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UNIVERSITY OF PANNONIA

Abstract
Doctoral School in Management Sciences and Business Administration

Department of Quantitative Methods

Doctor of Philosophy

Risk-Based Statistical Process Control

by Attila Imre KATONA

Control charts are powerful tools of statistical process control. In the scientific litera-
ture, there is a large scale of control charts that can be used under different conditions
(e.g., non-normality, autocorrelation etc...) however, most of them disregard the dis-
tortion effect of measurement errors. Importance of measurement uncertainty was
strongly emphasized by several scholars and in comparison to that, the number of
papers dealing with control chart under the presence of measurement error is way
below the expectations. Furthermore, these few studies analyzed the effect of the
measurement uncertainty but give no detailed and comprehensive solution or pro-
pose new control chart that is able to reduce the risk of incorrect decisions. On the
other hand, measurement errors are characterized based on the expected value and
standard deviation of the distribution function but effect of skewness and kurtosis
on conformity / process control performance were not investigated.

In this dissertation, the author provides systematic literature review in order to
explore the relevant studies and highlight the deficiencies of control chart design
research field. Effect of 3rd and 4th moments (skewness, kurtosis) of measurement
error distribution on total inspection and acceptance sampling is analyzed through
simulations and several sensitivity analysis are provided. Applying the results of
the aforementioned analysis, a new risk-based multivariate (RBT2) and adaptive
(RB VSSI X) control chart design approaches are proposed with the consideration
of measurement uncertainty. Simulations and sensitivity analyses were provided in
order to demonstrate the performance of the proposed RBT2 and RB VSSI X chart
under different conditions.

The developed risk-based control charts are able to decrease the amount of type
II. errors (prestige loss) by the optimal adjustment of control lines taking measure-
ment uncertainty into account. Process shifts can be detected more precisely in mul-
tivariate (RBT2) or adaptive (RB VSSI X) cases as well. In addition, even sampling
procedure can be rationalized with the RB VSSI X chart.

As limitation of the method, the process performance value were estimated where
it is still beneficial to consider the effect of measurement errors.

Finally, real practical examples were provided and laboratory experiments were
organized to validate the existence of skewed measurement error distribution and
verify applicability of the proposed methodology at a company from automotive
industry.
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Zusammenfassung
Doctoral School in Management Sciences and Business Administration

Department of Quantitative Methods

Doktor der Philosophie

Risikobasierte Statistische Prozesskontrolle

von Attila Imre KATONA

Regelkarten sind leistungsfähiges Mitteln von statistische Prozessregelung. Im Fachli-
teratur, vielfältige Regelkarten wurden entwickelt die unter anderen Rahmenbe-
dingungen (z.B. Nicht-Normalverteilung, Autokorrelation, usw...) verwendbar sind,
aber diese Regelkarten berücksichtigen die Effekt von Mesffehler nicht.

Viele Forscher betonten das Wichtigkeit der Messunsicherheit, trotzdem gibt es
nur wenige Studien die analisieren die Effekt des Mesffehlers an der Performance
den Regelkarten. Zusätzlich diesen wenige Studien fokussieren sich auf die Perfor-
mance den Regelkarten, aber geben keine Vorschlag zur Behandlung von Messun-
sicherheit oder zur Reduktion den Entscheidungsrisiken. Messfehlers werden ande-
rerseits gekennzeichnet durch Erwartungswert und Standardabweichung des Dis-
tributions aber Auswirkungen von Schiefe und Kurtosis auf Prozesskontrolle wur-
den nicht analisiert.

In dieser Dissertation, der Autor führtet eninen systematischen Literatur Durch-
sicht um relevanten Artikeln zu erkunden und Mängel im Literatur zu markie-
ren. Auswirkungen von Schiefe und Kurtosis des Messunsicherheitdistributions auf
Konformitätskontrollstrategie wurden durch Simulationen und Sensitivitätsanaly-
sen untersucht.

Ergebnisse den Simulationen wurden verwenden um neuen risikobasierte mul-
tivariate (RBT2) und adaptive Regelkarten (RB VSSI X) zu entwickeln. Beide vor-
schlägten Regelkarten konnten die Menge den Typ-II Fehlern reduzieren durch die
Optimierung den Kontrollgrenzen. Die Veränderung von Prozess Erwartungswert
kann effektiv identifizieren werden und auch Stichprobenverfahren kann rationali-
siert werden mit die adaptive riskbasierte Regelkarte.

Als Beschränkung, das Wert dem Prozessleitungsfähigkeitsindex wurde geschätzt,
womit die Berücksichtigung von Messunsicherheit noch sinvoll ist.

Praktische Beispiele und laboratorische Experimenten wurden schließlich bereit-
gestellt um die eingeführten Methoden zu prüfen und die Anwendbarkeit zu de-
monstrieren.
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Chapter 1

Introduction

1.1 Motivation of the Thesis

Control charts are powerful tools of production management. In case of process
shift, the chart gives signal and the production equipment can be maintained in or-
der to avoid the increased number of defective products.(Montgomery, 2012, Woodall
and Montgomery, 1999, Kemény et al., 1998). Furthermore, the process is "in-control"
when the value of the product characteristic falls within the statistically determined
control limits (Shewhart, 1931, Besterfield, 1994).

The traditional control chart philosophy does not consider the risks of the deci-
sions, however, every decision in the process control is distorted by different sources
like sampling or measurement uncertainty (Hegedűs et al., 2013a, Katona, 2013) This
thesis focuses on decision risks caused by the uncertainty of measurement, because
measurement errors can be modeled well and the distribution of errors can be easily
simulated.

Although consideration of measurement uncertainty is not included in tradi-
tional control chart design approach, producers’ and suppliers’ risks are frequently
discussed topics in conformity or process control (Lira, 1999). If the measuring de-
vice or the measurement process is not accurate enough, incorrect decisions (e.g.,
unnecessary stoppage or missed maintenance) can be made. (Pendrill, 2008). There-
fore, the rate of producer’s and customer’s risk is strongly depending on the mea-
surement uncertainty, leading to prestige loss for the manufacturer company. Mea-
surement errors can occur in conformity control and statistical process control as
well. Figure 1.1 illustrates the effect of measurement errors on conformity assess-
ment.
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FIGURE 1.1: Illustration of measurement errors on conformity assess-
ment (source: own edition based on AIAG, 2010)

On Figure 1.1, y denotes the observed value of the monitored product character-
istic. Due to the existence of measurement error, the real value can be considered
as a probabilistic variable which is assumed to follow normal distribution in this
example. If the observed value is close to the specification limit, the probability of
incorrect decision increases. Incorrect acceptance (type II. error denoted by β) is
committed if the product is conforming based on the observed value however, the
real value falls outside the acceptance interval. In the opposite case, incorrect rejec-
tion (type I. error denoted by α) occurs, that is to say the observed value falls outside
the acceptance interval but the product is conforming based on the real product
characteristic.

As it was mentioned before, measurement errors not only affect the outcome of
conformity testing but also can have significant impact on statistical process control.
The effect represented by Figure 1.1 can be applied to statistical control charts as well
(Figure 1.2):
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FIGURE 1.2: Illustration of measurement errors on control charts

Figure 1.2 shows an X chart where the observed sample mean is denoted by the
black dot and real sample mean is represented as probabilistic variable (It is assumed
that measurement errors follow normal distribution.). The fourth sampling event
highlights the probability of incorrect acceptance of the process. If type II. error is
committed, a necessary maintenance is skipped which can lead to delayed detection
of process shift or even to serious machine failure. Fifth sampling event shows the
probability of type I. error leading to unnecessary stoppage which can be extremely
cost-intensive too.

In order to reduce the decision risks, traditional control charts needs to be im-
proved and risk-based aspect (RB) needs to be considered, where control limits are
optimized in order to minimize the risks of the decisions. Although there are recom-
mendations by several measurement manuals (BIPM et al., 1995, Eurachem, 2007b,
they cannot handle the measurement uncertainty comprehensively, because these
recommendations assume the normality of the measurement error distribution. The
literature of statistical process control includes a wide scale of control charts operat-
ing on reliability base, but a gap can be observed in the literature according to the
field of the control charts based on risk-based philosophy. The aim of the thesis is to
develop a family of risk-based control chart which is able to reduce the decision risks
arising from the measurement uncertainty. In my thesis I determine the following
research questions and research proposals:
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Research Questions

Q1: Which moments of the measurement error distribution function (expected value,
standard deviation, skewness, kurtosis) can describe the measurement uncer-
tainty?

Q2: What is the cost reduction rate that can be achieved while using a risk-based
multivariate control chart instead of a traditional multivariate chart?

Q3: What is the cost reduction rate that can be achieved while using a risk-based
control chart with variable sample size and sampling interval compared to the
traditional VSSI X-bar chart?

Research Proposals

P1: All four moments of the measurement error distribution function need to be
considered by the characterization of the measurement uncertainty.

P2: 3-5% total decision cost reduction can be achieved with risk-based multivariate
control chart compared to the "traditional" multivariate control chart.

P3: 3-5% total decision cost reduction can be achieved with risk-based adaptive
control chart compared to the "traditional" adaptive control chart.

Rest of the dissertation is organized as follows:
In Chapter 2, I introduce the methodology and results of the systematic litera-

ture review, Chapter 3 presents the proposed methods. Simulation results are pro-
vided in Chapter 4, sensitivity analyses are conducted in Chapter 5, applicability is
demonstrated through real practical examples by Chapter 6. Finally, I summarize
my research results and implications in Chapter 7.

The next chapter reviews the scientific literature related to the research topic.
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Chapter 2

Related Studies

2.1 Methodology of the literature research procedure

In order to explore the related studies and review the most relevant researches ac-
cording to the field of statistical control charts/measurement uncertainty, I con-
ducted a systematic review including classification of the related articles as well.
A survey-based content analysis was applied to classify the related researches (see
Kolbe and Burnett (1991) for more detailed information about content analysis). Fol-
lowing the structure used by Maleki et al. (2016) and Hachicha and Ghorbel (2012) -
who conducted content analysis in the field of statistical process control - the litera-
ture research included two steps: First, the set of appropriate scientific studies needs
to be determined. Secondly, the identified set of papers needs to be classified using
predefined categories.

In order to ensure that relevant studies were not missed, I also extended the
aforementioned two steps with an additional one: Refinement. Within this step,
citation data of the collected papers were also analyzed. With the help of this, I was
able to find those papers that were not included by the current platform I used for the
search. Based on that, the structure of systematic literature search can be described
as follows:

1. Collection

2. Classification

3. Refinement

Since my research questions cover two main research fields (research question Q1
refers to measurement uncertainty researches and research questions Q2-Q3 apply to
the research field of statistical control charts), the aforementioned literature search
was provided twice: on one hand, I considered the set of researches dealing with
measurement uncertainty, on the other hand the relevant literature of control charts
was analyzed. In Subsection 2.1.1 and 2.1.2, the two major steps of the literature
search are discussed.

2.1.1 Collection

In order to determine the appropriate set of literature, scientific journal articles,
industrial standards and conference papers were considered using computerized
search with specific keywords like: "measurement uncertainty","measurement error",
"gauge error", "skewed distribution" to find the researches related to measurement un-
certainty topic. Furthermore, "control chart", "statistical process control", "variable mon-
itoring" terms were used to find the researches associated with control chart topic.
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The main platforms and publishers I used for the literature search were Google
Scholar, ScienceDirect, Web of Science, Taylor & Francis, Springer Link, Emerald
Insight, IEEE Xplore, Scopus and IOPScience.

It is also important to define which papers are relevant according to the topic of
my thesis. Since the research questions/proposals cover two main research fields,
relevance of the papers needs to be defined from the perspective of the two research
fields:

Control charts The paper is relevant and can be added to the collection if it de-
velops a new methodology related to control charts. That is to say, studies that are
focusing on existing control chart approach on a new field of application are not
relevant from the point of view of the thesis.

Measurement uncertainty and conformity control The paper (or standard) is rel-
evant if it either deals with the expression/interpretation of the measurement uncer-
tainty under symmetric/asymmetric measurement error distribution or focuses on
the effects/treatment of measurement uncertainty in conformity control.

2.1.2 Classification

As the next step, the collected papers were classified using a conceptual classifi-
cation scheme. Similarly to Maleki et al. (2016) and Hachicha and Ghorbel (2012)
I used predefined questions and possible answers to classify the selected papers.
Since the research questions cover two main research fields (measurement uncer-
tainty and statistical process control charts), two versions of classification surveys
were constructed. First, I introduce the survey used for the classification of litera-
tures regarding measurement uncertainty.

Literature of measurement uncertainty

Table 2.1 shows the question-response set regarding the papers dealing with
measurement uncertainty.

TABLE 2.1: List of questions and possible responses according to the
papers with measurement uncertainty topic

Nr. Questions/Responses

1 What is the main focus of the paper?
1.1 It deals with the expression of measurement uncertainty.
1.2 It deals with the consequences of measurement uncertainty in product conformity.
2 What kind of distribution the paper assumes for the measurement errors?
2.1 It assumes symmetric error distribution.
2.2 It assumes asymmetric error distribution.

My thesis focuses on statistical process control and conformity control, there-
fore it is important to identify which studies develop/discuss different approaches
for the expression of the measurement uncertainty under different conditions, and
which studies aim to propose methods for handling of measurement uncertainty in
conformity control. While the first set of studies provides different approaches to
determine or describe measurement uncertainty (not just in conformity control), the
second set of researches focuses more on the consequences of measurement uncer-
tainty.
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Since Research Question Q1 applies to the influence of the moments of the mea-
surement error distribution, it is also important to identify the related studies that
considered asymmetric distribution types. In this thesis, the most relevant studies
are the ones that:

• deal with the consequences of the measurement uncertainty in conformity con-
trol and/or

• assume asymmetric distribution type(s) for the measurement error.

In the next part, I introduce the questions/responses related to the literature of con-
trol charts.

Literature of control charts

Table 2.2 shows the question-response set regarding the papers proposing control
charts.

TABLE 2.2: List of questions and possible responses according to the
papers developing control charts

Nr. Questions/Responses

1 What is the dimension of the monitored quality characteristic(s)?
1.1 Univariate
1.2 Multivariate
2 Does the proposed method consider measurement errors?
2.1 No (Traditional control chart)
2.2 Yes (Risk-based control chart)
3 Is the proposed control chart applicable under non-normality?
3.1 No (Parametric control chart)
3.2 Yes (Non-Parametric control chart)
4 Does the proposed control chart apply variable chart parameters?
4.1 No, it is a control chart with fixed parameters (FP chart)
4.2 Yes, it is an adaptive control chart
5 If the study deals with adaptive chart parameters, which parameters are variable?
5.1 Sample Size (VSS control chart)
5.2 Sampling Interval (VSI control chart)
5.3 Control Limits (VSL control chart)
5.4 All the three chart parameters (VP control chart)

In this literature research, control charts for attributes and economic design-
related papers were not considered. The first question identifies whether the given
paper deals with univariate (e.g., Shewhart type, EWMA, MA, CUSUM) or multi-
variate quality characteristics (e.g., T2, MCUSUM, MEWMA). Question 2 is intended
to reveal the nature of the proposed approach from risk’s point of view. To be more
specific, studies that consider measurement uncertainty as a risk factor during the
control procedure were labeled as "Risk-based" approaches. Similarly, if the given
paper proposes a new type of control chart however, it does not take the measure-
ment uncertainty into account, it was labeled as "Traditional" approach. Question 3
makes difference between studies dealing with parametric and non-parametric con-
trol charts, and question 4 distinguishes between adaptive control charts and control
charts with fixed parameters. Question 5 only makes sense if response 4.2 is true. It
is necessary to note, that responses 5.1, 5.2 and 5.3 are allowed to be true in the same
time by one study, meaning that papers can be assigned to VSS, VSI and VSL cate-
gories simultaneously. However, since VP charts are getting increased attendance,
this set of researches/papers was considered as a separated group (Nenes, 2011).
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2.1.3 Refinement

There are situations when the currently used platform does not include a paper that
would be relevant according to the selected topic. So that a relevant paper may not
be missed, I analyzed the list of citing references for all the papers found by step 1
(collection). If further papers were found (through the citation list), they were added
to the already collected researches.

Not only the selected articles but the information about citation was also gath-
ered. The information were stored in a database with two tables where the first one
contains the information about the scientific paper (authors, title, journal, keyword,
topic) and the second one represents the citing relations between the collected arti-
cles. This structure allows to build network-type visualizations in order to illustrate
the structure of the studied research areas (and their sub-areas as well.).

It is important to note, that PRISMA Statement (Preferred Reporting Items for
Systematic reviews and Meta-Analyses) was developed in order to support the pro-
cedure of systematic literature review. PRISMA provides a checklist with 27 ele-
ments and flow-diagram to help the researchers to improve the quality of literature
review (Moher et al., 2009). The referred flow-diagram includes the following main
steps:

1. Identification: Collection from databases and other external sources

2. Screening: Removal of duplicates

3. Eligibility checking

4. Removal of not relevant studies

The main difference between the applied literature research methodology and
PRISMA approach is the following: While PRISMA provides a simple process flow,
the proposed literature research method includes iterative elements. Even the clas-
sification rules can be revised and refined if new research field can be identified
through the exploration of the citation data.

In the following section I introduce the result of the literature research.

2.2 Result of the literature research

Networks were used to visualize the quantity of researches and citing relationship
in the analyzed fields. In this section I introduce two main networks, the first repre-
sents the result of the literature research in measurement uncertainty and conformity
control area, while the second visualizes the structure of papers regarding control
charts.

2.2.1 Measurement Error and Conformity Control

Figure 2.1 shows the result of the systematic literature search I conducted related to
measurement uncertainty and conformity control.
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FIGURE 2.1: Result of the literature research (measurement uncer-
tainty area)

Since my first research question (Q1) is related to the distribution properties of
measurement error, the main goal of this review was to identify the most relevant
studies that deal with asymmetric measurement error distributions in the field of
conformity control. After the search I classified the papers using the survey de-
scribed by Table 2.1.

Nodes represent the reviewed papers and edges represent the citing relationship
between them. Blue nodes illustrates the responses related to each question from Ta-
ble 2.1 so they illustrate the result of the classification (in other words, the blue nodes
represent the structure of the aforementioned survey). The reviewed and classified
papers were colored with red, however there is a group of papers highlighted with
green. I highlighted those nodes, because that group includes papers considering
asymmetric measurement error with the aspect of conformity control (group D). In
addition the size of the nodes represents the citation numbers (How many times
they were cited by others.) in logarithmic scale.

86 studies were selected and categorized and 6 papers out of the 86 were classi-
fied into group "D" (colored with green). Although many researches focused on the
evaluation of measurement uncertainty even assuming asymmetric measurement
error distributions, only a few considered the effect of asymmetric measurement un-
certainty and its consequences in conformity control. I summarize the most relevant
contributions in two steps, starting with groups "A", "B" and "C".

Groups "A", "B" and "C":

As part of the Six Sigma approach, measurement system analysis (MSA) and
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R&R tests (repeatability and reproducibility) are often used to evaluate measure-
ment uncertainty of a measuring device. These methods are useful to get knowledge
about the performance of measurement device or system, however their purpose is
to support the decision making about the validation of the device/system and do not
consider the further consequences of the measurement uncertainty (AIAG, 2010).

In 1995, the attitudes were changed related to the measurement uncertainty with
the construction of the Guide to the Expression of Uncertainty in Measurement
(GUM)(BIPM et al., 1995). GUM proposes the expression of the measurement un-
certainty in two ways. On one hand, the measurement uncertainty is expressed as
a probability distribution derived from the measurement. On the other hand, this
uncertainty can be described as an interval. In the first case, the standard devia-
tion is used for the characterization of the distribution (standard uncertainty). If the
result of the measurement is obtained by combining the standard deviation of sev-
eral input estimates, the standard deviation is called combined standard uncertainty.
In the second case, the length of the interval can be determined by the multiplica-
tion of the combined standard uncertainty and a coverage factor k and called as
expanded uncertainty. There are several guidelines that proposes 2 as a value of the
coverage factor k (BIPM et al., 1995, Eurachem, 2007a, Heping and Xiangqian, 2009,
Rabinovich, 2006, Jones and Schoonover, 2002), producing 95.45 % confidence level,
however this statement is only true if the combined uncertainty follows normal dis-
tribution, otherwise the estimation of the confidence level is not correct (Vilbaste et
al., 2010, Synek, 2006).

Asymmetry of the distribution can also lead to incorrect estimation and incorrect
decisions as well. The JCGM Guide 101 (BIPM et al., 1995) introduces that exponen-
tial and gamma distributions are observable as asymmetric examples, furthermore,
researches have shown that asymmetry can appear in combined standard uncer-
tainty as well (Herrador and Gonzalez, 2004, D’Agostini, 2004, Pendrill, 2014). Not
only skewness can be the root cause of the over- or underestimation of confidence
level. Kurtosis can also vary by different measurement devices or systems. Lep-
tocurtic and platykurtic distributions are also observable by several measurement
systems (Martens, 2002, Pavlovcic et al., 2009).

If the measurement error distribution follows non-normal distribution, the confi-
dence level will be estimated incorrectly and using the k=2 proposal, decision errors
can be made, since the principal assumption of the proposal is not valid. Further-
more, the rules based on the assumption of normal distribution do not consider the
consequences of the decision errors, however they can lead to considerable prob-
lems.

Group "D":

Figure 2.2 shows the structure of the papers classified in group "D" in details.
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There were also researches taking measurement uncertainty and the decision
consequences into account. Rossi and Crenna showed that measurement uncertainty
should not be treated as an interval or a simple standard deviation, but needs to be
considered as a probability distribution in order to avoid incorrect decisions (Rossi
and Crenna, 2006). Williams (2008) pointed out that decision rules must be carefully
defined when skewed measurement error distribution is assumed. Although, Forbes
has proposed a method treating the conformance assessment as a Bayesian decision,
he only considered the cost and revenue of the incorrect decisions (Forbes, 2006).
Later, Pendrill has developed a more comprehensive model considering measure-
ment uncertainty in conformity sampling. The model included all the four decision
outcomes (correct acceptance, false rejection, false acceptance and correct rejection)
however, only correct decision-, and testing costs were considered during the calcu-
lations (Pendrill, 2008, Pendrill, 2014).

The referenced papers made steps towards the risk-based aspect of the confor-
mity control, they did not consider all the four decision outcomes in the calcula-
tions and however, they also considered even asymmetric measurement error dis-
tributions, the strength of the characteristics of the measurement error distribution
(skewness, kurtosis) were not analyzed. Research Question Q1 is still valid after the
literature review, since I did not find any paper that answered the question and in-
vestigated how 3rd and 4th moments of measurement error distribution affects the
decision outcomes during conformity control. In my thesis, I develop a risk-based
model in the statistical process control including all the four decision outcomes and
examine the impact of 3rd and 4th moments of the measurement error distribution.

2.2.2 Measurement Error and Control Charts

The same literature search approach was conducted in order to explore the most
relevant studies of control charts. The result of the systematic review is introduced
by Figure 2.3.
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FIGURE 2.3: Result of the literature research (Control chart design
research area)

On Figure 2.3, the logic of coloring remained the same: blue nodes represent
the structure of the control charts defined by the predefined survey, red nodes de-
note the reviewed articles regarding traditional control charts (without considering
measurement errors). Papers that developed control charts considering the effect of
measurement error were highlighted with green (risk-based aspect), and node size
represents citation numbers.

First, I summarize the most relevant papers in the field of traditional control
charts.

Traditional control charts (Group "A-F"):

The first statistical control chart was developed by W.A. Shewhart in 1924 (She-
whart, 1924) to monitor the process expected value. The process is labeled to "in-
control" if the sample mean falls within the Lower and Upper Control Limits (LCL
and UCL) (Shewhart, 1931). Although the X-bar chart was able to detect when the
expected value of the process changes significantly, its main deficiency is the in-
ability to detect small shifts. In order to rectify that, CUSUM (Cumulative Sum)
and EWMA (Exponential Weighted Moving Average) control charts were proposed
(Page, 1954, Roberts, 1959). However univariate control charts were powerful tools
to detect process shift, they were not able to monitor more than one product charac-
teristics simultaneously. Though Shewhart dealt with monitoring of more correlated
characteristics, the multivariate control chart has its origins in the research of H.



Chapter 2. Related Studies 13

Hotelling, who developed the T2 chart based on Student’s t-distribution (Hotelling,
1947). Subsequently, other multivariate control charts were developed like multi-
variate sum (MCUSUM) control chart (Crosier, 1988, Pignatiello and Runger, 1990),
and the exponentially weighted moving average chart (MEWMA), developed by
Lowry and Woodall (Lowry et al., 1992). Several references give more detailed dis-
cussion about the multivariate quality control reviewed by Jackson (1985).

Multivariate and univariate control charts were commonly used for process con-
trol, however, their application condition is the preliminary knowledge of the distri-
bution of the controlled product characteristic(s). Most control charts assume nor-
mal distribution or a known form of a particular distribution for the monitored
product characteristic (Yang et al., 2011). For the elimination of the problem, sev-
eral researches developed nonparametric control chart approaches (see: Bakir and
Reynolds, 1979; Amin et al., 1995; Bakir, 2004; Bakir, 2006; Chakraborti and Graham,
2008 for univariate charts and Chakraborti et al., 2001; Bakir, 2006, Tuerhong et al.,
2014; Chakraborti et al., 2004 for multivariate control charts).

The evolution and complexity of production processes resulted in the develop-
ment of more flexible control charts with adaptive control chart parameters (n, h, k).
If the monitored process is "in-control" state, smaller sample size, longer sampling
interval and wider accepting interval are used. However, in "out-of-control" the
adaptive charts apply stricter control policy (larger sample size, shorter sampling
interval, and narrower accepting interval) (Lim et al., 2015).

Reynolds, Amin, Arnold and Nachlas were the first who developed an X-bar
chart with variable sampling interval (VSI) (Reynolds et al., 1988), and their re-
search inspired a number of researchers opening the research field of adaptive con-
trol charts. (Runger and Pignatiello, 1991, Chew et al., 2015, Naderkhani and Makis,
2016, Bai and Lee, 1998, Chen, 2004). Subsequently Prabhu, Runger and Keats devel-
oped an X-bar chart with variable sample size (VSS) (Prabhu et al., 1993) followed
by several improvements (Costa, 1994, Tagaras, 1998, Chen, 2004). As a further con-
tribution to the field, VSSI control charts were developed (variable sample size and
sampling interval) where sample size and sampling interval are modified simulta-
neously (Costa, 1997, Costa, 1998, Costa, 1999, Chen et al., 2007, De Magalhães et al.,
2009).

In order to determine the optimal parameter levels for the adaptive control charts,
numerous studies aimed to apply economic design methodology minimizing the av-
erage hourly cost during the process control (Lee et al., 2012, Lin et al., 2009, Chen
et al., 2007, Chen, 2004).

During the literature research, I also reviewed the domestic literature and it is
observable that Hungarian control chart articles and studies are rather descriptive
and just a few research focused on development.

Risk-based control charts (Group "G-I"):

Producers’ and suppliers’ risks are frequently discussed topics in the field of
conformity or process control (see e.g.: Lira, 1999). Risks can arise from different
sources, such as uncertainty in the real process parameters or imprecision of the
measuring device. Lack of knowledge regarding the real value of the process pa-
rameters or imprecision of the measuring device can be considered as uncertainty
during the application of control charts. Several studies showed that parameter es-
timation has a significant impact on the performance of control charts (Jensen et al.,
2006, Zhou, 2017). On the other hand, measurement errors can lead to incorrect
decisions and increases the number of type I. and type II. errors (Pendrill, 2008).
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In 1977, Abraham studied the performance of X chart by adding measurement
error to the original process. His research inspired several scholars and opened the
way for studies with the aim to analyze the effect of measurement error on control
charts (Abraham, 1977).

As a contribution to the topic, Kanazuka showed that relatively large measure-
ment error reduces the power of X-R charts and proposed increased sample size to
improve the performance (Kanazuka, 1986). Later Mittag and Stemann examined
the impact of gauge imprecision on the performance of X-S control charts (Mittag
and Stemann, 1998). Based on this study, Linna and Woodall further developed a
measurement error model with covariates and investigated how measurement error
(based on the referred model) influences the performance of X and S2 charts. Sev-
eral studies adopted this model and investigated the performance of different types
of control charts under the presence of measurement error while assuming linearly
increasing variance (Haq et al., 2015, Hu et al., 2015, Hu et al., 2016a, Maleki et al.,
2016, Maravelakis et al., 2004, Maravelakis, 2012).

There were economic design researches considering the effect of measurement
errors as well, however they mainly focused on control charts with fixed parame-
ters. Rahlm investigated how non-normality and measurement error influences the
economic design regarding X-bar control chart (Rahlm, 1985). This research was ex-
tended to asymmetric X and S charts by Yang, 2002. Additional studies proposed
economical design method for memory-based control charts as well, such as ex-
ponentially weighted moving average (EWMA) chart based on measurement error
(Saghaei et al., 2014, Abbasi, 2016).

Although, several studies investigated the performance of Shewhart control charts
under the presence of measurement error, only a few have dealt with the measure-
ment uncertainty related to the adaptive control charts. Hu et al. (2016b) developed
VSS X-bar chart considering the effect of measurement error using linear covariate
model. The same scholars later extended their research with the design of VSI X-bar
control chart (Hu et al., 2016a).
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The aforementioned studies have considered the measurement error by the ap-
plication of the control chart and analyzed the effect of measurement error on pro-
cess control effectiveness but they did not take the decision outcomes (consequences)
into account. Although, I have dealt with risk-based control chart development min-
imizing the overall cost of decision outcomes in my former researches and contribu-
tions (Hegedűs et al., 2013b, Katona et al., 2014), these articles focused on X, MA
and EWMA charts. In my thesis, I develop multivariate and adaptive control charts
with the consideration of measurement error and the consequences of decisions in
order to further extend the family of the risk-based control charts.

Not only univariate but the field of multivariate control charts was also reviewed
during the literature search. Figure 2.5 shows the sub-graph of the risk-based multi-
variate control charts.
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CL                 Tran et al. (2016)
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RB=Risk−Based
P=Parametric
NP=Non−Parametric
A=Adaptive
FP=Fixed Parameters
SS=Sample Size
SI=Sampling Interval
CL=Control Limits

Legend:

Articles (Risk−Based aspect)
Articles (Traditional aspect)
Structure nodes

Entire network

2
4

6

20

70

# of citations:

FIGURE 2.5: Result of the literature research (Control chart design
research area - Multivariate subgraph)

Measurement error can reduce the power of control charts even in multivari-
ate process control. Linna et al. (2001) investigated the performance of χ2 chart
under the presence of measurement error and their study has inspired several re-
searchers. Huwang and Hung (2007) and Amiri et al. (2018) investigated the effect
of measurement errors on the monitoring of multivariate measurement variability.
In 2016, Maleki et al. (2016) used extended multiple measurement approach in or-
der to reduce the effect of measurement error on ELR control chart while monitor-
ing process mean vector and covariance matrix simultaneously. Performance of the
Shewhart-RZ chart was examined under the presence of measurement error by Tran
et al. (2016). Furthermore, Chattinnawat and Bilen concluded that measurement er-
ror leads to inferior performance of the Hotelling’s T2 chart. Their study helps the
practitioners to predict how T2 will behave with respect to the precision of the gauge
(i.e. %GRR).
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Similarly to the univariate area, the aforementioned studies focused on the ef-
fect of measurement errors on control chart performance, however they did not
consider the decision outcomes or the risk of incorrect decisions due to the mea-
surement error. After the literature review, Research Questions Q2 and Q3 are still
valid because no study was found that develops multivariate or adaptive control
chart with the consideration of measurement uncertainty and consequences of the
correct/incorrect decisions as well.

It is necessary to note that uncertainties can relate to the system parameters
(parametric uncertainty) and they can arise due to the modeling of complex systems
(nonparametric uncertainties) (Adhikari, 2007, Pokorádi, 2008, Pokorádi, 2009). Al-
though there are solutions for the modeling of nonparametric uncertainties in engi-
neering science (Oberkampf et al., 2002, Adhikari et al., 2007, Helton et al., 2007), the
research area of control charts considers the effect of measurement error as paramet-
ric uncertainty.

The results of the systematic literature review were analyzed for both research
areas separately, however it is also valuable to determine how strong is the "linkage"
between the research areas of control charts and measurement uncertainty. Subsec-
tion 2.2.3 introduces the citation relationships between the two networks.

2.2.3 Citations between the two networks

In order to analyze the "linkage" between the two networks, I also examined all the
citation data to find those papers that were cited by studies from the other research
field (network). Assume that paper "A" as part of the measurement uncertainty area
is cited by paper "B" that develops a new control chart. In this case, their relationship
is highlighted by an additional edge between them, indicating that they establish
connection between "control chart" and "measurement uncertainty" research areas.
Figure 2.6 illustrates the citations between the two networks.
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FIGURE 2.6: Citations between the two networks

The citations between the two research areas are denoted by blue edges, and
newly connected nodes are highlighted with green. As Figure 2.6 shows, only 9
papers and 6 citations could be found between the networks based on the condi-
tions described above. Although there are studies developing control chart under
the presence of measurement error, only few of them utilize the results given by
researches related to measurement uncertainty and conformity control area.

The findings also confirm the importance of my research from connection’s point
of view. As an additional contribution, my work also aims to strengthen "linkage"
between the two research fields by developing the aforementioned risk-based meth-
ods that can be used in control chart design and conformity control.

In the previous subsections, I showed the structure of control chart and measure-
ment uncertainty research areas. Networks can illustrate the gaps and commonly
studied sub-areas very well however, as a weak point, they cannot show the research
trends according to time.

To overcome this issue, in Subsection 2.2.4, I introduce the most important "mile-
stones" or research results based on the year of their publication.

2.2.4 Analysis of research trends

On Figure 2.7, most important "milestones" or research results were placed onto a
time line. Parallel research sub-areas are presented by multiple horizontal lines. If
a research or study develops a new concept, new sub-area is also created and it is
represented by an additional path on Figure 2.7. For example, in 1947, Hotelling
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developed multivariate control chart and opened the way of multivariate quality
control which is denoted by an additional horizontal line.

The circles are representing publications moreover, specific papers dealing with
control chart performance under the presence of measurement error are highlighted
with green. It is necessary to note that of course, more additional research direc-
tions could be identified based on different aspects (or categorization rules) (e.g.,
economic design researches, parameter estimation, etc...). In the interest of trans-
parency, in this analysis, I use the same logic for the categorization of papers as it
was introduced by Subsection 2.1.2. In other words, parallel horizontal lines rep-
resent the evolution of multivariate and adaptive control charts or measurement
uncertainty evaluation / conformity control researches, while other important areas
(like nonparametric chart design or measurement uncertainty evaluation based on
moments) are mentioned in the discussion below.
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Control Charts The research of statistical control charts has its origins in 1924 (She-
whart, 1924) and the first univariate control chart was developed by Shewhart, 1931.
Monitoring ability of control charts was extended by Hotelling (1947) who intro-
duced multivariate control procedure. Control of multiple product characteristics
was brand new idea however, it did not get outstanding attendance at this time.

As improvement of X-bar chart, CUSUM and EWMA schemes were designed
to improve the detection power of small shifts. The first economic design model
was described in 1956 (Duncan, 1956) inspiring numerous scholars to extend this
methodology to the different type of control charts as well. Economic design became
substantial research direction in both, univariate and multivariate fields.

Growth and diversity of production environment required the ability of adapta-
tion to any conditions of the manufacturing process which led to the design nonpara-
metric control charts (Bakir and Reynolds, 1979). After that point, many researches
aimed to extend this methodology to different type of control charts.

The next decisive result was the first adaptive univariate control chart with vari-
able sampling interval developed by Reynolds et al. (1988). In parallel, multivariate
control charts were getting increased attendance especially after the development of
the first multivariate adaptive control chart (Aparisi, 1996). The next important con-
tribution was the development of control charts with variable sample size of sam-
pling interval.

Nowadays we have large scale of univariate and multivariate control charts with
adaptive or fixed parameters. Outstanding research topics are: robust design of non-
parametric control charts, economic design and pattern recognition. In order to con-
firm my findings regarding the control chart design research time line, I conducted
text mining, based on Google Scholar database. The analysis includes the following
steps:

1. Scientific paper titles (and additional data) containing "control chart" term were
collected from Google Scholar search in 5 year-long time intervals (starting
with 1990)

2. Collected Google Scholar data were preprocessed using R’s "tm" package (stop-
words removal, transform to lowercase, etc...).

3. Term frequencies were calculated for each time interval (disregarding "control
chart" terms within titles).

4. Wordclouds were provided regarding each time interval.

The wordclouds show the most frequently used terms in paper titles related to
control chart research area from 1990 to 2018, illustrating how "hot topics" changed
over time. In the wordclouds, red color denotes the terms that strengthened and
blue color highlights those ones that weakened compared to previous period (based
on the changes in frequency values) (Figure 2.8).
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Based on Figure 2.8, it is clearly visible that economic design was the dominant
aspect in control chart design, however, its emphasis decreased after 1995. In paral-
lel, multivariate control chart design became the most important research area. The
next rising topics were pattern recognition, nonparametric approaches and robust
design of control charts but multivariate aspect kept its leading role. (2001-2015).

After 2015, control charts with variable parameters (sample size, sampling inter-
val) and sampling strategies became the most significant topics taking the place of
multivariate process control.

This additional text mining-based analysis (considering approximately 4000 pa-
pers) also confirms the conclusions of Figure 2.7.

Measurement uncertainty and conformity control Most of the aforementioned
control charts do not take the measurement uncertainty into account however, its
effect and importance on measurement results were showed by several scholars.
The first measurement uncertainty model was described by Abernethy et al. (1969).
Later, a comprehensive international standard was provided by ISO organization:
Guide to Expression of Uncertainty in Measurement (GUM) (BIPM et al., 1993).

In 1996, International Laboratory Accreditation Cooperation was provided guide-
lines on assessing conformity in terms of measurement uncertainty (ILAC, 1996),
which inspired several researchers to investigate the effect of measurement uncer-
tainty on conformity control. The main stream was divided into two areas: treat-
ment of measurement uncertainty in conformity control and measurement uncer-
tainty evaluation.

Consumer’s and producer’s risk became outstanding in conformity control, more-
over, Pendrill’s researches were pioneer because they provided improved confor-
mity control approaches under the presence of measurement uncertainty (Pendrill,
2006, Pendrill, 2007, Pendrill, 2008, Pendrill, 2009, Pendrill, 2010).

In the other stream, several scholars showed that measurement uncertainty should
be treated as probability distribution and not just as an interval. They introduced
new methodologies to express measurement uncertainty under asymmetric mea-
surement error distributions (Herrador and Gonzalez, 2004, Synek, 2007, Pavlovcic
et al., 2009, D’Agostini, 2004). Although that was significant contribution to mea-
surement uncertainty area, only a few researchers applied the concept of asymmetric
measurement uncertainty in conformity control studies (as it was shown by Figure
2.2).

Common points of the two areas The appearance of measurement uncertainty
studies have been inspired researchers to investigate the effect of measurement er-
ror on control charts. The articles considering the effect of measurement errors are
denoted by green circles on Figure 2.7.

The first study regarding measurement error and control charts was conducted
in 1977 (Abraham, 1977) however, the number of these papers is way below the
quantity of publications from other control chart topics. Although the importance
of the consideration of measurement uncertainty was pointed out in many studies,
control charts under the presence of measurement error started to get attendance in
2000s. Due to the strong propagation of the importance of measurement uncertainty,
higher number of papers with the consideration of measurement errors could be ex-
pected in control charts area. This can be explained by the growth of computational
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power too. Investigation of measurement error effect can be performed through sim-
ulations and researchers have been limited by the computational power in the early
phase of research regarding control charts under measurement errors.

On the other hand, most of the studies analyzed the effect of the measurement
uncertainty but gave no detailed and comprehensive solution or new control chart
that is able to reduce the risk of incorrect decisions. However, some papers with the
aspect of economic design considered the production costs under the presence of
measurement errors, they did not take the risk of decisions like type II. error (pres-
tige loss) into account. Others proposed improved sampling policy to reduce the
effect of measurement errors without considering the costs of decision outcomes.

Although, these studies highlighted that measurement uncertainty is important
research field in terms of control chart design, there is no proposed method that:

• considers the risk of correct and incorrect decisions about the controlled pro-
cess

• can be applied under any type of measurement error distribution

• can be used for conformity control or can be extended for control charts

• can be extended for multivariate or adaptive control charts.

Taking the above facts into account, there is a need for a new family of control
charts with the combination of the two referred research areas. The newly designed
family of control charts should be able to address the aforementioned issues by uti-
lizing the results of both, control chart design and measurement uncertainty / con-
formity control research areas.

On Figure 2.7, this new direction is illustrated by red dashed lines and in the rest
of the dissertation I refer to that as "Risk-based aspect".

2.3 Summary and contribution to literature

In this section, I summarize the most important findings of the systematic literature
review with special regard to the deficiencies of the analyzed research areas. Finally,
I determine how this research contributes to the scientific literature.

During the literature review, I collected, classified and analyzed the most rele-
vant papers books proceedings and standards regarding control chart design and
measurement uncertainty / conformity control research fields. Not only the papers
but also citation data were collected in order to refine the search. Networks were
built to analyze the structure of both research areas and furthermore, time based
introduction was provided to get overview about research trends.

The main findings can be summarized as follows:

1. Measurement error characteristics: It was proved that measurement uncer-
tainty should not be treated just as an interval. Several solutions and ap-
proaches were proposed to express measurement uncertainty under asymmet-
ric measurement error distribution however, only a few studies considered
asymmetric measurement error in conformity control (Figure 2.1). Further-
more, there is no study that analyzes the impact of 3rd and 4th moments of
measurement error distribution on the effectiveness of conformity control. Re-
search question Q1 is still valid and further analysis needs to be performed in
order to address this issue.
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2. Lack of studies: Regarding control charts, the most cited and studied fields
are traditional univariate, multivariate and adaptive control charts without
considering measurement errors during control chart design. Importance of
measurement uncertainty was strongly emphasized and in comparison to that,
number of papers dealing with control chart under the presence of measure-
ment error is way below the expectations. Measurement uncertainty and its
consequence does not get the attendance in control chart design what it de-
serves based on its importance.

3. Deficiencies proposed solutions: The current control chart developments do
not address all the issues raised by measurement uncertainty studies (incor-
rect decisions, prestige loss, asymmetric error distributions). They propose
improved sampling strategy or consider production costs only but do not treat
the measurement uncertainty as risk factor. Therefore, research question Q1
and Q2 are still valid because I did not find any study that develops a risk-
based control chart which was able to overcome the aforementioned problems.

4. Weak linkage: The linkage between the two analyzed research areas is weak
however, control chart design studies could better rely on results from mea-
surement uncertainty / conformity control area.

5. Research directions: Based on the trend analysis, it is clearly visible that con-
trol chart researches mainly moved to the direction of adaptive control chart
design, nonparametric solutions and risk-based concept did not become sig-
nificant part of control chart development.

Contribution to the literature

As the outcome of this dissertation, I intend to contribute to the scientific litera-
ture in the following way:

1. I investigate the effect of 3rd and 4th moments of measurement error distribu-
tion on conformity control strategy and determine which moments need to be
considered during the measurement error characterization by conformity or
process control.

2. I develop multivariate and adaptive risk-based control charts considering mea-
surement uncertainty (and applying the new knowledge given by point 1). The
proposed control charts are able to reduce producer’s and consumer’s risk as
additional contribution compared to the currently used control charts.

3. My research strengthens the linkage between measurement uncertainty and
control chart design areas by utilizing both control chart and measurement
uncertainty research results in one proposed methodology.

4. Finally, as the main outcome of the dissertation I provide a new family of Risk-
based control charts opening a new direction for further researches (Figure
2.7).

In the interest of completeness, I introduce the fitting of my research into the
scientific literature in Chapter 7. I provide an additional citation network with the
highlighted location of my publications related to the topic of dissertation.

In the next chapter I introduce the proposed methods regarding measurement
error characterization and risk-based control chart design.
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Chapter 3

Methods

3.1 Characterization of measurement error distribution

In this section, I introduce the structure of the analysis I conduct in order to analyze
the effect of measurement error skewness and kurtosis on optimal acceptance strat-
egy. As BIPM et al. (1995) described, the first and second moments (expected value
and standard deviation) have significant impact to the distortion effect of measure-
ment uncertainty . Therefore in my thesis, I focus on the effect of third and fourth
moments (i.e. skewness and kurtosis) of the measurement error distribution func-
tion.

In order to investigate the effect of skewness and kurtosis I use simulation (opti-
mization) procedure as follows:

Let us consider a conformity control process, with the real value of the controlled
product characteristic x and the value of the measurement error ε. It is assumed
that the probability density functions (pdf) of x and ε are known (Let us note that
the pdf of ε can be estimated from the calibrations, or it can be derived from the
producer’s documentation on the measurement instrument and the measurement
system analysis).

The conformity of the product is judged based on the observed (measured) value
denoted by y. In the simulation, additive measurement error model is considered as
used by Mittag and Stemann (1998):

y = x + ε (3.1)

It is necessary to note that characteristics of the measurement error distribution
can be obtained in multiple ways:

• Based on experiment: The measurement error distribution parameters (e.g. ex-
pected value, standard deviation, etc.) can be estimated through experimental
measurements based on a series of independent observations. For detailed
guidance, see Eisenhart (1969), Croarkin (1984), NIST (1994), Box et al. (2005),
Mandel (2012), Natrella (2013).

• Based on information: This approach is based on other than experimental
sources like certified reference materials, calibration reports, industry guides,
manufacturer’s specifications etc. (Choi et al., 2003a). Further details are pro-
vided by NIST (1994).

Characteristics of measurement error distribution can change over time due to
different reasons such as aging of the measurement device or environmental causes
(vibration, temperature, etc.) Therefore, measurement system needs to be analyzed
regularly according to the device’s reference manual. An overview of the widely-
used measurement system analysis techniques is provided in Appendix F.
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3.1.1 Decision outcomes

The product is considered to be conforming if y (observed value) falls between the
lower specification limit (LSL) and upper specification limit (USL):

LSL ≤ y ≤ USL (3.2)

Nevertheless, the product is conforming only in that case if the real value of the
real characteristic falls between these specification limits, i.e.:

LSL ≤ x ≤ USL (3.3)

At least four decision outcomes can be distinguished (due to the existence of the
measurement error) as a combination of real conformity and decision:

• Correct acceptance

• Correct rejection

• Incorrect acceptance (type II. error)

• Incorrect rejection (type I. error)

Consideration of the several decision outcomes is important, since they might
lead to serious consequences from the company’s point of view such as increased
costs or even prestige loss. Table 3.1 shows the structure of the four decision out-
comes.

TABLE 3.1: Cost of decision outcomes as a function of decision and
actual conformity

Cost
Decision
Acceptance (1) Rejection (0)

Fact
The product is conforming (1) c11 c10

Correct acceptance Incorrect rejection
The product is non-conforming (0) c01 c00

Incorrect acceptance Correct rejection

Incorrect rejection or type I. error is committed when the observed product char-
acteristic (y) falls outside the acceptance interval, however the product is conformable
according to the real value (x):

LSL > y or y > USL, and LSL ≤ x ≤ USL (3.4)

Incorrect acceptance is the opposite case (type II. error), when a defected product
is accepted due to the distortion of measurement error:

LSL > x or x > USL, and LSL ≤ y ≤ USL (3.5)

It is important to notice that the consequences of this error type can be much more
serious because purchasing defected products can lead to penalties or even prestige
loss for the producer company.

In the remaining two cases, the decisions are correct because the defected prod-
uct is rejected or the conformable product is accepted.
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In Table 3.1, cij denotes the cost assigned to each decision outcome. Direct pro-
duction cost (or prime cost) and investigation cost can be counted by all the cases,
because manufacturing and investigation are necessary parts of the decision making
procedure. It is necessary to note, that in short term, both the measurement and the
production process parameters are regarded as constants.

3.1.2 Structure of the simulation

Most of the recommendations assume the normality of measurement error distribu-
tion however, by different types of measurement error distributions (normal, trian-
gular, lognormal, gamma, Weibull, binomial, and Poisson), the distribution function
can be asymmetric (Herrador and Gonzalez, 2004, D’Agostini, 2004). In that case, ex-
pected value and standard deviation are not enough to characterize the distribution
function.

Monte-Carlo simulation can be used to obtain information about the relation-
ship between measurement error distribution parameters and optimal acceptance
strategy. Monte-Carlo simulation (MCS) is a frequently used approach in the field
of optimization, numerical integration and study of probability distributions of ran-
dom variables (Dyer, 2016, Abonazel, 2018). Its main steps are the followings (Salleh,
2013):

1. Model creation with the appropriate assumptions and input parameters.

2. Random number generation based on step 1.

3. Running the simulation (iteration with modified inputs) and saving of outputs.

4. Analysis of the recorded outputs.

The aforementioned steps are general however, in order to investigate the effect
of skewness and kurtosis on the measurement and decision making system, I con-
struct the current simulation including the following steps:

1. Generation of random numbers with normal distribution representing the real
values (x) for the measured product characteristic

2. Generation of random numbers (representing the measurement error ε) with
Matlab’s "pearsrnd" function with given skewness and kurtosis

3. Determination of the cost assigned to each decision outcome (cij)

4. Optimization of the acceptance interval in order to minimize the total decision
cost

5. Iterate Step 1-4 while changing the skewness and kurtosis of the measurement
error distribution

I provide more detailed description about the aforementioned steps of the simu-
lation.

1-2. Generation of process and measurement error First of all x and y values
need to be simulated. in this study, I generate the real product characteristic values
(x) as random numbers following normal distribution with given expected value
and variance. y can be simulated based on Equation (3.1), where ε is generated
with Matlab’s "pearsrnd" function. This function allows the user to generate random
numbers with given mean, standard deviation, skewness and kurtosis.
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3. Determination of decision costs During the simulation, theoretical cost values
are selected for each decision outcome (The applicability will be validated in a prac-
tical example as well.). It is important to note that multiple decision cost structures
need to be considered like extreme cost for type I. error, extreme cost for type II. er-
ror or no extreme cost for any type of incorrect decision. This will make it possible
to investigate the behavior of the optimal acceptance interval under different cost
structures.

4. Optimization For the modification of acceptance interval, a correction compo-
nents KLSL, KUSL ∈ R are applied:

LSLK = LSL + KLSL and USLK = USL− KUSL (3.6)

where USLK and LSLK denote the modified specification limits. Obviously, in-
crease in |KLSL|, |KUSL| means stricter and decrease of |KLSL|, |KUSL| means more
permissive acceptance policy.
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FIGURE 3.1: Illustration of specification limit modification (source:
own edition based on Hegedűs (2014))

Total decision cost has to be minimized and objective function can be described
as follows:

TC = C11 + C00 + C10 + C01 = q11 · c11 + q00 · c00 + q10 · c10 + q01 · c01 (3.7)

were TC is the total decision cost, Cij is the aggregated cost of each decision
outcome, qij is the quantity of decisions according to the certain decision outcomes.

In Equation (3.7), the costs of all four decision outcomes appear. Examples for
there cost components can be provided as follows:

• Correct acceptance (c11): It includes all the production and inspection costs.
Production cost such as material-, labor, operating cost (rent, insurance can
be counted as indirect costs). Inspection cost consists of the cost of sampling,
labor, operating cost of the measuring equipment.
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• Correct rejection (c00): Production and inspection costs also exist in this case
however, further factors needs to be taken into account such as cost of re-
manufacturing (if possible) or cost of scrap-handling.

• Incorrect rejection (c10): In this case, the cost components are the same as in
the correct control however, the consequences are more significant because the
manufacturer company needs to consider the fact that it can not sell a product
which satisfies the specification. This can be estimated as missed revenue.

• Incorrect acceptance (c01): This case has the most serious consequences. If non-
conformable product can be found in the supplied batch, it often means that
the manufacturer company has to re-sort the entire batch on its own cost. It
also can lead to high penalties according to the contract between producer and
customer.

In this aspect, the risk of each decision outcome can be considered as the multi-
plication of their frequency and the expected cost of the occurrence during the sim-
ulation (For further interpretation of risk, see Appendix A.). The goal is to find the
optimal values of KLSL, KUSL in order to minimize TC.

5. Iteration Skewness and kurtosis of the generated measurement error distribu-
tion are changed in every iteration and optimal values of KLSL, KUSL are computed.
As outcome, the relationship between skewness/kurtosis of measurement error and
optimal correction components is analyzed. As it was mentioned before, the simu-
lation is conducted under several decision cost structures and the simulation results
are compared.
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3.2 Risk-based multivariate control chart

The development of the Risk-based multivariate control chart can be structured as
four main steps:

1. Data collection and simulation

2. Construction of the traditional T2 control chart

3. Specification of decision outcomes and estimation of decision costs

4. Construction of the Risk-based multivariate control chart with the adjustment
of control lines

In the next subsections I introduce each step in details.

3.2.1 Data collection and construction of traditional T2 chart

In order to construct the traditional T2 chart as first step, it is necessary to collect the
required information about the process and measurement error. If the product char-
acteristic and measurement error distributions are known, and their parameters can
be estimated, "real" and "detected" product characteristic values can be simulated.
I introduce the proposed method assuming a process with two controlled product
characteristics (p1 and p2).

Let x1 be the vector of the generated real values of product characteristic 1 and
x2 the real value-vector of product characteristic 2 respectively. In this case the real
product characteristic values follow normal distribution with expected value µ1 and
µ2 and standard deviation σ1 and σ2:

x1 ∼ Nm(µ11m, σ2
1 Im) and x2 ∼ Nm(µ21m, σ2

2 Im) (3.8)

where 1m denotes the m-dimensional vector in which all the elements are equal to
1 and Im denotes the m×m identity matrix. (Note that the proposed method can be
used under non-normality as well, since the optimal control limit will be evaluated
through optimization.)

In the same way, measurement error (denoted by ε) is generated assuming nor-
mal distribution with expected value 0 and standard deviation σε. The detected
value vectors y1 and y2 are calculated by the sum of x and ε:

y1 = x1 + ε1 and y2 = x2 + ε2 (3.9)

If the required process and measurement error distribution parameters are esti-
mated, T2 chart can be designed for the simulated "real" and "detected" values as
described by Subsection 3.2.2.

3.2.2 Construction of traditional T2 chart

Assume that Xi, i = 1, 2, 3, ... vector represents the p quality characteristics of the
monitored product, (the p characteristics can be characterized with p-variate normal
distribution with mean vector µ and covariance matrix Σ). If the process parameters
are known, the T2 statistic follows chi-square distribution:

χ2
i = n((Xi)− µ)′Σ−1((Xi)− µ) (3.10)
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Where n is the sample size, Xi is the sample mean vector of ith subgroup, µ and
Σ denote the in-control process mean vector and covariance matrix. If mean vector
and the covariance matrix for in-control process are unknown, they are determined
by the sample mean vector X and the sample covariance matrix S:

T2
i = n((Xi)− X)′S−1((Xi)− X) (3.11)

Where T2
i is the value of the T2 statistic related to ith sample, which follows the

transformed form of F-distribution:

T2 ∼ (n− 1)p
n− p

F(p, n− p) (3.12)

Control limit (UCLT2) can be defined as follows (Alt, 1982):

UCLT2 =
p(m− 1)(n− 1)
m(n− 1)− p + 1

F(p, m(n− 1)− p + 1, λ) (3.13)

Where n > 1 is the sample size, m is the size of the population, p is the number of
monitored product characteristics, F(p, m(n− 1)− p + 1, λ) denotes F-distribution
with p and m(n− 1)− p + 1 degrees of freedom.

The T2 statistics for "real" values can be calculated with Equation (3.11). Accord-
ingly, the following formula can be used regarding measured/detected values:

T̂2
i = n(Yi − Y)′S−1

Y Yi − Y) (3.14)

Where T̂2
i is the value of T2 statistic, Yi is the sample mean vector for ith sub-

group and SY denotes the covariance matrix according to measured/detected prod-
uct characteristic values.

According to the described methodology above, T2 charts need to be designed
for both, the real and measured processes. As a next step, decision outcomes can be
interpreted by the comparison of the computed T2

i and T̂2
i values.

3.2.3 Decision outcomes and decision costs

Similarly to Section 3.1, four decision outcomes can be defined as a combination of
fact and decision. Nevertheless, there is a significant difference between the deci-
sions in conformity control and process control.

In conformity control, the decisions refer to the acceptance of a product however,
in the case of process control the decision applies to the judgment of process in/out-
of-control state. When Hotelling’s T2 chart is applied, decision outcomes can be
defined as follows:

In-control state:
Correct acceptance:

T2
i ≤ UCL and T̂2

i ≤ UCL (3.15)

Incorrect acceptance:

T2
i ≥ UCL and T̂2

i ≤ UCL (3.16)

Out of control state:
Correct control:
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T2
i > UCL and T̂2

i > UCL (3.17)

Incorrect control:

T2
i ≤ UCL and T̂2

i > UCL (3.18)

Let a be the decision’s result based on the real product characteristic T2
i , and b

the decision’s result according to the detected product characteristic T̂2
i , where:

a =

{
1 if T2

i ≤ UCL
0 if T2

i > UCL (3.19)

b =

{
1 if T̂2

i ≤ UCL
0 if T̂2

i > UCL
(3.20)

If cab denotes the cost associated with each decision outcome, the decision costs
can be expressed with a decision matrix (Table 3.2).

TABLE 3.2: Decision outcomes when applying multivariate T2 control
chart

Detected characteristic
Real characteristic In control-statement Out of control statement

In control-state c11 c10
Out of control state c01 c00

The cab proportional costs are used to calculate TC. c11 denotes the cost of correct
acceptance of the process, while c00 is the cost of correct control of the process. c10
and c01 denote the cost of type I. error and type II. error. Applying these four decision
outcomes, TC can be computed with Equation (3.7) (which will be also the objective
function).

The cost of each decision outcome can be split into more partitions. In the fol-
lowings, I give detailed interpretation about the cost structure.

Structure of the decision costs

During the interpretation, it is assumed that the process in-control statement al-
ways can be achieved as the result of an intervention (calibration or maintenance of
the manufacturing equipment).

Cost of correct acceptance (c11) In case of correct acceptance (correctly detected the
in-control statement of the process), the following costs can be interpreted:

• Cost of production (cp)

• Cost of measurement (cm)

Production cost arises by all decision outcomes and can be split into proportional
(like proportional material cost) and fixed parts (such as cost of lighting in the build-
ing). cost of measurement consists of two parts, fixed cost (cm f ) and proportional
cost (cmp) depending on sample size (n). The fixed measurement cost (e.g., labor,
lighting, operational cost of the measurement device) occurs in every measurement
irrespective of sample size. In addition, the cost of qualification cq must be consid-
ered (charting, plotting, labor) as well.
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Cost of correct control (c00) This cost has two main components: (1) control costs
(cc) and (2) cost of restart after a successful intervention (cr).

The control cost arises in two phases. The first phase is the analysis of the process
shift, where the root cause of the shift and the necessity of maintenance are investi-
gated. The root cause identification is more complex by multivariate case, since it is
necessary to identify which product characteristic(s) caused the process shift (Ittzés,
1999). The second phase is the intervention, where the manufacturing machine is
stopped and maintenance is conducted. cr is the cost with regard to the restart of the
machine (e.g., energetic cost of heating to operating temperature). (It is necessary to
note that production cost and cost of measurement also arises in this case such as by
all the decision outcomes.)

Cost of incorrect control (c10) In the case of type I. error, the same cost elements
occur like in case of correct intervention. However difference between the two cases
comes from over-regulation of the process and unnecessary stoppage, root cause
investigation leading to arrears of revenue.

Cost of incorrect acceptance - missed control (c01) Type II. error is occurred, the
control chart does not give signal, and the process shift is not detected due to mea-
surement error. Though cp and cm also occur here, if the acceptance is incorrect,
the proportional value of cost of scraps (cs) needs to be added as a new element. cs
can be estimated with simulation. If process parameters are known and the process
can be modeled the expected quantity of defected products can be estimated from
the start of a process shift until in-control state is established again (average time of
maintenance can be calculated based on historical data).

3.2.4 Construction of Risk-based T2 control chart

The third step of the proposed method is the modification of the control limit to
minimize TC. Traditional T2 chart (designed by step 1) is used as initial basis of
the RBT2 chart. By the initial step, UCLT2=UCLRBT2 , where UCLRBT2 is the upper
control limit of the RBT2 chart (Hotelling’s T2 chart has only upper control limit)
and UCLT2 denotes the upper control limit of traditional T2 chart.

For the modification, a correction component K ∈ R is applied. The value of the
control limit of the RBT2 chart can be described as the followings:

UCLRBT2 = UCLT2 − K (3.21)

During the proposed method, K is optimized using the Nelder-Mead simplex
search method, the minimum point of the total cost function (obtained from the
simulation) is determined by the algorithm. In the two-dimensional case, the process
generates a sequence of triangles and they converge down to the solution point. The
advantage of the method, is, that the algorithm can be extended to more function
parameters e.g., sampling interval or sample size. The Nelder-Mead method can
be applied even in one-dimensional case. In this study, the function variable is the
control limit of the chart and the target variable is the total cost of decisions. The
algorithm includes the following steps in one-dimensional case:

Let K be the correction component and K′ the other initial point in the algorithm.
Furthermore f (K) is the cost function.

Ordering:
The first step is the ordering of the points:
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f (K) ≤ f (K′) (3.22)

There are four operations: reflection, expansion, (inside or outside) contraction
and shrink. In each step the point with the highest cost value will be replaced.

Reflection:
The first operation is the reflection where the reflection point (Kr) is determined:

Kr =
K + K′

2
+ α(

K + K′

2
− K′) (3.23)

Where α > 0 is the reflection parameter. The f (Kr) is evaluated and K’ is replaced
with Kr if f (K) ≤ f (Kr) ≤ f (K′).

Expansion:
After this step, the expansion will be operated if f (Kr) < f (K′), where:

Ke =
K + K′

2
+ β(Kr −

K + K′

2
) (3.24)

Where β > 1 denotes the expansion parameter. f (Ke) is evaluated according to
Ke.If f (Ke) < f (Kr), then K′ is replaced with Ke otherwise it is replaced with Kr .

Contraction:
As the next step, outside and inside contraction is operated.
Outside contraction is used if f (K) ≤ f (Kr) < f (K′) :

Koc =
K + K′

2
+ γ(Kr −

K + K′

2
) (3.25)

Where γ is the contraction parameter (0 < γ < 1). Then f (Koc) is evaluated and
K′ is replaced with Koc if f (Koc) < f (Kr).Otherwise go to step 5.

Inside contraction must be used if f (Kr) ≥ f (K′).

Kic =
K + K′

2
− γ(Kr −

K + K′

2
) (3.26)

f (Kic) is evaluated and K′ is replaced with Kic if f (Kic) ≤ f (K′). Otherwise go to
step 5.

Shrink:

K′2 = K− δ(K− K′) (3.27)

where δ is the shrink parameter.

This section introduced the design methodology of the proposed RBT2 chart. In
order to demonstrate the performance of the chart, simulation results will be pro-
vided by Section 4.2 and applicability will be verified through practical example in
Section 6.2.
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3.3 Risk-based adaptive control chart

In this section, I introduce the development of a risk-based adaptive control chart.
The steps are the same as in the case of multivariate control chart:

1. Data collection and simulation of the process

2. Construction of traditional VSSI control chart

3. Specification of the decision outcomes and estimation of decision costs

4. Development of risk-based VSSI X chart with the adjustment of control lines

3.3.1 Data collection and simulation

As the first step, an n × m matrix (denoted by X) of the "real" values is generated
with expected value µx and standard deviation σx. Similarly, an n × m matrix E,
representing the measurement error, is also generated. We use Matlab’s "pearsrnd"
function to generate the measurement error matrix. This function returns an n×m
matrix of random numbers according to the distribution in a Pearson system. With
this approach, the four parameters (expected value, standard deviation, skewness
and kurtosis) of the measurement error distribution can be easily modified.

After these two matrices are generated, the matrix of "observed" values can be
estimated in the following manner:

Y = X + E (3.28)

where Y is an n×m matrix containing the estimated observed values.
In both X and Y, each row represents a possible sampling event and each element

in a row represents all the possible products that can be selected for sampling. To
construct the VSSI X-bar chart, the VSSI rules must be applied to X and Y. The
algorithm loops through the matrices from the first row to the nth row.

Let x be the vector of sample means from X, and let y be the vector of sample
means selected from Y. If the ith sample mean (with sample size n1) falls within the
warning region, n2 and h2 must be used in the next sampling:

a, If xi ∈ I2, then the i + hth
2 row from X is selected for sampling and element n2 is

selected randomly from the i + hth
2 row. Otherwise, the i + hth

1 row is selected
with sample size n1.

b, If yi ∈ I2, then the i + hth
2 row from Y is selected for sampling and element n2 is

selected randomly from the i + hth
2 row. Otherwise, the i + hth

1 row is selected
with sample size n1.

Where I1 denotes the central region, and I2 the warning region that can be de-
scribed as follows (Chen et al., 2007):

I1(i) =

[
µ0 − wσ√

n(i)
,

µ0 + wσ√
n(i)

]
(3.29)

and

I2(i) =

[
µ0 − kσ√

n(i)
,

µ0 − wσ√
n(i)

]
∪
[

µ0 + wσ√
n(i)

,
µ0 + kσ√

n(i)

]
(3.30)
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I3(i) = I1 ∪ I2 (3.31)

where i = 1, 2... is the number of the sample, (n1, h1) is the first level of parameter
set including smaller sample size (n1) and longer sampling interval (h1) and (n2, h2)
is a second level parameter set with a larger sample size (n2) and shorter sampling
interval (h2) (n1 < n0 < n2 and h2 < h0 < h1, where n0 is the sample size and h0 is
the sampling interval of the FP control chart). Detailed description about VSSI rules
is provided in Appendix C.

3.3.2 Construction of traditional VSSI X chart

As a next step, the "traditional" VSSI X chart (In this context, "traditional" means
that the chart does not consider the effect of measurement errors.) can be designed
using simulated data from step 1. Upper and lower warning limits (UWL and LWL)
can be calculated based on Equation (3.29) and similarly, Equation (3.30) can be used
to compute the control limits of the control chart (UCL, LCL). Then, switching rules
between (n1, h1) and (n2, h2) can be used based on the consideration of warning- and
control lines.

As output of step 2, "traditional" VSSI X charts are designed for real and mea-
sured values as well. Decision outcomes can be interpreted by comparing the loca-
tion of xi and yi sample means related to the warning- and control limits.

3.3.3 Decision outcomes and decision costs

Four type of decision outcomes could be defined in case of conformity control and
T2 chart (See Table 3.2.3). When using adaptive control chart, the number of deci-
sion outcomes can be extended due to the existence of warning limits that brings
additional aspects to the structure of decision outcomes as it is shown by Table 3.3:

TABLE 3.3: Decision outcomes when using VSSI X chart

Detected product characteristic
in (CL) out (CL)

in (WL) out (WL) in (WL) out (WL)

Real

in (CL)

in (WL)
xi ∈ I1 xi ∈ I1 xi ∈ I1

and and and
yi ∈ I1 (1) yi ∈ I2 (2) yi ∈ I3 (3)

out (WL)
xi ∈ I2 xi ∈ I2 xi ∈ I2

and and and
yi ∈ I1 (4) yi ∈ I2 (5) yi ∈ I3 (6)

out (CL)

in (WL)

out (WL)
xi ∈ I3 xi ∈ I3 xi ∈ I3

and and and
yi ∈ I1 (7) yi ∈ I1 (8) yi ∈ I1 (9)

In Table 3.3, terms "in(CL)" and "out(CL)" denote the in-control and out-of-control
statements based on the control line(s), and "in(WL)" and "out(WL)" represent the
sample location relative to the warning limits. In addition, xi is the real sample
mean, and yi is the detected (measured) mean related to the ith sampling. I1, I2 and
I3 denote the regions based on Equations (3.29), (3.30) and (3.31). Some combina-
tion cannot be interpreted i.e. if yi falls within the out-of-control region based on
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the control line, it excludes the potential of being "in-control" based on the warn-
ing limit. Similarly, if xi > UCL or xi < LCL (process if out-of control based on the
control lines), then LWL < xi < UWL statement cannot be true. These cases are rep-
resented by gray-colored cells in the table. Detailed explanation of each (9) case is
also provided in the following:

• Case 1: Both the detected and the real sample mean fall within the central
region. The decision is a correct acceptance.

• Case 2: The detected sample mean is in the warning region but the real sample
mean is in the central region. In this case, the sample size is increased and the
sampling interval is reduced. However, these changes are unnecessary, and
the decision is incorrect.

• Case 3: The process is out-of-control based on yi, but xi falls within the central
region. The expected value of the process is in-control, but a shift is detected
incorrectly. Therefore, an unnecessary corrective action is taken (type I. error).

• Case 4: xi is within warning region (out-of-control based on the warning limit)
but an in-control statement is detected. In this case, the sample size should be
increased and the sampling interval should be reduced; however, this action is
not taken. This failure reduces the performance of the control chart because it
delays the time for detection and correction.

• Case 5: Both the detected and real sample mean fall within the warning re-
gion. Sample size is increased, sampling interval is reduced as part of a correct
decision.

• Case 6: Out-of-control state is detected; however, the xi falls within the warn-
ing region. Corrective action is taken, but switch between the chart parameter
sets (n, h) would be enough. The decision is incorrect.

• Case 7: In-control state is detected and yi is located in the central region how-
ever, the process is out-of-control. The decision is incorrect, and corrective
action is not taken (type II. error).

• Case 8: Similar to Case 7, but yi is in the warning region. Therefore, this case
is more advantageous compared to Case 7 because a strict control policy is
applied and therefore, shorter time is needed to detect process shift.

• Case 9: The process is out-of-control based on real and detected sample means;
therefore, the decision is correct.

For better clarification, Figure 3.2 illustrates the nine decision outcomes described
above.
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Case number
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FIGURE 3.2: Demonstration of the nine decision outcomes on a con-
trol chart

Structure of the decision costs

In the followings I introduce the cost structure of each decision outcome. Each
decision cost consists of several elements therefore, I collected those parameters that
are used during the specification of the decision costs (Table 3.4).

TABLE 3.4: Elements of the cost of decision outcomes

Symbol Name

n sample size
Nh produced quantity in the considered interval (h)
cp production cost
cm f fixed cost of measurement
cmp proportional cost of measurement
cq cost of qualification
cs cost of switching
d1 weight parameter for switching
ci cost of intervention
d2 weight parameter for intervention
crc cost of root cause search
cid cost of delayed intervention
c f cost of false alarm identification
cmi cost of missed intervention
cr cost of restart
cma maintenance cost

Table 3.4 shows the specified cost components in the cost structure. The follow-
ing costs are involved in each decision:

• expected total production cost

• cost of measuring
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• cost of qualification

cp denotes the proportional production cost and Nh is the expected number of
manufactured products in h (where h denotes the time interval between two sam-
ples). Therefore, the expected total production cost can be estimated as Nhcp. The
cost of measurement consists of two parts, fixed cost (cm f ) and proportional cost
(cmp) depending on sample size (n). The fixed measurement cost (e.g., labor, light-
ing, operational cost of the measurement device) occurs in every measurement irre-
spective of n. cmp is the expected measurement cost related to a sample that strongly
depends on sample size (this is especially significant for destructive measurement
processes). Thus, the expected total measurement cost can be estimated as:

total measurement cost = ncmp + cm f (3.32)

In addition, the cost of qualification cq must be considered (charting, plotting,
labor) as well. Accordingly, since Nhcp + ncmp + cm f + cq is part of each cost compo-
nent, a c0 constant is applied as simplification:

Nhcp + ncmp + cm f + cq = c0 (3.33)

Some cost components occur in special cases only. The cost of switching cs is the
cost associated with modification of the VSSI chart parameters (n, h). ci denotes the
cost of intervention, including the cost of stoppage and root cause search (crc). If the
root cause cannot be identified, it means that probably false alarm occurred. In this
case, there is no maintenance cost (cma) however, cost of false alarm identification
(c f ) needs to be considered. On the other hand, when a root cause is found, the
machine must be maintained (e.g., cost of the replaced parts, labor cost).

The weighting parameters (d1, d2) must also be specified. Some cases (e.g. Case
2 and Case 5) are similar but have different estimated costs. This difference comes
from the necessity of the decision. For example, in Cases 2 and 5, yi is located in
the warning region but the parameter switch (n1 to n2 and n1 to h2) is necessary in
Case 2 and unnecessary in Case 5. In similar cases, the unnecessary decision must
be multiplied by the weighting parameter in order to penalize surplus modifications
during control. Therefore, d1 is the weighting parameter for the cost of unnecessary
switching, and d2 is the weighting parameter for unnecessary intervention. Table 3.4
includes the forms of the decision costs assigned to the decision outcomes.

TABLE 3.5: Structure of the decision costs (VSSI control chart)

Case Structure Simplified form

#1 C1 = Nhcp + ncmp + cm f + cq C1 = c0
#2 C2 = Nhcp + ncmp + cm f + cq + d1cs C2 = c0 + d1cs
#3 C3 = Nhcp + ncmp + cm f + cq + d2ci C3 = c0 + d2ci
#4 C4 = Nhcp + ncmp + cm f + cq + cid C4 = c0 + cid
#5 C5 = Nhcp + ncmp + cm f + cq + cs C5 = c0 + cs
#6 C6 = Nhcp + ncmp + cm f + cq + d2ci C6 = c0 + d2ci
#7 C7 = Nhcp + ncmp + cm f + cq + cmi C7 = c0 + cmi
#8 C8 = Nhcp + ncmp + cm f + cq + d3cmi C8 = c0 + cmi
#9 C9 = Nhcp + ncmp + cm f + cq + cma + cr C9 = c0 + cr

During the control process, the appropriate decision cost must be assigned to
each sampling point. The assigned costs must be further aggregated to determine
the total decision cost:
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TC = q1c0 + q2(c0 + d1cs) + q3(c0 + d2ci)+

+ q4(c0 + cid) + q5(c0 + cs) + q6(c0 + d2ci)+

+ q7(c0 + cmi) + q8(c0 + d3cmi) + q9(c0 + cma + cr)

(3.34)

Or a simplified form can be used as well:

TC =
9

∑
i=1

qiCi (3.35)

where i = 1, 2, ..., 9 is the case number, qi denotes the quantity of decision points
(or samples) and Ci is the cost related to the ith case. The goal is to find the optimal
value of the coverage factor k (and the optimal values of the control lines UCL, LCL)
and the optimal parameter set for the switching (n, h) to minimize TC.

3.3.4 Construction of the RB VSSI X chart

In order to minimize the objective function described by Equation (3.34) or (3.35),
coverage factors k, w and variable parameters (n1, n2, h1, h2) are optimized. Two
approaches are used to optimize the control chart parameters. The integer param-
eters, (n1, n2, h1, h2) are optimized using genetic algorithms as the first step (The
previously used Nelder-Mead algorithm cannot handle integer parameters.). In the
second step, the Nelder-Mead algorithm is used as a hybrid function to optimize the
continuous parameters (k, w) and obtain more precise results.

Simulation of the control procedure and optimization

The aforementioned Genetic Algorithm (GA) imitates the principles of natural
selection and can be applied to estimate the optimal design parameters for statistical
control charts. In the first step, this method generates an initial set of feasible solu-
tions and evaluates them using a fitness function. In the next step, the algorithm:

1. selects parents from the population

2. creates crossover from the parents

3. performs mutation on the population given by the crossover operator

4. evaluates the fitness value of the population.

The steps are repeated until the algorithm finds the best fitting solution (Chen
et al., 2007). Then, the Nelder-Mead method is applied as a hybrid function to find
the optimal values w and k.

This is a two-dimensional case, where the Nelder-Mead algorithm generates se-
quence of triangles converging to the optimal solution. The objective function can
be described as C(n1, n2, h1, h2, w, k), where w is the warning limit coefficient and k
is the control limit coefficient. Note that the integer parameters (n1, n2, h1, h2) were
already optimized by genetic algorithms; therefore, by this step, C(w, k) can be used
as objective function with the following constrains: 0 < w < k and w, k ∈ R.

In two-dimensional case, three vertices are determined and the cost function is
evaluated for each vertex. In the first step, ordering is performed on the vertices:

Ordering:
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The vertices must be ordered based on the evaluated values of the cost function:

CB(w1, k1) < CG(w2, k2) < CW(w3, k3) (3.36)

where CB is the best vertex with the lowest total cost, CG (good) is the second-best
solution and CW is the worst solution (with the highest cost value). Furthermore, let
v1 = (w1, k1), v2 = (w2, k2) and v3 = (w3, k3) represent the vectors of each point.

The approach applies four operations: reflection, expansion, contraction and
shrinking (same steps as it was described in Sewct

Reflection:

The reflection point is calculated as:

vR = [wR, kR]
T

=

[
w1 + w2

2
+ α

(
w1 + w2

2
− w3

)
,

k1 + k2

2
+ α

(
k1 + k2

2
− k3

)]T

=
v1 + v2

2
+ α

(
v1 + v2

2
− v3

) (3.37)

where v2S and v3S are the shrunk points derived from v2 and v3, respectively (Fan
et al., 2006).

Expansion:

After reflection, expansion is performed if CR(wR, kR) < CB(wB, kB) condition is
true:

vE = [wE, kE]
T

=

[
w1 + w2

2
+ β

(
wR −

w1 + w2

2

)
,

k1 + k2

2
+ β

(
kR −

k1 + k2

2

)]T

=
v1 + v2

2
+ β

(
vR −

v1 + v2

2

) (3.38)

where vE denotes the reflection point with coordinates wE and kE and β is the ex-
pansion parameter. CE(wE, kE) is evaluated and v3 is replaced with vE if CE(wE, kE) ≤
CR(wR, kR).

Contraction:

Outside contraction is performed if CG(w2, k2) ≤ CR(wR, kR) < CW(w3, k3):

vOC = [wOC, kOC]
T

=

[
w1 + w2

2
+ γ

(
wR −

w1 + w2

2

)
,

k1 + k2

2
+ γ

(
kR −

k1 + k2

2

)]T

=
v1 + v2

2
+ γ

(
vR −

v1 + v2

2

) (3.39)

Where vOC is the point given by outside contraction with coordinates wOC and
kOC; furthermore, 0 < γ < 1 is the contraction parameter. Then, COC(wOC, kOC) is
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evaluated. If COC(wOC, kOC) ≤ CR(wR, kR), replace v3 with vOC; otherwise, shrink-
ing operation is performed.

The inside contraction point denoted by vIC is computed if CR(wR, kR) ≥ CW(w3, k3):

vIC = [wIC, k IC]
T

=

[
w1 + w2

2
− γ

(
wR −

w1 + w2

2

)
,

k1 + k2

2
− γ

(
kR −

k1 + k2

2

)]T

=
v1 + v2

2
− γ

(
vR −

v1 + v2

2

) (3.40)

In this case, CIC(wIC, k IC) is evaluated, and the point with the highest total deci-
sion cost v3 is replaced with vIC; otherwise, shrinking operation is performed.

Shrinking:

Shrinking must be performed for the nth and n + 1th points. In two-dimensional
case (we have parameters w and k), this operation is performed for v2 and v3:

v2S = [w2S , k2S ]
T = [w1 + δ (w2 − w1) , k1 + δ (k2 − k1)]

T = v1 + δ(v2 − v1) (3.41)

v3S = [w3S , k3S ]
T = [w1 + δ (w3 − w1) , k1 + δ (k3 − k1)]

T = v1 + δ(v3 − v1) (3.42)

where v2S and v3S are the shrunk points derived from v2 and v3, respectively (Fan
et al., 2006).

With the two aforementioned algorithms, both integer and continuous parame-
ters can be optimized and the total decision cost can be reduced with the considera-
tion of measurement uncertainty. The designed new RB VSSI X chart has modified
warning and control lines compared to the initial adaptive control chart that was
designed in step 2.

In order to analyze the performance and verify the applicability of the proposed
RB VSSI X chart, simulation results are introduced by Section 4.3 and verification
through practical example by Section 6.3.
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Chapter 4

Simulation results

In this chapter I follow the three-fold structure according to each research proposal.
The next section shows the simulation results related to the effect 3rd and 4th mo-
ments of the measurement error distribution function on conformity control.

4.1 Characterization of measurement error distribution

In this simulation I assume that the characteristics of measurement error distribu-
tion are known. Different levels with regard to skewness and kurtosis of mea-
surement error distribution are simulated. Measurement error is generated with
the "pearsrnd" Matlab function, which returns a vector of random numbers derived
from a distribution of Pearson system with specified moments (mean, standard de-
viation, skewness, kurtosis). In the simulation, mean and standard deviation of the
measurement error are constant, and only skewness and kurtosis are modified in
each iteration. Impact of skewness/kurtosis related to the optimal specification in-
terval is investigated considering:

1. total inspection

2. acceptance sampling

Furthermore, analysis of the effect of skewness and kurtosis, is provided taking
three different cost structures into account:

1. Extreme cost regarding type II. error

2. Extreme cost regarding type I. error

3. No extreme cost for any decision outcome

The assumed real values of the product characteristic (x) are normally distributed
with expected value 10 and standard deviation 0.2. The product has only a lower
specification limit LSL=9.7; furthermore, the expected value of the measurement er-
ror (ε) is 0, and σε = 0.02 (standard deviation of the measurement error). The opti-
mal correction component K∗ is evaluated for each skewness/kurtosis combination
(Since there is only one specification limit, I use K∗ to denote the optimal correction
component for the simplicity.). Table 4.1 shows the cost structures and the maxi-
mum, minimum and mean values of K∗ correction component results.
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TABLE 4.1: Cost structure and result of the simulation

c11 c01 c10 c00 K∗mean K∗max K∗min

Skewness 10 2000 100 50 0.0318 0.042 0.019
10 200 1000 50 -0.025 -0.018 -0.036
10 200 100 50 0.003 0.013 -0.007

Kurtosis 10 2000 100 50 0.031 0.038 0.023
10 200 1000 50 -0.024 -0.019 -0.030
10 200 100 50 0.003 0.007 -0.001

Figure 4.1 shows the relationship between skewness/kurtosis of measurement
error and K∗. The first row includes the results related to the change of skewness and
second row shows K∗ values as a function of kurtosis respectively. Linear fitting was
performed, and R2 values were also provided to analyze the goodness of fit. As it
was mentioned above, the simulation was conducted under different cost structures
represented by each column on Figure 4.1.
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FIGURE 4.1: Optimal values of the correction component (K∗) as a
function of skewness and kurtosis of the measurement error distribu-

tion (total inspection)

The control policy becomes even stricter when the skewness approaches 1 (note
that higher K∗ means narrower acceptance interval, since LSLK = LSL + K). Strong
relationship between the analyzed variables is also confirmed by the value of R2 (R2

= 0.77). Due to the extreme type II. error cost, the algorithm applies strict control
policy, even though it increases the probability of type I. error.

In the opposite case, acceptance interval expands while skewness approaches 1.
Since the commitment of type I. error causes extreme cost, the absolute value of K∗

decreases to minimize the total decision cost through the reduction of the amount of
type I. errors.

A trend with negative gradient can also be observed when no extreme costs are
assumed. More permissive control policy is applied when the skewness is approach-
ing 1. Since neither type II. error nor type I. error has extreme cost, the algorithm
tries to reduce the number of non-conformable products in order to decrease the
total decision cost.
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An important observation from Figure 4.1 can be stated while looking at the
second row of charts. The relationship between K∗ and kurtosis of the measurement
error density function is inconsiderable in all three cases (the slopes of the fitted lines
are nearly zero, and R2 values are very low).

The results show that not only first and second moments needs to be considered
by the characterization of measurement error, but third moment has considerable
impact to the effectiveness of the total inspection procedure, while kurtosis of the
measurement error has no significant influence.

In the next part of the analysis, the same simulation was conducted, but accep-
tance sampling was assumed now. The lot size is N = 150000, the sample size is M =
800 and the acceptable number of nonconforming d = 12 which is chosen based on
AQL = 1% value from Table 2-B of ISO 2859-1:1999 recommendation single sampling
plans for tightened inspection. Same cost structure is assumed as in the case of total
inspection (no extreme cost for any decision outcome). Figure 4.2 shows the results
of the simulation.
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FIGURE 4.2: Optimal values of the correction component (K∗) as a
function of skewness and kurtosis of the measurement error distribu-

tion (acceptance sampling)

The left charts of Figure 4.2 show the result of the total inspection simulation as
reference (from Figure 4.1), while the results according to acceptance sampling can
be observed at the right-hand side.

It is clearly visible that neither skewness nor kurtosis has effect on K∗ when ac-
ceptance sampling is applied (confirmed by the R2 values as well) because the uncer-
tainty from sampling conceals the measurement uncertainty (central limit theorem).



Chapter 4. Simulation results 46

Conclusion of the analysis:

In the case of total inspection, 3rd moment of measurement error distribution
needs to be considered by the characterization of measurement uncertainty but mo-
ment 4 can be disregarded. If acceptance sampling is applied, neither skewness nor
4th kurtosis of the measurement error distribution can be used to characterize mea-
surement uncertainty.
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4.2 Risk-based multivariate control chart

Consider a product having two main product characteristics (denoted by p1 and p2)
that need to be controlled simultaneously. Both product parameters follow normal
distribution with expected value µ1, µ2 and standard deviation σ1 and σ2 respec-
tively. The real values of product parameters p1 and p2 are denoted by x1 and x2
vectors.

As measurement error, random numbers were generated from normal distribu-
tion with expected value µε = 0 and standard deviation σε = 0.012 (The measure-
ment error vectors are denoted by ε1 and ε2.). In addition, it is also assumed that the
two product parameters are measured with the same device and therefore, the mea-
surement error distribution has the same characteristics regardless of which product
parameter is measured.

1,000,000 sampling events are simulated with sample size n=1. The permitted
false alarm rate (λ) is 0.01. Table 4.2 summarizes the input parameters of the simu-
lation.

TABLE 4.2: Input parameters of the simulation

Input parameters Symbol Value

Number of controlled product characteristics p 2
Expected value of product parameter 1 µ1 25.6
Expected value of product parameter 2 µ2 10.2
Standard deviation of product parameter 1 σ1 0.07
Standard deviation of product parameter 1 σ2 0.10
Standard deviation of the measurement error σε 0.012
Cost related to correct accepting c11 1
Cost related to correct rejecting c00 5
Cost related to incorrect accepting c01 60
Cost related to incorrect rejecting c10 5
Number of sampling m 106

Sample size n 1
Permitted false alarm rate to the T2 chart λ 0.01

The simulation was conducted considering two aspects. In the first case, the
knowledge of the real product characteristics (x1 and x2) is assumed, and the de-
tected values (y1 and y2) are evaluated using Equation (3.9).

In the second case, I assume that only detected product characteristics (y1, y2)
can be obtained and real values (x1, x2) are estimated by the difference of obverved
value and the estimated measurement error:

x1 = y1 − ε1 and x2 = y2 − ε2 (4.1)

T2
i and also T̂2

i values were calculated to estimate decision costs and compare
the performance of the proposed method with Hotelling’s T2 chart. Figure 4.3A and
Figure 4.3B show the convergence to the optimum solution during the optimization
and Table 4.3 summarizes the simulation results.
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FIGURE 4.3: Convergence to the optimum solution

TABLE 4.3: Performance of RBT2 chart

Control chart q11 q01 q10 q00 K UCL TC ∆C%

T2 98,851 159 175 815 0.00 9.21 113,341 -
RBT2 (real value is known) 98,371 28 655 946 0.96 8.25 108,056 4.89
RBT2 (real value is estimated) 98,229 31 753 987 1.10 8.10 108,789 4.18

When real product characteristic values were known, TC could be decreased by
4.89% with control line adjustment. However, the results show that RBT2 chart is
able to reduce the total decision cost regardless of real value is known or it was es-
timated. The proposed method tries to reduce the overall decision cost even though
it causes additional type I. errors (Note that occurrence of type II. error has more
serious consequences associating with higher costs/losses). 159 missed control oc-
curred while using Hotelling’s T2 chart and only 31 in the case of the RBT2 chart (if
the real product characteristics are estimated).

Conclusion of the analysis:

Consideration of measurement uncertainty can reduce the decision cost in the
case of multivariate control chart. In the provided simulation, RBT2 chart was able
to reduce the decision costs by nearly 5%.
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4.3 Risk-based adaptive control chart

In this section, I demonstrate the performance of the proposed RB VSSI X chart
through simulations. First the decision costs must be specified (Table 4.4):

TABLE 4.4: Cost values during the simulation (RB VSSI X chart)

Case Structure Value

#1 C1 = Nhcp + ncmp + cm f + cq 1
#2 C2 = Nhcp + ncmp + cm f + cq + d1cs 5
#3 C3 = Nhcp + ncmp + cm f + cq + d2ci 50
#4 C4 = Nhcp + ncmp + cm f + cq + cid 7
#5 C5 = Nhcp + ncmp + cm f + cq + cs 3
#6 C6 = Nhcp + ncmp + cm f + cq + d2ci 50
#7 C7 = Nhcp + ncmp + cm f + cq + cmi 600
#8 C8 = Nhcp + ncmp + cm f + cq + d3cmi 550
#9 C9 = Nhcp + ncmp + cm f + cq + cma + cr 20

The simulated production process follows normal distribution with expected
value µx = 100 and standard deviation σx = 0.2. Measurement errors follow also
normal distribution with expected value µε = 0 and standard deviation σε = 0.02. In
the first step, k = 3 and w = 2 are used to calculate the control and warning limits.
The integer design parameters (n1, n2, h1, h2) are optimized as well to minimize the
total cost of the decisions, as described by Equations (3.34) and (3.35). As next step,
parameters k and w are optimized using the Nelder-Mead direct search method (k∗

and w∗ denote the optimal values of k and w). Figure 4.4 shows the convergence of
objective function value during the optimization.
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FIGURE 4.4: Convergence to the optimal solution with Genetic Algo-
rithm and Nelder-Mead direct search
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In Figure 4.4, the green dots represent the actual values of the objective function
per iteration. In addition, the black dots denote the convergence of TC in the sec-
ond phase when Nelder-Mead direct search was applied. The hybrid optimization
allowed to achieve an additional 0.5% cost reduction.

Table 4.5 summarizes the simulation results.

TABLE 4.5: Results of the simulation (RB VSSI X chart)

n1 n2 h1 h2 k∗ w∗ TC(106) ∆C(%)

Initial state 2 4 2 1 3.000 2.000 1.236 −
Optimization: GA 2 4 2 1 2.298 2.287 1.075 13.0
Optimization: GA+NM 2 4 2 1 2.298 2.175 1.070 13.5

The total cost of decisions is reduced by 13.5 % when RB VSSI X chart was ap-
plied. The achievable total decision cost reduction was nearly 5% in the case of RBT2

chart as presented by Section 4.2. Based on the results we can say that TC can be
reduced more effectively in the case of adaptive control chart. In order to explain
this outstanding reduction rate, Figure 4.5 is provided where I illustrate an interval
from the time series of the real/detected sample means to compare the patterns of
the risk-based and traditional VSSI X charts.
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FIGURE 4.5: Comparison of traditional and RB VSSI control chart pat-
terns

Traditional VSSI control chart is shown in the upper-left corner of Figure 4.5,
where the control and warning lines were set to their initial values (measurement
uncertainty was not considered). The bar chart in the lower-left corner shows the
cost value assigned to each decision (to each sampling event). Similarly, the right
side of the chart shows the pattern when RB VSSI X chart with optimized w and k
taking the measurement uncertainty into account.

In the case of the adaptive control chart, the chart pattern depends not only on
the values of control limits but also on the width of the warning interval. Sample size
and sampling interval are chosen according to the position of the observed sample
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mean and warning limits. Therefore, the distorting effect of the measurement er-
ror can create considerably different scenarios related to the chart patterns resulting
differing sampling policies. If the observed sample mean falls within the warning
region and the real sample mean is located within the acceptance interval, the sam-
ple size will be increased and sampling interval will be reduced incorrectly, leading
to increased sampling costs. In the opposite case, sampling event is skipped, which
delays the detection of the process mean shift.

As it is demonstrated by Figure 4.5, when the traditional VSSI chart is applied,
the two process patterns (observed and real) become separated from each other by
the 7th sampling. Incorrect sampling policy is used due to the effect of measurement
errors, causing strong separation of the two control chart patterns.

On the other hand, RB VSSI X chart takes measurement uncertainty into account
and modifies the warning interval, enabling better fitting of the two control chart
patterns. The shifted interval is denoted by blue colored columns on the lower bar
charts. The charts show that the RB VSSI X chart reduces the length of the "sep-
arated" interval. In other words, the proposed method not only reduces the total
decision costs regarding out-of-control state but also rationalizes the sampling pol-
icy. Therefore, greater decision-cost reduction can be achieved in adaptive case com-
pared to the results of Section 4.2.

As a significant contribution, this study also raises awareness of the importance
measurement uncertainty in the field of adaptive control charts.

Conclusion of the analysis:

The risk-based aspect can be used to reduce the overall decision cost by adap-
tive control chart. Compared to RBT2 chart, RB VSSI X chart is more powerful in
cost reduction since the proposed method is able to eliminate the incorrect decisions
related to the sampling strategy as well.
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Chapter 5

Sensitivity Analysis

In this chapter, several simulations are provided to analyze the sensitivity of the
proposed methods. The same structure is followed: Section 5.1 includes analyses
regarding optimized conformity control procedure, Section 5.2 and 5.3 investigates
the sensitivity of the proposed risk-based multivariate and adaptive control charts.

5.1 Characterization of measurement error distribution

In this section, two simulations are provided that demonstrate:

1. sensitivity of K∗ towards the change of each decision cost (c11, c01, c10, c00)

2. sensitivity of K∗ regarding process performance (Ppk)

5.1.1 Sensitivity analysis for decision costs

In this subsection, K∗ was evaluated for different levels of each decision cost in order
to analyze their relationship. Since there are four decision outcomes, the simulation
has four scenarios, where the chosen decision cost was modified and other three
were fixed (ceteris paribus). Figure 5.1 presents the results of the simulations.
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Horizontal axis shows the relative costs where c′ij is the modified cost and cij is
the initial cost during the simulation, e.g., c′11/c11 denotes the ratio of the modified
decision cost with regard to its original value. During the simulation, only LSL was
considered as it was presented by Subsection 4.1.

Case "A" on Figure 5.1 presents the behavior of K∗ when c11 is changed ceteris
paribus. If c11 increases, K∗ also increases (i.e. the acceptance interval is narrowing)
because of the additional cost of the acceptance/production.

In Case "B", the tolerance interval expands (K∗ decreases) while cost of type I.
error increases because rejection of a conforming product considerably enlarges TC.
The pattern has decreasing slope (the optimum value barely changes after eight-fold
cost increase) because with the expansion of the acceptance limit, the amount of the
measured values outside the region is approaching zero.

Case "C" shows K∗ as a function of the cost of type II. error. The curve shows
increasing trend: more stringent acceptance rule is applied to reduce the probability
of incorrect acceptance.

Case "D": The behavior of K∗ can be divided into three segments. In the first
segment, K∗ slightly reacts to the change of c00 because the effect of type II. error is
stronger and the method does not increases the acceptance interval. In the second
segment, the method increases the acceptance interval (while decreases K∗) in order
to avoid correct rejections regardless of the cost of other decision errors. If c00 is ex-
tremely high (third segment), the method increases the acceptance interval as much
as possible but after a certain point there is no sense of further modification since
there are no data points below LSL. Let us note that this situation is very unreal in
practice.

5.1.2 Sensitivity analysis for process performance (Ppk)

If the deviation of the controlled process is small enough, the measured value of the
product characteristic never reaches the specification limit. The aim of this simu-
lation is to answer the question where is the point regarding process performance,
where the consideration of measurement uncertainty can still decrease the total de-
cision cost. In other words, where is the limit, beyond that measurement uncertainty
has no impact to the total decision cost. This analysis also determines the limitations
of the proposed method.

In the simulation, the real value of the measurand is centered to the target value,
and process performance (Ppk) is modified with the alteration of the standard devi-
ation. Figure 5.2 presents the result of the simulation. Six scenarios were simulated
with different cost structures:

• Case A: General cost structure

• Case B: Type I. error cost is twice as type II. error cost

• Case C: Cost of type II. error is increased significantly

• Case D: Cost of correct rejection is enlarged

• Case E: Cost of correct acceptance is high

• Case F: Cost of type II. error is extremely high
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FIGURE 5.2: Sensitivity analysis for process performance (Ppk)

For cases A, C, E and F, the same phenomena can be observed. When the Ppk
is low, K∗ fluctuates around a given value based on the cost structure and measure-
ment uncertainty. K∗ > 0 because the most significant cost is the cost of type II. error;
therefore, the acceptance interval must be narrowed. If Ppk improves, the value of
K∗ decreases dynamically. Finally, when Ppk approaches approximately 1.3-1.5, the
correction component tends to zero, meaning that this is the limit where the mea-
surement uncertainty does not have any impact on the decisions.
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Case B is quite similar but shows reverse pattern. Initial value of K∗ is negative
because the dominant cost is the cost of type I. error (acceptance interval needs to
be extended). K∗ tends to zero when Ppk approaches 1.3-1.5 as in cases A, C, E and
F. The model is sensitive to the process performance when Ppk is low however, it
can not find better solution for K in the case of a process with strong performance,
because no significant amount of scrap arises.

This analysis showed that the benefit of measurement uncertainty consideration
strongly depends on process performance. Nevertheless, it can be assumed that the
standard deviation of measurement error can influence this statement. Therefore,
this sensitivity analysis was extended with an additional variable. As a further step,
the value of K∗ was investigated as the functions of Ppk and standard deviation of
measurement error distribution (σε) compared to the standard deviation of the pro-
cess (σx) (Figure 5.3).
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FIGURE 5.3: Sensitivity analysis for process performance (Ppk) and
standard deviation of measurement error

On Figure 5.3, axis "x" shows the ratio of measurement error- and process stan-
dard deviation (σε/σx), axis "y" denotes the process performance and each contour
map area represents the value of K∗ at each combination of σε/σx ratio and Ppk value.
The same cost structures were applied to each simulation (A-F) as it was introduced
by Figure 5.2. It is clearly observable that not only process performance but also
the ratio of measurement error- and process standard deviation impacts the optimal
acceptance strategy. The relationship between Ppk and K∗ remains the same in all
the cases however, this analysis highlights that standard deviation of measurement
error (compared to process standard deviation) has significant impact on K∗. That
is to say, process performance is not enough to judge the limitation of the proposed
method because it can find better solution even at strong process performance if
σε/σx ratio is high. In order to decide if measurement uncertainty is beneficial to
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consider, Ppk and σε/σx ratio must be taken into account together.

Conclusion of the analysis:

In the case of processes with strong performance index, the consideration of mea-
surement uncertainty cannot decrease the overall decision cost since practically no
measured value can be observed near to the acceptance limit. Nevertheless, the
benefit of measurement uncertainty consideration can be judged through the joint
investigation of Ppk and σε/σx.
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5.2 Risk-based multivariate control chart

During the sensitivity analysis, the effect of the following parameters are analyzed:

• Decision cost of type II. error (c01)

• Sample size (n)

• Skewness of the probability density function of product characteristic 1 (γ1)

• Standard deviation of product characteristic 1 (σ1)

• Standard deviation of the measurement error (σε)

• Number of controlled product characteristics (p)

These parameters were chosen, because they can strongly influence the applica-
bility of the proposed control chart. The cost of type II. error may determine the
stringency of the control policy. Furthermore, the applicability of the RBT2 chart
can be analyzed under non-normality by modifying the skewness of the distribu-
tion regarding the monitored product characteristic. The performance of the control
chart is also analyzed under different sample sizes and different level of standard
deviation of measurement error.

5.2.1 Cost of type II. error

During the simulation, TC and K∗ are evaluated under different levels of c01 (while
c01 is changed ceteris paribus). The same process was considered and same input
parameters were used as provided by Subsection 4.2 (except for c01, since its value
was modified in this simulation). The results are presented by Figure 5.4.
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FIGURE 5.4: Sensitivity analysis according to the cost of type II. error

Figure 5.4A shows TC as a function of K for the different levels of c01 represented
by multiple lines. On the right chart (chart B) more detailed view is provided to
highlight location of K∗ values. If the cost of type II. error increases, the achievable
cost reduction rate is higher and K∗ increases (control limit (UCLRBT2) decreases
meaning more stringent control policy).
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The results showed that cost of type II. error can strongly influence the optimal
value of the acceptance interval however, the proposed RBT2 chart performs better
under enlarged cost regarding type II. error.

5.2.2 Sample size

The sample size is an important question during the application of the control charts.
Greater sample size gives better estimation about the production process. On the
other hand, greater sample size increases sampling costs especially in case of de-
structive measurement.

In this simulation, the applicability of the RBT2 chart is analyzed when different
sample sizes are chosen. Figure 5.5 shows the relationship between TC and K under
different sample sizes.
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FIGURE 5.5: Sensitivity analysis according to the sample size

With the optimization of the control line, 4-6% total cost reduction can be achieved
regardless of sample size. Furthermore, K∗ does not react significantly to the change
of sample size meaning that RBT2 chart is not sensitive to the sample size.

5.2.3 Skewness of the probability density function

Subsection 4.2 showed that the proposed method can reduce the total decision cost if
the product characteristics follow normal distribution. All the input parameters are
the same as they were defined in the simulation results in Subsection 4.2. Although
in this case the 3rd moment (skewness) of the distribution function related to the
product characteristic 1 is modified and all the other moments remain constant. In
this sensitivity analysis I investigate the relationship between K∗ and γ1 (skewness
of distribution function related to the product characteristic 1). Figure 5.6 shows K∗

as function of γ1.
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The results show that K∗ is sensitive to γ1. For left- or right skewed distribu-
tions, the model returns higher correction component. The pattern also highlights
that K∗ can be found even under non-normality that provides lower total decision
cost. Based on the results, I can conclude that the proposed RBT2 chart can be used
under non-normality (because the control line is calculated by optimization and not
analytically with the assumption of a given distribution type), however, skewness
affects the optimal correction component.

5.2.4 Standard deviation of process and measurement error

This simulation was conducted considering two different scenarios:

1. Standard deviation of product characteristic 1 was modified ceteris paribus (in
every iteration) in order to investigate the relationship between K∗ and σ1

2. Standard deviation of measurement errors (σε) was modified ceteris paribus
(in every iteration) to analyze the behavior of K∗

In case of process standard deviation, σ′1 denotes the actual and σ1 represents the
initial standard deviation. In the second phase of the simulation, measurement error
standard deviation is expressed as the ratio of σ1 (σε/σ1). Figure 5.7 shows the results
related to the process (Figure 5.7A) and measurement error (Figure 5.7B) as well.
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K∗ increases in both cases either process or measurement error standard devi-
ation increases. Chart A also confirms the findings of Subsection 5.1.2. It is clearly
visible that K∗ dynamically drops as σ1 decreases. With the decrease of σ1 the process
performance improves and the effectiveness of the proposed method deteriorates.

On the other hand, increase of the measurement error standard deviation leads
to more stringent control policy as reflected by chart B.

5.2.5 Number of the controlled product characteristics

In the former simulations two controlled product characteristics were assumed, how-
ever, it would be beneficial to investigate how K∗ changes under different number
of controlled product characteristics (p). In order to avoid the effect of the difference
between standard deviations and expected values of the simulated product charac-
teristics, the same expected value (µ = 25.6) and standard deviation (σ = 0.07) were
adjusted for each characteristic. In every iteration, the model was extended with an
additional product characteristic and K∗ was recalculated. All of the characteristics
and the measurement error (the measurement error is regarded as constant during
the simulation with expected value µε = 0 and standard deviation σε = 0.012) follow
normal distribution.
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FIGURE 5.8: Sensitivity analysis according to the number of con-
trolled product characteristics

As the results show K∗ increases with the number of controlled product charac-
teristics. Though the measurement error is constant, the extension of the product
characteristics quantity induces strict control policy, because we increase the num-
ber of possible sources regarding uncertainty. Therefore stricter control is applied to
avoid the type II. errors since this error type has the highest cost.
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5.3 Risk-based adaptive control chart

In this section, I analyze how changes in the cost components, standard deviation
and skewness of the measurement error impact the value of k∗ and w∗. These factors
are selected to assess the limitations of the proposed method. Nevertheless, kurtosis
of measurement error could also be examined, Section 4.1 showed that kurtosis does
not play significant role in the calculation of the optimal control/specification lines.
First, I introduce the analysis regarding to the cost of type II. error.

5.3.1 Cost of type II. error

In order to demonstrate the effect of the cost related to type II. error, the previously
defined 9 decision outcomes must be assigned into different groups. This catego-
rization is necessary because there are several decisions out of the 9 outcomes that
represents a missed action. Therefore, examining only one of them would be mis-
leading and would provide only restricted information about the sensitivity.

Based on that, I distinguish three groups of decision outcomes:

• Group 1: Type I. error decision outcomes, where the decision is incorrect due
to an unnecessary action. Outcomes: #2, #3, #6.

• Group 2: Type II. error decision outcomes, where the decision is incorrect due
to a missed action. Outcomes: #4, #7, #8.

• Group X: The remaining decision outcomes, including the correct decisions.
Outcomes: #1, #5, #9

During the sensitivity analysis, each cost in Group 2 is multiplied by a changing
coefficient (a). Thus, the ith cost is calculated as:

C4i = ai · C4initial (5.1)

C7i = ai · C7initial (5.2)

C8i = ai · C8initial (5.3)

where C4initial ,C7initial , andC8initial are the initial values of the decision costs related
to cases #4, #7, and #8. ai is the value of the coefficient in the ith iteration within the
simulation, and i = 1, 2, 3...n, i ∈ N where n is the total number of runs. Figure 5.9
shows the optimal values of k and w (denoted by k∗ and w∗) as a function of the cost
multiplicator a.
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On Figure 5.9, black dots represent the values of k∗ and red crosses indicate the
values of w∗. While C4, C7 and C8 increase, the optimal values of both, k and w
decrease. The increase of a, makes the control policy stricter and control and warning
limits must be moved closer to the central line to avoid type II. errors. The increase
in type II.-related costs does not have considerable impact on the width of warning
region (also represented by the distance between k∗ and w∗). As a increases, k∗ and
w∗ move to the same direction simultaneously.

To further analyze the behavior of the warning interval, additional sensitivity
analysis was conducted based on the sampling cost because it directly influences
the warning limit coefficient. Figure 5.10 shows the results of the analysis.
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Figure 5.10 shows the distance between k∗ and w∗ (k∗ − w∗) as a function of the
sampling cost (cs). The higher the cost of sampling is, the smaller is the distance
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between the two limits (width of central region increases). Higher sampling cost
increases the value of w∗ because the control is too expensive due to the frequently
enlarged sample size and shorter sampling interval. On the other hand, lower sam-
pling cost allows stricter control policy.

5.3.2 Standard deviation of measurement error

Sensitivity analysis according to the standard deviation of the measurement error is
performed in this subsection. All the distribution parameters were fixed during the
simulation except the standard deviation of the measurement error (σε).

<
0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

k*
, w

*

1.8

1.9

2

2.1

2.2

2.3

2.4

k*
w*

FIGURE 5.11: Sensitivity analysis regarding standard deviation of
measurement error

It is observable on Figure 5.11, that w∗ and k∗ decrease as the standard deviation
of the measurement error increases. Higher standard deviation (according to the
measurement error) represents a stricter control policy. In this case, the effect of
measurement uncertainty is significant; therefore, the approach reduces the width
of the control interval to avoid type II. errors. The distance between the two limits
is nearly constant because the sampling cost does not change during the simulation.
Nevertheless, the sampling cost has considerable impact on the distance between w∗

an k∗, as it was shown by Subsection 5.3.1.

5.3.3 Skewness of the measurement error

Since it was proved in Section 4.1, the kurtosis of the measurement error distribution
does not impact the control line value, the current sensitivity analysis focuses on the
skewness of the measurement error distribution only.

In the simulation, the model parameters were the same as in Section 4.3, but the
skewness of the measurement error distribution (denoted by γ) was altered in each
iteration (from -1 to 1).

Figure 5.12 shows the results of the sensitivity analysis.
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In the simulation, k∗ and w∗ are not affected by changes in γ because sampling
adjusts the skewed distribution to normal. Based on the central limit theorem, the
sample means tend to normal (and the skewness approaches 0).
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Chapter 6

Validation and verification through
practical examples

In this chapter, I validate the proposed methods and statements through real prac-
tical examples with the contribution of a company from automotive industry. The
aim of this chapter can be summarized as follows:

1. Validation of the assumption that skewed or asymmetric measurement error
distribution is an existing phenomena in production environment.

2. Verify that the proposed methods can simulate and give good approximation
to the real process patterns allowing the user to achieve better control policy
with the consideration of measurement errors.

In this chapter, three practical examples are presented (the first one is an accep-
tance sampling example, the second one relates to the T2 control chart application
and third one focuses on the construction of the Risk based VSSI X chart) where the
"real" (x) and "detected" (y) values are determined by the measurement laboratory
of the company. Each example follows the structure below:

1. Selection of the appropriate products and product characteristic(s) that will be
analyzed during the experiment.

2. Determination of x and y values using 3D optical scanner from the measure-
ment laboratory

3. Characterization of monitored process and measurement error distribution.

4. Simulation of the selected process and measurement error with the proposed
methods using the process/measurement error parameters derived from "step
3".

5. Optimize both, the "real" and "simulated" processes according to the proposed
methods (risk-based conformity control, risk-based T2 chart and risk-based
VSSI X chart).

6. Comparison of results given by "simulation" and "real" process optimization

For better clarity, I provide detailed description about each step.
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1. Selection of products and product characteristics The selected parts were mas-
ter brake cylinders produced by the manufacturing company. In the examples, two
product characteristics were analyzed, the cutting length and the core diameter of
the products. Engineers paid very close attention to ensure that the parts were pro-
duced by the same machine with the same setup and they were derived from the
same batch.

2. Estimation of x and y After the parts have been selected from production, they
were transferred to the measurement laboratory of the company. The company uses
a 3D optical laser scanner for very precise measurements/experiments, however it
cannot be used for process monitoring due to the time-and cost intensiveness of the
measurement process. Therefore, manual devices are applied in the production like
manual height gauge, and calipers for diameter measurements. In the examples, the
3D optical scanner was used in order to estimate "real" values (denoted by x) of the
selected product characteristic, and the devices in the production (manual height
gauge, caliper) were used to determine the "detected" value (denoted by y).

Although, the 3D optical scanner has its own measurement uncertainty, it can
estimate the "real" product characteristic well, because it is considerably more pre-
cise than devices used in the production. The optical scanner was even validated
using standard calibration artifact and the average measurement error was lower
than 0.001 [mm].

3. Characterization of measurement error After the estimation of x and y values,
the measurement error can be estimated as well:

ε i = yi − xi (6.1)

Where ε i is the measurement error related to the ith product. If the measurement
error is known for each measurement, its distribution can be analyzed and charac-
terized (mean, standard deviation, skewness, kurtosis).

The same characterization can be done not only for the measurement error, but
regarding the process parameters as well (process mean, standard deviation, kurto-
sis, skewness, trend of the process).

4. Simulation of the process and measurement error Using the information from
the previous step, x and ε can be simulated and y can be calculated according to
Equation (3.1). The aim of this step is to demonstrate how accurately the monitored
process patterns and measurement errors can be simulated.

5.-6. Optimization and comparison of results The aim of this step is to analyze,
how efficiently the proposed methods can be used when not all the information
are available and simulation needs to be used due to the limitations of the produc-
tion/measurement system or cost-intensiveness of the measurements.

As a first step, the known process needs to be optimized (x, y and ε are known
based on the laboratory measurements). As further step, simulated process is also
optimized, and finally, the simulation results (optimal correction component, opti-
mal control limit coefficient) are substituted back to the "real" system allowing us to
compare the results given by the real system optimization and optimization results
using simulated processes.
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In the next section I introduce the first practical example, which is a total inspec-
tion problem where the conformity testing procedure is affected by measurement
errors.

6.1 Effect of measurement error skewness on optimal accep-
tance policy

This example introduces a conformity testing problem under the presence of mea-
surement error.

6.1.1 Brief description of the process

The inspected product is a master brake cylinder and the monitored product char-
acteristic is the cutting length [mm] of the product. The acceptance has lower and
upper specification limit and the tolerance interval regarding the aforementioned
characteristic is 69.25 ± 0.65 [mm] (LSL=68.6 [mm], USL=69.9 [mm]). 50 parts were
selected for total inspection and their conformity has to be judged based on the de-
tected cutting length, which is measured by a manual height gauge.

The finance estimated the relative cost of each decision outcome. Cost of correct
acceptance (c11) equals 1 and the other decision costs were estimated compared to
that. According to that, the outcomes were estimated as follows: c11=1 (correct ac-
ceptance), c10=4 (incorrect rejection), c01=34.7 (incorrect acceptance), c00=4 (correct
rejection).

6.1.2 Measurement error characteristics

Measurement errors (ε i) for each measurement were calculated as the difference of
the manual height gauge (yi) and 3D optical scanner measurements (xi). Figure 6.1
shows the distribution and the Q-Q plot related to the measurement errors.
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FIGURE 6.1: Distribution of the measurement error (First practical
example)

Based on the Q-Q plot, the measurement error follows nearly normal distribu-
tion, however the histogram indicates that the distribution is not symmetric. Table
6.1 contains the estimated parameters of the distribution.
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TABLE 6.1: Estimated parameters of measurement error distribution
(First practical example)

Minimum Maximum Mean Std. Deviation Skewness Kurtosis

Measurement error −0.13 0.23 0.068 0.089 −0.31 −0.40

The measurement error distribution has negative skewness (−0.31), furthermore,
the mean is higher than zero indicating that the height gauge often measures higher
value than the real cutting length value. Thus, I expect that during the optimization
the proposed method will mainly modify the upper specification limit (USL) in order
to eliminate the type I. errors.

As an important contribution, this example confirms that the phenomena of
asymmetric measurement error distribution is a valid problem that can be observed
in production environment.

6.1.3 Real process and Simulation

In order to simulate the process, first, the parameters of the "real" cutting length- and
measurement error distribution must be known. The characteristics of measurement
error distribution were already estimated in Subsection 6.1.2, and the parameters re-
garding the distribution of x were estimated as well (based on the laboratory mea-
surements using the 3D optical scanner):

TABLE 6.2: Estimated parameters of the process distribution (First
practical example)

Device Minimum Maximum Mean Std. Deviation Skewness Kurtosis

3D Optical (x) 68.69 69.89 69.34 0.26 −0.15 3.04
Height gauge (y) 68.71 70.04 69.41 0.32 −0.12 2.57

Both process means are slightly above the target (69.25), which also strengthens
the expectation that USL will be affected more by the measurement errors.

In view of the process (x) and measurement error parameters (ε), the simulation
can be conducted. For the generation of random numbers with the same distribution
parameters, the Matlab’s "pearsrnd" function was applied.

The result of the simulation compared to the known measurements is introduced
by Figure 6.2.
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FIGURE 6.2: Density plot according to the real and detected product
characteristic values

The upper density plots show the distribution "real" (x) and "detected" (y) prod-
uct characteristic values when x and y are simulated using the estimated process
parameters. The lower chart shows the same density plot, but now x and y are
derived from laboratory measurements. (x is derived from the 3D optical scanner
measurements and y is the value measured by the height gauge).

Figure 6.2 indicates that the simulation can be used well to describe the char-
acteristics of the real system. In both cases it is clearly visible, that the simulated
distributions follow very similar patterns as the measurements derived from the
laboratory experiment.

6.1.4 Optimization and comparison of results

Optimization and comparison of results were conducted through the following steps:

1. Total decision cost was calculated using the initial specification limits.
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2. Known process (where x is the 3D optical measurement and y is the height
gauge measurement) is optimized and total decision cost is calculated.

3. Simulated process was optimized and the resulted correction components were
substituted back to the real process, and total decision cost was calculated us-
ing these results.

4. Optimization results from simulation and known process are compared in
terms of decision cost reduction rate and optimal correction components.

Figure 6.3 shows the density function according to 3D optical measurements (x)
and height gauge (y) as well. Black vertical lines represent the initial specification
limits, while blue lines represent the optimal specification limits given by the op-
timization of simulated x and y. Finally, red dashed lines denote the optimized
specification using the known data.
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FIGURE 6.3: Density plot with original and optimized specification
limits

According to the expectations, there was no significant modification related to
LSL due to the negative skewness of the measurement error distribution. Although
the alteration of USL is different in the case of simulated and known data, both
optimization increased the value of the upper specification limit in order to decrease
the number of type I. errors.

Table 6.3 shows the results of the optimizations.
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TABLE 6.3: Optimization results (First practical example)

KLSL KUSL q11 q10 q01 q00 TC0 TC1 ∆C%

Without optimization 0.00 0.00 46 4 0 0 62 62 −
Optimization using simulated data −0.02 −0.18 49 1 0 0 62 53 15%
Optimization using known data 0.02 −0.27 50 0 0 0 62 50 19%

KLSL and KUSL are the correction components related to LSL and USL respec-
tively. Note that LSL∗, USL∗ are the optimal specification limits:

LSL∗ = LSL + KLSL and USL∗ = USL− KUSL (6.2)

Furthermore, q11 is the number of correct acceptances, q00 is the number of correct
rejections, q10 denotes the number of type I., while q01 represents the number of type
II. errors. TC0 and TC1 show the total decision costs before and after optimization,
finally, ∆C% denotes the achieved cost reduction rate.

As the results show, 15% cost reduction rate could be achieved with the elimi-
nation of 3 type I. errors if simulated data were used. Additional 4% cost reduction
could be achieved if x and y were known (all four type I. errors could be eliminated).

This practical example not only validated that skewed measurement error dis-
tribution can exist in production environment but also verified that the proposed
method is able to decrease the total decision cost even if x and y are simulated using
the preliminary knowledge of their distribution parameters.
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6.2 Effect of measurement error on T2 control chart

In this example, a multivariate T2 chart is designed to joint monitor two product
characteristics. The company and the experiment/measurement methodology is the
same as in the previous section, however the monitored product is slightly different.

6.2.1 Brief description of the process

Similarly to Section 6.1, the monitored product is a master brake cylinder, however
in this case, simultaneous monitoring of two product characteristics is needed. The
first characteristic is the cutting length with tolerance 84.45 ± 0.75 [mm] and the
other one is the core diameter with tolerance 58 ± 0.5 [mm]. In order to measure
the cutting length, manual height gauge is used in the production, and the diameter
is measured with calipers. The control policy focuses on the process control and
does not take the specification limits into account by this example. Therefore, there
are four decision outcomes again, those costs were estimated by the finance: c11=1
(correct acceptance), c10=20 (incorrect control), c01=160 (incorrect acceptance), c00=5
(correct control).

6.2.2 Measurement error characteristics

Measurement errors (ε i) for each measurement were calculated using Equation (6.1).
xi represents the 3D optical measurement in the case of both characteristics, yi de-
notes the measurement given by height gauge (by the cutting length) and it is mea-
sured by a caliper in the case of the core diameter.

Figure 6.4 shows the distribution and the Q-Q plot of measurement errors related
to cutting length and core diameter.
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FIGURE 6.4: Distribution of measurement error related to cutting
length and core diameter
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It is clearly observable on Figure 6.4 that the measurement error distributions
have different direction regarding skewness. Table 6.4 contains the estimated pa-
rameters of the measurement error distributions.

TABLE 6.4: Estimated parameters of measurement error distribution
(Second practical example)

Measurement error Minimum Maximum Mean Std. Deviation Skewness Kurtosis

Cutting length −0.08 0.14 0.044 0.052 −0.35 2.61
Core diameter −0.08 0.27 0.067 0.09 0.35 2.42

The estimated parameters also confirm the observed pattern, providing good
practical examples for the existence of both, left- and right skewed measurement
error distributions in production environment. The skewness is −0.35 regarding
cutting length measurement error and 0.35 related to the core diameter measure-
ments. The standard deviation values show that the measurements given by caliper
are more distorted. Furthermore, the estimated distribution parameters can be used
to simulate measurement errors.

6.2.3 Real process and Simulation

Similarly to Subsection 6.1.3, besides measurement error characterization, process
parameters need to be estimated too in order to provide simulated control chart
pattern. The process parameters are summarized by Table 6.5.

TABLE 6.5: Estimated parameters of the process distribution (Second
practical example)

Minimum Maximum Mean Std. Deviation Skewness Kurtosis

Le
ng

th 3D optical 84.30 84.64 84.49 0.07 −0.33 2.96

Height gauge 84.32 84.74 84.54 0.08 −0.05 3.38

D
ia

m
et

er 3D optical 57.82 58.08 57.89 0.07 1.51 3.99

Caliper 57.77 58.17 57.95 0.11 0.18 2.12

Although, the processes are well centered, the detected mean values (given be
the height gauge and caliper measurements) values are shifted due to the measure-
ment errors. The proposed method can be used under non-normality however, T2

chart assumes non-correlated product characteristics. Correlation and density func-
tions are shown by Figure 6.5.
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FIGURE 6.5: Correlation and distribution of the two product charac-
teristics

Blue dots are representing the relationship between cutting length and core di-
ameter according to the optical measurements, and black crosses denote the rela-
tionship of the product characteristics regarding the manual devices (height gauge
or caliper). Based on the scatter plot, no significant correlation can be considered.
Pearson correlation coefficients also confirm the observation: r = 0.24 (p = 0.082)
for the optical measurements and r = 0.06 (p = 0.646) for the manual devices.

Density functions also show that the measurement is strongly distorted in the
case of caliper.

Since the correlation satisfies the control chart condition, the T2 chart can be de-
signed and simulation can be conducted. Process mean, standard deviation, infor-
mation about skewness and kurtosis were used to simulate the processes. Simulated
process is introduced by Figure 6.6, where the upper control chart was designed us-
ing optical measurement as x and manual device measurements (by height gauge
and caliper) as y and the lower chart shows the resulted control chart patterns, when
both, x and y are simulated based on the estimated process parameters.



Chapter 6. Validation and verification through practical examples 77

sample
0 5 10 15 20 25 30 35 40 45 50

T
2

0

2

4

6

8

10

12
T2 chart for known x and y

x (3D optical) y (height gauge) initial UCL Optimized UCL

sample
0 5 10 15 20 25 30 35 40 45 50

T
2

0

2

4

6

8

10

12
T2 chart for simulated x and y

x y initial UCL Optimized UCL

FIGURE 6.6: Designed T2 charts (upper chart contains the known x
and y and lower chart was built under simulated x and y)

Blue lines are representing the "real" values (optical measurements on the upper
chart and simulated x values on the lower chart) and red lines denote the "detected"
values (manual measurements on upper chart and simulated y on lower chart). As
the control chart patterns show, the known process can be modeled well however,
the proposed method can be verified only if it can decrease the total decision cost
through the optimization of the control limit.

6.2.4 Optimization and comparison of results

Optimization and result-comparison includes the same steps as Subsection 6.1.4,
Figure 6.7 shows the optimized control limits.
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FIGURE 6.7: Designed T2 chart with optimized control limit
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The continuous horizontal line denotes the initial control limit (without opti-
mization), furthermore, dotted and dashed lines represent UCL∗ for simulated data
and UCL∗ for known data respectively (where UCL∗ is the optimized value of the
control line). Both scenarios increased the acceptance interval in order to eliminate
the most type I. errors however, the modification was smaller by the simulated data
due to the lack of knowledge. Table 6.6 compares the results of each scenario.

TABLE 6.6: Optimization results (Second practical example)

K q11 q10 q01 q00 TC0 TC1 ∆C%

Without optimization 0.00 46 3 0 1 104 104 −
Optimization using simulated data −0.70 48 1 0 1 104 70 33%
Optimization using known data −1.12 49 0 0 1 104 53 49%

With the simulated process, total decision cost was reduced by 33% and addi-
tional 16% would have been achieved if all the knowledge about x and y would had
been available. Please note, that only one correction component (K) can be inter-
preted here, since T2 chart has only upper control limit.

The proposed model could find a better solution regarding the control line when
the process and measurement error was simulated using the preliminary knowledge
about the process and measurement error characteristics. The results verify that the
proposed method is able to reduce the decision costs even under restricted informa-
tion about the real measurements.
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6.3 Effect of measurement error on adaptive control chart

The third practical example introduces an adaptive control chart fitting problem and
also investigates the applicability of the proposed VSSI X chart.

6.3.1 Brief description of the process

The monitored product is a third type master brake cylinder with different serial
number. The tolerance related to the product’s cutting length is 69.25 ± 0.65 [mm].
100 parts were selected for the experiment and the measurements regarding x and y
were conducted with the same 3D optical device and the manual height gauge. Due
to the conditions and limitations of production procedure, sample size cannot be
higher than 3 and sample needs to be taken on every hour or in every two hours at
most. Therefore, in the control chart design, the variable parameters are considered
as n1 = 2, n2 = 3, h1 = 2, h2 = 1, warning- and control limit coefficients (w, k) are
optimized.

According to Subsection 3.3.3, nine decision outcomes can be defined and they
were estimated by the finance as follows (Table 6.7):

TABLE 6.7: Estimated costs of the decision outcomes

Case Estimated relative cost

# 1 1
# 2 5
# 3 48
# 4 6
# 5 4
# 6 50
# 7 184
# 8 66
# 9 22

For detailed description of each decision outcome see Subsection 3.3.3 and for
illustration see Figure 3.2.

6.3.2 Measurement error characteristics

Definition of x, y and ε remained the same as it was defined in the subsections 6.1
and 6.2. Figure 6.8 illustrates the distribution of the data including Q-Q plot as well.

0

10

20

30

−0.3 0.0 0.3 0.6

Cutting lenght [mm]

co
un

t

Histogram of measurement error

−0.25

0.00

0.25

0.50

−2 −1 0 1 2
Theoretical

S
am

pl
e

Q−Q plot of the measurement error (cutting length)

FIGURE 6.8: Distribution of the measurement error (Third practical
example)
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Based on the histogram and Q-Q plot, the measurement errors follow nearly
normal distribution however, the histogram is not symmetric either. The shape of
the distribution is similar to the previous examples since the same manual height
gauge was applied in the measurements.

TABLE 6.8: Estimated parameters of measurement error distribution
(Third practical example)

Minimum Maximum Mean Std. Deviation Skewness Kurtosis

Measurement error −0.43 0.48 0.073 0.159 −0.36 3.78

Table 6.8 indicates that the skewness is negative in this case, similarly to the pre-
vious cutting length measurements. The estimated parameters are used to generate
random errors with the same mean, standard deviation skewness and kurtosis.

6.3.3 Real process and Simulation

In order to simulate x and y, the process distribution parameters need to be esti-
mated too. Table 6.9 contains the estimated moments of the distribution functions
related to 3D optical measurements (x) and Height gauge measurements (y).

TABLE 6.9: Estimated parameters of the process distribution (Third
practical example)

Device Minimum Maximum Mean Std. Deviation Skewness Kurtosis

3D optical (x) 68.64 69.97 69.36 0.28 −0.14 2.76
Height gauge (y) 68.51 70.24 69.43 0.33 0.01 2.92

The process mean considering the real value of the cutting length is slightly
above the target and due to the negative skewness and positive mean of measure-
ment error distribution, y is generally higher than x, which is also reflected by Table
6.9. The process was simulated using the estimated distribution parameters and
VSSI X chart was designed in order to control cutting length of the product. Figure
6.9 shows the control chart patterns for known and simulated data.
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FIGURE 6.9: VSSI X chart patterns for known data and simulation

The proposed method is able to optimize the warning limits and thus the real
and detected control chart patterns converge better to each other. This leads to cost
reduction because sampling policy can be rationalized by eliminating missed sam-
pling events or unnecessary increase of sample size. In both cases (real and sim-
ulated processes), the proposed method was able to improve the sampling policy
which is clearly visible on the control chart patterns after optimization.

The next subsection summarizes and compares the optimization results related
to known and simulated data.

6.3.4 Optimization and comparison of results

During the optimization, w and k were optimized, where w is the warning limit
coefficient and k is the control limit coefficient. Table 6.10 shows the quantity of each
decision outcome (qi) and total decision costs as a function of w and k.

TABLE 6.10: Optimization results (Third practical example)

Optimization w k q1 q2 q3 q4 q5 q6 q7 q8 q9 TC0 TC1 ∆C%

No optimization 2.00 3.00 15 1 0 0 0 0 1 0 0 204 204 −
Simulated x, y 2.62 3.44 16 0 0 0 0 0 0 1 0 204 82 60%
Known x, y 2.63 2.94 16 0 0 0 0 0 0 0 1 204 38 81%

There were no significant difference between optimized warning limit coeffi-
cients however, k∗ was higher (3.44 instead of 2.94) than it should have been in order
to reach the lowest achievable total decision cost. Both scenarios were able to opti-
mize w and provide better sampling policy through convergence of x and y control
chart patterns. On the other hand, optimized control lines given by simulated x and
y were not able to eliminate all incorrect decisions (due to lack of knowledge). As
Figure 6.10 shows, at the 10th sample, optimal UCL based on simulation is too high
and incorrect acceptance would be made.
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Nevertheless, a better control and sampling policy was provided by the pro-
posed method even without the exact knowledge of all data points. 60% cost reduc-
tion was achieved when w and k were optimized using simulated measurements
and potentially 21% more if all the data points had been known.
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FIGURE 6.10: RB VSSI X chart with optimal warning and control lines

It is important to note that much larger cost reduction can be realized because of
two reasons:

1. We have only 17 plots on the chart, thus, elimination of a single incorrect deci-
sion has huge impact on total decision cost.

2. Rationalization of sampling policy provides further opportunities to decision
cost reduction.

This example verified that the proposed method can be a solution to rational-
ize the sampling and control procedure simultaneously. The RB VSSI X chart can
be applied in order to reduce total decision cost if process and measurement error
parameters and decision costs can be estimated.
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Chapter 7

Summary and Conclusion

7.1 Summary

The aim of this work was to broaden the knowledge regarding measurement error
distribution and hereby provide a new risk-based control chart design methodology
with the consideration of measurement uncertainty. In order to explore the most
relevant scientific contributions according to control charts and measurement un-
certainty, I conducted a systematic literature review.

As refinement of the literature search, not only relevant papers have been col-
lected but citation database has been built from which citation networks have been
constructed. The literature research results confirmed that the concept of measure-
ment error in process control is a significant research area however, decision out-
comes should be considered during control chart design and the linkage should be
strengthen between measurement uncertainty and control chart design studies.

Chapter 3 introduced the methodology related to the examination of the effect
if 3rd and 4th moments of measurement error distribution and the proposed design
method for RBT2 and RB VSSI X charts.

Simulation results and several sensitivity analysis were conducted (Chapters 4
and 5) in order to validate research proposals and investigate the performance and
limitations of the proposed methods under different conditions. As the outcome of
the dissertation, three theses were defined:

Thesis 1: Third moment (skewness) of the measurement error distribution
strongly affects the value of the optimal acceptance limit, however fourth mo-
ment (kurtosis) of the error distribution does not have significant impact on the
acceptance policy when total inspection is applied. In case of acceptance sam-
pling, neither skewness nor kurtosis impacts the optimal acceptance limit due to
the central limit theorem. Therefore, in conformity control, measurement uncer-
tainty needs to be considered as distribution with its characteristics and not as an
interval. Furthermore, in the case of processes with strong performance index, the
consideration of measurement uncertainty cannot decrease the overall decision
cost. Relation of process performance and standard deviation of measurement er-
ror (compared to process standard deviation) determines if it is beneficial to deal
with measurement uncertainty.

Thesis 2: Consideration of measurement uncertainty not only beneficial in the
case of Shewhart control chart but can reduce the total decision cost when multi-
variate control chart is applied.
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Thesis 3: The risk-based aspect can be used to reduce the overall decision cost
by adaptive control chart. Compared to RBT2 chart, RB VSSI X chart is more pow-
erful in cost reduction since it is not only able to eliminate incorrect decisions with
respect to "out-of-control" detection but also reduces the cost related to incorrect
sampling policy in "in-control" state.

In Chapter 6, validation and verification of the defined research proposals were
introduced. Real practical examples were provided and laboratory experiments
were organized to validate the existence of skewed measurement error distribution
and verify applicability of the proposed methodology at a company from automo-
tive industry.

7.2 Conclusion

The first contribution of this dissertation is the detailed literature research that not
only explores the most relevant studies but models the relationship between control
chart design and measurement uncertainty areas.

As an outcome of the literature review, I ascertained that:

1. Many researches aimed to develop methods in order to express the measure-
ment uncertainty even assuming skewed distribution, however there are just a
few ones considering the consequences of decisions by conformity control un-
der the presence of non-normal measurement error distribution. On the other
hand, the studies dealing with asymmetric measurement error distribution do
not investigate the effect of each moments of the measurement error distribu-
tion on the effectiveness of conformity control.

2. Although control chart studies proposing multiple sampling strategies in order
to reduce the effect of measurement error, they did not consider the risk of the
decisions during process control.

3. The linkage between the two research area is weak, only few citations can be
observed between the constructed networks.

The literature research results confirmed that the concept of measurement error
in process control is a significant research area however, decision outcomes should
be considered during control chart design and the linkage should be strengthen be-
tween measurement uncertainty and control chart design studies.

As further contribution, this research showed that not only expected value and
standard deviation is important during the characterization of measurement error
but skewness can strongly influence the performance of the conformity- or process
control. It was also reflected by the results that consideration of measurement un-
certainty is beneficial in process control. The proposed method not only reduces the
number of incorrect decisions but also decreases the total cost associating with the
decision outcomes.

The additional implications of this research can be summarized from different
point of views: implications for scholars, implications for practitioners and implica-
tions for the management.

1. Implications for scholars This dissertation demonstrated how risk-based as-
pect can be applied for conformity and process control and pointed out that results
given by measurement uncertainty researches should be utilized more in control
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chart design. The dissertation raises attention to the skewness of measurement er-
ror distribution indicating that dealing with asymmetric measurement uncertainty
is very important in conformity control. The proposed new control charts proved
that application of risk-based concept can decrease the decision cost even in multi-
variate and adaptive statistical process control. My research results were published
in the following international scientific papers:

Thesis 1:
Kosztyán, Zsolt T., Csaba Hegedűs, and Attila Katona (2017). Treating measure-

ment uncertainty in industrial conformity control. In: Central European Journal
of Operations Research, pp. 1-22. ISSN: 1613-9178. DOI: doi.org/10.1007/s10100-
017-0469-8

Thesis 2:
Kosztyán, Z. T., & Katona, A. I. (2016). Risk-based multivariate control chart. In: Ex-

pert Systems with Applications, 62, 250-262. DOI: doi.org/10.1016/j.eswa .2016.06.
019

Thesis 3:
Kosztyán, Z. T., & Katona, A. I. (2018). Risk-Based X-bar chart with variable sample

size and sampling interval. In: Computers & Industrial Engineering, 120, 308-319.
DOI: doi.org/10.1016/j.cie.2018.04.052
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ture networks. The green edges represent the papers I cited from the network.

https://doi.org/10.1007/s10100-017-0469-8
https://doi.org/10.1007/s10100-017-0469-8
https://doi.org/10.1016/j.eswa.2016.06.019
https://doi.org/10.1016/j.eswa.2016.06.019
https://doi.org/10.1016/j.cie.2018.04.052


Chapter 7. Summary and Conclusion 86

Legend:

Articles connected based on my contribution
Articles where I contributed
Articles/Structure nodes

Hegedus et 
al. (2017)

Kosztyán 
& Katona 

(2018)

Kosztyán & 
Katona (2016)

Control Charts

Measurement uncertainty 
and conformity

5
# of citations:

30

150

1000

5000

FIGURE 7.1: Placement of the research outcomes into the main stream

2. Implications for practitioners Practitioners can benefit from the outcomes of
this work, because the product characteristics can be monitored more efficiently
with the proposed risk-based control charts. Process shifts can be detected more pre-
cisely in multivariate (RBT2) or adaptive (VSSI X) cases as well. In addition, even
sampling procedure can be rationalized with the RB VSSI X chart. This research
also determines the process performance value where it is still beneficial to consider
measurement uncertainty.

3. Implications for the management For a manufacturer company, quality of the
products is outstandingly important in terms of competitiveness and the proposed
risk-based control charts are able to maintain high quality and decrease decision
costs in the same time. Quality management can leverage the proposed methods by
decreasing the amount of type II. errors (prestige loss), decision costs and increase
the overall customer satisfaction.
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Appendix A

Risk and uncertainty in production
management

Risk and uncertainty are commonly discussed topics on the field of production man-
agement. As it have been provided by the Royal Society in 1992, the risk is: "The
probability that a particular adverse event occurs during a stated period of time,
or results from a particular challenge. As a probability in the sense of statistical
theory, risk obeys all the formal laws of combining probabilities". Based on the re-
view of Harland et al., different types of risks can be distinguished (Harland et al.,
2003): strategic risk (Simons, 1999), operations risk (Meulbrook, 2000, Simons, 1999),
supply risk (Meulbrook, 2000), Smallman, 1996), customer risk (Meulbrook, 2000),
asset impairment risk, competitive risk (Simons, 1999), reputation risk (Gibb and
Schwartz, 1999), financial risk (Meulbrook, 2000), fiscal risk, regulatory risk (Meul-
brook, 2000, Cousins et al., 2004, Smallman, 1996), legal risk (Meulbrook, 2000).

The statistical process control - which is the main topic of the thesis - is directly
connected to the operations risk (since the incomplete process control affects the
producer’s ability to manufacture) and customer risk (because the incorrect control
increases the probability of defected product occurrence).

However there are several types of risk, uncertainty is a significant element in-
cluded by each type of them (Yates and Stone, 1992) and it is associated with the
degree of confidence of a decision maker during the decision making procedure.
(Mitchell, 1995). Clarkson and Eckert (2010) distinguish four categories of uncer-
tainty: known uncertainties, unknown uncertainties, uncertainties in the data (in-
cluding measurements) and uncertainties in the description.

Uncertainties that can be handled well based on the knowledge of past cases are
the known uncertainties. Unknown uncertainties are the events that could not be
foreseen like the occurrence of 9/11 and its impact (Weck and Eckert, 2007). Uncer-
tainties in the data mean the factors like completeness of the data, accuracy, consis-
tence and the quality of the measurement. And finally, uncertainty in the description
is the fourth category, which is related to the description of a system and focuses on
the ambiguity (or clarity) of the description. There is a significant difference between
the last two categories from the point of view.of mathematical modeling. Since the
measurement process can be described well with the characteristics of the measure-
ment error the uncertainty of data can be modeled well. Uncertainty of description
is more difficult to characterize, due to the lack of clarity of the (system) descrip-
tion. If unknown factors are missing in the description, the consequences cannot be
measured (Weck and Eckert, 2007).

In my thesis I would like to focus on the uncertainty of measurement based on
the model of Weck and Eckert (2007), since this type of uncertainty can be modeled
well. In my research I examine the effect of the measurement uncertainty by the
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application of statistical control charts that are outstanding tools in production man-
agement. Therefore this work is directly related to the operations risk and customer
risk based on the risk-categorization by the review of Harland et al. (2003).
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Appendix B

Table of papers - control charts

TABLE B.1: Table of articles - Control Charts - 1 (U=univariate,
M=multivatiate, P=parametric, NP=nonparametric, F=fixed,

A=adaptive, T=traditional, R=risk-based)

Nr. Article Year Dimension Distribution Chart Parameters Type

1 Shewhart, 1931 1931 U P F T
2 Shewhart and Deming, 1939 1939 U P F T
3 Hotelling, 1947 1947 M P F T
4 Page, 1954 1954 U P F T
5 Duncan, 1956 1956 U P F T
6 Jackson, 1959 1959 M P F T
7 Zimmer, 1963 1963 U NP F T
8 Duncan, 1971 1971 U P F T
9 Saniga and Shirland, 1977 1977 U P F T
10 Abraham, 1977 1977 U P F R
11 Bakir and Reynolds, 1979 1979 U NP F T
12 Lashkari and Rahim, 1982 1982 U NP F T
13 Alt, 1982 1982 U P F T
14 Rahlm, 1985 1985 U NP F R
15 Crosier, 1986 1986 U P F T
16 Kanazuka, 1986 1986 U P F R
17 Tuprah and Ncube, 1987 1987 U P F T
18 Reynolds et al., 1988 1988 U P A T
19 Lucas and Saccucci, 1990 1990 U P F T
20 Reynolds et al., 1990 1990 U P A T
21 Hackl and Ledolter, 1991 1991 U NP F T
22 Runger and Pignatiello, 1991 1991 U NP A T
23 Lowry et al., 1992 1992 M P F T
24 Saccucci et al., 1992 1992 M NP A T
25 Hackl and Ledolter, 1992 1992 U NP F T
26 Yourstone and Zimmer, 1992 1992 U NP F T
27 Prabhu et al., 1993 1993 U P A T
28 Costa, 1994 1994 U P A T
29 Amin et al., 1995 1995 U NP F T
30 Lowry and Montgomery, 1995 1995 M P F T
31 Margavio et al., 1995 1995 U P F T
32 Annadi et al., 1995 1995 U P A T
33 Aparisi, 1996 1996 M P A T
34 Costa, 1997 1997 U P A T
35 Prabhu et al., 1997 1997 M NP F T
36 Chou et al., 1998 1998 U NP F T
37 Mittag and Stemann, 1998 1998 U P F R
38 Tagaras, 1998 1998 U P A T
39 Chou et al., 2000 2000 U NP F T
40 Luceno and Puig-pey, 2000 2000 U P F T
41 Aparisi and Haro, 2001 2001 M P A T
42 Reynolds and Arnold, 2001 2001 U NP A T
43 Chou et al., 2001 2001 U NP F T
44 De Magalhães et al., 2001 2001 U P A T
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TABLE B.2: Table of articles - Control Charts - 2 (U=univariate,
M=multivatiate, P=parametric, NP=nonparametric, F=fixed,

A=adaptive, T=traditional, R=risk-based)

Nr. Article Year Dimension Distribution Chart Parameters Type

45 Nenes, 2011 2001 U P F T
46 Calzada and Scariano, 2001 2001 U NP F T
47 Linna and Woodall, 2001 2001 U P F R
48 Linna et al., 2001 2001 M P F R
49 Stemann and Weihs, 2001 2001 U P F R
50 Chou et al., 2002 2002 M P F T
51 Jones et al., 2004 2004 U P F T
52 Chen, 2004 2004 U P F T
53 Maravelakis et al., 2004 2004 U NP F R
54 Reynolds and Kim, 2005 2005 M P F T
55 Knoth, 2005 2005 U P F T
56 Montgomery, 2005 2005 U/M P F T
57 Lin and Chou, 2005 2005 U NP A T
58 He and Grigoryan, 2006 2006 U P A T
59 Bakir, 2006 2006 U NP F T
60 Koutras et al., 2006 2006 M P F T
61 Faraz and Parsian, 2006 2006 M P A T
62 Chen and Hsieh, 2007 2007 M P A T
63 Ferrer, 2007 2007 M P F T
64 Bersimis et al., 2007 2007 U P F T
65 Chen, 2007 2007 U P A T
66 Kao and Ho, 2007 2007 U NP F T
67 Chen and Cheng, 2007 2007 U NP F T
68 Lin and Chou, 2007 2007 U NP A T
69 Huwang and Hung, 2007 2007 M P F R
70 Song and Vorburger, 2007 2007 U P A T
71 Qiu, 2008 2008 M NP F T
72 Serel and Moskowitz, 2008 2008 U P F T
73 De Magalhães et al., 2009 2009 U P A T
74 Das, 2009 2009 M NP F T
75 Aparisi and Luna, 2009 2009 M P F T
76 Wu et al., 2009 2009 U NP F T
77 Luo et al., 2009 2009 U P A T
78 Yang and Yu, 2009 2009 U NP F T
79 Panagiotidou and Nenes, 2009 2009 U P A T
80 Bush et al., 2010 2010 M NP F T
81 Zhang et al., 2010 2010 M P F T
82 Faraz et al., 2010 2010 M P A T
83 Abbasi, 2010 2010 U NP F R
84 Castagliola and Maravelakis, 2011 2011 U P F T
85 Qiu and Li, 2011 2011 U NP F T
86 Yang et al., 2011 2011 U NP F T
87 Lee, 2011 2011 U P A T
88 Reynolds and Cho, 2011 2011 M P A T
89 Faraz and Saniga, 2011 2011 U P A T
90 Tasias and Nenes, 2012 2012 U P A T
91 Graham et al., 2012 2012 U NP F T
92 Maravelakis, 2012 2012 U P F R
93 Epprecht et al., 2013 2013 M P A T
94 Lee, 2013 2013 M P A T
95 Phaladiganon et al., 2013 2013 M NP F T
96 Bashiri et al., 2013 2013 U P F T
97 Hegedűs et al., 2013b 2013 U NP F R
98 Tuerhong et al., 2014 2014 M NP F T
99 Ganguly and Patel, 2014 2014 U P F T
100 Chong et al., 2014 2014 U P A T
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TABLE B.3: Table of articles - Control Charts - 3 (U=univariate,
M=multivatiate, P=parametric, NP=nonparametric, F=fixed,

A=adaptive, T=traditional, R=risk-based)

Nr. Article Year Dimension Distribution Chart Parameters Type

101 Faraz et al., 2014 2014 M P A T
102 Khurshid and Chakraborty, 2014 2014 U NP F R
103 Riaz, 2014 2014 U P F R
104 Zhang et al., 2014 2015 U P F T
105 Abbasi, 2014 2015 U P F R
106 Cheng and Shiau, 2015 2015 M NP F T
107 Haq et al., 2015 2015 U NP F R
108 Joekes et al., 2015 2015 U P A T
109 Seif et al., 2015 2015 M P A T
110 Chew et al., 2015 2015 M P A T
111 Maleki et al., 2016 2016 U P F R
112 Abbasi, 2016 2016 U NP F R
113 Aslam et al., 2016 2016 U P A T
114 Tran et al., 2016 2016 U NP F R
115 Yeong et al., 2016 2016 M P F T
116 Hu et al., 2016b 2016 U P A R
117 Hu et al., 2016a 2016 U P A R
118 Chen et al., 2016 2016 M NP F T
119 Yue and Liu, 2017 2017 M NP A T
120 Chattinnawat and Bilen, 2017 2017 M P F R
121 Daryabari et al., 2017 2017 U NP F R
122 Salmasnia et al., 2018 2018 M P A T
123 Pawar et al., 2018 2018 U NP A T
124 Safe et al., 2018 2018 U P A T
125 Amiri et al., 2018 2018 M P F R
126 Cheng and Wang, 2018 2018 U P F R
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Appendix C

Table of papers - Measurement
uncertainty

TABLE C.1: Table of articles - Measurement Uncertainty - 1
(E=evaluation, C=conformity, S=symmetric, A=asymmetric )

Nr. Article Year Topic Distribution

1 BIPM et al., 1995 1995 E S
2 ILAC, 1996 1996 E S
3 Tsai and Johnson, 1998 1998 E S
4 King, 1999 1999 C S
5 Lira, 1999 1999 C S
6 Currie, 2001 2001 E A
7 Mauris et al., 2001 2001 E S
8 AIAG, 2002 2002 E S
9 Eurachem, 2002 2002 E S
10 Martens, 2002 2002 E A
11 ASME, 2002 2002 C S
12 Lira, 2002 2002 C S
13 EA, 2003 2003 E S
14 ISO-TC69, 2003 2003 C S
15 Källgren et al., 2003 2003 C S
16 Choi et al., 2003a 2003 E S
17 Choi et al., 2003b 2003 E S
18 Kudryashova and Chunovkina, 2003 2003 E S
19 Herrador and Gonzalez, 2004 2004 E A
20 D’Agostini, 2004 2004 E A
21 Ferrero and Salicone, 2004 2004 E S
22 Herrador et al., 2005 2005 E A
23 Douglas et al., 2005 2005 E A
24 Desimoni and Brunetti, 2005 2005 C S
25 Willink, 2005 2005 E A
26 Cordero and Roth, 2005 2005 E S
27 Pendrill and Källgren, 2006 2006 C S
28 Forbes, 2006 2006 C S
29 Désenfant and Priel, 2006 2005 E S
30 Cowen and Ellison, 2006 2006 E A
31 Synek, 2006 2006 E A
32 Rossi and Crenna, 2006 2006 C A
33 Desimoni and Brunetti, 2006 2006 C S
34 Willink, 2006 2006 E A
35 Pendrill, 2006 2006 C A
36 Hinrichs, 2006 2006 C S
37 Bich et al., 2006 2006 E S
38 Lampasi et al., 2006 2006 E S
39 Eurachem2007 2007 C S
40 Pavese, 2007 2007 E S
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TABLE C.2: Table of articles - Measurement Uncertainty - 2
(E=evaluation, C=conformity, S=symmetric, A=asymmetric )

Nr. Article Year Topic Distribution

41 Pendrill, 2007 2007 C S
42 Macii and Petri, 2007 2007 E S
43 Synek, 2007 2007 E A
44 BIPM et al., 2008 2008 E S
45 Mekid and Vaja, 2008 2008 E A
46 Pendrill, 2008 2008 C S
47 Williams, 2008 2008 C A
48 Sim and Lim, 2008 2008 E A
49 Richardson et al., 2008 2008 E A
50 Pavese, 2009 2009 E S
51 Pavlovcic et al., 2009 2009 E A
52 Pendrill, 2009 2009 C A
53 Macii and Petri, 2009 2009 C S
54 Sommer, 2009 2009 E A
55 Vilbaste et al., 2010 2010 E A
56 Hinrichs, 2010 2010 C S
57 Pendrill, 2010 2010 C S
58 Beges et al., 2010 2010 C S
59 Lira and Grientschnig, 2010 2010 E S
60 Shainyak, 2013 2013 C S
61 Boumans, 2013 2013 E S
62 Benoit, 2013 2013 E S
63 Possolo, 2013 2013 E S
64 Pendrill, 2014 2014 C A
65 Huang, 2014 2014 C S
66 Theodorou and Zannikos, 2014 2014 C S
67 Fernández et al., 2014 2014 E S
68 Koshulyan and Malaychuk, 2014 2014 E S
69 Bich, 2014 2014 E S
70 Huang, 2015 2015 C S
71 Volodarsky et al., 2015 2015 C S
72 Ramsey and Ellison, 2015 2015 E A
73 Wiora et al., 2016 2016 E S
74 Rajan et al., 2016a 2016 E A
75 Rajan et al., 2016b 2016 E A
76 Fabricio et al., 2016 2016 E S
77 Lira, 2016 2016 E S
78 Eurolab, 2017 2017 C S
79 Herndon, 2017 2017 E S
80 Molognoni et al., 2017 2017 C A
81 Kuselman et al., 2017a 2017 C S
82 Kuselman et al., 2017b 2017 C S
83 Dastmardi et al., 2018 2018 C S
84 Pennecchi et al., 2018 2018 C S
85 Possolo and Bodnar, 2018 2018 E S
86 Wang et al., 2018 2018 E S
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Appendix D

Reviewed studies including the
consideration of measurement
errors

TABLE D.1: Elements of the cost of the decision outcomes

Reference Univariate/ Parametric/ Adaptive/ Control
Multivariate Nonparametric Fixed parameters chart

Abraham, 1977 Univariate Parametric Fixed parameters X
Rahlm, 1985 Univariate Non-parametric Fixed parameters X
Kanazuka, 1986 Univariate Parametric Fixed parameters X− S
Mittag and Stemann, 1998 Univariate Parametric Fixed parameters X− R
Stemann and Weihs, 2001 Univariate Parametric Fixed parameters X− S, EWMA
Linna et al., 2001 Multivariate Parametric Fixed parameters χ2

Linna and Woodall, 2001 Univariate Parametric Fixed parameters X− S2

Maravelakis et al., 2004 Univariate Non-Parametric Fixed parameters EWMA
Huwang and Hung, 2007 Multivariate Parametric Fixed parameters |S|
Abbasi, 2010 Univariate Non-parametric Fixed parameters EWMA
Maravelakis, 2012 Univariate Parametric Fixed parameters CUSUM

Hegedűs et al., 2013b Univariate Parametric/ Fixed parameters X
Non-parametric MA, EWMA

Katona et al., 2014 Univariate Non-parametric Fixed parameters EWMA

Abbasi, 2014 Univariate Parametric/ Fixed parameters Shewhart
Non-parametric CUSUM, EWMA

Riaz, 2014 Univariate Parametric Fixed parameters X, S, S2

Haq et al., 2015 Univariate Non-parametric Fixed parameters EWMA
Hu et al., 2015 Univariate Parametric Fixed parameters synthetic X
Abbasi, 2016 Univariate Non-parametric Fixed parameters EWMA
Maleki et al., 2016 Multivariate Parametric Fixed parameters ELR
Tran et al., 2016 Multivariate Parametric Fixed parameters Shewhart-RZ
Hu et al., 2016a Univariate Parametric Adaptive (VSS) VSS X
Hu et al., 2016b Univariate Parametric Adaptive (VSI) VSI X
Chattinnawat and Bilen, 2017 Multivariate Parametric Fixed parameters T2

Daryabari et al., 2017 Univariate Parametric Fixed parameters MAX EWMAMS

Cheng and Wang, 2018 Univariate Parametric Fixed parameters CUSUM median
EWMA median

Amiri et al., 2018 Multivariate Parametric Fixed parameters GLR, MEWMA
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Appendix E

Description of the adaptive control
chart rules

Consider a process with observed values following a normal distribution with ex-
pected value µ and variance σ2. When FP control chart (control chart with fixed
parameters) is used to monitor the aforementioned process, a random sample (n0) is
taken every hour (denoted by h0).

In the case of a VSSI control chart, two different levels can be determined for
the contol chart parameters (n, h). The first level represents a parameter set with
loose control (n1, h1) including smaller sample size and longer sampling interval,
and the second level means a strict control policy (n2, h2) with a larger sample size
and shorter sampling interval. Nevertheless, n and h must satisfy the following
relations: n1 < n0 < n2 and h2 < h0 < h1, where n0 is the sample size and h0 is the
sampling interval of the FP control chart. The switch rule between the parameter
levels is determined by a warning limit coefficient w indicating the specification of
central and warning regions (Chen et al., 2007):

I1(i) =

[
µ0 − wσ√

n(i)
,

µ0 + wσ√
n(i)

]
(E.1)

and

I2(i) =

[
µ0 − kσ√

n(i)
,

µ0 − wσ√
n(i)

]
∪
[

µ0 + wσ√
n(i)

,
µ0 + kσ√

n(i)

]
(E.2)

I3(i) = I1 ∪ I2 (E.3)

where i = 1, 2... is the number of the sample, I1denotes the central region, and I2
the warning region. During the control process, the following decisions can be made
(Lim et al., 2015):

1. If xi ∈ I1, the manufacturing process is in "in-control" state. Sample size n1 and
sampling interval h1 are used to compute xi+1.

2. If xi ∈ I2, the monitored process is "in-control" but xi falls in the warning
region; thus, n2 and h2 are used for the (i + 1)th sample.

3. If xi /∈ I1 and xi /∈ I2, the process is out of control, and corrective actions
must be taken. After the corrective action, xi+1 falls into the central region
(assuming that the correction was successful), but there is no previous sample
to determine n(i + 1) and h(i + 1). Therefore, as Prabhu et al. (1994) and Costa
(1994) proposed, the next sample size and interval are selected randomly with
probability p0. p0 denotes the probability that the sample mean falls within
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the central region. Similarly, 1− p0 is the probability, meaning that the sample
point falls within the warning region.
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Appendix F

Examples for measurement process
monitoring techniques

MSA Handbook (Measurement System Analysis) determines five categories of mea-
surement system error: bias, repeatability, reproducibility, stability and linearity
(AIAG, 2010). Different statistical methods can be used to assess measurement sys-
tem performance considering the five aforementioned categories. This section clari-
fies the meaning of the categories and discusses the suggested methods for analysis.

Bias

Bias is the difference between the reference value and the detected average of
multiple measurements when considering the same characteristic of the same part
(Pyzdek, 2003, AIAG, 2010). Bias can be determined through experimental mea-
surements using a certified etalon. Detailed guidance and practical examples are
provided by Shaji, 2006, Sibalija and Majstorovic (2007), AIAG (2010), Sahay (2010),
Yu (2012).

Stability

Stability is the change in bias over an extended time period. It is the variation of
the measurement result when same characteristic is measured on the same part (by
the same person) over a time period. Stability can be analyzed by X-R charts, for
practical example, see Shaji (2006), Sibalija and Majstorovic (2007), Sahay (2010), Pai
et al. (2015).

Linearity

Similarly to stability, linearity is associated with the examination of bias however,
linearity refers to the bias throughout the expected operating range. AIAG (2010)
suggests to use at least five parts for the experiment that cover the operating range
of the examined gage. Each part should be measured at least ten times and average
bias values must be calculated against the reference values. Linear fitting can be
conducted if average bias values are plotted with respect to the reference values:

biasi = axi + b (F.1)

where biasi is the bias average and xi is the reference value, a is the slope and
b is the intercept of the fitted line. Gage linearity is acceptable if "bias=0" line is
located entirely within the confidence bounds of the fitted curve. Detailed numerical
examples are provided by Shaji (2006), Sibalija and Majstorovic (2007), AIAG (2010),
Sahay (2010), Yu (2012), Pai et al. (2015), Mat-Shayuti and Adzhar (2017).

Repeatability and reproducibility



Appendix F. Examples for measurement process monitoring techniques 99

AIAG (2010) refers to repeatability as "within apparaiser" variability. In other
words, it is the variation in measurements when a single characteristic is measured
several times on the same part by the same appraiser and using the same device.

Despite the repeatability, reproducibility aims to characterize variation "between
appraisers". In this case a single characteristic is measured several times on the same
part using the same device but the measurement is conducted by different appraisers
(AIAG, 2010). Gage R&R (or GRR) is the proposed method to analyze the variation
regarding repeatability and reproducibility. The study can be conducted based on
different approaches:

• Range method

• Average and Range method

• ANOVA method

Range method

This is an approximation of measurement variability. Usually two appraisers
participates in the study who measure the same part (5 parts) once with the same
instrument. Range method does not decompose variability into repeatability and
reproducibility, it focuses on the ratio of average range of obtained measurements
and process standard deviation:

GRR =
R
d2

=
1
d2

∑ Ri

n
(F.2)

where Ri is the range of the obtained measurements by appraiser "A" and "B" regard-
ing part i and d2 is the correction constant. Based on F.2, the result can be expressed
related to the process variation:

%GRR = 100 ∗
(

GRR
Process Standard Deviation

)
(F.3)

For details and practical examples, see AIAG (2010), Sahay (2010).

Average and Range method

Despite Range method, this approach provides information about repeatability
and reproducibility. Three appraisers are recommended to participate in the study.
They need to measure at least ten parts, each part is measured three times by each
appraiser (without seeing each others’ results) (AIAG, 2010). In this case the GRR
value can be expressed by equipment variation (repeatability) and appraiser varia-
tion (reproducibility):

GRR =
√

EV2 + AV2 (F.4)

where EV is the equipment variation and AV is the appraiser variation respectively.
GRR can be also represented relative to the total variation (TV):

%GRR = 100 ∗
(

GRR
TV

)
(F.5)

Average and Range method was applied by several scholars to investigate mea-
surement system repeatability and reproducibility: Mohamed and Davahran (2006),
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Sibalija and Majstorovic (2007), AIAG (2010), Sahay (2010), Dalalah and Diabat (2015),
Mat-Shayuti and Adzhar (2017).

ANOVA method

Analysis Of Variance method provides more information than Average and Range
method, since it is also able to characterize the interaction between parts and ap-
praisers. The data collection procedure is the same as it is described by Average
and Range method however, ANOVA table is used in order to decompose the vari-
ance into specific components: parts, appraisers, interaction between appraisers and
parts, and finally, repeatability due to the measurement device (AIAG, 2010). As
outcome, the components’ contribution to total variance can be expressed:

%Contribution = 100 ∗
(

σ2
(components)

σ2
(total)

)
(F.6)

Numerical examples are provided by Senol (2004), Mohamed and Davahran (2006),
Sibalija and Majstorovic (2007), Kazerouni (2009), AIAG (2010), Mat-Shayuti and
Adzhar (2017).
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The author’s publications related to
the topic

International Journal Articles

Kosztyán, Z. T., & Katona, A. I. (2018). Risk-Based X-bar chart with variable sample size and
sampling interval. In: Computers & Industrial Engineering, 120, 308-319.
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in industrial conformity control. In: Central European Journal of Operations Research, pp.
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Kosztyán, Z. T., & Katona, A. I. (2016). Risk-based multivariate control chart. In: Expert
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Hungarian Articles
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Book Chapters

Katona A. I. (2015): Ellenőrző kártya-illesztési folyamat kidolgozása a mérési bizonytalan-
ság figyelembevételével a statisztikai folyamatszabályozásban. Tudós Bagoly Válogatás
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Hegedűs, Csaba, Kosztyán, Zsolt, and Katona, Attila (2013a). “Kockázatalapú sz-
abályozó kártyák tervezése, kiválasztása és folyamatra illesztése, VII”. In: Régiók
a Kárpát-medencén innen és túl konferencia, Kaposvár.
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lelőség-) szabályozás. Műszaki Könyvkiadó, Budapest.

http://dx.doi.org/https://doi.org/10.1016/j.stamet.2014.09.003
http://dx.doi.org/10.1080/03610910701540003


BIBLIOGRAPHY 111

Khurshid, Anwer and Chakraborty, Ashit B. (2014). “Measurement error effect on
the power of the control chart for zero-truncated binomial distribution under
standardization procedure”. In: International Journal for Quality Research 8.4.

King, B. (1999). “Assessment of compliance of analytical results with regulatory or
specification limits”. In: Accreditation and Quality Assurance 4.1-2, pp. 27–30. DOI:
10.1007/s007690050305.

Knoth, S. (2005). “Fast initial response features for EWMA control charts”. In: Statis-
tical Papers, pp. 1613–9798.

Kolbe, Richard H. and Burnett, Melissa S. (1991). “Content-analysis research: An ex-
amination of applications with directives for improving research reliability and
objectivity”. In: Journal of consumer research 18.2, pp. 243–250.

Koshulyan, A. V. and Malaychuk, V. P. (2014). “Conformance assessment for accep-
tance with measurement uncertainty and unknown global risks”. In: Measure-
ment Techniques 56.11, pp. 1216–1223.

Koutras, Markos V., Bersimis, Sotirios, and Antzoulakos, Demetrios L. (2006). “Im-
proving the performance of the chi-square control chart via runs rules”. In: Method-
ology and Computing in Applied Probability 8.3, pp. 409–426.

Kudryashova, Zh. F. and Chunovkina, A. G. (2003). “Expression for the Accuracy of
Measuring Instruments in Accordance with the Concept of Uncertainty of Mea-
surements”. In: Measurement Techniques 46.6, pp. 559–561.

Kuselman, Ilya, Pennecchi, Francesca, Silva, Ricardo JNB da, and Hibbert, D Brynn
(2017a). “Conformity assessment of multicomponent materials or objects: Risk
of false decisions due to measurement uncertainty–A case study of denatured
alcohols”. In: Talanta 164, pp. 189–195.

Kuselman, Ilya, Pennecchi, Francesca R., Silva, Ricardo J. N. B. da, and Hibbert, D.
Brynn (2017b). “Risk of false decision on conformity of a multicomponent mate-
rial when test results of the components’ content are correlated”. In: Talanta 174,
pp. 789–796.

Lampasi, Domenico Alessandro, Di Nicola, Fabio, and Podestà, Luca (2006). “Gen-
eralized lambda distribution for the expression of measurement uncertainty”. In:
IEEE transactions on instrumentation and measurement 55.4, pp. 1281–1287.

Lashkari, R. S. and Rahim, M. A. (1982). “An economic design of cumulative sum
charts to control non-normal process means”. In: Computers & Industrial Engi-
neering 6.1, pp. 1–18.

Lee, Ming Ha (2013). “Variable sample size and sampling intervals with fixed times
Hotelling’s T2 chart”. In: International Journal of Industrial Engineering: Theory, Ap-
plications and Practice 20.3-4. ISSN: 1943-670X.

Lee, P.-H. (2011). “The effects of Tukeys control chart with asymmetrical control lim-
its on monitoring of production processes”. In: African Journal of Business Man-
agement 5.11, pp. 4044–4050.

Lee, P.-H., Torng, C.-C., and Liao, L.-F. (2012). “An economic design of combined
double sampling and variable sampling interval X control chart”. In: International
Journal of Production Economics 138, pp. 102–106.

Lim, S. L., Khoo, Michael B. C., Teoh, W. L., and Xie, M. (2015). “Optimal designs of
the variable sample size and sampling interval X chart when process parameters
are estimated”. In: International Journal of Production Economics 166, pp. 20–35.

Lin, H.-H., Chou, C.-Y., and Lai, W.-T. (2009). “Economic design of variable sampling
intervals X charts with A&L switching rule using genetic algorithms”. In: Expert
Systems with Applications 36, pp. 3048–3055.

Lin, Yu-Chang and Chou, Chao-Yu (2005). “On the design of variable sample size
and sampling intervals X charts under non-normality”. In: International Journal

http://dx.doi.org/10.1007/s007690050305


BIBLIOGRAPHY 112

of Production Economics 96.2, pp. 249 –261. DOI: http://dx.doi.org/10.1016/j.
ijpe.2004.05.001.

Lin, Yu-Chang and Chou, Chao-Yu (2007). “Non-normality and the variable param-
eters control charts”. In: European Journal of Operational Research 176.1, pp. 361–
373.

Linna, K. W. and Woodall, W. H. (2001). “Effect of measurement error on Shewhart
control charts”. In: Journal of Quality Technology 33.2, pp. 213–222.

Linna, Kenneth W., Woodall, W. H., and Busby, Kevin L. (2001). “The performance
of multivariate control charts in the presence of measurement error”. In: Journal
of Quality Technology 33.3, pp. 349–355.

Lira, I. (1999). “A Bayesian approach to the consumer’s and producer’s risks in mea-
surement”. In: Metrologia 36.397-402.

Lira, I. (2002). Evaluating the Uncertainty of Measurement: Fundamentals and Practical
Guidance.

Lira, I. (2016). “The GUM revision: the Bayesian view toward the expression of mea-
surement uncertainty”. In: European Journal of Physics 37.2, p. 025803.

Lira, I and Grientschnig, D. (2010). “Bayesian assessment of uncertainty in metrol-
ogy: a tutorial”. In: Metrologia 47.3, R1.

Lowry, C. A. and Montgomery, D. C. (1995). “A review of multivariate control charts”.
In: IIE transactions 27.6, pp. 800–810.

Lowry, Cynthia A., Woodall, W. H., Champ, Charles W., and Rigdon, Steven E.
(1992). “A multivariate exponentially weighted moving average control chart”.
In: Technometrics 34.1, pp. 46–53.

Lucas, James M. and Saccucci, M. S. (1990). “Exponentially Weighted Moving Av-
erage Control Schemes: Properties and Enhancements”. In: Technometrics 32.1,
pp. 1–12. ISSN: 00401706.

Luceno, A. and Puig-pey, J. (2000). “Evaluation of the Run-Length Probability Distri-
bution for CUSUM Charts: Assessing Chart Performance”. In: Technometrics 42.4,
pp. 411–416. ISSN: 00401706.

Luo, Yunzhao, Li, Zhonghua, and Wang, Zhaojun (2009). “Adaptive CUSUM control
chart with variable sampling intervals”. In: Computational Statistics & Data Analy-
sis 53.7, pp. 2693 –2701. DOI: http://dx.doi.org/10.1016/j.csda.2009.01.006.

Macii, D. and Petri, D. (2007). “An effective method to handle measurement uncer-
tainty in conformance testing procedures”. In: Advanced Methods for Uncertainty
Estimation in Measurement, 2007 IEEE International Workshop on. IEEE, pp. 69–73.

Macii, D. and Petri, D. (2009). “Guidelines to manage measurement uncertainty in
conformance testing procedures”. In: IEEE Transactions on Instrumentation and
Measurement 58.1, pp. 33–40.

Maleki, M. R., Amiri, A., and Ghashghaei, R. (2016). “Simultaneous monitoring of
multivariate process mean and variability in the presence of measurement error
with linearly increasing variance under additive covariate model”. In: Interna-
tional Journal of Engineering-Transactions A: Basics 29.4, pp. 471–480.

Mandel, John (2012). The statistical analysis of experimental data. Courier Corporation.
Maravelakis, Petros E. (2012). “Measurement error effect on the CUSUM control

chart”. In: Journal of Applied Statistics 39.2, pp. 323–336. DOI: 10.1080/02664763.
2011.590188.

Maravelakis, Petros E., Panaretos, John, and Psarakis, Stelios (2004). “EWMA Chart
and Measurement Error”. In: Journal of Applied Statistics 31.4, pp. 445–455. DOI:
10.1080/02664760410001681738.

http://dx.doi.org/http://dx.doi.org/10.1016/j.ijpe.2004.05.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijpe.2004.05.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.csda.2009.01.006
http://dx.doi.org/10.1080/02664763.2011.590188
http://dx.doi.org/10.1080/02664763.2011.590188
http://dx.doi.org/10.1080/02664760410001681738


BIBLIOGRAPHY 113

Margavio, Thomas M., Conerly, Michael D., Woodall, W. H., and Drake, Laurel G.
(1995). “Alarm rates for quality control charts”. In: Statistics & Probability Letters
24.3, pp. 219 –224. DOI: http://dx.doi.org/10.1016/0167-7152(94)00174-7.

Martens, H.-J. (2002). “Evaluation of uncertainty in measurements—problems and
tools”. In: Optics and Lasers in Engineering 38.3, pp. 185 –206. DOI: http://dx.
doi.org/10.1016/S0143-8166(02)00010-6.

Mat-Shayuti, M. S. and Adzhar, S. N. (2017). “Measurement system analysis of vis-
cometers used for drilling mud characterization”. In: IOP Conference Series: Mate-
rials Science and Engineering. Vol. 222. 1. IOP Publishing, p. 012003.

Mauris, Gilles, Lasserre, Virginie, and Foulloy, Laurent (2001). “A fuzzy approach
for the expression of uncertainty in measurement”. In: Measurement 29.3, pp. 165–
177. DOI: 10.1016/S0263-2241(00)00036-1.

Mekid, S. and Vaja, D. (2008). “Propagation of uncertainty: Expressions of second
and third order uncertainty with third and fourth moments”. In: Measurement
41.6, pp. 600–609.

Meulbrook, L. (2000). “Total strategies for company-wide risk control”. In: Financial
Times 9, pp. 1–4.

Mitchell, Vincent-Wayne (1995). “Organizational risk perception and reduction: A
literature review”. In: British Journal of Management 6.2, pp. 115–133.

Mittag, Hans-Joachim and Stemann, Dietmar (1998). “Gauge imprecision effect on
the performance of the X-S control chart”. In: Journal of Applied Statistics 25.3,
pp. 307–317.

Mohamed, Norizan and Davahran, Yamene (2006). “Measurement System Analysis
Using Repeatability and Reproducibility Techniques”. In: STATISTIKA: Journal of
Theoretical Statistics and Its Applications 6.1.

Moher, David, Liberati, Alessandro, Tetzlaff, Jennifer, Altman, Douglas G., Group,
Prisma, et al. (2009). “Preferred reporting items for systematic reviews and meta-
analyses: the PRISMA statement”. In: PLoS medicine 6.7, e1000097.

Molognoni, Luciano, Sá Ploêncio, Leandro Antunes de, Machado, Antonio Marcelo
Lemos, and Daguer, Heitor (2017). “The role of measurement uncertainty in the
conformity assessment of the chemical composition of feeds”. In: Microchemical
Journal 131, pp. 79–91.

Montgomery, D. C. (2005). “Introduction to statistical quality control. 5th”. In: Hobo-
ken: John Wiley & Sons.

Montgomery, D. C. (2012). Introduction to Statistical Quality Control. 7th edition. Wi-
ley.

Naderkhani, F. and Makis, V. (2016). “Economic design of multivariate Bayesian con-
trol chart with two sampling intervals”. In: International Journal of Production Eco-
nomics 174, pp. 29–42.

Natrella, Mary Gibbons (2013). Experimental statistics. Courier Corporation.
Nenes, G. (2011). “A new approach for the economic design of fully adaptive control

charts”. In: International Journal of Production Economics 131.2, pp. 631–642.
NIST (1994). Guidelines for Evaluating and Expressing the Uncertainty of NIST Measure-

ment Results. National Institute of Standards and Technology.
Oberkampf, W. L., DeLand, Sharon M., Rutherford, Brian M., Diegert, Kathleen V.,

and Alvin, Kenneth F. (2002). “Error and uncertainty in modeling and simula-
tion”. In: Reliability Engineering & System Safety 75.3, pp. 333–357.

Page, E. S. (1954). “Continuous Inspection Schemes”. In: Biometrika 41.1/2, pp. 100–
115. ISSN: 00063444. DOI: 10.2307/2333009.

http://dx.doi.org/http://dx.doi.org/10.1016/0167-7152(94)00174-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0143-8166(02)00010-6
http://dx.doi.org/http://dx.doi.org/10.1016/S0143-8166(02)00010-6
http://dx.doi.org/10.1016/S0263-2241(00)00036-1
http://dx.doi.org/10.2307/2333009


BIBLIOGRAPHY 114

Pai, Fan-Yun, Yeh, Tsu-Ming, and Hung, Yung-Hsien (2015). “Analysis on accuracy
of bias, linearity and stability of measurement system in ball screw processes by
simulation”. In: Sustainability 7.11, pp. 15464–15486.

Panagiotidou, S. and Nenes, G. (2009). “An economically designed, integrated qual-
ity and maintenance model using an adaptive Shewhart chart”. In: Reliability En-
gineering & System Safety 94.3, pp. 732–741.

Pavese, Franco (2007). “Replicated observations in metrology and testing: modelling
repeated and non-repeated measurements”. In: Accreditation and Quality Assur-
ance 12.10, pp. 525–534.

Pavese, Franco (2009). “About the treatment of systematic effects in metrology”. In:
Measurement 42.10, pp. 1459–1462.

Pavlovcic, France, Nastran, Janez, and Nedeljkovic, David (2009). “Determining the
95% Confidence Interval of Arbitrary Non-gaussian Probability Distributions”.
In:

Pawar, Vilas Y, Shirke, Digambar Tukaram, and Khilare, Shashikant Kuber (2018).
“Steady-State Behavior of Nonparametric Synthetic Control Chart Using Signed-
Rank Statistic”. In: Pakistan Journal of Statistics and Operation Research 14.1, pp. 185–
198.

Pendrill, Leslie R. (2006). “Optimised measurement uncertainty and decision-making
when sampling by variables or by attribute”. In: Measurement 39.9, pp. 829–840.
DOI: 10.1016/j.measurement.2006.04.014.

Pendrill, Leslie R (2007). “Optimised measurement uncertainty and decision-making
in conformity assessment”. In: NCSLi Measure 2.2, pp. 76–86.

Pendrill, Leslie R. (2008). “Operatong Cost Characteristics in Sampling by Variable”.
In: Accreditation and Quality Assurrance 13, pp. 619–631.

Pendrill, Leslie R. (2009). “Optimized Measurement Uncertainty and Decision-Ma-
king”. In: Transverse Disciplines in Metrology: Proceedings of the 13th International
Metrology Congress, 2007—Lille, France. Wiley Online Library, pp. 423–432.

Pendrill, Leslie R. (2010). “Optimised uncertainty and cost operating characteristics:
new tools for conformity assessment. Application to geometrical product control
in automobile industry”. In: International Journal of Metrology and Quality Engi-
neering 1.2, pp. 105–110.

Pendrill, Leslie R. (2014). “Using measurement uncertainty in decision-making and
conformity assessment”. In: Metrologia 51.4, S206.

Pendrill, Leslie R. and Källgren, H. (2006). “Exhaust gas analysers and optimised
sampling, uncertainties and costs”. In: Accreditation and Quality Assurance 11.10,
pp. 496–505. DOI: 10.1007/s00769-006-0163-3.

Pennecchi, Francesca R., Kuselman, Ilya, Silva, Ricardo J. N. B. da, and Hibbert, D.
Brynn (2018). “Risk of a false decision on conformity of an environmental com-
partment due to measurement uncertainty of concentrations of two or more pol-
lutants”. In: Chemosphere 202, pp. 165–176.

Phaladiganon, Poovich, Kim, Seoung Bum, Chen, Victoria C. P., and Jiang, Wei (2013).
“Principal component analysis-based control charts for multivariate nonnormal
distributions”. In: Expert Systems with Applications 40.8, pp. 3044 –3054. DOI: http:
//dx.doi.org/10.1016/j.eswa.2012.12.020.

Pignatiello, J. J. and Runger, G. C. (1990). “Comparisons of multivariate CUSUM
charts”. In: Journal of Quality Technology 22.3, pp. 173–186.

Pokorádi, L (2008). “Systems and Processes Modeling”. In: Campus Kiadó, Debrecen
242.

Pokorádi, László (2009). “Uncertainty of manufacturing simulation”. In: Academic
Journal of Manufacturing Engineering 7.3, pp. 54–59.

http://dx.doi.org/10.1016/j.measurement.2006.04.014
http://dx.doi.org/10.1007/s00769-006-0163-3
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2012.12.020
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2012.12.020


BIBLIOGRAPHY 115

Possolo, Antonio (2013). “Five examples of assessment and expression of measure-
ment uncertainty”. In: Applied Stochastic Models in Business and Industry 29.1, pp. 1–
18.

Possolo, Antonio and Bodnar, Olha (2018). “Approximate Bayesian evaluations of
measurement uncertainty”. In: Metrologia 55.2, p. 147.

Prabhu, S. S., Runger, G. C., and Keats, J. B. (1993). “X chart with adaptive sample
sizes”. In: International Journal of Production Research 31.12, pp. 2895–2909.

Prabhu, S. S., Montgomery, D. C., and Runger, G. C. (1994). “A combined adaptive
sample size and sampling interval X control scheme”. In: Journal of Quality Tech-
nology 27, pp. 74–83.

Prabhu, S. S., Montgomery, D. C., and Runger, G. C. (1997). “Economic-statistical
design of an adaptive X chart”. In: International Journal of Production Economics
49.1, pp. 1–15.

Pyzdek, T. (2003). Six Sigma Handbook. McGraw-Hill Companies Inc. ISBN: 0-07-141015-
5.

Qiu, P. (2008). “Distribution-free multivariate process control based on loglinear
modelling”. In: IIE Transactions 40.7, pp. 664–667.

Qiu, P. and Li, Z. (2011). “On nonparametric statistical process control of univariate
processes”. In: Technometrics 53.4, pp. 390–405.

Rabinovich, Semyon G. (2006). Measurement Errors and Uncertainties. 3rd ed. New
York, NY: Springer New York, pp. XII, 308. ISBN: 978-0-387-25358-9. DOI: 10.
1007/0-387-29143-1.

Rahlm, M. A. (1985). “Economic model of X-chart under non-normality and mea-
surement errors”. In: Computers & operations research 12.3, pp. 291–299.

Rajan, Arvind, Kuang, Ye Chow, Ooi, Melanie Po-Leen, and Demidenko, Serge N.
(2016a). “Benchmark test distributions for expanded uncertainty evaluation algo-
rithms”. In: IEEE Transactions on Instrumentation and Measurement 65.5, pp. 1022–
1034.

Rajan, Arvind, Kuang, Ye Chow, Ooi, Melanie Po-Leen, and Demidenko, Serge N.
(2016b). “Moment-based measurement uncertainty evaluation for reliability anal-
ysis in design optimization”. In: Instrumentation and Measurement Technology Con-
ference Proceedings (I2MTC), 2016 IEEE International. IEEE, pp. 1–6.

Ramsey, Michael H. and Ellison, Stephen L. R. (2015). “Uncertainty factor: an alter-
native way to express measurement uncertainty in chemical measurement”. In:
Accreditation and Quality Assurance 20.2, pp. 153–155.

Reynolds, Jr. M. R. and Kim, K. (2005). “Monitoring Using an MEWMA Control
Chart with Unequal Sample Sizes”. In: Journal of Quality Technology 37, pp. 267–
281.

Reynolds, M. R. and Arnold, J. C. (2001). “EWMA control charts with variable sam-
ple sizes and variable sampling intervals”. In: IIE Transactions 33.6, pp. 511–530.
DOI: 10.1023/A:1007698114122.

Reynolds, M. R. and Cho, Gyo-Young (2011). “Multivariate Control Charts for Mon-
itoring the Mean Vector and Covariance Matrix with Variable Sampling Inter-
vals”. In: Sequential Analysis 30.1, pp. 1–40. DOI: 10 . 1080 / 07474946 . 2010 .
520627.

Reynolds, M. R., Amin, R. W., Arnold, J. C., and Nachlas, J. A. (1988). “X Charts with
Variable Sampling Intervals”. In: Technometrics 30.2, pp. 181–192.

Reynolds, M. R., Amin, R. W., and Arnold, J. C. (1990). “CUSUM charts with variable
sampling intervals”. In: Technometrics 32.4, pp. 371–384.

Riaz, Muhammad (2014). “Monitoring of process parameters under measurement
errors”. In: Journal of Testing and Evaluation 42.4, pp. 980–988.

http://dx.doi.org/10.1007/0-387-29143-1
http://dx.doi.org/10.1007/0-387-29143-1
http://dx.doi.org/10.1023/A:1007698114122
http://dx.doi.org/10.1080/07474946.2010.520627
http://dx.doi.org/10.1080/07474946.2010.520627


BIBLIOGRAPHY 116

Richardson, A. D. et al. (2008). “Statistical properties of random CO2 flux measure-
ment uncertainty inferred from model residuals”. In: Agricultural and Forest Me-
teorology 148.1, pp. 38–50.

Roberts, S. W. (1959). “Control Chart Tests Based on Geometric Moving Averages”.
In: Technometrics 1.3, pp. 239–250. DOI: 10.1080/00401706.1959.10489860.

Rossi, G. B. and Crenna, F. (2006). “A probabilistic approach to measurement-based
decisions”. In: Measurement 39.2, pp. 101 –119. ISSN: 0263-2241. DOI: http://dx.
doi.org/10.1016/j.measurement.2005.10.011.

Runger, G. C. and Pignatiello, J. (1991). “Adaptive Sampling for Process Control”.
In: Journal of Quality Technology 23.2, pp. 135–155.

Saccucci, M. S., Amin, R. W., and Lucas, James M. (1992). “Exponentially weighted
moving average control schemes with variable sampling intervals”. In: Commu-
nications in Statistics-Simulation and Computation 21.3, pp. 627–657.

Safe, H., Kazemzadeh, R. B., and Gholipour Kanani, Y. (2018). “A Markov chain ap-
proach for double-objective economic statistical design of the variable sampling
interval control chart”. In: Communications in Statistics-Theory and Methods 47.2,
pp. 277–288.

Saghaei, Abbas, Fatemi Ghomi, S. M. T., and Jaberi, S. (2014). “Economic design of
exponentially weighted moving average control chart based on measurement
error using genetic algorithm”. In: Quality and Reliability Engineering International
30.8, pp. 1153–1163.

Sahay, Amar (2010). “Measurement System Analysis Gage Repeatability & Repro-
ducibility (Gage R&R) Study”. In: Six Sigma Quality: Concepts & Cases 1.

Salleh, S. (2013). Monte Carlo simulation tips and tricks. URL: http : / / decision -
analytics- blog.lumina.com/blog/monte- carlo- simulation- tips- and-
tricks (visited on 02/26/2019).

Salmasnia, Ali, Kaveie, Maryam, and Namdar, Mohammadreza (2018). “An inte-
grated production and maintenance planning model under VP-T2 Hotelling chart”.
In: Computers & Industrial Engineering 118, pp. 89–103.

Saniga, Erwin M. and Shirland, Larry E. (1977). “Quality control in practice: a sur-
vey”. In: Quality Progress 10.5, pp. 30–33.

Seif, Asghar, Faraz, Alireza, and Sadeghifar, Magide (2015). “Evaluation of the eco-
nomic statistical design of the multivariate T2 control chart with multiple vari-
able sampling intervals scheme: NSGA-II approach”. In: Journal of Statistical Com-
putation and Simulation 85.12, pp. 2442–2455.

Senol, Sansli (2004). “Measurement system analysis using designed experiments
with minimum α–β Risks and n”. In: Measurement 36.2, pp. 131–141.
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