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Abstract

In order to prevent or mitigate losses caused by plant faults, early and ac-
curate fault diagnostics during the operation of modern day process systems
is a very important task. In this dissertation a few diagnostics methods for
complex composite process systems controlled by operational procedures are
presented.

First a methodology for capturing expertise about the execution process
system operational procedures in the form of specifically constructed spread-
sheets (P-HAZID tables) is described. Experts of the process system can
use this methodology to create a fault model and store diagnostics related
knowledge about the system. A reasoning algorithm is proposed, which can
perform fault diagnosis based on this model and the actual dynamics of the
plant. This method is similar to the widely known if-then rules from rule-
based expert systems in artificial intelligence but extends it with the ability
to reason about differences between event sequences.

A solely observation-based diagnostic approach which can work on obser-
vations of nominal and faulty modes of a process system is also proposed.
The model of this diagnostic method uses a popular machine-learning tech-
nique called clustering. The algorithm suggests fault modes for the current
operational procedure of the process system based on historical operational
procedure logs gathered from past runs of the operational procedure under
different faulty conditions.

One can see value in decomposing these diagnostic ideas to enable their
use in more complex process systems and diagnostic problems. Therefore a
diagnostic decomposition approach is proposed which can be used to scale
up standalone diagnostic methods by bringing the diagnostics down to the
level of the components from the level of the system.
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Előszó

A korai és pontos hibadiagnosztikának nagy szerepe van napjaink bonyolult
folyamatrendszereinek üzemeltetése során, annak érdekében hogy az esetleges
meghibásodások által okozott veszteséget elkerüljük vagy csökkentsük. Ebben
a disszertációban pár újszerű diagnosztikai módszer kerül ismertetésre, amit
operátori eljárások által vezérelt folyamatrendszerek hibadiagnosztikájára
lehet felhasználni.

Első körben egy olyan módszer kerül ismertetésre, amivel a folyama-
trendszer szakértői üzemeltetési tudásukat speciális táblázatok (P-HAZID
táblázatok) formájában tudják rögźıteni. Így lehetőségük nýılik arra is hogy
diagnosztikai ismereteket és a hibás működés modelljeként táblázatos formá-
ban eltárolják. Egy következtetési algoritmus is ismertetésre kerül, ami képes
hibadiagnosztikát végrehajtani ezen táblázat és a folyamatrendszer működése
alapján. Ez a módszer a széleskörben ismert ha-akkor szabályokon alapul,
kiegésźıtve azt az eseménysorozatokra vonatkozó következtetés képességével.

Egy pusztán megfigyelés-alapú diagnosztikai módszer is ismertetésre kerül,
ami a folyamatrendszer normális és hibás megfigyelt működési módjai alapján
működik. Ennek alapja egy népszerű gépi tanulási megközeĺıtés, a csopor-
tośıtás (clustering). Ennek során a korábban felvételre került normális és
hibás működési módok összehasonĺıtásra kerülnek az aktuális működéssel, ez
alapján javasol a módszer lehetséges meghibásodásokat.

Mivel nagy rendszerek és bonyolult diagnosztikai problémák esetén a fel-
használt módszereket érdemes dekomponálni, ezért egy dekompoźıciós meg-
közeĺıtés is ismertetésre kerül a disszertáció végén. Ennek seǵıtségével egy
nagyobb rendszerszintű diagnosztikai módszer több kisebb, egyszerűbb kom-
ponensszintű módszer összetételévé alaḱıtható át.
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Zusammenfassung

Heute die frühe und genaue Fehlerdiagnose spielt eine große Rolle in den Be-
trieb von komplexen Prozesssysteme, um die potenzielle, durch den Ausfall
verursachten Verluste zu vermeiden oder zu reduzieren. In dieser Arbeit wird
ein paar neue diagnostische Verfahren beschrieben, die für die Fehlerdiag-
nose von Operatorsverfahren gesteuerte Prozesssysteme verwendet werden
können.

In der ersten Runde wird so ein Verfahren beschrieben, wobei die Ex-
pertenwissen über Betriebsbereich in Form von speziellen Tabellen (P-HAZID
Tabellen) aufgezeichnet werden können. Auf dieser Weise werden wir die
Gelegenheit haben die Fehlermodel zu erzeugen und die Diagnostikerfahrun-
gen über das System zu speichern. Es wird auch eine Algorithmus dargelegt,
welche fähig ist mit der Hilfe der P-HAZID Tabellen und der Prozesssys-
teme eine Fehlerdiagnose auszuführen. Dieses Verfahren ist weit bekannt
und basiert auf den Regeln ”Wenn-Dann”. Dieses ergänzt den Regeln mit
der Fähigkeit der Schlussfolgerung.

Eine bloße Beobachtung basierte Diagnoseverfahren ist ebenfalls vorge-
sehen, die auf der Grundlage der beobachteten normalen und fehlerhaften
Betrieb des Prozesssystems arbeitet. Es basiert auf einem populären Maschi-
nenlernansatz, auf der Gruppierung (Clustering). So die zuvor aufgezeich-
neten normalen und fehlerhaften Betriebsarten werden mit den aktuellen Be-
trieb vergleicht. Anhand die Ergebnisse der Vergleichungen wird Vorschlage
über die Defekte gegeben.

Es wird auch eine Zersetzungsannäherung beschrieben, da es lohnt sich die
verwendeten Methoden auseinander nehmen bei den großen Systemen und
komplizierten Problemen. Aus mehreren, kleineren und einfacheren kompo-
nentenebene Methode kann eine größere Systemebene Methode aufgebaut
werden.
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Chapter 1

Introduction

1.1 Motivation

Early and accurate fault diagnostics is one of the most important challenges
during the operation of modern day process systems. Primeval fault mitiga-
tion and isolation due to proper diagnostics plays a crucial role in avoiding
huge losses and plant breakdowns caused by the consequences of initially
smaller and isolated but propagating failures discovered too late. The ap-
plication of an intelligent fault diagnostics solution for a plant might lead to
safer and less complicated operation with decreased operational costs, and
leaves less possibilities for human errors.

The importance of the field is indubitable, on the other hand, creating
a proper diagnostic solution is not an easy task. Many aspects of the plant
need to be taken into account and there is no general solution which fits
all scenarios. Numerous diagnostic solutions are available in the literature,
ranging from simple techniques (for instance, simple logics in the controller
of the system) to very complex ones (such as rule based expert systems).

The motivation of this work is to contribute a few novel event-based
qualitative diagnostics methods to this field of study.

1.2 Review of discrete methods applied in

process systems

Because of its vital importance, the literature of discrete diagnostic ap-
proaches is enormously wide, with the model-based methods for fault de-
tection and isolation are the most widespread.
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1.2.1 Diagnostic methods based on hazard identifica-
tion information

Depending on the a priori and measured information that is available for
diagnostics, the fault diagnostic approaches for process systems are cate-
gorized into quantitative, qualitative and process history based approaches
in [51]. Model-based qualitative diagnostic approaches apply approximate
”qualitative” information for both the models and the measured signatures
or symptoms.

Process fault diagnostics based on process and fault models had been
widely described by Venkatasubramanian in review articles [49], [48] and [50].
According to [48], model based a priori knowledge can be broadly classified as
quantitative and qualitative. Fault detection using these qualitative models
can be performed by using expert systems with different kind of reasoning,
using signed directed graphs (SDGs) for modeling cause-effect relations (for
instance in [47]) or fault trees describing the relations between primary events
to top level events or hazards. Fault propagation analysis [21] can be used for
the identification of faults, causes and consequences in a systematic manner.
In the last review article of the series by Venkatasubramanian on process
systems diagnostics ([50]), process history based methods are surveyed. In-
stead of an apriori model, these methods require a large amount of historical
process data, and they can be classified by the way they extract information
from the process data (this operation is called feature extraction). Feature
extraction can be qualitative (for example using rule-based expert systems or
qualitative trend analysis) and quantitative (using statistical methods, such
as PCA or neural networks).

Hazard identification (HAZID, see [16]) has been long taken as an inde-
pendent activity from diagnostics, but the information they built on has a
lot of common elements. The HAZOP (Hazard and Operability, see [5], [15],
[26]) and FMEA (Failure Effect and Mode Analysis, see [6]) are two funda-
mentally different analysis methods for hazard identification, where HAZOP
is deviation-driven and FMEA is process component-driven. Due to the com-
plexity of real process systems, the time-consuming and error-prone manual
construction of HAZOP and FMEA tables has been identified as a major bot-
tleneck in hazard identification of process systems. Fortunately, there have
been results for automated generation of them (in the previously mentioned
review articles and for HAZOP, in [51] together with a concrete application
in [49]). Another possible way is to use qualitative models in such an anal-
ysis (again, for HAZOP, see [10] with a batch process system application in
[36]). An attempt to unite the two different diagnostic information stored in
HAZOP and FMEA analysis results, called the blended HAZID methodol-
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ogy was described in [42] together with its use for process system diagnostics
tasks.

The blended HAZID approach (described thoroughly in [42]) combines the
system-driven HAZOP and the component-driven FMEA into one method-
ology, attempting to minimize their weaknesses and utilize their strengths at
the same time. Unlike the original HAZOP and FMEA, three main steps in
the initial analysis are needed (based on [42]):

1. Decompose the system into subsystems - the analysis is done in sub-
system level onwards.

2. Find deviations from intended functions, with their causes and impli-
cations.

3. Elicit the causes and effects of each fault per component in every sub-
system on the function of the system.

As a result of the analysis, a cause-implication directed graph (see [34] for
an example) can be drawn for each identified failure to visualize casual re-
lationships between failures and components. The nodes in this graph are
either components or functional failures and each edge represents a causal
relationship between them. This graph is a powerful visualization tool for
plant operators.

For describing arbitrary output signal values qualitative trend analysis
(QTA) can be used, by comparing qualitative trends of nominal and actual
signal values (a good example can be found in [30]). In some newer results (in
[31]), these methods have been even combined to perform fault diagnostics.

1.2.2 Diagnostic methods based on clustering and statis-
tics

As a technique used thoroughly in machine learning, clustering is used in
systems for process diagnostics. For instance, as a popular method in the
field, the k-means clustering algorithm (refer to [3]) is used for process sys-
tem modeling in [17]. Different other approaches are using the fuzzy c-means
clustering (FCM, described in [2]), a method based on the concept of fuzzy
sets and logic (described originally in [28]). For example fuzzy c-means clus-
tering for fault classification is reported in [32] and [37] while it is used for
process control in [25].

A special type of historical process data are the so called alarms, the
timed sequence of which has been utilized for early fault detection and diag-
nostics in [1]. These alarm sequences can be thought as event logs. In [46] a
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process mining tool called ProM is described which is capable of discovering
process models in the form of Petri Nets, using event logs collected from pro-
cess systems. This tool supports conformance checking, verification, model
extension and transformation as well as model discovery. A ProM extension
described in [17] uses k-means clustering for categorizing event logs prior to
mining them, in order to achieve faster operation. In a slightly different ap-
proach described in [40], Petri nets are used to build up models from event
sequences, and the fitness and appropriateness of the model is calculated.

The most widely used quantitative feature extraction procedures use sta-
tistical methods (e.g. PCA or PLS) for process monitoring and fault detec-
tion, for which good review papers have appeared recently, see [54], [38] or
[24]. A recent improvement of the PLS method capable of detecting small
faults have been reported in [23]. However, these methods usually assume
steady-state operation condition of the system to be diagnosed, and fail dur-
ing transient operations.

1.2.3 Approaches to diagnostic decomposition

The concept of decomposing a problem into related subproblems is used
widely in mathematics and computer science in order to solve bigger prob-
lems by combining the solutions for their smaller subproblems. This idea had
been generalized for process system diagnostics as well in numerous cases in
the past. Process systems are mostly built from similar components, there-
fore by decomposing them, and diagnosing the components one by one might
be more effective than diagnosing the whole system at once. As described
in [41] artificial intelligence based searching techniques (such as constraint
satisfaction search) fall into the set of NP-hard problems (see [29]). A subset
of fault diagnostics approaches uses these techniques, therefore the idea of
decomposition is used at a few related works already in the field of process
system diagnostics (such as the previously mentioned BL-HAZID methodol-
ogy) to cope with the problem of NP-hardness.

The original HAZID method (on which the BL-HAZID approach is based
on, see [5]) provides a systematic process in which it breaks down the process
system into separately manageable sub-components for collecting hazards of
the system. Various hazards are collected separately for the sub-components
by the HAZID team performing the study, making their task less complex.

A distributed on-line diagnostics framework is proposed in a recent article
[19] for fault detection, isolation and identification. This diagnostic approach
scales better than the traditional centralized approaches for model-based di-
agnostics and it uses an extension of the Possible Conflicts (PC) decomposi-
tion technique (see [33]). The PC decomposition technique originally requires
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the use of a central coordinator, but in this extended case the diagnostics
is performed by independent distributed diagnosers which do not need any
coordination over or communication between them.

Qualitative physics is used for process system modeling as a common sense
reasoning about physical systems. This approach is based on qualitative or
ordinary differential equations describing the process system to be diagnosed.
These qualitative dynamic models together with many different methods use
an abstract hierarchy of process knowledge which is based on decomposing
the process system into subcomponents, in order to decrease computational
complexity and speed up the diagnostics task.

A process system structural decomposition method for performing diag-
nosis based on qualitative physics is described in [21], where the the physical
connections and fault propagation through them is emphasized. Apart from
this, the article describes an object-oriented process system topology model-
ing approach with which the component-specific fault model can be shared
between components of the system.

The laws of qualitative physics can be described using the concept of
qualitative reasoning. This technique attempts to cover physical laws of the
system as qualitative rules instead of ordinary differential equations (which
can be considered as quantitative). In that way it is closer how the human
mind model and reason about the behavior of a system than differential
equations. Refer to [43] for a detailed description of this methodology.

1.3 Problem statement

The aim of this work is to suggest approaches for fault diagnostics in
dynamic process systems using discrete time-dependent heuristics, which
had not been widely investigated in the relevant literature so far. We have
tried to address the following problems this dissertation:

• The traditionally static HAZID methodologies does not address the
problem of diagnosing dynamic event sequences. We wanted to provide
and extension to these and propose a procedure HAZID (P-HAZID)
approach which might be a used in the case of diagnosing these event
sequences.

• There might be cases when only the measurements are available from
the diagnosable process system - without any domain-related additional
model about the faults (such as a P-HAZID table). In some cases this
domain-related model is time-consuming and error-prone to construct
- due to the many manual steps involved. We wanted to propose a
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method which is observation-based and works on external measure-
ments without an external fault model.

• Finally, due to the fact that both of these diagnostic approaches are
NP-hard, we wanted to propose a decomposition approach which can be
used to effectively decrease the computational footprint of diagnostics
to enable using them in more complex process systems.

1.3.1 Related common taxonomy

The diagnosis of dynamic process systems has a distant relationship with the
taxonomy of ”Dependable and Secure Computing” developed by IFIP WG
10.4 and described in [7]. The most relevant parts of this taxonomy are the
following:

1. A system is an entity which interacts with other entities (ie. its envi-
ronment) on the system boundary. The service is the behavior of
a system as it is perceived by its users.

2. The part of the system boundary where service delivery takes place is
the service interface. The part of the state which is perceivable on
the service interface is the external state of the system, while the
remaining part is its internal state.

3. An error is when a one or more external state of the system deviates
from the state of the correct service. The adjudged or hypothesized
cause of an error is called a fault. A service failure is an event that
occurs when the delivered service deviates from the correct service. We
talk about timing failure if the time of arrival of the service (behavior)
deviates from the system function.

4. An operational fault is a fault which occurs during service delivery
in a system. The presence of a permanent fault is assumed to be
continuous in time.

5. Fault diagnosis identifies and records causes for errors.

6. The structure of a system is what enables it to generate the behavior.
From a structural standpoint, a system is composed of a set of com-
ponents bound together. In this regard every component is a system
on its own.
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For the complete taxonomy, refer to [7], in this paragraph only the rele-
vant definitions were collected.

In this work we are dealing with fault diagnosis of a subset of systems
(with a structure, composed of one or more components), more concretely
chemical process systems. Our main goal is by observing the external state
of these systems, identify operational faults which are also permanent faults
(we are not dealing with other types of faults). It is theoretically possible to
generalize the presented methods for other kind of systems, but that is out
of scope of this work.

1.4 Thesis structure

The work is divided into these main chapters:
In Chapter 2 the common notions used to present further diagnostic

methods are explained. The general task of diagnostics is reviewed, then the
basic model of the process system, the modeling of operational procedures
using events and traces and the modeling of faults are explained. In the final
part of the chapter a simple common case study is described which is used
in further chapters to compare the various diagnostic approaches.

In Chapter 3 the P-HAZID diagnostic methodology is discussed. First
the related notions, the basic concept of the method, the different types
of deviations, and how a P-HAZID table is constructed using a reasoning
graph are discussed. The exact operation of the algorithm is described and
demonstrated on the case study described in Chapter 2.

In Chapter 4 an observation-based clustering diagnostic approach is
discussed which takes the process system as a closed system and tries to
reason about its faults using only the observable outputs of the system. In
the first part concepts about mapping the common events and traces to
a coordinate space and distance calculation in this space is reviewed, and
then the algorithm is explained in detail. The execution of the method is
demonstrated on the common case study from Chapter 2.

In Chapter 5 a higher level decomposition method is described which
can utilize the previously discussed diagnostic approaches in solving more
complex diagnostic problems, by reducing the size of the fault model the
methods. First, notions about system decomposition, components, compo-
nent graphs and component paths are discussed. Later the higher level diag-
nostic approach is introduced and its operation is presented on the common
case study from Chapter 2 (using the already introduced P-HAZID and Clus-
tering diagnoser as an example).

Finally, in Chapter 6 the theses for the presented diagnostic approaches
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are summarized, along with a few possible future research directions in this
field.
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Chapter 2

Basic notions

In this chapter the basic notions common to all diagnostic approaches are
described. First and foremost, the general system model and diagnostic
problem to solve is explained in a formal manner, then the way for modeling
system inputs and outputs through events and operational procedures using
traces are discussed. Finally a simple common case study with single and
dual faults is described, this example system will be used in further chapters
for comparing the different diagnostic approaches.

2.1 System model

The diagnostic approaches described in this work are based upon the multiple
input, multiple output (MIMO) causal system model of process systems. In
this model, a process system processes vector-valued input and produces
vector-valued output signals using an operator S. This operator models the
functionality of the system and might also depend on internal unobservable
system states. Among the input signals, the processed signals might contain
disturbances (faults) from the environment of the system. The model is
shown briefly on Fig. 2.1 and described in detail in [27].

Depending on the operator S, the system outputs at a given instant in
time might depend on the state(s) of its input values (the actuator elements
of the system) and the unobservable internal state of the system. The exter-
nally observable inputs and outputs with their time instant together is called
an event while a sequence of these events (which describe an operational
procedure) is referred to as trace. The execution of operational procedures
(which are manipulating the actuators - the inputs of the system - based
on the output values) are logged as traces. These concepts will be formally
described further in this chapter.
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Figure 2.1: A multiple-input multiple-output system.

The concept of event in this dissertation is similar to the concept of event
in Discrete Event Systems (DES) theory. According to [13], a DES is a
system with a discrete state space and where the transition between states
are driven by events (describing a state or a signal transition on the system
happening at a discrete point in time). In our case the events are also coming
at discrete time intervals and describe an externally observable state of the
system.

Faults of the system are modeled as externally observable permanent
states or disturbances. It is assumed that the presence of faults remains
constant during the fault diagnostics operation.

These concepts could be connected with the taxonomy described in Sec-
tion 1.3.1(for details refer to [7]).

1. An event is analogous to the concept of the external state.

2. Consequently, a trace can be considered as a service.

3. Last but not least, faults of the system are service faults which are
both operational and permanent in the taxonomy.

2.2 The diagnostics task

The general diagnostic task can be formally defined as:
Given the following:

• a (possibly faulty) process system with actuators (inputs) and observ-
able system outputs

• an operational procedure which actuates the process system through
its inputs

• a fault model (which is a representation of faults in the process system,
which might occur during the execution of the operational procedure)
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Determine the possible component faults (or the nominal behavior) af-
ter the execution of a possibly faulty operational procedure, based on the
observed output values and the representation of faults.

In the coming chapters of the work, after the common notions are covered,
we will attempt to address this problem from different viewpoints, and using
different diagnostic methods.

2.3 Inputs and outputs, qualitative range space

System inputs and outputs are signals, i.e. time-dependent quantities (as
described in [27]). Their range space can naturally be discrete (such as open
or close for a valve) or real (a positive real value for a pressure signal). In
case of uncertain values for a real valued measured signal, one can describe
the actual value using a qualitative range space, which is a set of ordered
mutually disjoint set of real intervals. One usually associate verbal labels to
the intervals based on the normal operational value of the signal as follows:
”N” stands for the normal range, ”0”, ”L” and ”H” denote lower and higher
but acceptable intervals, while ”e−” and ”e+” are the unacceptably low and
high values, respectively. Formally, the qualitative range set is described like:

Q = {e−, 0, L,N,H, e+} (2.1)

It is possible to create a refined qualitative range set from the qualitative
set Q in Eq. (2.1) by placing a new qualitative value between two already
existing ones. Such refined qualitative set is given below

Qrefined = {e−,−0, 0, 0L,L, LN,N,NH,H,H+, e+} (2.2)

with the newly introduced labels ”−0” small negative values, ”0L” very low,
”LN” a bit low, ”NH” a bit high, ”H+” very high.

One can further refine the qualitative range set by adding new interme-
diate values and achieve the range space of real values in the limit.

The range space of binary discrete valued signals, such as the status of a
binary valve can be described by the binary range space

B = {0, 1} (2.3)

where ”0” can be associated to the closed, and ”1” to the opened status.

2.4 Events

An event associated to a signal or to a set of signals is a pair of a time instance
τ and the actual value(s) at this time instance for a modeled process system,
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i.e. ε
(x)
τ = (τ ;x(τ)). Formally, the syntax of an input-output event (at time

instant τ of an n-input m output system) is:

eventτ = (τ ; input1, ..., inputn; output1, ..., outputm)

where the time τ is discrete, and described with its sequence number. τ is
likewise called the time or time instant of the event. In the defined format,
the time instant, set of input and set of outputs are separated by semicolons,
while members of the input and output set are separated by commas.

For example, these events can be defined over qualitative range space in
Eq. (2.1), for different process models:

• In a model with a single binary valued input and a single real valued
output:

(1; ”0”; ”N”)

• In a model with two binary inputs and a single real output:

(3; ”1”, ”1”; ”L”)

or, for example:
(2; ”1”, ”0”; ”0”)

• In a model with two binary inputs and two outputs:

(2; ”0”, ”0”; ”L”, ”0”, ”0”)

or, for example:
(6; ”1”, ”0”; ”0”, ”N”, ”H”)

2.5 Traces

Sequences formed from the events (referring to the same process system)
above are called traces and defined formally as:

T (t1, tn) = eventt1 , ..., eventtn

A trace can describe an operational procedure (a sequence of operations)
on the process system. Events in the same trace always contain the same
number of inputs and outputs with possibly different values. τ is strictly
monotonically increasing in consecutive events in the trace.

For example, a trace for the process system in Fig. 2.2 filling up a tank
with an input and an output valve using the refined qualitative set in Eq.
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sequence system inputs system outputs
number input output tank

valve valve level
1 1 0 0
2 1 0 0L
3 1 0 L
4 1 0 LN
5 1 1 N

Table 2.1: ”Simple tank fill” operational procedure as a trace (sequence of
events). Each row represents a single event with time, input and output
states (in a tabular format). System input ”0” means ”closed”, ”1” means
”opened” valve states, while system output ”0” means ”no level”, ”L” means
”low”, ”N” means ”normal” levels in the tank, according to Eq. (2.1)

VA

VB

TA

TA

LEVEL

Figure 2.2: Single tank process system.

(2.2) can be defined like the one in Table 2.1. In the table each row corre-
sponds to a single event in the trace, with its time, inputs and outputs.

An other trace on Table 2.2, which flushes the liquid from a two/tank
sequential process system of Fig. 3.1 can be defined over qualitative set Eq.
(2.1).

Later in the work, a trace describing normal behavior will be called as
nominal trace, a trace describing some kind of malfunction or fault will be
called characteristic trace, while a trace where it is unknown whether is there
a malfunction or not will be called observable or measured trace.

27



sequence system inputs system outputs
number VA VB VC TA level TB level

1 0 1 1 N N
2 0 1 1 N N
3 0 1 1 L N
4 0 1 1 0 L
5 0 0 1 0 0

Table 2.2: ”Tank flush” operational procedure as a trace (sequence of events).
Each row represents a single event with time, input and output states (in a
tabular format). System input ”0” means ”closed”, ”1” means ”opened”
valve states, while system output ”0” means ”no level”, ”L” means ”low”,
”N” means ”normal” levels in the tank, according to Eq. (2.1)

VA

VB

VC

TB

TA

TA

LEVEL

TB

LEVEL

Figure 2.3: Simple sequential process system with two connected tanks.

2.6 Faults

Faults can be considered as non-observable internal system states of the
process system. The general objective of the diagnostics in this work is to
determine the values of these hidden internal states. The following simple
assumptions are made about the nature and presence of faults:

• All inputs are considered error-free, only outputs of a system may con-
tain abnormal values that might refer to a faulty state.
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• All fault states permanent in the system during the execution (and
the diagnostics) of the operational procedures, random and temporal
failures are not considered.

• The structure of the system is assumed to be fixed. We are not dealing
with failures which alter the structure as a result.

• Training traces are long enough to capture the transition which will be
diagnosed.

• Time is always monotonically increasing and each time instance is
present.

• The clock on which all event times are based on is fixed, eg. there is
no time skew between any two events of the system.

From the known faults of a process system a diagnoser-specific fault model
can be constructed, which can be used during the diagnostics operation in
order to detect fault symptoms in measured traces coming from the process
system.

2.7 A simple composite process system

A common example process system is used through the case studies to demon-
strate the diagnostic approaches in further chapters. The structure of the
process system can be seen in Fig. 3.4. It consists of a main tank ”TA” and
two identical auxiliary tanks ”TB” and ”TC” (half the size of the main tank
each) connected with pipes to the main tank. All of the pipes have valves
on them which can be either open or in closed state. The fluid flows first to
the main tank through input valve ”VA”, then leaves it through ”VB” and
”VC” towards the auxiliary tanks. From the auxiliary tanks it flows out of
the system via output valves ”VD” and ”VE”.

These basic assumptions are made regarding the operation of this example
process system:

1. All valves in the system are assumed to be ”binary”, ie. there are no
intermittent states during valve operation.

2. All tanks are equipped with level sensors operating on qualitative range
set of Eq. (2.1) or Eq. (2.2).
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Figure 2.4: Simple process system used for the case studies.

3. Throughout the process system pipe sizes are proportional to the size
of the tank they flow into. Due to this, the level in the tanks will be
increased by one qualitative level per time instant, provided the input
valve is opened and the output valve is closed. If the output and input
valves are both in opened state, then the fluid level stays constant in
the tank. If only the output valve is opened, then the fluid level will
decrease by one qualitative level in the tank per time instant.

2.7.1 Nominal trace

An operational procedure which fills up all three tanks with fluid is used
as a common nominal trace to compare the different diagnostic approaches.
Initially all three tanks are empty and all valves are in closed state. After
opening input valve ”VA” tank ”TA” is filled up completely with fluid, then
valves ”VB” and ”VC” are opened and tanks ”TB” and ”TC” are filled up
completely as well. Finally the output valves, ”VD” and ”VE” are opened.
The operational procedure formally can be seen in Table 2.3.

2.7.2 Faults

These types of faults were taken into account for each tank in the example
process system:

• The leak of the tank. The size of the leak prevents any fluid from
staying inside of the tank, therefore fluid level constantly stays at qual-
itative value ”0”.
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sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 L 0 0
3 1 1 1 0 0 N 0 0
4 1 1 1 0 0 N L L
5 1 1 1 1 1 N N N

Table 2.3: Nominal trace for the case study. System input ”0” means
”closed”, ”1” means ”opened” valve states, while system output ”0” means
”no level”, ”L” means ”low”, ”N” means ”normal” levels in the tank, ac-
cording to Eq. (2.1)

• The positive bias failure of the tank level sensor. The level sensor
always detects a qualitative value one degree higher than the actual
level of the tank. For instance, given the qualitative set defined in Eq.
(2.1), the level sensor outputs ”N” instead of ”L”.

• The negative bias failure of the tank level sensor. The level sensor
always detects a qualitative value one degree lower than the actual
level of the tank. For instance, given the qualitative set defined in Eq.
(2.1), the level sensor outputs ”0” instead of ”L”.

For reference, all faulty traces for the above mentioned single faults are
described in Table 2.4.

Dual faults

During the presence of dual faults (which are all possible combinations of
the above mentioned single faults) the combined effect of the faults on the
corresponding output signals will be taken into account. The following apply
during the forming of the faulty traces:

• When the faults refer to different output signals (for example, ”TA”
and ”TB”) then the effects of the faulty events are simply combined
with each other, this can be done easily due to the fact that they refer
to different outputs. For instance, see outputs ”TA” and ”TB” in fault
Leak of ”TA” and negative bias of ”TB” in Table 2.5.

• When multiple faults, such as a leak and a positive or negative bias
refer to the same output signal (in this case, both to the same tank
component) then the effect of faults are combined using the following
principles:
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Leak of ”TA”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0
3 1 1 1 0 0 0 0 0
4 1 1 1 0 0 0 0 0
5 1 1 1 1 1 0 0 0

Leak of ”TB”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 L 0 0
3 1 1 1 0 0 N 0 0
4 1 1 1 0 0 N 0 L
5 1 1 1 1 1 N 0 N

Leak of ”TC”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 L 0 0
3 1 1 1 0 0 N 0 0
4 1 1 1 0 0 N L 0
5 1 1 1 1 1 N N 0

Positive bias fault of ”TA”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 L 0 0
2 1 0 0 0 0 N 0 0
3 1 1 1 0 0 H 0 0
4 1 1 1 0 0 H L L
5 1 1 1 1 1 H N N

Positive bias fault of ”TB”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 L 0
2 1 0 0 0 0 L L 0
3 1 1 1 0 0 N L 0
4 1 1 1 0 0 N N L
5 1 1 1 1 1 N H N

Positive bias fault of ”TC”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 L
2 1 0 0 0 0 L 0 L
3 1 1 1 0 0 N 0 L
4 1 1 1 0 0 N L N
5 1 1 1 1 1 N N H

Negative bias fault of ”TA”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 e- 0 0
2 1 0 0 0 0 0 0 0
3 1 1 1 0 0 L 0 0
4 1 1 1 0 0 L L L
5 1 1 1 1 1 L N N

Negative bias fault of ”TB”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 e- 0
2 1 0 0 0 0 L e- 0
3 1 1 1 0 0 N e- 0
4 1 1 1 0 0 N 0 L
5 1 1 1 1 1 N L N

Negative bias fault of ”TC”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 e-
2 1 0 0 0 0 L 0 e-
3 1 1 1 0 0 N 0 e-
4 1 1 1 0 0 N L 0
5 1 1 1 1 1 N N L

Table 2.4: All single faults as traces in the example case study system. Out-
put differences compared to nominal behavior are show in bold.
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Leak of ”TA” and negative bias of ”TB”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 e- 0
2 1 0 0 0 0 0 e- 0
3 1 1 1 0 0 0 e- 0
4 1 1 1 0 0 0 e- 0
5 1 1 1 1 1 0 e- 0

Leak of ”TB” and negative bias of ”TB”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 e- 0
2 1 0 0 0 0 L e- 0
3 1 1 1 0 0 N e- 0
4 1 1 1 0 0 N e- L
5 1 1 1 1 1 N e- N

Leak of ”TC” and positive bias of ”TC”
sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 L
2 1 0 0 0 0 L 0 L
3 1 1 1 0 0 N 0 L
4 1 1 1 0 0 N L L
5 1 1 1 1 1 N N L

Table 2.5: A few examples for dual faults in the form of traces. Output
differences compared to nominal behavior are shown in bold.

– If the bias is positive then the level sensor constantly shows a
qualitative value one degree higher than the empty value. For
instance, see output ”TB” in fault Leak of ”TB” and negative
bias of ”TB” in Table 2.5 for an example.

– If the bias is negative then the level sensor constantly shows a
qualitative value one degree lower than the empty value. For
instance, see output ”TC” in fault Leak of ”TC” and positive bias
of ”TC” in Table 2.5 for an example.

– It is assumed that the same level sensor cannot have 2 different
bias faults (positive and negative) at the same time.

2.8 Summary

In this chapter the basic notions specific to the further described diagnostic
approaches were presented. These notions will be used in the coming chapters
as a basis, and will be extended with additional method-specific notions
there. At the end of the chapter, a simple common case study was presented,
which will be used in further chapters to demonstrate the capabilities of the
diagnostic methods and to present the main differences between them.
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Chapter 3

P-HAZID diagnostics

In this chapter, the procedure HAZID (P-HAZID) methodology, a novel off-
line way of reasoning about process system faults during operational proce-
dure execution is described in detail. The diagnostics is based upon atomic
deviations of measured operational procedure events from the events in a nor-
mal procedure. These deviations are organized into a special P-HAZID table
which is used by the diagnostic algorithm. When a possibly faulty observable
trace need to be diagnosed, its deviations are collected first and using the
P-HAZID table, the algorithm can reason about possible fault modes which
might have been present in the process system during the execution of the
trace.

The chapter is organized into three main parts. First, the notions spe-
cific to this methodology, such as the concept of flattening, deviations and
the structure of the P-HAZID table is described. Then, the P-HAZID rea-
soning algorithm is discussed in detail. Finally, the execution of the method
is demonstrated on a simple case study from Section 2.7 and the main char-
acteristics of the method are described.

3.1 Introduction

The domain for the usual HAZID analysis is static in the sense, that de-
viations from the normal, usually steady-state operation are recorded and
used. It is, however, possible to extend the BL-HAZID diagnostic idea (see
Section 1.2.1 as well as [42]) to the dynamic case, when the execution of an
operational procedure drives the process system from one state to another,
and use it for diagnostic purposes. This extended method can be used for
finding component faults based on the deviation(s) between the observable
inputs and outputs of planned (nominal) and actual (characteristic) event
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sequences driven by an operational procedure.

In order to achieve this, a novel dynamic procedure HAZID (P-HAZID)
model (in the form of a table) and reasoning method based on the model is
proposed in [52]. The use of these P-HAZID tables for diagnostic purposes
had been formalized in [44], and it had been extended by taking the structural
similarities of process system components into account in [45]. This approach
is described in detail in this chapter.

The tabular representation form of the BL-HAZID method (with the
columns ”Subsystem”, ”Cause”, ”Deviation” and ”Implication”) is very sim-
ilar to the structure of the P-HAZID table (having columns ”Cause”, ”De-
viation” and ”Implication”). The difference here is while in the case of BL-
HAZID, failures and failure causing events are present in the cells of the table,
in the case of the P-HAZID deviations from the nominal operational proce-
dure and their root causes are placed in the spreadsheet. The reasoning paths
in the P-HAZID method, used for capturing the diagnostics is also analogous
to the cause-implication graph of the BL-HAZID, but it describes causal re-
lationships between operational procedure deviations and failure root causes.
Similarly, in the case of the BL-HAZID, this graph contains failures, while in
the case of the P-HAZID it contains deviations. The P-HAZID methodology
can be also thought as an extension of the BL-HAZID methodology with the
dimension of time.

On the other hand, the reasoning process in the P-HAZID method is
analogous to the widely known concept of if-then or condition-action rules
(as described in [41]). In that way it is similar to a G2 (see [14]) based fault
diagnostic method described in [35] which transforms the heuristics from a
HAZOP table into a set of rules as a fault model and uses if-then rule based
backward chaining (see [41]) to diagnose faults in the process system.

Similar to this method, the fault reasoning phase in the P-HAZID can
be performed by forward chaining (see [41]) using if-then or condition-action
rules (see [41]). The details of this will be further elaborated in Section 3.3.3.

3.2 Basic notions

The most important novel concepts and tools are introduced in this section to
formally define the P-HAZID table and the diagnostic method based thereon.
The concepts discussed in this section are the P-HAZID specific extensions
of the common notions of event and trace, as described in Section 2.4 and
Section 2.5.
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event system inputs system outputs
sequence input first output second output TA TB
number valve valve valve level level

1 1 0 0 0 0
2 1 0 0 L L
3 1 1 1 N N

Table 3.1: ”Simple tank fill” trace for the process system in Fig. . Each row
represents a single event with time, input and output states (in a tabular
format). In the system inputs, ”1” means opened, while ”0” means closed
state. For the outputs, ”0” means empty, ”L” means low while ”N” means
normal level.

3.2.1 Flattening of traces

If there are multiple outputs (as described in Section 2.1) in the process
system, then they need to be handled separately in a P-HAZID diagnoser,
because the reasoning method works on single output values only. Therefore
an initial operation need to be performed for every input trace used by the
diagnoser described later. This operation is called flattening and it works like
the following: If there are n outputs in the events of a trace then for every
time instant in the trace n number of single-output events are generated (note
that inputs are considered error-free). These partial events only contain the
time instant (sequence number of the whole event), the identifier (index)
and the value of the single output. During the generation of deviations, this
output value determines the type of the deviation, while the identifier (index)
will be the output index of the deviation (as described in Section 3.2.2).

For example, the three-input two-output nominal trace in Table 3.1 will
be converted to this sequence of single-output events:

(1;TA : 0), (1;TB : 0), (2;TA : L), (2;TB : L), (3;TA : N), (3;TB : N)

After this initial operation the trace will be checked against deviations by
comparing it to the flattened form of the nominal trace.

3.2.2 Deviations

Nominal, characteristic and observable traces can be compared by compar-
ing their corresponding single-output events acquired after flattening. The
difference between two corresponding single-output events (where the time
instant is the same) is described by a single deviation. The term deviation is
conceptually analogous to the general term of service failure as described in
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the common taxonomy (refer to Section 1.3.1 and [7]). Deviations are formed
from a deviation guide word (which describes the exact type of the deviation),
the time instant to identify the event in the nominal trace and the identi-
fier of the output to which the deviation refers to (this is the output of the
single-output event). Two major deviation categories can be distinguished,
a deviation might be chronological or quantitative. Chronological devi-
ations describe that the event regarding that single output in the nominal
trace did not occur at the correct time, while quantitative deviations denote
the difference in the single output values between events of the same time
instant. Both deviation types always refer to a single output variable in
the event, if there are more outputs deviating from the nominal event in a
measured event then multiple deviations are formed for that event.

The following types of chronological deviations are distinguished (along
with their connection with the common taxonomy described in [7]):

• later: When the output value is present in the measured trace, but at
a later time instant. According to the common taxonomy this is a late
timing fault.

• earlier: When the output value is present in the measured trace, but
at an earlier time instant. According to the common taxonomy this is
an early timing fault.

• never-happened: When the particular output value never happened
in the measured trace. According to the common taxonomy this is an
omission fault, but not necessarily ”human-made”, as it is described
there.

The following types of quantitative deviations are used (see Qe in Section 2.1
for an example qualitative set):

• slightly-greater: When an output’s qualitative value is higher than
the nominal value and the difference is only one qualitative value.

• significantly-greater: When an output’s qualitative value is higher
in the measured event than the nominal one and the difference is more
than one qualitative value.

• slightly-smaller: When an output’s qualitative value is lower than
the nominal value by one qualitative value.

• significantly-smaller: When an output’s qualitative value is lower
in the measured event and the difference is more than one qualitative
value.
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These deviations are used for capturing small fragments of the fault model
(related to specific event pairs of the nominal and measured trace) in a P-
HAZID table described in Section 3.2.3.

As an example, the chronological deviation earlier(3;TB) means that
the third nominal event, taking only the output value of ”TB” into account,
happened at an earlier time instant in the measured trace than in the nominal
trace.

As an other example, the quantitative deviation slightly-smaller(4;TA)
denotes that at the fourth event in the measured trace the value of output
”TA” was smaller than the value of ”TA” in the same event in the nominal
trace and for the same output by one qualitative value.

Note that for a single output value difference in the measured trace a
chronological and a quantitative deviation can always be found, denoting the
wrong timing of the event (as a chronological deviation) and the incorrect
value (as a quantitative deviation) compared to the nominal event. Both of
these can be included in the diagnostic reasoning to increase accuracy.

Equality of deviations

During the reasoning procedure the equality of the deviations are checked, in
order to match actual deviations with already stored ones. Two deviations
are said to be equal if their type, time instant, and output identifier are
identical. For example:

• earlier(3;TB) and earlier(3;TB) are equal

• earlier(3;TB) and earlier(3;TC) are not equal because they refer to
different outputs (TB and TC)

• earlier(3;TB) and earlier(2;TB) are not equal because they refer to
different time instants (3 and 2)

• earlier(3;TB) and later(3;TB) are not equal because they are of dif-
ferent type (earlier and later)

Because inputs are considered error-free they are not present in the devia-
tions, their values can be determined from the nominal trace and time instant
if needed. Only the time instant of the event is used during the reasoning
procedure, therefore inputs does not need to be present in the deviations.

3.2.3 P-HAZID table

As a combination and extension of the widely used FMEA and HAZOP anal-
yses (for details, refer to [44] or [12] and partly [42]) the procedure HAZID
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Cause Deviation Implication

TANK-LEAK never-happened(2;OUT) never-happened(3;OUT)
never-happened(2;OUT) never-happened(3;OUT) never-happened(4;OUT)
TANK-LEAK slightly-smaller(2;OUT) significantly-smaller(3;OUT)
slightly-smaller(2;OUT) significantly-smaller(3;OUT) significantly-smaller(4;OUT)
NEG-BIAS slightly-smaller(1;OUT) slightly-smaller(2;OUT)
slightly-smaller(1;OUT) slightly-smaller(2;OUT) slightly-smaller(3;OUT)
slightly-smaller(2;OUT) slightly-smaller(3;OUT) slightly-smaller(4;OUT)
POS-BIAS slightly-greater(1;OUT) slightly-greater(2;OUT)
slightly-greater(1;OUT) slightly-greater(2;OUT) slightly-greater(3;OUT)
slightly-greater(2;OUT) slightly-greater(3;OUT) slightly-greater(4;OUT)

Table 3.2: A fraction of a simple P-HAZID table for a system with two
inputs and a single output ”OUT”.

(abbreviated as P-HAZID) analysis result can be used for fault diagnostics
analyzing operational procedure execution in a given process system. The
result of this P-HAZID analysis is given in the form of a table or spread-
sheet, and it consists of deviations leading to possible root causes ordered in
columns. Using the initial set of differences (deviations) between the mea-
sured trace and the nominal (or the characteristic) traces, the set of possible
root causes can be found by a simple reasoning procedure taking the con-
nections between rows in the table into account. Two rows are said to be
connected in the table if the corresponding values in the ”Deviation”, ”Im-
plication” columns (last two columns) and ”Cause”, ”Deviation” columns
(first two columns) are equal according to the rules defined in Section 3.2.2.
This is used during reasoning to find possible root causes (in the first column
with capital letters) from a set of initial deviations by chaining rows after
each other. Therefore, from an initial set of starting deviations a directed
reasoning graph can be drawn connecting them to the possible root causes
based on the P-HAZID table. Note that this is true for the other way around,
eg. from a reasoning graph a P-HAZID table can be created, as it will be
shown in the case study of the chapter. The reasoning graph describes causal
relationships between operational procedure deviations and root causes for a
particular process system. A path in this graph is called reasoning path. A
simple example for a P-HAZID table can be found in Table 3.2.

Note that the P-HAZID table is the fault model (as defined in Section 2.6)
of the P-HAZID diagnoser, the diagnoser uses this spreadsheet, the nominal
and measured trace to detect fault modes of the system.

Construction of a P-HAZID table

Setting up the connection between deviations and determining exact root
causes in the P-HAZID table is a manual task requiring domain knowledge
on the diagnosable process system. However, some aspects of the analysis
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might be automated, such as the flattening of traces (see Section 3.2.1) or
the generation of deviations (see Section 3.2.2) between nominal and charac-
teristic traces.

In order to create a P-HAZID table practically the following need to be
done:

1. The nominal trace need to be defined, and all the different fault cases
(tank leak, bias fault,...) should be identified in the system. For every
fault case a corresponding characteristic trace need to be defined by
domain experts or generated from the fault during a simulation of the
process system.

2. All traces (nominal and characteristic) should be flattened (as described
in Section 3.2.1).

3. Using the flattened traces, taking events one by one, all possible char-
acteristic and quantitative deviations need to be generated for every
fault case. Deviations shall be ordered by their time instant in decreas-
ing order starting from the largest one, and grouped by their deviation
category (chronological or quantitative).

4. Starting from the higher time instants reasoning paths can be defined
leading to the specific root cause (from which the characteristic trace
was created in the first place). For defining these paths expert knowl-
edge is needed.

5. Based on the defined reasoning paths the P-HAZID table can be built
by taking triplets of events from the end of the path towards the fault
(which is at the beginning of the path) and placing the triplets as rows
(for columns ”Cause”, ”Deviation”, ”Implication”) in the P-HAZID
table. Except for the first triplet, every triplet shall contain the last
two deviations from the preceding one. This is important because that
is how the reasoning algorithm (as described in ) connects rows in the
P-HAZID table with each other.

3.3 P-HAZID based diagnostics

The P-HAZID algorithm requires a nominal trace, a P-HAZID table and
the observable trace as an input and provides the possible set of root causes
which might be present in the process system during the execution of the
observable trace. The algorithm is off-line in the sense that it requires the
whole observable trace as an input (it has to be already completed), although
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generalizing it to an on-line case is theoretically possible (in order to work
with operational procedures which are currently under execution), this is not
the subject of this chapter.

3.3.1 Additional assumptions

The following assumptions are made in addition to the ones listed in Section
2.6 for this diagnostic method:

• The chosen qualitative set is fine enough to capture the transition in
the nominal and faulty traces.

• A representative unique set of deviations can be generated between each
faulty and nominal trace for a faulty output, based on the differences
and not taking the actual nominal value of the output into account.
(If two different faults generate exactly the same set of deviations the
diagnostic reasoning will not be able to differentiate between the faults.)

3.3.2 Algorithm description

Using a nominal operational procedure with its corresponding P-HAZID ta-
ble and a measured trace the diagnostic algorithm operates as:

1. If the measured trace contains multiple outputs, it shall be flattened
as described in Section 3.2.1 in detail.

2. All deviations are collected between the flattened nominal and mea-
sured trace (which is already flattened in step 1). The deviations at
the final and preceding time instant need to be collected, and assigned
to the set of final deviation pairs by decreasing order in their time in-
stant. The next step is executed for each possible pair of deviations in
the final deviation pair set.

3. All the rows in the P-HAZID table are selected where exactly the first
element of the pair is found in the ”Deviation” column, and exactly
the second element is found in the ”Implication” column.

4. For all selected rows: if the selected row’s ”Cause” column contains a
root cause, or a deviation which is not present in the original set of
deviations (called terminal deviation) then this is added to the set of
root causes and the reasoning finishes for this single path by continuing
with step 6, otherwise (if the deviation is present among the initial
deviations), it continues with step 5.
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5. If the collected set of deviations contains the deviation in the selected
row’s ”Cause” column then continue with step 3 by taking the devi-
ation in the ”Cause” column as the first element of the pair and the
”Deviation” element as the second element of the pair (in order to find
rows where the content in ”Cause” equals to the ”Deviation” cell and
the content of ”Deviation” equals to ”Implication” cell).

6. Return the set of found root causes and the set of deviations which
were not present at the initial set of deviations.

This diagnostic algorithm attempts to re-construct a subset of reason-
ing graphs from which the P-HAZID table initially created from using the
method mentioned above from the set of initial deviations. Here separate cells
in the P-HAZID are represented as nodes in the reasoning graph. The roots
of the tree are the final deviation pairs from where the diagnostic procedure
is initiated, while the leaves are the identified root causes or the deviations
from which the diagnostic operation cannot proceed forward (because they
were not contained in the set of initial deviations). The junctions (nodes with
degree more than 2) denote rows in the P-HAZID table which are connected
to multiple rows in the P-HAZID by their event values in the ”Deviation”
and ”Implication” columns. If the reasoning cannot proceed forward from a
deviation because it was missing from the set of initial deviations, this might
even mean a failure, such as an incorrect deviation in the P-HAZID table
(thus the algorithm might be used for validating the P-HAZID table).

The complete set of reasoning graphs, based on the simple example P-
HAZID table described in Table 3.2, can be seen in Fig. 3.1.

never-happened(4;OUT)

never-happened(3;OUT)

never-happened(2;OUT)

TANK-LEAK

significantly-smaller(4;OUT)

significantly-smaller(3;OUT)

slightly-smaller(2;OUT)

slightly-smaller(1;OUT)

slightly-smaller(4;OUT)

slightly-smaller(3;OUT)

NEG-BIAS

slightly-greater(4;OUT)

slightly-greater(3;OUT)

slightly-greater(2;OUT)

slightly-greater(1;OUT)

POS-BIAS

Figure 3.1: Diagnostic paths explored by the P-HAZID diagnostic algorithm
for the example P-HAZID table of Table 3.2.
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Cause Deviation Implication

TANK-LEAK never-happened(2;OUT) never-happened(3;OUT)
never-happened(2;OUT) never-happened(3;OUT) never-happened(4;OUT)

Table 3.3: A single row in the P-HAZID table is analogous to a single if-then
rule.

3.3.3 Analogy with if-then rules

The reasoning paths in the P-HAZID table are analogous to an ordinary if-
then rules used widely in artificial intelligence applications such as rule-based
expert systems. For instance, if we take the simplest form of the if-then rule
into account:

IF condition THEN action

Then, in the case of a reasoning path in the P-HAZID table, the deviations
in the path can be considered as the condition of the rule, while the root
cause at the end of the path is similar to the action of an if-then rule. In
that way, the single reasoning path on Table 3.3 (in the form of P-HAZID
rows) can be converted to the if-then rule:

IF never− happened(4; OUT) AND never− happened(3; OUT)

AND never− happened(2; OUT)

THEN TANK− LEAK

In that way, chronological and quantitative deviations are analogous to
facts while the set of reasoning paths can be considered as a knowledge-base
in rule-based production systems (see [41]). In these systems the knowledge-
base contains facts like the P-HAZID table is built from deviations. Due
to these similarities, in a special case the P-HAZID reasoning can be also
performed by an ordinary pattern matching algorithm, such as the Rete
algorithm (see [20]), using the set of deviations as facts in the knowledge
base.

3.4 Diagnostics case study

The simple case study from Section 2.7, shown in Fig. 3.4 is used to demon-
strate the P-HAZID approach in operation. This case study, as described
earlier, consisted of three fluid tanks connected in parallel, where the main
tank ”TA” is connected by a pipe to auxiliary tanks ”TB” and ”TC”. Before
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the actual diagnostics operation, the P-HAZID table is constructed following
the process described in Section 3.2.3. Note that only single fault cases are
dealt with in this case study.

3.4.1 Flattening of the traces

The nominal trace from the common case study (filling up all three tanks
with liquid) described in Section 2.7.1 is flattened to this list of single-output
events:

(1;TA : 0), (1;TB : 0), (1;TC : 0)

(2;TA : L), (2;TB : 0), (2;TC : 0)

(3;TA : N), (3;TB : 0), (3;TC : 0)

(4;TA : N), (4;TB : L), (4;TC : L)

(5;TA : N), (5;TB : N), (5;TC : N)

Flattening of the characteristic traces for the different faults is done in the
same manner. For example the ”TB-LEAK” faulty trace looks like this in
flattened form (differences from the nominal trace are denoted by bold):

(1;TA : 0), (1;TB : 0), (1;TC : 0)

(2;TA : L), (2; TB : 0), (2;TC : 0)

(3;TA : N), (3; TB : 0), (3;TC : 0)

(4;TA : N), (4; TB : 0), (4;TC : L)

(5;TA : N), (5; TB : 0), (5;TC : N)

These flattened forms are used create the deviations for every faulty case.

3.4.2 Acquiring deviations from faulty traces

Comparison of the nominal and faulty events in flattened form resulted in
many deviations in the different fault cases. For example, for the single fault
cases of tank TA, the following deviations were collected:

• Leak of the tank (note that in this case all three tanks are affected):

– Chronological deviations:

never-happened(5,TA), never-happened(5,TB), never-happened(5,TC),
never-happened(4,TA), never-happened(4,TB), never-happened(4,TC),
never-happened(3,TA), never-happened(2,TA)

45



– Quantitative deviations:

significantly-smaller(5,TA), significantly-smaller(5,TB), significantly-
smaller(5,TC), significantly-smaller(4,TA), slightly-smaller(4,TB),
slightly-smaller(4,TC), significantly-smaller(3,TA), slightly-smaller(2,TA)

• Positive bias of the tank level sensor:

– Chronological deviations:

never-happened(5,TA), never-happened(4,TA), never-happened(3,TA),
earlier(2,TA), earlier(1,TA)

– Quantitative deviations:

slightly-greater(5,TA), slightly-greater(4,TA), slightly-greater(3,TA),
slightly-greater(2,TA), slightly-greater(1,TA)

• Negative bias of the tank level sensor:

– Chronological deviations:

never-happened(5,TA), never-happened(4,TA), never-happened(3,TA),
later(2,TA), later(1,TA)

– Quantitative deviations:

slightly-smaller(5,TA), slightly-smaller(4,TA), slightly-smaller(3,TA),
slightly-smaller(2,TA), slightly-smaller(1,TA)

For the rest of the tanks the deviations for each fault can be determined
in a similar fashion.

3.4.3 Reasoning graphs

Taking all the acquired deviations in decreasing order by their time instant
for every fault the reasoning graphs of Fig. 3.2 for tank ”TA”, Fig. 3.3
for tank ”TB” and Fig. 3.4 for tank ”TC” are constructed. In this case a
reasoning path was created for every fault case from the deviations present
in that particular case in decreasing chronological order, and those paths
are combined into one single directed graph at the end. The nodes are the
individual deviations, and the direction of the edges between them show the
direction of reasoning towards a root cause.

3.4.4 P-HAZID table

Finally, from the separate reasoning paths for different faults in the system a
P-HAZID table is created, containing all the paths (with the corresponding
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never-happened(5,TA)

never-happened(4,TA)

never-happened(3,TA)

never-happened(2,TA) later(2,TA) earlier(2,TA)

TA-LEAK

never-happened(5,TB)

never-happened(4,TB)

never-happened(5,TC)

never-happened(4,TC)

later(1,TA)

TA-NEG-BIAS

earlier(1,TA)

TA-POS-BIAS

significantly-smaller(5,TA)

significantly-smaller(4,TA)

significantly-smaller(3,TA)

slightly-smaller(2,TA)

slightly-smaller(1,TA)

significantly-smaller(5,TB)

slightly-smaller(4,TB)

significantly-smaller(5,TC)

slightly-smaller(4,TC)

slightly-smaller(5,TA)

slightly-smaller(4,TA)

slightly-smaller(3,TA)

slightly-greater(5,TA)

slightly-greater(4,TA)

slightly-greater(3,TA)

slightly-greater(2,TA)

slightly-greater(1,TA)

Figure 3.2: Single fault reasoning paths for tank ”TA”.

never-happened(5,TA)

never-happened(4,TA)

never-happened(3,TA)

never-happened(2,TA) later(2,TA) earlier(2,TA)

TA-LEAK

never-happened(5,TB)

never-happened(4,TB)

never-happened(5,TC)

never-happened(4,TC)

later(1,TA)

TA-NEG-BIAS

earlier(1,TA)

TA-POS-BIAS

significantly-smaller(5,TA)

significantly-smaller(4,TA)

significantly-smaller(3,TA)

slightly-smaller(2,TA)

slightly-smaller(1,TA)

significantly-smaller(5,TB)

slightly-smaller(4,TB)

significantly-smaller(5,TC)

slightly-smaller(4,TC)

slightly-smaller(5,TA)

slightly-smaller(4,TA)

slightly-smaller(3,TA)

slightly-greater(5,TA)

slightly-greater(4,TA)

slightly-greater(3,TA)

slightly-greater(2,TA)

slightly-greater(1,TA)

Figure 3.3: Single fault reasoning paths for tank ”TB”.

never-happened(5,TA)

never-happened(4,TA)

never-happened(3,TA)

never-happened(2,TA) later(2,TA) earlier(2,TA)

TA-LEAK

never-happened(5,TB)

never-happened(4,TB)

never-happened(5,TC)

never-happened(4,TC)

later(1,TA)

TA-NEG-BIAS

earlier(1,TA)

TA-POS-BIAS

significantly-smaller(5,TA)

significantly-smaller(4,TA)

significantly-smaller(3,TA)

slightly-smaller(2,TA)

slightly-smaller(1,TA)

significantly-smaller(5,TB)

slightly-smaller(4,TB)

significantly-smaller(5,TC)

slightly-smaller(4,TC)

slightly-smaller(5,TA)

slightly-smaller(4,TA)

slightly-smaller(3,TA)

slightly-greater(5,TA)

slightly-greater(4,TA)

slightly-greater(3,TA)

slightly-greater(2,TA)

slightly-greater(1,TA)

Figure 3.4: Single fault reasoning paths for tank ”TC”.

deviations and fault cases) in a tabular form to be used by the reasoning
algorithm. This table and the observable trace is used as an input to the
diagnostic algorithm. The complete table for all tanks and faults can be seen
in Table 3.4.

3.4.5 Execution of the algorithm

Let us now use the above constructed P-HAZID table in Table 3.4, and a
faulty trace for the negative bias fault of the level sensor on TA (described
in Table 3.5). With these inputs a sample run of the diagnostic algorithm is
demonstrated below.

The faulty trace first need to be converted to a flattened form, to a list of
single-output events. This form in this case is the following (differences from
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Cause Deviation Implication

never-happened(3,TA) never-happened(4,TA) never-happened(5,TA)
never-happened(2,TA) never-happened(3,TA) never-happened(4,TA)
TA leakage never-happened(2,TA) never-happened(3,TA)
significantly-smaller(3,TA) significantly-smaller(4,TA) significantly-smaller(5,TA)
slightly-smaller(2,TA) significantly-smaller(3,TA) significantly-smaller(4,TA)
TA leakage slightly-smaller(2,TA) significantly-smaller(3,TA)
TB leakage never-happened(4,TB) never-happened(5,TB)
TB leakage slightly-smaller(4,TB) significantly-smaller(5,TB)
TC leakage never-happened(4,TC) never-happened(5,TC)
TC leakage slightly-smaller(4,TC) significantly-smaller(5,TC)
slightly-smaller(3,TA) slightly-smaller(4,TA) slightly-smaller(5,TA)
slightly-smaller(2,TA) slightly-smaller(3,TA) slightly-smaller(4,TA)
TA negative bias slightly-smaller(2,TA) slightly-smaller(3,TA)
never-happened(3,TA) never-happened(4,TA) never-happened(5,TA)
later(2,TA) never-happened(3,TA) never-happened(4,TA)
later(1,TA) later(2,TA) never-happened(3,TA)
TA negative bias later(1,TA) later(2,TA)

slightly-greater(3,TA) slightly-greater(4,TA) slightly-greater(5,TA)
slightly-greater(2,TA) slightly-greater(3,TA) slightly-greater(4,TA)
TA positive bias slightly-greater(2,TA) slightly-greater(3,TA)
never-happened(3,TA) never-happened(4,TA) never-happened(5,TA)
earlier(2,TA) never-happened(3,TA) never-happened(4,TA)
earlier(1,TA) earlier(2,TA) never-happened(3,TA)
TA positive bias later(1,TA) later(2,TA)
slightly-smaller(3,TB) slightly-smaller(4,TB) slightly-smaller(5,TB)
slightly-smaller(2,TB) slightly-smaller(3,TB) slightly-smaller(4,TB)
TB negative bias slightly-smaller(2,TB) slightly-smaller(3,TB)
never-happened(3,TB) never-happened(4,TB) never-happened(5,TB)
later(2,TB) never-happened(3,TB) never-happened(4,TB)
later(1,TB) later(2,TB) never-happened(3,TB)
TB negative bias later(1,TB) later(2,TB)
slightly-greater(3,TB) slightly-greater(4,TB) slightly-greater(5,TB)
slightly-greater(2,TB) slightly-greater(3,TB) slightly-greater(4,TB)
TB positive bias slightly-greater(2,TB) slightly-greater(3,TB)
never-happened(3,TB) never-happened(4,TB) never-happened(5,TB)
earlier(2,TB) never-happened(3,TB) never-happened(4,TB)
earlier(1,TB) earlier(2,TB) never-happened(3,TB)
TB positive bias later(1,TB) later(2,TB)
slightly-smaller(3,TC) slightly-smaller(4,TC) slightly-smaller(5,TC)
slightly-smaller(2,TC) slightly-smaller(3,TC) slightly-smaller(4,TC)
TC negative bias slightly-smaller(2,TC) slightly-smaller(3,TC)
never-happened(3,TC) never-happened(4,TC) never-happened(5,TC)
later(2,TC) never-happened(3,TC) never-happened(4,TC)
later(1,TC) later(2,TC) never-happened(3,TC)
TC negative bias later(1,TC) later(2,TC)
slightly-greater(3,TC) slightly-greater(4,TC) slightly-greater(5,TC)
slightly-greater(2,TC) slightly-greater(3,TC) slightly-greater(4,TC)
TC positive bias slightly-greater(2,TC) slightly-greater(3,TC)
never-happened(3,TC) never-happened(4,TC) never-happened(5,TC)
earlier(2,TC) never-happened(3,TC) never-happened(4,TC)
earlier(1,TC) earlier(2,TC) never-happened(3,TC)
TC positive bias later(1,TC) later(2,TC)

Table 3.4: A complete P-HAZID table for the three tank composite process
system (see Fig. ) for single faults. Relevant rows for the case study are
colored with gray.

sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 e- 0 0
2 1 0 0 0 0 0 0 0
3 1 1 1 0 0 L 0 0
4 1 1 1 0 0 L L L
5 1 1 1 1 1 L N N

Table 3.5: Operational procedure for the negative bias fault of the level sensor
on Tank TA.
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the nominal trace are denoted by bold text):

(1; TA : e−), (1;TB : 0), (1;TC : 0),

(2; TA : 0), (2;TB : 0), (2;TC : 0),

(3; TA : L), (3;TB : 0), (3;TC : 0),

(4; TA : L), (4;TB : L), (4;TC : L),

(5; TA : L), (5;TB : N), (5;TC : N)

Comparing the form with the nominal flattened form (described in Section
3.4.1) these deviations can be determined (as the trace shows, the sensor
level for ”TA” was always one qualitative value below the nominal value):

never − happened(5, TA), never − happened(4, TA)

never − happened(3, TA), later(2, TA), later(1, TA),

slightly − smaller(5, TA), slightly − smaller(4, TA),

slightly − smaller(3, TA), slightly − smaller(2, TA),

slightly − smaller(1, TA)

From these sets, the set of final deviations contains two pairs (by taking the
deviations from the last and preceding time instants, ”4” and ”5”):

never − happened(5, TA), never − happened(4, TA)

slightly − smaller(5, TA), slightly − smaller(4, TA)

Based on these acquired final deviation pairs and the P-HAZID table of
Table 5.4 the diagnostic algorithm (as described in Section 3.3.2) can be
started. Relevant rows participating in the diagnostics are marked with a
darker color in the P-HAZID table shown in Table 5.4. Taking the first
final deviation pair, ”never-happened(4,TA)” is found in the ”Deviation”,
and ”never-happened(5,TA)” is found in the ”Implication” column in the
P-HAZID table for a row (denoted by a darker gray color in Table 5.4),
so the content of the corresponding ”Cause” column is examined. In this
case this column contains deviation ”never-happened(3,TA)”, which is, in
turn, present in the set of the initial deviations. In this case, diagnostics
moves on, now looking for the pair ”never-happened(3,TA)” and ”never-
happened(4,TA)” in columns ”Implication” and ”Deviation”. This pair can
be found just a row below the previously investigated one, with ”later(2,TA)”
in the ”Cause” column which is also present in the list of initial deviations.
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So the above mentioned procedure continues until the root cause, in this case,
”TA-NEG-BIAS” (the root cause for the negative bias fault of tank ”TA”) is
found four rows below the initial pair in the table. Similar reasoning is done
for the ”slightly-smaller” deviations starting with ”slightly-smaller(4,TA)”
and ”slightly-smaller(5,TA)” (the corresponding section is part of the dark
gray area in the table).

The reasoning paths explored for these deviations are depicted in Fig. 3.5
with solid edges.

never-happened(5,TA)

never-happened(4,TA)

never-happened(3,TA)

never-happened(2,TA) later(2,TA) earlier(2,TA)

TA-LEAK

never-happened(5,TB)

never-happened(4,TB)

never-happened(5,TC)

never-happened(4,TC)

later(1,TA)

TA-NEG-BIAS

earlier(1,TA)

TA-POS-BIAS

significantly-smaller(5,TA)

significantly-smaller(4,TA)

significantly-smaller(3,TA)

slightly-smaller(2,TA)

slightly-smaller(1,TA)

significantly-smaller(5,TB)

slightly-smaller(4,TB)

significantly-smaller(5,TC)

slightly-smaller(4,TC)

slightly-smaller(5,TA)

slightly-smaller(4,TA)

slightly-smaller(3,TA)

slightly-greater(5,TA)

slightly-greater(4,TA)

slightly-greater(3,TA)

slightly-greater(2,TA)

slightly-greater(1,TA)

Figure 3.5: All reasoning paths for Tank ”TA”. Paths relevant to the negative
bias fault of the case study are drawn with solid, with other not-relevant paths
denoted with dotted edges.

At then end of the diagnostics operation, the procedure emits the root
cause, namely that there seems to be a negative bias failure with the level
sensor on TA (”TA-NEG-BIAS” on the graph). This concludes how the
P-HAZID reasoning works in a simple example case.

3.4.6 Observations

These observations can be made regarding the algorithm described in this
chapter.

Diagnostic accuracy. If two fault cases result in the same set of deviations
then they cannot be distinguished by the algorithm due to the fact that
exactly the same diagnostics path is explored by it.

Complexity. Even in simple cases the P-HAZID table can grow very large
and complex due to the number of deviations. (The case study already con-
tained 52 rows despite its simplicity.) The complexity brings in the increased
possibility for errors and the need for validation upon changes.
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P-HAZID table creation. The flattening of traces and collecting the set
of deviations between nominal and characteristic traces can be done auto-
matically. On the other hand, expert and/or domain knowledge is needed
to set up the reasoning paths between different deviations for a fault. If the
reasoning paths are set up, creating the P-HAZID table from it can be done
algorithmically.

P-HAZID table validation. Validation can be performed using the algo-
rithm itself, by running it with the complete set of faulty traces (from which
the P-HAZID table was created from). Using this, every single reasoning
path in the table can be explored and the possible faults can be corrected.
Also, faults which lead to the same root cause (due to the structure of the
P-HAZID table) can be discovered. The exact details of this validation is
not in the scope of this work.

Dual faults. Detection of dual faults, which refer to different output vari-
ables is theoretically possible. Due to the fact that deviations refer to single
outputs, in this case multiple, independent reasoning paths are explored by
the algorithm, and the independent fault modes are determined as the output
of the algorithm. However, if the variables refer to the same output variable
(like in the case of dual fault ”TA leak and TA negative bias”) are not al-
ways separable from the single fault ”TA leak” or ”TA negative bias”. This
happens because they generate the same set of chronological deviations.

Rule-based reasoning. After the deviations had been collected, the rea-
soning procedure can also be performed using an ordinary pattern matching
algorithm (such as the Rete algorithm) or rule engine. In order to achieve
this, from every reasoning path an appropriate rule need to be created (as
described in 3.3.3) and the deviations between the nominal and faulty traces
need to be put as facts into the knowledge-base of the system.

3.5 Summary

In this chapter a novel methodology for diagnosing process systems based
on operational procedure execution was described. This methodology can
be thought as an extension of the BL-HAZID methodology (described in
[34]) with the dimension of time. It needs a nominal trace (where no faults
were present), a P-HAZID table as a distilled form of fault model about the
process system, and a measured trace. When executed with these inputs it
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returns the set of possible root causes which might have been present in the
process system during the execution of the observable trace.

The method can deal with single and dual faults (in case they refer to
different outputs). Low-level diagnostic information about chronological and
quantitative differences between corresponding events of the nominal and
observable trace can be captured in the form of deviations and by combining
them together in the form of a P-HAZID table, reasoning about possible
system level faults in the process system can be performed by the diagnostic
algorithm.

As a disadvantage, some parts (such as setting up the proper reasoning
paths) in the creation of the P-HAZID table cannot be automated, requiring
domain expert knowledge (which might be a difficult task in some cases).
Also, the P-HAZID table can grow large and complex, making changes in
it more difficult (even though theoretically the algorithm can be used for
validating the P-HAZID table after changes were done).
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Chapter 4

Diagnostics using clustering

In this chapter the Clustering diagnoser, a cluster-based diagnostic approach
is described which can detect faults in process systems during operational
procedure execution. This diagnoser is based upon transforming the traces
(the representations of an operational procedure execution) to a coordinate
space with distance metrics, and then the calculate the distance of this vector
representation from known faulty representations in order to find the closest
one. In order to create the diagnostic model (which is practically a set
of labeled cluster centroids in this case) the algorithm need to be trained
with traces coming from known nominal and faulty cases. Prior to that an
application-specific mapping function need to be defined as well (which will
be used to transform the traces, so that the algorithm can work on them).

In the first part of the chapter the notions specific to clustering, such
as mapping function, event and trace coordinates and a way for validating
the model is discussed. The second part describes the clustering algorithm in
detail. In the third part, using the case study from Section 2.7, the algorithm
is demonstrated and its main properties are collected.

4.1 Introduction

One of the most important aspect of a fault diagnostics algorithm for pro-
cess systems is the fault model which requires significant amount of human
expertise and work to set up and maintain. The main aim of the Cluster-
ing diagnoser is to suggest a data-driven diagnostic procedure which requires
less amount of human assistance during the setup of the fault model (it can
create its own fault model from observations) and still remains feasible as a
fault diagnostic method. The diagnoser is based on the k-means clustering
algorithm (see [3]).
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The most significant difference between this approach and the one de-
scribed in Chapter 3 is that instead of a P-HAZID diagnostics spreadsheet,
in this case an application-specific mapping function and a distance metric
need to be defined which maps traces with qualitative-valued outputs to a
coordinate space (with a distance metric defined), where by clustering these
coordinates, a fault model is created (in a form of multiple cluster centroids).
The algorithm need to be trained with (possibly many) traces, coming from
nominal and faulty scenarios, to form the centroids referring to each sce-
nario. After the training step, when a measured trace is observed, its nearest
centroid (fault mode) can be determined, based on the previously defined
distance metrics.

Based on other forms of clustering similar diagnostic methods are avail-
able in the relevant literature, refer to the literature review in Section 1.2.2
for more details.

4.2 Basic notions

A few diagnostic notions are specific to this diagnostic approach, because
in this case traces are not compared on an event-level but as a whole in
an application-specific coordinate space. These notions are reviewed in this
section. Like in the case of the P-HAZID diagnoser they are based upon the
basic notion of event and trace from Section 2.4 and Section 2.5.

4.2.1 Mapping of qualitative values to real ones

In order to be able to define distances between events and traces, one can
convert the qualitative values of the outputs present in events and traces
back to real numbers using a mapping function M : Q 7→ R. In the case
of qualitative range space defined in Eq. (2.1) the linear mapping function
defined in Eq. (4.1) can be used.

Mlinear(q) =



−1.0 if q = e−
0.0 if q = 0

1.0 if q = L

2.0 if q = N

3.0 if q = H

4.0 if q = e+

(4.1)

The mapping function is application and signal (output) specific at the
same time. Separate mappings can be used for different outputs (due to
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different output ranges, for example) and it is possible to define a mapping
function which weights more the possibly faulty output values (compared to
the nominal values) for a single output. Such non− linear mapping can be
defined with Eq. (4.2) for the qualitative range set Q in Eq. (2.1). The
nominal values (”0”, ”L”” and ”N”) are placed next to each other, while the
possibly faulty output values (”e−”, ”H” and ”e+”) are placed farther away
in both directions.

Mnon−linear(q) =



−10.0 if q = e−
−2.0 if q = 0

−1.0 if q = L

0.0 if q = N

10.0 if q = H

20.0 if q = e+

(4.2)

In this case nominal outputs are ”0”, ”L”, ”N”, while ”H”, ”e+” and ”e−”
denote a fault, therefore they are weighted accordingly.

A linear mapping function can be defined for the refined qualitative range
set of Eq. (2.2), as well with Eq. (4.3) below.

Mfiner(q) =



−1.0 if q = e−
−0.5 if q = 0−
0.0 if q = 0

0.5 if q = 0L

1.0 if q = L

1.5 if q = LN

2.0 if q = N

2.5 if q = NH

3.0 if q = H

3.5 if q = H+

4.0 if q = e+

(4.3)

For the sake of completeness, it is worth mentioning that event input
values can be also converted to real numbers. For instance, in the case of the
two-valued qualitative set of Eq. (2.3) the mapping in Eq. (4.4) can be used.
(This function can be considered as an identifying function for the set.)

Mboolean(q) =

{
1.0 if q = 1

0.0 if q = 0
(4.4)
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The effect of using different mapping functions for the output values is
described in the first case study in Section 4.4.

4.2.2 Coordinate-vectors of events and traces

Coordinate-vector of events Events with quantitative inputs and out-
puts can be converted to real-valued vectors (coordinates) using an event
mapping function GIO : E 7→ Rr, where E is the space of events and r can
be defined as:

r = (number of inputs+ number of outputs)

The individual qualitative mapping functions described in Section 4.2.1 can
be inverted, it is possible to define mappings which transform from Q back
to Rr. Therefore for the transformation of the individual input and output
values to Rr, inverse functions of these mappings can be used. For example,
the event (1; ”1”, ”0”; ”N”) having two inputs (”1” and ”0”) and one out-
put (”N”) is mapped to vector [1.0, 0.0, 2.0] using the inverse of qualitative
mapping function Mlinear described in Eq. (4.1) for the single output and
the inverse of the input mapping Mboolean from Eq. (4.4) for the single input.
The sequence number of the event is not converted in this case, because it is
assumed to be always monotonically increasing.

If inputs are also assumed to be failure-free they can be removed from
the event representation for diagnostics. In that way a different mapping
function GO : E 7→ Rp can be used, where

p = (number of outputs) .

The output of GO is called the event coordinate form. This form contains
only the transformed values of the outputs.

For example, the same event (1; ”1”, ”0”; ”N”) in event output coordi-
nate form is just [2.0], using the inverse of mapping function Mlinear from
Eq. (4.1). (Note that because inputs are considered error-free the mapping
function Mboolean is not used anymore.)

Coordinate-vectors of traces A trace can be also converted to an m
length list of r dimensional real-valued vectors, where the sequence number
of an event is omitted, r is the dimension of the event as before, and m is
the length of the trace. This form can be considered as a piece-wise linear
trajectory in an r dimensional space, like the centroids for the first case study
described in Section 4.4 on Fig. 4.4.4.
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For example, a trace T consists of 4 consecutive events

T = (1; ”1”, ”0”; ”0”), (2; ”1”, ”0”; ”L”), (3; ”1”, ”0”; ”N”), (4; ”1”, ”1”; ”N”)

can be converted to the following 4 long list of 3 dimensional real vectors
using function GIO:

GIO(T ) = [[1.0, 0.0, 0.0], [1.0, 0.0, 1.0], [1.0, 0.0, 2.0], [1.0, 1.0, 2.0]]

The inverse of qualitative mapping function Mlinear from Eq. (4.1) is used for
converting individual outputs and the inverse of the input mapping Mboolean

from Eq. (4.4) for individual inputs. In every element of the vector the first
two real numbers correspond to the inputs (two in this case) followed by the
real value of the single output (we have a single output only in this example
case).

In a similar fashion to events, if inputs are considered error-free they
can be removed from the trace representation, by using the same mapping
function GO for every event. This vectorial form is called the trace coordinate
form. As before, this form only uses the output mapping function Mlinear

from Eq. (4.1).
For example, the trace from the previous example in trace coordinate

form is the following:

GO(T ) = [[0.0], [1.0], [2.0], [2.0]] .

4.2.3 Event and trace distances

Event-to-event distance Distance between events are calculated by using
a distance function D between the corresponding coordinates of the events
(already in event coordinate form). For example, the distance between the
two-output event

GO(event1) = [2.0, 2.0]

and two-output event

GO(event2) = [4.0, 2.0]

is calculated as follows (using the Euclidean distance as D):

D(GO(event1), GO(event2)) =
√

(2.0− 4.0)2 + (2.0− 2.0)2 = 2.0 .

Trace-to-trace distance Distance between traces in trace coordinate form
are calculated by summing the distance values between corresponding events
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in the traces. Trace to trace distance is interpreted only between traces of
equal length.

Let ϕ(i) denote the ith event in trace ϕ. Based on this, the distance
between trace ϕ1 and trace ϕ2 can be calculated as described in Eq. (4.5)
formally (where m is the number of events):

E(ϕ1, ϕ2) =
m∑
i=1

D(ϕ1(i), ϕ2(i)) (4.5)

For instance, the distance between the two-output trace in trace coordinate
form

[[0.0, 0.0], [1.0, 2.0], [2.0, 3.0]]

and the two-output trace in trace coordinate form

[[0.0, 0.0], [1.0, 1.0], [1.0, 1.0]]

can be calculated as (using the Euclidean distance as D like in the case of
events):

E(ϕ1, ϕ2) =
√

(0.0− 0.0)2 + (0.0− 0.0)2+√
(1.0− 1.0)2 + (1.0− 2.0)2+√
(1.0− 2.0)2 + (1.0− 3.0)2 =

√
0 + 0 +

√
0 + 1 +

√
1 + 4 = 0 + 1 + 2.236 = 3.236

It is theoretically possible to use other distance functions. However in this
chapter only the Euclidean distance is used for calculating distances between
events and traces. Note that this simple distance function in its current form
can only compare traces of equal length.

4.3 The diagnostic method

The proposed diagnostic method uses training traces which belong to the
identified normal or faulty modes of the system in order to recognize the
faulty mode of a not known trace (further referred as measured trace).

The traces in the training set are annotated and labeled by the operating
personnel with the faulty mode they recognized. This label may refer to a
variety of faults, disturbances or malfunctions or even to a combination of
those. This opens up possibilities to diagnose both internal faults, such as a
broken pipe or leaking tank in the system, and external disturbances such as
changes in the process feed using the proposed method.
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The normal operation is considered as a special faulty mode with no
fault, therefore we also need observed traces in the training set characterizing
this situation. When only traces of normal operation are available with
some threshold distance characterizing its accuracy, then only fault detection
is possible, i.e. one can decide if a measured trace belongs to the normal
operation mode, or some fault occurred the nature of which is not known.

Objective of diagnosis Given a set of training traces from different faulty
and fault-free operational scenarios, and a possibly faulty measured trace
(both is given in trace coordinate form) identify the operational scenario to
which the measured trace is - most likely - belongs to, based on its distance
from the centroids calculated from the training data.

4.3.1 Additional assumptions

The following assumptions are made in addition to the ones listed in Section
2.6 for this diagnostic method:

• The length of training traces and diagnosable traces are the same. This
is required because the simple Eucledian distance function (see Section
4.2.3) works on traces of equal length.

• Enough number of training traces are available so that the diagnoser
can be trained appropriately. This number is application-specific, but
the accuracy of the centroids can be checked by validating the fault
model (we will address this in Section 4.3.2).

4.3.2 Clustering of traces

As described in [4] in detail, clustering in general is a form of unsupervised
learning where the objective is to find regularities (certain patterns occur
more often than others) in a vector space. In our case the vector space
is formed by the traces in trace coordinate form in accordance with the
assumptions listed in Section 4.3.1. In this regard, a cluster can be defined
as a set of training traces with similar patterns (having the same fault) while
a centroid (center of a cluster) can be defined as a mean of these traces in
trace coordinate form.

A popular method of clustering a vector space with distance metrics is
the K-Means Clustering algorithm where the number of clusters, K is given
as an input. For more details, see [4]. After conversion of the traces, the
K-Means clustering algorithm is executed with K = 1 for every diagnostic
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scenario (faulty and fault-free) to find a single centroid for the set of training
traces having the same pattern. Because of this, the diagnostic approach
described here - not like clustering in general - can be considered as a form
of supervised learning, the centroids representing the different scenarios are
trained separately.

In order to describe the clustering algorithm formally, a few basic defini-
tions are needed.

1. Given a distance metric D (such as the Euclidean distance described
in Section 4.2.3).

2. Given a set X, let us denote the number of elements in X by |X|.

3. Given n diagnostic scenarios let i be the scenario index going from 1
to n.

4. Given a set of traces Y in trace coordinate form, and centroids Z and
W . Let the relation Y belongs to Z denote the set of traces from
Y which are closer to Z than W using distance metric D. Similarly,
Y belongs to W denotes the set of traces from Y which are closer to
W than Z using the same distance metric D. Consequently, |Y | ≥
|Y belongs to C| for every centroid C.

Acquiring and validating the cluster centres For every faulty sce-
nario i a set of traces in trace coordinate form are provided for creating and
validating the centroids. This given set is split into a training set Ti (for
creating the centroids) and a validation set Vi (for performing validation of

the centroids). The split is homogeneous and the ratio |Ti|
|Vi| is application

specific.
Executing the K-Means clustering with K = 1 on every training set Ti,

the centroid Ci is formed for scenario i. These centroids are created in single
trace coordinate form, and they might not be equal to any specific input trace
of the training set. A centroid, like a trace is a piece-wise linear trajectory in
an m dimensional space where m is the number of outputs, and the length of
the piece-wise linear trajectory is the length of the trace (number of events
in the trace). For example, for a training set which contains 100 event long
traces, and 20 output values for every event, the representation of the trace
will be a 100 long line in 20 dimensional space.

After every centroid Ci is formed from the training sets, the validation sets
are used to calculate the fault detection rate (FDRi) for every faulty scenario
i using the formula defined in Eq. (4.6). The sequence {FDRi|i = 1...n}
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also gives an overall fitness of the model, where

FDRi =
|Vi belongs to Ci|

|Vi|
(4.6)

Note that this FDR value is conceptually the same as the value which was
the base for the comparison for the different diagnostic approaches in review
article [54].

4.3.3 Steps of the Diagnostic Procedure

The steps are executed in two phases: (i) an off-line training phase which
creates the trace clusters identified with a fault label and its centroid, and (ii)
an on-line diagnosis phase which can be executed with the known clusters
for an measured trace we want to diagnose.

1. Training phase. Every input trace is converted to trace coordinate
form using the method in Section 4.2.2 for every training scenario.
Because inputs are considered as fixed and error-free (both in their
number and value) and sequence numbers are increasing strictly mono-
tonically (due to the basic assumptions laid down in Section 4.3.1),
only outputs are participating further in clustering (the inputs and the
sequence numbers are not present in this form).

2. As defined in Section 4.3.2, sets Ti, Vi and Ci are created for each
training scenario i = 1, ..., n.

3. The diagnostic model is validated using Ci and sets Vi after all centroids
are determined. FDRi values are calculated for every training scenario
as described in Section 4.3.2 Eq. (4.6) for each i = 1, ..., n.

4. Each cluster centre Ci is labeled with the inputs of training scenario i
and the particular fault (those are fixed).

5. Diagnosis phase. Given a measured trace which is converted into
trace coordinate form, the nearest centroid can be determined by com-
puting its distances from centroids Ci for training scenarios i = 1, ..., n,
using a distance such as the one described in Section 4.2.3, and finding
the closest Ci. The fault index i which corresponds to the nearest cen-
troid is regarded as the most probable fault mode of the system during
the execution of the measured trace.
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4.3.4 Dealing with faults not considered a priori in the
training set

When unknown faults (faults missing from the training set for the diagnoser)
are present during the Diagnosis phase of the diagnosis (see Section 4.3.3),
we can define a modified distance function having a distance threshold T
in order to separate these cases from the known faults. With this value,
a modified distance function in Eq. (4.7) (based on the simple Eucledian
distance E described in Eq. (4.5)) can be used

ET (ϕ1, ϕ2, T ) =

{
E(ϕ1, ϕ2) E(ϕ1, ϕ2) <= T

∞ otherwise
(4.7)

in a way that if the distance is∞ then the result of diagnosis is ”Unknown”.
The distance threshold T can be chosen based on the diameter (the maximum
distance between elements in the training set belonging to the same centroid).
In general, it can be said that a diagnostics method shall prepare for the
presence of unknown faults. By using a distance function as the one described
in Eq. (4.7) this can be achieved. Application of a distance function like this
is out of the scope of this chapter.

4.3.5 Trace coordinates with different measurement units

If the different trace coordinates have diverse measurement units, distance
calculation using the Eucledian distance might return incorrect results. This
happens because this simple distance assumes uncorrelated inputs with equal
variances. If this poses a problem, then a different distance metric need to
be used. For instance, the Mahalanobis distance (see Eq. 4.8) can be used
instead. This distance function can be considered as a generalization of the
Eucledian distance - when C is the identity matrix it behaves identically.
Choosing an appropriate value for C, differences in measurement units can
be handled. The Mahalanobis distance can also take dependencies or corre-
lations between coordinates into account.

DM(ϕ1, ϕ2) =
√

(ϕ1 − ϕ2)C−1(ϕ1 − ϕ2) (4.8)

For more details on this distance function, refer to [3]. In this chapter,
for the sake of simplicity we are only dealing with the Eucledian distance,
because all of the measurement units on the outputs are the same, and it is
assumed that they are not in correlation with each other.
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4.3.6 Limitation on the lengths of traces

One of the assumptions listed in Section 4.3.1 was that the length of the
traces need to be the same for the diagnoser to function properly (this was
needed because of the simple Eucledian distance function). In reality this
limitation makes the practical applications of the method difficult in some
cases, due to the fact that traces might vary in length. Multiple approaches
can be tried to deal with this problem:

1. Traces can be simply trimmed to equal length, by taking the shortest
trace from the training and validation set and trimming all other traces
to this length. The disadvantage of this method is that some data
inevitably will be lost. In the example case study described in Section
7.2.1 of the Appendix this approach was chosen.

2. A technique called Dynamic Time Warping (DTW) can be used to cal-
culate ”distance-like” metrics for sequences (traces in our case). This
method can find the minimal distance between two sequences which
vary in time and speed - this allows traces of different length to be
compared with each other. The algorithm is used eg. in speech recog-
nition to compare different speech signals with each other (in speech
differences in time and speed are very common). A good overview ar-
ticle on DTW can be found at [39], while an application of DTW for
time series analysis can be read at [8]. Unlike in the previous proposal,
no data will be lost in this case.

Dealing with this constraint on the length of traces is out of the scope of
this chapter. Different applications of the Clustering diagnoser might require
different solutions for this limitation problem.

4.4 A diagnostic case study

To demonstrate the Clustering diagnostic approach a simple three-tank case
study from Section 2.7, shown in Fig. 3.4 is used, like in the case of the
P-HAZID diagnostics in Chapter 3, with the nominal procedure filling up all
the tanks. As described earlier, this process system consists of three tanks,
where the main tank ”TA” is connected to auxiliary tanks ”TB” and ”TC”.
The nominal operational procedure fills up the whole system with fluid then
opens both output valves on the auxiliary tanks.

In this case study (in order to further illustrate the capabilities of the
diagnostic algorithm) the following differences are present compared to the
P-HAZID case study described in Chapter 3:
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1. When training the Clustering diagnoser with many traces, effect of
measurement errors are simulated. Some of the training traces are
having incorrect qualitative output values described in Section 4.4.1.
The rationale behind this is twofold: first, to show how the diagnostic
approach handles a more realistic scenario, and secondly, to show the
effect of using different output mapping functions during diagnostics.

2. Single and dual faults were considered in this case, in order to show that
the diagnostic algorithm can deal with dual fault scenarios as well. In
the case of the P-HAZID table based diagnoser only single failures were
dealt with, although theoretically it would have been possible to use it
for diagnosing dual faults with some limitations. These limitations do
not apply for the Clustering diagnoser.

The aim of the case study is to demonstrate the execution of the algo-
rithm, and to survey the effects of three different mappings on the diagnostic
accuracy.

4.4.1 Measurement errors

Given a qualitative set Q, for every qualitative value q ∈ Q the

neighbourhood(q, `)

is defined as a set containing all elements from Q which, respecting the
ordering of Q, are not farther than a given ` > 0 natural number from q. The
neighborhood does not contain the element itself, q 6∈ neighborhood(q, n).
The parameter ` is called the level of neighborhood.

For example, given the qualitative set defined in Eq. (2.2) then

neighborhood(N, 2) = {L,LN,NH,H},

as these are the qualitative values not farther than ”2” from ”N”.
Qualitative output values usually come from measurements which might

be prone to measurement errors. The errors might be large enough (or the
qualitative set can be fine enough) so the observed value does not match the
actual value even in the considered qualitative range space.

Given a set of qualitative values Q, such as the ones described in Eq.
(2.1) or Eq. (2.2), a function

ERRSIM(q, `, p) : Q 7→ Q

can be defined to simulate the effect of measurement errors, which trans-
forms a qualitative value q to a qualitative value w from the neighborhood
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(considering neighborhood level `) of the value q with a given probability p.
This function is useful to simulate the effect of sporadic measurement errors
in large number of training-input traces.

4.4.2 Description of the case study

The case study had three different runs. The output mapping function (as
described in 4.2.1) was different between the runs, and the effects of the
different mappings on the accuracy of the diagnostics are surveyed and com-
pared. The used distance metric was the Euclidean distance as described in
Section 4.2.3.

First the reference traces for the nominal case and for every faulty case
were created. Training trace sets were formed from each reference trace copy-
ing them 5000 times and applying a simulated measurement error function
(using ERRSIM as described in Section 2.1) on each set with 6% error
probability (p = 0.06) with neighbor level = 2 (` = 2) in the refined case of
Section and neighbor level = 1 (` = 1) in the other two case studies.

These training trace sets were given as input to the algorithm as described
in Section 4.3.2 so that the diagnostic model (practically the distribution of
the centroids for every scenario in the coordinate space) could have been
created. This model is created for every mapping function, and then they
were compared with each other. The distribution of FDR values as it was
described in Section 4.3.2 was used as a basis for comparison.

4.4.3 Execution of the algorithm

After the training traces are provided to the algorithm, the traces are con-
verted to trace-coordinate form after the input and time is trimmed from the
events of the trace.

So for example the nominal trace of Table 4.1 having a single measurement
problem for output ”TB” is mapped to this trace coordinate using the refined
mapping function from Eq. (4.3), with the effect of the measurement error
denoted in bold:

(0.0, 0.0, 0.0), (1.0, 0.0, 0.0), (2.0,0.5, 0.0), (2.0, 1.0, 1.0), (2.0, 2.0, 2.0)

Note that due to Step 1 of the diagnostic procedure described in Section
4.3.3 only output values are converted, the inputs and the time instant were
trimmed from the event prior to the conversion operation (due to the fact
that the inputs are assumed to be free of faults and the time instant is always
increasing due to the interpolation step).
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sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 L 0 0
3 1 1 1 0 0 N 0L 0
4 1 1 1 0 0 N L L
5 1 1 1 1 1 N N N

Table 4.1: Nominal operational procedure having a problem due to measure-
ment error in output ”TB” for the third time instant (in bold). System
input ”0” means ”closed”, ”1” means ”opened” valve states, while system
output ”0” means ”no level”, ”L” means ”low”, ”0L” means a value between
”normal” and ”low”, ”N” means ”normal” levels in the tank, according to
Eq. (2.2).

Every other input trace is converted in the similar manner. After conver-
sion, as described in Section 4.3.2, k-means clustering with K = 1 is executed
to find the centroids in every case. Fig. 4.1 shows nine of these centroids in
the form of three dimensional piece-wise linear trajectories. On this figure
on every subgraph a single centroid can be seen which is a 5 point long tra-
jectory in most cases - due to the fact that the trace is also 5 event long -
except for the bottom three graphs where all points overlap each other, and
the middle graph in the left column where some points overlap. For all cases
the three axes represent the qualitative fluid level values in the three tanks
(TA, TB and TC).

After the centroids are determined, the diagnoser is trained and it is ready
to accept observable traces and assign them to possible faults. This is done
by converting the trace first to trace coordinate form, and then finding the
nearest centroid. For example, for the trace in Table 4.2, these coordinates
are assigned (using mapping function in a similar fashion from Eq. (4.3) ):

(0.0, 0.5, 0.0), (1.0, 0.5, 0.0), (1.5, 0.5, 0.0), (1.5, 1.5, 1.0), (1.5, 2.0, 1.5)

Based on the distribution of the centroids and a previously trained diagnoser,
the results of the diagnostics (the distances from the centroids) can be seen
in Table 4.3. Based on this result the trace is diagnosed as nominal by
the algorithm (the nominal centroid was the closest to the coordinate vector
of the trace). In fact, this trace was created artificially from the nominal
trace, with applying more simulated errors on it that the measurement error
simulation function from Section 4.4.2 would have added. Note the nature
of the severe measurement error in the output value ”TB”:
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Figure 4.1: A few interesting centroids for some fault cases in piece-wise
linear trajectory form. The three axes represent values in the tanks ”TA”,
”TB” and ”TC”.

• in the first three instants it is ”0L” instead of ”0”

• while in the fourth instant it is ”LN” instead of ”L”.

This causes the second most probable fault mode to be TB leak and TB
positive bias while the third most probable to be TB positive bias (even
though the trace was created originally from the nominal trace, in its value
for ”TB” it is closer to these faults).
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sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0L 0
2 1 0 0 0 0 L 0L 0
3 1 1 1 0 0 LN 0L 0
4 1 1 1 0 0 LN LN L
5 1 1 1 1 1 LN N LN

Table 4.2: Measured trace with many measurement-related problems (de-
noted by bold).

centroid (scenario) label distance from centroid
NOMINAL 1.4127

TB-LEAK and TB-POS-BIAS 1.7316
TB-POS-BIAS 1.7320
TA-NEG-BIAS 1.9861

TA-NEG-BIAS and TB-POS-BIAS 2.2189
TC-LEAK and TC-POS-BIAS 2.2325

TC-LEAK 2.2358
TC-NEG-BIAS 2.4121

... ...

Table 4.3: The closest centroids for the coordinates of trace in Table 4.2
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4.4.4 Effect of different mapping functions

The case study was executed multiple times to survey the effects of different
mapping functions.

Coarse linear mapping

First a very simple linear mapping function (see Eq. (4.1) ) was used, and
the FDR values for every scenario were calculated. The ordered FDR values
for this case can be seen in Fig. 4.2.
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Figure 4.2: FDR values in increasing order for the coarse linear mapping
function. Values for TA leak, TA and TB leak and TA and TC leak are
smaller than 0.9 hence not shown.

Coarse nonlinear mapping

In the second case a nonlinear mapping function (see Eq. (4.2) ) was used
instead of the linear one. The expectation in this case was to have increased
diagnostic accuracy because the function would place obviously erroneous
outputs (unmeasurably low ”e−” or the dangerously high ”H”) farther away
from each other in the coordinate space. However, due to the presence of
the measurement error, these erroneous values were used instead of otherwise
nominal outputs. Because of this, the centroids became less accurate than
even in the coarse linear case. This effect can be seen in Fig. 4.3 via the
ordered FDR values of the model.
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Figure 4.3: FDR values in increasing order for the coarse nonlinear mapping
function. Values for TA leak, TA and TB leak and TA and TC leak are
smaller than 0.9 hence not shown.

Refined linear mapping

In the third case, using a linear mapping function with higher accuracy (see
Section 4.3) was used. This function, despite the presence of simulated mea-
surement errors, could improve the overall accuracy of the diagnostics op-
eration. The ordered FDR values can be seen in Fig. 4.4 for this mapping
function.
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Figure 4.4: FDR values in increasing order for the refined linear mapping
function. Values for TA leak, TA and TB leak and TA and TC leak are
smaller than 0.9 hence not shown.
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4.4.5 Observations

The following observations can be made on the diagnostic algorithm:

Significance of the mapping function and distance metric. Diag-
nostic accuracy highly depends on the correct trace mapping function and
distance metric. The case studies shown significant differences in the result
of diagnostics on practically the same data set using just different mapping
functions (even though in this case the same distance metric is applied):

• The diagnostic accuracy improved when a linear mapping function with
refined qualitative set was used (see the FDR distribution on Fig. 4.4).

• The diagnostic accuracy worsened when a non-linear mapping function
was used (see the FDR distribution on Fig. 4.3). In this case the
combination of the simulated measurement error and the non-linear
mapping had been responsible for the loose position of the centroids
and the slightly less accurate diagnostics.

A proper combination of a mapping function and distance metric places
traces belonging to different scenarios in a greater distance from each other,
in that way cluster centers can be formed more appropriately and diagnostic
accuracy can be improved.

Overlapping cluster centers. If, due to the mapping or the nature of the
input data, traces map very closely to each other then their centroids will be
also very close in the coordinate space, which makes them indistinguishable
from each other. This phenomenon can be observed in Fig. 4.1 for faults TA
leak, TA leak and TB leak and TA leak and TC leak. In this case, due to the
leak of ”TA” no fluid can get into the system, so ”TB” and ”TC” will be
empty as well (the leak on these tanks cannot be separately detected). This
causes the mappings for the three traces on top of each other. This can be
seen on the FDR distribution graphs in Fig. 4.2, 4.3 and 4.4 where all the
FDR values for these scenarios were far below than 0.9 (90%), at around 0.3
(30%). The relevant centroids can be seen in Fig. 4.1 in the bottom row.

Simulated measurement errors. If simulated measurement errors are
eliminated, then - expect for the case when cluster centers are overlapping -
the diagnostics has 100% accuracy in every scenario.
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Faults affecting different outputs. If the faulty scenarios affect different
output variable(s) on the process system, and their effects are independent
of each other, they can be distinguished even though they appear simultane-
ously like in the case of the P-HAZID diagnoser. Taking a simple example
a bias failure in ”TA” and a leak on ”TC” at the same time affect different
outputs (level sensor of ”TA” and ”TC”), they are not related to each other,
hence they can be detected and distinguished from the rest of the faults. See
the scenario TA positive bias and TC leak in Fig. 4.1.

Faults affecting the same outputs. If the faulty scenarios affect the
same output variable on the process system, but their effect is independent
of each other, they can still be distinguished. For example, a tank leak causes
the level to be constant ”0” in the tank, but a positive bias failure changes
the sensor value to constant ”L” level. See the centroids from faults TC leak
and TC leak and TC positive bias in Fig. 4.1.

Similarity to the K-NN classifier. The diagnostic method in its cur-
rent form is analogous to the K-nearest-neighbor classifier (K-NN classifier)
described in [3], which is a supervised classification method. This is due to
that the most probable fault is determined by calculating the closest centroid
to the coordinate form of the diagnosable trace (which can be considered as
a border case of the K-NN classification problem with K=1).

Application specific distance metric. The distance function is indepen-
dent of the method and need to be chosen appropriately based on the process
system. In many cases a simple Eucledian distance might work, however as
described in Section 4.3.4 and 4.3.5, it has several issues that need to be
addressed (such as how to detect unknown faults, and what to do when co-
ordinates have different measurement units) that can be solved by choosing
an appropriate distance function, which suits the application more.

4.5 Summary

In this chapter the Clustering diagnoser was described which can suggest fault
mode(s) for operational procedures in process systems like the previously
described P-HAZID diagnoser. It uses a transformed representation of traces
to a coordinate space to perform diagnostics. Distance of the representation
from known nominal and faulty trace representations are calculated, the label
of the closest representation is given as the result of the diagnostics as the
most probable fault mode (or the nominal behavior).
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This method can deal with occurrences of single and dual faults, even
when the faults has an effect on the same output variable (this is a signif-
icant difference compared to the P-HAZID diagnostic approach). As the
case study in this chapter had shown it, the diagnostic algorithm could deal
with measurement errors - which might be inevitable when a large number
of traces are collected from process systems for training purposes.

On the other hand, an application-specific mapping function and distance
metric need to be defined which can place different faults far away from each
other in the coordinate space where clustering occurs so that the diagnostics
operation has acceptable accuracy. However, apart from definition of this
transformation the diagnostic process can be fully automated.

In Chapter 7, the operation of the Clustering diagnoser is also demon-
strated on a commonly known control and benchmark process system, the
Tennessee-Eastman Challenge problem.
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Chapter 5

Decomposition in event-based
diagnostics

In this chapter a diagnostic decomposition method is presented, which is
based on a component model of a process system and can be applied with the
already discussed P-HAZID (Chapter 3) and Clustering (Chapter 4) event-
based diagnostic approaches in order to decrease their complexity and to
share common parts of the fault model needed by these methods during
diagnosis. Using this higher-level approach, traces can be distributed among
separate components of the system and fault diagnostics can be performed
on a component-local level.

This method itself is independent from the specifics of the underlying
diagnostic algorithms, while at the same time it can be used to decrease
the overall complexity of the methods. This is achieved by bringing the
diagnostics down to a more localized level, closer to the actual components
of the process system.

This chapter is organized into three main parts. First, the notions specific
to decomposition (component based system model, component graphs, trace
fragments and how they are distributed between separate components) are
discussed. In the second part the decomposition algorithm is presented.
Finally, as a case study, a decomposed P-HAZID and Clustering diagnoser is
demonstrated on the process system described in Section 2.7, and the main
properties of this new approach are surveyed. The decomposition approach
is compared with the standalone diagnostic approaches (the same case study
is used in all three chapters), and its main advantages over them are collected
at the end of the chapter.
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5.1 Introduction

Using the previously discussed P-HAZID and Clustering diagnostic methods
(in Chapter 3 and in Chapter 4) for fault diagnostics, root causes in faulty
process systems can be found in principle, but in the case of more complex
systems creating the fault model and performing the diagnostics might be a
very complex task. This due to the fact that the fault diagnostics problem
they attempt to solve is an NP-hard problem. This practically means that
in the worst case the complexity grows with the number of components in an
exponential fashion, which might cause a very large number of rows in the
P-HAZID table (making it very difficult to create and maintain), or a very
large number of dimensions in the case of the Clustering diagnoser (which
can seriously limit the performance of the clustering operation).

The structural decomposition method in this chapter tries to address this
problem, by decomposing the diagnostic task to smaller sub-tasks with lower
complexity, better runtime and a reduced fault model. This higher-level
method will be demonstrated on the already described P-HAZID and Clus-
tering fault diagnostic methods from Chapter 3 and Chapter 4. In [45] the
idea of structural decomposition had been applied for the P-HAZID diag-
noser, and demonstrated on a case study briefly.

As a main foundation of the P-HAZID approach, the BL-HAZID metholodol-
ogy (see Section 1.2.1 as well as [42]) also uses the idea of structural decom-
position. For instance, during the BL-HAZID analysis this helps the analysis
team focusing on a single subsystem at one time, making their task signifi-
cantly less complex.

Refer to the literature review in Section 1.2.3 for further applications of
the idea of decomposition on the field of process system diagnostics.

5.2 Components, component structure and

trace decomposition

Prior to going into details of the method, the notions specific for the de-
composition approach are discussed, such as components, component graphs
and how traces are distributed among separate components during diagnos-
ing the system using trace fragments. These notions depend on the common
definitions of event and trace already discussed in Section 2.4 and Section
2.5.

Using the physical characteristic of the system and the system-level nomi-
nal operational procedure (trace), components can be identified in the system
and the connection between them can be modeled by a directed graph, called
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a component graph. Using this component graph and a defined starting com-
ponent (this denotes the component where the operational procedure starts
at) all possible component paths (different execution paths in the compo-
nent graph) of the system can be determined. Diagnosis progresses until the
last component in every component path is reached which has a true start-
ing condition (denoting whether a component can be reasonably diagnosed).
Component paths can be diagnosed in parallel, independently of each other.
Further in this section, these notions are demonstrated and discussed.

5.2.1 Component

A component is a part of the process system which can have faults on its
own, and it is elementary, i.e. it contains no other components. It has re-
lated inputs and outputs in the global trace, based on these, its fault can
be diagnosed by a diagnostic algorithm. Process systems are made of inde-
pendent components, for example, a tank or a pipe in a process system can
be considered as a component. In order to diagnose it, the component has
diagnoser-specific fault model assigned, such as a P-HAZID table or a list of
nominal and faulty cluster centers. This model is local to the component,
and depends on its type. Therefore, it can be shared among components
which belong to the same type during diagnostics.

5.2.2 Component graph and component path

Based on a given trace, a process system can be considered as a set of con-
nected components where the connections depend on the order the trace ac-
tuates components in the system. A component graph of a process system is
a directed graph of components and their connections with each other. The
nodes in this graph are the components of the process system, while the edges
describe the order these components are used in the trace. For instance, if A
and B are nodes in the component graph, then an edge exists between A and
B if the operational procedure actuates component B after component A in
the trace. Therefore, the nodes in a component graph are structure specific,
while the edges are operation (trace) specific. For instance, for a different
trace (operating on the same process system) a graph with different edges
and the same set of nodes can be created.

A component with no incoming edges is called a starting component in
the component graph, while a component with no outgoing edges is called
a final component. From the nominal trace the starting component and the
possible final component(s) can always be determined - the starting com-
ponent is always the first, while the final component(s) are always the last
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component(s) which are actuated in the trace.
A component path is a path in the component graph from a starting com-

ponent to a final component. Component paths can be diagnosed separately
in parallel with each other.

A very simple example component graph along with the corresponding
process system can be seen in Fig. 5.2 for the trace in Table 5.1 (this is in fact
the common process system and trace described in Section 2.7). This process
system has three tank components which can be diagnosed separately. The
nominal trace for the graph fills up all three tanks with fluid. Tank ”TA” is a
bigger tank with one input (”VA”) and two output pipes (”VB” and ”VC”),
while tanks ”TB” and ”TC” are smaller tanks with a single input (”VC” and
”VB”) and output pipes (”VD” and ”VE”). ”TB” and ”TC” belong to the
same component type, so the same fault model can be used to diagnose them.
The nominal trace is the same which had been already described in Section
2.7.1. In this example component graph, based on the nominal operational
procedure in Table 5.1, two component paths can be defined (both of them
are two element long): (”TA”,”TB”) and (”TA”,”TC”).

TA

TBTC

start condition: TA=N

VA

VBVC

VDTC TB

TA

TA

LEVEL

TB

LEVELTC 

LEVEL VE

start condition: TA=N

Figure 5.1: Example component graph for a simple serial system.
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sequence system inputs system outputs
number VA VB VC VD VE TA TB TC

1 1 0 0 0 0 0 0 0
2 1 0 0 0 0 L 0 0
3 1 1 1 0 0 N 0 0
4 1 1 1 0 0 N L L
5 1 1 1 1 1 N N N

Table 5.1: Complete nominal trace for the process system in Fig. 5.2 with
all components.

5.2.3 Start condition

Optionally, a component can have a start condition which describes a global
system-level condition on input and output value(s) of the diagnosable system
under which the particular component can be reasonably diagnosed. This
condition usually used to skip further diagnostics on the component path if
a severe fault is present at a component in it.

Using a start conditions for a components during diagnostics in simple
cases can make the result cleaner and easier to interpret. Note that this is
only possible when a simple expression over the input and output values of
the component can be defined to determine if it is functioning properly or
not.

For instance, in the case of the component graph in Fig. 5.2, for com-
ponents ”TB” and ”TC” such conditions can be that the fluid has reached
nominal level (”N”) in the preceding component ”TA”. If ”TA” is already
having a severe fault, there is no point in trying to diagnose the following
components in the component graph. For instance, this severe fault can be
a leakage which prevents ”TA” from keeping any fluid inside.

5.2.4 Component mapping function

In a trace the inputs and outputs for different components have different
identifiers, even though the components belong to the same type (and exactly
the same fault model, such as their P-HAZID table could be used to diagnose
them). This mapping is specific to the system and unique to every component
(it is not the same between even components belonging to the same type). In
this case a component mapping function can be used to transform the global
input and output identifiers to have a common component-local identifier.
These common component-local identifiers can be referred from the fault
model for the component (such as the P-HAZID table or centroids for the
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Clustering diagnoser) in order to make it shareable for different components
of the same type.

For example, taking the trace in Table 5.1 into account, where ”TB” and
”TC” are components of the same type:

• If ”TB” need to be diagnosed as a component, two input valve states
(”VB” and ”VE”) and a single tank level (”TB”) need to be considered.

• If ”TC” need to be diagnosed as a component, two input value states
(”VC” and ”VD”) and a single tank level (”TC”) need to be considered.

In order to make the fault model shareable, two different component map-
ping functions can be used for the tanks. For ”TB” the function can be seen
in Eq. (5.1), while for ”TC” it can be seen in Eq. (5.2). After the mapping is
complete the inputs ”IN”,”OUT” and the output ”LEVEL” can be referred
from the P-HAZID table (provided we are using a P-HAZID diagnoser) in-
stead of ”VB”,”VE”,”TB” in case of ”TB” and ”VC”,”VD”,”TC” in case of
”TC”. For example, in the case of the a P-HAZID diagnoser, without the
mapping the diagnostics would require two different P-HAZID tables, with
exactly the same content but different identifiers.

MTB(id) =


”IN” id = ”V B”

”OUT” id = ”V E”

”LEV EL” id = ”TB”

(5.1)

MTC(id) =


”IN” id = ”V C”

”OUT” id = ”V D”

”LEV EL” id = ”TC”

(5.2)

5.2.5 Trace fragments

Based on the decomposition idea, every trace that operates on the whole pro-
cess system can be split into smaller trace fragments (sub-traces) referring
to different components of the process system. A trace fragment for a com-
ponent is the part of the overall trace which refers to that single component
only. It has different component-local inputs and outputs compared to the
overall trace (other component inputs and outputs are not considered and
identifiers are mapped according to Section 5.2.4) and limited length (other
parts of the trace are not taken into account) compared to the original trace.
A component-related trace fragment is sufficient for diagnosing the compo-
nent (along with the diagnoser specific fault model, such as the P-HAZID
table of the component).
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If there are multiple components in the system, then there are inputs
which directly relate to neighboring components (like a valve on a pipe which
is between two tanks, feeding one from the fluid coming from the other
belongs to both tanks). These inputs are included in the trace fragments
of both components. Moreover, there should be a specific time instant in the
trace in which this boundary input is manipulated (for instance, in case of
the valve switched to open from closed) then this time instant need to be
present in both trace fragments for the neighboring components (at the end
of the preceding, and at the beginning of the next one). These events are
not the same (due to the different component-level input/output mapping)
but they are created from the same global event in which the process system
input was actuated. Such events which relate to neighboring components
are called boundary events and inputs manipulated in them (like the valve
in the previous example) are the boundary inputs. This effect causes trace
fragments to overlap each other in the set of inputs and in time as well.

Using the component graph in Fig. 5.2 the trace in Table 5.1 can be split
up to the three trace fragments in Table 5.2. In this case the boundary inputs
are ”VB” and ”VC” (valves between ”TA”;”TB” and ”TA”;”TC”) and the
boundary event is the event at time instant 3 (when boundary inputs ”VB”
and ”VC” are opened).

5.3 Component based diagnostics

Given a system-level trace and a system broken up into separate components,
the component-level diagnostics can utilize the original single component
diagnostic idea to search for potential failures or root causes on a single
component. This is the basis of the general decomposition method. It takes
a component path of the system, localized diagnosers for every component
and a observed trace as an input and provides the list of root causes per
component as an output.

5.3.1 Additional assumptions

The following assumptions are made in addition to the ones listed in Section
2.6 for this diagnostic method:

• It is possible to structurally decompose the process system into sub-
components. If this cannot be done, then the method is working on a
single component only, therefore it has no advantage over applying just
the underlying component-level diagnostics on that component.
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Trace fragment for tank component ”TA”
sequence inputs output
number IN OUT-1 OUT-2 LEVEL

1 1 0 0 0
2 1 0 0 L
3 1 1 1 N

Trace fragment for tank component ”TB”
sequence inputs output
number IN OUT LEVEL

1 1 0 0
2 1 0 L
3 1 1 N

Trace fragment for tank component ”TC”
sequence inputs output
number IN OUT LEVEL

1 1 0 0
2 1 0 L
3 1 1 N

Table 5.2: Trace fragments for the process system in Fig. 5.2.

• The faults happening at the border of two adjacent components in
the component tree are not taken into account (like a fault in a pipe
which connects two tank components). If this poses a problem, then
the structural decomposition can be made finer (in this example case
the pipe need to be a component as well).

5.3.2 General algorithm

As it is discussed previously, the decomposition algorithm can be applied to
multiple lower level diagnostic approaches, such as the P-HAZID diagnoser
(discussed in Chapter 3) and Clustering diagnoser (Chapter 4). The steps of
this algorithm are the following:

1. From the component graph, all possible component paths (paths from
a starting component to a final component) are formed.

2. Trace fragments (as described in Section 5.2.5) are formed based on dif-
ferent component paths, and distributed among separate components
of the system. In this step, all inputs and outputs in the original trace
are transformed to inputs and outputs local to the component by using
a component mapping function as described in Section 5.2.4.
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3. For all the component paths at the last component where the start
condition is not fulfilled the path is truncated. As described in Section
5.2.3, the rationale behind this is that components will not get diag-
nosed when it does not make sense to diagnose them due to a preceding
and severe fault in an other component.

4. Looping over the truncated component paths a component local diag-
noser is executed for every component. A component local diagnoser
can be any of the following:

P-HAZID local diagnoser. A local P-HAZID diagnoser, which
handles the component as a whole system (as described in Chapter 3).
In this case the diagnoser uses a P-HAZID table relevant for that com-
ponent and trace fragment only, which might be considerably smaller
and easier to set up than a P-HAZID table for the overall system.

Clustering local diagnoser. A local Clustering diagnoser, which,
like in the case of the P-HAZID local diagnoser, handles the component
as a single whole process system and uses the same diagnostic idea
which was already described in Chapter 4. In this case this diagnoser
utilizes a list of centroids which is valid for that type of the component
only. The number of dimensions for the centroids in this case are equal
to the number of output(s) of the component plus the length of the trace
fragment. Like in the case of the P-HAZID, this might be considerably
smaller than taking the outputs of the whole process system and the
length of the whole trace into account. Moreover, if the list of centroids
are distributed among local diagnosers diagnosing components of the
same type, only a single training and validation phase is needed for
them.

Any other event sequence-based algorithm for fault diagnos-
tics. An arbitrary event-based diagnostics algorithm can be used as
a component-local diagnoser. Like the other two approaches, this di-
agnoser can share the same component-local fault model between same
component type(s). We are not dealing with this case in this work.

5. After the diagnosers are finished with the diagnostics, root causes are
collected and returned.

Note that this diagnostic algorithm does not have a separate method-
specific fault model (as described in Section 2.6). The main advantage of the
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method is the ability to decompose the fault model, therefore the union of the
component fault models for the underlying methods (such as the P-HAZID
table or the list of centroids) can be thought as an overall fault model for the
algorithm. If there are multiple components of the same type then this union
of local fault models might contain less redundancy than the fault model for
the overall system.

This concludes the description of the higher-level decomposition pro-
cedure. In the next section the decomposition and the diagnostics based
thereon is demonstrated on a common case study focusing on the differences
between component-local and standalone versions of the P-HAZID and Clus-
tering diagnoser.

5.4 A diagnostics case study

In the last section of the chapter the general decomposition algorithm is ap-
plied to the common case study described in Section 2.7. At first, the compo-
nent graph for the case study is discussed, then the two different component
local diagnosers (a P-HAZID and a Clustering diagnoser) are described in
detail. The differences between the standalone and decomposed diagnosers
are listed (the case study is the same as in Chapters 3 and 4). Finally in
the section, general observations regarding the decomposition approach are
collected.

5.4.1 Determining the component graph

The component graph for the case study can be seen in Fig. 5.2. There are
three components in the graph, namely the main tank ”TA”, and the two
auxiliary tanks ”TB” and ”TC”. Based on the nominal trace a local diag-
noser with exactly the same fault model can be used for ”TB” and ”TC”.
Theoretically, because it has multiple output valves, a slightly different ver-
sion should be used for ”TA”, but in this special case - due to reasons listed
later at the component-level diagnosers - the same fault model which is in
use for ”TB” and ”TC” can be used for ”TA” as well.

A starting condition is used for tanks ”TB” and ”TC” that is based on
the fluid level in ”TA”. If the fluid level in ”TA” does not reach nominal
level, ”TB” and ”TC” will not be diagnosed.
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5.4.2 Nominal and faulty traces for components

The nominal trace, which fills up the system with fluid can be seen in Table
5.1. During the identification of the faulty traces the single and dual faults
described in Section 2.7.2 were considered. For these faults, the correspond-
ing faulty trace fragments are shown in Table 5.3 along with the nominal
trace (referring to a single component only). The local diagnostic algorithms
for the auxiliary tanks (”TB” and ”TC”) are based on these traces, while the
diagnoser for the main tank (”TA”) has an additional second output valve
which behaves exactly the same as the first output (according to the nominal
trace both output valves are opened at the same time).

5.4.3 Component based P-HAZID diagnoser

As a local diagnoser, a P-HAZID diagnoser (see Chapter 3) can be used
for diagnostics. For a single component, the P-HAZID diagnostic graph in
Fig. 5.2 is utilized for performing the diagnostics. This graph is created
from the deviations generated using the traces in Table 5.3 using the general
method for P-HAZID table construction in Section 3.2.3. The reasoning
paths on the graph are simpler than the reasoning paths in Figures 3.2, 3.3
and 3.4 (created for the original overall P-HAZID case). Moreover, there is
no need to use three different diagnostic graphs for the three tanks anymore,
this simplified one is sufficient for performing the diagnostics. Therefore the
component-local P-HAZID table is significantly smaller than Table 5.4. It
has only 10 rows compared to the 52 row table in Table 3.4.

Otherwise, the P-HAZID based diagnostics is identical the one described
in Chapter 3, despite the fact that it handles all three components as three
isolated systems, and the results from this local diagnostics is collected by
the decomposition algorithm.

Note that even though the trace fragments are not exactly the same
for all the tanks (”TA” has an additional input compared to the other two
tanks), the same P-HAZID table can be used for all the tanks. This is
because the nominal trace fragments are of equal length and describe the
same phenomenon (which fills up the tank).

5.4.4 Component based Clustering diagnoser

Besides the P-HAZID, a Clustering diagnoser is feasible as a local diagnoser.
After training from the trace fragments, the centroids in Fig. 5.3 can used
in a local diagnoser (based on the training data their position might slightly
differ). In contrast with the non-decomposed clustering case study described
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Nominal trace
sequence inputs output
number IN OUT LEVEL

1 1 0 0
2 1 0 L
3 1 1 N

Tank Leak trace
sequence inputs output
number IN OUT LEVEL

1 1 0 0
2 1 0 0
3 1 1 0

Positive Bias trace
sequence inputs output
number IN OUT LEVEL

1 1 0 L
2 1 0 N
3 1 1 H

Negative Bias trace
sequence inputs output
number IN OUT LEVEL

1 1 0 e-
2 1 0 0
3 1 1 L

Positive Bias with Tank Leak trace
sequence inputs output
number IN OUT LEVEL

1 1 0 L
2 1 0 L
3 1 1 L

Negative Bias with Tank Leak trace
sequence inputs output
number IN OUT LEVEL

1 1 0 e-
2 1 0 e-
3 1 1 e-

Table 5.3: Nominal and faulty traces (with single and dual faults) used in
the case study.
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never-happened(3,LEVEL)

never-happened(2,LEVEL) earlier(2,LEVEL)

TANK-LEAK later(1,LEVEL)

NEG-BIAS

never-happened(1,LEVEL)

POS-BIAS

slightly-greater(3,LEVEL)

slightly-greater(2,LEVEL)

slightly-greater(1,LEVEL)

slightly-smaller(3,LEVEL)

slightly-smaller(2,LEVEL)

slightly-smaller(1,LEVEL)

significantly-smaller(3,LEVEL)

Figure 5.2: Diagnostic graph for the component specific P-HAZID table in
Table 5.4.

Cause Deviation Implication
slightly-greater(1) slightly-greater (2) slightly-greater(3)
POS-BIAS slightly-greater(1) slightly-greater (2)
never-happened(1) earlier(2) never-happened(3)
POS-BIAS never-happened(1) earlier(2)
slightly-smaller(1) slightly-smaller(2) slightly-smaller(3)
NEG-BIAS slightly-smaller(1) slightly-smaller(2)
never-happened(1) never-happened(2) never-happened(3)
NEG-BIAS never-happened(1) never-happened(2)
TANK-LEAK slightly-smaller(2) significantly-smaller(3)
TANK-LEAK never-happened(2) never-happened(3)

Table 5.4: Component specific P-HAZID table. Relevant for a single tank
(and trace fragment) only.

in Section 4.4.2, there are only 6 centroids in this case (covering the nominal,
single and dual fault modes of a single component) instead of the 42 centroids
in the non-decomposed case (covering nominal and faulty modes for all three
tanks at the same time). The centroids in this component-level case have 3
dimensions only (because only one tank is considered, and the nominal trace
length is three), in contrast with the 9 dimensions in the non-decomposed
case (because all tank levels are considered there with the trace length of
three).

Apart from this, as in the case of the decomposed P-HAZID diagnoser,
the Clustering diagnostic algorithm operates in an identical manner like the
one described in Chapter 4, the component is diagnosed independently of the
other components.

In this case, inputs are not used, so the same centroids can be used for
all three tanks (all of them has a single output).
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Figure 5.3: Example centroids for the decomposed Clustering diagnoser. The
three axes represent the three time instants (1,2,3) in the nominal and faulty
component traces from Table 5.3.

5.4.5 Observations

Based on the case study the diagnosers using the decomposition algorithm
have the following characteristics:

Decreased complexity. If a process system with many components (there-
fore with many inputs and outputs) need to be diagnosed, and decomposition
is not applied, the complexity of the diagnostics will be higher compared to
the case when decomposition is applied. For example, as it had been shown
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in this case study, the size of the P-HAZID table in case of the P-HAZID
diagnoser and the number of dimensions of the centroids in the case of the
Clustering diagnoser were smaller. Using this decomposition strategy, the
complexity of a diagnostic solution can be decreased, provided that isolated
components can be identified in the process system.

Sharing the fault model. If there are components in the process system,
a localized fault model can be created for each component, and then this can
be shared among the component-local diagnosers for the similar components.
This makes the model smaller, easier to create and more efficient to use. For
example, in the case study described in Section 2.7, the fault model about
the tanks can be shared, the same P-HAZID table or set of centroids can be
used during diagnostics.

Dealing with propagating faults. A properly created component graph
and start conditions for the components can ensure that the root cause for a
propagating failure (such as a TA leak fault for the process system described
in Fig. 5.2, which leads to no fluid present in TB and TC) can be found.
On the other hand, this causes that some types of multiple faults (such as
TA leak and TB positive bias, see Fig. 4.1) in the case of the Clustering
diagnoser cannot be diagnosed. This side-effect can be considered as a trade-
off for the reduced fault model required for performing the diagnosis.

Mixing of different diagnostic approaches. The decomposed diagnos-
tics approach described in this chapter can be considered as a higher-level
diagnostic extension of the already described P-HAZID and Clustering al-
gorithms. The two methods can be even mixed, in that way always an
appropriate lower-level diagnostic method can be used (for example, if a P-
HAZID table cannot be easily constructed, then it can be substituted with
a Clustering diagnoser). The decomposition approach is independent of the
lower-level algorithms used, so theoretically it is possible to use a third di-
agnoser algorithm for the components.

Lack of central coordination. Central coordination is only needed to
decide which diagnosers shall be started (this depends on the start condition
of the individual components), and to collect the results form the different
diagnosers. Otherwise the diagnosers do not depend on and communicate
with each other.

89



Limits of applicability. If the process system cannot be split up into
separate components (because it contains only one component or the rela-
tions between its components prevent isolated diagnostics on them), then a
standalone approach shall be used instead.

5.5 Summary

In this chapter a higher-level decomposition approach for process system fault
diagnostics was described. Using this method, the diagnosable process sys-
tem can be decomposed into separate components and these components can
be diagnosed in isolation using suitable event-based diagnostic approaches,
such as the P-HAZID approach described in Chapter 3 or the Clustering
approach described in Chapter 4.

Using a simple component graph model behind the process system and
the diagnosable trace, this method can deal with finding the root cause of
propagating failures between separate components, and perform a more effi-
cient diagnostics by not diagnosing components which cannot be reasonably
diagnosed (due to severe faults in other components). However this requires
that this severe condition can be described using a simple condition over the
observable output(s) of the component(s).

The approach described in this chapter can be considered as an exten-
sion for other diagnostic approaches, it allows these lower-level diagnostic
methods to scale better for more complex process systems. Applying the
decomposition idea to larger process systems it can make them diagnosable
with reduced fault model (such as smaller P-HAZID tables in case of the P-
HAZID diagnoser or clusters in fewer dimensions in the case of the Clustering
diagnoser). The method itself is independent of the underlying component-
level diagnostic approach, in theory other event-based local diagnosers can
be used or they can be of mixed types.
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Chapter 6

Conclusion

In this work a few novel ways for performing process system diagnostics were
proposed. These approaches act as valid options for fault diagnostics besides
the many already available approaches in the field, by attempting to perform
discrete time-dependent heuristics during operation. This had not yet been
widely investigated in the relevant literature.

In this final chapter the novel scientific results of the work are summarized
as theses, and the relevant scientific publications are collected. Finally, some
possible further research directions are identified, which might serve as a
guideline for continuing research in this direction.

6.1 Theses

During the presentation of the diagnostic approaches in this work, the Multiple-
Input Multiple-Output (MIMO) model for process systems were used, where
a process system processes (inputs) and produces (outputs) vector-valued
signals (see [27] for further details). A single externally observable state,
which is a sequence of observable input (processed) and output (produced)
values of the system was described by an event. The dynamism of a system
was captured in the form of traces, which describe a sequence of these events
of the system during the execution of an operational procedure.

6.1.1 Thesis 1 - the P-HAZID diagnoser (Chapter 3)

Relevant publications: [THWS12],[THWS13a],[TWSH14]

I have developed a novel diagnostic reasoning approach which is based on
differences between observed and fault-annotated traces of a complex process
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system.

• A method-specific P-HAZID table as an extension to the BL-HAZID
table in non-transient fault scenarios was defined that is constructed
by the domain experts and serves as the fault model of the method.

• A method was proposed to form reasoning paths leading to specific root
causes of faults in the system. A reasoning graph is built from these
paths in order to perform the diagnostic reasoning.

• The proposed reasoning procedure uses the deviations between the ob-
served and the nominal fault-free traces together with the reasoning
graph during the execution of a trace.

• I have shown that this method can be tracked back to reasoning with
if-then rules.

6.1.2 Thesis 2 - the Clustering diagnoser (Chapter 4)

Relevant publication: [TH16]

I have defined an observation-based diagnostic approach which can detect
nominal and non-transient faulty states based on externally monitored traces
in a complex process system.

• Historical traces from nominal and faulty scenarios are converted to a
vectorial representation in a multi-dimensional coordinate space.

• The fault model is trained and validated from this representation and
is a list of centroids (cluster centers). Training is done using a machine
learning technique called k-means clustering.

• Fault diagnosis is performed by transforming a measured trace to the
same vectorial representation and determining the nearest centroid us-
ing a properly selected distance function.

• The diagnostic method can tolerate the presence of measurement errors
in the training set.
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6.1.3 Thesis 3 - decomposition method for event-based
diagnostics (Chapter 5)

Relevant publication: [TWSH14]

I have proposed a higher-level diagnostic approach which can decompose
the task of fault diagnostic to possibly overcome the NP-hardness of the
general fault diagnostics problem using a structural decomposition of the
process system.

• I have developed a structural decomposition method, which works
based on the process system and operational procedure.

• The method can connect individually operating lower-level component-
specific diagnosers with each other and utilize their findings to solve
the overall diagnostics task. It is possible to use component diagnosers
of different type for diagnosing separate components.

• In order to reduce its complexity and size the diagnosers can share
common parts of the fault model between each other.

6.2 Own publications supporting the thesis

points

The thesis points were presented in my following relevant publications:

[TH16] A. Tóth and K. M. Hangos. A diagnostic method based on
clustering qualitative event sequences. Computers and Chemical
Engineering. IF=2.581, 95:58–70, 2016.

[THWS12] A. Tóth, K. M. Hangos, and Á. Werner-Stark. Hazid infor-
mation based operational procedure diagnosis method. In 12th
International PhD Workshop on Systems and Control, pages
1–6, Veszprém, Hungary, August 2012.

[THWS13a] A. Tóth, K. M. Hangos, and Á. Werner-Stark. A model based
diagnosis method for discrete dynamic processes using event
sequences. In Factory Automation 2013 Conference, pages 114–
119, Veszprém, Hungary, May 2013.

93



[TWSH14] A. Tóth, Á. Werner-Stark, and K. M. Hangos. A structural
decomposition-based diagnosis method for dynamic process sys-
tems using hazid information. Journal of Loss Prevention in the
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6.3 Further research directions

The diagnostic approaches described in this work can be extended with the
following additional capabilities in the future:

6.3.1 On-line diagnostics

So far in this work every approach was dealing with historical off-line events
and traces for which the execution was already completed. However, it is pos-
sible to extend these methods by performing real-time diagnostics based on
partial information from the measured traces, which are still under execution
on the system.

In the case of the P-HAZID diagnoser. The P-HAZID reasoning al-
gorithm can be extended to work with a limited (already available) set of
deviations and explore all possible root causes based on the P-HAZID table.
This would result on a greater set of root causes, but over time, as new events
(and possibly new deviations) would come in, the result would converge to
the result of the off-line diagnostics. The rate of the convergence depends
on the current faults of the system and the faults defined in the P-HAZID
table.

In the case of the Clustering diagnoser. The Clustering algorithm can
be extended to work with a limited number of event coordinates, and calcu-
late the distance from the centroids based only on these coordinates (trim-
ming the remaining coordinates, which are not yet available in the measured
trace from the centroids). Over time, this approach would converge to the
result of the off-line diagnostics.

Note that the algorithm initially would be less accurate in the on-line
cases compared to the off-line case (due to the lack of data), but the results
(diagnosed faults) would appear much more earlier compared to the off-line
case. During the diagnosis of long operational procedures this approach
would be very useful, because that it can highlight problems even before the
run of the operational procedure on the process system is finished.
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6.3.2 Improving robustness during clustering

Due to the fact that currently it is based on the K-means clustering method,
the Clustering diagnoser might not be robust enough to handle possible out-
lier elements. These elements might come from the properties of the used
mapping or the actual characteristics of the underlying process system.

Therefore the robustness of the Clustering approach can be improved by:

• Change the clustering method to the K-medoid clustering (see [53],
which tolerates outlier elements in a better fashion. In this case the
centroid (the prototype of the cluster) is also a real trace from the train-
ing set, which can be useful for manual interpretation of the centroids.

• Instead of performing K-means clustering with K = 1 to determine
the centroids and a distance calculation, the K-nearest-neighbors (K-
NN ) classification technique can be used with an appropriately selected
K ∈ Z for diagnosing the trace. Note that due to the size of the data
diagnosis might take longer compared to the original approach (which
performed the clustering on the failures one-by-one and calculating
the distance from a single point). On the other hand, this clustering
approach not only tolerates outlier elements, but can tolerate clusters
with special shapes in a more robust fashion than the approaches listed
before. Based on its faults this might be desired by the concrete appli-
cation.

6.3.3 Validation of P-HAZID tables

A modified version of the P-HAZID algorithm can be used not only for actual
diagnostics, but for the validation of P-HAZID tables during construction
time. The algorithm would not work on real process system data in this
case, but it would explore all possible reasoning paths of the given (possibly
incomplete) P-HAZID table. This would provide valuable information about
the reasoning graphs in the P-HAZID table, and would be helpful in discov-
ering human mistakes during the construction of these tables. This can be
very important during the creation of bigger P-HAZID tables.

6.3.4 Further application in real process systems

There have been already a realistic application described for the Clustering
diagnoser in the Appendix (based on the Tennessee-Eastman problem). More
realistic or real case studies would be needed to discover the real strengths
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and the possible limitations of the approaches described in this work. Tak-
ing these findings into account, the methods can be further improved and
optimized.

6.3.5 Unifying the P-HAZID and the Clustering diag-
noser

Predicate abstraction is a formal logical analysis technique. Originally de-
scribed in [22], this method can partition modes of operation of a system
into abstract states, using the boolean valued predicates describing these
modes as an input. The technique is used widely, eg. in the field of software
verification (see [9]).

In that way this approach has similarities with the P-HAZID diagnoser
(which can be also described as a set of rules containing conditions or predi-
cates as described in Section 3.3.3). On the other hand, it is like the Cluster-
ing diagnoser (which also partitions the nominal and faulty modes of opera-
tion into different centroids or abstract states during training). Therefore it
can be said that this technique can unify the theories behind the two different
diagnosers. This connection can be further investigated in order to establish
a consistent relationship between the two methods.
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Chapter 7

Appendix

7.1 The P-HAZID reasoning method

In this part of the Appendix, a more practical description of the P-HAZID
reasoning described in Chapter 3 is presented. This might help readers who
want to implement the reasoning procedure on their own.

The method attempts to find the root causes, if there are any, based on
the following input:

• P-HAZID table (as a spreadsheet) The table is assumed not to contain
duplicate rows containing the same Cause, Deviation and Implication
triplet.

• Nominal trace (nominalTrace) as a timed event sequence as described
in Section 2.5. It is assumed that the number of events in the nominal
trace is not less than 2.

• Characteristic trace (chrTrace) as a timed event sequence as described
in Section 2.5.

The output is a set of identified root causes (IRC) and identified non-root
causes (INC) for the analysis trace. The procedure attempts to identify the
root causes using a search of Algorithm 1. If such root causes are found, they
are appended to the set of IRC. If the method cannot perform the search
onwards from a specific non-root cause, then this cause is added to the set of
INC. This can happen either because of the P-HAZID table is incomplete
or the cause to continue the search with is not present in the set of deviations.
Both output sets might be empty, when there are no deviations (a nominal
trace is provided as an input to the algorithm).

The notations which are used in the description of the reasoning procedure
are defined as follows:
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Precedence. Let the notation (eventx) ≺ (eventy) mean that eventx pre-
cedes eventy in a trace in time.

All root causes. Let the set RC contain all possible root causes for the
provided P-HAZID table. The root causes can be acquired from the pro-
vided P-HAZID table by collecting all elements from the Cause column
which are not deviations.

Cell reference in the HAZID table. Let the value cause(R), dev(R)
and imp(R) refer to the deviation or root cause of the corresponding column
in the P-HAZID table at row number R.

Deviation containment. Let DEV be a set of (time) × (deviation). In
this sense let the notation cause(R) ∈ DEV mean that cause is an element
of DEV for an arbitrary time.

Accessing events. Let eventSequence(time) refer to the event happened
at time time in eventSequence.

Sequence length. Let length(eventSequence) refer to the number of events
in the sequence.

Projection. If pair = (p, q) is an ordered pair then let proj1(pair) = p
and proj2(pair) = q.

Set containment. If a ∈ SET then the operation SET ← SET
⋃

a has
no effect, every element may present only once in a set.

The method is described in Algorithm 1 in detail. First, the deviations
need to be collected. Then, if the system under diagnosis is a multiple output
system, deviations need to be flattened, ie. from all multiple output devia-
tions single-output deviations need to be generated (where the type of the
deviation is identical, but there is exactly one output present per deviation).
If the system is a single output system, then this step is skipped. After
this step all flattened deviations along with their time instances are collected
and stored in DEV. Devations are formed when an event in the observed
trace is deviating from its nominal correspondent, according to the ordering
relations listed in Section 3.2.2. Sets INC and IRC are given empty initial
values. The set of final deviation pairs (FDP) is also calculated, this set
contains all deviations of chrTrace from nominalTrace at the last and it’s
preceding time instant where deviations are present as ordered pairs. The
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Algorithm 1 Pseudo-code for the P-HAZID reasoning method

1: DEV← {∅}
2: t∗ = length(nominalTrace)
3: for T := 1 to t∗ do
4: for all deviation D of chrTrace from nominalTrace at time T do
5: for all single-output-deviation SOD from flatten((T,D)) do
6: DEV← DEV

⋃
SOD

7: end for
8: end for
9: end for

10: INC← {∅}
11: IRC← {∅}
12: tFDP={∃t,∃d1,∃d2, (t,d1) ∈ DEV, (t− 1,d2) ∈ DEV}
13: FDP ← {(∀d1,∀d2|(tFDP − 1,d1) ∈ DEV, (tFDP,d2) ∈

DEV, (tFDP − 1,d1)× (tFDP,d2)}
14: for all pair ∈ FDP do
15: startDeviation← proj1(pair)
16: startImplication← proj2(pair)
17: step(startDeviation, startImplication)
18: end for
19: procedure step(deviation,implication)
20: if ∃R, deviation = dev(R), implication = imp(R) then
21: for all {R, dev(R) = deviation and imp(R) = implication} do
22: if cause(R) ∈ RC then
23: IRC← IRC

⋃
cause(R)

24: return
25: else
26: if cause(R) ∈ DEV and cause(R) ≺ dev(R) in DEV

then
27: step(cause(R), dev(R))
28: else
29: INC← INC

⋃
cause(R)

30: return
31: end if
32: end if
33: end for
34: else
35: INC← INC

⋃
cause(R)

36: return
37: end if
38: end procedure
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end of the characteristic trace is not necessarily deviating from the nominal
trace, therefore the deviation pair from which the reasoning can be initiated
might not be situated at the final and preceding time instant of the trace.
After the initialization, a recursive reasoning procedure is initiated on the
P-HAZID table using the FDP set as a starting point.

The core of the recursion checks the deviation and implication rows in
the P-HAZID table and according to the corresponding cause value it

1. either, if cause is a root cause then adds it to the list of root causes
IRC and returns

2. or, if cause is a non-root cause but it cannot continue the search it adds
cause to the list of non-root causes INC and returns

3. or, if cause is a non-root cause and it can continue the search then it
moves to a corresponding next row in the P-HAZID table by calling
itself recursively.

The reasoning stops with the reasoning because of either the correspond-
ing cause (with which the search need to be continued):

1. is not present in the set of deviations prior to the actual deviation,

2. or, with its corresponding implication does not exist in the P-HAZID
table for any row as implication and deviation. It is possible that the
P-HAZID table is not complete in this case.

In either cases the algorithm adds the cause to the set of INC and moves
on with the next possible final deviation pair, if available.

After the recursion finished, set IRC contains the set of identified root
causes, while the set INC contain the set of deviations which might lead to
a failure but either do not occur in the list of deviations in advance of the
actual deviation or the search could not find any row in the P-HAZID table
with which it could move forward.

7.2 Realistic use-case for the Clustering di-

agnoser

In this part of the Appendix, a more realistic process system example, the
Tennessee-Eastman Problem is used to demonstrate the diagnostic capabil-
ities of the Clustering diagnoser presented in Chapter 4. Like in the case of
the previous three-tank case study, for the various disturbances (faults) of
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the problem the fault detection ratio (FDR) is calculated (as described in
Section 4.3.2). A similar survey for many different statistical methods had
been performed in [54] on the same process system and disturbances for other
statistical diagnostic methods (such as PCA or PLS).

7.2.1 Tennessee-Eastman process

The Tennessee Eastman process (later mentioned as TEP) is widely used
and accepted for developing, studying and comparing process control and
diagnostics algorithms. It consists of a reactor/separator/recycle arrange-
ment involving two simultaneous gas-liquid exothermic reactions and two
additional byproduct reactions. The process has 12 available valves for ma-
nipulation and 41 available output measurements for monitoring or control.
In the case study the first 15 of the original 20 simulated disturbances are
considered (see Table 7.1 for details), due to the fact that the last 5 distur-
bances are of type ”Unknown”, and we wanted to emphasize diagnosing the
known faults in the case study. Note that these ”not known” disturbances
were part of the actual diagnosis for the rest of the disturbances, but their
FDR values have not been calculated, and observations have not been made
for them.

The TEP produces two products, an inert and a byproduct from four
reactants (there are eight components altogether, A, B, C, D, E, F, G and H).
The following reactions take place based on the components in this example
process system (based on [18]):

A(g) + C(g) +D(g)→ G(liq) (Product 1)

A(g) + C(g) + E(g)→ H(liq) (Product 2)

A(g) + E(g)→ F (liq) (Byproduct)

3D(g)→ 2F (liq) (Byproduct)

These components are also shown on the flow-sheet of the process system in
Fig. 7.1.

For more details, refer to [18]. In order to be more consistent with the
original article, the term disturbance will be used for faults in the description
of this case study.

The original model was written in FORTRAN, but in this case study
the revised MATLAB version of the TEP (described in [11]) was used for
generating the training traces for the algorithm.

The MATLAB model has already contained simulated measurement er-
rors, so the measurement error generation approach described in Section 4.4.1

101



Figure 7.1: Tennessee Eastman Challenge Problem from [18].

was not used in this case, the raw values were just taken from the simulated
model without change. Due to the available functionality of the model, only
single disturbances were considered in this case.

7.2.2 Preparation of the data

In this case study the diagnostic algorithm’s ability to identify the various
disturbances (considered as fault modes from the algorithm’s perspective) are
surveyed for the TEP. Two operational modes, an ”open-loop” mode and a
controlled steady-state mode (refer to ”Mode 1” in [18]) were considered.
Inputs were modified by the simulated controller in steady state mode but
were not taken into account. Also, only a subset of the original 41 outputs
(22 ”Continuous process measurements”, see Table 4 in [18]) were taken into
account in the case study.

The reason for this is that we wanted to focus on the continuous mea-
surements only during diagnosis (the rest of the outputs were relatively in-
frequently sampled process measurements measuring concentrations in the
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Identifier Disturbance Type

IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B composition. A/C ratio constant (stream 4) Step
IDV(3) D feed temperature (stream i) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (stream I) Step
IDV(7) C header pressure loss - reduced availability (stream 4) Step
IDV(8) A, B, C feed composition (stream 4) Random variation
IDV(9) D feed temperature (stream 2) Random variation
IDV(10) C feed temperature (stream 4) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking

Table 7.1: A subset of the disturbances, along with their types of the Ten-
nessee Eastman Challenge problem, as described in the original article [18].

output of the process system, which would not change the findings of the
case study). Therefore the output of the simulation was a set of events (each
containing 22 output values) ordered by time. A single event was describing
a state of the system at a different sequence number for a single execution.
This is converted to the trace format required by the algorithm where inputs
were not considered (there was no input changes during the execution of
traces), while the list of outputs contained every output from the simulation.

After the results had been collected from the MATLAB simulator, the
traces were trimmed to equal length (this was one of the assumptions from
Section 4.3.1). Moreover, the raw data was sampled at different intervals
to determine the effect of sampling on the diagnostic accuracy. The reactor
in the ”open loop” case always shut down after approximately 1 hour of
operation (due to the high pressure threshold built into the MATLAB model),
while in the steady-state case (”Mode 1”) always a 5-hour model MATLAB
simulation was performed (the model could have been executed longer in this
case).

7.2.3 Results

The corresponding output values were normalized and converted to trace
coordinate form using a qualitative mapping function.

103



Normalization was performed so that the same qualitative function could
be used for all outputs, this made the execution of the diagnosis simpler. In
both cases the complete traces were kept and compared with each other.

Finally, the diagnostic algorithm was executed for the traces, centroids
were formed from the training traces and the fault (disturbance) detection
rates (FDRs) were calculated from the validation set for every disturbance
case.

Table 7.2 shows a summary about the most important properties of the
executed cases. These are the following:

1. Number of training and validation traces. The number of times
the simulation was executed for every disturbance scenario described in
Table 7.1 to get the traces required by the algorithm. The first half of
the traces was used for training while the second half is for validation
of the trained centroids During the training phase the centroids were
calculated one by one for each disturbance. On the other hand, during
validation the distance from all the centroids was calculated for each
trace in every validation set. Based on this the formula for the FDR
value for disturbance scenario d can be seen on Eq. 7.1. For more
information, refer to 4.3.2 for details).

FDRd =
Number of correctly identified traces

Number of all traces
(7.1)

We have experimented with other training/validation ratios, such as
4:1 but we have not seen significant differences in the results of the
case study.

The exact number of training and validation traces (simulator runs)
was chosen in a way that we have enough traces for each disturbance
to compare the diagnostic accuracy between them. A couple of hundred
traces per disturbance proved to be more than enough for this purpose.

2. Trace trim. Traces are trimmed at this length after conversion. Trim-
ming is needed so that every trace participating in the diagnosis will
have the same length (to comply to the assumptions in Section 4.3.1).

This was required because for some of the disturbances the MATLAB
simulation (see [11]) produced fewer number of events due to the fact
that internal error thresholds (eg. ”Low stripper liquid level” in the
case of IDV(6) in Mode 1) were met, which correctly caused the sim-
ulation to halt immediately. This resulted in shorter traces for these
disturbances. In order to comply with the diagnostic assumptions in
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Section 4.3.1 (all traces shall have the same length), longer traces for
other disturbances were trimmed accordingly, so that every trace would
have the same length.

3. Sampling rate. This item describes how the simulation output was
sampled. For example, ”7” means that every seventh event was taken
from the simulation output (the rest was thrown away), ”1” means that
every event was kept.

In the ”Mode 1” case due to the chosen sampling rate, the traces needed
to be trimmed at an earlier event, so that traces for every disturbance
have the same length. This effect can also be seen in Table 7.2.

4. Qualitative sets. The resolution of qualitative sets used to represent
the previously normalized output values. After normalization, every
output had the same range, so the same qualitative output mapping
function could be used for them. In every case (except for ∞) a linear
qualitative mapping function (like the one described in Eq. (4.1)) was
used, which divided the interval [0, 1] into n qualitative sets evenly.

(a) ∞ means that qualitative sets are not used for the output.

(b) Refined means a 8-element refined qualitative set for the output:

Q = {0, 0L,L, LN,N,NH,H,H+} (7.2)

(c) Coarse means a 3-element qualitative set for the output:

Q = {0, L,N} (7.3)

The parameters in Table 7.2 were chosen based on preparatory simulation
experiments, so they are valid for this case study only, and might be different
for other process systems or operational procedures.

After the traces were converted, they were given as input to the diagnostic
algorithm. The first half of them were used for training (calculating the
centroids using K-Means clustering with K = 1), while the remainder was
used for validating these clusters and determine the FDR values for every
disturbance in every case study. These values are collected in Table 7.3. The
original article also contained disturbances from type ”Unknown”. Due to
the not known nature of these disturbances they are not displayed in the
Table 7.3 for the case studies - they were only taken into account during
calculating of the FDR values for the other, known disturbances.
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Case Qualitative Number of training Trace Sampling
study sets and validation traces trim rate

(18) Mode 1 #1 ∞ 366 100 1
Mode 1 #2 Refined 366 100 1
Mode 1 #3 Coarse 366 100 1
Mode 1 #4 ∞ 366 59 7
Mode 1 #5 Refined 366 59 7
Mode 1 #6 Coarse 366 59 7

(18) Open Loop #1 ∞ 300 100 1
Open Loop #2 Refined 300 100 1
Open Loop #3 Coarse 300 100 1

Table 7.2: Basic properties of the executed case studies.

Dist. Mode 1 Mode 1 Mode 1 Mode 1 Mode 1 Mode 1 Open Open Open
ID #1 #2 #3 #4 #5 #6 Loop#1 Loop#2 Loop#3

IDV(1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 83.333% 84.0% 100.0%
IDV(2) 98.37% 100.0% 100.0% 100.0% 100.0% 100.0% 9.333% 8.0% 19.333%
IDV(3) 27.174% 34.783% 34.239% 21.196% 15.761% 26.630% 7.333% 12.0% 40.0%
IDV(4) 100.0% 100.0% 100.0% 38.043% 73.370% 86.957% 100.0% 99.333% 100.0%
IDV(5) 100.0% 100.0% 100.0% 58.696% 100.0% 95.652% 100.0% 100.0% 100.0%
IDV(6) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
IDV(7) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
IDV(8) 21.196% 32.065% 14.674% 47.283% 71.739% 55.435% 1.333% 5.333% 5.333%
IDV(9) 14.674% 21.196% 16.848% 16.848% 23.370% 23.370% 6.0% 3.333% 8.0%
IDV(10) 8.696% 28.804% 24.457% 34.783% 30.435% 53.804% 8.0% 4.667% 10.0%
IDV(11) 5.978% 46.196% 29.891% 72.283% 48.370% 88.587% 6.667% 8.667% 21.333%
IDV(12) 9.783% 42.935% 35.87% 22.283% 38.587% 65.217% 14.667% 9.333% 37.333%
IDV(13) 2.717% 5.435% 45.109% 18.478% 20.652% 19.022% 4.667% 8.0% 10.0%
IDV(14) 92.391% 94.565% 97.826% 88.043% 67.935% 97.826% 5.333% 6.667% 6.0%
IDV(15) 13.587% 23.913% 18.478% 17.935% 16.848% 17.391% 6.0% 4.667% 8.0%

Table 7.3: FDR values in % for the different case studies. The ”Dist. ID”
is the identifier from Table 7.1.

7.2.4 Observations based on the results

Based on these results the following observations can be made:

1. It can be seen in Table 7.3, that many of the Step type disturbances,
such as IDV(1), IDV(6) or IDV(7), of the TEP were detected with
100% FDR. This means that the diagnostic algorithm could isolate a
separate centroid – farther from the rest – for these disturbance types
successfully. A reason for this in the case of IDV(7) can be seen in Fig.
7.2 which shows a TEP output (”A and C feed (stream 4)”) for all the
considered disturbance scenarios and cases, with IDV(7) as bold black
line while the rest of the disturbances with ordinary red lines.

This figure shows a significant contrast between IDV(7) and all the rest
of the disturbances in the value of the TEP output for all the executed
case studies described in Table 7.2. The dissimilarity in the value is so
outstanding in this case that not even:

• a significant change in the Sampling Rate (from ”1” to ”7”, where
6
7
≈ 85% of the traces were dropped, see diagrams in the first row

in Fig. 7.2),

• the use of a very coarse 3-element qualitative set
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"A and C feed (stream 4)" output value for all the disturbances in di�erent case studies
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Figure 7.2: Distribution of a single output over all scenarios and case studies.
TEP disturbance IDV(7) with bold black line, while the rest of the distur-
bances are shown with ordinary red lines. SR= Sampling Rate, TRIM=Trace
trim (according to Table 7.2). Normalization was performed by transforming
the values of ”A and C feed” to the interval of [0,1] for every disturbance
per scenario right after the simulation. This operation was required to be
able to use the same qualitative mapping function for all the outputs during
diagnosis.

could not affect the diagnostic capability of the algorithm for this dis-
turbance significantly.

Differences like this placed the centroid for IDV(7) farther than the
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centroids for the other disturbance scenarios, and this is responsible
for the 100% accuracy in this case. Similar differences to this in output
values are responsible for the 100% accuracy in some of the other cases
when Step type disturbances were diagnosed. Step type disturbances
were assumed among the diagnostic assumptions in Section 2.6. (Faults
(disturbances) are permanent and their number is fixed a priori.) Note
that in most other cases increasing the roughness of the qualitative sets
might result in highly inaccurate diagnostics. However in this case the
output change caused by the fault was so outstanding that not even
a very coarse, 3-element qualitative set could not affect the diagnostic
accuracy drastically.

2. Step type disturbances could be well diagnosed in case of both the
”Open Loop” operational mode and the steady-state (”Mode 1”) op-
erational mode of the simulation.

3. In case of the ”Mode 1” case studies the use of different Sampling rates
(”1” and ”7”) had no significant effect on the diagnostic result for Step
type disturbances IDV(1), IDV(2), IDV(6) and IDV(7). These distur-
bances could still be diagnosed for both Sampling rates, despite the
fact that the diagnosis was based on a fraction of the available events
only (every seventh event). Due to the loss of data during sampling,
the FDR for some other Step type disturbances (IDV(4) and IDV(5))
reduced drastically.

4. The use of the three different qualitative sets (as described in Section
7.2.3) had also no effect on the diagnostic result.

5. Disturbances from other types (such as Random Variations) could be
detected with a very low FDR. In this case individual centroids are
created by the clustering overlapped each other, therefore the distur-
bance could not have been identified by the algorithm properly using
distance calculation.
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