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Chapter 1

Introduction

1.1 Motivation

1.1.1 Relevance of ultrasound imaging

Diagnostic ultrasound has been in use for 60 years now and it has become one

of the most popular medical imaging methods nowadays. Diagnostic ultrasound

imaging commonly utilizes frequencies in the range of 3–20 MHz. The use of higher

frequencies limits the depth of penetration, however it also increases resolution.

Recently, ultrasound (US) has been actively used not only for medical diagnos-

tic purposes [2–4], but also for high-intensity focal beam surgery to produce precise

and selective damage to tissues [5–7], biometric recognition [8], non-destructive test-

ing [9–19], and has many applications in the food industry [20–23] among others.

Its wide range of applications stems from its numerous advantages such as cost-

effectiveness, portability, and using non-ionizing radiation compared to many other

procedures such as X-ray, CT or PET, all of which are using potentially harmful ra-

diation. On the other hand, the interpretation of US images is still quite a subjective

task despite the numerous quantitative US studies [24–33].

The connection between the fine microscopic structure of tissues and the re-

sulting US image is at present not fully understood, which further motivates the

development and the importance of validating image formation models.

1
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1.1.2 Relevance of validation of image formation models

Interpretation of US images is quite a subjective task, so the mapping of the var-

ious histological pathologies is an empirical (and implicit) procedure for the radiol-

ogist experts. There are many theoretical models to describe US imaging, however,

there is little research to validate these models. The following paragraphs attempt

to categorize these approaches.

First, for US imaging to occur, US needs to propagate to the scatterers in ques-

tion, then scattering of the incident wave must occur, and the scattered wave must

propagate back to the transducer. The difference lies in how these phenomena are

treated in US imaging models.

Propagation is usually considered to be linear, which is based on the assumption

that the deviations in pressure and density that support the propagation of the

wave (for more details see Section 2.2.4) are small relative to the mean pressure

and density. If the medium is homogeneous, the waves travel through unimpeded;

however, any degree of inhomogeneity causes ultrasound scattering, which arises

from perturbations in density and compressibility [34]. Considering the backscatter

of ultrasound in the direction of the original incident wave (180◦ scattering), the

scattering function (SF) in terms of density and compressibility may be reduced

to a SF (or alternatively, tissue reflectivity function) expressing relative changes in

acoustic impedance, which is consistent with the 1-D model of wave reflection [35,

36] [37, pp. 304–306]. Other authors have opted to express this scattering function

in terms of changes in the bulk modulus [38].

Another issue concerning modeling is the nature of the scattering. Most models

neglect multiple scattering and assume that the scattered field is generated only

by the incident field, an assumption known as the Born approximation (see Sec-

tion 2.2.5). However, there is a conceptual split in research that treats the scatter-

ing medium as consisting of discrete scatterers [34,38] and those that regard it as a

continuously varying acoustic maps [39].

Another simplification is to assume the impulse response of the scatterers spa-

tially invariant [40], which means that the position of the scatterer relative to the US

transducer is irrelevant in the terms of impulse of the scattering. This assumption

2
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is called shift-invariance. For more detail about the validity of this simplification,

the reader is directed to [41] and Chapter 4.

If as a first step, it would be possible to validate an image formation model with

simple, inanimate scatterers, it would open the way toward exploring the relationship

between histology and US images.

1.1.3 Relevance of resolution enhancement

Imaging modalities of any kind have a theoretical limit on their feasible resolu-

tion. The objective of the super-resolution (SR) algorithms is to break this boundary,

thereby obtaining an image of higher quality with the same physical setup.

There has always been a great demand for producing images with better and bet-

ter resolution, either by creating a better physical setup, or using post-processing

techniques, whether it is about security cameras [42–44], satellites [45–50], profes-

sional photography [42, 51–53] or even the HUBBLE space telescope [54–57]. The

same rules apply for medical purposes: the higher the resolution of an image, the

more precise the diagnosis.

Concerning software-based methods for enhancing image resolution, the algo-

rithm can be used either on sub-pixel-shifted frames by stacking them, or as a

post-processing step where even one frame can be satisfactory. The use of SR tech-

niques provides the possibility of receiving a more detailed image at a lower cost

compared to the expensive and time-consuming process of building a new hardware

capable of delivering the same quality.

Nevertheless, along with other imaging modalities (such as MR, CT or light

microscopy) its resolution is heavily dependent on the wavelength (higher frequency,

thus shorter wavelength leads to better resolution), which in the case of sound is a lot

poorer than that of light or X-ray. The transducer and its frequency also determine

the penetration depth (the higher the frequency, the smaller the mentioned depth

is) [58, p. 116]. To be able to examine deeper layers of the medium, lower frequencies

should be used, which, however, decreases the resolution.

Taking into account the benefits of US imaging it would be worthwhile if the

image resolution and signal-to-noise quality could be improved by post-processing

3
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methods. This work is concentrated around US images; however, the algorithms to

be presented can be adapted to other imaging modalities as well.

1.2 Overview of current thesis

In this section a brief overview of the current thesis is given.

In Chapter 2, the theoretical basis of ultrasound image formation and resolution

enhancement is described. In Section 2.2, the theoretical background of acoustics

and the basic concepts regarding US are introduced, including the shift-invariant

convolution model. In Section 2.3, the mathematical background of resolution en-

hancement is provided. Further in this section, the classical deconvolution tech-

niques used for image resolution enhancement are described in Section 2.3.3, with

cost function minimization in Section 2.3.4. The theoretical background of deep

learning is introduced in Section 2.3.5. Last, the current US specific resolution en-

hancement methods are discussed in Section 2.3.6, with an emphasis on equivalent

scatterers and axial processing.

The next chapters introduce the scientific work of the author. In Chapter 3,

a method to experimentally assess the accuracy of the previously described shift-

invariant convolution model (see Section 2.2.7) is presented. In Chapter 4, the

resolution enhancement of ultrasound B-mode images using deconvolution (see Sec-

tion 2.3.3) and axial processing (see Section 2.3.6) is presented, whereas Chapter 5

demonstrates the resolution enhancement of ultrasound C-scan images using deep

learning (see Section 2.3.5).

In Chapter 6, a summary is given about the new scientific results of the author

in the form of thesis points.

4
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Chapter 2

Theory

2.1 Basics of ultrasound imaging

The aim of the current section is to provide the reader with the basics of ultra-

sound imaging and introduce the main concepts regarding the topics covered in this

thesis.

Mechanical waves with frequencies higher than 20 kHz are called ultrasound. Its

propagation results in a periodic change of pressure in space and time. Ultrasonic

diagnostics take advantage mainly of the fact that ultrasound waves are reflected

from different interfaces in the medium: the elapsed time and the intensity of the

reflection can provide a good estimate about the physical properties of the examined

medium.

As with any imaging modality, there are a set of different parameters which to-

gether adequately describe the system. In general, these parameters are not indepen-

dent of each other, and the choice of parameters greatly determines the application

area. A simple example is when the central frequency of the transducer is increased,

which (assuming an increase in bandwidth) leads to greater resolution but at the

same time decreases penetration depth and hence more superficial examination of

the tissue. Given the above consideration, it is crucial to have a clear understanding

of the basics of image formation and to be aware of the connections and trade-offs

between the system parameters.

Conventionally, the lateral, elevation, and axial directions are denoted by x, y,
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and z, respectively, unless otherwise noted.

The following sections (Sections 2.1.1 to 2.1.4) are primarily based on the fol-

lowing sources [37, 58,59] unless otherwise annotated.

2.1.1 Transducer

A transducer is a device capable of transforming energy from one form to an

another. In the case of US, it converts the electrical energy into mechanical pressure

waves and vica versa, by utilizing the inverse and direct piezoelectric effects (discov-

ered by the Curie brothers in 1880 [60] [58, p. 3]), respectively. It has two different

modes, namely transmit and receive. During transmission mode it emits (a series

of) sound waves into the body by converting electrical energy to pressure vibrations

(inverse piezoelectric effect). In receive mode it captures the backscattered sound

waves and interprets those as electrical signals (direct piezoelectric effect).

The fundamental part of the transducer is the piezoelectric element itself. In

general, it is made of a crystal-like material like tourmaline, quartz, topaz or cane

sugar [61]; however, synthetic materials, like poly-vinylidene fluoride [62] are capable

of producing the piezoelectric effect as well.

Since the discovery of the piezoelectric effect many forms of the transducer have

been invented, each of them suitable for different tasks. In this section the main

types of transducers will be introduced.

Transducer types

1. Single-element transducers: The simplest form of transducers are made of a

single element. For focusing, two methods may be used. One of them focuses

the beam using an acoustic lens, which for instance can be made of plastic,

epoxy, liquid or rubber [63]. The other method is to press the element itself

into a curved shape [64]. Since single-element transducers only have a fixed

focus, in order to capture an image manual scanning has to be performed. Note

that even a so-called unfocussed (flat-surface) single-element transducer has a

natural focus, which is defined by Eq. (2.1). In addition, the lateral resolution
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changes with depth, which can lead to a false impression of inhomogeneity

even in the case of a homogeneous sample.

2. Linear array transducers: The second main form of transducers is the linear

array. It contains a line of elements (for instance 320 pieces, spaced over an

aperture of 56 mm [65]). The smaller the face of the transducer, the more

divergent the beam will become during propagation. In order to decrease this

divergence, a subset of the elements (8-16) is selected and pulsed simultane-

ously. For the next line the neighbouring subgroup will be activated (shifting

the previous elements by one) and so on. However, due to the shifting sub-

aperture, the physical footprint of this arrangement is sometimes too large to

scan through relatively small acoustic windows (such as in imaging the heart

through the ribs).

3. Phased array transducers: In the phased array, the elements are again placed

in a row like in the case of the linear array. However, this time, all the ele-

ments are excited together but with small time-delays, needing independent

delay circuits. This manner of emission of sound waves results in a curved

propagating wavefront. By changing the length of delays, the beam can be

steered into various directions and with different focal lengths. When receiv-

ing the signal, the same delay factors can be used in order to have dynamic

focusing, meaning all points along the z-axis will be in focus. Since there is no

shifting sub-aperture, the footprint of the transducer can be as small as 2 cm.

More generally, if the elements are arranged on a planar grid, the beam can be

steered in three dimensions, resulting in 3D ultrasonic imaging. By combining

linear and phased arrays, the reduction of beam-divergence and focusing can

be accomplished at the same time.

4. Annular array transducers: The last common transducer type to be discussed

in this introduction is the annular array. In this case the elements are arranged

as a set of concentric rings, possibly evenly placing them at different heights,

giving a spherical curvature to the array. However, this curvature can be also

achieved by activating the circle-elements with time-delays. It also records
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a single line at a time as single-element transducers, but gives a better and

possibly changeable focus, and greater depth of field as well. Effectively, a

large number of fixed-curvature spherical transducers can be placed farther

away, thus they can be used with higher frequency. The limit which needs to

be considered when placing the elements is the effect of grating lobes, which

can be overcome by creating the transducer elements to be smaller than half

of the used wavelength. In phased arrays, the creation of such small electrical

circuits is always a challenge; however, annular arrays do not suffer from this

restriction.

2.1.2 Beam parameters of spherically focussed transducers

Spatial distribution of the ultrasound field

The spatial distribution of the US field (otherwise referred to as the ultrasound

beam) is generated as a result of the inverse piezoelectric effect, when applied voltage

is transformed into a periodically varying pressure (sound) wave. The beam can

be divided into two regions: near field (Fresnel zone) and far field (Fraunhoffer

zone). Figure 2.1 shows that in the near field the pressure intensity reaches multiple

local minima and maxima and ends in a last, global maximum, called near field

distance. The distance at which the far field begins can be calculated by the following

formula [59, p. 43]:

N =
D2f

4c
=
D2

4λ
, (2.1)

where N means the near field distance, D is the diameter of the aperture, f is

the frequency, c stands for the propagating speed of sound in the medium, and λ

annotates the wavelength. It is important to note that the near field is the same for

both unfocussed and geometrically focussed transducers. However, the focal length

will differ, meaning that the focal length will coincide with the near field distance

for an unfocussed transducer.

In the far field the beam becomes divergent, causing the lateral resolution to

heavily decrease. Geometrically focussed transducers with help of an acoustic lens

will cause the beam width to decrease at a certain distance (focal length) from the
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Figure 2.1: Sound field of a single-element transducer. The emitted beam can be divided into two

parts: the near field (Fresnel zone) and the far field (Fraunhoffer zone). The near field starts

directly after the transducer surface, where the amplitude of the pressure wave reaches several local

minima and maxima, and ends in a last, global maximum. The location of the last point defines

the near field distance (which in the case of geometrically unfocussed transducers is the same as

the focal length), and is annotated by N in the figure. Beyond the near field distance begins the

far field, where the intensity of the sound wave decreases progressively to zero due to the divergent

nature of the beam. Picture taken from [59, p. 43].

transducer, which distance, as a rule of thumb, is approximately half of the radius

of the curvature. As a result, at the focal length the lateral resolution will improve,

as well as the extent of divergence of the beam in the far field, but the depth of field

will be decreased.

In addition to the relatively simple concept of a transmitted beam, an analogous

concept exists for the so-called receive beam, which is the spatial distribution of

the receive sensitivity of the ultrasound transducer. Where the same transducer is

used for transmit and receive, the transmit and the receive beams can generally be

considered to have the same shape.
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2.1.3 Axial and lateral resolution

The beam diameter (BD), which is equivalent and often referred to as beam

width, plays an important role when it comes to the sensitivity of a transducer. The

beam consists of side lobes and a main lobe, which together are considered as the

beam. Side lobes are essentially off-axis energies which can lead to different artefacts

and are dependent on many factors such as the frequency, element spacing, number

of elements and bandwidth. At the point of interest the smaller this diameter is the

more energy is concentrated onto that point, which means the more energy will be

reflected, resulting in a higher lateral resolution.

To define beam width, it is needed to define the full-width at half maximum

(FWHM) [37, p. 173]. Considering a distribution function (such as pressure am-

plitude ∆p(x)), as it can be seen in Fig. 2.2, around its maximum value such an

interval can be found along the x-axis, where the value of the function is higher or

equal than the half of the maximum value. In the literature, generally the -6 dB

pulse-echo criteria is used, which is an equivalent form due to the fact that it de-

scribes such a relationship where the voltage amplitude of the output is half of the

input. This interval along the x-axis defines the so called FWHM.

Figure 2.2: Full-width at half maximum. Considering a distribution function, the so-called full-

width at half maximum means such an interval along the x-axis, where the value of the function is

equal or higher than the half of the maximum. Note that f(x) represents a voltage-like function,

such as pressure amplitude ∆p(x). Picture taken from [66].
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The BD varies along the main lobe axis, as it is typically wide (in a perpendicular

plane to the propagation direction) in the near and far fields and is the smallest at

the focal length. The -6 dB pulse-echo BD at the focal length can be estimated,

taking into account the FWHM definition and the Sparrow criterion [67, p. 189], as

follows [59, p. 43]:

BD = 1.02λ · FL
D

= 1.02λ · f# , (2.2)

where FL stands for the focal length, D is the diameter of the aperture, and f# is

the f-number of the transducer.

On one hand, as it has been described above, the BD will determine the lat-

eral resolution of the system (the lateral size of the received signal), as shown in

Fig. 2.3 a). On the other hand, this resolution describes what is the smallest dis-

tance between two scatterers – in a perpendicular plane to the propagation – which

can still be distinguished (see Fig. 2.3 b)). It essentially means when two scatterers

are in the same plane and both of them are inside the main lobe, they cannot be

distinguished; however, if one of them is located outside, the system is capable of

identifying them as two different structures.

The lateral resolution RL can also be derived from Rayleigh scattering, when

a scatterer is much smaller compared to the wavelength. In this case the lateral

resolution can be estimated (taking into account the Rayleigh criterion [67, p. 187])

as follows [37, p. 173]:

RL = 1.22λ · FL
D

= 1.22λ · f# , (2.3)

where the multiplication factor of 1.22 is present due to the Bessel functions [37,

p. 173] and Rayleigh criterion [67, p. 187].

The axial resolution RA is also an important parameter of an imaging system. It

describes what is the smallest distance between two scatterers located parallel to the

beam, which can still be distinguished (see Fig. 2.4). It is determined by the spatial

pulse length, which is the number of cycles in the pulse multiplied by the wavelength

of the propagating pressure wave, and can be estimated as follows [37, p. 511]:

RA =
1

2
λ · cycles# =

1

2
τ , (2.4)
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Figure 2.3: Lateral resolution. Figure 2.3 a) shows that how scatterers at different locations on the

main axis would be present in an ultrasound image with the given beam profile. The farther the

scatterers are from the focal length where the BD is the smallest, the laterally distorted they appear

in the actual ultrasound image. In addition, in Fig. 2.3 b) it can be seen when two scatterers are

inside the beam in the focal length plane, and in that case they cannot be distinguished from each

other as two different scatterers. On the other hand, if one of those scatterers is outside the beam,

they will appear in the ultrasound image as different objects. Picture adapted from [68, p. 13].

where λ is the spatial wavelength, cycles# is the number of cycles in the pulse, and

τ represents the spatial pulse length.
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Figure 2.4: Axial resolution. The axial resolution is determined mainly by the length of the excita-

tion pulse (or the so-called number of cycles parameter). In Figure a) it can be seen that the axial

resolution is decent in case of using a short pulse as excitation. Figure b) shows a big amount of

axial distortion in case of using a long pulse. Picture adapted from [68, p. 14].

2.1.4 Ultrasound imaging modes

There are different ultrasound imaging modes such as A-mode, B-mode, B-flow,

Doppler, Power Doppler, C-mode, or M-mode among others; however, this work

is based on the conventional A-mode, B-mode and C-mode imaging. This section

describes these methods.
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Figure 2.5: A conventional A-line. The first 5 μs shows an artefact of the imaging system due to

the constant high frequency switch between transmit and receive modes. Around 32 μs a reflection

can be observed from the boundary of two media having different physical properties. Picture taken

from [Au4].

A-mode

The so-called A-mode means Amplitude-mode and is the simplest of all modes.

It corresponds to the conventional oscilloscope display, when an emitted pulse is

returned as an echo due to local inhomogeneities, and it is displayed as a function

in a time-amplitude (or distance-amplitude) plane, where a higher amplitude means

a greater acoustic impedance difference between the boundaries. Such an A-line

can be seen in Fig. 2.5. Other sources refer to A-lines after taking the envelope of

the post-beamformed radio-frequency (RF) signal. The distance from the surface

of the transducer can be calculated knowing the propagating speed of sound in the

medium as follows:

s =
c · tp

2
, (2.5)

where s is the distance, c is the speed of sound in the examined medium, and tp

stands for the elapsed time between the emitted pulse and detected echo.

B-mode

A B-mode image shows a cross-section plane of the medium, which is parallel

to the propagating waves. The so-called B-mode means Brightness-mode and orig-
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inates from the conventional display of US images, where the higher amplitude of

a pulse-echo signal is, the brighter is the image at those areas. An actual B-mode

image can be generated using a plethora of different insonification strategies such

as focussed beams or diverging-wave transmissions [69]. It is also possible to record

equidistant A-lines with a single-element transducer, e.g., by using a scanning acous-

tic microscope system (SAM) (see Fig. 2.6), and use the envelope of the amplitude

for the visualization to produce a B-mode image. The A-lines can be put next to

each other based not only on distance, but time or angle as well.

Figure 2.6: Schematic of a SAM system. During the movement of the transducer the impulse

generator (or referred to as pulser) at a certain desired frequency receives a trigger signal, which

generates a short electric impulse with a high amplitude. This electrical impulse will be transformed

into a sound (pressure) wave, which is (generally) focussed on the surface of the sample. The

scattered (reflected) wave will be detected, converted back to electric impulse and will get recorded

by the digital acquisitioner. After saving the desired data, the transducer moves to the next position

with the help of the micropositioner system. Picture taken from [Au4].

C-mode

C-mode imaging results in such a cross-sectional plane of the examined media,

which is normal to the propagating waves (and therefore to the B-mode images). C-

mode images are usually generated by a SAM system, where a motorized movement
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of a single-element transducer performs a scan over a pre-defined grid (usually in 2-

D) and records an A-line at every grid point. Such a system can be seen in Fig. 2.6.

By providing depth information over a 2-D plane the result is a 3-D volumetric data.

Such A-lines can be either integrated over a given window axially or individual planes

can be displayed selecting the same depth along every A-line.

One common form of SAM imaging involves taking the integral of the absolute

values of A-lines in the axial direction, which is used for the visualization process,

resulting in a C-scan image.

2.2 Theory of ultrasound image formation

2.2.1 Overview

Figure 2.7: Block diagram of US image formation listing the major processes. Image is based

on [70, p. 43]

For an ultrasound image to occur, there are many steps which have to be con-

sidered during the US image formation. Figure 2.7 lists the major processes. For

more comprehensive system details the reader is directed to [70, pp. 43–45].

First, an electrical excitation is used on the transducer. The transmit beam-

former by receiving this signal ensures that the appropriately delayed pulses arrive
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at the transducer elements. The array elements convert the electrical energy to

pressure (sound) waves by utilizing the inverse piezoelectric effect (as mentioned in

Section 2.1.1). The propagating waves are undergoing diffraction, absorption, and

scattering (both travelling further away and back towards the transducer), during

which its energy is decreased (this energy loss can be compensated for). Upon the

waves reaching the surface of the transducer, the pressure is going to be converted

back to electrical signals, taking into account the appropriate time delays. Before

the display, the data can be post-processed with different techniques such as time

gain compensation, speckle reduction, envelope detection or log-compression among

others, to meet desired needs.

In the following, the physics behind the two most thesis-related processes will

be introduced, namely the propagation (see Sections 2.2.2 and 2.2.3) and scattering

(see Sections 2.2.4 and 2.2.5). Next, the whole image formation will be described

as a shift-variant convolution-model, taking into account certain assumptions (see

Section 2.2.6). Last, the shift-invariant convolution model will be introduced (see

Section 2.2.7).

2.2.2 Governing equations of acoustics

In this section, the governing equations of acoustics, which are going to lead to

the homogeneous acoustic linear wave equation, will be derived using the following

sources: [37, Sections 1.3.5 and 5.4] [71, Section 2.1.1] [72, Chapter 2] [73, Chap-

ter 1] [74, Section 3.5 and Chapter 16] [34].

Acoustics deals with describing the propagation of mechanical waves through

different media. The acoustic wave equation is a second order partial differential

equation, which establishes a relation between the acoustic pressure p and particle

velocity v as a function of position r and time t.

To obtain a linearized form of the wave equation, it is crucial to use approxima-

tions, and further variables need to be defined. First of all, it is assumed that the

acoustic pressure and density can be written as

pt (r, t) = p0 + p (r, t) (p� p0) (2.6)
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ρt (r, t) = ρ0 + ρ (r, t) (ρ� ρ0) (2.7)

at any given location r and time t, in which pt is the total pressure, p0 is the mean

pressure at equilibrium, p is the pressure fluctuation caused by the propagating

wave, ρt is the total density, ρ0 stands for the mean density at equilibrium and

ρ is the density fluctuation induced by the wave. Figure 2.8 illustrates the situ-

Figure 2.8: A volume of fluid dV with the local pressure p and local density ρ can be seen. The local

pressure and density variations are generated by an acoustic disturbance (such as a propagating

wave through the media). The mean pressure and density at equilibrium are denoted by p0 and ρ0,

respectively. Picture adapted from [72, p. 6].

ation: there is a fluid volume dV with mean pressure p0 and mean density ρ0 at

equilibrium. After any acoustic disturbance local pressure and density fluctuations

can be observed, denoted by p and ρ, respectively. Considering these assumptions,

the ultrasound waves cause perturbations around the mean density and pressure;

furthermore, these perturbations are assumed to be small. To fully describe the

acoustic field, the following three equations are needed to derive in linearized forms:

equation of motion, continuity equation and equation of state.
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The equation of motion

The equation of motion is based on Newton’s second law, forming a relationship

between the force acting on the fluid particle’s volume and its momentum’s alter-

ation. Considering a fluid volume V with pressure distribution p on its surface, the

force vector acting on it can be described as

F = −
∫∫
S

p ñ dS , (2.8)

where S stands for the surface area which encloses the volume and ñ is the normal

unit vector pointing outwards on the differential surface area dS. By using the

Divergence Theorem1 the surface integral can be transformed into a volume integral

F = −
∫∫∫
V

∇p dV , (2.9)

where ∇ is the well-known nabla operator. The equation states that the force per

unit volume equals −∇p. According to Newton’s second law it is known that the

force per unit volume equals to mass per unit volume multiplied by acceleration (the

derivative of velocity). Mass per unit volume is density, besides taking into account

the assumptions of Eq. (2.7) the following form can be derived:

ρ
∂v

∂t
∼= ρ0

∂v

∂t
= −∇p , (2.10)

where v is the velocity vector of the fluid particle. This equation is called the

linearized equation of motion.

The continuity equation

The continuity equation is about mass conservation and it is based on the fact

that mass can not arise and can not disappear. Let us see Fig. 2.9. It can be

described how many times more mass flows out per second than flows in over the

surface area:

qm =

∫∫
A

ρvdA

[
kg

s

]
. (2.11)

1Divergence Theorem: also known as Gauss-Ostrogradsky Theorem
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Figure 2.9: A volume of fluid V at a fixed location, enclosed by a surface A. Inside there is a

differential volume dV , a normal vector of the surface dA and the velocity vector of the outflowing

mass v. Picture taken from [74, p. 29].

Outflow from the volume results in decreased mass; therefore, density is also de-

creased. The change of mass in the volume V can be determined by the following

integral: ∫∫∫
V

∂ρ

∂t
dV . (2.12)

The normal vector of the surface element dA is pointing outwards; therefore, if

Eq. (2.11) is positive, the mass is decreasing in the volume. Taking mass conservation

also into account it can be derived that:

−
∫∫∫
V

∂ρ

∂t
dV =

∫∫
A

ρvdA =

∫∫∫
V

∇ (ρv) dV . (2.13)

The right-hand side of the equation was converted using the Divergence Theorem.

Considering the integration is over the same volume and using obvious rearrange-

ments, the following can be obtained:∫∫∫
V

[
∂ρ

∂t
+∇ (ρv)

]
dV = 0 . (2.14)

The integral equals zero if and only if the integrand equals zero. Accordingly, it can

be simplified to
∂ρ

∂t
+∇ (ρv) = 0 , (2.15)

which can be further transformed to

∂ρ

∂t
+ ρ0∇v = 0 , (2.16)
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taking into account Eq. (2.7). This is the linearized form of the well-known conti-

nuity equation.

The equation of state

The equation of state describes the relationship between the pressure and the

density. It is clear that the pressure is a function of the density alone in inviscid2

fluids. Besides, taking into account Eqs. (2.6) and (2.7) it can be expressed as

pt (ρt) . (2.17)

To get the linearized form of the equation of state the Taylor expansion of the

pressure pt (ρt) near the unperturbed state ρ0 is used, and the higher order terms

will be neglected because of the assumptions of Eqs. (2.6) and (2.7). Thus, we get

the following form:

pt = pt (ρ0) + (ρt − ρ0)
∂pt (ρt)

∂ρt

∣∣∣
ρt=ρ0

, (2.18)

where pt (ρ0) = p0 is the mean pressure at equilibrium, which results in

pt − p0 = (ρt − ρ0)
∂pt (ρt)

∂ρt

∣∣∣
ρt=ρ0

. (2.19)

Substituting from Eqs. (2.6) and (2.7) causes

p = ρ
∂pt (ρt)

∂ρt

∣∣∣
ρt=ρ0

. (2.20)

The right-hand side multiplied by
ρ0
ρ0

will be

ρ

ρ0
ρ0

∂pt (ρt)

∂ρt

∣∣∣
ρt=ρ0

=
ρ

ρ0
β =

ρ

κρ0
, (2.21)

where

β = ρ0
∂pt (ρt)

∂ρt

∣∣∣
ρt=ρ0

(2.22)

is the adiabatic bulk modulus by definition [72, p. 7], inverse of the compressibility

κ. The final form of the equation of state can be written as follows:

p =
ρ

κρ0
. (2.23)

2inviscid fluid: ideal fluid without any viscosity
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Therefore, the equation of state means that the difference between the local and the

mean pressure (differential pressure) is proportional to the deviation from the mean

density (differential density) by some constant denoted as
1

κρ0
[71, p. 38].

2.2.3 The homogeneous linear wave equation

By combining the equation of state, the continuity equation and the equation of

motion (Eqs. (2.24) to (2.26), respectively) it is possible to derive the homogeneous

linear wave equation

p =
ρ

κρ0
, (2.24)

∂ρ

∂t
+ ρ0∇v = 0 , (2.25)

ρ0
∂v

∂t
= −∇p . (2.26)

It is known that

∇2p = ∇ · ∇p . (2.27)

Using it on Eq. (2.26) results in

∇ · ∇p = ∇ ·
(
−ρ0

∂v

∂t

)
=

∂

∂t
(−ρ0 ∇v) . (2.28)

The right-hand side of the equation appears in Eq. (2.25). After subtracting −ρ0∇v

from both sides and applying the differential operator
∂

∂t
on both sides leads to:

∂

∂t
(−ρ0 ∇v) =

∂2ρ

∂t2
. (2.29)

Expressing ρ from Eq. (2.24) and using the differential operator
∂

∂t2
on both sides

results in
∂2ρ

∂t2
= κρ0

∂2p

∂t2
. (2.30)

Substituting ∇ · ∇p =
∂2ρ

∂t2
, as they are equal according to Eqs. (2.28) and (2.29);

furthermore, re-arranging everything to the left-hand side leads to an equivalent

form of the homogeneous linear wave equation

∇2p− κρ0
∂2p

∂t2
= 0 , (2.31)
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which differs only in a constant from the well-known homogeneous linear wave equa-

tion used in acoustics. Thus, κρ0 is equal to the inverse of speed of sound squared,

from which

c2 =
1

κρ0
. (2.32)

The left-hand side of Eq. (2.31) equals zero because no transformation between

acoustic energy and heat is considered.

2.2.4 The inhomogeneous linear wave equation

So far, the media in which the US wave propagates, was considered to be ho-

mogeneous. However, most media is not uniform, in general it has a degree of

inhomogeneity. Inhomogeneities cause scattering, and reflection will be at the point

where is an interface between two media with different acoustic properties. In this

section the wave equation for inhomogeneous media will be derived based mainly

on [37, pp. 283–285].

Similarly to Eq. (2.7) it is assumed that the total density ρt and compressibility

κt can be expressed as

ρt (r, t) = ρ0 + ∆ρ (r) + ρ (r, t) = ρv (r) + ρ (r, t) (2.33)

κt (r) = κ0 + ∆κ (r) = κv (r) (2.34)

at any given location r and time t, where ∆ρ is the deviation from the mean density

at equilibrium, ∆κ is the deviation from the mean compressibility at equilibrium,

ρv and κv are the equilibrium density and compressibility, together with ρ, which is

the small-signal acoustic density component caused by the propagating wave.

Using these expressions Eqs. (2.24) to (2.26) can be written as:

p =
ρ

κvρv
, (2.35)

∂ρ

∂t
+∇ · (ρvv) = 0 , (2.36)

ρv
∂v

∂t
= −∇p . (2.37)

23

DOI:10.15774/PPKE.ITK.2020.007



By combining Eqs. (2.35) to (2.37) the same way as in Section 2.2.3, except that as

the first step

∇ ·
(

1

ρv
∇p
)

(2.38)

from Eq. (2.37) will be taken. The procedure results in the following form, similarly

to Eq. (2.31):

∇
(

1

ρv
∇p
)
− κv

∂2p

∂t2
= 0 . (2.39)

Let us take a look at the constant on the left-hand side, which gives

1

ρv
=

1

ρ0 + ∆ρ
=

ρ0 + ∆ρ

(ρ0 + ∆ρ)2
. (2.40)

Assuming only small deviations from the mean density leads to

ρ0 + ∆ρ

(ρ0 + ∆ρ)2
≈ ρ0 + ∆ρ

ρ20
=

1

ρ0
+

∆ρ

ρ20
. (2.41)

By substituting Eq. (2.41) to Eq. (2.39) results in

∇ ·
([

1

ρ0
+

∆ρ

ρ20

]
∇p
)
− κv

∂2p

∂t2
= 0 , (2.42)

which can be further rearranged into the following form:

1

ρ0
∇2p− κv

∂2p

∂t2
= −∇ ·

(
∆ρ

ρ20
∇p
)
. (2.43)

At this point another substitution can be performed into the equilibrium compress-

ibility κv using Eq. (2.34) and after some rearrangement it gives

1

ρ0
∇2p− κ0

∂2p

∂t2
= −∇ ·

(
∆ρ

ρ20
∇p
)

+ ∆κ
∂2p

∂t2
. (2.44)

To be able to use this formula in our context more transformation is needed. Let us

multiply both sides by the mean density ρ0

∇2p− ρ0κ0
∂2p

∂t2
= −∇ ·

(
∆ρ

ρ0
∇p
)

+ ρ0 ∆κ
∂2p

∂t2
, (2.45)

and take the result mentioned at the end of Section 2.2.3 in Eq. (2.32) into account,

which leads to

∇2p− 1

c20

∂2p

∂t2
= −∇ ·

(
∆ρ

ρ0
∇p
)

+
∆κ

κ0

1

c20

∂2p

∂t2
= −φ (r, t) . (2.46)

It can be noted that the left-hand side is the homogeneous linear wave equation,

while the right-hand side is the expression of scattering caused by the local inhomo-

geneities of the medium (scattered field), denoted as φ (r, t). This equation is called

the inhomogeneous linear wave equation.
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2.2.5 Scattering

So far, there was no restriction on the pressure p. Taking scattering into account,

the total pressure can be expressed as the sum of the incident and scattered pressure

at any given location [34], denoted by pi and ps, respectively:

p = pi + ps . (2.47)

The incident wave satisfies the homogeneous linear wave equation [34]:

∇2pi −
1

c20

∂2pi
∂t2

= 0 . (2.48)

Using this result an approximation can be made, namely:

∇2ps −
1

c20

∂2ps
∂t2

= −∇ ·
(

∆ρ

ρ0
∇pi

)
+

∆κ

κ0

1

c20

∂2pi
∂t2

= −φ (r, t) , (2.49)

which expresses that the scattered field s is generated at any given location r and any

given time t only by the incident field . It is called Born approximation [37, pp. 287–

289] [34, 38].

It can be shown that the pressure field in response to an acoustic disturbance at

any given time and location (in the case of a non-zero source function and source

volume) can be calculated using the solution of Green’s function [71, p. 41] [72, p. 12]:

p (r, t) =

∫
V

φ
(
r′, t− |r−r

′|
c

)
4π |r− r′|

dr′ , (2.50)

where r′ denotes the location of the acoustical disturbance. The equation means

that the pressure can be expressed by the spatial integral of all sources in the source

region with appropriate time delays, and taking into account the spherical energy

distribution during wave propagation.

As for the scattering strength, back-scattered energy in general is a result of

the propagating wave either to be scattered or reflected. The former phenomenon

describes an interaction with particles smaller than the wavelength, while in the case

of the latter the particles are greater than the wavelength. Both physical phenomena

occurs because of density inhomogeneity in the structure.

When the propagating mechanical wave reaches a boundary of two media hav-

ing different densities, part of the energy travels through this boundary, while the
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remaining part will be reflected. In the case of 1-D scattering (180◦ reflection), the

pressure impulse response can be expressed using one parameter only [37, p. 306],

the acoustic impedance Z, and the ratio can be defined by the acoustic impedance

difference of the two media. The acoustic impedance can be directly calculated using

the density ρ and sound speed c of the medium as follows [37, p. 42]:

Z = ρc , (2.51)

and the reflection coefficient R is [37, p. 56]:

R =

(
Z2 − Z1

Z1 + Z2

)2

, (2.52)

where Z1 is the acoustic impedance of the medium where the wave is travelling from,

and Z2 is where the wave is propagating to. The amplitude reflected back from the

boundary is given by R, whereas the remaining 1−R part of the incident amplitude

is travelling through the boundary. The equation implicates that if the acoustic

impedance difference Z2 − Z1 between the two media is great, the majority of the

incident wave amplitude is going to be reflected; therefore, air (e.g., lungs) or heavy

tissue (e.g., bone) is hard to image using US waves.

2.2.6 Complete shift-variant convolution model of US imag-

ing

To describe the whole US image formation process (see Fig. 2.7), a setup given

in Fig. 2.10 shall be considered. It is assumed that wave propagation is linear, non-

attenuative, and non-dispersive, whereas variations in the acoustic properties of the

medium should be small enough that only the incident wave is scattered (known as

the Born approximation, see Section 2.2.5). Considering a single scatterer at r0, in

order to obtain the output voltage the following equations can be formulated [37,

p. 301] assuming a linear pulse-echo system (see Fig. 2.11):

pr (rr, t) = ei (t) ∗ wδt (t) ∗ ρ0
∂ht (r0, t)

∂t
∗ hs (rr, t) , (2.53)

f(t) = 2

∫
Sr

pr (rr, t) d
2rr , (2.54)
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Figure 2.10: Geometry of a setup to determine the transmit-receive response of a system in the

case of a single point scatterer. Picture taken from [37, p. 302].

Figure 2.11: The transmit and receive responses in the case of a single point scatterer, assuming a

non-attenuating medium. Picture taken from [37, p. 302].

e0(t) = f(t) ∗ wδr(t) , (2.55)

where pr (rr, t) is the pressure distribution on the surface of the receiver transducer,

ei (t) is the input voltage, wδt (t) and wδr(t) are the electromechanical responses of

the transmit and receive transducers, respectively, ht (ro, t) is the velocity potential

impulse response, hs (rr, t) is the pressure impulse response of the scatterer (the

scattered pressure at an observation point caused by the incident wave), f(t) is

the total force acting on the surface of the receiver transducer, Sr and St are the

area of the receive and transmit transducers, respectively. Substituting Eqs. (2.53)
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and (2.54) into Eq. (2.55) the output voltage is described as:

e0(t) = ρ0ei(t) ∗ wδt (t) ∗
∂ht (r0, t)

∂t
∗

2

∫
Sr

hs (rr, t) d
2rr

 ∗ wδr(t) . (2.56)

The impulse response of a point scatterer can be determined as follows:

hs (rr, t) = s(t) ∗ δ (t− |rr − r0| /c0)
4π |rr − r0|

, (2.57)

where s(t) stands for the scatterer strength. As a consequence, the integral term in

Eq. (2.56) can be be written as:

2

∫
Sr

hs (rr, t) d
2rr = s(t) ∗

∫
Sr

δ (t− |rr − r0| /c0)
2π |rr − r0|

d2rr = s(t) ∗ ht (r0, t) ; (2.58)

therefore, Eq. (2.56) can be expressed as:

e0(t) = ρ0
∂ei(t)

∂t
∗ wδt (t) ∗ ht (r0, t) ∗ ht (r0, t) ∗ wδr(t)︸ ︷︷ ︸

PSF

∗ s(t)︸︷︷︸
SF

, (2.59)

which detailed form of the convolution-based image formation model was provided

by Stepanishen [75], where the output voltage (which can be converted to pressure)

can be calculated as the convolution between the point-spread function (PSF) of the

system (which is the response of the imaging system to a point scatterer) and the

SF.

2.2.7 Shift-invariant convolution model

The shift-invariant convolution model is a simplification of the shift-variant

convolution model, which itself depends on several assumptions [34, 35] (see Sec-

tion 2.2.6). Using such assumptions, it was shown that the RF image I can be

estimated as the convolution of a SF with a PSF. Further assuming a spatially in-

variant PSF, meaning that the position of the scatterer relative to the US transducer

is irrelevant in the terms of impulse of the scattering, leads to the shift-invariant

convolution model:

I = SF ∗ PSF , (2.60)

where ∗ is the spatially invariant convolution operator. According to the Fourier

theorem, Eq. (2.60) can be rewritten in the Fourier domain as

F {I} = F {SF}F {PSF} , (2.61)
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where F {.} represents the 2-D Fourier transform operator.

In the current work the imaging model described above was used for simulating

the US images in Chapter 3.

2.3 Theory of resolution enhancement

2.3.1 Mathematical formulation

As it has been discussed in Section 2.2.7, an US image can be described as

the convolution of the SF with the PSF of the imaging system. In general, the

degradation process can be written as a convolution with a PSF, along with some

added noise (often considered as zero mean Gaussian white noise) as follows:

y [i, j] =
∞∑

k=−∞

∞∑
l=−∞

h [k, l] · x [i− k, j − l] + n [i, j] , (2.62)

where y is the observed image, x is the SF (the underlying structure), h is the PSF

of the imaging system (alternatively, transfer function), and n stands for the noise.

Equation (2.62) in a compact form reads as:

y = h ∗ x+ n , (2.63)

where ∗ means the convolution operator. Equation (2.63) in the Fourier domain

becomes:

Y = H.X +N , (2.64)

where the capital letters denote the Fourier transforms of Y , H, X and N , re-

spectively, and . stands for the element-wise multiplication. Estimating X seems

straightforward in the absence of noise if the PSF is known, as it becomes a simple

multiplication with the inverse of the Fourier spectrum of the PSF H−1; however,

there are many difficulties with this approach. From Eq. (2.64) it is obvious that

separation of the H.X product leads to an ill-posed problem, as it is not guaran-

teed that H−1 either exists or is unique, and noise also leads to inexact solutions.

Furthermore, even if H−1 exists but the matrix is not well-conditioned, then regu-

larization needs to be performed beforehand in order to limit the effect of noise (if H

29

DOI:10.15774/PPKE.ITK.2020.007



is small, then the noise will be greatly amplified). In US imaging H is band-limited,

which makes the estimation of X more difficult, as resolution enhancement relies on

recovering frequency components out of the frequency range of the data.

If the PSF is unknown, it becomes a blind deconvolution problem — which

problem has been of long interest in research [76] —, where the PSF has to be

estimated based on the data or a mathematical/physical model. An example is

when the problem is transformed into the cepstral domain and the product of the

two variables is separable, which imposes the importance of phase estimation of h

and, consequently, the phase retrieval of x [77]. As a further consequence, phase

retrieval algorithms have been developed [78–80].

Primarily, there are two ways to estimate the original image x from the observed

image y: one either have to estimate h separately, or h and x jointly. As for the first

one, it becomes a classical deconvolution problem, while the second one in general

means an alternating minimization of a cost function [81,82].

The following three subsections (Sections 2.3.2 to 2.3.4) will be about the sepa-

rate estimation of the PSF, the classical deconvolution methods and joint estimation

of the PSF and the SF.

2.3.2 PSF estimation

As it has been mentioned previously in Section 2.3.1, one way to assess the SF

is to estimate the PSF separately and perform deconvolution.

To estimate the PSF some assumptions has to be made. Namely, that it acts

as a low-pass filter, having a slowly varying amplitude and phase. From this, the

following can be done: calculating the Fourier spectrum of the whole image (or a

large part) and setting its phase to zero. The problem with this approach is that

it violates causality, which would be a reasonable assumption in the axial direction

taking the forth- and back-propagation of the US waves into account.

It is possible to construct a causal signal from any 1-D signal by making it

minimum phase. This ensures that the highest energy concentration of the signal is

as close to t = 0 as possible and h (t) = 0 for all t ≤ 0. A minimum-phase estimate

hmp (t) may be obtained from the 1-D signal h (t) (which can mean an A-line in US
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imaging) using processing in the cepstral domain [83][84, p. 998]:

H(f)← F{h(t)} , (2.65)

C(t)← log(|H(f)|) , (2.66)

Cmp(t)←


0 t < 0

C(t) t = 0

2C(t) t > 0

, (2.67)

hmp(f)← exp (F {Cmp(t)}) , (2.68)

hmp(t)← F−1 {Hmp(f)} , (2.69)

where F {.}, F−1 {.} operators mean the Fourier and inverse Fourier transform, re-

spectively. Note that typically a set of absolute Fourier spectra |H (f) | are averaged

and used during the log-transform step (Eq. (2.66)).

This minimum phase approach was used in the literature [83], where an axial

deconvolution model was considered. It also implies that the (de)convolution pro-

cess is separabale into axial, transversal and elevational directions. However, there

seems to be no mutual agreement on the validity of the minimum phase assump-

tion. There was experimental evidence for confirming it provided by Adam and

Michailovich [85]. Nonetheless, Taxt reported in a review [86] that the minimum

phase approach yielded the worst results.

There are additional techniques to estimate the PSF, such as an autoregressive

moving average (ARMA) model used by Jensen [87]. Interestingly, Jirik et al. [88]

reports it is possibly not suitable for US imaging, as the ARMA model inherently

assumes fairly smooth original images. Additionally, using higher order statistics it

is also a possibility to estimate the cepstrum of the axial PSF [89], moreover, it can

also be extended to several dimensions as reported by Wan et al. [90].

Instead of the minimum phase approach it is also possible to use homomorphic

filtering, which is about separating the PSF and SF components in cepstral space by

using Butterworth filtering. As it was mentioned, the PSF is assumed to be slowly

varying compared to the SF, which provides the basis for separation. Utilizing this,

and the fact that in cepstral space Eq. (2.64) can be written as [91, 92]:

log(Y ) = log(H) + log(X) = log |H|+ log |X|+ j](H) + j](X) , (2.70)
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whereas the noise term is ignored for simplicity and ] stands for the phase of the

complex functions.

2.3.3 Classical deconvolution-based methods

This section is about the most widely used deconvolution methods, namely the

Wiener and Lucy–Richardson deconvolution techniques. As there are many differ-

ent classical deconvolution approaches to solve image restoration or enhancement

problems, for a more comprehensive review the reader is directed to [93, Chapter 3].

Wiener deconvolution

Wiener deconvolution (often referred to as Wiener filtering) offers an optimal

solution in the least square sense [94–96]. From the degradation model Eq. (2.63),

we would like to estimate the original unknown input x as accurately as possible.

In mathematical terms, we wish to solve the following:

x̂ = arg min
x̂

E[x− x̂]2 , (2.71)

where the estimated input is denoted as x̂. To do so, we look for the optimal filter

g which can recover x̂ from the observed signal y as follows:

x̂ = g ∗ y , (2.72)

where ∗ means the convolution operator. Eq. (2.72) in the Fourier domain becomes

X̂ = G · Y , (2.73)

where the capital letters X̂, G and Y stand for the Fourier transforms of x̂, r and

y, respectively.

The mean squared error (MSE) is an expectation value in Eq. (2.71); therefore,

it is enough to know (or more precisely assume) the statistical characterization of

the original input signal defined as x̂. It can be shown that the optimal filter which

should be used to minimize Eq. (2.71) is as follows [96, Chapter 11]:

X̂ =
H∗

|H|2 + SN/SX
· Y , (2.74)
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where H∗ is the complex conjugate of the Fourier spectrum of the PSF h, SN

and SX mean the power spectrum density (magnitude of the Fourier transform of

the correlation function) of the noise and signal, respectively. Note that in many

approaches the ratio SN/SX is often considered as a constant, which simplifies the

whole estimation of X̂. If Gaussian zero mean white noise is assumed (as it has

already been mentioned in Section 2.3.1), Eq. (2.74) is simplified to:

X̂ =
H∗

|H|2 + σ2/SX
· Y , (2.75)

where σ is the variance of the noise, and the ratio σ2/SX means the noise-to-signal

ratio (NSR). By assuming no additive noise, the Wiener filter becomes the ideal

inverse filter.

Lucy–Richardson deconvolution

As it has been shown in the previous section, the Wiener deconvolution is

an optimal minimum MSE estimator algorithm in the least square sense, and is

more practical to use in the case of Gaussian noise. While both the Wiener and

Lucy–Richardson deconvolution methods are minimum mean square estimators,

in contrast to Wiener deconvolution, in the case of Poisson noise the iterative

Lucy–Richardson method [97–99] can be used. Poisson noise is usually assumed

when using photo diodes or the so-called CCD sensors for capturing images (how-

ever, promising results can also be found in the case of US [100]); therefore, this

technique is mostly used for astronomical images [57,101–103], where it is often con-

sidered as the golden standard to which new techniques are compared. It is often

called as the expectation-maximization algorithm, and has no closed form solution

as it is an iterative approach. It can be described as follows [99]:

x̂k+1 = x̂k

(
h⊗ y

h ∗ x̂k

)
, ψ (x̂k) , (2.76)

where ∗ and ⊗ are the convolution and correlation operators, respectively, x̂k stands

for the estimate of x after k number of iterations, and ψ (.) is the Lucy–Richardson

function. The algorithm usually suffers from noise amplification if the convergence

criteria is not well defined, which is one of the drawbacks of maximum likelihood
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techniques. In general, a single pixel changes rapidly only during the first few

iterations of a restoration process, and the convergence can occur slowly or even in an

oscillatory way. In the lights of this, the running time is of great importance for large

data sets; thus, there are many ways to reduce the computational time [104–109].

2.3.4 Cost function minimization

As it has been mentioned previously described in Section 2.3.1, one way of dealing

with the problem of blind deconvolution is to jointly estimate the PSF and the

SF. To this end, one can perform a Bayesian formulation, where the deconvolution

algorithm is based on statistical assumptions about the SF, the PSF, and the noise.

It is solved as an alternating minimization problem [88], which is an extension of the

homomorphic deconvolution. It is also possible to use stochastic sampling with a few

pre-selected hyperparameters, which can provide a larger solution space [110, 111].

Minimizing a cost function J , which contains both h and the residual, essentially

defines what type of solutions are preferred:

J = ‖y − h ∗ x‖22 + Λ‖x‖γ , (2.77)

where Λ is an appropriate weight, and γ is the p-value for the lp norm, and 0 ≤ p ≤ 2.

Values closer to 0 mean a more sparse restriction. Note that not only lp norm can

be used (e.g., total variation (TV) [112, 113]). The data fidelity term ‖y − h ∗ x‖2
ensures that the measured image y, and the convolution between the reconstructed

image and the PSF stay as close as possible, while the ‖.‖2 assures a smooth func-

tion (which simplifies the minimization), and Λ‖x‖γ provides the desired sparsity.

To reduce the optimization time, certain parameterized PSFs can be used (e.g.,

Gaussian-modulated sinusoids [110]). It is also possible to perform axial deconvo-

lution only [114, 115] while projecting the signal into a low-resolution (envelope)

space, and performing alternating direction method of multipliers (ADMM). How-

ever, even if the PSF and the SF are estimated jointly, a first estimate of the PSF

(see Section 2.3.2) is essential [88, 112].
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2.3.5 Deep learning

Artificial intelligence and its sub-fields, machine learning (ML) and deep learning

(DL), are a subject of interest in ongoing research, where computers can perform

different tasks such as automatically recognizing complex patterns in radiology [116]

or cardiology [117], automating text categorization [118], learning to play complex

games like Go [119], or even countering social media bots manipulating public opin-

ion [120] by learning from previous experiences and therefore evolve, similarly to hu-

mans. Specifically, DL witnessed a booming interest since 2012, when the ImageNet

challenge has been won by a deep neural network architecture, the AlexNet [121].

Such an architecture consist of artificial neurons (Fig. 2.12) forming multi-layered

Figure 2.12: Schematic of a neuron (left) and its corresponding mathematical model (right). Picture

taken from [122].

artificial neural networks (ANN). Each neuron performs a dot product of the input

x0 from the dendrites and its weight(s) w0, plus adds the bias b. Then, the activation

function f(z) is being used on this result and is forwarded to the next layer as an

output (see Fig. 2.13). Each layer performs a different operation to extract certain

features of the input, and uses the output of the previous layer. Upon completion,

it provides its own output to the next layer, similarly to the logical process of hu-

man neural system. The main difference between ML and DL is while the latter

one can essentially learn and improve based on the difference between the actual

output and the desired output, the previous one is not able to evolve without human

intervention.

The output of the first layer (see Fig. 2.13) can be calculated with simple matrix
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Figure 2.13: Network layers. Picture taken from [123].

operations as follows:
a11

a12
...

a1m

 = f




z11

z12
...

z1m



 = f




− w1

1 −

− w1
2 −

...

− w1
m −




x1

x2
...

xn

+


b11

b12
...

b1m



 , (2.78)

which in a compact form reads as:

a(1) = f
(
z(1)
)

= f
(
W (1)x+ b(1)

)
. (2.79)

The in- and outputs of the further layers (shown until the 3rd) can be calculated

using the chain rule:

a(1) =f
(
z(1)
)

= f
(
W (1)x+ b(1)

)
,

a(2) = f
(
W (2)a(1) + b(2)

)
,

z(3) = W (3)a(2) + b(3) .

(2.80)

In the current work convolutional neural networks (CNN) are used (see Chap-

ter 5). Regular fully connected layers, where all units of a layer are connected to

all units of the next layer, do not scale well to images. Considering an ANN with
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input images having a size of 1 MegaPixel (1024× 1024 pixels), if only 100 neurons

are in the first layer that yields more than 100 million weight parameters already.

To precisely train that many parameters one would need a huge data set to avoid

overfitting, not mentioning the greatly increased computational cost.

Figure 2.14: Convolutional Neural Network. Image taken from [124].

CNNs take advantage of the fact that local correlation and recurring local statis-

tics are typical for general images; therefore, the same weights are used for different

parts of the image. Figure 2.14 shows a typical CNN. First, N1 different number of

convolutional kernels are going to be applied on the input image. After the kernel

is applied, a (derivable) non-linear activation function is used on the result. This

operation yields one pixel in the first image in the first layer. Next, the kernel is

shifted in the input image in order to calculate the next pixel, which continues until

the last one is calculated. N1 kernels yield N1 images in the first layer. Next, all the

images in the first layer act as input images, on which the N2 different kernels will

be applied. The average of N1 images convolved with a given kernel will be one of

the N2 resulting images in the second layer. The same procedure is repeated until

the last layer. Upon completion, the output is compared to the reference output,

and the error is measured. Using this quantified error measure it is possible to up-

date the kernels with backpropagation, thus the CNN can learn from the previous
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experiences and evolve. This way, for the first layer only N1 · Skernel weights need

to be learned, where Skernel is the size of the kernel.

It is also possible to use pooling (effectively downsampling), which keeps usually

only the largest or average value of the local neighbourhood. It helps to reduce the

dimensionality of the next layer, resulting in less parameters to train.

2.3.6 US specific methods

Equivalent scatterers

As it was discussed in Section 2.2.5, every time an ultrasound examination takes

place a mechanical wave insonifies the examined media, where the waves get re-

flected/scattered due to the structure’s inhomogeneity (in density [34], acoustic

impedance [35] or bulk modulus [38]). The backscattered pulses will interfere, which

can be either constructive or destructive [125] with respect to their relative phase,

resulting in a signal with speckle pattern. However, this statement immediately

raises some questions: is the so-called backscattered signal unique? Are there other

scatterer distributions (possibly containing fewer scatterers), which could lead to

the same result? Furthermore, if such a function – depicting equivalent scatterers

– exists, how much of a reduction in computational time could this achieve in sim-

ulations? Dantas et al. [125] introduced an elegant method to tackle this question.

However, it is mainly based on processing steps made in the frequency domain.

The purpose of the current section is to consider the equivalent steps in the spatial

domain in order to better understand the problem of equivalent scatterers.

As it was previously shown in Section 2.2.7, every linear system can be described

by performing convolution between the desired impulse response and the transfer

function of the system. In the case of US signals this implies that a so-called A-line

i (z) — depicting the backscattered signal — restricted to the axial direction z can

be described as (see Eq. (2.60)):

i (z) = s (z) ∗ p (z) , (2.81)

where s (z) is the SF, p (z) stands for the PSF and ∗ denotes the convolution oper-

ator. In the frequency domain, this convolution operator becomes a multiplication
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of the corresponding spectra (see Eq. (2.61)):

I (u) = S (u) · P (u) , (2.82)

where u is the angular frequency in the axial direction, and I (u), S (u) and P (u)

are the Fourier transformations of i (z), s (z) and p (z), respectively.

The aforementioned Fourier-based equivalent scatterer method [125] will now

be described. An impulse response with a central frequency u0 and bandwidth

BW causes the backscattered signal to be band-limited, which effectively yields a

windowing on the original SF as:

Slim (u) = S (u) · Π
(
u− u0
BW

)
, (2.83)

where Π (.) denotes the rectangular function, and Slim (u) is the band-limited SF.

Afterwards, this effective bandwidth is repeated in the frequency domain by per-

forming a convolution with an appropriate comb function:

Ssamp (u) = Slim (u) ∗ III
( u

BW
− u0

)
, (2.84)

where III (.) is the Dirac comb (or the so-called Shah) function. In the spatial domain

this will result in a new set of scatterers. When this new SF is getting convolved

with the impulse response, the result is an A-line that is characteristically equivalent

to the original one:

isamp (z) = ssamp (z) ∗ p (z) , (2.85)

isamp (z) ≈ i (z) . (2.86)

In the following these steps are realized in the spatial domain. Multiplication with

a rectangular function in the frequency domain means convolution in the spatial

domain of Eq. (2.83):

slim (z) = F−1
{
S (u) · Π

(
u− u0
BW

)}
=

= s (z) ∗ e
i(u0+BW

2 )z − ei(u0−
BW
2 )z

iz
,

(2.87)

where
ei(u0+

BW
2 )z − ei(u0−

BW
2 )z

iz
= 2 · eiuoz · sinc

(
BW

2
z

)
. (2.88)
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It can be seen that the SF is convolved by a sinc function, which usually represents

the first step in a downsampling operation. The frequency of the sinc function will

directly determine the quality of the downsampling: the wider the bandwidth, the

smoother the resulting resampled function will be. Next, Eq. (2.84) can be written

in the spatial domain as follows:

ssamp (z) = F−1
{
Slim (u) ∗ III

( u

BW
− u0

)}
=

= slim (z) · III (z · BW ) · e−iuoz ,
(2.89)

where the multiplication with a Dirac comb represents sampling. Performing a

convolution with the impulse response function:

îsamp (z) = ssamp (z) ∗ p (z) , (2.90)

which should result in

îsamp (z) ≈ i (z) . (2.91)

Note that the approach above is similar to the one suggested by Mo et al. [126],

where the effective scatterer of each voxel position is calculated as the average of all

scatterers in the voxel. Here the difference is that an exact mathematical formulation

is provided for how the averaging should take place for accurate results.

Recently, our group has also shown that with a stippling based algorithm arbi-

trary medical US images can be well approximated (having R2 ≥ 80%) and physi-

cally realized. For more details the reader is directed to [Au6] [127].

Axial processing

One set of techniques of interest fall under the category of axial filtering, which

have recently been shown by our group to improve lateral resolution [Th2]. Since

they are relatively easy to implement and do not require an estimate of the full

(and shift-variant) 3-D response, they are potentially well-suited to single-element

imaging systems such as SAM, whose response is highly depth-dependent.

From Eq. (2.60), the spatially variant PSF can be further decomposed into two

components [34, 38] [Th1, Th2], whereas only one of them is spatially variant [83,

128] [Th2]:

PSF = vpe ∗ hpe , (2.92)
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where vpe is the so-called electric response of the ultrasound transducer transformed

into the spatial domain (note that this also includes the electrical excitation of the

transducer as well as the pulse-echo response); and hpe, the so-called geometric re-

sponse, which is the pulse-echo spatial impulse response of the transducer, including

the geometric focusing and beam-forming properties. Whereas the 2-D geometric

response varies spatially, the electric response is spatially invariant and acts exclu-

sively along the axial dimension. This means that shift-invariant axial filtering of the

image has the potential to deconvolve part of the PSF out of the image. Paradoxi-

cally, although the filtering acts in the axial direction, this can also improve lateral

resolution [Th2], as discussed in the following. For simplicity, in the following we

refer to estimating the 1-D PSF of the imager using various techniques, assuming

that this estimate will be dominated by the shift-invariant electric response vpe, as

well as possibly including a shift-invariant component of the geometric response hpe.

To consider how axial filtering of the signal – including 1-D deconvolution –

affects the US image, we note that the lateral and axial resolutions RL, RA of a

single-element transducer can be estimated using the following formulas [37, p. 173

and 511, respectively]:

RL = 1.22 · f#
c

f0
, (2.93)

RA =
c

2 · BW
, (2.94)

where c stands for the speed of the propagating wave in the medium, BW for the

bandwidth, f# for the f-number and f0 for the central frequency of the transducer.

Note that Eq. (2.94) is an equivalent form of Eq. (2.4), and Eq. (2.93) is the same as

Eq. (2.3). Considering Eq. (2.94), the axial resolution depends solely on the band-

width (from the point of view of the imaging system). Hence, an increase in band-

width yields a better axial resolution. Therefore, performing depth-independent

axial deconvolution can provide an increase in axial resolution. Secondly, if the

bandwidth is increased more at the upper cut-off frequency, or higher frequencies

are weighted more, the central frequency of the signal is also increased, providing

the possibility to simultaneously enhance the resolution in both axial and lateral

directions, given the fact that the high frequency components of the PSF are con-
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centrated in its central part (see Fig. 2.15), and their amplification would result in a

laterally increased resolution. However, the amplification of high frequencies comes

at the risk of a loss in signal-to-noise ratio (SNR).

Figure 2.15: Field II-simulated 2-D PSF (top) of a single-element transducer (187 MHz center

frequency, 440 μm focal distance) and its corresponding lateral spectral distribution (bottom). Lat-

erally the farther is a point from the central part of the PSF the lower frequency components can

be found.

Based on the above, it is hypothesized that suitable axial filtering of the data

can be used to improve lateral resolution in SAM images, as already demonstrated
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for US images [Th2]. One possible approach is to perform 1-D deconvolution using

an estimate of the 1-D PSF. One method of obtaining such an estimate is to average

the Fourier spectra of the A-lines and set the phase to zero, resulting in a zero-phase

estimate (ZP). Alternatively, and as is more common in the ultrasound literature

given the causality of the electric response, a minimum-phase estimate hmp may be

obtained using processing in the cepstral domain, as it has been previously shown

in Section 2.3.2.

If the mentioned estimate is obtained, an axial deconvolution can be performed

on every A-line independently.
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Chapter 3

Experimental validation of

ultrasound image formation

3.1 Introduction

Models of ultrasound image formation describe the forward process of how an

ultrasound image is formed from an acoustic medium. Such models can be used

to generate simulated ultrasound images or to obtain quantitative descriptors of

the medium from real ultrasound images. A relatively simple and widely used

model of image formation treats the ultrasound image (before envelope detection

and compression) as the shift-invariant convolution of the imaging system point

spread function (PSF) with the scattering function (SF) of the medium [129] (see

also Section 2.2.7). In the following paragraphs, the uses of this model are briefly

reviewed to provide the context for the current work.

In one of the earlier applications of the shift-invariant convolution model, Bamber

and Dickinson [40] generated random SFs by assuming an exponential or a Gaussian

autocorrelation (AC) function. Each SF was convolved with a Gaussian-modulated

sinusoid PSF, and the resulting ultrasound images were found to be qualitatively

similar to real ultrasound images of a sponge. The simulations were also able to

predict a so-called banding feature visible in ultrasound images in cases where the

correlation length of the SF was shorter than one of the beam dimensions. Other

authors employed different SF models to generate ultrasound images. Using a so-
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called marked regularity model to place point scatterers in the SF, Cramblitt and

Parker [130] convolved the SFs with a gated cosine PSF and found that a wide

range of envelope distributions (Rayleigh, Rician, homodyned K) could be generated

that are commonly observed in experimental data. Jacobs and Thijssen [131] used

structural as well as diffuse components in the SF to make predictions about first-

and second-order statistics that would be observed from ultrasound images of the

liver.

The shift-invariant convolution model has also been used to simulate ultrasound

images using biologically derived SFs. Waag et al. [132] used images of pig liver

lobules to investigate the relationship between backscattered spectra in 1-D, 2-D,

and 3-D. Lizzi et al. [133] used acoustic microscope data to estimate speed of sound

maps of tissue, which were used to generate simulations of conventional frequency

ultrasound images. The use of histology to estimate SF is also receiving increased

attention: Mamou et al. [39] generated 3-D acoustic impedance maps from 3-D

volumes of H&E-stained histology, which was then used to estimate quantitative

acoustic parameters [134]; Daoud and Lacefield [135] used histology images to derive

spatial statistics of the SF. Gyöngy et al. [136] performed simulations using SFs

derived from histology images and compared the first-order statistics of these images

with those of corresponding real ultrasound images.

Increasingly, there has been a trend toward generating fast simulations of ultra-

sound images. Considering the issue of computational speed, shift-invariant convolu-

tion is an appropriate choice because the operation is equivalent to multiplication in

the Fourier domain. In the work of Hergum et al. [41], cardiac images were simulated

and their appearance was found to be qualitatively similar to images simulated using

a shift-variant convolution model. Gao et al. [137] also simulated cardiac images but

with shift-variance in the axial direction. Bürge et al. [138] combined shift-invariance

with ray tracing to generate simulated images of phantoms and tissue volumes.

As can be observed from the above representative review, the shift-invariant

convolution model is widely used in the literature yet the comparison of the resulting

simulations with experiments is either qualitative or based on aggregate descriptors

such as envelope statistics or spectral components. This is due to the lack of an
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experimental setup where the scattering distribution of an acoustic medium and

the corresponding ultrasound image can be simultaneously recorded. In the current

work, macrophotographs of micrometer-scale spherical scatterers were used to derive

the SF of a medium that was also simultaneously imaged with an ultrasound system.

Using the shift-invariant convolution model and estimates of the PSF, the one-

to-one spatial correspondence between ultrasound simulations and experiment was

quantitatively compared. Such quantitative comparisons allowed a validation of the

shift-invariant convolution model, first by investigating the best simulation accuracy

using different estimates of the SF and PSF, and then by considering the extent of

different sources of error in the simulation.

3.2 Methods

Section 2.2.7 describes how an ultrasound image can be modeled as the shift-

invariant convolution of a SF and PSF. Then, the theoretical background for es-

timating the SF and PSF is given, so that the model can be used to generate

simulated ultrasound images. Next, the coefficient of determination R2 is described,

which allows the accuracy of the ultrasound simulations to be evaluated. Finally,

possible sources of error between the real and simulated ultrasound images are pro-

vided. These theoretical considerations provide the basis for the research methods

described in the next section.

3.2.1 SF estimation

The SF originates from deviations of the acoustic properties of the medium from

some mean. Based on differing assumptions, various expressions exist for SF: for

instance, as a combination of fractional changes in density and speed of sound [34];

as fractional changes in bulk modulus [38]; or as fractional changes in acoustic

impedance [35]. The following estimates were used:

1. threshold-based: in the case of homogeneous scatterers placed in a homoge-

neous background, it is correct (up to a scaling factor) to set the estimated

46

DOI:10.15774/PPKE.ITK.2020.007



scattering function SFest to 1 where there is a scatterer, and set it to 0 where

there is a background [36]

2. projection-based: for a spherical scatterer in the plane of a linear array, SFest

may be treated as a circular cross-section or as the projection of the sphere

function onto the 2-D plane (similarly to [36,132])

3. point-based: alternatively, for acoustically compact spherical scatterers, SFest

may be set to a collection of discrete points.

These estimates will later be referred to as threshold-based, projection-based, and

point-based estimates, respectively.

3.2.2 PSF estimation

The PSF of the imaging system arises from the combination of the incident

pressure field transmitted by the transducer and the spatiotemporal response of the

transducer and receive beamformer to the scattered field. The following estimates

were used:

1. Field II-based: one method of estimating PSF [137] is using the spatial impulse

response approach at a particular depth [34], using a package such as Field

II [128,139]

2. data-based: alternatively, for a region where only one point scatterer is present,

SF may be treated as a Dirac delta function. Thus, if the resulting image Ireal

is available, then according to Eq. (2.60), PSF may be estimated from it

3. deconvolution-based: Lastly, if SF consists of a distribution of scatterers, then

using Eq. (2.61), an estimate PSFest can be obtained as follows:

PSFest = F−1
{
F {Ireal}
F {SFest}

}
, (3.1)

where F−1 {.} denotes the inverse Fourier transform.

The above estimates will later be referred to as Field II-based, data-based, and

deconvolution-based estimates, respectively.
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3.2.3 Evaluation of simulation accuracy

When generating a simulated image Isim from estimates SFest and PSFest, Isim,

and the real ultrasound image Ireal will differ by an additive error term E:

Ireal = Isim + E , (3.2)

Isim = aSFest ∗ PSFest , (3.3)

where a is an unknown scaling term arising from the scale-unknown estimates SFest

and PSFest; this term needs to be estimated using linear regression. Due to the

partitioning of variance [140, pp. 21–23], the coefficient of determination R2
I can be

defined as [140, pp. 92, 166]

R2
I = 1− σ2

E

σ2
Ireal

=
a2σ2

Isim

σ2
Ireal

, (3.4)

where σ2
u denotes the variance of all the pixel values of image u. The above equation

leads to an interpretation of R2
I as the proportion of variance (or signal power) in

the real ultrasound image that can be explained by the simulated image [141]. In

a similar vein, R2
B considers the proportion of variance in the real B-mode image

Breal that is accounted for by the simulated B-mode image Bsim. One method

of computing the coefficient of determination is taking the square of the Pearson

correlation coefficient [141].

3.2.4 Sources of error

There can be several sources of simulation error E. First, the estimates SFest

and PSFest may be inaccurate. In the case of SFest, the term may wrongly estimate

the SF from some dominant scatterers under consideration, and may further neglect

scattering from other sources (hereafter termed background scattering). In addi-

tion to the above, the shift-invariant convolution model may itself be inaccurate:

there may be electrical noise on the image, or the PSF may vary spatially. Such

variation will increase in the presence of nonlinear propagation. Last, the strength

and concentration of scatterers may be high enough that multiple scattering be-

comes significant and the imaging process can no longer be described by a single

convolution, even one that varies spatially [34].
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The next sections are as follows: first, an experimental setup is presented that al-

lows a real ultrasound image to be generated and corresponding SFs to be estimated.

The different methods for estimating the PSF are then presented. Last, the meth-

ods for generating the simulated images are introduced, including the evaluation of

simulation accuracy and the role of different sources of error.

3.2.5 Generation of co-aligned US image and SF

General Experimental Setup

Figure 3.1: Schematic diagram of experimental setup. 49-μm-diameter polystyrene microspheres

are resting on the surface of a 1% agar gel. The surface is in the imaging plane of a linear

array that has been aligned with an XYZ micropositioner. Alignment was achieved by successive

rotations around the x′ axis, and movements in the y direction until the level of scattering from the

polystyrene spheres, as observed on a live ultrasound B-mode image, was maximized. An acoustic

absorber made of graphite-loaded PDMS and placed at an angle to the array surface is used to

reduce multiple reflections. A digital camera in macro mode (1 cm focus) images the distribution

of microspheres. [Th1]

Figure 3.1 shows a schematic of the experimental setup. A water tank with
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deionized water was used to acoustically couple the diagnostic ultrasound linear

array (LA522E, Esaote, Genoa, Italy) with the 49-μm-diameter polystyrene mi-

crospheres (Chromosphere BK050, Thermo Scientific, Waltham, MA, USA) under

investigation. The density and bulk modulus of polystyrene are 1.04 kg·m−3 and

6.2 MPa, compared with 1.00 kg·m−3 and 2.2 MPa for water [142], so that scattering

is expected to be primarily from the compressibility contrast.

The microspheres had been suspended in deionized water and then placed on

top of a flat 1% aqueous agar gel using a micropipette. The spatial distribution of

the microspheres was imaged using a digital camera (SP-820UZ, Olympus, Tokyo,

Japan) on super macro setting (1 cm focus). The agar concentration of 1% was

chosen to make the gel acoustically transparent so that the microspheres appeared

to float in the imaging plane of the ultrasound transducer. An acoustic absorber

made of graphite-loaded polydimethylsiloxane gel and placed at an angle to the

transducer surface was used to reduce multiple reflections in the ultrasound image.

Generation of ultrasound images

The 192-element linear array (LA522-E, Esaote, Genoa, Italy) had a 3 to 6 MHz

response, 47 mm aperture, a 20 mm elevation focus depth, and was connected to an

Ultrasound Advanced Open Platform (ULA-OP) Research US system (Microelec-

tronics Systems Design Laboratory, University of Florence, Florence, Italy) [143].

Due to multiplexing, 64 elements (or 15.7 mm) of the aperture were active at any

time. The imaging system allows recording of pre-beamformed data that can be used

later to generate ultrasound images using arbitrary receive beamforming settings.

The post-beamformed RF images thus obtained will be denoted by Ireal, and the

envelope-detected B-mode images by Breal. As in Fig. 3.1, the transverse, elevation,

and axial directions in the image are denoted by x, y, and z, respectively.

To help ensure the validity of the shift-invariance assumption, the imager em-

ployed a uniform delay on transmit and dynamic receive beamforming. A reference

ultrasound recording was taken before placement of the microparticles. As is typical

for linear array imaging architectures, the contiguous, 64-element active subaperture

stepped through the 192-element linear array in a consecutive manner. Due to the
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uniform-delay transmission, this allowed averaging of the pre-beamformed RF data

up to 32 times, if needed.

The imaged region ranged from a depth z of 17.2 to 23.7 mm, close to the

elevation focus depth. Because it is linearly proportional to the receive beamwidth,

one parameter of interest was the receive F#, defined as the ratio of focal distance

to the receive aperture. Unless otherwise stated, images were generated without

dynamic receive apodization, using the maximum available aperture throughout

(giving F# = 1.1—1.5). In the case of dynamic receive apodization, the maximum

available aperture was used at the maximum imaging depth (giving F# = 1.5). For

the calculation of beamforming delays and imaged depths z, the speed of sound was

assumed to be 1482 m/s based on the temperature of the water (20 ◦C) [144].

Estimation of the scattering function

Three methods were used to estimate the SF, whose theory is described in Sec-

tion 3.2.1. These methods corresponded to three image processing operations carried

out on the macrophotograph obtained, as illustrated in Fig. 3.2.

1. SFthreshold: After inversion of the red channel, Otsu’s method [145] was em-

ployed by the Matlab (The MathWorks Inc., Natick, MA, USA) built-in func-

tion graythresh to obtain a suitable threshold with which to separate the

polystyrene spheres from the background. This threshold was used to convert

the grayscale image into a binary image, which, after removal of objects with

fewer than 10 pixels, was used to generate the estimate SFthreshold.

2. SFproject: In the knowledge that the circular cross-sections represent spheres,

the distance transform was applied on SFthreshold to produce SFproject. The

distance transform converts circle functions into 2-D parabolic functions that

represent the projection of a sphere onto a plane [36].

3. SFpoints: Last, by finding local maxima in SFproject, the SF could be estimated

as a set of point scatterers, yielding the estimate SFpoints.

For reference, the 49-μm-diameter polystyrene spheres have a ka number of 0.49

when insonified at 4.7 MHz, the central frequency of the transducer.
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Figure 3.2: Steps in estimating the SF of the polystyrene scatterers from a macrophotograph. 1.

Extraction of the red channel in the RGB photograph and inversion to produce a grayscale image.

2. Thresholding of the grayscale image. 3. Projection of sphere functions onto a 2-D image. 4.

Reduction of scatterers to discrete points. The last three steps produce three corresponding estimates

of SF, namely SFthreshold, SFproject, and SFpoints. [Th1]

Registration of ultrasound image with SF

To align the ultrasound image with the SF, an estimate was necessary of the

inter-pixel distance dx in the macrophotograph. Based on an initial estimate of

8300 nm from the dimensions of the agar gel (23.5 × 23.5 mm in area), the cross-

correlation between SFthreshold and the B-mode ultrasound image Breal was calculated

for candidate values of dx in the range of 8000 nm to 8600 nm, in steps of 5 nm. To

estimate dx, the value that maximized the spatial maximum of the cross-correlation

function was chosen, whereas the location of the spatial maximum provided the

spatial alignment between SFthreshold and Breal.
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3.2.6 Estimation of the PSF

As described in Section 3.2.2, three possible techniques to estimate the PSF are

the Field II-based, deconvolution-based, and data-based methods.

1. PSFFieldII: The spatial impulse response of the transducer was estimated with

Field II [128,139] using transducer element parameters provided by the manu-

facturer. In addition to those already mentioned, these were as follows: 3 cycles

at 4.7 MHz pulse-echo wavelet, 6 mm element height, 0.245 mm pitch, and

negligible kerf. As mentioned in Section 3.2.5, imaging was only carried out

using 64 of the 192 elements at any one time; this setting was also applied in

the Field II simulations..

2. PSFdeconvolution: The US image Ireal was deconvolved with SFthreshold in the

Fourier domain using Eq. (3.1).

3. PSFdata: The aligned ultrasound image Ireal and scatterer function estimate

SFthreshold (as described in Section 3.2.5) was used to select a region of Ireal

that contained only one scatterer.

For all three methods, the PSF estimates were cropped around a window 0.84 mm

long by 2.84 mm wide, which was chosen to encompass the main lobe of the

PSF. This was particularly significant in the case of PSFdeconvolution, where with-

out cropping, the simulation would have simply returned the real ultrasound image

[Eqs. (2.60) and (3.1)]. Such an estimate, however, would have been an artificial

means of achieving a perfect simulation, whereas cropping the estimate around the

main lobe was expected to yield a physically realistic estimate. However, it was

also feared that without smooth windowing, the sudden drop in amplitude at the

edges of the PSF would artificially introduce high frequency components into the

PSF estimate and thus the simulated ultrasound image. Therefore, the effect of

multiplying the PSF estimates by a 0.84 × 2.84 mm Hanning window was also in-

vestigated. From here on, the use of the rectangular or Hanning windows will be

indicated by the subscripts rect and Hanning, respectively.
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To compare the similarity between the different PSF estimates, the coefficient of

determination R2 was calculated between a reference estimate (PSFFieldII,rect) and

all the other estimates. This calculation was repeated for the envelopes of the PSF

estimates to show the extent to which it was the phase or the amplitude of the

estimates that differed.

A short summary of the PSF and SF estimates can be found in Table 3.1.

Table 3.1: Short summary of the PSF and SF estimates.

PSF estimates SF estimates

PSFFieldII estimated using Field II SFthreshold thresholding of the grayscale image

PSFdeconvolution Ireal deconvolved with SFthreshold SFproject projection of sphere functions from SFthreshold

PSFdata one scatterer from Ireal SFpoints discrete points from SFproject based on local maxima

PSF{.},rect rectangular-windowed PSF

PSF{.},Hanning Hanning-windowed PSF

3.2.7 Convolution-based ultrasound simulations

Simulation methods

Simulations were conducted in Matlab. A 2-D convolution was performed be-

tween SFest and PSFest using a third-party FFT-based implementation [146], yielding

a simulated RF image Isim. The magnitude of the analytic signal gave the envelope-

detected image Bsim.

Before any further simulations were carried out, a method was sought to validate

R2 (see Section 3.2.3) as a measure of agreement between simulations and exper-

iment. For this, a simulated image was generated using SFest = SFthreshold, and

PSFest = PSFFieldII,rect. The real and simulated ultrasound images were circularly

shifted with respect to each other in units of pixels, whereupon R2 was calculated

for all possible shifts. R2 was calculated both between the RF images Ireal and Isim,

and between the envelope (B-mode) images Breal and Bsim, yielding the measures

R2
I and R2

B, respectively (see Section 3.2.3).
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Evaluation of Simulation Accuracy for Different Estimates of SF and PSF

In an attempt to find the best possible simulation accuracy, R2
I and R2

B were

calculated for various estimates SFest and PSFest. First, simulations were carried

out using SFthreshold, SFproject, and SFpoints (see Section 3.2.5) and PSFFieldII,rect as a

reference estimate of the PSF. Then, simulations were carried out using the three

different estimates of the PSF, with SFthreshold used as the estimate of the SF.

Identification of sources of error

A list of possible sources of simulation error have been provided in Section 3.2.4,

whose relative roles were assessed by the variation in R2
I and R2

B for different sim-

ulation and imaging settings. The variation with different estimates of SFest and

PSFest has already been addressed previously in Section 3.2.7. The role of back-

ground scattering in the simulation error was assessed by subtracting a reference

ultrasound image (taken before scatterer displacement) from the real ultrasound

image, whereas that of electrical noise was assessed by temporal averaging of the

pre-beamformed data 32 times (see Section 3.2.5).

The use of uniform transmit delays was expected to reduce the shift-variance of

the PSF; the effect of using dynamic receive apodization to further minimize shift-

variance was also investigated. In addition to the issue of shift variance, the level of

error may vary with the concentration of scatterers, either due to the varying level

of signal, or due to the introduction of multiple scattering from the polystyrene

spheres. These effects were investigated by calculating spatial maps of R2
I and R2

B

over 40 × 40 pixel windows (corresponding to 333 × 333 nm) so that the spatial

variation of simulation accuracy can be observed, including for regions of low and

high scatterer concentration. Finally, the role of nonlinear propagation was assessed

by calculating the ratio of second harmonic (9.4 MHz) to fundamental (4.7 MHz)

signal amplitude for the imaged region of interest.
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3.3 Results and discussion

3.3.1 Generation and registration of ultrasound image with

scattering function

Figure 3.3 shows the estimated scattering function SFthreshold aligned with the real

ultrasound image. During the process of alignment (see Section 3.2.5), the distance

dx between the macrophotograph pixels was estimated as 8325 nm. The other

estimates SFproject, SFpoints are not shown due to lack of visibility, but differences

between them at a higher zoom level can be observed in Fig. 3.2.

Figure 3.3: Alignment of estimated SF with experimentally obtained B-mode image. (left) Esti-

mated scattering function SFthreshold based on thresholded macrophotograph data (Fig. 3.2). (right)

Corresponding experimentally obtained B-mode image Breal. [Th1]

3.3.2 Estimation of PSF

Figure 3.4 shows the various estimates of PSF (see Section 3.2.6), with values

of R2
I and R2

B showing their variation in phase and amplitude compared with the

reference PSFFieldII,rect. The values of R2
I suggest significant differences between the

reference PSF and other PSFs. On the other hand, there is less variation between

the envelopes, implying that the estimates vary less in amplitude than in phase.

Hanning windowing increases the similarity with the reference PSFFieldII,rect, which

means that there is considerable variation between the PSF estimates near the edges
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that is thereby suppressed. It is hypothesized that this variation is mostly from noise;

the validity of this hypothesis will be evaluated in the next subsection, where the

accuracy of simulations will be considered.

Figure 3.4: Comparison of different estimates of the PSF of the imaging system. As described in

Section 3.2.6, three methods were tested: the Field II-based method (left column), the deconvolution

method (center column), and the data-based method (right column). The PSFs were multiplied by

a rectangular window (top row) and a Hanning window (bottom row). Using PSFFieldII,rect as a

reference, values of R2 were computed for the PSFs (R2
I) as well as for their envelopes (R2

B). [Th1]

3.3.3 Convolution-based ultrasound simulations

Figure 3.5 shows the variation of R2
I and R2

B as the real and simulated ultrasound

images are spatially shifted with respect to each other. Both R2
I and R2

B drop to

negligible levels for spatial shifts exceeding the dimensions of the PSF (Fig. 3.4),

demonstrating their validity as measures of similarity between real and simulated

images. Interestingly, R2
B is less spatially sensitive and shows higher values of agree-

ment than R2
I . These differences are deemed to be due to the sensitivity of R2

I to

phase mismatch, which is demonstrated by the oscillatory variation of R2
I with axial

shift ∆z.
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Figure 3.5: Spatial sensitivity of the coefficients of determination R2 for the RF and envelope (B-

mode) data between real and simulated ultrasound images. (top left) Real ultrasound image. (top

right) Simulated ultrasound image computed using SFthreshold, PSFFieldII,rect. (bottom) Variation

of R2 for RF images (left) and envelope (B-mode) images (right) as a function of lateral and axial

circular shifts ∆x, ∆z between real and simulated ultrasound images. Although the full range of

circular shifts was computed, the figures only show a [−2 2] mm box for greater clarity. Outside

the box, values of R2 are negligible. [Th1]

Evaluation of simulation accuracy for different estimates of SF, PSF

Figure 3.6 compares the real ultrasound image and simulations obtained us-

ing three estimates of the scattering function: SFthreshold, SFproject, and SFpoints.

R2
I = 0.36 for all three simulations, whereas R2

B is in the range of 0.59 to 0.61,

showing that there is little difference in simulation accuracy. This is likely because

the polystyrene spheres are close to being point scatterers (ka = 0.49).

In Fig. 3.7, the real ultrasound image is compared with simulations obtained

using the six different PSF estimates shown in Fig. 3.4. As expected, Hanning

windowing the PSF estimate will suppress high-frequency components at the edges
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Figure 3.6: Comparison between the real ultrasound (left) and simulated ultrasound images com-

puted using three different estimates of the SF (Fig. 3.2). All three simulations used PSFFieldII,rect

(Fig. 3.4). [Th1]

Figure 3.7: Comparison between the real ultrasound image (first column) and simulated ultrasound

images computed using six different estimates of the PSF (Fig. 3.4). For all simulations, the SF

was estimated by SFthreshold (Fig. 3.2). [Th1]

(see Section 3.2.6) and suppress noise near the edges (see previously in Section 3.3.3),

thereby yielding better simulation results. Compared with the reference estimate

PSFFieldII,rect, the best estimate PSFdeconv,Hanning increases R2
I from 0.36 to 0.43 and
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R2
B from 0.59 to 0.65.

Identification of error sources

From previously in Section 3.3.3, it could be seen that there was little difference in

simulations when using different estimates of SF and a somewhat greater difference

(a change in R2
I of up to 0.07) with different estimates of the PSF. However, even

with the best estimates, only 43% of the signal variation in the real ultrasound

image could be explained by the simulation, or 65% in the case of envelope-detected

images. Therefore, in addition to errors in estimating the SF and PSF, other sources

of error are also likely to be significant.

Figure 3.8: Comparison between real ultrasound images and a simulated image. The real ultra-

sound images were generated without averaging or reference subtraction, with averaging of the

pre-beamformed RF data to reduce electrical noise, and with subtraction of a reference signal be-

fore scatterer placement to reduce background scattering. The simulated image was generated using

SFthreshold and PSFdeconv,Hanning (Fig. 3.7). [Th1]

Figure 3.8 shows the effect of temporal averaging and of subtracting a background

image without polystyrene scatterers. The resulting changes in R2
I and R2

B are

at most 0.01, showing that the contributions of electrical noise and background

scattering are minimal. Figure 3.9 shows the effect of introducing dynamic receive

apodization, which reduces shift variance in the PSF. Instead of an improvement,

there is a slight decrease (0.02) in R2
B, possibly due to a decrease in signal owing to

a decrease in the receive aperture (see Section 3.2.5).

To help addressing the question of how shift variance and scatterer concentra-

tion affect simulation accuracy, Fig. 3.10 shows the spatial variation of R2
I and R2

B.
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Figure 3.9: Comparison of two real ultrasound images, one generated without, the other with dy-

namic receive apodization, with a simulated ultrasound image. The simulated image was generated

using SFthreshold and PSFdeconv,Hanning (Fig. 3.7). [Th1]

Both R2
I and R2

B display higher values in regions with scatterers, up to 0.98 and

Figure 3.10: Estimation of the spatial variation of the coefficients of determination R2 for both

the RF images I and B-mode images B. (top left) Real ultrasound image. (top right) Simulated

ultrasound image, generated using SFthreshold and PSFdeconv,Hanning (Fig. 3.7). (bottom left) Spatial

map of R2 between Ireal and Isim. (bottom right) Spatial map of R2 between Breal and Bsim. [Th1]
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0.99, respectively. Shift variance in the axial direction is not noticeable. Nonlin-

ear propagation could have caused significant spatial variation of the PSF in the

axial direction by the introduction of harmonics; however, the ratio of the second

harmonic (9.4 MHz) to fundamental (4.7 MHz) signal amplitude was measured as

0.05. It is likely that the reason behind this relatively low ratio compared with typ-

ical diagnostic imaging scenarios [147, 148] is that uniform delay transmission was

employed, which reduced peak pressure amplitudes.

In contrast to the lack of axial shift variance, the lower values of R2
I around the

left and right edges (not present in the R2
B map) are indicative of phase decorrelation.

Stretching the estimate of SF in the transverse direction did not improve results. It

is possible, however, that misalignment between the SF and real ultrasound image

was more complex, such as a rotation error. Because R2
I has been shown to be more

sensitive to alignment errors than R2
B, this would explain why R2

B retains higher

values at the left and right edges.

The results of Fig. 3.10 show that a higher concentration of scatterers did not

reduce simulation accuracy, which implies that in the current experiment, multiple

scattering from polystyrene scatterers was not a significant phenomenon. On the

contrary, low scatterer concentrations reduced the level of signal and therefore sim-

ulation accuracy. It is not clear, however, what source of noise is chiefly responsible

for the reduction in simulation accuracy. Figure 3.8 shows that the roles of electrical

noise and background scattering are not dominant. One hypothesis is that reflec-

tions from the acoustic absorber behind the phantom (Fig. 3.1) may have caused

additional scattering from the polystyrene particles. The other is that the air con-

tent of the water may have caused microbubbles to appear over time, which could

not be adequately subtracted using the reference image. One such microbubble may

be at x = −0.5 mm, z = 21.5 mm (Fig. 3.10).

3.4 Conclusions

The present chapter has shown how a shift-invariant model of ultrasound image

formation is able to predict ultrasound images of microparticles in the imaging plane
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of a linear array. Using the coefficient of determination metric allowed the calculation

of the proportion of variance in the real ultrasound image that could be explained

by the simulated image. The coefficient of determination was calculated both for

the RF ultrasound image and the envelope-detected (B-mode image), denoted by R2
I

and R2
B, respectively. After the SF estimate was aligned with the ultrasound image,

the variation of both measures was calculated as the real and simulated images were

circularly shifted with respect to each other. R2
I and R2

B exhibited clear maxima at

the correct alignment, diminishing to negligible levels when the misalignment was

greater than the dimensions of the PSF. In addition, R2
I was shown to be more

sensitive to misalignment errors than R2
B due to the former being sensitive to phase

differences. These results underlined the validity of the coefficient of determination

measure, and the differing interpretations of R2
I and R2

B.

In the next step, various estimates of SF, PSF were tested to see which yielded

the best simulation. All three estimates of SF gave similar results. In the case of the

PSF, deconvolution of the real image with the estimated SF, followed by Hanning

windowing (PSFdeconv,Hanning) gave the best results, yielding R2
I = 0.43, R2

B = 0.65.

In the last step, the source of simulation error was explored. Regions of scatterers

showed high values of R2
I and R2

B (up to 0.98 and 0.99, respectively), whereas regions

without scatterers were dominated by noise. Because the reduction of electrical noise

and background (nonpolystyrene) scattering from agar only changed values of R2
I

and R2
B by up to 0.01, it is possible that other sources of error were more significant.

For example, scattering of the polystyrene particles from multiple reflections or

scattering from microbubbles could have also contributed to simulation errors. From

the above observations, it is expected that by increasing the concentration of imaged

scatterers or by more careful experimental design, higher overall values of R2
I and

R2
B can be obtained.

To the best knowledge of the author, this work presents the first example of

a medium with an estimated SF being imaged with ultrasound, allowing for the

validation of the shift-invariant convolution model of ultrasound image formation.

The above results show that, at least for the experimental setup used in the cur-

rent work, the shift-invariant convolution model describes most of the variation in
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a B-mode image; however, care should be taken to reduce other sources of scatter-

ing such as multiple reflections or microbubbles. Planned extensions of this work

include validating the model using other scatterer arrangements such as 3-D distri-

butions of spherical scatterers, live biological cells, and eventually tissue. In addition

to validating the shift-invariant convolution model, the experimental setup herein

provided allows a host of experiments to be conducted where knowledge of the SF

is required. For instance, methods to estimate any structural descriptor may be

tested in an experimental setting, including the location of individual scatterers

using superresolution imaging [149].
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Chapter 4

Resolution enhancement of

high-resolution B-mode images

using axial processing

4.1 Introduction

Enhancement of image resolution in ultrasound images is key to help clinicians

find early indicators of pathological lesions and has therefore long been of inter-

est [150–152]. Image resolution enhancement relies on deconvolving the point spread

function (PSF) of the imaging system out of the ultrasound image prior to envelope

detection and other post-processing steps. Unfortunately, in most cases the PSF is

spatially variant, complicating its estimation and subsequent use in deconvolution.

The aim of this chapter is to present how to simultaneously increase both the

axial and lateral resolution of B-mode ultrasound images (acquired by a SAM setup)

by using axial deconvolution only. The current piece of work is driven by the realiza-

tion that the PSF at a given coordinate can be decomposed into spatially invariant

and variant components, as detailed in Section 2.3.6 (Eq. (2.92)). If the bandwidth

is increased more at the upper cut-off frequency, then the effective central frequency

will also be increased, resulting in a better lateral resolution, improving US image

resolution in both directions.
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4.2 Methods

To show that the axial deconvolution can change the lateral resolution, 4 different

B-mode images were considered, 2 simulations and 2 measurements. Concerning

the simulations, a sparsely and a densely populated scatterer area were simulated in

turn; as for the measurements, a B-mode image of an agar-graphite phantom and a

skin examination will be shown. Conventionally, the axial direction is indicated by

z, while the lateral direction is annotated by x.

4.2.1 Simulations

The number of scatterers was set to 5 and 300 for the sparse and the dense

areas, respectively. The characteristics of the simulated transducer match the single

element transducer used for the agar-graphite measurement (see Section 4.2.2). The

sampling frequency was set to 250 MHz, and the lateral step size to 1 μm.

4.2.2 Agar-graphite phantom

The measurement was carried out using a previously described SAM system [Au4].

A single-element transducer was used with a nominal center frequency of 35 MHz

(PVDF Immersion Transducer PI35-2-R1.0, Olympus, Tokyo, Japan). The sampling

frequency was set to 250 MHz and the lateral step size to 50 μm. The custom-made

agar-graphite phantom contained deionized water, 3% agar and 4% graphite.

4.2.3 Skin examination

A single-element spherically focused transducer was used with a nominal center

frequency of 20 MHz (Olympus V317, Tokyo, Japan, diameter: 6.3 mm; F#: 3).

The sampling frequency was set to 80 MHz and the gain to 60 dB. A portable ul-

trasound system specifically made for skin diagnosis was used. B-mode ultrasound

images were made of human skin. The image was acquired as part of an ethically

approved study at the Department of Dermatology, Venereology and Dermatoon-

cology, Semmelweis Medical University (Budapest, Hungary).

66

DOI:10.15774/PPKE.ITK.2020.007



4.2.4 Deconvolution

Two different methods were used for the deconvolution part, both implemented

in MATLAB (Natick, WA). Firstly, the classical Wiener filter approach was applied

with an assumed NSR level of 0.2 based on the real measurements. Secondly, a

custom Fourier domain method (frequency-weighted axial filtering, RAMP) was

applied, where the signal energy was boosted with a gradually increasing function at

those (higher) frequencies, where the ultrasound transducer has a weaker response.

Both of the methods were used along every A-line separately.

In the case of the simulations, the ZP impulse response was used for the decon-

volution process. For the agar-graphite phantom and the clinical measurements the

impulse responses were estimated as follows: the ZP mean Fourier spectrum along

the axial direction was calculated and transformed into temporal domain, making

this the shift-invariant component — assumed to be vpe (r) — of the pulse-echo

response we sought to deconvolve out of the image.

4.2.5 Scaled RAMP filtering in the frequency domain

Another approach for resolution enhancement is to perform frequency-weighted

axial filtering, where the Fourier spectrum of the reflected signal is multiplied with

a gain function on higher frequencies. The above mentioned linear RAMP function

R (f) in our case was set to start with a scale of 1 (sstart) and end with a scale of

3 (send) over the frequency interval to be modified ([fstart fend]). In mathematical

terms:

R(f) =


f−fstart
fend−fstart

· (send − sstart) + sstart f ∈ [fstart fend]

1 otherwise
. (4.1)

The multiplication with the gain function R(f) in the Fourier spectrum was used

on every A-line independently. The frequency intervals were defined empirically and

are marked in a square bracket in the figures.
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4.2.6 Resolution estimation

For quantitative evaluation, the FWHM of the mean AC curves (both axial and

lateral directions) of the envelope-detected B-mode US images were calculated to

estimate the observed resolution. During the latter case the envelope of the mean

AC curve was used. The area of the resolution cell was also approximated as the

area of an ellipse.

4.3 Results and discussion

4.3.1 Simulations

Figures 4.1 and 4.2 show that Wiener deconvolution improved the axial reso-

lution, however, resulted in a worse lateral resolution, while RAMP was able to

increase resolution in both directions (1.5 times and 1.8 times better than original

in axial and lateral directions, respectively). RAMP and Wiener methods showed

Figure 4.1: Resolution enhancement on a sparsely populated area (simulation) using deconvolution.

Note the lateral smearing as a result of the Wiener filter. [Th2].

similar performance axially. Figures 4.3 and 4.4 show the AC curves of the sparse

and dense areas, respectively. As it can be seen, while the axial performance of

the RAMP and Wiener methods are similar, the lateral performance of the former

greatly improved the lateral resolution too. In contrast, the Wiener deconvolution

sacrificed the lateral resolution in order to improve the axial, resulting in lateral

smearing (see Figs. 4.1 and 4.2).
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Figure 4.2: Resolution enhancement on a densely populated area (simulation) using deconvolution.

Note the lateral smearing as a result of the Wiener filter. [Th2]

Figure 4.3: Axial and lateral mean AC curves of the envelope images (sparse area). In the lateral

direction the envelope of the AC curve is shown. While RAMP method shows improvement in both

directions, the Wiener method indicates improved axial resolution at the expense of a decrease in

lateral resolution.[Th2]

4.3.2 Agar-graphite phantom

As Figs. 4.5 and 4.6 show, both methods could increase the resolution in both

lateral and axial directions, however, resulted in amplified noise, which is much more

noticeable using the Wiener method and could influence the resolution estimation.
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Figure 4.4: Axial and lateral mean AC curves of the envelope images (dense area). The results

are similar to the sparsely populated area. In the lateral direction the envelope of the AC curve is

shown. While RAMP method shows improvement in both directions, the Wiener method indicates

improved axial resolution at the expense of a decrease in lateral resolution. [Th2]

Figure 4.5: Resolution enhancement on an agar-graphite phantom B-mode US image using axial

deconvolution. [Th2]

4.3.3 Skin examination

Figures 4.7 and 4.8 show that the Wiener method yields a better resolution in

both directions, while the RAMP method greatly improved the lateral resolution at

the cost of a slight deterioration of the axial resolution.
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Figure 4.6: Axial and lateral mean AC curves of the envelope images (tissue-mimicking phantom).

In the lateral direction the envelope of the AC curve is shown. The Wiener method shows a great

improvement in axial direction, however, care needs to be taken to properly evaluate it as a real

improvement due to the increased noise level. The RAMP method shows improvement in both

directions. [Th2]

Figure 4.7: Resolution enhancement of a skin (nevus) B-mode image using deconvolution. [Th2]

4.3.4 Resolution estimation

Table 4.1 summarizes the resolution results obtained using the 4 US images for

both deconvolution methods and compared with the original. Generally, it can be

stated that both deconvolution approaches are able to improve lateral as well as

axial resolution, though the RAMP filter tends to provide a better lateral resolu-

tion at the cost of a smaller improvement in axial resolution. The Wiener method
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Figure 4.8: Axial and lateral mean AC curves of the envelope images (clinical skin image). The

figure shows that the Wiener method yields a better resolution in both directions, while the RAMP

method greatly improved the lateral resolution at the cost of a slight deterioration of the axial

resolution. [Th2]

Table 4.1: FWHM values of the AC functions in μm (lateral x and axial z), and area of the

resolution cell (x · z · π) in μm2. It can be seen that the axial-lateral resolution cell (estimated as

the area of an ellipse) always improved using the RAMP method. Table adapted from [Th2].

orig deconv RAMP

x z x z x z

x · z · π x · z · π x · z · π

sparse
290.0 27.8 399.8 18.0 222.1 18.7

25327.5 22608.2 13047.9

dense
280.4 27.2 412.1 18.0 216.4 18.6

23960.6 23303.7 12645.0

phantom
736.0 18.7 152.0 9.0 674.0 14.0

43238.4 4297.7 29644.1

skin
723.4 111.7 576.0 39.7 521.0 127.1

253852.6 71839.4 208033.4

shows a great improvement for real experiments; however, care needs to be taken

to properly evaluate the results as a real improvement due to the increased noise

level. In the case of the skin examination using the RAMP filter the axial resolution

slightly decreased, yet the area of the resolution cell decreased as well, which is

an acceptable trade-off taking the usually better axial resolution (compared to the
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lateral resolution) into account.

4.4 Conclusions

Using simulated and experimental data from two single element transducers (of

20, 35 MHz nominal frequencies), it was shown that axial deconvolution (both clas-

sical Wiener and a RAMP filter) can simultaneously improve resolution in both

directions. The results demonstrate a framework for improving axial and lateral

resolution for ultrasound images that is unaffected by depth-dependent effects and

that can balance the need for axial and lateral resolution improvement based on their

relative values. The results also highlight the need to set deconvolution parameters

correctly. For cases when the deconvolution only improves lateral resolution at the

expense of axial resolution, this may still result in a reasonable trade-off regard-

ing the area of the resolution cell given the typically worse lateral resolution. Since

both deconvolution methods introduce noise, care needs to be taken to keep it under

control.

Future work can aim to optimize deconvolution parameters (NSR and RAMP

characteristics) according to pre-defined axial and lateral resolution improvement

criteria, or to even combine these methods in order to achieve a better performance.
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Chapter 5

Resolution enhancement of

C-mode SAM images

5.1 Introduction

Ultrasound is a well-established diagnostic imaging modality that can image the

whole depth of tissue at resolutions comparable to other diagnostic imaging modali-

ties, such as PET, CT or MRI [58]. Its higher frequency counterpart, SAM, typically

uses a single-element transducer of high central frequency that mechanically scans

a volume of interest [153]. Due to the high frequencies used, SAM imaging is ca-

pable of producing high-resolution images [153–156], which is particularly useful for

non-destructive testing [9–19] and examining biological tissues [155,157–167] or even

single cells [15,168–174]. However, the increase in central frequency not only makes

system manufacture more expensive but also decreases penetration depth. Use of a

lower frequency allows for more rapid scanning of a tissue volume, since the higher

penetration depth allows for thicker specimen slices. Moreover, scanning time of

a single slice can also be reduced due to fewer required grid points. In general,

SR techniques may be used to overcome this resolution limit. SR imaging either

requires spatio-temporally discrete events [175] or post-processing of one [176, 177]

or more images [178–180]. In increasing order of complexity, these post-processing

techniques can be either deconvolution [19,181] [Th2], sparsity promoting minimiza-

tion (e.g., dictionary- [182] or TV-based [177]) or DL [183–186]. The more complex
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the method, the more computational power and running time are needed.

While ultrasound image resolution enhancement is the subject of interest in on-

going research [85–87,91,114,150–152,176,187–196] [Th1], there is currently limited

research on the use of image resolution enhancement techniques in SAM imaging.

Mohammadi and Mahloojifar [197] attempted to improve the axial resolution of

SAM images using sparse signal representation by decomposing A-lines into over-

complete Gabor dictionaries. Basarab et al. [177] proposed a TV regularization-

based method for single image SR with promising results. However, as the authors

noted, there was a lack of ground truth with which they could compare their results.

The aim of this chapter is to compare two classical deconvolution-based and

a DL-based image resolution enhancement method applied to 180-MHz centre-

frequency SAM images, with SR performance measured by comparing with the

corresponding 316-MHz data used as ground truth.

The structure of the chapter is as follows. First, the details of the experimental

framework and data acquisition are described. Then, the image resolution enhance-

ment methods are presented along with the metrics used for comparison. Then,

the results are discussed, comparing the performance of the different SR techniques.

Finally, conclusions are drawn based on the results.

5.2 Methods

In this section, the data collection for the experiment is first presented, followed

by the details of the resolution enhancement methods. Finally, a description of the

metrics used to measure resolution enhancement performance is given. All data

processing steps were carried out using MATLAB (Mathworks, Natwick, MA, USA)

unless otherwise stated.
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5.2.1 Experiment

Sample preparation

Five different samples of rat brain, pituitary gland and mouse brain sections

were processed and imaged for the current experiment at well-identifiable anatomi-

cal landmarks (such as cerebral cortex, anterior pituitary lobe, or hippocampus) for

accurate registration and contained vessels and cells of various densities. Perfusion-

fixation was employed in all samples. The sections were mounted onto Superfrost

UltraPlus slides and (due to a separate investigation) were stained either with

Biot-Tomato Lectin (#LOG51; 1:100), CY3-streptavidine (1:1000), DAPI or Ni-

Diaminobenzidine. Preliminary swelling and detachment tests were carried out in

deionized water to ensure the sample maintained its conformation during the mea-

surements. The thickness of the sections was around 30 μm.

Data acquisition

Measurements were carried out at Fraunhofer IBMT (Sulzbach, Germany) using

custom-made spherically focussed single-element transducers (Fraunhofer IBMT)

housed in a previously described SAM system (SASAM [170]).

Every recording was performed using two different transducers of central fre-

quencies 180 and 316 MHz, whose characteristics can be seen in Table 5.1. The

coupling medium was deionized water, held at a room temperature of 22 ◦C. Step

sizes of 3 and 2 μm were used during imaging with the 180- and 316-MHz transduc-

ers, respectively. The focal plane of the transducers was set to the surface of the

samples and the sampling frequency was 4 GHz.

Table 5.1: Properties of the transducers used during the experiment and PSF simulation.

Central frequency (MHz) 180 316

-6 dB bandwidth range (MHz) 132 – 230 242 – 420

Focal distance (μm) 555 425

Diameter of the curvature (μm) 482 319

Lateral resolution limit (μm) 9.6 6.4
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Due to the different step sizes, the 180-MHz image was interpolated to have the

same spatial resolution as the image obtained at 316 MHz, using a common step size

of 2 μm. Between the two measurements, the transducers needed to be manually

changed; therefore, the images were co-registered as a post-processing step to match

the scanned regions. The images were aligned using rigid transformation (only

translation and rotation operations were allowed) with the help of manually selected

control points. Additionally, for a more accurate registration, a cross-correlation-

based alignment was performed between images at different frequencies to ensure

one-to-one comparison.

5.2.2 Image resolution enhancement

Three different image resolution enhancement techniques were tested, as detailed

in the following. First, two classical deconvolution techniques are presented, followed

by the description of the DL method.

Classical deconvolution (Wiener and TV)

To be able to perform deconvolution the PSF needs to be estimated. To this

end, a step-based estimation (SBE) was considered based on the actual data. The

step response of the transducer was approximated by calculating the mean reflection

from the glass slide over a 50 μm × 50 μm area. Our SBE of the impulse response

was obtained by taking the derivative of this impulse response.

The SBE response was first multiplied by a modified Hanning window, which left

the inner part of the signal unchanged, to reduce edge effects. Then, using the SBE

response as an impulse response of a transducer, the PSF was simulated at the focal

plane (z = 0) using the characteristics of the 180-MHz transducer (see Table 5.1)

within an area of 50 μm × 50 μm using a step-size of 2 μm with the help of Field

II [128,139] in the x- and y-directions, respectively.

The Wiener deconvolution was performed independently slice by slice (as pro-

posed by Basarab et al. [177]) using the built-in MATLAB deconvwnr() function,

while the TV deconvolution was performed using a third-party function decontv()

written by Chan et al. [198]. The SNR level for the Wiener deconvolution was set to
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10 dB, which was found to give the best results both qualitatively and quantitatively.

Similarly, a regularization parameter value of 1 was used for the TV deconvolution

based on empirical evidence. One common form of SAM imaging involves taking

the integral of the absolute values of A-lines (from now on referred to as a C-scan

SAM image, see Section 2.1.4); therefore, in this work, the 3-D volumetric data was

turned into a 2-D image using the aforementioned procedure.

Deep learning

As mentioned in Section 2.3.5, DL relies on a training set, where the input images

are paired with the corresponding output (reference) images in order to learn how to

estimate the output based on the input. Ten SAM C-scan images were used in total,

as described in the following. The initial training set included 4 full-size image pairs

of 180 MHz and 316 MHz and had the following dimensions in the x- and y-directions,

respectively [see Fig. 5.2 (from top to bottom) later in Section 5.3]: 642 μm× 848 μm,

800 μm × 796 μm, 798 μm × 798 μm, 698 μm × 698 μm, while the test set contained

one full-size image pair and had an area of 420 μm × 700 μm (see Fig. 5.3 later in

Section 5.3). Note that the difference in dimensions originates from the registration

process between different frequencies (Section 5.2.1). The image with the smallest

dimensions was selected as the test set to obtain the biggest training set possible.

The test and training sets were carefully chosen to be disjunctive.

To create a properly sized training set, the full-sized C-scan SAM images were

split into tiles of 300 μm × 300 μm with a shift of 20 μm in-between them. After

dividing up the full-sized images, the training dataset contained 2254 different sam-

ples, where the distance between any two samples is larger than 20 μm. This is still

considered as a fairly low amount of samples for DL purposes; therefore, data aug-

mentation was used to increase the variability and number of samples. In the case

of SR algorithms, various transformations can be defined on images that represent

valid, possible input-output pairs. From these operations, the following were used

on every image pair.

1. Random scale changes within a ratio of 0.9 and 1.1 using bi-cubic interpolation
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2. Rotation around the center point with ± 0.1 radian (5.7◦)

3. Horizontal and vertical flipping.

After these steps, a random region of 200 μm × 200 μm was cut out from the

central 240 μm × 240 μm area. These operations were simultaneously applied both

on the input (180 MHz) and reference (316 MHz) images. A low-amplitude Gaus-

sian noise (3% intensity) was added to the input image, but not to the reference

image. Altogether, 32 million samples were seen by the network during the training

procedure.

The parameters of the scale change, random rotation, random crop, and hori-

zontal/vertical mirroring were generated from a uniform distribution. The transfor-

mation of the images was part of the processing pipeline and was implemented in

TensorFlow version 1.12, which is an open source machine learning framework under

the Apache 2.0 license [199], and was executed on two NVIDIA Tesla K80 GPUs,

on which training time took 6 h. Applying these steps on every image pair indepen-

dently, it could be ensured that the network has seen different samples at each step.

It has to be noted that the transformed and (therefore) generated samples are not

completely independent of each other, but the response of a convolutional network

is invariant only for shift [200], and all these transformations result in different in-

put images (different scale and orientation), ensuring that additional information is

provided during the training of the network.

A convolutional neural network inspired by the U-Net architecture was used (see

Fig. 5.1), which was originally designed for segmentation of biological samples [201],

but can also be used for SR [184]. The network is a four-layered convolutional

network with 16, 32, 64 and 128 features in each layer. Smooth L1 loss was selected

as loss function for network training, which is a modified version of the Huber

loss [202], and combines the advantages of L1 and L2 losses. For the training process,

ADAm optimizer was used with the following parameters: initial learning of 10−4,

beta1 of 0.9 and beta2 of 0.999. For the sake of reproducibility, our implementation

in TensorFlow containing all details and parameters can be found at the following

link: https://github.com/horan85/acousticmicroscope. After the training procedure
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Figure 5.1: Depiction of the four-layered convolutional network, showing the order of convolution,

pooling, transposed convolution, and concatenation operators. This architecture was inspired by U-

Net, and as it can be seen, it processes the input image in four different scales. The left-hand side

executes convolutions and downscales the results, using maximum pooling with 2 × 2 windows, while

the right-hand side of the network generates the output image from the downscaled version using

3 × 3 transposed convolutions. The generated features with the same resolution are concatenated

to each other. The number at each convolution block represents the number of feature maps for

that convolution operator. [Th3]

was carried out, the network is ready to produce a high-resolution output image from

a low-resolution input image. The output of the network is an image having a size

of 200 μm × 200 μm; therefore, the test image pair was divided up into tiles of this

size for quantitative evaluation, having a shift of 20 μm in-between tiles.

5.2.3 Resolution metrics

Taking the 316-MHz image as a reference, different image similarity metrics [177,

184] were used to compare the performance of resolution enhancement. The nor-

malized root mean square error (NRMSE) is a widely used metric for quantitative
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comparison of two images, which calculates the MSE (see also Eq. (2.71))

MSE =
1

n

n∑
i=1

(yi − xi)2 (5.1)

of the pixel differences between images x and y, normalized by the dynamic range

of the reference image:

NRMSE =

√
MSE

ymax − ymin
, (5.2)

where ymax and ymin are the maximum and minimum values of the reference image

y.

For the peak SNR (PSNR) metric, the dynamic range (or often referred to as

the peak value if ymin = 0) is divided by the MSE:

PSNR = 10 · log10

(
peakval2

MSE

)
. (5.3)

The PSNR is often used on a logarithmic scale for easier comparison, and it is also

adapted in this work. The metric values were calculated as follows: based on the

output of the DL method, the corresponding 200 μm × 200 μm area was selected

from the original 180 MHz, Wiener, and TV images and compared to the same area

of the ground truth 316-MHz image. By calculating the similarity between all the

tiles and the reference image, it was possible to estimate the mean and standard

deviation of PSNR and NRMSE values.

To quantify the observed resolution of the images, the following procedure was

used: the FWHM of the 2-D AC function of the C-scan images (both the original

and resolution enhanced) was calculated in both directions, whose average value

was used as an estimation of the resolution. Note that this value is not directly

comparable to the lateral resolution.

5.3 Results and discussion

The current results are presented as follows: first, the image pairs (180 MHz

and 316 MHz) from the training set are shown and discussed. Next, the results

on the whole test set are shown for qualitative comparison. Then, representative

200 μm × 200 μm image tiles are shown to allow further qualitative evaluation of the
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different image resolution enhancement techniques. For a quantitative comparison,

the estimated resolution of the representative C-scan sections is included. Finally,

the mean and standard deviation of the NRMSE and PSNR values over all the image

tiles are presented.

We note that during the comparison of the resolution enhancement techniques,

the following abbreviations are used in the figures: 180 and 316 MHz mean the orig-

inal 180-MHz C-scan SAM image before any image resolution enhancement tech-

niques applied and the reference 316-MHz C-scan SAM image, respectively. TV,

Wiener, and DL stand for the methods described in Section 5.2.2.

Figure 5.2 shows the co-registered image pairs of rat and mouse brain sections

taken at 180 and 316 MHz, respectively. As it can be qualitatively seen, the 316-MHz

images show much better resolution with a higher level of detail. The last 180-MHz

sample (4th row) became slightly contaminated during the scanning process, hence

the saturated white pixels in the image.

Figure 5.3 shows the result of the different image resolution enhancement meth-

ods on the test set. Note that the DL image was constructed by stitching together

the small-sized output images (see Section 5.2.2); therefore, contrast differences be-

tween patches and stitching artefacts are present. The 180- and 316-MHz images

are markedly different in terms of detail, the latter having higher frequency and

better resolution. The TV and the Wiener deconvolution methods show a modest

improvement overall, while the result of the DL method presents the highest sim-

ilarity to the reference image; however, it can also be observed that the network

could not always precisely estimate the edges of the image.

To be able to further evaluate the performance of the different techniques, repre-

sentative image sections taken from Fig. 5.3 (indicated by white borders) are shown

in Figs. 5.4 – 5.6. In all three cases, DL is clearly seen to outperform the classical

deconvolution methods, resulting in significantly improved overall sharpness, and

the processed images are very similar to the 316-MHz images. However, some small

scatterers visible on the 316-MHz scan disappeared during the process, which is

possibly either due to the rather limited training set or the resolution limit of the

initial 180-MHz scan. Further evaluation should be done to address this concern and
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Figure 5.2: Co-registered 180- and 316-MHz C-scan SAM image pairs of rat and mouse brain

sections are shown, which were split into smaller image pairs and were used as the training set. The

size of the image pairs is the following (from top to bottom): 642 μm × 848 μm, 800 μm × 796 μm,

798 μm × 798 μm, 698 μm × 698 μm. [Th3]

to identify the cause. Both deconvolution techniques sometimes reveal new details

compared to the original 180-MHz image. However, both methods often seem to en-
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Figure 5.3: Results of the different resolution enhancement methods on the test image. The images

show a rat brain coronal section (Bregma -3.12, the dentate gyrus). From top to bottom: the

original 180 MHz image, slice-by-slice TV and Wiener deconvolution methods, DL and the ground

truth (316 MHz) image. The areas indicated by the white borders are shown in greater detail in

Figs. 5.4 – 5.6). Note the stitching artefacts present in the DL image (Section 5.2.2). [Th3]

large features, especially the TV method, where the algorithm favors homogeneous

and contiguous parts. Stemming from this preference, it can also be observed that
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Figure 5.4: Representative sample from Fig. 5.3 (top left marked area), showing the hilus. The DL

method is seen to qualitatively outperform the classical deconvolution methods in approximating the

high-resolution (316 MHz) reference image. [Th3]

the Wiener method better preserves small variations in pixel values compared to the

TV method. Finally, for highly variable image regions (usually densely populated

with cells and vasculature), the DL method is able to provide additional details com-

pared to the input image, returning images that are highly similar to the reference
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Figure 5.5: Representative sample from Fig. 5.3 (marked area in the middle), showing the lower

blade of the dentate gyrus. The DL method shows a much higher qualitative similarity to the ground

truth than the result of any of the classical deconvolution methods. [Th3]

image.

Table 5.2 shows the estimated resolution of the C-scan images (see Figs. 5.4

– 5.6). In general, it can be seen that the qualitative observations are verified by
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Figure 5.6: Representative sample from Fig. 5.3 (bottom right marked area), showing the neighbor-

ing thalamic nucleus. The results show that the DL method clearly outperforms both of the classical

deconvolution methods. [Th3]

the quantitative values: the reference 316-MHz image having the best resolution,

while the DL method being the best among the different resolution enhancement

techniques, followed by the Wiener and TV methods, lastly the original unprocessed

180-MHz image. Interestingly, this approach fails to reflect the observable resolution

87

DOI:10.15774/PPKE.ITK.2020.007



Figure 5.7: NRMSE values of the different image resolution enhancement methods (the red vertical

lines showing ± 1 standard deviation). The images from the resolution enhancement methods were

compared to the ground truth data (316 MHz). The values indicate an average considering all of

the tiles. The DL method outperformed both the original 180-MHz image and the deconvolution

methods. The TV and Wiener deconvolution methods show similar performance to each other, with

a slight improvement over the original 180-MHz image. [Th3]

Figure 5.8: PSNR values of the different image resolution enhancement methods (the red vertical

lines showing ± 1 standard deviation). The images from the resolution enhancement methods were

compared to the ground truth data (316 MHz). The values indicate an average considering all of

the tiles. The DL method outperformed both the original 180-MHz image and the deconvolution

methods. The TV and Wiener deconvolution methods show similar performance to each other, with

a slight improvement over the original 180-MHz image. [Th3]
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improvement in Fig. 5.4, since it suggests that all the methods (even the original

180-MHz image) outperformed the DL method.

Table 5.2: Estimated resolution of the C-scan images of Figs. 5.4 – 5.6.

Estimated resolution limit (μm) Fig. 5.4 Fig. 5.5 Fig. 5.6

Raw 180 MHz 14.1 28.1 20.2

TV 13.5 19.7 19.3

Wiener 11.3 15.6 14.1

DL 16.0 12.4 12.4

Raw 316 MHz 11.2 11.0 10.5

Figures 5.7 and 5.8 show the average quantitative metrics over all the tiles.

The results confirm the qualitative observations of Figs. 5.4 – 5.6, namely that

DL greatly outperforms TV and Wiener deconvolution methods, while both show

higher similarity to the reference image than the original one, with a quantitative

performance being comparable to each other. The average NRMSE value of the

DL method (see Fig. 5.7) was found to be 0.056, approximately a third of that of

the deconvolution methods. The DL result also shows a low standard deviation

in contrast to the two other techniques, demonstrating its consistent performance.

The average PSNR level of the DL technique (see Fig. 5.8) is 10 dB higher than

the result of the other two methods, also demonstrating the superiority of the DL

method.

Although the experiments clearly demonstrate how deep learning can be used to

increase the resolution (thus, decrease the resolution limit) and quality of rat and

mouse brain tissue images, in every application area, especially in medical imaging,

careful validation and evaluation is needed before the application of any machine

learning method. In general, such approaches are evaluated using large and in-

dependent test sets and one would need such a set of other tissues to examine the

performance of our approach. Even if the method is not generalizable or the method

would not bring the required accuracy levels, the training set can be extended or

transfer learning [203] could be used to fine-tune the method to other tissue types

to increase the robustness of the procedure.
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Determinants of ultrasound image formation of the central nervous system (i.e.,

surface junction of tissue components and/or cellular compartments with differing

stiffness) are highly conserved among mammals. The difference, which appears

from the simpler to more complex nervous system manifests as higher number and

bigger size of certain cells and more numerous branching of cellular processes making

possible to establish more complex neuronal networks. Thus, our assumption is that

our approach could be applied and work well for tissue sections of most mammalian

brains, but it is fairly difficult to estimate the level of accuracy without a proper

validation set. However, drastically different samples (e.g., muscle tissue or bone

tissue) would require inputs in the training set describing the completely different

cellular components and extracellular matrix content of these tissues, as well as

their specific vascular supply with different density and 3-D arrangements. Another

interesting approach would be to include optical images in the training set and see

to what extent histology images could be predicted from SAM images (and vice

versa).

As the results demonstrate, the intensity values vary greatly between the pro-

cessed images. The aim of this work was to approximate the structure of the high-

resolution image as accurately as possible and for this, the importance of intensity

values were sacrificed as all activations in the neural network were normalized (also

input and output samples were normalized, such as batch-normalization [204]) in

the artificial neural net. In the case of quantitative value mapping, one could train

a network without normalization, which would result in inferior quality regarding

the structures but keep the intensity of the pixels.

To the best of our knowledge, there is no known theoretical performance limit

in the DL sense if the architecture is selected properly, only input-output pairs are

needed. Other properties like penetration depth, device price, and scanning time,

could be limiting factors. It is also possible to produce images of multiple different

resolutions using DL [205].
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5.4 Conclusions

This work compared two classical deconvolution-based and a DL-based image

resolution enhancement method for SAM images, using a high-frequency SAM image

as ground truth to evaluate the performance of the techniques.

Previous research has shown the ability of DL to perform image resolution en-

hancement on biomedical images [184–186]. In this work, it was shown that using

even a relatively limited training set, DL greatly outperforms two common classical

deconvolution techniques (Wiener and TV) and can closely approximate the refer-

ence image. At the time of publication of the corresponding article, the work seemed

to be the first instance of DL being applied to improve SAM lateral resolution and

resolution enhancement evaluated using experimental ground truth data. Nearly

a month later, the work of Mamou et al. [206] had been made available online, in

which they carried out similar work on SAM images and also showed how DL can

be used to improve SAM resolution.

Future work could focus on training the DL neural networks on a bigger and

more varied data set, as well as extending its use to 3-D data.
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Chapter 6

Summarizing conclusions

As a final section, the new scientific results introduced in this work are summa-

rized in the form of thesis points.

Thesis I: I have created an experimental method to assess the accuracy of a shift-

invariant convolution-based ultrasound image formation model. The method relies

on a planar arrangement of micrometer-scale scatterers in the imaging plane of a

linear array. Using the coefficient of determination R2 to estimate image similarity,

the agreement between simulated and real images was R2 = 0.43 for the RF image

and R2 = 0.65 for the envelope-detected B-mode image.

Corresponding publication: [Th1]

Models of ultrasound image formation describe the forward process of how an

ultrasound image is formed from an acoustic medium. Such models can be used

to generate simulated ultrasound images or to obtain quantitative descriptors of

the medium from real ultrasound images. A relatively simple and widely used

model of image formation treats the ultrasound image (before envelope detection

and compression) as the shift-invariant convolution of the imaging system point

spread function (PSF) with the scattering function (SF) of the medium [40,129].

Therefore, I created an experimental method to assess the accuracy of the con-

volution model. Simulated and real US images were compared to each other. The

coefficient of determination was calculated both for the RF ultrasound images and

the envelope-detected (B-mode) images.
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Various estimates of SF, PSF were tested to see which yielded the best sim-

ulation result. The source of simulation error was also explored, which possibly

originates from scattering of the polystyrene particles from multiple reflections, or

from microbubbles. From the observations, it is expected that by increasing the

concentration of imaged scatterers or by more careful experimental design, higher

overall values of the coefficient of determination can be obtained.

The results underline that, at least for the experimental setup used in the cur-

rent work, the shift-invariant convolution model describes most of the variation in a

B-mode image; however, care should be taken to reduce other sources of scattering

such as multiple reflections or microbubbles.

Thesis II: I have presented a novel resolution enhancement technique based on

frequency-weighted axial filtering for ultrasound images that can function even when

the point-spread function is shift-variant. Estimating resolution using the full-width

at half maximum of the autocorrelation, the axial-lateral resolution cell was always

improved, with area decreases in the range of 22–94%.

Corresponding publication: [Th2]

Enhancement of image resolution of ultrasound images is key to help clinicians

in finding early indicators of pathological lesions among others. However, the degree

of improvement greatly depends on accurately estimating the PSF of the system,

which in most cases is spatially variant, thus complicating its approximation and

subsequent use in deconvolution.

Therefore, I investigated the possibility of using a method for US images, which

is unaffected by depth-dependent effects, and it is also capable of improving the

resolution both in the lateral and axial directions. Two simulated and two experi-

mental data sets were used. The nominal central frequencies of the single-element

transducers were 20 and 35 MHz. Two different deconvolution methods were used:

the classical Wiener filter approach and a custom Fourier domain method (RAMP),

where the signal energy was boosted with a gradually increasing function at those

(higher) frequencies, where the ultrasound transducer has a weaker response. Both

of the methods were used along every A-line separately. The observed resolution
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was quantified as the FWHM of the mean AC curves. The results confirm that

frequency-weighted axial filtering can balance the need for axial and lateral resolu-

tion improvement based on their relative values with properly set parameters.

Thesis III: I have shown the successful use of deep learning to enhance scan-

ning acoustic microscope image lateral resolution, even with a very limited data set

consisting of rat and mouse brain samples (four images in the training set, each

smaller than 1 mm × 1 mm). The estimated images can closely approximate the

ground truth data, having an average NRMSE of 0.056, and PSNR of 28.4 dB.

Corresponding publication: [Th3]

Deep learning is more and more popular nowadays, yet there is limited research

about its use on US images, and even those are mostly used for segmentation and

classification.

Therefore, I investigated 30-μm-thick rat and mouse brain samples with a high-

frequency SAM setup (180 and 316 MHz). The initial training set included 4 full size

image pairs, which were co-registered. To create a properly sized training set the

full-sized C-scan SAM images were split into tiles of 300 μm × 300 μm with a shift

of 20 μm in-between them. Data augmentation was used to increase the variability

and number of samples. A U-Net inspired neural network was used to estimate the

high-resolution image based on the low-resolution image, and the 316-MHz data was

used as ground truth for quantitative evaluation. Despite the training set being very

limited, the results confirm the feasibility of using DL as a single-image SR method

to enhance the lateral resolution of SAM images, which greatly outperformed two

classical deconvolution methods (TV and Wiener deconvolution).
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gay, Eds. Budapest, Hungary: Pázmány University ePress, 2017, pp. 49 –

49. (Cited on page(s): xiv)
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