑦𝑦(𝑓) are the auto-spectral density of x and y, respectively. 𝑀𝑆𝐶 is a frequently used 

metric for evaluating frequency-related distortions after artifact removal [70,83,129–132]. 

4.3 Results 

This section presents the performance evaluation of the proposed EOG removal method. Three 

datasets were used; the Klados, the PhysioNet and the laboratory resting-state datasets. For each 

dataset, the proposed method (PM) is compared to the traditional full component rejection 

method (ICArej) [133] and the wavelet-enhanced ICA (wICA) [70] component correction 

methods using the performance metrics specified in section 4.2.2. wICA is also compared to 

rejection ICA to confirm its claimed higher performance.  

4.3.1 Semi-Simulated EEG Dataset 

The performance of the proposed method was first evaluated on the Klados datasets [117]. These 

measurements contain semi-simulated signals, containing resting-state measured signals with 
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and without added simulated EOG contamination. Access to the pure EEG signal allows for 

calculating accurate performance metrics. For illustrative purposes, Figure 4-12 shows the 

contaminated and pure EEG signals, as well as the absolute difference between the wICA-cleaned 

signal and the pure EEG, and the difference of the signal cleaned with the proposed method and 

the pure EEG signal. Note that the amplitude scales are different in order to make the difference 

signals visible. The contaminated segment shows three strong blink (Ch 1-4, 17-19) and two eye 

movement (Ch 11-12) artifacts. Note the difference between the difference signals (wICA–

EEGtrue, PM–EEGtrue) obtained after cleaning with the wICA and the proposed method. The high-

frequency content in the wICA difference signal indicates the removal of non-EOG signal 

components. Figure 4-13 shows a zoomed-in section of dataset12 (channel Fp1) illustrating how 

the PM cleaning method leaves the EEG signal intact outside the EOG zones, and how it follows 

the true EEG within the zones. The figures qualitatively indicate the improved removal quality 

of the proposed method.  

a) Contaminated EEG signal, 150 µV 

 

b) True EEG signal, 50 µV 

 

c) Difference of wICA-cleaned and true EEG 

signals , 5 µV 

d) Difference of PM-cleaned and true EEG 

signals, 5 µV 
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Figure 4-12: Illustration of the cleaning performance on one artifact contaminated section of the 

Klados dataset9. The two subplots on the bottom show the difference of the pure EEG data and 

the wICA and PM cleaned signals, respectively. Amplitude scales are different to make 

difference signal visible. 

A quantitative statistical comparison was performed on the entire dataset (54 measurements), in 

which the 𝜆, Δ 𝑆𝑁𝑅, 𝑅𝑀𝑆𝐸 and 𝑀𝑆𝐶 metrics were computed for each channel in each dataset 

with the three removal methods (rejection ICA, wICA, Proposed Method) under study. After 𝜆, 

Δ 𝑆𝑁𝑅, 𝑅𝑀𝑆𝐸 fare calculated for each channel, the distributions of the metrics for the dataset 

population are shown in Figure 4-14. Each metric value set was checked for normality and equal 

variance (F-test). A two-sample t-test ( = 0.05) was performed to decide whether there is a 

significant difference in performance between the PM and the wICA/ICArej methods for any 

metric. Performance of the wICA with respect to the rejection ICA method is also examined to 

verify claims that wICA outperforms rejection-based removal. The 𝜆 value showed no significant 

difference (average improvement: 11.34%, p = 0.102) between the wICA and the reject ICA 

methods. The Proposed Method, on the other hand, was significantly better (19.1%, p = 0.00236) 

than the wICA and 32.6% better (p = 1.43×10-5) than the reject ICA methods. With respect to the 

Δ 𝑆𝑁𝑅 metric, the wICA method was significantly better than the reject ICA method (50.05%, 

p = 2.08×10-5). The Proposed Method, however, resulted in significantly increased SNR 

compared to wICA (79.5%, p = 7.78×10-15) and reject ICA better (169.34%, p = 7.96×10-36). The 

RMSE results are similarly positive; wICA improves upon reject ICA by 39.1% (p = 3.89×10-

18), while the Proposed Method showed 36.32% improvement (p = 5.84×10-33) over the wICA 

and 61.22% over the reject ICA (p = 5.80×10-9) methods, reducing the average RMSE from 5.579 

µV (wICA) to 3.553 µV. 
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Figure 4-13: Comparison of the artifact-free, the contaminated and the PM-cleaned EEG 

signals of dataset9, channel Fp1. 

 

Figure 4-14: Distribution of the 𝜆, 𝛥 𝑆𝑁𝑅 and 𝑅𝑀𝑆𝐸 dataset average values obtained with the 

rejection ICA, wICA and the proposed method. For 𝜆 and 𝛥 𝑆𝑁𝑅 the higher, while for 𝑅𝑀𝑆𝐸, 

the lower values mean better performance. 

 
Figure 4-15: RMSE (µV) of the wICA and my proposed method on selected Kaldos dataset. 

 

In addition to the statistical analysis, for enabling side-by-side comparison with the wICA 

method, Table 4-1 lists the RMSE values for the exact same datasets and channels that were 

reported in [70].  
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Dataset, 

channel 

Contaminated 

EEG 

ICA  

cleaned 

wICA  

cleaned 

Proposed 

method 

Dataset 1, FP1 34.9 16.3 12.6 7.9 

Dataset 1, F8 13.7 9.4 7.3 3.2 

Dataset 2, FP1 37.8 14.6 8.7 4.6 

Dataset 2, F8 15.9 8.4 5.4 1.5 

Dataset 9, FP1 30.8 18.9 9.2 3.2 

Dataset 9, F8 15.5 12.7 6.4 2.6 

Dataset 12, 

FP1 
38.4 14.9 

9.8 7.2 

Dataset 12, F8 18.8 11.3 7.2 3.5 

Table 4-1: RMSE (µV) values of the different artifact removal methods. 

While the RMSE result indicates improved removal quality in the time-domain, a key question 

remains as to how the spectral characteristics of the signal change after cleaning. Figure 4-16 

illustrates the effect of artifact removal on the power spectral density of the EEG signals. The 

frontal channel Fp1 of dataset12 was used to show the difference among the different methods. 

Note how the contaminated signal introduces strong 𝛿 − 𝜃 frequency band distortions. The reject 

ICA and wICA methods decrease this low frequency distortion but introduce higher, 𝛼 and 𝛽 

band frequency power increase. The proposed method, on the other hand, removes low frequency 

artifact-related distortions and follows the power density distribution of the pure EEG signal for 

higher frequencies with very little error.   

 

Figure 4-16: Power spectral density distributions of the pure, contaminated versus the ICA rej, 

wICA and PM method cleaned signals (dataset12, channel Fp1). 

Performing the analysis for the entire dataset, the Magnitude Squared Coherence (equation 4.10) 

after cleaning with the Proposed Method was 13.69% better (p = 4.20×10-8) than the wICA 

results and 15.93% better (p = 3.91×10-8) than the reject ICA values. No significant difference 

was found between the wICA and reject ICA results (p = 0.335). Figure 4-17 shows the overall 

grand average MSC results for the three methods. The performance advantage of my proposed 

method over the rejection ICA and wICA methods is clearly demonstrated.  
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Figure 4-17: The grand average (20 datasets) MSC results of the three cleaning methods. Note 

the higher average performance of my proposed method. 

Figure 4-18 shows, for a selected single frontal channel (Fp1, dataset12), the Magnitude Squared 

Coherence in order to compare the spectral accuracy of the different EOG removal methods in a 

non-averaged manner. The results indicate that the different EOG artifact cleaning methods 

produce different spectral distortion in frequencies below 7 Hz. Coherence is the lowest for the 

uncleaned, EOG contaminated signal. The rejection-based ICA and wICA methods both reduce 

this distortion, but it is my proposed method that produced coherence values closest to the ideal 

value of 1. Note that wICA also introduces slight distortion in the 7-17 Hz range as well, which 

might be the result of unnecessary removal of higher frequency wavelet components.  

 

Figure 4-18: The magnitude squared coherence (MSC) between the pure EEG signal and the 

contaminated signal as well as the various cleaned signals (dataset12, Fp1). 

4.3.2  Resting State EEG Dataset 

To evaluate the performance of my method on real EEG data, 2-3 minute-long 128-channel 

resting state EEG measurements of 10 subjects (obtained in our laboratory) were used. Since the 

true, artifact-free EEG signals are unknown in this case, modified performance metrics were 

used. The true EEG signal was estimated for each subject from a manually selected 5-second 

long artifact-free segment. The datasets were then cleaned with the three different methods and 

partitioned into 5-second long segments. The performance metrics were subsequently calculated 

by using the entire signal (all 5-second segments) with respect to the reference segment in the 

corresponding formulae. The distribution of the results for each method are shown in Figure 4-19.  
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Figure 4-19: Distribution of the 𝜆, 𝛥 𝑆𝑁𝑅 and 𝑅𝑀𝑆𝐸 dataset average values for the resting 

state laboratory measurements obtained by cleaning with the rejection ICA, wICA and PM 

methods. For 𝜆 and 𝛥 𝑆𝑁𝑅 the higher, while for 𝑅𝑀𝑆𝐸, the lower values mean better 

performance. 

 

While the range of values are lower (𝜆 and Δ 𝑆𝑁𝑅) or higher (𝑅𝑀𝑆𝐸) than those obtained for the 

semi-simulated Klados dataset (due to the different estimation of the true EEG), the trend in 

performance is the same. Performing the same statistical analysis as for the semi-simulated 

Klados datasets, the Proposed Method achieved 154.61% (p = 6.86×10-9) improvement for 𝜆 

over the wICA and 136.88% better (p = 8.28×10-10) than the reject ICA methods. The wICA 

method achieved 6.97% (p = 2.06×10-5) improvement over the reject ICA method. With respect 

to the Δ 𝑆𝑁𝑅 metric, the Proposed Method achieved 388.88% improvement (p = 7.83×10-7) over 

the reject ICA and 116.45% (p = 6.28×10-6) over the wICA method. The wICA method 

performed better than reject ICA by 125.87% (p = 5.80×10-5). The 𝑅𝑀𝑆𝐸 results showed the 

Proposed Method achieved 26.94% improvement (p = 0.039) over the wICA and 30.37% over 

the reject ICA (p = 0.0165) methods. No significant difference was found between the wICA and 

reject ICA methods (4.7%, p = 0.6887). For the spectral coherence 𝑀𝑆𝐶, the proposed method 

improved over both the wICA (19.12%, p = 5.89×10-5) and the reject ICA (23.5%, p = 6. 73×10-

6) methods. On the other hand, no significant difference was found between the reject ICA and 

wICA methods (3.68%, p = 0.423479).  

Similar results were obtained for the spectral distortion. The MSC values for the proposed 

method are significantly higher than for the ICArej and wICA methods.   

 

Figure 4-20: MSC values obtained with different cleaning methods for the resting state 

laboratory dataset (20 subjects). 
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As a qualitative illustration of the effect of my removal method on real measurement data, Figure 

4-21 shows a 20-second section of the contaminated resting state EEG before and after EOG 

removal (Proposed Method). Figure 4-22 illustrates the same effect on a 2D scalp potential map 

at the peak of an EOG artifact. The EOG artifact is clearly visible in the frontal area that 

disappears after cleaning. Note also the emerging parietal topography in the cleaned version 

which is almost completely hidden in the contaminated map.  

 

Figure 4-21: A 128-channel EOG contaminated EEG dataset before (left) and after (right) 

artifact removal. 

 

Figure 4-22: Topoplot potential map (µV) of a 128-channel EOG contaminated resting state 

measurement before (left) and after artifact removal (right). 

4.3.3  PhysioNet P300 ERP Dataset 

Peak detection performance  

The accuracy of peak detection is crucial in the proposed method. Since the Klados and 

PhysioNet datasets contain annotations for EOG events, these were used to verify the 

performance of my EOG peak detection approach. Peak detection performance is characterized 

by the sensitivity measure, Se = TP/(TP+FN), where TP is the number of true positive (accurately 

detected), FN is the number of false negative (missed) peaks. The results are as follows. Klados 

dataset (218 EOG peaks, TP=217, FN=1): Se=99.54%; PhysioNet dataset (78 EOG peaks, 

TP=78, FN=0): Se=100%. 

Artifact removal performance  
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The PhysioNet P300 dataset was originally created to detect and classify P300 peaks in the BCI 

speller experiment [62,134] and as such, can be used to examine the proposed method for 

cleaning task-oriented event related potential data. Two tests were conducted to verify whether 

or not the cleaning methods distort ERP waveforms and peaks. First, a statistical analysis was 

performed on the RMSE values to verify the presence of significant improvements; second, the 

distortion effects of the different cleaning methods were examined.  

For the statistical analysis, from among the target and non-target epochs, the target epochs were 

selected that elicit the P300 component. These resulted in 21 stimulus-locked epochs of length 

500 ms extracted from the original contaminated 64-channel measurements for each subject 

(subjects s03, s04, s08, recording rc02). From these 21 epochs, the artifact free epochs were 

selected manually and averaged for estimating the reference, pure P300 ERP signal 𝐸𝑅𝑃𝑟𝑒𝑓 

(number of epochs varied from 16 to 19) and averaged to generate a pure reference ERP signal. 

The contaminated P300 (𝐸𝑅𝑃𝑐𝑜𝑛𝑡𝑎𝑚) was computed by averaging the 21 uncleaned epochs. 

Then, the original recordings were cleaned with the three removal methods in question (rejection 

ICA, wICA, PM), and an ERP signal for each method was generated by averaging the 21 

segments of the cleaned signals resulting in 𝐸𝑅𝑃𝑐𝑙𝑒𝑎𝑛
𝑟𝑒𝑗

, 𝐸𝑅𝑃𝑐𝑙𝑒𝑎𝑛
𝑤𝐼𝐶𝐴 and 𝐸𝑅𝑃𝑐𝑙𝑒𝑎𝑛

𝑃𝑀 . Since the ERP 

waveforms differ from channel to channel, the channels were not averaged to calculate group 

statistics. Instead, subjects were selected individually then a statistical test was performed using 

the 64 channel-ERPs as sample population for pairwise comparison of the removal methods. The 

two-sample t-tests for each subject produced the results shown in Table 4-2. The Proposed 

Method performed significantly better than the wICA or rej ICA methods for each subject. 

 

 

Dataset  
RMSE improvement (%) 

PM vs rej ICA  PM vs wICA wICA vs rej ICA  

s03, 

rc02 

17.16 (p = 4.74×10-

4) 

34.18 (p = 0.0286)  
20.55 (p = 0.049) 

s04, 

rc02 

24.64 (p = 0.0018) 16.46 (p = 0.0264) 
9.79 (p = 0.2062) 

s08, 

rc02 

25.62 (p = 0012) 14.43 (p = 0.0348) 
13.08 (p = 0.0992) 

Table 4-2: RMSE improvement between methods. Bold values mark significant differences. 

The distortion of the removal methods was tested two ways. First, the pure ERP signal was 

compared to the cleaned ERP signals averaged from the same epochs as the pure ERP (artifactual 

epochs excluded). This shows the distortion of each method operating on artifact-free data 

(Figure 4-23). The rej ICA and wICA introduce larger distortions, since the entire signal is 

affected by EOG removal, even if only artifact-free epochs are averaged afterwards. By using 

the Proposed Method, however, artifact-free sections of the signal are unaffected, and the 

averaged clean epochs are nearly identical to the reference signal. See inset in Figure 4-23(a).  

101 
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Figure 4-23: ERP signals computed from artifact-free epochs only (a) and ERP signals 

computed from all cleaned epochs (b) showing the distorting effects of the cleaning methods on 

ERP curves. 𝐸𝑅𝑃𝑐𝑙𝑒𝑎𝑛
𝑃𝑀  produced the smallest difference in both cases. (dataset, electrode Fpz). 
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4.4 Summary 

In this chapter, I described an improved wavelet-based ICA method for removing EOG 

components from EEG measurements. The wavelet-enhanced ICA (wICA) [70] method showed 

that independent components can be cleaned from artifacts if they are not rejected entirely. As 

shown in the Results section, correcting components this way not only preserve information, but 

also reduce distortions that rejection ICA methods introduce in the time and frequency domain. 

Distortions in the frequency domain, for instance, can corrupt EEG-based connectivity analyses 

[70]. The novelty of the method proposed in this work is that component artifact correction is 

only performed in EOG contaminated sections of the component, ensuring that non-EOG 

contaminated sections are left untouched. The statistical analysis of the artifact removal 

performance metrics confirmed that while wICA outperforms rejection ICA methods in most 

performance parameters my Proposed Method significantly outperformed the quality of both the 

wICA and the rejection ICA EOG cleaning methods, both in the time and spectral domains, 

resulting in close-to-ideal pure EEG signals. The proposed method is able to automatically detect 

and correct both the vertical EOG activity (blinks) and horizontal EOG artifacts (eyes 

movements), which makes it suitable for unsupervised artifact removal applications. In addition, 

my method is fully automatic; it does not require manual component and artifact inspection, 

which can simplify and speed up high-quality artifact removal processes.   
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5 Removal of Cardiac ECG Artifacts 

In this chapter, I propose a fully automatic method for removing ECG artifacts from EEG signals. 

As for EOG removal, my approach is based on using Independent Component Analysis (ICA) to 

separate the observed signals into statistically independent source components, some of which 

may be attributed to artifact sources. ECG-related independent components are then classified 

using an ECG detection method, and these identified components are removed from the 

component set to reconstruct the EEG data with ECG artifacts removed. A sophisticated 

classification method ensures that only components that reflect real ECG activity are rejected. 

The main advantage of my method is that (i) it is fully automatic, (ii) it does not require a 

reference ECG channel, thus can be used in situations where ECG data is not available, and (iii) 

it can also detect and remove ECG artifacts generated by pathological cardiac activities which 

can make the method more robust when analysing EEGs of elderly patients. 

5.1 Subject and Methods 

5.1.1 Pre-processing 

Signals of each dataset were filtered with a 1 – 47 Hz 4th-order zero-phase Butterworth bandpass 

filter to remove the DC component, slow drifts, line noise and unwanted high-frequency 

components. The resting state measurements were then down sampled to fs = 256 Hz. This 

optional step was chosen to reduce the execution time of the subsequent ICA algorithms (e.g. 

Infomax ICA, Fast-ICA, JADE, SOBI). Average reference (removing the average of all channels 

at each time point from each channel) was used for the resting state dataset. 

The flow chart of the proposed method that includes signal pre-processing, independent 

component analysis and subsequently, component checks for ECG presence and artifact removal 

is shown in Figure 5-1. Each step of the method is described in detail in the following subsections. 

The pre-processed signals were partitioned into 20-second long non-overlapping segments. The 

Infomax ICA algorithm was performed on each segment to generate components. 

5.1.1.1 ECG Component Detection 

The output of the ICA algorithm is a set of independent components, ci , i = 1, …, N, where N is 

the number of components that is also equal to the number of EEG channels. The input of the 

ICA is the recorded dataset of n channels, and the output of the ICA are n independent sources, 

where each source collects its specific features which spread over the entire channels to be 

collected in one independent component. Since the order of the components produced by the ICA 

algorithm is arbitrary, I cannot pre-select components based on a-priori information; each 

component has to be examined for ECG-like activity. The underlying assumption is that an ECG 

independent component is similar to a real ECG signal in terms of its QRS interval, general 

waveform morphology, and quasi-periodicity [135] (see Figure 5-2 as an example). Since the 

most characteristic feature of an ECG signal is the QRS complex, the presence of this is used for 

identifying an ECG artifact component.  
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Figure 5-1: The flow chart of the ECG artifact removal method. 

The complete ECG component detection hence involves the following two main stages: first, an 

automatic QRS detection is performed on an independent component, ci, and then an ECG-cycle 

classifier decides whether the given component is in fact an ECG artifact component. These 

stages include several internal processing steps which I describe in detail as in the followings. 

Step 1 – Amplitude range transformation 

The component signal, ci, is segmented into K consecutive, non-overlapping, two-second data 

segments, sj, j = 1, …, K. Then, the local maximum, 𝑚𝑗 = max
𝑦𝑘∈𝑠𝑗

(𝑦𝑘), is calculated in each 

segment, where yk is the vector of samples of segment sj, k = 1, …, L, and L = 2fs. Once the local 

maxima of all segments are determined, their median is calculated, med = median(mj), and 

finally, the component signal is transformed into the 700µV range that is required for the QRS 

detection algorithm: 

      �̂�𝑘  =  
700

𝑚𝑒𝑑
𝑦𝑘 .      ( 5.1) 
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Figure 5-2: Input signals of a 128-channel EEG signal data segment contaminated with artifacts 

(a), and a subset of the resulting independent components representing EEG signals (ica002, 

ica004), ocular (ica001) and cardiac artifacts (ica003) (b). 

Step 2 – QRS detection  

The next step of the method is scanning the independent components for the presence of ECG 

waveforms, i.e. QRS complexes.  

In my example in Figure 5-2, component ica003 shows ECG features. The QRS detection step 

uses an adaptive threshold-based R-peak detection algorithm developed by Christov [136] (recent 

algorithm has better sensitivity, positive productivity and Numerical Efficiency [137]). The 

algorithm operates on the derivative of the component signal c(t). Let y(t) denote the absolute 

value of the derivate, 

       𝑦(𝑡) = |𝑐′(𝑡)| ≈ |
𝑐(𝑡+ℎ)−𝑐(𝑡−ℎ)

2ℎ
| =

|𝑐𝑘+1−𝑐𝑘−1|

2∆𝑡
,       ( 5.2) 

(a)

(b)
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where 𝑐𝑘+1and 𝑐𝑘−1 are the (𝑘 + 1)𝑡ℎ and (𝑘 − 1)𝑡ℎ samples of the given component segment 

sj of the current component.  

A combined adaptive threshold function  

 𝑀𝐹𝑅 = 𝑀 + 𝐹 + 𝑅, ( 5.3) 

is calculated for each time instant using: (i) M (the steep-slope threshold), (ii) F (the integrative 

threshold for high-frequency signal components, and (iii) R (the beat expectation threshold). The 

exact rules for calculating the adaptive threshold can be found in [136]. 

 

 

Figure 5-3: The simplified QRS interval3 of a human ECG signal. 

Each derivate sample yk is compared to the MFR threshold, and the position of the first sample 

for which the condition yk > MRF holds is stored as an R-peak position. Since the algorithm may 

not always pick the true position of the R-peak, a local peak search is performed subsequently 

within the neighbourhood of each detected position to find the global maximum in the window 

centred on the initial R-peak position. The positions of the final detected peaks are then stored 

for the next (classification) stage of my method. 

1) The first ECG detection criteria is related to the number of detected peaks; if it is outside the 

normal human heart rate (<30 or >250 beats/minute), the algorithm skips the component (i.e. 

marks it as non-ECG). 

 

 
3 Image source: https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/normal_duration.php 

https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/normal_duration.php
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Figure 5-4: Successive steps of the ECG artifact detection process; (a) ECG independent 

component, (b) absolute value of the component, (c) absolute value of the component 

derivative and the MFR adaptive threshold (solid red line), (d) QRS peaks detected. 

Step 3 – Cardiac cycle classification  

The goal of the classification stage is to verify whether the detected peaks can be attributed to 

cardiac activity. If the peaks do not show characteristic ECG properties (cycling appearance, 

QRS distance) the component will be labelled as a non-ECG component. The details of the 

classification process are described below. 

2) The next step is the classification of the cardiac cycles, 𝒉𝑘, into a majority heart cycle class 

and possible extra classes (e.g. low-quality majority cycles, extreme amplitude artifacts). Using 

the detected R-peak positions as synchronization points, an average ECG waveform, 𝒉𝑎𝑣𝑔, is 

generated by defining a -300ms to 400ms window around each candidate peak, and the 

corresponding samples are averaged point-by-point. The selected time window -300ms to 400ms 

well representing the low and normal heart rates, this is proved based on the results, and since 

ECG is recorded from EEG during resting or task related, where the subject relaxed and no high 

heart rate is found. 

The generated averaged ECG will serve as a reference waveform in the classification of each 

cardiac cycle.  
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After this step, the Pearson-correlation is calculated between the average baseline ECG, 𝐡𝑎𝑣𝑔
𝑄𝑅𝑆

, 

and each interval waveform, 𝐡𝑘
𝑄𝑅𝑆

, using a narrower QRS [-60ms, 80ms] window. If the 

correlation and the amplitude of the waveform are above the pre-determined threshold values, 

the interval is assigned to the majority ECG class CECG. The following formula defines the rules 

more formally: 

 𝐶𝐸𝐶𝐺 = {𝐡𝑘|𝑘 ≤ 𝐻, corr(𝐡𝑎𝑣𝑔
𝑄𝑅𝑆

, 𝐡𝑘
𝑄𝑅𝑆

) ≥ 0.7 and 

| max(|𝐡𝑎𝑣𝑔
𝑄𝑅𝑆

|) − max(|𝐡𝑘
𝑄𝑅𝑆

|) | < 0.5 ∗ max(|𝐡𝑎𝑣𝑔
𝑄𝑅𝑆

|)}     

( 5.4) 

 

where 𝐡𝑘 is the sample vector of the kth detected cardiac cycle in the ICA component segment 

under test, H is the number of detected cycles, 𝐡𝑎𝑣𝑔
𝑄𝑅𝑆

 is the vector of samples of the averaged QRS 

cycles [-60ms, 80ms], and 𝐡𝑘
𝑄𝑅𝑆

  is the vector corresponding to the same window of cardiac cycle 

k, k = 1, …, H.  

3) Next, the majority class is examined for consistency and beat periodicity. If there are too few 

ECG cycles in the majority class (less than 10% of the total number of detected cycles) or the 

detected heart rate in the class is outside the valid  human  heart rate (<30 or >250 beats/minute), 

the component is not considered as ECG artifact. 

4) If the majority class test succeeds, the final verification step is based on the average QRS 

interval. ECG cycles in the majority class are averaged, then the QRS interval is calculated after 

locating the QRS onset and offset on the averaged cycle. If the QRS interval is too narrow or too 

wide (<30 or >200ms), the majority class – and consequently the current component – is not 

classified as an ECG artifact. The component is marked as ECG if and only if it was not rejected 

in any of the preceding steps. 

5.1.1.2 Component Removal and Inverse ICA 

The final step of the method is the reconstruction of the signal from its components. The rejected 

independent components are removed from the component set, �̂�, creating an artifact-free set, 

�̂�𝑎𝑓, by zeroing out the rejected component samples, �̂� → �̂�𝑎𝑓, then the estimate of the cleaned 

observed EEG signal can be computed as  

                x̂𝑡 = 𝑊−1�̂�𝑡
𝑎𝑓

 ( 5.5) 

Once the ECG classifier identifies an ECG independent component, the entire ECG component 

waveform (not just the QRS complex) is rejected from the set of components. Figure 5-5, 

illustrates the result of the cleaning method, whereas Figure 5-6 compares the original, 

contaminated channel A13 of Figure 5-6 with the one after artifact removal. Note how the ECG 

peaks are removed from the signal without introducing any additional distortion. A different view 

of the cleaning effect is shown in Figure 5-7 which shows the scalp potential map of a QRS-peak 

interval before and after artifact removal. The original contaminated map clearly shows the 

typical spatial distribution pattern of an ECG artifact. The artifact-free map illustrates to what 

extent the ECG artifact concealed the underlying resting-state activity.   
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Figure 5-5: EEG signals with the ECG artifact removed. Compare channels A12-A15 with the 

contaminated originals in Figure 5-2.a. 

 

 

Figure 5-6: The original (black) and cleaned (red) samples of channel A13 of Figure 5-2.a. 

Note the four removed QRS peaks. 

 

Figure 5-7: The scalp potential distribution of the averaged QRS peak before (left) and after 

(right) ECG artifact removal. Note the superimposed left-occipital–right-frontal ECG potential 

field (marked by the black arrows) disappearing after cleaning 
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Several metrics were selected to measure the performance of the proposed method. The accuracy 

of the QRS detection is described by the sensitivity, Sen = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), where TP is the 

number of true positive (accurately detected), whereas FN is the number of false-negative 

(missed) QRS peaks. 

The performance of the classifier is also measured by the sensitivity, as well as the specificity, 

Spe = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃). In both cases, TP is the number of true 20-second ECG independent 

component segments, TN is the number of non-ECG component segments, FN is the number of 

true ECG component segments rejected by the classifier rules (amplitude, periodicity, QRS 

interval, number of cycles in the majority beat class) and FP is the number of false-positive 

segments.  

5.2 Datasets 

Multiple EEG datasets were selected for testing my method. Public EEG datasets used in similar 

studies [9], [10] were included for performance comparison purposes. I have also used resting 

state EEG data measured by our group on healthy volunteers who all had given their written 

consent in participating in the experiments. 

PhysioNet EEG datasets  

a)  The MIT-BIH Arrhythmia Database [138] contains 48 half-hour excerpts of two-channel 

ambulatory ECG recordings with sampling frequency is 360Hz, recorded at the Boston's Beth 

Israel Hospital.  

b) The MIT-BIH Polysomnographic Database [19,134,138] contains sleep measurements of 

varying duration (ranging from 1:17 to 6:30 hours) from 16 patients monitored in the Boston's 

Beth Israel Hospital Sleep Laboratory. The datasets contain one EEG channel. The sampling rate 

of the measurements is 250 Hz. 

c) The CAP Sleep Database is a collection of 108 polysomnographic recordings measured at the 

Sleep Disorders Centre of the Ospedale Maggiore of Parma, Italy [134,138]. Each dataset 

contains at least three EEG channels as well as ECG, EOG, respiration, etc. physiological signals. 

The sampling rate of the measurements is 250 Hz. 

Resting state EEG dataset 

Closed and open eye resting state EEG data was recorded from 61 adult volunteers (males and 

females, from ages 17 to 35) of 2-3 minute’s duration. During the experiment, subjects had to sit 

and relax in a silent room. Data were recorded using a Biosemi ActiveTwo EEG system 

(fs = 2048 Hz) using the 128-channel ABC radial electrode layout. The volunteers gave their 

written consent to participate in the experiments. 

5.3 Results 

My proposed method was tested on publicly available datasets and on resting-state EEG data 

obtained in our laboratory. The public datasets I selected are the MIT/BIH Arrhythmia, the 

MIT/BIH Polysomnographic and the CAP Sleep datasets. These allow my method to be 

compared with results reported in the literature [9,10]. The outcome of these comparisons can be 

found in Table 5-1:Table 5-3. The overall performance of my proposed method depends on the 
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performance of the QRS detector and the ECG component classifier. Both are examined in terms 

of their Sensitivity, Sen, and Specificity, Spe. 

5.3.1 Artifact Detection Performance Metrics 

The sensitivity of the QRS detector is calculated as Sen = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), where TP is the 

number of true positive (accurately detected), whereas FN is the number of false-negative 

(missed) QRS peaks. I cannot use the standard formula for the Specificity, Spe = 𝑇𝑁/(𝑇𝑁 +

𝐹𝑃) for the QRS detection tests, as each input signal contained QRS complexes, consequently, 

the true negative case TN is undefined. Instead, I use the alternative formulation Spe* =

𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) as suggested in  [136].   

The performance of the classifier is also measured by sensitivity and specificity. In this case, TP 

is the number of true ECG independent component segments, TN is the number of non-ECG 

component segments, FN is the number of true ECG component segments rejected by the 

classifier rules (amplitude, periodicity, QRS interval, number of cycles in the majority beat class) 

and FP is the number of false-positive segments (falsely detected QRS segments). The specificity 

of the component classifier is calculated using the traditional formula, Spe = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃). 

5.3.2 QRS Detector Performance 

Table 5-1 shows the results of my QRS detection method performed on ECG signals of the 

MIT/BIH Arrhythmia database using one and five-minute-long data segments.  

Dataset Sen (%) Spe* (%) 

Dora [9] PM (1 min) PM (5 min) PM (1 min) PM (5 min) 

100m 97.1 100.0 100.0 100.0 100.0 

101m 100.0 100.0 99.7 100.0 99.7 

103m 100.0 100.0 100.0 100.0 100.0 

106m 91.5 100.0 96.6 100.0 96.7 

107m 100.0 100.0 100.0 100.0 100.0 

117m 100.0 100.0 100.0 100.0 100.0 

118m 100.0 100.0 100.0 100.0 100.0 

208m 89.4 98.9 97.5 99.0 97.5 

223m 92.2 100.0 100.0 100.0 100.0 

231m 100.0 100.0 99.3 100.0 99.3 

avg. 97.0 99.9 99.3 99.8 99.0 
Table 5-1: QRS detection sensitivity and specificity, proposed method (pm, 1 and 5- minute 

segments) vs literature: MIT/BIH Arrhythmia dataset – ECG signal. 

Table 5-2 and Table 5-3 show the results of my QRS detection method applied to the MIT/BIH 

Polysomnographic and the CAP sleep datasets. For both datasets, I ran the Infomax ICA to 

calculate the independent components. From this, each component is used as an input to the QRS 

detector to detect the ECG component. 
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Dataset Sen (%) Spe* (%) 

Dora [9] Jiang [10] PM PM 

slp01a 98.5 98.9 100.0 100.0 

slp02b 95.2 98.1 100.0 100.0 

slp03 97.1 96.3 100.0 100.0 

slp16 100.0 - 100.0 100.0 

slp32 100.0 - 100.0 100.0 

slp41 100.0 - 100.0 100.0 

slp59 100.0 - 100.0 100.0 

slp60 100.0 - 100.0 100.0 

slp66 100.0 - 100.0 100.0 

slp67x 97.9 - 100.0 100.0 

average 98.7 97.8 100.0 100.0 
Table 5-2: QRS detection sensitivity and specificity, proposed method (pm, 1-minute 

segments) vs literature : MIT/BIH Polysomnographic Dataset – EEG signal. 

 

 Sen (%) Spe* (%) 

Dataset Dora [9] PM PM 

ins_2  100.0 100.0 100.0 

ins_5 98.9 100.0 100.0 

n2 98.7 100.0 100.0 

n8 98.4 100.0 100.0 

nfle15 98.6 100.0 98.6 

nfle35 96.5 100.0 100.0 

plm3 96.7 100.0 100.0 

plm4 97.0 100.0 100.0 

plm9 100.0 100.0 100.0 

average 98.5 100.0 99.9 
Table 5-3: QRS detection sensitivity and specificity, proposed method (PM, 1-minute 

segments) vs literature : CAP Sleep Dataset – EEG signal. 

We compared our method to Dora and Jiang (popular methods for removing ECG artifacts). The 

proposed method was tested on these selected subjects to compare our results to what DORA and 

Jiang got for the same subjects to be sure that we have reference results to compare with. 
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5.3.3 ECG Component Classifier Performance 

This section shows the results of my proposed ECG component classification method on an 

arbitrary EEG dataset in automatic mode. For the tests, seven subjects were selected at random 

from a 61-subject 128-channel closed-eye resting-state EEG dataset. 

Table 5-4 lists the performance results obtained on the recordings. For subjects s1 and s2, no 

sensitivity results could be calculated, since no ECG contamination was detectable in the 

datasets. Correctly, my method did not find any QRS complexes in the components, and 

consequently none of the independent components were classified as ECG, meaning, that 𝑇𝑃 =

𝐹𝑃 = 0. For both subjects s1 and s2, no ECG was recognised in the EEG measurements, as the 

heart effect was so small that it was undetectable. 

Dataset 
Proposed method 

QRS detection Sen (%) Classifier Sen (%) Classifier Spe (%) 

s1 N/A N/A 100.00 

s2 N/A N/A 100.00 

s3 99.11 100.00 100.00 

s4 100.00 100.00 100.00 

s11 99.61 100.00 100.00 

s24 99.40 100.00 100.00 

s25 92.81 100.00 99.61 

average 98.19 100.00 99.94 
Table 5-4: The ECG artifact detection performance of my proposed method on 128-channel 

resting-state EEG. 

5.4 Summary 

In this chapter I proposed a fully automatic ECG artifact removal method working without human 

assistance or reference ECG channel, which can be used in high-throughout, high-speed EEG 

analysis, continuous monitoring or clinical diagnostic systems. The acquired EEG signals are 

subjected to independent component analysis and the resulting independent components are 

examined for cardiac activity characteristics. The applied adaptive threshold-based QRS detector 

and subsequent rule-based cardiac cycle classifier identify ECG activity and mark component 

segments for rejection with high reliability.  

In QRS detection, the proposed method achieves sensitivity above 99.3% on the PhysioNet 

datasets (specificity > 99%), higher than all known automatic methods reported in the literature. 

For our high-density resting state EEG data, the QRS detection sensitivity is above 98.1%, 

however, the sensitivity of the ECG component classifier is 100%. This is due to the fact that the 

classifier does not need all the component QRS peaks to identify a component segment as ECG. 

The significance of my method is that due to its excellent sensitivity and specificity, it can be 

used reliably for automatic, unsupervised artifact removal, where similar reported methods might 

incorrectly remove non-artifacts or leave contaminating components in the dataset. 
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My method advances the current practice of ECG artifact removal, and due to its clear 

advantages, i.e. the fully automatic operation, better sensitivity than previous approaches, and 

the capability of detecting pathological ECG waveforms, such as frequent ventricular ectopic 

beats or bundle branch blocks, it will help practitioners in producing more accurate analysis 

results. 
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6 Functional Connectivity in Ischemic Stroke 

As scientific evidence emerged establishing that the operation of the brain is not purely functional 

(assuming that different parts of the brain are responsible for different well-defined functions) 

but connectionist (networks of multiple areas execute functions in coordinated cooperation) 

[139], the focus of research in understanding brain execution mechanisms and brain mapping 

started to shift from finding individual activated regions to identifying brain networks. When 

brain imaging and measurement technology advanced the point that it could efficiently support 

these types of investigations, a new research area, brain connectivity research was born.   

As stated in the Introduction, brain connectivity can be divided into three groups as follows: 

• structural connectivity: tracks the anatomical fibre pathways between different brain regions 

[140]. Diffusion Tensor Imaging is used to detect these the interconnecting fibre bundles. 

The patterns of these structural connections are relatively persistent at shorter time scales 

(hours, days), whereas at a longer time scale (months), these patterns may change due to 

neuroplasticity.  

• functional connectivity: is defined as the temporal dependency of the activated neuronal 

patterns during the flow of information between brain regions. Functional connectivity is 

based on statistical dependencies between the distant brain regions and can be classified as 

bivariate or multivariate. The resulting network is represented by undirected graphs.  

• effective connectivity: is the measure of causality where one neuronal region has a direct or 

indirect influence on the activity of another region. This type of connectivity is described by 

directed graphs.  

Connectivity research emerged from MRI technology, first aiming to construct and discover 

structural pathways (connectome) in the human brain. The emergence of high spatial resolution 

functional (1-3 mm3) MRI (fMRI) made it possible to conduct functional connectivity studies. 

These investigations led to the identification of several fundamental resting-state and task-based 

brain networks [141–143]. Due to technological limitations, however, fMRI functional 

connectivity analysis is not suitable for the examination of millisecond range changes typically 

found, for instance, during cognitive task execution [144]. An alternative to fMRI in connectivity 

studies is EEG technology that provides superior temporal resolution and measures signals 

generated directly by neurons as opposed to blood oxygenation changes, such as BOLD fMRI. 

EEG functional connectivity can be sensor or source based. If statistical dependence is calculated 

between the electrode signals, we refer to sensor-level (a.k.a sensor-space) connectivity. If the 

electrode signals are projected to the cortex by solving the inverse problem that identifies the 

original sources of bioelectric activities and calculated the association among these cortical 

regions, we refer to source-level (or source-space) connectivity. Source-level connectivity has 

the potential to achieve higher spatial resolution (the cortex can be partitioned to thousands of 

potential source areas) but requires accurate 3D anatomical models and solving the ill-posed 

inverse problem. For these reasons, sensor-level connectivity would be preferable as an 

experimental method. 

The general process of generating a functional connectivity network from EEG measurements is 

the following. The cleaned, pre-processed signal is input the first stage of the process that 

establishes associations between electrodes or cortical sources based on a selected association 

measure described below. The output of this stage is a square association matrix. Each entry of 

the matrix represents the strength of the connectivity between two electrodes or sources. This 

matrix is then used as an adjacency matrix, from which various features can be extracted. To 

reduce the number of edges in the network graph, normally the association matrix is thresholded 
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and only the top few percent of the edges are kept. The structure of the final connectivity graph 

can be analyzed by the network features and input to statistical tests.  

Functional EEG connectivity has the potential to provide more information than fMRI, due to its 

higher temporal resolution. Oscillations in the brain regions provide a certain coordination 

mechanism emerging as synchronized rhythms. These oscillations may transfer information from 

a local network or region to another region. Examining the flow of information between regions 

may help to reveal the connectivity relation between the neural assemblies either at rest or during 

task execution. Connectivity information between the distant brain regions may explain how the 

neural networks are altered e.g. in stroke or neurodegenerative diseases [145]. It can provide new 

insights about the large-scale neuronal communication in the brain and may help to understand 

the origins or track the progress of recovery of stroke or monitor the status of brain diseases such 

as Alzheimer’s disease [146], and predict outcome of treatment to many other deficits related to 

the brain. In this chapter, I will focus on how EEG-based functional connectivity can be used to 

describe brain plasticity in stroke, which is the brain’s natural ability for re-wiring that is essential 

for successful recovery from stroke.  

6.1 Overview of Connectivity Association Measures 

In this section, I briefly overview the various methods that can be used to establish connectivity 

associations between electrodes or brain regions. Measures for functional connectivity are listed 

first, followed by ones that can be used for effective connectivity calculations. 

6.1.1 Functional Connectivity Association Measures 

Functional connectivity is defined as statistical dependencies that exist between sensors or 

cortical regions [147]. These dependences can be described by bivariate methods such as cross-

correlation or covariance, mutual information in time-domain, or coherence [148], and phase 

differences in the frequency domain.  

6.1.1.1 Cross-Correlation 

Cross-correlation (CC) is used to measure the linear relationship between the observations of two 

time series 𝑥1  and 𝑥2 shifted by lags (j) to establish the largest value of the correlation [149]. 

 
𝑅12(𝑗) =

1

𝑁
∑ 𝑥1(𝑛)𝑥2(𝑛 + 𝑗)

𝑁−1

𝑛=0

         
( 6.1) 

where N is the total number of signal samples. In practice, Eq (6.1) is used in its normalized 

form, which is 

 
𝜌12(𝑗) =

𝑅12(𝑗)

1
𝑁

[∑ 𝑥1(𝑛) ∑ 𝑥2(𝑛)𝑁−1
𝑛=0

𝑁−1
𝑛=0 ]1/2  

       
( 6.2) 

 

Cross-correlation can take up values in the range of -1 to 1 and will show high correlation 

between the two signals if they are in-phase or anti-phase. Small values around zero indicate that 

the two signals are almost independent. The advantage of cross-correlation is its simplicity but it 

presents problems in EEG-based connectivity calculations, since it is based on the signal 

amplitude, which is sensitive to noise and volume conduction, hence can generate false, spurious 
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connectivity values. Volume conduction (i.e. the current of a cortical source is measurable at 

spatially distant scalp electrodes due to the conductance of the brain and skull) represents a 

serious problem in estimating sensor-level connectivity as it generates false, spurious 

connectivity between electrodes. Nunez et al., [150] claimed that the volume conduction effect 

may be reduced by using a high-density caps in which the inter-electrode distance is small. 

Unfortunately, this does not help in reducing spurious connectivity. 

6.1.1.2 Coherence (Magnitude Square Coherence)  

Magnitude Square Coherence (MSC) is a bivariate model used to describe the correlation 

between two signals, 𝑥 and 𝑦, in the frequency domain, and it identifies the significant frequency 

correlation in terms of magnitude values ranged between 0 to 1. The normalized form of the MSC 

[128] measures the cross-spectral density 𝑆𝑥𝑦 with respect to the auto-spectral density of both 𝑥, 𝑦  

as shown in the form,  

 
𝐶𝑜ℎ𝑥𝑦(𝑓) =

|𝑆𝑥𝑦(𝑓)|
2

|𝑆𝑥𝑥(𝑓)|𝑆𝑦𝑦(𝑓)|
     

( 6.3) 

 

 Coherence equation is derived by applying the Fourier Transform (FT) of the correlation 

equation, 

 
𝑆𝑥𝑦(j) =

1

𝑁 − 𝑗
∑ (

(𝑥𝑛 − �̅�)

𝜎𝑥

) (
(𝑦𝑛+𝑗 − �̅�)

𝜎𝑦

)

𝑁−𝑗

𝑛=1

 
( 6.4) 

 

where 𝑗 is the time lag, 𝜎𝑥  and �̅� indicate variance and mean respectively. The coherence depends 

on the stationarity of the signal, which may be achieved by using the short-time Fourier transform 

(STFT) for selected data window for which stationarity can be assumed.  

Instead of using a fixed window size in STFT that may cause a lack of temporal localisation in  

low frequencies, Wavelet Coherence (WC) [151] can be used as an alternative approach, which 

localizes the coupling coherence regions more accurately both in time and frequency. This 

method is characterized by choosing varying window sizes: the size of the window is changing 

with the frequencies so, a narrow window is used for high frequencies to achieve good time 

resolution and larger ones for low frequencies, however the problem of spurious connectivity is 

present in wavelet coherence as well the [152] [153] [154]. 

Nolte et al. [155] claimed that discarding the real part of the coherence and using only the 

imaginary part of the complex coherence (ImC) mitigates the spurious interactions related to the 

field spread mentioned in [156,157]. Phase synchronization (PS) is an alternative approach to the 

coherence, the nonlinear coupling version is based on the fact that although the two signals may 

have zero coupling in terms of amplitudes, they may strongly synchronize in phase [158]. In 

order to reduce the effects of noise and volume conduction, state-of-the-art EEG connectivity 

methods are all based on phase information.  

6.1.1.3 Phase Locking Value (PLV) 

Theoretical analyses of amplitude-based connectivity estimators have shown that the accuracy of 

connectivity estimation can be improved by moving to phase-based connectivity measures [159] 

[160] as these reduce the spurious effects of the volume conduction and noise [54,161]. 



61 

 

Consequently,  connectivity methods based on phase synchronization (PS) are the most 

frequently used in connectivity estimators for EEG signals [162–166]. Under this assumption, 

two brain regions have similar oscillation properties that said to be related or functionally 

connected, then, if this coupling between the related regions can be assessed mathematically, 

then we can obtain phase connectivity.  

One of these methods is based on the Phase Locking Value (PLV) [163] that computes the phase 

difference between observations normalized to all differences between pairs of signals. For all 

the trials (n = 1,…,N), and for each channel pair, x and y, at time t, PLV is calculated as: 

 

𝑃𝐿𝑉𝑡 =
1

𝑁
|∑ 𝑒𝑗(𝜑𝑥(𝑡)−𝜑𝑦(𝑡))

𝑁

𝑛=1

| 
( 6.5) 

where 𝜑𝑥 and 𝜑𝑦 are the instantaneous-phases of signals x and y respectively. PLV is used to 

evaluate the instantaneous phase difference of the signals under the hypothesis that connected 

regions generate signals whose instantaneous phases evolve together, then we can say the phases 

of the signals are said to be “locked”, and their phase difference is consequently persistent. 

Since in practical situations the measured signals contain noise, we cannot be sure that the 

evaluated signal originates from one cortical oscillator. This issue can be solved by permitting 

some deviation from the condition of a constant phase difference. Thus, PLV assesses the spread 

of the distribution of phase differences, and the connectivity assessment is connected to this 

spread.  

Due to the low capacitance of the brain tissue and the small distances that the currents have to 

travel, the signals of interest are said to have an instantaneous propagation [155,167]. Following 

from this hypothesis, volume conduction/source leakage effect occurs at two electrodes only if 

the signals are recorded with zero phase delay. Since the imaginary part of coherency proposed 

by Nolte et al. [155] and the PLV are both detect zero phased signals, Stam et al. [167] suggested 

and improved method for the phase lag index (PLI) that can distinguish between 0 and 180 degree 

phase differences. The introduction of the Weighted Phase Lag Index [168] resulted in a method 

that is not sensitive to phase/anti-phase signals, hence volume conduction generated spurious 

connectivity.  

 
𝑊𝑃𝐿𝐼𝑡 = |<

|sin (∆𝜑𝑖,𝑗)|

sin (∆𝜑𝑖,𝑗)
>| 

( 6.6) 

 

where ∆𝜑𝑖,𝑗 is the phase difference between channel 𝑖  and 𝑗. 

In this thesis, I focused on sensor-space functional connectivity. From the association measures 

discussed above, the PLV and the WPLI measures will be used as these are the least sensitive to 

signal noise, and minimize spurious connectivity. For the sake of completeness, effective 

connectivity measures are overviewed next, but these will not be used in the proposed methods. 

6.1.2 Effective Connectivity Association Measures 

Effective connectivity is defined as directed and dynamically changes according to a certain 

context or a task executed. Consequently, one of the important aspects of effective connectivity 

analysis is identifying the directionality of causal effects. If the observation given by the 

fluctuation of one of the brain regions is able to predict the future fluctuation of another brain 

region at certain time, then the first region is said to be temporally causing region two and this 



62 

 

gives the main concept where Granger causality (GC) is established [169]. For two variables 𝑋1 

and 𝑋2, the GC formula if  𝑋2 causes 𝑋1 is given by 

 

𝑋1(𝑡) = ∑ 𝐴11,𝑗𝑋1(𝑡 − 𝑗) + ∑ 𝐴12,𝑗𝑋2(𝑡 − 𝑗) + 𝐸1(𝑡)

𝑝

𝑗=1

𝑝

𝑗=1

 

( 6.7) 

where  𝑝 is the model order and 𝐴 is coefficients matrix.  

Zhou et al. [170] proposed a combination of PCA and GC for studying the direct influences 

between functional brain regions within fMRI measurements. PCA method was used for 

dimensionality reduction to select some principal components from fMRI time-series that were 

used later as input to identify the effective connectivity. Although these approaches do not 

involve temporal aspects, another method based on dynamic Bayesian networks (DBNs), was 

used to estimate the EC between the activated brain regions from fMRI data sets [171]. Despite 

of the potential usefulness of the principle of effective connectivity, it remains a source of 

concern and ongoing arguments, mainly because of the temporal blurring caused by the 

hemodynamical response. The most popular methods used to estimate the EC are Directed 

Transfer Function (DTF) and Partial Directed Coherence (PDC) described in the following 

subsection. 

6.1.2.1 Directed Transfer Function (DTF) 

The Directed Transfer Function [172] used the GC concept  to determine the coherence direction 

between a pair of signals in a full multivariate spectral dataset. Kaminski et al. [160] claimed that 

DTF is not influenced by  brain volume conduction, so it is unnecessary to use a Laplace 

transform (LP) or cortical projection that causes in some cases destroying in the connection 

structure of the original signal. Brunner et al. [173] contradicted the results given by Kaminski 

and gave a simulation example which proved that the DTF method was effected by volume 

conduction. DTF can be computed by the multivariate autoregressive model (MVAR) that is 

given by: 

 

𝑋(𝑡) = ∑ 𝐴(𝑚)𝑋(𝑡 − 𝑚) + 𝐸(𝑡)

𝑝

𝑚=1

 

( 6.8) 

 

where 𝑋(𝑡) refers to vector data of length (t=1: number of channels(k)), E(t) is a vector of 

uncorrelated white noise, p is the fitted model order, and A(m) are coefficient matrices of 

dimension 𝑘 ∗ 𝑘. Equation 6.8 tends to the frequency domain to give the DTF by the form: 

       ᵧ𝑖𝑗
2  (𝑓) =

|𝐻𝑖𝑗(𝑓)|2

∑ |𝐻𝑖𝑚(𝑓)|2    𝑘
𝑚=1

 ,                           ( 6.9) 

 

which describes the flow of information at frequency f from channel j to channel i with respect 

to all channels (k). 

6.1.2.2 Partial Directed Coherence (PDC) 

PDC [174], is a GC modification used to describe the directed out flows between n time series 

𝒙(𝑡) = [𝑥1(𝑡), …   , 𝑥𝑛(𝑡)]𝑇. PDC is given thought the normalization form as shown in the 

following equation, 
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𝑃𝐷𝐶𝑖𝑗 =

𝐴𝑖𝑗(𝑓)

√𝑎𝑗
∗(𝑓)𝑎𝑗(𝑓)

 
( 6.10) 

 where Aij(𝑓)  are the Fourier Transform of the MVAR coefficients, aj(𝑓), j = 1,2 … , n represent 

the columns of 𝐴(𝑓), and 𝑎𝑗
∗ is the transpose and complex conjugate of 𝑎. Unlike the DTF, PDC 

is normalized regarded to the channel that sends the signal and it shows the ratio between the 

outflows from channel j to i with respect to all outflows from j to other channels. This underlines 

partly the sinks, not the sources, which smears the absolute strength of the coupling [175].  

6.2 Overview of Connectivity Network Metrics 

Once the association matrix is established for the cortical regions of EEG electrodes, a graph can 

be constructed to describe and visualise the connectivity structure. In the graph, connectivity is 

represented as edges connecting cortical areas or sensors. If a binary graph is used, the association 

values must be thresholded and turned to 0, 1 values depending on whether the value is below or 

above the threshold. In the weighted graph case, edges will represent association weights, hence 

the thresholding step can be ignored.  

Rubinov et al., described the brain connectivity networks by graphs, consisting of nodes (brain 

regions) and edges (connections) [61]. Nodes ideally should represent coherent structural or 

functional brain regions without spatial overlap. It provides a clear analysis to and insight towards 

the topological network’s changes over time. It presents the modularity approach which allows 

dividing the main network into subnetworks of different modules. EEG measurements can be 

problematic in this sense, since EEG electrode locations may not be aligned with the boundaries 

of regions. In addition, because of volume conduction, electrodes may detect spatially 

overlapping signals. One solution to the latter problem is to compute functional connectivity 

networks on the cortex instead of the scalp using spatial deconvolution [176]. Links represent 

anatomical, functional, or effective connections (link type) but can also have weight and direction 

associated with them. Binary links only represent the presence or absence of a connection. 

Weighted links, on the other hand, can represent various properties. In anatomical networks, 

weights may represent the size, density, or coherence of anatomical tracts, while weights in 

functional and effective networks may represent respective magnitudes of correlational or causal 

interactions. In functional and effective connectivity networks, links with low weights may 

represent spurious connections that obscure the topology of strong connections. These can be 

filtered out using suitable thresholding policies.  

Brain network can be identified by using a variety of measures such as calculating the modularity 

of the different nodes-electrodes in the network, which tracks the extent of community structure 

of the network [198]. Other measures could be used to identify the network flexibility, how many 

times the regions of the brain switch from one node or module to another over time [199].  

Graph theory provides the necessary tools to characterise the structure of these networks in an 

efficient way. We can investigate whether the resulting network is optimal in terms of segregation 

and integration (Figure 6-1) determine the complexity of the networks developing and how they 

respond to different kind of damages, e.g. stroke. A large set of network metrics has been 

identified that can be used in the analysis of the connectivity networks [61]. In the followings, I 

describe the most important metrics. 

a) Degree 

Degree is the number of connected links of a node i and is defined as 
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 𝑑𝑖 = ∑ 𝑎𝑖𝑗

𝑗∈𝑁

 ( 6.11) 

where 𝑎𝑖𝑗 edge connecting node i and j in a set of N nodes.  

b) Local and Global Efficiency 

The efficiency [177] of a network describes how efficiently it exchanges information. Global 

efficiency measures the amount of information that can be exchanged across the whole network, 

while a network's resistance to failure on a small scale is given by the local-efficiency (LE). Thus, 

for node 𝑖 the LE characterizes how well information is exchanged by its neighbours when this 

node is erased. Global efficiency (GE) is the functional integration of the network (the average 

inverse of shortest path length in the network), and is calculated by: 

 

𝐸 =
1

𝑛
∑

∑ (𝑑𝑖𝑗
𝑤)

−1
𝑗∈𝑁,𝑗≠𝑖

𝑛 − 1
𝑖∈𝑁

 

( 6.12) 

where 𝑑𝑖𝑗 is the characteristic path length (Shortest path length, between nodes i and j). 

 

c) Betweenness Centrality  

Betweenness Centrality (BC) [178] is defined as the fraction of all shortest paths in the network 

that comprise a given node i. It is a measure which can characterize the degree to which nodes 

stand between each other and is shown in the following formula:   

 
𝑏𝑖 =

1

(𝑛 − 1)(𝑛 − 2)
∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗ℎ,𝑗∈𝑁
ℎ≠𝑗,ℎ≠𝑖,𝑖≠𝑗

 
( 6.13) 

where 𝜌ℎ𝑗 is the number of shortest paths between nodes h and j, and 𝜌ℎ𝑗(𝑖) is the number of 

shortest paths between h and j that pass-through node i. For example, the higher the information 

passes to the node the higher the betweenness centrality of the node. 

d) Modularity 

Modularity [179] is one indicator of network structure or graphs. It was conceived to quantify 

the strength of a network's division into modules (also called classes, clusters or communities). 

High-modularity networks have dense node connections within modules but sparse node 

connections in separate modules. Modularity is also used to identify group structure in networks 

in optimisation methods. 

𝑄 = ∑ [𝑒𝑢𝑢 − (∑ 𝑒𝑢𝑣

𝑣∈𝑀

)

2

]
𝑢∈𝑀

 

( 6.14) 

where the network is fully segmented into a set of non-overlapping modules M, and 𝑒𝑢𝑣is the 

proportion of all links that link nodes in module u with nodes in module v. 
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Figure 6-1: Modules Structure [61]. 

e) Characteristic path length 

The characteristic path length 𝐿 of a graph G is defined as the average number of edges in the 

shortest paths between all vertex pairs and is considered the most commonly used measure of 

functional integration [61]. It can be given by: 

𝐿 =
1

𝑛
∑ 𝐿𝑖

𝑖𝜖𝑁

=
1

𝑛
∑

∑ 𝑑𝑖𝑗𝑗𝜖𝑁 𝑖≠𝑗

𝑛 − 1
𝑖∈𝑁

 
(6.15) 

f) Assortativity 

In the weighted network where the node has weight values not binary value, assortativity is a 

correlation coefficient between the strengths (weighted degrees) of all nodes on two opposite 

ends of a link. The positive value of the coefficients shows that nodes are linked with other nodes 

having the same strength. 

6.3 Functional Connectivity Biomarkers for Monitoring 

Ischemic Stroke Recovery  

Ischemic stroke is considered one of the major causes of either death or permanent disability with 

increasing frequency of occurrence as the population in developed countries is aging. The 

resulting neurological deficits caused by stroke have a huge impact on the patients’ daily activity, 

quality of life, as well as on healthcare costs [180]. A number of brain regions could have deficits  

after stroke such as, hemiparesis [181], and functional disability that happens through the motor 

system [182,183]. Prompt and effective treatment can help in speeding up the recovery and 

improve rehabilitation outcome. To track the rehabilitation process, a complete insight about the 

mechanisms would need to underlie neurological deficits and the recovery. This helps to design 

novel interventional approaches and suggest the appropriate treatments needed for the recovery.  

Identifying bio markers of brain networks, could help in enhancing therapeutic impact by 

informing individualization of the scope, timing and length of therapy [184]. These bio markers 

include measurements of function and structure in white matter and gray matter. White matter 

integrity or lesion load tests were found to correlate with motor dysfunction in chronic 

hemiparetic stroke patients [185,186], while increasing in motor status function have been 

associated with increasing activity in secondary sensorimotor regions [187].  
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The usual timeline of treatment for stroke starts with an MRI and/or CT scan to identify the 

location and extent of brain damage. The underlying stroke deficits are usually caused by focal 

brain lesions, for example in aphasia [188]. Diagnosis by imaging is complemented by clinical 

evaluations using standardized stroke scales such as the National Institutes of Health Stroke Scale 

(NIHSS) [22,23], the Fugl-Meyer Assessment for Upper Extremity (FM-UE), the Nine Hole Peg 

Test (NHPT), etc.) [22,23,189,190]. Once the diagnosis is established, treatment starts and the 

condition of the patient is monitored by the medical staff based on patient status. To confirm the 

level of recovery at patient dispatch from hospital, a second MRI scan might be performed.  

Peter et al. [191] have investigated the impact of the lesioned hemisphere of stroke patients using 

fMRI-based functional connectivity. Three groups of 14 healthy controls, 14 stroke survivors 

with left hemisphere lesion and other 14 stroke survivors with right hemisphere lesion were 

examined during the resting state. The brain was devised into four regions, two on the left and 

two on the right and they extracted the functional connectivity from the primary (S1) and 

secondary (S2) somatosensory cortical areas. The group with lesion in the left hemisphere 

showed lower FC compared to the control group, from left S1 to S2 in the right side of the brain. 

Inter-hemispheric FC in healthy controls was higher than in the stroke group in both regions S1 

and S2. The lesion hemisphere was associated with various patterns of altered functional 

connectivity within the somatosensory network and was associated with various patterns of 

altered functional connectivity within the somatosensory network and related functional 

networks. 

A resting-state functional magnetic resonance imaging experiment was performed on a group of 

37 stroke patients to predict the functional outcome after acute stroke [192]. The correlation 

coefficient for each pair of brain regions was calculated at 3 and 90 days after the stroke onset. 

Graph analysis was used between regions of interest to detect the changes in FC between patients. 

The results showed that higher FC is related to patients with better outcome. 

Researchers examined whether the default mode network function in stroke patients is decreased 

compared with healthy control subjects in resting state condition [193]. Brain network properties 

of 21 control subjects and 20 first-ever stroke patients were examined during resting state 

functional MRI. Independent Component Analysis was applied to the recorded datasets to detect 

the default mode network between the control and the stroke group. Correlation coefficient 

matrices were calculated from each group, and FC of the regions of interest was explored. Two-

sample t-test was applied to identify the significant differences between the two groups. Power 

spectrum density was calculated for each subject and the average power spectrum was calculated 

for each group. The results did not show significant differences in the frequency between the two 

groups, however, there was a reduction in the FC in the stroke regions. 

The efficiency of the treatment is difficult to evaluate without monitoring quantitative stroke 

metrics since the stroke deficit can develop in the hospital in short time, for example, Delayed 

Cerebral Ischemia (DCI), which can only be discovered once symptoms worsen [24]. The normal 

tracking protocol for neurological deficits is to localise the lesion with imaging methods and 

monitor the deficits developing with time. An experiment was performed after stroke to show 

brain recovery from neurological deficits, and dynamic variations was located in areas near to 

per-lesioned areas[194]. They claimed that the recovery can arise from reorganization of 

preserved perilesional regions to the functions previously assumed by the damaged tissue [195].  

The continued monitoring of mechanisms underlying stroke deficits is very important, since it 

could be calculated though tracking the metrics of the network representing stroke deficits 

without the need to a sophisticated protocol. The simplicity of these metrics could help in 
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selecting the best treatment path, and be used as predictors for the level of recovery at the end of 

the rehabilitation period [25–28].  

The limitation of the published studies are that the biomarkers are extracted from fMRI-based 

measurements which result in low temporal resolution, high cost of measurement and increased 

inconvenience for patients. Some of the studies [193] focused on comparing biomarkers between 

stroke and normal groups, and did not include monitoring the course of recovery for stroke 

measurements. We are proposing quantitative metrics and connectivity pattern analysis for brain 

networks based on EEG measurements that are easy to obtain, technically reliable and provide 

useful predictive parameters. The introduced biomarkers may provide greater insight to the 

rewiring and plasticity of the brain after acute stroke, and could improve patient monitoring and 

therapeutic interventions. 

In the remaining of this chapter, I examine the use of high-resolution EEG technology as an aid 

for monitoring and quantifying patient recovery progress, complementing the use of clinical 

stroke scales. Reliable biomarkers are introduced that characterize progress of recovery and track 

the outcome. The simplicity of resting state EEG analysis is that measurements can be performed 

quickly without moving the patients; it does not require task execution and can be repeated daily 

for effective progress monitoring.   

6.3.1 Subject and Methods 

The use of the time-frequency quantitative metrics have already been suggested [28–31] for 

accurate  monitoring of patients. These metrics can monitor the stroke related deficits and track 

neurological changes well before symptoms develop [28]. The reported methods all rely on the 

calculation of one or two metrics from measurements using low-density 19-electrode clinical 

EEG systems. In this section, I propose the use of connectivity network metrics as biomarkers 

based on high-density, 128-channel EEG measurements. A topographical mapping of the metrics 

is used to show the location and extent of the stroke area. This representation also facilitates 

measurement of change as an indicator of the speed of recovery and outcome. 

Graph connectivity metrics were introduced for resting state connectivity measures collected 

from control subjects and stroke patients. Graphs were generated from the connectivity matrices 

for quantitative analysis and visualization purposes. The structure and properties of the brain 

connectivity networks were compared for healthy subjects and stroke patients. In the case of 

stroke patients, networks from the beginning and end of the rehabilitation period were compared 

as well. The diversity of the connectivity graphs reflects the difference between the healthy and 

patient resting-state behaviour. The sub-networks around the stroke lesion were explored and 

compared to the left or right unaffected hemisphere to detect the hubs, patterns, and measure 

density and the recruitment of brain regions [61]. These patterns show the network structure on 

the stroke-affected hemisphere and other unaffected areas.  

Twenty-seven healthy volunteers (males, aged 16-19) were used as a control group. Eleven 

ischemic stroke patients were selected with different lesion location and stroke severity for 

analysis. All volunteers and patients gave their written consent for participating in the 

experiments. The measurement details of the stroke patients are listed in Table 6-1. 
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patient age stroke location First 

measurement 

(days) 

Second 

measurement 

(days) 

NIHSS 

1st/2nd  

FM-UE 

1st/2nd 

NHPT  

1st/2nd 

(sec) 

1 48 
35x45 jobb 

temporoparietalis 
8 91 2/1 64/66 NHPT: 83/28 

2 50 j. lacunaris 8 103 1/0 65/65 NHPT: 42/27 

3 63 

Small left 

subcortical lacunar 

infarct 

8 99 2/0 58/65 NHPT: 42/27 

4 64 20x20 right frontal 12 100 1/0 61/65 NHPT: 326/97 

5 65 
right parietal 

15x13 
9 100 5/2 40/57 NHPT: failed/117 

6 65 

17x10x23 left  

caudatus, frontal 

capsula 

7 84 1/0 64/66 NHPT: 31/27 

7 66 
22x40 left  

occipital 
5 84 2/1 64/65 NHPT: 41/29 

8 67 36x25 right frontal 15 100 3/1 60/65 NHPT: 57/41 

9 67 
48x24x33 left 

caps. Putamen 
15 107 4/1 54/63 NHPT:162/34.5 

10 70 
56x51 right 

parietal 
22 104 2/2 44/48 NHPT:failed/failed 

11 77 
20x13 right frontal 

under M1 
12 98 1/0 51/64 

NHPT: 3 pegs in 2 

minutes/56.5 

Table 6-1: Summary information of stroke patients. NIHSS scale: 0-42, the lower the better; FM-UE scale: 0-66, the 

higher the better; NHPT: the shorter the time the better. 

6.3.1.1 EEG Measurement 

Three-minute resting state EEG with closed and open eyes were recorded for each participant. 

During the experiment, subjects had to sit in a relaxed position in a silent room. For stroke 

patients, two measurements were performed. The first measurement was performed 5-20 days 

after the stroke onset while the second measurement took place 90-100 days after the onset. All 

measurements were carried out using a Biosemi ActiveTwo EEG system (fs = 2048 Hz) with a 

high-density 128-channel ABC radial layout electrode cap. Data were recorded and made 

available for the analysis by the National Institute of Neurosurgery, Budapest. All healthy 

volunteers and stroke patients gave their written consent to participation in the study and allowed 

the measurements to be used for research purposes. The measurements were approved by the 

Ethical Committee of the National Institute of Neurosurgery. 

6.3.1.2 Data Pre-processing 

Each dataset was filtered with a 1–47 Hz 4th-order zero-phase Butterworth bandpass filter to 

remove the DC component, slow drifts, line noise and unwanted high-frequency components. 

EEG frequency of interest is located in these bands band (Delta 1-4 Hz, Theta 4-8 Hz, Alpha 8-

12 Hz, Beta 12-30 Hz, Gamma 30-45 Hz), [116]. The selected frequency band avoids the 

appearance of the power line noise 50 and 60 Hz. Also, it is known that alpha frequency activity 

decreases in stroke patients, while low frequency, especially delta band, increases. The data sets 

were re-referenced to the average of the signals, then down sampled to fs = 256 Hz in order to 

reduce the execution time of the subsequent Independent Component Analysis. The filtered 

signals were partitioned into 10-second non-overlapping consecutive segments. The Infomax 

ICA algorithm [76] was performed on each segment to identify artifact components. EOG and 

ECG components were identified and rejected using the methods introduced in Chapter 4 and 5 

to generate an artifact-free dataset. All analyses were carried out in the Fieldtrip toolbox [19] 

using custom scripts.  
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6.3.1.3 Functional Connectivity Calculation 

The connectivity matrix of each data set was calculated using the debiased weighted Phase Lag 

Index (dwPLI) [196] that measures the phase relationships between the nodes of the functional 

brain networks. The advantage of this method over other correlation-based methods is that it is 

not influenced by volume conduction, spurious connections and robust against the uncorrelated 

noise [197]. The dwPLI connectivity matrices were computed for each participant for four 

different frequency bands – delta (1- 4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) – 

then thresholded to keep only the strongest 10% of the edges. All connectivity measures were 

calculated using the Brain Connectivity Toolbox [61] as described in [145,197,198]. The 

connectivity measures of the 27 healthy subjects were averaged to create control graphs for 

comparisons. Particular interests were in metrics that characterize network segregation and 

integration, such as the clustering coefficient of each node (a measure of its local connectivity), 

the global efficiency which reflects the importance of the node in the shortest paths and the degree 

distribution. For the analysis in this work, I selected four stroke patients, whose change in status 

by the end of the three months were the largest. 

6.4 Results 

Several brain metrics were calculated and analysed for the healthy subjects and the stroke patients 

to find significant differences in the connectivity networks and to check the level of recovery by 

comparing the first and second stroke measurements with the control group. Figure 6-2 shows 

the MRI scan of stroke patient 1 identifying the location of the stroke lesion of. This image can 

be used as a reference in studying the resting state connectivity graphs.  

 

Figure 6-2: MRI scan of Patient 1 with crosshair indicating the stroke lesion. 

 

Connectivity graphs for the delta, theta, alpha and beta frequency bands were generated from the 

healthy as well as from the first and second stroke measurements. The healthy connectivity graph 

is shown in Figure 6-3, the stroke connectivity graphs are in Figure 6-4. In the connectivity plots, 

nodes represent the electrodes whereas lines indicate pairwise functional connections. Only the 

strongest 10% of the links were retained.  



70 

 

 

Figure 6-3: Connectivity graph of a control subject (theta, alpha and beta bands). The colour 

and the size of the nodes represent the strength of the connection and the degree, respectively. 

 

 

Figure 6-4: Theta, alpha and beta band connectivity graphs of first (top row) and second 

measurements (bottom row). The colour and the size of the nodes represent the strength of the 

connection and the degree, respectively. 

 

The distribution of the node degrees of the connectivity graph of the three measurements are 

shown in Figure 6-5. The first stroke measurement group shows an average nodes degree around 

60 (red line), while the average node degrees for the same group second-measurement reduces 

to 45 degrees similar to the normal group as shown in Figure 6-5. The Normal and the second 

stroke measurement group show very similar node degree distribution unlike the first 

measurement which has degrees in the range of 45 to 70. This result shows how the stroke 

patients recovered, i.e. converged to healthy connectivity network by approx.. 88 days after the 

stroke injury. 
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Figure 6-5:  Histograms of node degrees of the normal group and of stroke patients at the first 

and second measurement. 

Figure 6-6 shows box plots of the normal and stroke first (a)/second measurement (b) for delta 

to beta bands. The node degree of the first stroke measurement is greater than the normal group, 

but in the second measurement, both of the two groups has almost the same level of node degrees 

at theta and alpha bands. The numbers are shown at each boxplot are P values represent the level 

of statistical significant t-test of 95 % confidence interval between each group at each frequency 

band. The stats show significant between the normal/ stroke first measurements for delta, theta 

and alpha bands, and by testing the normal group with the second stroke measurements group, 

the level of significant reduced at all bands while no significant was shown at alpha band, which 

confirm the recovery of the stroke patient at 88 days from the injury.  

  

(a) (b) 

Figure 6-6: Boxplots of node degrees (a) for the first stroke measurement (red boxes) and 

normal group, and (b) for the second stroke measurement (red boxes) vs. the normal group. 

Figure 6-7 shows the edge betweenness metric which measures the importance of the edge where 

it is given by the fraction of all shortest paths in the network that contain a given edge. Edge with 

high level of betweenness centrality participates in a large number of shortest paths. Figure 6-7 

on the left side shows a large difference of edge betweenness between the first stroke 

measurement and the normal group at theta and beta bands, but on the right side, similar values 

are obtained in all bands for the second stroke measurement stroke and the normal group.  
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(a) (b) 

Figure 6-7: Boxplots of edge betweenness centrality for the first stroke measurement (red 

boxes) and normal group (a), and (b) is the edge betweenness centrality for the second stroke 

measurement (red boxes) vs. the normal group. 

The local efficiency of the left motor area was calculated as region of interest as shown in Figure 

6-8. The level of significance reduced from first to second measurement at delta, theta and alpha 

band, but no significant difference was noticed at beta bands.  

  

(a) (b) 

Figure 6-8: Boxplots of Local Efficiency (LE) of the left motor area for the first stroke 

measurement (red boxes) and normal group (a), and (b) is LE for the second stroke 

measurement (red boxes) vs the normal group. 

The small-world property is given by the ratio between the characteristic path length and the 

mean clustering coefficient. The small-world metric is given by the ratio between the 

characteristic path length and mean clustering coefficient. Small-world networks are known for 

their efficiency in that they enable a rapid integration of information from local, specialized brain 

areas even when they are distant [199]. In case of the normal subject the network gives higher 

small world values than the stroke subject since the normal subject’ networks generate 

characteristic path length larger than the stroke patient because the distant networks in the normal 

subject can be integrated better than the stroke subject, e.g. networks of the normal subject are 

less segregated. Vertical dashed line in Figure 6-9 is for Delta to Gamma bands, and x axis refers 

to the threshold from 5 to 25 % of total connections. 
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Figure 6-9: The small-world metric is given by the ratio between the characteristic path length 

and mean clustering coefficient, Vertical dashed line is for Delta to Gamma bands, and x axis  

refers to the threshold from 5 to  25 % of total connections. 

6.5 Summary 

It is well known that delta power increases while alpha power decreases in stroke-affected 

patients. Delta increase is coupled with a decrease of blood flow, while higher frequency alpha 

decrease is contributed to neural tissue death. Similar phenomena can be identified on the 

connectivity graphs. In the first measurements (few days after stroke onset) there is increase in 

connection strengths and node degree in the delta band. The stroke area is clearly unconnected 

in the alpha band indicating reduced activity. At the same time, alpha connectivity decreases on 

the unaffected hemisphere, and node degree increases in middle areas. In contrast, beta 

connectivity is increased over the stroke area, whose explanation is still sought for. The second 

measurement graph shows that theta and alpha bands return to near normal connectivity. Beta 

band is peculiar again as the highest connectivity increase moved to the sensor-motor area. The 

second stroke measurement shows node degree distribution similar to the normal group which 

indicates that the connectivity structure of the stroke-disturbed brain recovered close to normal 

within three months. Statistically significant differences were detected by t-test between the 

normal group with the first and second stroke measurements. Node degree, edge betweenness 

and local efficiency metrics show significant differences at different frequency bands between 

the normal group and the first stroke measurement, but the significance level is gradually reduced 

at some bands and vanished at others in the second stroke measurement which confirms that the 

rewiring of brain networks tend to be normal. These measures seem as potential biomarkers for 

stroke characterisation, and the results indicate the usefulness of functional connectivity for 

assessing stroke and predicting outcome of recovery. 
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7 High-Resolution Dynamic Functional 
Connectivity  

This chapter investigates dynamic functional connectivity (DFC) and proposes a method for 

detecting fast temporal fluctuations in brain activity networks based on Ensemble Empirical 

Mode Decomposition. A large body of earlier research has established the spatial characteristics 

of neural connectivity [161,200] and for decades, functional connectivity computations relied on 

the assumption that the signals under investigation are stationary [201,202]. 

The brain generates activations that oscillate rapidly [203], consequently connectivity related to 

sensory and cognitive tasks would also change rapidly. The question is then, how and when the 

brain activation and connectivity among different brain regions propagate throughout the 

execution of a task. A change in the field of functional neuroimaging has been motivated by the 

concept that coordinated temporal patterns between specific neural regions send information 

above and beyond the independent behavior of these regions-groups. Investigation into the 

activation caused in certain regions by some stimulus or task-related has, in part, given way to 

analysis of patterns of co-activation or functional connectivity between distal regions, 

contradicting with the old theory where  the stationarity of connectivity cannot be assumed [204]. 

The functional connectivity community has been looking beyond the stationary assumptions on 

which earlier research was based and has proposed approaches for integrating temporal dynamics 

in connectivity analysis. Since the most important goal of neuroscience, is to better  understand 

how brain networks are integrated and dissolved in order to support continuing cognitive 

functions, accurate characterization of the dynamism of connectivity networks is of paramount 

importance [144,205,206]. Tracking the dynamics of fast activity changes, i.e. uncovering 

spectral variations in non-stationary signals, presents great challenges and has been a long-

standing research problem.  

The most commonly used method is that of a windowed analysis in which the signal is divided 

into windows of fixed duration and the connectivity is calculated in each window. Windowed 

connectivity originated from fMRI analysis. In a study performed by Maria et al., using fMRI 

measurements to identify the dynamics of functional connectivity [206], connectivity 

calculations were performed on selected time windows of length 30 seconds. Such a long-time 

window may be suitable for resting-state investigations but are not suitable for detecting task-

related dynamism in the connectivity network. These time limitations generate doubt whether we 

can trust the results, whether the generated connectivity is related to true coupling or just due to 

random noise [207]. Although EEG has very high temporal resolution in terms of milliseconds, 

functional connectivity interactions are still identified by using trivial spatiotemporal patterns, 

defined in a static sense, i.e. the connectivity is analysed at large time scales using data windows 

of several seconds [208]. While this may reflect part of the connectivity, it cannot show a clear 

image of the dynamical connectivity changes that happened at millisecond scale [209]. 

True dynamic connectivity is vital if we are to explain the nature of how cognitive networks are 

generated. As an example, time-locked oscillatory reactions to stimulus in normal cases occur in 

the range of few hundred milliseconds after the stimulus. These reactions could be significant 

events, such as, e.g., right finger press, left finger press [201,202]. The main problem with the 

static approaches and very long-time windows that the results cannot reflect the true coupling 

that happened in the brain over this short time period. 

The most important issue in time-frequency analysis is the principle of uncertainty, which 

stipulates that one cannot localize a signal with absolute precision both in time and frequency. 
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Long windows are needed for lower frequencies that provide good frequency but reduced 

temporal resolution, while short windows used for higher frequencies result in better time but 

lower frequency resolution [33,34]. Over the past 30 years research to non-stationary signals 

increasingly has grown resulting in a body of work called "time-frequency" (TF) methods. This 

included linear TF methods such as the Short Time Fourier Transform (STFT), Wavelet 

Transform (WT) that involve phase and magnitudes contributions, and non-linear methods that 

lead to real-valued transforms. STFT, the extension of FT, was modified to show nonstationary 

characteristics of the signal in the time-frequency domain. It consists of the successive FFT of 

the overlapped windowed signal, where each frequency distribution being correlated with each 

window's central time. The main drawback of the method that it has a smeared peak around the 

peak of the main frequency with decaying side lobes on the selected window. However, side 

lobes attenuation is associated with increasing of the window [32]. The spectral smearing can be 

reduced by increasing the length of the time window, but this also reduces the time localization 

by imposing increased stationarity. Thus, high time localization comes at the expense of the 

spectral smearing.  

Using the Hilbert transform as a means to compute instantaneous frequency, promised better 

results, but the Hilbert transform breaks down for multicomponent, broadband EEG signals 

[210]. As an improvement, the Hilbert-Huang transform based on Empirical Mode 

Decomposition (EMD) and Hilbert Spectral Analysis have been recommended [210,211]. While 

used successfully in EEG studies [212,213] EMD has been criticized for being sensitive for noise 

and prone to mode mixing. Improvements, such as Ensemble Empirical Mode Decomposition 

[214] reduced noise sensitivity and mode mixing, while the CEEMDAN method [215,216] 

further reduced spurious modes and component noise, and provided completeness, i.e. the 

recoverability of signals from its immediate mode functions. 

In this chapter section, I discuss the problems of increasing the temporal resolution of functional 

connectivity and go through a collection of used tools that have been developed to give possible 

solutions then show how my proposed method can uncover fast-changing connectivity patterns 

in a finger-tapping task. 

7.1 A Critique of the Sliding-Window Dynamic 

Connectivity 

The simplest analytical strategy to explore Dynamic Functional Connectivity (DFC) can be 

calculated by dividing the time-course of the measured signal into time windows say 100 ms or 

more, then the connectivity method (correlation, or coherence) are applied to each window. It 

has been widely used in EEG to represent the connectivity between regions or electrodes 

[144,177,217]. By measuring FC over subsequent windows, it became possible to recognize 

connectivity variations, which is why the term dynamic FC became coined. The sliding window 

can be called static or dynamic based on the way in which it can be calculated. For example, if 

the functional connectivity for the entire experiment is collected from one time window, then this 

approach is called static, otherwise if divides the time-course of the signals into window slides 

over time propagation and connectivity is calculated with these overlapped time windows, then 

this approach is called dynamic. Figure 7-1, presents an example for the sliding time window. It 

shows two signals are propagated form time 0 to 1000 ms. The two signals are divided into time 

windows of length d=200 ms moving with timesteps k=50 ms. The first window starts at 0 to 

200ms, and with the moving step, the second window starts at 50ms and end at 250ms and so on, 

and the process is repeated so that we can generate a time course of connectivity as illustrated in 

Figure 7-1. The top panel shows the two generated signals, and red dashed rectangle is located 
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around the selected time window of length d. The black arrow to the right refers to the direction 

where the time window slides while the function connectivity is calculated at each moving step. 

The bottom panel shows the connectivity results for each window, where the red cross refers to 

the centre of the time window along which the connectivity is calculated. Connectivity values 

start form 0 referring to no coupling and end with value 1 when the two signals are strongly 

correlated. 

Besides the simplicity of the calculations based on sliding window approach, it suffers from 

limitations, for example, the selected time window 200 ms could not represent the fast-dynamic 

changes in the network and could not reflect the true coupling and consequently gives some doubt 

about the generated results. The second issue is the length of the selected time window; no certain 

criteria could decide the proper time window in which the coupling of the signals in time-

frequency variations would be well represented. Too long window [218] impedes the 

identification of temporal variations while, too short window lengths means  few samples for a 

reliable calculation which introduces spurious fluctuations in the observed DFC [144,219]. A 

trade-off between the length of the time window would come in the expense of the frequency 

calculations as shown in the next example. 

  

Figure 7-1: Illustration of the temporal resolution of functional connectivity (based on 

correlation) using a sliding window approach. The width of the window is 200 ms, window is 

stepped by 50 ms units. Red crosses represent the strength of connectivity based on the current 

time window.  

Another example explaining the issue for a signal of 1 sec length and 1000 Hz sampling 

frequency: a window of minimum temporal resolution of 500 ms keeps the frequency resolution 

minimum to 2 Hz, while decreasing the window length lower than this interval smears the lower 

frequencies as delta band (1-4 Hz). So, the selected time window loses important details about 

the time-frequency varying information behind the scenes. 
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I give an example describing the problem of using the sliding window method for EEG brain 

connectivity calculation.  Simulated two signals are generated with frequency components 10 

and 40 Hz, with additive noise. The two signals have coherence in time period 400 to 600 

millisecond as shown in the following figure. 

𝑥1 = cos (2𝜋10𝑡)[𝑡 ≥ 0.2, 𝑡 < 1] +sin (2𝜋40𝑡)[𝑡 ≥ 0.3, 𝑡 < .9] + 𝑛1 

𝑥2 = cos (2𝜋10𝑡)[𝑡 ≥ 0.4, 𝑡 < .8] +sin(2𝜋40𝑡)[𝑡 ≥ 0.4, 𝑡 < .6] + 𝑛2 

( 7.1) 

 

Figure 7-2: Simulated data for two channels. Signal length is 1 second and contains two 

frequency components at 10 and 40 Hz. Sampling frequency fs=1000 Hz. 

 

Figure 7-3: Wavelet coherence of the simulated data of 2 channels from Figure 7-2, note the 

low time resolution at frequency 3 Hz, and the low frequency resolution 64Hz to 128 Hz at  

100ms. 

Black arrows in the figure are used to represent phase lag of signal 𝑥1 with respect to 𝑥2. The 

direction of the arrows represents the phase lag on the unit circle: for example, a vertical arrow 

indicates a π/2 or quarter-cycle phase lag. 
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For one static time window of 1-second length, the connectivity is shown in Figure 7-4 without 

any details about the temporal resolution. Coherence (COH), Phase locked value (PLV) and 

Weighted Phase Lag Index (WPLI) are used for connectivity calculation. 

 

Figure 7-4:: Connectivity of  simulated data based on PLV. Width of static time window is 1 

second, coherence frequencies are 10 and 40 Hz. 

 

 

Figure 7-5:Connectivity of the simulated data based on PLV. Width of selected time window is 

300 ms (0.7 to 1 second), at coherence frequencies 10 and 40 Hz. 

Figure 7-5 shows that there is coherence between the two simulated signals at 10 Hz starting at 

time 0.7 to 1 seconds, which is not true, since the correct coherence at 10 Hz should end at 800 

ms not to extend to the end of the time window. 

Wavelet transformation was established for the time varying spectral estimate to overcome the 

spectral smearing. It used variable time window lengths which are adapted with the frequency of 

interest. So, long time windows are used for representing low frequencies therefore have good 

frequency, but low time resolution, while short windows are used for high frequencies estimate 

have good time resolution, but limited range of frequency resolution [33]. Thus, WT showed 

accepted temporal resolution on the high frequencies, while poor temporal resolution was located 
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in the low frequencies [34]. The chosen Wavelet function should be carefully selected with 

specific characteristics to improve the signal representation. 

The synchrosqueezed Fourier transform is a derivation of the original Fourier transform [220] 

used to resemble the reassigned spectrogram through generating sharper time-frequency 

estimates than the traditional transform. It squeezes frequency contents to be concentrated around 

curves of instantaneous frequency in the time-frequency plane by convoluting it with a selected 

taper window function such as Hanning, Cosine and Blackman. The convolution process based 

on the selected window function causes time resolution limitations. 

Autoregressive model was introduced by Yale et al.,[221] for time-varying frequency analysis. 

It was known by a liner prediction method, where the future values of signal could be predicted 

by the past P (model order) values generating the autoregressive coefficients. John Burg [222] 

used the autoregressive coefficients to calculate the autoregressive spectra. This has significant 

implications for the resulting frequency localization since the signal is not strictly windowed as 

the FFT-based approach. The autoregressive coefficients depend on two main parameters, the 

model order P and the window length of the signal, which has to be twice more than the model 

order. Since the model order is the curtail parameter in the method so, it should be neither too 

low, which generates a very smooth spectrum and other spectral peaks will be misplaced, nor too 

high, to avoid the spurious peaks and there may be spectral line splitting [223]. Since the window 

length one of the restrictions which controls the model order value, this procedure imposes the 

stationarity of the signal window.   

7.2 Dynamic Connectivity based on the Empirical Mode 

Decomposition  

Empirical Mode Decomposition (EMD) had been established by Huang et al. [210] to 

decompose non-stationary geophysical signals. It has been shown to be very adaptable in a wide 

range of many applications to extract signals from data generated in noisy nonlinear and non-

stationary processes. When used for EEG, the decomposed signal can be expressed as the sum 

of the Intrinsic Mode Functions (IMF) representing the frequency bands (Delta, Theta, Alpha, 

Beta and Gamma), plus a residual. According to the data-local nature of the EMD, the 

decomposed signal is not totally separated mode function, since oscillations can be generated 

with very different scales in one mode, or with similar scales in different modes. Since similar 

scales can spread through mode functions, while the desired solution to have specific scale for 

each mode function, this issue is called mode-mixing and makes the EMD undesirable to be used 

in the sensitive application. 

The frequent occurrence of mode-mixing problem resulted from signal intermittency, not only 

induced extreme aliasing in the time-frequency distribution, but also questioned the physical 

significance of the individual IMFs. Zhaohua et. al. [214] proposed a new method called 

Ensemble Empirical Mode Decomposition (EEMD) to solve the problem of mode-mixing. They 

introduced sifting an ensemble of white noise added to the signal, and considered the mean as  

the final true result and the new generated IMFs components consisting of the signal plus a white 

noise of finite amplitude.  

They applied statistical properties of the white noise that proved that the EMD is effectively 

working as a filter bank once applied to noise. The dyadic filter bank is outlined as a group of 

band-pass filters that have a persistent band-pass form (e.g., a normal distribution) however with 

close filters covering half or double of the frequency of any single filter within the bank. The 

https://www.sciencedirect.com/topics/computer-science/nonstationary-signal
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additional noise would populate the full time–frequency scale uniformly with the constituting 

parts of various scales. The additional white noise would uniformly fill the complete time – 

frequency space with parts of various scales.  

The EEMD was used in a wide range of applications. It was used for pathological voices 

processing by extracting the instantaneous fundamental frequency [224]. Despite its wide range 

of use, EEMD created new difficulties where the reconstructed signal, the final trend and the sum 

of the modes contains residual noise. Also, different signal realizations plus noise will generate 

a different number of modes, making final averaging difficult [216]. Yeh et. al. [225] proposed 

a complementary method to the EEMD which greatly alleviated the reconstruction issue by using 

complementary noise pairs (i.e., addition and subtraction). However, the completeness property 

could not be proven, and the final averaging issue remained unsolved since different noisy copies 

of the signal could generate a different number of modes. 

Torres et al. [215] introduced important improvements to the EEMD to solve the problem of the 

reconstructed signal which still contains residual noise, by proposing a new approach called 

Complete Ensemble Empirical Mode Decomposition (CEEMDAN). They proposed that a 

particular noise has to be added at each stage of the decomposition and a unique residue was 

computed to obtain each mode. The resulting decomposition was complete, with a numerically 

negligible error. The new approach achieved a negligible reconstruction error and solved the 

problem of different number of modes for different realizations of signal plus noise. A better 

spectral separation of the modes with a lesser number of sifting iterations was achieved, moreover 

the computational cost was reduced. CEEMDAN was used in many applications in areas such as 

biomedical engineering [226], time-frequency analysis [227] and was used as pre-processing 

techniques for the analysis of Vibroarthrography signals [228]. 

In this work, I propose the use of the Improved Complete Ensemble Empirical Decomposition 

with Adaptive Noise [216] method to calculate instantaneous phase synchronizations and show 

that this new method radically improves the temporal accuracy of the calculated time-varying 

functional connectivity graphs. The application of EEMD-HH for dynamic EEG connectivity is 

completely new method in the tracking dynamic changes of brain connectivity and has not been 

suggested before in the literature. 

The core of the proposed new method is to compute the instantaneous phase information of the 

EEG signal at different frequencies at high temporal resolution, from which a functional 

connectivity association matrix can be constructed to any time point. After thresholding the 

weights, a connectivity network can be created at each time instance and the temporal variation 

of the network metrics can be determined, or further graph-theoretic methods can be used to 

identify, e.g. dynamic community changes. The method will be tested on data from a finger-

tapping experiment.   

Using the Hilbert transform as a means to compute instantaneous frequency, promised better 

results, but the Hilbert transform breaks down for multicomponent, broadband EEG signals 

[210]. As an improvement, the Hilbert-Huang transform (HHT) based on Empirical Mode 

Decomposition (EMD) and Hilbert Spectral Analysis have been recommended [210,211] and 

was used successfully in EEG studies [212,213]. HHT was applied to the improved version of 

the CEEMDN, known as CEEMDAN-HHT and features were extracted from the estimated IMF 

of the non-stationary linear signal to show the wide range of frequency variation in time [228]. 

It is considered one of the best method used to localize the active brain sources by showing a 

good temporal resolution and identifying  the  frequency-band of EEG signal [229,230]. The high 

performance of the method regarding to time-frequency resolution,  significantly made it to be 

used in neuro-sciences identification diseases, including a focus on detecting abnormalities in 
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sick new-borns in a Neonatal Intensive Care Unit (NICU),  epileptic EEG signals, as  well as 

mental health issues in elderlies [231]. It was applied in many biomedical applications such as 

showing the time-frequency analysis of FP1 EEG channel  of alcoholic and non- alcoholic 

subjects [230]. Others used in EEG-Based brain intention recognition studies [232,233] to 

decompose original Steady state visually evoked potential (SSVEPs) into several IMFs. The 

instantaneous frequency of the SSVEP-related IMFs were computed, then the frequency which 

had the maximum presence probability and closest to the stimulation frequency was identified as 

the target [232]. Thus, the HHT is more robust than the FFT, and other frequency calculation 

methods meaning its accuracy in recognition does not change dramatically with data length. 

I propose the use of the Complete Ensemble Empirical Mode Decomposition with Adaptive 

Noise [216] method to solve the low time-resolution and estimation problems of sliding window 

dynamic connectivity calculations. At each stage of the decomposition process, a particular noise 

was added, and a unique residue was calculated for obtaining each mode. The resulting 

decomposed IMFs are complete, with a numerically negligible error. Also, the method provided 

a better spectral separation of the modes with a lesser number of sifting iterations, moreover, the 

computational cost was reduced. The steps for the proposed method calculation are as follows: 

a) Using CEEMDAN, the signals are first decomposed in an adaptive way into so-called 

intrinsic mode functions (IMFs) that represent constituent signal components. Unlike other 

decomposition methods, EMD-based approaches do not use special baseline functions. IMFs 

are created adaptively from the signal itself during an iterative sifting process [234]. 

Empirical Mode Decomposition acts as a dyadic (octave) filter bank that naturally follows 

the characteristics of the brain frequency bands and results in IMFs that correspond to 

gamma, beta, alpha, theta and delta band signals as shown in Figure 7-6. 

 

Figure 7-6: IMFs of the decomposed signal, 513-sample long of one trial, channel A1. 



82 

 

 

Figure 7-7: PSD of the calculated IMFs shown in Figure 7-6.  

The CEEMDAN algorithm ensures that the decomposition process is robust in the presence of 

noise, separates IMFs correctly, minimizes error, and that the original signal can be reconstructed 

entirely from the modes.  

The steps for CEEMDAN calculation are as follows: 

1- Let 𝐸𝑘 is the function which generates the kth mode/IMF from the EMD method as 

 𝐸(𝑠) = 𝑥 − 𝑀(𝑠) ( 7.2) 

where ‘s’ is the input signal and M(.) refers to the function that outputs local mean of 

the input signal. The first mode/IMF 𝐸1is defined by the following equation: 

𝐸1(𝑠) = 𝑥 − 𝑀(𝑠) ( 7.3) 

here ‘s’ denotes the input signal 𝐸1(𝑠) provides the first decomposition by EMD.  

2- The set of ensembles denoted as 𝑠 (𝑖) is initially computed by the following equation  

𝑠 (𝑖) = 𝑠 + 𝛽0𝐸1(𝑤𝑖) ( 7.4) 

where 𝑤𝑖 is white noise of zero mean and unit variance while, 𝑖  ϵ (1,2, … 𝐼 ) is the 

ensemble number. Here 𝛽0 represents a positive constant and in general (𝛽𝑘−1 > 0), and 

𝑘 indicates the mode number.  

3- The local of mean for ‘𝐼’ realization is computed by using the traditional EMD method 

i.e. 𝑀(. ) for the set of ensembles to get the first residue as shown in the equation below 
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𝑟1 = 〈𝑀(𝑠(𝑖))〉 ( 7.5) 

where ⟨.⟩ calculates the averaging operation over all the 𝑖  ϵ (1,2, … 𝐼 ). 

4- The calculated residue 𝑟1is then subtracted from the signal ’𝑠’ to derive the first mode 𝐶1 

which is given by this equation 

𝐶1  = 𝑠 − 𝑟1  ( 7.6) 

 

5- Now the residue 𝑟1 is considered as the base signal to compute the second residue as an 

average of the local means of 𝑟1 + 𝛽1𝐸2(𝑤𝑖) same as the  equation in step 1 and 

calculated residue defines the second mode 𝐶2 as: 

𝐶2  = 𝑟1 − 〈M(𝑟1 + 𝛽1𝐸2(𝑤𝑖))〉   ( 7.7) 

6- From the above steps, the generalised 𝑘𝑡ℎ residue can be given by  

𝑟𝑘  = 〈M(𝑟𝑘−1 + 𝛽𝑘−1𝐸𝑘(𝑤𝑖))〉   ( 7.8) 

7- Then the 𝑘𝑡ℎ mode is given by  

𝐶𝑘  = 𝑟𝑘−1 − 𝑟𝑘 ( 7.9) 

Step 6 and 7 are repeated for the next mode until the residue 𝑟𝑘 cannot be further 

decomposed by EMD. 

b) The IMFs are then processed using the Hilbert transform ℎ(𝑡) to extract the instantaneous 

phase information as, 

 
ℎ(𝑡) =

1

𝜋
𝑃 ∫

𝑠(𝜏)

𝑡 − 𝜏

−∞

−∞

 dτ     
( 7.10) 

           where 𝑠(𝑡) is the input signal and 𝑃 is Cauchy principal value for singular integral.  

c) The transformed signal is then used in the calculation of the instantaneous PLV connectivity 

measure. Over all trials 𝑛[1 … 𝑁], and for each channel pair at time 𝑡, PLV is calculated as:  

 

𝑃𝐿𝑉𝑡 =
1

𝑁
|∑ 𝑒𝑗(𝜃(𝑡,𝑛))

𝑁

𝑛=1

|      
( 7.11) 

 

          where 𝜃(𝑡, 𝑛) is the phase difference 𝜑1(𝑡, 𝑛) − 𝜑2(𝑡, 𝑛).  

7.3 Validation using Synthetic Signals  

To test the temporal accuracy and resolution of the method, first artificial signals were examined. 

Four synthetic signals were created as mixtures of 10 and 40 Hz sine waves with fixed phased 

difference and added noise to test the temporal resolution of different functional connectivity 

methods. The signals in one trial were defined as: 
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x1(t) = sin(2𝜋10 ∗ 𝑡) +sin(2𝜋40 ∗ 𝑡) + 0.15𝑛1(𝑡) 𝑡 ∈ [0.2, 0.6], 

x2(t) = sin (2𝜋10𝑡 +
𝜋

4
) +sin (2𝜋40𝑡 +

𝜋

4
) + 0.2𝑛2(𝑡) 𝑡 ∈ [0.3, 1.6], 

x3(t) = sin (2𝜋10𝑡 +
𝜋

3
) +sin (2𝜋40𝑡 +

𝜋

3
)

+ sin (2𝜋10𝑡 +
𝜋

3
) +sin (2𝜋40𝑡 +

𝜋

3
)

+ 0.25𝑛3(𝑡) 

𝑡 ∈ [0.8, 1.2] 

𝑡 ∈ [1.7, 1.9], 

x4(t) = sin (2𝜋10𝑡 +
𝜋

2
) +sin (2𝜋40𝑡 +

𝜋

2
) + 0.35𝑛4(𝑡) 𝑡 ∈ [1.4, 1.8]. 

 

When 𝑡 is outside the specified intervals, each signal is random noise 𝑛𝑖(𝑡). I generated one 

hundred 2-second trials for the entire experiment; sampling frequency was fs = 1000 Hz. The 

signal waveforms of a single trial with intervals of pairwise signal correlations are shown in 

Figure 7-8.  

 

 

Figure 7-8: The synthetic signals used in the connectivity test. Rectangles mark time intervals 

in which connectivity is present between the pairs of signals. 

7.3.1.1 Functional Connectivity Computation 

Given two input signals 𝑥1(𝑡) and 𝑥2(𝑡), the cross-spectrum of the signals is defined as 𝑋 ≡

𝑍1𝑍2
∗, where  𝑍1, and 𝑍2 are the Fourier spectra of the two input signals, and 𝑍2

∗ is the complex 

conjugate. The cross-spectrum can be also expressed in exponential form, 𝑋 = 𝑅𝑒𝑖𝜃, where 𝑅 is 

the magnitude and 𝜃 is the relative phase. Coherence [128] is the frequency domain equivalent 

of the correlation and is defined as the magnitude |𝐶| of the complex-valued coherency 𝐶 ≡
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𝐸{𝑋}/√𝐸{𝑀1
2}𝐸{𝑀2

2} where 𝐸{. } is the expected value operator,  𝑀1 = |𝑍1|, and 𝑀2 = |𝑍2|. 

For uncorrelated sources I get  𝐶 = 0, while positive values indicate correlation. 

Since coherence is partly based on the magnitude of the signals that may cause spurious 

connections due to volume conduction, it has been suggested to use only the phase information 

in connectivity calculations [155]. The phase-locking value (PLV) [163] defined as 𝑃 ≡ |𝐸{𝑒𝑖𝜃}| 

is a commonly used connectivity measure that uses only the relative phase information. Several 

improved metrics, less sensitive to relative phase values of 0 or 𝜋 that are assumed to appear due 

to volume conduction, have been proposed in the literature, such as the imaginary component of 

coherence ImC = |ℑ{𝑋}| [155], phase lag index PLI = |𝐸{𝑠𝑔𝑛(ℑ{𝑋})}| [167], weighted phase 

lag index WPLI = |𝐸{ℑ{𝑋}}|/𝐸{|ℑ{𝑋}|} and the debiased WPLI [54]. I refer the readers to the 

references for further details. For reasons of simplicity, only the PLV metric is used in this work 

but my method equally allows the use of any other phase-based metric.  

Dynamic connectivity was first calculated using the sliding window technique. Window sizes of 

0.25, 0.5 and 1 seconds were used to calculate PLV. Within a signal window, stationarity was 

assumed. After the Short-Time Fourier Transform was calculated, the PLV value was computed 

from the cross-spectrum. The window was moved by 50 ms steps over the entire trial to generate 

a time series of connectivity values. Figure 7-9 shows the connectivity between signals x1 and x2 

for the three different window sizes. While the method detects changes in connectivity, when 

compared to the real correlation pattern, the error (approximately half of the window size at both 

sides) in estimation is evident. This makes this method unsuitable for tracking connectivity 

changes for tasks completing within few hundred milliseconds. 

 

Figure 7-9: PLV connectivity values (bottom) calculated from signals x1 (top) and x2 (middle) 

using sliding window dynamic connectivity calculation. Window sizes used are 0.25, 0.5 and 1 

seconds. Real connectivity appears between 0.3 and 0.6 seconds (dotted vertical lines. 

 

The dynamic connectivity results given by the sliding window method, shown in Figure 7-9, 

demonstrated that the sliding window techniques is inadequate for studying fast-changing brain 
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activities. The low temporal resolution is the result of the smearing effect of the large windows. 

Note that in order to study delta-band activity, 2-3 second windows would be required. Figure 

7-10 illustrates the results given by my proposed dynamic instantaneous connectivity method. 

The top plot shows the phase locking values computed from the IMFs representing the 40 Hz, 

while the bottom representing the 10 Hz signal components, respectively 

 

 

Figure 7-10: Instantaneous dynamic connectivity estimation of signals x1 and x2 from the 40 

Hz (top) and 10 Hz (middle) IMFs with respect to the real connectivity (dashed line). 

Instantaneous dynamic connectivity estimation of signals x1 and x2 from the 40 Hz (bottom) 

after setting a threshold (th = 0.7). 

The proposed method gives a more accurate estimate of the real connectivity between the signals, 

and the temporal resolution remains nearly constant over all frequencies. Using a PLV threshold 

of 0.7 to distinguish genuine connectivity from noise, resulted in a resolution of approximately 

10 ms (see red lines insets in Figure 7-10). By repeating the calculations for the IMFs of each 

pair of electrode signals, the complete connectivity association matrix can be created for each 

time step. From these matrices, a brain connectivity graph/network can be built then analysed 

using appropriate network metrics.  
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7.4 Validation using a Finger-tapping Experiment 

This section describes the use of the new proposed method for investigating the dynamic 

functional connectivity of the brain during a task-related finger tapping experiment. The finger 

tapping experiment is an EEG experiment for testing the function and activity of the sensorimotor 

brain areas [235]. The experiment was performed by five volunteer subjects. Each subject had to 

press a button with the right index finger on a visual cue appearing approximately every five 

seconds. The cue is a small rectangle at the centre of the computer screen continuously changing 

its intensity level between black and mid-grey in front of a mid-grey background. The subject 

had to press the button when the small rectangle disappeared in the background.  

Over 100 presses were recorded for each subject and the button press event was used to lock the 

trials during event-related trial averaging. The dataset was recorded by using Biosemi ActiveTwo 

EEG device with 128 channels using a radial ABC layout electrode cap and 2048 Hz sampling 

frequency. Time windows of two seconds long were selected (trials), one second before and on 

second after the button press. The key point of the finger tapping experiment is that the activity 

of the brain on the motor and sensory motor areas can be assessed with high time resolution. The 

dataset was cleaned from artefacts, then the proposed method of high time resolution functional 

connectivity was applied to the dataset. Several connectivity metrics were calculated and results 

were presented as a sequence of topographical maps. 

Connectivity graphs were created for a selected time instance, before and within and after the 

finger press as shown in Figure 7-11. The sensory motor area connects to the motor area on the 

left side of the brain with clear patterns are shown at time 100 ms after the finger tap for theta 

band. Also, the visual cortex is activated and has links to the frontal area in the same time for 

alpha band. Strong connections are located in left motor cortex, beta band at the time of the finger 

press and nodes of this area indicate the importance of the node’s connection by referring to the 

node size.  

Many metrics can be explored to show the network connectivity changes, and node degree was 

selected as an indicator of varying connectivity. The graph connectivity metrics were calculated 

corresponding for different time instances with different frequency bands as shown in Figure 

7-12. The theta band topoplot at time 100 ms shows high node degree values in the left sensory 

and motor areas that agree with the connectivity graphs in Figure 7-11. 

Figure 7-12 shows seven sub figures on vertical view (for each frequency band) for temporal 

changes around time zero (time of the tap press) with step of 30 ms starting at -100 ms before the 

finger tapping and end at 100 ms from the press tap. The topoplot activity of the node degrees 

started on the left motor area at 30 ms/Theta after the press tapping and increased with widespread 

towards the left occipital area at time 70 ms to be greatly more concentrated on the left motor 

area at 100 ms. Similar activity was noticed for Delta band at -30 ms on the left motor area before 

the tapping and gradually increased till 70 ms, and then the activity reduced at 100 ms. Figure 

7-13 shows the degree of nodes topoplot of sliding time window (400 ms width with 100 ms 

overlapping) for bands (Delta: D, Theta: T, Alpha: A) at t= -100 ms step 30 ms to 100 ms after 

the press tap. The topoplot activity extended over the entire time period from -100 to 100 ms for 

all bands, which makes the real activity hidden behind the averaged sliding window and hard to 

be tracked on time. Similar results for the local efficiency calculation were shown (Figure 7-14 

and Figure 7-15) with the same time period to prove that the sliding window distorted the activity 

metrics and spread the activity of interest over the entire time window, making the tracking of  

brain activity changes during task execution in doubt. 
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Figure 7-11: Connectivity graph of healthy subject finger tapping experiment for, Delta, Theta, 

Alpha and Beta bands. The graphs were calculated for three-time latencies -100 ms and 0 and 

100 ms from the finger press.  
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Figure 7-12: Changes in node degree in different frequency bands using the proposed method (columns 

left to right, Alpha: A, Theta: T, Delta: D) shown as topoplots from t= -100 ms to 100 ms relative to 

button press with approximately 30 ms time steps. 
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Figure 7-13: Node degree changes using sliding time window (400 ms width with 100 ms overlapping ) 

for bands (Delta: D, Theta: T, Alpha: A) from time t= -100 ms to 100 ms relative to button press, with 

time step of 30 ms. 
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Figure 7-14: Topoplot of temporal changes in local efficiency using the proposed method  

for bands (Delta: D, Theta: T, Alpha: A) from time t= -100 ms to 100 ms relative to  

button press, with time step of 30 ms. 
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Figure 7-15: Local efficiency changes using sliding time window (400 ms width with 100 ms 

overlapping ) for bands (Delta: D, Theta: T, Alpha: A) from time t= -100 ms to 100 ms  

relative to button press, with time step of 30 ms. 
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Two channels were selected from the sensory (D19) and motor (D13) areas to show how these 

two areas are connected during the finger tapping task. Several electrodes measure both areas, 

we selected the electrodes that had a peak in degree at and after the moment of press. The 100 

ms delay between the motor and sensory electrodes confirm physiological behaviour, moreover, 

to prove the causality effect between these two sensors (one sensor causes the other one ), Figure 

7-16. Figure 7-17 shows how the node degree changes over time for the two selected channels, 

D13 and D19. A connection between the two electrodes D13 and D19 is located at 100 ms after 

the finger press with a delay refers to the way that the two sensors are effectively connected.  

 

Figure 7-16: Position of channels D13 (left motor area) and D19 (left sensory area)  

in the 128-channel Biosemi cap layout. 

 

Figure 7-17: Node degree change over time in Theta and Delta band from 1 second before the 

finger press to 1 second after the press. Time t=0 refers to the button press event. 

7.5 Summary 

Functional connectivity provides insights into the collaboration of brain regions during resting 

state or task execution. Based on connectivity metrics, brain networks can be assembled, 

characterized and compared, opening up new possibilities for understanding and characterizing 
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healthy and diseased brain operation. The dynamism of these processes and the changes in 

network structure are expected to provide important information, yet, functional connectivity is 

still frequently computed on the assumption of stationarity. This work showed that fast-changing 

connectivity patterns cannot be tracked accurately by sliding-window dynamic connectivity 

methods. I proposed the use of the Ensemble Empirical Mode Decomposition and the Hilbert 

transform to extract the instantaneous phase information from the EEG data, and from this create 

millisecond-resolution dynamic connectivity information. Synthetic signals were used to 

demonstrate the correctness and temporal resolution of the proposed method. I used the phase 

locking value (PLV) for the connectivity calculation but the method works equally well with 

alternative connectivity measures. The proposed method was applied to task-related finger 

tapping experiment to track the changes that happen in the motor area and the synchronization in 

activities that happen in the other brain regions before, at and after the finger tap. The method 

showed the brain connectivity graphs and related connectivity metrics with different frequency 

bands in very high temporal resolution unlike the sliding time window approach that due to 

averaging over a larger temporal interval could not track brain activity with similar temporal 

accuracy. The proposed method enables the construction and analysis of high temporal resolution 

connectivity matrix time series, which may provide the basis for future research on the dynamic 

properties of brain networks. 
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8 Conclusions  

In this chapter I summarise the results I got during the research work and state my main 

contributions. The measured EEG signals are regularly contaminated by ocular EOG, and cardiac 

artifacts (ECG) that are especially problematic due to their high amplitude and non-periodic 

(ocular, muscle) or quasi-periodic (cardiac) nature. They can easily turn valuable EEG 

measurements unusable. Since Visual inspection is slow, tiring and requires an expert assistant, 

several authors proposed methods for semi or fully automatic component detection and gave rise 

to new challenges including automating the analysis pipeline. The automation approach saves 

time, allows scalable analysis and reduces the barriers to reanalysis of data, thus facilitating 

reproducibility. In this sense, I proposed a novel method to clean the EEG from the EOG artifacts 

without losing EEG information. The developed automated artifact removal method combines 

the advantages of ICA-based artifact separation and wavelet decomposition. The new 

contribution for removing the EOG artifacts, is that the identified EOG component is cleaned 

only at the contaminated EOG peaks, while the rest of the component is left, retaining a higher 

portion of neural information that is present in the cleaned component. It reduces distortions that 

rejection ICA methods introduce in the time and frequency domain. Using simulated data and 

real measurements, my method outperforms state-of-the-art removal methods ICA-rej, and 

(wICA) both the time and frequency domain (significantly better 19.1%, p = 0.00236 than the 

wICA and 32.6% better p = 1.43×10-5 than the reject ICA methods 

The measured EEG signals are regularly contaminated by parodic ECG (cardiac) artifacts. Early 

ECG removal attempts included subtraction and ensemble average subtraction (EAS) methods. 

Current mainstream methods are based on adaptive filtering and reference ECG channel used to 

remove the ECG artifacts. The reported method used to remove the ECG artifacts by:  

• Manual rejection of artifact contaminated data epochs. 

• Using ECG reference channel. 

• visual inspection of ICA_ECG related components. 

The reported methods are laborious, require trained person, can largely reduce the number of 

usable epochs, and prevents the automatic and high-speed analysis of large-scale EEG.  

I proposed a fully automatic method for removing ECG artefacts from EEG signals. The 

proposed method does not require a reference ECG channel. It can detect and remove ECG 

artefacts generated by pathological cardiac activities which can make the method more robust 

when analysing EEGs of elderly patients.  It achieved sensitivity above 99.3% on the PhysioNet 

datasets (specificity > 99%), higher than all known automatic methods reported in literature 

[Dora and Jiang]. The significance of the method is that due to its excellent sensitivity and 

specificity, it can be used reliably for automatic, unsupervised artefact removal, where similar 

reported methods might incorrectly remove non-artefacts or leave contaminating components in 

the dataset. Cleaning artifact was very crucial, to move forward step towards the EEG 

connectivity calculation (graphs and metrics), since it would not be possible to get a true and 

undoubted metrics if the data set has artifacts. 

The human brain comprises more than one hundred billion neurons, each establishing several 

thousand synaptic connection matrices which can be mathematically modelled for neuroimaging 

detecting diseases. Ischemic stroke is considered one of the major causes of death or causing a 

permanent disability. Prompt and effective treatment can speed up recovery and improve 

rehabilitation outcome. Brain connectivity metrics were introduced for selecting the proper 

treatment path and be used as predictors for the level of recovery at the end of the rehabilitation 

period. I introduced brain connectivity metrics with a high-density imaging method for 
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monitoring and quantifying stroke patient recovery progress. EEG measurements were recorded 

from healthy volunteers and stroke patients during the resting state function connectivity was 

calculated using debiased Weighted Phase Lag Index method (WPLI), and the graph approach 

was introduced to visualize the connectivity patterns of the networks at different frequency bands 

(Delta, Theta, Alpha, Beta). A comparison was performed between the patients and control group 

as well as between start and end of the stroke rehabilitation interval based on the results of the 

connectivity metrics as degree of nodes, local and global efficiency etc. Differences were found 

in the graph degree, clustering coefficient, global and local efficiency, which correlate with brain 

plasticity changes during stroke recovery and used as biomarkers to quantify stroke severity and 

outcome of recovery. 

Over the past 30 years Fourier and Wavelet research to EEG signals increasingly has been the 

only approach representing "time-frequency" (TF) of EEG signals. These techniques, show 

resolution limitations (localization) due to the trade-off between time and frequency localizations 

and smearing due to the finite size of their template's time series, so this is the motivation point 

to compute instantaneous frequency based-method to generate a high temporal and spectral 

resolution at the same time and tracks the fast-dynamic brain connectivity changes. A novel 

method based on the use of the Ensemble Empirical Mode Decomposition was proposed to 

extract the instantaneous phase information from the EEG data. The method showed a 

millisecond-resolution dynamic connectivity information. Synthetic signals were used to 

demonstrate the correctness and temporal resolution of the proposed method. The proposed 

method enables the construction and analysis of high temporal resolution connectivity matrix 

time series, which may provide the basis for future research on the dynamic properties of brain 

networks. A comparison was conducted to validate the efficiency of the method and was 

compared to the static-sliding time window. The results showed that the proposed method able 

to track the fast-dynamic brain connectivity changes in time and frequency resolution at rate of 

sampling frequency better than using the traditional reported method as STFT. 
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9 Summary of the main contributions 

9.1 Thesis I: Novel method for removing EOG artifacts 

I developed a novel automated artifact removal method (Chapter 4.2) that combines the 

advantages of ICA-based artifact separation and wavelet decomposition. The novel contribution 

of the method is that eye artifact ICA components are not rejected entirely. Instead, artifactual 

components are cleaned only at contaminated sections, retaining a higher portion of neural 

information that is present in the artifact component. Using simulated data and real measurements 

I showed that my method outperforms state-of-the-art removal methods ICA-rej [111] and 

(wICA) [70] both in the time and frequency domain (significantly better 19.1%, p = 0.00236 than 

the wICA and 32.6% better p = 1.43×10-5 than the ICA-rej methods). 

9.2 Thesis II: Novel method for removing ECG artifacts 

I developed a fully automatic method for removing ECG artefacts (Chapter 5.1) using 

Independent Component Analysis (ICA). A sophisticated classification method is used to 

identify true ECG artifact components. My method does not require the use of a reference ECG 

channel, and can detect and remove ECG artefacts generated by pathological cardiac activities. 

The resulting sensitivity is above 99.3% on the PhysioNet datasets (specificity > 99%), higher 

than the best known automatic methods [9,10].  

9.3 Thesis III: Functional connectivity biomarkers for 

stroke monitoring  

I identified a set of functional connectivity graph metrics that can be used as biomarkers in 

identifying progress of recovery in ischemic stroke patients and predicting rehabilitation outcome 

(Chapter 6.3). Functional connectivity graphs were constructed from resting-state EEG 

measurements using the debiased weighted Phase Lag Index as association measure. The graphs 

were calculated for four different frequency bands (delta, theta, alpha and beta) with different 

thresholds. Connectivity measures were compared between patient and control groups at the 

beginning and end of the stroke rehabilitation period. The connectivity graph metrics showed 

differences in clustering coefficient, the graph degree, global and local efficiency, and correlated 

with brain plasticity changes during stroke recovery.  

9.4 Thesis IV: New method to increase the temporal 

resolution of dynamic functional connectivity  

I proposed a new method to create dynamic functional connectivity graphs with high temporal 

resolution that is considered the basis for future research on the dynamic properties of brain 

networks (Chapter 7.2). I proposed the use of the Ensemble Empirical Mode Decomposition and 

the Hilbert Transform to extract the instantaneous phase information from the EEG data, from 

which to create millisecond-resolution dynamic connectivity information using the Phase 

Locking Value (PLV). The proposed method provides a greater insight about the dynamism of 

the brain activity, where it can track the fast-dynamic brain connectivity changes in time and 

frequency resolution at rate of sampling frequency
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