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Nomenclature 

The most important notations and acronyms used throughout this Dissertation are listed 

below. 

 Mathematical Notation 

         defines the extent of achievement of a goal by a role 

    the difference between the production and consumption rate 

of the     element in    by the     element in    

    cardinality, or size, of set   

       the set of agents, which can be either human or artificial 

(hardware or software) entities 

        defines the set of capabilities required to play a role 

     defines the cost of an agent 

       the set of capabilities, which define the percepts/actions the 

agents possess at their disposal. Capabilities can be soft (i.e., 

algorithms or plans) or hard (i.e., hardware related actions). 

    the cost of the     element in    

     the proportional cost of the     element in    

       the subset of all the potential assignments of agents to play 

roles to achieve goals 

             contains the best possible assignments            for the 

given sets       ,       , and        

       the set of goals of the organization, i.e., overall functions of 

the organization 

  infinite 

  number of iterations 

  large number, i.e.,     

    the lower bound of the     element in    
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    the lower bound of the     element in    

    the lower bound of the     element in    

  the set of entities 

  total number of states in   

    defines the quality of a proposed set of assignments, i.e.,     

computes the goodness of the organization based on        

  empty set 

  the set of activities 

   the     element in   

       the multiagent system’s organization 

          defines the quality of an agent´s capability 

          defines how well an agent can play a role to achieve a goal 

  denotes power set 

  the set of products 

    the one-step transition probability is the probability of 

transitioning from one state, i.e.,  , to another, i.e.,  , in a 

single step 

   the     element in   

        absorbing markov chain 

       the set of rules that describe how        may or may not 

behave in particular situations 

         a function that assumes a role in       , thereby yielding a 

set of capabilities required to play that role 

  set of real numbers 

  the set of initially available resources 

   the     element in   

       the set of roles, i.e., positions within an organization, whose 

behavior is expected to achieve a particular goal or set of 

goals 

    the upper bound of the     element in    
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    the upper bound of the     element in    

    the upper bound of the     element in    

       the environment where agents can perform their actions upon 

it. 

  state space of         

   the set of pairs representing the transition from state   to state 

        with probability           

   the set of pairs representing the transition from state   to state 

        with probability           

   the set of pairs representing the transition from state   to state 

j with probability     

  
   

 probability vector of         

    continuous variable expressing the size of capacity of the     

element in    

    binary variable, i.e.,          , expressing the absence (0) 

or existence (1) of the     element in    

  the objective value 

 Acronyms 

    optimal solution structure generator algorithm 

    building evacuation problem 

          algorithm for transforming a building evacuation problem 

(   ) to the corresponding time-expanded process-network 

synthesis problem (    ) 

    cumulative density function 

     cooperative robotic search team 

   failure rate 

   linear programming 

     mixed integer linear programming  
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    maximum structure generator algorithm 

    probability distribution function 

    process network synthesis problem 

     time-expanded process-network synthesis problem 

      organization model for adaptive computational systems 

framework 

       organization-based multi-agent software engineering 

methodology framework 

    structure generator algorithm 

    unified modeling language 
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Abstract 

This work is motivated by our deep conviction about the role of optimization models in 

real world problems. To this extent, this dissertation presents the work carried out in two 

seemingly unrelated domains: building-evacuation-route planning, and modeling organization-

based multiagent systems. Both domains are seen from a wider perspective as instances of 

optimization models, where the common outcome is concerned with the minimization or 

maximization of a certain function, possibly under constraints. 

 

With regards to the building-evacuation-route planning problem, a method and software 

for optimal building-evacuation-route planning are proposed in terms of identifying evacuation 

routes and scheduling of evacuees on each route. First, the building-evacuation routes are 

represented by a P-graph, which gives rise to a time-expanded process-network synthesis (    ) 

problem that can be algorithmically solved according to the P-graph framework; each location 

and passage in the building are given by a set of attributes to be taken into account in the 

evacuation-route planning. The evacuation time is calculated as a minimum cost of the 

corresponding     . In addition to the globally optimal solution, the P-graph framework 

provides the n-best sub-optimal solutions. The validity of the proposed method is illustrated by 

several examples. 

 

With respect to the modeling of organization-based multiagent systems problem, at the 

outset, the design of organization-based multiagent systems is proposed according to the 

framework of Organization Model for Adaptive Complex Systems (     ). Subsequently, this 

design model is transformed into a process-network model, i.e., P-graph. Eventually, the 

resultant process-network model in conjunction with the P-graph-based methodology give rise 

to: (i) the maximal structure of the process network, comprising all the combinatorially feasible 

structures, i.e.,      -based design configurations, capable of yielding the specified products 

from the specified raw material; (ii) every combinatorially feasible structure of the process of 

interest; and (iii) the optimal structure of the network, i.e., the optimal      -based design 

configuration. Finally, in light of the tenet of a modeling-transformation-evaluation paradigm, an 
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appraisal is made of the feasibility as well as the flexibility and cost of the optimal      -based 

design configuration obtained. 
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Resumen 

Este trabajo está motivado por nuestra profunda convicción sobre el papel de los modelos 

de optimización en los problemas del mundo real. En este sentido, esta disertación presenta la 

labor llevada a cabo en dos dominios aparentemente no relacionados: planeación de rutas de 

evacuación en edificios, y modelados de sistemas multiagente basados en organizaciones. 

Ambos dominios se pueden ver desde una perspectiva más amplia como ejemplos de modelos de 

optimización, en el que el resultado común tiene que ver con la minimización o maximización de 

una función determinada, posiblemente bajo restricciones.  

 

En cuanto al problema de planeación de rutas de evacuación en edificios, se propone un 

método y un software para la planeación de rutas de evacuación en edificios en términos de 

identificar las rutas de evacuación y la programación de los evacuados en cada ruta. En primer 

lugar, las rutas de evacuación del edificio se representan mediante P-graph, lo que da lugar a un 

problema de síntesis de redes de procesos de tiempo extendido (    ) que se puede resolver 

algorítmicamente de acuerdo con P-graph; cada lugar y espacio en el edificio son definidos por 

un conjunto de atributos que deben tenerse en cuenta en la planeación de de las rutas de 

evacuación. El tiempo de evacuación se calcula como un coste mínimo de correspondiente 

    . Además de la solución óptima general, P-graph proporciona las n-mejores soluciones sub-

óptimas. La validez del método propuesto se ilustra con varios ejemplos. 

  

Con respecto al problema de modelado de  sistemas multiagente basados en 

organizaciones, en principio, se propone el diseño de sistemas multiagente basados en 

organizaciones de acuerdo con modelo Organization Model for Adaptive Complex Systems 

(     ). Posteriormente, este modelo de diseño se transforma en un modelo de redes de 

procesos, es decir, P-graph. Finalmente, el modelo de redes de procesos resultante en conjunción 

con la metodología P-graph de lugar a: (i) la estructura máxima de la red de proceso, que 

comprende todas las estructuras combinatoria viables, es decir, configuraciones de diseño 

basados en      , capaces de obtener los productos especificados a partir de la materia prima 

especificada; (ii) toda estructura combinatoria posible del proceso de interés; y (iii) la estructura 
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óptima de la red, es decir, la configuración de diseño óptimo basado en      . Por último, a la 

luz del principio de un paradigma de modelado-transformación-evaluación, una evaluación se 

hace de la viabilidad, así como la flexibilidad y el coste de la configuración de diseño óptimo 

obtenido basado en      . 
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Összefoglaló 

Ezt a munkát az a mély meggyőződés motiválja, hogy az optimalizálási modellek 

elősegítik gyakorlatban felmerülő problémák megoldását. Ennek érdekében ez az értekezés két, 

egymástól látszólag független területen – jelesül épület-kiürítési útvonalak tervezése, illetve 

szervezeti alapú, multiágens rendszerek modellezése terén - elvégzett munkát mutat be. Mindkét 

területet tágabb perspektívából optimalizálási modellek eseteiként fogjuk fel, ahol a közös 

eredmény egy bizonyos függvény minimalizálásával vagy maximalizálásával jön létre, esetleg 

korlátok között.  

 

Ami az épület-kiürítési útvonalak tervezésének problémáját illeti, kidolgoztunk egy 

módszert és egy szoftvert optimális épület-kiürítési útvonalak tervezésére: az evakuálási 

útvonalak azonosítása és az egyes útvonalakon evakuálandók ütemezése tekintetében. Először is, 

az épület-kiürítési útvonalakat egy P-gráf representálja: ez egy időben elnyújtott folyamat-

hálózati szintézis (    ) problémáját veti fel, amely algoritmikusan megoldható a P-gráf keret 

szerint; az épület minden egyes helyét és a folyosóját egy sor jellemző határozza meg, amelyeket 

figyelembe kell venni a kiürítési útvonal tervezésében. A kiürítési időt a megfelelő      

minimális költségeként kalkuláljuk. A globálisan optimális megoldás mellett a P-gráf keret 

megadja az n-edik legjobb szuboptimális megoldásokat is. A módszer érvényességét több 

példával szemléltetjük.  

 

Ami a szervezeti alapú multiágens rendszerek modellezésének problémáját illeti, 

kezdetben szervezeti alapú multiágens rendszerek megtervezését javasoljuk a Komplex Adaptív 

Rendszerek Szervezeti Modelljének (     ) kerete szerint. Ezt követően ezt a tervezési 

modellt átalakítjuk folyamat-hálózati modellé, azaz a P-gráffá. Majd a kapott folyamat-hálózati 

modell a P-gráf alapú metodológiával együtt létrehozza: (i) a folyamat-hálózat maximális 

struktúráját, amely magába foglalja az összes kombinatorikusan megvalósítható struktúrát, azaz 

      alapú tervezési konfigurációt, amely képes produkálni a meghatározott termékeket a 

meghatározott alapanyagból; (ii) az érintett folyamat valamennyi kombinatorikusan 

megvalósítható struktúráját; és (iii) a hálózat optimális szerkezetét, azaz az optimális      -
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alapú tervezési konfigurációt. Végül egy modellezés-átalakítási-értékelési paradigma tételének 

fényében, felmérjük a kapott optimális       alapú tervezési konfiguráció 

megvalósíthatóságát, valamint rugalmasságát és  költségét. 
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Chapter 1. Introduction 

This section presents the work done in two seemingly unrelated research domains: 

building-evacuation-route planning, and modeling organization-based multiagent systems. 

However, my interest in these research domains derives from the same source; that is, our 

deep conviction about the role of optimization models. Both problems can be seen from a 

wider perspective as instances of optimization models where the common outcome is 

concerned with the minimization or maximization of a certain function, possibly under 

constrains. 

 1.1 Building-Evacuation-Route Planning 

 

Route Evacuation Planning is the science of ensuring the safest and most efficient 

evacuation time of all expected residents of a building, city or region, or transportation 

carriers (e.g., train, ship, and airplane) from a treat or actual occurrence of a hazard (e.g., 

natural disasters, traffic, industrial, or nuclear accidents, fire, viral outbreak, etc.) [47]. In 

any scenario (i.e., building, city or region, or transportation carriers), a proper planning may 

imply the evaluation of a countless number of evacuation routes which is considerably 

challenging because of the combinatorial nature of the problem [97]. Naturally, towards 

this end, it is highly desirable or even essential, to have access to optimization software. 

Such software should be able not only to generate an optimal evacuation plan, but also to 

yield and evaluate every feasible evacuation plan [17,22], whenever computationally 

possible, due to its complexity [100]. 

 

In the particular case of building evacuation, the occupants’ evacuation is one of the 

most important concepts of the buildings safety. For this reason, buildings are safe if they 

are built according to local building authority regulations and codes of practice. However, it 

is not always necessary to evacuate a building during an emergency. For instance, a power 

outage does not necessarily call for an evacuation [9]. Current research efforts fall into six 
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categories1 [11,71]: level of service, mathematical models, heuristics methods, stochastic 

models, simulation tools, and multiagent systems.  

 

In this dissertation, we focus on mathematical models for generating optimal 

evacuation plans which minimize the total evacuation time. Mathematical models adopt 

flow networks algorithms to evaluate the routes (e.g., minimum cost flow, maximum flow, 

quickest path, etc.). Mathematical models rely on the category of level of service research 

for characterizing the walking speed and spacing between evacuees based upon the density 

of evacuees using a pathway or corridor [61,81,84,85,86,87,90,91,106]. 

 

Even though these evacuations planning algorithms generate optimal plans, they are 

computationally expensive with respect to the resources they can use (e.g., memory and 

processing time) [47,107]. For example, Francis, in [28,29], proposes the application of 

mathematical optimization for building evacuation by adopting Brown´s algorithm [7]. 

Then, Berlin points out the use of flow networks in building evacuation [4] followed by 

Francis et al’s works [13,60]. These works are later on extended to consider problems 

where flow networks are constrained by their capacities and solved by adopting greedy and 

polynomial algorithms [15,53,54]. Other works focus on formulating the building 

evacuation as a multi-objective problem [44,45,66,112].  

 

To overcome the computational cost of computing building-evacuation-routes-plans 

by resorting to mathematical models, heuristic models are proposed [74]2. Also, stochastic 

models are adopted to capture the overall egress process more realistically, despite the fact 

their resolution is more laborious [73,102,103,104]. In recent years, simulation methods 

have gained adepts. Simulation methods model and emulate traffic flow and assume that 

the behavior of individuals is under the influence of other. Three approaches have been 

adopted for simulating traffic flow [47]: probabilistic models [22,73], cellular automata 

                                                 
1 In most of the cases, these categories take advantage of the advances in the Geographical Information 

Systems field for accessing data or drawing graphical location-based information.  

2
 Although the do not always generate the optimal solution. 
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[3,5,19,64,80], and multiagent systems [10,62,96,110]. In [67], a list of simulation models 

and software packages for simulating pedestrian motion can be found.  

 

In this dissertation, we are to examine and propose a MILP model based upon the 

traditional discrete time dynamic network flow model [47]. This model will be explained 

next. 

 

1.1.1 Discrete Time Dynamic Network Flow Model  

A discrete time dynamic network flow model is a discrete time expansion of a static 

network flow problem, where the flow is distributed over a set of predetermined time 

periods           [47]. 

 

In [47] a definition of dynamic network flow model is introduced. Let         

be a directed network with   the set of nodes and   the set of arcs. Travel time     is given 

for each arc        ; where     is assumed to be constant. The time expansion of   over a 

time horizon   defines the dynamic network            associated with   where 

 

                        

 

and    consist of movement arcs   , where 

 

                                              

 

and the set of holdover arcs    

 

                                  

 

i.e.,  
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Figure 1. Static network   of a simple building layout (taken from [47]). 

 

To construct the dynamic network,    defined above, the following assumptions 

have been made. First, the time period   is dependent of   (the basic time unit) in which 

travel times are measured.  For instance, if we choose      on the length of the basic unit, 

i.e.,     , then specifying three times period, i.e.,    , for traversing an arc means an 

evacuee needs thirty seconds to do so. It can be noticed that, the smaller   the more 

accurately the model represents the actual flow's evolution3.  

 

Since the dynamic network has       copies of each source-node and each sink-

node, the dynamic network will have multiple sources and sinks. Therefore, in order to 

reduce the size of the dynamic network, a super-source   and a super-sink   are introduced 

to create a single source/sink network (see Figure 2). In evacuation problems,   can be 

interpreted as a common safety area; and,   the place where all evacuees are initially 

located. For every source-node, a holdover arc is created. Holdover arcs from   to source-

nodes have zero travel time and capacities are equal to initial occupancies. In the maximum 

dynamic flow problem,   is connected to all time copies of the source-nodes (e.g., node 1 in 

Figure 3). On the other hand, generally, all copies of every sink-node are connected to  ; 

hence, there is no holdover arc for sink-nodes. All connections to d have zero travel time 

and infinite flow capacities. Nevertheless, it can be noted that, dynamic network flow 

                                                 
3
 However, choosing   too small will result in undesirable size of the network. Hence, the choice of   is a 

compromise between model realism and model complexity [47]. 
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problems can always be solved as static flow problems in the expanded network. Also, the 

equivalent static problem does not require keeping arc capacities and travel times fixed 

over time, as assumed before, but these assumptions are essential for building efficient 

algorithms to solve the problem [47]. The upper bound for the number of nodes and arcs in 

discrete time dynamic network can be stated as follows. If       and       then 

       and                      are the upper bound for the number of nodes 

and arcs in    without considering super-source and super-sink, respectively [47]. Since 

arc in the path from   to any sink-node at time   are greater than  , the size of the time-

expanded network can be reduced by eliminating inessential arcs including their 

corresponding nodes (see Figure 3). 

 

 

Figure 2. Dynamic Network    of the Static Network   of Figure 1, with     

(taken from [47]). 

 

In the dynamic network flow models,        denotes the flow (e.g., the number of 

evacuees moving at time  ) that leaves node   at time   and reaches node   at time      . 

Flows from node   at time   to the same node with travel time    =1 represents the number 
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of evacuees who prefer to stay in the building component represent by node   at time   for 

at least one unit of time. This flow is denoted by        , i.e.,                     . 

 

The capacity of movement arcs                    is denoted by        where, 

without loss of generality, we can assume that  

 

                    
                 

 

The capacity of a holdover arc                  is determined by the node 

capacity      , and represents how many evacuees can stay in the node   at a given time  . 

With        as the general objective and with    as the initial number of evacuees in any 

node    , gives rise to the discrete-time dynamic network flow model for evacuation 

process. 

 

                   

 

   

 
 (1.1) 

 

subject to 

 

                          

         

       
         

 

 

 

 

             

 

 

 

(1.2) 

 

         

 

     

 

(1.3) 

 

              

 

           

     

 

(1.4) 

 

 

                

 

             

     

 

(1.5) 
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where 

                                       

 

are the nodes which are predecessors and successors of node  , respectively. 

 

In order to measure the time when evacuees reach their final destinations, so-called 

turnstile cost [13,48] is defined on each arc (see arcs (41,d), (42,d), (43,d), and (44,d) in 

Figure 3) as follows; if   is the set of sink nodes of the static network   and   is the super 

sink node of the associated dynamic network   , the (turnstile) cost of any arc            

            is defined different from   iff     and        . In this case [47], 

           . 

 

Let     denote the set of source-nodes of the static network  . Using the 

previous definition of turnstile cost, the objective function        to model the average 

time required by an evacuee to leave the network can be stated as follows [47]. 

 

       
            
 
   

      
 

(1.6) 

 

Since the denominator is constant and   depends only on the flow variables, one 

just need to define the objective function   as 

 

                     

   

 

   

 

(1.7) 
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Figure 3. Dynamic network GT of the static network G of Figure 1, with T = 4, without 

initial contents, and by deleting inessential arcs (taken from [47]). 

 

Finally, the movement of initial occupancies are modeled by using flow from   to 

each source-node. Assuming constant capacity (i.e.,                     and       

                 of each node and constant travel time between them gives rise to 

the evacuation model (LP) that minimizes the average evacuation time.  
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(1.14) 

 

 

As result, a time-expanded network, as defined in the first definition introduced in 

this section, can be evaluated as a static network and then solved by applying any minimum 

cost static network flow algorithm to obtain the solution [1,47]. 
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 1.2 Organization-Based Multiagent Systems 

 

Designing and implementing large, complex, and distributed systems by resorting to 

autonomous or semi-autonomous agents that can reorganize themselves by cooperating 

with one another represent the future of software systems [18]. Trends in the field of 

autonomous agents and multiagent systems suggest that  the explicit design and use of 

organization-based multiagent systems [76], which allow heterogeneous agents (either 

human or artificial entities) rely on well-defined roles to accomplish either individual or 

system level goals [21,114], is a promising approach to these new requirements [76]. 

  

When focusing on system’s goals, an organization of agents allows its members, 

i.e., individual agents, to work together to perform the tasks for which they are best suited. 

When emphasizing an individual agent’s goal, an organization provides the infrastructure 

that allows agents to find and carry out collaborative tasks with other entities to the mutual 

benefit. In situations where the nature of the environment makes the organization 

susceptible to individual failures, these failures can significantly reduce the ability of the 

organization to accomplish its goals.  

 

In the literature a set of methodologies [52], a selection of design processes [16], 

and a collection of frameworks [18,20,24,26,55,65,99] are available to provide the basis for 

constructing sophisticated autonomous multi-agent organizations. Moreover, a set of 

metrics and methods have been suggested with the intention of providing useful 

information about key properties (e.g., complexity, flexibility, self-organized, performance, 

scalability, and cost) of these multi-agent organizations [56,63,88,95].  

 

The above-mentioned methodologies and frameworks, however, do not offer 

techniques for identifying the number of feasible configurations of agents that can be 

synthesized, or designed, from a set of heterogeneous agents. This is an important issue in 

designing a multiagent system because of the nature of the environments where it operates 

(dynamic, continuous, and partially accessible) [81]. The multiagent system must be 

adaptive (self-organized) to adjust its behavior to cope with the dynamic appearance and 
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disappearance of goals (tasks), their given guidelines, and the overall goal of the multiagent 

system [65,81].  

 

In this dissertation, we are to examine and propose a couple of organization-based 

multiagent systems assessment models based upon the framework OMACS [18]. This 

framework will be explained next. 

 

 1.2.1 Overview of the Framework of Organization Model for Adaptive Computational 

Systems: OMACS 

The Framework of Organization Model for Adaptive Computational Systems 

(hereafter,      ) defines the entities in standard multi-agent systems and their 

relationship as a tuple                                                    

                                                    , and it is also represented 

via an UML
4
-based organizational meta-model (see Figure 4) [18]. These are briefly 

described in what follows. 

 

Figure 4. OMACS Meta-model. 

                                                 
4
 Unified Modeling Language (   ) is a standardized general-purpose modeling language in the field 

of object-oriented software engineering. 
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The organization,       , is composed of four entities including       ,       , 

      , and       .        defines the goals of the organization (i.e., overall functions of 

the organization);        defines a set of roles (i.e., positions within an organization 

whose behavior is expected to achieve a particular goal or set of goals).        is a set of 

agents, which can be either human or artificial (hardware or software) entities that perceive 

their environment (  – domain model) and can perform actions upon it. In order to perceive 

and to act, the agents possess a set of capabilities (      ), which define the 

percepts/actions at their disposal. Capabilities can be soft (i.e., algorithms or plans) or hard 

(i.e., hardware related actions).        formally specifies rules that describe how        

may or may not behave in particular situations. 

 

In addition, OMACS defines a set of functions –         ,         ,          , 

       ,          ,    , and        – to capture the different relations among the 

entities.         , a function whose arguments are a goal in        as well as a role in 

       that generates an output which is a positive real number greater than or equal to   

and less than or equal to 1 (        ,                        , defines the extent of 

achievement of a goal by a role);          , a function with an agent in        and a 

capability in        as inputs yields a positive real number in the range of [0,1] 

(         ,                      , defines the quality of an agent´s capability); 

        , a function that assumes a role in  , thereby yielding a set of capabilities required 

to play that role (        ,                 , defines the set of capabilities required 

to play a role
5
);        , a function whose inputs are an agent in        and a role in 

       and generates an output, which is a positive real number greater than or equal to   

and less than or equal to   (       ,                      , defines how well an agent 

can play a role), thus giving rise to 

 

                                                 
5  denotes power set. 
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(1.15) 

 

potential, a function with an agent in       , a role in       , and a goal in        as 

inputs yields a positive real number in the range of [0,1], thus yielding 

 

                                           ; (1.16) 

 

(         ,                               , defines how well an agent can play a role 

to achieve a goal), and assignment set,  , the set of agent-role-goal tuples        , 

indicating that agent          has been assigned to play role          in order to 

achieve goal          (  is a subset of all the potential assignments of agents to play 

roles to achieve goals). Finally, the selection of   from the set of potential assignments is 

defined by the organization’s reorganization function, oaf, that assumes a set of 

assignments in  , thereby yielding a positive real number in the range of       (   , 

               , defines the quality of a proposed set of assignments, i.e.,     

computes the goodness of the organization based on       ), thus resulting in 

 

                      

              

 
(1.17) 

 1.3 Objectives 

 

The work presented here in this dissertation aims at mathematical modeling of two 

apparently unrelated research domains: building-evacuation-route planning, and modeling 

organization-based multiagent systems. Specific objectives of this work are as follows: 

 

a) For the Building Evacuation Route Planning Problem 
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(i) To transform it into a P-graph model taking into account the 

temporal dimension inherent to the building evacuation problem in 

terms of the evacuation time, specifically, its upper bound  . 

(ii) To calculate the evacuation time as a minimum cost of the resultant 

MILP model  

(iii) To validate the results of the resultant MILP model in light of the 

available experimental data taken from the literature. 

(iv)  To evaluate the existence of  -best sub-optimal solutions. 

b) For the Modeling of Organization-based Multiagent System Desing Problem 

(i) To transform design of organization-based multiagent systems, 

according to the framework OMACS, into a P-graph model 

(ii) To solve algorithmically the resultant MILP model 

(iii) To validate the results of the resultant MILP model in light of 

simulated data. 

(iv) To evaluate the existence of  -best sub-optimal solutions. 

 

Besides the current chapter, this dissertation contains four additional chapters, i.e., 

Chapters 2 through 5.  

 

Chapter 2 presents the analysis, modeling, and evaluation of building-evacuation-

route planning. Chapter 3 focuses on the analysis, modeling, and simulation of 

organization-based multiagent systems. Chapter 4 draws the mayor conclusions and 

recommendation for possible extensions are proposed. Finally, the major outcomes of this 

dissertation are presented in Chapter 5. 
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Chapter 2. Building-Evacuation-Route Planning: Research 

Results 

2.1 Background 

 

The aim of any building evacuation plan is to ensure the safest and fastest 

movement of people away from any threat (e.g., bomb threat and taking of hostages) or the 

occurrence of a hazard (e.g., industrial or nuclear accidents, natural disasters, fire, and viral 

outbreak) [105]. Nevertheless, buildings are increasingly built taller and more complex, 

thus rendering it difficult to establish a rapid evacuation plan [92].  

 

In any emergency scenario, determining an optimal or near optimal evacuation plan, 

in terms of the egress time, entails the evaluation of a myriad of evacuation routes, which is 

highly convoluted because of the combinatorial nature of the problem [17,47,58,100]. 

Naturally, towards this end, it is highly desirable or even essential, to have access to 

optimization software. Such software should be able not only to generate an optimal 

evacuation plan, but also to yield and evaluate every feasible evacuation plan [17,22], 

whenever computationally possible, due to its complexity [100]. Egress models such as 

EVACNET4, WAYOUT, and PathFinder which employ optimization software generate at 

most one globally optimal solution for showing congestion areas, queuing, or bottlenecks 

[70,72]. 

  

Following, an algorithmic method for optimizing a building evacuation plan, in 

terms of the egress time, supported by software tools at each step is presented. This method 

resorts to the graph-theoretic approach based on the P-graph framework. The method is 
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demonstrated by applying it to the evacuation of different building configurations (i.e., one-

story building, a two-story, a three-story, and a ten-story building). 

 

 

 

 2.2 Problem Definition 

 

Let         be a directed graph with   the set of nodes and   the set of arcs. 

For an evacuation plan, the potential locations of evacuates and other areas, e.g., rooms, 

corridors, safe areas, stairs, or intersections, on a building-floor map are represented by 

nodes    , and the potential movements between the locations, through  , e.g., passages, 

gates, or doorways, or edges, by arcs           and      ; see Figure 56. We are to 

minimize the time of a building evacuation plan consisting of a set of evacuation routes and 

a scheduling of evacuees on each route.  

 

     The evacuation plan should satisfy the constraints imposed by the building itself 

[47]. Specifically, each location   has a limited capacity expressed by non-negative integer 

    , which is the number of individuals that can be accommodated at this location. The 

initial occupancy is also assigned to each location   by non-negative integer    , which is 

the number of individuals at any given location in the event of an emergency. Moreover, 

the maximum flow rate of passage         is defined by positive integer           . The flow 

rate is the maximum number of individuals that can travel through it simultaneously. 

Passages may act as bottleneck points in the floor-map. Finally, each passage         is 

constrained by non-negative travel time         . Travel time is a measure of time required 

by an individual to go through the entire length of a passage. Additionally, it is noteworthy 

to mention that it is up to the expert or group of experts the process of specifying each of 

the constraints, mentioned previously, for the building of interest 

[13,14,47,49,50,59,70,72,94]. 

                                                 
6
 The graph-based notation has been slightly modified to introduce variable   from its original [47].  
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The graph-theoretic approach based on P-graphs (process graphs) has been 

conceived for optimally synthesizing a process network presumably operating under 

steady-state, or stationary, conditions; naturally, no temporal dimension is involved 

[31,33,34,35]. Figure 6 shows an approximation of a PNS problem (represented via p-

graph) of the building evacuation problem introduced in Figure 5. For a building evacuation 

problem the locations of evacuees including safe areas (e.g., rooms, corridors, safe areas, 

stairs, or intersections) on the building-floor map are represented by entities    , the 

initial location of evacuees are represented by raw materials    ; and, the potential 

movements between the locations (through, e.g., passages, gates, or doorways, and edges) 

by activities     (see Figure 6) [42,43]. It is noteworthy to mention that this 

representation raises some issues regarding the p-graph model and the building evacuation 

problem. First, the p-graph model violates axiom (S2). That is, B and C (both raw 

materials) are produced by operating units (1,2,1) and (1,2,2), respectively. Second, this 

model does not capture the temporal dimension of the problem in terms of the egress time 

of the individuals inside the building at the onset of an emergency. Therefore, a new 

approach is required. 

 

To deploy this approach for the problem of interest entails an appropriate adaptation 

of the approach,     problem, to take into account the temporal dimension inherent to the 

problem in terms of the evacuation time, specifically its upper bound   [47,100]. This have 

given rise to the development of the time-expanded process-network synthesis,     , 

proposed in the current dissertation [41,42,43]. 
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Figure 5. Conventional adopted graph-based notation for representing building-floor 

maps [47]: {initial contents, node capacity}; (travel time, arc capacity, arc 

id). 

 

 

Figure 6. P-graph representation of the building floor map introduced in Figure 5. 

 

 2.3 Methodology 

 

 2.3.1 P-graph-based approach 
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This approach is rooted in the two cornerstones; one is the P-graph representation of 

a process network of interest, and the other is a set of five axioms for solution structures, 

i.e., combinatorial feasible networks. These two cornerstones render it possible to fashion 

the three mathematically rigorous algorithms, including algorithm MSG (maximum-

structure generation), algorithm SSG (solution-structure generation), and algorithm ABB 

(accelerated branch-and-bound). These three algorithms are capable of not only generating 

exhaustively and exclusively solutions structures but also of identifying exactly the globally 

optimal structure, i.e., network, near optimal structures in ranked order ([31,33,34,35]; also 

see Appendixes A and B). 

 

 2.3.2 Time-expanded process-network synthesis, PNST 

Given an upper bound  of the evacuation time and set   of entities, i.e., locations and 

the state of locations at time  , 0    , a      problem is given by triplet        . In 

this triplet: set     contains the final target to be reached, i.e., common safety point 

[25]; set     contains the initially available resources, i.e., locations of individuals; and 

set             comprises the candidates activities for forming a network to reach 

each of the final targets by moving the total amount of available resources, i.e., the 

potential movements of evacuees between the locations. Each activity   is defined by a pair 

of its preconditions and outcomes, i.e., for each            , where      . A 

precondition can be the availability of a resource or an outcome of another activity. 

 

In any evacuation scenario, the initial locations of individuals and their flow, and 

capacity constraints on each location and passage of the building are essential. Thus, they 

must be explicitly defined as given in the following. For each building evacuation problem, 

safety points serve as the final destinations, which converge into a unique common safety 

point in set  ; the initial locations of evacuees are listed in set  ; and the movements of 

evacuees from one location to another are in set   of candidate activities.  

 

Figure 7 presents an algorithm for transforming a building evacuation problem 

(   ) to the corresponding time-expanded process-network synthesis (    ) problem, 
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i.e., algorithm          . It generates three classes of evacuees’ movements pertaining 

to [42, 47]. The first class represents the number of evacuees staying at a specific location 

for at least one unit of time; the second class, the number of evacuees traveling from 

location   at time   to location   through passage   in time          where 

       
      

  
      symbolizes the travel time from   to  7 through passage  ; and, the 

third class,  the number of individuals reaching a common safety point at time  ,     

 . 

 

 2.3.3 Algorithm BEPtoPNST 

Figure 8 presents a simple motivational example for illustration to facilitate the 

comprehension of algorithm           described herein. Algorithm           

comprises two mayor parts, the initialization part and the time-expansion part. The 

initialization part (statements    ,     and loop    ) specifies the set of available raw 

materials and the set of desired products to be manufactured as well their parameters. The 

time-expansion part (statement     and loops     and    ) specifies the set of candidates 

operating units as well their parameters.  

 

For each node     in   (as introduced in Problem Definition section ,   specifies a 

conventional building evacuation problem) where    , the initial content of node  , greater 

than   is transformed into raw material   and added to set   (statement     and loop    ); 

as such, Axiom (S2) is satisfied, i.e., a vertex of the  -type has no input if and only if it 

represents a raw material. Algorithm           generates the resources,   ;   ,   , and 

  . Also, for each resource,   , lower bound    , and upper bound    , are set; as such, 

algorithm           specifies the total amount of available resources for the      

problem. That is,     lower bound of resource   ,      ,      ,      ;     upper 

bound of resource   ,      ,               Thus, only one product, i.e., 

           , is specified and added to set   (statement    ); as such, Axiom (S1) is 

automatically satisfied, i.e., every final product is represented in the graph. Note that this is 

                                                 
7
 In the literature, classes 1 and 2 are known as holdover and movement arcs, respectively [47]. 
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analogous to the notion of super-sink nodes in maximum-flow problems [25]. In other 

words, a building-evacuation problem with multiple safety points, i.e., network with 

multiple sinks, can be converted to the building-evacuation problem with only a single 

safety point, i.e., network with only a single sink [47]. For outcome             , algorithm 

          sets lower bound              , and upper bound              ; as such, the 

amount of product to be manufactured to meet the demand of the      problem is 

specified. To be precise,     lower bound of product   ,                          , 

thereby resulting in                       upper bound of product   ,                 

(refer to Figure 7). 

 

Subsequently, algorithm           stepwisely specifies, in loop    , the 

operating units, representing evacuees’ movements, as described in the preceding section; 

as such, Axiom (S3) is satisfied, i.e., every vertex of the  -type represents an operating unit 

defined in the synthesis problem. First, the algorithm loops through every value of   for 

     , where   is time. Consequently, for each node     in  , where     , the 

capacity of node  , is not infinite is transformed into material   and added to set  .  

 

By presuming that an evacuation time    , algorithm           generates 

materials         ;     ,     ,     ,     ,     ,     ,     ,     , and     , where 

     . Note that material          represents the number of individuals accommodated 

at   in time    . Then, operating unit   is created and added to set   for each   and  . 

Algorithm           generates operating units             ;         ,         ,         , 

        ,         ,         ,         ,         , and         , where      , such that 

                   ,                    ,                    ,         

             ,                      ,                      ,         

             ,                      , and                      . Additionally, 

lower bound              and upper bound               are set for each operating unit 

            ; as such, algorithm           specifies the number of individuals who prefer 

to stay at specific location   for at least one unit of time, i.e.,    . Namely,               
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lower bound of operating unit             ,            ,            ,            , 

           ,            ,            ,            ,            , and            ; 

              upper bound of operating unit             ,            ,            , 

            ,            ,            ,             ,            ,            , 

and             . Subsequently, node   is transformed into material   and added to set   

for each arc         in G , where either      is not infinite or   is the only safety point. 
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Figure 7. Algorithm           written in Pidgin Algol (see Appendix C). 

𝐢𝐧𝐩𝐮𝐭: 𝐺 =  𝑁, 𝐴 , 𝑇 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭:  𝐺 =  𝑁, 𝐴  represents a building evacuation problem, variable 𝑇 stores the upper bound of the  
evacuation time 
𝐨𝐮𝐭𝐩𝐮𝐭: sets 𝑃, 𝑅, 𝑂 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑅 ⊂ 𝑀, 𝑃 ⊂ 𝑀, 𝑅 ∩ 𝑃 = ∅, variable 𝑒𝑣𝑎𝑐𝑢𝑒𝑒𝑠 stores the sum of all individuals in the building,  
set 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠 contains all possible gather points in the building, symbol     represents set cardinality 
𝐛𝐞𝐠𝐢𝐧  
            𝐜𝐨𝐦𝐦𝐞𝐧𝐭: initialization part of the algorithm  

            𝐬𝐭𝟏:  𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒 ∶= 𝑁 \  𝑥 | 𝑥 = ⋃𝑛 ∈ 𝑁 ∧ 𝑖𝑐𝑛  > 0  𝑛  

            𝐥𝐩𝟏:  𝐰𝐡𝐢𝐥𝐞 𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒 is not empty 𝐝𝐨                                                                   
                      𝐛𝐞𝐠𝐢𝐧                                                                                                                                               
                                  let 𝑛 be an element of 𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒                                                                
                                  𝑒𝑣𝑎𝑐𝑢𝑒𝑒𝑠 +: = 𝑖𝑐𝑛 ; 𝑟 ∶=  𝑛 ; 𝑈𝑟 ∶= 𝑖𝑐𝑛 ; 𝐿𝑟 ∶= 0;𝑅 ∶= 𝑅 ∪  𝑟 ; 𝑀 ∶= 𝑀 ∪  𝑟 ;                  
                                  𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒 ∶= 𝑟𝑜𝑜𝑚𝑠_𝑤𝑖𝑡ℎ_𝑝𝑒𝑜𝑝𝑙𝑒\𝑛;                                                        
                      𝐞𝐧𝐝;                                                                                                                                               
            𝐬𝐭𝟐:  𝑝 ∶=  𝑆𝑢𝑝𝑒𝑟𝐸𝑥𝑖𝑡 ; 𝑈𝑝 ∶= ∞; 𝐿𝑝 ∶= 𝑒𝑣𝑎𝑐𝑢𝑒𝑒𝑠;  𝑃 ∶= 𝑃 ∪  𝑝 ;  𝑀 ∶= 𝑀 ∪  𝑝 ;       

            𝐜𝐨𝐦𝐦𝐞𝐧𝐭: time expansion part of the algorithm                                                                      

            𝐬𝐭𝟑:  𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠 ∶=   𝑥 | 𝑥 = ⋃𝑛 ∈ 𝑁 ∧ 𝑐𝑎𝑝 𝑛  = ∞  𝑛 ;                                                            

            𝐜𝐨𝐦𝐦𝐞𝐧𝐭: time − expansion part of the algorithm                                                                  
            𝐥𝐩𝟐:  𝐟𝐨𝐫 t ≔ 0 𝐮𝐧𝐭𝐢𝐥 T − 1 𝐝𝐨                                                                                                      
                      𝐛𝐞𝐠𝐢𝐧                                                                                                                                             
                                  𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ∶=  𝑁 \ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠;                                                            
                                  𝐰𝐡𝐢𝐥𝐞 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 is not empty 𝐝𝐨                                                              
                                  𝐛𝐞𝐠𝐢𝐧                                                                                                                                                 
                                              let 𝑖 be an element of 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠;                                                              
                                              𝑀 ∶= 𝑀 ∪  𝑖_(𝑡 + 1) ;                                                                                                

                                              𝐢𝐟 𝑡 = 0 𝐭𝐡𝐞𝐧 𝐛𝐞𝐠𝐢𝐧 𝑖_𝑖_𝑡_(𝑡 + 1) ∶=   𝑖 ,  𝑖_(𝑡 + 1)  ; 𝐞𝐧𝐝;                

                                              𝐞𝐥𝐬𝐞  𝐛𝐞𝐠𝐢𝐧 𝑖_𝑖_𝑡_(𝑡 + 1) ∶= {{𝑖_𝑡}, {𝑖_(𝑡 + 1)}}; 𝐞𝐧𝐝;  
                                              𝑂 ∶= 𝑂 ∪  𝑖_𝑖_𝑡_(𝑡 + 1) ;  
                                              𝑈𝑖_𝑖_𝑡_(𝑡+1) ∶= 𝑐𝑎𝑝𝑖 ; 𝐿𝑖_𝑖_𝑡_(𝑡+1) ∶= 0;  𝑐𝑝𝑖_𝑖_𝑡_(𝑡+1) ∶= 0;  

                                              𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ∶=   𝑥 | 𝑥 = ⋃ 𝑘,𝑗  ∈ 𝐴 ∧ 𝑘≠𝑖  (𝑘, 𝑗) ;   

                                              𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠: =  𝐴 \ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠;   
                                              𝐰𝐡𝐢𝐥𝐞 𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 is not empty 𝐝𝐨   
                                              𝐛𝐞𝐠𝐢𝐧  
                                                          let (𝑖, 𝑗) be an element of 𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠;  
                                                          𝐢𝐟 𝑗 ∩ 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑒𝑥𝑖𝑡𝑠 = ∅ 𝐭𝐡𝐞𝐧 𝐛𝐞𝐠𝐢𝐧 𝑚 ≔ {𝑗_(𝑡 + 𝜆𝑖𝑗 )}; 𝐞𝐧𝐝;   

                                                          𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧   
                                                                                𝐢𝐟 |𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠| = 1 𝐭𝐡𝐞𝐧 𝐛𝐞𝐠𝐢𝐧 𝑚 ≔ {𝑗_(𝑡 + 𝜆𝑖𝑗 )}; 𝐞𝐧𝐝;   

                                                                                𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧 𝑚 = {𝐸𝑥𝑖𝑡_(𝑡 + 𝜆𝑖𝑗 )}; 𝐞𝐧𝐝;  

                                                          𝐞𝐧𝐝;   
                                                          𝐢𝐟 𝑡 = 0 𝐭𝐡𝐞𝐧 𝐛𝐞𝐠𝐢𝐧  𝑖_𝑗_𝑡_(𝑡 + 𝜆𝑖𝑗 ) = {{𝑖}, {𝑚}};  𝐞𝐧𝐝;    

                                                          𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧 𝑖_𝑗_𝑡_(𝑡 + 𝜆𝑖𝑗 ) = {{𝑖_𝑡}, {𝑚}};  𝐞𝐧𝐝;   

                                                          𝑀: = 𝑀 ∪  𝑚 ; 𝑂: = 𝑂 ∪ {𝑖_𝑗_𝑡_(𝑡 + 𝜆𝑖𝑗 )};   

                                                          𝑈𝑖_𝑗 _𝑡_(𝑡+𝜆𝑖𝑗 ): = 𝑐𝑎𝑝(𝑖,𝑗 ); 𝐿𝑖_𝑗 _𝑡_(𝑡+𝜆𝑖𝑗 ): = 0; 𝑐𝑝𝑖_𝑗 _𝑡_(𝑡+𝜆𝑖𝑗 ): = 0;  

                                                          𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ≔ 𝑟𝑜𝑜𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 \ (𝑖, 𝑗);                                    
                                                          𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ∶= 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠\ 𝑖;                                          
                                              𝐞𝐧𝐝;  
                                  𝐞𝐧𝐝;                                                                                                                                     
                      𝐞𝐧𝐝;                                                                                                                                          
            𝐥𝐩𝟑:  𝐟𝐨𝐫 t ≔ 1 𝐮𝐧𝐭𝐢𝐥  𝑇 𝐝𝐨   
            𝐛𝐞𝐠𝐢𝐧 
                        𝐢𝐟 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑒𝑥𝑖𝑡𝑠 ! = 1 𝐭𝐡𝐞𝐧  
                        𝐛𝐞𝐠𝐢𝐧  
                                    𝐟𝐨𝐫 𝐞𝐚𝐜𝐡  𝑝 𝐢𝐧 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑒𝑥𝑖𝑡𝑠 𝐝𝐨  

                                    𝐛𝐞𝐠𝐢𝐧 𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒_𝑡: =   𝑝𝑡 ,  𝑆𝑢𝑝𝑒𝑟𝐸𝑥𝑖𝑡  ; 𝐞𝐧𝐝; 

                        𝐞𝐧𝐝; 

                        𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧  𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒𝑡 : =   𝐸𝑥𝑖𝑡𝑡 ,  𝑆𝑢𝑝𝑒𝑟𝐸𝑥𝑖𝑡  ;  𝐞𝐧𝐝;                                                   

                        𝑈𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒 _𝑡 : = ∞; 𝐿𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒 _𝑡 : = 0;  𝑐𝑝𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒 _𝑡 : = 𝑡;  𝑂: = 𝑂 ∪  𝑒𝑣𝑎𝑐𝑡𝑖𝑚𝑒_𝑡 ;             
            𝐞𝐧𝐝; 
  𝐞𝐧𝐝; 
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Figure 8. Motivational example for illustration: {    initial content of node  ,      

capacity of node  }; (    travel time from node   to node  ,            

capacity of arc from node   to   through section  , which connects locations 

  and  ). 

 

Algorithm           generates materials            
8;    ,     ,     , and 

    ; where      . Next, for each  ,  , and  , operating unit   is created and added to 

set  . Algorithm           generates operating units                  ;           , 

          ,           ,           ,           ,           ,           ,           ,           , 

          ,           ,           ,           ,           , and           ; where      , 

such that                       ,                       ,                      ), 

                      ,                       ,                         , 

                        ,                         ,                         , 

                      ,                         ,                         , 

                        ,                         , and                            

addition, lower bound                   
 and upper bound                   

 are set for each 

                                                 
8
 If   represents one of many safety points of a building, then, algorithm           generates the materials 

              
. 
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operating unit                  ; as such, algorithm           specifies the number of 

evacuees traveling from location   at time   to location   through passage   in time       . 

That is,                  
 lower bound of operating unit                 ,              , 

             ,              ,              ,              ,              ,             

 ,              ,              ,              ,              ,              , 

             ,                and              ;                  
 upper bound of operating 

unit                 ,              ,              ,              ,              , 

             ,              ,              ,              ,              ,             

 ,              ,              ,              ,              , and               (refer 

to Figure 8). 

 

Finally, algorithm           specifies the operating units, which represent the 

number of evacuees reaching a common safety point, in loop    , i.e.            ; as 

such, Axioms (S3) and (S4) are satisfied, i.e., every vertex of the  -type represents an 

operating unit defined in the synthesis problem and every vertex of the  -type has at least 

one path leading to a vertex of the  -type representing a final product, respectively. First, 

algorithm           loops through every value of   for      . Hence, one operating 

unit   is created and added to set   for each  . Algorithm            generates the 

operating units,            ;            ,            , and            ; where      , 

such that                                  ,                                  , and 

                                 9. Moreover, lower bound             
, upper bound 

            
, and proportional cost              

 for each operating unit             are set; as 

such, algorithm           specifies the number of evacuees reaching a safety point in 

time  . Specifically,             
 lower bound of operating unit            ,             

 

              
  , and             

                
 upper bound of operating unit 

           ,             
               

  , and             
                 

 

proportional cost of operating unit                           
                

  , and 

                                                 
9
 If the building has more than one safety point, algorithm           generates, the operating units 

            for      , such that                                     .      
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   (refer to Figure 10). As result, the execution of loops     and     assures 

that Axiom (S5) is satisfied by the maximal structure, i.e., if a vertex of the M-type belongs 

to the graph, it must be an input to or output from at least one vertex of the O-type in the 

graph; Figure 9 displays the maximal structure of the motivational example generated by 

algorithm    . Furthermore, Figure 10 shows the relationships between the elements 

adopted in the definition of a conventional building evacuation problem and those adopted 

in the specification of a time-expanded process-network synthesis problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.4 Mathematical programming model 

The mathematical programming model derived from the maximal structure, 

generated by algorithm    , should be as simple as possible without impairing the 

optimality of the resultant solution. In any of the available algorithmic methods for 

addressing evacuation problems, the model derived leads to a linear mathematical 

programming problem [47,100]. This linear programming model is formulated in terms of a 

dynamic network flow, and then solved by applying any minimum cost static network flow 

algorithm [1,47]. 

 

Figure 9. Maximal structure of the motivational example. 
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In the present work, a mixed-integer linear programming (    ) model has been 

formulated below, which at the very least yields a solution identical with those 

conventional network flow algorithms [47,70,72]. 

 

Let   denote the set of entities;  , the set of products, where    ;  , the set of 

initially available resources, where    ; and  , the set of activities, where   

         10. The relations between entities and activities are denoted by     which gives 

the difference between the production and consumption rate of entity    by activity   , 

where      and     . Also given are lower bound     and upper bound     for the 

volume of each activity   , as well as its proportional cost      (refer to     in Figure 7). 

                                                 
10

  represents powerset. 

 

 

Figure 10. Maximal structure of the motivational example showing the relationships 

between the elements adopted in the definition of a     and those adopted in 

the specification of a     . 
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Moreover, lower bound     and upper bound     are specified for each resource   . In 

addition, lower bound      and upper bound     are defined for each product    . 

Moreover, two classes of variables are involved in the mathematical programming model. 

One class consists of binary variables, each denoted by           expressing the absence 

(0) or the existence (1) of operating unit   ; and the other, continuous variables, each 

denoted by     expressing the size or capacity of operating unit    relative to the unit size.  

If operating unit    is included in the network, as indicated by      , the concomitant 

continuous variable,    , can be any real value in the range of   to the upper limit for the 

capacity of operating unit   . Thus,          , where    is the upper limit for the 

capacity; if such an upper limit does not exist, the    can be any large number  . Finally,  , 

minimal, is the objective value. The resultant      model is given in the following. 

 

               
      

  
  

(2.1) 

 

subject to 

 

           
           

 

 

 

 

(2.2) 

 

                          
(2.3) 

 

                 
    

         
(2.4) 

 

                  
    

         
(2.5) 

 

   
                        

        

             (2.6) 
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(2.7) 

 

          
 

(2.8) 

 

The maximal structure serves as the input to the generation and solution of the 

MILP model by algorithm ABB [35]. It yields the optimal network and a finite number of 

n-best suboptimal networks in ranked order, whenever computationally possible, due to the 

complexity of the evacuation problem [100]. Algorithm ABB has found a total of 10 

feasible evacuation routes in less than a second, i.e., 0.080 s, on an Intel(R) Core(R) i5 CPU 

650 @ 3.20 GHz.  

Figure 11 shows four of them for the example of    . Algorithms MSG and ABB 

have been executed by software PNS Studio [93]. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

Figure 11. Solution #1 (a), #2 (b), #3 (c), and #4 (d) obtained via Algorithm ABB. 

 

 2.4 Results and Discussion 

 

The alternative feasible evacuation routes generated by algorithm ABB are ranked 

according to several criteria, e.g., egress time, average number of periods for an evacuee to 

evacuate, average number of evacuees per time period, node clearing time, individuals 

waiting at the end of a time period by node, etc. [49]. For instance, the total evacuation time 

required to completely evacuate all the individuals is 3 units of time by adopting any of the 

four evacuation routes generated by algorithm ABB (see Section 3.3). Nonetheless, if 

evacuation route #1 is compared with evacuation route #4, it can be noted that seven 

individuals would reach safety point D within 2 units of time by employing evacuation 

route #1, while only five individuals would reach safety point D within the same time by 

employing evacuation route #4. Even if the evacuees leave their initial locations after the 

onset of a fire emergency may not be considered a decisive factor for any optimal 

evacuation plan, because other factor such as personal behaviors, e.g., waiting action, could 

be determinant in an optimal evacuation plan; see Solutions #1 and #4 in Table 1. These 

observations show that a trade-off analysis and in-depth assessment among different 

evacuation routes is required [14,50]. Additionally, there are other criteria based upon the 
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effects of fire into the evacuation route planning that should be adopted in the proposed 

method, e.g., individual travel and exposure time; time-based risk and evacuation exposure; 

time-space-based risk and evacuation exposure [14,49,50]. 

 

Additionally to the one-story building example, other building configurations are 

studied: two-story [94], three-story [59], and eleven-story [13]. When our method is applied 

to the two-story building see Figure 12, algorithm ABB has found a total of 347 feasible 

evacuation routes in nearly 18 min. It is noteworthy to mention that algorithm ABB has 

found the first 71-best sub-optimal solutions in less than 18 s. This outcome outperforms 

current optimization models (i.e., EVACNET4, WAYOUT, PathFinder), because not only 

the optimal solution is computed but the n-best sub-optimal solutions are. Table 2 and 

Figure 13 summarize the results of a subset of four n-best sub-optimal solutions. Also, 

regarding the three-story and eleven-story building, the algorithm ABB has found the 10-

best sub-optimal solutions in 1 m 15 s and 17 m 30 s for the three-story building and the 

eleven-story building respectively (see Table 4 and Table 4; and Figures Figure 14 and 

Figure 15). These results clearly show the potential of the ABB algorithm for computing 

the n-best sub-optimal evacuation routes. 

 

Nevertheless, it is important to emphasize that even though the evacuation model 

size increases proportionally to both the number of discrete locations and the discrete time 

slots, the proposed method, i.e., formulating the evacuation problem as process network 

synthesis problem with appropriate targets, and software could generate the optimal 

solution by solving a single Linear Programming (  ) problem in polynomial time (   is 

proven to be solvable in polynomial time). Moreover,     is the only available tool 

capable of generating the n-best alternative solutions systematically. Also, the process of 

generating feasible evacuations plans is always convoluted: it is combinatorial in nature 

[100]. Finally, it is worth emphasizing that our method: (i) can generate with dispatch the 

evacuation model and its optimal solution (in polynomial time); and (ii) can generate 

alternative evacuation plans algorithmically; no similar approaches are capable of doing so 

[70,72]. Nevertheless, depending on the size of the problem, it might require substantially 

larger computing time to generate the n-best sub-optimal solutions. This may entail the 
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deployment of modern computing techniques, e.g., Grid Computing and High Performance 

Computing (HPC) [49], to greatly accelerate the computation. 

 

Table 1. Four best assignments for the one-story building example. 

Solution 

  
Egress 

Time 

  Average # of 

time period for 

an evacuee to 

evacuate 

  

Node 

Clearing 

Time   

People waiting at the end 

of a time period by node 

   
Nodes 

Time  
Nodes 

      A B C   A B C 

              

          

0 2 0 1 

#1 
 

3 
 

2,1 
 

2 3 3 
 

1 0 0 0 

    

2 0 0 0 

          

3 0 0 0 

              

          

0 0 1 1 

#2 
 

3 
 

2,1 
 

1 2 3 
 

1 0 0 0 

    

2 0 0 0 

          

3 0 0 0 

              

          

0 0 0 1 

#3 
 

3 
 

2,1 
 

1 2 3 
 

1 0 0 1 

    

2 0 0 0 

          

3 0 0 0 

              

          

0 0 1 1 

#4 
 

3 
 

2,3 
 

1 2 3 
 

1 0 0 2 

    

2 0 0 0 

          

3 0 0 0 
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Figure 12. A two-story building floor-map (adapted from [22] and [23]). 
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Figure 13. People waiting at the end of a time period by node for the two-story 

building example. Contents are zero for non-listed nodes and time 

periods. 
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Table 2. Four sub-optimal evacuation plans for the two-story building example. 

Solution 

  
Egress 

Time 

  Average # of 

time period for 

an evacuee to 

evacuate 

  Node Clearing Time (*) 

   
Nodes 

      A B C D E F G H I J K L 

                  

                  
#1 

 
16 

 
9,9 

 
0 2 1 3 6 5 10 9 15 14 - - 

   

                  

                  

                  
#11 

 
16 

 
9,97 

 
0 2 1 3 6 5 10 9 15 14 - - 

   

                  

                  

                  
#71 

 
16 

 
10,03 

 
0 2 1 3 6 5 10 9 15 14 - - 

   

                  

                  

                  
#347 

 
16 

 
10,1 

 
2 1 2 3 6 5 10 9 15 14 - - 

    
(*) Nodes K and L are never traversed by employing any of the evacuation plans 
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Figure 14. A three-story building floor-map (adapted from [22] and [23]). 
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Table 3. Data taken from the best optimal solution for the three-story building example. 

 

    

P-graph Model Elements excluded by MSG Algorithm 

 

PNS Solver PNS Configuration File Size     

T 
Computation Time 

(s) 

Input Size 

(KB)  

Output Size 

(KB) 

# 

Materials 

# Operating 

Units 
% Materials  % Operating Units 

… … … … … … … … 

34 0,062 140 108 427 1138 45,12 40,23 

35 0,068 144 110 448 1194 43,93 39,08 

36 0,086 148 112 469 1250 42,8 38 

37 0,075 153 115 490 1306 41,74 36,97 

38 0,074 157 117 511 1362 40,72 36 

39 0,074 161 119 532 1418 39,75 35,07 

40 0,077 165 122 553 1474 38,83 34,2 

41 0,079 170 124 574 1530 37,95 33,36 

42 0,087 174 126 595 1586 37,1 32,57 

43 0,09 178 128 616 1642 36,3 31,81 

44 0,095 183 131 637 1698 35,53 31,09 

45 0,092 187 133 658 1754 34,79 30,4 

46 0,092 191 136 679 1810 34,08 29,74 

47 0,1 196 138 700 1866 33,4 29,1 

48 0,096 200 140 721 1922 32,74 28,5 

49 0,097 204 142 742 1978 32,11 27,92 

50 0,096 208 144 763 2034 31,51 27,36 
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Figure 15. An eleven-story building floor-map (adapted from [10]). 
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Table 4. Data taken from the best optimal solution for the eleven-story building example. 

 

    

Pgraph Model 
MSG Algorithm excluded elements 

 

PNS Solver PNS Configuration File Size 

T 
Computation Time 

(s) 

Input Size 

(KB)  

Output Size 

(KB) 

# 

Materials 

# Operating 

Units 
% Materials  % Operating Units 

… … … … … … … … 

34 0,151 359 264 819 1768 57,37 56,67 

35 0,164 370 271 873 1888 55,8 55,05 

36 0,18 381 278 927 2008 54,31 53,52 

37 0,175 392 282 981 2128 52,9 52,07 

38 0,194 403 291 1035 2248 51,57 50,7 

39 0,188 413 296 1089 2368 50,3 49,4 

40 0,235 424 305 1143 2488 49,09 48,17 

41 0,192 435 307 1197 2608 47,93 46,99 

42 0,202 446 316 1251 2728 46,83 45,87 

43 0,225 457 320 1305 2848 45,78 44,81 

44 0,228 468 330 1359 2968 44,78 43,79 

45 0,224 479 335 1413 3088 43,82 42,81 

46 0,237 490 342 1467 3208 42,9 41,88 

47 0,243 501 350 1521 3328 42,01 40,99 

48 0,233 511 353 1575 3448 41,17 40,14 

49 0,27 522 360 1629 3568 40,35 39,32 

50 0,25 533 366 1683 3688 39,57 38,53 
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Chapter 3. Designing Organization-based Multiagent Systems: 

Research Results 

 3.1 Background 

 

Designing and implementing large, complex, and distributed systems by resorting to 

autonomous or semi-autonomous agents that can reorganize themselves by cooperating 

with one another represent the future of software systems [18]. Trends in the field of 

autonomous agents and multiagent systems suggest that  the explicit design and use of 

organization-based multiagent systems [76], which allow heterogeneous agents (either 

human or artificial entities) rely on well-defined roles to accomplish either individual or 

system level goals [21,114], is a promising approach to these new requirements [76]. In the 

literature a set of methodologies [52], a selection of design processes [15], and a collection 

of frameworks [18,20,24,26,55,65,99] are available to provide the basis for constructing 

sophisticated autonomous multi-agent organizations. Moreover, a set of metrics and 

methods have been suggested with the intention of providing useful information about key 

properties (e.g., complexity, flexibility, self-organized, performance, scalability, and cost) 

of these multi-agent organizations [56,63,88,95].  

 

Nevertheless, in situations where the nature of the environment makes the 

organization susceptible to individual failures, these failures could significantly reduce the 

ability of the organization to accomplish its goals. The above-mentioned methodologies and 

frameworks, however, do not offer techniques for identifying the number of feasible 

configurations of agents that can be synthesized, or designed, from a set of heterogeneous 

agents. This is an important issue when designing a multiagent system because of the 

nature of the environments where it operates (dynamic, continuous, and partially 

accessible) [81]. The multiagent system must be adaptive (self-organized) to adjust its 

behavior to cope with the dynamic appearance and disappearance of goals (tasks), their 

given guidelines, and the overall goal of the multiagent system [65,81].  
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Following, two algorithmic methods for assessing the design of organization-based 

multiagent systems supported by software tools at each step are discussed. These method 

resorts to the graph-theoretic approach based on the P-graph framework. The methods are 

demonstrated by applying them to different organization-based multiagent system designs. 

 

 3.2 Problem Definition 

 

Given a design of an organization-based multiagent system,       ,  comprising a 

set of heterogeneous agents, we are to investigate the number of feasible configurations of 

agents that can be synthesized, or can emerge. Moreover, we are to explore the reliability 

and cost of the system with such configurations. 

 

In the current dissertation, a set of heterogeneous agents is defined as a set of 

cooperative entities – either human or artificial (hardware or software) – capable of 

perceiving and acting on their environment with the purpose of achieving their design 

goals. We measure a system’s feasibility in light of its possibility of implementation; the 

system’s flexibility in view of its ability to overcome the individual elements’ (agents’) 

failures; and finally, the system’s cost in terms of the total cost of the agents therein. 

 

 3.3 Methodology 

 

 3.3.1 Designing Organization-based Multiagent Systems by resorting to the framework 

OMACS 

To demonstrate the application of the P-graph framework for assessing the designs 

of organization-based multi-agent system, a survey is given of a simplified Cooperative 

Robotic Search Team (CRST) system [51,95]. Essentially, we are to design a team of 

robots whose goal is to search for different areas of a given location on a map. The team 

should be able to search any area of the given location even when faced with failures of 

individual robots or specific capabilities of those robots. This implies that the team must be 
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able to: (1) assign areas based on individual team member´s reliability; (2) recognize when 

a robot is unable to perform adequately its duties; and (3) reorganize the team to allow it to 

achieve its goals in spite of individual failures [38]. 

 

 3.3.1.1 Overview of the CRST Organization 

For illustration, it is presumed that four goals be achieved by the CRST. In other 

words,                      where    for       signifies “search area  .” In the 

CRST, two roles are identified, i.e.,                where    and    represent the 

Searcher and Patroller roles, respectively.  In particular, role    requires the Sonar, 

Movement, and GPS capabilities for achieving goals   ,   ,   , and   . Likewise, role    

requires the Movement, GPS, and Range Finder capabilities for achieving the same goals as 

those of role   . Moreover, for each goal,   , an achieve value is assigned. This achieve 

value defines the extent of achievement of a goal by a role. Both, the          and 

         relations can be formally stated as: 

                                           and 

                      

                                                                                      

 

Also, four capabilities are specified, i.e.,                     . They are Sonar 

(  ), Movement (  ), GPS (  ), and Range Finder (  ).    captures information about all 

objects around agent    (in a 360° view).    allows agent    to move in any direction, north, 

south, east, or west (up, down, left, or right).    provides the ability to read the absolute 

position of agent    in the environment. Finally,    renders it possible for agent    to 

measure the distance of the closest object directly in front of it.  

 

In addition, three different agents are modeled, i.e.,                  ; they are 

  ,   , and   . Specifically, agent    possesses capabilities   ,   ,   , and    while both 

agents    and    possess capabilities   ,   , and   . The possesses relationship is 

formulated as follows:                                                   

                                                                                    . 
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Additionally, the cost of each individual agent   ,   , and    is    0,   00, and    0; 

respectively (see Figure 16). 

 

 3.3.2 Algorithm OMACStoPNS 

Algorithm            comprises two mayor parts, the initialization and the 

construction parts. The initialization part (statements    ,    ,    , and loops     and    ) 

specifies the sets of available raw materials and desired products to be manufactured as 

well as their parameters. The construction part (loop    ) specifies the set of candidates 

operating units as well as their parameters (see Figure 17).  

 

Each agent    in   is transformed into raw material   to be added to set   (loop 

   ); as such, Axiom (S2) is satisfied, i.e., a vertex of the  -type has no input if and only if 

it represents a raw material. Algorithm            generates the resources,     ;    , 

   , and    . Furthermore, lower bound    , upper bound    , and cost    , are set for each 

resource,    ; as such, algorithm            specifies the total amount of available 

resources for the motivational problem (see Table 5). Thus, only a single product,    , is 

specified and added to set   (statements    ,    , and    ); as such, Axiom (S1) is 

automatically satisfied,  i.e., every final product is represented in the graph. Note that this is 

analogous to the notion of the goodness of the organization based on the quality of a 

proposed set of assignments. In other words, the set of agent-role-goal tuples            

indicates that agent      has been assigned to play role       in order to achieve goal 

    . For outcome    , algorithm            sets lower bound     , upper bound 

    , and cost     ; as such, the amount of product to be manufactured for meeting the 

demand of the  problem is specified (see Table 6). 
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Figure 16. Overview of the CRST Organization. The boxes at the top of the diagram 

represent agents identified by their types, the circles represent the roles, the 

pentagon’s represent capabilities, and the squares are system’s goals. The arrows 

between the entities represent achieves, requires, and possesses functions/relations. 

 

Subsequently, algorithm           stepwisely specifies the operating units in 

loops     and    , representing organizational assignments (see Figure 17); as such, 

Axioms (S3) and (S4) are satisfied, , i.e., every vertex of the  -type represents an operating 

unit defined in the synthesis problem and every vertex of the  -type has at least one path 

leading to a vertex of the  -type representing a final product, respectively. First, the 

algorithm loops through every goal      . Each goal    is transformed into material   

for inclusion in set  . Algorithm           generates materials    
;    ,    ,    , 

and    . Note that material    
 represents the goals to be accomplished by the 

organization. This gives rise to the creation of operating unit   for inclusion in set   for 

each   . Algorithm           generates operating units        . Additionally, lower 

bound        , upper bound        , cost         , and    , the consumption rate of entity    

by operating unit    are set for each operating unit        ; as such, algorithm specifies the 

goals to be achieved by the system (see Table 7). 
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Figure 17. Algorithm OMACStoPNS written in Pidgin Algol (see Appendix C). 

𝐢𝐧𝐩𝐮𝐭: 𝐺, 𝐴, 𝑅𝑂𝑀𝐴𝐶𝑆 , 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠, 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭:  𝐺 defines the goals of the organizations, 𝑅𝑂𝑀𝐴𝐶𝑆  defines a set of roles, 𝐴 is a set of agents 
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 defines the extent of achievement of a goal by a role, (𝐺 × 𝑅𝑂𝑀𝐴𝐶𝑆 → [0 … 1])  
𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 defines the quality of an agent´s capability  𝐴 × 𝐶 →  0 … 1  , and 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 defines  

the set of capabilities required to play a role  𝑅𝑂𝑀𝐴𝐶𝑆 → ℘ 𝐶  . The 𝑐𝑎𝑝𝑎𝑏𝑙𝑒 function  
 𝐴 × 𝑅𝑂𝑀𝐴𝐶𝑆 →  0 … 1   is computed as defined in Eq. 1 in Section 3. 
𝐨𝐮𝐭𝐩𝐮𝐭: sets 𝑃, 𝑅, 𝑂 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑅 ⊂ 𝑀, 𝑃 ⊂ 𝑀, 𝑅 ∩ 𝑃 = ∅ 
𝐛𝐞𝐠𝐢𝐧 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: initialization part of the algorithm; 
𝐬𝐭𝟏:     𝑀 ∶= 𝑀 ∪  𝑜𝑎𝑓 ; 
𝐬𝐭𝟐:     𝑃 ∶= 𝑃 ∪ {𝑜𝑎𝑓}; 
𝐬𝐭𝟑:     𝑈𝑜𝑎𝑓 ∶= ∞; 𝐿𝑜𝑎𝑓 ∶= 0; 𝑐𝑜𝑎𝑓 ∶= 1; 

𝐥𝐩𝟏:    𝐟𝐨𝐫 𝑎𝑖  ∈ 𝐴 𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 
                        𝑅 ∶= 𝑅 ∪ {𝑎𝑖}; 𝑀 ∶= 𝑀 ∪  𝑎𝑖 ;𝑈𝑎𝑖

∶= ∞; 𝐿𝑎𝑖
∶= 0; 𝑝𝑎𝑖

∶= 0; 

            𝐞𝐧𝐝; 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: construction part of the algorithm; 
𝐥𝐩𝟐:    𝐟𝐨𝐫 𝑔𝑖  ∈ 𝐺 𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 

                        𝑀 ∶= 𝑀 ∪  𝑔𝑖 ; 𝑔𝑖_𝑜𝑎𝑓 ≔   𝑔𝑖 ,  𝑜𝑎𝑓  ; 𝑂 ∶= 𝑂 ∪  𝑔𝑖_𝑜𝑎𝑓 ; 

                        𝑈𝑔𝑖_𝑜𝑎𝑓
 ∶= ∞; 𝐿𝑔𝑖_𝑜𝑎𝑓

∶= 0; 𝑐𝑔𝑖_𝑜𝑎𝑓
 ∶= 0; 

                         𝑎𝑔𝑖 ,𝑔𝑖_𝑜𝑎𝑓 ∶= 1; 𝑎𝑔𝑖_𝑜𝑎𝑓 ,𝑜𝑎𝑓 ∶= 1; 

            𝐞𝐧𝐝; 
𝐥𝐩𝟑:    𝐟𝐨𝐫 𝑎𝑖  ∈ 𝐴 𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 
                       𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= ∅; 

                       𝐟𝐨𝐫  𝑎′, 𝑐, 𝑣𝑎𝑙𝑢𝑒′  ∈ 𝑃𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠 𝐝𝐨 
                       𝐛𝐞𝐠𝐢𝐧 
                                   𝐢𝐟 𝑎′ = 𝑎𝑖  𝐭𝐡𝐞𝐧 
                                       𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖
∪ {𝑐}; 

                                   𝐞𝐧𝐝; 
                       𝐞𝐧𝐝; 
                       𝐟𝐨𝐫  𝑟𝑘 , ℘(𝑐)  ∈ 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝐝𝐨 
                       𝐛𝐞𝐠𝐢𝐧 
                                   𝐢𝐟 ℘ c ⊆ 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

 𝐭𝐡𝐞𝐧 

                                       𝑎𝑢𝑥 ≔ ∅; 
                                       𝐟𝐨𝐫  𝑟′′ , 𝑔𝑗 , 𝑣𝑎𝑙𝑢𝑒′′   ∈ 𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨 

                                       𝐛𝐞𝐠𝐢𝐧 
                                                   𝐢𝐟 𝑟𝑘 = 𝑟′′  𝐭𝐡𝐞𝐧 

                                                        𝑀 ∶= 𝑀 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 };  𝑎𝑖_𝑟𝑘_𝑔𝑗 ≔   𝑎𝑖_𝑟𝑘_𝑔𝑗  , {𝑔𝑗 } ; 

                                                        𝑎𝑢𝑥 ∶= 𝑎𝑢𝑥 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 };  𝑂 ∶= 𝑂 ∪  𝑎𝑖_𝑟𝑘_𝑔𝑗  ; 

                                                        𝑈𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= ∞; 𝐿𝑎𝑖_𝑟𝑘_𝑔𝑗

∶= 0; 𝑐𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= 0; 

                                                        𝑎𝑎𝑖_𝑟𝑘_𝑔𝑗 ,𝑎𝑖_𝑟𝑘_𝑔𝑗
∶= 1; 𝑎𝑎𝑖_𝑟𝑘_𝑔𝑗 ,𝑔𝑗

∶= 𝑣𝑎𝑙𝑢𝑒 ′′ ; 

                                                        𝑎𝑎𝑖 ,𝑎1_𝑟𝑘
= 1; 𝑎𝑎𝑖_𝑟𝑘 ,𝑎𝑖_𝑟𝑘_𝑔𝑗

∶= 𝑐𝑎𝑝𝑎𝑏𝑙𝑒(𝑎𝑖 , 𝑟𝑘); 

                                       𝐞𝐧𝐝; 
                                       𝐢𝐟 𝑎𝑢𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝐭𝐡𝐞𝐧 

                                            𝑎𝑖_𝑟𝑘 ≔   𝑎𝑖 ,  𝑎𝑢𝑥   ; 𝑂 ∶= 𝑂 ∪ {𝑎𝑖_𝑟𝑘}; 

                                            𝑈𝑎𝑖_𝑟𝑘
∶= 1; 𝐿𝑎𝑖_𝑟𝑘

∶= 0; 𝑐𝑎𝑖_𝑟𝑘
: = 0; 

                                       𝐞𝐧𝐝; 
                       𝐞𝐧𝐝; 
            𝐞𝐧𝐝; 
𝐞𝐧𝐝; 
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Table 5. Resources to be considered in process synthesis for the example 

Resource    Lower bound      Upper bound     Cost     

   0   850 

   0   900 

   0   950 

 

Table 6. Targets to be considered in process synthesis for the example 

Target    Lower bound      Upper bound      Cost     

    0   1 

 

Afterwards, algorithm             loops through every agent      . 

Consequently, for each agent   , algorithm            checks whether    is capable of 

playing a given role    in  . If so, algorithm            searches for every    in  , 

such that    is achieved by   . As a result, algorithm            generates materials  

         
;          ,          ,          ,          ,          ,          ,          , 

         ,          ,          ,          ,          ,          ,           ,          , and 

         . Subsequently, for each agent   , role   , and goal   , two operating units   are 

created and added to set  . One indicates that agent    is capable of playing role   ; the 

second implies that agent    has been assigned to play role    in order to achieve goal   . 

Accordingly, algorithm            generates the operating units        and          . 

Moreover, lower bounds        and          ; upper bounds        and          ; and costs 

        and          ; and the consumption flow rate of material   ,    , by operating unit   , 

are set for each of operating units        and          ; as such, algorithm specifies whether 

agent    has been assigned to play role    in order to achieve goal    (see Table 7). As a 

result, the execution of loop     assures that Axiom (S5) is satisfied by the maximal 

structure, , i.e., if a vertex of the M-type belongs to the graph, it must be an input to or 

output from at least one vertex of the O-type in the graph. Figure 18 displays the maximal 

structure of the motivational example generated by algorithm    . 
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Table 7. Operating units to be considered in process synthesis for the example* 

Operating Unit  

   

Input material  

    

Output Material  

   

Lower bound 

    

Upper bound  

   

Cost  

   

       g
 
 (1)     (1) 0   0 

       g
 
 (1)     (1) 0   0 

       g
 
 (1)     (1) 0   0 

       g
 
 (1)     (1) 0   0 

                 (0.433)   (0.2) 0   0 

                 (0.433)    (0.4) 0   0 

                 (0.433)   (0.6) 0   0 

                 (0.433)    (0.8) 0   0 

                 (0.433)   (1.0) 0   0 

                 (0.433)   (0.7) 0   0 

                 (0.433)    (0.4) 0   0 

                 (0.433)   (0.1) 0   0 

                 (0.633)   (1.0) 0   0 

                 (0.633)   (0.7) 0   0 

                 (0.633)    (0.4) 0   0 

                 (0.633)   (0.1) 0   0 

                 (0.5)   (1.0) 0   0 

                 (0.5)   (0.7) 0   0 

                 (0.5)    (0.4) 0   0 

                 (0.5)   (0.1) 0   0 

         
        (0.433),         (0.433), 

        (0.433),          (0.433) 
0   0 

         

        (0.433),         (0.433), 

        (0.433),          (0.433) 
0   0 

         
        (0.633),         (0.633), 

        (0.633),          (0.633) 
0 1 0 

         
        (0.5),         (0.5), 

        (0.5),          (0.5) 
0   0 

* The numbers in the brackets are the flow rates,    , of the input and output materials relative to the unit 

capacity of each operating unit. 
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 3.3.3 Mathematical programming model 

 

 Figure 18. Maximal structure for the hypothetical example to 

illustrate the solution-structure generation with algorithm 

MSG. 
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Unlike any of the available algorithmic methods for computing the quality of a 

proposed set of assignments based upon      , i.e., agents,          , assigned to 

play roles,          , in order to achieve goals,          , where no mathematical 

programming model is derived due to the approach adopted, i.e., step-by-step computation 

[18,51,83,95,115,116]; we propose a simple mathematical programming model, which is 

derived from the maximal structure, generated by algorithm MSG, and does not impair the 

optimality of the resultant solution. In the present dissertation, a mixed-integer linear 

programming (    ) model has been formulated, which at the very least yields a solution 

identical with those conventional      -based assignment algorithms [115,116].  

 

Let   denote the set of entities;  , the set of products, where    ;  , the set of 

initially available resources, where    ; and  , the set of activities, where        

    . The relations between entities and activities are denoted by     which gives the 

difference between the production and consumption rate of entity    by activity   , where 

     and     . Also given are lower bound     and upper bound     for the volume 

of each activity   . In addition, lower bound     and upper bound     are specified for 

each resource   . It is important to mention that the cost of each resource   , i.e., agent, is 

not include in the cost function of the model in order to yield a solution equivalent to those 

in the literature [115,116]. In any case, the total cost of the agents’ organization is 

calculated as follows: 

 

                      
          

 
(3.1) 

 

In addition, lower bound    , upper bound     and its cost     are defined for each product 

  . Moreover, two classes of variables are involved in the mathematical programming 

model. One class consists of binary variables, each denoted by           expressing the 

absence (0) or the existence (1) of operating unit   ; and the other, continuous variables, 

each denoted by      expressing the size or capacity of operating unit    relative to the unit 
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size. If operating unit    is included in the network, as indicated by      , the 

concomitant continuous variable,    , can be any real value in the range of 0 to the upper 

limit for the capacity of operating unit   . Thus,             , where     is the upper 

limit for the capacity; if such an upper limit does not exist, the     can be any large number 

 . Finally,  , maximal, is the objective value; representing the oaf function. The resultant 

     model is given in the following. 

 

                     
      

 

          

   

(3.2) 

 

subject to 

 

           
           

 

 

 

 

(3.3) 

 

                          (3.4) 

 

                 
    

         (3.5) 

 

                  
    

         (3.6) 

 

   
                        

        

             (3.7) 

 

         
 

(3.8) 

 

            (3.9) 
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The maximal structure serves as the input to the generation and solution of the 

MILP model by algorithm ABB [35]. It yields the optimal network and a finite number of 

 -best suboptimal networks in ranked order. Algorithm ABB has identified a total of 65535 

structures11,12  in less than 75 seconds on an Intel(R) Core(TM) i5 CPU @ 3.20 GHz. Table 

8 shows 10 feasible solutions for the example. Algorithms MSG and ABB have been 

executed by software PNS Studio [88]. 

 

 3.4 Assessment of Organization based Multi-agent System Design by the 

Mathematical Programming Model Method 

 

To empirically evaluate the flexibility of the different agent-based organization 

designs identified by algorithm ABB (see Section 3.3.3), we have developed a simulation 

that steps through the CRST application. To measure the flexibility, the approach deployed 

in [95] is followed; specifically, capability failure has been simulated. It is important to 

mention that capabilities are the key to determining exactly which agents can be assigned to 

what roles in the organization. Recall that, OMACS defines capabilities as atomic entities 

used to define the abilities of agents. Thus, capabilities can capture soft abilities such as the 

ability to access resources, communicate, migrate, or computational algorithms. They also 

capture hard capabilities such as those of hardware agents such as robots, which include 

sensors and effectors [95]. At each step in the simulation, a randomly selected system goal, 

i.e.,   ,   ,   , and   , is achieved. Subsequently, the best available assignment is 

calculated. The best assignment defines how well an agent,          , can play a role, 

                                                 
11

 It is important to point out that only 77% of the structures, i.e., 50626, are feasible assignments for the 

problem. OMACS model imposes that a feasible assignment set is based on the current set of goals required 

to be achieved by the system [18]. For example, assignment set 

                                                 is a valid assignment; however it is unfeasible for the 

motivational example: goal  
 
 will never be achieved. 

12
 Algorithm SSG has identified 65535 structures in 4.662 s without computing the optimal and sub-optima 

assignments.   
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         , to achieve a goal,           (refer to Eq.1.16).  Afterwards, one of the 

capabilities possessed by a robot is randomly selected and tested to see if it has failed. A 

predefined capability failure rate (0 – 100%) indicates if the selected capability has failed. 

Once failed, a capability is assumed to remain so for the life of the system. In addition, 

reorganization is performed to assign available robots to available goals and to de-assign 

robots if their capabilities have failed, and thus, they are no longer able to play their 

assigned roles. 

Table 8. Subset of Feasible Solutions (less than 1%) generated by  algorithm 

           

Sol. # 
agent’s organization/team 

assignment set,   
oaf value 

Organization’s  

cost ($) 

1 

 
 
 

 
 
                                            
                                            
                                            
                                            

  
 
 

 
 

 4,3112 2700 

1280  

                                            
                                            
                                            

 

  3,4452 2700 

3204  

                                            
                                            
                                           

 

  3,2112 1750 

7813  

                                            
                                            
                                            

 

  2,9186 1800 

19883  
                                            
                                            

 

  2,4926 1850 

25400  
                                            
                                           

 

  2,3452 1750 

36779  
                                            
                                            

 

  2,0526 1800 

45654  
                                            
                                           

 

  1,8186 850 

57730  
                                           

 

  1,3926 900 
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62333  
                                           

 

  1,1 950 

 

Each agent-based organization has been simulated for failure rates ranging from 0 to 

100% for 1000 system executions. Comparison of Figure 19 and Figure 20 reveals a 

difference among the agent-based organization configurations, thereby rendering it possible 

to offer important remarks about the claim, “the higher the organization score (i.e., the oaf 

function), the better the performance of the organization.”[115]. First, it is not always the 

rule that the higher the oaf function score, the better the performance of the agent-based 

organization. For instance, Figure 19 displays a scenario where an agent-based 

organization, i.e., Sol. # 1988313, with an oaf value of  = 2,4926 and the cost of $1850 

performing equally well when compared to the best agent organization, i.e., Sol. # 114, with 

an oaf value of = 4,3112 and the cost of $2700. Notice that, the best agent organization is 

the maximal structure of the PNS problem generated by algorithm           .  

 

Also, Figure 20 demonstrates another scenario where an agent-based organization, 

i.e. Sol. #7183, with an oaf value of  = 2.9186 and the cost of $1800, is outperformed15 by 

other agent-based organizations, i.e. Sol. #25400 and Sol. #57730; with oaf values of  = 

2.3452 and  = 1.3926 ; and, the costs of $1800, and $900; respectively.  

                                                 
13

 media ẋ = 63.16 and standard deviation =41.84 after 1000 system executions. 

14
 media ẋ = 64.44 and standard deviation =41.35 after 1000 system executions. 

15
 This behavior emerges when the capability failure rate ranges from 30% through 70%. 
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Figure 19. Comparison of Sol. #1 and Sol. # 19883. 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1 10 19 28 37 46 55 64 73 82 91 100 

Su
cc

e
ss

 R
at

e
 (

%
) 

Capability Failure Rate (%) 

Sol. #1 Sol. #19883 



78 

 

 

Figure 20. Comparison of Sol. #7813, Sol. #25400, and Sol. #57730. 

 

 3.5 Modeling Organization-based Multiagent Systems via Absorbing-

Markov Chains 

 

In order to effectively capture the expected behavior of an organizational-based 

multiagent-system in design phase, a modified version of OMACS is introduced. These 

modifications allow us to capture the key concepts to modeling the reliability of an 

organization-based multiagent system under design. As results, two new algorithms are 

specified:                   and                
. The goals of these two 

algorithms are: (i) the transformation of an OMACS design model into a relaxed PNS 

problem, and (ii) the transformation of an organization-based multiagent system assignment 
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set,       , into an absorbing-markov chain,        , and, subsequently, the computation 

of  its steady state,   
   

 [40]. 

 

 3.5.1 Modified Version of OMACS 

 

Figure 21 shows the modified, and simplified, version of OMACS. The most 

significant changes are: (i)          function has been modified; (ii)         function has 

been removed; and, (iii) functions          ,          , and     have been replaced by 

functions               ,                  and         
, respectively. These changes 

are briefly described in what follows. 

        , a function that assumes a role in       , thereby yielding a set of goals 

(        ,                 , defines the set of goals achieved by that role);  

              , a function with an agent in        and a capability in        as inputs 

yields a positive real number in the range of [0,1] (              ,                 

     , defines the ability of an agent´s capability to function under stated conditions for a 

specified period of time,  );                 , a function whose inputs are an agent in 

      , a role in       , a goal in        and generates an output, which is a positive 

real number greater than or equal to   and less than or equal to   (                , 

                              , defines the reliability of an agent to play a role to 

achieve a goal), thus giving rise to 

 

                           

 
 
 

 
                     

                      

                

           
  

(3.10) 

 

Finally, the selection of        from the set of assignments,                 , is 

defined by the organization’s reorganization function,         
, that assumes a set of 

assignments in       , thereby yielding a positive real number in the range of       

(        
,                , defines the overall reliability of the agent´s organization 
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in terms of a proposed set of assignments, i.e.,       ), thus resulting in algorithm 

               
 (seeFigure 26). 

 

RoleGoal Agent

Capability
requires

asgmtReliability

score : [0..1]

Organization

fOMACS : set(asgmtReliability)

RSfOMACS : [0..1]

achieves

capReliability

score : [0..1]

 

Figure 21. Modified version of the OMACS Meta-model. 

 

 By adopting the modified version OMACS, the CRST problem can be represented as 

shown in Figure 22.  
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Figure 22. View of the CRST Organization by adopting the modified version of the 

OMACS meta-model.  

 

 3.5.2 Algorithm                   

The aim of algorithm                   is to transform and organization-

based multiagent systems design model, following the modified OMACS meta-model 

previously introduced, into a relaxed PNS problem. By relaxed, we mean, a PNS problem 

where the constraints are not important as the network model of the PNS problem by itself. 

Figure 23 shows the different steps of algorithm                  . A couple of 

difference can be noted between algorithms                   and            

(see Figure 17). The first difference relies on the fact that one operating unit, i.e., 

            , requires as input all the goals of the systems materials. In this way, 

unfeasible solutions are not generated by algorithm SSG. The second difference can be 

clearly seen when the constraint of the different operating units, raw material, and final 

product are not taken into account in the resultant PNS problem. As result, Figure 24 shows 

the resultant network structure of the given PNS problem. As mentioned before, the 

network representation of the PNS problem, by itself, is of our interest for assessing 

organization-based multiagent system design model. 
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Figure 23. Algorithm OMACStoRelaxedPNS written in Pidgin Algol (see Appendix C). 

 

 

 

𝐢𝐧𝐩𝐮𝐭: 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝐴𝑂𝑀𝐴𝐶𝑆 , 𝑅𝑂𝑀𝐴𝐶𝑆 , 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭:  𝐺𝑂𝑀𝐴𝐶𝑆  defines the goals of the organizations, 𝑅𝑂𝑀𝐴𝐶𝑆  defines a set of roles, 𝐴𝑂𝑀𝐴𝐶𝑆  is a set of  

agents, 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 defines the set of goals achieved by a role,  𝑅𝑂𝑀𝐴𝐶𝑆 → ℘ 𝐺𝑂𝑀𝐴𝐶𝑆   , 𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

the ability of an agent´s capability to function under stated conditions for a specified period of time, 𝑡  
 𝐴𝑂𝑀𝐴𝐶𝑆 × 𝐶𝑂𝑀𝐴𝐶𝑆 →  0 … 1  , and 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 defines the set of capabilities required to play a role  
 (𝑅𝑂𝑀𝐴𝐶𝑆 → ℘(𝐶𝑂𝑀𝐴𝐶𝑆 )).  
𝐨𝐮𝐭𝐩𝐮𝐭: sets 𝑃, 𝑅, 𝑂 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝑅 ⊂ 𝑀, 𝑃 ⊂ 𝑀, 𝑅 ∩ 𝑃 = ∅ 
𝐛𝐞𝐠𝐢𝐧 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: initialization part of the algorithm; 
𝐬𝐭𝟏:     𝑀 ∶= 𝑀 ∪  𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑔𝑜𝑎𝑙 ; 
𝐬𝐭𝟐:     𝑃 ∶= 𝑃 ∪ {𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑔𝑜𝑎𝑙}; 
𝐬𝐭𝟑:     𝑎𝑢𝑥 ∶= ∅; 
𝐥𝐩𝟏:    𝐟𝐨𝐫 𝑎𝑖  ∈ 𝐴𝑂𝑀𝐴𝐶𝑆  𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 
                        𝑅 ∶= 𝑅 ∪ {𝑎𝑖}; 𝑀 ∶= 𝑀 ∪  𝑎𝑖 ; 
           𝐞𝐧𝐝; 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: construction part of the algorithm; 
𝐥𝐩𝟐:    𝐟𝐨𝐫 𝑔𝑗  ∈ 𝐺𝑂𝑀𝐴𝐶𝑆  𝐝𝐨 

            𝐛𝐞𝐠𝐢𝐧 

                        𝑀 ∶= 𝑀 ∪  𝑔𝑗  ; 𝑎𝑢𝑥 ∶= 𝑎𝑢𝑥 ∪ {𝑔𝑗 };  

            𝐞𝐧𝐝; 

𝐬𝐭𝟒:   𝑠𝑦𝑠𝑡𝑒𝑚_𝑔𝑜𝑎𝑙𝑠 ≔   𝑎𝑢𝑥 ,  𝑜𝑣𝑒𝑟𝑎𝑙𝑙_𝑔𝑜𝑎𝑙  ; 𝑂 ∶= 𝑂 ∪  𝑠𝑦𝑠𝑡𝑒𝑚_𝑔𝑜𝑎𝑙𝑠 ; 

𝐥𝐩𝟑:    𝐟𝐨𝐫 𝑎𝑖  ∈ 𝐴𝑂𝑀𝐴𝐶𝑆  𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 
                        𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= ∅; 

                        𝐟𝐨𝐫  𝑎′, 𝑐, 𝑣𝑎𝑙𝑢𝑒′  ∈ 𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐝𝐨 
                        𝐛𝐞𝐠𝐢𝐧 
                                    𝐢𝐟 𝑎′ = 𝑎𝑖  𝐭𝐡𝐞𝐧 
                                         𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

∶= 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖
∪ {𝑐}; 

                                    𝐞𝐧𝐝; 
                        𝐞𝐧𝐝; 
            𝐟𝐨𝐫  𝑟𝑘 , ℘(𝑐)  ∈ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝐝𝐨 
            𝐛𝐞𝐠𝐢𝐧 
                        𝐢𝐟 ℘ 𝑐 ⊆ 𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑎𝑖

 𝐭𝐡𝐞𝐧 

                             𝑎𝑢𝑥 ≔ ∅; 
                             𝐟𝐨𝐫  𝑟′′ , ℘ 𝑔   ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨         
                             𝐛𝐞𝐠𝐢𝐧 
                                         𝐟𝐨𝐫 𝑔𝑗 ∈ ℘ 𝑔  𝐝𝐨 

                                         𝐛𝐞𝐠𝐢𝐧 
                                                     𝐢𝐟 𝑟𝑘 = 𝑟′′  𝐭𝐡𝐞𝐧 

                                                         𝑀 ∶= 𝑀 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 };  𝑎𝑖_𝑟𝑘_𝑔𝑗 ≔   𝑎𝑖_𝑟𝑘_𝑔𝑗  , {𝑔𝑗 } ; 

                                                         𝑎𝑢𝑥 ∶= 𝑎𝑢𝑥 ∪ {𝑎𝑖_𝑟𝑘_𝑔𝑗 };  𝑂 ∶= 𝑂 ∪  𝑎𝑖_𝑟𝑘_𝑔𝑗  ; 

                                                     𝐞𝐧𝐝; 
                                                     𝐢𝐟 𝑎𝑢𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝐭𝐡𝐞𝐧 

                                                          𝑎𝑖_𝑟𝑘 ≔   𝑎𝑖 ,  𝑎𝑢𝑥   ; 𝑂 ∶= 𝑂 ∪ {𝑎𝑖_𝑟𝑘}; 

                                                     𝐞𝐧𝐝; 
                                         𝐞𝐧𝐝; 
                             𝐞𝐧𝐝; 
            𝐞𝐧𝐝; 
𝐞𝐧𝐝; 
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 3.5.3 Algorithm 

                

 

The aim of 

algorithm 

               
 is to 

transform an 

organization-based 

multiagent system 

assignment set, 

      , into an 

absorbing-markov 

chain,        , and 

compute its steady 

state,   
   

 (refer to 

Appendix D). That is to 

say, algorithm 

               
 is to 

evaluate whether or not 

an assignment set in 

       leads the 

organization-based 

multiagent system into 

one of the absorbing 

states, i.e., either the 

agents’ organization 

achieve all its goals (success state) or fails to (failure state). Figure 25 shows the steps 

required for algorithm                
 to assess every feasible assignment set in 

      . 

 

 Figure 24. Maximal structure for the hypothetical relaxed example. 
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Figure 25. Steps required for assessing organization-based multiagent system design 

model via the algorithm                . 

 

Algorithm                
, see Figure 26, comprises three mayor parts, the 

initialization, the recursion, and the calculation of the steady state,   
   
  of        . The 

initialization part (statements    ,    ,    ,    , and    ) specifies the sets for storing both 

the absorbing and transient states of        . The recursion part (statement    ) specifies 

        by describing its state space,  , based upon the assignment set,       . Finally, 

the calculation part (statements    ,    ,    ,     ,     ,     ,     ,     , and loop 

     ) computes   
   

 (refer to Figure D.3 in Appendix D). In what follows, a couple of 

iterations of algorithm                
 are presented as illustration. 

 

Initially, variable   is assigned the integer value 1. n keeps track of the total number 

of states in  . Subsequently, sets   ,   ,   , and   are assigned the empty set. That is, 

    ,     ,     , and    . In that order,    stores pairs of the form               , 

where            symbolizes the transition probability from state   to state        . State 
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        symbolizes the accomplishments of the multiagent systems16.    collects pairs of 

the form               , where            denotes the transition probability from state   to 

state        . State         represents failure of the organization-based multiagent 

systems17.    stores pairs of the form            , where     means the transition probability 

between transient states   to    and,   collects pairs of the form            , where        

specifies the name of state   in   of        . Valid state names can be:        ,        , 

or      . Where state       symbolizes agent    is still available in the system and goal 

   must be accomplished. Subsequently, recursive procedure          is invoked. The 

outcome of this recursive procedure is an absorbing markov chain, i.e.,          (see 

Figure 27). 

 

Depending on the cardinality of        and       , procedure          

evaluates three cases (see Figure 27): First, if            and           , the 

transition probability is calculated as the system reliability of a simple series system (see 

Appendix E). That is to say, the reliability that one agent, in       , achieves the entire set 

of goals, in       , thru a set of roles, in       , is equivalent to the product of the best 

assignment            for each          ,          , and          , where 

                       and           . Hence, the basic equation for this case is: 

 

 

 

              
                                      

                                               

   

                                             

(3.11) 

 

                                                 
16

 In other words, the agents’ organization is able to achieve its goals. 

17
 In other words, the agents’ organization is not able to achieve its goals.  
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Second, if            and           , the transition probability is calculated 

as the system reliability of a simple parallel system (see Appendix E). Particularly, the 

reliability that more than one agent, in       , achieves one goal, in       , thru a set of 

roles, in       , is equivalent to the product of the best assignment            for each 

         ,          , and          , where                        and 

          . Thus, the basic equation for this case is: 

 

              
   

 

  
 

                               

                               

  

                               

  
 

 

(3.12) 

 

and, the probability of failure is defined as follows 

 

              
                 

 (3.13) 

 

Finally, if both            and           , the system is considered neither 

series nor parallel. Therefore, the transition probability is calculated as the product of a 

finite set of mutually independent events, where each event can be either an agent 

achieving a given goal or failing to accomplish it. Notice that, first case 1, i.e.,          

  and            , and second case, i.e.,            and            , are the base 

cases of this sub-procedure; while third case, i.e.,            and            , is the 

recursive case. 

For the sake of the hypothetical example, since the CRST system is composed of 

three agents, i.e.,           , whose aim is to accomplish four goals, i.e.,           , 

sub-procedure                 is first called
18

 (Figure 28). Consequently, an optimal 

assignment set,             , is generated by invoking procedure                   

(Figure 29).              contains the best possible assignments            for the given 

                                                 
18

 First invocation of sub-procedure NonSerParalSyst. 
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sets       ,       , and       . For computing             , procedure 

                  evaluates for each           and           the best    

       by calculating the assignment reliability of   ,   , and    (see Eq. 3.10).  

 

  

Figure 26. Algorithm                 written in Pidgin (see Appendix C). 

 

𝐢𝐧𝐩𝐮𝐭: 𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆   
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: 𝐴𝑂𝑀𝐴𝐶𝑆  a set of agents, 𝐺𝑂𝑀𝐴𝐶𝑆  a set of Goals 
𝐨𝐮𝐭𝐩𝐮𝐭: the reliability, 𝑅𝑆𝜙𝑂𝑀𝐴𝐶𝑆  

, of 𝜙𝑂𝑀𝐴𝐶𝑆   

𝐠𝐥𝐨𝐛𝐚𝐥 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞𝐬: 𝑆𝑆 , 𝑆𝐹 , 𝑆𝑇 , 𝑆, 𝑛, 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑝𝑜𝑠𝑠𝑒𝑠𝑠𝑒𝑠, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠, 𝑅𝑂𝑀𝐴𝐶𝑆 , 𝜙𝑂𝑀𝐴𝐶𝑆  
𝐜𝐨𝐦𝐦𝐞𝐧𝐭:  𝑆 is the state space of 𝑃𝑚𝑎𝑟𝑘𝑜𝑣 , set 𝑆𝑆 stores elements  of the form  
 𝑖, 𝑝𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠  , where 𝑝𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠  represents the transition probability from state i to  
state 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 set 𝑆𝐹 stores elements  of the form  𝑖, 𝑝𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  , where 𝑝𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  represents  

the transition probability from state i to state 𝑓𝑎𝑖𝑙𝑢𝑟𝑒; and; 𝑆𝑇  stores elements of the  
form  j,  i, pij  , where 𝑝𝑖𝑗  represents the transition probability between transient  

states 𝑖 to 𝑗. 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 assumes a role in 𝑅𝑂𝑀𝐴𝐶𝑆  yielding a set of goals  𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠, 𝑅𝑂𝑀𝐴𝐶𝑆 →

  𝐺𝑂𝑀𝐴𝐶𝑆   ,  𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 defines the set of capabilities required to play a role  𝑅𝑂𝑀𝐴𝐶𝑆 →

℘ 𝐶𝑂𝑀𝐴𝐶𝑆   , 𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 defines the ability of an agent´s capability to function under  

stated conditions for a specified period of time, 𝑡 (𝑐𝑎𝑝𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝐴𝑂𝑀𝐴𝐶𝑆   𝑥 𝐶𝑂𝑀𝐴𝐶𝑆 → 

[0,1]); 𝑅𝑂𝑀𝐴𝐶𝑆  a set of roles,  𝜙𝑂𝑀𝐴𝐶𝑆  defines the set of  agent − role − goal tuples  
 𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘 , indicating that agent 𝑎𝑖 𝐴𝑂𝑀𝐴𝐶𝑆   has been assigned to play role 𝑟𝑗 𝑅𝑂𝑀𝐴𝐶𝑆   

in order to achieve goal 𝑔𝑘 𝐺𝑂𝑀𝐴𝐶𝑆  (𝜙𝑂𝑀𝐴𝐶𝑆  is a subset of all the potential assignments 
of agents to play roles to achieve goals);   
 
𝐛𝐞𝐠𝐢𝐧 
𝐬𝐭𝟏:    𝑛 ∶= 1; 
𝐬𝐭𝟐:    𝑆𝑆 ∶= ∅; 
𝐬𝐭𝟑:    𝑆𝐹 ∶= ∅; 
𝐬𝐭𝟒:    𝑆𝑇 ∶= ∅; 
𝐬𝐭𝟓:    𝑆 ∶= ∅; 
𝐬𝐭𝟔:    𝑨𝑴𝑪 − 𝑺𝒑𝒆𝒄(𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝑛 − 1); 
𝐬𝐭𝟕:    𝑆𝑆 ∶=  𝑆𝑆  ∪    𝑛, 1  ; 
𝐬𝐭𝟖:    𝑆𝑆 ∶= 𝑆𝑆  ∪    𝑛 + 1,0  ; 
𝐬𝐭𝟗:    𝑆𝐹 ∶=  𝑆𝐹  ∪    𝑛, 0  ; 
𝐬𝐭𝟏𝟎:    𝑆𝐹 ∶= 𝑆𝐹  ∪    𝑛 + 1,1  ; 
𝐬𝐭𝟏𝟏:    𝑥[1: 𝑛 + 2]; 
𝐬𝐭𝟏𝟐:    𝑥[1] = 1; 
𝐬𝐭𝟏𝟑:    𝛿 ≔ 1 − 𝑥[𝑛 + 1]; 
𝐬𝐭𝟏𝟒:    ε = 0.000001; 
𝐥𝐨𝐨𝐩𝟏:   𝐰𝐡𝐢𝐥𝐞 𝛿 > ε 𝐝𝐨 
                 𝐛𝐞𝐠𝐢𝐧 
                             𝑣 = 𝑥[𝑛 + 1]; 
                             𝑥 ∶= 𝒎𝒂𝒕𝒓𝒊𝒙𝑷𝒓𝒐𝒅𝒖𝒄𝒕(𝑆𝑇 , 𝑆𝑆 , 𝑆𝐹 , 𝑥); 
                 𝑒𝑟𝑟𝑜𝑟 ≔  𝑥 𝑛 + 1 − 𝑣 ; 
                 𝐞𝐧𝐝; 
𝐬𝐭𝟏𝟓:    𝑅𝑆𝜙𝑂𝑀𝐴𝐶𝑆  

 ≔  𝑥 𝑛 + 1 ; 

𝐞𝐧𝐝; 
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Figure 27. Procedure AMC-Spec. 

 

As result, matrix              
 is created 

 

             
  

                                                                        

                                                                        

                                                                        

  

 

It can be noted that, the structure of matrix              
 is given by  

             
  

                                                 

   
                                                 

                    

             
  

                                                 

   
                                                 

                    

 

 

 

 

 

 

𝐜𝐨𝐦𝐦𝐞𝐧𝐭:  𝑝𝑎𝑟𝑒𝑛𝑡 captures the current state 𝑖, in 𝑆, such 𝑝𝑖𝑗 , probability transition, from  

state 𝑖 to state 𝑗 can be computed 
𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑨𝑴𝑪 − 𝑺𝒑𝒆𝒄(𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆 , 𝑝𝑎𝑟𝑒𝑛𝑡): 
𝐛𝐞𝐠𝐢𝐧 
𝐬𝐭𝟏:    𝐢𝐟  𝐴𝑂𝑀𝐴𝐶𝑆 = 1 &  𝐺𝑂𝑀𝐴𝐶𝑆  ≥ 1 𝐭𝐡𝐞𝐧 
            𝐛𝐞𝐠𝐢𝐧 
                       𝐠𝐨 𝐭𝐨 𝑺𝒆𝒓𝒊𝒆𝒔𝑺𝒚𝒔𝒕𝒆𝒎; 
            𝐞𝐧𝐝; 
            𝐞𝐥𝐬𝐞 𝐢𝐟  𝐴𝑂𝑀𝐴𝐶𝑆  > 1 &  𝐺𝑂𝑀𝐴𝐶𝑆  = 1 𝐭𝐡𝐞𝐧 
            𝐛𝐞𝐠𝐢𝐧 
                       𝐠𝐨 𝐭𝐨 𝑷𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝑺𝒚𝒔𝒕𝒆𝒎; 
            𝐞𝐧𝐝; 
            𝐞𝐥𝐬𝐞  
            𝐛𝐞𝐠𝐢𝐧 

          𝐠𝐨 𝐭𝐨 𝑵𝒐𝒏𝑺𝒆𝒓𝑷𝒂𝒓𝒂𝒍𝑺𝒚𝒔𝒕; 
            𝐞𝐧𝐝; 
𝐞𝐧𝐝; 
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Figure 28. Procedure                 written in Pidgin (see Appendix C). 

𝑵𝒐𝒏𝑺𝒆𝒓𝑷𝒂𝒓𝒂𝒍𝑺𝒚𝒔𝒕 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
≔ 1.0; 

 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 ≔ 𝒐𝒑𝒕𝒊𝒎𝒂𝒍𝑨𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕𝒔(𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆 ); 

 𝐴𝑂𝑀𝐴𝐶𝑆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
≔ ℘ 𝐴𝑂𝑀𝐴𝐶𝑆  ; 

 𝐟𝐨𝐫 𝐴𝑂𝑀𝐴𝐶𝑆 𝑠𝑢𝑐𝑐𝑒𝑒𝑑
∈ 𝐴𝑂𝑀𝐴𝐶𝑆𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

 𝐝𝐨 

 𝐛𝐞𝐠𝐢𝐧 
  𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

≔ 𝐴𝑂𝑀𝐴𝐶𝑆 ; 

𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
≔ 𝐺𝑂𝑀𝐴𝐶𝑆 ; 

𝐴𝑂𝑀𝐴𝐶𝑆 𝑓𝑎𝑖𝑙𝑒𝑑
≔ 𝐴𝑂𝑀𝐴𝐶𝑆 \𝐴𝑂𝑀𝐴𝐶𝑆 𝑠𝑢𝑐𝑐𝑒𝑒𝑑

; 

  𝐟𝐨𝐫 𝑎𝑠 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝑠𝑢𝑐𝑐𝑒𝑒𝑑
 𝐝𝐨 

𝐛𝐞𝐠𝐢𝐧 

 𝐟𝐨𝐫  𝑎𝑠
′ , 𝑟𝑗 , 𝑔𝑘 , 𝑣𝑎𝑙𝑢𝑒  ∈ 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠  𝐝𝐨 

 𝐛𝐞𝐠𝐢𝐧 

  𝐢𝐟  𝑎𝑠 = 𝑎𝑠
′  𝐭𝐡𝐞𝐧 

  𝐛𝐞𝐠𝐢𝐧 

   𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
≔ 𝐺𝑂𝑀𝐴𝐶𝑆 − {𝑔𝑘}; 

   𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
≔ 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

∗ 𝑣𝑎𝑙𝑢𝑒; 

  𝐞𝐧𝐝; 
   
 𝐞𝐧𝐝; 

𝐞𝐧𝐝; 

  𝐟𝐨𝐫 𝑎𝑓 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆 𝑓𝑎𝑖𝑙𝑒𝑑
 𝐝𝐨 

  𝐛𝐞𝐠𝐢𝐧 
   𝐟𝐨𝐫  𝑎𝑓

′ , 𝑟𝑗 , 𝑔𝑘 , 𝑣𝑎𝑙𝑢𝑒  ∈ 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠  𝐝𝐨 

   𝐛𝐞𝐠𝐢𝐧 
    𝐢𝐟  𝑎𝑓 = 𝑎𝑓

′  𝐭𝐡𝐞𝐧 

    𝐛𝐞𝐠𝐢𝐧 
     𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

≔ 𝐴𝑂𝑀𝐴𝐶𝑆 − {𝑎𝑓}; 

     𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
≔ 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

∗ (1 − 𝑣𝑎𝑙𝑢𝑒); 

    𝐞𝐧𝐝; 
   𝐞𝐧𝐝; 
  𝐞𝐧𝐝; 
 𝐢𝐟  |𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

| > 0 ∧ |𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
| = 0 𝐭𝐡𝐞𝐧 

 𝐛𝐞𝐠𝐢𝐧 𝑆𝑆 = 𝑆𝑆  ∪  𝑝𝑎𝑟𝑒𝑛𝑡, 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
 ;  𝐞𝐧𝐝; 

 𝐢𝐟  |𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
| = 0 ∧ |𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

| > 0 ∨  𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠  = 0 𝐭𝐡𝐞𝐧 

 𝐛𝐞𝐠𝐢𝐧 𝑆𝐹 = 𝑆𝐹  ∪  𝑝𝑎𝑟𝑒𝑛𝑡, 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
 ;   𝐞𝐧𝐝; 

 𝐢𝐟  |𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
| > 0 ∧ |𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

| > 0 ∧  𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠  > 0 𝐭𝐡𝐞𝐧 

 𝐛𝐞𝐠𝐢𝐧 
  𝐢𝐟  𝑖, {𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

∪ 𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
} ∈ 𝑆 𝐭𝐡𝐞𝐧 

  𝐛𝐞𝐠𝐢𝐧 𝑆𝑇 = 𝑆𝑇 ∪  𝑖, 𝛾 ∪ {𝑝𝑎𝑟𝑒𝑛𝑡, 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
}  𝐞𝐧𝐝; 

  𝐞𝐥𝐬𝐞 𝐛𝐞𝐠𝐢𝐧 
  𝑆𝑇 = 𝑆𝑇  ∪  𝑛, 𝛾 ∪ {𝑝𝑎𝑟𝑒𝑛𝑡, 𝑅𝑆𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

} ; 

  𝑆 = 𝑆 ∪  𝑛, {𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
∪ 𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

} ; 

  𝑛 = 𝑛 + 1; 
  𝑨𝑴𝑪 − 𝑺𝒑𝒆𝒄(𝐴𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦

, 𝐺𝑂𝑀𝐴𝐶𝑆𝑐𝑜𝑝𝑦
, 𝑛 − 1); 

      𝐞𝐧𝐝; 
 𝐞𝐧𝐝; 
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Thereafter, the Hungarian method [68,69,79] is called with matrix              
 as 

input. The purpose of the Hungarian method in our approach is to guarantee, at each step, 

the selection of the best assignment of a set of agents to a set of goals thru a set of roles. 

Accordingly, an optimal assignment or minimum matching,             , is obtained. That 

is,                                                                               . This 

minimum matching indicates that agent    should play role    in order to achieve goal    

with a probability of success, i.e., reliability, of 0.075; agent    should play role    in order 

to achieve goal    with a reliability of 0.245; and, agent    should play role    in order to 

achieve goal    with a reliability of 0.0072. Afterwards, sub-procedure                 

creates set                , which represents all subsets of       ; such that, every 

element in                 symbolizes the combination of agents who are still operative, 

i.e., are not broken and not undergoing repair, in order  to achieve the goals of the system. 

Thus,                =                                                     19.  

 

Afterwards, for each set in                , copies of        and        are 

created, i.e.,            and           , respectively. Set            stores the group of 

agents who do not fail to achieve their goals, and set            stores the group of goals 

which are still available to be accomplished. Assuming the ordering of                 

presented above, where            is the first combination of agents who succeed in 

achieving their goals, the reliability of the optimal assignment,               
is computed. 

Because every agent in            is assigned a goal in             20,               
 

                                                                                . 

Hence,               
                  , which gives rise to               

 

        . Since                        , it implies that goals   ,   , and    are 

achieved; therefore removed from           . Afterwards, sub-procedure 

                                                 
19

 Notice that, eight different state transitions are to be evaluated (see Figure 40). 

20
 Recall that at this point of the computation  
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                based upon the size of sets           ,           , and             , 

checks if the system has reached either a success state, a failure state, or a transient state. 

 

 

Figure 29. Procedure                   written in Pidgin (see Appendix C). 

 

Since               , i.e.,                      ,  and               , i.e., 

               , and                 , a new transient state of the system is created, 

i.e.,            ., and its corresponding transition probability is to be updated21. 

                                                 
21

 The system either has not succeed or failed to achieve its given set of goals. 

𝐨𝐮𝐭𝐩𝐮𝐭: an optimal assignment set of 𝜙𝑂𝑀𝐴𝐶𝑆 , i. e. , 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠  

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝒐𝒑𝒕𝒊𝒎𝒂𝒍𝑨𝒔𝒔𝒊𝒈𝒏𝒎𝒆𝒏𝒕(𝐴𝑂𝑀𝐴𝐶𝑆 , 𝐺𝑂𝑀𝐴𝐶𝑆 ): 
𝐛𝐞𝐠𝐢𝐧 
𝐬𝐭𝟏:    𝑖 ≔ 1; 
𝐬𝐭𝟐:    𝑗 ≔ 1; 
𝐬𝐭𝟑:    𝑀𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

 1:  𝐴𝑂𝑀𝐴𝐶𝑆    1:  𝐺𝑂𝑀𝐴𝐶𝑆   ; 

𝐥𝐩𝟏:    𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆  𝐝𝐨  
            𝐛𝐞𝐠𝐢𝐧 
                       𝐟𝐨𝐫 𝑔𝑘 ∈ 𝐺𝑂𝑀𝐴𝐶𝑆  𝐝𝐨  
                       𝐛𝐞𝐠𝐢𝐧 
                                  𝑟𝑜𝑙𝑒 ≔ ∅; 
                                  𝑀𝐴𝑋 ≔ −∞; 
                                  𝐟𝐨𝐫 𝑟𝑗 ∈ 𝑅𝑂𝑀𝐴𝐶𝑆  𝐝𝐨  

                                  𝐛𝐞𝐠𝐢𝐧 
                                              𝐟𝐨𝐫  𝑟𝑗

′ , 𝑔𝑘
′  ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨  

                                              𝐛𝐞𝐠𝐢𝐧 
                                                         𝐢𝐟 𝑟𝑗 = 𝑟𝑗

′  & 𝑔𝑘 = 𝑔𝑘
′  𝐭𝐡𝐞𝐧  

                                                         𝐛𝐞𝐠𝐢𝐧 
                                                                     𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 1.0; 
                                                                     𝐢𝐟  𝑎𝑖 , 𝑟𝑗 ,𝑔𝑘 ∈ 𝜙𝑂𝑀𝐴𝐶𝑆  𝐭𝐡𝐞𝐧  

                                                                     𝐛𝐞𝐠𝐢𝐧 
                                                                                𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 𝒂𝒔𝒈𝒎𝒕𝑹𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚(𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘); 

                                                                     𝐞𝐧𝐝; 
                                                                     𝐢𝐟 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 > 𝑀𝐴𝑋 𝐭𝐡𝐞𝐧  
                                                                     𝐛𝐞𝐠𝐢𝐧 
                                                                              𝑀𝐴𝑋 = 𝑟𝑒𝑎𝑙𝑖𝑏𝑖𝑙𝑖𝑡𝑦; 
                                                                              𝑟𝑜𝑙𝑒 =  {𝑟𝑗 }; 

                                                                     𝐞𝐧𝐝; 
                                                         𝐞𝐧𝐝; 
                                              𝐞𝐧𝐝; 
                                  𝐞𝐧𝐝; 
                                  𝐢𝐟 𝑟𝑜𝑙𝑒 = ∅ 𝐭𝐡𝐞𝐧  
                                  𝐛𝐞𝐠𝐢𝐧 𝑀𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

 𝑖  𝑗 =  𝑎𝑖 , 𝑟𝑜𝑙𝑒, 𝑔𝑘 , −∞ ; 

                                  𝐞𝐧𝐝; 
                                  𝐞𝐥𝐬𝐞  
                                  𝐛𝐞𝐠𝐢𝐧 𝑀𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

 𝑖  𝑗 =  𝑎𝑖 , 𝑟𝑜𝑙𝑒, 𝑔𝑘 , 𝑀𝐴𝑋 ; 

                                  𝐞𝐧𝐝; 
                       𝑗 ≔ 𝑗 + 1; 
                       𝐞𝐧𝐝; 
             𝑗 ≔ 1;  𝑖 ≔ 𝑖 + 1; 
            𝐞𝐧𝐝; 
            𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑠 ≔ 𝑯𝒖𝒏𝒈𝒂𝒓𝒊𝒂𝒏𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎(𝑀𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

); 

𝐞𝐧𝐝; 
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Consequently, state               is added to set  . Because                , 

sub-procedure                 updates sets   and    and variable  . Thus,     

               ,                         and    .  

 

Subsequently, the recursive procedure          is called again22, with 

parameter                  ,            ,  and             , i.e.,        

 . Since             and           , sub-procedure           (see Figure 30) is 

invoked and the transition probability is calculated as a simple parallel system where two 

cases are to be evaluated: success and failure. Hence, by Eq. 3.12,              
     

                                , which gives rise to              
 

        . Also, by Eq.3.13,               
           , which turns out in 

              
         . Hence, sets    and     are updated to 

                     and                      (see Figure 31).  

 

                                                 
22

 Second recursive call to this procedure. 
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Figure 30. Procedure           written in Pidgin (see Appendix C). 

 

a1a2a3g1g2g3g4
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0.001323

parent(0) n(1)

state(0)

parent(state(1)) n(2)

state(1)

SS
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parent(state(1))

0.351908

0.648092

SF

 

Figure 31. Branching of State 1, i.e.,             

 

 

𝑷𝒂𝒓𝒂𝒍𝑺𝒚𝒔𝒕 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 1.0;  
 𝐟𝐨𝐫 𝑔𝑘 ∈ 𝐺𝑂𝑀𝐴𝐶𝑆  𝐝𝐨  
 𝐛𝐞𝐠𝐢𝐧 
  𝑀𝐴𝑋 = ∞; 

𝐟𝐨𝐫  𝑟𝑗 , 𝑔𝑘
′  ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨 

𝐛𝐞𝐠𝐢𝐧 
 𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡 ≔ 1.0; 
 𝐢𝐟 𝑔𝑘 = 𝑔𝑘

′  𝐭𝐡𝐞𝐧 
 𝐛𝐞𝐠𝐢𝐧 
  𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆  𝐝𝐨 
  𝐛𝐞𝐠𝐢𝐧 
   𝐢𝐟  𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘  ∈ 𝜙𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠  𝐭𝐡𝐞𝐧           

   𝐛𝐞𝐠𝐢𝐧 
   𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡 ≔ 𝑎𝑠𝑔𝑚𝑡𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘); 

  𝐞𝐧𝐝; 
    𝐞𝐥𝐬𝐞 
    𝐛𝐞𝐠𝐢𝐧 

     𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡 ≔ 0.0; 

    𝐞𝐧𝐝; 
    𝐞𝐧𝐝;  

   𝐞𝐧𝐝;  
   𝐢𝐟 𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡 > 𝑀𝐴𝑋 𝐭𝐡𝐞𝐧  

   𝐛𝐞𝐠𝐢𝐧 

    𝑀𝐴𝑋 ≔ 𝑅𝑠𝑃𝑎𝑟𝑎𝑙𝑆𝑦𝑠𝑡; 
   𝐞𝐧𝐝;  

  𝐞𝐧𝐝;    

  𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑀𝐴𝑋; 
  𝐞𝐧𝐝;  

 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 1.0 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦; 

 𝑆𝑆 ∶= 𝑆𝑆  ∪  𝑝𝑎𝑟𝑒𝑛𝑡, 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ; 
 𝑆𝐹 ≔ 𝑆𝐹 ∪  𝑝𝑎𝑟𝑒𝑛𝑡, 1.0 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ; 
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Consequently, the next element in                 is evaluated, i.e.,        23. As 

result, the reliability of the optimal assignment,               
 is computed. Because 

          , 

              
                                                             

                          . Hence,               
                  , which gives 

rise to               
         . Because                      , it implies two 

things: first    failed to accomplished goal    thru role   , therefore removed from 

          , i.e..,                   ; and second, goals    and    are achieved; thus 

removed from           , i.e.,                   . Since               , i.e., 

                  ,  and               , i.e.,                   , a new transient 

state of the system is created, i.e.,            . Because {                 sets   

and    are updated to                                              and 

                                          . Additionally, variable   is updated to 

3, i.e.,    .  

 

Accordingly, the procedure          is invoked for second time with parameter 

              ,               ,  and              , i.e.,          . Notice 

that, the cardinality of        and        is greater than 1; therefore, sub-procedure 

                is invoked for second time (refer to Figure 28).  Consequently, an 

optimal assignment set,             , is generated for sets         and       . As a 

result, matrix              
  is created  

 

             
   

                                    

                                    
 . 

 

                                                 
23

 The content of set                  after the first invocation of sub-procedure NonSerParalSyst is 

                =                                                     . 
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Consequently, after invoking the Hungarian method, an optimal assignment or minimum 

matching,             , is obtained. That is, 

                                                    . Afterwards, sub-procedure 

                creates set                 (see Figure 28). Thus,                 = 

                               24. Consequently, for each set in                , copies of 

       and        are created, i.e.,            and           , respectively. Assuming 

the ordering of                 presented above, where         is the first combination of 

agents, the reliability of the optimal assignment,               
 is computed. Since every 

agent in         is assigned a goal in             25, 

              
                                                      . Hence, 

              
            , which gives rise to               

         . Because 

                    , it implies that goals    and    are achieved; therefore removed 

from           . Thus,             . Since,            is empty, this implies our 

system has reached a success state, therefore set    is updated to 

                                  . Aftrwards, the next element in                 

is evaluated, i.e.,     . As result, the reliability of the optimal assignment,               
 is 

computed. Because        ,               
                                

                           . Hence,               
            , which gives rise to 

              
         . Since                   , it implies two things: first    

failed to accomplished goal    thru role   , therefore removed from           , i.e.., 

               ; and second, goal    is achieved; thus removed from           , i.e., 

               . Since               , i.e.,                ,  and              

 , i.e.,                , a new transient state of the system is created, i.e.,      . 

Because {           sets   and    are updated to                   

                                                 
24

 Notice that, four different state transitions are to be evaluated (see Figure 40). 
25

 Recall that at this point of the computation, second call of procedure AMC-Spec,  
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                               and         

                                                      . Additionally, variable   is 

updated to 4, i.e.,    .  

 

Subsequently, the procedure          is invoked for third time with parameters 

           ,            ,  and              , i.e.,          . Since 

           and           , sub-procedure         is invoked and the transition 

probability is calculated as a simple series system where two cases are to be evaluated: 

success and failure. Hence, by Eq. 3.11,               
       . Also, by Eq. 3.13, 

              
        , which turns out in               

      . Hence, sets    and 

   are updated to                 and                 (see Figure 34). 

Consequently, the next element in                 is evaluated, i.e.,     . As result, the 

reliability of the optimal assignment,               
, is computed. Because        , 

              
                                                           . 

Hence,               
            , which gives rise to               

         . 

Because                   , it implies two things: first    failed to accomplished goal 

   thru role   , therefore removed from           , i.e..,                ; and second, 

goal    is achieved; thus removed from           , i.e.,                . Since 

              , i.e.,                ,  and               , i.e.,                , 

a new transient state of the system is created, i.e.,      . Because           sets   and 

   are updated to                                                       

     and                                                             

                   . Additionally, variable   is updated to 5, i.e.,    .  
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Figure 32. Procedure           written in Pidgin (see Appendix C). 

 

Accordingly, the procedure          is invoked for fourth time with parameters 

           ,            ,  and              , i.e.,          . Since 

           and           , sub-procedure              is invoked and two cases 

are to be evaluated: success and failure. Hence, by Eq. 3.11,               
       . Also, 

by Eq. 3.13,               
        , which turns out in               

      . Hence, 

sets    and    are updated to                 and                 (see Figure 34). 

Afterwards, the last element in                 is evaluated, i.e.,  . As result, the reliability 

of the optimal assignment               
 is computed. Because        ,               

 

                                                                 . Hence, 

              
                , which gives rise to               

         . 

𝑺𝒆𝒓𝑺𝒚𝒔𝒕 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 1.0;  
 𝐟𝐨𝐫 𝑔𝑘 ∈ 𝐺𝑂𝑀𝐴𝐶𝑆  𝐝𝐨  
 𝐛𝐞𝐠𝐢𝐧 

  𝑀𝐴𝑋 = ∞; 
𝐟𝐨𝐫  𝑟𝑗 , 𝑔𝑘

′  ∈ 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠 𝐝𝐨 

𝐛𝐞𝐠𝐢𝐧 

 𝑅𝑠𝑆𝑒𝑟𝑆𝑦𝑠𝑡 ≔ 1.0; 

 𝐢𝐟 𝑔𝑘 = 𝑔𝑘
′  𝐭𝐡𝐞𝐧 

 𝐛𝐞𝐠𝐢𝐧 

  𝐟𝐨𝐫 𝑎𝑖 ∈ 𝐴𝑂𝑀𝐴𝐶𝑆  𝐝𝐨 

  𝐛𝐞𝐠𝐢𝐧 

   𝐢𝐟  𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘  ∈ 𝜙𝑂𝑀𝐴𝐶𝑆  𝐭𝐡𝐞𝐧           

   𝐛𝐞𝐠𝐢𝐧 
   𝑅𝑠𝑆𝑒𝑟𝑆𝑦𝑠𝑡 ≔ 𝑎𝑠𝑔𝑚𝑡𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑎𝑖 , 𝑟𝑗 , 𝑔𝑘); 

  𝐞𝐧𝐝; 

    𝐞𝐥𝐬𝐞 

    𝐛𝐞𝐠𝐢𝐧 

     𝑅𝑠𝑆𝑒𝑟𝑆𝑦𝑠𝑡 ≔ 0.0; 
    𝐞𝐧𝐝; 

    𝐞𝐧𝐝;  

   𝐞𝐧𝐝;  
   𝐢𝐟 𝑅𝑠𝑆𝑒𝑟𝑆𝑦𝑠𝑡 > 𝑀𝐴𝑋 𝐭𝐡𝐞𝐧  

   𝐛𝐞𝐠𝐢𝐧  

    𝑀𝐴𝑋 ≔ 𝑅𝑠𝑆𝑒𝑟𝑖𝑒𝑠𝑆𝑦𝑠; 
   𝐞𝐧𝐝;  

  𝐞𝐧𝐝;    

  𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑀𝐴𝑋; 
 𝐞𝐧𝐝;  

 𝑆𝑆 = 𝑆𝑆  ∪  𝑝𝑎𝑟𝑒𝑛𝑡, 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ; 
 𝑆𝐹 = 𝑆𝐹  ∪  𝑝𝑎𝑟𝑒𝑛𝑡, 1.0 − 𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ; 
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Furthermore,               
                 

; hence,               
         . Since 

                    , it implies two things: first    and    failed to accomplished 

goals    and    thru roles    and   , respectively, therefore removed from           , i.e.., 

            ; and second, neither goal    nor goal    is achieved; thus            

       . Since,            is empty and            still contains elements, this implies 

that our system has reached a failure state, therefore set    is updated to          

                                                   (see Figure 34). The procedure 

described before is applied for the rest of the elements in                , i.e.,         

                        26. As result, Figure 35 - Figure 40 show the branching result of 

evaluating elements                                 and  , respectively. 

 

Finally, after computing sets   ,   , and   , algorithm                
 computes 

the steady state,   
   

, of         (steps    ,    ,    ,     ,     ,     ,     , and      

and loop    ).  First,                
 adds two new elements to set    (see Figure 41). 

That is,                                      (steps     and    , Figure 26). 

Similarly, Algorithm                
 adds two new elements to set    (see Figure 42). 

Namely,                                      (steps     and     , Figure 26). 

Consequently, algorithm                
 creates array  , which represents   

   
  with 

size    , i.e., 14. Afterward variable  , the result after the     iteration, and  , the 

accuracy of the result after    , are initialized. That is,     and           . 

Subsequently, algorithm                
 evaluates whether or not    . If true, 

algorithm                
 computes the product,  , of array    and         (see Figure 

33). It can be noted that         is implicitly constructed in terms of sets   ,   , and    

(Figure 43). Table 9 shows the resulting steady state of         after 3 iterations, i.e.,   
   

. 

Notice that the index of interest in   is 13, i.e., success state    . This state represents the 

reliability of the organization-based multiagent systems in terms of the assignment set 

                                                 
26

 First invocation of the procedure                  
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       under evaluation (step     , Figure 26). Thus, the reliability of the system is less 

than 1%, i.e.,     . Additionally, the unreliability of the system can be defined as follows 

        
           

 (3.13) 

 

Hence, with a probability of 99.4%, the current system configuration is prone to 

failure. 
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Figure 33. Procedure               written in Pidgin (see Appendix C). 

 

𝐢𝐧𝐩𝐮𝐭: 𝑆𝑆 , 𝑆𝐹 , 𝑆𝑇 , 𝑥 
𝐜𝐨𝐦𝐦𝐞𝐧𝐭: Set 𝑆𝑆  stores elements  of the form  𝑖, 𝑝𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠  , where 𝑝𝑖 𝑠𝑢𝑐𝑐𝑒𝑠𝑠  represents  
the transition probability from state 𝑖 to state 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 set 𝑆𝐹  stores elements  of the  
form  𝑖, 𝑝𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  , where 𝑝𝑖 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  represents the transition probability from state 𝑖 to  

state 𝑓𝑎𝑖𝑙𝑢𝑟𝑒; and; 𝑆𝑇  stores elements of the form 𝑗,  𝑖, 𝑝𝑖𝑗   , where 𝑝𝑖𝑗  represents the  

transition probability between transient states 𝑖 to 𝑗; and 𝑥 the probability vector of  

𝑃𝑀𝑎𝑟𝑘𝑜𝑣 , i. e. , 𝑥𝑛
(𝑘)

 

𝐨𝐮𝐭𝐩𝐮𝐭: 𝑥𝑛𝑒𝑤 , the probability vector of 𝑃𝑀𝑎𝑟𝑘𝑜𝑣 , i. e. , 𝑥𝑛
(𝑘+1)

   
 
𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝐦𝐚𝐭𝐫𝐢𝐱𝐏𝐫𝐨𝐝𝐮𝐜𝐭(𝑆𝑇 , 𝑆𝑆 , 𝑆𝐹 , 𝑥): 
𝐛𝐞𝐠𝐢𝐧 
𝐬𝐭𝟏:    𝑥𝑛𝑒𝑤  1: 𝑛 + 2 ; 
𝐬𝐭𝟐:    𝑟𝑝𝑖 ≔ ∅; 
𝐥𝐩𝟏:    𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑛 + 2 𝐝𝐨  
            𝐛𝐞𝐠𝐢𝐧 
                       𝑥𝑛𝑒𝑤  𝑖 ≔ 0;  
            𝐞𝐧𝐝; 
𝐥𝐩𝟐    𝐟𝐨𝐫 𝑖 = 1 𝐭𝐨 𝑛 𝐝𝐨  
           𝐛𝐞𝐠𝐢𝐧 
                       𝐢𝐟 𝑖 = 1 𝒕𝒉𝒆𝒏  
                       𝐛𝐞𝐠𝐢𝐧 
                                   𝑥𝑛𝑒𝑤  𝑖 ≔ 0;  
                                   𝑟𝑝𝑖 ≔ 𝑟𝑝𝑖 ∪  𝑖, 𝑥[𝑖] ;  
                       𝐞𝐧𝐝; 
                       𝐞𝐥𝐬𝐞 
                       𝐛𝐞𝐠𝐢𝐧 
                                   𝐢𝐟  𝑖, 𝛾  ∉ 𝑆𝑇  𝒕𝒉𝒆𝒏  
                                   𝐛𝐞𝐠𝐢𝐧 𝑥𝑛𝑒𝑤  𝑖 ≔ 0; 𝐞𝐧𝐝; 
                                   𝐞𝐥𝐬𝐞 
                                   𝐛𝐞𝐠𝐢𝐧 
                                              𝐢𝐟 𝑥 𝑖 ! = 0 𝐭𝐡𝐞𝐧  
                                              𝐛𝐞𝐠𝐢𝐧 𝑟𝑝𝑖 ≔ 𝑟𝑝𝑖 ∪  𝑖, 𝑥[𝑖] ;  𝐞𝐧𝐝; 
                                              𝐞𝐥𝐬𝐞 
                                              𝐛𝐞𝐠𝐢𝐧 
                                                         𝐟𝐨𝐫  𝑗, 𝑣𝑎𝑙𝑢𝑒  ∈ 𝛾 𝐝𝐨  
                                                         𝐛𝐞𝐠𝐢𝐧 𝑥𝑛𝑒𝑤  𝑖 ≔ 𝑥𝑛𝑒𝑤  𝑖 + (𝑥𝑛𝑒𝑤  𝑗 ∗ 𝑣𝑎𝑙𝑢𝑒); 𝐞𝐧𝐝; 
                                            𝐞𝐧𝐝; 
                                   𝐞𝐧𝐝; 
                       𝐞𝐧𝐝; 
            𝐞𝐧𝐝; 
𝐬𝐭𝟑:    𝑟𝑝𝑖 ≔ 𝑟𝑝𝑖 ∪  𝑛, 𝑥[𝑛] ; 
𝐬𝐭𝟒:    𝑟𝑝𝑖 ≔ 𝑟𝑝𝑖 ∪  𝑛 + 1, 𝑥 𝑛 + 1  ; 
𝐬𝐭𝟓:    𝑘 ≔ 𝑡𝑜𝑝; 
𝐬𝐭𝟔:    𝑠𝑢𝑚 ≔ 0.0; 
𝐥𝐩𝟑:    𝐟𝐨𝐫  𝑖, 𝑣𝑎𝑙𝑢𝑒𝑟𝑝𝑖  ∈ 𝑟𝑝𝑖 𝐝𝐨  

            𝐛𝐞𝐠𝐢𝐧 
                       𝐢𝐟  𝑖, 𝑣𝑎𝑙𝑢𝑒𝑆𝑆  ∈ 𝑆𝑆  𝒕𝒉𝒆𝒏  

                       𝐛𝐞𝐠𝐢𝐧 𝑠𝑢𝑚 ≔ 𝑠𝑢𝑚 + 𝑥 𝑖 ∗ 𝑣𝑎𝑙𝑢𝑒𝑆𝑆 ; 𝐞𝐧𝐝; 

            𝐞𝐧𝐝; 
𝐬𝐭𝟕:    𝑥𝑛𝑒𝑤 [𝑘] ≔ 𝑠𝑢𝑚; 
𝐬𝐭𝟖:    𝑘 ≔ 𝑘 + 1; 
𝐥𝐩𝟒:    𝐟𝐨𝐫  𝑖, 𝑣𝑎𝑙𝑢𝑒𝑟𝑝𝑖  ∈ 𝑟𝑝𝑖 𝐝𝐨  

            𝐛𝐞𝐠𝐢𝐧 
                       𝐢𝐟  𝑖, 𝑣𝑎𝑙𝑢𝑒𝑆𝐹  ∈ 𝑆𝐹  𝒕𝒉𝒆𝒏  

                       𝐛𝐞𝐠𝐢𝐧 𝑠𝑢𝑚 ≔ 𝑠𝑢𝑚 + 𝑥 𝑖 ∗ 𝑣𝑎𝑙𝑢𝑒𝑆𝐹 ;  𝐞𝐧𝐝; 

            𝐞𝐧𝐝; 
𝐬𝐭𝟗:    𝑥𝑛𝑒𝑤 [𝑘] ≔ 𝑠𝑢𝑚; 
𝐬𝐭𝟏𝟎:    𝑟𝑝𝑖 = ∅; 
𝐞𝐧𝐝; 
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Figure 34. Branching of State 2, i.e.,             
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Figure 35. Branching of State 3, i.e.,             
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Figure 36. Branching of State 7, i.e.,             
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Figure 37. Branching of State 10, i.e.,             
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Figure 38. Branching of State 11, i.e.,             
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Figure 39. Branching of State 12, i.e.,             
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Figure 40. Branching of one-step transition from initial State 0, i.e.       

                  , to State Failure  
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Figure 41. Structure of set    seen as an adjacent list 
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Figure 42. Structure of sets    and    seen as an adjacent list 
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Figure 43. Transition Matrix        . 
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Table 9. Probability distribution, after 3 iterations, given the initial probability vector, 

xn
(0)

, [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 

k                                               

success 

    

failure 

1 0,000 0,001 0,017 0,000 0,000 0,004 0,000 0,016 0,000 0,000 0,053 0,210 0,050 0,000 0,648 

2 0,000 0,000 0,000 0,001 0,004 0,000 0,000 0,000 0,004 0,001 0,000 0,000 0,000 0,004 0,986 

3 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,006 0,994 

 

 3.6 Assessment of Organization based Multi-agent System Design by the 

Absorbing Markov Chain Model Method 

 

To empirically evaluate the reliability of the different agent-based organization 

designs computed by algorithm                
, we have developed a simulation that 

steps through the design of a CRST application. To measure the system reliability, a 

Bernoulli process is followed [7]. For each assignment set,        (see Table 8), a 

randomly system goal, i.e.,          , is selected. Subsequently, the reliability of the 

best available assignment, i.e.,                             is calculated. The best 

assignment defines what is the reliability of an agent,          , for achieving a goal, 

            playing a role,           (see Eq. 3.10). Afterwards, 

                           is compared to a random variable  , which is uniformly 

distributed (Java 1.7.0_55 pseudo-random number generator).  If   is greater than 

                          , agent    is removed from       , it is assumed that    failed 

to achieve goal   ; otherwise,    is removed from       . This process will continue until 

either        or        is empty. If        is empty, 0 is returned; otherwise, 1 is 

returned. Noticed that 0 represents a success and 1 represents a failure for each trial. 5000 

trials are tested for the Bernoulli process. Finally, the resulting probability of success is 

calculated as average of the trials in order to level out variations caused by the random 

generator used to simulate success or failure of an assignment.  

 

Figure 44 reveals that the reliability of System #1 (refer to Figure 16) ranges 

between a max of        and a min of        with a media of          and a standard 
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deviation of        . As result, system # 1, in overall, can be considered faulty (see in 

Figure 16 the behavior of the first hundred configurations).  

 

 

Figure 44. Results for System 1 

 

Additionally, two other hypothetical CRST systems are specified: System #2 and 

system #3 (see Figure 45 and Figure 47). Figure 46 shows that the reliability of System #2 

ranges between a max of        and a min of        with a media of         and a 

standard deviation of        . As consequence, System #2, in overall, can also be 

considered faulty.  

 

Figure 45. Overview of the CRST Organization # 2.  
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Figure 46. Results for System 2 

 

Finally, Figure 48 illustrates the reliability of System #3, which ranges between a 

max of 97      and a min of         with a media of          and a standard 

deviation of        . Respectively, System #3, in overall, can be considered reliable. It 

can be noted that the reliability calculated of most of the subset of all the potential 

assignments,                
, is greater that 90%. These outcomes give rise to the 

formulation of new research questions. For example, why does the reliability of some 

assignment sets fall below a prescribed target value? This observation can be seen in Figure 

48 where roughly the reliability of 16/100 of the assignment set falls below 80%. 
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Figure 47. Overview of the CRST Organization # 3. 

 

 
Figure 48. Results for System #3. 
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Chapter 4. Conclusions and Recommendations for Future Work 

In this dissertation, two problems, building-evacuation route planning and 

organization-based multiagent systems, have been analyzed and modeled by resorting to the 

P-graph framework. What follows are the significant conclusions drawn as well as 

recommendations for future work. 

 

 4.1 Building-Evacuation-Route Planning 

 

An algorithmic method has been proposed for generating optimal building-

evacuation routes and n-best sub-optimal solutions for a building-evacuation problem. The 

method has been crafted by transforming a building-evacuation problem into a      

problem and solving it via the algorithms and software of the P-graph framework. The 

efficacy of the proposed method has been illustrated with several examples in which the 

optimal and sub-optimal evacuation routes emerge in ranked order by defining the objective 

function as the cost of reaching a safety point in time  , where 0     . The results 

obtained indicate that the proposed method outperforms current optimization models 

[41,42].  

 

Nevertheless, the computational performance of the proposed method should be 

compared to those of other generic commercial optimization tools, i.e., Cplex 

(http://goo.gl/375IV5) and Gams (http://goo.gl/kfZAyM), in terms of computational time 

and storage. This comparison should also include the appraisal of parallelized versions of 

the algorithm ABB as introduced in [101,111]. Moreover, a proof-of-concept system 

should be developed to assess the suitability of the proposed method in real-life scenarios 

where individuals are in constant movement inside the building, the building conditions are 

required to be captured periodically, and the behavior of the individual might be crucial in 

following directions [12,49,92]. In addition, other mathematical models, e.g., linear 

ordering, should be studied [2,12] to explore the possibility of enhancing the proposed 

method with some of the features characterizing such mathematical models. These features 

http://goo.gl/375IV5
http://goo.gl/kfZAyM
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include individual travel and exposure time as well as time-based risk and evacuation 

exposure [14,49,50]. 

 4.2 Modeling Organization-based Multiagent Systems Design 

 

The assessment of the n-best organizational-based multiagent system design based 

on the OMACS framework has been performed by deploying an algorithmic method. The 

method has been implemented by transforming an organizational-based multiagent system 

design into a     problem and solving it by means of the algorithms and software of the P-

graph framework.  

 

The algorithmic method has been illustrated with an instance in which the optimal 

and sub-optimal organizational-based multiagent system designs emerge in ranked order by 

defining the objective function as the cost of each design in terms of the oaf function, , 

(see Eq. 3). An optimal solution, however, does not always capture the expected behavior 

of the organizational-based multiagent system design. To amend this, a second method has 

been deployed, which is based on absorbing Markov chains and concepts pertaining to the 

field of systems reliability. The results obtained from both methods have been assessed by 

simulation. 

 

Finally, we propose the construction of a computational tool for transforming OMACS 

organizational-based multiagent systems into     problems. Our efforts in this regard will 

be the subject of future contributions. 
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Chapter 5. Summary of Accomplishments 

 5.1 Original Contributions 

 

 5.1.1Theses 

Based on the novel results and scientific contributions presented and illustrated by 

several case studies (either from the literature or hypothetical) in the previous chapters, the 

following theses represents the basic discoveries of the present dissertation. 

 

With regards to the building-evacuation –route planning problem, a method and 

software are proposed: 

 

1. The building-evacuation routes are represented by a P-graph, which gives 

rise to a time-expanded process-network-synthesis (    ) problem.  

 

2. A      problem takes into account the temporal dimension inherent to the 

building evacuation problem in terms of the evacuation time, specifically its 

upper bound  . 

 

3. A      problem can be algorithmically solved according to the P-graph 

framework, where each location and passage in the building are given by a 

set of attributed to be taken into the evacuation-route-planning. 

 

4. The evacuation time (which also let us computes the evacuation routes and 

scheduling of evacuees on each route) is calculated as a minimum cost of 

the corresponding     . 
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5. In addition to the globally optimal solution the P-graph framework provides 

the  -best sub-optimal solution. 

 

6. The validity of the proposed method and software is illustrated by several 

examples taken from the literature. 

 

With respect to the modeling organization-based multiagent systems problem: 

 

7. At the outset, the design of organization-based multiagent systems is 

proposed according to the framework of Organization Model for Adaptive 

Complex Systems (     ).  

 

8. This design model is transformed into a process-network model, i.e., P-

graph. The resultant process-network model in conjunction with the P-

graph-based methodology give rise to:  

 

a. the maximal structure of the process network, comprising all the 

combinatorially feasible structures, i.e.,      -based design 

configurations, capable of yielding the specified products from the 

specified raw material;  

b. every combinatorially feasible structure of the process of interest; 

and, 

c. the optimal structure of the network, i.e., the optimal      -based 

design configuration.  

 

9. In light of the tenet of a modeling-transformation-evaluation paradigm, an 

appraisal is made of the feasibility as well as the flexibility and cost of the 

optimal      -based design configuration obtained. However, the 

outcome of thesis 9 renders it possible to rule out thesis 8.c. That, it is not 

always the rule that the higher the cost of the OMACS-based design 

configuration, the better the performance of the agent-based organization. 
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To overcome this result, in this dissertation the algorithm 

               
 is introduced. 

 

10. The aim of algorithm                
 is to transform an organization-

based multiagent system assignment set,       , into an absorbing-markov 

chain,        , and compute its steady state,   
   

. That is to say, algorithm 

               
 is to evaluate whether or not        leads the 

organization-based multiagent system into one of the absorbing states, i.e., 

either the agents’ organization achieves all its goals (success state) or fails 

to (failure state). 

 

11. The validity of the proposed method and software is illustrated by 

examining a hypothetical example extracted from the literature. 
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Appendix A. Process-Network Synthesis (PNS) 

In a process system, raw materials are consumed through various transformations 

(e.g., chemical, physical, and biological) to desired products. Vessels where these 

transformations take place are called operating units of the process. A given set of 

operating units with likely interconnections can be portrayed as a network. 

 

The desired products can also be manufactured via some sub-networks of the above-

mentioned network. Thus, a given network may give rise to a variety of processes, or 

process networks, producing the desired products, and each of such process networks 

corresponds to a sub-network, that can be considered regarded as its structure. Energy and 

raw material consumption strongly depend on the selection of a process structure; thus, the 

optimal design of such a process structure, i.e., the process-network synthesis (PNS), or 

process synthesis in short, has both environmental and economic implications [1]. 

 

A number of methods has been developed for process synthesis [1]. These methods 

can be classified according to whether they are based on heuristics or algorithms, i.e., 

mathematical programming approaches. The majority, if not all, of these methods, 

however, may not be sufficiently effective for PNS of a realistic, or industrial scale, process 

because of its combinatorial complexity arising from the involvement of a large number of 

interconnected loops [1]. To cope with this, an innovative approach based on P-graphs 

(process graphs), which are unique, mathematically rigorous bipartite graphs, has been 
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proposed to facilitate the process network synthesis [2]. The P-graphs are capable of 

capturing not only the syntactic but also semantic contents of a process network. 

Subsequently, an axiom system underlying the P-graph framework is constructed to define 

the combinatorial feasible process-network structures. The analysis and optimization of 

properties of such structures are performed by a set of efficient combinatorial algorithms: 

MSG [3], SSG [3], and ABB [4,5]. 
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Appendix B. Process Graph (P-graph) 

 The mathematical definition of a P-graph and a process structure represented by it are 

elaborated below [1]. 

 

 Finite set  , containing materials, and finite set  , containing operating units, are 

given such that 

 

                 (B.1) 

  

 Thus, a P-graph can be defined to be a pair, ( , ), as follows: the vertices of the 

graph are the elements of  

 

       (B.2) 

  

 Those belonging to set   are of the  -type vertices, and those belonging to set   

are of  -type vertices. 

 

  The arcs of the graph are the elements of  

 

            (B.3) 

where 
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                                (B.4) 

and 

 

                                 (B.5) 

   

In these expressions,   designates an  -type vertex;  , an  -type vertex;   a set of 

 -type vertices from which arcs are directed into the  -type vertices; and,   a set of  -

type vertices to which arcs are directed out of the  -type vertices. The arcs between the 

nodes signifiy that a material is input to or ouput from an operating unit. Hence, P-graphs 

are bipartite graphs as mentioned earlier. 

 

  Also, the P-graph representation of a process network should observe the constrains 

imposed by the process itself [2]. For instance, the maximum available raw materials may 

be constrained, and the rate of manufacturing of each product must be specified. An 

operating unit produces its output materials if all its input materials are supplied. The input 

materials are consumed according to the rates given on the arcs leading to the respective 

operating unit. The input and output materials, and the aforementioned rates collectively 

define formally an operating unit. Moreover, an operating unit may have upper and lower 

capacities. At any material node, the sum of the outgoing flows is equal to the sum of the 

incoming flows, i.e., the mass balance holds. 

 

 For illustration let   be a set of materials,                 ,  and   be a set of 

operating units given by                                                    . It is 

not difficult to validate that sets   and   satisfies constraint (B.1), i.e.,       is a P-graph, 

as depicted in Figure B.1. 
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Figure B.1.  P-graph (M,O) where A,B,C,D,E, and F are materials, and 1,2, and 3 are 

the operating units:  represents raw materials or input elements of the 

whole process;  symbolizes intermediate-materials or elements, 

emerging between the operating units; and  represents products or 

outputs of the entire process. 

 

 Solution Structures 
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The materials and operating units in a feasible process structure must always 

conform to certain combinatorial properties. For example, a structure containing no linkage 

between a raw material and a final product is unlikely to represent any practical process. 

Hence, it is of vital importance to identify the general combinatorial properties to which a 

structure must conform. More important, the properties identified should be satisfied by the 

structure of any feasible solution of the synthesis problem. In other words, those and only 

those structures satisfying these properties can be feasible structures of a process: no other 

structures or constraints need to be considered in synthesizing the process. 

 

A set of axioms has been constructed to express necessary and sufficient 

combinatorial properties to which a feasible process structure should conform. Next, each 

axiom is stated: 

 

 (S1) Every final product is represented in the graph. 

 (S2) A vertex of the M-type has no input if and only if it represents a raw material. 

 (S3) Every vertex of the O-type represents an operating unit defined in the 

synthesis problem. 

 (S4) Every vertex of the O-type has at least one path leading to a vertex of the M-

type representing a final product 

 (S5) If a vertex of the M-type belongs to the graph, it must be an input to or output 

from at least one vertex of the O-type in the graph.  

 

If a P-graph of a given synthesis problem, (     )
27

, satisfies theses axioms, it is 

defined to be a solution-structure of the problem. For example, Figure B.2 depicts an 

example of two solution-structures for synthesis problem (         ) with 

 

                         

                     

                         

                                                 
27 where     is the set of product,     is the set of raw materials, and O the set of operating units. 
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and 

                                                                              

                                        

 

Note that a solution-structure does not necessarily contain all the components 

defined in the set of materials, e.g.,   ; neither does it necessarily utilize all the 

components specified in the set of raw materials, e.g.,   . 

 

Since the final product,  , is presented as an  -type vertex in both Figure B.2 (a) 

and (b), axiom (S1) is satisfied by the solution-structures depicted in these figures. Axiom 

(S2) is satisfied in that vertex   in Figure B.2 (a) and vertices   and   in Figure B.2 (b) are 

the only vertices without an input; they represent raw materials. Figure B.2 (a) contains two 

operating units,             and            , and Figure B.2 (b) contains three operating 

units            ,            , and            ; all these operating units are defined in 

the synthesis problem, thereby satisfying axiom (S3). In conformity with axiom (S4), every 

vertex of the type  -type in either Figure B.2 (a) or (b) does have at least one path leading 

to vertex   representing the final product. For example, the path in Figure B.2 (a), 

comprising three arcs, namely,                                , and                , 

links vertex            , representing an operating unit, to vertex   which is the final 

product. Axiom (S5) is satisfied by virtue of the fact that every vertex of the  -type 

belonging to the graph of either Figure B.2 (a) or (b) is an input to or output from at least 

one vertex of the  -type in the respective graph.  

 

Thus all axioms are satisfied by the structures in Figure B.2 (a) or (b). As 

counterexample, Figure B.3 illustrates a P-graph that is not a solution structure of synthesis 

problem (  ,   ,   ), because axioms (S1), (S2), (S4), and (S5) are not satisfied. 

 



140 

 

 

 

 

(a) 

 

(b)  

 

Figure B.2 Two solution-structures for the synthesis problem (P1, R1, O1). 
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Figure B.3. P-graph that is not a solution-structure for synthesis problem (P1, R1, O1). 

 

 Algorithms MSG, SSG, and ABB 

 

Both the P-graph representation of a process network and the set of five axioms for 

solution structures, i.e., combinatorial feasible networks, render it possible to fashion the 

three mathematically rigorous algorithms: MSG, SSG, and ABB. The algorithm MSG 

(Maximal-Structure Generation) generates the maximal structure (super-structure) of a 

process synthesis network. Also, the algorithm SSG (Solution-Structure Generation) 

generates the set of feasible process structures from the maximal structure, which leads to 

the algorithm ABB (Accelerated Branch and Bound) for computing the n-best optimal 

solution structure [1,3,4,5]. 
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Appendix C. Short Summary of Pidgin Algol 

Pidgin Algol is a high-level language whose purpose is to describe algorithms for 

publication and mathematical examination [1,2]. This language uses traditional 

mathematical and programming language constructs, such as expressions, conditions, 

statements, and procedures. It does not have a fixed set of data types. 

 

Statements 

variable≔ expression; 

if condition then statement else statement; 

while condition do statement; 

repeat statement until condition; 

for variable≔initial-value step step-size until final-value do statement; 

for all     do statement; 

label:statement; 

goto label; 

begin 

 statement; 

 statement; 

… 

 statement; 

end; 

procedure name (list of parameters): statement 

return; 

return expression; 

comment comment; 

any othe miscelaneous statements 
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Appendix D. Markov Chains 

In probability theory, a Markov chain or Markov model is a special type of discrete 

stochastic process in which the probability of an event occurring depends on the 

immediately preceding one (i.e., the next event depends only on the current state and not on 

the sequence of events that preceded it). This feature distinguishes Markov chains of 

independent events (e.g., tossing a coin or rolling a die). Markov chains get their name after 

Andrei Markov, Russian mathematician (1856 – 1922), in 1907. 

 

 Specifying a General Markov Chain 

 

A Markov chain is formally described as follows. Let                     be a 

stochastic process, in discrete time, with finite or infinite state space   is a Markov chain 

with stationary transition probabilities if it satisfies: 

 

For each    , if   is an event depending on any subset of                    , then, 

for any states   and   in  , 

 

                                             

 

(D.1) 

 

For any given states   and   

 

                        holds     ,   

 

(D.2) 

 

where, Eq. D.1 is the Markov property. More generally, for each     and    , if   (as 

defined in Eq. D.1), then for any states   and   in  : 

 

                                                    (D.3) 

 

denotes transition probabilities in Eq. D.2 by 



146 

 

                             (D.4) 

 

 The Transition Matrix P 

 

The transition matrix   for a Markov chain with state space               , 

where    , and one-step transition probabilities     is the     matrix. 

 

         

      
      

    
    

  
      

  
    

  

 

Note that the matrix   satisfies 

 

                               

 

(D.5) 

 

          
 
                     

 

(D.6) 

 

 Example 

Example 1: The Veszprém weather (adapted from [2]). It is sometimes claimed that 

the best way to predict tomorrow´s weather is simply to guess that it will be the same 

tomorrow as it is today. If we assume that this is correct, then is it natural to model the 

weather as a Markov chain. For the sake of simplicity, we assume the there are five kinds 

of weather: snowy, cloudy, rainy, sunny, and windy. Then the weather forms a Markov 

chain with state space                    (with           ,             ,    

       ,           , and              ) and the transition matrix
28

. 

                                                 
28

 Transition probabilities,    , are just hypothetical and used for illustration. 
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 Graphical Description 

A useful way to picture a Markov chain is its so-called transition graph. The 

transition graph consists of nodes representing the states of the Markov chain, and arrows 

between the nodes, representing the transition probabilities. This is explained by showing 

the transition graph of the example considered above (see Figure D.1). 
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Figure D.1. Transition graph for the Veszprem weather example. 
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 Absorbing Markov Chain 

 

An Absorbing Markov chain is a type of Markov chain in which every state can 

reach an absorbing state. An absorbing state is a state that, once entered, cannot be left [1].  

 

 Specifying an Absorbing Markov Chain 

An Absorbing Markov chain is formally described in Eqs. D.1 – D.4, with the 

particularity that: 

 

a. A state      is called absorbing if it is impossible to leaving it (i.e.,     

 ) 

b. A Markov is absorbing if it has at least one absorbing state and if from every 

state it is possible reach an absorbing state (not necessarily in one step). 

c. In an absorbing Markov chain, a state which is not absorbing is called 

transient. 

 

 Example 

Example 2: The Drunkard's Walk: A man walks along a four-block stretch of Park 

Avenue. If he is at corner 1, 2, or 3, then he walks to the left or right with equal probability. 

He continues until he reaches corner 4, which is a bar, or corner 0, which is his home. If he 

reaches either home or the bar, he stays there. Then each man’s decision, i.e., walk to the 

left or walk to the right, on each corner forms a Markov chain with state space   

                 (with              ,               ,              ,    

          , and              ) and the transition matrix (see Figure D.2). 
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Figure D.2. Transition graph for the Drunkard’s Walk example. 

 

 The Canonical Form of a transition matrix P representing an Absorbing 

Markov Chain 

 

By permuting the states of an absorbing chain so that the transient states come first, 

we can write the transition matrix of the absorbing chain as 

 

         
  
  

  (D.7) 

 

The matrix   describes the transition probabilities between transient states,   the 

transition probabilities from transient to absorbing states (  should not be the matrix of all 

zeros),    is the identity matrix since the chain stays at absorbing states, and,   is the zero 

matrix [3]. 

 

The fundamental matrix,  , for an absorbing Markov chain is defined as follows: 

 

           (D.8) 

 

Where,    is the     identity matrix corresponding in size to matrix  , so that the 

     exists. 

For the Drunkard's Walk example, using    gives 
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The fundamental matrix,  , gives the expected number of visits to each state before 

absorption occurs. For example, if the man is currently in         , i.e.,   , the first row of 

F says that he expects to have 1.5 time periods on average in this state and 1.5 + 1 + 0.5 = 3 

time periods in the various transient states before reaching the bar or home. 

 

To see why this is true, consider an absorbing Markov chain currently in state  . The 

expected number of times that the chain visits state   at this step is 1 for   and 0 for all other 

states. The expected number of times that the chain visits state   at the next state is given by 

the element row  , column   of the transition matrix  . The expected number of times the 

chain visits state   two steps from now is given by the corresponding entry in the matrix   . 

The expected number of visits in all steps is given by 

 

            (D.9) 

 

To find out whether this infinite sum is the same as  

 

       , (D.10) 

 

multiply Eq. D.9 by Eq. D.10, thus 

                                          , (D.11) 

 

which verifies our result. 

 

 It can be shown that  
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 , 

(D.12) 

 

 

where    is the     identity matrix. As    ,      , the     zero matrix, and  

 

       
   

     
    

 , 
(D.13) 

 

So we see the    gives the probability that if the systems was originally in a non-

absorbing state, it ends up in one of the absorbing states.Finally, use the fundamental 

matrix   along with matrix   (see Eq. D.7) to get the product   . 

 

    
       
   
       

   
    
  
    

   
        
      
        

  

 

The product matrix    gives the probability that if the system was originally in a 

particular non-absorbing state; it ended up in the absorbing state. For example, the 

probability is 0.75 that if the man was originally in         , i.e.,   , he ended up at home.  

 

 The Power Method 

 

However the method introduced before might be inefficient for numerically solving 

large markov chains, including absorbing ones [5]. To deal with that we compute   
   

 (the 

stable distribution or a steady state of   that satisfies   
        

           ) by means of 

an iterative method called the power method. More specifically, given a (stochastic) 

transition matrix        , and an initial vector   
   

, we compute iteratively   
     

=  
    

        until the difference (in some norm) between   
     

 and   
   

 is small enough (see 

Figure D.3).  
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Figure D.3. Algorithm PowerMethod written in Pidgin Algol (see Appendix C, adapted 

from [4]). 

 

For instance, suppose Tables D.1 – D.3 describes the initial location of man in 

Example 2. In particular, each table shows the initial probability vector,   
   

, for each case 

where the man starts walking either on         ,         , and         ; respectively.  

 

Table D.1. Initial probability vector, xn
(0)

, for case where the man starts walking on 

Corner 1. 

Corner State Proportion (100%) 

0    (absorbing) 0 

1    1 

2      

3      

4      
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Table D.2. Initial probability vector, xn
(0)

, for case where the man starts walking on 

Corner 2. 

Corner State Proportion (100%) 

0    (absorbing) 0 

1    0 

2      

3      

4      

 

Table D.3. Initial probability vector, xn
(0)

, for case where the man starts walking on 

Corner 3. 

Corner State Proportion (100%) 

0    (absorbing) 0 

1    0 

2      

3      

4      

 

By employing the power method algorithm, presented in Figure D.3, we can 

compute the probability distribution of the man in the different corners after k iterations as 

illustrated in Tables D.4 – D.6. Note that the results presented in Tables D.4 – D.6  are 

equivalent to those computed by employing the fundamental matrix   along with matrix   

(see Eq. D.7) to get the product   . 

 

Table D.4. Probability distribution, after 54 iterations, given the initial probability 

vector, xn
(0)

, [0.0, 1.0, 0.0, 0.0, 0,0]. That is, the man starts walking on Corner 1. 

Iteration,   Corner 0 Corner 1 Corner 2 Corner 3 Corner 4 

1 0,5 0 0,5 0 0 

2 0,5 0,25 0 0,25 0 

… … … … … … 

13 0,74609375 0 0,0078125 0 0,24609375 
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… … … … … … 

25 0,74993896 0 0,00012207 0 0,24993896 

… … … … … … 

33 0,74999619 0 0 0 0,24999619 

… … … … … … 

54 0,75 0 0 0 0,25 

 

Table D.5. Probability distribution, after 54 iterations, given the initial probability 

vector, xn
(0)

, [0.0, 0.0, 1.0, 0.0, 0,0]. That is, the man starts walking on Corner 2. 

Iteration,   Corner 0 Corner 1 Corner 2 Corner 3 Corner 4 

1 0 0 0,5 0 0,5 

2 0 0,25 0 0,25 0,5 

… … … … … … 

13 0,24609375 0 0,0078125 0 0,74609375 

… … … … … … 

25 0,24993896 0 0,00012207 0 0,74993896 

… … … … … … 

33 0,24999619 0 0 0 0,74999619 

… … … … … … 

54 0,25 0 0 0 0,75 

 

Table D.6. Probability distribution, after 54 iterations, given the initial probability 

vector, xn
(0)

, [0.0, 0.0, 0.0, 1.0, 0,0]. That is, the man starts walking on Corner 3. 

Iteration,   Corner 0 Corner 1 Corner 2 Corner 3 Corner 4 

1 0 0 0,5 0 0,5 

2 0 0,25 0 0,25 0,5 

… … … … … … 

13 0,24609375 0 0,0078125 0 0,74609375 

… … … … … … 

25 0,24993896 0 0,00012207 0 0,74993896 

… … … … … … 
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33 0,24999619 0 0 0 0,74999619 

… … … … … … 

54 0,25 0 0 0 0,75 
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Appendix E. Series and Parallel Systems Engineering 

It is believed that the Second World War propitiated the development of the study 

of reliability because the equipment reliability problems [1]. One of the first engineers to 

dig into reliability research was the German rocket engineer Wernher Von Braun (1912 – 

1977).  Von Braun and his collaborators, during the Second World War, adopted ideas 

stemming from mechanical reliability to diagnose and fix their V-1 combat rocket, which 

was infested with reliability problems. Von Braun assumed that if the weakest component 

of the rocket is fixed, then the rocket would not fail. However, when Von Braun and his 

colleagues build the least reliable component part more reliable, they found out that the V-1 

was still 100% unreliable [4]. Nevertheless, Erich Pieruschka, a German mathematician 

(1914 – 2004), working with Von Braun on a different project, was invited to express his 

thoughts about this issue. Pieruschka pointed out that the rocket’s reliability was equal to 

the product of the reliability of its components and not simply to the reliability of the 

weakest component. This idea was the basis of the modern predictive reliability model [1]. 

As result, this theory formed the basis for what later became known as Lusser’s law after 

Robert Lusser, German engineer (1889 – 1969), in 1953. 

 

 Some Useful Definitions 

 

Before discussing the probabilistic reasoning behind reliability block formulas for 

series and parallel systems and presenting examples of practical ways of using them, some 

notations and definitions need to be introduced [4]. 

 

 The Distribution Function 

The distribution function is also often called cumulative distribution function 

(abbreviated as CDF). Formally, a cumulative distribution function is defined as follows, if 

  is a random variable, its distribution function is a function               such that 
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                  (E.1) 

 

where        is the probability that   is less than or equal to  . 

 Continuous Random Variable 

A continuous random variable is a random variable whose cumulative distribution 

function is a continuous function. The following is a formal definition of a continuous 

random variable. A random variable is said to be absolutely continuous if the probability 

that it assumes a value in a given integral       can be expressed as an integral: 

 

                   
 

 

 
(E.2) 

 

Where the integral function Eq. E.3 is called the probability density function of  .  

 

               (E.3) 

 

As consequence of this definition, the cumulative distribution function of   is  

 

                     
 

  

 
(E.4) 

 

 Properties of Probability Density Function 

Probability density functions (usually called PDF) are characterized by two 

properties. Also, any function that satisfies these two properties is a legitimate PDF. The 

following proposition formally describes the two properties. 

 

Proposition: Let   be a continuous random variable. Its probability density function, i.e., 

     , satisfies the following two properties: 

 

        for any     (E.5) 
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(E.6) 

 

Eq. E.5, first property, states that for a function to be a PDF, it must be nonnegative. 

This makes intuitive sense since probabilities are always nonnegative numbers. Also, Eq. 

E.6, second property states that the area between       and the  -axis must be 1, or that all 

probabilities must integrate to 1.  

 

Proof: By Eq. E.5, probabilities cannot be negative; therefore Eq. E.2 can be rewritten as  

 

        

 

 

   

(E.7) 

 

for any interval      . But the above integral can be non-negative for all intervals       

only if itself is non-negative, i.e., if         for all  . This proves property 1 above (non-

negativity). Furthermore, the probability of a sure thing must be equal to 1. Since    

        is a sure thing [2], then 

 

                       

 

  

 

(E.8) 

which proves Eq. E.6. 

 

 Exponential Distribution 

The exponential distribution is defined as follows. Let   be a continuous random 

variable. Let its support, i.e., the set of values that X can take, be the set of positive real 

numbers,    . Let      . We say that   has an exponential distribution with parameter 

  (called the rate parameter) if its probability density function is 
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(E.9) 

 

A random variable having an exponential distribution is also called an exponential random 

variable. The following is a proof that       is a probability density function.  

 

Proof: Proving Eq. E.5 is obvious. We need to prove Eq. E.6. This is proved as follows: 

        

 

  

            

 

 

 

        
  

        

                                               

 

 Cumulative Distribution Function of the Exponential Distribution 

The distribution function of an exponential random variable,  , is: 

 

       
                           

                 
  

(E.10) 

 

Proof: if    , then: 

 

               (E.11) 

 

Because   cannot take on negative values. If    , then: 
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It follows that, by the complement rule [5],                   . Thus, 

 

            (E.12) 

 Series and Parallel Systems: Basic Assumptions 

 

Based upon the previous definitions, other assumptions need to be stated. First, all 

the   system sub-component service life, i.e.,  , is a random variable exponentially 

distributed during the observed service life,  . 

 

             (E.13) 

 

Since   is exponential distributed, and t, cannot take negative values; from Eqs. E.10 and 

E.13, the cumulative distribution function can be written as 

 

              (E.14) 

 

where   is the failure rate in     unit time (i.e.,     ). Consequently, from Eq. E.9, the 

probability function can be defined as  

 

             (E.15) 

 

Also, for every   system sub-component,      , failure rate, FR, is constant. That is, 

   

         (E.16) 
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Since   represents an interval of time,      , where a failure can occur, the reliability 

of any     system sub-component,        gives rise to  

 

       =              , (E.17) 

 

which in turn implies that 

 

    
           

 
 

(E.18) 

 

Since all   system sub-component lives are exponentially distributed. That is, sub-

component FR is time independent, we have  

 

                    =                            (E.19) 

 

Subsequently, from Eqs. E.17 and E.19, gives rise to the definition of the failure rate 

of the system,    

 

                                         

                             

       
 
    

       

  

 
       

 

   

 (E.20) 

 

which in turn implies the following 
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(E.21) 

Consequently, from Eqs. E.20 and E.21, the definition of mean time between 

failures29, MTBF, can be derived as follows 

 

         
 

  
 

  

    
 

   
 
   

 (E.22) 

Or 

    

 

 
           

 

 

 

(E.23) 

 Reliability of Series Systems 

Graphically, a series system can be seen as a sequential arrangement of components 

which are simply placed one after another (see Figure E.1). A series system is a 

configuration such that, if any one of the system sub-components fails, the entire system 

fails. Conceptually, a series system is one that is as weak as its weakest link.  

 

 

 

Figure E.1. Representation of a Series Systems of “n” components. 

 

Mathematically, the reliability of a series system, i.e., Lusser’s Law, is defined as 

follows: “The reliability of a series system, i.e.,    , is equal to the product of the reliability 

                                                 
29

 MTBF is a statistical mean value for error-free operation of a system sub-component. 
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of its component subsystems, ie.,    , where      , if their failure modes are known to 

be statistically independent.” Eq. E.24 describes the Lusser’s Law. 

 

                        

 

 

(E.24) 

 

A modern formulation of the series system reliability can be expressed as  

 

           

 

   

     
(E.25) 

 

 

 Example  

Four subsystems are reliability-wise in series and make up a system. Subsystem 1 

has a reliability of      , subsystem 2 has a reliability of      , subsystem 3 has a 

reliability of      , and subsystem 4 has a reliability of       for a mission of 100 hours. 

What is the overall reliability of the system for a 100-hour mission? What is the failure rate, 

FR, of the systems for a 100-hour mission? 

 

 

Figure E.2. Graphical representation for the given example. 

 

Since the reliabilities of the subsystems are specified for 100 hours, the reliability of the 

system for a 100-hour mission is (Eq. E.25): 

 

                    

                            

                  

           

 

The FR of the system for a 100-hour mission is (Eq. E.21): 
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Since the system FR is             , then the system MTBF (Eq. E.22) is  

 

         
 

  
 

   
 

  
 

   
 

         
 

   
 

         
 

             

 

 Reliability of Parallel Systems 

Graphically, a parallel system can be seen as an arrangement of components such 

that, s long as not all the system components fail, the entire system works (see Figure E.3).  
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Figure E.3. Representation of a Parallel Systems of “n” components. 

 

Mathematically, the reliability of a parallel system is defined in Eq. E.26. 

 

                                          (E.26) 

 

Rearranging terms in Eq. E.26, another formulation of the parallel system reliability 

can be obtained  

 

                

 

   

     
(E.27) 

 

 

However, behind Eq. E.27 lies a whole body of probabilistic knowledge. To 

illustrate, we analyze a simple parallel system composed of two sub-components. The 

system can survive observed service life,  , if and only if the first component , or the 

second component or both survive   (see Figure E.4). First recall from probability theory 

that, 

 

                   . (E.28) 
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From Eqs. E.17, E.19, E.20, and E.28, we can formally define the reliability of a 

parallel system can determined as follows. The reliability of a parallel system can be 

expressed as: 

 

               (E.29) 

 

where,         represents the probability of  two independent events that occur in 

sequence. Therefore, Eq. E.29 can be reformulated as follows 

 

                                     (E.30) 

 

From Eq. E.28, it finally implies that  

 

                                                  (E.31) 

 

Subsequently, Eq. E.31 can be stated as by replacing terms (see Eq. E.17) 

 

                                              (E.32) 

 

                                                    (E.33) 

 

resulting in  

 

                               (E.34) 

 

Consequently, this approach can be easily extended to n number of parallel system 

sub-components.  
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(E.35) 

 

Using instead, the probabilistic formulation of        , Eq. E.34, we can obtain 

system MTBF ( ) for an arbitrary observed service life,  . For the hypothetical example: 

 

                             

 

(E.36) 

                        

 

(E.37) 

                                           

 

 

  

 

 

 

  
 

  
 
 

  
 

 

     
 

(E.38) 

 

Finally, one can calculate system FR,    , from Eqs. E.15 and E.25 as indicated 

 

       
      

      
 

resulting in 
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 Example  

Let a parallel system be composed of two sub-components, each with a          

and observed service life        hours, only one is needed for systems success. Then, 

total system reliability, by both calculations, is: 

 

                

                   

                        

                    

                

                   

                        

                    

                                  

                                

                            

               

 

                               

Because       
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Mean time between failures in hours: 
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