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A szoftver szenzorok költséghatékony alternatívát kínálnak a gyakran magas be-

ruházási és jelent®s karbantartási igény¶ hagyományos m¶szerezéssel szemben, így

egyre inkább teret hódítanak a folyamatmérnöki gyakorlatban. A közvetett mé-

résen alapuló szoftveres megoldások fejlesztése a legtöbb esetben nem igényli a

technológia módosítását, "csupán" a tulajdonságbecslést végz® modell alkotása és

identi�kálása a kulcsfeladat. Az ismertetésre kerül® módszerek a rendelkezésre álló

adatok elemzésével szolgáltatnak információt a technológia m¶ködésér®l, a mért

és a becsült változók közti kapcsolatokról, segítve a szoftver szenzorok alkotásához
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szolgáló bináris fákkal reprezentált egyenletek optimális struktúrájának megha-

tározására genetikus algoritmust alkalmazunk. Az optimált dimenzió-csökkent®

leképezések nem csupán spektrális anyagjellemz®ket becsl® regressziós modellek

fejlesztésére, hanem osztályozási problémák megoldására is alkalmazhatók. A kö-

vetkez® fejezet parametrikus modellek fejlesztése céljából folyamatváltozók rang-

sorolására és kiválasztására alkalmas eszközök fejlesztését tárgyalja. Végül olyan

id®sor elemzési technikákat ismertetünk, melyekkel az el®bbi két részben említett

modellezési feladatok számára a célnak megfelel® és sz¶rt adatok választhatók ki.

A fejlesztett algoritmusok alkalmazhatóságát online NIR elemz®k és energia mo-

nitoring rendszerek szoftver szenzorainak fejlesztéséhez köt®d® esettanulmányok

igazolják.
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by Tibor Kulcsár

Soft sensors o�er a cost e�cient alternative to online analysers, so they become

more and more prevalent in the process industry. The development and mainten-

ance of software based sensors do not require modi�cations in the technology; the

most critical task is only the identi�cation of the model used for prediction. To

support the monitoring and data-driven identi�cation of models used in software

sensors we developed tools that can be used to explore the hidden structure of the

process data.

The �rst part of the thesis presents a genetic programming based methodology that

can generate dimension reduction mappings to visualise the operation of online

NIR analysers used for nonparametric regression model based product property

estimation.

The next chapter presents feature transformation and selection methods to support

parametric model identi�cation. Finally, techniques for time series analysis are

proposed to extract data relevant to model identi�cation.

The applicability of the algorithms is proved by case studies related to online NIR

analyser based product quality estimation and energy monitoring.
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Chapter 1

Introduction

1.1 Motivation

Advanced process control systems should predict of product properties from oper-

ating conditions; optimise process variables to improve product quality and detect

faults or malfunctions for preventing undesirable operation [42]. These functional-

ities require timely and accurate information about process variables characterising

and in�uencing product quality. The control of measured process values (e.g. tem-

perature, pressure, �ow rate) does not always ensure that product properties (e.g.

density, cloud point, �ash point) will be in desired ranges. In chemical and oil

industry some of these properties cannot be measured online (e.g. cetane index,

aromatic �eld, sulphur content) or the frequency of the measurements is lower than

required for real time control (see Fig. 1.1). On-line analysers have faster response

time (1-4 minutes) [25], but due to their high instrumentation and maintenance

costs and low reliability there is a need for an easily implementable, maintainable

and robust alternative.

Soft sensors are frequently used to estimate di�cult-to-measure process variables.

It should be noted that soft sensors are not identical to smart sensors. Smart

sensors are sensors that include a microprocessor which conditions the signals be-

fore its transmission. These devices are the indispensable enablers of the Internet

of Things (IoT) solutions. Smart sensors are particularly useful because they can

keep track log data, identify items, locate them and determine their environmental

conditions, which information can be used as triggers for alarm and process man-

agement.

1
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Figure 1.1. On-line analyser or (soft) sensor in feedback control.

A soft sensor or virtual sensor is a common name for software where several meas-

urements are processed together. The interaction of signals can be used for calcu-

lating new quantities that do not need to be measured. Soft sensors can estimate

unmeasured, but important variables from other easily measured variables us-

ing computational models. These inferential measurements can be used in fault

diagnosis and control applications and for the validation of online analysers. Con-

sequently, software sensors are models that can be realised in advanced control

systems or in smart sensors to improve process control, optimisation and process

safety by providing inferential measurements.

The implementation of soft sensors require proper mathematical models, whose

development is a complex and time-consuming task. The motivation of our work

is to develop tools for model identi�cation and validation to support soft-sensor

development. For non-parametric models, we worked out a genetic programming

based methodology that can generate informative plots using nonlinear feature

transformation. For parametric models, we present regression based techniques

for feature selection and transformation methods to build adequate models with

reduced complexity. Finally, we propose time series analysis methods to �nd local

models of operating regimes.

1.2 Soft-sensor development

A very comprehensive review of the applications of soft sensors in process industry

can be found in ref. [26, 27, 40]. As these implementations show, soft sensors are

widely used in the hydrocarbon industry (e.g. in a �uid catalytic cracking process

soft sensors are used to estimate catalyst circulation rate and heat of reaction
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Figure 1.2. Scheme of NIR based process control [15].

to support model predictive control (MPC) [83]). Soft sensors are particularly

widespread in the pharmaceutical industry in connection with Process Analytical

Technology (PAT). A typical application is shown in ref. [76]. It is important

to note that in PAT soft sensors are used to generate an on-line quality estimate

based on on-line analytical measurements. An example of this concept can be seen

in [16]. This PAT approach is critical in NIR based process control. Figure 1.2

shows an application where the spectral space is mapped into two dimensional

space to de�ne the control space representing good product quality.

Application of soft sensors and on-line analysers for (advanced) process control is

not trivial. The book [23] deals with some key points of the soft sensors design

procedure, starting from the necessary critical analysis of rough process data, to

their performance analysis, and to topics related to on-line implementation.

There are several multivariate models and methods to support the prediction of

product properties based on Near-Infrared (NIR) spectra. These methods can be

separated into two groups: (i) parametric models (e.g. linear regression, multi-

linear regression, Partial Least Squares regression (PLS) ) and (ii) nonparametric

methods (e.g. k-NN [81], False Nearest Neighbours (FNN), Neural Networks,

Topological Near-Infrared Modeling [19, 72] - TOPNIR).

In the following, we give an overview of intelligent techniques that can support the

development and maintenance of data-driven models used in soft sensors, and we

show that soft-sensor models of advanced process control systems (APC) require

sophisticated maintenance procedures.
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Figure 1.3. Soft sensor structures according to how property variables are
estimated by the combination of white and black box models [59].

First-principle or data driven soft sensors can be distinguished according to the

information used for soft-sensor development [2]. First-principle models (also re-

ferred as white-box, mechanistic or a priori models) are based on balance equation

(mass, component, energy) and contain detailed chemical information about the

system. Unfortunately, in practical applications processes are often too complex,

uncertain and not su�ciently understood for complete model development. There-

fore, the applicability of �rst-principle model based approach is very limited [40].

Furthermore, the development of �rst-principle models is very time-consuming

procedure. In particular, it is hard to build precise �rst-principle models that can

explain why defects appear in products. Model development time is a critical issue

since product life cycles are getting shorter and the time available for improving

product quality and yield requires fast and adaptive solutions [29].

Data driven (black-box or a posteriori ) model based soft sensors are built when

no detailed knowledge is available about the process. In this case, data is used to

create statistical models to determine the relationship between inputs and outputs.

Statistical regression methods have become increasingly popular techniques for

process modelling, and they are used for fault detection and quality estimation.

Data and a priori model driven approaches can have several synergistic combina-

tions (see Figure 1.3).

• In the �rst case, a statistical model is the input of a physical model in

the form of di�erential or algebraic equations or a complex �ow sheeting

simulator. In this case, a mathematical model is used to estimate parameters

and phenomena that cannot be predicted easily.
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• Combination 2 shows the case when outputs of the physical model are trans-

formed into a statistical model.

• In the third option, the di�erence between measured and calculated variables

are the inputs of a statistical model used for correction. Model-based data

reconciliation techniques are similar to this approach.

A posteriori models can be distinguished into two di�erent classes, parametric

and nonparametric models. To describe the di�erence between the two modelling

strategies let us de�ne the standard form of a posteriori models. Let be xk =

[x1,k, x2,k, . . . , xn,k]T the vector of the k = 1, . . . , Nth sample represented by the

i = 1, . . . , n (input) variables1 and a yk the output of a system. We would like to

give an estimated value ŷk for the unmeasured yk using only the measured inputs

xk. The common form of an a posteriori model is the following:

ŷk = f(x1,k, x1,2, . . . , xn,k) = f(xk) (1.1)

The most popular data-driven soft-sensor models are based on multivariate statist-

ical techniques, i.e. the PCA and PLS, which together cover 38 % of the applica-

tions (see Figure 1.4). Soft sensors are regularly used for decision support. In these

applications, appropriate classi�er models have to be tuned. Figure 1.5 shows an

example of this model structure. It is interesting to note that this scheme is also

an example of a hybrid soft-sensor model, where di�erent model types (PCA, SOM

and RBFN) are combined.

Table 1.1. Numbers of known applications of soft sensors. Phys: White box
models, MRA: PCA and multi linear regression models, ANN: Neural Networks.

[43]

Methodology
Process Phys MRA PLS O.L. ANN JIT Gray Toltal
Distillation 20 256 41 6 0 5 3 331
Reaction 5 32 43 0 0 5 1 86
Polymerisation 0 4 8 0 3 0 5 2
Others 0 1 1 0 0 0 0 2
Total 25 293 93 6 3 10 9 439

According to Figure 1.5 we should note that Kalman on-line �lters are often used

for model updates as they have excellent performance characteristics, and they are

1We represent vectors in column form
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Figure 1.4. Distribution of model types used in soft sensors. PCA: Principal
Component Analysis, PLS: Partial Least Squares regression, MLP: Multi Layer
Perception - Neural Network, RBFN: Radial Basis Function Networks, SOM:
Self-Organising Neural Models, SVM: Support Vector Machines. SPE stands

for squared prediction error. [40].

Figure 1.5. Hybrid soft-sensor model as combination of PCA, SOM and RBFN
models. PCA is used for fault detection while classi�er models are used for fault

isolation [41].

simple to implement. In this way, all the process information can be included in

the model leading to more precise predictions [40].

Building a high-performance soft-sensor is a very laborious task, since input vari-

ables and samples for model construction have to be selected carefully (e.g. by

applying techniques of Design of Experiments), and parameters have to be tuned

appropriately.

The general procedure for data-driven soft-sensor development is shown in Fig-

ure 1.6.
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Figure 1.6. Main steps of data-driven soft-sensor development [40].

• Data inspection: In the �rst step it is necessary to specify the most important

unmeasured variables and how we can calculate them from measured data.

We should get an overview of the data structure and de�ne problems which

may be occurring. We collect the types of soft-sensor can be used during the

next steps: simple regression model or complex model (e.g. PCA) or more

complex (e.g. a neural network).

• Selection of historical data and identi�cation of stationary states: In the

second step, data to be used for the training and evaluation of the model is

selected. Next, the stationary segments of the data have to be identi�ed and

selected. The identi�cation of the stationary process states is usually per-

formed by manual annotation of the data, [42], but time-series segmentation

algorithms can also be used to automate this procedure [4].

• Data preprocessing: Since measured variables are on di�erent scales, data

pre-processing that includes standardisation of data (e.g. in the case of

PCA it is inevitable). Usual steps are the handling of missing data, outlier

detection, selection of relevant variables (i.e. feature selection and trans-

formation) and data reconciliation. As shown in Figure 1.6, outlier removal,

feature selection and transformation steps are repeatedly applied until the
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model developer considers the data as being ready to be used for the training

and evaluation of the actual model [42].

• Model selection, training and validation: These are critical steps in the devel-

opment of soft sensors. Selection depends on the application problem, nature

of data and personal preferences since developers prefer models which are

in their �eld of expertise. It is common practice to use a simple model

if possible and gradually increase model complexity as long as signi�cant

improvement in the model's performance can be observed.

• Validation and testing: After �nding the optimal structure and having trained

the model, it is required to evaluate the performance of the model.

• Maintanance: Even a successfully developed performance of the soft sensors

can deteriorate when process characteristics change. For example in chemical

processes equipment characteristics can change by catalyst deactivation or

adhesion. Soft sensors should be updated to follow these changes. Manually

repeated construction of models should be avoided due to its heavy workload

[43] .

1.3 Studied problems and the roadmap of thesis

In this thesis, we show three di�erent aspects of model development for soft sensors

and on-line analysers. In Chapter 2 we show a new genetic programming based

method to support the development of non-parametric models for soft sensors and

on-line analysers. In Chapter 3 we propose supporting tools for parametric model

development. Data-based modelling requires proper raw data to build models

having good performance, so in Chapter 4 we present some methods for time

series analysis, model selection and validation.

We demonstrate the developed methods on two di�erent problems. The �rst prob-

lem is a spectroscopy based process monitoring which is a widely applied technique

in the chemical industry. Spectroscopy based modelling is multivariate by nature

and di�cult to manage. For these reasons supporting tools are required to build

proper models for it. We show a method for visualisation of spectral databases

(Chapter 2) and a regression based modelling technique (Chapter 3.) to predict

quality measures during production. The second application example is energy
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monitoring (EM) of process systems. In EM systems the energy usage is estim-

ated based on process variables using a posteriori models. We show visualisation

tools and time series segmentation algorithms to help the development of these

models. The application examples are detailed below.

1.3.1 Near infrared spectroscopy based process monitoring

and modelling

In case of complex production systems the control of measured process values (e.g.

temperature, pressure, �ow rate) does not always ensure that the unmeasured

product properties will be in prede�ned ranges of production orders or standards.

E.g. in oil-industry cetane index and sulphur content are not measured online and

the frequency of �ash point, density, cold �lter plugging point measurement are not

enough for real time control. The objective of development of software sensors and

online analysers is to support process control and monitoring by providing online

information about these properties. The interaction of signals like temperatures,

pressures - in our case absorption intensities - can be used for calculating new

unmeasured quantities (like �ash point, density etc.). These models can also be

used for fault diagnosis and inferential control applications.

A widely used online measurement technique is near infrared spectroscopy. In-

formation extracted from a spectral database can be used for process monitoring

and to estimate unmeasured product properties. The main objective of spectro-

scopic modelling is to �nd the relations between recorded spectra and relevant

material properties [36]. Topological modelling techniques are based on looking

for similar spectra from a spectral database by nearest neighbourhood algorithms.

Instead of performing explicit generalisation such as memory-based learning that

compares new problem instances with instances seen in training. The class of such

memory-based algorithms are called instance-based because it constructs hypo-

theses directly from training instances. One advantage that instance-based learn-

ing has over other methods is its ability to adapt its model to previously unseen

data. While other methods generally require the entire set of training data to be

re-examined when one instance is changed, instance-based learners may simply

store a new instance or throw an old instance away. The disadvantage is that

these non-parametric techniques cannot extrapolate.
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The performance of instance based learning algorithms highly depends on the qual-

ity of the database used for estimation. Hence, data-driven modelling algorithms

need a carefully designed and maintained database of training data (samples, in-

stances). The coverage of the operating regimes and the structure of the indexed

database should be consistent to support the fast searching for the nearest neigh-

bours. Although the concept of this modelling scheme is quite simple, since spec-

tral data is spread out in a high dimensional space it is di�cult to decide which

operating regimes need more training data and which samples (instances) should

be removed to improve model prediction performance by inconsistency (noise) in

the training data. Therefore, we not only developed learning algorithms to ex-

tract information from high dimensional spectral data but also developed several

diagnostic tools to maintain and develop spectral databases.

As TOPNIR estimates a set of product properties, we developed tools to evaluate,

estimate and improve the prediction performance of these models. Human su-

pervision and intervention is always required in model development. In practical

data mining and process monitoring applications high-dimensional data have to

be analysed. In most of the cases it is very informative to visualise the hidden

structure of complex data in a low-dimensional space.

Industrial applications require an easily implementable, interpretable and accur-

ate projection. TOPNIR utilises heuristic nonlinear functions (aggregates) for the

mapping of spectra as high dimensional object. These aggregates neither guar-

antee distance preserving nor neighbourhood preserving properties. We propose

a performance metric to evaluate the quality of dimensional reduction. These

techniques are applied and presented in Chapter 2.

The developed measures are based on the distance and neighbourhood preserving

properties of mappings. We evaluate the quality of aggregate based mappings of

TOPNIR and compare it to the most important dimensional reduction techniques

(Multidimensional Scaling - MDS, Principal Component Analysis - PCA, Sammon

Mapping, and Partial Least Squares - PLS model based two dimensional projec-

tion in Chapter 3). Results related to the online spectrometer of a fuel blending

plant illustrate that the proposed approach is a useful way to visualise spectral

databases. The suggested trustworthiness measure gives useful information about

how topological information is preserved during the mapping of the aggregates and

other techniques used to visualise the operating regions of the technology based

on measured NIR spectrum.
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A pair of aggregate functions implements feature selection and feature transform-

ation. Finding the proper model structure is a complex nonlinear optimisation

problem. We present a Genetic Programming (GP) based algorithm to generate

optimal aggregate pairs (Chapter 2).

Regression based predictions are usually calculated by linear regression models, but

Partial Least Squares regression (PLS) can also be used for modelling. We adapted

a technique that allows the application of PLS to visualise spectral databases. The

main bene�t of this technique is that it allows the extension of operating region

of the model as parametric models extrapolate better than nonparametric ones.

This concept and the related results are discussed in Chapter 3.

Information hidden in the time-series of multivariate spectra can also be used to

detect hidden changes in the operation of the technology and the measurement sys-

tem status. We extended our former segmentation algorithm (published in [127])

to detect changes in the operation of a diesel fuel blending plant and the opera-

tion of a laboratory scaled reactor system. The whole methodology is presented

in Chapter 4.

To demonstrate the above-mentioned novel techniques, multiple datasets provided

from the Dune Re�nery of MOL Ltd were analysed. Although the developed

algorithms have been designed to support the model development of topological

(TOPNIR) models, they can additionally be applied to build parametric models

with good prediction and process monitoring performance. Besides the detailed

analysis of the proposed framework, the thesis gives a detailed analysis of the

TOPNIR algorithm and the related TopWin Software. Thanks to this analysis and

the produced development tools the whole modelling and soft sensor maintenance

procedure can be performed even more sophisticated manner.

1.3.2 Energy monitoring of process systems

Advanced production systems maximise the production and at the same time

minimise cost and environmental impact [64]. The purpose of energy monitoring

and targeting is to provide a better understanding of how energy is being used.

The so-called energy portfolio allows the classi�cation and prioritisation of energy

consumers and the derivation of target-oriented action plans towards energy and

resource e�ciency improvement [74]. Energy e�ciency can be improved based on
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data analysis [54]. Monitoring of energy consumption of industrial process systems

requires sophisticated tools and methodologies.

The Industrial Technologies Program (ITP) is the lead government program work-

ing to increase the energy e�ciency of the U.S. industry - which accounts for about

one third of the U.S. energy usage. In partnership with industry, ITP helps to

research, develop, and deploy innovative technologies that companies can use to

improve their energy productivity, reduce carbon emissions, and gain a competitive

edge [35]. ITP is developing methods that will help to quantify energy-e�ciency

improvements in the most energy-intensive process streams [21]. Analyses such as

energy bandwidth studies will enable to focus on the processes or unit operations

with the greatest potential for energy e�ciency gains and maximise the bene�t of

research investments [24].

Energy bandwidth analyses provide a realistic estimate of the energy that may be

saved in an industrial process by quantifying three measures of energy consumption

[21]:

• Theoretical minimum energy (TME): TME is a measure of the least amount

of energy that a particular process would require under ideal conditions.

TME calculations are based on the thermodynamic analyses of primary

chemical reactions using the change in Gibbs free energy (∆G), and assume

ideal conditions. In some cases, the TME values were obtained through in-

dustry publications or using the heat of reaction (∆Hr) due to insu�cient

Gibbs free energy data.

• Practical minimum energy (PME). The PME represents the minimum en-

ergy required to carry out a process in real-world, non-ideal conditions (e.g.,

temperature, pressure, selectivity and conversions less than 100%) that res-

ult in the formation of by-products, the need for product separation, catalyst

and equipment fouling, and other factors. These conditions impose limita-

tions that make it impossible to operate at the theoretical minimum. The

energy savings considered for the practical minimum analysis are primarily

based on best practices and state-of-the-art technologies currently available

in the marketplace.

• Current average energy (CAE). CAE is a measure of the energy consumed by

a process carried out under actual plant conditions. This measure exceeds
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both the theoretical and practical minimum energies due to energy losses

from ine�cient or outdated equipment, process design, poor heat integration,

poor conversion and selectivity, amongst other factors.

The bandwidth is the di�erence between PME and CAE and provides a snapshot of

energy losses that may be recovered by improving current processing technologies,

the overall process design, current operating practices and other related factors

[21].

In this thesis we focus on the optimisation of CAE by the application of en-

ergy monitoring systems. Energy monitoring improves energy e�ciency in process

plants by helping plant operators, engineers and managers to track actual and

target energy consumption [8]. Such system allows the user in the following tasks

[57]:

1. Detect avoidable energy waste that might otherwise remain hidden. This is

waste that occurs at random because of poor control, unexpected equipment

faults or human error.

2. Quantify the savings achieved by energy projects and campaigns.

3. Identify fruitful lines of investigation for energy surveys.

4. Provide feedback for sta� awareness, improve budget setting and undertake

benchmarking.

Monitoring is based on continuous comparison of actual and estimated energy

consumption. Energy e�ciency has the following four components: performance

e�ciency, operation e�ciency, equipment e�ciency and technology e�ciency [82].

A systematic overview of the state of the art in energy and resource e�ciency in-

creasing methods in the domain of discrete part manufacturing is given in reference

[20].

Reducing energy consumption of machine tools can signi�cantly improve the en-

vironmental performance of manufacturing systems. A structured approach at

di�erent system scale levels is presented in ref. [20]. Starting from a process unit,

multi-machine, factory, multi-facility and supply chain levels are covered. To auto-

mate monitoring and analysis of energy consumption, event analysis techniques
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are reported in ref. [80]. Energy consumption characteristics of machine tools

are compared and the potential of using the obtained data for energy labelling

of machine tools is discussed in ref. [9]. Most of these developments are focused

on discrete manufacturing [45]. Chemical industry is the largest energy consumer

among di�erent industrial sectors; it is responsible for around 4.7% of the total

energy consumption in Europe. This thesis focuses on this domain.

Methods for calculating expected consumption fall into two categories. There are

those based on precedent (comparison with previous periods) and activity-based

methods that relate expected consumption to its driving factors (weather, produc-

tion throughput, etc.). Precedent-based targeting models are most commonly used

in monthly monitoring schemes, when expected consumption can be deduced from

what was used in the corresponding month a year before. One weakness of this

procedure is that it assumes that conditions were comparable in the two months. A

more problematic issue is what happens when energy waste has occurred. The res-

ulting excessive consumption erroneously raises the expected quantity a year later.

To work e�ectively, abnormal months should be disquali�ed to prevent them being

used for target setting. At the other end of the scale, some automatic monitoring

and targeting schemes compare consumption at very short intervals (e.g. half an

hour), with a target template derived from previous similar days. The same caveat

applies: abnormal consumption patterns must be �ltered out from the pool of data

used as precedents to make this e�ective. Precedent-based targets, used with cau-

tion, may be the best method when consumption is seasonal, but unrelated to any

measurable driving factor. Generally, however, precedent-based targeting models

can be too simplistic and organisations may want to consider activity-based tar-

geting. This is particularly appropriate when there are clear drivers for changing

energy consumption, for example, changes in production throughput [75].

Activity based targeting models calculate the expected consumption based on

models. These models estimate the expected values of the consumptions based on

some measured values (driving factors). Activity Based Costing (ABC) is a widely

used model for measuring the cost and performance of business and production

processes. This model can be easily adapted to measure energy usage. The activity

based energy usage model (ABE) has been presented in ref. [67]. The key idea is

that once a model can estimate the energy consumption based on the activities

and actual state of the processes, 'what if scenarios' can be analysed and energy

abatement projects can be recommended.
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Apart from the traditional volume-based accounting approach, the ABC approach

is useful, especially when the rapid assessment of energy load curtailment is re-

quired. There were several studies to modify ABC with an intention to expand

to include environmental factors. Jurek et al. proposed an APC-based energy

consumption prediction model used to clarify the production and non-production

energy loads rapidly, thereby being able to �gure out the amount of possible load

curtailment quickly [39]. The concept of ABC can also be applied to energy man-

agement and provide an energy usage distribution for the process to identify and

evaluate energy consumption and cost saving opportunities [18]. A novel decision

model based on ABC and stochastic programming has been developed to accur-

ately evaluate the impact of load curtailments and determine as to whether or not

accept an energy load curtailment o�er in ref. [62]. Based on an activity-based

targeting model we can use multi-objective optimisation to �nd sustainable energy

usage mode [30] or to build an on-line energy management and optimisation sys-

tem that identi�es actionable cost saving opportunities in real time and empowers

operators to take immediate action [63].

Analytical models using �rst-principle knowledge calculate the energy consump-

tion based on driving actors are presented in ref. [12] and [70]. This approach

performs well by a clear and good understanding of the mechanisms of the process.

Activity-based targeting models are applied to calculate expected the consump-

tion reference of process units. This approach can be considered as a special

software sensor [85]. A similar on-line neural network based software application

has already been patented [68]. The patented neural network based methodology

enables manufacturing facilities to meaningfully determine their energy perform-

ance, no matter how complex, taking the production rates and ambient conditions

in consideration. Causes of statistically signi�cant deviations are diagnosed and

corrective actions highlighted. The software application is designed to be up-

dated dynamically so that users can e�ectively manage performance on the basis

of current information. Performance of data-driven targeting models depends on a

complex set of process variables which are selected and ranked based on a heuristic

and subjective evaluation of the operation. These models are generally statistical

regression models. Partial least squares (PLS) is a perfect method for construct-

ing predictive models from a large number of correlated input variables [10]. PLS

was developed in the 1960s by Herman Wold as an econometric technique, but

soon it become a widely applied tool in chemical engineering. These multivariate
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statistical and regression models can also be used for fault detection and isolation

since complex processes can easily have hundreds of process variables [52]. In

the proposed approach the monitoring of the processes is based on the di�erence

between targeted and the measured energy consumption.

In Chapter 4 we present the concept and technical details of the proposed his-

torical data based energy monitoring system and demonstrate its applicability at

Heavy Naphtha Hydrotreater and Catalytic Cracking Reforming Units of MOL

Hungarian Oil and Gas Company.

The dataset used for the identi�cation of the targeting model is selected based on

a heuristic and subjective evaluation of the process' operation. The disadvantages

are: it is time-consuming, and it does not give any hint to the user how the targets

given by the resulted models should be handled. We developed goal-oriented time-

series segmentation techniques to automate this procedure. The algorithms are

detailed in Section 4.2 and 4.3. Targeting-models for di�erent operating regions

can be automatically determined using the proposed novel segmentation algorithm.

All the programs used to generate the results in this thesis can be downloaded

from

https://github.com/kulcsartibor/phd-thesis-programs and

http://www.abonyilab.com/

https://github.com/kulcsartibor/phd-thesis-programs
http://www.abonyilab.com/


Chapter 2

Non-parametric model development

Nonlinear function based mapping of the feature space can visualise the hidden

structure of high dimensional data. We developed a genetic programming (GP)

algorithm to determine the optimal structure of these functions. The mapping can

be tailored based on the intended use of the visualisation problem by designing

goal-oriented �tness functions. We demonstrate the applicability of the method

on a nonparametric regression and in a nonparametric classi�cation problem. We

designed NIR spectra based software sensor for product quality estimation with the

use of the developed tools and compared the GP based visualisations to standard

dimension reduction techniques like PCA and MDS.

2.1 Introduction

To decrease the complexity of regression and classi�cation problems and to visu-

alise high dimensional data dimensional reduction algorithms should be used. Di-

mensionality can be reduced by feature selection or feature extraction algorithms.

Feature selection selects a subset of the features (variables) which contain the most

important characters of data objects. The well known exhaustive search method

[37] examines all possible subsets of the variables. Branch and bound [60] and

�oating search [66] techniques can reduce the enormous computational cost of this

task by the introduction of a sophisticated search algorithm.

In contrast to feature selection feature extraction methods do not select the most

relevant variables but they combine them into some new attributes. Usually, two

17
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or three attributes are generated to support the visualisation of the high dimen-

sional data. The most commonly used linear dimensionality reduction methods

are the Principal Component Analysis (PCA) [38], the Independent Compon-

ent Analysis (ICA) [17], Multivariate Curve Resolutions (MCR) and the Linear

Discriminant Analysis (LDA) [22]. These linear methods provide a poor repres-

entation of data when the analysed process is nonlinear, and a wider range of

operating regime should be modelled. In these cases nonlinear dimensionality

reduction methods may outperform the traditional linear techniques. The most

widely applied nonlinear dimensionality reduction methods are Kohonen's Self-

Organizing Maps (SOM) [47], Sammon mapping [71], Locally Linear Embedding

(LLE) [69], Laplacian Eigenmaps or Isomap [73]. The application of these meth-

ods is an active research area of chemometrics and process monitoring; nowadays

several successful applications are reported.

Nonlinear function (aggregate) can also form easily implementable and accurate

projections. A pair of these functions simultaneously realises feature selection

and transformation tasks. Finding the proper structure of this functions is a

complex non-linear optimisation problem. We present a Genetic Programming

(GP) based algorithm to generate nonlinear aggregates. This method is based on

a tree representation based symbolic optimisation technique developed by John

Koza [48]. This representation is extremely �exible; trees can represent computer

programs, mathematical equations or complete models of process systems [5]. In

ref. [14], GP is already applied in the visualisation of high-dimensional process

data. Simple non-linear functions were identi�ed to preserve the distances among

the data-points. The drawback of this approach is that since the models were

not parametrized only simple mappings with approximative distance preserving

properties were generated.

Since the studied soft sensors realise k nearest neighbour type nonparametric re-

gression, the mapping should preserve the neighbourhood relations of the data.

We developed a trustworthiness and continuity based problem-relevant measure

to evaluate the quality of the visualisations since trustworthiness and continuity

re�ect the neighbourhood relations in the original and the mapped spaces. Since

more than a hundred variables represents an NIR spectrum, �nding the optimal

mapping of this high dimensional space (n >> 100) into two dimensions is a com-

plex problem. We propose a multi-chromosome based Genetic Programming (GP)

algorithm for the structural optimisation of the mapping functions.
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Our Genetic Programming (GP) based algorithm maximises the combination of

the trustworthiness and continuity measures. To determine the optimal parameters

of the mapping functions a pattern search [86] step is embedded into the GP. The

resulted functions de�ne aggregates of topological near infrared (TOPNIR) models

usually used for product quality estimation of petroleum re�nery products and the

highlight the operating ranges of the process.

We applied the proposed method in a diesel fuel blending process at MOL Ltd.

Duna Re�nery to select and design pairs of aggregates that correctly re�ect the

hidden structure of the spectral database.

2.2 The modelling task

Topological Infrared Modelling (TOPNIR) is a widely applied method for pre-

dicting the yi =
[
yi,1, . . . , yi,ny

]T
=
[
Pi,1, . . . , Pi,ny

]T
product or process stream

properties (e.g. octane number, density) based on an xi = [xi,1, . . . , xi,n]T infrared

spectrum composed of l = 1, . . . , n absorbancies measured at di�erent wavelengths.

Usually n ' 200 samples contain enough information for modelling the functional

relationship between absorbances and product properties:

yi = f (xi) . (2.1)

Instead of an explicit parametric function yi = f (xi) TOPNIR utilises the well

known k-nearest neighbour algorithm (k-NN). The yi output of the model is es-

timated as the (weighted) average of the values of its k nearest neighbours of the

input vector xi. For modelling usually N samples with known properties are avail-

able, i = [1, . . . , N ]. For a new sample xi we calculate di,j distances of the spectra

to each spectra in the database xj,.

As distance measure the Minkowski distance or its special cases, the Euclidean or

Manhattan distances can be used:

di,j = dp(xi,xj) =

(
n∑

l=1

|xi,l − xj,l|p
)1/p

= ‖xi − xj‖p
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where p is a positive integer and n yields the dimension of objects. For p = 2,

the distance measure is refereed as Euclidean, while p = 1 de�nes the Manhat-

tan distance. The di�erences may be weighted to take into account the di�erent

sensitivity of absorption to the property or to the spectrometer at a wavelength.

Weights can also be used to re�ect the reproducibility of the spectral measurement

at wavelength l.

di,j = d (xi,xj) =
n∑

l=1

|xi,l − xj,l|λl (2.2)

When no prior knowledge is available λl = 1
n
.

To provide a robust estimate the weighting of the the samples is based on their

distance from the xi query point,

yi = f(xi) =
k∑

j=1

(
βi,j (di,j)∑N
k=1 βi,j (di,j)

)
yj (2.3)

In simplest case the βi,j (di,j) weighting function is a characteristic function,

1 (di,j ≤ Ri), where Ri represents the region of the data point (usually the k-th

largest di,j distance measured from the xi query point). The simplest yet e�ective

nonlinear weighting is based on reciprocal weighting:

βi,j (di,j) = 1 (di,j ≤ Ri)
1

di,j
(2.4)

Exponential weighing can also be used. In this case often all of the samples are

taken into account:

βi,j (di,j) = exp (−λdi,j) (2.5)

where instead of k, the λ parameter de�nes the locality of the model. In some

cases it is bene�cial to take into account the correlation among the features (ab-

sorbencies). The Mahalanobis distance uses the inverse of the F covariance matrix

of the data as a distance norm (which can be considered as a special weighting

function):

di,j = dM(xi,xj) = (xi − xj)
T F−1 (xi − xj) (2.6)

In ideal case the locality region is independent from the actual query point xi,

so R = Ri ∀i, and the key problem of model development is the careful selection

of this value (or the selection of how k that represents how many neighbours are
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used for the estimation). In the following we discuss how this parameter should

be determined based on the expected accuracy of the model.

Let Ev represent the experimental error or accuracy requirement of determining

the vth property. To avoid unwanted mixing e�ects any two neighbours of the ith

sample in the R region (or among the k nearest neighbours) should satisfy

||ya,v − yb,v||2 < Ev

√
2 (2.7)

where a and b refer to the index of the two neighbours of the i-th query point.

The main concept of topological modelling is that samples having similar proper-

ties are also similar in the spectral space. This suggests that the required proximity

region in the spectral space will di�er property by property. Therefore, it is bene-

�cial to separately determine Rv based on the Ev required prediction accuracies

and use the smallest value as a minimal index:

im = R = min
v

(Rv) (2.8)

When the density of the samples is su�cient, for every k nearest neighbours of xi

the following inequality holds

da,b = d (xa,xb) < imin, ∀a, b (2.9)

that guarantees satisfactory prediction performance.

It can happen that the spectral database is incomplete due to the shortage of

laboratory measurements (in a particular operating regime). In this case, it is

possible to select a larger minimal index with e.g. 1−5 times of the desired value,

but it is anticipatory that the model will be less accurate for some properties.

Illustrative example

The dataset used for model development contained 651 samples of spectra and

15 material properties. The spectra in the database were recorded at 195 discrete

wavenumbers equally distributed in the range 4000 - 4776 cm−1. After basline cor-

rection and normalization these spectra used as the input of the prediction model.

The training outputs are the property values {y1, y2, . . . , yny} of the samples. The

properties were normalised into a range [0, 1].
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The performance of the TOPNIR model is considered as base case. The model

performance was measured based on the correlation of the predicted and measured

product properties. Table 2.1 shows that the N number of the available samples

di�ers for each property.

Table 2.1. The number of samples and the correlation of the property estimates
of the TOPNIR model

Property N R2

Density 441 0.971
CI 384 0.411
CFPP0 229 0.964
CFPP 380 0.810
CloudPt 378 0.941
FlashPt 379 0.832
T10 383 0.966
T50 328 0.916
T90 383 0.814
E250 365 0.995
E350 361 0.459
E360 342 0.588
PolyCycl 331 0.559
TotAro 327 0.910
VISC 67 0.951

Table 2.2 shows the results of the k-NN estimation using leave-one-out validation

(where k = 3). R values show the average normalised distances of the k neighbours,

while Ev represents the expectable accuracy of the model. These values should

be compared to the standards and the requirements for accuracy related to the

di�erent properties. The applied FNN measure (see Section A.4) gives a reasonable

estimate for the di�culty of the estimation problem. When the correlation between

the k-NN and TOPNIR model is close to one than the FNN value is zero. It means

that the prediction is better when the ratio of the false nearest neighbours is slow.

For comparison the performance of a well designed PLS model is also shown (de-

tails of this model will be presented in Chapter 3). It can be seen that in most of

the cases the PLS model outperforms the TOPNIR and k-NN. This comparison

illustrates the bene�ts and drawbacks of nonparametric and parametric modelling.

When the number of samples is small, the parametric models - like PLS - give bet-

ter performance. In the case of su�cient data (dense database), nonparametric

models could perform better than linear models. However, it should be noted that

both approaches require validated data. In the following section, we discuss the
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Table 2.2. Weighted 3-NN estimation results - Comparison to PLS (The
columns of )

Property k-NN N R Ev FNN PLS

Density 0.972 441 0.019 0.042 0.91 0.993
CI 0.284 384 0.023 0.039 6.25 0.190
CFPP0 0.947 229 0.019 0.050 1.31 0.947
CFPP 0.631 380 0.015 0.163 0.00 0.769
CloudPt 0.932 378 0.024 0.047 0.26 0.950
FlashPt 0.803 379 0.024 0.056 0.26 0.878
T10 0.964 383 0.023 0.042 1.31 0.908
T50 0.904 328 0.026 0.070 0.00 0.970
T90 0.815 383 0.023 0.060 0.00 0.849
E250 0.852 365 0.024 0.067 0.00 0.955
E350 0.156 361 0.023 0.038 1.94 0.308
E360 0.484 342 0.023 0.145 0.29 0.431
PolyCycl 0.243 331 0.027 0.032 2.72 0.429
TotAro 0.904 327 0.027 0.054 1.53 0.905
VISC 0.978 67 0.014 0.047 0.00 0.999

role of the visualisation of a high dimensional spectral space in the selection and

validation of the datasets used for model development.

2.3 Topological mapping based visualization

Instance-based prediction algorithms used for property estimation are based on the

assumption that similar spectra represent samples having similar product proper-

ties. Therefore, to support the development of nonparametric models, it is bene-

�cial to visualise the spectral database to check how the available set of spectra

cover the operating region of the process.

The goal of dimensionality reduction is to map a set of observations from a high-

dimensional space (D) into a low-dimensional space (d, d� D) preserving as much

of the intrinsic structure of the data as possible. Let X = {x1,x2, . . . ,xN} be a
set of the observed data, where xi denotes the i-th observation (xi = [xi,1, xi,2, . . . ,

xi,D]T ). Each data object is characterized by D dimensions, so xi,j yields the

j-th (j = 1, 2, . . . , D) attribute of the i-th (i = 1, 2, . . . , N) data object. Dimen-

sionality reduction techniques transform data set X into a new data set Y with

dimensionality d (Y = {y1,y2, . . . ,yN}, yi = [yi,1, yi,2, . . . , yi,d]
T ). In the reduced
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space many data analysis tasks (e.g. classi�cation, clustering, image recognition)

can be carried out faster than in the original data space.

2.3.1 Mapping based on aggregates

Industrial applications require easily implementable, interpretable and accurate

projections. Nonlinear functions (often referred as aggregates) are useful for this

purpose. A pair of these functions realises feature selection and transformation.

Such mapping is used for the visualisation and indexing of spectroscopic databases

in the Topological Mapping using Aggregates (TOPNIR) modelling framework

[19]. TOPNIR performs a two-dimensional mapping of the spectral space to visu-

alise the operation regimes of the process. There are 14 aggregates de�ned in the

TOPWIN software used as a framework of the TOPNIR algorithm. The aggregates

are equations that combine absorbances measured at signi�cant wavelengths. Ag-

gregates somehow re�ect product properties. Since these properties can be depend-

ent on di�erent ranges of the spectra each aggregate built up several wavelengths

to contain enough information related to a particular chemical property, e.g. the

aromatic and the ole�nic property have own ranges in the spectrum. Each ag-

gregate builts up to six wavelengths to contain enough information related to a

particular chemical property. For example, the aromatic and the ole�nic property

have own ranges in the spectrum (see Figure 2.1).

Figure 2.1. Signi�cant wavelengths
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The two main forms of the aggregates are shown by equation (2.10) and (2.11).

y1 = a1,0
a1,1x1,1 · a1,2x1,2

a1,3x1,3 · a1,4x1,4

(2.10)

y2 = a2,0
a2,1x2,1 + a2,2x2,2

a2,3x2,3 · a2,4x2,4

(2.11)

where xl, i represents an absorbance value of the spectra at given wavelength.

Simultaneously two aggregates are used to give a two-dimensional mapping of the

spectral space. Figure 2.2 shows a mapping de�ned by one possible combination

of these aggregates (Naro and Parox) in the case of the previously presented case

study. As it is illustrated on Figure 2.2, samples that are close to each other

in the spectral space are also neighbours in the space of the property variables.

Aggregates do not have a direct e�ect on the prediction performance. However,

since boundaries (boxes) of operating regimes of the models are de�ned in this

space, they have an indirect in�uence on the prediction performance. Therefore,

the main issue to project high dimensional data into lower dimension is to dis-

cover the hidden structure of the original data set and the model coverage in the

operating range. As can be seen on Figure 2.2 the visualisation highligths that

the database contains samples from two di�erent operating modes (summer and

winter diesel).
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Figure 2.2. Mapping of the spectral space by Naro and Parox aggregates. The
similarity of the �gures shows that similar spactra have similar product property.
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2.3.2 Evaluation of the mapping quality

In the previous session we show howed that the Ev required accuracy of the estim-

ation of a given property de�nes a region in the spectral space im (see Figure 2.4).

Since the structure of spectral database has an important e�ect to the estimation

performance, it would be good to design a tool that enables the accurate and

informative visualisation of these distances and topology of the data. Aggregates

neither guarantee distance preserving nor neighbourhood preserving the property

of the mapping. To provide valuable feedback about the quality of the mapping

we propose a performance measure based on the distance and neighbourhood pre-

serving properties of the mappings.

To measure the distance preservation of the mappings we propose the applica-

tion of the classical MDS and the Sammon stress function based measures. The

neighbourhood preservation of the mappings and the local and global mapping

qualities are measured by functions of trustworthiness and continuity. Since Kaski

and Venna pointed out that every visualisation method has to make a tradeo�

between gaining excellent trustworthiness and preserving the continuity of the

mapping [87] we propose a measure based on the combination of these.

A projection is said to be trustworthy when the nearest neighbours of a point in

the reduced space are also close in the original vector space. Let n be the number

of the objects to be mapped, Uk(i) be the set of points that are in the k size

neighbourhood of the sample i in the visualization display but not in the original

data space. The measure of trustworthiness of visualization can be calculated in

the following way:

M1(k) = 1−

− 2
nk(2n−3k−1)

∑n
i=1

∑
j∈Uk(i) (r (i, j)− k) (2.12)

where r(i, j) denotes the ranking of the objects in input space.

The projection onto a lower dimensional output space is said to be continuous [87]

when points near to each other in the original space are also nearby in the output

space. The measure of continuity of visualization is calculated by the following
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equation:

M2(k) = 1−
2

nk(2n−3k−1)

∑n
i=1

∑
j∈Vk(i) (s (i, j)− k) , (2.13)

where s(i, j) is the rank of the data sample i from j in the output space, and

Vi(k) denotes the set of those data points that belong to the k-neighbours of data

sample i in the original space, but not in the mapped space used for visualization.

When the mapping is based on geodesic distances, trustworthiness and continuity

are calculated based on the geodesic distances.

Both trustworthiness and continuity functions are functions of the number of

neighbours k. Usually, the qualitative measures of trustworthiness and continuity

are calculated for k = 1, 2, . . . , kmax, where kmax denotes the maximum number

of the objects to be taken into account. At small values of parameter k the local

reconstruction performance of the model can be tested, while at larger values of

parameter k the global reconstruction is measured.

The non-metric stress can be formulated as follows1:

Enonmetric =

√√√√ N∑
i<j

(d̂i,j − di,j)2/
N∑
i<j

d2
i,j, (2.14)

where d̂i,j yields the disparity of xi and xj, and di,j denotes the distance between

the vectors yi and yj.

Figure 2.3 shows an example for the dimensional reduction into two-dimensional

plain using Non-Classical Multidimensional Scaling (NMDS). The 2.3-A diagram

shows the spectra of the samples (651 pcs. in this dataset). On this view, the

samples cannot be distinguished because the di�erence between the spectra is

relatively small. On the 2.3-B diagram one point represents on sample. The

distance between two points is according to the distance of the corresponding two

spectra.

A pattern can be recognised because the samples are separated into two distinct

regimes which cannot be identi�ed directly from the spectra.

1Traditionally, the non-metric stress is often called Stress-1 due to Kruskal [87]
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Figure 2.4. Model coverage in the operating range

Besides the 2D visualisation of data can show the model coverage too. In modelling

aspect three type of samples are distinguished, inlier, outlier and nearest neighbour

distance outlier

• inlier - a spectrum residing within the range of multivariate calibration space

and the gap to the nearest neighbour is lower than a prede�ned limit (im).

• outlier - a spectrum residing out of range of multivariate calibration space.
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• nearest neighbour distance outlier - a spectrum residing within the range of

multivariate calibration space but the gap to the nearest neighbour is higher

than a prede�ned limit (im).

Figure 2.4 illustrates examples of three types of samples. The operating ranges of

the models and im nearest neighbour distance limits can be easily de�ned based

on this visualization, the number of samples and model coverage.

2.3.3 Genetic programming based visualisation

The proposed measures are proven to be useful for the selection of the best pairs

of aggregates. It can happen that the user is not satis�ed with the results, and he

or she is interested in the design of new aggregates that minimises the proposed

cost function. This task can be considered as a complex structural optimisation

problem. Since aggregates are nonlinear functions of a small subset of hundreds

of potential variables, the optimisation problem is so complex as a heuristic goal

oriented optimisation algorithm is needed.

We developed a goal oriented genetic algorithm to automate the search for the

optimal set of features (xi,j) and the structure of the aggregate functions. The ag-

gregates are represented by trees (see Figure 2.5) and we applied genetic operations

among the potential solutions to get better and better mappings.
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Figure 2.5. Decomposition of a tree to function terms

Because the algorithm of Genetic Programming is well-known, we will focus on

the speci�c parts of the algorithm. Unlike standard optimisation methods, in

which potential solutions are represented as numbers (usually vector of real num-

bers), the symbolic optimisation algorithms represent the potential solutions by
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the structured ordering of several symbols. One of the most popular methods

for representing structures is the binary tree. A population member in GP is

a hierarchically structured tree consisting of functions and terminals. The func-

tions and terminals are selected from a set of functions (operators) and a set

of terminals. For example, the set of operators F can contain the basic arith-

metic operations: F = {+,−, ∗, /}; however, it may also include other math-

ematical functions, Boolean operators, conditional operators or Automatically

De�ned Functions (ADFs). In this work, we used only arithmetic operations.

The set of terminals T contains the arguments for the functions. For example

T = {x1, . . . xn, p1, . . . pm} with xi represents the elements of possible input vari-

ables and pj represents the parameters. A potential solution may be depicted as

a rooted, labelled tree with ordered branches, using operations (internal nodes of

the tree) from the function set and arguments (terminal nodes of the tree) from

the terminal set.

Genetic Programming is an evolutionary algorithm. It works with a set of indi-

viduals (potential solutions), and these individuals build up a generation. In every

iteration (i) the algorithm evaluates the individuals and selects the best ones for

reproduction according to their �tness value, (ii) generates new individuals by

mutation (Figure 2.6), crossover (Figure 2.7) and direct reproduction, (iii) �nally

creates the new generation. The algorithm is illustrated in Figure 2.8. The �tness

function re�ects the goodness of a potential solution which is proportional to the

probability of an individual's selection.

X
112

X
119

P
1

÷

+

Parent

X
112

X
119

P
1

÷

*

O!spring

Figure 2.6. E�ect of the mutation

At the beginning of this chapter, we showed that a pair of aggregate functions

realise e�cient feature selection and transformation, but there are no guidelines

and tools that can be used to �nd the proper model structure. The proposed

method is based on a tree representation based symbolic optimisation technique

developed by John Koza [48]. This representation is extremely �exible; trees can
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Figure 2.8. Scheme of the evolution loop followed by genetic programming

represent computer programs, mathematical equations or complete models of pro-

cess systems. This scheme has been already used for circuit design in electronics,

algorithm development for quantum computers, and it is suitable for generating

model structures: e.g. identi�cation of kinetic orders, steady-state models and

di�erential equations. In [14] GP is applied to �nd simple nonlinear functions by
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minimising the distance preservation based Sammon stress function. The draw-

back of this approach is that since the models were not parametrized only simple

mappings with approximative distance preserving properties were generated.

The parameters of the functions (aggregates) have an enormous impact on the

mapping's performance. To �nd optimal values of these parameters we embedded

a nonlinear parameter optimisation step into the GP. After the GP generated the

new population of model structures a Pattern Search (PS) algorithm calculates

the optimal values of the parameters. Furthermore, the cost function is based

on the neighbourhood preserving properties of the mapping instead of distance

preserving measures since this measure much closer re�ects the application of the

visualizer high dimensional instance-based models.

The proposed approach has been implemented in MATLAB. The user should only

de�ne the high dimensional data that should be mapped, one aggregate function

which pair should be found by the optimisation, and the set of the terminal nodes

(the set of the variables of the model and set of the internal nodes - mathematical

operators. Based on our experiments we found that with the parameters given in

Table 2.3 the GP can �nd good solutions for various problems. To give consistent

results, these values have not been modi�ed during the experiments presented in

this chapter.

2.3.4 Topology preserving property based cost function

As dimensional reduction methods are based on the preservation of dissimilarities

and the neighbourhood relation of objects, the numeral evaluation of mappings

aims to measure the realisation of these principles. The neighbourhood preserva-

tion of mappings can be measured by functions of trustworthiness and continuity.

Kaski and Vienna pointed out that every visualisation method has to make a

tradeo� between gaining good trustworthiness and preserving the continuity of

the mapping [78, 79]. A projection is said to be trustworthy [44, 79] when the

nearest neighbours of a point in the reduced space are also close in the original

vector space. Let N be the number of the objects to be mapped, Uk(i) be the set

of points that are in the k size neighbourhood of the sample i in the visualisa-

tion display but not in the original data space. The measure of trustworthiness

of visualisation can be calculated by Equation (2.12). The projection into a lower

dimensional output space is said to be continuous [44, 79] when points near to each
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other in the original space are also nearby in the output space. The continuity of

visualisation is calculated by the Equation (2.13).

Trustworthiness and continuity are depending on the number of neighbours k.

Usually, the qualitative measures of trustworthiness and continuity are calculated

for k = 1, 2, . . . , kmax, where kmax denotes the maximum number of the objects

to be taken into account. At small values of parameter k the local reconstruction

performance of the model can be tested, while at larger values of parameter k the

global reconstruction is measured.

fitness = M1M2 =
1

N

N∑
k=1

M1(k)
N∑
k=1

M2(k), (2.15)

where M1 and M2 are given by Equation (2.12) and (2.13). The N is the number

of projected data-points.

2.3.5 Multi-chromosome genetic programming for optimal

2D mapping

Optimal 2D mapping based on aggregates needs special representation for aggreg-

ate pairs. However in the common GP algorithms the chromosome and individual

are identical - namely, one individual has only one chromosome. The presented

method uses multi-chromosome genetic programming, which means that each in-

dividual in the population has two chromosomes.

The Figure 2.9 shows the schematic of the genetic representation. The A and B

chromosomes produce together a �tness value (cost function) so the selection works

on the individual level and takes the A and B chromosomes together. The selection

uses roulette wheel method to generate survival probability of the individuals.

Crossover is allowed only on same type A or B chromosomes in the selected two

individuals. Let be the two selected individuals I1 with chromosomes A1, B1 and

I2 with chromosomes A2, B2. The crossover operation will be applied between A1

- A2 and B1 -B2. The crossover between A1 - B2 or A2 - B1 is forbidden.

The program �ow is detailed in the Algorithm 1.
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Figure 2.9. Multi-Chromosome representation of a 2D projection

2.4 Application examples

The �rst application study demonstrates how the proposed multi-chromosome

genetic algorithm can be used to visualise a high dimensional spectral database.

In the second example, we show that with the application speci�c �tness function

the algorithm can also be applied in classi�cation tasks.

2.4.1 Visualisation of spectral database

The �rst example focuses on product property prediction of a gas oil blending unit.

The blending unit of the Dune Re�nery (MOL Ltd, Hungary) is equipped with

an online NIR analyser. The prediction method is implemented in the TOPNIR

software framework provided by the supplier of the NIR analyser.

2.4.1.1 Visualization results

As can be seen, the database contains samples from two di�erent operating modes

(summer and winter diesel), and some of these mappings can separate these oper-

ating regimes. It is interesting to see that there are also pairs of aggregates where

correlation among them is too high to provide an informative mapping. We used

the topology preserving mapping based cost function to select the pair of aggregates

that is the best performer regarding the re�ection of the hidden structure of the

spectral database.
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Algorithm 1 Multi chromosome GP algorithm

Require: : random population P [1 . . . N ] with N individual
Require: : ps: probability of selection, pm: probability of mutation
Ensure: : ps+ pm < 1
1: procedure GP optimization

2: sel[1 . . . N ]← 0
3: k ← 0
4: while stop criteria not met do
5: for each i ∈ Pk do

6: sel[i]← roulettwheel(Pk[i])
7: end for

8: Pc = selectPairs(Pk, ps) #Select pairs for crossover
9: Pm = select(P − Pc, pm) #Select invs for mutaation
10: Pu = P − Pc− Pm #Keep invs for direct reproduction
11: for each i ∈ Pm do

12: Pm[i]← mutate(Pm[i])
13: end for

14: for each i ∈ Pc do
15: Pc[i]← crossover(Pc[i])
16: end for

17: Pn = Pu ∪ Pc ∪ Pm
18: for each i ∈ Pn do
19: fitness[i]← evaluate(Pn[i])
20: end for

21: end while

22: end procedure

23:

24: function evaluate(p)
25: while fit 6= optimal do
26: p← optimizeparam(p)
27: coords← map(p)
28: fit← costfunction(coords)
29: end while

30: return fit
31: end function

Figure 2.10 shows the mappings de�ned by these aggregates called Naro and Parox.

These aggregates were selected because this pair of equations - from the de�ned

set in TOPNIR software framework - gives the best result related to our �tness

function. The equations 2.16 and 2.17 show the mathematical expressions of these

aggregates.

yParox = 550(x84/(20x15 + x112)− 0.0686)− 12.22 (2.16)

yNaro = 130((x112/x119)− 1.2462) + 55 (2.17)
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Figure 2.10. Best Pairing from Prede�ned Aggregates,
fitness = 0.9133

As can be seen, among the x1 . . . x195 possible input variables only four variables

are used by these aggregates.

To obtain a much better model we applied GP to �nd an optimal pair for the

Parox and also for the Naro aggregate. Based on our experiments we found that

with the parameters given in Table 2.3 the GP can �nd a good solution for the

problem. These parameters are the default parameters of our toolbox, and we

have not modi�ed them during the experiments presented in this thesis.

Table 2.3. Parameters of GP in the application examples

Population size 40

Maximum number of
evaluated individuals 40000
Type of selection roulette-wheel
Type of mutation point-mutation
Type of crossover one-point (2 parents)
Type of replacement elitist
Generation gap 0.667
Probability of cros-
sover

0.3

Probability of muta-
tion

0.7

We applied genetic programming in three di�erent cases. In the �rst and second

cases we applied the one-chromosome based algorithm for looking for genetic pairs
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for prede�ned aggregates Naro and Parox separately.

We also applied Multi-Dimensional Scaling (MDS), Sammon projection and Prin-

cipal Component Analysis (PCA) dimension reduction methods (see Section A.1)

and compared the �tness values of these mappings (Figure 2.11. As this �gure

shows, the samples are separating into two di�erent clusters belonging to summer

and winter diesel fuels. We can also identify also a smaller third group, which

represents the cluster of premium fuel samples.

The mappings not only separate these groups but also preserve the neighbour-

hood relations de�ned in the original spectral space. All of these methods have

better performance than the best TOPNIR aggregate-pair. Although MDS and

Sammon's mappings (see Section A.2) have good performance, the drawback of

these methods is that these mappings have to be recalculated when new samples

are coming into the dataset.

2.4.1.2 Single-chromosome mapping - Naro

Firstly, we apply our algorithm in the single-chromosome mode to �nd an in-

formative pair to the Naro aggregate of the TOPNIR framework (see Equation

2.16) . In the single-chromosome mode, the �rst aggregate is �xed and only the

second aggregate is optimised. Figure 2.12 shows the generated mapping with the

parameters given in Table 2.3 after 1000 generation.

The equation of the generated aggregate (after mathematical simpli�cation) is:

yGNaro =
x37 + x108 + x176 − x86

2x169x145

(2.18)

We can say that the pairing of equations 2.16 and 2.18 generates more suitable

mapping related to the �tness function 2.15 than the original pairing of 2.16 and

2.17. As this �gure shows, this mapping separates the groups of samples and

de�nes the limits of local models of di�erent product types (Figure 2.4).



Chapter 2. Non-parametric modelling 38

Dim 1 [-] × 10
-3

-2 -1 0 1 2

D
im

 2
 [

-]

× 10
-4

-8

-6

-4

-2

0

2

4

6

8

10
A (MDS)

Dim 1 [-] × 10
-3

-2 -1 0 1 2

D
im

 2
 [

-]

× 10
-3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
B (Sammon)

PC 1 [-] × 10
-3

-2 -1 0 1 2

P
C

 2
 [
-]

× 10
-3

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
C (PCA)

Figure 2.11. Mappings with standard methods,
(A) Non-classical Multi-Dimensional Scaling fitness = 0.9196,

(B) Sammon projection fitness = 0.9625,
(C) Principal Component Analysis with two Principal Component fitness =

0.9192

2.4.1.3 Single-chromosome mapping - Parox

Similarly to the previous case study we also applied the single-chromosome al-

gorithm to �nd the optimal pair of the Parox aggregate. The generated mapping

can be seen on Figure 2.13.

The equation of the generated aggregate (after mathematical simpli�cation) is:

yGParox = 9
x188

x70

+ 9
x176

x84

− 5
x188

x70

− 9
x97

x156

(2.19)
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Figure 2.12. Single-Chromosome Result for the prede�ned Naro Aggregate.
fitness = 0.9470
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Figure 2.13. Single-Chromosome Result for the prede�ned Parox Aggregate.
fitness = 0.9473

This mapping has better �tness value than the original pairing of Naro and Parox

aggregates and the results obtained in the previous example.

Nevertheless, the sample groups are not separating on this mapping as were in the

previous case. The usability of mappings depends on the aim of the application.

The user has to supervise the process and review the results. When the result does

not meet the requirements in some cases, it is worth to de�ne a problem-speci�c

cost function as it will be presented at the end of this session.
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2.4.1.4 Multi-chromosome mapping

In the third experiment, the two aggregates of the mapping are simultaneously

optimised. The parameters were the same as were in the single-chromosome cases.

In multi-chromosome mode, the algorithm generates a random population with

aggregate pairs, and these pairs are managed together during execution. The

stopping criterion was the same as in single-chromosome cases such as 1000 gen-

eration.
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Figure 2.14. Multi-Chromosome Result without �xed aggregate.
fitness = 0.9686

The generated aggregates (after mathematical simpli�cation) are:

yG1 = 2x160 − 3x56 + x4 + 1x160 − x57 (2.20)

yG2 = x112 + 5x84 − 1x120 + x95x165 − x120 + x133 (2.21)

The equations are simple; they contain only a few variables and three basic oper-

ations. The �tness value is much higher than the standard mappings and single-

chromosome optimizations. Since, the aggregates de�ne explicit mapping new

sample(s) can be easly visualied contrary to Sammon mapping where the projec-

tion of the complete dataset has to be recalculated when a new sample is added.

We can say that the generated equations give a proper mapping of the spectral

database. The samples are separating into product groups and the neighbourhood
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preserving of the projection is better than any other methods or executions could

provide.

2.4.1.5 Discussion

Comparing the above results we can say that the algorithm can improve the explicit

mapping of the spectral database.

Table 2.4. Fitness values of mapping using di�erent methods.

Projection Fitness

Best Prede�ne Aggregate Pair 0.9133
Multidimensional Scaling 0.9196
Sammon Projection 0.9625
Principal Component Analysis 0.9192
Single-Chrom. Genetic (Naro) 0.9470
Single-Chrom. Genetic (Parox) 0.9473
Multi-Chromosome Genetic 0,9686

Based on the results summarised in Table 2.4 we can conclude that the mappings

of our genetic algorithm have better performance than standard dimensional re-

duction techniques.

The single-chromosome method can already improve an existing projection. This

approach is useful when we would like put aprori knowledge into the model by

de�ning at least one aggregate based on an existing model. Since we would like to

visualise the spectral database to improve nonparametric regression models, the

metric error of projection is less important than the topology preserving property

of the mapping. This suggests that the proposed method can support several goal-

oriented data visualisations by de�ning a cost function that re�ects the expected

use of the mapping. In the following session, such application example is given.

2.4.2 Application to classi�cation problem

In this study we demonstrate how the proposed algorithm can be used to sup-

port the identi�cation of classi�er models. The examined a standard data mining

benchmark dataset to present that our method is applicable for the improvement

of other data mining tools like clustering and classi�cation. Our analysis has two
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aspects. At �rst, we applied genetic programming based aggregate generation or-

der to map the dataset into 2D to show the structure of the data. For visualisation,

we used the same �tness function as it was in the case of the spectral database.

The �tness function is de�ned in equation 2.15. In the second part of the ana-

lysis we utilised c4.5 decision tree based classi�cation algorithm to improve its

performance by using of aggregate based dimension reduction as a preprocessing

step.

2.4.2.1 Wine quality dataset

The wine dataset represents the results of a chemical analysis of wines grown in

the same region in Italy but derived from three di�erent cultivars. The analysis

determined the quantities of 13 constituents found in each of the three types of

wines. The initial data set had around 30 variables, but for reason that there ware

missing values we only have a 13 dimensional version. The measured properties

are the following:

Table 2.5. List of wine quality attributes.

Number Property

1 Alcohol
2 Malic acid
3 Ash
4 Alcalinity of ash
5 Magnesium
6 Total phenols
7 Flavanoids
8 Non�avanoid phenols
9 Proanthocyanins
10 Color intensity
11 Hue
12 OD280/OD315 of diluted wines
13 Proline

In a classi�cation context, this is a well-posed problem with "well behaved" class

structures. This is a good dataset for �rst testing of a new classi�er. All attributes

are continuous, and there are no missing values. The class labels are the cultivars.

In the analysis, we applied topology (neighbourhood) preserving �tness function

as well as the classi�cation performance (ratio) �tness function.
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2.4.2.2 Visualization of wine database

To provide a reference for comparison we calculated standard mappings using the

same methods as in the previous example. Fitness values are calculated for the

k = 10 nearest neighbours using the Euclidean distance between samples. The

attribute values are normalized into the range [0, 1]. It is necessary to avoid the

e�ect the magnitudes. Figure 2.15 shows the projection generated by the three

standard methods.
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Figure 2.15. Mappings with standard methods,
(A) Non-classical Multi Dimensional Scaling fitness = 0.8673,

(B) Sammon projection fitness = 0.8547,
(C) Principal Component Analysis with two Principal Component fitness =

0.8468
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The Table 2.6 shows the �tness values of the mappings. Considering the results,

we can say that in this application Multi-Dimensional Scaling gives the better

performance with metric stress cost function. Shammon projection and PCA have

lower performance. To evaluate the genetic programming generated mapping we

use the best of the standard methods' values, which is 0.8673.

Unlike the NIR spectral dataset in this application, we can apply only the multi-

chromosome method and can generate new aggregates in pairs because literature

does not de�ne any aggregates for this dataset. Properties of the GP algorithm

are the same as they were in the case of the spectral database given in Table 2.3.

Stopping criteria is also the same, 1000 generation. Figure 2.16 shows the mapping

using the aggregates that are generated by GP algorithm.
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Figure 2.16. Multi-Chromosome Result
fitness = 0.8730

The equations of generated aggregates (after mathematical simpli�cation) are:

yG1 = 1.5x10x12 + x7 − 1.5x10 + 2.5x13x7 (x3 + x1) (2.22)

yG2 = x8 − x9x9 − 1.5 ((x1 − x4)x9) (2.23)

According to mathematical and visual evaluation we can say that the aggregate

based mapping has better performance than the standard methods. It has the

highest �tness value and the groups of samples are separating on the 2D plain.

From the user's point of view the second ascertainment is more important. The
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user should be able to di�erentiate samples and this 2D mapping gives a good

support.

Table 2.6. Fitness values of di�erent mapping methods in case of wine data-
base.

Projection Fitness

Multi Dimensional Scaling 0.8673
Pricipal Component Analysis 0.8468
Sammon Projection 0.8547
Multi-Chromosome Genetic 0.8730

2.4.2.3 Supporting classi�cation using aggregate based mapping

In this example, we used the aggregate based dimension reduction to design a

classi�cation algorithm and improve it's performance. The aim of this experiment

is to demonstrate that our GP algorithm is applicable not only for visualisation but

also for data preprocessing or feature transformation. To present this functionality

of the GP, we applied a simple decision tree based classi�er named C4.5 [88, 89].

A decision tree is a classi�er which conducts recursive partition over the instance

space. A typical decision tree is composed of internal nodes, edges and leaf nodes.

Each internal node is called decision node representing a test on an attribute or a

subset of attributes. Each edge is labelled with a speci�c value or range of value

of the input attributes. In this way, internal nodes associated with their edges

split the instance space into two or more partitions. Each leaf node is a terminal

node of the tree with a class label. In this example, we have 13 splitting attributes

(properties of wine), along with three class labels (cultivars).

We used the default properties without any change. The �tness function in this

application was the ratio of the matching classi�cations. To compare the results of

di�erent methods we calculated the confusion matrix C for classi�cation. The form

of C is given in the Equation (2.24). In the diagonal of matrix are the numbers of

correctly classi�ed samples (denoted by T ). The other matrix elements contains

the number of falsely classi�ed samples (denoted by F ).
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C =


C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

. . .
...

Cn,1 Cn,2 · · · Cn,n

 (2.24)

Let Ns is the number of samples in the dataset and Nc is the number of samples

that are classi�ed correctly.

Nc =
∑
i 6=j

Ci,j (2.25)

Ns =
∑
i,j

Ci,j (2.26)

For the genetic algorithm the �tness function is de�ned in the Equation (2.27).

fitness =
Nc

Ns

(2.27)

The program �ow is analogous to the Algorithm 1, except the inner evaluation

function. The classi�cation related application needs a special inner loop (C4.5

classi�cation) which is detailed in Algorithm 2.

Algorithm 2 Embedded clustering based �tness function with C4.5

Require: : cref Class labels
1: function evaluate(p)
2: while fit 6= optimal do
3: p← optimizeparam(p)
4: coords← map(p)
5: mod← C4.5(coords)
6: cmod ← classify(coords)
7: Nc ← count(cmod == cref )
8: fit← Nc

Ns
9: end while

10: return fit
11: end function

• optimizeparam(p) is the inner loop call of parameter optimization al-

gorithm. In our case the pattersearch method was used from MATLAB

globa optimization toolbox.
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• map(p) is the evaluation of the generated aggregate. This function calculates
the two coordinate for each data point and gives a N matrix.

• C4.5(coords) function teaches a classi�cation model.

• count call calculates the number of correctly classi�ed samples
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Figure 2.17. Multi-Chromosome of wine database and classi�cation using C4.5
algorithm. The matching ratio on 2D plain is 0.9888%

For reference, we executed several standard classi�cation algorithms, namely Lin-

ear Discriminant Analysis (LDA) [128], Quadratic Discriminant Analysis (QDA)

[129] and C4.5 algorithm in the original variable space.

In the �rst step we executed the C4.5 algorithm with all attributes. In this case,

the �tness value is 0.9213. After this experiment, we executed the GP algorithm,

and we used the generated aggregate pair as new virtual attributes. In this step,

the input of C4.5 algorithm consists these two new attributes. Properties of the

GP ware the same as they ware in the case of the spectral database and wine

dataset visualisation. The stopping criteria ware 1000 generation or the 100%

correct classi�cation or at least 50 generation without performance improvement.

For wine dataset, the third criterion was reached after 231 generation. We used 10

times cross validation where the training and test subsets ware selected and �xed

in the �rst step of execution.
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Figure 2.17 shows the mapping result of this experiment. As it can be seen, the

classi�cation �tness is 98%. We can say that a proper dimension reduction can

improve the performance of a standard classi�cation algorithm.

The equations of generated aggregates (after mathematical simpli�cation) are:

yG1 = x12 + x7 − x13 − 2x10 − x13 + x1 (2.28)

yG2 = 3x7 + x5 + x12 + (x1 + x6)x9 (2.29)

Table 2.7. Results of di�erent classi�cation algorithms. The lines 1-3 show
the confusion matrixes and �tness values of standard algorithms. The last line
contains the results of our genetic algorithm where the embedded classi�er ware

the C4.5

Method Confusion matrix Fitness value

Linear discriminant analysis

59 0 0
1 68 2
0 0 48

 0.9831

Quadratic discriminant analysis

58 1 0
1 70 0
0 0 48

 0.9888

C4.5 in original space

57 2 0
2 65 4
1 5 42

 0.9213

C4.5 in transformed space

59 0 0
0 69 2
0 0 48

 0.9888

Based on the results shown in the Table 2.7, we can say that the data preprocessing

with our genetic algorithm can improve the performance of standard classi�ers

since the worst performing C4.5 could be improved to have the same performance

like the QDA which was the best performer of the reference algorithms.
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2.5 Conclusions

Visualisation of high-dimensional data is an important task in process monitor-

ing. In this chapter, we presented a genetic programming based algorithm that

generates nonlinear functions to feature selection and transformation. We de�ned

a novel cost function that relies on the topology preserving the property of the

mappings. The resulted tool was applied to design new aggregates used for the

visualisation of high-dimensional spectroscopic databases. The results illustrated

that the algorithm can generate compact and accurate mappings having better

performance than PCA, MDS, Shammon projections or classical aggregate based

models.

Furthermore, we also applied the GP-based method to support a standard classi�c-

ation tool (C4.5) to improve its performance. We provided a transformed feature

set for the classi�er, and we demonstrated that the classi�cation performance in-

creased.

We can conclude that the developed method can map high-dimensional data into

lower dimensional space with satisfying a properly de�ned �tness function. Ap-

plication of our GP algorithm is limited by the formulation of these �tness func-

tions and computational resources. In the presented examples, the running time

were about 72 hours. Further development opportunities are the extension the

algorithm to support other types of chromosomes, and rewriting the code in a

more e�cient programming language like C/C++ and the utilization the concept

of parallel computing.
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Parametric model development

In Chapter 2 we presented novel methodologies that can support non-parametric

model development or can act as individual modelling approaches. In this chapter

we focus on parametric models and because most of the industrial solutions rely

on these.

3.1 Feature transformation based modelling for pre-

diction and visualisation

In this section, we show a novel approach for prediction and visualisation by

using the feature transformation functionality of Partial Least Squares regression

(PLS) [93]. The dataset - that we used for the demonstration of our technique is

described in Section 2.4.1. The PLS model is applied to estimate the cold �lter

plugging point, density and one property of distillation. For monitoring purposes,

the latent space of the PLS model is used. A special orthogonalisation algorithm

was applied that can visualise the data and give information about the distribution

of the operating regimes and the model's quality.

3.1.1 PLS Concept

PLS is a method for constructing of predictive models from numerous and correl-

ated input variables [92]. PLS was developed in the 1960s by Herman Wold as

50
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an econometric technique, but it became soon a widely applied tool in chemical

engineering [93]. In addition to spectrometric calibration, PLS is often applied to

monitor and control industrial processes; since complex processes can easily have

hundreds of variables [90]. PLS �nds the multidimensional direction in the X space

of the input variables that explains the maximum multidimensional variance dir-

ection in the Y space of the output variables. PLS regression is particularly suited

when the matrix of predictors has more variables than observations and when there

is multicollinearity among X variables. By contrast, standard regression cannot

be applied in these cases.

The general underlying model of multivariate PLS [133] is

X = TPT + E (3.1)

Y = UQT + F (3.2)

Let n is the number of samples, m is the number of input variables, p is the number

of output variables and l is the number of of dimensions in the latent space. The

X is an n×m matrix of predictors, Y is an n× p matrix of responses; T and U

are n× l matrices that are, respectively, projections of X (the X score, component

or factor matrix) and projections of Y (the Y scores); P and Q are, respectively,

m× l and p× l orthogonal loading matrices; and matrices E and F are the error

terms, assumed to be i.i.d. normal. The decompositions of X and Y are made so

as to maximize the covariance of T and U.

3.1.2 2D PLS based visualization

For the two-dimensional visualisation of the PLS model we applied the algorithm

that is developed by Rolf Ergon and is described in ref. [90]. In this subsection

only the most important details of this technique are summarised.

Two components that are informative for visualisation may be obtained in several

ways. One example is the principal components of predictions (PCP), where in

the scalar response case ŷ = Xb̂ normalization is used as one component, while

residuals of X not contributing to y are suggested for use as the second component.

The basic idea behind the applied mapping is illustrated in Figure 3.1. The es-

timator b̂ is found in the space that is spanned by the loading weight vectors in
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Figure 3.1. Generic graphical representation of the 2D compression of the PLS
predictors.

Ŵ = [ŵ1, ŵ2, . . . , ŵA], where A is the number of dimensions in the PLS latent

space. i.e. it is a linear combination of these vectors. It is also found in the plane

de�ned by ŵ1 and a vector w̃2 orthogonal to ŵ1, which is a linear combination of

the vectors ŵ2, ŵ3, . . . , ŵA.

The matrix W̃ = [ŵ1, w̃2] is the loading weight matrix in a two-component PLS

solution (2PLS) giving the same estimator b̂ as the solution using the original

components. What matters in the original PLS model is the space spanned by

ŵ1, ŵ2, . . . , ŵA and not the matrix Ŵ as such. In the 2PLS model this represents

the plane spanned by ŵ1 and w̃2 that is essential. Note that all samples in X

(row vectors) in the original PLS model are projected into the space spanned by

ŵ1, ŵ2, . . . , ŵA.

Samples may be further projected onto the plane spanned by ŵ1 and w̃1 form

a single score plot containing all y-relevant information. When for some reason

e.g. ŵ2 is more informative than ŵ1, a plane through ŵ2 and b̂ may be a better

alternative. It will result in any case a 2PLS model that gives the estimator b̂, as

all planes will do through b̂ that are at the same time subspaces of the column

space of Ŵ.

3.1.3 Prediction of product properties

The presented research focuses on two tasks. The �rst task is the development of

a prediction model that can estimate product properties based on spectra taken

by online NIR analysers. The second task is the development of a monitoring tool

that relies on the visualisation of the same spectra [94].
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We present our methodology on two di�erent NIR datasets. The �rst one ( ”DS1”)

is described in Section 2.4.1. The second data set ( ”DS2”) consists of 67 samples

collected from a di�erent process which is a laboratory scale experimental reactor

in the Duna Re�nery of MOL Ltd. The prediction performances of the models

are measured by the correlation coe�cient de�ned in the equation (4.7). All the

presented algorithms have been implemented in MATLAB.

Firstly the e�ect of the dimensionality of PLS model's latent space has been ana-

lysed (from 2 to 48 dimensions). To valiadate the model leave-one-out and 10-fold

cross validation techniques were applied. On Figure 3.2 the performances (correl-

ation coe�cients) [95] of the PLS models are shown.

As Figure 3.2 shows, the accuracy of the model increases rapidly by increasing the

dimensionality of the latent space from 2 to 6 dimensions. It should be noted that

the model correlation has a maximum and it decreases when the complexity of the

model is higher than the complexity of the modelled system.

Table 3.1. E�ect of the number of latent variables to the performance of the
model (correlation between the estimated and measured variables are shown).

Latent dimensions
Property 2 6 12 18 24 48

Density 0.776 0.988 0.993 0.993 0.993 0.989
CI 0.130 0.204 0.190 0.420 0.344 0.272
CFPP0 0.657 0.942 0.947 0.953 0.921 0.888
CFPP 0.516 0.755 0.769 0.728 0.703 0.610
CloudPt 0.668 0.924 0.950 0.958 0.955 0.943
FlashPt 0.408 0.596 0.878 0.901 0.895 0.854
T10 0.428 0.732 0.908 0.946 0.941 0.938
T50 0.694 0.922 0.970 0.971 0.957 0.910
T90 0.432 0.654 0.849 0.895 0.868 0.796
E250 0.660 0.879 0.955 0.954 0.927 0.904
E350 0.044 0.077 0.308 0.259 0.174 0.006
E360 0.115 0.374 0.431 0.397 0.341 0.190
PolyCycl 0.169 0.377 0.429 0.441 0.434 0.381
TotAro 0.765 0.885 0.905 0.880 0.862 0.771
VISC 0.898 0.991 0.999 0.999 0.999 0.999

The Table 3.1 and Fig. 3.2 show that the complexity of the best performer model

varies according to the estimated property. For example the best performer model

of T50 property has a 24 dim latent �eld while this value is 18 for E250. We have

utilized the Sum of Ranking Di�erences (SRD)[130] algorithm to select a common

model which has an overall good performance for all the features. SRD is a fast

and general method that compares alternative solutions to the same problem. We
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Figure 3.2. E�ect of PLS latent �eld's dimensionality

have multiple PLS models to compare with di�erent complexity that estimate the

same material properties. SRD takes the matrix of correlations where the rows

are containing di�erent properties and the columns are models with increasing

complexity.

We have executed the SRD algorithm [130] with two di�erent ideal ranking ob-

jective. In the �rst execution we used the maximum correlation of a model as

objective. Figure 3.3 shows that the PLS model with 12 latent dimensions gives

an overall good performance we take all the properties into account.
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Figure 3.3. SRD results with maximum ranking objective

3.1.4 Visualization of operating regimes

In section 3.1.2 a unique method was presented that can map the PLS latent

space into two-dimensional space by two component orthogonal combination of
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PLS predictors. Here we show how the 2D PLS could be used to visualise the

operating regimes of the modelled process. We compare the method with Principal

Component Analysis and Topological Near-Infrared Modelling, which was detailed

in Chapter 2.
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Figure 3.4. Visualization of Diesel Blending spectral database using 2D PLS
compression.

(A) using PLS regression for Cloud Filter Plugging Point property (CFPP)
(B) using PLS regression for Density property

Figure 2.11 C shows the mapping of PCA with the �rst two principal components

[96, 132]. We can say that PCA can separate the operating regimes similarly to

the topological models as it was presented in Chapter 2.

Results of 2D PLS can be seen on Figure 3.4 A and B. The PLS model is more

informative since it also utilises the output variables for the mapping. Figure

3.4 A shows the mapping using the Cloud Filter Plugging Point as the estimated

property. Comparing this mapping with the mapping of obtained using Density

(see Figure 3.4 B) one can easily see that the operating regimes have much more

impact on the density than to the CFPP.

As it can be seen PLS correctly re�ects the operating regions and can detect more

e�ectively the outliers than the aggregate based mappings.

In the second part of the case study we demonstrate how the outlier samples can

be identi�ed in the mapped space. As it can be seen on the Figure 3.5 the DS2

contains two samples which are far from the normal operational range (top right

corner). The aggregate based mapping can not identify these samples exactly; it

�nds only one outlier of the two.
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As we show on Figures 3.6 A and B the 2D PLS gives detailed information for the

outlier detection. Comparing these plots and PCA (Figure 3.5) we can conclude

that the 2PLS technique is the most e�cient to detect outliers in the spectral or

the property space.

Such analysis gives information to the user not only about operating regimes but

also about quality of the models; the presented mapping can give hints the modeller

how to enhance model performance by the proper selection of the training data.
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Figure 3.5. Visualization of Distillation spectral database by PCA

Dim 1

0 0.2 0.4 0.6 0.8 1

D
im

 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A (D5 °C)

Dim 1

0 0.2 0.4 0.6 0.8 1

D
im

 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B (Density)

Figure 3.6. Visualization of Distillation spectral database using 2D PLS com-
pression.

(A) using PLS regression for D5 distillation property
(B) using PLS regression for Density property
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3.1.5 Conclusion

On-line analysers use indirect measurement combined with a prediction model to

support process control and monitoring. Several multivariate models and meth-

ods can help the prediction of product properties based on NIR spectra. Model

development cannot be a fully automated, human supervision and intervention is

always needed. We have proven that it is very informative to visualise the hidden

structure of the complex spectral database in a low-dimensional space because it

could support the model development. Industrial applications require easily im-

plementable, interpretable and accurate projection. TOPNIR utilises nonlinear

heuristic functions (aggregates) for the mapping of spectra as a high-dimensional

object. We proposed a much more sophisticated approach that can be used sim-

ultaneously for prediction and visualisation. We adapted a technique that allows

the application of PLS also for visualisation of a spectral database.

Datasets taken from the Duna Re�nery of MOL Ltd were analysed. The PLS

model is applied to estimate cold �lter plugging point, density and one property

(E250) of distillation. The main bene�t of this technique is that it allows us to add

extrapolation functionality to calculate product properties of samples that are out

of the known operating region. The proposed PLS based model can simultaneously

predict the unmeasured material properties and monitor the state of the process.

The monitoring is realised in orthogonal two-dimensional plots. These plots can

also be used for the e�cient identi�cation of outliers.
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3.2 Feature Selection Based Root Cause Analysis

for Energy Monitoring and Targeting

Energy Monitoring (EM) systems are based on the monitoring of the di�erence

between targeted and measured energy consumption. Data-driven dynamic tar-

geting models can be used to estimate values of key energy indicators (KEI). In

some cases it is di�cult to determine, which process variables in�uence the KEIs.

We developed an automated root cause analysis (RCA) technique to �nd the most

important driving factors of the energy e�ciency. The proposed concept is based

on the application of feature selection algorithms. We applied Orthogonal Least

Squares (OLS) and Random Forest Regression (RFR) to �nd a proper set of the

input variables for the targeting models. The concept of the resulted energy mon-

itoring system is applied at the Duna Re�nery of MOL Hungarian Oil and Gas

Company. The basic concepts of energy monitoring are described in Section 1.3.2.

In some cases, it is di�cult to determine which process variables in�uence the

KEIs. In these situations, the input variables of the targeting models should

be selected based on root cause analysis of the operation. Unfortunately, this

procedure is subjective, time-consuming and the good prediction performance is

also not guaranteed.

Root Cause Analysis (RCA) is a method of problem-solving that identi�es the root

causes of faults and problems. We applied the RCA approach to �nd the driving

factors of energy e�ciency of process plants. There are many ways to implement

RCA. For example, Bayesian networks can be applied to determine the root causes

of deviations during the operation of complex processes [99]. Digraph models

were proven to be useful to identify discrete events (faults) [101]. Multivariate

statistical process monitoring (MSPM) with some extensions is a useful technique

to isolate not only the e�ects of the faults but also the underlying causes. For this

purpose, MSPM and "fuzzy-signed directed graphs" were combined to identify

the root causes [102]. These methods have developed for discrete event systems.

Building energy monitoring models requires knowing the driving factors of the

energy e�ciency [138]. The techniques as mentioned above are designed to analyse

discrete events and do not manage continuous process variables. To support root

cause analysis of energy e�ciency, we proposed a fully automated feature selection

based approach.



Chapter 3. Parametric Modells 59

The concept of the resulted energy monitoring system is applied at the AV2 unit

of the Duna Re�nery of MOL Hungarian Oil and Gas Company. The Key Energy

Indicators were calculated based on one-year historical data because we assumed

that the range of this dataset is broad enough to cover operation ranges with high

and low energy consumption periods and contains information about the signi�c-

ant malfunctions. The results show that the proposed approach can determine

useful and informative sets of driving factors having a large impact on the energy

e�ciency.

3.2.1 Targeting model based energy monitoring

Activity-based energy targets are usually calculated by linear regression models,

ŷk = (xk, θ) =
[
xT
k 1
]
θ (3.3)

where the calculated output ŷi is the linear combination of process variables

(drivers), xk = [x1,k, . . . , xn,k] , where k represents the k-th sampling time and

n stands for the number of process variables could have e�ect to the energy con-

sumption. At the development of this model it is important to ensure that data are

synchronised as closely as possible with the required assessment intervals. Based

on a synchronized set of data {yk, xk} , k = 1, . . . , N linear least squares method

can be applied to �nd optimal parameters of the model θ that minimizes the∑
(yk − ŷk)2 quadratic cost function.

θ =
(
XTX

)−1
XTy (3.4)

where X is n×N matrix of historical process variables and y is an N×1 vector of

measured output variable (energy consumption or e�ciency measure). When the

predicted consumption ŷk is higher than the measured value yi; the technology is

considered to be e�cient regarding historical data. The relation ŷk < yk suggests

that the technology could work with lower energy consumption.
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3.2.2 Orthogonal least squares based feature selection

The performance of data-driven targeting models depend on a complex set of

process variables. When no proper a priori knowledge is available for the selection

of a KEI model's driving factors, feature selection algorithms can be used for

sophisticated and automated root cause analysis.

The OLS algorithm is an e�ective tool to determine, which terms are signi�cant

in a linear-in-parameters model since it is based on the error reduction ratio (err)

which is a measure of the decrease in the variance of output by a given term.

In the following the details of this algorithm are presented. The compact matrix

corresponding to the linear-in-parameters model is y = Xθ + e, where the X is

the regression matrix, θ is the parameter vector, e is the error vector. The OLS

technique transforms the columns of the X matrix into a set of orthogonal basis

vectors to inspect the individual contributions of each term.

The OLS algorithm decomposes the regression matrix X orthogonally as X = WA,

where A is an n× n upper triangular matrix (it means Ai,j = 0 if i > j) and W

is an N × n matrix with orthogonal columns in the sense that WTW = D is a

diagonal matrix. (N is the length of y vector and n is the number of regressors.)

After this decomposition one can calculate the OLS auxiliary parameter vector g

as

g = D−1WTy (3.5)

where gi is the corresponding element of the OLS solution vector. The output

variance (yTy) can be explained as

yTy =
M∑
i=1

g2
iw

T
i wi + eTe (3.6)

The error reduction ratio, [err]i of the i-th input variable can be expressed as

[err]i =
g2
iw

T
i wi

yTy
(3.7)
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This ratio o�ers a simple mean to order and select the model terms of a linear-

in-parameters model according to their contribution to the performance of the

model.

3.2.3 Random forest regression based feature selection

The drawback of OLS is that it assumes a linear relationship between the inputs

and the output. Regression trees are simple, transparent and easily interpretable

nonlinear models. The combination of these trees results in a forest of these

models. When the regression trees are statistically independent, the average of

these models' prediction will be better than the prediction of the individual models.

Furthermore, the analysis of the forest can be used to select the most important

process variables. In the following the theoretical background of this technique

will be presented.

The concept of random forest was developed by Leo Breiman [103]. Andy Liaw

implemented Breiman's concept in R. We used the MATLAB hosted version of

this R package. The method combines Breiman's "bagging" idea and the random

selection of features. Random forests for regression are formed by growing trees

depending on random matrix Θ. The Θ consist of a number of independent

random integers between 1 and M , where M is the number of trees in the forest.

The nature and dimensionality of Θ depends on it's use in the tree construction.

A random forest is a predictor consisting a collection of tree-structured predictors

{hi(x,Θi), i = 1 . . .} where the Θk are independent identically distributed random

vectors and each tree cast a unique estimation for output ŷ at input x. The output

values are numerical and we assume that the training set is independently drawn

from the distribution of the given y,X dataset. The mean-squared generalization

error for any numerical predictor hi(X) = h(X,Θi) is

EX,y

(
(y − hi (X))2) (3.8)

where EX,y denotes the expected value and (y − h(X))2 = (y − h(X))T (y − h(X)),

and we use this substitution in the following. The random forest predictor is

formed by taking the average over M of the trees {h(x,Θi)}. Use of the proof

[103] of Almost Sure Convergence theorem, as the number of the trees in the

forest goes to in�nity, mean-squared generalization error goes to a limit value

almost surely as:
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EX,y

(y −
∑M

i=1 h (X,Θi)

M

)2
→ EX,y

(
(y − EΘ (h (X,Θ)))2) (3.9)

Denote the right hand side (limit value) of 3.9 as PE∗(forest) - the generalization

error of the forest. De�ne the average generalization error of a tree as:

PE∗ (tree) = EΘ

(
EX,y

(
(y − h (X,Θ))2)) (3.10)

The concept is based on the fact PE∗(forest) < ρ̄PE∗(tree), where ρ̄ (3.11)

is the mean value of the correlation between the residuals (y − h (X,Θ)) and

(y − h (X,Θ′)), where Θ, Θ′ are independent.

ρ̄ =
EΘ (EΘ′(ρ(Θ,Θ′)S(Θ)S(Θ′)))

EΘΘ′(S(Θ)S(Θ′))
(3.11)

where S (Θ) =
√
EX,y

(
(y − h (X,Θ))2) is the standard deviation of prediction

errors.

To obtain accurate regression forest, this theorem requires a low correlation between

residuals and low error trees. The random forest decreases the average error of

the trees employed by the factor ρ̄. The randomization employed needs to aim at

low correlation [103].

To rank the process variables and select a proper subset we used the importance

measures which are de�ned in the following way. The �rst measure is computed

from a random permutation of the data: For each tree, the prediction error (MSE)

is recorded. Then the same is done after permutation of predictor variables. The

di�erence between the two is then averaged over the trees and normalised by the

standard deviation of di�erences. If the standard deviation of the di�erences is

equal to 0 for a variable, the division is not done (but the average is almost always

equal to 0 in that case) [103]. The second measure is the total decrease in node

impurities from splitting on a variable. We used the �rst common form [131] of

impurity, which is measured by the residual sum of squares and averaged over all

the trees.
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3.2.4 OLS based feature selection on fuel gas consumption

The proposed technique is applied to support the targeting model development

project of the MOL Hungarian Oil and Gas Company. In this thesis results re-

lated to two Key Energy Indicators (KEIs) of the AV2 plant are presented. The

applicability of the orthogonal least squares based feature selection is demonstrated

on the total fuel gas consumption of the AV2 plant's furnaces, while the random

forest based feature selection is applied to model the plant-wide electric power

consumption of AV2.

The OLS model was used to �nd the most relevant variables in�uencing the gas

consumption of the furnaces among 620 historical process variables. Figure 3.7

shows how the accuracy of the model increases by adding more and more input

variables. The variables are introduced to the model by the decreasing series

of relevance given by OLS. The model performance is measured by the model

correlation (R2). Figure 3.7 shows that the model's performance which is built

using the �rst two most relevant variables has already R2 = 0.88 correlation.
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Figure 3.7. Model accuracy for fuel gas consumption in function of the in-
creasing number of the relevant input variables

The �rst �ve variables - that are selected by OLS - make a compact su�cient

model because the fuel gas consumption can be predicted with R2 = 0.92. These

most important variables are:

1. Main boiler temperature

2. Temperature of heating steam

3. Liquid level in the main boiler

4. Density of fuel gas
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5. Total crude oil feed

This list of variables re�ects the knowledge and expertise of the process engineers.

However, it should be noted that statistical correlation does not necessarily result

in informative features, we often neglected statistically signi�cant variables from

the �nal model based on the suggestions of the engineers. Therefore, the proposed

tool should be considered as only a tool for decision support. A proper way to use

OLS based feature selection is the following:

1. Let OLS select a large set of variables.

2. Among these potential inputs select a smaller set based on prior knowledge

of the process.

3.2.5 RF based feature selection on electric power consump-

tion

We used random forest feature selection to select a proper set of variables, which

are relevant to the complete electric power consumption (KEI) of the AV2 unit.

Based on prior knowledge of the process engineers we know that almost all the

electric power is consumed by the main process pumps (total feed, inlet tower

streams, cooling water and product streams). Based on this prior knowledge we

expect that the feature selection algorithm should highlight the importance of �ow

rates and pressures.

For our calculations we used the MATLAB hosted R package implementation of

the FORTRAN77 program created by Leo Breiman. The forest contained 500 re-

gression trees. Each tree was grown using �ve randomly selected process variables

from the original variable set. Figure 3.8 shows the normalised importance of

each variable in alphabetical order (top), and ordered according to their import-

ance level (bottom). As the results show, the relevance of variables is decreasing

exponentially.

The total crude oil feed, the inlet pipe pressures and the �ows of main process

streams were proven to be the most important variables which ordering was also

con�rmed by the process engineers. We analysed the prediction performance of

the random forest using validation samples. On the validation set, the model
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Figure 3.8. Relevance of process variables given by random forest regression

correlation was excellent, R2 = 0.97. The selected variables were also used to

formulate a linear model. The linear model with the ten most signi�cant variables

was also quite accurate, R2 = 0.92. Based on the opinion of engineers and the

patent related to feature selection for energy monitoring [104], the model having

R2 = 0.92 satis�es the minimum needs.

3.2.6 Conclusions

Energy Monitoring is based on monitoring the di�erence between targeted and

measured energy consumption. In some cases, it is problematic to develop accurate

and informative targeting models since it is di�cult to determine, which process

variables in�uence the KEIs. We developed an automated cause analysis (RCA)

technique to �nd the most important driving factors of energy e�ciency. The

proposed concept is based on the application of feature selection algorithms. We

examined two regression methods with feature selection capability for energy mon-

itoring applications. We applied orthogonal least squares regression and random

forest regression to predict key energy indicators and select the most important

process variables which are relevant to the KEIs. The applicability of these meth-

ods was demonstrated on two KEI of AV2 plant in MOL Duna Re�nery. Based
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on the results we can conclude that both methods can predict the KEI values and

can select the most relevant process variables.

3.3 Parametric model based statistical process con-

trol

Following the aim of energy monitoring that is described in Section 1.3.2 We

developed partial least squares regression based targeting models that predict the

expected value of energy consumption and also visualise the operating regimes

of the process. The development of PLS models could be problematic because a

preliminary feature selection should be included in the development.

Since the complex set of process, variables determines Key Energy Indicators

(KEIs) we applied Self-Organizing Map (SOM) models that support visualisa-

tion and feature selection of the process variables. Local linear target-models of

di�erent operating regions can be automatically determined based on the Voronoi

diagram of the codebook of the SOM. We used Statistical Process Control (SPC)

techniques to monitor the di�erence between the targeted and the measured energy

consumption. We applied the concept of the resulted energy monitoring system at

Heavy Naphtha Hydrotreater and CCR Reforming Units of MOL Hungarian Oil

and Gas Company.

3.3.1 Basic concepts

Since many companies have built integrated databases to store historical process

data from all plants, and in many cases no detailed knowledge is available about

the process we should build data driven (black-box or aposteriori) models. The

basics of energy monitoring are detailed in Section 1.3.2.

Self-Organizing Maps, which we use for modelling and data visualisation, per-

forms a topology preserving mapping from high dimensional space onto a two-

dimensional grid of neurones so that the relative distances between data points

are preserved. As SOM provides a compact representation of the data distribu-

tion, it has been widely applied in analysis and visualisation of high-dimensional

data [47]. It should be noted that since historical process data is extensively used
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our methodology can be considered as a mixture of precedent and activity-based

targeting approaches.

The monitoring of the process is based on the di�erence between the targeted

and the measured energy consumption (see Section 1.3.2). To provide a sophist-

icated analysis of this deviation we propose the application of statistical process

control (SPC) techniques [105]. Control charts are industry-accepted methods to

ascertain the in-statistical-control status of the process [52]. As we will show this

technique - connected to the data-driven targeting models - is also suitable to

provide informative feedback about the energy consumption.

3.3.2 SOM based models of energy monitoring

Data driven activity-based energy monitoring is based on the predicted value of

energy consumption, ŷk. The structure of the model is given in Equation (3.3),

where the calculated output ŷk that represents an energy consumption or e�ciency

related variable is modelled by the linear combination of process variables (drivers),

xk = [x1,k, . . . , xn,k]], where k represents the k-th sampling time and n stands for

the number of process variables having signi�cant e�ect to energy consumption.

Based on a set of data zk = [yk,xk] , k = 1, . . . , N least squares method can be

applied. In this case the application of operating regime based models could be

bene�cial:

ŷk

s∑
i=1

ωi (xk)
(
aT
i xk + bi

)
(3.12)

where ωi (xk) describes the operating regime of the i-th local linear model de�ned

by the parameter vector θi =
[
aT
i bi
]T
. Piecewise linear models are special case

of operating regime based models. If we denote the input space of the model by

T : z ∈ T ⊂ Rn, the piecewise linear model consists of a set of operating ranges

T1, T2, . . . , Ts which satisfy T1 ∪ T2 ∪ · · · ∪ Ts = T and Tj ∩ Ti = ∅ when i 6= j.

Hence, the model can be formulated as

If xk ∈ Ti then ŷk = [xk1] θi (3.13)
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where θs denotes the parameter estimate vector used in the i-th local model.

SOM performs a topology preserving mapping from high dimensional space onto

map units so that relative distances between data points are preserved. The map

units (also referred as neurones or codebooks) usually form a two-dimensional

regular lattice. Each neuron i of the SOM is represented by an l-dimensional

weight, or model mi = [mi,1, . . . ,mi,l]. These weigh vectors of the SOM form a

codebook. The partitioning is obtained by the Voronoi diagram of the codebook

of the SOM. Our idea is to quantize the available input-output data to get a set

of operating regimes and use the obtained regimes to identify parameters of local

targeting models. SOM can be used to predict the output ŷk of the process from

the input vector xk. Regression is accomplished by searching for the Best Matching

Unit(BMU) using the known vector components xk (please remember SOM was

trained based on ~zk = [yk xk]. Since the output of the system is unknown, the

BMU is determined as

i0 = arg min ||pi − xk|| (3.14)

where pi = [mi,2, . . . ,mi,n+1]. The output of the model can be estimated by

the local model of BMU, which could be piecewise constant model (ŷk = di) or

piecewise linear regression model
(
ŷk =

[
xT
k 1
]
θi
)
. (1) The piecewise constant

output model results a di constant value for each Voronoi cell; (2) The piecewise

linear regression model estimates yk using the parameter estimate vector θi, where

i is the index of BMU.

3.3.3 Results and discussion

The concept of historical data based energy monitoring system is demonstrated

at Heavy Naphtha Hydrotreater and CCR Reforming Units of MOL Hungarian

Oil and Gas Company. The plant's heating steam production is analysed as a

demonstrating an example. The steam is produced in a furnace operated by fuel

gas from the fuel gas network of the re�nery. The energy content is calculated

based on �ow, density, heat capacity and temperature of the steam, so the unit of

production is [GJ/h]. The targeting model is identi�ed based on one-year historical

data.
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Figure 3.9. Self-Organizing Maps of process variables related to the Key En-
ergy Indicator (KEI). The �rst Map shows the dissimilarity matrix (Euclidean
distance) of Voronoi Cells. The 2nd Map show the Key Energy Indicator (KEI)

that is the heating steam production.

We applied Self-Organizing Maps to identify the most relevant driving factors of

heating steam production. These maps (matrixes) are useful to �nd correlated

variables. Figure 3.9 compares process variables related to the Key Energy Indic-

ator (KEI). We ranked the variables based on the similarity of maps measured by

the absolute value of the 2D correlation coe�cient (C2) of two matrixes A and B

given by Equation (3.15)

C2 =
∑
i

∑
j(Ai,j−Ā)(Bi,j−B̄)√(∑

i

∑
j(Ai,j−Ā)

2
)(∑

i

∑
j(Bi,j−B̄)

2
) (3.15)

Ā =
∑
i

∑
n Ai,j
ij

B̄ =
∑
i

∑
nBi,j
ij
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Using this method we can also �nd the variables with opposite behaviour to KEI,

which is as well important as the variables with same behaviour (red -> blue is

similar to blue -> red). As Figure 3.9 shows the Process Variable 1 is the most

similar to the Key Energy Indicator, 2nd is Variable 7, the 3rd is Variable 8, etc

Following the industrial practice, we applied PLS regression to obtain a targeting

model. We identi�ed a SOM model based on the same one-year historical data.

This model estimates the steam production using the method described in the

previous section.

y

ŷ
Heatin g Steam (PL S model)

y

ŷ

Heatin g Steam (SO M m odel)

Figure 3.10. Time series of the latent variables and modelling error of PLS
model.

We can identify the operating regimes of the technology and identify a local model

for each Voronoi cell. Historical data related to the regimes are used to build local

models. The prediction performance and the SPC charts based on this targeting

model are shown in Figure 3.11. It should be noted that this nonlinear model gives

almost the same prediction performance than the linear PLS model. Figure 3.10
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shows the correlation diagrams of the examined models. SOM based model has

almost the same result than PLS, but it can also show the operating regimes (See

Figure 3.9).

The statistical process control practice provides useful tools [105] for monitoring

like I-Charts and MR-Charts, which are well supported in the most monitoring

systems. To examine the prediction error we used standard I-Charts with control

limits. The limits were calculated using the six-sigma rule. With SPC we can

detect outlier samples [105] and indicate that the technology could operate more

e�ciently.
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Figure 3.11. I-Chart of the modelling error for the two di�erent models (PLS,
SOM). The control limits are also shown determined using six-sigma rule. It
should be noted that tracking only single value of energy consumption does not

give detailed information about the operating situation.
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3.3.4 Conclusion

Energy monitoring improves energy e�ciency in process plants by helping plant

operators, engineers and managers to track actual and target energy consumption.

Energy monitoring is based on the comparison of Key Energy Indicators (KEIs)

and their target values. These targets depend on operating regimes determined by

a complex set of process variables. We developed advanced data-driven modelling

techniques to support on-line targeting. We have utilized Self-Organizing Map and

partial least squares to predict key energy indicators. We have shown that SOM

can identify operating regimes and generate local models for di�erent operating

regimes. SOM is applicable also for feature selection based on the similarity meas-

ure between property maps. In addition we have used orthogonal least squares

and random forest regression methods to select and rank input variables. Based

on the selected subsets of energy driving factors we have identi�ed compact and

su�cient targeting models. Summarizing the results, we have combined regression

and feature selection methods resulting a set of tools than can be e�ectively used

together to support the systematic improvement of energy e�ciency.



Chapter 4

Model validation and time-series

segmentation

Process performance monitoring is based on models. In Chapter 2 and 3 we

presented several techniques and methods to build non-linear models that include

multiple operating modes and process transitions. Considering the process changes

that are common in the chemical industry, we can improve the modelling perform-

ance if we build separate models for the di�erent operating modes and regimes.

It could be bene�cial to use simpli�ed linear models for various operation regimes

instead of a complex non-linear one that covers all of those and use these local

linear models for fault detection and analysis.

Monitoring plant performance at process transitions can help to reduce the o�-

speci�cation production. Identi�cation of critical process disturbances and the

early warning of process malfunctions or plant faults can also reduce losses. Manual

process supervision is largely based on visual monitoring of characteristic process

trends. Although humans are excellent at visual detection of such patterns, it is a

di�cult problem for a control system software. This issue is particularly challen-

ging when the process is complex, and large sets of multivariate signals should be

monitored. The �rst step toward building an automated decision support system

is the intelligent analysis of archive process data [106, 107].

We use time series segmentation for the identi�cation of the operating modes.

Time series segmentation is often used to extract internally homogeneous segments

from a given time series to locate stable periods of time, to identify change points

or to compress the original time series into a more compact representation [108].

73
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Most time series segmentation algorithms manage only one time-variant variable

and do not care on the relation between those [107]. An univariate time series can

contain data in a time-ordered structure originated from a given sensor. Although

accurate and frequent measurements are taken, it happens often that even the

main changes of the system cannot be detected from the signal of a single sensor.

This is because sometimes the changes in the correlation structure between the

variables (sensor signals) are interesting since such fused information re�ects the

hidden change of the system. This chapter deals with the problem of multivariate

time series segmentation and shows new algorithms that can manage time-varying

multivariate data of sensors and analysers to detect changes in the state of the

monitored processes.

4.1 Time series segmentation

A time series T = {xk = [x1,k, x2,k, . . . , xn,k]T |1 ≤ k ≤ N} is a �nite set of

N n-dimensional samples labelled by time points t1, . . . , tN . A segment of T is

a set of consecutive time points S(a, b) = {a ≤ k ≤ b}, xa,xa+1, . . . ,xb. The c-

segmentation of the time series T is a partition of T to c non-overlapping segments

Sc
T = {Si(ai, bi)|1 ≤ i ≤ c}, such that a1 = 1, bc = N , and ai = bi−1 + 1. In

other words, an c-segmentation splits T to c disjoint time intervals by segment

boundaries s1 < s2 < . . . < sc, where Si(si, si+1 − 1).

The goal of the segmentation procedure is to �nd internally homogeneous segments

from a given time series. To formalize this goal a cost function cost(S(a, b)) -

describing the internal homogeneity of individual segments - should be de�ned.

Usually this cost function cost(S(a, b)) is de�ned based on the distances between

the actual values of the time series and the values given by a simple function

(constant or linear function, or a polynomial of a higher but limited degree) �tted

to the data of each segment. For example in [32, 123] the sum of variances of

variables in the segment was de�ned as cost(S(a, b)):

cost(Si(ai, bi)) =
1

bi − ai + 1

bi∑
k=ai

‖ xk − vi ‖2, (4.1)

vi =
1

bi − ai + 1

bi∑
k=ai

xk,
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where vi is the mean of the segment.

Cost functions of several segmentation algorithms can be minimized by dynamic

programming (e.g. [32]), which is unfortunately computationally intractable for

many real data sets. Hence, usually one of the the following heuristic approaches

are followed:

• Search for in�ection points:

Searching for primitive episodes located between two in�ection points [106].

• Sliding window:

A segment is grown until it exceeds some error bound. The process repeats

with the next data point not included in the newly approximated segment.

For example a linear model is �tted on the observed period and the modelling

error is analysed [46].

• Top-down method:

The time series is recursively partitioned until some stopping criteria is met

[46].

• Bottom-up method:

Starting from the �nest possible approximation, segments are merged until

some stopping criteria is met [46].

• Clustering based method:

Time series segmentation may be viewed as clustering, but with a time-

ordered structure. In ref. [124] a new fuzzy clustering algorithm has been

proposed, which can be e�ectively used to segment large, multivariate time

series.

In data mining, the bottom-up algorithm has been used extensively to support a

variety of time series data mining tasks [46], hence in this thesis this approach will

be followed. The algorithm begins with creating a �ne approximation of the time

series and iteratively merge the pair of segments having the lowest merge cost until

a stopping criteria is met. When adjacent segments Si and Si+1 are merged, the

costs of the new segment's merging with it's left Si−1 and right (S ′i+1 neighbours

must be calculated. The S ′i+1 in k + 1-th is equivalent to Si+2 in k-th iteration.
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4.2 Regression based time series segmentation

The �rst method we developed is a regression model based times series segmenta-

tion algorithm. The method follows the strategy of a bottom-up scheme to detect

changes in multivariate time-series of model inputs (drivers) and outputs (energy

consumption or e�ciency measure). The algorithm works o�ine and requires his-

torical process data for a period when the operating regimes and modes occurred.

As we mentioned in Section 4.1, time series segmentation algorithms need cost

functions or goals to be reached during the segmentation. The proposed seg-

mentation algorithm is based on simple least squares regression since we used this

cost function to evaluate the quality of our models. In the following sections, we

describe the cost function and the algorithm in details.

4.2.1 Cost function formulation

Since segments are de�ned to represent homogeneous periods of operation in which

a local linear model can e�ciently describe the functional relationships among

process variables, we de�ned the cost function based on the mean square error of

the local models:

costi (ai, bi) =
1

bi − ai + 1

bi∑
k=ai

(yk − ŷk)2 (4.2)

=
1

bi − ai + 1

bi∑
k=ai

(
yk − xT

k θi
)2

where ŷk is given by the Equation (3.3) and the θi parameters are determined

based on a dataset of the segment,

θi =
(
XT

i Xi

)−1
XT

i yi (4.3)

where Xi = [xai , . . . ,xbi ]
T and yi = [yai , . . . , ybi ]

T .

The algorithm automatically �nds the segment borders and the related model

parameters. The user has to evaluate only the result of segmentations and analyse



Chapter 4. Modell Validation 77

the di�erences among the model parameters. Since the method uses linear regres-

sion model it simultaneously determines the θi parameters of the models used to

approximate the behaviour of the system in the segments and the ai, bi borders of

the segments by minimising the sum of the costs of the individual segments:

costcT =
c∑

i=1

costi (4.4)

To reduce the computational cost of a segmentation we use the Bottom-Up heur-

istic approach. The pseudo code of Bottom-Up strategy is shown in Algorithm

3.

Algorithm 3 Bottom-Up segmentation algorithm

1: procedure BU�Segmentation

2: for each segment pair i ∈ [1, N − 1] do

3: #Find the cost of merging for each pair of segments
4: mergecost(i) = cost(S(ai, bi+1))
5: end for

6: while min(mergecost) < maxerror do
7: #Find the cheapest pair to merge:
8: i = argmini(mergecost(i))
9:

10: #Merge the two segments, update the ai, bi boundary indices, and re-
calculate the merge costs:

11: mergecost(i) = cost(S(ai, bi+1))
12: mergecost(i− 1) = cost(S(ai−1, bi))
13: end while

14: end procedure

This algorithm is quite powerful since the merging cost evaluations requires simple

identi�cation of Linear Regression models, which is easy to implement and com-

putationally cheap. Because of this simplicities the proposed approach can be con-

sidered as a multivariate extension of the piecewise linear approximation (PLA)

based time series segmentation and analysis tools developed by Keogh [46, 118].

4.2.2 Application in energy monitoring

The concept of the resulted data based energy monitoring system is demonstrated

at Heavy Naphtha Hydrotreater and CCR Reforming Units of MOL Hungarian

Oil and Gas Company. The same dataset was evaluated as was in the Chapter 3.
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Figure 4.1. Correlation diagram of measured and predicted energy consump-
tion. The black line shows the ideal prediction; the dashed lines show Q levels
based on standard deviation (σ) of prediction error (y − ŷ). Colored lines belong

to 1σ, 2σ, 3σ Q levels.

The fuel gas consumption target was calculated based on one-year historical data.

We scaled the data into [0 1] interval since the nominal values of process variables

are con�dential. The following drivers of the fuel gas consumption were identi�ed

based on the analysis of the technology and data: total feed, inlet temperature,

the density of fuel gas and ambient temperature. These drivers were selected by

feature selection algorithms that were presented in Chapter 3. The result of the

data the mining procedure was validated by process experts.

We applied linear least squares regression to obtain the parameters of a model

that covers the whole operation period. This model is referred as a global model

since it is based on the entire available dataset, segmentation was not applied

for the selection of relevant operating regimes. Figure 4.1 compares the targeted

(predicted) energy �ows and actual data of a model which has the parameters that

are given in Table 4.2.

The correlation diagram helps to qualify the energy e�ciency of the technology.



Chapter 4. Modell Validation 79

When all the data is taken into account, the target model estimates the average

energy consumption. This means when the estimation of the target model is higher

than the measured value the process operates well. Otherwise, it should be checked

what is the reason of a higher consumption than the expected with the current

operating parameters. For a sophisticated decision support, the con�dence of the

model should be taken into account. In this case for an estimated target value,

ŷ , [ŷ − δ (y) . . . ŷ + δ (y)] bounds (related to a given con�dence level α) can be

calculated.

The con�dence interval calculation is based on Student distribution with n − 2

degree of freedom. Where 1− α is the con�dence level (probability).

ŷ∗ = ŷ ± t1−α
2
∗ s′ŷe = ŷ ± δ (ŷe)

P (y + ∆ye − δ (y) < ŷ < y + ∆ye + δ (y)) = 1− α (4.5)

s′ŷe = σ2
e

√
xT
k (XTX)−1 xk, se =

√∑
(y − ŷ)2

N − 2
(4.6)

As this consideration shows, the tuning (how aggressive or conservative the tar-

get model will be) is realised by the shifting of the predicted output based on

the variance of the modelling error. The con�dence bound is also based on this

measure. To reduce this variance and increase the model accuracy the abnormal

consumption patterns must be �ltered out from the pool of data related to di�erent

operating regimes.

Before the application of the proposed segmentation algorithm, we also applied

PLS model to visualise the operating regimes. PLS is a method for construct-

ing predictive models from a large number of correlated input variables and 2D

visualisation of high dimensional process data as we described in Chapter 3. It

should be noted that the performance of a PLS model is slightly worse than a

linear regression model (see Table 4.1) due to the regularisation e�ect of the lat-

ent variables. The latent variables of the PLS model can be used to visualise

the operating regimes in two dimensions. As Figure 4.2 shows, several operating

regimes can be distinguished. Operating regimes requiring more energy than the

average value are well separated from operating regimes requiring energy less than

the average. We can assume that the process was operated under signi�cantly
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di�erent conditions. As the following analysis will show, a single linear targeting

model is su�cient to cover all these operating modes.
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Figure 4.2. 2D PLS mapping of the operating regimes. Red '+' represents
operating points requiring more energy than average.

The segmentation algorithm was implemented in MATLAB. Our implementation

is compatible with version 7. Fig. 4.3 shows the result of the segmentation of the

one-year historical process data. The boundaries of the segments are highlighted

with vertical lines. Based on the analysis of the results the most important op-

erating modes of the process can be automatically determined. Four signi�cant

segments were detected. Shorter segments represent major changes in the process.

These operating periods are related to grade transitions or process malfunctions.

The parameters of the models related to the �rst two longer segments are given in

Table 4.2. The performances of these local targeting models are shown in Fig. 4.4.

The following �gures indicate that the identi�ed local linear models have much

better prediction performance (and smaller variance) on the related operating

regions (also see Table 4.1). The practical bene�t of identifying of these modes is

that more accurate models can give more relevant information that can support

the energy monitoring system.

It should be noted that detailed analysis of the parameters of the local models can

support the improvements of the targeting model. In our case, it is interesting to
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Figure 4.3. Results of the segmentation . The boundaries of the segments are
shown by vertical lines. Estimated and measured energy consumption values are
shown. The bottom �gure shows the cost of the segments that are the average

mean square errors of the models.

Table 4.1. Performance of the models (std deviation of the modelling error)

Model σ

PLS 0.0912
Linear 0.0893
Segment 4 0.0663
Segment 17 0.0648

see that the largest variation in the parameters of the local models is related to

the inlet and ambient temperatures. This variation can be easily explained by the

di�erences among operating strategies of the winter and summer periods.

Based on the proposed concept, the accuracy of the targeting models can be sig-

ni�cantly improved. For the evaluation of this development, the variance of the

targeting model's prediction can be used. This means that the proposed technique

can improve the e�ciency of bandwidth analysis, as better targeting models can

provide better estimates of the practical minimum energy (PME) requirements.
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Figure 4.4. Comparison of the local target models in their segments. As can
be seen the local models have much smaller variance in their segments, so they

can provide more accurate information for energy monitoring.

Table 4.2. Parameter values in global linear model and in the best two seg-
ments.

ŷ = Total
feed×θ1

Inlet
temp.
×θ2

Density
of fuel
gas ×θ3

Ambient
temp.
×θ4

θ5 (bias)

Global 0.63 -0.79 -0.32 -0.05 0.99
Segment 4 0.57 0.02 -0.3 -0.17 0.44
Segment 17 0.63 -0.47 -0.37 0.02 0.75
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4.3 Correlation based time series segmentation

In the previous section, we described a regression based times segmentation al-

gorithm. This method works well if a prediction model could be applied so there

are process variables that are measured and also could be predicted. In exceptional

cases when regression based segmentation could not be implemented because the

predicted variable is not measured so we cannot calculate the prediction error or

there is no predictable variable at all, we have to use such algorithm that does not

use prediction or estimation. We developed a second approach for multivariate

time series segmentation to eliminate this drawback of regression-based technique.

The designed segmentation algorithm can detect changes in correlation structure

among several measures.

Our method follows the basic concept of Xuan's and Murphy's observation likeli-

hood models [126] but the implementation is simpli�ed and uses a goal oriented

similarity function instead of feature models.

We demonstrate the capability of this technique in a near infrared spectrum series

that is collected in diesel blending unit in Duna Re�nery of MOL Ltd. between

Mid September and of December in 2013. This time series contains about 15.000

spectra recorded between 4000− 4076 [cm−1] wave numbers in every 5 minutes.

4.3.1 Dissimilarity measure formulation

Similarly to regression based segmentation our correlation based method also re-

quires a goal-oriented cost function, but it is better to name it distance or dissim-

ilarity function. Since segments are de�ned to represent homogeneous periods of

operation in which the internal correlation can describe the statistical relationship

between process variables. We de�ne the dissimilarity of segments based on the

dissimilarity correlation coe�cient matrices. We have compared the correlation

coe�cient matrixes using the Frobenius distance.

Let Xk is the time series of variables in the k-th time segment. The Rk is the matrix

of correlation coe�cients of variables in the k-th time segment. The calculation

of Rk for continues variables is detailed in Equation 4.7.
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Rk (i, j) =
Ck (i, j)√

Ck (i, i)Ck (j, j)
(4.7)

where Ck (i, j) is the covariance. Ck (i, i) and Ck (j, j) are standard deviations of

i-th and j-th variable in k-th segment.

The dk distance of k-th segment to it's right neighbour k + 1 is calculated as

Frobenius distance of correlation matrices.

dk =

√
trace

(
(Rk+1 −Rk) (Rk+1 −Rk)T

)
(4.8)

The algorithm is quite powerful since merging cost evaluation requires simple

calculation of Frobenius norms which is easy to implement.

4.3.2 Application in spectral time series segmentation

The applicability of the algorithm is demonstrated at Diesel Blending Unit of

MOL Hungarian Oil and Gas Company. In this application, we have identi�ed

changes in production based on the recorded spectrum. We do not use any other

measurements or estimates. Our dataset contained about 15000 recorded spectra

from time range of mid-September to end of October in 2013. Each spectrum

contains 195 absorbance values. We consider the spectral series as a multivariate

time series of 195 variables.

On the Fig. 4.5 we show the implied spectra series on a 3D surface. As the

graph shows, there are only small changes in the series so the application of basic

algorithms like change detection in the average or variance analysis is problematic.

The developed algorithm uses correlation coe�cient matrices. To show the correl-

ation structure we use colour map like Fig. 4.6. On the map we can see the inner

correlation of the time series of absorbance values. On x and y axis are the wave

numbers and the colour shows the value of the correlation coe�cient.

On Fig. 4.6 we show the correlation structure which, is calculated on the whole

time series. Our algorithm �nds segments in time when the correlation structure

changes.
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Following the bottom up strategy, we make an initial resolution. We partition the

series into 200 small segments. The algorithm merges the neighbouring segments

having the lowest dissimilarity value that is calculated by the equation 4.8. The

merging will be continued until some stopping criterion is met. In this experiment,

the stopping criterion is the number of the �nal segments. Using 20 segments as

stopping criteria the algorithm provide the segmentation that can be seen on

Figure 4.7.

The Fig. 4.7 shows the correlation coe�cient matrix R of the identi�ed segments.

As the maps show, the algorithm can detect changes in the correlation structure

of the absorbance values at di�erent wavelengths. For reference, we compared the

found segment borders to the dates of product changes.

The Fig. 4.8 shows the timestamps of product changes (black) and also the de-

termined segment borders (red). As we can see most of found segment boarders

are close to the product change timestamps. When we compare the Figure 4.7 and

Figure 4.8 we can see that most of the short segments (e.g. 2, 16, 18) contain a

product change. In these segments the correlation matrix has a higher average and
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Figure 4.5. Infra red spectrum time series. First dimension(x-axis) is time
when the sample was taken, second dimension (y-axis) is wave number, third

dimension (z-axis) is absorbance value.
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Figure 4.6. Colour map of correlation coe�cient matrix of whole time series.

the standard deviation of the spectral series is higher with one order of magnitude.

It means that the segmentation algorithm �nds the ranges of process transitions.

4.4 PCA based time series segmentation

The last time-series segmentation algorithm we use is based on Principal Compon-

ent Analysis based multivariate time series segmentation. PCA based segment-

ation is highly related our correlation based algorithm described in the previous

section and we can consider the PCA based method as an extension of it. PCA

based segmentation was developed by Dobos and Abonyi and detailed in ref. [127].

This approach uses their results and algorithm with some modi�cation and cus-

tomization to �t spectral time series.
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Figure 4.7. Colour map of correlation coe�cient matrix of �rst 20 identi�ed
segments. The colour denotes correlation value, the number on y axis is the

average of standard deviation of spectrum
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Figure 4.8. Timestamps of product changes and found segment borders. Black
lines are the product change dates, the red lines are the found segment boarders

4.4.1 Cost function formulation using principal components

The cost function of the segmentation is based on the Principal Component Ana-

lysis of the Fi covariance matrices of the segments:

Fi =
1

bi − ai

bi∑
k=ai

(xk − vi) (xk − vi)
T . (4.9)

PCA is based on the decomposition of the Fi covariance matrix Fi = UiΛiU
T
i

into a Λi matrix which includes the eigenvalues of Fi in it's diagonal in decreasing

order, and into a Ui matrix which includes the eigenvectors corresponding to the
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eigenvalues in it's columns. With the use of the �rst few (p < n) nonzero eigen-

values and the corresponding eigenvectors, the PCA model projects the correlated

high-dimensional data onto a hyperplane, which is useful for the visualization of

multivariate data:

yi,k = Λ
− 1

2
i,p UT

i,pxk (4.10)

When the PCA model has adequate number of dimensions, the distance of the data

from the p-dimensional hyperplane of the PCA model is resulted by measurement

failures, disturbances and negligible information. Hence, it is useful to analyse the

reconstruction error of the projection:

Qi,k = (xk − x̂k)T (xk − x̂k) = xT
k (I−Ui,pΛi,pU

T
i,p)xk. (4.11)

The analysis of the distribution of the projected data is also informative. The

Hotelling T 2 measure is often used to calculate the distance of the mapped data

from the center of the linear subspace

T 2
i,k = yT

i,kyi,k. (4.12)

Fig. 4.9 illustrates these measures in case of two variables and one principal com-

ponent.

These T 2 and Qmeasures are often used for the monitoring of multivariate systems

and for the exploration of the errors and the causes of the errors.

The main idea of this section is to use these measures as the measure of the

homogeneity of the segments:

costT 2(Si(ai, bi)) =
1

bi − ai + 1

bi∑
k=ai

T 2
i,k (4.13)

costQ(Si(ai, bi)) =
1

bi − ai + 1

bi∑
k=ai

Qi,k

4.4.2 Application in process monitoring using spectra series

The proposed tool has been applied to the same time series of spectra as in the

case of correlation based method. As Fig. 4.10 shows the proposed tools can
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Figure 4.9. Distance measures based on the PCA model.

detect signi�cant changes in the process. It is interesting to see that some of these

changes related to product changes (denoted by vertical lines).
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Figure 4.10. Segmentation results of the diesel blending process. The red and
blue ranges after each other show the found segments in time series.

The tool has been applied to on-line monitoring. The results here are even more

convincing; we were able to detect malfunctions of the spectrometer and also

changes in the parameters of the operations without knowing any background in-

formation. Details of the PCA models and the projected latent variables are given

in Fig. 4.11. Although the bottom-up strategy cannot �nd the segment reliably

because the time series contained samples from the ranges when the spectrometer

was not operating correctly, PCA is a quite powerful tool as the �gure shows.

Segments can be identi�ed easily also by operators because principal components

have signi�cant deviations when changes occur.
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Figure 4.11. Details of the latent PCA variables and the results of the seg-
mentation.

4.5 Conclusions

Data based process monitoring requires well-built mathematical models of the

technology. Usually, these empirical models are identi�ed based on historical data

but the recorded data series could be a�ected by measurement errors or can cover

time ranges, which are not relevant for the current modelling task. For example,

if we want to include only a particular operating mode with a speci�c model we

care on historical data, when the technology was in that special mode. It is also

plausible that we want to exclude data from a downtime or a maintenance window.

Until now the selection of proper training data is performed manually based on a

heuristic and subjective evaluation of the operation of the process. This practice is

not e�cient and very time-consuming. In this chapter, we presented three di�erent

goal-oriented time-series segmentation techniques to automate this procedure.



Chapter 4. Modell Validation 91

Regression-based time-series segmentation is a powerful tool for those cases when

linear prediction models cannot be applied e.g. targeting model based energy

monitoring. The real bene�t of this method is: during the segmentation the al-

gorithm builds predictor models also that can be used in the energy monitoring

solution as starting point of creation of �nal target models. With the proposed

tool target-models for di�erent operating regions can be automatically determ-

ined. The presented case study shows the applicability of the proposed method-

ology since we were able to build a set of accurate models and identify a set of

operating regimes showing di�erent impacts of the drivers of energy consumption

and e�ciency. Once the proposed scheme has been set up, building and analysis

of targeting models is routine operation and should be neither time-consuming

nor complex procedure. Further analysis should focus on the detailed compar-

ison of the operating regimes and models. For such cases when prediction models

could not be built or applied, we developed two statistics based segmentation al-

gorithms, and we have proven the concept on one of the most di�cult to manage

data type which is spectral time series. Our correlation bases segmentation could

be applied when we want to detect structural changes in technology like switching

product or operation mode. It is useful because using the developed algorithm

we can select those time ranges when the operation was stable and can focus on

process transitions also that is complicated to handle and can cause losses. With

proper segmentation, we can detect the stabilised operation or we can build special

models for transition monitoring. Using these models the transition time could

be shortened, and losses could be reduced. Principal Component Analysis is a

sophisticated tool and not just for segmentation but detection of any changes in

technology. We applied PCA to segment online spectral time series, but we proved

that PCA can detect the changes immediately so can also be used for fault de-

tection. We can conclude that the developed segmentation algorithms can help to

select proper historical data for the building of nonlinear process models like we

presented in Chapter 2 and Chapter 3, and can also be applied independently for

monitoring of changes and fault detection.

All the programs used to generate the results in this thesis can be downloaded

from

https://github.com/kulcsartibor/phd-thesis-programs and

http://www.abonyilab.com/

https://github.com/kulcsartibor/phd-thesis-programs
http://www.abonyilab.com/


Chapter 5

Summary and Theses

Nowadays industry and in particular process industry more and more relies on

new information theory and arti�cial intelligence related solutions that can help

to improve the technology and reduce the cost of instrumentation, automation

and maintenance. Software sensors are capable of extending or even replace the

classical instrumentation of technology. We developed techniques and tools to

support the identi�cation and maintenance of data-driven models of soft sensors

used for product quality and energy usage estimation.

The dissertation describes three di�erent aspects of soft-sensor development. The

�rst two chapters are focusing on parametric and non-parametric modelling, while

the third chapter deals with the selection and preprocessing of the data.

Regarding non-parametric models, I proposed a genetic programming based al-

gorithm to generate dimension reduction mappings. I showed the applicability of

these mappings in spectroscopic modelling and in solving the classical Wine clas-

si�cation benchmark problem. Finally, I presented tools to for the selection of the

input variables of these models and data segments. I demonstrated the capabil-

ity of the methods in spectroscopic modelling and energy monitoring of chemical

processes.

5.1 Experimental tools and technologies

We developed the dimension reduction mapping algorithms to extract useful in-

formation from the data are originated from the Diesel Blending Unit and the

92
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product development laboratory of MOL Duna Re�nery. The datasets contained

spectra recorded by ABB and Bruker spectrometers. For the processing of the

spectra, we used the software of ABB and Bruker. We used MATLAB to im-

plement our algorithms. For the development of parametric modelling related

algorithms, we extracted the times series of process variables from the OSIsoft PI

central data collection system of MOL Duna Re�nery.

5.2 Theses

1. I have developed a genetic programming based solution to visualise

high dimensional datasets. The method can explore the operating

regimes of online NIR analysers and can support the identi�cation

of classi�er models.

(Related publications: [137, 142, 144, 145, 148, 150, 151])

(a) I developed a multi-chromosome representation based genetic algorithm

to �nd explicit multi-dimensional projections of high-dimensional input

spaces into lower dimensions. I applied the method to visualise spectral

databases of soft sensors by preserving neighbourhood and distance

relations of NIR spectra. [137, 145, 148]

(b) I modi�ed the cost function of the genetic programming to support the

visualisation of classi�cation problems. The results con�rm that the

performance of traditional classi�ers improves, when we apply them

on goal-oriented projected data. Additionally, I have de�ned a new

classi�er that uses convex polygons and also generates an informative

view to the user. I have shown that the algorithm can separate the

operational regimes of a technology hence helps to de�ne local models

of soft sensors. [137, 142, 150, 151]
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2. I developed parametric models for spectrometric applications and

target calculation in energy monitoring systems. I worked out

methods to accelerate the modelling process and can generate

informative vislualisations to show the hidden structure and the

validity range of the models.

(Related publications: [136, 138, 139, 141�143, 146, 147, 149])

(a) I developed a validation process that can qualify the modelling perform-

ance and can determine the validity range of spectrometric models. I

presented models that can visualise and explore the hidden structures

in the training dataset. I compared data from a �ow-through cell, and

a �bre optic spectrometer and proved that the more cost e�cient �bre

optic system has similar performance as the �ow through cell system

has. [136, 141, 147, 149]

(b) I proved that Self-Organizing-Maps (SOM) can separate the operating

modes in energy monitoring (EM) systems and I worked out a SOM

based feature ranking and selection tool. [138, 139, 141]

(c) I implemented a Random Forest (RF) regression based feature selection

algorithm as an extension of the developed framework. I used the RF

to select relevant input variables for EM targeting models. [139]
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3. I developed goal-orineted multivariate time series analysis meth-

ods to support the identi�cation of parametric and non-parametric

models used in NIR analyser based soft sensors and energy mon-

itoring systems.

(Related publications: [138�140, 147, 149, 150])

(a) I demonstrated that Principal Component Analysis based times series

segmentation can be used to �nd consistent operating periods of pro-

duction and events a�ecting the dynamical behaviour of the process.

[138, 141]

(b) I developed a novel regression-based times series algorithm to detect

homogeneous periods of operation based on the prediction accuracy of

energy targeting models. The method is applicable to identify events

when energy e�ciency di�ers signi�cantly. [138, 140]

(c) I demonstrated that Self-Organizing-Maps can not only be used to isol-

ate operating modes and to de�ne local models for the individual op-

erating regimes, but it can also be applied to feature selection. The

results illustrate that all of these functionalities support the building of

compact models used in energy monitoring. [140]

5.3 Utilization of results

A part of the results presented in the dissertation has been already utilised. A

new practice has been introduced to maintenance and to upgrade the model that

is running in the ABB spectrometer of the Diesel Blending unit in MOL Duna

Re�nery. This method includes the generation of new explicit mapping equations

(aggregates). A �bre optic spectrometer was installed into one of the experimental

reactors of the product development department, and it is being used to trace the

experiments. In this system, partial least squares models are providing the estima-

tions for the material properties of the product. The feature selection methods are

being utilised to build new targeting models into the energy monitoring systems.

The dissertation presented the application of the genetic algorithm to generate

dimensional reduction mappings of spectral datasets. However besides of chemical

applications this tools could be used e�ectively in any other data mining problems.
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The presented time series evaluation methods have been already utilised in tele-

communication, more speci�cally in the platforms that are supplied by I-New Uni-

�ed Mobil Solutions. Hence, these practices can detect several fault and incident

patterns before they cause the complete service outage. The time series analysis

has been included into the monitoring system of the Mobil Virtual Network Op-

erators (MVNOs) of Virgin Mobile Colombia, Virgin Mobile Chile, Compass and

other providers.
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5.4. Tézisek

1. Sokváltozós adathalmaz megjelenítésére alkalmas genetikus prog-

ramozáson alapuló algoritmust fejlesztettem és alkalmaztam szoft-

ver szenzorok m¶ködési tartományainak feltérképezésére és osztá-

lyozási feladatok megoldására.

(Kapcsolódó publikációk: [137, 142, 144, 145, 148, 150, 151])

(a) Többkromoszómás reprezentációra alapozva létrehoztam egy sokdimen-

ziós térb®l alacsonyabb dimenziós térbe történ® explicit leképezések

keresésére alkalmas genetikus algoritmust. A módszert els® lépésben

spektrális adatbázisok dimenzió csökkentésére használtam fel úgy, hogy

a leképezés a lehet® legnagyobb mértékben meg®rizze az eredeti tér tá-

volsági és szomszédossági viszonyait. Megmutattam, hogy a genetikus

algoritmus alkalmazható spektrometriai modellek fejlesztésében és kar-

bantartásában. [137, 145, 148]

(b) A kifejlesztett genetikus algoritmust osztályozási feladatok támogatásra

is alkalmazhatóvá tettem. Az osztályozó algoritmusok módosítás nél-

küli felhasználásán és az osztályozók teljesítményére alapuló költség-

függvényén alapuló módszert referencia adatsorokon alkalmaztam, és

számítási példákkal igazoltam, hogy a genetikus algoritmussal létreho-

zott explicit leképezéssel kiegészítve a hagyományos osztályozó eljárá-

sok osztályozási pontossága nagy mértékben javítható. Megmutattam

továbbá, hogy célirányos költségfüggvényeket alkalmazva a genetikus

algoritmus m¶ködési tartományok elkülönítésére is alkalmas, egyaránt

támogatva ezzel a parameterikus és nemparametrikus modellek fejlesz-

tését. [137, 142, 150, 151]
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2. Parametrikus modellek fejlesztését támogató keretrendszert hoz-

tam létre, melyet spektroszkópiai regressziós modellek készítésére

és az energiamonitoring rendszerekben az energiafelhasználás cél-

értékének meghatározására használtam fel. Megmutattam, hogy

a keretrendszert felhasználva a modellek fejlesztése gyorsítható és

informatív megjelenítés készíthet® a modellek struktúrájáról és ér-

vényességi tartományáról.

(Kapcsolódó publikációk: [136, 138, 139, 141�143, 146, 147, 149])

(a) A közeli infravörös online és labor spektrométerekre támaszkodó anya-

gi jellemz®k becslésére alkalmazott parametrikus regressziós modellek

validálására alkalmas eljárást fejlesztettem. Megmutattam, hogy orto-

gonális jelkompenzációt alkalmazó regressziós modellel a szoftver szen-

zorok érvényességi tartománya behatárolható. [136, 141, 147, 149]

(b) M¶ködési tartományok vizsgálata kapcsán megmutattam, hogy az ön-

szervez® térkép (SOM) kiválóan alkalmazható Energia Monitoring (EM)

rendszerekben az egyes m¶ködési módok elkülönítésére és az energiafel-

használást meghatározó folyamatváltozók azonosítására. [138, 139, 141]

(c) A keretrendszer részeként implementáltam egy Random Forest (RF)

változó szelekciós algoritmust, melyet EM modellek bemeneti változó-

inak kiválasztására használtam fel. Az eljárás alkalmazhatóságát az

adott üzem esetében a legnehezebben becsülhet® energia jellemz® ese-

tén is sikeresen igazoltam. [139]
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3. Szoftver szenzorok modelljeinek fejlesztése céljából többváltozós

id®sorok elemzésére alkalmas algoritmusokat hoztam létre és si-

keresen alkalmaztam spektrális adatbázisok elemzésében és ener-

gia monitoring rendszerben alkalmazott modellek identi�kálásá-

ban. (Kapcsolódó publikációk: [138�140, 147, 149, 150])

(a) Kimutattam, hogy a f®komponens-elemzésen alapuló többváltozós id®-

sorszegmentáló algoritmus alkalmas spektrális id®sorok alapján homo-

gén m¶ködési szakaszok meghatározására, illetve az üzemmenet jelen-

t®sebb változásait eredményez® események azonosítására. [138, 141]

(b) Regressziós modelleken alapuló id®sorszegmentáló algoritmust fejlesz-

tettem azoknak az id®intervallumoknak az azonosítására melyeken be-

lül a szoftver szenzor (lokális) modellje az elvárt becslési pontossággal

rendelkezik. Az algoritmust sikeresen alkalmaztam energia monitoring

rendszerek lokális érvényességi tartományú modelljeinek identi�kálásá-

ra. [138, 140]

(c) Megmutattam, hogy az önszervez® térkép m¶ködési tartományok szeg-

mentálására és az adott szegmenseken belüli lokális modellek készítésére

is alkalmazható. A fejlesztett módszert integráltam SOM alapú változó

kiválasztással, hatékonyságát energia monitoring példán demonstrál-

tam. [140]
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Dimensional Reduction and false

nearest neighbor method

A.1 Principal Component Analysis

One of the most widely applied dimensionality reduction method is the Principal

Component Analysis (PCA) [96]. PCA is also known as Hotteling or as Karhunen-

Loéve transformation [96]. PCA di�ers from metric and non-metric dimensionality

reduction methods, because instead of the preservation of the distances or the

global ordering relations of the objects (in this case spectra) it tries to preserve

the variance of the data. PCA represents the data as linear combinations of a

small number of basis vectors. This method �nds the projection that stores the

largest variance possible in the original data and rotates the set of the objects such

that the maximum variability becomes visible. Geometrically, PCA transforms

the data into a new coordinate system such that the greatest variance by any

projection of the data comes to lie on the �rst coordinate, the second greatest

variance on the second coordinate, and so on. If the data set (X) is characterized

with D dimensions and the aim of the PCA is to �nd the d-dimensional reduced

representation of the data set, the PCA works as follows:

1. PCA subtracts the mean from each of the data dimensions,

2. then it calculates the D ×D covariance matrix of the data set,

100
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3. following this PCA calculates the eigenvectors and the eigenvalues of the

covariance matrix,

4. then it chooses the d largest eigenvectors,

5. and �nally it derives the new data set from the signi�cant eigenvectors and

from the original data matrix.

The corresponding d-dimensional output is found by linear transformation: Y =

QX, where Q is the d × D matrix of linear transformation composed of the d

largest eigenvectors of the covariance matrix, and Y is the d × D matrix of the

projected data set. Independent Component Analysis (ICA) is similar to PCA,

except that it tries to �nd components that are independent.

A.2 Multidimensional scaling (MDS)

Multidimensional scaling (MDS)[11] refers to a group of unsupervised data visual-

ization techniques. Given a set of data in a high-dimensional feature space, MDS

maps them into a low-dimensional (generally 2-dimensional) data space in a way

that objects that are very similar to each other in the original space are placed

near each other on the map, and objects that are very di�erent from each other

are placed far away from each other. There are two types of MDS: (i) metric MDS

and (ii) non-metric MDS.

The classical MDS algorithm is an algebraic method that rests on the fact that

matrix Y containing the output coordinates can be derived by eigenvalue decom-

position from the scalar product matrix B = YYT . Matrix B can be found from

the known distances using Young-Householder process [84].

The metric (or classical) MDS discovers the underlying structure of data set by

preserving similarity information (pairwise distances) among the data objects.

Similarly to the Sammon mapping the metric multidimensional scaling also tries

to minimize a stress function. If the square-error cost is used, the objective function

(stress) to be minimized can be written as:

Emetric_MDS =
1

N∑
i<j

d∗2i,j

N∑
i<j

(d∗i,j − di,j)2, (A.1)
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where d∗i,j denotes the distance between the vectors xi and xj, and di,j between

yi and yj respectively. The only di�erence between the stress functions of the

Sammon mapping (see A.3) and the metric MDS (see A.1) is that the errors in

distance preservation are normalized by the distances of the input data objects.

Because of this normalization the Sammon mapping emphasizes the preservation

of small distances.

In non-metric MDS only the ordinal information of the proximities is used for

constructing the spatial con�guration, thereby the non-metric MDS attempts to

preserve the rank order among the dissimilarities. The non-metric MDS �nds a

con�guration of points whose pairwise Euclidean distances have approximately the

same rank order as the corresponding dissimilarities of the objects. Equivalently,

the non-metric MDS �nds a con�guration of points, whose pairwise Euclidean

distances approximate a monotonic transformation of the dissimilarities. These

transformed values are known as the disparities. The non-metric MDS stress can

be formulated as follows1:

Enonmetric_MDS =

√√√√ N∑
i<j

(d̂i,j − di,j)2/
N∑
i<j

d2
i,j, (A.2)

where d̂i,j yields the disparity of xi and xj, and di,j denotes the distance between

the vectors yi and yj.

It can be shown, that the metric and non-metric MDS mappings are substantially

di�erent methods. While the metric MDS algorithm is an algebraic method, the

non-metric MDS is an iterative mapping process.

1. Let the searched coordinates of n points in a

d-dimensional Euclidean space be given by

yi (i = 1, . . . , n), where yi = [yi,1, . . . , yi,d]
T . Matrix Y = [y1, . . . ,yn]T is

the n× d coordinates matrix. The Euclidean distances

{di,j = (yi − yj)
T (yi − yj)} are known. The inner product of matrix Y is

denoted B = YYT . Find matrix B from the known distances {di,j} using
Young-Householder process[84]:

(a) De�ne matrix A = [ai,j], where

ai,j = −1
2
d2
i,j,

1Traditionally, the non-metric MDS stress is often called Stress-1 due to Kruskal [49]
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(b) Deduce matrix B from B = HAH, where H = I− 1
n
llT is the

centering matrix, and l is an n× 1 column vector of n one's

2. Recover the coordinates matrix Y from B using the spectral decomposition

of B:

(a) The inner product matrix B is expressed as B = YYT . The

rank of B is r (B) = r
(
YYT

)
= r (Y) = d. B is symmetric,

positive semi-de�nite and of rank d, and hence has d non-

negative eigenvalues and n− d zero eigenvalues.

(b) Matrix B is now written in terms of its spectral decomposi-

tion, B = VΛVT , where Λ = diag [λ1, λ2, . . . , λn] the diagonal

matrix of eigenvalues λi of B, and V = [v1, . . . ,vn] the matrix

of corresponding eigenvectors, normalized such that vT
i vi = l,

(c) Because of the n−d zero eigenvalues, B can now be rewritten

as

B = V1Λ1V
T
1 , where

Λ1 = diag [λ1, λ2, . . . , λd] and V1 = [v1, . . . ,vd],

(d) Finally the coordinates matrix is given by Y = V1Λ
1
2
1 , where

Λ
1
2
1 = diag

[
λ

1
2
1 , . . . , λ

1
2
d

]
.

A.3 Sammon Mapping

Sammon mapping [71] (SM) is a metric, nonlinear dimensionality reduction method

which maps the set of points in a high-dimensional vector space onto a d-dimensional

output space. While PCA attempts to preserve the variance of the data during the

mapping, Sammon's mapping try to preserve the interpattern distances [55, 65].

The Sammon mapping tries to optimize the cost function that describes how well

the pairwise distances in a data set are preserved. The Sammon stress function

(distortion of the Sammon projection) can be written as:

ESM =
1

N∑
i<j

d∗i,j

N∑
i<j

(d∗i,j − di,j)2

d∗i,j
, (A.3)
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where d∗i,j denotes the distance between the vectors xi and xj, and di,j respectively

for yi and yj.

The minimization of the Sammon stress is an optimization problem. When the

gradient-descent method is applied to search for the minimum of Sammon stress,

a local minimum can be reached. Therefore a signi�cant number of runs with

di�erent random initializations may be necessary.

Figure A.1. Sammon mapping of the TOPNIR database and samples collected
from online (blue) and laboratory (red) analysers

A.4 False Nearest Neighbor (FNN) Method

The main idea of the FNN algorithm stems from the basic property of a function.

If there is enough information in the regression vector to predict the future output,

then any of two regression vectors which are close in the regression space will also

have future outputs which are close in some sense. For all regression vectors

embedded in the proper dimensions, for two regression vectors that are close in

the regression space and their corresponding outputs are related in the following

way:

yi − yj = df (xi) [xi − xj] + o ([xi − xj])
2 (A.4)

where df (xi) is the jacobian of the function f(.) at xi.
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Ignoring higher order terms, and using the Cauchy-Schwarz inequality the follow-

ing inequality can be obtained:

|yi − yj| ≤ ‖df (xi)‖2 ‖xi − xj‖2 (A.5)

|yi − yj|
‖xi − xj‖2

≤ ‖df (xi)‖2 (A.6)

If the above expression is true, then the neighbors are recorded as true neighbors.

Otherwise, the neighbors are false neighbors.

Based on this theoretical background, the outline of the FNN algorithm is the

following.

1. Identify the nearest neighbor to a given point in the regressor space. For a

given regressor: xi �nd the nearest neighbor xj = x(i,1).

2. Determine if the following expression is true or false

|yi − yj|
||xi − xj||2

≤ R

where R is a previously chosen threshold value. If the above expression

is true, then the neighbors are recorded as true neighbors. Otherwise, the

neighbors are false neighbors.

3. Continue the algorithm for all times i in the data set.

The FNN algorithm is sensitive to the choice of the R threshold. In the threshold

value was selected by trial and error method based on empirical rules of thumb,

10 ≤ R ≤ 50. However, choosing a single threshold that will work well for all data

sets is impossible task. In this case, it is advantageous to estimate R based on A.6

using the the maximum of the Jacobian, R = maxi ‖df (xi)‖, as it was suggested
by Rhodes and Morari.

While this method uses data based models for the estimation of‖df (xi)‖, the per-
formance and the capabilities of this identi�ed model can deteriorate the estimate

ofmax(df). When df is over estimated the model orders could be under estimated,

and vice-versa. Hence, the modeler has to be careful at the construction of this

model (e.g. the model can be over or under parameterized, etc.).
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