
i

On Modeling Building-Evacuation-Route Planning and Organization-based Multiagent Systems

by Resorting to the P-graph Framework

Doktori (PhD) értekezés

Juan Carlos García Ojeda

Supervisor: Dr. Friedler Ferenc

Co-Supervisor: Dr. Bertok Botond

University of Pannonia

Department of Information Technology

Information Science and Technology PhD School

Veszprém, Hungary

2015

Egyházy Tiborné
Szövegdoboz
DOI: 10.18136/PE.2016.630

ii

iii

ON MODELING BUILDING-EVACUATION-ROUTE PLANNING AND

ORGANIZATION-BASED MULTIAGENT SYSTEMS BY RESORTING TO THE P-

GRAPH FRAMEWORK

Dissertation for obtaining a PhD degree

Written by: Juan Carlos García Ojeda

Written in the Information Science and Technology Doctoral School

of the University of Pannonia

Supervisor: Dr. Friedler Ferenc

I propose for acceptance (yes / no)

……………………….

 (signature)

The candidate has achieved …......... % at the comprehensive exam,

I propose the dissertation for acceptance as the reviewer:

Name of reviewer: …........................ …................. yes / no

……………………….

 (signature)

Name of reviewer: …........................ …................. yes / no

……………………….

 (signature)

The candidate has achieved …......... % at the public discussion.

Veszprém/Keszthely, ………………………….

 Chairman of the Committee

Labelling of the PhD diploma ….................................

.….…………………………

 President of the UCDH

iv

v

Table of Contents

List of Figures .. viii

List of Tables ... xi

Nomenclature .. xii

Mathematical Notation .. xii

Acronyms .. xiv

Abstract .. xvi

Resumen ... xviii

Összefoglaló .. xx

Acknowledgements ... xxii

Dedication .. xxiii

Chapter 1. Introduction ... 24

1.1 Building-Evacuation-Route Planning .. 24

 1.1.1 Discrete Time Dynamic Network Flow Model .. 26

1.2 Organization-Based Multiagent Systems... 33

 1.2.1 Overview of the Framework of Organization Model for Adaptive Computational

Systems: OMACS .. 34

1.3 Objectives .. 36

Chapter 2. Building-Evacuation-Route Planning: Research Results .. 38

2.1 Background .. 38

2.2 Problem Definition .. 39

2.3 Methodology .. 41

 2.3.1 P-graph-based approach ... 41

 2.3.2 Time-expanded process-network synthesis, PNST .. 42

 2.3.3 Algorithm BEPtoPNST .. 43

 2.3.4 Mathematical programming model .. 49

2.4 Results and Discussion .. 53

Chapter 3. Designing Organization-based Multiagent Systems: Research Results 63

3.1 Background .. 63

vi

3.2 Problem Definition .. 64

3.3 Methodology .. 64

3.3.1 Designing Organization-based Multiagent Systems by resorting to the framework

OMACS .. 64

 3.3.1.1 Overview of the CRST Organization... 65

 3.3.2 Algorithm OMACStoPNS ... 66

 3.3.3 Mathematical programming model .. 71

3.4 Assessment of Organization based Multi-agent System Design by the Mathematical

Programming Model Method... 74

3.5 Modeling Organization-based Multiagent Systems via Absorbing-Markov Chains 78

 3.5.1 Modified Version of OMACS .. 79

 3.5.2 Algorithm .. 81

 3.5.3 Algorithm ... 83

3.6 Assessment of Organization based Multi-agent System Design by the Absorbing Markov

Chain Model Method ... 108

Chapter 4. Conclusions and Recommendations for Future Work .. 112

4.1 Building-Evacuation-Route Planning .. 112

4.2 Modeling Organization-based Multiagent Systems Design .. 113

Chapter 5. Summary of Accomplishments ... 114

5.1 Original Contributions ... 114

 5.1.1Theses ... 114

5.2 List of Publications .. 116

5.3 List of Publications in other Research Topics ... 117

References ... 123

Appendix A. Process-Network Synthesis (PNS) .. 133

Appendix B. Process Graph (P-graph).. 135

 Solution Structures ... 137

 Algorithms MSG, SSG, and ABB ... 141

Appendix C. Short Summary of Pidgin Algol .. 143

Appendix D. Markov Chains .. 145

 Specifying a General Markov Chain .. 145

vii

 The Transition Matrix P .. 146

 Example ... 146

 Graphical Description .. 147

 Absorbing Markov Chain ... 148

 Specifying an Absorbing Markov Chain ... 148

 Example ... 148

 The Canonical Form of a transition matrix P representing an Absorbing Markov

 Chain ... 149

 The Power Method.. 151

Appendix E. Series and Parallel Systems Engineering ... 156

 Some Useful Definitions ... 156

 The Distribution Function .. 156

 Continuous Random Variable .. 157

 Properties of Probability Density Function ... 157

 Exponential Distribution .. 158

 Cumulative Distribution Function of the Exponential Distribution 159

 Series and Parallel Systems: Basic Assumptions ... 160

 Reliability of Series Systems ... 162

 Example .. 163

 Reliability of Parallel Systems .. 164

 Example ... 168

viii

List of Figures

Figure 1. Static network of a simple building layout (taken from [47]). 27

Figure 2. Dynamic Network of the Static Network of Figure 1, with (taken from

[47]). ... 28

Figure 3. Dynamic network GT of the static network G of Figure 1, with T = 4, without initial

contents, and by deleting inessential arcs (taken from [47])...................................... 31

Figure 4. OMACS Meta-model. ... 34

Figure 5. Conventional adopted graph-based notation for representing building-floor maps [47]:

{initial contents, node capacity}; (travel time, arc capacity, arc id). 41

Figure 6. P-graph representation of the building floor map introduced in Figure 5. 41

Figure 7. Algorithm written in Pidgin Algol (see Appendix C). 46

Figure 8. Motivational example for illustration: { initial content of node , capacity of

node }; (travel time from node to node , capacity of arc from node

 to through section , which connects locations and). 47

Figure 9. Maximal structure of the motivational example. ... 49

Figure 10. Maximal structure of the motivational example showing the relationships between the

elements adopted in the definition of a and those adopted in the specification of

a . .. 50

Figure 11. Solution #1 (a), #2 (b), #3 (c), and #4 (d) obtained via Algorithm ABB. 53

Figure 12. A two-story building floor-map (adapted from [22] and [23]).................................... 56

Figure 13. People waiting at the end of a time period by node for the two-story building

example. Contents are zero for non-listed nodes and time periods. 57

Figure 14. A three-story building floor-map (adapted from [22] and [23]).................................. 59

Figure 15. An eleven-story building floor-map (adapted from [10]). ... 61

Figure 16. Overview of the CRST Organization. The boxes at the top of the diagram represent

agents identified by their types, the circles represent the roles, the pentagon’s

represent capabilities, and the squares are system’s goals. The arrows between the

entities represent achieves, requires, and possesses functions/relations. 67

Figure 17. Algorithm OMACStoPNS written in Pidgin Algol (see Appendix C). 68

file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426016
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426017
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426017
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426017
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426020
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426020

ix

Figure 18. Maximal structure for the hypothetical example to illustrate the solution-structure

generation with algorithm MSG. ... 71

Figure 19. Comparison of Sol. #1 and Sol. # 19883. .. 77

Figure 20. Comparison of Sol. #7813, Sol. #25400, and Sol. #57730. .. 78

Figure 21. Modified version of the OMACS Meta-model. .. 80

Figure 22. View of the CRST Organization by adopting the modified version of the OMACS

meta-model... 81

Figure 23. Algorithm OMACStoRelaxedPNS written in Pidgin Algol (see Appendix C). 82

Figure 24. Maximal structure for the hypothetical relaxed example. ... 83

Figure 25. Steps required for assessing organization-based multiagent system design model via

the algorithm . .. 84

Figure 26. Algorithm written in Pidgin (see Appendix C). 87

Figure 27. Procedure AMC-Spec... 88

Figure 28. Procedure written in Pidgin (see Appendix C). 89

Figure 29. Procedure written in Pidgin (see Appendix C). 91

Figure 30. Procedure written in Pidgin (see Appendix C). .. 93

Figure 31. Branching of State 1, i.e., .. 93

Figure 32. Procedure written in Pidgin (see Appendix C). .. 97

Figure 33. Procedure written in Pidgin (see Appendix C). 100

Figure 34. Branching of State 2, i.e., .. 101

Figure 35. Branching of State 3, i.e., .. 101

Figure 36. Branching of State 7, i.e., .. 102

Figure 37. Branching of State 10, i.e., .. 102

Figure 38. Branching of State 11, i.e., .. 103

Figure 39. Branching of State 12, i.e., .. 103

Figure 40. Branching of one-step transition from initial State 0, i.e.

 , to State Failure .. 104

Figure 41. Structure of set seen as an adjacent list .. 105

Figure 42. Structure of sets and seen as an adjacent list .. 105

Figure 43. Transition Matrix . .. 107

Figure 44. Results for System 1 .. 109

file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426025
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426025
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426031
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426050

x

Figure 45. Overview of the CRST Organization # 2. ... 109

Figure 46. Results for System 2 .. 110

Figure 47. Overview of the CRST Organization # 3. ... 111

Figure 48. Results for System #3. ... 111

Figure B.1. P-graph (M,O) where A,B,C,D,E, and F are materials, and 1,2, and 3 are the

operating units: represents raw materials or input elements of the whole process;

 symbolizes intermediate-materials or elements, emerging between the operating

units; and represents products or outputs of the entire

process……………………..…………………………………………………..…..137

Figure B.2 Two solution-structures for the synthesis problem (P1, R1, O1)…………....…..…140

Figure B.3. P-graph that is not a solution-structure for synthesis problem(P1,R1,O1).................141

Figure D.1. Transition graph for the Veszprem weather example…………………………...…147

Figure D.2. Transition graph for the Drunkard’s Walk example……………………………….149

Figure D.3. Algorithm PowerMethod written in Pidgin Algol…….………...…………………152

Figure E.1. Representation of a Series Systems of “n” components…………….……………..162

Figure E.2. Graphical representation for the given example………………...……………........163

Figure E.3. Representation of a Parallel Systems of “n” components….……………………....165

xi

List of Tables

Table 1. Four best assignments for the one-story building example. ... 55

Table 2. Four sub-optimal evacuation plans for the two-story building example. 58

Table 3. Data taken from the best optimal solution for the three-story building example. 60

Table 4. Data taken from the best optimal solution for the eleven-story building example. 62

Table 5. Resources to be considered in process synthesis for the example 69

Table 6. Targets to be considered in process synthesis for the example 69

Table 7. Operating units to be considered in process synthesis for the example* 70

Table 8. Subset of Feasible Solutions (less than 1%) generated by algorithm .. 75

Table 9. Probability distribution, after 3 iterations, given the initial probability vector, xn
(0)

, [1.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ... 108

Table D.1. Initial probability vector, xn
(0)

, for case where the man starts walking on Corner

1…………………………………………………………………………………….152

Table D.2. Initial probability vector, xn
(0)

, for case where the man starts walking on Corner

2…….………………………………………………………………………………153

Table D.3. Initial probability vector, xn
(0)

, for case where the man starts walking on

Corner

3…………………….………………………………………………………………153

Table D.4. Probability distribution, after 54 iterations, given the initial probability vector, xn
(0)

,

[0.0, 1.0, 0.0, 0.0, 0,0]. That is, the man starts walking on Corner 1………….......153

Table D.5. Probability distribution, after 54 iterations, given the initial probability vector, xn
(0)

,

[0.0, 0.0, 1.0, 0.0, 0,0]. That is, the man starts walking on Corner 2……….……..154

Table D.6. Probability distribution, after 54 iterations, given the initial probability vector, xn
(0)

,

[0.0, 0.0, 0.0, 1.0, 0,0]. That is, the man starts walking on Corner 3………...…..154

file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426099
file:///C:/Users/jgarciao/Dropbox/PhDDissertation/3.-Dissertation/2.-Dissertation/JCDissertation2014Rev1.5.docx%23_Toc409426100

xii

Nomenclature

The most important notations and acronyms used throughout this Dissertation are listed

below.

 Mathematical Notation

 defines the extent of achievement of a goal by a role

 the difference between the production and consumption rate

of the element in by the element in

 cardinality, or size, of set

 the set of agents, which can be either human or artificial

(hardware or software) entities

 defines the set of capabilities required to play a role

 defines the cost of an agent

 the set of capabilities, which define the percepts/actions the

agents possess at their disposal. Capabilities can be soft (i.e.,

algorithms or plans) or hard (i.e., hardware related actions).

 the cost of the element in

 the proportional cost of the element in

 the subset of all the potential assignments of agents to play

roles to achieve goals

 contains the best possible assignments for the

given sets , , and

 the set of goals of the organization, i.e., overall functions of

the organization

 infinite

 number of iterations

 large number, i.e.,

 the lower bound of the element in

xiii

 the lower bound of the element in

 the lower bound of the element in

 the set of entities

 total number of states in

 defines the quality of a proposed set of assignments, i.e.,

computes the goodness of the organization based on

 empty set

 the set of activities

 the element in

 the multiagent system’s organization

 defines the quality of an agent´s capability

 defines how well an agent can play a role to achieve a goal

 denotes power set

 the set of products

 the one-step transition probability is the probability of

transitioning from one state, i.e., , to another, i.e., , in a

single step

 the element in

 absorbing markov chain

 the set of rules that describe how may or may not

behave in particular situations

 a function that assumes a role in , thereby yielding a

set of capabilities required to play that role

 set of real numbers

 the set of initially available resources

 the element in

 the set of roles, i.e., positions within an organization, whose

behavior is expected to achieve a particular goal or set of

goals

 the upper bound of the element in

xiv

 the upper bound of the element in

 the upper bound of the element in

 the environment where agents can perform their actions upon

it.

 state space of

 the set of pairs representing the transition from state to state

 with probability

 the set of pairs representing the transition from state to state

 with probability

 the set of pairs representing the transition from state to state

j with probability

 probability vector of

 continuous variable expressing the size of capacity of the

element in

 binary variable, i.e., , expressing the absence (0)

or existence (1) of the element in

 the objective value

 Acronyms

 optimal solution structure generator algorithm

 building evacuation problem

 algorithm for transforming a building evacuation problem

() to the corresponding time-expanded process-network

synthesis problem ()

 cumulative density function

 cooperative robotic search team

 failure rate

 linear programming

 mixed integer linear programming

xv

 maximum structure generator algorithm

 probability distribution function

 process network synthesis problem

 time-expanded process-network synthesis problem

 organization model for adaptive computational systems

framework

 organization-based multi-agent software engineering

methodology framework

 structure generator algorithm

 unified modeling language

xvi

Abstract

This work is motivated by our deep conviction about the role of optimization models in

real world problems. To this extent, this dissertation presents the work carried out in two

seemingly unrelated domains: building-evacuation-route planning, and modeling organization-

based multiagent systems. Both domains are seen from a wider perspective as instances of

optimization models, where the common outcome is concerned with the minimization or

maximization of a certain function, possibly under constraints.

With regards to the building-evacuation-route planning problem, a method and software

for optimal building-evacuation-route planning are proposed in terms of identifying evacuation

routes and scheduling of evacuees on each route. First, the building-evacuation routes are

represented by a P-graph, which gives rise to a time-expanded process-network synthesis ()

problem that can be algorithmically solved according to the P-graph framework; each location

and passage in the building are given by a set of attributes to be taken into account in the

evacuation-route planning. The evacuation time is calculated as a minimum cost of the

corresponding . In addition to the globally optimal solution, the P-graph framework

provides the n-best sub-optimal solutions. The validity of the proposed method is illustrated by

several examples.

With respect to the modeling of organization-based multiagent systems problem, at the

outset, the design of organization-based multiagent systems is proposed according to the

framework of Organization Model for Adaptive Complex Systems (). Subsequently, this

design model is transformed into a process-network model, i.e., P-graph. Eventually, the

resultant process-network model in conjunction with the P-graph-based methodology give rise

to: (i) the maximal structure of the process network, comprising all the combinatorially feasible

structures, i.e., -based design configurations, capable of yielding the specified products

from the specified raw material; (ii) every combinatorially feasible structure of the process of

interest; and (iii) the optimal structure of the network, i.e., the optimal -based design

configuration. Finally, in light of the tenet of a modeling-transformation-evaluation paradigm, an

xvii

appraisal is made of the feasibility as well as the flexibility and cost of the optimal -based

design configuration obtained.

xviii

Resumen

Este trabajo está motivado por nuestra profunda convicción sobre el papel de los modelos

de optimización en los problemas del mundo real. En este sentido, esta disertación presenta la

labor llevada a cabo en dos dominios aparentemente no relacionados: planeación de rutas de

evacuación en edificios, y modelados de sistemas multiagente basados en organizaciones.

Ambos dominios se pueden ver desde una perspectiva más amplia como ejemplos de modelos de

optimización, en el que el resultado común tiene que ver con la minimización o maximización de

una función determinada, posiblemente bajo restricciones.

En cuanto al problema de planeación de rutas de evacuación en edificios, se propone un

método y un software para la planeación de rutas de evacuación en edificios en términos de

identificar las rutas de evacuación y la programación de los evacuados en cada ruta. En primer

lugar, las rutas de evacuación del edificio se representan mediante P-graph, lo que da lugar a un

problema de síntesis de redes de procesos de tiempo extendido () que se puede resolver

algorítmicamente de acuerdo con P-graph; cada lugar y espacio en el edificio son definidos por

un conjunto de atributos que deben tenerse en cuenta en la planeación de de las rutas de

evacuación. El tiempo de evacuación se calcula como un coste mínimo de correspondiente

 . Además de la solución óptima general, P-graph proporciona las n-mejores soluciones sub-

óptimas. La validez del método propuesto se ilustra con varios ejemplos.

Con respecto al problema de modelado de sistemas multiagente basados en

organizaciones, en principio, se propone el diseño de sistemas multiagente basados en

organizaciones de acuerdo con modelo Organization Model for Adaptive Complex Systems

(). Posteriormente, este modelo de diseño se transforma en un modelo de redes de

procesos, es decir, P-graph. Finalmente, el modelo de redes de procesos resultante en conjunción

con la metodología P-graph de lugar a: (i) la estructura máxima de la red de proceso, que

comprende todas las estructuras combinatoria viables, es decir, configuraciones de diseño

basados en , capaces de obtener los productos especificados a partir de la materia prima

especificada; (ii) toda estructura combinatoria posible del proceso de interés; y (iii) la estructura

xix

óptima de la red, es decir, la configuración de diseño óptimo basado en . Por último, a la

luz del principio de un paradigma de modelado-transformación-evaluación, una evaluación se

hace de la viabilidad, así como la flexibilidad y el coste de la configuración de diseño óptimo

obtenido basado en .

xx

Összefoglaló

Ezt a munkát az a mély meggyőződés motiválja, hogy az optimalizálási modellek

elősegítik gyakorlatban felmerülő problémák megoldását. Ennek érdekében ez az értekezés két,

egymástól látszólag független területen – jelesül épület-kiürítési útvonalak tervezése, illetve

szervezeti alapú, multiágens rendszerek modellezése terén - elvégzett munkát mutat be. Mindkét

területet tágabb perspektívából optimalizálási modellek eseteiként fogjuk fel, ahol a közös

eredmény egy bizonyos függvény minimalizálásával vagy maximalizálásával jön létre, esetleg

korlátok között.

Ami az épület-kiürítési útvonalak tervezésének problémáját illeti, kidolgoztunk egy

módszert és egy szoftvert optimális épület-kiürítési útvonalak tervezésére: az evakuálási

útvonalak azonosítása és az egyes útvonalakon evakuálandók ütemezése tekintetében. Először is,

az épület-kiürítési útvonalakat egy P-gráf representálja: ez egy időben elnyújtott folyamat-

hálózati szintézis () problémáját veti fel, amely algoritmikusan megoldható a P-gráf keret

szerint; az épület minden egyes helyét és a folyosóját egy sor jellemző határozza meg, amelyeket

figyelembe kell venni a kiürítési útvonal tervezésében. A kiürítési időt a megfelelő

minimális költségeként kalkuláljuk. A globálisan optimális megoldás mellett a P-gráf keret

megadja az n-edik legjobb szuboptimális megoldásokat is. A módszer érvényességét több

példával szemléltetjük.

Ami a szervezeti alapú multiágens rendszerek modellezésének problémáját illeti,

kezdetben szervezeti alapú multiágens rendszerek megtervezését javasoljuk a Komplex Adaptív

Rendszerek Szervezeti Modelljének () kerete szerint. Ezt követően ezt a tervezési

modellt átalakítjuk folyamat-hálózati modellé, azaz a P-gráffá. Majd a kapott folyamat-hálózati

modell a P-gráf alapú metodológiával együtt létrehozza: (i) a folyamat-hálózat maximális

struktúráját, amely magába foglalja az összes kombinatorikusan megvalósítható struktúrát, azaz

 alapú tervezési konfigurációt, amely képes produkálni a meghatározott termékeket a

meghatározott alapanyagból; (ii) az érintett folyamat valamennyi kombinatorikusan

megvalósítható struktúráját; és (iii) a hálózat optimális szerkezetét, azaz az optimális -

xxi

alapú tervezési konfigurációt. Végül egy modellezés-átalakítási-értékelési paradigma tételének

fényében, felmérjük a kapott optimális alapú tervezési konfiguráció

megvalósíthatóságát, valamint rugalmasságát és költségét.

xxii

Acknowledgements

The author wishes to express his most profound appreciation to Dr. Ferenc Friedler of

Faculty of Information Technology at Pázmány Péter Catholic University and Dr. L.T. Fan () of

Department of Chemical Engineering at Kansas State University for their excellent guidance,

constant encouragement an invaluable advice for finishing this work. Appreciation is extended to

Dr. Botond Bertok of Department of Computer Science and Systems Technology at Pannonia

University for his advice and guidance. Special gratitude is also extended to Dr. Andres Argoti

for his advice, assistance, and friendship. Special thanks go to Dr. Itsvan Heckl, Mate Hegyhati,

Orsolya Kristof, Zita Vereskuti, Freddy Mendez Ortiz, and Dr. Laszlo Palotas. The financial

support provided by the Department of Computer Science and Systems Technology at Pannonia

University is gratefully acknowledged.

xxiii

Dedication

To my parents, Isidro Elías (†) and Evila, my wife Lina Marcela, and my son Santiago.

24

Chapter 1. Introduction

This section presents the work done in two seemingly unrelated research domains:

building-evacuation-route planning, and modeling organization-based multiagent systems.

However, my interest in these research domains derives from the same source; that is, our

deep conviction about the role of optimization models. Both problems can be seen from a

wider perspective as instances of optimization models where the common outcome is

concerned with the minimization or maximization of a certain function, possibly under

constrains.

 1.1 Building-Evacuation-Route Planning

Route Evacuation Planning is the science of ensuring the safest and most efficient

evacuation time of all expected residents of a building, city or region, or transportation

carriers (e.g., train, ship, and airplane) from a treat or actual occurrence of a hazard (e.g.,

natural disasters, traffic, industrial, or nuclear accidents, fire, viral outbreak, etc.) [47]. In

any scenario (i.e., building, city or region, or transportation carriers), a proper planning may

imply the evaluation of a countless number of evacuation routes which is considerably

challenging because of the combinatorial nature of the problem [97]. Naturally, towards

this end, it is highly desirable or even essential, to have access to optimization software.

Such software should be able not only to generate an optimal evacuation plan, but also to

yield and evaluate every feasible evacuation plan [17,22], whenever computationally

possible, due to its complexity [100].

In the particular case of building evacuation, the occupants’ evacuation is one of the

most important concepts of the buildings safety. For this reason, buildings are safe if they

are built according to local building authority regulations and codes of practice. However, it

is not always necessary to evacuate a building during an emergency. For instance, a power

outage does not necessarily call for an evacuation [9]. Current research efforts fall into six

25

categories1 [11,71]: level of service, mathematical models, heuristics methods, stochastic

models, simulation tools, and multiagent systems.

In this dissertation, we focus on mathematical models for generating optimal

evacuation plans which minimize the total evacuation time. Mathematical models adopt

flow networks algorithms to evaluate the routes (e.g., minimum cost flow, maximum flow,

quickest path, etc.). Mathematical models rely on the category of level of service research

for characterizing the walking speed and spacing between evacuees based upon the density

of evacuees using a pathway or corridor [61,81,84,85,86,87,90,91,106].

Even though these evacuations planning algorithms generate optimal plans, they are

computationally expensive with respect to the resources they can use (e.g., memory and

processing time) [47,107]. For example, Francis, in [28,29], proposes the application of

mathematical optimization for building evacuation by adopting Brown´s algorithm [7].

Then, Berlin points out the use of flow networks in building evacuation [4] followed by

Francis et al’s works [13,60]. These works are later on extended to consider problems

where flow networks are constrained by their capacities and solved by adopting greedy and

polynomial algorithms [15,53,54]. Other works focus on formulating the building

evacuation as a multi-objective problem [44,45,66,112].

To overcome the computational cost of computing building-evacuation-routes-plans

by resorting to mathematical models, heuristic models are proposed [74]2. Also, stochastic

models are adopted to capture the overall egress process more realistically, despite the fact

their resolution is more laborious [73,102,103,104]. In recent years, simulation methods

have gained adepts. Simulation methods model and emulate traffic flow and assume that

the behavior of individuals is under the influence of other. Three approaches have been

adopted for simulating traffic flow [47]: probabilistic models [22,73], cellular automata

1 In most of the cases, these categories take advantage of the advances in the Geographical Information

Systems field for accessing data or drawing graphical location-based information.

2
 Although the do not always generate the optimal solution.

26

[3,5,19,64,80], and multiagent systems [10,62,96,110]. In [67], a list of simulation models

and software packages for simulating pedestrian motion can be found.

In this dissertation, we are to examine and propose a MILP model based upon the

traditional discrete time dynamic network flow model [47]. This model will be explained

next.

1.1.1 Discrete Time Dynamic Network Flow Model

A discrete time dynamic network flow model is a discrete time expansion of a static

network flow problem, where the flow is distributed over a set of predetermined time

periods [47].

In [47] a definition of dynamic network flow model is introduced. Let

be a directed network with the set of nodes and the set of arcs. Travel time is given

for each arc ; where is assumed to be constant. The time expansion of over a

time horizon defines the dynamic network associated with where

and consist of movement arcs , where

and the set of holdover arcs

i.e.,

27

Figure 1. Static network of a simple building layout (taken from [47]).

To construct the dynamic network, defined above, the following assumptions

have been made. First, the time period is dependent of (the basic time unit) in which

travel times are measured. For instance, if we choose on the length of the basic unit,

i.e., , then specifying three times period, i.e., , for traversing an arc means an

evacuee needs thirty seconds to do so. It can be noticed that, the smaller the more

accurately the model represents the actual flow's evolution3.

Since the dynamic network has copies of each source-node and each sink-

node, the dynamic network will have multiple sources and sinks. Therefore, in order to

reduce the size of the dynamic network, a super-source and a super-sink are introduced

to create a single source/sink network (see Figure 2). In evacuation problems, can be

interpreted as a common safety area; and, the place where all evacuees are initially

located. For every source-node, a holdover arc is created. Holdover arcs from to source-

nodes have zero travel time and capacities are equal to initial occupancies. In the maximum

dynamic flow problem, is connected to all time copies of the source-nodes (e.g., node 1 in

Figure 3). On the other hand, generally, all copies of every sink-node are connected to ;

hence, there is no holdover arc for sink-nodes. All connections to d have zero travel time

and infinite flow capacities. Nevertheless, it can be noted that, dynamic network flow

3
 However, choosing too small will result in undesirable size of the network. Hence, the choice of is a

compromise between model realism and model complexity [47].

28

problems can always be solved as static flow problems in the expanded network. Also, the

equivalent static problem does not require keeping arc capacities and travel times fixed

over time, as assumed before, but these assumptions are essential for building efficient

algorithms to solve the problem [47]. The upper bound for the number of nodes and arcs in

discrete time dynamic network can be stated as follows. If and then

 and are the upper bound for the number of nodes

and arcs in without considering super-source and super-sink, respectively [47]. Since

arc in the path from to any sink-node at time are greater than , the size of the time-

expanded network can be reduced by eliminating inessential arcs including their

corresponding nodes (see Figure 3).

Figure 2. Dynamic Network of the Static Network of Figure 1, with

(taken from [47]).

In the dynamic network flow models, denotes the flow (e.g., the number of

evacuees moving at time) that leaves node at time and reaches node at time .

Flows from node at time to the same node with travel time =1 represents the number

29

of evacuees who prefer to stay in the building component represent by node at time for

at least one unit of time. This flow is denoted by , i.e., .

The capacity of movement arcs is denoted by where,

without loss of generality, we can assume that

The capacity of a holdover arc is determined by the node

capacity , and represents how many evacuees can stay in the node at a given time .

With as the general objective and with as the initial number of evacuees in any

node , gives rise to the discrete-time dynamic network flow model for evacuation

process.

 (1.1)

subject to

(1.2)

(1.3)

(1.4)

(1.5)

30

where

are the nodes which are predecessors and successors of node , respectively.

In order to measure the time when evacuees reach their final destinations, so-called

turnstile cost [13,48] is defined on each arc (see arcs (41,d), (42,d), (43,d), and (44,d) in

Figure 3) as follows; if is the set of sink nodes of the static network and is the super

sink node of the associated dynamic network , the (turnstile) cost of any arc

 is defined different from iff and . In this case [47],

 .

Let denote the set of source-nodes of the static network . Using the

previous definition of turnstile cost, the objective function to model the average

time required by an evacuee to leave the network can be stated as follows [47].

(1.6)

Since the denominator is constant and depends only on the flow variables, one

just need to define the objective function as

(1.7)

31

Figure 3. Dynamic network GT of the static network G of Figure 1, with T = 4, without

initial contents, and by deleting inessential arcs (taken from [47]).

Finally, the movement of initial occupancies are modeled by using flow from to

each source-node. Assuming constant capacity (i.e., and

 of each node and constant travel time between them gives rise to

the evacuation model (LP) that minimizes the average evacuation time.

32

 (1.8)

subject to

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

As result, a time-expanded network, as defined in the first definition introduced in

this section, can be evaluated as a static network and then solved by applying any minimum

cost static network flow algorithm to obtain the solution [1,47].

33

 1.2 Organization-Based Multiagent Systems

Designing and implementing large, complex, and distributed systems by resorting to

autonomous or semi-autonomous agents that can reorganize themselves by cooperating

with one another represent the future of software systems [18]. Trends in the field of

autonomous agents and multiagent systems suggest that the explicit design and use of

organization-based multiagent systems [76], which allow heterogeneous agents (either

human or artificial entities) rely on well-defined roles to accomplish either individual or

system level goals [21,114], is a promising approach to these new requirements [76].

When focusing on system’s goals, an organization of agents allows its members,

i.e., individual agents, to work together to perform the tasks for which they are best suited.

When emphasizing an individual agent’s goal, an organization provides the infrastructure

that allows agents to find and carry out collaborative tasks with other entities to the mutual

benefit. In situations where the nature of the environment makes the organization

susceptible to individual failures, these failures can significantly reduce the ability of the

organization to accomplish its goals.

In the literature a set of methodologies [52], a selection of design processes [16],

and a collection of frameworks [18,20,24,26,55,65,99] are available to provide the basis for

constructing sophisticated autonomous multi-agent organizations. Moreover, a set of

metrics and methods have been suggested with the intention of providing useful

information about key properties (e.g., complexity, flexibility, self-organized, performance,

scalability, and cost) of these multi-agent organizations [56,63,88,95].

The above-mentioned methodologies and frameworks, however, do not offer

techniques for identifying the number of feasible configurations of agents that can be

synthesized, or designed, from a set of heterogeneous agents. This is an important issue in

designing a multiagent system because of the nature of the environments where it operates

(dynamic, continuous, and partially accessible) [81]. The multiagent system must be

adaptive (self-organized) to adjust its behavior to cope with the dynamic appearance and

34

disappearance of goals (tasks), their given guidelines, and the overall goal of the multiagent

system [65,81].

In this dissertation, we are to examine and propose a couple of organization-based

multiagent systems assessment models based upon the framework OMACS [18]. This

framework will be explained next.

 1.2.1 Overview of the Framework of Organization Model for Adaptive Computational

Systems: OMACS

The Framework of Organization Model for Adaptive Computational Systems

(hereafter,) defines the entities in standard multi-agent systems and their

relationship as a tuple

 , and it is also represented

via an UML
4
-based organizational meta-model (see Figure 4) [18]. These are briefly

described in what follows.

Figure 4. OMACS Meta-model.

4
 Unified Modeling Language () is a standardized general-purpose modeling language in the field

of object-oriented software engineering.

35

The organization, , is composed of four entities including , ,

 , and . defines the goals of the organization (i.e., overall functions of

the organization); defines a set of roles (i.e., positions within an organization

whose behavior is expected to achieve a particular goal or set of goals). is a set of

agents, which can be either human or artificial (hardware or software) entities that perceive

their environment (– domain model) and can perform actions upon it. In order to perceive

and to act, the agents possess a set of capabilities (), which define the

percepts/actions at their disposal. Capabilities can be soft (i.e., algorithms or plans) or hard

(i.e., hardware related actions). formally specifies rules that describe how

may or may not behave in particular situations.

In addition, OMACS defines a set of functions – , , ,

 , , , and – to capture the different relations among the

entities. , a function whose arguments are a goal in as well as a role in

 that generates an output which is a positive real number greater than or equal to

and less than or equal to 1 (, , defines the extent of

achievement of a goal by a role); , a function with an agent in and a

capability in as inputs yields a positive real number in the range of [0,1]

(, , defines the quality of an agent´s capability);

 , a function that assumes a role in , thereby yielding a set of capabilities required

to play that role (, , defines the set of capabilities required

to play a role
5
); , a function whose inputs are an agent in and a role in

 and generates an output, which is a positive real number greater than or equal to

and less than or equal to (, , defines how well an agent

can play a role), thus giving rise to

5 denotes power set.

36

(1.15)

potential, a function with an agent in , a role in , and a goal in as

inputs yields a positive real number in the range of [0,1], thus yielding

 ; (1.16)

(, , defines how well an agent can play a role

to achieve a goal), and assignment set, , the set of agent-role-goal tuples ,

indicating that agent has been assigned to play role in order to

achieve goal (is a subset of all the potential assignments of agents to play

roles to achieve goals). Finally, the selection of from the set of potential assignments is

defined by the organization’s reorganization function, oaf, that assumes a set of

assignments in , thereby yielding a positive real number in the range of (,

 , defines the quality of a proposed set of assignments, i.e.,

computes the goodness of the organization based on), thus resulting in

(1.17)

 1.3 Objectives

The work presented here in this dissertation aims at mathematical modeling of two

apparently unrelated research domains: building-evacuation-route planning, and modeling

organization-based multiagent systems. Specific objectives of this work are as follows:

a) For the Building Evacuation Route Planning Problem

37

(i) To transform it into a P-graph model taking into account the

temporal dimension inherent to the building evacuation problem in

terms of the evacuation time, specifically, its upper bound .

(ii) To calculate the evacuation time as a minimum cost of the resultant

MILP model

(iii) To validate the results of the resultant MILP model in light of the

available experimental data taken from the literature.

(iv) To evaluate the existence of -best sub-optimal solutions.

b) For the Modeling of Organization-based Multiagent System Desing Problem

(i) To transform design of organization-based multiagent systems,

according to the framework OMACS, into a P-graph model

(ii) To solve algorithmically the resultant MILP model

(iii) To validate the results of the resultant MILP model in light of

simulated data.

(iv) To evaluate the existence of -best sub-optimal solutions.

Besides the current chapter, this dissertation contains four additional chapters, i.e.,

Chapters 2 through 5.

Chapter 2 presents the analysis, modeling, and evaluation of building-evacuation-

route planning. Chapter 3 focuses on the analysis, modeling, and simulation of

organization-based multiagent systems. Chapter 4 draws the mayor conclusions and

recommendation for possible extensions are proposed. Finally, the major outcomes of this

dissertation are presented in Chapter 5.

38

Chapter 2. Building-Evacuation-Route Planning: Research

Results

2.1 Background

The aim of any building evacuation plan is to ensure the safest and fastest

movement of people away from any threat (e.g., bomb threat and taking of hostages) or the

occurrence of a hazard (e.g., industrial or nuclear accidents, natural disasters, fire, and viral

outbreak) [105]. Nevertheless, buildings are increasingly built taller and more complex,

thus rendering it difficult to establish a rapid evacuation plan [92].

In any emergency scenario, determining an optimal or near optimal evacuation plan,

in terms of the egress time, entails the evaluation of a myriad of evacuation routes, which is

highly convoluted because of the combinatorial nature of the problem [17,47,58,100].

Naturally, towards this end, it is highly desirable or even essential, to have access to

optimization software. Such software should be able not only to generate an optimal

evacuation plan, but also to yield and evaluate every feasible evacuation plan [17,22],

whenever computationally possible, due to its complexity [100]. Egress models such as

EVACNET4, WAYOUT, and PathFinder which employ optimization software generate at

most one globally optimal solution for showing congestion areas, queuing, or bottlenecks

[70,72].

Following, an algorithmic method for optimizing a building evacuation plan, in

terms of the egress time, supported by software tools at each step is presented. This method

resorts to the graph-theoretic approach based on the P-graph framework. The method is

39

demonstrated by applying it to the evacuation of different building configurations (i.e., one-

story building, a two-story, a three-story, and a ten-story building).

 2.2 Problem Definition

Let be a directed graph with the set of nodes and the set of arcs.

For an evacuation plan, the potential locations of evacuates and other areas, e.g., rooms,

corridors, safe areas, stairs, or intersections, on a building-floor map are represented by

nodes , and the potential movements between the locations, through , e.g., passages,

gates, or doorways, or edges, by arcs and ; see Figure 56. We are to

minimize the time of a building evacuation plan consisting of a set of evacuation routes and

a scheduling of evacuees on each route.

 The evacuation plan should satisfy the constraints imposed by the building itself

[47]. Specifically, each location has a limited capacity expressed by non-negative integer

 , which is the number of individuals that can be accommodated at this location. The

initial occupancy is also assigned to each location by non-negative integer , which is

the number of individuals at any given location in the event of an emergency. Moreover,

the maximum flow rate of passage is defined by positive integer . The flow

rate is the maximum number of individuals that can travel through it simultaneously.

Passages may act as bottleneck points in the floor-map. Finally, each passage is

constrained by non-negative travel time . Travel time is a measure of time required

by an individual to go through the entire length of a passage. Additionally, it is noteworthy

to mention that it is up to the expert or group of experts the process of specifying each of

the constraints, mentioned previously, for the building of interest

[13,14,47,49,50,59,70,72,94].

6
 The graph-based notation has been slightly modified to introduce variable from its original [47].

40

The graph-theoretic approach based on P-graphs (process graphs) has been

conceived for optimally synthesizing a process network presumably operating under

steady-state, or stationary, conditions; naturally, no temporal dimension is involved

[31,33,34,35]. Figure 6 shows an approximation of a PNS problem (represented via p-

graph) of the building evacuation problem introduced in Figure 5. For a building evacuation

problem the locations of evacuees including safe areas (e.g., rooms, corridors, safe areas,

stairs, or intersections) on the building-floor map are represented by entities , the

initial location of evacuees are represented by raw materials ; and, the potential

movements between the locations (through, e.g., passages, gates, or doorways, and edges)

by activities (see Figure 6) [42,43]. It is noteworthy to mention that this

representation raises some issues regarding the p-graph model and the building evacuation

problem. First, the p-graph model violates axiom (S2). That is, B and C (both raw

materials) are produced by operating units (1,2,1) and (1,2,2), respectively. Second, this

model does not capture the temporal dimension of the problem in terms of the egress time

of the individuals inside the building at the onset of an emergency. Therefore, a new

approach is required.

To deploy this approach for the problem of interest entails an appropriate adaptation

of the approach, problem, to take into account the temporal dimension inherent to the

problem in terms of the evacuation time, specifically its upper bound [47,100]. This have

given rise to the development of the time-expanded process-network synthesis, ,

proposed in the current dissertation [41,42,43].

41

Figure 5. Conventional adopted graph-based notation for representing building-floor

maps [47]: {initial contents, node capacity}; (travel time, arc capacity, arc

id).

Figure 6. P-graph representation of the building floor map introduced in Figure 5.

 2.3 Methodology

 2.3.1 P-graph-based approach

42

This approach is rooted in the two cornerstones; one is the P-graph representation of

a process network of interest, and the other is a set of five axioms for solution structures,

i.e., combinatorial feasible networks. These two cornerstones render it possible to fashion

the three mathematically rigorous algorithms, including algorithm MSG (maximum-

structure generation), algorithm SSG (solution-structure generation), and algorithm ABB

(accelerated branch-and-bound). These three algorithms are capable of not only generating

exhaustively and exclusively solutions structures but also of identifying exactly the globally

optimal structure, i.e., network, near optimal structures in ranked order ([31,33,34,35]; also

see Appendixes A and B).

 2.3.2 Time-expanded process-network synthesis, PNST

Given an upper bound of the evacuation time and set of entities, i.e., locations and

the state of locations at time , 0 , a problem is given by triplet . In

this triplet: set contains the final target to be reached, i.e., common safety point

[25]; set contains the initially available resources, i.e., locations of individuals; and

set comprises the candidates activities for forming a network to reach

each of the final targets by moving the total amount of available resources, i.e., the

potential movements of evacuees between the locations. Each activity is defined by a pair

of its preconditions and outcomes, i.e., for each , where . A

precondition can be the availability of a resource or an outcome of another activity.

In any evacuation scenario, the initial locations of individuals and their flow, and

capacity constraints on each location and passage of the building are essential. Thus, they

must be explicitly defined as given in the following. For each building evacuation problem,

safety points serve as the final destinations, which converge into a unique common safety

point in set ; the initial locations of evacuees are listed in set ; and the movements of

evacuees from one location to another are in set of candidate activities.

Figure 7 presents an algorithm for transforming a building evacuation problem

() to the corresponding time-expanded process-network synthesis () problem,

43

i.e., algorithm . It generates three classes of evacuees’ movements pertaining

to [42, 47]. The first class represents the number of evacuees staying at a specific location

for at least one unit of time; the second class, the number of evacuees traveling from

location at time to location through passage in time where

 symbolizes the travel time from to 7 through passage ; and, the

third class, the number of individuals reaching a common safety point at time ,

 .

 2.3.3 Algorithm BEPtoPNST

Figure 8 presents a simple motivational example for illustration to facilitate the

comprehension of algorithm described herein. Algorithm

comprises two mayor parts, the initialization part and the time-expansion part. The

initialization part (statements , and loop) specifies the set of available raw

materials and the set of desired products to be manufactured as well their parameters. The

time-expansion part (statement and loops and) specifies the set of candidates

operating units as well their parameters.

For each node in (as introduced in Problem Definition section , specifies a

conventional building evacuation problem) where , the initial content of node , greater

than is transformed into raw material and added to set (statement and loop);

as such, Axiom (S2) is satisfied, i.e., a vertex of the -type has no input if and only if it

represents a raw material. Algorithm generates the resources, ; , , and

 . Also, for each resource, , lower bound , and upper bound , are set; as such,

algorithm specifies the total amount of available resources for the

problem. That is, lower bound of resource , , , ; upper

bound of resource , , Thus, only one product, i.e.,

 , is specified and added to set (statement); as such, Axiom (S1) is

automatically satisfied, i.e., every final product is represented in the graph. Note that this is

7
 In the literature, classes 1 and 2 are known as holdover and movement arcs, respectively [47].

44

analogous to the notion of super-sink nodes in maximum-flow problems [25]. In other

words, a building-evacuation problem with multiple safety points, i.e., network with

multiple sinks, can be converted to the building-evacuation problem with only a single

safety point, i.e., network with only a single sink [47]. For outcome , algorithm

 sets lower bound , and upper bound ; as such, the

amount of product to be manufactured to meet the demand of the problem is

specified. To be precise, lower bound of product , ,

thereby resulting in upper bound of product ,

(refer to Figure 7).

Subsequently, algorithm stepwisely specifies, in loop , the

operating units, representing evacuees’ movements, as described in the preceding section;

as such, Axiom (S3) is satisfied, i.e., every vertex of the -type represents an operating unit

defined in the synthesis problem. First, the algorithm loops through every value of for

 , where is time. Consequently, for each node in , where , the

capacity of node , is not infinite is transformed into material and added to set .

By presuming that an evacuation time , algorithm generates

materials ; , , , , , , , , and , where

 . Note that material represents the number of individuals accommodated

at in time . Then, operating unit is created and added to set for each and .

Algorithm generates operating units ; , , ,

 , , , , , and , where , such that

 , , ,

 , , ,

 , , and . Additionally,

lower bound and upper bound are set for each operating unit

 ; as such, algorithm specifies the number of individuals who prefer

to stay at specific location for at least one unit of time, i.e., . Namely,

45

lower bound of operating unit , , , ,

 , , , , , and ;

 upper bound of operating unit , , ,

 , , , , , ,

and . Subsequently, node is transformed into material and added to set

for each arc in G , where either is not infinite or is the only safety point.

46

Figure 7. Algorithm written in Pidgin Algol (see Appendix C).

𝐢𝐧𝐩𝐮𝐭: 𝐺 = 𝑁, 𝐴 , 𝑇
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝐺 = 𝑁, 𝐴 represents a building evacuation problem, variable 𝑇 stores the upper bound of the
evacuation time
𝐨𝐮𝐭𝐩𝐮𝐭: sets 𝑃, 𝑅, 𝑂
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑅 ⊂ 𝑀, 𝑃 ⊂ 𝑀, 𝑅 ∩ 𝑃 = ∅, variable 𝑒𝑣𝑎𝑐𝑢𝑒𝑒𝑠 stores the sum of all individuals in the building,
set 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠 contains all possible gather points in the building, symbol represents set cardinality
𝐛𝐞𝐠𝐢𝐧
 𝐜𝐨𝐦𝐦𝐞𝐧𝐭: initialization part of the algorithm

 𝐬𝐭𝟏: 𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒 ∶= 𝑁 \ 𝑥 | 𝑥 = ⋃𝑛 ∈ 𝑁 ∧ 𝑖𝑐𝑛 > 0 𝑛

 𝐥𝐩𝟏: 𝐰𝐡𝐢𝐥𝐞 𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒 is not empty 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 let 𝑛 be an element of 𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒
 𝑒𝑣𝑎𝑐𝑢𝑒𝑒𝑠 +: = 𝑖𝑐𝑛 ; 𝑟 ∶= 𝑛 ; 𝑈𝑟 ∶= 𝑖𝑐𝑛 ; 𝐿𝑟 ∶= 0;𝑅 ∶= 𝑅 ∪ 𝑟 ; 𝑀 ∶= 𝑀 ∪ 𝑟 ;
 𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒 ∶= 𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒\𝑛;
 𝐞𝐧𝐝;
 𝐬𝐭𝟐: 𝑝 ∶= 𝑆𝑢𝑝𝑒𝑟𝐸𝑥𝑖𝑡 ; 𝑈𝑝 ∶= ∞; 𝐿𝑝 ∶= 𝑒𝑣𝑎𝑐𝑢𝑒𝑒𝑠; 𝑃 ∶= 𝑃 ∪ 𝑝 ; 𝑀 ∶= 𝑀 ∪ 𝑝 ;

 𝐜𝐨𝐦𝐦𝐞𝐧𝐭: time expansion part of the algorithm

 𝐬𝐭𝟑: 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠 ∶= 𝑥 | 𝑥 = ⋃𝑛 ∈ 𝑁 ∧ 𝑐𝑎𝑝 𝑛 = ∞ 𝑛 ;

 𝐜𝐨𝐦𝐦𝐞𝐧𝐭: time − expansion part of the algorithm
 𝐥𝐩𝟐: 𝐟𝐨𝐫 t ≔ 0 𝐮𝐧𝐭𝐢𝐥 T − 1 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ∶= 𝑁 \ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠;
 𝐰𝐡𝐢𝐥𝐞 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 is not empty 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 let 𝑖 be an element of 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠;
 𝑀 ∶= 𝑀 ∪ 𝑖_(𝑡 + 1) ;

 𝐢𝐟 𝑡 = 0 𝐭𝐡𝐞𝐧 𝐛𝐞𝐠𝐢𝐧 𝑖_𝑖_𝑡_(𝑡 + 1) ∶= 𝑖 , 𝑖_(𝑡 + 1) ; 𝐞𝐧𝐝;

 𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧 𝑖_𝑖_𝑡_(𝑡 + 1) ∶= {{𝑖_𝑡}, {𝑖_(𝑡 + 1)}}; 𝐞𝐧𝐝;
 𝑂 ∶= 𝑂 ∪ 𝑖_𝑖_𝑡_(𝑡 + 1) ;
 𝑈𝑖_𝑖_𝑡_(𝑡+1) ∶= 𝑐𝑎𝑝𝑖 ; 𝐿𝑖_𝑖_𝑡_(𝑡+1) ∶= 0; 𝑐𝑝𝑖_𝑖_𝑡_(𝑡+1) ∶= 0;

 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ∶= 𝑥 | 𝑥 = ⋃ 𝑘,𝑗 ∈ 𝐴 ∧ 𝑘≠𝑖 (𝑘, 𝑗) ;

 𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠: = 𝐴 \ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠;
 𝐰𝐡𝐢𝐥𝐞 𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 is not empty 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 let (𝑖, 𝑗) be an element of 𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠;
 𝐢𝐟 𝑗 ∩ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑒𝑥𝑖𝑡𝑠 = ∅ 𝐭𝐡𝐞𝐧 𝐛𝐞𝐠𝐢𝐧 𝑚 ≔ {𝑗_(𝑡 + 𝜆𝑖𝑗)}; 𝐞𝐧𝐝;

 𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 |𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠| = 1 𝐭𝐡𝐞𝐧 𝐛𝐞𝐠𝐢𝐧 𝑚 ≔ {𝑗_(𝑡 + 𝜆𝑖𝑗)}; 𝐞𝐧𝐝;

 𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧 𝑚 = {𝐸𝑥𝑖𝑡_(𝑡 + 𝜆𝑖𝑗)}; 𝐞𝐧𝐝;

 𝐞𝐧𝐝;
 𝐢𝐟 𝑡 = 0 𝐭𝐡𝐞𝐧 𝐛𝐞𝐠𝐢𝐧 𝑖_𝑗_𝑡_(𝑡 + 𝜆𝑖𝑗) = {{𝑖}, {𝑚}}; 𝐞𝐧𝐝;

 𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧 𝑖_𝑗_𝑡_(𝑡 + 𝜆𝑖𝑗) = {{𝑖_𝑡}, {𝑚}}; 𝐞𝐧𝐝;

 𝑀: = 𝑀 ∪ 𝑚 ; 𝑂: = 𝑂 ∪ {𝑖_𝑗_𝑡_(𝑡 + 𝜆𝑖𝑗)};

 𝑈𝑖_𝑗 _𝑡_(𝑡+𝜆𝑖𝑗): = 𝑐𝑎𝑝(𝑖,𝑗); 𝐿𝑖_𝑗 _𝑡_(𝑡+𝜆𝑖𝑗): = 0; 𝑐𝑝𝑖_𝑗 _𝑡_(𝑡+𝜆𝑖𝑗): = 0;

 𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ≔ 𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 \ (𝑖, 𝑗);
 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ∶= 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠\ 𝑖;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐥𝐩𝟑: 𝐟𝐨𝐫 t ≔ 1 𝐮𝐧𝐭𝐢𝐥 𝑇 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠 ! = 1 𝐭𝐡𝐞𝐧
 𝐛𝐞𝐠𝐢𝐧
 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑝 𝐢𝐧 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑒𝑥𝑖𝑡𝑠 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧 𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒_𝑡: = 𝑝𝑡 , 𝑆𝑢𝑝𝑒𝑟𝐸𝑥𝑖𝑡 ; 𝐞𝐧𝐝;

 𝐞𝐧𝐝;

 𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧 𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒𝑡 : = 𝐸𝑥𝑖𝑡𝑡 , 𝑆𝑢𝑝𝑒𝑟𝐸𝑥𝑖𝑡 ; 𝐞𝐧𝐝;

 𝑈𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒 _𝑡 : = ∞; 𝐿𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒 _𝑡 : = 0; 𝑐𝑝𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒 _𝑡 : = 𝑡; 𝑂: = 𝑂 ∪ 𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒_𝑡 ;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;

47

Figure 8. Motivational example for illustration: { initial content of node ,

capacity of node }; (travel time from node to node ,

capacity of arc from node to through section , which connects locations

 and).

Algorithm generates materials
8; , , , and

 ; where . Next, for each , , and , operating unit is created and added to

set . Algorithm generates operating units ; ,

 , , , , , , , ,

 , , , , , and ; where ,

such that , ,),

 , , ,

 , , ,

 , , ,

 , , and

addition, lower bound
 and upper bound

 are set for each

8
 If represents one of many safety points of a building, then, algorithm generates the materials

.

48

operating unit ; as such, algorithm specifies the number of

evacuees traveling from location at time to location through passage in time .

That is,
 lower bound of operating unit , ,

 , , , , ,

 , , , , , ,

 , and ;
 upper bound of operating

unit , , , , ,

 , , , , ,

 , , , , , and (refer

to Figure 8).

Finally, algorithm specifies the operating units, which represent the

number of evacuees reaching a common safety point, in loop , i.e. ; as

such, Axioms (S3) and (S4) are satisfied, i.e., every vertex of the -type represents an

operating unit defined in the synthesis problem and every vertex of the -type has at least

one path leading to a vertex of the -type representing a final product, respectively. First,

algorithm loops through every value of for . Hence, one operating

unit is created and added to set for each . Algorithm generates the

operating units, ; , , and ; where ,

such that , , and

 9. Moreover, lower bound
, upper bound

, and proportional cost

 for each operating unit are set; as

such, algorithm specifies the number of evacuees reaching a safety point in

time . Specifically,
 lower bound of operating unit ,

 , and

 upper bound of operating unit

 ,

 , and

proportional cost of operating unit

 , and

9
 If the building has more than one safety point, algorithm generates, the operating units

 for , such that .

49

 (refer to Figure 10). As result, the execution of loops and assures

that Axiom (S5) is satisfied by the maximal structure, i.e., if a vertex of the M-type belongs

to the graph, it must be an input to or output from at least one vertex of the O-type in the

graph; Figure 9 displays the maximal structure of the motivational example generated by

algorithm . Furthermore, Figure 10 shows the relationships between the elements

adopted in the definition of a conventional building evacuation problem and those adopted

in the specification of a time-expanded process-network synthesis problem.

2.3.4 Mathematical programming model

The mathematical programming model derived from the maximal structure,

generated by algorithm , should be as simple as possible without impairing the

optimality of the resultant solution. In any of the available algorithmic methods for

addressing evacuation problems, the model derived leads to a linear mathematical

programming problem [47,100]. This linear programming model is formulated in terms of a

dynamic network flow, and then solved by applying any minimum cost static network flow

algorithm [1,47].

Figure 9. Maximal structure of the motivational example.

50

In the present work, a mixed-integer linear programming () model has been

formulated below, which at the very least yields a solution identical with those

conventional network flow algorithms [47,70,72].

Let denote the set of entities; , the set of products, where ; , the set of

initially available resources, where ; and , the set of activities, where

 10. The relations between entities and activities are denoted by which gives

the difference between the production and consumption rate of entity by activity ,

where and . Also given are lower bound and upper bound for the

volume of each activity , as well as its proportional cost (refer to in Figure 7).

10

 represents powerset.

Figure 10. Maximal structure of the motivational example showing the relationships

between the elements adopted in the definition of a and those adopted in

the specification of a .

51

Moreover, lower bound and upper bound are specified for each resource . In

addition, lower bound and upper bound are defined for each product .

Moreover, two classes of variables are involved in the mathematical programming model.

One class consists of binary variables, each denoted by expressing the absence

(0) or the existence (1) of operating unit ; and the other, continuous variables, each

denoted by expressing the size or capacity of operating unit relative to the unit size.

If operating unit is included in the network, as indicated by , the concomitant

continuous variable, , can be any real value in the range of to the upper limit for the

capacity of operating unit . Thus, , where is the upper limit for the

capacity; if such an upper limit does not exist, the can be any large number . Finally, ,

minimal, is the objective value. The resultant model is given in the following.

(2.1)

subject to

(2.2)

(2.3)

(2.4)

(2.5)

 (2.6)

52

(2.7)

(2.8)

The maximal structure serves as the input to the generation and solution of the

MILP model by algorithm ABB [35]. It yields the optimal network and a finite number of

n-best suboptimal networks in ranked order, whenever computationally possible, due to the

complexity of the evacuation problem [100]. Algorithm ABB has found a total of 10

feasible evacuation routes in less than a second, i.e., 0.080 s, on an Intel(R) Core(R) i5 CPU

650 @ 3.20 GHz.

Figure 11 shows four of them for the example of . Algorithms MSG and ABB

have been executed by software PNS Studio [93].

(a)

(b)

53

(c)

(d)

Figure 11. Solution #1 (a), #2 (b), #3 (c), and #4 (d) obtained via Algorithm ABB.

 2.4 Results and Discussion

The alternative feasible evacuation routes generated by algorithm ABB are ranked

according to several criteria, e.g., egress time, average number of periods for an evacuee to

evacuate, average number of evacuees per time period, node clearing time, individuals

waiting at the end of a time period by node, etc. [49]. For instance, the total evacuation time

required to completely evacuate all the individuals is 3 units of time by adopting any of the

four evacuation routes generated by algorithm ABB (see Section 3.3). Nonetheless, if

evacuation route #1 is compared with evacuation route #4, it can be noted that seven

individuals would reach safety point D within 2 units of time by employing evacuation

route #1, while only five individuals would reach safety point D within the same time by

employing evacuation route #4. Even if the evacuees leave their initial locations after the

onset of a fire emergency may not be considered a decisive factor for any optimal

evacuation plan, because other factor such as personal behaviors, e.g., waiting action, could

be determinant in an optimal evacuation plan; see Solutions #1 and #4 in Table 1. These

observations show that a trade-off analysis and in-depth assessment among different

evacuation routes is required [14,50]. Additionally, there are other criteria based upon the

54

effects of fire into the evacuation route planning that should be adopted in the proposed

method, e.g., individual travel and exposure time; time-based risk and evacuation exposure;

time-space-based risk and evacuation exposure [14,49,50].

Additionally to the one-story building example, other building configurations are

studied: two-story [94], three-story [59], and eleven-story [13]. When our method is applied

to the two-story building see Figure 12, algorithm ABB has found a total of 347 feasible

evacuation routes in nearly 18 min. It is noteworthy to mention that algorithm ABB has

found the first 71-best sub-optimal solutions in less than 18 s. This outcome outperforms

current optimization models (i.e., EVACNET4, WAYOUT, PathFinder), because not only

the optimal solution is computed but the n-best sub-optimal solutions are. Table 2 and

Figure 13 summarize the results of a subset of four n-best sub-optimal solutions. Also,

regarding the three-story and eleven-story building, the algorithm ABB has found the 10-

best sub-optimal solutions in 1 m 15 s and 17 m 30 s for the three-story building and the

eleven-story building respectively (see Table 4 and Table 4; and Figures Figure 14 and

Figure 15). These results clearly show the potential of the ABB algorithm for computing

the n-best sub-optimal evacuation routes.

Nevertheless, it is important to emphasize that even though the evacuation model

size increases proportionally to both the number of discrete locations and the discrete time

slots, the proposed method, i.e., formulating the evacuation problem as process network

synthesis problem with appropriate targets, and software could generate the optimal

solution by solving a single Linear Programming () problem in polynomial time (is

proven to be solvable in polynomial time). Moreover, is the only available tool

capable of generating the n-best alternative solutions systematically. Also, the process of

generating feasible evacuations plans is always convoluted: it is combinatorial in nature

[100]. Finally, it is worth emphasizing that our method: (i) can generate with dispatch the

evacuation model and its optimal solution (in polynomial time); and (ii) can generate

alternative evacuation plans algorithmically; no similar approaches are capable of doing so

[70,72]. Nevertheless, depending on the size of the problem, it might require substantially

larger computing time to generate the n-best sub-optimal solutions. This may entail the

55

deployment of modern computing techniques, e.g., Grid Computing and High Performance

Computing (HPC) [49], to greatly accelerate the computation.

Table 1. Four best assignments for the one-story building example.

Solution

Egress

Time

 Average # of

time period for

an evacuee to

evacuate

Node

Clearing

Time

People waiting at the end

of a time period by node

Nodes

Time
Nodes

 A B C A B C

0 2 0 1

#1

3

2,1

2 3 3

1 0 0 0

2 0 0 0

3 0 0 0

0 0 1 1

#2

3

2,1

1 2 3

1 0 0 0

2 0 0 0

3 0 0 0

0 0 0 1

#3

3

2,1

1 2 3

1 0 0 1

2 0 0 0

3 0 0 0

0 0 1 1

#4

3

2,3

1 2 3

1 0 0 2

2 0 0 0

3 0 0 0

56

Figure 12. A two-story building floor-map (adapted from [22] and [23]).

57

Figure 13. People waiting at the end of a time period by node for the two-story

building example. Contents are zero for non-listed nodes and time

periods.

58

Table 2. Four sub-optimal evacuation plans for the two-story building example.

Solution

Egress

Time

 Average # of

time period for

an evacuee to

evacuate

 Node Clearing Time (*)

Nodes

 A B C D E F G H I J K L

#1

16

9,9

0 2 1 3 6 5 10 9 15 14 - -

#11

16

9,97

0 2 1 3 6 5 10 9 15 14 - -

#71

16

10,03

0 2 1 3 6 5 10 9 15 14 - -

#347

16

10,1

2 1 2 3 6 5 10 9 15 14 - -

(*) Nodes K and L are never traversed by employing any of the evacuation plans

59

Figure 14. A three-story building floor-map (adapted from [22] and [23]).

60

Table 3. Data taken from the best optimal solution for the three-story building example.

P-graph Model Elements excluded by MSG Algorithm

PNS Solver PNS Configuration File Size

T
Computation Time

(s)

Input Size

(KB)

Output Size

(KB)

Materials

Operating

Units
% Materials % Operating Units

… … … … … … … …

34 0,062 140 108 427 1138 45,12 40,23

35 0,068 144 110 448 1194 43,93 39,08

36 0,086 148 112 469 1250 42,8 38

37 0,075 153 115 490 1306 41,74 36,97

38 0,074 157 117 511 1362 40,72 36

39 0,074 161 119 532 1418 39,75 35,07

40 0,077 165 122 553 1474 38,83 34,2

41 0,079 170 124 574 1530 37,95 33,36

42 0,087 174 126 595 1586 37,1 32,57

43 0,09 178 128 616 1642 36,3 31,81

44 0,095 183 131 637 1698 35,53 31,09

45 0,092 187 133 658 1754 34,79 30,4

46 0,092 191 136 679 1810 34,08 29,74

47 0,1 196 138 700 1866 33,4 29,1

48 0,096 200 140 721 1922 32,74 28,5

49 0,097 204 142 742 1978 32,11 27,92

50 0,096 208 144 763 2034 31,51 27,36

61

Figure 15. An eleven-story building floor-map (adapted from [10]).

62

Table 4. Data taken from the best optimal solution for the eleven-story building example.

Pgraph Model
MSG Algorithm excluded elements

PNS Solver PNS Configuration File Size

T
Computation Time

(s)

Input Size

(KB)

Output Size

(KB)

Materials

Operating

Units
% Materials % Operating Units

… … … … … … … …

34 0,151 359 264 819 1768 57,37 56,67

35 0,164 370 271 873 1888 55,8 55,05

36 0,18 381 278 927 2008 54,31 53,52

37 0,175 392 282 981 2128 52,9 52,07

38 0,194 403 291 1035 2248 51,57 50,7

39 0,188 413 296 1089 2368 50,3 49,4

40 0,235 424 305 1143 2488 49,09 48,17

41 0,192 435 307 1197 2608 47,93 46,99

42 0,202 446 316 1251 2728 46,83 45,87

43 0,225 457 320 1305 2848 45,78 44,81

44 0,228 468 330 1359 2968 44,78 43,79

45 0,224 479 335 1413 3088 43,82 42,81

46 0,237 490 342 1467 3208 42,9 41,88

47 0,243 501 350 1521 3328 42,01 40,99

48 0,233 511 353 1575 3448 41,17 40,14

49 0,27 522 360 1629 3568 40,35 39,32

50 0,25 533 366 1683 3688 39,57 38,53

63

Chapter 3. Designing Organization-based Multiagent Systems:

Research Results

 3.1 Background

Designing and implementing large, complex, and distributed systems by resorting to

autonomous or semi-autonomous agents that can reorganize themselves by cooperating

with one another represent the future of software systems [18]. Trends in the field of

autonomous agents and multiagent systems suggest that the explicit design and use of

organization-based multiagent systems [76], which allow heterogeneous agents (either

human or artificial entities) rely on well-defined roles to accomplish either individual or

system level goals [21,114], is a promising approach to these new requirements [76]. In the

literature a set of methodologies [52], a selection of design processes [15], and a collection

of frameworks [18,20,24,26,55,65,99] are available to provide the basis for constructing

sophisticated autonomous multi-agent organizations. Moreover, a set of metrics and

methods have been suggested with the intention of providing useful information about key

properties (e.g., complexity, flexibility, self-organized, performance, scalability, and cost)

of these multi-agent organizations [56,63,88,95].

Nevertheless, in situations where the nature of the environment makes the

organization susceptible to individual failures, these failures could significantly reduce the

ability of the organization to accomplish its goals. The above-mentioned methodologies and

frameworks, however, do not offer techniques for identifying the number of feasible

configurations of agents that can be synthesized, or designed, from a set of heterogeneous

agents. This is an important issue when designing a multiagent system because of the

nature of the environments where it operates (dynamic, continuous, and partially

accessible) [81]. The multiagent system must be adaptive (self-organized) to adjust its

behavior to cope with the dynamic appearance and disappearance of goals (tasks), their

given guidelines, and the overall goal of the multiagent system [65,81].

64

Following, two algorithmic methods for assessing the design of organization-based

multiagent systems supported by software tools at each step are discussed. These method

resorts to the graph-theoretic approach based on the P-graph framework. The methods are

demonstrated by applying them to different organization-based multiagent system designs.

 3.2 Problem Definition

Given a design of an organization-based multiagent system, , comprising a

set of heterogeneous agents, we are to investigate the number of feasible configurations of

agents that can be synthesized, or can emerge. Moreover, we are to explore the reliability

and cost of the system with such configurations.

In the current dissertation, a set of heterogeneous agents is defined as a set of

cooperative entities – either human or artificial (hardware or software) – capable of

perceiving and acting on their environment with the purpose of achieving their design

goals. We measure a system’s feasibility in light of its possibility of implementation; the

system’s flexibility in view of its ability to overcome the individual elements’ (agents’)

failures; and finally, the system’s cost in terms of the total cost of the agents therein.

 3.3 Methodology

 3.3.1 Designing Organization-based Multiagent Systems by resorting to the framework

OMACS

To demonstrate the application of the P-graph framework for assessing the designs

of organization-based multi-agent system, a survey is given of a simplified Cooperative

Robotic Search Team (CRST) system [51,95]. Essentially, we are to design a team of

robots whose goal is to search for different areas of a given location on a map. The team

should be able to search any area of the given location even when faced with failures of

individual robots or specific capabilities of those robots. This implies that the team must be

65

able to: (1) assign areas based on individual team member´s reliability; (2) recognize when

a robot is unable to perform adequately its duties; and (3) reorganize the team to allow it to

achieve its goals in spite of individual failures [38].

 3.3.1.1 Overview of the CRST Organization

For illustration, it is presumed that four goals be achieved by the CRST. In other

words, where for signifies “search area .” In the

CRST, two roles are identified, i.e., where and represent the

Searcher and Patroller roles, respectively. In particular, role requires the Sonar,

Movement, and GPS capabilities for achieving goals , , , and . Likewise, role

requires the Movement, GPS, and Range Finder capabilities for achieving the same goals as

those of role . Moreover, for each goal, , an achieve value is assigned. This achieve

value defines the extent of achievement of a goal by a role. Both, the and

 relations can be formally stated as:

 and

Also, four capabilities are specified, i.e., . They are Sonar

(), Movement (), GPS (), and Range Finder (). captures information about all

objects around agent (in a 360° view). allows agent to move in any direction, north,

south, east, or west (up, down, left, or right). provides the ability to read the absolute

position of agent in the environment. Finally, renders it possible for agent to

measure the distance of the closest object directly in front of it.

In addition, three different agents are modeled, i.e., ; they are

 , , and . Specifically, agent possesses capabilities , , , and while both

agents and possess capabilities , , and . The possesses relationship is

formulated as follows:

 .

66

Additionally, the cost of each individual agent , , and is 0, 00, and 0;

respectively (see Figure 16).

 3.3.2 Algorithm OMACStoPNS

Algorithm comprises two mayor parts, the initialization and the

construction parts. The initialization part (statements , , , and loops and)

specifies the sets of available raw materials and desired products to be manufactured as

well as their parameters. The construction part (loop) specifies the set of candidates

operating units as well as their parameters (see Figure 17).

Each agent in is transformed into raw material to be added to set (loop

); as such, Axiom (S2) is satisfied, i.e., a vertex of the -type has no input if and only if

it represents a raw material. Algorithm generates the resources, ; ,

 , and . Furthermore, lower bound , upper bound , and cost , are set for each

resource, ; as such, algorithm specifies the total amount of available

resources for the motivational problem (see Table 5). Thus, only a single product, , is

specified and added to set (statements , , and); as such, Axiom (S1) is

automatically satisfied, i.e., every final product is represented in the graph. Note that this is

analogous to the notion of the goodness of the organization based on the quality of a

proposed set of assignments. In other words, the set of agent-role-goal tuples

indicates that agent has been assigned to play role in order to achieve goal

 . For outcome , algorithm sets lower bound , upper bound

 , and cost ; as such, the amount of product to be manufactured for meeting the

demand of the problem is specified (see Table 6).

67

Figure 16. Overview of the CRST Organization. The boxes at the top of the diagram

represent agents identified by their types, the circles represent the roles, the

pentagon’s represent capabilities, and the squares are system’s goals. The arrows

between the entities represent achieves, requires, and possesses functions/relations.

Subsequently, algorithm stepwisely specifies the operating units in

loops and , representing organizational assignments (see Figure 17); as such,

Axioms (S3) and (S4) are satisfied, , i.e., every vertex of the -type represents an operating

unit defined in the synthesis problem and every vertex of the -type has at least one path

leading to a vertex of the -type representing a final product, respectively. First, the

algorithm loops through every goal . Each goal is transformed into material

for inclusion in set . Algorithm generates materials
; , , ,

and . Note that material
 represents the goals to be accomplished by the

organization. This gives rise to the creation of operating unit for inclusion in set for

each . Algorithm generates operating units . Additionally, lower

bound , upper bound , cost , and , the consumption rate of entity

by operating unit are set for each operating unit ; as such, algorithm specifies the

goals to be achieved by the system (see Table 7).

68

Figure 17. Algorithm OMACStoPNS written in Pidgin Algol (see Appendix C).

𝐢𝐧𝐩𝐮𝐭: 𝐺, 𝐴, 𝑅𝑂𝑀𝐴𝐶𝑆 , 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠, 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝐺 defines the goals of the organizations, 𝑅𝑂𝑀𝐴𝐶𝑆 defines a set of roles, 𝐴 is a set of agents
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 defines the extent of achievement of a goal by a role, (𝐺 × 𝑅𝑂𝑀𝐴𝐶𝑆 → [0 … 1])
𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 defines the quality of an agent´s capability 𝐴 × 𝐶 → 0 … 1 , and 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 defines

the set of capabilities required to play a role 𝑅𝑂𝑀𝐴𝐶𝑆 → ℘ 𝐶 . The 𝑐𝑎𝑝𝑎𝑏𝑙𝑒 function
 𝐴 × 𝑅𝑂𝑀𝐴𝐶𝑆 → 0 … 1 is computed as defined in Eq. 1 in Section 3.
𝐨𝐮𝐭𝐩𝐮𝐭: sets 𝑃, 𝑅, 𝑂
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑅 ⊂ 𝑀, 𝑃 ⊂ 𝑀, 𝑅 ∩ 𝑃 = ∅
𝐛𝐞𝐠𝐢𝐧
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: initialization part of the algorithm;
𝐬𝐭𝟏: 𝑀 ∶= 𝑀 ∪ 𝑜𝑎𝑓 ;
𝐬𝐭𝟐: 𝑃 ∶= 𝑃 ∪ {𝑜𝑎𝑓};
𝐬𝐭𝟑: 𝑈𝑜𝑎𝑓 ∶= ∞; 𝐿𝑜𝑎𝑓 ∶= 0; 𝑐𝑜𝑎𝑓 ∶= 1;

𝐥𝐩𝟏: 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝑅 ∶= 𝑅 ∪ {𝑎𝑖}; 𝑀 ∶= 𝑀 ∪ 𝑎𝑖 ;𝑈𝑎𝑖

∶= ∞; 𝐿𝑎𝑖
∶= 0; 𝑝𝑎𝑖

∶= 0;

 𝐞𝐧𝐝;
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: construction part of the algorithm;
𝐥𝐩𝟐: 𝐟𝐨𝐫 𝑔𝑖 ∈ 𝐺 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧

 𝑀 ∶= 𝑀 ∪ 𝑔𝑖 ; 𝑔𝑖_𝑜𝑎𝑓 ≔ 𝑔𝑖 , 𝑜𝑎𝑓 ; 𝑂 ∶= 𝑂 ∪ 𝑔𝑖_𝑜𝑎𝑓 ;

 𝑈𝑔𝑖_𝑜𝑎𝑓
 ∶= ∞; 𝐿𝑔𝑖_𝑜𝑎𝑓

∶= 0; 𝑐𝑔𝑖_𝑜𝑎𝑓
 ∶= 0;

 𝑎𝑔𝑖 ,𝑔𝑖_𝑜𝑎𝑓 ∶= 1; 𝑎𝑔𝑖_𝑜𝑎𝑓 ,𝑜𝑎𝑓 ∶= 1;

 𝐞𝐧𝐝;
𝐥𝐩𝟑: 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= ∅;

 𝐟𝐨𝐫 𝑎′, 𝑐, 𝑣𝑎𝑙𝑢𝑒′ ∈ 𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑎′ = 𝑎𝑖 𝐭𝐡𝐞𝐧
 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖
∪ {𝑐};

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐟𝐨𝐫 𝑟𝑘 , ℘(𝑐) ∈ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 ℘ c ⊆ 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

 𝐭𝐡𝐞𝐧

 𝑎𝑢𝑥 ≔ ∅;
 𝐟𝐨𝐫 𝑟′′ , 𝑔𝑗 , 𝑣𝑎𝑙𝑢𝑒′′ ∈ 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑟𝑘 = 𝑟′′ 𝐭𝐡𝐞𝐧

 𝑀 ∶= 𝑀 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 }; 𝑎𝑖_𝑟𝑘_𝑔𝑗 ≔ 𝑎𝑖_𝑟𝑘_𝑔𝑗 , {𝑔𝑗 } ;

 𝑎𝑢𝑥 ∶= 𝑎𝑢𝑥 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 }; 𝑂 ∶= 𝑂 ∪ 𝑎𝑖_𝑟𝑘_𝑔𝑗 ;

 𝑈𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= ∞; 𝐿𝑎𝑖_𝑟𝑘_𝑔𝑗

∶= 0; 𝑐𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= 0;

 𝑎𝑎𝑖_𝑟𝑘_𝑔𝑗 ,𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= 1; 𝑎𝑎𝑖_𝑟𝑘_𝑔𝑗 ,𝑔𝑗

∶= 𝑣𝑎𝑙𝑢𝑒 ′′ ;

 𝑎𝑎𝑖 ,𝑎1_𝑟𝑘
= 1; 𝑎𝑎𝑖_𝑟𝑘 ,𝑎𝑖_𝑟𝑘_𝑔𝑗

∶= 𝑐𝑎𝑝𝑎𝑏𝑙𝑒(𝑎𝑖 , 𝑟𝑘);

 𝐞𝐧𝐝;
 𝐢𝐟 𝑎𝑢𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝐭𝐡𝐞𝐧

 𝑎𝑖_𝑟𝑘 ≔ 𝑎𝑖 , 𝑎𝑢𝑥 ; 𝑂 ∶= 𝑂 ∪ {𝑎𝑖_𝑟𝑘};

 𝑈𝑎𝑖_𝑟𝑘
∶= 1; 𝐿𝑎𝑖_𝑟𝑘

∶= 0; 𝑐𝑎𝑖_𝑟𝑘
: = 0;

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
𝐞𝐧𝐝;

69

Table 5. Resources to be considered in process synthesis for the example

Resource Lower bound Upper bound Cost

 0 850

 0 900

 0 950

Table 6. Targets to be considered in process synthesis for the example

Target Lower bound Upper bound Cost

 0 1

Afterwards, algorithm loops through every agent .

Consequently, for each agent , algorithm checks whether is capable of

playing a given role in . If so, algorithm searches for every in ,

such that is achieved by . As a result, algorithm generates materials

; , , , , , , ,

 , , , , , , , , and

 . Subsequently, for each agent , role , and goal , two operating units are

created and added to set . One indicates that agent is capable of playing role ; the

second implies that agent has been assigned to play role in order to achieve goal .

Accordingly, algorithm generates the operating units and .

Moreover, lower bounds and ; upper bounds and ; and costs

 and ; and the consumption flow rate of material , , by operating unit ,

are set for each of operating units and ; as such, algorithm specifies whether

agent has been assigned to play role in order to achieve goal (see Table 7). As a

result, the execution of loop assures that Axiom (S5) is satisfied by the maximal

structure, , i.e., if a vertex of the M-type belongs to the graph, it must be an input to or

output from at least one vertex of the O-type in the graph. Figure 18 displays the maximal

structure of the motivational example generated by algorithm .

70

Table 7. Operating units to be considered in process synthesis for the example*

Operating Unit

Input material

Output Material

Lower bound

Upper bound

Cost

 g

 (1) (1) 0 0

 g

 (1) (1) 0 0

 g

 (1) (1) 0 0

 g

 (1) (1) 0 0

 (0.433) (0.2) 0 0

 (0.433) (0.4) 0 0

 (0.433) (0.6) 0 0

 (0.433) (0.8) 0 0

 (0.433) (1.0) 0 0

 (0.433) (0.7) 0 0

 (0.433) (0.4) 0 0

 (0.433) (0.1) 0 0

 (0.633) (1.0) 0 0

 (0.633) (0.7) 0 0

 (0.633) (0.4) 0 0

 (0.633) (0.1) 0 0

 (0.5) (1.0) 0 0

 (0.5) (0.7) 0 0

 (0.5) (0.4) 0 0

 (0.5) (0.1) 0 0

 (0.433), (0.433),

 (0.433), (0.433)
0 0

 (0.433), (0.433),

 (0.433), (0.433)
0 0

 (0.633), (0.633),

 (0.633), (0.633)
0 1 0

 (0.5), (0.5),

 (0.5), (0.5)
0 0

* The numbers in the brackets are the flow rates, , of the input and output materials relative to the unit

capacity of each operating unit.

71

 3.3.3 Mathematical programming model

 Figure 18. Maximal structure for the hypothetical example to

illustrate the solution-structure generation with algorithm

MSG.

72

Unlike any of the available algorithmic methods for computing the quality of a

proposed set of assignments based upon , i.e., agents, , assigned to

play roles, , in order to achieve goals, , where no mathematical

programming model is derived due to the approach adopted, i.e., step-by-step computation

[18,51,83,95,115,116]; we propose a simple mathematical programming model, which is

derived from the maximal structure, generated by algorithm MSG, and does not impair the

optimality of the resultant solution. In the present dissertation, a mixed-integer linear

programming () model has been formulated, which at the very least yields a solution

identical with those conventional -based assignment algorithms [115,116].

Let denote the set of entities; , the set of products, where ; , the set of

initially available resources, where ; and , the set of activities, where

 . The relations between entities and activities are denoted by which gives the

difference between the production and consumption rate of entity by activity , where

 and . Also given are lower bound and upper bound for the volume

of each activity . In addition, lower bound and upper bound are specified for

each resource . It is important to mention that the cost of each resource , i.e., agent, is

not include in the cost function of the model in order to yield a solution equivalent to those

in the literature [115,116]. In any case, the total cost of the agents’ organization is

calculated as follows:

(3.1)

In addition, lower bound , upper bound and its cost are defined for each product

 . Moreover, two classes of variables are involved in the mathematical programming

model. One class consists of binary variables, each denoted by expressing the

absence (0) or the existence (1) of operating unit ; and the other, continuous variables,

each denoted by expressing the size or capacity of operating unit relative to the unit

73

size. If operating unit is included in the network, as indicated by , the

concomitant continuous variable, , can be any real value in the range of 0 to the upper

limit for the capacity of operating unit . Thus, , where is the upper

limit for the capacity; if such an upper limit does not exist, the can be any large number

 . Finally, , maximal, is the objective value; representing the oaf function. The resultant

 model is given in the following.

(3.2)

subject to

(3.3)

 (3.4)

 (3.5)

 (3.6)

 (3.7)

(3.8)

 (3.9)

74

The maximal structure serves as the input to the generation and solution of the

MILP model by algorithm ABB [35]. It yields the optimal network and a finite number of

 -best suboptimal networks in ranked order. Algorithm ABB has identified a total of 65535

structures11,12 in less than 75 seconds on an Intel(R) Core(TM) i5 CPU @ 3.20 GHz. Table

8 shows 10 feasible solutions for the example. Algorithms MSG and ABB have been

executed by software PNS Studio [88].

 3.4 Assessment of Organization based Multi-agent System Design by the

Mathematical Programming Model Method

To empirically evaluate the flexibility of the different agent-based organization

designs identified by algorithm ABB (see Section 3.3.3), we have developed a simulation

that steps through the CRST application. To measure the flexibility, the approach deployed

in [95] is followed; specifically, capability failure has been simulated. It is important to

mention that capabilities are the key to determining exactly which agents can be assigned to

what roles in the organization. Recall that, OMACS defines capabilities as atomic entities

used to define the abilities of agents. Thus, capabilities can capture soft abilities such as the

ability to access resources, communicate, migrate, or computational algorithms. They also

capture hard capabilities such as those of hardware agents such as robots, which include

sensors and effectors [95]. At each step in the simulation, a randomly selected system goal,

i.e., , , , and , is achieved. Subsequently, the best available assignment is

calculated. The best assignment defines how well an agent, , can play a role,

11

 It is important to point out that only 77% of the structures, i.e., 50626, are feasible assignments for the

problem. OMACS model imposes that a feasible assignment set is based on the current set of goals required

to be achieved by the system [18]. For example, assignment set

 is a valid assignment; however it is unfeasible for the

motivational example: goal

 will never be achieved.

12
 Algorithm SSG has identified 65535 structures in 4.662 s without computing the optimal and sub-optima

assignments.

75

 , to achieve a goal, (refer to Eq.1.16). Afterwards, one of the

capabilities possessed by a robot is randomly selected and tested to see if it has failed. A

predefined capability failure rate (0 – 100%) indicates if the selected capability has failed.

Once failed, a capability is assumed to remain so for the life of the system. In addition,

reorganization is performed to assign available robots to available goals and to de-assign

robots if their capabilities have failed, and thus, they are no longer able to play their

assigned roles.

Table 8. Subset of Feasible Solutions (less than 1%) generated by algorithm

Sol. #
agent’s organization/team

assignment set,
oaf value

Organization’s

cost ($)

1

 4,3112 2700

1280

 3,4452 2700

3204

 3,2112 1750

7813

 2,9186 1800

19883

 2,4926 1850

25400

 2,3452 1750

36779

 2,0526 1800

45654

 1,8186 850

57730

 1,3926 900

76

62333

 1,1 950

Each agent-based organization has been simulated for failure rates ranging from 0 to

100% for 1000 system executions. Comparison of Figure 19 and Figure 20 reveals a

difference among the agent-based organization configurations, thereby rendering it possible

to offer important remarks about the claim, “the higher the organization score (i.e., the oaf

function), the better the performance of the organization.”[115]. First, it is not always the

rule that the higher the oaf function score, the better the performance of the agent-based

organization. For instance, Figure 19 displays a scenario where an agent-based

organization, i.e., Sol. # 1988313, with an oaf value of  = 2,4926 and the cost of $1850

performing equally well when compared to the best agent organization, i.e., Sol. # 114, with

an oaf value of = 4,3112 and the cost of $2700. Notice that, the best agent organization is

the maximal structure of the PNS problem generated by algorithm .

Also, Figure 20 demonstrates another scenario where an agent-based organization,

i.e. Sol. #7183, with an oaf value of  = 2.9186 and the cost of $1800, is outperformed15 by

other agent-based organizations, i.e. Sol. #25400 and Sol. #57730; with oaf values of  =

2.3452 and  = 1.3926 ; and, the costs of $1800, and $900; respectively.

13

 media ẋ = 63.16 and standard deviation =41.84 after 1000 system executions.

14
 media ẋ = 64.44 and standard deviation =41.35 after 1000 system executions.

15
 This behavior emerges when the capability failure rate ranges from 30% through 70%.

77

Figure 19. Comparison of Sol. #1 and Sol. # 19883.

0

10

20

30

40

50

60

70

80

90

100

1 10 19 28 37 46 55 64 73 82 91 100

Su
cc

e
ss

 R
at

e
 (

%
)

Capability Failure Rate (%)

Sol. #1 Sol. #19883

78

Figure 20. Comparison of Sol. #7813, Sol. #25400, and Sol. #57730.

 3.5 Modeling Organization-based Multiagent Systems via Absorbing-

Markov Chains

In order to effectively capture the expected behavior of an organizational-based

multiagent-system in design phase, a modified version of OMACS is introduced. These

modifications allow us to capture the key concepts to modeling the reliability of an

organization-based multiagent system under design. As results, two new algorithms are

specified: and
. The goals of these two

algorithms are: (i) the transformation of an OMACS design model into a relaxed PNS

problem, and (ii) the transformation of an organization-based multiagent system assignment

0

10

20

30

40

50

60

70

80

90

100

1 10 19 28 37 46 55 64 73 82 91 100

Su
cc

e
ss

 R
at

e
 (

%
)

Capability Failure Rate (%)

Sol. #7813 Sol. #25400 Sol. #57730

79

set, , into an absorbing-markov chain, , and, subsequently, the computation

of its steady state,

 [40].

 3.5.1 Modified Version of OMACS

Figure 21 shows the modified, and simplified, version of OMACS. The most

significant changes are: (i) function has been modified; (ii) function has

been removed; and, (iii) functions , , and have been replaced by

functions , and
, respectively. These changes

are briefly described in what follows.

 , a function that assumes a role in , thereby yielding a set of goals

(, , defines the set of goals achieved by that role);

 , a function with an agent in and a capability in as inputs

yields a positive real number in the range of [0,1] (,

 , defines the ability of an agent´s capability to function under stated conditions for a

specified period of time,); , a function whose inputs are an agent in

 , a role in , a goal in and generates an output, which is a positive

real number greater than or equal to and less than or equal to (,

 , defines the reliability of an agent to play a role to

achieve a goal), thus giving rise to

(3.10)

Finally, the selection of from the set of assignments, , is

defined by the organization’s reorganization function,
, that assumes a set of

assignments in , thereby yielding a positive real number in the range of

(
, , defines the overall reliability of the agent´s organization

80

in terms of a proposed set of assignments, i.e.,), thus resulting in algorithm

 (seeFigure 26).

RoleGoal Agent

Capability
requires

asgmtReliability

score : [0..1]

Organization

fOMACS : set(asgmtReliability)

RSfOMACS : [0..1]

achieves

capReliability

score : [0..1]

Figure 21. Modified version of the OMACS Meta-model.

 By adopting the modified version OMACS, the CRST problem can be represented as

shown in Figure 22.

81

Figure 22. View of the CRST Organization by adopting the modified version of the

OMACS meta-model.

 3.5.2 Algorithm

The aim of algorithm is to transform and organization-

based multiagent systems design model, following the modified OMACS meta-model

previously introduced, into a relaxed PNS problem. By relaxed, we mean, a PNS problem

where the constraints are not important as the network model of the PNS problem by itself.

Figure 23 shows the different steps of algorithm . A couple of

difference can be noted between algorithms and

(see Figure 17). The first difference relies on the fact that one operating unit, i.e.,

 , requires as input all the goals of the systems materials. In this way,

unfeasible solutions are not generated by algorithm SSG. The second difference can be

clearly seen when the constraint of the different operating units, raw material, and final

product are not taken into account in the resultant PNS problem. As result, Figure 24 shows

the resultant network structure of the given PNS problem. As mentioned before, the

network representation of the PNS problem, by itself, is of our interest for assessing

organization-based multiagent system design model.

82

Figure 23. Algorithm OMACStoRelaxedPNS written in Pidgin Algol (see Appendix C).

𝐢𝐧𝐩𝐮𝐭: 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝐴𝑂𝑀𝐴𝐶𝑆 , 𝑅𝑂𝑀𝐴𝐶𝑆 , 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝐺𝑂𝑀𝐴𝐶𝑆 defines the goals of the organizations, 𝑅𝑂𝑀𝐴𝐶𝑆 defines a set of roles, 𝐴𝑂𝑀𝐴𝐶𝑆 is a set of

agents, 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 defines the set of goals achieved by a role, 𝑅𝑂𝑀𝐴𝐶𝑆 → ℘ 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

the ability of an agent´s capability to function under stated conditions for a specified period of time, 𝑡
 𝐴𝑂𝑀𝐴𝐶𝑆 × 𝐶𝑂𝑀𝐴𝐶𝑆 → 0 … 1 , and 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 defines the set of capabilities required to play a role
 (𝑅𝑂𝑀𝐴𝐶𝑆 → ℘(𝐶𝑂𝑀𝐴𝐶𝑆)).
𝐨𝐮𝐭𝐩𝐮𝐭: sets 𝑃, 𝑅, 𝑂
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑅 ⊂ 𝑀, 𝑃 ⊂ 𝑀, 𝑅 ∩ 𝑃 = ∅
𝐛𝐞𝐠𝐢𝐧
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: initialization part of the algorithm;
𝐬𝐭𝟏: 𝑀 ∶= 𝑀 ∪ 𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑔𝑜𝑎𝑙 ;
𝐬𝐭𝟐: 𝑃 ∶= 𝑃 ∪ {𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑔𝑜𝑎𝑙};
𝐬𝐭𝟑: 𝑎𝑢𝑥 ∶= ∅;
𝐥𝐩𝟏: 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝑅 ∶= 𝑅 ∪ {𝑎𝑖}; 𝑀 ∶= 𝑀 ∪ 𝑎𝑖 ;
 𝐞𝐧𝐝;
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: construction part of the algorithm;
𝐥𝐩𝟐: 𝐟𝐨𝐫 𝑔𝑗 ∈ 𝐺𝑂𝑀𝐴𝐶𝑆 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧

 𝑀 ∶= 𝑀 ∪ 𝑔𝑗 ; 𝑎𝑢𝑥 ∶= 𝑎𝑢𝑥 ∪ {𝑔𝑗 };

 𝐞𝐧𝐝;

𝐬𝐭𝟒: 𝑠𝑦𝑠𝑡𝑒𝑚_𝑔𝑜𝑎𝑙𝑠 ≔ 𝑎𝑢𝑥 , 𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑔𝑜𝑎𝑙 ; 𝑂 ∶= 𝑂 ∪ 𝑠𝑦𝑠𝑡𝑒𝑚_𝑔𝑜𝑎𝑙𝑠 ;

𝐥𝐩𝟑: 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= ∅;

 𝐟𝐨𝐫 𝑎′, 𝑐, 𝑣𝑎𝑙𝑢𝑒′ ∈ 𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑎′ = 𝑎𝑖 𝐭𝐡𝐞𝐧
 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖
∪ {𝑐};

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐟𝐨𝐫 𝑟𝑘 , ℘(𝑐) ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 ℘ 𝑐 ⊆ 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

 𝐭𝐡𝐞𝐧

 𝑎𝑢𝑥 ≔ ∅;
 𝐟𝐨𝐫 𝑟′′ , ℘ 𝑔 ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐟𝐨𝐫 𝑔𝑗 ∈ ℘ 𝑔 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑟𝑘 = 𝑟′′ 𝐭𝐡𝐞𝐧

 𝑀 ∶= 𝑀 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 }; 𝑎𝑖_𝑟𝑘_𝑔𝑗 ≔ 𝑎𝑖_𝑟𝑘_𝑔𝑗 , {𝑔𝑗 } ;

 𝑎𝑢𝑥 ∶= 𝑎𝑢𝑥 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 }; 𝑂 ∶= 𝑂 ∪ 𝑎𝑖_𝑟𝑘_𝑔𝑗 ;

 𝐞𝐧𝐝;
 𝐢𝐟 𝑎𝑢𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝐭𝐡𝐞𝐧

 𝑎𝑖_𝑟𝑘 ≔ 𝑎𝑖 , 𝑎𝑢𝑥 ; 𝑂 ∶= 𝑂 ∪ {𝑎𝑖_𝑟𝑘};

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
𝐞𝐧𝐝;

83

 3.5.3 Algorithm

The aim of

algorithm

 is to

transform an

organization-based

multiagent system

assignment set,

 , into an

absorbing-markov

chain, , and

compute its steady

state,

 (refer to

Appendix D). That is to

say, algorithm

 is to

evaluate whether or not

an assignment set in

 leads the

organization-based

multiagent system into

one of the absorbing

states, i.e., either the

agents’ organization

achieve all its goals (success state) or fails to (failure state). Figure 25 shows the steps

required for algorithm
 to assess every feasible assignment set in

 .

 Figure 24. Maximal structure for the hypothetical relaxed example.

84

Figure 25. Steps required for assessing organization-based multiagent system design

model via the algorithm .

Algorithm
, see Figure 26, comprises three mayor parts, the

initialization, the recursion, and the calculation of the steady state,

 of . The

initialization part (statements , , , , and) specifies the sets for storing both

the absorbing and transient states of . The recursion part (statement) specifies

 by describing its state space, , based upon the assignment set, . Finally,

the calculation part (statements , , , , , , , , and loop

) computes

 (refer to Figure D.3 in Appendix D). In what follows, a couple of

iterations of algorithm
 are presented as illustration.

Initially, variable is assigned the integer value 1. n keeps track of the total number

of states in . Subsequently, sets , , , and are assigned the empty set. That is,

 , , , and . In that order, stores pairs of the form ,

where symbolizes the transition probability from state to state . State

85

 symbolizes the accomplishments of the multiagent systems16. collects pairs of

the form , where denotes the transition probability from state to

state . State represents failure of the organization-based multiagent

systems17. stores pairs of the form , where means the transition probability

between transient states to and, collects pairs of the form , where

specifies the name of state in of . Valid state names can be: , ,

or . Where state symbolizes agent is still available in the system and goal

 must be accomplished. Subsequently, recursive procedure is invoked. The

outcome of this recursive procedure is an absorbing markov chain, i.e., (see

Figure 27).

Depending on the cardinality of and , procedure

evaluates three cases (see Figure 27): First, if and , the

transition probability is calculated as the system reliability of a simple series system (see

Appendix E). That is to say, the reliability that one agent, in , achieves the entire set

of goals, in , thru a set of roles, in , is equivalent to the product of the best

assignment for each , , and , where

 and . Hence, the basic equation for this case is:

(3.11)

16

 In other words, the agents’ organization is able to achieve its goals.

17
 In other words, the agents’ organization is not able to achieve its goals.

86

Second, if and , the transition probability is calculated

as the system reliability of a simple parallel system (see Appendix E). Particularly, the

reliability that more than one agent, in , achieves one goal, in , thru a set of

roles, in , is equivalent to the product of the best assignment for each

 , , and , where and

 . Thus, the basic equation for this case is:

(3.12)

and, the probability of failure is defined as follows

 (3.13)

Finally, if both and , the system is considered neither

series nor parallel. Therefore, the transition probability is calculated as the product of a

finite set of mutually independent events, where each event can be either an agent

achieving a given goal or failing to accomplish it. Notice that, first case 1, i.e.,

 and , and second case, i.e., and , are the base

cases of this sub-procedure; while third case, i.e., and , is the

recursive case.

For the sake of the hypothetical example, since the CRST system is composed of

three agents, i.e., , whose aim is to accomplish four goals, i.e., ,

sub-procedure is first called
18

 (Figure 28). Consequently, an optimal

assignment set, , is generated by invoking procedure

(Figure 29). contains the best possible assignments for the given

18

 First invocation of sub-procedure NonSerParalSyst.

87

sets , , and . For computing , procedure

 evaluates for each and the best

 by calculating the assignment reliability of , , and (see Eq. 3.10).

Figure 26. Algorithm written in Pidgin (see Appendix C).

𝐢𝐧𝐩𝐮𝐭: 𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝐴𝑂𝑀𝐴𝐶𝑆 a set of agents, 𝐺𝑂𝑀𝐴𝐶𝑆 a set of Goals
𝐨𝐮𝐭𝐩𝐮𝐭: the reliability, 𝑅𝑆𝜙𝑂𝑀𝐴𝐶𝑆

, of 𝜙𝑂𝑀𝐴𝐶𝑆

𝐠𝐥𝐨𝐛𝐚𝐥 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬: 𝑆𝑆 , 𝑆𝐹 , 𝑆𝑇 , 𝑆, 𝑛, 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠, 𝑅𝑂𝑀𝐴𝐶𝑆 , 𝜙𝑂𝑀𝐴𝐶𝑆
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑆 is the state space of 𝑃𝑚𝑎𝑟𝑘𝑜𝑣 , set 𝑆𝑆 stores elements of the form
 𝑖, 𝑝𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 , where 𝑝𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the transition probability from state i to
state 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 set 𝑆𝐹 stores elements of the form 𝑖, 𝑝𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 , where 𝑝𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 represents

the transition probability from state i to state 𝑓𝑎𝑖𝑙𝑢𝑟𝑒; and; 𝑆𝑇 stores elements of the
form j, i, pij , where 𝑝𝑖𝑗 represents the transition probability between transient

states 𝑖 to 𝑗. 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 assumes a role in 𝑅𝑂𝑀𝐴𝐶𝑆 yielding a set of goals 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑅𝑂𝑀𝐴𝐶𝑆 →

 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 defines the set of capabilities required to play a role 𝑅𝑂𝑀𝐴𝐶𝑆 →

℘ 𝐶𝑂𝑀𝐴𝐶𝑆 , 𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 defines the ability of an agent´s capability to function under

stated conditions for a specified period of time, 𝑡 (𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐴𝑂𝑀𝐴𝐶𝑆 𝑥 𝐶𝑂𝑀𝐴𝐶𝑆 →

[0,1]); 𝑅𝑂𝑀𝐴𝐶𝑆 a set of roles, 𝜙𝑂𝑀𝐴𝐶𝑆 defines the set of agent − role − goal tuples
 𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘 , indicating that agent 𝑎𝑖 𝐴𝑂𝑀𝐴𝐶𝑆 has been assigned to play role 𝑟𝑗 𝑅𝑂𝑀𝐴𝐶𝑆

in order to achieve goal 𝑔𝑘 𝐺𝑂𝑀𝐴𝐶𝑆 (𝜙𝑂𝑀𝐴𝐶𝑆 is a subset of all the potential assignments
of agents to play roles to achieve goals);

𝐛𝐞𝐠𝐢𝐧
𝐬𝐭𝟏: 𝑛 ∶= 1;
𝐬𝐭𝟐: 𝑆𝑆 ∶= ∅;
𝐬𝐭𝟑: 𝑆𝐹 ∶= ∅;
𝐬𝐭𝟒: 𝑆𝑇 ∶= ∅;
𝐬𝐭𝟓: 𝑆 ∶= ∅;
𝐬𝐭𝟔: 𝑨𝑴𝑪 − 𝑺𝒑𝒆𝒄(𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝑛 − 1);
𝐬𝐭𝟕: 𝑆𝑆 ∶= 𝑆𝑆 ∪ 𝑛, 1 ;
𝐬𝐭𝟖: 𝑆𝑆 ∶= 𝑆𝑆 ∪ 𝑛 + 1,0 ;
𝐬𝐭𝟗: 𝑆𝐹 ∶= 𝑆𝐹 ∪ 𝑛, 0 ;
𝐬𝐭𝟏𝟎: 𝑆𝐹 ∶= 𝑆𝐹 ∪ 𝑛 + 1,1 ;
𝐬𝐭𝟏𝟏: 𝑥[1: 𝑛 + 2];
𝐬𝐭𝟏𝟐: 𝑥[1] = 1;
𝐬𝐭𝟏𝟑: 𝛿 ≔ 1 − 𝑥[𝑛 + 1];
𝐬𝐭𝟏𝟒: ε = 0.000001;
𝐥𝐨𝐨𝐩𝟏: 𝐰𝐡𝐢𝐥𝐞 𝛿 > ε 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝑣 = 𝑥[𝑛 + 1];
 𝑥 ∶= 𝒎𝒂𝒕𝒓𝒊𝒙𝑷𝒓𝒐𝒅𝒖𝒄𝒕(𝑆𝑇 , 𝑆𝑆 , 𝑆𝐹 , 𝑥);
 𝑒𝑟𝑟𝑜𝑟 ≔ 𝑥 𝑛 + 1 − 𝑣 ;
 𝐞𝐧𝐝;
𝐬𝐭𝟏𝟓: 𝑅𝑆𝜙𝑂𝑀𝐴𝐶𝑆

 ≔ 𝑥 𝑛 + 1 ;

𝐞𝐧𝐝;

88

Figure 27. Procedure AMC-Spec.

As result, matrix
 is created

It can be noted that, the structure of matrix
 is given by

𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑝𝑎𝑟𝑒𝑛𝑡 captures the current state 𝑖, in 𝑆, such 𝑝𝑖𝑗 , probability transition, from

state 𝑖 to state 𝑗 can be computed
𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑨𝑴𝑪 − 𝑺𝒑𝒆𝒄(𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝑝𝑎𝑟𝑒𝑛𝑡):
𝐛𝐞𝐠𝐢𝐧
𝐬𝐭𝟏: 𝐢𝐟 𝐴𝑂𝑀𝐴𝐶𝑆 = 1 & 𝐺𝑂𝑀𝐴𝐶𝑆 ≥ 1 𝐭𝐡𝐞𝐧
 𝐛𝐞𝐠𝐢𝐧
 𝐠𝐨 𝐭𝐨 𝑺𝒆𝒓𝒊𝒆𝒔𝑺𝒚𝒔𝒕𝒆𝒎;
 𝐞𝐧𝐝;
 𝐞𝐥𝐬𝐞 𝐢𝐟 𝐴𝑂𝑀𝐴𝐶𝑆 > 1 & 𝐺𝑂𝑀𝐴𝐶𝑆 = 1 𝐭𝐡𝐞𝐧
 𝐛𝐞𝐠𝐢𝐧
 𝐠𝐨 𝐭𝐨 𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝑺𝒚𝒔𝒕𝒆𝒎;
 𝐞𝐧𝐝;
 𝐞𝐥𝐬𝐞
 𝐛𝐞𝐠𝐢𝐧

 𝐠𝐨 𝐭𝐨 𝑵𝒐𝒏𝑺𝒆𝒓𝑷𝒂𝒓𝒂𝒍𝑺𝒚𝒔𝒕;
 𝐞𝐧𝐝;
𝐞𝐧𝐝;

89

Figure 28. Procedure written in Pidgin (see Appendix C).

𝑵𝒐𝒏𝑺𝒆𝒓𝑷𝒂𝒓𝒂𝒍𝑺𝒚𝒔𝒕 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
≔ 1.0;

 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ≔ 𝒐𝒑𝒕𝒊𝒎𝒂𝒍𝑨𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕𝒔(𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆);

 𝐴𝑂𝑀𝐴𝐶𝑆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
≔ ℘ 𝐴𝑂𝑀𝐴𝐶𝑆 ;

 𝐟𝐨𝐫 𝐴𝑂𝑀𝐴𝐶𝑆 𝑠𝑢𝑐𝑐𝑒𝑒𝑑
∈ 𝐴𝑂𝑀𝐴𝐶𝑆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

≔ 𝐴𝑂𝑀𝐴𝐶𝑆 ;

𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
≔ 𝐺𝑂𝑀𝐴𝐶𝑆 ;

𝐴𝑂𝑀𝐴𝐶𝑆 𝑓𝑎𝑖𝑙𝑒𝑑
≔ 𝐴𝑂𝑀𝐴𝐶𝑆 \𝐴𝑂𝑀𝐴𝐶𝑆 𝑠𝑢𝑐𝑐𝑒𝑒𝑑

;

 𝐟𝐨𝐫 𝑎𝑠 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝑠𝑢𝑐𝑐𝑒𝑒𝑑
 𝐝𝐨

𝐛𝐞𝐠𝐢𝐧

 𝐟𝐨𝐫 𝑎𝑠
′ , 𝑟𝑗 , 𝑔𝑘 , 𝑣𝑎𝑙𝑢𝑒 ∈ 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧

 𝐢𝐟 𝑎𝑠 = 𝑎𝑠
′ 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧

 𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
≔ 𝐺𝑂𝑀𝐴𝐶𝑆 − {𝑔𝑘};

 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
≔ 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

∗ 𝑣𝑎𝑙𝑢𝑒;

 𝐞𝐧𝐝;

 𝐞𝐧𝐝;

𝐞𝐧𝐝;

 𝐟𝐨𝐫 𝑎𝑓 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝑓𝑎𝑖𝑙𝑒𝑑
 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐟𝐨𝐫 𝑎𝑓

′ , 𝑟𝑗 , 𝑔𝑘 , 𝑣𝑎𝑙𝑢𝑒 ∈ 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑎𝑓 = 𝑎𝑓

′ 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧
 𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

≔ 𝐴𝑂𝑀𝐴𝐶𝑆 − {𝑎𝑓};

 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
≔ 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

∗ (1 − 𝑣𝑎𝑙𝑢𝑒);

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐢𝐟 |𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

| > 0 ∧ |𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
| = 0 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
 ; 𝐞𝐧𝐝;

 𝐢𝐟 |𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
| = 0 ∧ |𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

| > 0 ∨ 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 = 0 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧 𝑆𝐹 = 𝑆𝐹 ∪ 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
 ; 𝐞𝐧𝐝;

 𝐢𝐟 |𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
| > 0 ∧ |𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

| > 0 ∧ 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 > 0 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑖, {𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

∪ 𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
} ∈ 𝑆 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧 𝑆𝑇 = 𝑆𝑇 ∪ 𝑖, 𝛾 ∪ {𝑝𝑎𝑟𝑒𝑛𝑡, 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
} 𝐞𝐧𝐝;

 𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧
 𝑆𝑇 = 𝑆𝑇 ∪ 𝑛, 𝛾 ∪ {𝑝𝑎𝑟𝑒𝑛𝑡, 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

} ;

 𝑆 = 𝑆 ∪ 𝑛, {𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
∪ 𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

} ;

 𝑛 = 𝑛 + 1;
 𝑨𝑴𝑪 − 𝑺𝒑𝒆𝒄(𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

, 𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
, 𝑛 − 1);

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;

90

Thereafter, the Hungarian method [68,69,79] is called with matrix
 as

input. The purpose of the Hungarian method in our approach is to guarantee, at each step,

the selection of the best assignment of a set of agents to a set of goals thru a set of roles.

Accordingly, an optimal assignment or minimum matching, , is obtained. That

is, . This

minimum matching indicates that agent should play role in order to achieve goal

with a probability of success, i.e., reliability, of 0.075; agent should play role in order

to achieve goal with a reliability of 0.245; and, agent should play role in order to

achieve goal with a reliability of 0.0072. Afterwards, sub-procedure

creates set , which represents all subsets of ; such that, every

element in symbolizes the combination of agents who are still operative,

i.e., are not broken and not undergoing repair, in order to achieve the goals of the system.

Thus, = 19.

Afterwards, for each set in , copies of and are

created, i.e., and , respectively. Set stores the group of

agents who do not fail to achieve their goals, and set stores the group of goals

which are still available to be accomplished. Assuming the ordering of

presented above, where is the first combination of agents who succeed in

achieving their goals, the reliability of the optimal assignment,
is computed.

Because every agent in is assigned a goal in 20,

 .

Hence,
 , which gives rise to

 . Since , it implies that goals , , and are

achieved; therefore removed from . Afterwards, sub-procedure

19

 Notice that, eight different state transitions are to be evaluated (see Figure 40).

20
 Recall that at this point of the computation

91

 based upon the size of sets , , and ,

checks if the system has reached either a success state, a failure state, or a transient state.

Figure 29. Procedure written in Pidgin (see Appendix C).

Since , i.e., , and , i.e.,

 , and , a new transient state of the system is created,

i.e., ., and its corresponding transition probability is to be updated21.

21

 The system either has not succeed or failed to achieve its given set of goals.

𝐨𝐮𝐭𝐩𝐮𝐭: an optimal assignment set of 𝜙𝑂𝑀𝐴𝐶𝑆 , i. e. , 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝒐𝒑𝒕𝒊𝒎𝒂𝒍𝑨𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕(𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆):
𝐛𝐞𝐠𝐢𝐧
𝐬𝐭𝟏: 𝑖 ≔ 1;
𝐬𝐭𝟐: 𝑗 ≔ 1;
𝐬𝐭𝟑: 𝑀𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

 1: 𝐴𝑂𝑀𝐴𝐶𝑆 1: 𝐺𝑂𝑀𝐴𝐶𝑆 ;

𝐥𝐩𝟏: 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐟𝐨𝐫 𝑔𝑘 ∈ 𝐺𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝑟𝑜𝑙𝑒 ≔ ∅;
 𝑀𝐴𝑋 ≔ −∞;
 𝐟𝐨𝐫 𝑟𝑗 ∈ 𝑅𝑂𝑀𝐴𝐶𝑆 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐟𝐨𝐫 𝑟𝑗

′ , 𝑔𝑘
′ ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑟𝑗 = 𝑟𝑗

′ & 𝑔𝑘 = 𝑔𝑘
′ 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧
 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 1.0;
 𝐢𝐟 𝑎𝑖 , 𝑟𝑗 ,𝑔𝑘 ∈ 𝜙𝑂𝑀𝐴𝐶𝑆 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧
 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 𝒂𝒔𝒈𝒎𝒕𝑹𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚(𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘);

 𝐞𝐧𝐝;
 𝐢𝐟 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 > 𝑀𝐴𝑋 𝐭𝐡𝐞𝐧
 𝐛𝐞𝐠𝐢𝐧
 𝑀𝐴𝑋 = 𝑟𝑒𝑎𝑙𝑖𝑏𝑖𝑙𝑖𝑡𝑦;
 𝑟𝑜𝑙𝑒 = {𝑟𝑗 };

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐢𝐟 𝑟𝑜𝑙𝑒 = ∅ 𝐭𝐡𝐞𝐧
 𝐛𝐞𝐠𝐢𝐧 𝑀𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

 𝑖 𝑗 = 𝑎𝑖 , 𝑟𝑜𝑙𝑒, 𝑔𝑘 , −∞ ;

 𝐞𝐧𝐝;
 𝐞𝐥𝐬𝐞
 𝐛𝐞𝐠𝐢𝐧 𝑀𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

 𝑖 𝑗 = 𝑎𝑖 , 𝑟𝑜𝑙𝑒, 𝑔𝑘 , 𝑀𝐴𝑋 ;

 𝐞𝐧𝐝;
 𝑗 ≔ 𝑗 + 1;
 𝐞𝐧𝐝;
 𝑗 ≔ 1; 𝑖 ≔ 𝑖 + 1;
 𝐞𝐧𝐝;
 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑠 ≔ 𝑯𝒖𝒏𝒈𝒂𝒓𝒊𝒂𝒏𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎(𝑀𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

);

𝐞𝐧𝐝;

92

Consequently, state is added to set . Because ,

sub-procedure updates sets and and variable . Thus,

 , and .

Subsequently, the recursive procedure is called again22, with

parameter , , and , i.e.,

 . Since and , sub-procedure (see Figure 30) is

invoked and the transition probability is calculated as a simple parallel system where two

cases are to be evaluated: success and failure. Hence, by Eq. 3.12,

 , which gives rise to

 . Also, by Eq.3.13,
 , which turns out in

 . Hence, sets and are updated to

 and (see Figure 31).

22

 Second recursive call to this procedure.

93

Figure 30. Procedure written in Pidgin (see Appendix C).

a1a2a3g1g2g3g4

a1a2a3g4

0.001323

parent(0) n(1)

state(0)

parent(state(1)) n(2)

state(1)

SS

parent(state(1))

parent(state(1))

0.351908

0.648092

SF

Figure 31. Branching of State 1, i.e.,

𝑷𝒂𝒓𝒂𝒍𝑺𝒚𝒔𝒕 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 1.0;
 𝐟𝐨𝐫 𝑔𝑘 ∈ 𝐺𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝑀𝐴𝑋 = ∞;

𝐟𝐨𝐫 𝑟𝑗 , 𝑔𝑘
′ ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨

𝐛𝐞𝐠𝐢𝐧
 𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡 ≔ 1.0;
 𝐢𝐟 𝑔𝑘 = 𝑔𝑘

′ 𝐭𝐡𝐞𝐧
 𝐛𝐞𝐠𝐢𝐧
 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘 ∈ 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧
 𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡 ≔ 𝑎𝑠𝑔𝑚𝑡𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘);

 𝐞𝐧𝐝;
 𝐞𝐥𝐬𝐞
 𝐛𝐞𝐠𝐢𝐧

 𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡 ≔ 0.0;

 𝐞𝐧𝐝;
 𝐞𝐧𝐝;

 𝐞𝐧𝐝;
 𝐢𝐟 𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡 > 𝑀𝐴𝑋 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧

 𝑀𝐴𝑋 ≔ 𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡;
 𝐞𝐧𝐝;

 𝐞𝐧𝐝;

 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑀𝐴𝑋;
 𝐞𝐧𝐝;

 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 1.0 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦;

 𝑆𝑆 ∶= 𝑆𝑆 ∪ 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ;
 𝑆𝐹 ≔ 𝑆𝐹 ∪ 𝑝𝑎𝑟𝑒𝑛𝑡, 1.0 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ;

94

Consequently, the next element in is evaluated, i.e., 23. As

result, the reliability of the optimal assignment,
 is computed. Because

 ,

 . Hence,
 , which gives

rise to
 . Because , it implies two

things: first failed to accomplished goal thru role , therefore removed from

 , i.e.., ; and second, goals and are achieved; thus

removed from , i.e., . Since , i.e.,

 , and , i.e., , a new transient

state of the system is created, i.e., . Because { sets

and are updated to and

 . Additionally, variable is updated to

3, i.e., .

Accordingly, the procedure is invoked for second time with parameter

 , , and , i.e., . Notice

that, the cardinality of and is greater than 1; therefore, sub-procedure

 is invoked for second time (refer to Figure 28). Consequently, an

optimal assignment set, , is generated for sets and . As a

result, matrix
 is created

 .

23

 The content of set after the first invocation of sub-procedure NonSerParalSyst is

 = .

95

Consequently, after invoking the Hungarian method, an optimal assignment or minimum

matching, , is obtained. That is,

 . Afterwards, sub-procedure

 creates set (see Figure 28). Thus, =

 24. Consequently, for each set in , copies of

 and are created, i.e., and , respectively. Assuming

the ordering of presented above, where is the first combination of

agents, the reliability of the optimal assignment,
 is computed. Since every

agent in is assigned a goal in 25,

 . Hence,

 , which gives rise to

 . Because

 , it implies that goals and are achieved; therefore removed

from . Thus, . Since, is empty, this implies our

system has reached a success state, therefore set is updated to

 . Aftrwards, the next element in

is evaluated, i.e., . As result, the reliability of the optimal assignment,
 is

computed. Because ,

 . Hence,
 , which gives rise to

 . Since , it implies two things: first

failed to accomplished goal thru role , therefore removed from , i.e..,

 ; and second, goal is achieved; thus removed from , i.e.,

 . Since , i.e., , and

 , i.e., , a new transient state of the system is created, i.e., .

Because { sets and are updated to

24

 Notice that, four different state transitions are to be evaluated (see Figure 40).
25

 Recall that at this point of the computation, second call of procedure AMC-Spec,

96

 and

 . Additionally, variable is

updated to 4, i.e., .

Subsequently, the procedure is invoked for third time with parameters

 , , and , i.e., . Since

 and , sub-procedure is invoked and the transition

probability is calculated as a simple series system where two cases are to be evaluated:

success and failure. Hence, by Eq. 3.11,
 . Also, by Eq. 3.13,

 , which turns out in

 . Hence, sets and

 are updated to and (see Figure 34).

Consequently, the next element in is evaluated, i.e., . As result, the

reliability of the optimal assignment,
, is computed. Because ,

 .

Hence,
 , which gives rise to

 .

Because , it implies two things: first failed to accomplished goal

 thru role , therefore removed from , i.e.., ; and second,

goal is achieved; thus removed from , i.e., . Since

 , i.e., , and , i.e., ,

a new transient state of the system is created, i.e., . Because sets and

 are updated to

 and

 . Additionally, variable is updated to 5, i.e., .

97

Figure 32. Procedure written in Pidgin (see Appendix C).

Accordingly, the procedure is invoked for fourth time with parameters

 , , and , i.e., . Since

 and , sub-procedure is invoked and two cases

are to be evaluated: success and failure. Hence, by Eq. 3.11,
 . Also,

by Eq. 3.13,
 , which turns out in

 . Hence,

sets and are updated to and (see Figure 34).

Afterwards, the last element in is evaluated, i.e., . As result, the reliability

of the optimal assignment
 is computed. Because ,

 . Hence,

 , which gives rise to

 .

𝑺𝒆𝒓𝑺𝒚𝒔𝒕 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 1.0;
 𝐟𝐨𝐫 𝑔𝑘 ∈ 𝐺𝑂𝑀𝐴𝐶𝑆 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧

 𝑀𝐴𝑋 = ∞;
𝐟𝐨𝐫 𝑟𝑗 , 𝑔𝑘

′ ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨

𝐛𝐞𝐠𝐢𝐧

 𝑅𝑠𝑆𝑒𝑟𝑆𝑦𝑠𝑡 ≔ 1.0;

 𝐢𝐟 𝑔𝑘 = 𝑔𝑘
′ 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧

 𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧

 𝐢𝐟 𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘 ∈ 𝜙𝑂𝑀𝐴𝐶𝑆 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧
 𝑅𝑠𝑆𝑒𝑟𝑆𝑦𝑠𝑡 ≔ 𝑎𝑠𝑔𝑚𝑡𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘);

 𝐞𝐧𝐝;

 𝐞𝐥𝐬𝐞

 𝐛𝐞𝐠𝐢𝐧

 𝑅𝑠𝑆𝑒𝑟𝑆𝑦𝑠𝑡 ≔ 0.0;
 𝐞𝐧𝐝;

 𝐞𝐧𝐝;

 𝐞𝐧𝐝;
 𝐢𝐟 𝑅𝑠𝑆𝑒𝑟𝑆𝑦𝑠𝑡 > 𝑀𝐴𝑋 𝐭𝐡𝐞𝐧

 𝐛𝐞𝐠𝐢𝐧

 𝑀𝐴𝑋 ≔ 𝑅𝑠𝑆𝑒𝑟𝑖𝑒𝑠𝑆𝑦𝑠;
 𝐞𝐧𝐝;

 𝐞𝐧𝐝;

 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑀𝐴𝑋;
 𝐞𝐧𝐝;

 𝑆𝑆 = 𝑆𝑆 ∪ 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ;
 𝑆𝐹 = 𝑆𝐹 ∪ 𝑝𝑎𝑟𝑒𝑛𝑡, 1.0 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ;

98

Furthermore,

; hence,
 . Since

 , it implies two things: first and failed to accomplished

goals and thru roles and , respectively, therefore removed from , i.e..,

 ; and second, neither goal nor goal is achieved; thus

 . Since, is empty and still contains elements, this implies

that our system has reached a failure state, therefore set is updated to

 (see Figure 34). The procedure

described before is applied for the rest of the elements in , i.e.,

 26. As result, Figure 35 - Figure 40 show the branching result of

evaluating elements and , respectively.

Finally, after computing sets , , and , algorithm
 computes

the steady state,

, of (steps , , , , , , , and

and loop). First,
 adds two new elements to set (see Figure 41).

That is, (steps and , Figure 26).

Similarly, Algorithm
 adds two new elements to set (see Figure 42).

Namely, (steps and , Figure 26).

Consequently, algorithm
 creates array , which represents

 with

size , i.e., 14. Afterward variable , the result after the iteration, and , the

accuracy of the result after , are initialized. That is, and .

Subsequently, algorithm
 evaluates whether or not . If true,

algorithm
 computes the product, , of array and (see Figure

33). It can be noted that is implicitly constructed in terms of sets , , and

(Figure 43). Table 9 shows the resulting steady state of after 3 iterations, i.e.,

.

Notice that the index of interest in is 13, i.e., success state . This state represents the

reliability of the organization-based multiagent systems in terms of the assignment set

26

 First invocation of the procedure

99

 under evaluation (step , Figure 26). Thus, the reliability of the system is less

than 1%, i.e., . Additionally, the unreliability of the system can be defined as follows

 (3.13)

Hence, with a probability of 99.4%, the current system configuration is prone to

failure.

100

Figure 33. Procedure written in Pidgin (see Appendix C).

𝐢𝐧𝐩𝐮𝐭: 𝑆𝑆 , 𝑆𝐹 , 𝑆𝑇 , 𝑥
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: Set 𝑆𝑆 stores elements of the form 𝑖, 𝑝𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 , where 𝑝𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents
the transition probability from state 𝑖 to state 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 set 𝑆𝐹 stores elements of the
form 𝑖, 𝑝𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 , where 𝑝𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 represents the transition probability from state 𝑖 to

state 𝑓𝑎𝑖𝑙𝑢𝑟𝑒; and; 𝑆𝑇 stores elements of the form 𝑗, 𝑖, 𝑝𝑖𝑗 , where 𝑝𝑖𝑗 represents the

transition probability between transient states 𝑖 to 𝑗; and 𝑥 the probability vector of

𝑃𝑀𝑎𝑟𝑘𝑜𝑣 , i. e. , 𝑥𝑛
(𝑘)

𝐨𝐮𝐭𝐩𝐮𝐭: 𝑥𝑛𝑒𝑤 , the probability vector of 𝑃𝑀𝑎𝑟𝑘𝑜𝑣 , i. e. , 𝑥𝑛
(𝑘+1)

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐦𝐚𝐭𝐫𝐢𝐱𝐏𝐫𝐨𝐝𝐮𝐜𝐭(𝑆𝑇 , 𝑆𝑆 , 𝑆𝐹 , 𝑥):
𝐛𝐞𝐠𝐢𝐧
𝐬𝐭𝟏: 𝑥𝑛𝑒𝑤 1: 𝑛 + 2 ;
𝐬𝐭𝟐: 𝑟𝑝𝑖 ≔ ∅;
𝐥𝐩𝟏: 𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑛 + 2 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝑥𝑛𝑒𝑤 𝑖 ≔ 0;
 𝐞𝐧𝐝;
𝐥𝐩𝟐 𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑛 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑖 = 1 𝒕𝒉𝒆𝒏
 𝐛𝐞𝐠𝐢𝐧
 𝑥𝑛𝑒𝑤 𝑖 ≔ 0;
 𝑟𝑝𝑖 ≔ 𝑟𝑝𝑖 ∪ 𝑖, 𝑥[𝑖] ;
 𝐞𝐧𝐝;
 𝐞𝐥𝐬𝐞
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑖, 𝛾 ∉ 𝑆𝑇 𝒕𝒉𝒆𝒏
 𝐛𝐞𝐠𝐢𝐧 𝑥𝑛𝑒𝑤 𝑖 ≔ 0; 𝐞𝐧𝐝;
 𝐞𝐥𝐬𝐞
 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑥 𝑖 ! = 0 𝐭𝐡𝐞𝐧
 𝐛𝐞𝐠𝐢𝐧 𝑟𝑝𝑖 ≔ 𝑟𝑝𝑖 ∪ 𝑖, 𝑥[𝑖] ; 𝐞𝐧𝐝;
 𝐞𝐥𝐬𝐞
 𝐛𝐞𝐠𝐢𝐧
 𝐟𝐨𝐫 𝑗, 𝑣𝑎𝑙𝑢𝑒 ∈ 𝛾 𝐝𝐨
 𝐛𝐞𝐠𝐢𝐧 𝑥𝑛𝑒𝑤 𝑖 ≔ 𝑥𝑛𝑒𝑤 𝑖 + (𝑥𝑛𝑒𝑤 𝑗 ∗ 𝑣𝑎𝑙𝑢𝑒); 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
 𝐞𝐧𝐝;
𝐬𝐭𝟑: 𝑟𝑝𝑖 ≔ 𝑟𝑝𝑖 ∪ 𝑛, 𝑥[𝑛] ;
𝐬𝐭𝟒: 𝑟𝑝𝑖 ≔ 𝑟𝑝𝑖 ∪ 𝑛 + 1, 𝑥 𝑛 + 1 ;
𝐬𝐭𝟓: 𝑘 ≔ 𝑡𝑜𝑝;
𝐬𝐭𝟔: 𝑠𝑢𝑚 ≔ 0.0;
𝐥𝐩𝟑: 𝐟𝐨𝐫 𝑖, 𝑣𝑎𝑙𝑢𝑒𝑟𝑝𝑖 ∈ 𝑟𝑝𝑖 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑖, 𝑣𝑎𝑙𝑢𝑒𝑆𝑆 ∈ 𝑆𝑆 𝒕𝒉𝒆𝒏

 𝐛𝐞𝐠𝐢𝐧 𝑠𝑢𝑚 ≔ 𝑠𝑢𝑚 + 𝑥 𝑖 ∗ 𝑣𝑎𝑙𝑢𝑒𝑆𝑆 ; 𝐞𝐧𝐝;

 𝐞𝐧𝐝;
𝐬𝐭𝟕: 𝑥𝑛𝑒𝑤 [𝑘] ≔ 𝑠𝑢𝑚;
𝐬𝐭𝟖: 𝑘 ≔ 𝑘 + 1;
𝐥𝐩𝟒: 𝐟𝐨𝐫 𝑖, 𝑣𝑎𝑙𝑢𝑒𝑟𝑝𝑖 ∈ 𝑟𝑝𝑖 𝐝𝐨

 𝐛𝐞𝐠𝐢𝐧
 𝐢𝐟 𝑖, 𝑣𝑎𝑙𝑢𝑒𝑆𝐹 ∈ 𝑆𝐹 𝒕𝒉𝒆𝒏

 𝐛𝐞𝐠𝐢𝐧 𝑠𝑢𝑚 ≔ 𝑠𝑢𝑚 + 𝑥 𝑖 ∗ 𝑣𝑎𝑙𝑢𝑒𝑆𝐹 ; 𝐞𝐧𝐝;

 𝐞𝐧𝐝;
𝐬𝐭𝟗: 𝑥𝑛𝑒𝑤 [𝑘] ≔ 𝑠𝑢𝑚;
𝐬𝐭𝟏𝟎: 𝑟𝑝𝑖 = ∅;
𝐞𝐧𝐝;

101

a1a2a3g1g2g3g4

a1a2a3g4

parent(0) n(1)

state(0)

state(1)

0.001323

a1a2g2g4

0.017052

parent(state(0)) n(3)
a1g4

parent(state(2)) n(5)0.22662

0.056625

a2g2

parent(state(2)) n(4)

state(0)
state(2)

state(4)

SS

0.018375

0.698375

parent(state(2)) n(3)

state(3)

parent(state(2)) n(5)

SS

SF

SS

SF

0.925

0.075

parent(state(3)) n(5)

parent(state(3)) n(5)

parent(state(4)) n(5)

0.245

0.755

parent(state(4))

SF

n(5)

parent(state(0)) n(2)

Figure 34. Branching of State 2, i.e.,

a1a2a3g1g2g3g4

a1a2a3g4

parent(0) n(1)

state(0)

state(1)

0.001323

a1a2g2g4
0.0017052

a1g4

state(0)
state(2)

state(4)

a1a3g3g4

parent(state(0))

parent(state(5)) n(7)

0.0666

SF

a3g3

state(5)

state(6)

SS

0.0696 parent(state(5))

parent(state(5))

SS

SF

parent(state(6))

0.072

0.928

0.0054

0.8584

0.004077

parent(state(6))

parent(state(0)) n(2)

parent(state(0)) n(3)

n(6)

Figure 35. Branching of State 3, i.e.,

102

a1a2a3g1g2g3g4

a1a2a3g4

parent(0) n(1)

state(0)

state(1)

0.001323

a1a2g2g4
0.0017052

state(0)
state(2)

a1a3g3g4

0.004077

state(6)

0.016317

parent(state(0))
a2g4

parent(state(7)) n(10)0.05436

0.022736

SF

parent(state(7)) n(9)

state(7)

state(10)

0.01764

0.70064

parent(state(7))

state(8)

parent(state(7))

SF

SS

SF

0.755

0.245

parent(state(8))

parent(state(9))

parent(state(9))

0.072

0.928

a2a3g1g4

state(7)
n(8)

parent(state(8))

a3g2

state(9)

parent(state(0)) n(2)

parent(state(0)) n(3)

parent(state(0)) n(6)

SS

SS

Figure 36. Branching of State 7, i.e.,

a1a2a3g1g2g3g4

a1a2a3g4

parent(0) n(1)

state(0)

state(1)

0.001323

a1a2g2g4
0.0017052

state(0)
state(2)

a1a3g3g4

0.004077

state(6)

0.016317

a2a3g1g4

state(8)

parent(state(0)) n(11)
state(11)

SF
0.999579

0.0004210.000421

parent(state(10))

a1g2g3g4

state(10)

0.052548

parent(state(10))

parent(state(0)) n(2)

parent(state(0)) n(3)

parent(state(0)) n(6)

parent(state(0)) n(8)

SS

Figure 37. Branching of State 10, i.e.,

103

a1a2a3g1g2g3g4

a1a2a3g4

parent(0) n(1)

state(0)

state(1)

0.001323

a1a2g2g4

0.0017052
state(0)

state(2)

a1a3g3g4

0.004077

state(6)

0.016317

a2a3g1g4

state(8)

state(11)

a1g2g3g4

state(11)

0.052548

parent(state(0)) n(12)
state(11)

SS

SF
0.985294

0.0147060.014706

parent(state(11))

parent(state(11))
state(11)

0.210308

a2g1g2g4

state(11)

parent(state(0)) n(2)

parent(state(0)) n(3)

parent(state(0)) n(6)

parent(state(0)) n(8)

parent(state(0)) n(11)

Figure 38. Branching of State 11, i.e.,

a1a2a3g1g2g3g4

a1a2a3g4

parent(0) n(1)

state(0)

state(1)

0.001323

a1a2g2g4

0.0017052

state(0)
state(2)

a1a3g3g4

0.004077

state(6)

0.016317

a2a3g1g4

state(8)

state(11)

a1g2g3g4

state(11)

0.052548

state(11)state(11)

0.210308

a2g1g2g4

state(12)

parent(state(0)) n(13)

SS

SF
0.928

0.0720.072

parent(state(12))

0.050283

state(13)

a3g1g3g4

state(12)
parent(state(12))

parent(state(0)) n(2)

parent(state(0)) n(3)

parent(state(0)) n(6)

parent(state(0)) n(8)

parent(state(0)) n(11)

parent(state(0)) n(12)

Figure 39. Branching of State 12, i.e.,

104

a1a2a3g1g2g3g4

a1a2a3g4

parent(0) n(1)

state(0)

state(1)

0.001323

a1a2g2g4

0.0017052

state(0)
state(2)

a1a3g3g4

0.004077

state(6)

0.016317

a2a3g1g4

state(8)

state(11)

a1g2g3g4

state(11)

0.052548

state(11)state(11)

0.210308

a2g1g2g4

state(12)

0.050283

state(13)

a3g1g3g4

state(13)

SF

0.648092

parent(state(0))

parent(state(0)) n(2)

parent(state(0)) n(3)

parent(state(0)) n(6)

parent(state(0)) n(8)

parent(state(0)) n(11)

parent(state(0)) n(12)

parent(state(0)) n(13)

Figure 40. Branching of one-step transition from initial State 0, i.e.

 , to State Failure

105

1 2 3 4 5 6 7 8 9 10 11 12

<1,<0,0.001323>

<2,<0,0.017052>

<3,<2,0.056625>

<4,<2,0.0696>

<5,<0,0.004077>

<6,<5,0.0666>

<7,<0,0.016317>

<8,<7,0.022736>

<9,<7,0.05436>

<10,<0,0.052548>

<12,<0,0.050283>

<11,<0,0.210308>

ST

current state, j

previous state, i

transition probability, pij

<3,<5,0.069600>

Figure 41. Structure of set seen as an adjacent list

<1,0.648092>

SF

<2,0.698375>

<4,0.755000>

<6,0.928000>

<7,0.700640>

<8,0.755000>

<11,0.985294>

<12,0.999627>

<13,0.000000>

<14,1.000000>

<2,0.018375>

<3,0.075000>

<4,0.245000>

<5,0.005400>

<6,0.072000>

<10,0.000421>

<11,0.014706>

<12,0.000373>

<13,1.000000>

<14,0.000000>

<10,0.999579>

<9,0.928000>

<5,0.858400>

<3,0.925000>

<0,0.648092><1,0.351907>

<7,0.017640>

<8,0.245000>

<9,0.072000>

SS

Figure 42. Structure of sets and seen as an adjacent list

106

107

Figure 43. Transition Matrix .

108

Table 9. Probability distribution, after 3 iterations, given the initial probability vector,

xn
(0)

, [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

k

success

failure

1 0,000 0,001 0,017 0,000 0,000 0,004 0,000 0,016 0,000 0,000 0,053 0,210 0,050 0,000 0,648

2 0,000 0,000 0,000 0,001 0,004 0,000 0,000 0,000 0,004 0,001 0,000 0,000 0,000 0,004 0,986

3 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,006 0,994

 3.6 Assessment of Organization based Multi-agent System Design by the

Absorbing Markov Chain Model Method

To empirically evaluate the reliability of the different agent-based organization

designs computed by algorithm
, we have developed a simulation that

steps through the design of a CRST application. To measure the system reliability, a

Bernoulli process is followed [7]. For each assignment set, (see Table 8), a

randomly system goal, i.e., , is selected. Subsequently, the reliability of the

best available assignment, i.e., is calculated. The best

assignment defines what is the reliability of an agent, , for achieving a goal,

 playing a role, (see Eq. 3.10). Afterwards,

 is compared to a random variable , which is uniformly

distributed (Java 1.7.0_55 pseudo-random number generator). If is greater than

 , agent is removed from , it is assumed that failed

to achieve goal ; otherwise, is removed from . This process will continue until

either or is empty. If is empty, 0 is returned; otherwise, 1 is

returned. Noticed that 0 represents a success and 1 represents a failure for each trial. 5000

trials are tested for the Bernoulli process. Finally, the resulting probability of success is

calculated as average of the trials in order to level out variations caused by the random

generator used to simulate success or failure of an assignment.

Figure 44 reveals that the reliability of System #1 (refer to Figure 16) ranges

between a max of and a min of with a media of and a standard

109

deviation of . As result, system # 1, in overall, can be considered faulty (see in

Figure 16 the behavior of the first hundred configurations).

Figure 44. Results for System 1

Additionally, two other hypothetical CRST systems are specified: System #2 and

system #3 (see Figure 45 and Figure 47). Figure 46 shows that the reliability of System #2

ranges between a max of and a min of with a media of and a

standard deviation of . As consequence, System #2, in overall, can also be

considered faulty.

Figure 45. Overview of the CRST Organization # 2.

0

0,2

0,4

0,6

0,8

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Sy
st

e
m

's
 R

e
lia

b
ili

ty
 (

%
)

100-first agent's organizations

Reliability (%)

Simulation (%)

110

Figure 46. Results for System 2

Finally, Figure 48 illustrates the reliability of System #3, which ranges between a

max of 97 and a min of with a media of and a standard

deviation of . Respectively, System #3, in overall, can be considered reliable. It

can be noted that the reliability calculated of most of the subset of all the potential

assignments,
, is greater that 90%. These outcomes give rise to the

formulation of new research questions. For example, why does the reliability of some

assignment sets fall below a prescribed target value? This observation can be seen in Figure

48 where roughly the reliability of 16/100 of the assignment set falls below 80%.

0

0,5

1

1,5

2

2,5

3

3,5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Sy
st

e
m

's
 R

e
lia

b
ili

ty
 (

%
)

100-fisrt agent´s organizations

Reliability (%)

Simulation (%)

111

Figure 47. Overview of the CRST Organization # 3.

Figure 48. Results for System #3.

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Sy
st

e
m

's
 R

e
lia

b
ili

ty
 (

%
)

100-first agent's organizations

Reliability (%)

Simulation (%)

112

Chapter 4. Conclusions and Recommendations for Future Work

In this dissertation, two problems, building-evacuation route planning and

organization-based multiagent systems, have been analyzed and modeled by resorting to the

P-graph framework. What follows are the significant conclusions drawn as well as

recommendations for future work.

 4.1 Building-Evacuation-Route Planning

An algorithmic method has been proposed for generating optimal building-

evacuation routes and n-best sub-optimal solutions for a building-evacuation problem. The

method has been crafted by transforming a building-evacuation problem into a

problem and solving it via the algorithms and software of the P-graph framework. The

efficacy of the proposed method has been illustrated with several examples in which the

optimal and sub-optimal evacuation routes emerge in ranked order by defining the objective

function as the cost of reaching a safety point in time , where 0 . The results

obtained indicate that the proposed method outperforms current optimization models

[41,42].

Nevertheless, the computational performance of the proposed method should be

compared to those of other generic commercial optimization tools, i.e., Cplex

(http://goo.gl/375IV5) and Gams (http://goo.gl/kfZAyM), in terms of computational time

and storage. This comparison should also include the appraisal of parallelized versions of

the algorithm ABB as introduced in [101,111]. Moreover, a proof-of-concept system

should be developed to assess the suitability of the proposed method in real-life scenarios

where individuals are in constant movement inside the building, the building conditions are

required to be captured periodically, and the behavior of the individual might be crucial in

following directions [12,49,92]. In addition, other mathematical models, e.g., linear

ordering, should be studied [2,12] to explore the possibility of enhancing the proposed

method with some of the features characterizing such mathematical models. These features

http://goo.gl/375IV5
http://goo.gl/kfZAyM

113

include individual travel and exposure time as well as time-based risk and evacuation

exposure [14,49,50].

 4.2 Modeling Organization-based Multiagent Systems Design

The assessment of the n-best organizational-based multiagent system design based

on the OMACS framework has been performed by deploying an algorithmic method. The

method has been implemented by transforming an organizational-based multiagent system

design into a problem and solving it by means of the algorithms and software of the P-

graph framework.

The algorithmic method has been illustrated with an instance in which the optimal

and sub-optimal organizational-based multiagent system designs emerge in ranked order by

defining the objective function as the cost of each design in terms of the oaf function, ,

(see Eq. 3). An optimal solution, however, does not always capture the expected behavior

of the organizational-based multiagent system design. To amend this, a second method has

been deployed, which is based on absorbing Markov chains and concepts pertaining to the

field of systems reliability. The results obtained from both methods have been assessed by

simulation.

Finally, we propose the construction of a computational tool for transforming OMACS

organizational-based multiagent systems into problems. Our efforts in this regard will

be the subject of future contributions.

114

Chapter 5. Summary of Accomplishments

 5.1 Original Contributions

 5.1.1Theses

Based on the novel results and scientific contributions presented and illustrated by

several case studies (either from the literature or hypothetical) in the previous chapters, the

following theses represents the basic discoveries of the present dissertation.

With regards to the building-evacuation –route planning problem, a method and

software are proposed:

1. The building-evacuation routes are represented by a P-graph, which gives

rise to a time-expanded process-network-synthesis () problem.

2. A problem takes into account the temporal dimension inherent to the

building evacuation problem in terms of the evacuation time, specifically its

upper bound .

3. A problem can be algorithmically solved according to the P-graph

framework, where each location and passage in the building are given by a

set of attributed to be taken into the evacuation-route-planning.

4. The evacuation time (which also let us computes the evacuation routes and

scheduling of evacuees on each route) is calculated as a minimum cost of

the corresponding .

115

5. In addition to the globally optimal solution the P-graph framework provides

the -best sub-optimal solution.

6. The validity of the proposed method and software is illustrated by several

examples taken from the literature.

With respect to the modeling organization-based multiagent systems problem:

7. At the outset, the design of organization-based multiagent systems is

proposed according to the framework of Organization Model for Adaptive

Complex Systems ().

8. This design model is transformed into a process-network model, i.e., P-

graph. The resultant process-network model in conjunction with the P-

graph-based methodology give rise to:

a. the maximal structure of the process network, comprising all the

combinatorially feasible structures, i.e., -based design

configurations, capable of yielding the specified products from the

specified raw material;

b. every combinatorially feasible structure of the process of interest;

and,

c. the optimal structure of the network, i.e., the optimal -based

design configuration.

9. In light of the tenet of a modeling-transformation-evaluation paradigm, an

appraisal is made of the feasibility as well as the flexibility and cost of the

optimal -based design configuration obtained. However, the

outcome of thesis 9 renders it possible to rule out thesis 8.c. That, it is not

always the rule that the higher the cost of the OMACS-based design

configuration, the better the performance of the agent-based organization.

116

To overcome this result, in this dissertation the algorithm

 is introduced.

10. The aim of algorithm
 is to transform an organization-

based multiagent system assignment set, , into an absorbing-markov

chain, , and compute its steady state,

. That is to say, algorithm

 is to evaluate whether or not leads the

organization-based multiagent system into one of the absorbing states, i.e.,

either the agents’ organization achieves all its goals (success state) or fails

to (failure state).

11. The validity of the proposed method and software is illustrated by

examining a hypothetical example extracted from the literature.

 5.2 List of Publications

The publications in book, book chapters, international journals and peer reviewed

international conference papers which are related to this dissertation are listed below.

Book

1. García-Ojeda, Juan C. “GADMAS: Combinando el Modelado Organizacional con
Meta-modelos Gráficos en el Desarrollo de Sistemas Multiagente,” Editorial

Académica Española. pp. 140, 2012 (in spanish).

Book Chapters

1. DeLoach, Scott A., and García-Ojeda, Juan C. “The O-MaSE Methodology,” In:

Massimo Cossentino, Vincent Hilaire, Ambra Molesini, Valeria Seidita (Eds.):

Handbook on Agent-Oriented Design Processes. Springer-Verlag: Berlin, 2014, pp.

253 – 286.

Refereed International Journals

117

1. Garcia-Ojeda, J. C., Bertok, B., Friedler, F., Argoti, A., Fan, L.T. “A Preliminary

Study of the Application of the P-graph Methodology for Organization-based

Multiagent System Designs: Assessment” Acta Polytechnica Hungarica 12, (2)

(2015), 103-122. (IF=0.471).

2. Garcia-Ojeda, J. C., B. Bertok, F. Friedler., L.T. Fan. “Building-Evacuation-Route

Planning via Time-Expanded Process-Network Synthesis,” Fire Safety Journal, 61

(2013) 338 – 347. (Impact Factor=0.957).

3. Garcia-Ojeda, J. C., B. Bertok, F. Friedler. “Planning evacuation routes with the P-

graph framework,” Chemical Engineering Transactions, 29, (2012), 1531-1536.

(IF=1.03).

4. García-Ojeda, Juan C. “On Building Evacuation Route Planning by Resorting to P-

graph,” Revista Colombiana de C mput c ón, 12, (1) (2011), 111-125.

Refereed Proceedings Articles

1. García-Ojeda, Juan C., Bertok, Botond, Friedler, Ferenc, Argoti, Andres.

“Identifying Evacuation Routes via the P-grpah Methodology,” In: Proceedings of

the 10
th

 Colombian Congress on Computation (Bogotá, Colombia). 10CCC 2015.

2. García-Ojeda, Juan C., Bertok, Botond, Friedler, Ferenc, Fan, L.T. “On Combining

the P-graph Framework and Absorbing Markov Chains for Assessing the Reliability

and Cost of Organization-based Multiagent System Design Models,”

In: Proceedings of the 6
th

 Veszprem Optimisation Conference: Advanced

algorithms (Veszprem, Hungary). VOCAL 2014.

3. García-Ojeda, Juan C., Bertok, Botond, and Friedler, Ferenc. “Multi-criteria

Analysis of Building Evacuation Route Planning by Resorting to the P-graph

Framework,” In: Proceedings of the 5
th

 Veszprem Optimisation Conference:

Advanced algorithms (Veszprem, Hungary). VOCAL 2012.

4. García-Ojeda, Juan C., Bertok, Botond, and Friedler, Ferenc. “Planning evacuation

routes with the P-graph framework,” In: Proceedings of the 15
th

 International

Conferences on Process Integration, Modelling and Optimisation for Energy Saving

and Pollution Reduction (Prague, Czech Republic). PRES 2012.

 5.3 List of Publications in other Research Topics

The publications in book chapters, international journals and peer reviewed

international conference papers which are related to other research topics distinct to the

addressed in this dissertation are listed below.

118

Refereed International Journals

1. Pimentel Losada, J.P.A., Heckl, I., Bertok, B., Friedler, F., García-Ojeda, J.C.,

Argoti, A. "Process-Network Synthesis for Benzaldehyde Production, P-Graph

Approach"

Chemical Engineering Transactions, 45, (2015), 1369-1374. (IF=1.03).

2. García-Ojeda, Juan C. “Measurement of Tailored Agent-oriented Design Processes

by Resorting to Flow Graphs: A Preliminary Investigation,” Revista Colombiana de

C mput c ón, 11, (2) (2010), 94 -115.

3. García-Ojeda, Juan C., and DeLoach, Scott A. “The O-MaSE Process: a Standard

View,” CEUR Workshop Proceedings. 627 (2010), II—DPDF 55 -66.

4. DeLoach, Scott A., and García-Ojeda, Juan C. “O-MaSE: An Customizable

Approach to Designing and Building Complex, Adaptive Multiagent Systems,”

International Journal on Agent-Oriented Software Engineering. 4 (3) (2010), 244 –

280.

5. Arenas, Álvaro E., García-Ojeda, Juan C., and Pérez-Alcázar, Jose de J. “On
combining organisational modelling and graphical languages for the development of

multiagent systems,” Integr. Comput.-Aided Eng. 11, 2 (2004), 151-163. (IF=4.698,

2015)

Book Chapters

1. Castellanos, H.C., García-Ojeda, J.C., Calier, F.R.: “Propuesta de arquitectura para
la interoperabilidad de la historia clínica electrónica en Colombia,” In: Gustavo

Velásquez Quintana (Ed.): Tecn l í e nn v c ón: Apl c c nes p r el

desarrollo de la ciencia y la sociedad. Universidad Nacional Abierta y a Distancia:

Bogotá, DC, 2014, pp. 7 – 67.

2. Arenas, Daniel, Sandoval, Edward, García-Ojeda, Juan C., Gómez, Martha, y
Cáceres, Claudia. “Servicios de Localización, Georeferenciación, y Mensajería a

través de la Computación Móvil.” In: Aguilar Vera , Raúl A., Díaz Mendoza, Julio

C., Gómez Cruz, Gerson E., y Bohórquez, Edwin León (Eds.): Ingeniería de

Software e Ingeniería del Conocimiento: Tendencias de Investigación e Innovación

Tecnológica en Iberoamérica. AlfaOmega Grupo Editor, 2010, pp. 310-320.

3. García-Ojeda, Juan C., DeLoach, Scott A., Robby, Oyenan, Walamitien H., and

Valenzuela, Jorge. “O-MaSE: A Customizable Approach to Developing Multiagent

119

Development Processes,” In: Michael Luck, Lin Padgham (Eds.): Agent-Oriented

Software Engineering VIII, 8th International Workshop, AOSE 2007, Honolulu, HI,

USA, May 14, 2007, Revised Selected Papers, LNCS 4951, 1-15, Springer-Verlag:

Berlin, 2008.

4. García-Ojeda, Juan C., Arenas, Álvaro E., and Pérez-Alcázar, José de J. “Paving the
Way for Implementing Multiagent Systems: Refining Gaia with AUML,” In: Jörg

P. Müller, Franco Zambonelli (Eds.): Agent-Oriented Software Engineering VI, 6th

International Workshop, AOSE 2005, Utrecht, The Netherlands, July 25, 2005.

Revised and Invited Papers, LNCS 3950, 179-189, Springer-Verlag: Berlin, 2006.

5. Barrera-Sanabria, G., Arenas-Seleey, D., García-Ojeda, Juan C., Méndez-Ortiz, F.

Designing Adaptive Educational Web Sites: General Framework. In:

Kinshuk, Chee-Kit Looi, Erkki Sutinen, Demetrios G. Sampson, Ignacio

Aedo, Lorna Uden, Esko Kähkönen (Eds.): Proceedings of the IEEE International

Conference on Advanced Learning Technologies, ICALT 2004, 30 August - 1

September 2004, Joensuu, Finland, 973-977, IEEE Computer Society, 2004.

6. Barrera-Sanabria, Gareth, Arenas-Seleey, Daniel, García-Ojeda, Juan C., and

Méndez-Ortíz, Freddy. “Modelling Intelligent Agents for Adaptive Educational

Web Sites,” In: Knowledge – based Software Engineering: Proceedings of the Sixth

Joint Conference on Knowledge-based Software Engineering. Stefanuk, V. and

Kaijiri, K. (Eds.) IOS Press, 2004.

7. Pérez-Alcázar, José de J., Arenas, Álvaro E., Barrera-Sanabria, G., and García-

Ojeda, Juan C. Hacia una Ingeniería de Software Orientada a Agentes. En: Cecilia

Maria Lasserre: Oportunidades de Cooperación en Ingeniería del Software e

Ingeniería del Conocimiento: Investigación en Iberoamérica. 3as JIISIC, 39 – 44,

EdiUnju, 2003.

Refereed Proceedings Articles

1. García-Ojeda, Juan C., " Aplicación de las TIC en Soluciones para la Captura

Digital de Clases Presenciales y Virtuales en Instituciones de Educación Superior”.

In: Proceedings of World Engineering Education Forum (Cartagena, Colombia).

2013.

2. Castellanos Granados, Hernán Camilo, García-Ojeda, Juan C., Rueda Calier, Fabio.

"Propuesta de arquitectura para la interoperabilidad de la historia clínica electrónica

en Colombia”. In: Mem r s del Encuentr N c n l de n en erí s (Cali,

Colombia). 2013.

3. Garcia Angarita, Maritza Andrea, García-Ojeda, Juan C, and Alvarez Lopez,

Ramón Antonio. “Moodle Como Apoyo Académico en la Educación Técnica,”

http://www.sigmod.org/dblp/db/indices/a-tree/m/M=uuml=ller:J=ouml=rg_P=.html
http://www.sigmod.org/dblp/db/indices/a-tree/m/M=uuml=ller:J=ouml=rg_P=.html
http://www.sigmod.org/dblp/db/indices/a-tree/z/Zambonelli:Franco.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kinshuk:.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Looi:Chee=Kit.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sutinen:Erkki.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sampson:Demetrios_G=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Aedo:Ignacio.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Aedo:Ignacio.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/u/Uden:Lorna.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/K=auml=hk=ouml=nen:Esko.html

120

In: Memorias del 4to congreso Internacional de Ambientes Virtuales de

Aprendizaje Adaptativos y Accesibles (Cartagena, Colombia). CAVA 2012.

4. Tobar, David, Mendez, Anderson H., and García-Ojeda, Juan C. “ATenEa –

Aplicación de las Tecnologías de la Información y de la Comunicación en

Soluciones para la Captura Digital de Clases Presenciales y Virtuales en

Instituciones de Educación Superior como Herramienta Tecnológica para la

Generación de Impacto en la Enseñanza,” In: Memorias del 4to congreso

Internacional de Ambientes Virtuales de Aprendizaje Adaptativos y Accesibles

 (Cartagena, Colombia). CAVA 2012.

5. García-Ojeda, Juan C., and Briceño, Wilson. “Ant’s Business Game: Una propuesta

de Simulador Gerencial en el Contexto de la Pequeña y Mediana Empresa en

Colombia,” In: Proceedings of the International Conferences in Economics,

Management, and Accounting (Bucaramanga, Colombia). ICEMA 2012.

6. Garcia Prada, Andrea Patricia, and García-Ojeda, Juan C. “Vista Grafica para la

Administración de Procesos Personalizados basados en Agentes para la Herramienta

agentTool Process Editor (APE): Soportando la Técnica Earned Value Analisis,”

In: Memorias Sext C n res C l mb n de C mput c ón (Manizales, Colombia).

6CCC, 2011.

7. García-Ojeda, Juan C., and DeLoach, S. A. “The O-MaSe Process: A Standard

View,” In: Proceedings of the IEEE FIPA Workshop on Design Process

Documentation and Fragmentation (Lyon, France). MALLOW 2010, 2010.

8. García-Ojeda, Juan C., DeLoach, S. A., and Robby 200 . “agentTool III: From
Process Definition to Code Generation,” In: Proceedings of the 8th international

Conference on Autonomous Agents and Multiagent Systems - Volume 2 (Budapest,

Hungary, May 10 - 15, 2009), 1393-1394, 2009.

9. García-Ojeda, Juan C., DeLoach, S. A., and Robby 200 . “agentTool Process
Editor: Supporting the Design of Tailored Agent-based Processes,” In: Proceedings

of the 2009 ACM Symposium on Applied Computing (Honolulu, Hawaii). SAC '09,

707-714, 2009.

10. García-Ojeda, Juan C., Pérez-Álcazar, José de J., and Arenas, A. E. “Extending the
Gaia Methodology with Agent-UML,” In: Proceedings of the Third international

Joint Conference on Autonomous Agents and Multiagent Systems - Volume 3 (New

York, New York, July 19 - 23, 2004), 1456-1457, 2004.

121

11. Arenas Seleey, Daniel, Barrera Sanabria, Gareth, Méndez Ortíz, Freddy, García-
Ojeda, Juan C. “Designinig Adaptative Educational Web Sites General framework,”

In: Proceedings of the 4th IEEE International Conference on Advanced Learning

Technologies IEEE Computer Society. Finland, 2004.

12. Pérez-Alcázar, José de J., Arenas, Álvaro E., Barrera-Sanabria, G., and García-

Ojeda, Juan C. “Hacia una Ingeniería de Software Orientada a Agentes," En: sesión

de cooperacion cientifica, 3a Jornada Iberoamericana de Ingeniería de Software e

Ingeniería del Conocimiento (JIISIC’03), Valdivia, Chile, November 26-28, 2003.

13. García-Ojeda, Juan C., Pérez-Álcazar, José de J., and Arenas, A. E. “Applying Gaia

and AUML to the Selective Dissemination of Information on the Web,” In:

Proceedings of the 4
th

 Iberoamerican Workshop on Multiagent Systems, Agent

Technology and Software Engineering at Iberamia 2002.

14. García-Ojeda, Juan C., Pérez Alcázar, José de J., y Arenas, Álvaro E. “Aplicación

de una Metodología de Desarrollo de Sistemas Multiagente en la Diseminación

Selectiva de Información en la Web,” En: Memorias del II Congreso

Iberoamericano de Telemática (CITA’02). September, 2002. (In Spanish)

Non-refereed Proceedings Articles (In Spanish)

1. García-Ojeda, Juan C., Briceño, Wilson, y Mendoza, Javier. “Construcción de un

Modelo de Simulación de Gestión para el Desarrollo de Habilidades Gerenciales,”

En: II Encuentro Departamental de Semilleros de Investigación. Bucaramanga,

Colombia, 2005.

2. García-Ojeda, Juan C., Briceño, Wilson, y Mendoza, Javier. “Construcción de un

Modelo de Simulación de Gestión para el Desarrollo de Habilidades Gerenciales,”

En: VII Encuentro Nacional de Semilleros de Investigación. Cartagena, Colombia,

2004.

3. Arenas-Seleey, Daniel, Barrera-Sanabria, Gareth, Díaz, Ricardo, García-Ojeda, Juan

C., Méndez-Ortiz, Freddy y Sarmiento, Román E. “Hacia una Web Adaptativa para

Portales Web Educativos,” En: Sexto Encuentro Nacional de Semilleros de

Investigación, en CD-ROM, USACA - Cali, Colombia, 2003.

4. Arenas, Álvaro E., García-Ojeda, Juan C., y Pérez Alcázar, José de J. “Hacia una

Ingeniería del Software Orientada a Agentes: Evaluando Gaia y AUML en el

Análisis y Diseño de Sistemas Multiagente,” En: Sexto Encuentro Nacional de

Semilleros de Investigación, en CD-ROM, USACA - Cali, Colombia, 2003.

122

5. Arenas-Seleey, Daniel, Barrera-Sanabria, Gareth, García-Ojeda, Juan C., Méndez-

Ortiz, Freddy y Sarmiento, Román E. “Propuesta de un Framework General para el

Diseño de Portales Educativos Adaptativos”. En: V foro de investigaciones

RIBIECOL, en CD-ROM, UNAB – Bucaramanga, Colombia, 2003.

6. Arenas, Álvaro E., Pérez Alcázar, José de J., Barrera-Sanabria, Gareth, García-

Ojeda, Juan C., y Calderón-Benavides, Maritza L. “Experiencias en: Hacia una

Ingeniería del Software Orientada a Agentes,” En: V Encuentro Nacional de

Semilleros de Investigación, en CD-ROM, UPTC - Tunja, Colombia, 2002.

7. García-Ojeda, Juan C., Pérez Alcázar, José de J., y Arenas, Álvaro E. “Aplicación

de una Metodología de Desarrollo de Sistemas Multiagente en la Diseminación

Selectiva de Información en la Web,” En: Tercera Semana Nacional de Ingeniería

de Telecomunicaciones, en CD-ROM, USTA - Medellín, Colombia, 2002.

123

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and

Applications. Prentice Hall, Upper Saddler River, NJ (1993)

2. Arulselvan, A.: Network Model For Disaster Management. Ph.D. Dissertation,

University of Florida (2009)

3. Benjaafar, S., Dooley, K., Setyawan, W.: Cellular Automata for Traffic Flow Modeling.

University of Minnesota – Report. Minneapolis, MN (1997).

4. Berlin, G.N.: A Network Analysis of Building Egress System. ORSA/TIMS meeting, p.

8. Washington, DC (1985)

5. Blue, V. J., Adler, J.L.: Using Cellular Automata Micro-simulation to Model Pedestrian

Movements. In Proceedings of the 14th International Symposium on Transportation and

Traffic Theory, pp. 235 – 254. Oxford: Elsevier Science, Jerusalem, Israel (1999)

6. Board London Transport: Secord Report of the Operational Research Team on the

Capacity of Footways. London Transport Borad – Report, London (1958)

7. Breuer, L., Baum, D.: An Introduction to Queueing Theory: And Matrix-Analytic

Methods, Springer (2005)

8. Brown, J.R.: The Knapsack sharing problem. Operation Research. Operation Research,

27(2), 340 – 355 (1979)

9. Bukowski, R.W. Emergency Egress From Buildings. Part 1. History and Current

Regulations for Egress Systems Design. In Proceedings of the Conference Sky is the

limit, pp. 167 – 191. Society of Fire Protection Engineers, Auckland, New Zealand

(2008)

10. Capri, S., Garafolo, C., Ignaccolo, M., Inturri, G., Pluchino, A., Rapisarda, A., Tudisco,

S.: Agent-Based Simulation of Pedestrian Behaviour. In Proceedings of the Symposium

124

on Engineered and Natural Complex Systems-Modeling, Simulation and Analysis, p.

375 (2009)

11. Casadesús Pursals, S., Garriga Garzon, F.: Basic Principle for the Solution of the

Building Evacuation Problem. Journal of Industrial Engineering and Management, 2(3),

pp. 499 – 516 (2009)

12. Casadesús Pursals, S., Garriga Garzon, F.: Building evacuation: Principles for the
analysis of basic structures through dynamic flow networks. Journal of Industrial

Engineering and Management, 6(4), pp. 831 – 859 (2013).

13. Chalmet, L.G., Francis, R.L., Saunders, P.B.: Network Models for Building Evacuation,

Management Science. 28(1) 86–105 (1982)

14. Cheng, H., Hadjisophocleous, G.V.: Dynamic Modeling of Fire Spread in Building, Fire

Safety Journal. 46(4) 211–224 (2011)

15. Choi, W., Hamacher, S., Tufecki, S.: Modeling of building Evacuation Problems by

Network flow with Side Constraints. European Journal of Operational Research, 35(1),

98 – 110 (1988)

16. Cossentino, C., Hilaire, V., Molesini, A., Seidita, V.: Handbook on Agent-Oriented

Design Processes. An IEEE-FIPA standard compliant description approach. Springer-

Verlag, Berlin (2014)

17. Cova, T.J., Johnson, J.P.: A network flow model for lane-based evacuation routing,

Transportation Research Part A: Policy and Practice, 37(7), 579–604 (2003)

18. DeLoach, S.A., Oyenan, W.H., Matson, E.T.: A Capabilities Based Model for Artificial

Organizations. Journal of Autonomous Agents and Multi-agent Systems. 16(1), 13–56

(2008)

19. Doheny, J.G. Fraser, J. L.: MOBEDIC - A Decision Modelling Tool For Emergency

Situations. Expert Systems with Applications, 10(1), 17 – 27 (1996)

20. Dignum, V., Vázquez-Salceda, J., Dignum, F.: Omni: Introducing social structure,

norms and ontologies into agent organizations. In: Bordini, R.H. et. al (eds.) PROMAS

2004. LNAI 3346, pp. 181–198. Springer-Verlag, Berlin Heildeberg (2005)

21. Dignum, V.A.: Model for Organizational Interaction: Based on Agents, Founded in

Logic. PhD Dissertation, Utrecht University (2004)

22. Dimakis, N., Filippoupolitis, A., Gelenbe, E.: Distributed Building Evacuation Simulator

for Smart Emergency Management, The Computer Journal. 53, 1384-1400 (2010)

125

23. Ebihara, M. ., Ohtsuki, A., Iwaki, H.: Model For Simulating Human BehaviorDuring

Emergency Evacuation Based On Classificatory Reasoning And Certainty Value

Handling. Shimizu Technical Research Bulletin, 11, 27 – 33 (1992)

24. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in

multi-agent systems. In Proceedings of the 3rd International Conference on Multi Agent

Systems, pp. 128–135. IEEE Computer Society, Washington, DC (1998)

25. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton,

NJ (1962)

26. Fortino, G., Russo, W.: ELDAMeth: An Agent-oriented Methodology for Simulation-

based Prototyping of Distributed Agent Systems. Information and Software Technology.

54(6), 608 – 624 (2012)

27. Francis, R. L., Kisko, T. M.: EVACNET+: A Computer Program to Determine Optimal

Building Evacuation Plans. Fire Safety Journal, 9, 211 – 220 (1985).

28. Francis, R.L.: A Uniformity Principle for Evacuation Route Allocation. Journal of

Research of National Bureau of Standards, 86(5), 509 – 513 (1981)

29. Francis, R.L.: A Simple Graphical Procedure to Estimate the Minimum time to Evacuate

a Building. Society of Fire Protection Engineers – Report (1979)

30. Francis, R.L., Saunders, P.B.: EVACNET: Prototype Network Optimisation Model for

Building Evacuation. National Bureau of Standards (1979)

31. Friedler, F., Tarján, K., Huang, Y.W. and Fan, L.T.: Combinatorial Algorithms for
Process Synthesis. Computers Chem. Engng. 16, S313 – 320 (1992)

32. Friedler, F., Tarján, K., Huang, Y.W. and Fan, L.T.: Graph-theoretic approach to process

synthesis: axioms and theorems. Chem. Engng. Sci. 47, 1972–1988 (1992)

33. Friedler, F., Tarján, K., Huang, Y.W., Fan, L.T.: Graph-theoretic approach to process

synthesis: polynomial algorithm for maximal structure generation. Computers Chem.

Engng. 17, 929–942 (1993)

34. Friedler, F., Varga, J.B., Fan, L.T.: Decision-mapping for design and synthesis of

chemical processes: applications to reactor-network synthesis. In: Biegler, L., Doherty,

M. (eds.) AIChE Symposium Series, vol. 91, pp. 246-250. American Institute of

Chemical Engineers, New York (1995)

35. Friedler, F. Varga, J.B., Feher, E., Fan, L.T.: Combinatorially Accelerated Branch-and-

Bound Method for Solving the MIP Model of Process Network Synthesis. In: Floudas,

C.A., Pardalos, P.M. (eds.) Global Optimization, Computational Methods and

126

Applications, State of the Art, pp. 609-626. Kluwer Academic Publishers, Dordrecht,

Netherlands (1996)

36. Friedler, F., Fan, L.T., Imreh, B.: Process Network Synthesis: Problem Definition.

Networks. 28, 119–124 (1998)

37. Fruins, J.J.: Pedestrian Planning and Design, Revised Edition. Metropolitan Association

of Urban Designers and Environmental Planners, New York, NY, USA (1971)

38. Galea, E.R., Gwinne, S., Lawrence, P., Filipidis, L.: Modeling Occupant Interaction with

Fire Conditions using the building EXODUS evacuation Model. Fire Safety Journal,

36(4) 327 – 357 (2001)

39. Garcia-Ojeda, J. C., Bertok, B., Friedler, F., Argoti, A., Fan, L.T. “A Preliminary Study

of the Application of the P-graph Methodology for Organization-based Multiagent

System Designs: Assessment” Acta Polytechnica Hungarica (2015), To Appear.

40. García-Ojeda, Juan C., Bertok, Botond, Friedler, Ferenc, Fan, L.T. “On Combining the

P-graph Framework and Absorbing Markov Chains for Assessing the Reliability and

Cost of Organization-based Multiagent System Design Models,” In: Proceedings of the

6
th

 Veszprem Optimisation Conference: Advanced algorithms (Veszprem, Hungary).

VOCAL 2014.

41. García-Ojeda, J.C., Bertok, B., Friedler, F., Fan, L.T.: Building-evacuation-route

planning via time-expanded process-network synthesis. Fire Safety Journal, 61, pp. 338

– 347 (2013)

42. Garcia-Ojeda, J.C., Bertok, B., Friedler, F.: Planning evacuation routes with the P-graph

framework, Chemical Engineering Transactions. 29 1531 – 1536 (2012)

43. Garcia-Ojeda, J.C.: On Modeling Building Evacuation Route Plans by Resorting to P-

graph, Revista Colombiana de Computación. 12(1), 111–125 (2011)

44. Garro, A., Tundis, A.: A model-based method for system reliability analysis. In:

Proceedings of the 2012 Symposium on Theory of Modeling and Simulation - DEVS

Integrative M&S Symposium (TMS/DEVS 2012), Article No 2, Society for Computer

Simulation International, San Diego, CA (2012)

45. Getachew, T., Kostreva, M., Lancaster, L.: A Generalization of Dynamic for Pareto

Optimisation in Dynamic Networks. RAIRO Operation Research, 34, 27 – 47 (2000)

46. Getachew, T.: An Algorithm for Multiple-objective Path Optimisation with Time

Dependant Links. In Proceedings of the 10th International Conference on Multicriteria

Decision Making, pp. 319 – 330. International Society on Multicriteria Decision

Making, Finland (1992)

127

47. Hamacher, H.W., Tjandra, S.A.: Mathematical Modeling of Evacuation Problems: A

state of the art, in: Schreckenberg, M., Sharma, S.D. (eds) Pedestrian and Evacuation

Dynamics, pp. 227–266. Springer, Berlin (2002)

48. Hamacher, H.W., Tufekci, S.: On the Use of Lexicographic Min Cost Flows in

Evacuation Modeling, Naval Research Logistics, 34 487 – 503 (1987).

49. Han, L., Potter, S., Beckett, G., Pringle, G., Welch, S., Koo, S.H., Gerhard, W., Usmani,

A., Torero, J.L., Tate, A.: FireGrid: An e-infrastructure for next-generation emergency

response support, J. Parallel Distrib. Comput. 70(11) 1128 – 1141 (2010)

50. Han, L.D., Yuan, F., Urbanik, T.: What is an Effective Evacuation Operation? Journal of

Urban Planning and Development. 3–8 (2007)

51. Harmon, S.J., DeLoach, S.A., Robby, Caragea, D.: Leveraging Organizational Guidance

Policies with Learning to Self-Tune Multiagent Systems. In: Proceedings of the Second

IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 223

– 232. IEEE Computer Society, Venice, Italy (2008)

52. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea group Inc.

Hershey, PA (2005)

53. Hope, B., Tardos, E.: The Quickest Transshipment Problem. Journal of Mathematics of

Operations Research, 25(1), 36 – 62 (2000)

54. Hope, B. Tardos, E.: Polynomial Time Algorithms for Some Evacuation Problems. In

Proceedings of the Fifth annual ACM-SIAM symposium on Discrete algorithms, pp.

433 – 441. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA

(1994)

55. Hübner, J. F., Sichman, J. S., Boissier, O.: Developing organised multiagent systems

using the MOISE+ model: programming issues at the system and agent levels. Int. J.

Agent-Oriented Softw. Eng. 1(3), 370 – 395 (2007)

56. Jin, Y., Levitt, R.E.: The virtual design team: A computational model of project

organizations. Computational & Mathematical Organization Theory. 2(3), 171–196

(1996)

57. Kauffman, S.: At Home in the Universe: The Search for the Laws of Self-Organization

and Complexity. Oxford University Press, Oxford (1995)

128

58. Kim, S., Shekhar, S., Min, M.: Contraflow transportation network reconfiguration for

evacuation route planning, IEEE Transactions on Knowledge and Data Engineering.

20(8), 1115–1129 (2008)

59. Kisko, T., Francis, R., Nobel, C.: EVACNET4 User's Guide. University of Florida

(1998)

60. Kisko, T.M., Francis, R.L.: Network Models of Building Evacuation. In National

Technical Information Service (ed.) Development of Software System, Washington, DC

(1984)

61. Kholshenikov, V.V., Shields, T.H., Boyce, K.E., Samoshin, D.A.: Recent Developments

in Pedestrian Flow Theory and Research in Russia. Fire Safety Journal, 43, 108 – 118

(2006)

62. Klügl, F., Rindsfuser, G.: Large-Scale Agent-Based Pedestrian Simulation. In Petta, P. et

al. (eds.) MATES 2007. LNAI, vol. 4687, pp. 145 – 156 (2007)

63. Klügl, F.: Measuring Complexity of Multi-agent Simulations – An Attempt Using

Metrics. In Dastani, M. et al. (eds.) LADS 2007. LNAI 5118, pp. 123–138. Springer-

Verlag, Berlin Heildeberg (2006)

64. Klupfel, H., Konig, T.M., Wahle, J., Schreckenbe, M.: Microscopic Simulation of

Evacuation Processes on Passenger Ships. In Bandini, S., Worsch, T. (eds.) Theory and

Practical Issues on Cellular Automata, pp. 63 – 71. Springer-Verlag, London, UK (2000)

65. Kota, R., Gibbins, N. and Jennings, N. R.: A Generic Agent Organisation Framework

For Autonomic Systems. In: 1st International ICST Workshop on Agent-Based Social

Simulation and Autonomic Systems (ABSS 2009), 09-11 Sep, Limassol, Cyprus. pp.

203-219 (2009)

66. Kostreva, M.M., Wiecek, M.M., Getachew, T.: Optimization models in fire egress

analysis for residential buildings. Fire Safety Science, 3, 805 – 814 (1991)

67. Kretz, T.: Pedestrian Traffic: Simulations and Experiments. Ph.D. Dissertation,

University of Duisburg-Essen (2007)

68. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Research

Logistics Quarterly. 2, pp. 83 – 97 (1955)

69. Kuhn, H.W.: Variants of the Hungarian method for assignment problems. Naval

Research Logistics Quarterly. 3, pp. 253 – 258 (1956)

http://en.wikipedia.org/w/index.php?title=Naval_Research_Logistics_Quarterly&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Naval_Research_Logistics_Quarterly&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Naval_Research_Logistics_Quarterly&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Naval_Research_Logistics_Quarterly&action=edit&redlink=1

129

70. Kuligowski, E.D., Peacock, R.D., Hoskins, B.L.: A Review of Building Evacuation

Models NIST, Fire Research Division, 2nd edition. Technical Note 1680 Washington,

US (2010)

71. Kuligowski, E.D., Mileti, D.S.: Bibliography on Evacuation From Building Fires:

Education, Behavior and Simulation Techniques. National Institute of Standards and

Technology – Report (2007)

72. Kuligowski, E.D., Peacock, R.D.: A Review of Building Evacuation Models NIST,

National. Technical Note 1471 (2005)

73. Lovas, G.G.: Models of Way Finding in Emergency Evacuations. European Journal of

Operation Research, 105, 371 – 389 (1998)

74. Lu, Q., George, B., Shekhar, S.: Capacity Constrained Routing Algorithms for

Evacuation Planning: A Summary of Results. In Bauzer, C. et al. (eds.) SSTD 2005,

LNCS 3633, pp. 291 – 307. Springer-Verlag, Berlin Heidelberg (2005)

75. Lu, Q., Huang, Y., Shekhar, S.: Evacuation Planning: A Capacity Constrained Routing

Approach. In Chen, H. et al. (eds.) ISI 2003, LNCS 2665, pp. 291 – 307. Springer-

Verlag, Berlin Heidelberg (2003)

76. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing as

Interaction (A Roadmap for Agent Based Computing). AgentLink, (2005)

77. Miah, M.: Survey of Data Mining Methods in Emergency Evacuation Planning. In

Proceedings of the Conference for information Systems Applied Research, 4(1815).

Education Special Interest Group of the Association of Information Technology

Professionals, Chicago, IL (2011)

78. Minoux, M.: Networks synthesis and optimum network design problems: Models,

solution methods and applications. Networks, 19, 313–360 (1989)

79. Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal of the

Society for Industrial and Applied Mathematics. 5(1), pp. 32 – 38 (1957)

80. Nagel, K., Schreckenberg, M. A.: A Cellular Automaton Model for Freeway Traffic.

Journal of Physique I, 2, 2221 – 2229 (1999)

81. Nair, R., Tambe, M., Marsella, S.: Team Formation for Reformation. In Proceedings of

the AAAI Spring Symposium on Intelligent Distributed and Embedded Systems, pp. 52–

56. AAAI Press, Menlo Park, CA (2002)

http://en.wikipedia.org/w/index.php?title=Journal_of_the_Society_for_Industrial_and_Applied_Mathematics&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Journal_of_the_Society_for_Industrial_and_Applied_Mathematics&action=edit&redlink=1

130

82. Nelson, H.E., McLennan, H.A.: Emergency Movement. In National Fire Protection

Association (ed.) The SPE Handbook of Fire Protection Engineering, 3, pp. 286 – 295

(1996)

83. Oyenan, W.H., DeLoach, S.A., Singh, S.: An Organizational Design for Adaptive

Sensor Networks. In: 2010 IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology WI-IAT, pp. 239-242. IEEE computer

Society, Toronto, Canada (2010)

84. Pauls, J.L.: Movement of People. In National Fire Protection Association (ed.) The SPE

Handbook of Fire Protection Engineering, 3, pp. 263 – 285 (1996)

85. Pauls, J. L.: The Movement of People in buildings and Design Solutions for Means of

Egress. Fire Technology, 20(1), 27 – 47 (1984)

86. Pauls, J. L., Jones, B.K.: Building Evacuation: Research Methods and Case Studies. In

Canter, D. (ed.) Fires and Human Behavior, pp. 227 – 251 (1980)

87. Peacock, R.D., Kuligowski, E.D., Averill, J. D.: Pedestrian and Evacuation Dynamics,

Springer-Verlag (2011)

88. Picard, G., Mellouli, S., and Gleizes, M.: Techniques for Multi-agent System

Reorganization. In: Dikenelli, O. et al. (eds.) ESAW 2005, LNAI 3963, pp. 142–152.

Springer-Verlag, Berlin Heidelberg (2006)

89. Poon, L. S.: Evacsim: A Simulation Model Of Occupants With Behavioural Attributes in

Emergency Evacuation Of High-rise Building Fires. Fire Safety Science, 4, 681–692

(1994)

90. Predtechenskii, V. M., Milinskii, A.I.: Planning Foot Traffic Flow in Buildings.

Amerind Publishing Co, New Delhi, India (1978)

91. Proulx, G.., Kaufman, A., Pineau, J.: Evacuation Time and Movement in office

Buildings. National Research Council Canada – Report (1996)

92. Pu, S., Zlatanova, S.: Evacuation Route Calculation of Inner Buildings, in: van

Oosterom, P. et al. (eds.) Geo-information for Disaster Management, pp. 1143–1161.

Springer, Berlin (2005)

93. P-graph – PNS studio, http://www.p-graph.com

http://www.informatik.uni-trier.de/~ley/pers/hd/d/DeLoach:Scott_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Singh:Gurdip.html
http://www.informatik.uni-trier.de/~ley/db/conf/iat/iat2010.html#OyenanDS10

131

94. Qingsong, L., Betsy, G., Shashi, S.: Capacity constrained routing algorithms for

evacuation planning: a summary of results. In: Bauzer, C. et al. (eds.) SSTD 2005,

LNCS 3633, pp. 291 – 307. Springer-Verlag, Berlin Heidelberg (2005)

95. Robby, DeLoach S. A., and, Kolesnikov, V. A.: Using Design Metrics for Predicting

System Flexibility. In: Baresi, L. et al. (eds.) FASE 2006. LNCS, vol. 3922, pp. 184–

198. Springer-Verlag, Berlin Heidelberg (2006)

96. Ronald, N., Sterling, L., Kirley, M.: An Agent-based Approach to Modeling Pedestrian

Behavior. International Journal of Simulation Systems, Science & Technology, 8(1), 25

– 38 (2007)

97. Sangho, K., Shashi, S.: Contraflow network reconfiguration for evacuation planning: a

summary of results. In Proceedings of the 13th annual ACM international workshop on

Geographic information systems (GIS '05), pp. 250 – 259. ACM, New York, NY (2005)

98. Serugendo, G.D.M, Gleizes, M.P., Karageorgos, A.: Self-organisation and emergence in

mas: An overview. Informatica 30(1), 45–54 (2006)

99. Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent

systems. Auton. Agents and Multi-Agent Syst 16(2), 151–185 (2008)

100. Skutella, M.: An Introduction to Network Flows Over Time. In Cook, W. et al. (eds)

Research Trends in Combinatorial Optimization, pp. 451–482. Springer, Berlin (2009)

101. Smidla, J. and I. Heckl, S-graph Based Scheduling Method for Parallel Architecture,

Chemical Engineering Transactions, 21, 937-942 (2010)

102. Smith, J.M., Bakuli, D.: Resource Allocation in state Dependent Emergency Evacuation

Networks. European Journal of Operation Research, 89(3), 543 – 555 (1996)

103. Smith, J.M., Talebi, K.: Stochastic Network Evacuation Models. Computer & Operation

Research, 12(6), 559 – 577 (1985)

104. Smith, J.M., Karbowicz, C.J.: A K-shortest Paths Routing Heuristic for Stochastic

Network Evacuation Models. Engineering Optimization, 7, 253 – 280 (1984)

105. Stringfield, W.H.: Emergency planning and management, first ed. Government

Institutes, Rockville, MD (1996)

106. Timmermans, H.J.P.: Pedestrian Behavior: Models, Data Collection, and Applications.

Emerlad Group Publishing, London, UK (2009)

107. Togawa, K.: Study of Fire Escapes Based on the Observation Multitude currents. Japan

Building Research Institute – Report (1955)

https://docs.google.com/viewer?url=http%3A%2F%2Fcapo.dcs.uni-pannon.hu%2Fcikkek%2FS-graph_based_scheduling.pdf
https://docs.google.com/viewer?url=http%3A%2F%2Fcapo.dcs.uni-pannon.hu%2Fcikkek%2FS-graph_based_scheduling.pdf

132

108. Thompson, P.A., Marchant, E.W.: Testing and Application of the Computer Model

SIMULEX. Fire Safety Journal, 24, 149 – 166 (1995)

109. Thompson, P.A., Marchant, E.W.: A Computer Model for the Evacuation of Large

Building Populations. Fire Safety Journal, 24, 131 – 148 (1995)

110. Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein, S., Kaminka, G., Marsella, S.,

Ogden, A., Rika, I., Sheel, A., Taylor, M., Wang1y, X., Zilka, A., Tambe, M.:

ESCAPES: evacuation simulation with children, authorities, parents, emotions, and

social comparison. In Sonnenberg, L. (eds.) AAMAS 2011, pp. 457 – 464. International

Foundation for Autonomous Agents and Multiagent Systems, Taipei, Taiwan (2011)

111. Varga, J. B., Friedler, F., Fan, L. T., Parallelization of the Accelerated Branch-and-

Bound Algorithm of Process Synthesis: Application in Total Flowsheet Synthesis, Acta

Chimica Slovenica, 42, 15-20 (1995)

112. Wiecek, T. Approximation in Time-dependent Multi-objective Path Planning. In

Proceedings of the Conference on Systems, Man, and Cybernetics, pp. 861 – 866. IEEE

Computer Society, Chicago, IL, USA (1992)

113. Wiecek, T. Multicriteria Decision Making in Fire Egress Analysis. In Proceedings of the

IFAC/IFORS Workshop on Support Systems for Decision and Negotiation, pp. 285-290.

System Research Institute, Warsaw, Poland (1992)

114. Zambonelli, F., Jennings, N.R., Wooldridge, M.J.: Organisational Rules as an

Abstraction for the Analysis and Design of Multi-Agent Systems. International Journal

of Software engineering and Knowledge Engineering. 11(3), pp. 303 – 328 (2001)

115. Zhong, C., DeLoach, S.A.: An Investigation of Reorganization Algorithms. In: 2006

International Conference on Artificial, pp. 514–517. CSREA Press (2006)

116. Zhong, C.: Integrating Humans into and with Computing Systems. Ph.D. Dissertation,

Kansas State University (2010)

http://dcs.vein.hu/cikkek/Parall_of_the_Acc_Branch_and_Bound_Alg_of_Proc_Synth_Appl_in_Total_Flowsh_Synth.pdf
http://dcs.vein.hu/cikkek/Parall_of_the_Acc_Branch_and_Bound_Alg_of_Proc_Synth_Appl_in_Total_Flowsh_Synth.pdf
http://dcs.vein.hu/cikkek/Parall_of_the_Acc_Branch_and_Bound_Alg_of_Proc_Synth_Appl_in_Total_Flowsh_Synth.pdf

133

Appendix A. Process-Network Synthesis (PNS)

In a process system, raw materials are consumed through various transformations

(e.g., chemical, physical, and biological) to desired products. Vessels where these

transformations take place are called operating units of the process. A given set of

operating units with likely interconnections can be portrayed as a network.

The desired products can also be manufactured via some sub-networks of the above-

mentioned network. Thus, a given network may give rise to a variety of processes, or

process networks, producing the desired products, and each of such process networks

corresponds to a sub-network, that can be considered regarded as its structure. Energy and

raw material consumption strongly depend on the selection of a process structure; thus, the

optimal design of such a process structure, i.e., the process-network synthesis (PNS), or

process synthesis in short, has both environmental and economic implications [1].

A number of methods has been developed for process synthesis [1]. These methods

can be classified according to whether they are based on heuristics or algorithms, i.e.,

mathematical programming approaches. The majority, if not all, of these methods,

however, may not be sufficiently effective for PNS of a realistic, or industrial scale, process

because of its combinatorial complexity arising from the involvement of a large number of

interconnected loops [1]. To cope with this, an innovative approach based on P-graphs

(process graphs), which are unique, mathematically rigorous bipartite graphs, has been

134

proposed to facilitate the process network synthesis [2]. The P-graphs are capable of

capturing not only the syntactic but also semantic contents of a process network.

Subsequently, an axiom system underlying the P-graph framework is constructed to define

the combinatorial feasible process-network structures. The analysis and optimization of

properties of such structures are performed by a set of efficient combinatorial algorithms:

MSG [3], SSG [3], and ABB [4,5].

References

1 Friedler, F., Fan, L.T., Imreh, B.: Process Network Synthesis: Problem Definition,

Networks, 28, 119 – 124 (1998)

2 Minoux, M.: Networks synthesis and optimum network design problems: Models,

solution methods and applications, Networks, 19, 313 – 360 (1989)

3 Friedler, F., Tarján, K., Huang, Y.W., Fan, L.T.: Graph-theoretic approach to process

synthesis: axioms and theorems, Chem. Engng. Sci., 47, 1972 – 1988 (1992)

4 Friedler, F., Tarján, K., Huang, Y.W., Fan, L.T., Combinatorial Algorithms for Process

Synthesis, Computers Chem. Engng., 16, S313 – 320 (1992)

5 Friedler, F. Varga, J.B., Feher, E., Fan, L.T.: Combinatorially Accelerated Branch-and-

Bound Method for Solving the MIP Model of Process Network Synthesis. In: Floudas,

C.A., Pardalos, P.M. (eds.) Global Optimization, Computational Methods and

Applications, State of the Art, pp. 609-626. Kluwer Academic Publishers, Dordrecht,

Netherlands (1996)

135

Appendix B. Process Graph (P-graph)

 The mathematical definition of a P-graph and a process structure represented by it are

elaborated below [1].

 Finite set , containing materials, and finite set , containing operating units, are

given such that

 (B.1)

 Thus, a P-graph can be defined to be a pair, (,), as follows: the vertices of the

graph are the elements of

 (B.2)

 Those belonging to set are of the -type vertices, and those belonging to set

are of -type vertices.

 The arcs of the graph are the elements of

 (B.3)

where

136

 (B.4)

and

 (B.5)

In these expressions, designates an -type vertex; , an -type vertex; a set of

 -type vertices from which arcs are directed into the -type vertices; and, a set of -

type vertices to which arcs are directed out of the -type vertices. The arcs between the

nodes signifiy that a material is input to or ouput from an operating unit. Hence, P-graphs

are bipartite graphs as mentioned earlier.

 Also, the P-graph representation of a process network should observe the constrains

imposed by the process itself [2]. For instance, the maximum available raw materials may

be constrained, and the rate of manufacturing of each product must be specified. An

operating unit produces its output materials if all its input materials are supplied. The input

materials are consumed according to the rates given on the arcs leading to the respective

operating unit. The input and output materials, and the aforementioned rates collectively

define formally an operating unit. Moreover, an operating unit may have upper and lower

capacities. At any material node, the sum of the outgoing flows is equal to the sum of the

incoming flows, i.e., the mass balance holds.

 For illustration let be a set of materials, , and be a set of

operating units given by . It is

not difficult to validate that sets and satisfies constraint (B.1), i.e., is a P-graph,

as depicted in Figure B.1.

137

Figure B.1. P-graph (M,O) where A,B,C,D,E, and F are materials, and 1,2, and 3 are

the operating units: represents raw materials or input elements of the

whole process; symbolizes intermediate-materials or elements,

emerging between the operating units; and represents products or

outputs of the entire process.

 Solution Structures

138

The materials and operating units in a feasible process structure must always

conform to certain combinatorial properties. For example, a structure containing no linkage

between a raw material and a final product is unlikely to represent any practical process.

Hence, it is of vital importance to identify the general combinatorial properties to which a

structure must conform. More important, the properties identified should be satisfied by the

structure of any feasible solution of the synthesis problem. In other words, those and only

those structures satisfying these properties can be feasible structures of a process: no other

structures or constraints need to be considered in synthesizing the process.

A set of axioms has been constructed to express necessary and sufficient

combinatorial properties to which a feasible process structure should conform. Next, each

axiom is stated:

 (S1) Every final product is represented in the graph.

 (S2) A vertex of the M-type has no input if and only if it represents a raw material.

 (S3) Every vertex of the O-type represents an operating unit defined in the

synthesis problem.

 (S4) Every vertex of the O-type has at least one path leading to a vertex of the M-

type representing a final product

 (S5) If a vertex of the M-type belongs to the graph, it must be an input to or output

from at least one vertex of the O-type in the graph.

If a P-graph of a given synthesis problem, ()
27

, satisfies theses axioms, it is

defined to be a solution-structure of the problem. For example, Figure B.2 depicts an

example of two solution-structures for synthesis problem () with

27 where is the set of product, is the set of raw materials, and O the set of operating units.

139

and

Note that a solution-structure does not necessarily contain all the components

defined in the set of materials, e.g., ; neither does it necessarily utilize all the

components specified in the set of raw materials, e.g., .

Since the final product, , is presented as an -type vertex in both Figure B.2 (a)

and (b), axiom (S1) is satisfied by the solution-structures depicted in these figures. Axiom

(S2) is satisfied in that vertex in Figure B.2 (a) and vertices and in Figure B.2 (b) are

the only vertices without an input; they represent raw materials. Figure B.2 (a) contains two

operating units, and , and Figure B.2 (b) contains three operating

units , , and ; all these operating units are defined in

the synthesis problem, thereby satisfying axiom (S3). In conformity with axiom (S4), every

vertex of the type -type in either Figure B.2 (a) or (b) does have at least one path leading

to vertex representing the final product. For example, the path in Figure B.2 (a),

comprising three arcs, namely, , and ,

links vertex , representing an operating unit, to vertex which is the final

product. Axiom (S5) is satisfied by virtue of the fact that every vertex of the -type

belonging to the graph of either Figure B.2 (a) or (b) is an input to or output from at least

one vertex of the -type in the respective graph.

Thus all axioms are satisfied by the structures in Figure B.2 (a) or (b). As

counterexample, Figure B.3 illustrates a P-graph that is not a solution structure of synthesis

problem (, ,), because axioms (S1), (S2), (S4), and (S5) are not satisfied.

140

(a)

(b)

Figure B.2 Two solution-structures for the synthesis problem (P1, R1, O1).

141

Figure B.3. P-graph that is not a solution-structure for synthesis problem (P1, R1, O1).

 Algorithms MSG, SSG, and ABB

Both the P-graph representation of a process network and the set of five axioms for

solution structures, i.e., combinatorial feasible networks, render it possible to fashion the

three mathematically rigorous algorithms: MSG, SSG, and ABB. The algorithm MSG

(Maximal-Structure Generation) generates the maximal structure (super-structure) of a

process synthesis network. Also, the algorithm SSG (Solution-Structure Generation)

generates the set of feasible process structures from the maximal structure, which leads to

the algorithm ABB (Accelerated Branch and Bound) for computing the n-best optimal

solution structure [1,3,4,5].

142

References

1 Friedler, F., Tarján, K., Huang, Y.W., Fan, L.T.: Graph-theoretic approach to process

synthesis: axioms and theorems, Chem. Engng. Sci., 47, 1972 – 1988 (1992)

2 Friedler, F., Fan, L.T., Imreh, B.: Process Network Synthesis: Problem Definition,

Networks, 28, 119 – 124 (1998)

3 Friedler, F., Tarján, K., Huang, Y.W. and Fan, L.T.: Combinatorial Algorithms for

Process Synthesis. Computers Chem. Engng. 16, S313 – 320 (1992)

4 Friedler, F., Varga, J.B., Fan, L.T.: Decision-mapping for design and synthesis of

chemical processes: applications to reactor-network synthesis. In: Biegler, L., Doherty,

M. (eds.) AIChE Symposium Series, vol. 91, pp. 246-250. American Institute of

Chemical Engineers, New York (1995)

5 Friedler, F. Varga, J.B., Feher, E., Fan, L.T.: Combinatorially Accelerated Branch-and-

Bound Method for Solving the MIP Model of Process Network Synthesis. In: Floudas,

C.A., Pardalos, P.M. (eds.) Global Optimization, Computational Methods and

Applications, State of the Art, pp. 609-626. Kluwer Academic Publishers, Dordrecht,

Netherlands (1996)

http://dcs.vein.hu/cikkek/Proc_Netw_Synth_Probl_Def.pdf
http://dcs.vein.hu/cikkek/Proc_Netw_Synth_Probl_Def.pdf

143

Appendix C. Short Summary of Pidgin Algol

Pidgin Algol is a high-level language whose purpose is to describe algorithms for

publication and mathematical examination [1,2]. This language uses traditional

mathematical and programming language constructs, such as expressions, conditions,

statements, and procedures. It does not have a fixed set of data types.

Statements

variable≔ expression;

if condition then statement else statement;

while condition do statement;

repeat statement until condition;

for variable≔initial-value step step-size until final-value do statement;

for all do statement;

label:statement;

goto label;

begin

 statement;

 statement;

…

 statement;

end;

procedure name (list of parameters): statement

return;

return expression;

comment comment;

any othe miscelaneous statements

144

References

1 Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading, MA (1974)

2 Papadimitriou, C.H.: Combinatorial Optimization: Algorithms and Complexity,

Prentice-Hall, Englewood Cliffs, NJ (1982)

145

Appendix D. Markov Chains

In probability theory, a Markov chain or Markov model is a special type of discrete

stochastic process in which the probability of an event occurring depends on the

immediately preceding one (i.e., the next event depends only on the current state and not on

the sequence of events that preceded it). This feature distinguishes Markov chains of

independent events (e.g., tossing a coin or rolling a die). Markov chains get their name after

Andrei Markov, Russian mathematician (1856 – 1922), in 1907.

 Specifying a General Markov Chain

A Markov chain is formally described as follows. Let be a

stochastic process, in discrete time, with finite or infinite state space is a Markov chain

with stationary transition probabilities if it satisfies:

For each , if is an event depending on any subset of , then,

for any states and in ,

(D.1)

For any given states and

 holds ,

(D.2)

where, Eq. D.1 is the Markov property. More generally, for each and , if (as

defined in Eq. D.1), then for any states and in :

 (D.3)

denotes transition probabilities in Eq. D.2 by

146

 (D.4)

 The Transition Matrix P

The transition matrix for a Markov chain with state space ,

where , and one-step transition probabilities is the matrix.

Note that the matrix satisfies

(D.5)

(D.6)

 Example

Example 1: The Veszprém weather (adapted from [2]). It is sometimes claimed that

the best way to predict tomorrow´s weather is simply to guess that it will be the same

tomorrow as it is today. If we assume that this is correct, then is it natural to model the

weather as a Markov chain. For the sake of simplicity, we assume the there are five kinds

of weather: snowy, cloudy, rainy, sunny, and windy. Then the weather forms a Markov

chain with state space (with , ,

 , , and) and the transition matrix
28

.

28

 Transition probabilities, , are just hypothetical and used for illustration.

147

 Graphical Description

A useful way to picture a Markov chain is its so-called transition graph. The

transition graph consists of nodes representing the states of the Markov chain, and arrows

between the nodes, representing the transition probabilities. This is explained by showing

the transition graph of the example considered above (see Figure D.1).

S1

S3

S2

S5

S4

0.25

0.05

0.045

0.155

0.5

0.650.125

0.025

0.150.05

0.125

0.45

0.025

0.15

0.2

0.75

0.025

0.1

0.1

0.025

0.2

0.05

0.6

0.05

0.1

Figure D.1. Transition graph for the Veszprem weather example.

148

 Absorbing Markov Chain

An Absorbing Markov chain is a type of Markov chain in which every state can

reach an absorbing state. An absorbing state is a state that, once entered, cannot be left [1].

 Specifying an Absorbing Markov Chain

An Absorbing Markov chain is formally described in Eqs. D.1 – D.4, with the

particularity that:

a. A state is called absorbing if it is impossible to leaving it (i.e.,

)

b. A Markov is absorbing if it has at least one absorbing state and if from every

state it is possible reach an absorbing state (not necessarily in one step).

c. In an absorbing Markov chain, a state which is not absorbing is called

transient.

 Example

Example 2: The Drunkard's Walk: A man walks along a four-block stretch of Park

Avenue. If he is at corner 1, 2, or 3, then he walks to the left or right with equal probability.

He continues until he reaches corner 4, which is a bar, or corner 0, which is his home. If he

reaches either home or the bar, he stays there. Then each man’s decision, i.e., walk to the

left or walk to the right, on each corner forms a Markov chain with state space

 (with , , ,

 , and) and the transition matrix (see Figure D.2).

149

S1 S3S2 S5S4

1.0

0.5

0.5

0.5

0.50.5

0.5

1.0

Figure D.2. Transition graph for the Drunkard’s Walk example.

 The Canonical Form of a transition matrix P representing an Absorbing

Markov Chain

By permuting the states of an absorbing chain so that the transient states come first,

we can write the transition matrix of the absorbing chain as

 (D.7)

The matrix describes the transition probabilities between transient states, the

transition probabilities from transient to absorbing states (should not be the matrix of all

zeros), is the identity matrix since the chain stays at absorbing states, and, is the zero

matrix [3].

The fundamental matrix, , for an absorbing Markov chain is defined as follows:

 (D.8)

Where, is the identity matrix corresponding in size to matrix , so that the

 exists.

For the Drunkard's Walk example, using gives

150

The fundamental matrix, , gives the expected number of visits to each state before

absorption occurs. For example, if the man is currently in , i.e., , the first row of

F says that he expects to have 1.5 time periods on average in this state and 1.5 + 1 + 0.5 = 3

time periods in the various transient states before reaching the bar or home.

To see why this is true, consider an absorbing Markov chain currently in state . The

expected number of times that the chain visits state at this step is 1 for and 0 for all other

states. The expected number of times that the chain visits state at the next state is given by

the element row , column of the transition matrix . The expected number of times the

chain visits state two steps from now is given by the corresponding entry in the matrix .

The expected number of visits in all steps is given by

 (D.9)

To find out whether this infinite sum is the same as

 , (D.10)

multiply Eq. D.9 by Eq. D.10, thus

 , (D.11)

which verifies our result.

 It can be shown that

151

 ,

(D.12)

where is the identity matrix. As , , the zero matrix, and

 ,
(D.13)

So we see the gives the probability that if the systems was originally in a non-

absorbing state, it ends up in one of the absorbing states.Finally, use the fundamental

matrix along with matrix (see Eq. D.7) to get the product .

The product matrix gives the probability that if the system was originally in a

particular non-absorbing state; it ended up in the absorbing state. For example, the

probability is 0.75 that if the man was originally in , i.e., , he ended up at home.

 The Power Method

However the method introduced before might be inefficient for numerically solving

large markov chains, including absorbing ones [5]. To deal with that we compute

 (the

stable distribution or a steady state of that satisfies

) by means of

an iterative method called the power method. More specifically, given a (stochastic)

transition matrix , and an initial vector

, we compute iteratively

=

 until the difference (in some norm) between

 and

 is small enough (see

Figure D.3).

152

Figure D.3. Algorithm PowerMethod written in Pidgin Algol (see Appendix C, adapted

from [4]).

For instance, suppose Tables D.1 – D.3 describes the initial location of man in

Example 2. In particular, each table shows the initial probability vector,

, for each case

where the man starts walking either on , , and ; respectively.

Table D.1. Initial probability vector, xn
(0)

, for case where the man starts walking on

Corner 1.

Corner State Proportion (100%)

0 (absorbing) 0

1 1

2

3

4

153

Table D.2. Initial probability vector, xn
(0)

, for case where the man starts walking on

Corner 2.

Corner State Proportion (100%)

0 (absorbing) 0

1 0

2

3

4

Table D.3. Initial probability vector, xn
(0)

, for case where the man starts walking on

Corner 3.

Corner State Proportion (100%)

0 (absorbing) 0

1 0

2

3

4

By employing the power method algorithm, presented in Figure D.3, we can

compute the probability distribution of the man in the different corners after k iterations as

illustrated in Tables D.4 – D.6. Note that the results presented in Tables D.4 – D.6 are

equivalent to those computed by employing the fundamental matrix along with matrix

(see Eq. D.7) to get the product .

Table D.4. Probability distribution, after 54 iterations, given the initial probability

vector, xn
(0)

, [0.0, 1.0, 0.0, 0.0, 0,0]. That is, the man starts walking on Corner 1.

Iteration, Corner 0 Corner 1 Corner 2 Corner 3 Corner 4

1 0,5 0 0,5 0 0

2 0,5 0,25 0 0,25 0

… … … … … …

13 0,74609375 0 0,0078125 0 0,24609375

154

… … … … … …

25 0,74993896 0 0,00012207 0 0,24993896

… … … … … …

33 0,74999619 0 0 0 0,24999619

… … … … … …

54 0,75 0 0 0 0,25

Table D.5. Probability distribution, after 54 iterations, given the initial probability

vector, xn
(0)

, [0.0, 0.0, 1.0, 0.0, 0,0]. That is, the man starts walking on Corner 2.

Iteration, Corner 0 Corner 1 Corner 2 Corner 3 Corner 4

1 0 0 0,5 0 0,5

2 0 0,25 0 0,25 0,5

… … … … … …

13 0,24609375 0 0,0078125 0 0,74609375

… … … … … …

25 0,24993896 0 0,00012207 0 0,74993896

… … … … … …

33 0,24999619 0 0 0 0,74999619

… … … … … …

54 0,25 0 0 0 0,75

Table D.6. Probability distribution, after 54 iterations, given the initial probability

vector, xn
(0)

, [0.0, 0.0, 0.0, 1.0, 0,0]. That is, the man starts walking on Corner 3.

Iteration, Corner 0 Corner 1 Corner 2 Corner 3 Corner 4

1 0 0 0,5 0 0,5

2 0 0,25 0 0,25 0,5

… … … … … …

13 0,24609375 0 0,0078125 0 0,74609375

… … … … … …

25 0,24993896 0 0,00012207 0 0,74993896

… … … … … …

155

33 0,24999619 0 0 0 0,74999619

… … … … … …

54 0,25 0 0 0 0,75

References

1 Grinstead, C.M., Snell, J.L. Markov Chains. Introduction to Probability (pp. 405–

470). American Mathematical Society. Providence, RI, USA (1997).

2 Häggström, O.: Finite Markov Chains and Algorithmic Applications. Part

of London Mathematical Society Student Texts, p. 16, UK (2002)

3 Lial, M.L., Greenwell, R.N., Ritchey, N.P.: Finite Mathematics (10th edition).

Pearson. Upper Saddle River, NJ, USA (2011).

4 Nemirovsky, D.: Web graph and PageRank algorithm. In: Jain, R. K. (ed.) Internet

Search Engines: An Introduction. ICFAI University Press, India (2007)

5 Panju, M.: Iterative Methods for Computing Eigenvalues and Eigenvectors, The

Waterloo Mathematics Review, 1, 9 – 18 (2011)

http://en.wikipedia.org/wiki/J._Laurie_Snell
http://www.cambridge.org/us/academic/subjects/statistics-probability/applied-probability-and-stochastic-networks/finite-markov-chains-and-algorithmic-applications#bookPeople
http://www.cambridge.org/us/academic/subjects/mathematics/series/london-mathematical-society-student-texts
http://www.chegg.com/textbooks/margaret-l-lial-author
http://www.chegg.com/textbooks/raymond-n-greenwell-author
http://www.chegg.com/textbooks/nathan-p-ritchey-author
http://arxiv.org/find/math/1/au:+Panju_M/0/1/0/all/0/1

156

Appendix E. Series and Parallel Systems Engineering

It is believed that the Second World War propitiated the development of the study

of reliability because the equipment reliability problems [1]. One of the first engineers to

dig into reliability research was the German rocket engineer Wernher Von Braun (1912 –

1977). Von Braun and his collaborators, during the Second World War, adopted ideas

stemming from mechanical reliability to diagnose and fix their V-1 combat rocket, which

was infested with reliability problems. Von Braun assumed that if the weakest component

of the rocket is fixed, then the rocket would not fail. However, when Von Braun and his

colleagues build the least reliable component part more reliable, they found out that the V-1

was still 100% unreliable [4]. Nevertheless, Erich Pieruschka, a German mathematician

(1914 – 2004), working with Von Braun on a different project, was invited to express his

thoughts about this issue. Pieruschka pointed out that the rocket’s reliability was equal to

the product of the reliability of its components and not simply to the reliability of the

weakest component. This idea was the basis of the modern predictive reliability model [1].

As result, this theory formed the basis for what later became known as Lusser’s law after

Robert Lusser, German engineer (1889 – 1969), in 1953.

 Some Useful Definitions

Before discussing the probabilistic reasoning behind reliability block formulas for

series and parallel systems and presenting examples of practical ways of using them, some

notations and definitions need to be introduced [4].

 The Distribution Function

The distribution function is also often called cumulative distribution function

(abbreviated as CDF). Formally, a cumulative distribution function is defined as follows, if

 is a random variable, its distribution function is a function such that

157

 (E.1)

where is the probability that is less than or equal to .

 Continuous Random Variable

A continuous random variable is a random variable whose cumulative distribution

function is a continuous function. The following is a formal definition of a continuous

random variable. A random variable is said to be absolutely continuous if the probability

that it assumes a value in a given integral can be expressed as an integral:

(E.2)

Where the integral function Eq. E.3 is called the probability density function of .

 (E.3)

As consequence of this definition, the cumulative distribution function of is

(E.4)

 Properties of Probability Density Function

Probability density functions (usually called PDF) are characterized by two

properties. Also, any function that satisfies these two properties is a legitimate PDF. The

following proposition formally describes the two properties.

Proposition: Let be a continuous random variable. Its probability density function, i.e.,

 , satisfies the following two properties:

 for any (E.5)

158

(E.6)

Eq. E.5, first property, states that for a function to be a PDF, it must be nonnegative.

This makes intuitive sense since probabilities are always nonnegative numbers. Also, Eq.

E.6, second property states that the area between and the -axis must be 1, or that all

probabilities must integrate to 1.

Proof: By Eq. E.5, probabilities cannot be negative; therefore Eq. E.2 can be rewritten as

(E.7)

for any interval . But the above integral can be non-negative for all intervals

only if itself is non-negative, i.e., if for all . This proves property 1 above (non-

negativity). Furthermore, the probability of a sure thing must be equal to 1. Since

 is a sure thing [2], then

(E.8)

which proves Eq. E.6.

 Exponential Distribution

The exponential distribution is defined as follows. Let be a continuous random

variable. Let its support, i.e., the set of values that X can take, be the set of positive real

numbers, . Let . We say that has an exponential distribution with parameter

 (called the rate parameter) if its probability density function is

159

(E.9)

A random variable having an exponential distribution is also called an exponential random

variable. The following is a proof that is a probability density function.

Proof: Proving Eq. E.5 is obvious. We need to prove Eq. E.6. This is proved as follows:

 Cumulative Distribution Function of the Exponential Distribution

The distribution function of an exponential random variable, , is:

(E.10)

Proof: if , then:

 (E.11)

Because cannot take on negative values. If , then:

160

It follows that, by the complement rule [5], . Thus,

 (E.12)

 Series and Parallel Systems: Basic Assumptions

Based upon the previous definitions, other assumptions need to be stated. First, all

the system sub-component service life, i.e., , is a random variable exponentially

distributed during the observed service life, .

 (E.13)

Since is exponential distributed, and t, cannot take negative values; from Eqs. E.10 and

E.13, the cumulative distribution function can be written as

 (E.14)

where is the failure rate in unit time (i.e.,). Consequently, from Eq. E.9, the

probability function can be defined as

 (E.15)

Also, for every system sub-component, , failure rate, FR, is constant. That is,

 (E.16)

161

Since represents an interval of time, , where a failure can occur, the reliability

of any system sub-component, gives rise to

 = , (E.17)

which in turn implies that

(E.18)

Since all system sub-component lives are exponentially distributed. That is, sub-

component FR is time independent, we have

 = (E.19)

Subsequently, from Eqs. E.17 and E.19, gives rise to the definition of the failure rate

of the system,

 (E.20)

which in turn implies the following

162

(E.21)

Consequently, from Eqs. E.20 and E.21, the definition of mean time between

failures29, MTBF, can be derived as follows

 (E.22)

Or

(E.23)

 Reliability of Series Systems

Graphically, a series system can be seen as a sequential arrangement of components

which are simply placed one after another (see Figure E.1). A series system is a

configuration such that, if any one of the system sub-components fails, the entire system

fails. Conceptually, a series system is one that is as weak as its weakest link.

Figure E.1. Representation of a Series Systems of “n” components.

Mathematically, the reliability of a series system, i.e., Lusser’s Law, is defined as

follows: “The reliability of a series system, i.e., , is equal to the product of the reliability

29

 MTBF is a statistical mean value for error-free operation of a system sub-component.

163

of its component subsystems, ie., , where , if their failure modes are known to

be statistically independent.” Eq. E.24 describes the Lusser’s Law.

(E.24)

A modern formulation of the series system reliability can be expressed as

(E.25)

 Example

Four subsystems are reliability-wise in series and make up a system. Subsystem 1

has a reliability of , subsystem 2 has a reliability of , subsystem 3 has a

reliability of , and subsystem 4 has a reliability of for a mission of 100 hours.

What is the overall reliability of the system for a 100-hour mission? What is the failure rate,

FR, of the systems for a 100-hour mission?

Figure E.2. Graphical representation for the given example.

Since the reliabilities of the subsystems are specified for 100 hours, the reliability of the

system for a 100-hour mission is (Eq. E.25):

The FR of the system for a 100-hour mission is (Eq. E.21):

164

Since the system FR is , then the system MTBF (Eq. E.22) is

 Reliability of Parallel Systems

Graphically, a parallel system can be seen as an arrangement of components such

that, s long as not all the system components fail, the entire system works (see Figure E.3).

165

Figure E.3. Representation of a Parallel Systems of “n” components.

Mathematically, the reliability of a parallel system is defined in Eq. E.26.

 (E.26)

Rearranging terms in Eq. E.26, another formulation of the parallel system reliability

can be obtained

(E.27)

However, behind Eq. E.27 lies a whole body of probabilistic knowledge. To

illustrate, we analyze a simple parallel system composed of two sub-components. The

system can survive observed service life, , if and only if the first component , or the

second component or both survive (see Figure E.4). First recall from probability theory

that,

 . (E.28)

166

From Eqs. E.17, E.19, E.20, and E.28, we can formally define the reliability of a

parallel system can determined as follows. The reliability of a parallel system can be

expressed as:

 (E.29)

where, represents the probability of two independent events that occur in

sequence. Therefore, Eq. E.29 can be reformulated as follows

 (E.30)

From Eq. E.28, it finally implies that

 (E.31)

Subsequently, Eq. E.31 can be stated as by replacing terms (see Eq. E.17)

 (E.32)

 (E.33)

resulting in

 (E.34)

Consequently, this approach can be easily extended to n number of parallel system

sub-components.

167

(E.35)

Using instead, the probabilistic formulation of , Eq. E.34, we can obtain

system MTBF () for an arbitrary observed service life, . For the hypothetical example:

(E.36)

(E.37)

(E.38)

Finally, one can calculate system FR, , from Eqs. E.15 and E.25 as indicated

resulting in

168

 Example

Let a parallel system be composed of two sub-components, each with a

and observed service life hours, only one is needed for systems success. Then,

total system reliability, by both calculations, is:

Because

169

Mean time between failures in hours:

References

1 Bajenescu, T.-M.I., Bazu, M.I.: Component Reliability for Electronic Systems.

Artech House Publishers (2009)

2 Savage, L.J.: The foundations of statistics. Wiley & Sons (1954)

3 Storey, N.: Safety-Critical Computer Systems. Addison-Wesley Longman (1996)

4 Taboga, M.: Lectures on probability theory and mathematical statistics (2
nd

Edition). CreateSpace Independent Publishing Platform (2012)

5 Villemeur, A.: Reliability, Availability, Maitainability and Safety Assesment:

Volume 1 - Methods and Techniques. Wiley & Sons (1992)

6 Yates, D.S., Moore, D.S., Starnes, D.S.:The Practice of Statistics (2nd ed.). New

York: Freeman. (2003)

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Titu-Marius%20I.%20Bajenescu&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Marius%20I.%20Bazu&ie=UTF8&search-alias=books&sort=relevancerank
http://bcs.whfreeman.com/yates2e/
http://en.wikipedia.org/wiki/W._H._Freeman_and_Company

