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Abstract 

Object localization and tracking is a crucial element of various autonomous systems. 

While in outdoor localization mainly GPS-based services are used, indoor localization 

systems use other competitive solutions, based on e.g. ultrasound, Wi-Fi signals, graphic 

markers, RFID tags, and visible light. The goal of this thesis is to provide contributions to 

radio-interferometric and image-processing-based indoor localization systems. 

In this thesis two novel radio-interferometric tracking algorithms are presented. In 

radio-interferometric localization systems infrastructure transceivers generate interferometric 

signals, the phase of which are measured by receiver nodes deployed in the infrastructure and 

on the followed object. The position or the track of the object is calculated from the phase 

measurements and the known positions of the infrastructure transceivers. The first proposed 

solution is a geometric based approach, utilizing robust phase unwrapping, with which a 

moving target can be tracked from a known initial position. The second solution is based on a 

novel confidence map, generated from the measurements and the theoretical phase 

distribution, and it can either track an object from a known initial position or determine the 

full track and the initial position of the object retroactively. The proposed methods provide 

centimeter-range accuracy when the speed of the object is low (<1 m/s in the current 

implementation). The theoretical results are analyzed and supported by simulations and real 

measurements. 

To aid the measurement process in radio interferometric applications, a novel 

distributed and efficient method was proposed to measure the phase differences. The new 

solution provides more accurate phase difference measurements than the current solutions, 

even in case of various waveforms, amplitudes, and noisy conditions. The proposed solution 

is distributed such that both the computational demand on the low-end measurement devices 

and the communication bandwidth required to transmit measurement results are low. 

In a different application domain (image-processing-based indoor localization systems), 

a novel method was proposed to create long-distance beaconing, using Visible Light 

Communication (VLC). Beacons transmit their own IDs using VLC with high enough 

frequency (>100 Hz) to avoid flickering effect. The novel solution uses undersampling, which 

allows the utilization of simple sensors (e.g. inexpensive digital cameras with frame rates as 

low as 30 fps). Since the decoding requires only a few pixels on the image, the beacons can be 

reliably detected even from long distances (up to 50 m).  



Kivonat 

Objektumok lokalizációja és nyomon követése számos autonóm rendszer 

kulcsfontosságú eleme. Amíg a kültéri lokalizációban elsősorban a GPS-alapú 

szolgáltatásokat használják, a beltéri lokalizációs rendszerek számos egyéb megoldást 

alkalmaznak, pl. ultrahang, Wi-Fi jelek, grafikus markerek, RFID címkék és látható fény 

alapú rendszerek. Az értekezés célja, hogy új megoldásokat adjon rádió-interferometrikus és 

képfeldolgozásra épülő beltéri lokalizációs rendszerek megvalósításához. 

A dolgozat két új rádió-interferometrikus nyomkövetési algoritmust mutat be. A rádió-

interferometrikus lokalizációs rendszereknél az infrastruktúra adók interferometrikus jeleket 

generálnak, amelyek fázisát az infrastruktúrában elhelyezett és a követett objektumra telepített 

vevőegységekkel mérjük. Az objektum pozícióját vagy útvonalát a fázismérésekből és az 

infrastruktúra-eszközök ismert pozícióiból számítjuk. Az első javasolt megoldás egy geometriai 

alapú megközelítés, amely egy új robusztus fáziskorrekciós eljárást alkalmaz, amellyel egy 

mozgó célpont egy ismert kezdeti pozícióból követhető. A második megoldás egy új konfidencia 

térképen alapul, amelyet a fázismérésekből és az elméleti fáziseloszlásból származtatok, és 

amelynek segítségével egy objektumot nyomon követhető egy ismert kezdeti pozícióból, vagy 

visszamenőlegesen meghatározható annak teljes útvonala és kiindulási pozíciója. A javasolt 

módszerek centiméteres pontosságot nyújtanak alacsony objektum-sebesség esetén (<1 m/s). Az 

elméleti eredményeket szimulációkkal és valós mérésekkel támasztottam alá. 

A rádió-interferometrikus mérési eljárás támogatásához új, elosztott és hatékony 

módszert javasoltam fáziskülönbségek mérésére. Az új megoldás nagyobb pontosságot 

biztosít a jelenlegi megoldásoknál különféle előforduló hullámformák, amplitúdók és zajos 

körülmények esetén is. A javasolt megoldás elosztott számításokat alkalmaz, így az kis 

számítási teljesítményű mérőeszközökkel is megvalósítható, ráadásul igen alacsony 

kommunikációs sávszélességet igényel. 

Egy másik alkalmazási területen (képfeldolgozás alapú beltéri lokalizációs rendszerek) 

új módszert javasolok nagy hatótávolságú jeladók megvalósítására. A jeladók látható fény 

alapú kommunikáció (VLC) segítségével magas villogási frekvenciával (>100Hz) továbbítják 

saját azonosítóikat, így elkerülve az emberi szem számára zavaró villódzást. Az új megoldás 

alulmintavételezést alkalmaz, amely lehetővé teszi költséghatékony (akár 30 képkocka / 

másodperc sebességű) kamerák használatát is. Mivel a dekódolás csak néhány képpontot 

igényel, a jeladók nagy távolságról is megbízhatóan észlelhetők (akár 50 m-ig).  



Abstrakt 

Objekt lokalisering og sporing er et viktig element i ulike autonome systemer. Mens i 

utendørs lokalisering hovedsakelig brukes GPS-baserte tjenester,  innendørs 

lokaliseringssystemer fortrekker andre konkurransedyktige løsninger, basert på f.eks. ultralyd, 

Wi-Fi-signaler, grafiske markører, RFID-koder og synlig lys. Målet med denne avhandlingen 

er å levere bidrag til radio-interferometriske og bildebehandlingsbaserte innendørs 

lokaliseringssystemer. 

I denne avhandlingen presenteres det to nye radio-interferometriske sporingsalgoritmer. 

I radio-interferometriske lokaliseringssystemer genererer infrastruktur-transceivere 

interferometriske signaler, fasen måles av mottakernoder i infrastrukturen og på det 

etterfølgende objektet. Objektets posisjon eller spor beregnes ut fra fasemålingene og de 

kjente posisjonene til infrastruktur enheter Den første foreslåtte løsningen er tilnærming basert 

på  geometri, ved bruk av robust faseutpakking hvor et bevegelig mål kan spores fra en kjent 

startposisjon. Den andre løsningen er basert på et nytt selvtillitskart, generert fra målingene og 

den teoretiske fasedistribusjonen, og den kan enten spore et objekt fra en kjent startposisjon 

eller bestemme hele sporet og den opprinnelige posisjonen til objektet med tilbakevirkende 

kraft. De foreslåtte metodene gir nøyaktighet i centimeterområdet når objektets hastighet er 

lav (<1 m / s i dagens implementering). De teoretiske resultatene blir analysert og støttet av 

simuleringer og virkelige målinger. 

For å støtte måleprosessen i radiointerferometriske applikasjoner, ble det foreslått en ny 

distribuert og effektiv metode for å måle faseforskjellene. Den nye løsningen gir mer 

nøyaktige faseforskjellmålinger enn de nåværende løsningene, selv om det er forskjellige 

bølgeformer, amplituder og støyende forhold. Den foreslåtte løsningen distribueres slik at 

både beregningsbehovet på måleinstrumentene og kommunikasjonsbåndbredden som kreves 

for å overføre målesultater, er lave. 

I et annet applikasjonsdomene (bildebehandlingsbaserte innendørs 

lokaliseringssystemer) ble det foreslått en ny metode for å lage langdistanse beacons ved bruk 

av Visible Light Communication (VLC). Beacons sender sine egne ID-er ved hjelp av VLC 

med høy nok frekvens (> 100 Hz) for å unngå den flimrende effekten. Den nye løsningen 

ansetter underprøvetaking, som tillater bruk av enkle sensorer (for eks. billige digitale 

kameraer med opptaksfrekvens så lave som 30 fps). Siden dekodningen krever bare noen få 

piksler på bildet, kan beacons påvises pålitelig selv fra lange avstander (opptil 50 m).  



INDEX 

1. Introduction .............................................................................................................. 1 

2. Background and previous work ............................................................................... 3 

2.1. Object positioning and tracking principles ....................................................... 3 

2.2. Object positioning applications ........................................................................ 5 

2.3. Interferometry in measurement systems ........................................................... 7 

2.4. Radio-interferometric localization .................................................................... 7 

2.5. Phase difference measurement ......................................................................... 9 

2.6. Phase unwrapping techniques ......................................................................... 12 

3. Radio-interferometric tracking based on phase-unwraping ................................... 16 

3.1. Basic hyperboloid-based tracking .................................................................. 16 

3.1.1. Tracking in one dimension ......................................................................... 16 

3.1.2. Tracking in higher dimensions ................................................................... 18 

3.1.3. Tracking infrastructure ............................................................................... 18 

3.1.4. Utilizing redundant phase measurements ................................................... 19 

3.2. Simultaneous Phase Unwrapping ................................................................... 21 

3.3. Fault-tolerant hyperboloid-based tracking ...................................................... 22 

3.4. Evaluation ....................................................................................................... 25 

3.4.1. Error analysis ............................................................................................. 25 

3.4.2. Simulation results ....................................................................................... 27 

3.4.3. Node placement analysis ............................................................................ 32 

3.4.4. Measurements ............................................................................................ 37 

3.5. Conclusion ...................................................................................................... 43 

4. Radio-interferometric tracking based on confidence maps .................................... 44 

4.1. Position confidence map ................................................................................. 45 

4.2. Basic confidence-map based tracking ............................................................ 47 

4.3. Peak detection anomalies ................................................................................ 48 

4.4. Adaptive peak extraction ................................................................................ 49 

4.5. Confidence map-based peak prediction .......................................................... 51 

4.6. Prediction-aided, confidence-map based tracking algorithm ......................... 52 

4.7. Evaluation ....................................................................................................... 53 

4.7.1. Simulations ................................................................................................. 53 

4.7.2. Measurements ............................................................................................ 55 

4.8. Conclusion ...................................................................................................... 57 

5. Distributed Phase Difference Measurement .......................................................... 58 

5.1. System overview ............................................................................................. 59 



5.1.1. Measurement setup ..................................................................................... 59 

5.1.2. Hardware .................................................................................................... 60 

5.1.3. Measurement software ............................................................................... 60 

5.2. Phase difference estimation ............................................................................ 61 

5.2.1. Phase estimation algorithm ........................................................................ 61 

5.2.2. Distributed calculation ............................................................................... 63 

5.2.3. Measurement synchronization ................................................................... 63 

5.3. Evaluation ....................................................................................................... 65 

5.3.1. Simulation .................................................................................................. 66 

5.3.2. Measurement results ................................................................................... 67 

5.4. Conclusion ...................................................................................................... 68 

6. Long distance VLC-based beaconing for indoor localization ............................... 70 

6.1. System overview ............................................................................................. 71 

6.1.1. Beaconing ................................................................................................... 72 

6.1.2. Bit detection ............................................................................................... 73 

6.1.3. ID detection ................................................................................................ 73 

6.1.4. Beacon detection ........................................................................................ 74 

6.2. Parameter design ............................................................................................. 74 

6.2.1. Code parameter design ............................................................................... 74 

6.2.2. Error rate vs. blinking frequency ............................................................... 76 

6.3. Implementation ............................................................................................... 77 

6.4. Evaluation ....................................................................................................... 77 

6.4.1. Detection accuracy ..................................................................................... 77 

6.4.2. Cluster size vs. distance ............................................................................. 78 

6.4.3. Application ................................................................................................. 79 

6.5. Conclusion ...................................................................................................... 80 

7. Summary ................................................................................................................ 82 

7.1. New results ..................................................................................................... 82 

7.2. Future research ............................................................................................... 83 

7.3. Application and comparative evaluation ........................................................ 83 

8. Summary of Theses ................................................................................................ 88 

9. References .............................................................................................................. 92 

 

 

 



1 

 

1. Introduction 

Object localization and tracking is a crucial element of autonomous systems. While in 

outdoor localization mainly GPS-based services are used, indoor localization systems use 

other competitive solutions, based on e.g. ultrasound, Wi-Fi signals, graphic markers, RFID 

tags, and visible light. Localization systems contain several building blocks; at the lowest 

level physical measurement devices are present, producing physical parameters (e.g. signal 

strength, phase, time-of-flight, image frames, etc.). The next processing level provides higher-

level and more abstract properties (e.g. distance, angle, relative position, etc.). At the highest 

level of the processing chain fusion and localization algorithms accumulates and fuse the data, 

and as a result, present the location of the tracked object.  

This thesis provides contributions at all levels of the signal processing chain: at the 

lower levels (1) a new robust, accurate, and low complexity method will be presented to 

measure the phase-difference of the radio-interferometric signals, and (2) a new beaconing 

method will be proposed for optical-based localization systems. At the fusion level two new 

algorithms will be introduced to provide accurate and robust tracking utilizing radio-

interferometric measurement architectures. 

In Section 2 related work and current solutions are overviewed. 

In Section 3 a novel radio-interferometric tracking application is proposed. Fixed radio 

transceiver nodes are used to generate interferometric signals, allowing the tracking of a 

moving object, equipped with a radio receiver. Low-frequency phase measurements of the 

interferometric signals are processed by the proposed Simultaneous Phase Unwrapping 

algorithm, and then the real-time position estimates are calculated. Simultaneous Phase 

Unwrapping is proposed as a solution of a newly identified phase unwrapping problem set; 

where the separate wrapped 1D phase signals are unwrapped utilizing a higher level 

relationship between them. The actual object location is calculated with a self-correcting 

algorithm based on an error surface, which provides a fault-tolerant and robust tracking 

method. The performance of the tracking system is analyzed by simulations and real 

measurements, indicating that the proposed method tolerates well substantial measurement 

phase noise and even sporadic large measurement errors. 

In Section 4 another novel robust radio-interferometric object tracking method is 

proposed. The system utilizes the same radio-interferometric phase measurement process as 

the tracking solution presented in Section 3. However, from the measured phase values now a 
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confidence map is computed, which is used to generate the track of the moving receivers. The 

proposed method can be operated in two modes: (1) the object path is determined based on 

the initial position and the successive measurements, (2) the object path is determined 

retroactively based on the progression of the confidence map. The proposed method also 

enhances the track estimation by an adaptive evaluation method of the confidence map, and 

provides more robust estimation by allowing temporary bad or missing measurements, which 

are tolerated by a prediction mechanism, extracted from the evolution of the confidence map 

in time. The performance of the proposed system is illustrated by simulations and real 

measurements 

Phase difference measurement of interfering radio signals is an essential part of radio-

interferometric positioning applications. In Section 5 a novel phase measurement system is 

proposed, which is able to accurately measure the phase difference of the received radio 

signals. The proposed solution contains a novel algorithm, which can measure the phase of 

the signals even when the waveforms are distorted, the amplitudes vary or the measurement 

noise is significant. The signal processing and the calculations of the phase difference are 

distributed; preprocessing of the signal is performed on the measurement devices with integer 

arithmetic and only a small amount of data is sent to the base station. The final steps of the 

calculation take place on the base station (usually a PC) utilizing floating point arithmetic. 

Thus the suggested measurement system can be operated on inexpensive devices with very 

limited computing capabilities (e.g. on 8-bit microcontrollers) and the precision of the phase 

estimation still can be high. The performance of the proposed system is illustrated with real 

measurements results. 

In Section 6 the design of an LED-based beaconing infrastructure is introduced, which 

can be utilized in indoor localization systems. The beacons can be identified with regular 

cameras as detectors. The proposed solution detects and extracts the IDs of the beacons from 

a series of frames. The detected IDs and their positions can be used for localization purposes. 

The LED beacons are blinking with high frequency, invisible for human eyes, thus they can 

be part of the existing lighting infrastructure. The proposed coding system utilizes the 

undersampling of the signal: the sampling frequency of the cameras is much lower than the 

blinking frequency, thus the proposed system can be operated using inexpensive devices. The 

performance of the proposed system is analyzed and a possible application is introduced. 

Section 7 summarizes the new results and provides an outlook for possible further 

research and applications. 
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2. Background and previous work 

This section provides a brief overview of the current localization and tracking solutions 

and also introduces the field of phase unwrapping, phase measurement, the fundamental 

radio-interferometric principles and measurement processes, which are necessary foundations 

of the proposed tracking algorithms and applications. 

2.1. Object positioning and tracking principles 

Positioning and tracking applications are utilizing several basic principles. These are 

mostly based on geometry, where the measured properties are angles and distances. Other 

solutions compare measured quintities to a priori information, mainly maps from previously 

collected measurements, or measure the relative movements of the object. In this chapter 

these principles will be briefly summarized. Note that these methods are presented in two 

dimensions, but their extension to 3D is trivial. 

In several applications measured angles (Angle of Arrival, AoA) are available for 

localization (see Figure 1). The object position P can be estimated based on the measured 

angles (which are measured to a global reference direction) and on the known positions of the 

anchor points, as can be seen in Figure 1(a). The required calculations are trivial; the location 

estimate is at the intersection of the measured direction vectors. Object positioning is also 

possible if only the differences of the angles are known (see Figure 1(b)). In this scenario the 

difference between the measured angles are inscribed angles in circles. With multiple circles 

the position can be estimated as the intersection of the circles.  

 

 (a) (b) 

Figure 1. Location estimation utilizing the measured angle (Angle of Arrival, AoA): (a) object position P 

(blue mark) is estimated based on the known positions of the anchor points A1, A2 (red marks) and the 

measured angles    , (b) object position is estimated based on the known positions of the anchor points 

and the measured angle differences     as the inscribed angles of circles C1, C2. 

In several localization applications the range between the anchor points and the tracked 

object can be used. The absolute distance can be measured with a Time of Flight (ToF, or 
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Time of Arrival, ToA) approach, which utilizes the fact that the distance and the required time 

for a signal to travel this distance thought a medium are proportional. If the distances between 

the object and the anchor points with known locations are known then the localization is 

trivial, as can be seen in Figure 2. The object position can be estimated as the intersection of 

the circles with radii equal to the measured distances. If only the Time Difference of Arrival 

(TDoA) can be measured, the position of the object will be on a hyperbola, as can be seen in 

Figure 2(b). With multiple measurements the exact location can be calculated as the 

intersection of the hyperbolas. 

 

 (a) (b) 

Figure 2. Location estimation utilizing the measured range: (a) Time of Flight (ToF) location estimation 

of an object P (blue mark) based on the measured absolute ranges and the known positions of anchor 

points A1, A2 (red marks), (b) Time Difference of Arrival object location estimation based on the 

measured range differences and the known positions of the anchor points.  

The fingerprinting localization method, which is presented in Figure 3, requires a priori 

information for the object location estimation. Before the positioning, a reference map is 

created with several measurements in known positions. When the object is localized, the 

measurement results are compared to the reference map; the object position is estimated as the 

location where the correlation between the measurements and the reference map are the 

highest. Note that this localization solution can be used with several different types of 

measured parameters, e.g. magnetic field strength, received radio signal strength, etc. 

 

Figure 3. Location estimation utilizing a reference map (fingerprinting): object position P is estimated 

based on the measured values and the reference map. The estimated position is the point where the 

correlation between the map and the measurements are the highest. 
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Localization can be done utilizing only the measured movement parameters of the 

object (see Figure 4). In this scenario the parameters of consecutive movements are measured 

(e.g. using rotary encoders) or  are estimated (e.g. using accelerometers, gyroscopes). For an 

exact location the origin of the object path should be known. Note that the localization error 

based on each movement is accumulating, thus for accurate positioning the exact object 

location should periodically be corrected with other methods. 

 

Figure 4. Location estimation utilizing the measured consecutive displacements: for the exact location of 

the object the origin of the path should be known 

2.2. Object positioning applications 

While in outdoor positioning the most dominant method is GPS, for indoor positioning 

several alternative methods have been proposed. In this section the most prevalent methods 

will be reviewed, through a representative application.  

Acoustic (most commonly ultrasound) solutions calculate the pairwise distances based 

on the measured time-difference-of-flight of the emitted pulses, and the known position of the 

beacons. The system proposed in [1] utilizes several devices on known positions with 

microphones to locate the object equipped with a loudspeaker. The proposed solution records 

the time instances on each device when the signal is arrived, which will be proportional to the 

distances. Since the clocks of the receivers are synchronized, the position of the source can be 

calculated based on the known positions of the receivers using the TDoA method. 

Radio waves are commonly used for indoor localization. The most common methods 

are using a signal-strength based approach, and can be categorized into two classes. The 

methods corresponding to the first class utilize the mathematical model of the propagation of 

the radio waves. The sources of the signal are at known positions and the receiver measure the 

received strength (in some cases also the phase) of the signal. Based on the model the range 

between the source and the receiver can be approximated. The localization principle is 

mathematically equivalent to the ToF principle. Note that the drawback of this approach is 

that the environment has heavy influence on the signal strength, resulting in limited ranging 

accuracy, and thus modest localization accuracy. [2] 
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The methods of the second class of the signal strength based solutions utilize a priori 

information. Before the actual localization a statistical reference map is created with several 

measurements in known locations. The localization itself is based on the fingerprinting 

principle. The drawback of this approach is that any environmental change (e.g. moving the 

furniture) may corrupt the reference map. [3] 

Great advantage of radio RSSI methods is that existing infrastructure can be used as 

beacons e.g. WiFi routers [4]. 

Localization is also possible with measuring the time-of-flight of the radio-waves. 

Solutions presented in [5], [6] measure the required time to travel a signal between two radios. 

The accuracy can be increase with the combined measurements of the time and phase. The 

main drawback of the radio-wave ToF method was the special, expensive, high speed 

measurement hardware. In the past few years, however, inexpensive commercial 

measurement devices have become available [7]. 

Economic beacon-free solutions can be provided e.g. for smart phones using image 

processing techniques: room-level localization was proposed using simple graphical markers 

[8]. The environment itself was used as a generalized marker in [9]: a picture taken by the 

camera was compared to pictures stored in a data-base, containing a large set of reference 

images, to detect the current camera location. 

Localization can be performed with measuring or calculating the direction and length of 

the movements. The system presented in [10] is a pedestrian dead reckoning solution, where 

inertial sensors utilized for short range positioning. Note that, due to the accumulation of the 

localization error, these systems utilize other localization methods to periodically correct 

these deviations. In [10] a combined approach was used, where WiFi signal strength 

measurements were utilized to decrease the accumulating error of the dead reckoning. 

Light based approaches utilize LEDs as anchors, which can be installed as a part of the 

lighting infrastructure. The ranging is performed either by light intensity measurements [11] 

or using image processing techniques [12] to estimate the position of a camera. In these 

systems visible light communication (VLC) is utilized to transmit the identifier of beacons. 

A completely new approach utilizes radio interferometry, which provides measurement 

results that can be considered as generalized distances [13], [14]. Although the radio 

interferometric approach provides potentially high accuracy localization, due to its novelty its 
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properties and potential application fields have not yet been investigated thoroughly. The 

main part of this dissertation contributes to this research area. 

2.3. Interferometry in measurement systems 

Measurement systems using optical interferometry are utilized in a wide range of 

applications, from precision manufacturing to medical applications, to measure small 

displacements with high accuracy. Such measurement systems produce interferometric 

signals, where the phase change corresponds to the displacement to be measured. Recently in 

[15] a homodyne measurement system to characterize piezoelectric actuators has been 

proposed, while in [16] a heterodyne interferometric measurement system has been 

introduced for semiconductor manufacturing. For surface contouring laser diode speckle 

interferometer was proposed in [17]. In medicine, chest wall displacement was measured 

using laser interferometry [18]. For speed measurements from larger distances (up to 10m) a 

self-mixing interferometer with frequency domain signal processing was proposed in [19]. 

Interferometry is widely used in radio astronomy, where radio emissions from distant 

celestial objects are observed. The angular resolution of conventional radio antennas is greatly 

increased by synthesis telescopes, where signals from arrays of telescopes are combined [20]. 

Radio-interferometry is also utilized in low-distance telemetry: high precision distance 

measurements up to 50m using frequency-scanning interferometry was proposed in [21], 

while dispersive interferometry was successfully used for measurements of sub-millimeter 

distances [22]. 

In [23] a measurement method was proposed, which can determine the speed profile of 

a radio transmitter, moving along a known linear trajectory. The measurement system utilizes 

one moving (tracked) transmitter, emitting a carrier wave, and two fixed receivers, which 

produce the interference signal used to determine the actual speed of the transmitter. More 

general architectures were proposed for radio-interferometric positioning and tracking, where 

multiple transmitters and receivers were utilized to determine the location of an object (a 

receiver, in these cases) in two or three dimensions. The foundation of these methods was laid 

in [13], which will be detailed in Sections 2.3 and 2.4.  

2.4. Radio-interferometric localization 

Instead of using high frequency signal processing, Radio-Interferometric Positioning 

[13] processes low frequency interference signals, generated by radio-interferometry. In the 

measurement setup, shown in Figure 5, four nodes, referred to as quad, are used. Two nodes 



8 

 

(A and B) are used as transmitters to create an interference, while two receivers (C and D) 

measure the interference signal, as shown in Figure 5. The transmitter frequencies are 

approximately the same           thus the interference signal has a low frequency 

envelope, with beat frequency    |     |. 

 

Figure 5. Radio-interferometric phase measurement 

The envelope of the interference signal is sensed as the RSSI at the receivers C and D, 

which measure the phase difference of the detected RSSI signals, which depends on the 

relative locations (called quad-range)       of the quad elements, as follows [13]: 

        
     

 
         , (1) 

where       is the wavelength of the signal,   is the speed of light, and quad-range       

is defined as follows: 

                      , (2) 

where     is the Euclidean distance between nodes X and Y, as shown in Figure 5.  

The modulo operation in (1) is the main challenge in radio-interferometric localization: 

the exact quad-ranges cannot be computed from one measurement     . In [13] the 

ambiguity problem was solved by using multiple carrier frequencies   and thus multiple      

values, but this solution requires large amount of computations and is sensitive to phase 

errors.  

In the radio-interferometric measurement process there are several error sources which 

can affect the accuracy of the localization. These sources are identified and discussed in 

details in [13]. The error sources are the following: 

Carrier frequency inaccuracy: the two transmitters emit slightly different (  ) carrier 

frequencies, which affect the phase estimation and the       distance calculation. However 

this    frequency deviation is several order smaller than the carrier frequency, thus represents 

a negligible error source in real application scenarios. 
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Carrier frequency drift and phase noise: the interferometric measurement process relies 

on the fact that the carrier frequencies, and thus the interference, is stable. This stability can 

be achieved with short measurement times and by minimizing the chance of abrupt thermal 

changes and mechanical shocks. 

Multipath effects: these effects can cause disruption in the interference signal, which 

results in erroneous or missing phase measurements. Such measurement errors result in 

significant localization error. In the literature so far there has been no solution proposed to 

mitigate this effect. The contributions presented in Sections 3 and 4 provide novel robust and 

fault tolerant estimation methods. 

Antenna orientation: theoretically orientation and antenna shape can be a source of a 

negligible error, but empirically this was not verified. However the antenna radiation pattern 

and the orientation can drastically modify the interference signal amplitude, thus lowering the 

signal-to-noise ratio. 

RSSI measurement delay jitter: this jitter introduces a relative phase offset error, 

however in real measurements the effect is not noticeable. 

RSSI signal-to-noise Ratio: the signal-to-noise ratio of the recorded RSSI values depend 

on the distances of the devices and also on other physical properties, e.g. antenna orientation, 

receiver hardware. 

Signal processing error: this type of error highly depends on the utilized phase 

estimation algorithm. In Section 5 a distributed phase estimation method is proposed, which 

can achieve good accuracy, despite the low computation cost and low resource requirements. 

Time synchronization error: time synchronization is a crucial point for the phase 

difference measurement. It can be achieved with appropriate time stamping of the control 

messages sent to the measurement devices. A potentially more accurate method is presented 

in Section 5.2.3 which utilizes the interferometric signal itself for synchronization. 

In Sections 3 and 4, novel radio-interferometric tracking solutions will be proposed. The 

new methods provide tracking, instead of solving the localization problem, with increased 

speed and robustness. 

2.5. Phase difference measurement 

Phase difference measurements are essential in radio-interferometric localization and 

tracking. In such applications two radio transmitters generate the interference signal (see 
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Figure 5). The interference signal has a low-frequency envelope (the frequency of the beat 

equals to the frequency difference of the two transmitters). The signal envelope is in fact the 

RSSI signal, which can be measured in most radios. Radio-interferometric localization 

algorithms measure the RSSI phase difference between pairs of receivers, and from these 

measurements the location of a tracked receiver can be computed. The fundamental 

measurement is illustrated in Figure 5, where two receivers A and B simultaneously measure 

the interference signal and from the time delay between the signal envelopes the phase 

difference is computed. Notice that in this application not the phase of the high frequency 

carrier wave is measured, but rather the phase of the low frequency envelopes, which allows 

the utilization of low-cost devices. 

The challenges of phase measurement in the target application field are the following: 

a) the measured signal is highly variable (e.g. due to fading, or movements around the 

devices), 

b) measurement devices are wireless, with no wired link anywhere in the system, 

c) the measurement devices must be small and inexpensive, only one central node has high 

computing capability, 

d) the measurement must be as fast as possible, to allow frequent measurements and thus 

good quality tracking, 

e) the transmitted measurements must be of small size, due to the rather limited 

communication bandwidth, 

f) the measurements must be continuously repeated as fast as possible with different pairs 

of receivers. 

Due to the above limitations raw measurements cannot be transmitted, thus the signal 

processing must be performed in place, on the measurement devices. A low complexity 

processing algorithm is required, which can efficiently be executed on the low-end devices. 

Since in real applications the measurements involve several quads, the measurements must be 

scheduled in time, and the schedule must be as tight as possible, in order to provide high 

responsiveness of the system. 
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Figure 6. Definition of phase and a possible measurement method of the phase of a signal. 

Frequency and phase measurement of periodic signals is a widely studied field. The 

classical definition of phase can be seen in Figure 6, which also illustrates a possible 

measurement method. If   and   are measured, where   is the period length and   is the time 

between a time synchronization point       and a signal reference point      (in the example 

of Figure 6 the signal reference point is defined as the time instant when the rising edge of the 

signal crosses zero), then the phase is defined as 

     
 

 
 (3) 

Such simple measurements are often used when the signal-to-noise ratio is high and the 

accuracy requirements are modest, e.g. in [13]. For higher accuracy, other time domain 

methods also exist in large number. The method proposed in [24] uses digital sampling of 

high resolution voltmeters to provide accurate harmonic and phase estimation of two low-

noise, low-frequency signals, with primary application of power line measurement. In [25] 

least-square fitting is analyzed for the amplitude and phase estimation of periodic components 

of a signal. In [26] digital filters are used to suppress higher harmonics to provide accuracy 

below 1mrad. 

A large range of phase measurement techniques use frequency domain. For spectral 

estimation the Fast Fourier Transform (FFT) is widely used (e.g. [27]). Several enhancements 

were proposed to decrease the effect of leakage and thus increase accuracy, e.g. windowing 

[27], synchronous or quasi-synchronous sampling [28], iterative methods [29], just to name a 

few. An alternative method, which reduces phase error, and the computational complexity is 

similar to that of the FFT, was proposed in [30]. Resonator-based digital filter banks [31] and 

PLL-like adaptive filter banks [32] were also proposed for real-time and high accuracy 

measurements of periodic signals. 

The above mentioned solutions focus on the accuracy of the phase and frequency 

measurement in contrast to the computation cost on the device. The target application requires 
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low complexity algorithms and fast measurement on the devices, meanwhile enables post-

processing on the host computer (distributed computation). Phase measurement methods in 

the frequency domain require transformation from the time domain, which is a 

computationally intensive task, while filter banks require several periods to settle to the 

correct phase and frequency, causing longer signal sampling periods. Time domain, statistical 

solutions (e.g. correlation, least-square fitting) also require excessive computation. Note, that 

most of the simple solutions (e.g. the zero-crossing detection demonstrated on Figure 6) are 

also not capable of producing appropriate phase estimation, which can be used for phase 

difference measurement: on different devices the measured signals can be distorted in 

different ways, which causes different, non-comparable reference points (see e.g. Figure 58 

for a real measurement). 

In Section 5 a novel measurement setup will be proposed, which can accurately estimate 

the phase difference between signal envelops, measured on two devices, even in the presence 

of noise. The proposed distributed computation method can be executed on simple devices 

with low computational complexity and without floating point operations, and requires very 

low communication bandwidth. The system also includes support for fast measurement 

scheduling. 

2.6. Phase unwrapping techniques 

Typical application area of one dimensional phase unwrapping is when the full phase of 

a signal spectrum is required. Such requirement arises in a wide range of signal processing 

problems, from speech processing and synthesis to EEG processing.   

Let          be a continuously real-differentiable complex valued function, the 

phase of which is denoted by         . The phase can be calculated as 

           (           )     , (4) 

where       is the extended arctan function,   is an arbitrary integer, and       and       

are the real and imaginary parts of  , respectively. Due to the phase ambiguity in (4), the 

phase value is often represented by its wrapped or principal value  , which is restricted to a 

predefined 2 -long range, e.g.       , thus              , or              . The 

calculation of the true phase value   from the principal value   is called unwrapping, defined 

by the unwrapping integral. For this purpose let us define unwrappable intervals. The interval 

             is called unwrappable if                . Then the unwrapping integral 

is defined as 
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       ∑ ∫           
  

   
   , (5) 

where    is the gradient of   and         by definition. Notice that the unwrapping 

process is performed piecewise through the unwrappable intervals    to produce the full 

integration interval   ∑   
   
   .  

In practical cases      is known at discrete grid            ; and the true phase 

values are searched for in the same grid. Let us denote the discrete phase samples by    

 (    ) and     (    )  Assuming that Shannon’s sampling theorem is fulfilled for the 

sampling grid, i.e.            |       |   , discontinuities in the principal phase 

record mean transitions between unwrappable intervals. Thus a straightforward unwrapping 

method can be performed by Detecting and Correcting Discontinuities (DCD) in the principal 

phase record, as follows [33]: 

First the gradient of    is calculated: 

 

      
                      , (6) 

then the correction terms    are determined: 

 

                  

                                    (7) 

where   is an integer value. The unwrapped phase is then calculated for       , as follows: 

       ∑   
 
   . (8) 

The applicability of DCD method is universal where sampled principal phase values are 

available. However, the DCD method assumes that the samples are “dense” enough, .i.e. the 

sampling theorem is fulfilled. This is not always the case, which is addressed by the Adaptive 

Numerical Integration (ANI) method [34].  

The ANI method calculates the unwrapped phase values similarly to DCD, but ensures 

that the principal value samples are dense enough, using a discrete approximation (trapezoidal 

integration formula) of the unwrapping integral of (5) for checking. If the calculated integral 

is inconsistent with the measured phase values (i.e. the phase gradient changes too much 

between two points of the grid), the adaptive mechanism doubles the density of the grid, and 

thus halves the integration step-size. The adaptation mechanism of ANI increases the 

sampling frequency until the principal phase values are provided with sufficient density. In 
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the typical application (cepstrum calculation) of ANI the change of sampling frequency is 

possible, since the data points are generated by FFT, the width of which can be adaptively 

changed. However, in several applications (including radio-interferometric tracking) the 

principal phase values are generated by a measurement process with predefined sampling 

frequency, where there is no way to generate more measurement points on demand.  

Other approaches were proposed in both the time and frequency domain. For 

applications where the data can be efficiently modelled as an output of an autoregressive 

moving average (ARMA) process, the Polynomial Factoring method can be applied. This 

method first identifies the process, i.e. calculates the roots of the model polynomials. Once the 

model is known, the exact spectrum (including the phase) can be computed on the unit circle 

[35]. The correcting factor   can directly be determined from the time domain data as well. 

Using Sturm’s Theorem, the integer value   in (7) can be calculated. The method, proposed in 

[36], uses Sturm polynomials to calculate   at any frequency.  

Imaging applications, such as Synthetic Aperture Radar [20], Magnetic Resonance 

Imaging [37], or profilometry [38], utilize two or three-dimensional (from now on n-D) phase 

maps, where the unwrapping problem is analogous to the 1-dimensional case: the input phase 

map contains the principal phase values on an n-D grid and the goal is to provide the 

unwrapped phase values. The function      can now be defined as          . Instead of 

unwrappable intervals,    now represent unwrappable paths in the domain of  . Formally, the 

unwrapping process is performed again by the unwrapping integral (5): from a reference point 

  , using (5), the full phase of any other point     can be calculated. A major difference 

between the 1-D and n-D case is that now there are multiple choices to reach    from    

(since several possible paths   exist between points    and   ). If there are no phase 

singularities [37] present (caused either by noise or natural discontinuities in the data, e.g. an 

outline of a hill in front of the background in an SAR image), the evaluation of (5) along any 

of the possible paths   provides the same result for      . However, in the presence of phase 

singularities, different paths may provide different results. The core problem of n-D phase 

unwrapping is the correct choice of the integration path so that the result be meaningful.  

In n-D domain several approaches are used to identify and avoid phase singularities 

during phase integration, including least-squares methods [39], brunch-cut algorithms [40], 

pattern analysis [41], or optimization methods based on flow cost minimization [42]. 
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In radio-interferometric tracking, phase measurements are given above a two-

dimensional plane, but these measurement values are known only along the object trajectory 

(as opposed to full 2-D representations, as in SAR), thus the problem is inherently one 

dimensional. Since multiple measurements are performed at the same time (each 

measurement corresponding to a quad), 1-D unwrapping must be performed for each 

measurement sequence. Notice, that phase measurements of the different quads are not 

independent, since they belong to the same object trajectory, thus this piece of information 

may be utilized to increase the accuracy. The simultaneous phase unwrapping problem (which 

will be addressed in Section 3.2) is a new class of the unwrapping problems, which, to the 

best of my knowledge, has not been discussed in the literature yet. 
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3. Radio-interferometric tracking based on phase-unwraping 

General localization techniques are able to provide position information of the localized 

object in every time instant. When a priori information is available on earlier positions of the 

object, tracking solutions can be used. This chapter will discuss solutions related to tracking, 

e.g. the initial position of the object is assumed to be known and the movement of the object 

is tracked in time by successive measurements.  

The system uses fixed reference nodes (transmitters and receivers) and arbitrary number 

of tracked receiver nodes. For sake of simplicity I will discuss only the case of one tracked 

node, but the proposed solution can trivially be extended to any number of tracked devices. 

3.1. Basic hyperboloid-based tracking 

In this section I will discuss the Basic Hyperboloid-based Tracking (BHT) algorithm in 

one dimension, then I will extend the method to higher dimensions to provide a location 

estimation, and finally I will introduce a location estimator using redundant measurements, 

which provides better accuracy and robustness against phase measurement errors and 

distortions. 

3.1.1. Tracking in one dimension 

For tracking in one dimension, two fixed transmitter nodes (A and B) and one fixed 

receiver node C is used, while the tracked receiver is denoted by D (see Figure 5). The 

transmitters utilize a single carrier frequency (as opposed to multiple frequencies in [13]) and 

the receivers continuously monitor the phase difference    The quad-range       is 

calculated. According to (2), the solutions for the position of moving node D are located on a 

set of hyperboloids (hyperbolas in 2D, as illustrated in Figure 7). When a   value is measured, 

the associated quad-range       determines the possible positions of D. In Figure 7(a) for 

illustration purposes hyperbolas corresponding to     phase values are shown. Note that from 

one measurement there is no way to determine on which of the possible hyperboloids D is 

located (i.e.   is unknown), and even if the particular hyperboloid was knew, it is impossible 

to tell where on the hyperboloid D is exactly located.  
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Figure 7. Basic radio-interferometric tracking with fixed transmitters A, B, A’, B’, fixed receiver C=C’, 

positioned at the center (not shown for clarity), and moving node D. (a) The generated phase pattern by 

transmitters A and B: hiperbolas corresponding to       phase values are shown. The trajectory of 

the moving object is shown by thick line, the origin is assumed to be known, (b) the measured phase 

difference values between nodes C and D, (c) phase correction values, (d) unwrapped phase values, (e)-

(h) independent measurement with transmitters A’ and B’, (i) tracking using the phase esimates of the 

two measurements. The trajectory estimate is shown by the dotted line. 

Assuming that the original location of D is known and the motion of the object is 

relatively slow, i.e. the successive phase measurements have a difference smaller than   then 

the actual hyperboloid can be selected, based on the expected continuity assumption, using the 

estimated hyperboloid at the previous time instant, as follows. If the known phase in time 

instant   is    and the measurement in time instant     results the ambiguous phase values 

                , then the closest possible value to    is selected:  
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          |           |  (9) 

Note that the underlying problem here is in fact the well-known phase-unwrapping 

problem (see Section 2.6). In Figure 7(b) the phase measurements are shown in the range of 

      , while Figure 7(c) shows the phase correction values, according to (9), resulting the 

unwrapped phase measurement in Figure 7(d).  

Knowing the exact phase value, the actual hyperboloid surface can be identified, using 

(1) and (2). Thus with a series of measurements the hyperboloid surfaces, on which the 

moving node D is located, can be tracked. However, the exact location of D on the 

hyperboloid is not known yet: for this purpose multiple independent quad-ranges will be used. 

3.1.2. Tracking in higher dimensions 

If in addition to node triplet A,B,C another node triplet A’,B’,C’ is used then two quad-

ranges      and          can be measured, as shown in Figure 7(a) and Figure 7(e). Note that 

node triples A, B, C and A’, B’, C’ may be composed of physically different nodes or 

alternatively may contain the same nodes but in different roles: e.g. a possible solution is 

A’=A, B’=C, C’=B. 

Using two quad-ranges, two independent one-dimensional tracking can be 

simultaneously performed, as described in the previous section. In each time instant each 

tracking identifies a hyperboloid surface on which node D is located. In Figure 7 the left and 

right columns represent the two independent trackings. Naturally node D is located in the 

intersection of the two hyperboloids, thus if the node is moving on a plane (in 2D), the node’s 

location can be calculated as the intersection of the two hyperbola, as illustrated in Figure 7(i).  

For 3D localization three independent quad-ranges are necessary, for which at least four 

fixed devices must be used, out of which three independent triplets can be chosen.  

The tracking infrastructure required for the tracking will be discussed in Section 3.1.3, 

while the utilized phase difference measurement solution will be discussed in details in 

Section 5. 

3.1.3. Tracking infrastructure 

For measuring several independent quad-ranges an appropriate tracking infrastructure is 

required. The infrastructure contains transceivers at known positions, which can either play 

the role of transmitters to generate interference signals at the receivers, or receivers to allow 

phase difference measurements, as described in Section 2.4. The tracked node is always a 
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receiver. Infrastructure nodes alter their roles, thus different interference signals can be 

generated. The measurements are scheduled using TDMA: different time slices are allocated 

for each quad-range. 

A simple measurement uses three infrastructure nodes (two transmitters and one 

receiver) and the tracked receiver node, in a measurement configuration. The four nodes in 

the configuration can measure a phase difference value  , which depends on the positions of 

both the infrastructure nodes and the tracked node. Such simple measurements are carried out 

with different configurations, to provide a measurement round, containing   simple 

measurements. The measurement results of a complete round will be used as inputs in each 

step of the tracking algorithm.  

Figure 8 illustrates a scenario with four fixed nodes A, B, C, D, and one tracked node X. 

In this case         possible configurations exist, as shown in the table of Figure 8. 

 

Figure 8. An example tracking infrastructure with for fixed nodes (A, B, C, D) and one tracked node (X). 

The possible configurations are listed in the table. 

3.1.4. Utilizing redundant phase measurements 

The object tracking method, introduced in Section 3.1.2, calculates the object location 

as the intersection of two hyperbolas. This solution, however, is very sensitive to phase 

unwrapping errors, as illustrated in Figure 9. The robustness of the method can be increased 

by utilizing redundancy, namely with more quad-range measurements: the over-determined 

system is more resistant to bad or missing measurement values. 
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Figure 9. Estimating an object position (p) with two hyperbolas h1 and h2, generated by the transmitter 

pairs of B, C and A, B, respectively. Hyperbola h1’ is the result of an incorrect phase estimation 

resulting incorrect position estimate p’. 

In my proposed solution multiple hyperbolas are used. For the position estimation with 

multiple hyperbolas the following error function   is specified for a given point      : 

         ∑   
       

    (10) 

where         is the distance between point       and hyperbola  . 

The distance         is the minimum Euclidean distance between the given point       

and the hyperbola   , formally defined as 

               
    

 (√      
   (     

)
 
), where    

    
 are the points of the 

corresponding hyperbola. 

The optimal estimated position   ̂  ̂  is located where the error function   has its minimum 

(Figure 10): 

   ̂  ̂                  (11) 

Note that in the proposed BHT method neither the redundant phase measurements nor 

the utilized error function can detect or correct the     unwraping phase errors introduced by 

erroneous or missing measurements. Thus this solution may produce large bias in the 

presence of bad quality measurements. In the next section a novel phase unwrapping 

technique will be proposed, which is robust against unwrapping errors. 

 



21 

 

 

Figure 10. Using multiple hyperbolas the localization is performed by a minimum search on an error 

surface. 

3.2. Simultaneous Phase Unwrapping 

The goal of the proposed Simultaneous Phase Unwrapping (SPU) is to enhance the 

robustness and accuracy of the unwrapping process, applied to the measured (wrapped) phase 

signals. Other methods, which have extra information on the phase signal, successfully apply 

signal models and thus make the estimator more robust, e.g. in [35], [43]. In our application 

such knowledge on the individual phase measurements is not available, but another type of 

constraints can be applied here as well: the phase signals measured in parallel reflect the same 

(but unknown) location of the tracked object. 

The Simultaneous Phase Unwrapping problem in 1-D can be formalized as follows. 

Discrete time series of wrapped phase values are determined from   separate measurement 

channels, where      denotes the principal phase measurement from measurement channel 

           , at time instant  . The set of past measurements                 , for 

         , are given, and a cost function                     is applied, which 

measures the consistency of the full phase values. The full phase values      are determined 

by minimizing     , such that               , where correction parameters      are 

integer multiples of   . The cost function      is application specific and may also be 

influenced by the utilized optimization method. For radio-interferometric tracking a special 

cost function will be defined in Section 3.3. 

The block diagram of the system is shown in Figure 11. The individual one-dimensional 

wrapped phase sequences      are fed to DCD unwrapping blocks, where the unwrapping 

procedure in each channel is performed according to (6)-(8). Note that the value of      

depends on measurements                  and state variables                 . After 

the initial unwrapping by the DCD blocks, at each time instant  , based on the actual cost 

function, the optimizer block readjusts the last correction parameters as           , where 
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   is an integer. The optimizer tunes parameters     ,           , until it finds the 

smallest cost function: 

                                  (    (    )     (    )       (    )). (12) 

For radio-interferometric tracking a fast and approximate solution of (12) will be 

proposed in the next section. 

 

Figure 11. Block diagram of the phase unwrapping system 

3.3. Fault-tolerant hyperboloid-based tracking 

The BHT algorithm in Section 3.1 utilizes full phase values, thus the quality of the 

position estimator greatly affected by potential unwrapping errors. According to the sampling 

theorem, if the phase difference between consecutive phase samples        and      is 

smaller than   then the unwrapping can be performed unambiguously (see Section 3.1.1). 

However, in practical applications several error sources may be present, which can cause the 

violation of the sampling theorem: 

Phase measurement errors: The distribution of the measured phase difference error was 

measured, with normal human movement in an indoor measurement area (for detailed 

description of the measurement see Section 5.3.2). The distribution of the phase error can be 

approximated with a zero mean Gaussian distribution with standard deviation of       . 

Since this value represent nominal circumstances only, it is not very unlikely that additional 

disturbances may cause larger errors and thus violate the sampling theorem. Interference 

resulting from devices emitting radio waves around the measurement frequency   may also 

cause phase measurement errors. 

Fast object movement: Moving targets cause phase changes during their movements. If 

the speed of the tracked object is      and the phase sampling frequency is    then the object 

covers distance         between two samples, which cannot be more than    , corresponding 

to phase shift of   in worst case. This implies the constraint on the speed of the object: 

      
   

 
  (13) 
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If constraint (13) is violated, the sampling theorem may also be violated. Notice that 

this source of error affects all of the measurement channels and thus cannot be eliminated by 

the proposed method. 

Missing samples: The communication mechanism of the proposed measurement system 

allows packet losses. If measurement results are missing, the sampling theorem may be 

violated on some channels. In practical situations this is the main error source. 

The above effects, or their combination, can cause phase unwrapping errors, which may 

result in permanent error of     (  is integer) in the corresponding full phase value, causing a 

permanent localization bias. To handle the occasional phase unwrapping errors, a novel Fault-

tolerant Hyperboloid-based tracking algorithm (FHT) is proposed, utilizing SPU. The 

proposed algorithm detects and corrects phase unwrapping errors, assuming that the number 

of error free phase measurements is significantly larger than the ones containing unwrapping 

errors.  

Notice that when an erroneous phase estimate      is present then the    distance of 

the corresponding hyperbola    from the estimated location becomes large. Analogously, 

large           value indicates that the corresponding      has potentially large (possibly 

unwrapping) error. The proposed algorithm uses this idea to detect and correct phase 

unwrapping errors. 

The SPU scheme, proposed in Section 3.2, is utilized in the improved radio-

interferometric tracking (FHT). The application-specific cost function     , which quantifies 

the relationships between different channels of phase measurements, in the radio-

interferometric tracking application is defined as 

                       ̂  ̂ ,  (14) 

where the error map   is the following: 

          ∑             
   , (15) 

where    is the Huber loss function with parameter   as follows: 

  
               | |   

       | |                
 (16) 

Notice that in   the Huber function is used, which is less sensitive to outliers than the 

square error (which is used e.g. used in (10)), due to its linear nature for higher input values. 

Parameter   should be chosen to reflect the expected range of    for correct measurements. 
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In the proposed system         was used. The flowchart of the tracking algorithm can be 

seen in Figure 12. At time instant  , using   quads, a set of new phase difference 

measurements                  are collected in the range of       . Then the phase 

values are unwrapped, using DCD equations (6)-(8), resulting full phase values      in the 

range of       . In the next step the error surface is generated using (15), and the initial 

position estimate   ̂  ̂  is calculated using (14). If there are potentially incorrectly unwrapped 

phase values then in the following steps the algorithm tries to detect the misplaced hyperbolas 

and correct the corresponding phase values. At first (Step Select Worst Hyperbola) the     

hyperbola    is selected, such that  

              ̂  ̂   (17) 

where    is the distance between hyperbola    and the estimated position   ̂  ̂   Then in Step 

Correction two new trial correction terms         and         are generated. With 

these correction terms the full phase values and the associated error surfaces are recalculated 

using (15). The next step (Select Best and Update) evaluates the initial and the corrected error 

surfaces and selects the one with the lowest minimum value. The correction term      and the 

corresponding unwrapped phase value      is permanently updated with the one producing the 

best result. The position estimate   ̂  ̂  is calculated using (15) and (14). The correction phase 

is repeated      times, i.e. at most      erroneous phase measurements are corrected at a 

time instant. In rare cases, when the number of simultaneous erroneous phase values is higher 

than     , the corrections are made in subsequent time instances.  

 

Figure 12. Flowchart of the Fault-tolerant Hyperboloid-based Tracking (FHT) algorithm 
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The pseudo code representation of the tracking algorithm can be seen in Figure 13 for a 

single time instant  . The unwrapped phase values are denoted by p1..pm. The 

calculate_error function implements the application specific cost function defined in (14) and 

returns the minimum cost value and position. The calculate_distances function computes the 

   distance between hyperbolas    and the estimated position (x, y). 

 

Figure 13. Pseudo code of the Fault-tolerant Hyperboloid-based Tracking (FHT) algorithm 

3.4. Evaluation 

In this section the proposed concept of the basic and fault-tolerant hyperboloid-based 

tracking (BHT and FHT) will be evaluated using simulations and real measurements. First a 

theoretical error analysis method will be shown then the simulation results will be introduced 

and finally real measurements will be presented. The effects of the various node placement 

will be also examined. 

3.4.1. Error analysis 

The location estimate is given as the intersection of two hyperbolas. When measurement 

noise and inaccuracies are present, the hyperbolas become inaccurate (i.e. the hyperbolas are 

moved from the ideal position, see e.g. Figure 9). The intersection of two inaccurate 

hyperbolas results an inaccurate location estimate. In order to characterize the localization 

error, let us use the following linearized model (see Figure 14): 

1.  P0 = {p1 .. pm}  // set of 𝜙𝑚 𝑘 

2.  Hchecked = {}    // set of already checked hyperbolas 

 

3.  [cost, x, y] = calculate_error(P0) // see (14) and (15) 

4.  [d1..dm] = calculate_distances(P0, x, y) // see (17) 

5.  WHILE |Hchecked| < MMAX DO 

 

6.    j = argmaxi( d1..dm ), where j  Hchecked // Select Worst 

7.    P+ = (P0 \ pj)  pj + 2π 

8.    P- = (P0 \ pj)  pj - 2π 
 

9.    CHOSE Pnew  {P0, P+, P-} FOR WICH cost IS MINIMAL, WHERE 
10.     [ncost, nx, ny] = calculate_error(Pnew) // see (14) and (15) 

11.     [nd1..ndm] = calculate_distances(Pnew, x, y) // see (17) 

 

12.     cost = ncost 

13.     x = nx 

14.     y = ny 

13.     d1 = nd1, d2 = nd2, … , dm = ndm 

14.     P0 = Pnew 

15.     Hchecked = Hchecked  j 
16.   END 

16. END 
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Figure 14. Localization error with linearized hyperbolas 

Near the intersection of the hyperbolas, let us use a linear approximation of the 

hyperbolas as shown in Figure 14. The ideal hyperbolas are represented by thin solid lines, 

the measured inaccurate hyperbolas are shown by dashed lines. In the model we assume the 

ideal and measured hyperbolas are parallel. Let us denote the angle between the two 

linearized ideal hyperbolas by  , where      . 

Let us approximate the maximal distance between the ideal and the measured 

hyperbolas by     and    , as shown in Figure 14.     ,       depends on the 

measurement phase noise   , and the distance    between the fringe patterns (hyperbolas 

corresponding to       phase values) near the intersection point. The fringe pattern is 

shown by thick lines in Figure 14.     can be approximated as             . 

If the maximal distance     between the ideal and the measured hyperbolas is known, 

then the location estimate can be anywhere inside the shaded area of Figure 14. Thus the 

maximum location error equals to half of the longer diagonal   of the shaded parallelogram. 

Using elementary geometric calculations the maximum location error   can be 

estimated as 

   √  
    

             , (18) 

where              . 

Examining Figure 14 and (18), it is clear that the localization error is small if     and 

    are small and   is close to    . The localization error increases if     or     increase, 

or   decreases to 0. 
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The quality of the localization greatly depends on the transmitter nodes deployment. For 

a simple example see Figure 15, where two pairs of transmitters, shown by red and blue, are 

deployed. As Figure 15 shows, the fringe patterns are closest to each other near the axis 

between transmitter pairs (the axes are shown by thick lines in Figure 15). As the distance 

from the axes increases the distance between the fringe lines also increases, causing increase 

in variables    and    . Thus, according to (18), the most accurate results are expected 

between the transmitter nodes, and as the distance from the axis increases, the potential 

accuracy decreases.  

In the example setup of Figure 15 fringe lines are close to orthogonal in the area 

encircled by the transmitters, here higher accuracy is expected, according to (18). Outside this 

region the angle between red and blue fringe lines decreases, at certain points red and blue 

lines become almost parallel, here low localization accuracy can be expected.  

Since the relationship between accuracy and node placement is fairly complex in 

general, the design of the node placement can be supported by numerical simulation, based on 

the principles discussed above, see Section 3.4.3. 

 

Figure 15. Fringe pattern of a simple measurement setup with two pairs of transmitters. Thick lines 

represent the axes between the transmitter node pairs. Thin lines represent the fringe pattern, i.e. 

hyperbolas corresponding to       phase values.  

3.4.2. Simulation results 

The performance of the FHT algorithm was tested using simulations. In the simulations, 

corresponding to the real measurements,         was used, and the sampling frequency of 

phase measurements was          . The speed of the simulated object in both tests was 

approximately 3km/h. The test setups are shown in Figure 16(a) and Figure 16(b), where 

positions of nodes A, B, C, D, E, and F are illustrated. The bear-head and circle trajectories, 

used in the tests, are also shown. 
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 (a)  (b) 

Figure 16. Placement of the nodes and object trajectories in the simulations 

In the simulations five configurations were used to produce virtual phase measurements 

with number of quads    2, 4, 6, 10, and 15. Figure 17 shows the configurations: nodes of 

the graphs represent the sensor nodes A-F, and edges represent pairs of nodes which served as 

fixed transmitters in a quad. The fixed receiver was a node which had the largest distance 

from both transmitters (not shown in the figure), and the fourth node in each quad was the 

tracked receiver itself (also not shown in the figure).  

 

Figure 17. Node configurations used to select 2, 4, 6, 10, and 15 quads: connected nodes represent the 

transmitter pairs. 

In the first test the noise sensitivity of the proposed algorithm was tested, with object 

trajectory shown in Figure 16(a). In each point of the trajectory the ideal phase measurements 

were calculated using (1) and (2), then random noise was added to the ideal values. In the 

tests Gaussian noise was used, with standard deviation of       ,     , and     , 

representing nominal, high, and very high noise levels, respectively (see e.g. Section 5.3.2 for 

real noise measurement data). The object location was estimated from the noisy phase values, 

using the proposed FHT method with       . The results in Figure 18 show that for 

nominal amount of noise the algorithm performs well, even for small number of quads. As the 

noise level is increased, for low   there is significant position error, due to phase unwrapping 

errors. As the redundancy (i.e. the number    of quads) is increased, the quality of the 

estimator gets better, as the numerical results (mean and standard deviation of the position 

error) in Table 1 also show. The highlighted cells in the table show those configurations 

where there was no permanent unwrapping error. 
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Figure 18. Simulation results for various phase noise levels   and various numbers of quads   

Table 1. The mean and the standard deviation of tracking errors with the simulated phase measurements. The 

number of quads and the variance of the simulated phase noise were   and  , respectively. 

 mean/std (mm) 

  
 

             

0.1π 13/14 11/13 10/11 8/9 9/10 

0.2π 357/390 238/300 293/337 36/40 23/27 

0.3π 1262/1381 1165/1261 866/925 1058/1167 31/36 

 

The second simulation test compares the performances of the proposed BHT and the 

self-correcting FHT algorithms. The moving object made 10 rounds along a circular path 

shown in Figure 16(b). The standard deviation of the additive phase noise was set to 0.1π, 

corresponding to nominal phase noise conditions. In addition to the Gaussian measurement 

noise, large measurement errors were also injected at random positions of the trajectory: in 

each round four phase measurements were replaced by a random number in the range of 

       with uniform distribution, simulating faulty measurements. The results of the tracking 

are shown in Figure 19. The large measurement errors caused permanent phase unwrapping 

error in the BHT algorithm, independently of the number of utilized quads. The self-

correcting FHT method (with parameter       ) was able to tolerate the errors as the 

number of quads increased: for     there is large position error, due to the permanent 

unwrapping error, but for     only a small section can be observed where the estimated 

trajectory deviates from the true trajectory, otherwise the algorithm corrected the false 

measurement. For      and      there was no observable permanent unwrapping 

error. The numerical results can be seen in Table 2, the highlighted cells containing cases with 

no unwrapping error.  
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Figure 19. Simulation results of the BHT algorithm and the proposed self-correcting FHT method, with 

various numbers of quads  , in the presence of both phase noise and sporadic large measurements 

errors. 

Table 2. The mean and the standard deviation of tracking errors with the simulated phase measurements. The 

number of quads used in the measurement was  . The applied phase unwrapping mechanism was the standard 

DCD in BHT, while the FHT utilized the proposed SPU method. 

 mean/std (mm) 

M 2  4  6  10  15  

BHT  330/373 248/265 193/223 230/277 233/268 

FHT NA 249/296 60/81 38/42 19/21 

 

Another test was performed to check the self-correction mechanism of the proposed 

FHT algorithm. In the test multiple simultaneous large errors were injected in the input phase 

series. The input trajectory was one quarter of a circle from the previous test (i.e. the 

movement was simulated from the 6 o’clock position to the 3 o’clock position), the 

measurements were generated using the noisy ideal values, using           At the half of 

the trajectory,   out of    unwrapped phase values      were altered by    , modelling 

unwrapping errors. For each       pair 100 independent inputs with different noise 

realizations were generated and the proposed FHT algorithm was run on each of them. To 

evaluate the efficiency of the self-correcting mechanism, each of the   channels was 

individually monitored and the unwrapped phase values were compared to the known true 

values at the end of the trajectory. A run was successful where all of the channels were 

correctly restored. In the tests the value of   was 4, 6, 10, and 15 (see Figure 17 for the 

associated configurations). The number of simultaneous injected errors   was changed 

between 1 and           . The parameter      was changed between 1 and  . The bars in 

Figure 20 show only the percentage of successful runs for       . Other cases will be 

discussed later. 
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Figure 20. Percentage of successful error corrections for   simultaneous injected errors and   

measurement channels. Bars show cases for         (first four lines in the table), while diamonds 

illustrate a case for        (last line in table). 

As Figure 20 shows, the robustness of the algorithm greatly increases as the number of 

utilized quads increases. For    , 97% of the single-error cases were successfully handled, 

but for higher number of errors the success rate is low. For     all the single-error cases 

were corrected and a significant portion (88%) of the double errors were also corrected.  

When     , two simultaneous errors can always be compensated for and even three and 

four simultaneous errors can be handled relatively well. The case      was very robust: it 

was able to handle as much as 8 simultaneous errors.  

In the experiments the effect of      was also examined by changing      between 1 

and   (the bars in Figure 20 show the results for       ). The behavior of the algorithm 

was very similar for       , thus the results are not presented here in detail, only one case 

is illustrated in Figure 20: the data denoted by       was generated with       . The 

performance of the algorithm is very similar to the case of        (see data denoted by 

    ). This similarity was observed in all experiments, the algorithm is not sensitive to the 

value of      : if simultaneous errors can be corrected in one time instant (performing 

       corrections  in one time instant) then the algorithm is also able to correct the same 

errors in multiple subsequent time instants, with one correction only at each time instant 

(      ), providing almost the same performance. The result is intuitive for cases where 

the input data is changing slowly (low object speed), and with sparse errors where the 

correction phases do not overlap. Thus to decrease the computational complexity,        

is a reasonable choice, according to the experiments. 
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3.4.3. Node placement analysis 

In this section an important design problem, the placement of the infrastructure nodes in 

radio-interferometric localization systems, is discussed. For analysis purposes a metric called 

maximum localization error              will be used. The localization is performed in the 

observed area  , thus the error is calculated here and the error value is irrelevant outside of 

this area. The measurement uncertainties are modelled with maximum phase measurement 

error      . Node configuration   contains the placement of the infrastructure nodes and 

also the utilized quad configurations.  

The mean localization error       and maximum localization error      are computed 

along a grid      , where        , as follows: 

 
                            (                  )

                                              
 (19) 

where                   ̅ ‖ ̂      ̅     ̂      ̅   ‖   is the maximum 

localization error at location      ,     is the ideal phase measurement vector with   

elements for configuration  , calculated at       using (1) and (2), and  ̅ is the injected 

phase error vector, where for each element  ̅            of  ̅ it is true that       

 ̅       .  

An approximate fast calculation of       is illustrated in Figure 21(a). For each grid point 

      and for each channel    the ideal solution (a hyperbola) is calculated, along with two 

other solutions, where distorted phase measurement              was used in (1) and (2); in 

Figure 21 two channels are shown. For each channel the distorted solutions provide two 

hyperbolas, with some distance from the ideal one: any possible solution, with maximum 

phase error        lies in the band between the two hyperbolas. The intersection of the bands 

(also calculated on a finite grid) provide the set of possible solutions (the uncertainty region) 

for max phase measurement error      , shown by striped region in Figure 21 . The largest 

distance in this set from point       provides the maximum localization error               

Using this method, for any configuration  , observation area  , and phase error       , the 

error map       can be computed (examples are shown in Figure 23), and the maximum of 

the error map provides the maximum localization error. Notice that       is an alternative 

way to quantify the geometric dilution of precision (GDOP) [44]. As Figure 21(a) illustrates, 

      is primarily affected by (1) the width of the individual error bands, wider bands 

causing larger error, and (2) the angle of the hyperbolas, the best case being perpendicular 
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hyperbolas. The error sources and their effect will be illustrated by numerical analysis 

examples. 

 

Figure 21. Localization error map      . (a) calculation of      . (x,y): true position, solid lines: 

hyperbolas corresponding to the true position, dashed lines: hyperbolas corresponding to noisy 

measurement with phase error      , striped area: uncertainty region. 

The numerical analysis was performed using the configurations shown in Figure 22. 

The nodes were placed in the corners of a the node area, which is a rectangle of size    x   , 

as shown in Figure 22(a). The observed area, where the localization is to be performed, was a 

square of size  x , with    m. The observed area was always placed in the center of the 

node area, as shown in Figure 22(a). In the analysis four typical configurations were used, as 

shown in Figure 22(b), where four infrastructure nodes are denoted by red dots and the 

transmitter pairs of the utilized quads are denoted by edges between corresponding nodes. In 

configurations cL and cX, shown in Figure 22(b), two quads were used (   ). In 

configuration cO, four quads were used (   ) in a circular pattern, while configuration cF 

(full) used all the possible quads (    .  

      

 (a) (b) 

Figure 22. Configurations used for infrastructure node placement analysis. (a) distance notation, (b) 

configurations cL, cX, cO, and cF (full). Nodes are denoted by red vertices, transmitter pairs used in the 

configurations are denoted by edges. 

During the analysis first the error map       was calculated. Notice that for illustration 

purposes,       was calculated for a somewhat larger area than the observed area. In 

Figure 23 representative examples can be seen for all test configurations: the error map is 
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color coded, transmitter node positions are shown by light red dots, and the observed areas are 

shown by white rectangles. 

 
 (a) (b) (c) (d) 

Figure 23. Localization error maps (     ) of configurations L, X, O, and F, respectively. Nodes placed 

in the corners of a         rectangle. 

The analysis was carried out in two main setups, for distance notation refer to 

Figure 22(a). In Setup 1 (“square”)      , with 14 test cases from 1m x 1m to 20m x 20m. 

In Setup 2 (“stripe”)       and    changed from 4m to 60m, producing 8 test cases. The 

maximum phase error in the test was set to           . Those cases where the 

infrastructure nodes are inside and outside of the observed area will be called near-field and 

far-field cases, respectively. In Figure 23 near-field examples are shown for each 

configurations. In cL and cX the localization error is large near the transmitter positions, 

while in cO and cF this effect is much lower. In all cases the center of the observed area has 

good coverage and small error. 

The calculated       and      localization error values are shown in Figure 24 for 

each test case, with cL, cO, cX, and cF corresponding to color codes blue, red, green, and 

yellow, respectively, and darker and lighter shades showing       and     , respectively. In 

Figure 24 results for Setup 1 can be seen, for all four test configurations. In near-field test 

cases the error is significantly larger, especially for cL and cX (see the error maps for case 3m 

x 3m in Figure 23) In far field cases the maximum localization error is in the range of 31-128 

mm. Notice that after reaching a “safe” far-field distance, further increase of the sensor 

distance has no significant effect on the error. In the simulation this is partly due to the 

discrete evaluation of the error map (the resolution of the grid was 10mm), but in practice this 

error is already in the range of the position accuracy of the beacons.  
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   (a) (b) 

Figure 24. Mean and maximum localization error. (a) Setup 1. Notice the different vertical scale for near-

field and far-field cases (b) Setup 2. 

According to Figure 24(a), the error is systematically the largest in cL, in both near and 

far-field cases. The sources of error are explained using Figure 25, which shows the fringe 

patterns of cL and cX, for the case of 8m x 8m. For sake of clarity, only every fourth contour 

line is plotted, corresponding to unwrapped phase values of    , where   is integer. Notice 

that in reality the fringe pattern is four times as dense. Blue and red contours correspond to 

transmitter pairs: (A,C) and (C,D) in case of cL, see Fig. 13(a), and (A, D) and (B, C) in case 

of cX, see Figure 25(b). Clearly, contour lines are the densest between the transmitter pairs (it 

is easy to show that along the transmitter axis the distance between hyperbolas of Figure 25 is 

          ), and the fringe density decreases as the distance from the transmitter axis 

grows. The distance between contour lines is proportional with the width of the uncertainty 

bands, shown in Figure 21(a). In case of cL in Figure 25(a), the distance between contour 

lines significantly increases towards the upper right corner (for both blue and red contours), 

indicated by S. In this area the error is higher (according to (18)), as can be seen in the 

corresponding green region of Figure 21(b). Similar, but less obvious effect can be seen along 

the transmitter axis, outside of the sensors: here the phase changes very slowly in a large area, 

indicated by the lack of contour lines; one of these areas for the blue contours are also marked 

by S in Figure 25(a). In these areas the position error is the largest, shown by red in Figure 21.  

Another possible reason of increased error is when the angle of intersecting hyperbolas 

is small (    ), according to (18): in this case the GDOP is large. This effect can be seen in 

the corners, outside of the sensor positions; one such area is marked by P in Figure 25(a), and 

the high error is indicated by the corresponding red regions of Figure 21(b). The latter effect 

can also be seen for cX in Figure 25(b) and the corresponding red regions of Figure 21(c). In 

the center (far-field) region of cX, however, hyperbolas are nearly orthogonal, as shown in 
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Figure 25(b), thus cX performs better in far-field than configuration cL. Configurations cO 

and cF have redundancy, e.g. cO can be considered as the union of two cL’s, while cF can be 

constructed from cX and two cL’s. In the critical regions, where cL and cX perform poorly, 

the redundant configurations cO and cF have other hyperbolas to help to reduce the maximum 

error, providing better performance in both far and near fields.  

 

  (a)  (b) 

Figure 25. Fringe patterns for test case 8m x 8m, node positions are shown by dots, (a) configuration cL, 

(b) configuration cX. S and P indicate selected areas where the position error is potentially high, due to 

sparse or parallel contour lines, respectively. 

To further illustrate the effect of the possible error sources, the results of Setup 2 are 

shown in Figure 24(b), for cL and cX. Since     , all the cases can be considered far-field. 

As the figure clearly shows, the localization error decreases as the distance    increases until 

     , then the error increases with the increase of   . The explanation is shown in 

Figure 26(a) and (b), showing fringe patterns of configurations cL and cX, respectively, for 

      . Notice that only the central area, around the observed region is shown. In 

Figure 26(a) the blue lines correspond to parallel and dense hyperbolas generated by 

transmitter pair (A,C). These lines are dense since the distance of the observation area from 

the axis A-C is small. Red hyperbolas, generated by transmitter pair (C,D), diverge at the 

center of the sensor area (being far from axis B-C), producing larger localization error in the 

observed region. The larger    the larger the error, as was measured in Figure 24(b). In case 

of configuration X, shown in Figure 25(b), both red and blue hyperbolas are dense in the 

observation area, but their angle is far from 90 degrees: as    increases the red and blue 

hyperbolas become more parallel, thus small perturbations in the hyperbolas’ positions cause 

large GDOP.  
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Figure 26. Fringe patterns for test case 8m x 60m, showing the central 20m x 20m area. (a) configuration 

cL, (b) configuration cX. 

The reported case studies do not intend to provide full and general analysis, rather they 

illustrate the operation of the numerical analysis method, and also offer important general 

design strategies: the nodes should be outside of the observed area, but the additional increase 

of the distance has little effect; the axis of the transmitter pairs should be close to the observed 

area; transmitter pairs with orthogonal axes are the most valuable; redundant configurations 

have potentially smaller error. The tests also indicate that with a reasonable selection of node 

positions good results can be achieved, since the method is not sensitive to moderate changes 

of the node positions. In practice these rules of thumb can be used to design rough 

deployment setups of the infrastructure nodes, taking into consideration the environmental 

constraints along with the effect of possible node failures, and then the best candidate can be 

chosen performing the error analysis using (19). 

3.4.4. Measurements 

First a test was carried out to illustrate the accuracy of the phase offset model (1) and 

(2) with measurements. Figure 27 shows the test setup with two fixed transmitters A and B, a 

fixed receiver C, and a moving node D, which moved along trajectories T1, T2, and T3. The 

tests were performed outdoors in an orchard where the nodes were placed 1.2m above ground 

level on a wooden table. Phase offset values were measured along the trajectories in 0.02m 

increments, collecting 100 measurements in each position. During the measurements the 

effect of external disturbances was minimized (e.g. there were no movements or operating 

electronic devices nearby). 
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The results for trajectories T1, T2, and T3 are shown in Figure 28. The figures show 

both the wrapped and unwrapped phase offset values. Blue lines denote the computed ideal 

phase offset, while red dots show the actual measured values. Note the significant variance in 

the phase offset measurements, despite of the relatively disturbance-free environment. Also 

note that the variance is safely below the limit of π, thus phase unwrapping is indeed possible 

using the expected continuity assumption in a disturbance free or low noise environment. 

The frequency difference ∆f varied between 892Hz and 1420Hz during measurement 

T1, between 3472Hz and 3906Hz during T2, and between 416Hz and 1136Hz during T3. The 

variance of the phase measurement was the largest in T2, due to the large ∆f. Note that the 

transmission frequency is sensitive to temperature, thus ∆f changed quite rapidly during the 

measurements. 

 

Figure 27. Setup for phase-offset test measurements using fixed transmitters A,B, fixed receiver C, and 

moving receiver D. Blue line segments show trajectories T1, T2, and T3 of the moving object D. The 

calculated ideal phase-offset pattern is also shown. 
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 (a) (b) 

  

 (c) (d) 

 

 (e) (f) 

Figure 28. Phase offset measurements for trajectory T1 (a)-(b), T2 (c)-(d) and T3 (e)-(f). Blue lines show 

the ideal phase offset values, scattered plot with red dots show the actual measurements. (a),(c),(e) 

wrapped and (b),(d),(f) unwrapped phase offset values. 

To test the proposed BHT and FHT algorithms, real measurements were also 

performed, utilizing the phase-difference measurement method introduced in Section 5. The 4 

fixed infrastructure devices generated the interferometric signals in the 868MHz ISM 

frequency band, by tuning the frequencies of the transmitters to provide beat signal with    in 

the range of a few kHz. One moving receiver was utilized to measure the interferometric 

signals. The measurement process utilized 6 quads, by selecting all the possible pairs of the 4 
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fixed nodes for transmitters. The measurement setups and the paths of the tracked object are 

illustrated in Figure 29. The phase unwrapping and location estimation was performed, using 

parameter       . 

   

 (a)  (b) 

Figure 29. Placement of the nodes and object trajectories in the real measurements 

In the first tracking experiment the fixed nodes were placed on tripods in an empty 

parking lot, to provide disturbance-free environment, and the tracked node was moved on a 

2D plotter-like table, as shown in Figure 30. The table was made of wood and plastic to 

eliminate interference with radio signals, only the driving motors and the electronics 

contained some metal. The measurement setup and the path of the tracked object are shown in 

Figure 29(a). The signal wavelength and sampling frequency of the phase measurement were 

        and          , respectively. In the test the object was moved with constant 

speed, except for the corners. Measurements were conducted with 8 different object speed 

values between               and             , and at each speed 10 experiments 

were made. 

 

Figure 30. Radio-interferometric measurement devices (on tripods) and the plotter-like table used to move 

the tracked device. 

The results for one particular experiment with speed     =3.0 km/h are shown in 

Figure 31. The true trajectory is a rectangle, shown in blue in Figure 31(a), which was tracked 
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by the proposed algorithm, shown in red. The phase unwrapping was free of permanent error, 

thus the tracking has no visible bias. The absolute tracking error is shown in Figure 31 (b), 

with mean error of 0.015m and maximum error of 0.056m. 

 

Figure 31. (a) Tracking results of the plotter-table experiment for     =3.0 km/h. Blue: true trajectory, 

red: estimated trajectory. (b) Absolute position error as a function of time 

For higher speed, naturally, the performance of the algorithm degrades. The results for 

different speed values are shown in Figure 32, where the percentage of the measurements with 

no remaining tracking error are plotted. At low speed 100% of the trackings was correct, 

while at higher speed the ratio of the correct trackings decreases. According to (13), in worst 

noise-free case the maximum speed not violating the sampling theorem is              . 

In the presence of measurement noise permanent tracking errors occur somewhat earlier, at 

             , corresponding well with the theoretical expectations. 

 

Figure 32. Percentage of correct trackings vs. object speed.      is the theoretical worst case limit in 

noise-free case 

The detailed results are shown in Table 4, along with the mean and maximum deviation 

of the error. For low speeds the system provided low mean error around 15mm, independently 

of the speed. At higher speed values the object speed and measurement errors caused 

unrepairable phase errors, resulting permanent error in the localization as well. 

The results clearly indicate that with the current hardware solution only limited speed 

(max. 3km/h, equivalent with slow walking) can be handled. The main bottleneck is the 

sampling frequency, the minimum of which is directly proportional with the maximum object 



42 

 

speed, according to (13). Future work includes the speed-up of the measurement process, 

allowing the tracking of objects with higher speed. 

Table 4. The mean and the maximum deviation (in mm) of positioning errors, and the percentage of correct 

trackings for different object speed      (in km/h).Highlighted cells show cases with no permanent error. 

     1.1 2.0 3.0 3.5 3.9 5.0 6.0 7.0 

Mean 15 15 15 25 31 71 144 126 

Max. 77 77 68 252 283 355 457 357 

R % 100 100 100 90 70 30 0 10 

 

The second tracking measurement was conducted indoors, with human presence in the 

experimental area. The moving object was carried by a person along a circular path, making 

five rounds, with short pauses after each circle. The speed of the movement was approx. 

1km/h. In order to provide accurate positioning, the carried object was attached to the end of a 

rod, the other end of which was joined to a fixed axle. The measurement setup and the path of 

the tracked object are illustrated in Figure 29(b). The tracking results are shown in 

Figure 33(a), the true and estimated trajectory plotted in blue and red, respectively. The 

calculated absolute error is shown in Figure 33(b). In the experiment the mean absolute error 

was 0.02m with max. error of 0.13m. The error in this experiment was somewhat larger than 

in the disturbance-free outdoor experiment, probably due to indoor multipath effects and also 

the human presence. Notice also the systematic offset along certain parts of the trajectory; this 

is probably due to the distortion of the phase map resulting from multipath effects.  

 

Figure 33. (a) Tracking results of the walking experiment. Blue: true trajectory, red: estimated positions 

along 5 cycles. (b) Absolute position error as a function of time 

The performance of the BHT algorithm was also tested with the measurement data. 

Without the proposed phase correction, the mean and max. absolute position errors were 0.1m 

and 0.42m, respectively. During the experiment, phase unwrapping errors occurred three 
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times (at 20 sec, 51 sec, and 3 min 47 sec), increasing the error of the BHT algorithm, while 

these sources of error were successfully handled by the proposed FHT algorithm. 

3.5. Conclusion 

A new class of phase unwrapping problems was identified, where simultaneous 

channels of one-dimensional wrapped phase measurements are used to calculate the full phase 

values at each channel. A novel Simultaneous Phase-Unwrapping algorithm (SPU) was 

proposed, which utilizes a high-level score function and an optimization mechanism to 

identify channels with faulty unwrapped values and correct them.  

Novel radio-interferometric tracking methods were proposed, which utilize fixed 

infrastructure nodes to create interferometric signals, to track a moving radio receiver. The 

tracking methods utilized phase difference measurements from quads, consisting of two fixed 

transmitters, one fixed receiver, and the moving (tracked) receiver. In the Basic Hyperboloid-

based Tracking (BHT) algorithm, multiple individually unwrapped phase values are used to 

generate the estimated location of the tracked object. In the Fault-tolerant Hyperboloid-based 

Tracking (FHT) algorithm multiple quad measurements are used, which are simultaneously 

unwrapped using SPU to provide a fault-tolerant method. The performances of the proposed 

algorithms were evaluated and compared using simulations and real tracking experiments. 

The simulation tests confirmed that redundant measurements along with SPU increased the 

accuracy of the tracking and also provided fault tolerance: the proposed FHT method is 

operational in noisy environments even in the presence of sporadic large measurement errors.  

The proposed methods were implemented in a real-time measurement setup, where 4 

fixed infrastructure nodes were utilized to provide 6 simultaneous phase measurement 

channels. The tests showed that the system with the current phase measurement solution is 

able to track objects with max. speed of 3 km/h with accuracy of a few centimeters. 
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4. Radio-interferometric tracking based on confidence maps 

In this chapter a radio-interferometric tracking is proposed, which is essentially another 

solution for the same problem (presented in Section 2.4), but with a different perspective. In 

contrast to the hyperboloid-based tracking algorithms, where the problem is mathematically 

analyzed and an appropriate model were created, the proposed confidence map based methods 

are utilizing the empirical and inherently statistical properties of the radio-interferometric 

field. Despite the different point of views the underlying problem is the same, thus the 

proposed solutions have similar properties and are closely related. 

The proposed confidence map based solution offers two operation modes: 

 Mode 1: on-line tracking of objects with known initial position. In this mode the 

movement of the object is tracked in real-time from the known initial position. 

 Mode 2: off-line tracking of objects with unknown initial position. In this mode 

a sufficiently long data must be recorded, while the object moves; after 

sufficient amount of data is collected the full object track is determined 

(retroactively) and the tracking can be continued as in on-line Mode 1. 

Since Mode 1 is a subcase of Mode 2, we will discuss only the operation of Mode 2 in 

detail. The proposed solution has some realistic assumptions and requirements, as follows: 

 R1: The exact positions of the infrastructure nodes are known.  

 R2: The movement of the object is slow, compared to the sampling frequency. 

(According to experiments, the object should not move more than a few tens of 

millimeters between two consecutive phase measurement rounds. Tracking with 

maximum object velocity ~0.3 m/s was possible at a sampling frequency of 6 

rounds/s. This is similar to and corresponds well with the speed constraint 

presented in (13) in Section 3.3) 

 R3: The object trajectory is long enough to allow the resolution of the ambiguity 

problems (Mode 2 only). There is no explicit known formula yet on how long 

the trajectory should be; according to our experiments the more complex the 

movement (containing multiple directions) the shorter trajectory is enough. See 

the simulations and the measurement result is Section 4.7.  

 R4: The initial object position must be known (Mode 1 only). In Mode 2 the 

initial position is unknown and is determined by the algorithm. 
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4.1. Position confidence map 

The proposed tracking algorithm requires multiple independent phase measurements, 

which can be provided by utilizing the tracking infrastructure proposed in Section 3.1.3. 

In each configuration               (see Section 3.1.3 for details) the ideal phase 

values   
    

    can be calculated for every possible object position  , using (1) and (2). For 

two dimensions, this gives a 2D phase map as can be seen on Figure 34. Note that phase maps 

can be pre-computed and stored, to increase the speed of the algorithm. 

 

Figure 34. Phase map for a given configuration. The height of the map represents the ideal phase 

difference value between the fixed and the moving receiver, which operates on a 2D plane. 

Measurement round   produces   phase measurements, each measurement 

corresponding to one measurement configuration, as follows:  

                               . (18) 

Using the ideal phase maps and the measurements, a phase offset is calculated for each 

scenario  , as follows: 

                      |  
                 |. (19) 

Note that the phase offset values     are between 0 and  . From the phase offsets an 

error map is calculated, as follows: 

        
 

   
∑ (        ) 

   

 
 (20) 

The error   is zero if the measurements exactly correspond to the ideal values. The 

maximum error is 1, indicating large difference between the ideal and measured phase values. 

Thus from the error map a confidence map can be defined, as follows: 

                 (21) 
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Confidence value        close to one indicates that position   can indeed be the real 

object position in time instant  , while low confidence values show that it is unlikely that the 

object is in position   in time instant  . 

Figure 35 shows a confidence map computed for a scenario similar to the one shown in 

Figure 8. The true object position is at the center of the figure. Figure 35(a) shows the case 

when there is no measurement noise; in this case there are significant and sharp peaks in the 

confidence map. Note that in this case the confidence value is exactly 1 at the true object 

position, but there are several other significant peaks at phantom positions. This phenomenon 

is due to the phase wrapping in (1), and thus the true object position cannot be determined 

from one measurement. The noisy case is shown in Figure 35(b), where the peaks are less 

high and somewhat blurred. The phantom positions are clearly observable here as well.  

 

Figure 35. Calculated confidence map for (a) noise free and (b) noisy measurements. Red colors show 

high confidence values, dark blue denotes low confidence values. The true position is at the center, the 

other peaks represent phantom positions. 

An important observation, which is the basis of the proposed algorithm, is the 

following: the true object location has high confidence value all along the track of the object 

(exactly one in noiseless case, and close to one in noisy case). The phantom positions, 

however, change their confidence values, as the object moves along its trajectory. This 

phenomenon is quite salient when a series of confidence maps is observed: the peak, 

corresponding to the true object position, is moving along the object trajectory; at the same 

time the phantom peaks fade and new phantoms appear, only few phantoms living longer than 

a few meters.  

The phenomenon is illustrated in Figure 36, where the confidence values, corresponding 

to the true and a phantom position, are denoted by red and blue lines, respectively. Note that 
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in noisy case the confidence value of a phantom position may be higher than that of the true 

position. The phantom’s confidence, however, will eventually decrease. Thus the tracking 

algorithm, described in the next section, monitors the (true or phantom) trajectories, and keeps 

only those, which have steadily high confidence values. 

 

Figure 36. Illustration of phase confidence values at the real (red line) and a phantom (blue line) position 

of a moving object, as a function of time. (a) ideal, noise free case, (b) noisy case. 

4.2. Basic confidence-map based tracking 

The input of the Basic Confidence-map based Tracking (BCT) algorithm in each time 

instant   (         ) is the measured phase vector         , where the vector contains   

phase measurements, corresponding to the utilized configurations, according to (21). The 

output of the algorithm is the actual track list (atrack), which ideally contains one and only 

one track. At the beginning of the algorithm, however, several possible starting points are 

identified: the true one and many phantoms. As the object moves and new measurements are 

available, the algorithm checks whether the current tracks can be continued, according to the 

new measurements, or not. A track can be continued if a possible location (true or phantom) is 

close enough to the end of the track. The required maximum distance is defined in variable 

limit. Tracks which cannot be continued (thus proved to be phantom tracks) are removed from 

the actual track list and are stored in list phtrack. The list of the actual tracks is thus shrinking, 

as the moving object provides more and more information to resolve ambiguities, and finally 

contains only the true track alone. The pseudo-code of the algorithm can be seen in Figure 37. 

The helper functions in the algorithm are the following: 

confidence_map(phase_values): calculates the confidence map for a given phase 

measurement set, corresponding to one time instant. See Figure 35 for illustration of a 

confidence map.  

possible_positions(map): analyses the confidence map and determines possible 

positions. In the current implementation a hard threshold confmin is used to select the high 
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peaks in the map, then a blob analysis is run to determine the connected areas, finally the 

center of each area is selected as the possible position. 

min_distance(p, pv): from a vector of points pv selects the closest point to a point p. 

Returns both the closest point and the distance.  

 

Figure 37. Pseudo-code of the Basic Confidence-map based Tracking (BCT) algorithm 

4.3. Peak detection anomalies 

The proposed BCT algorithm in Section 4.2 tracks all of the possible positions as long 

as the corresponding peaks in the confidence map are high, and disposes those phantom 

tracks, where the peak value decreases below a limit, thus after a sufficiently long track only 

the true trajectory remains. 

Unfortunately the BCT algorithm lacks the possibility to continue a track if a peak is 

disappearing for a few measurement rounds due to e.g. erroneous or missing phase 

measurements or faulty peak detection on the confidence map. In practical situations bad 

measurements are present, measurement results may be lost due to communication problems, 

and in such cases the track may be lost. In the next sections two means are proposed to avoid 

such problems, thus to provide more robust trajectory estimates. 

input: ϑ_meas(k), k=1..N 
output: atrack, phtrack 

Initialization: 

atrack = {} 

phtrack = {} 

map = confidence_map(ϑ_meas(1)) 
points = possible_positions(map) 

for each p  points 
t= new Track 

t.add(p) 

atrack = atrack  t 
 

Tracking: 

for each ph  ϑ_meas(2..n) 
map = confidence_map(ph) 

points = possible_positions(map) 

for each t  atrack 
[d, p] = min_distance(t.last_point, points) 

if d < limit 

t.add(p) 

else 

atrack = atrack \ t 

phtrack = phtrack  t 
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Figure 38. Left column: confidence values of real objects (red), phantom objects (blue) and the thresholds 

(green); Right column: estimated object trajectories. (a) constant threshold, with two peak-losses, 

resulting in a track loss, (b) adaptive threshold, still peak loss possible, causing track loss, (c) adaptive 

threshold with prediction, which tolerates temporary peak losses. 

The proposed solution provides an enhanced and more robust tracking method based on 

a confidence map. The proposed techniques are illustrated in Figure 38. The original method 

of the BCT uses a fixed threshold. As opposed to the ideal case, illustrated in Figure 36, real 

measurements often results in true peaks with smaller amplitude, thus the original method 

may lose tracks, as illustrated in Figure 38(a). The proposed adaptive peak search method, 

illustrated in Figure 38(b) and discussed in Section 4.4, uses an adaptive threshold, thus the 

number of peak losses can be decreased (but not necessarily fully prevented). The peaks, 

which are lost for a short time, would result in complete track loss, which is prevented by the 

proposed prediction method, described in Section 4.5: if a track seems to end, due to the lost 

peak, the track it is maintained for a while, using predicted peaks from neighborhood 

information. Thus temporary peak losses can be tolerated, as illustrated in Figure 38(c). 

The new tracking algorithm, using adaptive threshold and predictive track enhancement 

will be formalized in Section 4.6.  

4.4. Adaptive peak extraction 

The proposed object tracking algorithm operates on the possible positions, extracted 

from the peaks of the confidence map in each measurement round, thus the quality of the peak 

extraction heavily influences the accuracy and robustness of the tracking. In the case of noisy 

measurements the confidence map can be blurred and may contain multiple smaller peaks 
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rather than one, sharp peak in a possible position. The proposed solution uses binarization 

with an adaptive threshold. 

   

Figure 39. Peak extraction. (a) Confidence map, (b) binary map, (c) peak position estimation. 

The proposed peak extraction is illustrated in Figure 39. The algorithm uses the 

confidence map, as input (see Figure 39(a)). In the first step high peaks are selected using the 

threshold, resulting a new binary map where peaks higher than the threshold are represented 

as blobs, as shown in Figure 39(b). In the second step, shown in Figure 39(c), possible 

positions are determined as the geometric centers of each region, thus eliminating the issues 

with blurred or multiple peaks. 

   

Figure 40. Peak selection with too low (a), correct (b), and too high (c) threshold. 

The key part of the extraction method is the threshold level selection. An illustrative 

example is shown in Figure 40, with peaks selected with too low, correct, and too high 

thresholds. In the case of low threshold values of separate regions may merge (see 

Figure 40(a))), while too high threshold values may miss peaks (see Figure 40(c)). In real 

cases the confidence values highly depend on the measurement noise and vary in each 

measurement round. Thus a constant threshold values, as in Figure 38(a), should be avoided. 

The proposed dynamic threshold value selection (shown on Figure 38(b)) is based on 

the histogram of the confidence map. A typical histogram and cumulative histogram can be 

seen in Figure 41(a) and Figure 41(b), respectively. The dynamic threshold value is 

determined as the value where 90% of the confidence map values are lower than the selected 

value, as shown in Figure 41. 
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Figure 41. Typical (a) histogram and (b) cumulative histogram of a confidence map. Red lines show the 

selected threshold value. 

4.5. Confidence map-based peak prediction 

The proposed peak prediction method enhances the tracking robustness by predicting 

the peaks’ movements based on the confidence map itself. There are time instances where the 

confidence value of a possible position can go below the threshold value as can be seen on 

Figure 38(b), which makes the associated track impossible to follow. The BCT algorithm 

presented in Section 4.2 marks the track as dead and stops tracking the real or phantom object 

positions in these cases. 

In the enhanced solution three track attributes are used: alive, alive but invalid, and 

dead. Alive tracks become invalid, when the peak is lost, but kept alive for a limited number 

of measurement rounds. For invalid tracks the position is estimated from the last known or 

estimated position (i.e. peak location).  

 

Figure 42. Illustration of the predictive peak tracking. Blue arrows show the calculated (true) movement 

vectors of the peaks in one iteration, red arrows show the predictions for the same vectors. For better 

visibility the vectors are enlarged. 
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The proposed solution focuses on solving the recovery problem; making the tracks alive 

for a longer period and assign them to the appropriate possible position. The key idea can be 

seen in Figure 42; possible positions of a peak can be estimated in consecutive measurement 

rounds using the confidence map. The displacement of a lost peak can estimated from the 

displacement of other peaks in the close vicinity. This idea is illustrated and also justified the 

by Figure 42, where the movement vectors, calculated from a real measurement, are 

approximately the same in a small neighborhood. Thus the proposed solution predicts the 

displacement of a given point P as follows: 

      
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

∑     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
   

 
 ‖   

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ‖    (22) 

where    and    are the initial and the end points of a nearby movement vector, calculated 

from two consecutive confidence maps, and n is the number of vectors within a specified 

distance L. 

4.6. Prediction-aided, confidence-map based tracking algorithm 

The pseudo-code of the prediction-aided, confidence-map based tracking algorithm 

(PCT) is shown in Figure 43. The input of the proposed tracking algorithm in each time 

instant   (         ) is the measured phase vector         . The vector length varies 

depending on the on the number of the utilized configurations (see Figure 8). The outputs of 

the algorithm are the lists of active, inactive and dead tracks; aTrack, iTrack, dTrack 

respectively (see lines 1-2). Ideally the active tracks list contains only one element which 

belongs to the real object movement. At the beginning of the algorithm new tracks are created 

for each of the possible positions, containing the real object position and several phantom 

positions (lines 4-13). In each of the following measurements rounds the new possible 

positions are calculated and the movements of the tracks are computed (lines 14-54). First the 

new confidence map is calculated and the peak positions are identified (lines 15-18). Then 

each active track is checked whether a detected peak can be regarded as the follow-up of the 

track (line 23). If a track can be followed then it will be marked as active and the measured 

new position is used as the last position of the track (lines 24-28). If a track cannot be 

followed (due to a lost peak) then the new position will be predicted and the track will be 

marked as inactive (lines 30-33). Inactive tracks are similarly handled in lines 37-50. At the 

end of the iteration the dead tracks are separated from the inactive tracks (lines 51-53). The 

current solution marks a track dead if it is inactive for       consecutive iterations. 
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Figure 43. Pseudo code of the prediction-aided tracking algorithm 

4.7. Evaluation 

In this section the proposed BCT and PCT methods will be evaluated using simulations 

and real measurements. In the simulations and in the first real measurement a 4-by-4 meter 

area was used where the four infrastructure nodes were placed into the corners, i.e. the fixed 

nodes were placed at positions (0, 0), (0, 4), (4, 0), and (4, 4), respectively. In these 

experiments six configurations were used, corresponding to configurations C1…C6 in 

Figure 8. 

4.7.1. Simulations 

The proposed BCT algorithm was tested with a simulated object trajectory, which 

started from position (1, 1), moved to (3, 3) and then moved to (3, 1). To the ideal phase 

values various amount of additive phase noise was added to simulate noisy measurements. In 

the two experiments zero-mean normal distribution noise was used with        and 

      , respectively. In both simulations parameters confmin and limit were set to 0.8 and 

0.1m, respectively. 

 1 input: phases(k), k=1..n 

 2 output: aTrack, iTrack, dTrack 

 

 3 function TrackPositions 

 

 4 aTrack = {} 

 5 fTrack = {} 

 6 dTrack = {} 

 

 7 map = genConfidenceMap(phases(1)) 

 8 points = possiblePositions(map) 

 9 for each p  points 

10   t= new Track 

11   t.add(p) 

12   aTrack = aTrack  t 

13 endfor 

 

14 for each ph  phases(2..n) 

15   prevPoints = points 

16   map = genConfidenceMap(ph) 

17   points = possiblePositions(map) 

 

28       newAtrack = newAtrack  t 

29     else 

30       p = predict(ap1, t.last) 

31       t.add(p) 

32       t.invalid = 1 

33       newITrack = newITrack  t 

34     endif 

35   endfor 

 

36   iTPos = collectPoints(iTrack) 

 

37   ap2 = assignPoints(iTPos, 

        points\usedPoints, PREDICT_LEVELS) 

 

38   for each t  iTrack 

39     if isAssigned(ap2, t.last) 

40       p = getNewPoint(ap2, t.last) 

41       t.add(p) 

42       t.invalid = 0 

43       newATrack = newATrack  t 

44     else 

45       p = predict(ap1, t.last) 
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The results of the tests can be seen in Figure 44, where red lines represent the identified 

true object track, while blue lines show the phantom trajectories. Blue dots show the starting 

track positions. 

As can be seen in Figure 44, from the initial tracking positions phantom tracks of 

various lengths were detected. Note that the directions of the real and phantom tracks were 

approximately the same. Also note that in the noisier simulation the phantom tracks are much 

shorter, because the same confmin threshold for lower confidence values (see Section 4.4) 

results an earlier abortion of phantom tracks. 

The length of the true trajectory is      . With        the five longest phantom 

tracks have 285, 228, 116, 108, and 98 points, while with        their corresponding 

lengths are 35, 35, 25, 19, and 19 points. The number of starting points somewhat decreased 

in the noisier experiment from 164 to 143. This is again due to the fact that fewer initial 

points exceeded the same confidence limit. 

The accuracy of the position estimation was also evaluated in the simulations. In the 

       case the maximum, average and the standard deviation of the estimation error are 

25.2mm, 8.3mm, and 18.6mm, respectively. In the        case the maximum, average and 

the standard deviation of the estimation error increased to 59.9mm, 17.0mm, and 19.1mm, 

respectively. 

 

 (a) (b) 

Figure 44. Simulation result of the BCT algorithm with various measurement phase noise and constant 

threshold. The standard deviation of the additive noise was (a)        and (b)       . Active and 

phantom object trajectories are shown with red and blue lines, respectively. Blue dots present the initial 

starting positions of the tracks. 
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4.7.2. Measurements 

To test the proposed BCT method a real measurement was also performed, utilizing the 

measurement system proposed in Section 5. During the measurements the 868 MHz ISM 

frequency band was used and the radios were fine-tuned with the available 312.5 Hz 

accuracy. The synchronized receivers performed phase difference measurement on the RSSI 

data, sampled with frequency of 62.5 kHz. 

In the test, shown in Figure 45, four nodes and six configurations were used, as was 

described at the beginning of Section 4.7. Each of the devices were placed 1.25m above 

ground level and the tracked node was carried in hand by a person. The test took 50 seconds 

while 271 rounds were measured (altogether 1626 phase measurements were performed). 

The BCT algorithm was executed with parameter values of limit = 0.1m, and confmin = 

0.6. Initially 169 possible locations were found. 

The length of the actual track is 271, as shown in Figure 45, with red line. The longest 

five phantom tracks have lengths of 86, 71, 69, 69, and 69 steps. 

 

Figure 45. Output of the tracking algorithm based on a real measurement. The computed real object track 

is shown by red line, while the phantom tracks are shorter blue lines. The initial track positions are 

denoted by blue dots. 

The performance of the adaptive peak extraction and the peak movement prediction 

utilized in the proposed PCT algorithm was also tested with a real measurement. In the test 

four infrastructure nodes and one tracked node were used. The algorithm utilized all the 

twelve possible configurations C1-12 (see Figure 8). The test was performed in a 4.5 m by 

4.5 m room where the infrastructure nodes were placed in the corners of a 3 m by 3.5 m 

rectangle, 2 m above the ground level (at coordinates (0, 0, 2), (0, 3, 2), (3.5, 0, 2), and (3.5, 3, 

2) in Figure 46). The moving node was carried in hand by a person (probably causing small 
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deviations in the range of a few dozens of millimeters). The tracking results of the proposed 

algorithm can be seen in Figure 46, where phantom and real tracks are shown in blue and red, 

respectively. With no prediction (Figure 46(a)) the tracking failed after a few seconds because 

of noisy measurements. With the same measurement data the proposed algorithm performed 

well and was able to follow the movement, since the missing estimates were successfully 

replaced by predictions (see Figure 46(b)). In the test the parameter       was set to five. 

 

Figure 46. Tracking results of the measurement (a) without and (b) with peak prediction. 

Figure 47 shows the reference trajectory in magenta and the estimated trajectory by 

dots. The maximum deviation from the reference track is 91 mm, part of which is probably 

caused by the carrying person. 

The estimated and predicted values in Figure 47 are shown in blue and red dots, 

respectively. It is interesting to note that at the magnified part of the track the predictions 

follow very well the true estimated trajectory, despite the fact that the trajectory changed its 

direction while only the predicted values were available. Such prediction, based on models on 

the movement itself, would be very troublesome, but the proposed prediction scheme using 

the peaks in the neighborhood handles the situation properly. 

 

Figure 47. The longest track of the measurement. The estimated and predicted positions are shown with 

blue and red dots, respectively. The true track is shown in magenta. 
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In order to evaluate the performance of the prediction subsystem, another experiment 

was carried out. In each time-instant   of the previous experiment, a one-step prediction was 

made from the current estimated position     , according to (25). The predicted position is 

 ̂                 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . The difference between the predicted and measured positions in 

time instant     is         ̂            . Figure 48 shows values of      as 

function of time, in red color. For easier reference, Figure 48 also contains values of the real 

displacement            , show in blue. The average displacement (average of the blue 

curve) is 0.023 m, corresponding to an object speed of approximately 0.25 m/s. The average 

prediction error is 5 mm, while the maximum error was 21 mm. Clearly the proposed 

prediction scheme is able to accurately replace the estimates when they are not available. 

 

Figure 48. Prediction error (red values) and the lengths of displacement vectors (blue values) of the real 

object track 

4.8. Conclusion 

The experimental results show that the proposed PCT method is capable of tracking a 

moving object equipped with a sensor node device. In contrast to RIPS [13] or SRIPS [14], 

the proposed tracking algorithm utilizes only one measurement frequency, resulting shorter 

measurement times for each measurement round. Thus the phase difference measurement 

errors, caused by the object movement, can be minimized and the proposed method is able to 

provide a robust tracking, while preserving the few centimeters of accuracy of the 

interferometric-based localization techniques. 
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5. Distributed Phase Difference Measurement 

Phase difference measurement of interfering radio signals is an essential part of radio-

interferometric positioning applications. A measurement method was proposed for radio-

interferometric localization in [13], which can perform phase and frequency estimation on the 

recorded RSSI values. The algorithm is divided into online and post processing parts. The 

online part is executed on each of the 256 samples. The raw signal is filtered with a moving 

average. First the minimum and maximum values are determined from the leading 24 

samples, which is long enough to contain at least one cycle. Then an upper and lower 

threshold is set at the 20% and 80% of the calculated range. Peaks are detected as the center 

points between two consecutive high level crossings. The post processing phase works only 

on the online detected and filtered peak indices. The phase of the RSSI signal is estimated as 

the average phases of the peaks. 

The application field has numerous challenges, which are discussed in detail in Section 

2.5. The proposed solution aims to provide several improvements over the current solution 

[13]. The targeted improvements and requirements are the following: 

a) the measured signal is highly variable: improved adaptive signal processing is required 

to handle the various potential signal shapes (e.g. logarithmic sine wave) 

b) measurement devices are wireless: improved economic data communication is required 

to lower the communication demand and possibly improve the synchronization 

c) measurement devices have limited capabilities: novel distributed signal processing 

algorithm is required, which can run on low-end devices 

d) fast measurements are necessary to allow tracking of moving objects: improved signal 

processing is required to provide more frequent measurements 

e) the communication bandwidth is limited: transmitted data packets must be small, the 

distributed processing must be tailored to meet this demand 

f) repeated measurements are necessary for tracking: the overhead for measurement 

control must be low  

Following the above requirements, a novel phase measurement system is proposed, 

which is able to accurately measure the phase difference of the received radio signals, even in 

the presence of significant measurement noise. Due to the distributed nature of the suggested 

measurement system, it can be operated on inexpensive elements with very limited computing 
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capabilities (e.g. on 8-bit microcontrollers). The performance of the proposed system is 

illustrated with real measurements results. 

5.1. System overview 

In this section the measurement system is presented, including the measurement setup 

and the hardware and software architectures. 

5.1.1. Measurement setup 

The localization application requires phase difference measurements between 

predefined pairs of nodes (see Section 3.1.3). Thus the measurement application must 

schedule and perform phase difference measurements, and finally the results must be 

forwarded to the localization algorithm. The measurement setup is shown in Figure 49. 

 

 (a)  (b) (c) 

Figure 49. Measurement setup for measuring phase differences: (a) broadcast of measurement and 

synchronization command, (b) data collection and phase estimation, (c) transmission of measurement 

results 

The measurement network contains several measurement nodes, which can perform 

phase estimation, and a central base station, which is connected to a PC. The base station can 

transmit commands to the measurement network and can receive results from the network. In 

the first step (see Figure 49(a)) the base station broadcasts a measurement command, which 

has dual role: it contains scheduling information (the IDs of nodes, which have to perform the 

measurement; the starting time of measurement; and the schedule for transmission of the 

results), and also supports the synchronization of the selected nodes. All measurement nodes 

receive the measurement command, and the selected nodes perform the measurement, 

according to the received schedule (see Figure 49(b)). Finally the measurement results are 

transmitted back to the base station, where the post-processing is performed, as shown in 

Figure 49(c). 
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5.1.2. Hardware 

 

Figure 50. Block diagram of the measurement device 

The block diagram of the utilized hardware is shown in Figure 50. The device contains 

an Si4432 radio chip, which is used to receive the interference signal. The device also features 

an integrated ATmega128RFA1 microcontroller-radio unit, which is used to perform 

computations and communicate with the base station. 

 

Figure 51. Dual-radio interferometric phase measurement device 

The photo of the measurement node, including a metal housing, two antennas, and the 

UCMote dual-radio mote [45], is shown in Figure 51. 

5.1.3. Measurement software 

The block diagram of the software, running on the measurement device is shown in 

Figure 52. The software is built of modules, using the TinyOS operating system [46]. The 

blocks shown in grey are part of the operating system, while the white blocks were developed 

to support the measurement device. The 2.4GHz radio is connected to the communication 

module, which receives commands and transmits the results. Based on the received 

commands the measurement is configured, including measurement scheduling and reply 

scheduling. During the measurement, first a sample buffer is filled with RSSI measurements, 
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then the phase estimation algorithm is executed. The results are transmitted according to the 

reply schedule. 

 

Figure 52. Software block diagram of the measurement device 

5.2. Phase difference estimation 

The proposed phase difference estimation provides solutions for the various challenges 

presented in Section 2.5: it offers fast computation in a distributed manner and the issues of 

the phase difference calculation are addressed by accurate clock synchronization. 

5.2.1. Phase estimation algorithm 

The fundamental operation of the phase estimation algorithm can be seen in Figure 53. 

First RSSI samples are collected and stored in the sample buffer with a fixed sampling 

frequency. The phase estimation algorithm works in two consecutive loops on the buffered 

samples. The first loop calculates the average of the signal (magenta line on Figure 53) and 

the lower and upper hysteresis limits (red lines on Figure 53) are determined as Hist from 

the average, where Hist is a predefined value. This way the signal is divided to four zones 

with the two hysteresis limits and the average, as shown in Figure 53. The second loop 

utilizes a state machine, which changes state only when zone transitions occur with a defined 

sequence. Thus the state machine follows the signal through zones 1-2-3-4-3-2-1-… The 

reference points of the signal      (marked with vertical black lines on Figure 53) are 

determined using the times of transitions between zones 2 and 3, as follows: 

      
             

 
   (23) 

where     and     are the time instants of transitions 2-3 and 3-2, respectively, measured from 

the start of the signal. Note that     and     are not suitable reference points, because their 
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time depends strongly on the actual signal shape (see Figure 58 for real signals illustrating 

this phenomenon). 

 

Figure 53. Illustration of the phase measurement: magenta line: mean value, red lines: hysteresis limits, 1-

4: amplitude ranges, red circles: 2-3 and 3-2 transitions, and black vertical lines: estimated times of the 

reference points 

The phase of a signal can be defined as follows: 

     
 

 
 (24) 

where T is the period length and parameter t is the is the time between a time synchronization 

point and a signal reference point (see Figure 6). 

The proposed phase calculation is performed to estimate the period length T and 

parameter t in (27). Period length is determined as 

     
 

   
  (25) 

where N is the number of reference points (thus the number of full periods is     ) and Δ is 

calculated as 

   ∑           

 

   

           (26) 

Notice that the following equation holds for each     : 

                  (27) 

Let us define a parameter S as the sum of the distances between each      and the 

synchronization point (i.e. that is the beginning of the recorded signal): 

   ∑    

 

   

 (28) 

Using (30) and (31) the estimate of parameter t is calculated as 
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(29) 

which can be simplified to 

   
 

 
  

 

 
. (30) 

The phase estimate can be calculated as follows, using (27), (28), and (33): 

    
         

       
 (31) 

Then the phase difference       between nodes   and  , is calculated from the phase 

estimates    and   : 

       (     )        . (32) 

Phase estimator (34) contains a division, which is either imprecise or slow operation on 

low-end devices. To overcome this problem a distributed solution is proposed. 

5.2.2. Distributed calculation 

The distributed phase estimator is illustrated in Figure 54. The low-end measurement 

devices compute only integer variables  ,  , and  , using fast integer arithmetic, according to 

(29) and (31). The variables are then sent to the base station in the result message. The 

calculation of the phase difference estimate is performed on the PC, according to (34) and 

(35). 

 

Figure 54. Operation of the distributed phase estimator 

Sending intermediate results also ensures lower bandwidth utilization. Sending the 

phase and period time values as floating point numbers would require 8 (2x4) bytes, while 

only 5 bytes are necessary for sending       as 16, 16 and 8 bit length values, respectively. 

5.2.3. Measurement synchronization 

The synchronization between the measurement devices and the scheduling of a single 

measurement is illustrated in Figure 55. The command message, sent by the base station, 
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contains the node IDs of the devices which should perform the measurement (in the example   

and  ) and the result transmission delays (  
      and   

      in Figure 55). When the message 

is received, the nodes create timestamps   
         

 and   
         

, according to their local 

clock. The low-layer time-stamping guarantees, that the time stamp is accurate, independently 

on the various software induced delays [47]. Each node starts two timers, which provide 

delays, starting from           
. The first timer, with delay       , starts the sampling, 

followed by the signal processing (Proc. in Figure 55) while the second timer initiates the 

transmission of the results, with delay        (Send result in Figure 55). 

 

Figure 55. Measurement synchronization and scheduling 

The synchronization mechanism guarantees, that the sampling is started on both devices 

at the same time (when the local clocks show  
    

                  ). The different 

result transmission time allow collision-free communication between the measurement 

devices and the base station. 

An additional and more precise synchronization can be achieved by utilizing the 

interferometric signal itself. The basic concept can be seen in Figure 56, which utilizes a 

special, scheduled on-off switching sequence of the transmitters (“TX1” and “TX2”). First, 

the receivers and the transmitters are “roughly” synchronized with the time stamping method 

described above. In the designated time the receivers start to record the RSSI values, 

meanwhile the transmitters are still switched off. In this initial state the buffer contains values 

reflecting the background radio noise. In the next step the first transmitter is switched on (see 

Figure 56: “TX1: On”), which causes a sudden and significant increase in the RSSI values. 

The rising edge is sharp enough (in our hardware equipment) to be utilized as a 

synchronization point. The synchronization point       is defined as the first sample which 

exceeds a predefined limit, shown in red in Figure 56. (In the current implementation the limit 
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is a simple constant threshold, set experimentally.) Later the second transmitter is switched 

on, causing the generation of the interference signal. At the end of the measurement sequence 

both transmitters are switched off. 

 

Figure 56. Received signal based time synchronization, using the on-off switching sequence of the 

transmitters: the recorded RSSI values in the buffer are shown as black line, the threshold used to detect 

the synchronization point shown as red line, time intervals used to calculate the average RSSI of the 

individual transmitters are shown in gray, time interval used to perform phase and frequency estimation 

is shown in green. 

Note that the presented switching sequence not only allows to define a synchronization 

point      , but also enables to collect and average individual RSSI values from both of the 

transmitters (see grey intervals in Figure 56). This information can be utilized as additional 

quality indicator of the interference measurement and also can be used to identify problems: 

large difference between RSSI1 and RSSI2 indicates poor measurement results, low RSSI 

measurements may indicate transmitter problems (e.g. low battery). 

In our equipment the achievable time synchronization accuracy with time stamping is 

±1 tick with 32.5 kHz clock source, i.e. ±30 microseconds, while the accuracy of the 

presented method is ±2 samples with a sampling speed of around 110 kHz, i.e. ±18 

microseconds. Note that in a measurement round, where consecutive interferometric 

measurements are made with different configurations (see Section 3.1.3 and Figure 8) only 

one time stamped message is enough for “rough” time synchronization, because the presented 

method, based on the recorded values, can compensate for the clock drift between the 

measurements. This is advantageous, because it requires fewer messages and further shortens 

the time between consecutive phase measurements in one round. 

5.3. Evaluation 

In this section the proposed phase difference estimation will be evaluated using 

simulations and real measurements. 
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5.3.1. Simulation 

The performance of the phase estimation algorithm was first tested by simulations. In 

the experiment an input sine-wave was generated and Gaussian noise was added to provide 

signal to noise ratio of 20dB. The proposed algorithm and the algorithm presented in [13] 

were compared.  

For the simulation 160 phase values were generated between 0 and 2 and for each 

value 100 independent noisy input signals were created. The phase error values (the 

differences between the ideal and the estimated phase) were recorded and plotted in 

Figure 57, for the proposed and the reference [13] algorithms, respectively. The variance of 

the proposed and the reference algorithms were 0.0228 and 0.0343, respectively. The 

superiority of the proposed algorithm is clearly visible. 

The reason of the better performance of the proposed method lies in the indirect 

maximum search. The reference algorithm [13] tries to find the maximum positions of the 

RSSI signal by looking for the maximum values of the signal where the slope is low, thus 

producing significant errors due to noise. In the proposed solution the indirect maximum 

position estimation clearly provides more accurate results, since the signal processing was 

performed where the signal slope is high. 

 

Figure 57. Scattered plot of phase estimation error of (a) proposed algorithm and (b) reference algorithm 

[13]. 

Another experiment was performed using logarithmic sine-waves as input signals (see 

Figure 53 and Figure 58). In this case the performance of the proposed algorithm was similar 

to the previous experiment, while the reference algorithm failed to provide usable 

measurements in most cases. The cause of the failures can be explained by the occasional 

extreme minimum values; the reference method computes the hysteresis limits (20% and 

80%) based on the range of minimum and maximum values of the leading samples, thus 
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outlier values can result in oversized hysteresis gap (see Figure 58). In contrast, the proposed 

solution utilizes the average of the signal, which is more robust against extreme values.  

5.3.2. Measurement results 

A real measurement setup was built, according to Section 5.1, using two measurement 

nodes. A typical measured RSSI signals are shown in Figure 58.  

 

Figure 58. Measured RSSI values by a pair of measurement devices 

An experiment was conducted to check the accuracy of the proposed phase difference 

measurement method. In a static (disturbance-free and outdoor) setup 5000 consecutive 

measurements were conducted, the histogram of which is shown in Figure 59. The variance of 

the phase measurements was 0.024. Note that part of the variance was probably due to 

environmental effects and noise. 

 

Figure 59. Measured phase error distribution in a disturbance-free, outdoor setup 



68 

 

For radio-interferometric localization and tracking algorithms the characteristics and the 

variance of additive phase noise is a crucial information, thus the distribution of the phase 

offset was tested in various environments. The tests utilized static nodes, and had a frequency 

difference       Hz-744Hz during the measurements. Figure 60(a) shows the disturbance-

free, indoor case, while Figure 60(b) illustrates the situation when people were moving around 

the sensors, using 1500 measurements in each case. As the measurement results clearly 

indicates the distribution of the phase error can be approximated with a zero mean Gaussian 

distribution. The standard deviation in the disturbance-free case was      , which increased 

to       when people were present in the measurement space. Figure 60 shows that in both 

cases the noise level is small enough to perform phase unwrapping, but when disturbance is 

present, the phase error between two consecutive measurements may be close to  , thus in 

this case more sophisticated unwrapping techniques should be used, like the one presented in 

Section 3.2 

 

Figure 60. Distribution of 1500 phase-difference indoor measurement: (a) disturbance-free case, (b) 

human presence and movement 

5.4. Conclusion 

A measurement method and the corresponding hardware and software infrastructure 

were proposed, which is able to estimate phase differences between different points of a 

radio-interferometric space. During a measurement round a pair of synchronized receiver 

nodes are used, each of which individually records RSSI values and performs pre-processing. 

The pre-processing algorithm can be executed on low-end measurement devices (e.g. 8 bit 
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microcontrollers). The intermediate results are transmitted through a low-bandwidth channel 

and the phase difference estimates are calculated at the host computer. Due to the distributed 

calculation method and the utilized synchronization the proposed measurement setup is able 

to perform fast and accurate phase difference measurements to support modest real-time 

requirements of the targeted radio-interferometric tracking applications. The performance of 

the proposed measurement method was illustrated by simulations and real measurement 

examples. 
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6. Long distance VLC-based beaconing for indoor localization 

In this chapter the design of an LED-based beaconing infrastructure is introduced, 

which can be utilized in indoor localization systems. The LED beacons, which may be part of 

the existing lighting infrastructure, are blinking with high frequency invisible for human eyes, 

while the detectors are regular cameras. Since the sampling frequency of the cameras is much 

lower than the blinking frequency, the detection is based on a coding system, which tolerates 

the undersampling of the signal. The performance of the proposed system is analyzed and a 

possible application is introduced. 

Most of the camera-based decoder systems utilize the rolling shutter effect: since the 

image sensor samples different rows of pixels at different time instants, high frequency 

blinking appears in the form of alternating dark and light bands in the picture, which is 

utilized to decode the transmitted code [12]. The main advantage of these systems is that a 

single image frame is enough for decoding, but they require large image size for the correct 

operation, thus the beacon must be close to the camera. Contrary to these solutions, in the 

proposed solution the detection is performed by utilizing a series of pictures, allowing very 

small image sizes, and thus distant beacons can also be reliably detected.  

The block diagram of the proposed system is shown in Figure 61. The emitted light of 

each LED is modulated by a LED driver and a unique beacon ID is transmitted by each LED. 

The modulation utilizes high frequency, providing flicker-free operation. In the detector a 

static camera is utilized, which takes pictures with approximately 30 fps. The series of images 

are used to detect those pixels, which correspond to any of the transmitted beacon IDs. The 

detected pixels are then used to find blobs on the image, each blob corresponding to one 

beacon. The localization system then estimates the unknown location from the detection 

image and the a priori information on the beacon positions. Note that the last step 

(localization) is not in the scope of this thesis, but a case study application will be presented to 

illustrate the achievable accuracy. 
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Figure 61. The proposed system architecture: (a) Modulated LED beacons. (b) Wide angle camera. (c) 

Beacon detection (d) Position estimation. 

6.1. System overview 

The architecture layers of the proposed long distance VLC beaconing can be seen on 

Figure 62. The beaconing part physically includes the LEDs and the associated driver circuits. 

In terms of logical layers, each beacon has a unique ID, which should be encoded to a bit 

stream, and the channel encoding is an on-off keying with an appropriate carrier frequency 

and duration. The beacon detection is performed with a camera, where the fundamental 

operation (sampling) properties are highly utilized in the proposed system. The bit and code 

detection are performed pixel-wise on consecutive frames. 

 Beaconing Detection 

 

Figure 62. Architecture layers of the proposed long distance VLC beaconing 
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6.1.1. Beaconing 

The beacon ID is encoded as a continuously repeated bit pattern. The codes begin with a 

header (11100), which is not allowed in any other position of the ID's bit pattern. In the tested 

system the length of the code (including header) was       bits. 

The channel encoding is illustrated in Figure 63(a). The encoder generates the on/off 

sequence and power level settings for the LEDs as follows: during bits one the LED is driven 

at full power and blinked with 50% duty cycle, while bits zero are encoded as constant (not 

blinking) light with half brightness.  The applied encoding scheme has the advantage that 

human eyes cannot see the modulation and flicker-free operation can be provided, if the 

modulation frequency is sufficiently high. The finite sampling (shutter) time of the camera 

somewhat limits the maximum usable frequency, but most cameras allow modulation 

frequencies much higher than 100 Hz. In the proposed system        Hz was utilized. The 

design considerations related to the modulation frequency    and the lengths of the pulses, 

coding the bits, will be discussed in Section 6.2. 

 

Figure 63. Coding and decoding of the beacon IDs. 
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6.1.2. Bit detection 

The LED beacons are observed with a camera, as shown in Figure 61. Although regular 

cameras cannot follow high speed light intensity changes, with proper settings suitable 

undersampling can be provided. With high speed shutter mode (where the shutter time 

       ) the camera takes short samples from each frame, as shown in Figure 63(b) and 

(c), thus blinking light provides frame sequences where the corresponding pixels show 

changes in intensity values. E.g. with         Hz a camera with 30 FPS sampling 

frequency provides 15 Hz alias frequency. 

The detector utilizes a comparator with hysteresis to convert each pixel of the detected 

image frame to a binary value, as shown in Figure 63(d). A state machine is operated for each 

pixel: it examines whether the last   value of the pixel contains changes or not, and provides 

the length of the last observed blinking segment     (which is the length of a bit 1 or a series 

of consecutive bits 1), or the length of the last observed static segment     (which is the 

length of a bit 0 or a series of consecutive bits 0). From the output of the state machine the bit 

values are identified and thus the bit stream is decoded, as shown in Figure 63(e). For the 

detection the designed symbol length values are used, see later in Table 5. To determine the 

number of consecutive bits, the designed signal length values (see in Table 5) and the 

corresponding     and     values are used (see Figure 65) 

6.1.3. ID detection 

The code detection algorithm continuously monitors whether the last    detected bits 

correspond to any of the beacon IDs, where    is the length of the transmitted code (including 

the header), as shown in Figure 63(f). The search is performed in parallel, using a code table 

      with     entries.  

The index of a code table entry corresponds to a possible detected bit sequence, while 

the table contains the corresponding ID (or an invalid symbol). Thus any possible rotation of a 

code can be detected after the reception of    bits, there is no need to wait for the header 

before decoding. 

The detection is performed as follows. For each valid beacon ID a detection image 

      is stored, initially each pixels being unmarked.           consecutive frames are 

processed, and in each frame for every pixel, using the last    detections    
,    
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  is determined: if    is a valid ID, then the corresponding pixel is marked in 

detection image      . 

After        samples the detection images are further processed to calculate the beacon 

positions. In the prototype system        was set to 250 frames. 

6.1.4. Beacon detection 

In the detection image       those pixels are marked, where beacon    was detected. 

First connected areas (blobs) are detected, then the centroid of each blob is calculated, along 

with the size of the blob. Blobs with size smaller than      are ignored, the others are used in 

the localization algorithm. The minimal blob size in the proposed system were set to      

 , based on the analysis presented in Section 6.4. 

6.2. Parameter design 

In this section methods will be presented to design the two key parameters for the 

system: the symbol length and the blinking frequency. 

6.2.1. Code parameter design 

Symbol length is one of the key parameters of a data transmission system. To examine 

the effect of different symbol sizes, a simulator was used. The simulator can virtually emit 

and observe an arbitrary lighting pattern, with tunable parameters (blinking frequency and 

camera FPS). 

 

Figure 64. Illustration of the test setup and signals: (left) emitted signals with symbol length    and (right) 

detected 1/0 symbols with lengths     and    . 

The test setup and the test signals are shown in Figure 64. Test signal #1 contains a 

blinking pattern with length   , preceded and followed by 500 ms constant signal segments. 

Similarly, test signal #2 contains a constant signal segment with length   , preceeded and 

followed by 500 ms blinking signal segments.  
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In the tests    was varied between 30 ms and 1500 ms, and for each length, 1000 

different beacon-camera time offsets and 15 different camera FPS setups (between 29 Hz and 

31 Hz) were used. 

Figure 65 shows the minimal (red dots) and the maximal (blue dots) observed pulse 

length values for test signal #1 (   , Figure 65(a)) and for test signal #2 (   , Figure 65(b)). 

 

 (a) (b) 

Figure 65. Detected length of (a) emitted blinking signals and (b) constant intensity signals. Red dots: 

minimal detected length, blue dots: maximal detected length. 

The minimal usable symbol length   
   is the shortest pulse, which is always detected, 

i.e.: 

              
    (33) 

              
    (34) 

Two consecutive symbols must always be different from one symbol, thus the shortest 

usable length   
   for two consecutive symbols must satisfy the following constraints: 

            
               

    (35) 

           
               

    (36) 

Similarly, for any consecutive   symbols the following unequality must be satisfied: 

                        
    (37) 

                       
    (38) 

To simplify the design and to provide a safety margin, calculations were made using the 

linearized upper and lower bounds for     and     (Figure 65 (a) and (b), dashed lines). The 

design procedure is symbolized with green line segments (Figure 65(a) and (b)), 
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implementing equations (36) -- (41). The design results for symbol lengths of 1 … 5 

consecutive 0 and 1 bits are summarized in Table 5. 

Table 5. Designed minimal impulse length values for 1 … 5 consecutive 0 or 1 bits (in milliseconds). 

  1 2 3 4 5 

  
  140 370 600 845 1080 

  
  110 380 690 1000 1340 

 

6.2.2. Error rate vs. blinking frequency 

The effect of using different blinking frequencies were demonstrated using the 

simulator described in Section 6.2.1. Test signal #1 was used, where the blinking frequency 

was varied between 150 Hz and 180 Hz and three different    values (200 ms, 400 ms and 

600 ms) were used. The camera FPS was set to 30 Hz. In each test run 1000 different beacon-

camera time offsets were simulated. A test run was considered to be successful if exactly one 

continuous blinking signal (i.e. a series of 1 bits) was observed, other cases (e.g. no detection 

or incorrect detections of 0 bits in between) were considered erroneous. For each blinking 

frequency the number of successful and erroneous detections were recorded. Figure 66 shows 

the error rate vs. the blinking frequency for different pulse lengths (200 ms, 400 ms and 600 

ms). 

 

Figure 66. Error rate of detection with 30 FPS camera vs. blinking frequency   , for impulse lengths of 

200 ms (blue), 400 ms (red) and 600 ms (green). 

As Figure 66 clearly shows, blinking frequencies between 156 Hz and 174 Hz 

(generating a 6-15 Hz alias frequency with the 30 FPS camera), give perfect results. The error 

rate dramatically increases below 155 Hz and above 175 Hz, where the alias frequency gets 

closer to the 0 Hz beat. 
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6.3. Implementation 

The proposed design was validated by a proof of concept system, shown in Figure 67. 

Each beacon contained a 10 Watt power LED, an LM3414 driver, providing constant current 

with good efficiency, and a pattern generator using an Atmega128RFA1-based sensor 

network node running TinyOS. The communication capability of the driver was used to 

implement remote control on the devices, but was not used in the beaconing process itself. 

 

Figure 67. The photo of the pattern generator, LED drivers (in plastic enclosure), and the power LED. 

The detection algorithm was implemented as a multithreaded C program. The images 

were split into slices, each processed by a separate thread. The image loading and processing 

subtasks were synchronized with a mutex-based barrier method.  

In the tests an Intel i5-3210M CPU was used with 4 cores, where 3 cores were reserved 

for image processing tasks. The implemented detector was able to process the 30 FPS 1080p 

video stream in real time. 

6.4. Evaluation 

In this section the performance of the long distance beaconing will be evaluated using 

real measurements, and an application example will be presented, which utilizes the proposed 

method. 

6.4.1. Detection accuracy 

The detection process may result in two types of error: a visible beacon may not be 

detected (false negative), or a beacon not present may be detected (false positive). To provide 

immunity against small-sized false positives, a minimal blob size      is defined: detections 

with size smaller than      are ignored.  
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To determine the optimal value of     , a test was performed, where 500 measurements 

were recorded using 4 beacons, placed at various positions, and 16 IDs (including the 4 

utilized ones) were used in the detector. Figure 68 shows the frequency of false positives and 

false negatives (straight red line and dotted blue line, respectively) vs. blob size threshold 

    . According to the measurements the optimal value of      is around 7, where the rates 

of both the false positive and false negative detections are around 5%. 

 

Figure 68. Probability of false positives and false negatives. 

6.4.2. Cluster size vs. distance 

As results of Section 6.4.1 show, the quality of the detection highly depends on the blob 

size. To characterize the relationship between the detected blob size and the beacon-camera 

distance, a measurement was performed. In the experiment the beacon-camera distance was 

varied between 5 and 50 meters and in each position 50 measurements were made. To model 

realistic scenarios, the camera and the LED was not facing each other, but rather each device 

pointed 45 degrees into the camera--beacon axis. In the tests 3 configurations were tested, 

with different average LED power values (5W, 2.5W, and 1W). 

For each measured distance the average, minimum, and maximum detected blob sizes 

are shown in Figure 69. The detected blob sizes increase as the power increases. Using 

      , the maximum distance for each power value can be determined from Figure 69: for 

1W and 2.5W the maximum distance was around 25m, while for 5W it was more than 30m. 
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Figure 69. Detected blob size vs. the distance between the beacon and the camera. Blue, red and green 

curves are recorded with average beacon powers of 5 W, 2.5 W and 1 W, respectively. 

6.4.3. Application 

The proposed beaconing method was applied in an indoor localization system [48]. The 

system utilizes beacons deployed at fixed and known positions, while the camera is to be 

localized.  

The beacons can be part of the existing lighting infrastructure, which is convenient and 

unnoticeable for the users. Since the detection does not require special cameras, the system 

can be used with smartphones as well, to provide accurate indoor positioning. In the tests 

inexpensive wide angle (fisheye) web-cameras were utilized.  

The system can utilize arbitrary number of beacons, which are detected using the 

proposed solution. From the detections and the known beacon positions the actual camera 

position can be calculated using trilateration or other fusion techniques [48]. 

A test scenario is shown in Figure 70(a). In this measurement 4 beacons were placed at 

the corners of a gymnasium of size 17 m x 30 m. The altitude of the sensors varied between 3 

and 4 meters. 

The image taken by the fisheye camera is shown in Figure 70(a). The beacon positions 

are marked and the beacons are color-coded for better visibility. 
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 (a) (b) 

Figure 70. Localization of the camera in a gymnasium. 

(a) Camera image. (b) Detected beacons (ID is color coded) with blob sizes. 

Figure 70(b) shows the detection images      …     , plotted in one figure, using the 

same color coding to identify beacons. The sizes of the blobs, corresponding to the detected 

beacons, are also shown. 

 

Figure 71. Localization of the camera in a gymnasium. Dots: fixed beacons, yellow cross: estimated 

camera position, red cross: true position 

In Figure 71 the localization result is shown. The figure shows a map, where the known 

beacon positions are shown with colored dots. The true and estimated positions are denoted 

by red and yellow crosses, respectively. In the experiment the true camera position was (20.8 

m, 7.91 m), while the detected position was (20.73 m, 8.03 m), the error being 0.14 m. 

Multiple tests were performed to characterize the accuracy of the localization system. 

Using 4 beacons and 49 test positions, scattered in the test area shown in Figure 70, the mean 

absolute error was 0.17 m. 

6.5. Conclusion 

A beaconing and a corresponding beacon detection scheme was proposed using LED 

lights and inexpensive cameras. The beacons use VLC to transmit their IDs, using a coding 

scheme enabling flicker-free user experience. The high frequency blinking of the beacons is 
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detected by ordinary cameras, utilizing proper undersampling of the signal. A method to 

design the system parameters was presented.  

According to measurement results, the proposed detector requires only a small number 

of image pixels (7 pixels) to provide robust beacon detection and identification. In the 

presented proof of concept system, using average power of 5 W for the LEDs, the beacons 

were reliably detected form distances as large as 30 m. The proposed beaconing scheme was 

illustrated in a localization case study, where the unknown camera location was determined 

using 4 fixed beacons, with accuracy in the decimeter range. 
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7. Summary 

In this thesis novel methods and algorithms for object localization and tracking services 

were presented. The result covered algorithms for radio-interferometric tracking, radio-

interferometric phase-difference measurements, and a beaconing solution for image-based 

localization services. In the following chapters the presented solutions will be summarized, 

compared to applications in the literature and possible application fields will be presented. 

7.1. New results 

In this thesis novel methods and algorithms for object localization and tracking services 

were presented. Two radio-interferometric tracking algorithms were presented, the first 

solution (Section 3) is a geometric based approach, with which a moving target can be tracked 

from a known initial position. The second solution (Section 4) is based on a novel error 

function (confidence map) and it can both (1) track an object from a known initial position 

and (2) determine the full track and the initial position of the object retroactively, in case the 

method converges to a single solution. The proposed methods provide centimeter accuracy 

when the speed of the object is low (<1 m/s in the current implementation). 

To aid the measurement process in radio interferometric applications, a novel 

distributed and efficient method was proposed to measure the phase differences. The new 

solution provides more accurate phase difference measurements than the current solutions, 

even in case of various waveforms, amplitudes, and noisy conditions. The proposed solution 

is distributed such that both the computational demand on the low-end measurement devices 

and the communication bandwidth required to transmit measurement results are low. 

In a different application domain (image-processing-based indoor localization systems), 

a novel method was proposed to create long-distance beaconing, using Visible Light 

Communication (VLC). Beacons transmit their own IDs using VLC with high enough 

frequency (>100 Hz) to avoid flickering effect. The novel solution uses undersampling, which 

allows the utilization of simple sensors (e.g. inexpensive digital cameras with frame rates as 

low as 30 fps). Since the decoding requires only a few pixels on the image, the beacons can be 

reliably detected even from long distances. 
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7.2. Future research 

The main bottleneck of current radio-interferometric solutions is the rather limited 

allowed object speed. The upper limit for the object speed was derived in (13), as a function 

of the applied wavelength and sampling frequency. According to (13), by increasing the 

sampling frequency the achievable object speed could be increased. For this, however, new 

and faster measurement process must be developed, and also the scheduling mechanism of the 

application must be enhanced. 

The confidence-map based tracking solution utilizes ideal phase maps. Real phase 

maps, however, may significantly be distorted, e.g. around large metallic objects, see e.g. 

[S11]. This phenomenon may lead to significant bias of the position estimate in certain space 

regions. Improved solutions may use more precise ideal phase maps (e.g. derived from more 

accurate models or physical measurements). 

The proposed VLC beaconing method is suitable for localization of static objects. A 

possible improvement of the beaconing scheme is to make detection possible when the 

tracked object (i.e. the camera) is moving. Also the speed of detection could be improved to 

provide more responsive systems. 

7.3. Application and comparative evaluation 

Radio-interferometric tracking does not require the creation of reference maps, as 

several other radio-signal based methods do, thus the deployment and maintenance of the 

proposed solutions are easier and more cost efficient. The accuracy of the proposed methods 

would allow its application in asset tracking or personal tracking applications. The allowed 

object speed of the current solution, however, is a bottleneck yet. 

The radio-interferometric tracking method, described in this thesis, was patented in 

[S1]. At the time of its invention, the proposed solution was unique in the sense that it could 

be implemented in low-end, inexpensive devices and its accuracy was still among the bests. In 

the last few years, however, radio time-of-flight based solutions matured and nowadays they 

provide similar accuracy with mass-produced inexpensive devices. 

VLC-based localization is able to provide viable alternatives to today’s most accurate 

but still expensive solutions. For applications with high accuracy demand the most accurate 

solutions utilized 2D or 3D laser scanners, providing accuracy in the mm range. For the cm-

range domain the proposed VLC-based method can provide much more economic solutions. 

The beaconing method, described in the thesis, was utilized in an indoor localization system, 
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which participated in the Microsoft Indoor Localization Competition 2015, where our system 

proved to be the 6
th

 most accurate system. 

In the following paragraphs the proposed radio-interferometric tracking methods and an 

optical localization solution, using the proposed beaconing method, will be compared to other 

typical methods, presented in the literature. The selected representative methods include 

acoustic TDoF, WiFi signal-strength (with and without a priory measurements), dead 

reckoning, LIDAR, and radio ToF based solutions. The detailed descriptions of the methods 

can be seen in Section 2.2. The comparison of the methods is made using the following 

system properties: relationship of localization and tracking, achievable accuracy, hardware 

requirements and cost, as shown in Table 6. The comparison in Table 6 also shows the 

utilized basic geometric model, and the need of a priory measurement. 

Relationship of localization and tracking: Most of the applications presented in the 

literature perform object tracking by periodical object localization. Thus the exact position is 

determined in every time instant and the path of the object is defined as the series of the 

consecutively localized object positions. In contrast, the proposed radio-interferometric 

methods measure the movement of the object, thus for the exact object location the origin of 

the path should be known. In that sense the radio-interferometric tracking is similar to 

odometry and dead reckoning based methods, but with the robust algorithms, presented in 

Section 3.2, the accumulation of errors can be avoided. 

Accuracy: With proper installation (i.e. well established infrastructure) acoustic 

localization and radio-interferometric tracking can achieve a positioning error in the range of 

a few centimeters. In [1] the error of the localization is on the same magnitude as the 

deployment error of the infrastructure devices. Lower accuracy (in the range of 1.5 m – 3 m) 

can be achieved with signal strength based methods, utilizing a reference map (fingerprinting 

methods). In [3] the average error was 2.1 m, and 1.85 m with 90% probability. The 

localization error of the signal strength based methods, utilizing only a mathematical model 

(i.e. without reference map), is heavily influenced by the environment and the measurement 

method. The positioning accuracy can be 2-5 m, or in worst cases it is only suitable for rough 

zone identification. In [2] the reported maximum accuracy was 3 m. LIDAR (laser scanner) 

based solutions utilize the point cloud derived from the device’s precise angular and range 

measurements. With structural recognition and matching between the point cloud and the 

known model of the environment the achievable accuracy is in the range of a couple of 

centimeters [49]. Imaging based positioning methods have an accuracy range from sub-
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millimeter (e.g. part inspection) to a few meters (e.g. zone identification). The localization 

error heavily depends on the distance between the localized object and the camera, and also 

on the utilized image resolution. In [S14] an indoor localization system, utilizing the proposed 

beaconing method was introduced, which has accuracy in the low decimeter range in large 

indoor setups. 

At the inception of the proposed radio interferometric tracking methods the localization 

error of time-of-flight based solutions, utilizing radio signals, were 1-2 m or >10 m in cases 

where the environment heavily scattered the signal. In [5] the reported error was 3.4 m in a 

room, 5.5 m in a corridor, and 18 m in a coal mine. In the last few years not only the hardware 

cost has been reduced (due to the mass-production, see [7]), but also the accuracy has highly 

been increased. In the current methods the achievable accuracy is in the range of a few 

centimeters [6]. 

Hardware requirements, hardware cost: Acoustic (mainly ultrasonic) localization 

methods require special hardware elements; loudspeakers and microphones. The integration 

of the loudspeakers to small form factor or waterproof devices is challenging and the required 

power for the driving is also high. The processing of the recorded signal of the microphone 

also requires specialized hardware or high computation power, thus preventing the application 

in low-cost devices. Signal strength based and radio interferometric methods require the 

readily available radio-module of the devices, thus eliminating the additional cost for a 

specialized hardware component. At the inception of the radio-interferometric tracking, the 

time-of-flight based radio chips were specialized and expensive, but in the last few years their 

cost have heavily dropped due to the mass-production, thus radio-modules with integrated 

time-of-flight measurement hardware are widely available [7]. Imaging applications require 

cameras and high computational power, thus costly hardware. Note that in several 

applications smart phones with an integrated camera are used for self-localization. LIDAR 

based applications require very expensive laser scanners [49]. 
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Table 6. Comparison of object localization and tracking solutions 

 

Radio-inter-

ferometric 

tracking 

Radio-inter-

ferometric 

localization 

[13] 

VLC based 

optical 

localization 

[S14] 

Laser 

scanner 

[49] 

Acoustic 

localization 

[1] 

Signal-

strength based 

localization 

[2] 

Signal 

strength and 

reference map 

based 

localization 

[3] 

Radio ToF 

localization 

in 2006 

[5] 

Radio ToF 

localization 

in 2016 

[6] 

Pedestrian 

dead 

reckoning 

[10] 

Relationship 

of localization 

and tracking 

localization 

 
tracking 

(for stationary 

objects only) 

localization 

 
tracking 

localization 

 
tracking 

localization 

 
tracking 

localization 

 
tracking 

localization 

 
tracking 

localization 

 
tracking 

localization 

 
tracking 

localization 

 
tracking 

Basic 

geometric 

model 

set of 

hyperboloids 

set of 

hyperboloids 
sphere -- hyperboloids sphere sphere sphere sphere -- 

Special 

hardware 

requirement 

none none 
yes 

(low cost) 

yes 

(very 

expensive) 

yes 

(high power) 
none none 

yes 

(expensive) 

yes 

(low cost) 

yes 

(low cost) 

a priori 

measurements 

(reference 

map) 

none none none 
reference 

model 
none none reference map none none none 

Accuracy 
few 

centimeters 

few 

centimeters 

(noise free 

environment) 

few 

centimeters 

sub- 

centimeter 

few 

centimeters 

(noise free 

environment) 

max: 3 m 

avg. err: 2,1 m 

 

90% 

probability: 

1,85 m 

indoor: 

max. 3,4 m 

 

corridor: max.: 

5,5 m 

 

coal mine 

max.: 18 m 

few 

centimeters 

few 

centimeters 

(short range) 
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The methods and solutions of Table 6 can serve for different application fields. Clearly 

the applicability of a method is mainly determined by the cost and the accuracy of the 

solution. 

A typical application area is person tracking where the accuracy demand is relatively 

low (few meters or room-level) and at the same time it is very cost sensitive. Thus a suitable 

solution would use either existing infrastructure or none at all. WiFi based solutions are 

popular along with dead reckoning methods: these operate on existing hardware with special 

software. For higher accuracy demands the proposed solutions may be viable alternatives, 

since the cost of the infrastructure (a few radio-transceivers or LED beacons) is not high and 

the cost per tracked object (one radio-transceiver or one inexpensive camera) is low, and at 

the same time the provided accuracy fulfills the requirements of the application domain. 

Typical applications include tracking of expensive assets in industrial environments, tracking 

of mobil devices in hospitals, and tracking of persons in either homecare or in hospitals.  

Higher accuracy demands arise from autonomous vehicles, where low centimeter-range 

accuracy is necessary for reliable operation. Current solutions apply expensive LIDAR (laser 

scanner) devices, where the cost per tracked object can exceed $10.000. In such application 

areas the proposed solutions (both the radio-interferometric and the optical) can provide the 

required accuracy in a much more cost efficient way. 
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8. Summary of Theses 

Thesis 1 

I proposed a novel radio-interferometric object tracking solution. The proposed system 

is able to track a moving radio transceiver using infrastructure transceiver nodes deployed in 

known and fixed positions. The proposed solution is based on the radio-interferometric 

measurement presented earlier in the literature. The proposed solution is able to track an 

object from a known initial position, using a series of phase measurements. The method 

provides centimeter accuracy when the speed of the object is low (<1 m/s in the current 

implementation). 

1.1 I proposed a new object tracking method using a series of radio-interferometric phase 

measurements. I provided design criteria on the necessary sampling frequency of the 

phase measurements as a function of the tracked object’s speed. The proposed 

solution has geometric interpretation known in the literature: in 2D, one wrapped 

phase difference measurement (due to its    periodicity) provides a set of 

hyperbolas, as possible location of the object. From two independent measurements 

the intersections of the two sets of hyperbolas provide a set of points, as possible 

position estimates. In the proposed method, if the object position is known in the 

previous time instant then the new position estimate will be one of the intersections, 

closest to the previous object position. The proposed solution can be generalized to 

3D, using three independent measurements and hyperboloid surfaces. 

1.2 To increase the accuracy of the radio-interferometric tracking I proposed an 

enhanced solution using arbitrary number of independent phase difference 

measurements. In the proposed solution an error surface was applied, the minimum 

of which defines the position estimate. The performance of the proposed redundant 

tracking method was verified using simulations and real measurements. 

1.3 I formalized a new Simultaneous Phase Unwrapping problem as follows. Discrete 

time series of wrapped phase values are determined from   separate measurement 

channels, where      denotes the principal phase measurement from measurement 

channel            , at time instant  . The unwrapped phase values      are 

determined by minimizing                    , such that               , 
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where correction parameters      are integer multiples of   . The cost function      

describes the high-level (application specific) relationship between the channels. 

1.4 I proposed a robust method to compensate for faulty or missing measurements, using 

Simultaneous Phase Unwrapping. I defined an appropriate error function      for the 

radio-interferometric application domain. The proposed method is able to detect and 

automatically compensate for faulty measurements. The performance of the proposed 

fault-tolerant tracking method was verified using simulations and real measurements. 

Related publications: [S1], [S4], [S5], [S6], [S10], [S12] 

Thesis 2 

I proposed a novel radio-interferometric object tracking solution in 2D. The proposed 

solution uses multiple series of measurements to (1) track an object from a known initial 

position or (2) determine the full track and the initial position of the object retroactively, in 

case the method converges to a single solution. In case (2) the exact conditions of the 

convergence are not known. The proposed solution uses the phase measurement principle 

applied in Thesis 1, but utilizes a novel error function, derived from the differences of the 

measured phase values and the ideal phase map, calculated from the positions of the reference 

devices. 

2.1 I defined a new error function to support radio-interferometric tracking. For M 

independent measurement channels, M error maps are calculated as the difference of 

the ideal phase maps and the actual measurements. The composite error function 

over the full search space is constructed as a squared sum of the error maps. From the 

composite error function a confidence map was created where high values show high 

likelihood of the estimated position. 

2.2 Using a confidence map I defined a method to track an object from a known initial 

position. If the object position is known in the previous time instant and the 

measurements are performed with a sampling frequency allowing unambiguous 

phase determination then the new position estimate will be the peak of the 

confidence map, which is closest to the previous object position. The performance of 

the proposed tracking method was verified using simulations and real measurements. 

2.3 Using the confidence map I proposed a novel solution to calculate the full track of 

the object from an unknown initial position. The proposed method is based on the 

phenomenon that along the real track the confidence values are always high. The 
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novel method follows every possible track until its confidence value decreases below 

a threshold. When the method converges to a single solution, the last surviving track 

contains the full path of the object, including its initial position. Although the exact 

conditions of the convergence are not known, due to the complexity of the problem, 

the performance of the proposed tracking method was verified using simulations and 

real measurements. 

2.4 I defined an adaptive solution to calculate the peak positions of the confidence map. 

The peaks are located using a threshold, derived empirically from the actual 

statistical properties of the confidence map. The advantage of the proposed solution 

is that it provides more robust tracking than the method using constant threshold, 

when non-ideal measurement conditions are present. The performance of the 

proposed adaptive peak extraction method was verified using real measurements 

2.5 I proposed a new predictive method to compensate for path losses, caused by faulty 

measurements. The proposed solution does not delete a track when its confidence 

value decreases below the threshold, but rather the track is suspended. In suspended 

state the position is predicted using the detected movements of nearby peaks of the 

confidence map. When the confidence level of a suspended track exceeds the 

threshold again, it becomes active. A track is deleted if it stays in suspended state for 

a time longer than an empirical time limit. The robustness of the proposed predictive 

method was verified using real measurements 

Related publications: [S2], [S4], [S6], [S7], [S8], [S11] 

Thesis 3 

I proposed a novel distributed and efficient method to measure the phase difference in 

radio-interferometric tracking applications. The proposed solution allows accurate phase 

difference measurement even in case of various waveforms, amplitudes, and noisy conditions, 

occurring in real situations. An additional advantage of the proposed method is that the 

calculations required for phase estimation are distributed such that both the computational 

demand on the low-end measurement devices and the communication bandwidth required to 

transmit measurement results are low.  

3.1 A proposed a novel method to estimate the phase of periodic signals with respect to a 

reference. Since in this application domain the shape and amplitude of the signal, 

measured in different places of the space by different devices, may differ 
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significantly, the peak positions of the signal were selected as invariant points for 

phase measurement. Unfortunately, when the SNR is low, peaks are hard to detect 

accurately, thus in the proposed solution the peak positions are estimated using the 

steep rising and falling edges of the signal, exploiting the symmetry of the signal. 

The phase estimation is performed by using multiple detected peak positions.  

3.2 I proposed a distributed calculation method to support phase and phase difference 

measurements in low complexity measurement devices. On the low-end devices only 

the most necessary operations are performed using integer arithmetic. The partial 

results are transmitted using wireless communication and are further processed in the 

higher complexity central computer using floating point arithmetic. The size of the 

transmitted partial results is even smaller than the size of the final result. Thus the 

proposed solution has low computational demand on the measurement devices and at 

the same time requires low communication bandwidth.  

3.3 I proposed a distributed measurement system to support synchronized radio-

interferometric measurements. The devices of the proposed system utilize the 

measurement method described in 3.1, the phase difference estimation process 

utilizes the distributed calculation method described in 3.2, and the whole 

measurement process is controlled and synchronized by a central controller unit, 

using time division multiple access scheduling. The performance of the proposed 

system was verified using simulations and real measurements. 

Related publications: [S3], [S7], [S9], [S12]  
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