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Abstract

Kinetic models are central in systems biology to describe and analyse metabolic, generic and
signalling networks. Kinetic models provide a way to summarize and precisely formulate
the current knowledge about the dynamics of biological systems in terms of differential
equations. Therefore computational tools for the analysis and calibration of these type of
models are of great interest.

In this thesis, first the concepts of chemical reaction network theory are extended for
biochemical reactions. A complex-reaction graph is defined for the network, in which the
nodes are complexes and the edges represent reactions with multiple kinetics. Then, it is
shown that the system of dynamic equations of the bio-CRNs can be formulated such that
it has a close relationship to this reaction graph. Further, an algorithm is presented to find
a network (a realization) to a given kinetic equation system.

The proposed form of the model equations let us formulate optimization problems to
find dynamically equivalent realizations, i.e. multiple networks which can be described by
the same kinetic equations. Further, it is shown by the linear conjugacy theorem, that if
the scaling of the state variables is allowed, structurally different further realizations of the
same kinetic system can be found.

In the third part of this work a model reduction method is proposed for large scale
kinetic networks. The original mixed integer nonlinear optimization problem is approx-
imated by a finite sequence of mixed integer quadratic optimization problems, which is
much cheaper to solve by existing methods. The reduction method sequentially eliminates
reactions from the network, such that the trajectories of some important species do not
change, i.e. the reduction error in each step is minimized. Further, the kinetic rate pa-
rameters are simultaneously tuned in given bounds to guarantee the best fit between the
original and the reduced model.

In the last part of the thesis the calibration of kinetic models to experimental data is
considered. Here a global optimization method is proposed together with regularization
techniques. We illustrate by seven case studies of increasing complexity, how the presented
method overcome the non-convex nature of these calibration problems and results in faster
and more reliable convergence than traditional alternatives. Further, the calibrated models
are evaluated by out of sample cross-validation, showing that the regularized estimations
have better predictive value.
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Abstracto

Los modelos cinéticos son centrales en la bioloǵıa de sistemas para describir y analizar re-
des metabólicas, redes de señalización y redes genéricas. Los modelos cinéticos proveen una
forma de resumir y formular de manera precisa, el actual conocimiento sobre la dinámica de
los sistemas biológicos en términos de ecuaciones diferenciales. Por lo tanto, herramientas
computacionales para el análisis y calibración de este tipo de modelos son de gran interés.
En esta tesis, primero, los conceptos de la teoŕıa de redes de reacciones qúımicas son ex-
tendidos para reacciones bioqúımicas. Un grafo complejo-reacción es definido para la red,
donde los nodos representan complejos y las aristas representan reacciones con cinéticas
múltiples. Luego, es mostrado que el sistema de ecuaciones dinámicas de las redes de reac-
ciones bioqúımicas (bio-CRNs) puede ser formulado de tal forma que tenga una relación
cercana a esta grafo de reacción. Mas adelante, un algoritmo es presentado para encontrar
una red (una realización) dado un sistema de ecuaciones cinéticas.
La forma propuesta de las ecuaciones del modelo nos permiten formular problemas de op-
timización para encontrar realizaciones dinámicas equivalentes, p. ej. múltiples redes que
pudieran ser descritas pot las mismas ecuaciones cinéticas. Además, es mostrado, por el
teorema de conjugación lineal , que si el escalamiento de las variables de estado es permi-
tido, posteriores realizaciones de diferentes estructuras del mismo sistema cinético pueden
ser encontradas.
En la tercera parte de este trabajo, un método de reducción de modelos es propuesto para
redes cinéticas de gran escala. El problema original de optimización no lineal mixto de
enteros, es aproximado con una secuencia finita de problemas de optimización cuadráticos
mixtos de enteros. El método de reducción elimina secuencialmente reacciones de la red, de
tal forma que las trayectorias de algunas especies importantes no cambien, p. ej. en cada
paso el error de reducción es minimizado. Además, los parámetros de las tasas cinéticas
son simultáneamente ajustados a ciertos ĺımites.
En la parte final de la tesis la calibración de modelos cinéticos a datos experimentales es
considerada. Aqúı, un método de optimización global es propuesto junto con técnicas de reg-
ularización. Ilustramos con 7 casos de estudio de gran complejidad, cómo es que el método
presentado se sobrepone a la naturaleza no convexa de esstos problemas de calibración y
resulta en una convergencia más rápida y confiable que las de alternativas tradicionales.
Además, los modelos calibrados son evaluados por evaluación cruzada dejando uno fuera,
mostrando que las estimaciones regularizadas tienen un mejor valor predictivo.
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Absztrakt

A kinetikai modellek központi szerepet töltenek be a rendszer-biológiában, ahol például
metabólikus hálózatok vagy jelátviteli hálózatok léırására alkalmazzák őket. Ezen hálóza-
tokhoz közönséges differenciál egyenleteket rendelhetünk, melynek anaĺızise áll a dolgozat
középpontjában.

A dolgozat első felében a kémiai reakcióhálózatok elméletét terjesztem ki biokémiai
reakciókat tartalmazó hálózatokra. Értelmezem a komplex-reakció gráfot, majd a hálózat
dinamikai egyenleteit olyan formában fogalmazom meg, mely jól tükrözi a hálózat struktú-
ráját. Ennek seǵıtségével egy algoritmust fejlesztek, amely kinetikai egyenletekből kiin-
dulva, az egyenletekkel ekvivalens hálózatot realizál.

Az egyenletek alakja lehetővé teszi, hogy optimalizációs eszközökkel dinamikusan ekvi-
valens halózatokat keressünk. Ezek olyan struktúrálisan, gráfjukban különböző hálózatok,
melyeket ugyanazon dinamikai egyenletekkel ı́rhatunk le. Optimalizációs problémaként fo-
galmazom meg, hogyan lehet sűrű, ritka és reverzibilis reakciógráfot találni egy adott di-
namikához. Továbbá bevezetem a dinamikusan konjugált hálózatok fogalmát, mely di-
namikában hasonló, de struktúrában változatosabb hálózatok keresését teszi lehetővé.

A dolgozat harmadik részében kinetikai hálózatmodellek egyszerűśıtésére dolgozok ki
optimalizációs módszert. Az algoritmus a kiindulási hálózat reakcióinak számát lépésenként
csökkenti, oly módon, hogy bizonyos választott komponensek koncentráció-trajektóriái
közel maradjanak az eredeti hálózatbeli trajektóriáikhoz. Ez a feladat kevert t́ıpusú, nem-
lineáris optimalizációs problémaként fogalmazható meg, melyet egy véges számú lépést
tartalmazó kevert, kvadratikus optimalizációs problémával közeĺıtek meg. Ez a közeĺıtés
lehetővé teszi nagy hálózatok egyszerűśıtését a számı́tási igény alacsonyan tartása mellett.

A dolgozat ötödik fejezetében biológiai modellek paramétereinek becslésére dolgozok
ki eljárást. Dinamikus modellek esetén a paraméterbecslés egy nem-konvex, nem-lineáris
és gyakran rosszul kond́ıcionált optimalizációs probléma megfogalmazására vezet. Ennek
megoldására egyrészt egy meglévő globális optimalizációs algoritmus továbbfejlesztését
javaslom, továbbá regularizációs technikákat vizsgálok meg a kondicionáltság jav́ıtására.
Hét esettanulmányon mutatom be a kidolgozott módszer működését. A vizsgált esetekben
a választott optimalizáló algoritmus gyorsabban és megb́ızhatóbban konvergál a globális
minimumhoz, mint a gyakorlatban használt más algoritmusok. Továbbá a regularizacióval
kapott kalibrált modellek jobban teljeśıtenek a modellek validációja során.
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Chapter1
Introduction

1.1 Motivation

Mathematical modelling is the central element in quantitative approaches to molecular and
cell biology. The possible uses of quantitative modelling of cellular processes go far beyond
explanatory and predictive studies [1, 2]. They provide a way to understand complex bio-
systems [3, 4] and have given rise to systems biology as a new way of thinking in biological
research [5]. Models in systems biology vary in their degree of network complexity and
accuracy of representation [6]. Dynamic (i.e. kinetic) models offer the greatest degree of
flexibility and accuracy to explain how physiological properties arise from the underlying
complex biochemical phenomena.

The use of kinetic models to understand the function of biological systems has already
been successfully illustrated in many biological systems, including signalling, metabolic
and genetic regulatory networks [7–15]. Further, dynamic model-based approaches have
also been used to identify possible ways of intervention or (re-)design, such as in opti-
mal experimental design [16–20], metabolic engineering [21] and synthetic biology [22, 23].
Other recent efforts have been focused on scaling-up, i.e. on the development and exploita-
tion of large-scale (genome-scale) kinetic models [24], and ultimately, whole-cell models
[25, 26].

Although nonlinear dynamical models have become the most common approach in
systems biology, they have received relatively little attention in the statistical literature,
especially when compared with other model types [27]. As a consequence, the area can
be regarded as one of the most fertile fields for modern statistics [28]: it offers many
opportunities, but also many important challenges [29].

Many computational methods have been developed for chemical reaction networks
(CRNs), which are described by polynomial ordinary differential equations (ODEs). The
general goal of this work is to further generalize these modeling, network realization, model
analysis, complexity reduction and parameter estimation methods for biochemical reaction
networks. This model class is more frequently used in biochemical research, however it is
more complex than CRNs, since it allows a more complicated dynamics that is described
by ODEs with rational function right hand side.
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1.2 Chemical reaction networks

The fundamentals of chemical reaction network theory (CRNT) were established back in
the 1970s by [30] and [31]. This theory aims to consider complex reaction systems from a
general perspective, linking the structure of the reaction network with its possible dynamics
(such as unstable and/or multiple steady states, oscillations or chaotic behaviour). CRNT
uses powerful descriptors, like the reaction graph and its properties.

Later, the notion of dynamic equivalence has appeared and it became apparent that
possibly several equivalent reaction kinetic schemes, i.e. reaction network realizations can
be constructed to a given dynamic ODE model by using optimization, see e.g. [32, 33]. These
realizations offer the possibility to analyse or ensure advantageous dynamic property to a
CRN if a suitable realization with desirable structural properties (e.g. zero deficiency and
weak reversibility) is found.

It is worth highlighting that although Horn and Jackson [30] already mentioned complex
reactions in biological systems as one of the general situations they wanted to embrace
with their theory, its applications in biology did not appear until Bailey [34] rescued it,
highlighting its potential for the analysis of biochemical networks without calibrating the
model with experimental data (“complex biology with no parameters”). In other words,
CRNT can be used to characterize kinetic models (multi-stability, oscillations, etc.) without
knowing the precise values of the kinetic parameters.

Several important applications regarding the characterization of the dynamics of bio-
chemical reaction networks have appeared since then, including the works of e.g. [35–43].

Furthermore, the theory has also been applied to the identification, i.e. parameter and
model structure estimation, of biological systems. For example, Craciun and Pantea [44]
used CRNT to show that, given a (mass action) reaction network and its dynamic equa-
tions, it might be impossible to identify its rate constants uniquely (even with perfect
measurements of all species). Furthermore, they also concluded that, given the dynamics,
it might be impossible to identify the reaction network uniquely.

In [32, 33] and [45], CRNT principles were used to pinpoint inherent limitations in
the inference of biological networks. These works show that, in addition to the obstacles
identified by [46] (lack of data and deficiencies in the inference algorithms), there are
fundamental problems related to the uniqueness and distinguishability of these networks.
Further, these problems are present even for the utopian case of fully observed networks
with noiseless measurements.

Despite of the above mentioned works in the area of biochemical reaction networks
(bio-CRNs), no systematic attempt has been made to construct and analyse the structure
of bio-CRNs, to characterize their canonical structure as a subset of positive rational ODEs
[47], and to link their structural properties to the dynamic properties of the underlying
biochemical system.

Therefore, our general aim in Chapter 2 is to extend the well-known formalism of the
chemical reaction networks obeying the mass action law (MAL-CRN) for general biochem-
ical networks where the reaction rate functions often account for more complex mechanism
than the simple mass action law, such as the Michaelis-Menten kinetics, Hill kinetics, acti-
vating or inhibiting mechanisms. A canonical decomposition of these reaction rate functions
being in rational function form lets us define the main structural elements of the reaction
network and the complex – reaction graph. The MAL-CRN case then becomes a special
case of this biochemical reaction network.

This way the basic structural (i.e. parameter-independent) properties of a bio-CRN
structure are easy to define and understand, that include reversibility, weak reversibility,
and deficiency. The ordinary differential equations describing the dynamics of the biochem-
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ical reaction network (i.e. the concentrations of the species in the network) can be stated
in a form that is similar to the MAL-CRN formalism. This new form of the equations let
us easily analyse certain properties of the network, for example to prove the non-negativity
of the solutions. Furthermore, the proposed structure allows to algorithmically infer a net-
work from the ODEs, and determine alternative bio-CRN structures that are dynamically
equivalent to the original network.

1.2.1 Introduction to MAL-CRNs

Here we shortly introduce the notions and important results on mass action chemical
reaction networks (MAL-CRNs). The classical theory of reaction networks assumes a closed
thermodynamic system with constant physico-chemical properties under isothermal and
isobaric conditions. The applicability of this model class is surprisingly wide: besides the
description of purely chemical mechanisms, CRNs can be effectively used to model processes
of living (i.e. cell) environments [48], compartmental models [49] or general nonnegative
systems with possible application domains completely outside of (bio)chemistry [50, 51].

The chemical species Xi, i = 1, . . . n participate in chemical reactions of the form

n∑
k=1

νkiXk
kij−−−→

n∑
k=1

µkjXk . (1.1)

Here the stoichiometric coefficients of the reactants are denoted by ν1i, . . . , νni and of the
products by µ1j, . . . , µnj. These coefficients are integer values and quantify the amount
of molecules consumed and produced in a reaction step. The non-negative integer linear
combinations of the species, for example Ci =

∑n
k=1 νkiXk and Cj =

∑n
k=1 µkjXk in the

two sides of the reactions (1.1), are called the complexes and are denoted by C1, . . . Cm.
The coefficients of the complexes are stored in the complex composition matrix Y ∈ Rn×m

such that [Y ]ij = νij, i.e. the i-th column of the matrix stores the stoichiometric coefficients
in the i-th complex Ci, for i = 1 . . .m. To simplify the notation, we often use ηi to refer to
the i-th column of Y .

As the stoichiometric coefficients are non-negative, it may happen that for a certain
complex C0 all of them are equal to zero, i.e. the corresponding column in Y is the zero
vector. Such a complex C0 is called the zero complex, and it can be used to describe the
case when the system is not closed but has in-/outflow from/to the environment, as it is a
usual situation in biochemical models.

Based on a list of reactions one is interested in the calculation of the concentrations
of the species Xi, which are denoted by xi for i = 1, . . . n. Then the variable x is the
n-dimensional, non-negative state vector.

Traditionally the reactions are explained by the picture of molecular collisions, which
gives rise to the mass action law. According to the mass action law, the intensity of the
reaction is proportional to the concentrations of the molecules participating in the reaction

step. Formally, this means that the reaction rate function is defined for the reaction Ci
kij−−−→

Cj as

rij(x) = kij ·
n∏
l=1

xνlil . (1.2)

The reaction rate function rij(·) : Rn
≥0 7→ R≥0 is usually measured in units

[
mol
s

]
and shows

how many moles of a reactant Xk with stoichiometry νki = 1 is used, or how many moles
of a product Xl with µlj = 1 is produced by the reaction in one second.
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Based on the above notions the MAL-CRN is uniquely described by the following sets

I. S = {X1, . . . , Xn} is the set of species or chemical substances.

II. C = {C1, . . . , Cm} is the set of complexes.

III. The set of chemical reactions is

R = {(Ci, Cj) | Ci, Cj ∈ C, and Ci is transformed to Cj}.

The above three sets determine the mass action system, thus we introduce the sort notation
for a MAL-CRN: ΣMAL = (S, C, R).

Reaction vectors and stoichiometric subspace. The reaction vectors ρ(i,j) = ηj − ηi
are defined for each reaction (Ci, Cj) ∈ R. They show the net production of the species in
the corresponding reaction steps. When arranged in a matrix as columns, these reaction
vectors form the stoichiometric subspace of the reaction network:

S = span{ρ(i,j) = ηj − ηi | (Ci, Cj) ∈ R} . (1.3)

The rank of S is often referred as the rank of the stoichiometric subspace and denoted by
s, i.e. s = rank(S).

Reaction graph of MAL-CRNs

A directed, weighted reaction graph [52] is constructed from the set of complexes and
reactions. The reaction graph G = (V,E) consists of a finite non-empty set of nodes, which
represents the complexes: V = {C1, . . . Cm} and a finite set of directed edges E, which
represents the reactions: E = {(Ci, Cj) | (Ci, Cj) ∈ R, i, j = 1 . . .m}. The reaction rate
coefficients are assigned to the edges as weights.

Reversibility. A reaction graph is called reversible, if whenever the reaction Ci
kij−−→ Cj

exists, then a reverse reaction Cj
kji−−→ Ci is also present. A reaction graph is called weakly

reversible, if whenever complex Cj is reachable from complex Ci on a directed path, then
there is a directed path from Cj to Ci, too. When the reaction graph is (weakly) reversible,
then the reaction network is also called so.
Linkage classes. A set of connected complexes is called a linkage class of the network, if
the complexes in the set are connected to each other, but there is no connection to complex
outside of the set. The number of linkage classes of the network is denoted by l.
Deficiency. The deficiency d of a reaction network [53] is defined as:

d = m− l − s (1.4)

where m is the number of complexes, l is the number of linkage classes and s is the rank
of the stoichiometric subspace.

Dynamic equations of MAL-CRNs

Following [53], the dynamic equations of the MAL-CRNs can be written as

dx

dt
= Y ÃkΨ(x) , (1.5)
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where Y is the complex composition matrix, Ãk ∈ Rm×m is a column conservation matrix–
also known as the Kirchhoff matrix–, which contains the reaction rate coefficients as

[Ãk]ij =


kji if i 6= j

n∑
l=1,l 6=i

−kil if i = j
, (1.6)

and Ψ : Rn → Rm is a monomial vector function defined as

[Ψ(x)]i =
n∏
l=1

x
[Y ]li
l for i = 1 . . .m . (1.7)

As we can see from the above, the dynamic equations of mass action law systems consist
of polynomial functions. When a system of ODEs can be written in the form (1.5), it is
called a kinetic polynomial system.

Complex balanced network Whenever for the steady state solution x∗ of (1.5) fulfils
the condition

ÃkΨ(x∗) = 0, (1.8)

the corresponding MAL-CRN is called complex balanced realization at this steady state.

Detailed balanced network The network is called detailed balanced at the steady state
x∗, if (i) the network is reversible and (ii) the reversible reaction rates are equal in the
steady state, i.e.

(Ci, Cj) ∈ R ⇔ (Cj, Ci) ∈ R and rij(x
∗) = rji(x

∗) for i, j = 1 . . . ,m (1.9)

1.2.2 Properties of MAL-CRNs

Many results have been obtained about MAL-CRNs based on the above formalism, for
which a good review can be found in [51] and [54]. Here we briefly highlight some important
results, which illustrates the power of the above framework for the analysis of nonlinear
dynamical systems.

Non-negativity of the solution All the solutions of (1.5) corresponding to non-negative
initial conditions remain non-negative independently on the reaction rate parameters.

Properties of detailed and complex balanced steady states [54] If a CRN is com-
plex balanced (detailed balanced) at any positive x∗ then it is complex balanced (detailed
balanced) at all other positive equilibrium points. Further, if a CRN is complex balanced
then it is weakly reversible.

Finally, a CRN is complex balanced for any positive values of reaction rate coefficients
if and only if it is weakly reversible, and the deficiency of the system is zero.

Stability of the solution Important stability results about the solutions of the MAL-
CRNs were formulated in [53, Theorem 6.1.1], also known as the the zero deficiency theorem.

Theorem 1.2.1. For zero deficiency MAL-CRNs,

(i) if the network is not weakly reversible, then the dynamics (1.5) cannot admit a positive
steady state.
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(ii) if the network is not weakly reversible, then the dynamics (1.5) cannot admit a strictly
positive cyclic composition trajectory.

(iii) if the network is weakly reversible, then for each stoichiometric compatibility class, the
dynamics (1.5) has exactly one positive steady state, which is asymptotically stable.

Example 1-1 (Simple mass action chemical reaction network)

Let us consider the simple MAL-CRN in Figure 1.1. This reaction network contains four
chemical species {X1, X2, X3, X4} in three complexes (C1 = X1 + 2X2, C2 = X1 +
X3, C3 = X4). The nodes of the reaction graph representing the complexes are connected
by five directed, which represents the reactions. Each edge is weighted by the reaction rate
coefficient of the corresponding reaction.

X
1
 + 2X

2
X

1
 + X

3

X
4

k
12

k
31

k
13

k
21

k
23

C
2

C
1

C
3

Figure 1.1: Reaction graph of a simple MAL-CRN

The matrices and the non-linear vector function that characterizes the realization is as
follows

Y =

1 1 0
2 0 0
0 1 0
0 0 1

 , Ak =

[−(k12 + k13) k21 k31

k12 −(k21 + k23) 0
k13 k23 −k31

]
, Ψ(x) =

[
x1x

2
2

x1x3

x4

]
.

The above elements – based on (1.5) – define the following differential equation model

ẋ1 = −k13x1x
2
2 − k23x1x3 (1.10)

ẋ2 = −2k13x1x
2
2 − 2k12x1x

2
2 + 2k21x1x3 + 2k31x4 (1.11)

ẋ3 = −k23x1x3 − k21x1x3 + k12x1x
2
2 (1.12)

ẋ4 = −k31x4 + k13x1x
2
2 + k23x1x3 . (1.13)

It is easy to see, that the realization is weakly reversible and there is one linkage class. The
stoichiometric subspace is spanned by the following reaction vectors:

s1 =

1
2
0
0

−
1

0
1
0

 =

 0
2
−1
0

 , s2 =

0
0
0
4

−
1

2
0
0

 =

−1
−2
0
4

 , s3 =

0
0
0
4

−
1

0
1
0

 =

−1
0
−1
4


6



Therefore the rank of the stoichiometric subspace is

s = rank


 0 −1 −1

2 −2 0
−1 0 −1
0 4 4


 = 2,

and the deficiency is d = 3− 1− 2 = 0. Therefore this network is a deficiency zero, weakly
reversible network and according to Theorem 1.2.1 there is precisely one, globally stable,
positive steady state solution of the equations (1.10)-(1.13). �

1.3 Problem statements and goals

The previous section summarizes the notions of mass action chemical reaction networks
and introduces the basic principles. In the first part of the thesis, we extend the above
MAL-CRN formalism for biochemical networks, then we develop computational methods
to solve realization, model verification, model reduction and parameter estimation problems
for this class of dynamic models. In the following part of this section we shortly summarize
the above mentioned computational problems. A more detailed discussions of each problem
can be found in the introductions of the corresponding chapters of the thesis.

Formulation of biochemical reaction networks The mathematical models that de-
scribe biochemical systems are often very similar to the equations of mass action chemical
reaction networks. In both cases, the model equations account for the change of a com-
pound in a unit time due to reactions that consume and/or produce the chemical species.
Therefore we can expect to represent chemical and biochemical networks in a common
framework.

The power of chemical reaction network theory is to analyze complex nonlinear dynamic
systems based on the corresponding reaction graph and its structural properties. Thus it
is desirable to (1) define similar, precise notions for biochemical reactions networks, for
example what is a complex and how to handle different reaction kinetics, and (2) to find
the (mathematical) properties of the equations that represent biochemical networks. These
studies are presented in the first part of the thesis.

Verification of biochemical models Model verification is a process in which the model
is tested against certain, predefined requirements. Verification tools often accompany mod-
eling toolboxes, such as COPASI [55], however, these are often restricted to syntactical
checking of the models. Further, for example the Biomodels database [56] requires that
the uploaded models are connected to published, reproducible results. After a model is
submitted, it is tested whether the simulation results reproduce the published curves or
not.

Instead of synthactical or qualitative checking, here we will focus on checking the models
from the physico-chemical point of view. For example, the non-negativity of the solutions
of the dynamic equations is expected in case these equations represent chemical concen-
trations. Using the notions of biochemical networks, we derive a set of procedures which
guarantee that (1) solutions of the the mathematical model are non-negative, (2) the re-
actions are plausible chemical reactions and (3) the mass conservation is fulfilled.

Network realization. The canonical realization algorithm [57] finds a network represen-
tation of kinetic equations. It turns out that not only chemical systems, but other positive
systems, for example electrical circuit models, can be transformed to a MAL-CRN. The
condition, that a network can be associated to an ordinary differential equation model is
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closely connected to the essential non-negative property of the equations. We show, that
essential non-negativity is also a property of biochemical models, which leads to the goal,
to generalize the algorithm by Hárs and co-authors for biochemical network inference, i.e.
to find biochemical network realizations of equations, which have rational polynomial right
hand side functions.

It is known from chemical reaction networks, that multiple network give rise to the same
dynamics. These networks are dynamically equivalent realizations. Writing the biochemical
equations in a similar form that of MAL-CRNs allow us to formulate linear optimization
problems to find dynamically equivalent networks.

Linearly conjugated networks. Johnston and Siegel [58] showed that the linear scaling
of the state variables in CRNs generalizes the dynamic equivalence and preserves the stabil-
ity properties of the dynamics. This linear conjugacy theorem allowed them to find network
realizations for systems, which are structurally different from all known dynamic equiva-
lent realizations. We will develop a similar theorem and computational tool for biochemical
reaction networks.

Model complexity reduction. The mathematical models of reaction kinetic systems are
most often too large and detailed for dynamic analysis or parameter estimation purposes
as they are usually constructed based on detailed kinetic studies. There are a number of
extensively studied areas where there are detailed models of chemically reacting systems
available. These include biochemical systems, such as signal transduction pathway modeling
and reacting flow or catalytic reaction systems. These models are used for both model
analysis (stability analysis and the investigation of nonlinear dynamic properties, such as
oscillations or chaotic behavior), and for dynamic predictions (simulation). Because of the
huge number of species and/or chemical reactions present in the detailed reaction kinetic
mechanism of these systems, the need has arisen for developing a simplified or reduced
mechanisms that can accurately describe the dynamics of the system.

Here we will propose a method to obtain a simplified model, which preserves the in-
terpretation of the model components. The algorithm presented in the study eliminates
reactions from the reaction network, thus it reduces the network complexity in a way that
the dynamics of some selected species are not changing.

This general problem can be formulated as a nonlinear mixed integer optimization
problem, which is hard to solve in case of many reactions. Using the structure of the
chemical reaction networks, we will approximate the above optimization problem, such
that the procedure remains computationally affordable for large size networks.

Parameter estimation. One of the main challenges in modeling biochemical processes
is the calibration of dynamic models, also known as the parameter estimation problem.
Parameter estimation aims to find the unknown, constant model parameters such that the
calibrated model gives the best fit to a set of experimental data. Then the calibrated model
can be used to predict the behaviour of the biochemical process for unmeasured conditions
or to use it for experimental design.

The estimation procedure can be broken down to the following tasks: (1) model sim-
ulation, (2) minimization of the cost function via optimization, which optionally requires
(3) gradient calculation and (4) analysis of the results. Depending on the particular model,
the procedure can be computationally demanding, therefore efficient implementation and
tailored methods are needed to calibrate medium and large scale models. Our goal is to
develop a pipeline for the calibration of biochemical models, which show good scaling prop-
erties and further the procedure can incorporate a priory information about the parameters
via regularization.
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Structure of the thesis. The thesis consists of 6 chapters. The structure of the thesis is
as follows. In Chapter 2 the biochemical reaction networks are introduced and the model
verification of such systems are considered. In Chapter 3 the realization algorithm is pre-
sented, and the dynamically equivalent and linearly conjugated networks are described. The
model reduction in kinetic systems is described in Chapter 4. Chapter 5 considers the
robust calibration of kinetic models. Finally, Chapter 6 contains the overall conclusions
and summarizes the new scientific results and possible future work.
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Chapter2
Biochemical reaction networks

In this chapter, first a modeling framework for biochemical systems is proposed. In Subsec-
tion 1.2 we showed a powerful tool to analyze kinetic polynomial systems by the chemical
reaction network theory. Here, we construct a similar framework for biochemical models,
which we will call biochemical reaction networks (bio-CRNs).

We show that this modeling framework is able to describe a large set of biochemical
systems. Further, mass action systems turn to be a special case of this system class and
many important notions previously defined only for mass action systems can be easily
extended. In more details, similarly to the chemical reaction network theory considering
mass action systems, here one can also associate a complex-reaction graph to the dynamical
equations. Then, based on the structure of the reaction graph valuable information can be
obtained about the dynamics.

Many of the medium and large-scale kinetic models in systems biology show problems
when the space of parameters is explored. For example, dynamic simulations for certain
parameter values result in negative concentrations –suggesting that mass-balance may not
be correct–, or simply blow-up. Therefore, careful checks should be performed before the
use of a published model. This is routinely done in large biochemical model bases (see
e.g. [56]), but these checks cannot detect every deficiency that may arise from the many
different uses (simulation, parameter estimation, experiment design, etc.) of these models.

There are computational tools (see e.g. [55] or [59]), which help the user to avoid
making modeling mistakes, for example, by offering predefined rate-functions, tracking the
variables, or supporting measurement units and their consistency. These tools serve mostly
for syntactic checking purposes. Furthermore, some tools [60] can also check fundamental
model properties, such as mass balance, the existence of admissible steady states, or the
characteristics of the dynamic behavior near a steady state, among others.

Despite the above efforts to ensure the acceptable quality of a biochemical model, it is
easy to find in the literature such models that do not possess very basic properties, like
positivity. This is usually the consequence of model simplification based on assumptions
[61]. However these assumptions are sometimes forgotten or not known explicitly.

Therefore, our aim was to formulate simple syntactical and semantic criteria of bio-
chemical origin that ensure the plausibility of the studied model and the positivity (more
precisely, non-negativity) of its solution. Similar ideas of model checking appear in [62] and
[63].

In the derivation of the verification rules, partially the basic properties of the biochem-
ical reaction networks are used. The definition of the biochemical reaction rate functions
helps us to find implausible reaction rate functions in models. Further, as we will see, the
plausibility of the reaction rates guarantees the essential non-negativity of the model equa-
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tions, which further implies that the model trajectories remain non-negative independently
of the model parameters.

In addition to the model verification procedures, we aim at localizing the reaction, or
set of reactions, that cause a particular problem (for example, possible negative solutions),
and at giving advice on how to correct them.

2.1 Mathematical formulation of biochemical networks

The basic notions of mass action chemical reactions networks (MAL-CRNs) were intro-
duced in Section 1.2.1. The goal here is to extend the notions of MAL-CRNs for a larger
systems class, in which the kinetic rate laws are not restricted by the monomial rate ex-
pressions of the mass action law, but they are stated as rational functions.

2.1.1 Basic notations

As in the case of MAL-CRNs, here we also assume a closed thermodynamic system with
constant physico-chemical properties under isothermal and isobaric conditions. The bio-
chemical species Xi, i = 1, . . . n participate in biochemical reactions of the form

n∑
k=1

νkiXk

rijl−−−→
n∑
k=1

µkjXk , (2.1)

where ν1i, . . . , νni and µ1j, . . . , µnj are stoichiometric coefficients as in the MAL-CRN case.
Further, we recall the notions of complexes C1, . . . Cm, complex composition matrix Y ∈
Rn×m and the notion of zero complex C0 from section 1.2.1. The concentrations of the
chemical species are also stored in the n-dimensional, non-negative state vector x.

One of the main difference between the bio-CRNs and the MAL-CRNs is the definition
of the reaction rate function rijk(·) : Rn

+ 7→ R+, which is often a non-linear function of
the concentration vector. In general it is possible that the species in a complex give rise
to multiple reaction paths, thus multiple reaction rate functions can be assigned to each
complex. We will categorize these reaction rates based on their mathematical formulations.
Using the notations of complexes and kinetics, the reaction (2.1) can be equivalently written

as Ci
kijl,gil−−−−→ Cj. Here the reaction rate rijl of the reaction is decomposed as

rijl(x) = kijl · gil(x), (2.2)

where kijl ∈ R+
0 is a constant, non-negative principal reaction rate coefficient and gil(·) is

a function of the species concentrations, called the kinetics of the reaction.
Traditionally the reactions are explained by the picture of molecular collisions, which

gives rise to the mass action law. According to the mass action law, the intensity of the
reaction is proportional to the concentrations of the molecules participating in the reaction
step. This results in the following form for the mass action kinetics: gil(x) =

∏n
k=1 x

νki
k .

However, in biological applications the reaction rates are often not limited to mass
action kinetics and therefore the kinetics are not a monomial function of the concentration
vector. This is partially a consequence of simplified reaction pathways, for example the
Michaelis Menten kinetics ( xi

K+xi
) can be derived from a series of enzymatic reactions [64].

Here we assume that for each complex containing some species, a finite set of biochem-
ical kinetics Gi = {G1, G2, . . . Gdi} can be determined. Each of these kinetics defines a
relationship among the species of the complex, for example G1 = ‘Mass action’, G2 =
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‘Michelis Menten kinetics’,G3 = ‘Hill kinetics’ etc. With this notation, the math-
ematical function gil(x) is associated with the type of kinetics Gl of the complex Ci.

Based on the above notions we can define the following four sets to uniquely describe
a reaction network.

I. S = {X1, . . . Xn} is the set of species or chemical substances.
II. C = {C1 . . . Cm} is the set of complexes.

III. G = ∪mi=1Gi is the set of reaction rates (kinetics).
IV. The set of biochemical reactions is

R = {(Ci, Cj, Gl) | Ci, Cj ∈ C, Gl ∈ Gi and Ci is transformed to

Cj by the kinetics Gl}.

Since many kinetic biochemical ODE models can be represented in this form, we call
these models biochemical reaction networks (bio-CRNs). The set of species, complexes
and reactions with the kinetics uniquely determines the biochemical reaction network which
is denoted by Σ = (S, C, G, R).

In the special case, when the bio-CRN contains only mass-action type kinetics, also
called as mass action law chemical reaction networks (MAL-CRN), the set of kinetics
becomes meaningless and the traditional ΣMAL = (S, C, R) is obtained.

2.1.2 Reaction graph of the biochemical network

The set of complexes and the set of reactions can be represented by a directed, weighted
graph. The reaction graph G = (V;E) consists of a finite non-empty set of vertices, which
represents the complexes: V = {C1, . . . Cm} and a finite set of directed edges E, which
represents the reactions. The directed edges representing reactions are defined by triplets
of the form e(ijl) = (Ci, Cj, Gl) for i, j = 1, . . . ,m, i 6= j, l = 1, . . . , di, where i, j and l
are the indices of the source complex, product complex and the kinetics of the reaction,
respectively. The principal reaction rate coefficients and the kinetic functions are assigned
as weights to the edges.

Note that, there might be multiple directed edges with different kinetics converting Ci
to Cj for any i, j = 1, . . . ,m, i 6= j, which is a fundamental difference from the reaction
graph of mass action systems, where such multiple edges are not allowed.

(Weak) Reversibility. A reaction network is called reversible, if whenever the reaction

Ci
k,gil−−−→ Cj with any kinetics gil exists, then a reverse reaction Cj

k′,gjl′−−−→ Ci with any other
kinetics gjl′ is also present in the network. A reaction network is called weakly reversible,
if whenever complex Cj is reachable from complex Ci on a directed path in the reaction
graph, then there exists a directed path from Cj to Ci, too.

Deficiency. The notion of the deficiency [53] of a reaction kinetic system is built on the
set of reaction vectors (ρ(l,k)) forming the stoichiometric subspace S that is defined as

S = span{ρ(l,k) = ηj − ηi | (Ci, Cj, Gl) ∈ E for any l ∈ {1, . . . di}} (2.3)

where ηi denotes the ith column of Y . The deficiency d of a reaction network is defined as:

d = m− `− s (2.4)

where m is the number of complexes, ` is the number of linkage classes and s is the rank
of the stoichiometric subspace, i.e. s = rank(S).
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Feinberg [53] proved important properties of the solutions of kinetic systems with mass
action law related to the existence, uniqueness and stability of equilibria based on the
deficiency and weak reversibility of the network, particularly in the Deficiency Zero and
Deficiency One Theorems. With biochemical kinetics, one can apply those points of the
Deficiency Zero Theorem 1.2.1 that correspond to arbitrary (not necessarily mass action)
kinetics. For example, when the deficiency of the network is zero, but the network is not
weakly reversible, there is no strictly positive steady state solution, and there cannot be
exist a cyclic trajectory in which all states remain positive [53].

2.1.3 Biochemical reaction rates

The species in each complex may react in different ways, which is described by the concept
of kinetics. Therefore a set of kinetics Gi = {G1, . . . Gdi} was introduced in the previous
section for each complex and a function gil(·) was associated to each kinetics. In this section
we further characterize the form of these kinetic functions.

Kinetic functions determine the rate of the reactions (2.2) based on the concentrations of
a set of species. For each reaction, the species are classified as dominant species, modifiers or
neutral species. Neutral species do not participate in the reaction, i.e. their stoichiometric
coefficients are zero. The dominant species are the source species, the concentration of
which strongly effects the reaction rate, i.e. if any of the dominant species concentration is
zero, the reaction rate is also zero. On the other hand, the species are called modifiers of
the reaction if their presence may increase (activators) or decrease (inhibitors) the reaction
rate, but they are not required for that given reaction – the reaction rate is non-zero even
though the modifier concentration is zero.

The complexes are formed by the dominant species. Therefore, if any of the species has
zero concentration in a complex all the corresponding reaction rate functions are also zero.
Further, we take the following assumptions:

(KA1) any kinetic function gil(·) is always non-negative,
(KA2) any kinetic function gil(·) is zero if and only if the concentration of any of its source

species is zero.

To be consistent with assumption (KA1) the reversible reactions are represented by two
reactions.

The reaction rate functions are stated in polynomial or rational polynomial form in
most kinetic biochemical ODE models. Thus, from now on, we assume that the reaction
rate can be written as a ratio of two functions as

gil(x) =
Ψi(x)

Dil(x)
, (2.5)

where Ψi(x) is a monomial function

Ψi(x) =
n∏
k=1

xνkik (2.6)

and Dil(x) is a positive polynomial function of the concentration vector. To make the
decomposition (2.2) unique, gil(x) must not contain any linear scaling factor. Therefore
the zero-order term in the denominator polynomial is fixed to 1, i.e. Dil(x) is written as

Dil(x) = 1 +
∑

αm1,m2,...mnx
m1
1 xm2

2 . . . xmnn , (2.7)
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where α ∈ R≥0 and m1, m2, . . . ,mn are non-negative integers. Similar decomposition of
the reaction rates was used for example in [63] for the verification of biochemical dynamic
models and in [65] for model reduction.

2.1.4 Differential equations of the biochemical models

Reactions transform initial substances to products and we are interested in the concentra-
tions of these substances in time. Balance equations are formulated, which account for the
production and consumptions of the species in the following way:

ẋ =
∑
rijk∈R

rijk(x)(Y·,j − Y·,i) =
∑
rijk∈R

kijkgik(x)(Y·,j − Y·,i), (2.8)

where Y·,j denotes the j-th column of the complex composition matrix Y , i.e. the vector of
stoichiometric coefficients of species in complex Cj.

The mass balance equations form a dynamic, ODE model which describes the concen-
tration trajectories of the species. This systems of ODEs can be transformed to have a
special structure, which let us read out the structure of the reaction graph from the equa-
tions. Motivated by the ODE structure of MAL-CRNs [53], we define the dynamic model
of bio-CRN into the following form

ẋ = Y · Ak · P (x) ·Ψ(x), (2.9)

where x ∈ Rn is the concentration vector of the species, Y is the complex composition
matrix, Ak is the generalized Kirchhoff matrix, P (.) is the kinetic weighting function and
Ψ(.) is a monomial vector function. In the following part we go through each of the terms
introduced.

The generalized Kirchhoff matrix Ak ∈ Rm×r stores the principal reaction rate coef-
ficients and it is a column conservation matrix. When only one kinetics is associated to
each complex, for example in mass action networks, Ak is a square matrix, see (1.6). The
off-diagonal elements of the matrix are reaction rate coefficients and the diagonal elements
contains the corresponding negative columns sums.

In general, more than one kinetics can be associated to each complex. In this case the
number of kinetics of each complex Ci is denoted by di. Further, let κ be the sum of kinetics
in all complexes: κ =

∑m
i=1 di. Then the generalized Kirchhoff matrix Ak ∈ Rm×κ can be

written as the concatenation of m blocks

Ak =
[
A

(1)
k . . . A

(i)
k . . . A

(m)
k

]
, (2.10)

where the size of block A
(i)
k is m×di for i = 1 . . .m. The precise structure of each block is as

follows. The j-th row of the block A
(i)
k (i 6= j) contains the principal reaction rate coefficients

of the reactions from the complex Ci to complex Cj with kinetics gil for l = 1 . . . di. The
elements of i-th row of the i-th block contains the negative sum of the column elements.

For later reference, let us define formally the generalized Kirchhoff matrix similar to
(1.6)

Ak,i,zj+l =


kjil if i 6= j,

−
m∑

o=1,o 6=i

kjo,l if i = j
for i = 1 . . .m, j = 1 . . .m and l = 1 . . . di. (2.11)
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Here we introduced the index variable

zj =

j−1∑
k=1

dk for j = 1 . . .m, (2.12)

which denotes the sum of the number of kinetics in the first j−1 complexes, i.e. the number
of columns of the first j − 1 blocks in (2.10). By definition z1 = 0.

Defining the generalized Kirchhoff matrix for bio-CRNs in the above way has the fol-
lowing advantages. The matrix has a close relationship with the complex-reaction graph:
the non-zero elements correspond to the edges of the reaction graph. The locations of the

non-zero elements will be referred as the structure of the Ak matrix. Let us take A
(i)
k as

an example. An empty row in this block, e.g. row j, indicates no reaction taking place
from complex Ci to complex Cj. Consequently an empty block indicates no reaction from
complex Ci to any other complexes. Further, the number of columns of a block tells the
number of possible kinetics of the corresponding complex.

The kinetic weighting function P : Rn → Rκ×m contains the denominator terms of
the reaction rate functions (c.f. (2.2)) arranged in a matrix form

P (x) =


P (1)(x) 0d1 . . . 0d1

0d2 P (2)(x) . . . 0d2
...

0dm 0dm . . . P (m)(x)

 . (2.13)

Here each block P (i) (for i = 1 . . .m) is of size di × 1 and 0di denotes a di dimensional
zero vector. Each block P (i) contains the denominators of the kinetics gi1, gi2, . . . gidi , for
example

[
P (i)

]
l
= 1

Dil(x)
.

Note that for MAL-CRNs the reaction rate function (1.2) do not have denominator,
thus the P is the m-dimensional identity matrix.

The monomial function Ψ : Rn → Rm is a vector function such that each element is a
monomial

Ψi(x) =
n∏
j=1

x
Yji
j for i = 1 . . . n . (2.14)

Note, that the monomial function has a close relationship with the complex composition
matrix. Further, the elements of the monomial functions appear in the nominator of the
reaction kinetics (2.5).

From the above, it is clear that the bio-CRN Σ can be equally well characterized either
by Σ = (S, C, G, R) or by Σ = (Y,Ak, P ). While the former is used in the analysis of the
network, the latter is more suitable for computational purposes. Equation (2.9) is called
the normal form of the dynamic equations.

The vector of kinetics is defined as the product

P (x) ·Ψ(x) = [g11(x), g12(x), . . . gmdm(x)]T := ϕ(x) . (2.15)

This vector simply collects all the reaction rates without the principal reaction rate coeffi-
cients.
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2.1.5 Non-negativity of the solutions

The dynamic variables x of any biochemical model are species concentrations, which are
naturally non-negative. In what follows we show that all the solutions started from the non-
negative orthant remain non-negative for all time, independently of the numerical values
of the reaction rate coefficients.

The analysis is based on the notion of essentially non-negative functions [51, 66–68].
A function f = [f1 . . . fn]T : [0,∞)n 7→ Rn is called essentially non-negative if, for all
i = 1, . . . , n and x ∈ [0,∞)n, fi(x) ≥ 0, whenever xi = 0. Let us consider an autonomous
non-linear system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ [0, tf ) . (2.16)

Haddad [66] showed that for a locally Lipschitz f function, the non-negative orthant Rn

+

is invariant under the system dynamics (2.16) (i.e. starting from a non-negative initial
condition, all the state variables in x remain non-negative for all time) if and only if f is
essentially non-negative. For example, it is shown in [51] and in [69] that MAL-CRNs are
essentially non-negative, and therefore all the solutions are non-negative.

Similar results can be obtained for the bio-CRNs as a consequence of the properties
(KA1)-(KA3) of the kinetic functions as shown in Appendix A.2.

2.1.6 Examples

Here we present an example, which considers a biochemical network in the presented math-
ematical structure. A similar example can be found in Appendix A.1 which shows that the
MAL-CRNs form a special case of the bio-CRNs.

Example 2-1 (An example with rational kinetics)

X
1

+ 2X
2

X
1

+ X
3

X
4

r
311 r

132

C
2

C
1

C
3

r
211

r
121

r
122

r
231

Figure 2.1: Reaction graph of a simple bio-CRN.

Consider the biochemical network in Figure 2.1. There are three complexes:

C1 = X1 + 2X2, C2 = X1 +X3, and C3 = X4,
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which are connected by six irreversible reaction steps. The reaction rate functions are given
as follows

r121 = k1
x1x

2
2

1 +K11x1

, r122 = k2
x1x

2
2

1 +K21x1 +K22x1x2

, r211 = k3
x1x3

1 +K31x3

r132 = k4
x1x

2
2

1 +K41x4

, r311 = k5x4 , r231 = k6
x1x3

1 +K31x3

.

The stoichiometric coefficients of the species can be read out from the complexes and thus
the complex composition matrix and the corresponding monomial vector function are

Y =

1 1 0
2 0 0
0 1 0
0 0 1

 , Ψ(x) =

[
x1x

2
2

x1x3

x4

]
. (2.17)

The kinetics (2.5) corresponding to the reaction rate functions are

g11 =
x1x

2
2

1 +K11x1

, g12 =
x1x

2
2

1 +K21x1 +K22x1x2

, g21 =
x1x3

1 +K31x3

g13 =
x1x

2
2

1 +K41x4

, g31 = x4 .

Note that three kinetics are corresponding to complex C1 and one-one kinetics to complexes
C2 and C3. Further, the kinetics of the reactions rate r211 and r231 are the same. The kinetic
weighting function (2.13) contains the denominator terms of the reaction kinetics. There
are three complexes, thus according to (2.13) P (1) contains the denominators of g11, g12

and g13, P (2) is the denominator of g21 and P (3) is the denominator of g31, i.e. 1 for this
case. This results in the following kinetic weighting function:

P (x) =


1

1+K11x1
0 0

1
1+K21x1+K22x1x2

0 0
1

1+K41x4
0 0

0 1
1+K31x3

0

0 0 1

 .

From the reaction graph and reaction rates we can read out the principal reaction rate
coefficients and the generalized Kirchhoff matrix can be built. The generalized Kirchhoff
matrix (2.10) has three blocks corresponding to the three source complexes. The block

A
(1)
k is made up by the rate coefficients of the reactions starting from complex C1. For

example, reaction r121 transforms substances from complex C1 to C2 by kinetics g11, thus

[A
(1)
k ]21 = k1. There is no reaction from complex C1 to complex C3 with kinetics g11,

therefore [A
(1)
k ]31 = 0. The negative column sum is written in [A

(1)
k ]11. There is a parallel

reaction from C1 to C2 with kinetics g12 with coefficients k2, thus [A
(1)
k ]22 = k2. The last

reaction from complex C1 transforms the material to complex C3 by the third kinetics, g13,

therefore the corresponding reaction rate goes in [A
(1)
k ]33. Both reactions from complex C2

has the same kinetics, thus the second block is a simple column vector A
(2)
k = [k3, −k3 −

k6, k6]T .
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There is only one reaction starting from complex C3. It points to complex C1, thus

A
(3)
k = [k5, 0, −k5]T . The concatenation of the blocks results in the following generalized

Kirchhoff matrix of the bio-CRN example reads as:

Ak =

[−k1 −k2 −k4 k3 k5

k1 k2 0 −(k3 + k6) 0
0 0 k4 k6 −k5

]
.

The product f(x) = Y AkP (x)Ψ(x) results in the kinetic systems of ordinary differential
equations:

ẋ1 =k5x4 − k4
x1x

2
2

1 +K41x4

− k6
x1x3

1 +K31x3

ẋ2 =− 2k1
x1x

2
2

1 +K11x1

− 2k2
x1x

2
2

1 +K21x1 +K22x1x2

− 2k4
x1x

2
2

1 +K41x4

+

+ 2k3
x1x3

1 +K31x3

+ 2k5x4

ẋ3 =k1
x1x

2
2

1 +K11x1

+ k2
x1x

2
2

1 +K21x1 +K22x1x2

− (k3 + k6)
x1x3

1 +K31x3

ẋ4 =k4
x1x

2
2

1 +K41x4

+ k6
x1x3

1 +K31x3

− k5x4 .

�

2.2 Model verification of biochemical models

In this section we present criteria of biochemical origin that ensure the plausibility of
the studied models and the positivity (more precisely, non-negativity) of their solutions.
Further, we aim at localizing non-plausible reaction rate functions of the models. We have
to note, that similar techniques are available scattered in the literature and computational
tools. For example, COPASI [55] checks the plausibility of the reaction rate functions,
which we call here the kinetic property of the reaction rates.

2.2.1 Plausible biochemical reaction rates

Because of the chemical meaning of the reaction rates, the reaction rate functions should
posses the following properties.

1. Rate positivity. As the elementary reaction steps are irreversible and the reaction rate
is defined as the rate of the consumption (decrease) of the reactant concentrations,
the inequality rijk(x) ≥ 0 should be fulfilled over the entire domain of the reaction
rate function.

2. Kinetic dependence. The reaction rate function should be zero if and only if at least
one of the species concentration in the source complex is zero, i.e. rijk is said to be
kinetic with respect to the species in the source complex (Xk ∈ Ci) if

rijk(xl = 0) = 0 for all l = {1, . . . , n|Xl ∈ Ci} . (2.18)

The reaction rate with the above two properties will be termed plausible. These conditions
are also in agreement with the assumptions (KA1 and KA2) for the bio-CRN reaction rate
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functions in Subsection 2.1.3.

2.2.2 Plausibility of some common biochemical reaction rate func-
tions

Only a limited number of rate function types are usually present in biochemical reaction
systems, that are characterized by a functional form and the values of its parameters [70].
A few of the most important ones are analysed for plausibility below.

(i) Mass action kinetics
This is the simplest reaction rate function form rMA,i = ki ·

∏n
l=1 x

νli
l where ki > 0 is

the reaction rate constant, and the reactant complex is Ci =
∑n

l=1 νliXl. It is easy to
see that rMA,i is kinetic in each of the species in complex Ci.

(ii) Michaelis-Menten kinetics
Recall, that elementary reaction steps are irreversible, then the rate function is in
the form

rMM,i = ki ·
xi

(Ki + xi)
(2.19)

where where ki > 0 and Ki > 0 are constant parameters, and the reactant complex
Ci = Xi. This reaction rate function is kinetic in Xi.

(iii) Constant level reactions
Here the rate function is simply a constant, i.e. rC,i = kMi , where kMi > 0 is a constant.
This rate function does not have kinetic dependence on any specie, thus no reactant
species can be associated to this reaction. Consequently it is not a plausible reaction
rate function, whenever it is a consuming reaction. Note that, when this reaction
stands for model input it always occurs with positive sign in the balance equations.

Correcting non-plausible reaction rates. There is unfortunately no general way of
correcting non-plausible reaction rates. However, in some cases, such rates can be made
plausible. An example of this case is, when a constant level type reaction rate function is
present in the kinetic equation of the species Xi with negative sign. Then we can multiply
the rate function with xi that will make this rate function kinetic in Xi.

2.2.3 Mass conservation

The conservation equations are constructed for species that are either reactants or products
of the chemical reactions in the form

dxk
dt

= −
m∑
i=1

νkiri +
m∑
i=1

µkiri =
m∑
i=1

skiri, (2.20)

[71] defined the mass conservative reaction set as a set of the reactions having the mass
conservative property below. Let us define wi as the molecular weight of the specie Xi with
strictly positive value. If reaction Cl → Cj is present in the network, the following can be
written:

n∑
i=1

Yilwi =
n∑
i=1

Yijwi = cs (2.21)

where cs > 0 is a constant weighted column-sum. Let us define vector w ∈ Rn
+ as a row

vector composed of the molecular weights. Now, (2.21) can be rewritten as w·ηl = w·ηj = cs
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where ηl refers to the lth column of matrix Y , or with other words, the composition vector
of complex Cl. Finally, it can be said that a reaction is mass conservative if the following
holds:

w · ρ(l,j) = 0 , (2.22)

where ρ(l,j) = η(l) − η(j) is the reaction vector and w is strictly positive. It should be
noted that a given CRN is called mass conservative if all of its reactions are in the mass
conservative reaction set and a common w can be determined. A common way to test this
condition is to collect the reaction vectors in a matrix form S, similarly as defined in (2.3)
and test if there exists a strictly positive vector m such that mTS = 0, i.e. there is a
positive vector in the left kernel of S (see [72], [73] and for efficient computation methods
[74]).

Mass conservation in open systems. As we have seen before, kinetic models are orig-
inally constructed based on the conservation of the masses of species assuming closed sys-
tems and isothermal conditions. The introduction of the zero complex enabled to construct
a CRN model for an open system but then the condition of (2.21) is violated [71].

In addition to the mass conservative reactions, the CRN model of open systems has
(i) input terms, that have positive sign and may depend on externally set concentrations
and/or mass flow of certain non-conserved specie, i.e. these are positive constants, and (ii)
output terms, that are linear in one conserved specie, have negative sign and appear only in
the dynamic equation of that particular specie. Typically, the dilution due to cell growth
can represented by such an output term. Therefore, all of the input and output terms should
be set to zero when checking the conservation property : this form of the dynamic model
will be called the truncated model.

To check the mass conservation, a truncated stoichiometric matrix Ỹ ∈ Rn×m can be
constructed from stoichiometric coefficients of the truncated model by associating a column
η̃(i) to each complex Ci. The truncated biochemical model has the conservation property,
if there exists a strictly positive vector w such that (2.22) holds for all of the truncated
reaction vectors ρ̃(l,j) = η̃(l) − η̃(j).

2.2.4 Plausible model structure

The model structure is said to be plausible, when the stoichiometric constants in the con-
servation equations (2.20) are consistent with the reactants and products of the reactions,
i.e. νki is strictly positive if reaction ri consumes the species Xk and µki is strictly positive if
Xk is a product of the reaction ri. The stoichiometric coefficient of a reaction which neither
consumes nor produces a species should be zero in the corresponding balance equation.

2.2.5 Verification of some biochemical models

Here we present several examples, where we used the above presented tools to localize
potential modeling pitfalls. First, the working pipeline is illustrated by the analysis of a
bioreactor model.

Example 2-2 (A continuous flow stirred tank bio-reactor)

A homogeneous, continuous flow stirred tank bioreactor (CFSTR) serves as an tutorial
example to illustrate the verification steps. depicted in Figure 2.2. The reaction network
consists of three species (A, B, C), their concentrations are denoted by xA, xB and xC ,
respectively.
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There are two elementary reactions: a two substrate, one product reversible Michaelis-
Menten kinetics (2.23) and a non-plausible (see subsection 2.2.2 case (iii)) constant reaction
(2.24). The zero complex denoted by a ”0” in the reaction graph corresponds to the en-

vironment of the system. The reactor feed contains the substrates A and B with xfA and

xfB constant concentrations, respectively. These inflows are represented by the pseudo-
reactions in Equations (2.25). The output stream that contains all species is represented
by the pseudo-reactions in Equations (2.26).

The reaction rate functions and the ODEs of the CFSTR are

r1 = Vf

xA
KxA

xB
KxB

1 + xA
KxA

+ xB
KxB

− Vr
xC
KxC

1 + xC
KxC

(2.23)

r2 = Kd (2.24)

r3 = ζxfA; r4 = ζxfB (2.25)

r5 = ζxA; r6 = ζxB; r7 = ζxC (2.26)

dxA
dt

= −r1 + r3 − r5 (2.27)

dxB
dt

= −r1 + r4 − r6 (2.28)

dxC
dt

= r1 − r2 − r7 . (2.29)

A, B

A + B ↔ C
C → A, B, C0

(a) The reactor has a constant inflow con-
taining species A and B. Species A and B
form C in a reversible reaction. Species C is
degrading, which is represented by the re-
action to the zero complex. The continuous
outflow of the reactor contains all the three
species.

A + B C

0

A B

rb
1
 

r
7

r
3

r
5 r

6

r
4

r
2

rf
1

 

(b) The reaction graph associated to the
CFSTR. The inflow and the outflow are rep-
resented by pseudo reactions from/to the
zero complex.

Figure 2.2: Continuous flow stirred tank reactor (CFSTR) and its reaction graph represen-
tation.

Splitting the reversible reactions The first correction to this example is by representing
each reversible reaction by two irreversible elementary steps. In this example Equation
(2.23) is separated to a forward and a backward reactions

rf1 = Vf

xA
KxA

xB
KxB

1 + xA
KxA

+ xB
KxB

and rb1 = Vr

xC
KxC

1 + xC
KxC

. (2.30)
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Simultaneously the differential equations are updated to

dxA
dt

= −(rf1 − rb1) + r3 − r5 (2.31)

dxB
dt

= −(rf1 − rb1) + r4 − r6 (2.32)

dxC
dt

= (rf1 − rb1)− r2 − r7 . (2.33)

Checking model positivity by the kinetic property Next, the stoichiometric matrix
(S) is constructed based on the ODEs. Whenever the vij element of S is negative, i.e.
reaction rj consumes the species xi, rj must be kinetic with respect to xi. This can be
checked by substituting zeros for the species xi in the rate function and evaluating it;
the result must be zero. In our example the model Eqs. (2.31)-(2.33) give rise to the
stoichiometric matrix

S =

[−1 1 0 1 0 −1 0 0
−1 1 0 0 1 0 −1 0

1 −1 −1 0 0 0 0 −1

]
(2.34)

and the irreversible reaction vector R = [rf1 , r
b
1, r2, r3, r4, r5, r6, r7]T . Considering the

location of the negative entries of S reaction rf1 and r5 must be kinetic to species A, rf1
and r6 with respect to B and rb1, r2 and r7 with respect to C.

By substituting zeros for the reactant species in the rate functions –e.g. rf1 (xA = 0),

r5(xA = 0), rf1 (xB = 0) etc. – the plausible ones give zeros. At this point reaction r2 is
found to be non-kinetic to the species C, and thus it is a non-plausible reaction. We may
correct the rate function by multiplying with its reactant species concentration: r∗2 = KdxC .
This reaction can be regarded as a model output, too.

Component mass conservation The truncated model without the input reactions (Equa-
tion (2.25)) and the output reactions (Equation (2.26)) and the corrected r∗2) is represented
by the first two columns of S. This sub–matrix is rank deficient and has the m = [1 1 2]T

strictly positive vector in the left nullspace indicating the mass conservation law. �

Biomodels Database [56] is a collection of published and curated biochemical models.
We selected models from the database, which are related to the Escherichia coli bacterium.
These models are rather different by their nature, for example, BIOMD296 considers chem-
ical interactions between populations, BIOMD067 presents a gene-metabolic oscillator,
BIOMD66 focuses on the threonine-synthesis pathway, and BIOMD51 is a model for the
central carbon metabolism of the bacteria. Table 2.1 contains the unique identifiers of
the considered models in the database. Further details about each model can be obtained
through the database.

Among the 11 considered E. coli models some contain non-plausible reactions. The number
of species, the number of reactions and the computation time of the algorithm is also
included in the following columns. The 5th column contains the non-plausible reaction,
while the last column shows whether the truncated model admits mass conservation. In
Appendix B the verification of the central carbon metabolism model BIOMD051 is also
presented in details.
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Table 2.1: Verified models. The models were obtained from the BioModels database. The
model ID, the number of dynamic equations, number of reactions, the required computation
time on a Dell Precision T5500 (Intel Xeon 2.4GHz) and a short description of the problem
found are depicted in the columns.

BioModel No. of No. of Time Non-plausible Mass

ID species reactions [s] reaction conservation
BIOMD296 4 10 man.* plausible no
BIOMD413 5 9 0.3 plausible no
BIOMD200 22 46 2.3 plausible yes
BIOMD217 12 22 23 plausible yes
BIOMD051 18 62 5 reaction vMURSYNTH is not no

kinetic w.r.t. species CF6P
BIOMD066 11 10 man.* reaction vATPASE is not yes

kinetic w.r.t. species ATP
BIOMD012 6 12 0.8 plausible no
BIOMD067 7 16 0.6 plausible no
BIOMD221 8 22 1.9 reaction vSYN is not no

kinetic w.r.t. species AKG
BIOMD222 8 22 1.9 reaction vSYN is not no

kinetic w.r.t. species AKG
BIOMD065 8 16 0.5 plausible no

*the separation of some reaction rate function needed manual manipulation

2.3 Summary

In this chapter the traditional mass-action chemical reaction network formalism was ex-
tended for mathematical models with biochemical reactions. The main purpose of this work
was to formulate the bio-CRNs balance equations such that the equations have an intrinsic
relationship to the complex-reaction graph.

The form of the reaction rate functions was confined to rational functions that have
monomials in the nominator and contain positive polynomials in the denominator. Based
on the mathematical form of these rate functions we introduced the notion of reaction
kinetics. Unlike in the MAL-CRN case, here the species in each complex can have multiple
kinetics. Thus, it is possible to describe, for example, when both a Michaelis-Menten and a
MAL kinetic function are assigned to a source complex. This results in that the biochemical
reaction graph may contain parallel edges, independent reactions, which is not allowed in
the traditional MAL-CRNs. This led us to revise the MAL-CRN reaction graph definition
and its properties, such as the reversibility, weak reversibility and deficiency.

The non-negativity of state-variables is a fundamental feature of any biological model
in which the state variables repsresent concentrations. We showed that the dynamics of
bio-CRN models are essentially non-negative. Therefore, independently of the numerical
values of the model parameters, the solutions of the dynamic equations remain in the
non-negative orthan.

In the second half of this chapter we focused on the verification of biochemical models.
We developed simple syntactical checks, both reaction rate level and model structure level
criteria, which can detect potential pitfalls or implicit modeling assumptions. We note,
that similar approaches exist scattered in literature and in computer programs, such as
checking the plausability of the reaction rates or mass conservation in closed systems.
Our contribution here are the formulation and implementation of these procedures in a
integrated framework, and extension of the mass conservation checking for open systems.
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Chapter3
Realization and computation of equivalent
and conjugated networks

Biochemical reaction networks, presented in the previous chapter, provide a way to analyse
the dynamics of non-linear ordinary differential equations by means of the structure of the
associated reaction graph. Therefore it is our interest to find a bio-CRN for a given system
of ordinary differential equations. When there is at least one such a bio-CRN, then the
system of ordinary differential equations describe a kinetic system and the corresponding
bio-CRN is called a realization of the equations.

Our first goal is to find a graph representation for a kinetic system. Hence, we determine
necessary and sufficient conditions for the dynamics such that a bio-CRN representation
can be determined. These are the kinetic realizability conditions. Then, we will present an
algorithm, which can construct the network.

Similarly to the MAL-CRNs, presented in Section 1.2.1, here we also observe that the
reaction graph is not unique, i.e. more than one reaction network can be associated to the
kinetic system. This phenomena is known as the dynamic equivalence of the networks or
– from the realizations points of view– the confoundability of kinetic systems [44].

Dynamically equivalent networks might have different graph properties. For example,
the number of edges, reversibility, weak reversibility or deficiency are realization dependent
properties. Therefore it is of our further interest to find networks with given graph prop-
erties. Numerical optimization methods are presented which can be used to find sparse,
dense and reversible dynamically equivalent networks.

Johnston and Siegel [58] defined the linear conjugacy of MAL-CRNs. Two MAL-CRNs
are called linearly conjugated if their trajectories (solutions) can be mapped into each other
by a positive linear transformation, i.e. by scaling the state variables. It is well-known that
for example, stability condition is preserved under linear state transformation. Therefore,
linearly conjugated networks share stability properties. In the last part of this chapter we
extend the linear conjugacy theorem for bio-CRNs.

3.1 Kinetic realizations of ODEs with rational func-
tion right-hand sides

Hárs and Tóth [57] considered the inverse problem of the chemical reaction networks. They
aimed at finding a MAL-CRN realization for a system of ordinary differential equations,
which has polynomials in their right hand side functions. Apart from the necessary and
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sufficient conditions, their constructive proof resulted in an algorithm –the canonical real-
ization algorithm–, which can determine the elements of the corresponding MAL-CRN.

Here we follow a similar approach for biochemical reaction networks. The main differ-
ence is that the right hand side functions of the ODEs contain rational rate expressions
instead of simple polynomials.

3.1.1 Kinetic realizability conditions

The following theorem gives necessary and sufficient conditions for a system of autonomous
differential equations such that a bio-CRN can be associated to the dynamics.

Theorem 3.1.1 (Kinetic realizability). Given an autonomous system of ordinary equations

ẋ(t) = f(x(t)), x(0) = x0, t[0, tf ), (3.1)

where f : Rn → Rn, x0 ≥ 0 and x ∈ Rn. Then, there exists a bio-CRN of n species with
the dynamics (3.1) if and only if for each i = 1, . . . n (I) the i-th component of f , fi(x) is
a linear combination of biochemical reaction rate functions(see Equations (2.2) and (2.5))
and (II) the function

fi([x1, x2, . . . , xi−1, 0, xi+1 . . . xn])

is a non-negative linear combination of the biochemical reaction rate functions.

The proof of the theorem follows similar path, that was presented by Chellaboina [51]
for the kinetic realizability of polynomial systems.

Proof of Sufficiency. According to condition (I), the right hand side function is a linear
combination of biochemical reaction rate functions. Thus each term in equation fi(x) has
either the form

ai
xp11 x

p2
2 . . . xpii . . . x

pn
n

D(x)
, (3.2)

where the exponents pj ≥ 0 for j = 1 . . . n and specially pi > 0, or

bi
xq11 x

q2
2 . . . x

qi−i
i−1 x

qi+i
i+1 . . . x

qn
n

D(x)
, (3.3)

where the bi > 0 and the xi is missing from the nominator, i.e. qi ≡ 0. Let

sign(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

.

Consider the following reaction

n∑
j=1

pjXj

|ai|,
∑n

j=1 x
pj
j

D(x)


−−−−−−−−−−−−→ (pi + sign(ai))Xi +

n∑
j=1,j 6=i

pjXj, (3.4)

where
∑n

j=1 pjXj is the source complex, (pi + sign(ai))Xi +
∑n

j=1,j 6=i pjXj is the product

complex, |ai| is the principal reaction rate coefficient and

∑n
j=1 x

pj
j

D(x)
is the reaction kinetics.
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This reaction results the term (3.2) in fi, but does not contribute to any other fj, j =
1, . . . n, j 6= i, since the stoichiometric coefficients for any other Xj are the same in the
reactant and in the product side. Further, the reaction

n∑
j=1

qjXj

bi,
∑n

j=1 x
qj
j

D(x)


−−−−−−−−−−−→ Xi +

n∑
j=1,j 6=i

qjXj, (3.5)

contributes (3.3) in fi, but nothing for the other fj for similar reason.

In conclusion, we can associate a reaction (either (3.4) or (3.5)) with each term in f ,
which proves sufficiency.

Proof of Necessity. Let o = 1, . . . n and recall Equation (2.8)

fo(x) =
∑
rijl∈R

rijl(x) ([ηj]o − [ηi]o) .

Here ηj is the j-th column of the complex composition matrix Y , and [ηj]o is its o-th entry,
i.e. [ηj]o = Yjo. Inserting the reaction rate function (2.2) and (2.5) into the above equation
yields

fo(x) =
∑
R

kijl
Dil(x)

xηi ([ηj]o − [ηi]o) . (3.6)

Here, to simplify the notation we used the following convention: if a, b ∈ Rn then ab =∏n
i=1 a

bi
i . We see from Equation (3.6) that the differential equations of a biochemical reac-

tion network is a linear combination of biochemical reaction rates, therefore the first part
(I) is done.

Regarding (II), we have to show that if xo = 0, then (3.6) is a non-negative linear
combination of the rate functions. Let xo = 0. If [ηi]o > 0, then the monomial xηi is zero
and therefore the corresponding terms in the summation disappear. On the other hand,
if [ηi]o = 0, then the 00 should be further discussed. This term is treated in the following
way:

kijl
Dil(x)

xηi ([ηj]o − [ηi]o) = lim
xo→0+

kijl
Dil(x)

x[ηi]1 . . . x[ηi]o−1x0
ox

[ηi]o+1 . . . x[ηi]n [ηj]o =

=
kijl

Dil([x1, . . . , xo−1, 0, xo−1 . . . xn]T )
x[ηi]1 . . . x[ηi]o−11x[ηi]o+1 . . . x[ηi]n [ηj]o.

Let R = {terms in which [ηi]o = 0} and so

fo([x1, x2, . . . , xo−1, 0, xo+1 . . . xn]) =
∑
R

[ηj]okijl
Dil(x)

x[ηi]1x[ηi]2 . . . x[ηi]o−1x[ηi]o+1 . . . x[ηi]n ,

which is indeed a non-negative linear combination of elementary biochemical reaction rate
functions, thus we finished with (II).
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3.1.2 Canonical realization algorithm

If the conditions of the kinetic realizability are fulfilled, the first part of the proof of
kinetic realizability suggests an easy way to construct a bio-CRN. The goal is to find the
components of the bio-CRNs, i.e. the sets of species, complexes, reactions and kinetics. We
summarized the full procedure by Algorithm 1.

The algorithm processes each equation one-by-one. It requires the list of rational func-
tion terms on the right hand side of the differential equations. First, the source complex is
determined based on the exponents of the monomials in the nominator. Then, a product
complex is assigned to the reaction based on (3.4) or (3.5). In case of processing the i-th
equation, the stoichiometric coefficients of the species in the product and source complex
are the same for all the species, except the species Xi. Thus, the inferred reaction does not
contribute to any other than the i-th equation. Finally, the kinetics is determined from the
functional form of the rational term.

Algorithm 1 can also be seen as an extension of the canonical realization algorithm
[51, 57], which is applicable only for polynomial differential equations.

It is known that the canonical realization algorithm generally results in a large number
of complexes. Further, the inferred biochemical reaction network does not fulfill thermo-
dynamic constraints and almost never fulfills the mass conservation due to the way the
product complex is constructed for each reaction.

The only purpose of the presented algorithm is to generate a biochemical reaction
network for kinetic systems. The above observations also motivate our work presented in
the following part of this chapter, i.e. to find other realizations with desired properties
based on numerical optimization.

Example 3-1 (Canonical realization of a biochemical reaction network)

Consider the following system of ordinary differential equations

ẋ1 = −k21x
3
1 −

k22x
3
1

1 +K2x1

+ 3k11x
3
2 +

3k12x
3
2

1 +K1x2

ẋ2 = k21x
3
1 +

k22x
3
1

1 +K2x1

− 3k11x
3
2 −

3k12x
3
2

1 +K1x2

.

It is easy to check that the kinetic realizability conditions hold for this system, i.e. (i) f1

and f2 are linear combinations of biochemical reaction rate functions and (ii) f1([0, x2]T )
and f1([x1, 0]t) are positive linear combinations of biochemical reaction rate functions.

We applied Algorithm 1 and summarized each step in Table 3.1. Each row of the table
corresponds to the identification of a reaction step, i.e. the algorithm finds the source and
product complexes, determines the principal reaction rate coefficient and reaction kinetics.

In conclusion, Algorithm 1 found the following set of complexes

C = {3X1, 2X1, 3X2, X1 + 3X2, 3X1 +X2, 3X2}

and identified the set of kinetics

g11 = x3
1 g12 =

x3
1

1 +K2x1

g31 = x3
2 g32 =

x3
2

1 +K1x2

.
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Algorithm 1 Algorithm for realization of biochemical reaction network from ODEs.

Require: a set of ODEs of n variables; each fi is a linear combination of elementary
reaction rate functions, i.e.

fi(x) =
∑m

l=1

(
cl

∏n
j=1 x

νjl
j

Dl(x)

)
=
∑m

l=1 clgl(x);

1: R = ∅; # set of reactions
2: C = ∅; # set of complexes
3: S = {X1 . . . Xn}; # set of species
4: for i = 1 to n do
5: for each clgl(x) do
6: Cs =

∑
νjlXj; # source complex

7: if Cs 6∈ C then
8: add Cs to C;
9: end if

10: if νil ≥ 1 then
11: Cp = (νil + sign(ci))Xi +

∑n
j=1,j 6=i νjlXj; # product complex

r = |ci|
∑n

j=1 x
νjl
j

Dl(x)
; # reaction rate

g =

∑n
j=1 x

νjl
j

Dl(x)
; # kinetics

12: else
13: Cp = Xi +

∑n
j=1,j 6=i νjlXj; # product complex

r = ci

∑n
j=1 x

νjl
j

Dl(x)
; # reaction rate

g =

∑n
j=1 x

νjl
j

Dl(x)
; # kinetics

14: end if
15: if Cp 6∈ C then
16: add Cp to C;
17: end if
18: add reaction (Cs,Cp, g) to R;
19: end for
20: end for
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Table 3.1: Detailed procedure of the simple realization example 3-1. Each line of the table
corresponds to a realized reaction. The first column contains the right hand side component
of the ODEs, the second column shows a reaction term of the right hand side function.
The third column contains the assigned reaction: the source and the product complexes are
written on the sides of the arrow, the principal reaction rate coefficient and the reaction
kinetic function is written above the arrow. The found new complexes are in the last
column.

Equation Term Realized reaction New complexes

f1(x) −k21x31 3X1

|−k21|

x31
1


−−−−−−−−−−→ (3 + sign(−k21))X1 C1 = 3X1, C2 = 2X1

f1(x) − k22x
3
1

1+K2x1
3X1

|−k22|

 x31
1 +K2x1


−−−−−−−−−−−−−−−→ (3 + sign(−k22))X1 -

f1(x) 3k11x
3
2 3X2

|3k11|

x32
1


−−−−−−−−−→ X1 + 3X2 C3 = 3X2, C4 = X1 + 3X2

f1(x)
3k12x

3
2

1+K1x2
3X2

|3k12|

 x32
1 +K1x2


−−−−−−−−−−−−−−−→ X1 + 3X2 -

f2(x) k21x
3
1 3X1

|k21|

x31
1


−−−−−−−−→ X2 + 3X1 C5 = X2 + 3X1

f2(x)
k22x

3
1

1+K2x1
3X1

|k22|

 x31
1 +K2x1


−−−−−−−−−−−−−−→ X2 + 3X1 -

f2(x) −3k11x
3
2 3X2

|−3k11|

x32
1


−−−−−−−−−−→ (3 + sign(−3k11))X2 C6 = 2X2

f2(x) − 3k12x
3
2

1+K1x2
3X2

|−3k12|

 x32
1 +K1x2


−−−−−−−−−−−−−−−−→ (3 + sign(−3k12))X2 -
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We can see from the kinetics that only complex C1 and C3 are source complexes, each of
them with two types of kinetics. The corresponding reaction graph of the bio-CRN can be
seen in Figure 3.1.
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Figure 3.1: The reaction graph of the example constructed by the canonical realization
algorithm.

�

3.2 Dynamically equivalent biochemical reaction net-
works

It has been known that different reaction graph structures in the MAL-CRNs may lead
to the same kinetic differential equations. In other words, the reaction graph structure
corresponding to a given kinetic ODE system is non-unique. This phenomenon is called
macro-equivalence, dynamical equivalence or confoundability [30, 32, 44, 58]. Since the mass
action case is a special case of the generalized kinetic description, dynamical equivalence
necessarily emerges for the bio-CRN structure, too.

3.2.1 Dynamical equivalence in bio-CRNs

When the kinetic realizability condition is fulfilled, the dynamic equations can be written
as linear combinations of kinetic reaction rate functions. In this case, Equations (3.1) can
be written using matrix notations as

f(x) = Y Ak︸︷︷︸
M

P (x)Ψ(x)︸ ︷︷ ︸
ϕ(x)

= Mϕ(x) (3.7)

where Σ = (Y, Ak, P (x)) is a realization of the equations. AG: The subsection was rewritten
according to these suggestions.. From now on, we assume that this factorization is fixed
and given, for example produced by the Realization Algorithm 1. The coefficient matrix
M ∈ Rn×κ contains the coefficients of the linear combinations and ϕ is a vector of kinetic
functions (2.15).
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It is important to note, that the above factorization might be not unique in general and
the realization algorithm provide only one of the possible factorizations.

We further assume that the components of the kinetic vector ϕ(x) are linearly inde-
pendent, i.e.

κ∑
i=1

αiϕi(x) = 0, for all x > 0 if and only if αi = 0 for ∀i = 1, . . . κ. (3.8)

From the network point of view, this assumption guarantees that parallel edges between
two complexes represent independent kinetics.

The realization can be seen as a process for finding a complex composition matrix Y ,
generalized Kirchhoff matrix Ak and a rate weighting function P (.) such that

Mϕ(x) = Y AkP (x)Ψ(x) for all x ∈ Rn
+. (3.9)

The bio-CRN Σ = (Y,Ak, P ) is called a realization of the dynamic equations, further the
model defined by these dynamic equations is called a kinetic model or kinetic system.

The realization is non-unique if there exist multiple bio-CRNs, for example Σ1 =
(Y 1, A1

k, P
1) and Σ2 = (Y 2, A2

k, P
2) for which

Mϕ(x) = Y 1A1
kP

1(x)Ψ1(x) = Y 2A2
kP

2(x)Ψ2(x) for ∀x ∈ Rn
+ . (3.10)

Let introduce a shared complex composition matrix Y , which stores the stoichiometric
coefficients of the complexes of both networks and let P be the common rate weighting
function, which also contains the reaction kinetics of both networks by forming the union
of the two corresponding sets. In this case the generalized Kirchhoff matrix of each network
will contain some zero rows and columns corresponding to the other network kinetics and

complexes. Further, let Ψi(x) =
∏m

j=1 x
Yji
j , i.e. it contains the monomial functions of both

networks.
Using the above conventions, dynamic equivalence of two networks can be stated as

Y A1
kP (x)Ψ(x) = Y A2

kP (x)Ψ(x). (3.11)

Therefore once a global complex composition matrix Y and kinetic weighting function P
are fixed, all the possible networks can be generated by suitable changes in the generalized
Kirchhoff matrix.

Note that P (x)Ψ(x) = ϕ(x), therefore, when the complexes and reaction kinetics are
fixed, the search for dynamically equivalent realizations can be seen as a matrix factoriza-
tion problem

M = Y Ak , (3.12)

where M and Y are given and we are looking for the matrix Ak, which must fulfill certain
condition (column conservation and structural properties) to be a generalized Kirchoff
matrix, see (2.11).

If two networks are dynamically equivalent, then the affine combination of their gen-
eralized Kirchhoff matrix also results in a dynamically equivalent realization. Therefore if
there are two dynamically equivalent realizations, then there are infinitely many of them.
To show this, let 0 ≥ a ≥ 1 and A3

k = aA1
k + (1− a)A2

k, then

Y A3
kϕ(x) = Y aA1

kϕ(x) + Y (1− a)A2
kϕ(x) = Y A1

kϕ(x) , (3.13)

where in the second step we used (3.11).
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3.2.2 Sparse and dense realizations

When the dynamic system has more than one realizations, it has infinitely many. Some
realizations show structural differences, i.e. the corresponding un-weighted reaction graphs
are different, while others are different only in the numerical weights of the graph. The
reaction network with the least possible number of edges is called the sparse realization.
Further, the realization with the most edges is a dense realization.

Some interesting properties of these special realizations were shown in [75] for MAL-
CRNs. These results are adapted here for biochemical reaction networks.

Let Σ = (Y, Ak, P ) be a kinetic system with fixed complexes and kinetics, and let
Σs = (Y, Ask, P ) and Σd = (Y, Adk, P ) be the dynamically equivalent sparse and dense
realizations, respectively.

Proposition 3.2.1. The un-weighted graph of any dynamically equivalent realization of Σ
is a sub-graph of the dense realization Σd.

Proof. Let M = Y Ak and assume that (Y,Ak, P ) is a dense realization of Σ and thus, Ak

has the most number of positive entries among the possible solutions of M = Y Ak. Further
assume that A′k is also a valid generalized Kirchhoff matrix solution of M = Y A′k, but it
has an edge, which is not in Ak. Formally, there is i ≤ n, j ≤ m, l ≤ dj, i 6= j such that
Ak,i,zj+l = 0 but A′k,i,zj+l > 0. Then, it follows from (3.13) that A′′k = 1

2
A′k + 1

2
Ak is also a

valid dynamically equivalent realization of Σ, but A′′k has more positive elements than Ak,
which is a contradiction.

Proposition 3.2.2. The dense realization Σd is structurally unique.

Proof. This can be seen based on the previous proof.

Proposition 3.2.3. The realization of the kinetic system is structurally unique if and only
if the sparse and the dense realizations are structurally identical.

Proof. (⇒) If the sparse and the dense realizations are structurally identical, then all the
realizations are structurally the same, since the dense realization is structurally unique.
Thus any realization is structurally unique. (⇐) If the structure of the realization is unique
then the dense and the sparse realizations are trivially identical.

A simple implication of the above propositions is that the dense realization contains all
the possible reactions.

Example 3-2 (Example for dynamically equivalent realizations)

Consider the networks depicted in Figure 3.2A with species S = {X1, X2, X3} and com-
plexes C1 = 3X2, C2 = 3X1 and C3 = 2X1 +X2. The complex composition matrix and the
corresponding monomial vector are

Y =

[
0 3 2
3 0 1

]
, Ψ(x) =

 x3
2

x3
1

x2
1x2

 .

The species in each complex can react with two different kinetics (d1 = d2 = d3 = 2):

g1 1 = x3
2, g1 2 =

x3
2

1 +K1x2

, g2 1 = x3
1,

g2 2 =
x3

1

1 +K2x1

, g3 1 = x2
1x2, g3 2 =

x2
1x2

1 +K3x1x2

,
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Figure 3.2: Reaction graphs of dynamically equivalent biochemical reaction networks. The
differences from the network A are depicted with green edges.

where the first index indicates the source complex and the second index identifies the
kinetics. The vector of kinetics can be written as the product of the monomial vector and
the rate weighting matrix

ϕ(x) = P (x)Ψ(x) =


1 0 0
1

1+K1x2
0 0

0 1 0
0 1

1+K2x1
0

0 0 1
0 0 1

1+K3x1x2

 ·
 x3

2

x3
1

x2
1x2

 =



x3
2
x32

1+K1x2
x3

1
x31

1+K2x1
x2

1x2
x21x2

1+K3x1x2


.
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Here, for illustrative purpose, we keep the symbolic values of reaction rate parameters
(k12, k11, k21 and k22) and we present six Aik matrices i ∈ {A, . . . F}, which correspond to
six dynamically equivalent networks depicted in Figure 3.2:

AA
k =

[−k11 −k12 0 0 0 0
k11 k12 −k21 −k22 0 0
0 0 k21 k22 0 0

]
, AB

k =

− 3
2k11 −k12 1

3k21 0 0 0
0 k12 − 1

3k21 −k22 0 0
3
2k11 0 0 k22 0 0


AC

k =

−k11 − 3
2k12 0 1

3k22 0 0
k11 0 −k21 − 1

3k22 0 0
0 3

2k12 k21 0 0 0

 , AD
k =

− 3
2k11 − 1

23k12
1
3k21

1
3k22 0 0

0 0 − 1
3k21 − 1

3k22 0 0
3
2k11

3
2k12 0 0 0 0


AE

k =

−k11 −k12 k21

3
k22

3 0 0
k11 k12 −k21

3 −k22

3 0 0
0 0 0 0 0 0

 ,
AF

k =

(−k11 − l11
3 ) (−k12 − l12

3 ) 1
3 (k21 − l21) 1

3 (k22 − l22) l31 l32
(k11 − 2l11

3 ) (k12 − 2l12
3 ) (−k21

3 − 2l21
3 ) (−k22

3 − 2l22
3 ) 2l31 2l32

l11 l12 l21 l22 −3l31 −3l32

 .

One can easily check that all networks (Σi = (Y,Aik, P ) for i = A,B,C,D,E, F ) give rise
to the same dynamic equations (2.9), which can be written as

ẋ1 = −k21x
3
1 −

k22x
3
1

1 +K2x1

+ 3k11x
3
2 +

3k12x
3
2

1 +K1x2

ẋ2 = k21x
3
1 +

k22x
3
1

1 +K2x1

− 3k11x
3
2 −

3k12x
3
2

1 +K1x2

.

We can see in Figure 3.2 that the structure of the networks are rather different. The
networks A-E contain only 4 reactions, which is the minimum number of reactions that
can represent the network and therefore they are all sparse realizations. In network E, the
complex 2X1 +X2 is isolated, i.e. it does not have incoming or outgoing reactions, therefore
that complex is not shown.

Network F shows dense realizations, which contain all the possible reactions. The dense
realization is structurally unique and in this case it contains all the possible edges. However,
there are continuum many dense realizations, with the following conditions on the weights:
l11 <

3k11
2
, l12 <

3k12
2
, l21 < k21, l22 < k22, l31 > 0, l32 > 0. These conditions guarantee that

the reaction rate coefficients are positive and matrix AFk is a proper generalized Kirchhoff
matrix.

Further note that the networks A, B, C and D are neither reversible nor weakly re-
versible, but networks E and F are reversible realizations. �

3.2.3 Optimization methods for the computation of realizations
with preferred properties

In this section, we consider the computation of dynamically equivalent realizations for
kinetic systems. We are seeking for special realizations, which have some preferred prop-
erties, such as a dense, sparse or reversible graph structure. This task is formulated as a
mixed-integer linear optimization problem [76].
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A general mixed integer linear programming problem (MILP) can be stated as

minimize
x

cTx (3.14)

subject to Aeqx = beq (3.15)

Bineqx ≤ bineq (3.16)

xlb ≤ x ≤ xub (3.17)

xj is integer for some j ∈ {1, . . . k} (3.18)

where x is the k dimensional decision vector. Some elements of the decision vector are
real variables, while the others can take only integer values. When there is no integer
variables included in the decision vector, the problem is called Linear Programming (LP)
problem. The optimization problem is constituted by a linear objective function (3.14),
linear equality constraints (3.15), linear inequality constraints (3.16) and bound constraints
(3.17).

There are many recent results on the computation of equivalent realizations for MAL-
CRNs based on MILP problems. For example, in [32] the optimization problem for the
computation of sparse and dense realizations are stated as mixed integer linear optimization
problem, which can be efficiently solved even for hundreds of chemical species. In [33] the
procedure is adapted for finding complex and detailed balance realizations. In [54] the
problem of finding equivalent realizations with minimum or maximum number of complexes
is considered. In this section we show, how the MILP procedure can be adapted for the
biochemical reaction network case.

Given a realization invariant coefficient matrix M ∈ Rm×κ, the set of complexes Y ∈
Rn×m and the number of reaction kinetics in each complex (d1, . . . dm), such that the total
number of kinetics κ =

∑m
i=1 di. The goal is to find valid generalized Kirchhoff matrix or

matrices (1.6), which fulfils the following matrix equation:

M = Y Ak. (3.19)

Comparing to the existing optimization methods in [32, 33] and [54], the main difference
here is the properties of the matrix Ak. In the MAL-CRN case Ak is a square column
conservation matrix with negative diagonal elements. But Ak is typically rectangular in
the bio-CRN case, and the location of the negative elements depends on the number of
kinetics in each complex.

The entries of the Ak are written in the following way utilizing the index variable
zi =

∑i−1
k=1 dk, for i = 1 . . .m (z1 = 0 and zm + dm = κ) as in (2.12):

Ak(a) =


−a1,1 . . . −a1,d1 a1,z2+1 . . . a1,z2+1 . . . a1,zm+dm

a2,1 . . . a2,d1 −a2,z2+1 . . . −a2,z2+d2 . . . a2,zm+dm
...

am−1,1 . . . am−1,zm+dm

am,1 . . . −am,zm+dm

 . (3.20)

With this explicit notation of the negative elements we can restrict the m × κ decision
variables (aij) of the optimization problem to the non-negative orthant.

Column conservation constraint. The column conservation property of Ak can be
expressed as κ number of equations as

1TmAk,(·,i) = 0 for i = 1 . . . κ , (3.21)
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where 1m is the m dimensional one vector and A(·,i) is the ith column of the matrix.

Counting the number of reactions. The non-zero elements of the Kirchhoff matrix,
which do not have the negative sign, i.e. ai,zj+l for i = 1 . . .m, j = 1 . . .m, l = 1 . . . di,
i 6= j, define the reactions in the network. Let us introduce (m − 1) × κ binary decision
variables wij for each non-negative entry of the matrix Ak. A binary variable equals to 1
if and only if the corresponding entry of matrix Ak is larger than zero (in practice, larger
than a small threshold value ε):

aij ≥ ε ⇐⇒ wij = 1 for (i, j) ∈ Ip , (3.22)

where Ip = {(i, j) | i = 1 . . . ,m; j = 1 . . . κ; j 6= zi + 1, . . . zi + di}, i.e. it is the set of
index pairs of the non-negative elements of Ak in (3.20). Furthermore, let aub be a practical
upper bound for the elements of the matrix:

0 ≤ aij ≤ aub for (i, j) ∈ Ip . (3.23)

Then the relation (3.22) can be expressed in terms of linear inequalities in the following
way:

0 ≤ aij − εwij for (i, j) ∈ Ip (3.24)

0 ≤ −aij + aubwij for (i, j) ∈ Ip (3.25)

Finding sparse realization. Combining the above linear constraints (3.21), (3.23), (3.24)
and (3.25) with an objective function that counts the number of reactions we can formulate
a mixed integer linear optimization problem that finds a sparse realization:

minimize
w,a

m∑
i=1

κ∑
j=1

wij (3.26)

subject to: M − Y Ak(a) = 0 (3.27)

1TmA(·,i) = 0 for i = 1 . . . κ (3.28)

0 ≤ aij ≤ aub for (i, j) ∈ Ip (3.29)

0 ≤ aij − εwij for (i, j) ∈ Ip (3.30)

0 ≤ −aij + aubwij for (i, j) ∈ Ip (3.31)

wij are binary variables, for (i, j) ∈ Ip (3.32)

where (3.26) defines the goal of finding the sparse realization by minimizing the number of
edges, (3.27) defines the constraints ensuring the dynamic equivalence, (3.28) ensures the
column conservation property of the Kirchhoff matrix, (3.29) bounds the principal reaction
rate coefficients, and (3.30) - (3.32) define the binary variables associated to the reactions,
i.e. wij = 1 ⇐⇒ aij > ε.

Finding dense realization. The realization that contains the most number of edges can
be found by solving the optimization problem (3.26)-(3.32), but changing the sign of the
objective function (3.26) to negative.

Remarks.

• One can provide further equality constrains to incorporate a-priory knowledge about
existing reactions or to exclude possible reactions.
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• Although the dense realization is structurally unique, i.e. the positions of zero and
non-zero elements of Ak are well determined, the numerical values of the entries may
vary depending on the numerical algorithm used to solve (3.26) - (3.32).

Reversible realization. The network is reversible if whenever there is an edge from
complex Ci to complex Cj, there is also an edge from Cj to Ci. Using the block structure
of Ak in (2.10), this means the following: whenever there is a nonzero element in the j-th

row in A
(i)
k (there is a reaction from complex Ci to Cj) there must be a positive element

in the i-th row in A
(j)
k .

Formally, the corresponding condition can be expressed in terms of the parametrized
Kirchhoff matrix (3.20) using the index notation (2.12) as

zj+dj∑
l=zj+1

ail ≥ ε2 ⇔
zi+di∑
l=zi+1

ajl ≥ ε2 for i = 1 . . .m, j = i+ 1 . . .m . (3.33)

Finding dynamically  
equivalent realisations

Given:
ẋ = f(x(t))

{Y, Ak, P (x)}
A bioCRN:

Realisation algorithm

Network extension

Formulate & Solve MILP

{Y 0, A0
k, P 0(x)}

M = Y 0A0
k

'(x) = P 0(x) 0(x)

Extended bioCRN:

equivalent bioCRN:

{Y 00, A00
k , P 00(x)}

Figure 3.3: Main steps in find-
ing the dynamically equivalent
realization of a kinetic system.

Here ε2 > ε is a small suitable threshold value. We further
define m×(m−1)

2
binary variables δij, i, j = 1 . . .m, i > j.

These binary variables take the value 1 if the correspond-
ing interaction between the complexes is reversible and
0 otherwise. Then, the logical relationship (3.33) can be
expressed in terms of inequality constraints as

0 ≤(ε2 − ε)−
zj+dj∑
l=zj+1

ail + (aub − ε2)δij

0 ≤(ε2 − ε)−
zi+di∑
l=zi+1

ajl + (aub − ε2)δij

0 ≤
zj+dj∑
l=zj+1

ail − ε2δij

0 ≤
zi+di∑
l=zi+1

ajl − ε2δij for i = 1, . . .m, j = 2, . . .m, j > i.

(3.34)
Note that the condition of reversible realization is for-
mulated as a set of constraints. Using these constraints
together with (3.26)-(3.32) results in a MILP problem,
which finds a sparse reversible realization. Similarly, by
changing the sign of the objective function, we can find
dense reversible realization.

Summary The whole procedure of finding dynamically
equivalent realizations are summarized in Figure 3.3.
First, the realization algorithm is used to form a bio-
chemical reaction network from the kinetic equations. The algorithm generates a set of
reaction kinetics and Kirchhoff matrix. In the next step, the vector of reaction kinetics can
be (optionally) extended. In that case we have to include zero columns in the Kirchhoff
matrix. Finally, the linear optimization problem is formulated, which can aim for finding
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the sparse, dense or reversible equivalent realization.

3.3 Conjugated biochemical reaction networks

Johnston and Siegel [58] introduced the notion of linearly conjugated networks for mass
action systems, which can be seen as an extension of dynamic equivalence. Two networks are
said to be linearly conjugated if the solutions of their dynamic equations can be transformed
into each other by a positive linear transformation, i.e. changing the units of the states
and a possible reordering of the state variables. Since the dynamics of the two networks
are only different by some scaling factors, they share qualitative properties. Thus, if there
is a network with known properties, for example the known number of equilibrium points
and the stability properties of these equilibria, these properties are transferred to all of its
linearly conjugated networks.

The above formalism of the biochemical reaction networks let us extend the linear
conjugacy concept to biochemical reaction networks, i.e. networks which do not solely
obey to the mass action rule.

Definition 1. Given a set of dynamic equations by the coefficient matrix M and by the
kinetic vector ϕ(x), such that ẋ = Mϕ(x). The solution of the equations with initial con-
ditions x(t0) = x0 is denoted by x(t;x0, t0). Further given a bio-CRN Σ = (Y,Ak, P ) with
solution x̂(t; x̂0, t0). This bio-CRN is called a linearly conjugated realization of the dynam-
ics if there is a linear, bijective function h(.) : Rn

+ → Rn
+ such that

h(x(t;x0, t0)) = x̂(t;h(x0), t0) ∀x0 ∈ Rn
+ . (3.35)

Lemma 3.3.1. [58, Lemma 3.1] A linear, bijective function h(.) : Rn
+ → Rn

+ is at most a
positive scaling and possible reordering of the state variables.

Due to this lemma, we can conclude that the original kinetic system (3.7) and the
linearly conjugated bio-CRN share local stability conditions.

It is easy to show that if two networks are linearly conjugated realizations of a dynamic
system, then there is a linear mapping transforming their solutions to each other.

Lemma 3.3.2. Given two biochemical reaction networks Σ′ = (Y ′, A′k, P
′) and Σ′′ =

(Y ′′, A′′k, P
′′), which are linearly conjugated realizations of a dynamic system with solu-

tion x(t;x0, t0) with linear bijective mappings h′ and h′′ respectively. Then Σ′′ is linearly
conjugated to Σ′ with linear mapping h = h′′ ◦ h′−1 and thus

h(x′(t;x′0, t0)) = x′′(t;h(x′0), t0) ∀x′0 ∈ Rn
+, (3.36)

where x′(t;x′0, t0) and x′′(t;x′′0, t0) are the solutions of Σ′ and Σ′′ respectively.

Proof. First, Σ′ is a linearly conjugated realization, so

h′(x(t;x0, t0)) = x′(t;h′(x0), t0) ∀x0 ∈ Rn
+,

and since h′ is bijective, there is an inverse such that

x(t;h′−1(x′0), t0)) = h′−1(x′(t;x′0, t0)) ∀x′0 ∈ Rn
+.

Now using that Σ′′ is also a linearly conjugated realization

h′′(x(t;x0, t0)) = x′′(t;h′′(x0), t0)
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leads to
x′′(t;h′′(h′−1(x′0)), t0) = h′′(h′−1(x′(t;x′0, t0))) ∀x′0 ∈ Rn

+.

Similarly to [58, Lemma 3.2] we can also conclude that the two linearly conjugated
networks share the same local stability conditions. Lemma 3.3.1 showed that h(.) can be
at most a positive scaling and reordering of the state variables. From now one, we set aside
the option to reorder the states, and we will focus on the special case, in which h(.) can
be written as h(x) = Tx, where T is a positive diagonal matrix.

We need the following three short lemmas to proceed to the linear conjugated biochem-
ical reaction networks. The first lemma considers the positive linear scaling of a generalized
Kirchhoff matrix.

Lemma 3.3.3. Let Ak ∈ Rm×κ be a generalized Kirchhoff matrix corresponding to a net-
work of m complexes and d1, d2 . . . dm kinetics (κ =

∑m
i=1 di) of the respective complexes.

Further, let H̄ be a positive diagonal matrix H̄ = diag(c), where c ∈ Rκ
+. Then, A′k = AkH̄

is also a generalized Kirchhoff matrix with the same structure (same locations of the non-
zero elements) as Ak.

Proof. The i-th column of Ak is multiplied by ci, which do not alter the location of the
zero and non-zero elements of the column and the column-sum remains zero.

Since the generalized Kirchhoff matrix has a strong relationship to the reaction graph,
this lemma means that a linear scaling can change the weights on the reaction graph,
but neither can an existing reaction disappear, nor can a non-existing reaction appear.
The following lemma considers the linear transformation of the variables in the kinetic
weighting function P (.) as defined in (2.13).

Lemma 3.3.4. Let P : Rn → Rκ×m be a kinetic weighting function corresponding to
a network of m complexes and d1, d2 . . . dm kinetics (κ =

∑m
i=1 di) corresponding to the

complexes. Further, let T be a positive diagonal matrix T = diag(c), where c ∈ Rn
+. Then

P̂ (x) = P (Tx) is also a kinetic weighting function, further, the non-zero elements of matrix

P̂ (x) locate in the same places as in P (x), thus they are structurally similar.

Proof. The invariance of the structure (the position of the non-zero entries) under a lin-
ear scaling is straightforward from the construction of P , see (2.13). However, the co-
efficients of the polynomials in the denominators are transformed. Recall that, the l-
th element of the i-th block in (2.13) is

[
P (i)

]
l
(x) = 1

Dil(x)
, where Dil(x) is a polyno-

mial with positive coefficients (αm1,m2,...mn > 0) and leading coefficient 1, i.e. Dil(x) =
1 +

∑
αm1,m2,...mnx

m1
1 xm2

2 . . . xmnn . The linear scaling alters the elements as

Dil(Tx) = 1 +
∑

αm1,m2,...mnc
m1
1 xm1

1 cm2
2 xm2

2 . . . cmnn xmnn

= 1 +
∑

α̂m1,m2,...mnx
m1
1 xm2

2 . . . xmnn

= D̂il(x),

where the new coefficients are α̂m1,m2,...mn = αm1,m2,...mnc
m1
1 cm2

2 . . . cmnn . Since D̂il(x) is also

a positive polynomial with leading coefficient 1,
[
P̂ i
]
l
(x) = 1

D̂il(x)
fulfils the requirements

to be a proper weighting matrix element.
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We can see that the linear transformation of the variables of the kinetic weighting
function means a transformation in the constant parameters of the biochemical reaction
rates. We can also note that the originally zero elements in P remain zero, therefore the
number of kinetics of the complexes remains unchanged under the transformation. Further,
in case of MAL kinetics, i.e. when the denominator terms are constant ones, the linear
transformation does not transform the kinetics.

The range of the kinetic weighting function is a subset of the Rκ×m matrices with a
special block structure. In the third lemma we construct a diagonal matrix, which can
eliminate the effect of a scaling of such matrices.

Lemma 3.3.5. Let P : Rn → Rκ×m be a kinetic weighting function corresponding to
a network of m complexes and d1, d2 . . . dm kinetics (κ =

∑m
i=1 di). Let H̄ be a positive

diagonal matrix H̄ = diag(c), where c ∈ Rm
+ and let the block-diagonal matrix Ĥ constructed

as

Ĥ =



[
diag( 1

c1
)
]
d1

0d1×d2 . . .

0d2×d1

[
diag( 1

c2
)
]
d2

. . .

...
. . . . . .

0dm×d1 . . .
[
diag( 1

cm
)
]
dm

 , (3.37)

where
[
diag( 1

ci
)
]
di

denotes a diagonal block of size di×di, which contains the constant 1
ci

in

its diagonal, and 0di×dj denotes a block of zeros of size di × dj. As above, di is the number

of kinetics in complex Ci. Then P (x) = ĤP (x)H̄ for all x ∈ Rn
+.

Proof. Multiplying the P in (2.13) from the right by a diagonal matrix H̄ scales each block:

P (i) → ciP
(i) for i = 1 . . .m. It is easy to see, that the above defined Ĥ removes the scaling

factors of the blocks.

Therefore, a linear scaling from the right side of the weighting matrix P (x) can be

propagated to the left side as P (x)H̄ = Ĥ−1ĤP (x)H̄ = Ĥ−1P (x).
The following theorem is the extension for the biochemical reaction networks of the

linear conjugacy theorem presented by [77, Theorem 2]. The original statement of the
theorem for mass action systems can be found in [58].

Theorem 3.3.6. Given a kinetic system (3.7) by the coefficient matrix M and by the
kinetic vector ϕ(x). Suppose that there is an Ab generalized Kirchhoff matrix, and a positive
diagonal matrix T = diag(c), c ∈ Rn

+ such that

M = T · Y · Ab (3.38)

and the kinetic vector can be decomposed to the kinetic weighting matrix and monomial
vector function as

ϕ(x) = P (x)Ψ(x). (3.39)

Then Σ = (Y,A′k, P
′) is a linearly conjugated realization of the kinetic system with gener-

alized Kirchhoff matrix
A′k = AbH

−1 (3.40)

and kinetic weighting function

P ′(x) = P (Tx), (3.41)
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where H ∈ Rκ×κ is a positive, block-diagonal (invertible) matrix as

H =



[
diag( 1

Ψ1(c)
)
]
d1

0d1×d2 . . .

0d2×d1

[
diag( 1

Ψ2(c)
)
]
d2

. . .

...
. . . . . .

0dm×d1 . . .
[
diag( 1

Ψm(c)
)
]
dm

 , (3.42)

where
[
diag( 1

Ψi(c)
)
]
di

denotes a diagonal block of size di × di, which contains the constant

1
Ψi(c)

in its diagonal and 0di×dj denotes a block of zeros of size di× dj and c is the diagonal

elements of T .

Proof. Let x(t;x0, t0) be the solution for an initial condition x(t0) = x0 of the kinetic
system. Further, let the linearly conjugated solution x̂(t; x̂0, t0) = T−1x(t;x0, t0) and thus
x(t;x0, t0) = T x̂(t; x̂0, t0) and for the initial condition x̂0 = x̂(t0) = T−1x(t0) = T−1x0.
Using the dynamic equations (3.7) we can write

dx̂(t; x̂0, t0)

dt
= T−1dx(t;x0, t0)

dt
= T−1Mϕ(x(t;x0, t0))

= T−1MP (x(t;x0, t0))Ψ(x(t;x0, t0))

= T−1MP (T x̂(t; x̂0, t0))Ψ(T x̂(t; x̂0, t0)) (3.43)

Note the following relationship

[Ψ(T x̂)]i =
n∏
k=1

(ckx̂k)
Yki

=
n∏
k=1

cYkik

n∏
k=1

x̂Ykik

= [Ψ(c)]i[Ψ(T x̂]i for i = 1, 2, . . .m.

Using the notation ΨT = diag(Ψ(c)) leads to Ψ(T x̂) = ΨTΨ(T x̂). Insert this and the κ
dimensional unity matrix Iκ = H−1H into (3.43), where H is given in (3.42). The result
reads as

dx̂(t; x̂0, t0)

dt
= T−1MH−1HP (T x̂(t; x̂0, t0))ΨTΨ(x̂(t; x̂0, t0)).

Lemma 3.3.5 brings HP (T x̂)ΨT = P (T x̂). Further, according to Lemma 3.3.4 P (T x̂) =
P ′(x̂) is a kinetic weighting function. Now, using (3.38) results in

dx̂(t; x̂0, t0)

dt
= T−1TY AbH

−1P ′(x̂(t; x̂0, t0))Ψ(x̂(t; x̂0, t0))

= Y AbH
−1P ′(x(t; x̂0, t0))Ψ(x̂(t; x̂0, t0))

= Y A′kP
′(x̂(t; x̂0, t0))Ψ(x̂(t; x̂0, t0)).

Thus x̂(t; x̂0, t0) is the solution of the dynamics corresponding to the bioCRN Σ = (Y,A′k, P
′).
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The matrix A′k (3.40) is a generalized Kirchhoff matrix as follows from Lemma 3.3.3 and
P ′(x) (3.41) is a kinetic weighting function as follows from Lemma 3.3.4 and Lemma 3.3.5.

Since the solutions of the kinetic system (ẋ = Mϕ(x)) can be transformed by the linear
transformation T into the solutions of a bio-CRN Σ, Σ is a linearly conjugated realization
to that kinetic system.

If two networks are linearly conjugated realizations of the same kinetic system, then
they are called linearly conjugated networks.

3.3.1 Computing linearly conjugated realizations for biochemical
systems

The computation of linearly conjugated networks can be stated in a very similar framework,
that was used for the computation of dynamically equivalent realizations in Subsection
3.2.3.

Given a kinetic system in the form of (3.7), i.e. given the coefficient matrix M and ki-
netic vector ϕ, Algorithm (1) can be used to obtain a (dynamically equivalent) realization of
the dynamics. This procedure determines a possible set of complexes and reaction kinetics,
therefore we can fix the complex composition matrix Y and the kinetic weighting function
P . The complex composition matrix also determines the monomial function Ψ according to
(2.14) and the number of kinetics corresponding to each complex partially determines the
structure the matrix Ak, i.e. its size and the positions of the negative column-sum terms.

In order to find a linearly conjugated realization, according to Theorem 3.3.6, we have
to find the generalized Kirchhoff matrix Ab and a diagonal matrix T = diag(c) such that
Equation (3.38) is fulfilled. In the optimization framework, this is a non-linear equality
constraints in the optimization variables (the entries of Ab and diagonal of T ). However, it
is easy to transform (3.38) to a linear equality constraint by rewriting as

T−1M − Y Ab = 0 . (3.44)

Thus, instead of finding the diagonal matrix T = diag(c), we are finding its inverse T−1 .
=

T̃ = diag(c̃), which always exists because all the elements of vector c are strictly positive.
The new equality constraint (3.44) can be arbitrarily combined with the goal of finding

sparse or dense realization. For example, a mixed integer optimization problem, which finds
a sparse Ab and T̃ can be written as

minimize
w,a,c̃

m∑
i=1

κ∑
j=1

wij (3.45)

subject to: T̃ (c̃)M − Y Ab(a) = 0 (3.46)

1TmAb,(·,i) = 0 for i = 1 . . . κ (3.47)

0 ≤ aij ≤ aub for (i, j) ∈ Ip (3.48)

0 ≤ aij − εwij for (i, j) ∈ Ip (3.49)

0 ≤ −aij + aubwij for (i, j) ∈ Ip (3.50)

wij are binary variables, for (i, j) ∈ Ip (3.51)

ε2 ≤ c ≤ c̃ub. (3.52)
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As in Section 3.2.3, here we also assigned to each entry of Ab a binary variable w to count
the number of reactions. Thus (3.45) defines the goal of finding the sparse realization by
minimizing the number of reactions. Equation (3.46) defines the constraints ensuring the
linear conjugacy. Here we parametrized the entries of Ab by the variables aij, similarly as
we did in (3.20). Then, (3.47) ensures the column conservation property of the Kirchhoff
matrix Ab, (3.29) bounds the entries of Ab, and (3.30) - (3.32) define the binary variables
associated to the reactions, i.e. wij = 1 ⇐⇒ aij > ε. Finally, (3.52) bounds the diagonal

elements of T̃ .
After the optimization problem is solved by a numerical solver, we obtain Ab and T̃ and

the linearly conjugated network is computed as follows. Inverting T̃ results in T and matrix
H in (3.42) can be computed from the diagonal elements of T and monomial function Ψ.
Finally, the generalized Kirchhoff matrix A′k and kinetic weighting function P ′(x) of the
linearly conjugated network are computed as (3.40) and (3.41), respectively. The linearly
conjugated realization is given by the triplet (Y,A′k, P

′).
Note that, as in the case of computing dynamically equivalent realizations, here one

also can introduce the constraints (3.34) to ensure the reversibility of the graph structure.

3.3.2 Example

A simple example is given to illustrate the notions and tools proposed above and their use
in determining linearly conjugated realizations of a given dynamic system.

Example 3-3

Consider the following dynamical ODE model adapted from [78]

dx1

dt
= 0.05x2 + 0.1x2

1x2 −
0.2x2

1

1 + 2x1

− x1

1 + 1
2
x1

dx2

dt
= 1− 0.05x2 − 0.1x2

1x2 +
0.1x2

1

1 + 2x1

.

(3.53)

This set of dynamic equations gives rise to a stable limit cycle solution, as depicted in
Figure 3.4 for zero initial condition.

A biochemical reaction network realization, which corresponds to the above dynamic
equations, can be constructed using Algorithm 1. However, we took the realization from
the [78] and adapted the kinetics of the network manually. First, we assume the complex
set C = {0, X1, X2, 2X1, 2X1 + X2, 3X1}, where 0 denotes the so-called zero complex,
which describes the interaction with the environment. Then, for each complex C1, . . . C6,

a kinetic rate function is defined as g11 = 1, g21 = x1
1+x1/2

, g31 = x2, g41 =
x21

1+2x1
, g51 = x2

1x2

and g61 = x3
1, respectively. This means a constant inflow from the environment for the

complexes C1; mass action rate law for complex C3 and C5, and Michaelis-Menten type
rate law for the complex C2 and C4. Then the matrix representation of the realization reads
as

Y =

(
0 1 0 2 2 3
0 0 1 0 1 0

)
, Ak =


−k1 k2 0 0 0 0

0 −k2 k3 0 0 0
k1 0 −k3 k4 0 0
0 0 0 −k4 0 0
0 0 0 0 −k5 0
0 0 0 0 k5 0


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Figure 3.4: Example 3-3. Solution of the dynamic equations (3.53) with zero initial condition
in time domain (blue line for x1 and green line for x2) and in phase space.

P (x) =


1 0 0 0 0 0
0 1

1+x1/2
0 0 0 0

0 0 1 0 0 0
0 0 0 1

1+2x1
0 0

0 0 0 0 1 0
0 0 0 0 0 1

 , Ψ(x) =


1
x1

x2

x2
1

x2
1x2

x3
1


where the parameter values are k1 = 1, k2 = 1, k3 = 0.05, k4 = 0.1 and k5 = 0.1. We
tried to find a sparser dynamically equivalent realization using the method described in
the previous section by Equations (3.26)-(3.32), but we could not find a network with fewer
number of reactions. Therefore this realization contains the minimal number of reactions
and thus it is a sparse realization with 5 reactions. The reaction graph is shown in Figure
3.5a.

A dynamically equivalent dense realization can be found containing 15 reactions by
solving Equations (3.26)-(3.32) with a negative factor in the objective (3.26). This network
is depicted in Figure 3.5b, its generalized Kirchhoff matrix is

Adense
k =


−1.00 1.003 0.033 10−3 0 0

0 −1.005 10−3 10−3 0 0
1.00 0 −0.051 0.099 0 0

0 10−3 10−3 −0.103 0 0
0 0 10−3 10−3 −0.10 0
0 10−3 0.015 10−3 0.10 0

 .

We showed above that the dense dynamically equivalent realization has a unique struc-
ture and further, any dynamically equivalent realization contains a subset of the reactions
of the dense realization. This means that the reactions which are not included in the dense
realization, cannot appear in any other dynamically equivalent realization.
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Figure 3.5: Dynamically equivalent sparse and dense realizations for Example 3-3

Now we compute a dense linearly conjugated realization of the dynamic system (3.53).
First, we solve the optimization problem (3.45)-(3.52), but with a negative sign in the
objective function (3.45), which immediately results in the following intermediate Kirchhoff
matrix and scaling matrix

Ab =


−0.24 0.163 9.0 · 10−3 10−3 10−3 0

0 −0.165 10−3 10−3 10−3 0
0.24 0 −0.013 0.015 10−3 0

0 10−3 10−3 −0.027 10−3 0
0 0 10−3 9.000 · 10−3 −0.025 0
0 10−3 10−3 10−3 0.021 0


T (x)−1 =

(
0.16 0

0 0.24

)
.

Then, following the procedure in Subsection 3.3.1, first we obtain T and then matrix
H by (3.42), as

T =

(
6.25 0

0 4.1667

)
, H = diag([1, 0.16, 0.24, 0.0256, 6.144 · 10−3, 4.096 · 10−3]T ).

Finally, Equations (3.40) and (3.41) result in the dense generalized Kirchhoff matrix of
linearly conjugated network

ALC,dense
k =


−0.2400 1.019 0.03750 0.03906 0.1628 0

0 −1.031 4.167 · 10−3 0.03906 0.1628 0
0.2400 0 −0.05417 0.5859 0.1628 0

0 6.250 · 10−3 4.167 · 10−3 −1.055 0.1628 0
0 0 4.167 · 10−3 0.3516 −4.069 0
0 6.250 · 10−3 4.167 · 10−3 0.03906 3.418 0


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(b) Solution of the linearly conjugated dynamic equations

Figure 3.6: A linearly conjugated dense realization for Example 3-3 is depicted with its
solution in time, and in the phase space. The highlighted reactions do not exist in the
dense dynamic equivalent realization in Fig. 3.5b
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and the transformed kinetic weighting function

P ′(x) =


1 0 0 0 0 0
0 1

1+6.25·0.5x1 0 0 0 0
0 0 1 0 0 0
0 0 0 1

1+6.25·2x1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

The reaction graph of the linearly conjugated network (Y,ALC,dense
k , P ′) is depicted in

Figure 3.6a. Note that, we found 4 edges, i.e. 4 reactions, highlighted in red color, which do
not appear in the dense dynamic equivalent realizations (see in Figure 3.5b). This means,
that the reactions appearing in the linearly conjugated realizations are not necessarily form
a subset of the reactions appearing in the dense dynamically equivalent realizations.

For the comparison of the dynamics of the original and the linearly conjugated network,
the solutions corresponding to the zero initial condition is depicted in the time domain and
in the phase space, see Figure 3.6b, where we can see the similarities with the original
solutions in Figure 3.4. �

3.4 Summary

In this chapter we considered first the realization of bio-CRNs for rational ordinary dif-
ferential equations, i.e. finding a bio-CRN with the exact same dynamics as described by
the given rational ordinary differential equations. After giving the necessary and sufficient
conditions of realizability, which assured that a bio-CRN can be constructed, we proposed
a realization algorithm (Algorithm 1). The algorithm takes the right hand side of the ODEs
and finds the set of species, source and product complexes, and construct the reaction rate
functions.

We found that the realization is not unique, but multiple bio-CRNs can be constructed
to the dynamic equations. These networks are called dynamically equivalent realizations.
We showed that, these networks can be structurally different, for example, the network
with the most number of reactions is called the dense realization and a network with the
lowest number of reactions is called a sparse realization. Further we showed that the dense
realization is structurally unique and the graph of any other realization is a sub-graph of
the dense realization. Finally, we proposed a mixed integer linear programming framework
to find dynamically equivalent realizations of a kinetic system with preferred properties.

In the last part of this chapter the linear conjugacy theorem of the bio-CRNs was
developed. A bio-CRN is linearly conjugated to a kinetic system if the dynamics of the
bio-CRN can be mapped to the kinetic system by a linear transformation. Since the stability
properties of the kinetic system remains unchanged under linear transformation, finding
linearly conjugated networks can be helpful to analyse the stability conditions of non-linear
systems.

Finally, we formulated linear mixed integer optimization problems to find linearly con-
jugated dense and sparse realizations. The tools and notions were illustrated by an example,
where we showed, that linear conjugated realization may contain reactions, which do not
present in the dense dynamically equivalent realization.
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Chapter4
Model reduction in biochemical reaction
networks

In chemical and biochemical systems the exact chemical reactions which determine the
system dynamics are often not known precisely. In these cases, mathematical models can
be constructed which contain all the possible reactions. This approach can lead to very large
and detailed reaction kinetic models, which are too detailed for dynamic analysis. Because
of the huge number of species and/or chemical reactions present in the detailed reaction
kinetic mechanism of these systems, the need has arisen for developing a simplified or
reduced mechanisms that can accurately describe the dynamics of the system under some
restricted circumstances (e.g. in isobaric or isothermal conditions).

The commonly applied approaches for obtaining simplified kinetic representations can
be categorized into three main branches:

i. The use of engineering model simplification transformations [61], such as quasi-steady
state or quasi-equilibrium assumptions [79].

ii. The use of general nonlinear model reduction techniques applied to reaction kinetic
models, such as the balance truncation method applied to input-affine state space
models [80], singular perturbation analysis [81] and method of invariant grids [82].

iii. The use of optimization methods for reducing the number of reacting species and
reactions. This problem generally leads to a mixed integer nonlinear program (MINLP)
problem, see e.g. [83], that present computational complexity challenges in realistic
problem sizes.

The simplest models within the class of reaction kinetic systems form the sub-class of
reaction kinetic networks that obey the mass action law (see Section 1.2.1) [31, 51, 69].

An early approach to obtain CRNs with reduced complexity was based on principal
component analysis of the parametric sensitivity matrix of the detailed kinetic model [84].
An improved version using also concentration sensitivities was developed for the case of
gas phase reactions [85]. Finally, a sophisticated combined method for constructing the
minimal suitable mechanism based on combined species and reaction selective inclusion
and elimination has been proposed recently [86].

A systematic model reduction method that combines the sensitivity and principal com-
ponent analysis methods with variable lumping is proposed in [87]. A simultaneous ad-
justment of the structure of CRN and its parameters such that the qualitative dynamical
properties of the system are preserved during the reduction is the basis of the complexity
reduction method presented in [88] in the application area of biochemical networks.
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It is clear from the above that there are numerous methods available to reduce the
complexity of CRNs that all use the specialities of the problem and the model to propose
a feasible solution to the inherently computationally challenging problem. However, there
are certain important features of the model reduction task that received little attention
but they significantly influence the mathematical problem to be solved and the properties
of the solutions. Firstly, measured data are usually not available about all of the species
but only about a small subset of them (the key species). Secondly, the reaction kinetic
parameters, most notably the reaction rate coefficients can only be determined with an
approximately 10 % of accuracy even in the best cases, and the estimated value is strongly
model structure dependent. This implies that the value of these parameters is not precise,
therefore the re-estimation of them can significantly improve the fit between the output of
the original detailed and the reduced model.

Therefore, the overall aim of our work was to propose a robust and numerically stable
method for reducing the complexity, i.e. the number of reactions of a CRN, that is also able
to re-estimate the reaction rate coefficients and produce a sub-set of the original detailed
reaction kinetic scheme as a result, but with suitably adjusted coefficients.

Instead of the general mixed integer nonlinear optimization (MINLP) formulation of
the problem, we construct a convex mixed integer quadratic problem (MIQP) formulation
for which efficient solvers exist. The effect of the problem and model parameters, as well
as the tuning parameters of the proposed algorithm is also investigated on the solution
procedure and on the solution properties.

4.1 Problem formulation and notations

In this chapter, we consider deterministic chemical reaction networks with mass action
kinetics assuming constant temperature and perfect mixing of the materials [30, 53]. From
a mathematical point of view, the species concentrations under the above assumptions can
be described by initial value problems of parametric ordinary differential equations (ODEs)

dx(t)

dt
= f(x(t), k), t ∈ [t0, tf ], (4.1)

x(t0) = x0, (4.2)

where the right-hand side function f : Rn×Rq → Rn in Eq. (4.1) can be easily constructed
from the list and parameters of chemical reactions in the MAL-CRN.

Note that x(t) implicitly depends on the initial values x0 and the kinetic parameters
k. To stress these dependencies we may also use the notation x(t, k, x0) or only x(t, k),
especially when we are interested in the parametric sensitivities ∂x(t, k)/∂k.

To derive the differential equations describing the time-evolution of chemical species
concentrations, we will apply the classical description using the stoichiometric matrix [82].
Note that, this is a slightly different approach to derive the dynamic equations then that
was used in Section 1.2.1.

Let us consider the MAL-CRN ΣMAL = (S, C,R), which contains q number of reactions,
i.e. the cardinality of R is q. The reaction rates can be written as (1.2), however for
notational convenience let us change the indexing of the reaction rates and the reaction
rate coefficients by using single subscripts, i.e.

{rij | i = 1 . . .m, j = 1 . . .m, rij ∈ R} ⇐⇒ {rl | l = 1 . . . q} (4.3)
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and
{kij | i = 1 . . .m, j = 1 . . .m, rij ∈ R} ⇐⇒ {kl | l = 1 . . . q} . (4.4)

Thus, from what follows let r ∈ Rq be the vector of reaction rates and k ∈ Rq
+ the vector

of the corresponding reaction rate parameters.
According to this notation, considering n species and q reactions, the species concen-

trations can be described as

dx

dt
= N · r(x), (4.5)

where x ∈ Rn is the species concentration vector, r ∈ Rq is the vector of reaction rates and
N ∈ Rn×q is the stoichiometric matrix. Nij is a real (most often integer) number denoting
how many atoms/molecules of species Xi is produced or consumed in the jth reaction
(where a positive value corresponds to overall production and a negative value to overall
consumption). Note that, Eq. (4.5) is equivalent to (1.5).

4.2 Model Reduction in MAL-CRNs

4.2.1 Objective

Suppose that in a chemical reaction network we are only interested in variables correspond-
ing to a few species. The concentrations of these species can be relevant because e.g. they
are the measurable system output. Thus we want to reduce the network such that their
concentrations remain unchanged. These species are named important in the following and
we collect the indices of the associated variables into the set

I := {i1, i2, . . . , inI} , (4.6)

where ij ∈ {1, 2, . . . , n}, j = 1, 2, . . . , nI and nI is the number of important species.
Additionally, we only care about the trajectories of the important species within a

limited time horizon [t0, tf ]. Recall that the reactions are in the form (1.2), then, the
objective of the model reduction is to

1. reduce the number of reactions, i.e. set the corresponding rate coefficient ki to zero,
while keeping the concentration functions of the important species essentially un-
changed on the time horizon [t0, tf ],

2. simultaneously adjust the remaining rate coefficients to improve the fit of the impor-
tant species.

Note that, the initial conditions and time-horizon are user inputs and they fundamen-
tally influence the results of the model reduction. This means, that for different initial
conditions and different time-horizons might result in different reduced models. In the fol-
lowing, we will consider only one initial condition, however, our approach can be easily
extended for multiple initial conditions, i.e. to find a reduced model which approximates
the complex model trajectories started from a finite set of initial conditions. As we will
see, although the construction of the optimization problem scales linearly with the num-
ber of defined initial conditions, it will not effect the computational complexity of the
optimization procedure.

We have to note that, this objective is different from the classical model reduction
approach, where the input-output behaviour of a complex model is approximated with
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the reduced model. In the classical approach, the reduced order model is expected to
approximate the original model independently from the initial conditions or time horizon.

4.2.2 The reduced model and its error

Due to the similar structure of the CRNs, where the reduced model is structurally a subset
of the original one, the reduced model is totally specified by the reduced rate coefficient
vector k̃ ∈ Rq. Reaction l is not present in the reduced CRN, if and only if k̃l = 0 holds.
The states x̃(t) of the reduced model drop simply out as the solution of the initial value
problem

dx̃

dt
= f(x̃, k̃), x̃(t0) = x0, (4.7)

where f and x0 are the same as in Eqs. (4.1) and (4.2).
Of course, the error of the reduced model needs to be measured. This measure has to

rely on the states x̃(t) of the reduced model as well as on the states x(t) of the original
model and can be quantified by means of some functional Φ(x̃, x). We choose the least-
square functional

Φ(x̃, x) :=
N∑
l=0

∑
i∈I

wil
2 (x̃i(tl)− xi(tl))2 , (4.8)

where t0 < t1 < · · · < tN are selected time points, and wil, i ∈ I, 0 ≤ l ≤ N are some
weights, e.g. to take into account the magnitude of xi(tl). Actually, the same objective
function for model reduction was used by Androulakis [83].

4.2.3 A straightforward MINLP

Note that x̃(·) and x(·) in Eq. (4.8) are totally determined by means of the corresponding

parameter vectors k̃ and k, respectively. Hence, the nonlinear function

φ(k̃, k) := Φ(x̃(·, k̃), x(·, k)), (4.9)

is well-defined since, for each t ∈ [t0, tf ], x̃(t, k̃) and x(t, k) are uniquely determined by
means of the corresponding initial value problems in Eqs. (4.1), (4.2) and Eq. (4.7).

As already mentioned in the preceding subsection, the number of non-zeros in k̃ equals
the number of present reactions in the reduced model. Let NNZ denote the function which
returns the number of non-zeros of a real vector, i.e.:

NNZ : Rq → {0, 1, . . . , q}, NNZ(v) = #{i : vi 6= 0} (v ∈ Rq). (4.10)

Obviously, the first objective of the model reduction is to find a reduced parameter vector
k̃ ∈ Rq which minimizes NNZ(k̃), such that the model error φ(k̃, k) is small, say φ(k̃, k) < δ,
where δ > 0 is the user-specified error tolerance.

In the terms of mathematical optimization, according to Androulakis [83], we want to
solve the mixed-integer nonlinear program (MINLP)

minimize
k̃∈[k,k]

NNZ(k̃) (4.11)

subject to φ(k̃, k) ≤ δ. (4.12)
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where k is fixed to the original values, and k, k ∈ Rq (0 ≤ k ≤ k) are the lower and

upper bounds on k̃. The simplicity of the formulation is appealing. We have a simple linear
objective function in Eq. (4.11) subject to a single nonlinear and nonconvex constraint in
Eq. (4.12). In general, to find the global optimum of this MINLP, a global numerical MINLP
solver has to be applied for the solution. In this context, the key problem is the evaluation
of the constraint in Eq. (4.12) which requires the integration of the initial value problem
(4.7). This may be very time consuming, especially when the MINLP solver additionally
requires first- and second derivatives.

The situation would be much better, if we could approximate the non-convex MINLP
by an optimization problem class, which can be solved more easily. This is exactly what we
will do in the following: we will approximate the MINLP by a finite sequence of maximal
q convex mixed-integer quadratic programs, which can be solved much faster.

At first, we consider the parametric MINLP{
minimize
k̃∈[k,k]

φ(k̃, k)

subject to NNZ(k̃) ≤ q̃.

}
, (MINLP(q̃))

which depends on the integer parameter q̃ ∈ {1, 2, . . . , q}. We realize, that by solving
MINLP(q̃) for q̃ = 1, 2, . . . , q, the associated objective function value is monotonically

decreasing. Let k̃(q̃) denote the optimal solution of MINLP(q̃). Then, for the smallest q̃

which satisfies φ(k̃(q̃), k) ≤ δ, the corresponding solution k̃(q̃) is identical to the solution
of MINLP (4.11), (4.12).

The benefit of the reformulation is that, if we could approximate the non-convex ob-
jective function φ(k̃, k) in MINLP(q̃) by a convex quadratic objective function, we would
tremendously reduce the computational complexity.

Obviously, the key contributions of non-convexity in Eq. (4.8) are due to terms of type

(x̃i(tl)− xi(tl))2. (4.13)

Since x̃i(t0) = xi(t0) = x0 and Eqs. (4.1) and (4.7), we have the identity

(x̃i(tl)− xi(tl))2 =

(∫ tl

t0

[fi(x̃(t), k̃)− fi(x(t), k)] dt

)2

. (4.14)

We consider only the integrand of (4.14) and add the zero term (−fi(x(t), k̃) + fi(x(t), k̃))
to obtain:

fi(x̃(t), k̃)− fi(x(t), k) = fi(x̃(t), k̃)− fi(x(t), k̃)︸ ︷︷ ︸
=: Ai(x̃(t), x(t), k̃)

+ fi(x(t), k̃)− fi(x(t), k)︸ ︷︷ ︸
=: Bi(x(t), k̃, k)

. (4.15)

Note, since f(x, k) in Eq. (4.1) depends only linearly on k, we have

fi(x(t), k) =

q∑
j=1

bij(x(t))kj, (4.16)

where

bij(x) :=
∂fi
∂kj

(x, k) (4.17)
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is independent from k. Hence we have the identity

Bi(x(t), k̃, k) =

q∑
j=1

bij(x(t))(k̃j − kj), (4.18)

which is linear in k. We emphasize that Eq. (4.18) is an exact identity. On the other hand,
if we assume that x̃(t) is close to x(t), we have by means of the continuity of f that

Ai(x̃(t), x(t), k̃) ≈ 0 . (4.19)

Surely we may assume that x̃i(t) ≈ xi(t) for i ∈ I, i.e. the important species are not
affected to much by the reduction. However, there is in general no justification why for
non-important species (i 6∈ I) x̃i(t) should be close to xi(t). Then, equation (4.19) is
no longer valid and the reduction algorithm may fail. One solution of preceding problem
is to enlarge the set I by the indexes of species which are indeed not important, but
indispensable for a correct simulation of the important species. Turányi [89] calls these
kind of species necessary species and further proposes an algorithm to identify them.

Loosely speaking, these necessary species have a strong influence on the termAi(x̃(t), x(t), k̃)
in Eq. (4.15). However, we found a way to deal implicitly with necessary species without
applying Turányi’s algorithm. If a species xl is necessary for some index l 6∈ I, then in
general for some i ∈ I the absolute value of the sensitivity

∂fi(x(t), k)

∂xl
(4.20)

is relatively high. The corresponding change of fi might be approximated to first-order by

∂fi(x(t), k)

∂xl
(x̃l(t)− xl(t)).

But (x̃l(t)− xl(t)) may be approximated by first-order Taylor series expansion:

(x̃l(t)− xl(t)) ≈
∂xl(t)

∂k
(k̃ − k).

On the other hand, if a species xl(t) is not necessary at all, then the absolute value of the
corresponding sensitivity in Eq. (4.20) is relatively small for all i ∈ I. This motivates us

to approximate Ai(x̃(t), x(t), k̃) in Eq. (4.15) by the linearization in (k̃ − k)

Ai(x̃(t), x(t), k̃) ≈
q∑
j=1

∂fi(x(t), k)

∂x

∂x(t)

∂kj︸ ︷︷ ︸
=: ãij(t)

(k̃j − kj). (4.21)

We are aware, that this is an heuristic approach and some problems may arise when
(k̃−k) is so large that the linearization is not valid anymore. However, since we are always
able to compare the reduced model with the original one, we may ignore this possible
complications. Finally we collect the two alternative approximations in Eqs. (4.19) and
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(4.21) and approximate the term Ai(x̃(t), x(t), k̃) in Eq. (4.15) by

Gi(x̃(t), x(t), k̃) ≈
q∑
j=1

σ ãij(t)(k̃j − kj), σ ∈ {0, 1}, (4.22)

to yield

fi(x̃(t), k̃)− fi(x(t), k) ≈
q∑
j=1

(σ ãij(t) + bij(t)︸ ︷︷ ︸
=: g̃ij(t)

)(k̃j − kj), (4.23)

where σ = 0 means that we are relying on Eq. (4.19), while σ = 1 refers to Eq. (4.21). In
general, both choices of σ are possible and may be used for the subsequently introduced
reduction method. However, if the partial Jacobian (∂fi/∂kj), i ∈ I, j ∈ {1, . . . , q}, is very

sparse, the choice σ = 0 may produce only poor approximations of (fi(x̃(t), k̃)−fi(x(t), k)),
so that then σ = 1 should be chosen.

Inserting Eqs. (4.14) and (4.23) into Eq. (4.8), finally yields the approximate objective
functional

φ̃(k̃, k) :=
N∑
l=1

∑
i∈I

wil
2

(∫ tl

t0

q∑
j=1

g̃ij(t)(k̃j − kj) dt
)2

=
N∑
l=1

∑
i∈I

(
wil

∫ tl

t0

q∑
j=1

g̃ij(t)(k̃j − kj) dt
)2

=
N∑
l=1

∑
i∈I


q∑
j=1

wil
∫ tl

t0

g̃ij(t)) dt︸ ︷︷ ︸
=: c̃ilj

 (k̃j − kj)


2

=
N∑
l=1

∑
i∈I

(
wil

q∑
j=1

c̃ilj(k̃j − kj)
)2

. (4.24)

Setting C̃il := (c̃il1, . . . , c̃ilm), we have

φ̃(k̃, k) =
N∑
l=1

∑
i∈I

(
wilC̃il(k̃ − k)

)2

=
N∑
l=1

∑
i∈I

(k̃ − k)T
(
wilC̃il

)T (
wilC̃il

)
(k̃ − k)

=(k̃ − k)T

(
N∑
l=1

∑
i∈I

(
wilC̃il

)T (
wilC̃il

))
(k̃ − k), (4.25)

which is obviously quadratic in k̃−k and therewith quadratic in k̃. We may further compute
the integrals by trapezoidal sums, say on the interval [tl−1, tl] (1 ≤ l ≤ N):∫ tl

tl−1

g̃ij(t) dt =
g̃ij(tl−1) + g̃ij(tl)

2
(tl − tl−1) , (4.26)
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where the “=” shall be interpreted from a numerical point of view, i.e. we assume that the
grid t0 < t1 < · · · < tN is sufficiently fine to accurately compute the integrals in Eq. (4.26).
Hence, we have

c̃il̄j =
1

2

l̄∑
l=1

(g̃ij(tl) + g̃ij(tl−1))(tl − tl−1), (4.27)

and setting for notational convenience

G̃i(t) := (g̃i1(t), . . . , g̃im(t)) (4.28)

yields

C̃il̄ =
1

2

l̄∑
l=1

(
G̃i(tl) + G̃i(tl−1)

)
(tl − tl−1), (4.29)

and

φ̃(k̃, k) =(k̃ − k)T

 N∑
l̄=1

∑
i∈I

(
wil
2

l̄∑
l=1

(
G̃i(tl) + G̃i(tl−1)

)
(tl − tl−1)

)T

(
wil
2

l̄∑
l=1

(
G̃i(tl) + G̃i(tl−1)

)
(tl − tl−1)

)]
(k̃ − k)

=(k̃ − k)T

(
N∑
j=0

∑
i∈I

(
w∗ilG̃i(tl)

)T (
w∗ilG̃i(tl)

))
︸ ︷︷ ︸

=: H

(k̃ − k), (4.30)

where w∗il, i ∈ I, 0 ≤ l ≤ N are weighting factors, depending on the original weights wil
and the length of the intervals [tl−1, tl]. The q×q-matrix H in (4.30) is positive semidefinite
by construction.

4.2.4 Relationship to sensitivity analysis

We expand the definition of G̃i in Eq. (4.30):

G̃i(t) = σ
∂fi(x(t), k)

∂x

∂x(t)

∂k
+
∂fi(x(t), k)

∂k
, σ ∈ {0, 1}. (4.31)

Now we see how to relate the factor σ ∈ {0, 1} to the sensitivity of the change rate fi
with respect to k: for σ = 0 the function Gi(t) is identical to the partial derivative of fi
with respect to k; for σ = 1 Gi(t) can be identified with to total derivative of fi with
respect to k. In both cases we have to compute the partial derivatives ∂fi/∂k, either by
symbolic or algorithmic differentiation. Furthermore, for the choice σ = 1, Gi(t) depends
on the parametric sensitivities ∂x(t)/∂k. Hence, then the computation of H requires a
sensitivity analysis of the CRN with the original parameter vector k. In general, these sen-
sitivities should be computed by an efficient numerical integrator with sensitivity analysis
capabilities, e.g. [90].

56



4.2.5 From MINLP to MIQP

In the following, we substitute in the MINLP sequence (MINLP(q̃)) the original objective

function φ(k̃, k) by the convex and quadratic approximation φ̃(k̃, k) to yield the MIQP{
minimize
k̃∈[k,k]

(k̃ − k)TH(k̃ − k)

subject to NNZ(k̃) ≤ q̃.

}
, (MIQP(q̃))

which depends on the integer parameter q̃. However, for practical reasons, we eliminate the
NNZ-operator in MIQP(q̃) by means of a reformulation using the binary variable vector
y ∈ {0, 1}q which will satisfy

q∑
i=1

yi = NNZ(k̃).

Therefore, we set up the equivalent MIQP

minimize
k̃,y

1

2
(k̃ − k)TH(k̃ − k) (4.32)

subjec to yi ∈ {0, 1}, i = 1, . . . , q (4.33)

k̃i ≥ 0, i = 1, . . . , q (4.34)

k̃i − ki yi ≤ 0, i = 1, . . . , q (4.35)

k̃i − ki yi ≥ 0, i = 1, . . . , q (4.36)
q∑
i=1

yi ≤ q̃. (4.37)

Note that the objective function in Eq. (4.32), if we recall the construction of H and Eq.
(4.31), can be interpreted as minimizing the weighted quadratic deviation of the change
rates. In particular, we do not directly minimize the deviation in the species concentration
but the deviation of their time derivatives. The same idea has been successfully applied in
the incremental identification of kinetic models for homogeneous reaction systems [91].

4.3 Implementation Issues

4.3.1 Scaling, regularization and pre-reduction

In order to have a robust and numerically efficient method, one should pay attention to
the implementation issues, that is the subject of this section. First we have found that a
direct optimization of the MIQP (4.32)–(4.37) may result in non-acceptable results, due
to numerical ill-conditioning. To avoid this problems one can apply scaling, regularization
and pre-reduction to significantly improve the solution quality.

To force the optimized parameters k̃ to be in the same order of magnitude, a scaling of
H with the diagonal matrix D := diag(k) is performed, i.e. we employ the matrix

Hs := DTHD. (4.38)
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Formally, this leads to scale the original parameter vector k to

k = (1, 1, . . . , 1)T . (4.39)

Hence, from now on, we assume without loss of generality the validity of Eq. (4.39).
Obviously, the matrix Hs is (at least) positive semidefinite by construction. However,

using finite-precision arithmetic, Hs may become indefinite. Indeed, this is the case for
many case studies. To circumvent optimization with an indefinite Hessian, we compute the
minimal eigenvalue λmin(Hs) of Hs and use the regularization

Hr = Hs + γI, γ = |min(λmin(Hs), 0)|, (4.40)

where I is the q-dimensional unit matrix. However, the minimal eigenvalue is computed
numerically and due to unreliabilities in this computation, Hr may still be indefinite,
or at least the numerical MIQP solver claims Hr to be indefinite. In order to help the
above detailed regularization and to facilitate the subsequent optimization, a pre-reduction
step is also performed. There we reduce the dimension of the parameter vector k̃ by at
least qpre-reduce reactions. The key point of the pre-reduction is to successively drop the
parameters which, if only they are individually set to zero, have the least influence on the
objective function. The corresponding algorithm is shown Table 4.1.

Table 4.1: Heuristic pre-reduction algorithm to determine the set J of important reactions

J := {1, 2, . . . , q}
for l = 1, . . . , q do

if λmin(HJ ) ≥ 0 and #J ≤ q − qpre-reduce then
break

else
j = arg minj∈J {∆k(j)THJ∆k(j) : ∆ki(j) = −δij ki (i ∈ J )} a

J = J \{j}
end if

end for
return J
aHere, δij denotes the Kronecker symbol, i.e. δij = 0, iff i 6= j and δij = 1, iff i = j. In detail,

∆k(j) is a #J -dimensional vector with only one non-zero entry at the position of index j.

The algorithm produces a set of parameter indices J which is of cardinality nJ = #J
less or equal than q, such that

RnJ×nJ 3 HJ := (Hr)ij, i, j ∈ J (4.41)

is positive semidefinite. The corresponding parameter vectors and binary variable vector
are denoted by k̃J , kJ and yJ , respectively. Then, the pre-reduced set of reactions are used
as an initial CRN in the model reduction, i.e. H, k̃, k and y in MIQP (4.32)–(4.37) are

replaced by HJ , k̃J , kJ and yJ , respectively.

4.3.2 Termination condition

The model reduction was formulated as a finite sequence of MIQPs in Eqs. (4.32)–(4.37)
where in each iteration step we specify the maximum number of the existing reactions
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q̃, q̃ = 1, 2, . . . , q. This MIQP sequence is derived by the original sequence MINLP(q̃),

where for each q̃ the goal is to find a reduced parameter vector k̃ such that the original
objective function φ(k̃, k) is small. This original objective function is substituted by the

quadratic approximation φ̃(k̃, k) (see Eq. (4.30)). At first sight, it might be straightforward
to terminate the iteration based on the original objective function in Eq. (4.9). However,
relying on the original objective is not necessary at all. Any other measurement for the
model error can be used as well. In general, the termination condition can be any user-
specified condition. This condition might even test sophisticated features of the reduced
model like stability, weak reversibility, etc.

In the simplest particular case the termination condition can be defined such that the
average relative deviation for all the important species should be smaller than a given limit,
let say 5 %:

φmodel error(k̃, k) < δ := 0.05, (4.42)

where we decided to measure the model error by means of the function

φmodel error(k̃, k) =
1

NnI

N∑
l=1

∑
i∈I

( |x̃i(tl)− xi(tl)|
w̃il

)
. (4.43)

A natural choice for the weighting factors w̃il in Eq. (4.43) can be w̃il = xi(tl), however if the
concentration of an important species approaches zero the well known problem of the rela-
tive deviation occurs: the denominator approaches zero causing high relative deviation de-
spite of small absolute deviation. This can be handled by choosing w̃il = max{Toli, xi(tl)},
where the tolerance value Toli is arbitrarily chosen to be

Toli = 10−4 max
l
xi(tl).

This gives relatively smaller weights to those points where the species concentration is
less than 0.01%-of the maximum.

4.3.3 Approximations and tuning knobs

The proposed reduction methods requires some tuning factors which can be divided into
two groups: the parameters of the numerical solvers and the parameters of the model
reduction method itself.

The first class comprises the absolute and relative tolerance of the numerical integration
routines for the solution of the IVP, as well as the parameters for the CPLEX numerical
MIQP solver. However, these parameters may strongly depend on the numerical solvers
and we do not discuss them in detail.

The second class comprises the number N of the grid points, as well as the location the
grid points, t0, t1, . . . , tN and the associated weights wil, i ∈ I, l = 0, . . . , N in Eq. (4.8).
Further the choice of σ = 0 or σ = 1 in Eq. (4.23) may affect the solution.

The overview of the model reduction pipeline is depicted in Figure 4.1. The steps, which
involve tuning factors of the second class are highlighted in yellow colour, further, steps
involving approximations are depicted with dashed border.

• Selecting important and necessary species. Necessary species are usually se-
lected after the first run of the algorithm, after investigating the error in the trajec-
tories of the non-important species as discussed in the paragraph after Eq. (4.19) and
in the next point.
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Given:
dx(t)
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-          if 

� = {0, 1}

� = 1

� = 0 x̃i(t) ⇡ xi(t) 8i
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x(t),
@x

@k
(t),

@f

@k
(x, k),

@f

@x
(x, k)

Compute         by Eq (4.21)ãij(t)

� = 1if

Compute           by Eq (4.23)g̃ij(t)

Compute         by Eq. (4.27)c̃ijl

regularization/
prereduction if 

numerically indefinite

Select important and necessary 
species

Finish

add necessary species

H

solve 
MIQP(  )q̃

Tolerance checking:
�model error(k̃, k)

q̃  q̃ � 1

q̃ = N

Check that: x̃i(t) ⇡ xi(t) 8i

Figure 4.1: Overview of the model reduction pipeline. Yellow boxes indicate user-specific
decisions, dashed borders indicate approximations. See details in Sec. 4.3.3

• Selecting σ. There is no guarantee that the trajectories of non-important species
stay close to the original trajectories, i.e. for j 6∈ I: x̃j ≈ xj. However, this is an
assumption for choosing σ = 0. To check how good this assumption is, one can
simulate the reduced model trajectories x̃ and compare with the original one. When
the trajectories are different, we include a first order correction via ãij in Eq. (4.21).
One can calculate higher order terms to quantify the error, however, higher order
approximations in the model reduction would result in non-quadratic cost function.
Therefore, in case the linear correction is still poor, we recommend to consider adding
necessary species.

• Time-discretization is chosen to approximate the integral in Eq. (4.26). This step
implicitly results in the discretization of the original nonlinear dynamic system, which
is known to be an open problem. It is often recommended to sample the trajectories
denser whenever the states are changing and to take less samples from steady states,
which approach worked for us. Wrong discretization can be usually detected in the
early iterations of the reduction algorithm. In the early iterations, even though there
are only a few reactions eliminated one can observe large deviation between the
original trajectories and the reduced model trajectories.
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Table 4.2: Reactions and rate coefficients of Hydrogen-Bromine reaction

Reaction Rate coefficient

(1) Br2+ M
k1−−→ 2 Br·+ M k1 = 6.26 ·105 cm3

mol s

(2) 2 Br·+ M
k2−−→ Br2+ M k2 = 1.56 ·1015 cm6

mol2 s

(3) Br·+ H2
k3−−→ H·+ HBr k3 = 2.61 ·109 cm3

mol s

(4) H·+ HBr
k4−−→ Br·+ H2 k4 = 1.39 ·1013 cm3

mol s

(5) H·+ Br2
k5−−→ Br·+ HBr k5 = 1.17 ·1014 cm3

mol s

(6) Br·+ HBr
k6−−→ H·+ Br2 k6 = 1.31 ·104 cm3

mol s

• Regularization and pre-reduction. This issue is discussed in details in Section
4.3.1

4.4 Case Studies

The use of the proposed method are illustrated on three case studies of increasing com-
plexity taken from the literature. The first case study, presented in the next subsection,
considers a small Hydrogen-Bromine reaction network. Due to space limitations the larger
networks of formaldehyde oxidation and alkane pyrolysis are presented in Appendix C.2
and C.3, respectively.

Example 4-1 (Reduction of Hydrogen-Bromine reaction network)

The Hydrogen-Bromine reaction is a well-known reaction mechanism in the literature
[84, 92]. Because of the small size of this system it is easy to interpret the main idea of
the method. The detailed description of the model equations (C.2-C.7) can be found in
Appendix C.1.

Initialization The species in the reaction networks are Br2, HBr, H2, Br·, H· and M
from which the molecules, namely Br2, HBr and H2 were selected as important. The rate
constants corresponding to the reactions can be found in Table 4.3. The initial concen-
trations of species were taken from Turányi et al. [84]: [Br2]0 =[H2]0 = 10−8mol/cm3,
[M]0 = 10−5mol/cm3, the initial concentrations of the other species were considered to be
zero. The time interval for model reduction is [0, 1] second.

Computation of matrix H The matrix H is computed with the assumption of the
validity of Eq. (4.19) i.e. σ = 0 in Eq. (4.23). To solve the IVP (4.1)–(4.2) the Matlab
ode15s solver was used with AbsTol = 10−19 and RelTol = 10−13 absolute and relative
tolerance settings. For the computation of the Hessian, N = 100 equidistantly sampled
time points in the time interval were chosen:

tl =
l

N
, l = 1, . . . , N.
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Table 4.3: Rate coefficients of the original and the reduced models of the Hydrogen-Bromine
reaction network

Rate Original (1∗) (2a∗) (2b∗)
Coefficients

k1 6.260 · 105 1.000 0.9937 1
k2 1.560 · 1015 1.000 1.0066 1
k3 2.610 · 109 1.000 0.8542 1
k4 1.390 · 1013 1.000 0.0 0
k5 1.170 · 1014 1.000 1.0236 1
k6 1.310 · 104 0.0 0.0 0

In the second column are the rate coefficients of the original model, in the third column (1) are the relative
rate coefficients of the reduced-by-one model, while in the last two columns (2a and 2b) are the rate
coefficients for the reduced-by-two models.
∗The rate constants are in the table for the reduced networks in relative units, i.e. the ratio of the estimated
and the original value. For example, a value of 1.0 means that the rate coefficient did not change.

The weighting factors wil in Eq. (4.8) were set to

wil =
1

N ·max(10−12, xi(tl))
, i ∈ I, l = 1, . . . , N,

to reflect the relative error, where the “max”-term was introduced to avoid division by
zero. Actually, apart from the “max”-term, these weights equally reflect the relative error
of the important species, an approach also followed by [83].

Table 4.4: Important species concentration at the final time (tf = 1 s) in the original model
and in the reduced models.

Species Original conc.
Relative deviation

(1) (2a) (2b)

[Br2] 1.2876 · 10−9 2.2481 · 10−5 0.3730 0.5140
[H2] 1.6504 · 10−9 1.9882 · 10−5 0.3359 0.4652

[HBr] 1.6699 · 10−8 −3.9301 · 10−6 −0.0664 −0.0919
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Figure 4.2: The concentrations of each important species in the original system and in the
reduced systems.

Results One can see the solution of the original system of equations (C.2)–(C.7) for
the important species together with the solutions of the reduced systems on Figure 4.2.
The corresponding rate coefficient values can be found in Table 4.3. In the first step the
algorithm omits the k6 parameter which corresponds to the 6th reaction, while the other
parameter values are not changed in the first 4 digits. The resulted trajectories perfectly
fit to the original solution.

If we further omit one more reaction the algorithm neglects the 4th and 6th rate coeffi-
cients. Using the k and k constraints in Eqs. (4.35) and (4.36) one can easily decide to let
the algorithm estimate the value of non-zero parameters or not. If we want to identify the
negligible parameters but want to keep the original values of the non-zero parameters then
ki = ki = 1 should be defined. Figure 4.2 shows the result marked with dotted line when
ki = 0.1 and ki = 10 and marked with dash-dotted line when ki = ki = 1 was chosen. The
corresponding parameters are given in Table 4.3, in the columns (2a) and (2b) respectively.

The relative deviation of the concentration at the final time point (RD) for each im-
portant species

RDi =
x̃i(tf )− xi(tf )

xi(tf )
, i ∈ I (4.44)

can be found in Table 4.4, where x̃i is the concentration of the i-th important species in
the reduced system and xi is the corresponding concentration in the original system. If
only less than 5 % differences is acceptable then it is clear that only the 6th reaction can
be omitted from the network.

�

4.5 Summary

A robust numerically stable method for reducing the complexity of large chemical reaction
networks is constructed as a sequence of MIQPs where the objective function is derived from
the parametric sensitivity matrix. The algorithm uses a given detailed kinetic mechanism
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and measured data of the key species over a finite time horizon to determine the set
of reactions as subsets of the reactions in the detailed mechanism, together with a re-
estimated value of the reaction kinetic parameters. The proposed method sequentially
eliminates reactions from the mechanism until the pre-specified tolerance limit in the species
concentration space is reached.

The computational efficiency and numerical stability of the optimization is improved
by applying a pre-reduction step, followed by suitable scaling and initial conditioning of
the Hessian involved.

The proposed complexity reduction method is illustrated using three case studies taken
from the reaction kinetic literature.

It is expected that the proposed method can be extended to make it suitable for elim-
inating the non-influential species, i.e. the species that do not change their concentration
values over the time interval of interest. This is a possible direction of further work.
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Chapter5
Regularized parameter estimation in dynamic
biochemical models

One of the main challenges in modeling biochemical processes is the calibration of dynamic
models, also known as the parameter estimation problem. Parameter estimation aims at
finding the unknown parameters of the model which give the best fit to a set of experimental
data.

This problem has received considerable attention, as reviewed in [18, 93–97]. It is also
frequently described as the inverse problem [98, 99], i.e., the inverse of model simulation
from known parameters, considered the direct problem.

Parameter estimation is a complex task which can be approximately divided into the
sub-tasks of (i) model definition, (ii) data pre-processing, (iii) computation of the estimates
by numerical optimization and (iv) analysis of the resulted parameter estimates.

First, the model equations and related modelling assumptions are collected, and known
and unknown parameters are listed. Although the values of model parameters are often
unknown, a good guess of the possible parameter range can be found in the literature, or
derived from thermodynamic assumptions, etc. However, this step is very much case study
dependent.

Raw experimental data is usually processed before used for parameter estimation. Data
can be transformed in order to fulfill general assumptions about experimental noise. In
general, the type and magnitude of the measurement error depend on both the experimental
techniques and the data processing [100–103]. Further, experimental conditions for the
model simulation are also defined here, i.e. the initial conditions and inputs of the models.

The problem of finding the best fitting model parameters is usually formulated as a
nonlinear optimization problem. A cost function that measures the discrepancy between
model predictions and data is minimized iteratively by a selected numerical optimization
algorithm. The algorithm reports the best fitting parameter vector upon convergence to
the minima of the cost function. However, numerical data fitting in dynamical systems
is a non-trivial endeavour, full of pitfalls (see, e.g. Chapter 4 in [104]). The problem is
certainly not exclusive of systems biology: it has been extensively studied in other areas,
as reviewed in [105], each one contributing with somewhat different perspectives regarding
the difficulties encountered and how to surmount them.

Finally, the estimated model parameters are analyzed in order to determine the quality
of the estimation. The usual procedure is to construct confidence intervals for the parameter
estimates. Further, the quality of the calibrated model can also be evaluated by validation,
i.e. predicting data sets that were not used in the model calibration.

In this chapter, we build up a parameter estimation framework, while we focus on the
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numerical optimization part. We would like to address two key characteristics of the in-
verse problem which make it very hard: ill-conditioning and nonconvexity [18, 106, 107].
These concepts are intimately related with other similar notions developed independently
in different communities [105]. For example, ill-conditioning can be related to the lack of
identifiability arising from the model structure, and/or from information-poor data. Non-
convexity and multi-modality usually cause convergence to local solutions (local minima),
which are estimation artifacts. Both are significant sources of concern that need to be
properly addressed.

Non-convex optimization in parameter estimation problems. It is well-known that
the typical (weighted) least-squares cost functions used in parameter estimation problems
are nonlinear and nonconvex in the model parameters (see e.g. [104, 107–109]. Many effi-
cient local optimization algorithms have been developed to find the solution of nonlinear
least squares problems, including Gauss-Newton, Levenberg-Marquardt and trust-region
methods [104]. These local methods, (and others like truncated and quasi-Newton) are
especially efficient when provided with high quality first (gradient, Jacobian) and second
order (Hessian) information via parametric sensitivities [110, 111]. However, in this type
of problems they will likely converge to local solutions close to the initial guess of the
parameters.

Multi-start local methods (i.e. performing multiple runs initiating local optimizers from
a set of initial guesses distributed in the search domain) have been suggested as more robust
alternatives. Typically the set of initial guesses is generated inside the parameter bounds
either randomly or by a more sophisticated sampling scheme, such as Latin hypercube
sampling [112]. Multi-start methods have shown good performance in certain cases, espe-
cially when high-quality first order information are used and the parameter search space
is restricted to a relatively small domain [113, 114]. However, other studies [108, 115, 116]
have shown that multi-start methods become inefficient as the size of the search space
increases, and/or when the problem is highly multi-modal, since many of the local searches
will explore the same local basins of attraction repeatedly.

Therefore, a number of researches have supported the use of global optimization as a
better alternative. However, the current state of the art in global optimization for this class
of problems is still somewhat unsatisfactory. Deterministic global optimization methods
[117–121] can guarantee global optimality but their computationally cost increases expo-
nentially with the number of estimated parameters. Alternatively, stochastic and meta-
heuristic methods [18, 96, 108, 109, 122, 123] can be used as more practical alternatives,
usually obtaining adequate solutions in reasonable computation times, although at the
price of no guarantees. In the context of metaheuristics, hybrids (i.e. combinations) with
efficient local search methods have been particularly successful [115, 116, 122, 124–127].

Ill-conditioned optimization problems. A problem is said to be well-posed if a solution
exists, the solution is unique and the solution continuously depends on the initial conditions.
If any of these conditions are not fulfilled, the problem is called ill-posed or ill-conditioned.

In kinetic models we often find that, the parameter estimation has multiple solutions or
the solution changes extremely upon small perturbation of the data [128]. These phenomena
arise from (i) models with large number of parameters (over-parametrization), (ii) experi-
mental data scarcity (lack of excitation) and (iii) significant measurement errors [18, 106].
As a consequence, we often obtain overfitting of such kinetic models, i.e. calibrated mod-
els with reasonable fits to the available data but poor capability for generalization (low
predictive value).

Regularization methods have a rather long history in inverse problems [129] as a way
to surmount ill-posedness and ill-conditioning. The regularization process introduces addi-
tional information in the estimation, usually by penalizing model complexity and/or wild
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behaviour. Regularization aims at ensuring the uniqueness of the solution [130], to reduce
the ill-conditioning. However, one crucial step is the proper balancing of prior knowledge
and information in the data, also known as the tuning of the regularization [131].

Regularization has been mainly used in fields dealing with estimation in distributed
parameter systems, such as tomography and other image reconstruction techniques. Re-
cently, it has enjoyed wide success in machine learning [132], gaining attention from the
systems identification area [133]. However, the use of regularization in systems biology has
been marginal [134], especially regarding mechanistic (kinetic) nonlinear models. Bansal
et. al [135] compared Tikhonov and truncated singular value decomposition regularization
for the linear regression model of green fluorescent protein reporter system. Kravaris et
al. [106] compared the theoretical aspects of parameter subset estimation, Tikhonov and
principal component analysis based regularization, also in a linear model framework. Wang
and Wang [136] presented a two stage Bregman regularization method for parameter esti-
mations in metabolic networks. However, there is no clear conclusion from these studies,
for nonlinear inverse problems, i.e. there is no general recipe for the selection of regular-
ization method and its tuning. Further, it is known that even for linear systems, choosing
a method from the plethora of existing techniques is non-trivial [131].

5.1 Parameter estimation in dynamic models

Mathematical model. Here we will consider dynamic models of biological systems de-
scribed by general nonlinear differential equation. A common case is that of kinetic models.
For the case of biochemical reaction networks, and under the assumption of well-mixed
compartments, kinetic models describe the concentration dynamics using nonlinear deter-
ministic ordinary differential equations. One of the most general form of these equations is
given by the deterministic state-space model:

dx(t, θ)

dt
= f(t, x(t, θ), u(t), θ), (5.1)

y(x, θ) = g(x(t, θ), θ), (5.2)

x(t0) = x0(θ), t ∈ [t0, tf ] , (5.3)

where x ∈ RNx is the state vector (often concentrations), the f(·) : R1×Nx×Nu×Nθ 7→ RNx

vector function is constructed from the reaction rate functions and stimuli u(t). The
Nθ dimensional parameter vector θ contains the positive parameters of the reaction rate
functions–for example the reaction rate coefficients, Hill exponents, dissociation constants,
etc.–, but can also include the initial conditions. The observation function1 g(·) : RNx×Nθ 7→
RNy maps the state variables to the vector of observable quantities y ∈ RNy , these are the
signals that can be measured in the experiments. The observation functions may also di-
rectly depend on estimated parameters for example on scaling parameters. When multiple
experiments in different experimental conditions are considered, typically the same model
structure is assumed, but the initial conditions and stimuli are adapted to the new condi-
tions. Note that these equations are more general, than the dynamic equations used in the
previous chapters, e.g. Equation (1.5) for MAL-CRNs or Equation (2.9) for bio-CRNs.

Calibration data and error models. We consider a general case, where the data is
collected in multiple experiments at discrete time points ti ∈ [t0, tf ], thus the model outputs

1Note that, here g is used for the observation function, which is not related to the reaction kinetics
(also denoted by g) in Chapter 2.1.
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must be discretized accordingly. Let us denote the model prediction at time ti, of the j-th
observed quantity in the k-th experimental condition by yijk. Due to measurement errors
the true signal value is unknown and a noise model is used to express the connection
between the true value yijk and measured data ỹijk.

Maximum likelihood and cost function. Assuming that the measurements (which
are denoted by ỹ) are contaminated by additive normally distributed uncorrelated random
measurement errors –i.e. ỹijk = yijk(x(ti), θ) + εijk where εijk ∼ N (0, σ2

ijk) is the random
error with standard deviation σijk and ỹijk is the measured value–, the estimation of the
model parameters is formulated as the maximization of the likelihood [137, 138]

L(ỹ | θ) =
Ne∏
k=1

Ny,k∏
j=1

Nt,k,j∏
i=1

1√
2πσ2

ijk

exp

(
−1

2

(yijk(x(ti, θ), θ)− ỹijk)2

σ2
ijk

)
, (5.4)

where Ne is the number of experiments, Ny,k is the number of observed compounds in
the k-th experiment, and Nt,k,j is the number of measurement time points of the j-th
observed quantity in the k-th experiment. The total number of data points is ND =∑Ne

k=1

∑Ny,k
j=1

∑Nt,k,j
i=1 1. The maximization of the likelihood function (5.4) is equivalent to

the minimization of the weighted least squares cost function [138]

QLS(θ) =
Ne∑
k=1

Ny,k∑
j=1

Nt,k,j∑
i=1

(
yijk(x(ti, θ), θ)− ỹijk

σijk

)2

= R(θ)TR(θ) , (5.5)

where the residual vector R(·) : RNθ → RND is constructed from the squared terms by
arranging them to a vector. Hence the model calibration problem can be stated as the
well-known nonlinear least-squares (NLS) optimization problem:

minimize
θ

QLS(θ) = R(θ)TR(θ)

subject to θmin ≤θ ≤ θmax ,

dx(t, θ)

dt
= f(u(t), x(t, θ), θ) ,

y(x, θ) = g(x(t, θ), θ) ,

x(t0) = x0(θ), t ∈ [t0, tf ] .

(5.6)

A θ̂ vector that solves this optimization problem is called the optimal parameter vector,
or the maximum likelihood estimate of the model parameters. However, note that (1) the
uniqueness of the solution is not guaranteed. Further, the solution can be different based
on the optimization algorithm and initial guesses used to solve this nonlinear optimiza-
tion problem – as discussed in the introduction. These results in the ill-posedness of the
calibration problem.

5.2 Global optimization

To solve the optimization problem (5.6), we have extended the enhanced scatter search
(eSS) metaheuristic presented by Egea et al [125]. eSS is a meta-heuristic global optimiza-
tion algorithm for general nonlinear optimization problems, which makes use of elements
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of the scatter search and path re-linking metaheuristics. The algorithm switches between
a stochastic global search phase (diversification) and a user specified, typically gradient
based (local) method (intensification phase). By the combination of the stochastic global
optimization approach with a local method, the algorithm implements new strategies to
avoid sub-optimal solutions, while keeping the computational cost relatively low.

Here, we tailored the general purpose eSS to solve the nonlinear least-squares opti-
mization problem (5.6) efficiently. Our extension of this method, which we will call eSS2,
incorporates several methodological and numerical improvements with the aims of (i) ex-
ploiting the least-squares structure of the problem, (ii) increasing its overall robustness and
efficiency, (ii) avoiding the need of tuning of search parameters by the user (a drawback of
many metaheuristics). These improvements can be summarized as follows:

• Efficient local search after extensive comparisons of local solvers, we selected the
adaptive algorithm NL2SOL [139]. This is a variant of the Gauss-Newton method that
utilizes the Jacobian of the residual vector to approximate and iteratively upgrade
the parameter vector. In order to increase its efficiency, we also provide it with high
quality gradient information (see below), resulting in speed-ups of up to 20 times.

• Efficient integration of the initial value problem and its extension with parametric
forward sensitivity equations using the CVODES solver [140], providing it with the
Jacobian of the dynamics.

• Fast computation: although the global solver eSS is implemented in Matlab, the inte-
gration of the initial value problem is done in C in order to speed-up the computations
up to 2 orders of magnitude.

• Robust default tuning : metaheuristics require the user to set a number of search
parameter values which usually require a number of time-consuming initial trial runs.
In the method proposed here, we have made sure that the default search parameters
work well without the need of any tuning, which is an additional important advantage.
These settings are given in the Appendix D.3.

5.3 Regularization

Although, we can solve the optimization problem (5.6) for kinetic models efficiently using
the eSS2 method, we still face the problem of ill-posedness. As mentioned in the introduc-
tion, we often find that the solution very much depends on the initial guess of parameters
and on the random numbers taken by the stochastic optimization (i.e. several runs of the
optimizer give very different estimates of the parameters). This problem is inherently re-
lated to the lack of identifiability of the model parameters, and it is especially related
to models with large number of parameters and scenarios in which the calibration data
was collected in experiments not designed for parameter estimation –a usual scenario in
biochemical models. This often leads to models with low predictive value.

Here we want to investigate the role that regularization can play regarding the calibra-
tion of nonlinear kinetic models. First of all, we need to address to question of which type
of regularization should we use. Second, since kinetic models often have a fixed and rather
stiff nature (as opposed to the flexibility of e.g. neural networks, as used in machine learn-
ing), it is a priori unclear if regularization can really help to avoid overfitting and enhance
the predictive value of the calibrated model. Third, since most dynamic models in systems
biology are severely over-parametrized, we want to explore its capabilities for systematic
balancing the effective number of fitted parameters based on the available calibration data.
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Fourth, we want to evaluate the impact of regularization on the convergence properties of
the global optimization solvers.

In order to answer these questions, here we present a critical comparison of a wide
range of regularization methods applicable to nonlinear kinetic models. We then detail a
procedure with guidelines for regularization method selection and tuning. Finally, we use
numerical experiments with challenging problems of increasing complexity to illustrate the
usage and benefits of regularization, addressing the questions above.

5.3.1 Statement of the regularized estimation

We consider penalty type regularization techniques [129], which add a penalty Γ(θ) to
the original objective function (5.5). This results in the following regularized optimization
problem:

θ̂α ← minimize
θ

QR(θ) = QLS(θ) + αΓ(θ)

subject to θmin ≤θ ≤ θmax ,

dx(t, θ)

dt
= f(u(t), x(t, θ), θ) ,

y(x, θ) = g(x(t, θ), θ) ,

x(t0) = x0(θ), t ∈ [t0, tf ] .

(5.7)

Here α ∈ R+ is the non-negative regularization parameter and Γ(·) : RNθ → R+ is the
regularization penalty function. When the solution of the original problem (α = 0) is ill-
posed, one has to incorporate some a priori assumption, which makes the estimation well
posed. It is assumed that the penalty function Γ(θ) is well conditioned and has a unique
minimum. Thus, as the regularization parameter α→∞ the optimization problem (5.7) is
well-posed but highly biased by the a priori assumption, and when α = 0 one obtains the
original, ill-posed estimation problem. Therefore the role of the regularization parameter α
is to properly balance the information of the data and the prior knowledge. However, this
is a non-trivial task even for linear problems, as we will discuss below.

Determining the proper regularization parameter requires multiple solutions of the reg-
ularized optimization problem (5.7), therefore the computational efficiency is also crucial.
Here we chose the Tikhonov regularization framework in order to match the form of the
penalty to the least squares formalism of the objective function. In this case the least
squares cost function can be simply augmented by the quadratic penalty function

Γ(θ) = (θ − θref)TW TW (θ − θref), (5.8)

where W ∈ RNθ×Nθ is a diagonal scaling matrix and θref ∈ RNθ is a reference parameter
vector. In the special case, when W is the identity matrix, we call the scheme as the
non-weighted Tikhonov regularization scheme (or shortly as Tikhonov regularization). If
further, the θref is the null-vector, the corresponding regularization scheme is often referred
as ridge regularization.

5.3.2 Scenarios based on prior information

Kinetic models can overfit the data leading to poor generalizability. Here we propose using
prior knowledge to select the most appropriate regularization method to avoid such overfit.
Based on the level of confidence in this prior knowledge, we can consider three possible
scenarios:
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• Worst case scenario, where we have absolutely no prior information about the pa-
rameter values, typically resulting in very ample bounds and random initial guesses
for the parameters.

• Medium case scenario, where there is some information about the parameters and
their bounds.

• Best case scenario: the situation where a good guess of the parameters is at hand.

Below we will provide, for each scenario, robust recommendations regarding the regular-
ization method to use and its tuning.

5.3.3 Prediction error in biased estimation

In order to evaluate the performance of the calibrated model, we will use cross-validation
[141–143]: the calibrated model is used to predict a yet unseen set of data and the prediction
error is computed. A good model should not only fit well the calibration data, but it also
should predict well the validation data.

In the appendix D.1 we utilize the bias-variance decomposition of the prediction er-
ror and show when and how regularization can lead to smaller prediction error. Here we
summarize the main steps and conclusions.

First the expected prediction error of a model, that was calibrated on a data set DC
and evaluated on an independent validation data set DV is decomposed to a variance
term, a bias term and a remaining term due to experimental noise in the data. We find
that the variance of the prediction error decreases with larger regularization, but the bias
is a monotonically increasing function of the regularization parameter. This trade-off is
beneficiary as long as the following inequality holds (see the derivation in the appendix
D.1):

σ2Nθ −N eff
θ (α)

ND

>
α

8
||θt − θref ||2, (5.9)

here σ2 is the variance of the measurement error, Nθ is the number of model parameters,
N eff
θ (α) is the effective number of parameters, which is a decreasing function of the regu-

larization parameter α, ND is the number of data points, θt is the true parameter vector
and θref is the reference parameter vector used in the regularization. The left hand side of
the inequality represents the reduction in the variance –due to the decrease in the num-
ber of effective parameters– and the right hand side is the bias, that is introduced by the
regularization, since the true parameter vector is unknown.

Therefore, regularization increases the performance of the calibrated model when

1. the calibration data is noisy (σ is large) and the amount of data is limited (ND is
small),

2. there are a large number of correlated parameters, and therefore the Hessian of the
original problem has very small eigenvalues. In this case even a small regularization
parameter can largely reduce the effective number of parameters, i.e. Nθ � N eff

θ (α).
3. One has a good guess of the true parameters (||θt − θref ||2 is small), for example

from other independent experiments, previous studies or based on the biological or
physico-chemical meaning of the parameters.

However, note that regularization may damage the prediction (the reduced variance is
smaller than the introduced biased) if the original problem is not ill-posed, i.e. Nθ ≈
N eff
θ (α), α is set to a large value and the provided reference parameters are far from the

true parameters.
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Table 5.1: Summary of the case studies. Each column describes a calibration problem.
Further details can be found in Appendix D.5 (detailed descriptions including the model
differential equations).

Short Name BBG FHN MAPK GOsc TGFB TSMP CHM

Description
Biomass FitzHugh- MAPK Goodwin’s TGF-β 3-Step Chemotaxis
Batch Nagumo Signalling Oscillator Signalling Metabolic Signalling

Growth Oscillator Pathway Pathway Pathway Pathway
Reference [146] [147, 148] [149] [150] [113] [108] [151]
Implementation of [146] BIOMD00. . . BIOMD0000. . . [152] [113] [108] BIOMD000. . .
dynamics 000000010∗ 0000346∗,[153] 00000404∗

Total parameters 4 3 22 8 21 36 60
Estimated parameters 4 3 6 8 18 36 38
States 2 2 8 3 18 8 26
Observed states 2 1 2 3 16 8 7(+1)
Experiments 1 1 1 1 1 8 2
Data points 22 6 20 20 240 1344 160

* the dynamic model can be found in the Biomodels Database (http://www.ebi.ac.uk/biomodels-main)

5.3.4 Tuning the regularization

The regularization parameter balances the a priori knowledge and the information of the
data, therefore plays a vital role in the regularization. When α = 0, the regularized op-
timization (5.7) becomes the original problem (5.6) and the variance of the estimated
parameters dominates the prediction error (D.2). While as α → ∞ the problem is well
posed, but biased towards the reference parameter set. The goal of a tuning method is
to find an optimal value for α, which minimizes the prediction (or parameter estimation)
error.

The exact computation of the optimal regularization parameter is not possible, since the
computation of the prediction bias-variance trade-off would require the knowledge of the
true parameters. Many tuning methods (see [129, 131, 144, 145] and the references therein)
have been developed based on different assumptions and approximations to compute an
approximate regularization parameter value. We summarized a set of 15 tuning methods for
the selection of the α parameter in Appendix D.4. These 15 tuning methods are compared
based on several case studies in Section 5.4.4.

5.4 Results and discussion

5.4.1 Numerical case studies

We have considered a set of seven parameter estimations problems, which are used as
numerical case studies. These case studies have been chosen as representatives of the typ-
ical problems arising in computational systems biology, i.e. partially observed nonlinear
dynamic models and sparse noisy measurements. These examples include signalling and
metabolic pathway models of increasing complexity. Table 5.1 contains a short summary
of these case studies, with the original references and an overall view of number of esti-
mated parameters, dynamic state variables, observables, and data. Further details, includ-
ing model equations and the data sets used for model calibration and cross-validation are
reported in Appendix D.5. It should be noted that in several of these examples the original
references only describe the model dynamics, not the full parameter estimation problems.

In the following sections, we use these examples to illustrate the issues and pitfalls
arising from the nonconvexity and ill-conditioning of the estimation problems. Next, we
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Figure 5.1: Local optima of the objective function corresponding to the GOsc case study.
Figure A: distribution of the final objective function values of 10000 runs of local solver
NL2SOL. Figure B: fit corresponding to the global optima (GS). Figure C: fit corresponding
to the most frequently achieved local minima (LS).

use them to illustrate the key ideas behind the methods presented above, including the
bias-variance trade-off, the tuning of the regularization, the effect of the quality of the
prior knowledge on the regularization, and their impact on cross-validation results. For the
sake of brevity, we include summarized or selected results in the main text, but detailed
results illustrated by figures for all the case studies can be found in Appendix D.6.

5.4.2 Multi-modality of the optimization problem

Since the estimation problem stated above is nonconvex, multi-modality (existence of mul-
tiple local solutions) will be a key possible pitfall. As already discussed, local nonlinear
least squares (NLS) algorithms will find the local minima of the objective function in the
vicinity of the initial point. A characterization of the set of possible local optima can
be obtained by the frequency distributions of the solutions found by a multi-start local
procedure, i.e. starting local optimizations from different initial points, selected randomly
in the parameter space. If the initial points cover the parameter space adequately well,
the observed distribution of the local optima can be used to quantify the difficulty of the
parameter estimation problem arising from multi-modality.

For example, Figure 5.1 A shows the distribution of these local minima for the Good-
win’s oscillator (GOsc) case study. The distribution was obtained by solving 10000 opti-
mization problem (of which approximately 97% converged) with the NL2SOL NLS algo-
rithm started from randomly chosen initial guesses. These initial points were selected based
on the logarithmic Latin hypercube sampling (LHS) method. The distribution of the ob-
tained local optima is spread along several magnitudes (note the logarithmic scaling on the
x-axis), with the best (lowest) objective function value of 9.8903, which is very close to the
best known solution for this problem and therefore can be considered as global minimum
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of the objective function. Although the local optimization was enhanced by high quality
Jacobian information based on the sensitivity calculations, only 5% of the runs achieved
the vicinity of the global optima.
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Figure 5.2: Distributions of local
optima for all case studies. Each
case study was solved by the AMS
method and the observed frequency
of the local minima is reported here.
The objective function values (QLS)
are scaled by the global optimum
QGO

LS for each case study, and the re-
sulting ratio is reported in logarith-
mic scale. The height of the first bin
at 0 represents the frequency of find-
ing the vicinity of the global solu-
tion.

The calibration data and the simulation results of
the most frequently occurring local optima (marked
as LS in the histogram; objective function value:
148.25) is shown in Figure 5.1 C. This is certainly
a potential pitfall of using local optimization, which
can lead to wrong conclusions about the model pre-
dictive capability. In contrast, the fit of the global
solution (marked as GS in the histogram) is depicted
in Figure 5.1 B, showing a good agreement between
the model and the data.

We applied the same procedure to the other case
studies, with the corresponding histograms shown
in Figure 5.2. These histograms show that all these
case studies exhibit multi-modality, but in different
degree. We can see that oscillators tend to exhibit
more local minima than the other types. However,
case study TSMP, which does not exhibit oscilla-
tions, presents a particularly challenging histogram:
none of the local searches was able to locate the vicin-
ity of the global solution.

In summary, some of these problems could in
principle be solved by a multi-start local method,
especially if using high quality gradients. But this
approach would fail in other cases, and we have
no a priori way of distinguishing between these
two groups. Therefore, we conclude that an efficient
global optimization approach should be used in all
cases to avoid artifices (local solutions) and ensure
the best possible fit.

5.4.3 Convergence of the optimiza-
tion algorithms

Once we have characterized the multi-modality of
the case studies, we now illustrate the advantages of
using the eSS2 global optimization method presented
previously. First we consider the solutions of the non-
regularized calibration problems (5.6), and then in
the following subsection we will discuss the regular-
ized estimations (5.7). The metric to be used will be
based on the convergence curves, i.e. cost function
values versus computation time. In order to evaluate the improvements in efficiency and
robustness, we will compare the following methods for all the case studies, using a fair
stopping criteria based on when a predefined computational time budget is reached:

SMS : simple multi-start (SMS) of NL2SOL with finite difference Jacobian computation.

AMS : advanced multi-start (AMS), similar to SMS, but the bounds of the feasible range
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Figure 5.3: Comparison of convergence curves of selected optimization methods. The curves
show the objective function versus the computation time during the minimization. Results
are given for simple multi- start (SMS), advanced multi-start (AMS) and enhanced scatter
search methods (eSS2a and eSS2b; see description in main text). Results are shown for two
case studies: (a) GOsc and (b) TSMP.

of the parameters are transformed by the logarithmic function and then the Latin
hypercube sampling method is utilized to sample initial points. This way the pa-
rameter space is better sampled, especially if the upper and lower bounds of some
parameters have very different magnitudes (which is the case for all case studies).
Further, NL2SOL is provided with high quality Jacobian of the residual vector.

eSS2a : the new enhanced scatter search described above, making use of NL2SOL and high
quality Jacobian.

eSS2b : like eSS2a but initialized by the log Latin hypercube sampling as in AMS.

The above methods are compared based on their convergence curves (see for example Figure
5.3) and the distribution of the final cost function values reached (reported in Appendix
D.6).
The empirical convergence curve depicts the current best objective function value as the
optimization algorithm proceeds. An optimization method performs better than another
method if a lower objective function value is reached in the same amount of computation
time. Since both the multi-start and the eSS2 approaches use random numbers, the con-
vergence curves will be different for each run. Thus we need to compare the convergence
curves for several runs of each method.

Figure 5.3 shows the convergence curves for the Goodwins’ oscillator case study (GOsc)
and for the 3-step metabolic pathway problem (TSMP). For each method the optimiza-
tion was carried out 20 times using different seeds for the random number generator, but
here only the best convergence curve is shown, i.e. the run in which the best solution
was reached in the shortest time by each method. Detailed results of the 20 runs can be
found in Appendix D.6 for all case studies. Clearly, the simple multi-start (SMS) approach
performed poorly in both cases: in GOsc, SMS needed 50 times more computation time
than eSS2 to achieve the vicinity of global minimum, while in TSMP it could not find it
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in the given computation time budget. The advanced multi-start (AMS) presented a per-
formance similar to eSS2a and eSS2b for the GOsc case study, but in TSMP it was clearly
outperformed by eSS2b.

Considering the results for all the case studies (see detailed convergence curves in Ap-
pendix D.6), we can conclude that the more refined version of multi-start can solve prob-
lems of small size (number of parameters) and with relatively tight bounds and good initial
guesses for the parameters, but it is not reliable in more difficult situations. In contrast, the
eSS2b method performed consistently well, solving all the problems in reasonable compu-
tation time using its default options (i.e. without the need of tweaking the method’s search
options with preliminary runs). In the remaining text we will refer to eSS2b as eSS2.

The effect of regularization on the convergence. We now consider how the penalty
regularization (5.7), which changes the topology of the objective function, affects the con-
vergence of the optimizer. We used eSS2 to solve the regularized problem for each case
study, finding a narrower spread of the convergence curves. We also found improvements in
the average time to reach the global solution. This benefit was especially clear in the TSMP
case study, where the robustness was greatly improved (all the 20 runs of the optimiza-
tion with regularization reached the global optima in 200 seconds of computation time,
while only 3 runs converged using the same algorithm with the non-regularized objective
function). Detailed results for all case studies are reported in Appendix D.6.

This additional beneficial effect of regularization on the convergence can be explained as
follows: while the original cost function is multi-modal, the penalty term in Tikhonov regu-
larization (5.8) is a quadratic (convex) function. Thus, in the limit α→∞ the regularized
objective function becomes a convex function.

Note that, the global minimum of the objective function is always larger for the regular-
ized problem (QR(θ̂α) in (5.7)) than the value for the non-regularized problem (QLS(θ̂) in

(5.6)). This is because the penalty term (αΓ(θ̂α)) contributes only to the objective function
in (5.7). Further, the regularization avoids overfitting the data, thus the sum of squared

residuals part of the objective function (QLS(θ̂α)), is also larger than the minimum of the

non-regularized solution (QLS(θ̂)).

5.4.4 Tuning the regularization and prior knowledge

Kinetic parameters of bio-models are generally unknown and vary for different cells. Thus,
even if we have some prior knowledge about the parameters, it should be tested against
the data. As shown later in Section 5.4.6, the predictions of the calibrated models using
good prior knowledge in the regularization agree with the cross-validation data and thus
generalize better.

In order to adjust the right level of the regularization, the regularization parameter (α)
has to be tuned. The general pipeline is depicted in Figure 5.4. The tuning includes three
steps (TS):

TS1: a set of regularization parameter candidates are determined : α1, α2, . . . αI . To cover
large range with few elements, typically the candidates are determined as the elements
of a geometric series, i.e. αn = α0 · qn for n = 1 . . . I, where α0 > 0 and 0 < q < 1.

TS2: the regularized calibration problem (5.7)-(5.8) is solved for each regularization param-
eter. This results in a set of calibrated models (candidate models), with estimated

parameters denoted by θ̂α1 , θ̂α2 . . . , θ̂αI .
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TS3: the best candidate is selected based on a tuning method:
{θ̂α1 , θ̂α2 , . . . , θ̂αI} → θ̂αopt

Given: 
- model  
- data 
- prior information

Choose 
regularisation term

Solve optimisation  
with regularization 

parameters:
↵1, ↵2, . . . ↵I

regularized estimates:
✓̂↵1

, ✓̂↵2
. . . , ✓̂↵I

Tuning method 
(GCV)

refinem
ent of ↵

post-analysis, 
validation, etc.

Figure 5.4: Regularized parameter
estimation pipeline

In TS1, the range (10−3 − 103) with I = 11 can-
didates was found to be a good balance between ac-
curacy and computational cost for all the case stud-
ies considered. In TS2, the calibration problems with
different candidates can be solved parallel, since they
are essentially independent optimization problems.
However, when solved sequentially, the previously
obtained solutions can be used to start the next opti-
mization problem from a good initial point, and thus
reduce its computational cost.

Figure 5.5A depicts trade-off between the model
fit and regularization penalty for the candidates in
the biomass batch growth (BBG) case study. Each
cross in the figure corresponds to a calibrated model
with the regularization parameter denoted by the la-
bels next to the crosses. Larger regularization pa-
rameter results in an estimated parameter vector
closer to the reference parameter vector and there-
fore smaller penalty, but worse fit to the calibration
data.

The best way to select the optimal candidate in
TS3 is cross-validation [154], but it requires an inde-
pendent set of data at the time of calibration. How-
ever, in general it is unclear how the total amount
of data should be divided [155] into a calibration
and validation set for regularization. In case of scarce
data, where the splitting is undesirable, tuning meth-
ods must be used.

We have tested 15 tuning methods on the case
studies by comparing the regularization parameter selected by each tuning method with
the optimal regularization parameter which minimizes the prediction error (i.e. the one
with the best bias-variance trade-off, which is known for synthetic problems). The optimal
regularization parameter and the regularization parameters selected by the tuning methods
are reported in Appendix D.8 for each case study. We found the (robust) generalized
cross validation method as the most reliable, since it identified the optimal regularization
parameter reliably, outperforming the other methods.

The generalized cross-validation method does not use any further cross-validation data,
but estimates the leave-one-out cross validation error of the candidate models based on the
calibration data. The criteria is computed as

GCV(αi) =
RSS(αi)

ND −N eff
θ (αi)

, for i = 1, . . . I (5.10)

where RSS(αi) is the sum of squared normalized residuals for the candidate (RSS(αi) =

R(θ̂αi)
TR(θ̂αi)), ND is the number of calibration data and N eff

θ (α) is the effective number
of fitted parameters in the model calibration (D.7). The RSS(α) grows with α since larger
regularization results in a worse fit to the data (see Figure 5.5A). The larger the α is, the
more the fitted parameters are constrained by the reference parameter vector, thus the
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Figure 5.5: Tuning the regularization method for BBG case study. Figure A shows the
trade-off between the two terms of the regularized objective function, i.e. model fit and
the regularization penalty, for a set of regularization parameters (values shown close to
symbols). A larger regularization parameter results in worse fit to the calibration data,
small regularization parameter results in a larger penalty. Figure B compares the candi-
dates based on the generalized cross-validation scores. A larger score indicates worse model
prediction for cross-validation data. Figure C shows the normalized root mean square pre-
diction error of calibrated model for 10 sets of cross-validation data and regularization
considering different quality of the prior information (initial guess of the parameters). For
a wide range of priors (initial guesses based on the reference parameter vector) the regular-
ized estimation gives a good cross-validation error. Small priors exhibit worse predictions.

effective number of fitted parameters decreases with α (see Eq. (D.7)). The generalized
cross validation error is small if the model fits the data well, while it also has a low number
of effective parameters. Figure 5.5B shows the computed GCV value for the candidates
in the BBG case study. It shows a minimum for the regularization parameter 1.58. Note
that in cases where the amount calibration data is small, the GCV method tends to under-
regularize the calibration [156], so the robust GCV (RGCV) method was found to be a
better alternative.
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The quality of the regularized calibration depends not only on the regularization param-
eter, but also on the prior knowledge of the modeller encoded by the reference parameter
vector θref and scaling matrix W . To test the robustness of the method with respect to
these input information, we chose a range of reference parameter vectors and scaling ma-
trices and solved the regularized optimization problem for each case study. In each case the
generalized cross-validation score was used to select the regularization parameter. Then,
the calibrated models were tested by computing predictions for cross-validation data sets.
Figure 5.5C depicts the results for the BBG case study using box-plots. The first two
columns show the distribution of the prediction error (normalized root mean square error)
for the nominal model (known only in synthetic problems and used only for reference) and
for the model calibrated without regularization. The next 9 columns in the plot show the
prediction error with different quality of prior knowledge. We can see that the regulariza-
tion method gives better predictions than the non-regularized for a wide range of prior
quality.

5.4.5 Prediction and parameter bias-variance trade-off

Here we consider the stability of the solution of the optimization problem with respect to
small perturbation in the data. Note that this numerical analysis is partially based on the
bias-variance decomposition of the estimated model predictions and estimated parameters,
thus it requires the knowledge of the nominal (true) parameter vector. Obviously the true
model is known only for synthetic problems, but it can be used as a way to analyse the
reliability of computational methods.

The experimental data is always measured with some uncertainty, which also influences
the model calibration. If we could repeat the experiments, for example 10 times, taking
measurements in the same conditions, we could collect 10 different datasets with slightly
varying measurements –due to the random measurement error. Then each of the 10 datasets
could be used to calibrate a model with and without regularization, which would result 10
slightly different calibrated models for both the non-regularized and regularized calibration
procedure. Analysing the consistency of these models can reveal the sensitivity of the
calibration procedure to the measurement error.

The results of this procedure for the BBG numerical case study can be seen in Figure
5.6A and 5.6B, where the nominal model predictions are shown by dashed line together
with the range of the measured data depicted by error bars. In Figure 5.6A the predictions
of the models, calibrated in the traditional way –without the regularization– is also shown,
in contrast, the models shown in Figure 5.6B were calibrated using regularization. We
can observe that the model predictions are less sensitive to the error in the data when
regularization is applied, i.e. the variance of the model predictions are smaller. However,
we also observe larger bias from the nominal trajectory for the regularized models, since
no prior knowledge was used in this case (worst case scenario).

Figure 5.6C shows the prediction bias-variance trade-off for a range of the regularization
parameter. The results are in agreement with the intuition that a lower regularization
results in larger prediction variance and less bias. The mean squared error curve (the
red dashed line), i.e. the sum of squared bias and variance, has the minimum for the
regularization parameter αPred

opt ≈ 0.04, which is therefore the optimal regularization with
respect to the prediction error.

Similar trends and results were obtained regarding the estimated parameters, shown
in Figure 5.6D and 5.6E. Here, the distribution of the parameter estimates in the 10
regularized and 10 non-regularized calibrations are depicted by box-plots and the grey
boxes show the feasible range of the parameters. The regularized calibration results in
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much narrower distribution for the estimates (note the logarithmic scaling of the y-axis).
The bias-variance trade-off in the estimated parameters is shown in Figure 5.6F. The
optimal regularization parameter for the minimum mean squared parameter estimation
error (αParam.

opt ≈ 0.04) coincides with the previously obtained value for the minimum mean

square prediction error in this case study. Although for all case studies we found that αPred
opt

and αParam.
opt are close to each other, they do not necessarily coincide.
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Figure 5.6: Bias-variance trade-off for the BBG case study. Figures A and B illustrate
the nominal trajectory (dashed line) and the range of perturbed measurements together
with predictions of calibrated models (continuous lines) without and with regularization,
respectively. The distribution of the regularized predictions (in B) are narrower than in
the non- regularized one (in A), but are slightly biased from the nominal trajectory. Figure
C depicts the squared bias and the variance of these model predictions as a function of
the regularization parameter. The mean square error (dashed line) has a minimum at 0.08.
Figure D, E and F shows the results for the estimated parameters: with regularization the
estimated parameters are less sensitive to perturbations in the data.
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5.4.6 Ill-conditioning, cross-validation and overfitting

It is a common problem that due to the large measurement error (large noise to signal
ratio) and due to data scarcity, a model with different numerical parameter values might
fit the data almost equally well, which indicates identifiability problems.
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Figure 5.7: Eigenvalues of the approximated
Hessian matrix for each case study. Eigenval-
ues are related to the identifiability of the
model parameters: a large spread indicates
lack of identifiability of some parameters from
the given dataset.

A posteriori to the calibration, local
analyses of the topology of the objective
function can provide valuable information
about the uncertainty in the estimated pa-
rameters. Particularly, the ill-conditioning
of the approximated Hessian of the objec-
tive function (Eq. (D.6)) evaluated at the
global optima can indicate high uncertainty
in the estimated parameters [157]. Figure
5.7 shows the eigenvalues of this matrix
for each case study. We can see that larger
models with more parameters tend to have
larger a spread in the eigenvalues, and thus
larger condition number, indicating the lack
of identifiability of its parameters. How-
ever, this is only a local measure of the ill-
conditioning of the problem near the op-
tima.

A more sound way to measure the pre-
dictive value (generalizability) of the cal-
ibrated model is cross-validation, where a
different set of data is used to asses the cal-
ibrated model. Over-fitted models will show a bad fit to cross-validation data since they
fitted the noise, rather than the signal, and therefore are less generalizable. If the experi-
mental conditions for collecting the cross-validation data are different from the calibration
conditions –e.g. different stimuli levels, time-horizon etc.–, this effect will be more promi-
nent.

Figure 5.8 shows the calibration fit (on the left) and the cross-validation (on the right)
for the BBG case study (substrate measurements are not shown). The predictions of two
models, one that was calibrated in the traditional way and one that was calibrated with
regularization are also presented. Although there is almost no difference between the model
predictions for the calibration data, the predictions for cross-validation data are rather
different. The model that was calibrated without regularization predicts a slower decrease in
the biomass concentration and shows large discrepancy from the cross validation data. If we
compare the least-squares cost function for the two models, we find that the non-regularized
model fits better the calibration data, but the regularized model generalizes better for the
cross-validation data. In other words, the traditional model calibration results in overfitting,
while the regularized calibration gives a more generalizable model at the expense of a
slightly worse fit to the calibration data. Ideally, the cross-validation experimental scenario
should be different from the calibration one in order to better assess generalizability of a
model. Typically this can be achieved generating cross-validation data with experiments
where the initial and boundary conditions (e.g. stimuli) of the experiments are as different
as possible from those used to obtain the calibration data.

In Figure 5.9 we present similar results for the Goodwin’s oscillator case study (GOsc).
Here, we already see larger differences between the model predictions in the calibration
data, but note that the predictions are almost identical at the time of the measurements.
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Figure 5.9: Calibration and cross-
validation results for the GOsc case
study. Top figure: fits to calibration
data, bottom: predictions for cross-
validation data.

Thus, for example, based on the calibration data it
would be impossible to decide whether the protein
concentration decreases or increases right after the
beginning of the experiment. When the two mod-
els are cross-validated on an independent set of data
(lower plot in Figure 5.9) we see that the regular-
ized model is in good agreement with the new data,
while the non-regularized model heavily overshoots
the data in the first period of the oscillation.

Figure 5.10 summarizes our findings for all case
studies regarding the generalizability of the cali-
brated models. Each case study was solved in the
traditional, non-regularized way and with regular-
ization assuming different level of prior knowledge
(worst, medium and best case scenarios). Due to the
low number of calibration data and large measure-
ment noise, we found large variability of the predic-
tions depending on the exact noise realization in the
calibration data. Thus we repeated the calibrations
with 10 calibration datasets to obtain robust results.
Then, each calibrated model was cross-validated in
10 independent cross-validation data sets and the
prediction error was computed. Figure 5.10 shows
the distribution of these prediction errors for each
case study by box-plots.

The distributions can be compared by the ob-
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Figure 5.10: Prediction errors distribution for each case study. Prediction errors (box-
plots of normalized root mean square error in log-scale) of the calibrated models with and
without regularization are shown for each case study. These distributions were obtained by
calibrating the models to multiple sets of calibration data (as explained in section 3.6) and
cross-validating them on multiple cross-validation data sets. Most cases show the trend that
better prior knowledge results in smaller cross-validation errors, i.e. regularized models are
more generalizable.

served medians, which are denoted by the black dots in the box-plot. In order to check if the
observed differences in the medians are significant we utilized the Wilcoxon non-parametric
statistical test [158] (also known as the Mann-Whitney U test). The test results show that
in the majority of the scenarios the differences in the medians are statistically significant
at the 0.05 level. The exception is the FHN case study where the differences turned out to
be not significant for the three scenarios. Further details of this statistical test are reported
in Appendix D.7 and in Table D.4.

By comparing the medians of the distributions we see that in almost all cases the non-
regularized models overfit the calibration data, i.e. the non-regularized models fit well the
calibration data, but do not predict cross-validation data as well as the regularized models.
In each case, the medium and the best case regularization scenarios clearly outperformed
the non-regularized estimation, leading to better generalizable calibrated models. However,
in two cases we observe that the worst case regularization scenario performed worse than
the non-regularized case. Also note, that in case of the TGF-β pathway problem (TGFB)
all scenarios gave almost identical results, meaning that the original problem is a well-posed
calibration problem. However, this is generally unknown before the calibration.

In this context, it is worth mentioning that the regularization of non-mechanistic (e.g.
data-driven) models –like those used in machine learning and system identification, such as
e.g. neural networks– usually exhibits more dramatic benefits. The reason is that these data-
driven models are by definition extremely flexible and therefore very prone to overfitting.
In the case of the mechanistic kinetic models used in systems biology, in many cases they
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will have a rather rigid structure despite being over-parametrized. Therefore, they might
be less prone to overfitting. However, a clear exception are models exhibiting oscillatory
behaviour, or models with many non-observable states.

5.4.7 Regularization schemes based on available information

Based on the above results, we recommend the following regularization procedures for the
three scenarios defined previously (in Section 5.3.2):

I Best case: a good guess of the parameter values (θguess) is available. In this case a
first order weighted Tikhonov regularization is recommended, i.e. θref := θguess and the
weighting matrix should be initialized by the parameters too, i.e. W = diag(1./θref),
where ./ is the element-wise division. In this way, parameters with different magnitudes
will contribute similarly to the penalty.

II Medium case: a situation where a less reliable initial guess –but within one order of
magnitude of the true values– is available. As in the best case scenario, the parameter
guess should be used as the reference vector in the regularization penalty: θref :=
θguess. However, we found, that including these values also in the weighting matrix
amplified the error in the parameter estimate. Therefore, the non-weighted Tikhonov
regularization is recommended.

III Worst case: no prior knowledge and therefore only a random guess of parameters
is available. Here a two-step regularization procedure is proposed. In the first step
ridge regularization is applied which results in a ridge estimate, denoted by θ̂R1

α . In
the second step this parameter vector is used as the reference parameter vector for
Tikhonov regularization, i.e. (θref := θ̂R1

α ). This procedure could be repeated n-times –
using the obtained regularized solution as reference parameter vector in the next step–,
resulting in the n-th order Tikhonov regularization [129], but we found no practical
difference after the second step.

The regularized optimization is solved for a set of regularization parameters in each scenario
and depending on the amount of data at hand the generalized cross validation method
(GCV) – for larger dataset– or the robust generalized cross-validation method (RGCV) –
for smaller dataset– is recommended to choose the optimal candidate. A summary of this
regularization scheme is illustrated in Figure D.1 in the Appendix.

Based on the results presented previously, we suggest that tuning of the regularization
can be avoided in certain situations, saving considerable computation time. For scaled
models where the number of data points and parameters are similar and the data has 5-
10 % measurement error, our study indicates that the optimal regularization parameter will
lie in the range [0.1−10]. For the worst case scenario, rather common in systems biology, we
found that the above procedure gave smaller mean square parameter estimation error than
the traditional, non-regularized estimation. Further, the optimization algorithm exhibited
better convergence properties with regularization, although no significant improvements in
the model predictions was observed. In the case of medium and best scenarios regularized
estimation led to both better parameter estimates and smaller cross-validation prediction
error in shorter computation times.

5.4.8 Regularization pipeline and implementation

In Figure 5.11 we outline the architecture of the resulting method and its implementation.
The pre-processing step makes use of symbolic manipulation to derive the sensitivity equa-
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Figure 5.11: Architecture of the method: in the pre-processing phase, sensitivity equations
and Jacobians (both of the residuals and of the differential equations) are derived via sym-
bolic manipulation, generating C code which is then linked to the initial value problem
(IVP) solver, CVODES. The regularization scheme is selected according to the quality of
the prior knowledge, and tuned following the procedure described in section 5.4.4. Finally,
global optimization with eSS2 is used to find the regularized estimate of the parameters.
The resulting calibrated model can then be further evaluated using cross-validation, fol-
lowed by additional post-regression and goodness-of-fit analysis.

tions and Jacobians (both of residuals and dynamics), and automatically generates C code
to be compiled and linked with the CVODES solver. This procedure ensures the highest
numerical efficiency and stability during the solution of the initial value problem.

The regularization scheme (term) is selected according to the quality of the prior knowl-
edge (as described in Section 5.4.7 and illustrated in Figure D.1 in the Appendix), and the
cost function is formulated. The regularized optimization problem is solved for a set of reg-
ularization parameter αi. In each iteration the result is passed to the regularization tuning
modul (regularization criteria). When the optimal regularization parameter is found, the
parameter estimates are reported and the calibrated model is analysed, validated.

We evaluated the above pipeline in different scenarios:

1. we showed that parameter estimation in kinetic models leads to a non-convex opti-
mization problem with several local minimas (in Section 5.4.2), thus we need a global
optimization algorithm.
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2. we compared 2 types of multiple start local methods with the global optimizer eSS2
in Section 5.4.3 and showed the improvement in the convergence to the global optima.

3. we showed that the calibration of the case studies led to solve ill-conditioned opti-
mization problems (Section 5.4.6), thus these models are prone to overfit the data.

4. we applied regularization to condition the optimization problems and we compared
15 tuning methods (regularization criteria) based on cross-validation to select the
most appropriate method (GCV), (Section 5.4.4).

5. regularization requires a reference parameter vector, which introduce bias to the esti-
mation. We evaluated the effect of a miss-specified reference vector on the estimation
in Section 5.4.4 and recommended different regularization schemes (Subsection 5.4.7),
based on the quality of the prior information.

The pipeline is freely available through the AMIGO2 open source MALTAB Toolbox
(https://sites.google.com/site/amigo2toolbox/download).

5.5 Summary

In this chapter we propose a new parameter estimation strategy for nonlinear dynamical
models of biological systems. This strategy is especially designed to surmount the challenges
arising from the non-convexity and ill-conditioning that most of these problems exhibit.
The difficulties of parameter estimation problems in systems biology do not only depend
on the number of parameters, but also on the structure (flexibility and nonlinearity) of the
dynamic model, and the amount of information provided by the (usually scarce and noisy)
available data.

Our strategy combines an efficient global optimization method with three different
schemes of Tikhonov regularization, selected depending on the quality of the prior knowl-
edge. We tested this strategy with a set of case studies of increasing complexity. The
results clearly indicate that an efficient global optimization approach should always be
used, even for small models, to avoid convergence to local minima. Similarly, our study
illustrates how ill-conditioning and overfitting issues can damage the generalizability of
the calibrated models. Overfitting was found to be especially important when models are
flexible (e.g. oscillatory models), even if the number of parameters is small. Our results
show how regularization can be used to avoid overfitting, leading to calibrated models
with better generalizability. Finally, the use of regularization significantly improved the
performance of the optimization method, resulting in faster and more stable convergence.
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Chapter6
Conclusions

6.1 New scientific contributions

The aim of this section is to summarize the main results of this work in thesis points as
follows:

Thesis 1. Bio-CRN framework and model verification (Chapter 2). A new modeling framework
was proposed for biochemical reaction networks (bio-CRNs), which can be seen as an
extension of the well known mass action chemical reaction networks (MAL-CRNs).
Beside of mass action kinetics, this formalism can handle reaction kinetics being in
rational function form, for example Michaelis-Menten kinetics. Further, the dynamics
of the reaction network was connected to a new complex–reaction graph represen-
tation, which allows multiple edges between complexes, i.e. each possible kinetics is
represented by a weighted edge. The non-negativity of the dynamics of bio-CRNs
was shown and further model verification steps were presented to identify potential
pitfalls in existing models, such as to detect the violation of mass balance or non-
plausible reaction rates.
Related publications: [159], [160]

Thesis 2. Realizations, dynamically equivalent and linearly conjugated biochemical reaction net-
works (Chapter 3). Kinetic ordinary differential equations with rational polynomials
on their right hand side can be transformed into bio-CRNs, i.e. into the framework
presented in Thesis 1. The necessary and sufficient conditions for network realiz-
ability were derived and a construction algorithm was presented. There might exist
multiple networks corresponding to the same dynamics, which are called dynamically
equivalent realizations. Optimization problems were formulated, which can find dy-
namically equivalent bio-CRN realizations with preferred properties, such as dense-,
sparse- and reversible graph structure. Finally, the bio-CRN model class was shown
to be closed to linear scaling of the state variables and linearly conjugated realization
were defined. Mixed integer linear optimization problems were formulated to con-
struct linearly conjugated networks for a given kinetic system.
Related publication: [159],[161]

Thesis 3. Model reduction in biochemical reaction networks (Chapter 4). A systematic and
stable method was developed for kinetic, mechanistic models, which eliminates reac-
tions from a given detailed network, such that the concentrations of some chosen, key
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species remain close to the original trajectories. By exploiting the model structure, i.e.
that the reaction rates are linear in the reaction rate parameters, the general mixed
integer nonlinear optimization approach was approximated by a finite sequence of
mixed integer quadratic optimization problems, which greatly reduces the compu-
tation cost. Further, in each reduction step the method re-estimates the remaining
reaction rate parameters in the reduced model to achieve the smallest reduction er-
ror.
Related publications: [162, 163]

Thesis 4. Regularized parameter estimation in dynamic biological models (Chapter 5). A pa-
rameter estimation method was presented for general dynamic biological models in
ordinary differential equation form. Non-convexity and ill-conditioning of these opti-
mization problems were identified as the key challenges. Regarding the non-convexity,
a hybrid optimization method was proposed, which combines existing global (en-
hanced scatter search) and local optimization methods (nonlinear least squares algo-
rithm NL2SOL). In case of ill-conditioning, a regularization scheme was presented,
which serves as a guideline for regularized parameter estimation depending on the
quality of prior information. Several tuning methods for Tikhonov regularization were
evaluated. The convergence properties of the proposed method and the improved pre-
diction capabilities of the calibrated models were evaluated based on 7 numerical case
studies. The parameter estimation pipeline was published as part of the AMIGO2
MATLAB Toolbox.
Related publication: [154, 164, 165]

6.2 Future work

The results presented in the above thesis points could be further extended in the following
directions.

Biochemical reaction networks We have developed the bio-CRN framework such that
the computational tools used in MAL-CRNs can be applied with reasonably small modifi-
cations. Therefore, a straightforward extension could be to formulate further optimization
problems for finding realizations with minimum number of complexes such as in [75], and
to find weakly reversible realizations [77, 166].

Model reduction in bio-CRNs. The model reduction method presented in Chapter
4 exploits the model structure of chemical reaction networks, i.e. that the reaction rate
functions are linear in the reaction rate parameters. Therefore a reaction is eliminated
from the network if and only if the reaction rate parameter is zero. A future extension of
this method could be to apply it for bio-CRNs, since the reaction rates are also linear in the
principal reaction rate coefficients and the reaction is also eliminated when the principal
reaction rate coefficient is zero.

88



Bibliography

[1] Mogilner, A., Wollman, R., Marshall, W.F.: Quantitative modeling in cell biology:
what is it good for? Developmental Cell 11(3), 279–287 (2006)

[2] Epstein, J.M.: Why model? Journal of Artificial Societies and Social Simulation
11(4), 12 (2008)

[3] Wolkenhauer, O.: Why model? Frontiers in Physiology 5, 21 (2014)

[4] Lander, A.D.: The edges of understanding. BMC Biology 8(1), 40 (2010)

[5] Wolkenhauer, O.: Systems biology: the reincarnation of systems theory applied in
biology? Briefings in Bioinformatics 2(3), 258–270 (2001)

[6] Stelling, J.: Mathematical models in microbial systems biology. Current Opinion in
Microbiology 7(5), 513–8 (2004)

[7] De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature
review. Journal of Computational Biology 9(1), 67–103 (2002)

[8] Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics
of regulatory and signaling pathways in the cell. Current Oinion in Cell Biology
15(2), 221–231 (2003)

[9] Kholodenko, B.N.: Cell-signalling dynamics in time and space. Molecular Cell Biology
7(3), 165–176 (2006)

[10] Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical
modelling of cell signalling pathways. Nature Cell Biology 8(11), 1195–1203 (2006)

[11] Doyle, F.J., Stelling, J.: Systems interface biology. Journal of the Royal Society,
Interface 3(10), 603–16 (2006)

[12] Schaber, J., Klipp, E.: Model-based inference of biochemical parameters and dynamic
properties of microbial signal transduction networks. Current Opinion in Biotechnol-
ogy 22, 109–116 (2011)

[13] Sunn̊aker, M., Zamora-Sillero, E., Dechant, R., Ludwig, C., Busetto, A.G., Wagner,
A., Stelling, J.: Automatic generation of predictive dynamic models reveals nuclear
phosphorylation as the key msn2 control mechanism. Science Signaling 6(277), 41–41
(2013)

[14] Link, H., Christodoulou, D., Sauer, U.: Advancing metabolic models with kinetic
information. Current Opinion in Biotechnology 29, 8–14 (2014)

[15] Le Novère, N.: Quantitative and logic modelling of molecular and gene networks.
Nature Reviews Genetics 16, 146–158 (2015)

[16] Baltes, M., Schneider, R., Sturm, C., Reuss, M.: Optimal experimental design for
parameter estimation in unstructured growth models. Biotechnology Progress 10(5),
480–488 (1994)

89



[17] Apgar, J.F., Toettcher, J.E., Endy, D., White, F.M., Tidor, B.: Stimulus design for
model selection and validation in cell signaling. PLoS Computational Biology 4(2),
30 (2008)

[18] Banga, J.R., Balsa-Canto, E.: Parameter estimation and optimal experimental de-
sign. Essays in Biochemistry 45, 195–210 (2008)
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[69] Érdi, P., Tóth, J.: Mathematical Models of Chemical Reactions. Theory and Applica-
tions of Deterministic and Stochastic Models. Manchester University Press, Princeton
University Press, Manchester, Princeton (1989)

[70] Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in
Practice. Wiley-VCH Verlag GmbH, Weinheim (2005)
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rational biochemical systems and their structural properties. Journal of Mathematical
Chemistry 53(8), 1657–1686 (2015) (Impact Factor: 1.056)
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AppendixA
Biochemical reaction networks

A.1 Further Example for bio-CRNs

Here we present a structurally similar example to what was presented in Example 2-1, but
with mass action kinetics.

Example A-1

Let us restrict each kinetics of the network in Example 2-1 to mass action type. Note
that in the previous example there were two reactions (r121 and r122) from complex C1 to
complex C2 with different kinetics. In the classical MAL-CRNs parallel reactions are not
allowed, thus they are represented by one edge as depicted in Figure A.1.

The three complexes

C1 = X1 + 2X2, C2 = X1 +X3, C3 = X4

are now connected by five irreversible reaction steps, i.e.

R = {(C1, C2), (C2, C1), (C1, C3), (C3, C1), (C2, C3)}.

X
1
 + 2X

2
X

1
 + X

3

X
4

k
12

k
31

k
13

k
21

k
23

C
2

C
1

C
3

Figure A.1: Reaction graph of a simple MAL-CRN

The matrices and the non-linear vector function which characterizes the network are as
follows
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Y =


1 1 0
2 0 0
0 1 0
0 0 1

 , Ak =

−(k12 + k13) k21 k31

k12 −(k21 + k23) 0
k13 k23 −k31

 , Ψ(x) =

x1x
2
2

x1x3

x4

 .
For mass action systems the kinetic weighting matrix is the identity matrix P = I3×3. The
above elements – based on (2.9) – define the following differential equation model

ẋ1 = −k13x1x
2
2 − k23x1x3

ẋ2 = −2k13x1x
2
2 − 2k12x1x

2
2 + 2k21x1x3 + 2k31x4

ẋ3 = −k23x1x3 − k21x1x3 + k12x1x
2
2

ẋ4 = −k31x4 + k13x1x
2
2 + k23x1x3 .

�

A.2 Non-negativity of bio-CRNs

As all of the kinetic functions in a biochemical reaction network defined by (2.9) are locally
Lipschitz and essentially non-negative, therefore the concentrations remain non-negative.
The proof is as follows.

In order to prove the non-negativity of the solution, one need to check the Lipschitz
condition and the essential non-negativity of the right hand side of (2.9).

It is easy to see, that the right hand sides of the ODEs are continuously differentiable,
therefore they are locally Lipschitz.

To show the essential non-negativity of the right hand side functions, insert (2.15) into
(2.9), for p = 1, . . . n, then the p-th equation reads as

fp(x) =
m∑
l=1

Ypl ·
κ∑
j=1

Ak,lj · ϕj(x) (A.1)

Rewriting the sum over all the κ kinetics into two sums: over the reactant complexes
and over the kinetics in each of these complexes, one arrives to

fp(x) =
m∑
l=1

Ypl

m∑
j=1

di∑
i=1

Ak,l zj+i · ϕzj+i(x), (A.2)

where zj =
∑j−1

k=1 dk. Using (2.15) and (2.5)

fp(x) =
m∑
l=1

Ypl

m∑
j=1

di∑
i=1

Ak,l zj+i · gji(x) =
m∑
l=1

Ypl

m∑
j=1

di∑
i=1

Ak,l zj+i ·
∏n

o=1 x
Yoj
o

Dji(x)
. (A.3)

From the definition of Ak we know that the coefficients Ak,l zj+i are negative when l = j
and non-negative otherwise. So we decompose the summation over j into the two cases

fp(x) =
m∑
l=1

Ypl

m∑
j=1,j 6=l

di∑
i=1

Ak,l zj+i ·
∏n

o=1 x
Yo,j
o

Dji(x)
−

m∑
l=1

Ypl

di∑
i=1

|Ak,l zj+i| ·
∏n

o=1 x
Yol
o

Dli(x)
. (A.4)
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Notice that the first term is always non-negative and the second term contains the factor

Yplx
Ypl
p . If Ypl = 0, then limxp→0

0·x0p
D(x)

= 0. If Ypl > 0, since the denominator term (2.7)

cannot approach zero, limxp→0
Yplx

Ypl
p

D(x)
= 0 and fp is indeed essentially non-negative.
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AppendixB
Model verification

B.1 Case study: Central carbon metabolism of E. coli

The model, published by Chassagnole and co-workers [167] describes the central carbon
metabolism of the Escherichia coli bacteria. Although we could reproduce the simulated
trajectories shown in the paper [167] with the published model (identification number of the
model in the BioModels Database: BIOMD051), numerical simulations during parameter
estimation tasks reported errors for certain regions of the parameter space, because negative
values of the states appeared.

About the model

The metabolism is described by 48 reactions which are grouped into kinetic types: re-
versible and irreversible Michealis-Menten kinetics, two-substrate reversible and irreversible
Michaelis-Menten kinetics, allosteric enzyme reactions, allosteric regulation, allosteric acti-
vation, ordered uni-bi mechanism, Hill kinetics, constant level reaction and reversible mass
action kinetics. The mass balance equations for the 18 metabolites are in the following
form

dxi
dt

=
48∑
j=1

sijrj(x, k)− µxi for i = 1, . . . 18 , (B.1)

where x is the concentration vector of the metabolites, sij is the (i, j)-th element of the
stoichiometric matrix, rj(x, k) denotes the j-th reaction rate function, which depends on
the concentrations and the k rate function parameters. Finally, µ is the growth factor. The
detailed equations are listed in form of tables in Figures B.1–B.4 taken from the original
publication [167]. Figure B.1 shows the dynamic model equation, the reaction rate functions
that appears in the right hand side of the equations are reported in Figures B.2–B.4.

Checking the rate expressions

The first criteria of a plausible model is the non-negativity of the reaction rate functions,
for which the reversible reactions have to be cut into a forward and a backward reaction.
The separation of the reactions are straightforward in this case study. It is also easy to see
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Figure B.1: Model equations of the central carbon metabolism model of E.Coli [167]
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Figure B.2: Reaction rates of the central carbon metabolism model of E.Coli [167]
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Figure B.3: Reaction rates of the central carbon metabolism model of E.Coli [167]
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Figure B.4: Reaction rates of the central carbon metabolism model of E.Coli [167]

that the reactions are always non-negative. The model have three constant reactions: the
Mureine synthesis, the Tryptophan synthesis and the Methionine synthesis:

rMurSynth = rmax
MurSynth, (B.2)

rTrpSynth = rmax
TrpSynth (B.3)

rMetSynth = rmax
MetSynth , (B.4)

but only rMurSynth is not kinetic to its source specie, the others are input terms.

Checking the model structure

The essential non-negativity condition for the model equations (B.1) give rise to the model
specific non-negativity condition

dxi
dt

=
48∑
j=1

sijrj(x, k)− µxi ≥ 0 whenever xi = 0, for all i = 1, . . . 18.

This condition holds for plausible reaction rate functions which have the source kinetic
property according to (2.18). Furthermore, whenever a reaction is not kinetic with respect
to its source species and has negative stoichiometric coefficient, depending on the numerical
values of the parameters it can violate the condition and cause negative concentrations
during simulations.

This is exactly what happens in some parameter domain of this E.coli model. From the
following model equation ([167] Table I. Eq.(3)):

dxf6p

dt
= rPGI − rPFK + rTKb + rTKa − 2rMurSynth − µCf6p (B.5)

one can see that the stoichiometric coefficient of the Mureine synthesis rMurSynth is negative,
but it is not kinetic with respect to any metabolite. This may result in the appearance of
negative concentrations and thus in a non-plausible model.
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Correction of the non-plausible reaction

There are several ways to correct the non-plausible reaction. A switching function can
be included, which turns off the reaction, whenever the concentration of fp6 reach zero.
This procedure does not influence the model dynamics in the plausible concentration do-
main, but the switching function may result in mathematical or numerical simulation
issues. Alternatively, one can make the reaction source kinetic by multiplying it with xfp6:
rcured

MurSynth = rmax
MurSynthxf6p. It changes the dynamics of the system, but results in a smooth,

plausible reaction rate function.

Mass conservation

The truncated model is created by omitting the reactions which are either stand for inflows
or outflows. We have found three linearly independent non-negative vectors for which
mT
i S = 0, for i = 1, 2, 3. This implies three moiety conservation laws, but there is no

strictly positive m vector in the left kernel of S, and thus the model does not obey to the
total mass conservation.
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AppendixC
Model reduction

C.1 Hydrogen-Bromine reaction network

As introductory example we consider the Hydrogen-Bromine chemical reaction network
according to Snow [92]. Its reactions take place in the gas phase at a temperature of about
1000 K and a pressure of about 1 bar. The chemical reactions are listed in Eqs. (HBr1)–
(HBr6).

Br2 + M
k1−−→ 2 Br·+ M (HBr1)

2 Br·+ M
k2−−→ Br2 + M (HBr2)

Br·+ H2
k3−−→ H·+ HBr (HBr3)

H·+ HBr
k4−−→ Br·+ H2 (HBr4)

H·+ Br2
k5−−→ Br·+ HBr (HBr5)

Br·+ HBr
k6−−→ H·+ Br2 (HBr6)

In the Eqs. (HBr1)–(HBr6), the involved chemical species comprise Br2 (Bromine
molecule), Br· (Bromine radical), H2 (Hydrogen molecule), H· (Hydrogen radical), HBr
(Hydrogen bromide) and a so-called third body, also referred to as inert component, arbi-
trarily denoted by the symbol M. The third body M is a kind of catalyst which does not
react with the other chemical species. Its only relevance is to adsorb or transfer kinetic
energy from the reactant species, e.g. to split a Bromine molecule into its corresponding
radicals (Eq. (HBr1). In the paper of Snow [92], Nitrogen (N2) was the third body, but any
other inert gas would do it as well.

We show all reaction rates of the chemical reaction network (HBr1)–(HBr6) in Table
C.1.

Applying the above notations and rules, the stoichiometric matrix for the reaction
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Table C.1: Reaction rates and rate coefficients of Hydrogen-Bromine reaction

Reaction Reaction rate Rate coefficient

(HBr1) r1 = k1 [Br2] [M] k1 = 6.26 ·105 cm3

mol s

(HBr2) r2 = k2 [Br·]2 [M] k2 = 1.56 ·1015 cm6

mol2 s

(HBr3) r3 = k3 [Br·] [H2] k3 = 2.61 ·109 cm3

mol s

(HBr4) r4 = k4 [H·] [HBr] k4 = 1.39 ·1013 cm3

mol s

(HBr5) r5 = k5 [H·] [Br2] k5 = 1.17 ·1014 cm3

mol s

(HBr6) r6 = k6 [Br·] [HBr] k6 = 1.31 ·104 cm3

mol s

system (HBr1)–(HBr6) can be written as

N =


−1 1 0 0 −1 1

2 −2 −1 1 1 −1
0 0 −1 1 0 0
0 0 1 −1 −1 1
0 0 1 −1 1 −1
0 0 0 0 0 0

 . (C.1)

Using N and the reaction rates in Table 4.2, we can easily write the ordinary differential
equations of the Hydrogen-Bromine CRN shown in Eqs. (C.2)–(C.7).

d[Br2]

dt
= −r1 + r2 − r5 + r6 (C.2)

d[Br·]
dt

= 2 r1 − 2 r2 − r3 + r4 + r5 − r6 (C.3)

d[H2]

dt
= −r3 + r4 (C.4)

d[H·]
dt

= r3 − r4 − r5 + r6 (C.5)

d[HBr]

dt
= r3 − r4 + r5 − r6 (C.6)

d[M]

dt
= 0 (C.7)

C.1.1 Initial Values

After the construction of the ODEs, we only have to specify the initial values at the initial
time t0. For the Hydrogen-Bromine CRN we take the values of Vajda et al. [84]:

[Br2](t0)= 1 ·10−8 mol
cm3 ,

[Br·](t0)= 0,
[H2](t0)= 1 ·10−8 mol

cm3 ,
[H·](t0)= 0,

[HBr](t0)= 0,
[M](t0)= 1 ·10−5 mol

cm3 .

(C.8)
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C.2 Reduction of formaldehyde oxidation reaction net-

work

Formaldehyde oxidation in the presence of carbon-monoxide is a medium size reaction
network which consists of 25 reactions listed with the corresponding rate coefficients in
Table C.3. The detailed reaction network was published by Vardanyan [168] and used for
model reduction by Turányi [84]. In this section the model reduction of this reaction system
on two different time horizons is shown.

The species in the network are HCO, O2, HO2, CO, CH2O, H2O2, M which is a kind
of catalyst, OH, H2O, CO2, H, H2, O, and finally Destruction which is a sink for reaction
(6) and (7). From this list of species, 9 species (HCO, HO2, H2O2, OH, H2O, CO2, H,
H2, O) were chosen as important. The initial conditions for the reaction network are [O2]0
= 1.27 ·1018 cm−3, [CO]0 = 2.83 ·1018 cm−3, [CH2O]0= 6.77 ·1016 cm−3, [M]0 = 7.09 ·1018

cm−3 and zero for the other species, the same as in [84].
Two different time horizons were chosen for model reduction, a shorter is [0, 5 · 10−3]

seconds the same as presented in [84] while the longer [0, 0.1] seconds shows much more
colorful dynamic behavior. In both cases the sensitivity part was included in the compu-
tation, i.e. σ = 1 in Eq. (4.23). For the solution of IVP (4.1)–(4.2), an absolute tolerance
of AbsTol = 10−14 and a relative tolerance of RelTol = 10−10 were set.

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 18  19  20  21  22  23  24  25

Number of non-zero reaction rate coefficients

Objective function

model error.
obj. func.

5% limit

Figure C.1: Model error and objective function against the number of non-zero reaction
coefficients in case of the formaldehyde reaction network in the longer time horizon

C.2.1 Model reduction in longer time horizon

In this time horizon N = 1500 equidistant time points were selected and the weighting
factors in Eq. (4.8) are

wil =
ν

N ·max(10−2, xi(tl))
, ν = 10−10,
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where the choice of ν = 10−10 in the numerator is introduced to avoid large eigenvalues of
H. The choice ν = 1 would result in a mathematically equivalent optimization problem.
However, according to our experiences, the MIQP solver of CPLEX has computational
difficulties with large eigenvalues which is the only reason for our particular choice of ν. In
other respects, again apart from the “max”-term to avoid by-zero division, these weights
equally reflect the relative error of the important species, an approach also followed by
Androulakis [83].

The solution of the sequence of MIQPs resulted in the set of objective function value as
a function of maximal number of non-zero reaction coefficients k̃(q). The objective function
(4.32), the model error (4.43) together with the 5 % limit can be seen in Figure C.1. One
can conclude that on the specified level of acceptance the reaction network can be reduced
by 5 reactions. We have depicted the important concentration trajectories which belongs to
the original reaction network together with the trajectories of the reduced models in Figure
C.2. The reduced model is in good agreement with the original one. The corresponding
estimated parameter values can be found in Table C.3. in the column A5.

Table C.2: Relative deviation of the important species in the reduced models and in the
reference paper.

Important species
Relative deviation in concentration

A5 B12 Turányi [84]

HCO 0 0.008 0.023
HO2 0.054 0.006 0.024
H2O2 0.001 0.031 0.019
OH 0.036 0.009 0.023
H2O 0.006 0.016 0.016
CO2 0.004 0.029 0.017

H 0.042 0.031 0.036
H2 0.001 0.004 0.01
O 0.001 0.009 0.004
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Figure C.2: The concentrations of each important species in the original system and in the reduced systems in the longer time
horizon.
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Table C.3: Rate coefficients of the Formaldehyde case study

Reactions
Original A5 B12 [84]

coeff. [0, 0.1 s] [0, 5 · 10−3 s]

(1) HCO + O2→ HO2 + CO 1.00 ·10−13 0.999 1.0051 1
(2) HO2 + CH2O→ H2O2 + HCO 5.70 ·10−14 0.9993 1.0012 1
(3) H2O2 + M→ 2 OH + M 6.66 ·10−18 1.0065 0.9925 1
(4) OH + CH2O→ H2O + HCO 1.60 ·10−10 1.0019 1.012 1
(5) OH + H2O2→ H2O + HO2 5.10 ·10−12 2.0844 0 0
(6) H2O2→ Destruction 1.05 ·102 1.0011 0.808 1
(7) HO2→ Destruction 1.05 ·101 1.2011 0 0
(8) 2 HO2→ H2O2 + O2 3.00 ·10−12 1.0174 1.0398 1
(9) OH + CO→ CO2 + H 3.30 ·10−13 0.943 0.7241 1
(10) HO2 + CO→ CO2 + OH 1.20 ·10−15 1.0316 0.9909 1
(11) H + CH2O→ H2 + HCO 2.70 ·10−12 0.9493 0.9923 1
(12) H + O2→ OH + O 5.51 ·10−14 1.0217 0.9354 1
(13) H + O2 + M→ HO2 + M 1.00 ·10−32 1.0173 0 1
(14) HO2 + M→ H + O2 + M 4.70 ·10−19 0 0 0
(15) O + H2→ OH + H 3.02 ·10−13 1.009 0∗ 0
(16) O + CH2O→ OH + HCO 1.00 ·10−10 0.9986 0.9341 1
(17) H + H2O2→ HO2 + H2 1.30 ·10−12 0 0 0
(18) H + H2O2→ H2O + OH 5.90 ·10−12 1.1459 0 0
(19) O + H2O2→ OH + HO2 1.00 ·10−13 1.0472 0 0
(20) HCO→ H + CO 4.60 ·10−12 0 0 0
(21) OH + H2→ H2O + H 1.00 ·10−11 0∗ 0∗ 0
(22) CH2O + O2→ HCO + HO2 2.90 ·10−20 0.9934 0.9967 1
(23) H + HO2→ 2 OH 5.00 ·10−12 0 0 0
(24) H + HO2→ H2O + O 5.00 ·10−11 0.9852 0 0
(25) H + HO2→ H2 + O2 4.50 ·10−11 0.9559 0 0

Rate coefficients of the original system and the relative rate coefficients in the reduced systems. In the
A5 case the system was reduced by 5 reactions. In the B12 case the reduced system contains 12 reactions

in the shorter time horizon. Reactions denoted by (∗) were pre-reduced.

C.2.2 Model reduction in shorter time horizon

The model reduction on the shorter time horizon using principal component analysis (PCA)
was presented in [84]. The author concluded that the minimal reaction network which can
successfully describe the original dynamics of the important species consists of 13 reactions.

For the computation of matrix H, 100 equally distributed time points along the interval
were selected. The weighting factors in Eq. (4.8) are

wil =
w̃i

N ·max(1, xi(tl))
,

where w̃i = 10 for i ∈ {3, 8, 9} and w̃i = 1 for the other species. Again, apart from the
“max”-term to avoid division by zero and apart from the important specis x3, x8, x9, these
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weight equally reflect the relative error of the important species, an approach also followed
by Androulakis [83]. The increase of the weights for x3, x8, x9 are just a result of some
heuristic tuning to achieve a better reduction.

One can find the model error as a function of the number of non-zero rate coefficients in
Figure C.3 according to which the model can be reduced to 12 reactions while the average
relative deviations of the important species are around 1%. The estimated parameter values
are in Table C.3, column B12. If we compare the two last columns of the table we find that
the proposed method found the same unnecessary parameters as presented in [84] except
for the 13th parameter. The relative deviations for the concentrations are depicted in Table
C.2 from which it can be clearly seen that the simultaneous estimation of the parameters
resulted in a better fit than only omitting the unnecessary reactions using the PCA.
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Figure C.3: Objective function and model error versus the number of non-zero reaction
coefficients in the shorter time horizon.
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Figure C.4: The concentrations of each important species in the original system and in the reduced systems in the shorter time
horizon.
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C.3 Reduction of the alkane pyrolysis reaction net-

work

The alkane pyrolysis is a large reaction network consisting of 98 reactions and 32 species.
The reactions and the corresponding rate coefficients can be found in Table C.4. The
reduction of this network using Principal Component Analysis was presented in [89]. The
author could reduce the original 98 reactions to 38 reactions, while the concentrations of
the important species did not change more than 1 %. As the author remarked the reaction
network has no formation steps for five species, which resulted in that reactions 6, 74 76,
78, 82, 86, 87, 96 and 98 can be omitted because the corresponding rates are zero. These
reactions are marked with (#) symbol in Table C.4.

C.3.1 Initialization

During the model reduction the same initial conditions, time horizon and selected impor-
tant species were used as presented in [89] to produce comparable results. The following
species were chosen as important: C3H8, H2, CH4, C3H6, C2H6, C2H4. The time hori-
zon is [0, 100] seconds along which the H matrix was computed from 1000 equidistant
time points using sensitivity information, i.e. σ = 1 in Eq. (4.23). The initial conditions
are 1.912 · 10−3mol/dm3 for the Propane (C3H8) and zero for all the other species. The
weighting factors in Eq. (4.8) are

wil = (1− δN0 + δNl
2

)
w̃i

N ·max(1, xi(tl))
, i ∈ I, l = 0, . . . , N

where w̃i = 5 · 10−4 for i = 5 and w̃i = 5 · 10−3 for the other species. Here the factor
(1− (δN0 + δNl)/2) equals 1, for l = 1, . . . , N − 1 and 1/2 for l = 0 or l = N , where δ is the
Kronecker symbol. By this way, the sum over l in Eq. (4.8) becomes a trapezoidal sum.

For the solution of IVP (4.1)–(4.2), AbsTol = 10−20 as absolute tolerance and RelTol =
10−10 as relative tolerance were set.

C.3.2 Pre-reduction

The size of the reaction network necessitated the usage of the pre-reduction described
in section 4.3.1. We have found that the optimal number of reactions which should be
omitted during the pre-reduction is 57. The corresponding reaction coefficients are marked
with stars (∗) in Table C.4.

C.3.3 Results

In the Figure C.5 one can find the objective function and the model error as a function
of the number of non-zero reaction coefficients. It suggests that if we accept less than 5 %
model error then the model can be reduced to 23 reactions, which is 15 reactions less than
we find in [89]. This is a remarkable result which shows the advantage of the simultaneous
reduction and parameter estimation.
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The trajectories of the important species in the reduced model together with the original
concentrations are depicted in Figure C.6. The fitting of the concentrations’ trajectories is
almost perfect for all species.
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Figure C.5: The objective function value versus the number of non-zero reaction coefficients.

Table C.4: Rate Coefficients of the alkane pyrolysis case study

Reactions
Rate coefficients

Original Reduced

(1) C3H8→ CH3· + C2H5· 1.3203 ·10−06 0.9903
(2) 1-C4H8→ CH3· + C2H5· 1.5304 ·10−04 0∗

(3) 1-C5H10→ C2H5· + C3H5· 7.7239 ·10−04 0∗

(4) 1-C6H12→ 1-C3H7· + C3H5· 2.3342 ·10−03 0∗

(5) (C3H5)2→ C3H5· + C3H5· 3.1620 ·10−02 1.0082
(6)# 1,5-heptadiene→ C3H5· + C4H7· 9.7127 ·10−01 -
(7) n-C4H10→ CH3· + 1-C3H7· 3.6312 ·10−06 0∗

(8) n-C4H10→ C2H5· + C2H5· 2.6527 ·10−06 0∗

(9) H2 + CH3·→ H· + CH4 1.4971 ·10+06 0∗

(10) H2 + C3H5·→ H· + C3H6 1.6856 ·10+05 1.138
(11) C3H8 + H·→ 1-C3H7· + H2 3.1881 ·10+08 0.5922
(12) C3H8 + CH3·→ 1-C3H7· + CH4 8.3505 ·10+05 0.7493
(13) C3H8 + C2H5·→ 1-C3H7· + C2H6 1.6128 ·10+05 1.5675
(14) C3H8 + 2-C3H7·→ 1-C3H7· + C3H8 3.5234 ·10+04 1.7239
(15) C3H8 + 1-C3H7·→ 2-C3H7· + C3H8 8.2443 ·10+04 0
(16) C3H8 + C3H5·→ 1-C3H7· + C3H6 2.5859 ·10+03 0.8467
(17) C3H6 + H·→ C3H5· + H2 1.1565 ·10+10 0.5149
(18) C3H8 + H·→ 2-C3H7· + H2 5.4813 ·10+08 0.5551
(19) C3H8 + CH3·→ 2-C3H7· + CH4 9.7586 ·10+05 1.2128
(20) C3H8 + C2H5·→ 2-C3H7· + C2H6 8.2443 ·10+04 0
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Reactions
Rate coefficients

Original Reduced

(21) C3H8 + C3H5·→ 2-C3H7· + C3H6 9.7813 ·10+03 1.0561
(22) H2 + C2H5·→ H· + C2H6 7.1206 ·10+05 0∗

(23) C2H6 + CH3·→ C2H5· + CH4 4.9539 ·10+05 0∗

(24) n-C4H10 + H·→ 1-C4H9· + H2 3.1881 ·10+08 0∗

(25) n-C4H10 + CH3·→ 1-C4H9· + CH4 9.8842 ·10+05 0∗

(26) n-C4H10 + C2H5·→ 1-C4H9· + C2H6 1.6128 ·10+05 0∗

(27) n-C4H10 + C3H5·→ 1-C4H9· + C3H6 2.5859 ·10+03 0∗

(28) C3H6 + CH3·→ C3H5· + CH4 6.9894 ·10+05 1.7449
(29) C3H6 + C2H5·→ C3H5· + C2H6 2.3810 ·10+05 0∗

(30) n-C4H10 + H·→ 2-C4H9· + H2 1.0937 ·10+09 0∗

(31) n-C4H10 + CH3·→ 2-C4H9· + CH4 1.0723 ·10+06 0∗

(32) n-C4H10 + C2H5·→ 2-C4H9· + C2H6 1.6450 ·10+05 0∗

(33) n-C4H10 + C3H5·→ 2-C4H9· + C3H6 1.2885 ·10+04 0∗

(34) C2H5·→ H· + C2H4 5.7421 ·10+02 0.9013
(35) 1-C3H7·→ CH3· + C2H4 2.5147 ·10+04 1.4012
(36) 1-C3H7·→ H· + C3H6 7.3732 ·10+02 0
(37) 2-C3H7·→ H· + C3H6 1.2185 ·10+03 1.0313
(38) 2-C4H9·→ CH3· + C3H6 2.5889 ·10+05 0∗

(39) 2-methyl-1-propyl·→ CH3· + C3H6 1.6603 ·10+05 0∗

(40) 3-methyl-1-butyl·→ 2-C3H7· + C2H4 3.8624 ·10+05 0∗

(41) 4-methyl-2-pentyl·→ 2-C3H7· + C3H6 7.1039 ·10+05 0∗

(42) 1-C4H9·→ C2H5· + C2H4 4.9079 ·10+05 0∗

(43) 1-C5H11·→ 1-C3H7· + C2H4 7.9061 ·10+05 0∗

(44) 2-C5H11·→ C2H5· + C3H6 8.1393 ·10+04 0∗

(45) 2-methyl-1-butyl·→ C2H5· + C3H6 1.5978 ·10+05 0∗

(46) H· + C2H4→ C2H5· 8.0175 ·10+09 0.4892
(47) H· + C3H6→ 2-C3H7· 3.7913 ·10+09 0∗

(48) H· + C3H6→ 1-C3H7· 1.3296 ·10+09 0
(49) CH3· + C2H4→ 1-C3H7· 1.0937 ·10+06 0∗

(50) CH3· + C3H6→ 2-C4H9· 3.3051 ·10+06 0∗

(51) CH3· + C3H6→ 2-methyl-1-propyl· 1.1591 ·10+06 0∗

(52) C2H5· + C2H4→ 1-C4H9· 5.8298 ·10+05 0∗

(53) C2H5· + C3H6→ 2-C5H11· 3.9122 ·10+05 0∗

(54) 1-C3H7· + C3H6→ 2-C6H13· 8.4384 ·10+05 0∗

(55) 2-C3H7· + C2H4→ 3-methyl-1-butyl. 5.6627 ·10+05 0∗

(56) 2-C3H7· + C3H6→ 4-methyl-2-pentyl. 5.6627 ·10+05 0∗

(57) C2H5· + C3H6→ 2-methyl-1-butyl. 1.3720 ·10+05 0∗

(58) 1-C5H11·→ 2-C5H11. 4.4305 ·10+05 0∗

(59) 2-C5H11·→ 1-C5H11. 6.8604 ·10+04 0∗

(60) 1-C6H13·→ 2-C6H13. 1.6935 ·10+06 0∗

(61) 2-C6H13·→ 1-C6H13. 2.6223 ·10+05 0∗

(62) H· + 2-C3H7·→ C3H8 1.0000 ·10+11 0∗

(63) CH3· + CH3·→ C2H6 2.5119 ·10+10 0
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Reactions
Rate coefficients

Original Reduced

(64) CH3· + 1-C3H7·→ n-C4H10 1.9953 ·10+10 0∗

(65) CH3· + 2-C3H7·→ 2-methylpropane 1.5849 ·10+10 2.5848
(66) CH3· + C3H5·→ 1-C4H8 1.9953 ·10+10 1.4427
(67) C2H5· + 2-C3H7·→ 2-methylbutane 7.9433 ·10+09 0∗

(68) C2H5· + C3H5·→ 1-C5H10 1.0000 ·10+10 1.2315
(69) 1-C3H7· + 2-C3H7·→ 2-methylpentane 7.9433 ·10+09 0
(70) 1-C3H7· + C3H5·→ 1-C6H12 1.0000 ·10+10 0∗

(71) 2-C3H7· + 2-C3H7·→ product 3.1623 ·10+09 0
(72) 2-C3H7· + C3H5·→ product 1.0000 ·10+10 0.9624
(73) C3H5· + C3H5·→ (C3H5)2 6.3096 ·10+09 1.1095
(74)# C3H5· + C4H7·→ 1,5-heptadiene 1.2589 ·10+10 -
(75) CH3· + C2H5·→ C3H8 1.9953 ·10+10 0∗

(76)# CH3· + C4H7·→ 2-C5H10 2.5119 ·10+10 -
(77) C2H5· + C2H5·→ n-C4H10 3.9811 ·10+09 0∗

(78)# C2H5· + C4H7·→ 2-C6H12 1.0000 ·10+10 -
(79) H· + 2-C3H7·→ C3H6 + H2 5.0119 ·10+10 0∗

(80) CH3· + 1-C3H7·→ C3H6 + CH4 1.2589 ·10+09 0∗

(81) CH3· + 2-C3H7·→ C3H6 + CH4 2.5119 ·10+09 0
(82)# CH3· + C4H7·→ C4H6 + CH4 7.9433 ·10+09

(83) C2H5· + 2-C3H7·→ C3H6 + C2H6 1.5849 ·10+09 0∗

(84) 1-C3H7· + 2-C3H7·→ C3H6 + C3H8 1.5849 ·10+09 0∗

(85) 2-C3H7· + 2-C3H7·→ C3H6 + C3H8 1.9953 ·10+09 0.6416
(86)# 2-C3H7· + C4H7·→ C4H6 + C3H8 5.0119 ·10+09 -
(87)# C3H5· + C4H7·→ C4H6 + C3H6 6.3096 ·10+09 -
(88) C3H5· + C2H5·→ C2H4 + C3H6 1.2589 ·10+09 0∗

(89) C3H5· + 1-C3H7·→ C3H6 + C3H6 1.0000 ·10+09 0∗

(90) C3H5· + 2-C3H7·→ C3H6 + C3H6 1.0000 ·10+09 0
(91) C2H5· + 2-C3H7·→ C3H8 + C2H4 1.2589 ·10+09 0∗

(92) 1-C3H7· + 2-C3H7·→ C3H8 + C3H6 1.2589 ·10+09 0 ∗

(93) CH3· + C2H5·→ C2H4 + CH4 7.9433 ·10+08 0∗

(94) C2H5· + C2H5·→ C2H4 + C2H6 5.0119 ·10+08 0∗

(95) C2H5· + 2-C4H9·→ 2-C4H8 + C2H6 1.5849 ·10+09 0∗

(96)# C2H5· + C4H7·→ C4H6 + C2H6 3.9811 ·10+09 -
(97) C2H5· + 2-C4H9·→ n-C4H10 + C2H4 7.9433 ·10+08 0∗

(98)# C2H5· + C4H7·→ C2H4 + olefin 1.0000 ·10+09 -
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Figure C.6: The concentrations of each important species in the original system and in the
reduced system.
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AppendixD
Regularized parameter estimation

D.1 Bias-variance decomposition of the prediction er-

ror

In this section we utilize the bias-variance decomposition of the prediction error and show
when and how regularization can lead to smaller prediction error. First, let us introduce
the subscript C for the calibration data and the subscript V for the validation data. For
notational simplicity we consider only one experiment and only one observable variable for
both of the calibration and validation scenario, but it is straightforward to generalize for
multiple experiments and observables. The expected prediction error (PE) for the validation
data can be written as

PE = EV,C
[
(ỹV − ŷV(θ̂C))

2
]

(D.1)

where ỹV is the validation data, θ̂C is the estimated parameter vector based on the cali-
bration data and ŷV(θ̂C) is the model predictions for the validation data. The prediction
error depends on the calibration data –different calibration data would result in different
estimated parameters θ̂C– and also depends on the validation data. Thus the expectation
is taken over the distribution of the calibration and the validation data. The measurement
error in the calibration data and in the validation data is often independent, leading to
the well-known (see for example [133, 169, 170]) bias-variance decomposition of expected
prediction error as

PE = EV
[(
yV − EC

[
ŷV(θ̂C)

])2
]

︸ ︷︷ ︸
Bias2

+EV
[(
ŷV(θ̂C)− EC

[
ŷV(θ̂C)

])2
]

︸ ︷︷ ︸
Variance

+EV
[
ε2
]
. (D.2)

Here, the first term corresponds to the squared bias of the calibrated model predictions
from the true validation data yV , the second term is the variance of the model prediction,
and the third term is the contribution of the measurement error EV [ε2] = σ2.

The variance term. The variance of the prediction is due to the uncertainty in the
parameter estimates. This uncertainty can be especially large if the calibration data is
scarce and the number of data points is close to the number of parameters. The variance

125



term can be expressed for unbiased estimates [171] as

Variance =
Nθ

ND

σ2, (D.3)

where Nθ is the number of estimated parameters and ND is the number of calibration
data. Each estimated parameter contributes by σ2

ND
to the prediction error, thus a model

with fewer calibrated parameters would result smaller variance. For biased estimates the
prediction variance becomes

Variance =
N eff
θ (α)

ND

σ2, (D.4)

where N eff
θ is the effective number of parameters, which depends on the regularization

penalty and regularization parameter α. In general, the effective number of parameters can
be expressed by the second order derivatives of the objective function [170] with respect
to the parameters as

N eff
θ = trace

(
HLS(HLS + αHΓ)−1HLS(HLS + αHΓ)−1

)
, (D.5)

where

HLS = E

[
∂R(θ)

∂θ

T ∂R(θ)

∂θ
|θ=θt

]
(D.6)

is known as the Gauss-Newton approximate of the Hessian and HΓ is the Hessian of the
regularization penalty function. Note, that (D.6) is also related to the Fisher Information
matrix (FIM), which is often used in the practical identifiability and uncertainty analysis
of the estimated parameters [137]. For example, the eigenvalue decomposition of the FIM
can identify correlated estimated parameters and parameters with high uncertainty [157].
Small or zero eigenvalues (high condition number) indicates ill-posedness, i.e. the parameter
estimation problem does not have a unique solution. This eigenvalue decomposition has
been widely used in the estimation literature [122, 172–176].

In the special case of ridge regularization [171], i.e. Γ(θ) = θT θ, the Hessian of the
penalty is the identity matrix and Equation (D.5) simplifies to

N eff
θ =

Nθ∑
i=1

σ2
i

(σi + α)2
, (D.7)

where σi (i = 1 . . . Nθ) are the eigenvalues of HLS. Note that for α = 0 –the non-regularized
case– the effective number of parameters equals to the number of model parameters and for
α > 0 –the regularized case– the effective number of parameters is less than the number
of model parameters Nθ. Thus, as the regularization parameter increases, the effective
number of parameters decreases and therefore the variance term of the prediction error
(D.2) decreases.

The bias term. We saw above that regularization reduces the effective number of pa-
rameters, and therefore the variance of the prediction error. The cost to pay is the bias.
Sjöberg and Ljung [171] derived an upper bound on the prediction bias for the non-weighted
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Tikhonov regularization, i.e. when the penalty Γ = (θ− θref)T (θ− θref), where θref is a ref-
erence parameter vector. It was shown that in this particular case the bias is

Bias2 <
α

8
||θt − θref ||2 (D.8)

where θt is the true model parameters. Thus, the smaller the regularization parameter
and the better our a priori knowledge is (expressed by the reference parameter vector), the
smaller the bias that will be introduced in the estimation.

The minimal prediction error. There is a trade-off between bias and variance. From
Equations (D.2), (D.3) (D.4) and (D.8) one obtains that the reduced variance due to the
regularization is larger than the introduced bias if the following inequality holds:

σ2Nθ −N eff
θ (α)

ND

>
α

8
||θt − θref ||2. (D.9)

Therefore, regularization generally increases the performance of the calibrated model when

1. the calibration data is noisy (σ is large) and the amount of data is limited (ND is
small),

2. there are a large number of correlated parameters, and therefore the Hessian of the
original problem has very small eigenvalues. In this case even a small regularization
parameter can largely reduce the effective number of parameters, i.e. Nθ � N eff

θ (α) .

3. One has a good guess of the true parameters (||θt − θref ||2 is small), for example
from other independent experiments, previous studies or based on the biological or
physico-chemical meaning of the parameters.

However, note that regularization may damage the prediction (the reduced variance is
smaller than the introduced biased) if the original problem is not ill-posed, i.e. Nθ ≈
N eff
θ (α), α is set to a large value and the provided reference parameters are far from the

true parameters.

D.2 Regularization schemes

Figure D.1 shows a summary of the proposed regularization schemes based on the available
prior knowledge quality.

D.3 Settings of the optimization algorithms

Table D.1 shows the default settings for both the global optimization algorithm (eSS)
and the local NLS algorithm (NL2SOL). Note that these values might be different from
the default values of the algorithms, but the same values have been used for all the case
studies (i.e. they were found to be robust settings). Interested readers can find further
tuning details in eSS User’s Manual and the NL2SOL User’s Guide [177].
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Figure D.1: Regularization scheme. Three scenarios are considered based on the quality
of the available prior information: (i) best case scenario (a good guess of the parameter
values is available in the literature) where a first order weighted Tikhonov regularization
is recommended, (ii) medium case scenario (less reliable initial guess, but within one order
of magnitude of the true values) where non-weighted Tikhonov regularization is recom-
mended, and (iii) worst case scenario (no prior knowledge and therefore random guess of
parameters) where a two-step regularization procedure is proposed. In the first step ridge
regularization is applied which results the parameter vector with minimum norm, that fits
the data reasonably well. In the second step this parameter vector is used as the reference
parameter vector for Tikhonov regularization. In each scenario the regularized optimization
is solved for a set of regularization parameter and the generalized cross validation method
(GCV) is applied to choose the optimal candidate.

Optimization runs terminate when at least one stopping criteria is reached. The most
frequently activated stopping criteria for the global optimization was either the allowed
computation time or the allowed number of objective function evaluation. The allowed
computation time and number of function evaluations can be founded for each case study
in Table D.2.
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Table D.1: Default optimization settings for the case studies. eSS settings: ndiverse is the
number of diverse solutions generated, n1 is the number of global iteration before the local
algorithm is called for the first time, n2 is the number of global iteration between consec-
utive calls of the local algorithm, local balance influences the selection of starting point
among the members of the population for initiating the local optimization, log var gener-
ates the initial and new members of the population in the logarithmic scaled bounds of the
parameters. NL2SOL settings: maxfuneval is the maximum number of function evaluation
before the search terminates, maxiter is the maximum iteration number before termina-
tion, tolrfun is the relative tolerance (the algorithm terminates if the approximated global
optima is within this tolerance value), tolobjr is the computational accuracy of the ob-
jective function and the Jacobian (which is tuned to the tolerance level of the ODE solver
tolerance level).

eSS settings value NL2SOL settings value

ndiverse 10 ·Nθ maxfuneval 300
n1 1 maxiter 200
n2 10 tolrfun 10−6

local balance 0.5 tolobjr 10−5

log var ones(1, Nθ)

Table D.2: Case study specific stopping criteria for the optimization algorithm. CPU time
is the maximum allowed computation time, NFuneval is the maximum number of objective
function evaluation.

Criteria BBG FHN MAPK GOsc TGFB TSMP CHM

CPU Time 60 s 120 s 60s 120 s 900 s 120 s 900 s
NFuneval 10 000 10 000 30 000 30 000 20 000 20 000 10 000

D.4 Regularization tuning methods

In order to find the optimal regularization parameter, α is discretized as α1 > α2 > · · · > αI
and then the search for optimal regularization parameter is reduced to choose the best reg-
ularization parameter in this set (called the tuning of the regularization parameter). The
optimization problem (5.7) has to be solved for each candidate, which results in the regu-
larization candidates : θ̂α1 , θ̂α2 ,. . . θ̂αI . This is a computationally expensive task, although
in an iterative framework the previously obtained solutions can be utilized to reduce the
computational cost of the remaining candidates [164] .

Regularization tuning methods can be classified based on the type of information they
require (error level in the data, limits for the regularization parameter, further tuning
parameters) and in the way the optimal regularization parameter is selected among the
candidates. In Table D.3 we shortly summarize the regularization tuning methods that we
have considered and compared. Further details about each tuning method can be found in
[164]. The methods considered can be classified into the following five groups:

• Discrepancy principle (DP) is based on the idea that the regularization parameter
should be chosen such that the sum of residuals should be equal to the error level
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of the data. For that, a good estimate of the measurement error is needed, which is
often not known. Other versions of the discrepancy principle, such as the modified
discrepancy principle (MDP) and the transformed discrepancy principle (TDP) are
known to be less sensitive to the accuracy of the error level.

• Monotone error rule (MER) and quasi optimality criteria (QO): they use the ob-
servation that the differences between successive candidates, i.e. ||θ̂αi − θ̂αi+1

||, are
large due to either large regularization or large propagated error and the difference
becomes small for the optimal regularization parameter.

• Balancing (BP) and hardened balancing principle (HBP): they use all the candidates
to estimate the regularization error, which is compared then to the so called approx-
imated propagated error bound. The optimal regularization parameter is for which
the two types of estimated error is minimal.

• L-curve method: proposed by Hansen et. al. [178] to display information about the
candidates θ̂αi , i = 1 . . . I. By plotting the two parts of the objective function (5.7):

the model fit QLS(θ̂αi) and the regularization penalty Γ(θ̂αi) for {α1, . . . αI} one ob-
tains a discrete Pareto optimal front, which usually has an L-shape (see for example
in Figure 5.5A). The horizontal part is formed by the solutions corresponding to
large regularization parameters, where the regularization bias is dominating. As the
regularization parameter decreases the least squares error reaches a limit that is de-
termined by the measurement noise and the model flexibility. On the vertical part
of the L-curve a small reduction in the least squares model fit error usually cause a
large increase in the penalty. Intuitively, the optimal regularization parameter that
balances the two types of error is located near the corner of the L-shaped curve. In
[179] the corner point is defined as being the point that has the largest curvature on
the L-curve (LCC).

• Generalized cross validation (GCV): an approach by Golub [180] that aims to find
the regularization parameter that minimizes the leave one out (LOO) prediction
error [141]. It does not require any estimate of the measurement error, but it can
be sensitive if a small number of measurement data is at hand. For this reason,
other variants, such as the robust (RGCV) and the strong robust generalized cross
validation methods [156, 181] (SRGCV) have been developed.
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Table D.3: Overview of the regularization tuning methods considered. We have indicated with a Xsign for each method, (i) which
data/information is required (residual vector, estimated kinetic model parameters or the Jacobian of the residual vector), and (ii)
whether the regularization method utilizes further tuning parameters, an estimate of the measurement noise level or a limit for
the maximal/minimal regularization parameter. Finally, the last three columns indicate if a computationally expensive procedure
is involved, which can be an issue for large scale problems. SVD denotes singular value decomposition.

Regularization method Computation involves Further required inputs Involved computation

Method Short ID Refs Residuals
Estimated

Jacobian
Tuning Meas. error

αmaxαmaxαmax/αminαminαmin
Matrix

SVD Trace
parameters parameter estimate inverse

Discrepancy principle DP [182] X - - X X - - - -
Modified DP MDP [183] X - X X X - X - -

Transformed DP TDP [184] X - X X X - X - -
Monotone Error Rule MER [185] X X X X X - X - -

Balancing Principle BP [186] - X X X X - - X -
Hardened Balancing HBP [187] - X X - - - - X -

Quasi optimality QO [129] - X - - - X - - -
L–curve method (curvature) LCC [178] X X - - - X - - -
L–curve method (Reginska) LCR [188] X X - - - X - - -

Extrapolated Error Rule EER [189] X - X - - - - - -
Residual Method RM [190] X - X - - X X - X

Generalized Cross-validation GCV [191] X - X - - - X - X
GCV (Golub) GCVG [180] X - X - - - X - X
Robust GCV RGCV [156] X - X X - - X - X

Strong RGCV SRGCV [181] X - X X - - X - X
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D.5 Description of the case studies for parameter es-

timation

The description of all the case studies can be found on the CD supplement of the disser-
tation in the Dissertation CD supplement.pdf file, in Chapter 1.

D.6 Graphical results for all the case studies in pa-

rameter estimation

The graphical results of all the case studies can be found on the CD supplement of the
dissertation in the Dissertation CD supplement.pdf file, in Chapter 2.

D.7 Distributions of prediction errors - statistical test

In Section 3.3 of the main text the distributions of prediction errors of non-regularized
models were compared to the regularized models. Each regularization scenario (worst,
medium and best case) was compared to the non-regularized case (Figure 10 in main
text). In order to check that the observed differences in the medians are significant, we
use here the Wilcoxon rank sum test (also known as Mann-Whitney U test). This non-
parametric statistical test can be used in situations where the normal distribution of the
observed data points cannot be assumed. With this test we check the null-hypothesis
(H0) that regularization does not effect the prediction error, i.e. the prediction errors of
the models calibrated without regularization are distributed in the same way as those
calibrated with regularization. The alternative hypothesis is that the prediction errors are
not distributed in the same way. In this case based on the rank sum values we can tell
which median is significantly smaller than the other (higher rank sum means higher median)
and therefore we can decide if regularization significantly improved the predictions. The
results are summarized in Table D.4, where we present the p-values corresponding the
null-hypothesis and the result of the hypothesis tests for each regularization scenario and
case study. When the null-hypothesis is rejected at the 0.05 significance level (indicated
by a 1 in the H0 column) we can conclude that the effect of regularization is significant on
the model prediction performance.

The test results are mostly in agreement with the results obtained by visually comparing
the medians in the box-plots in Figure 10 of the main text. However, they also allow us to
see that, in the FHN case study, the observed differences in medians are statistically not
significant. Further, in the case of the TGFB case study, the test shows that the best case
regularization scenario significantly improves the performance even though the difference
in the medians is small.
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Table D.4: Comparison of non-regularized and regularized model prediction errors by the Wilcoxon rank sum test. According to
the null-hypothesis (H0) the distribution of the prediction error with regularization is similar to the distribution of the prediction
error without the regularization. The alternative hypothesis is that the regularization significantly effects the prediction error. The
table shows the P-value corresponding to the hypothesis test, the result of the test on 0.05 level of significance (H0 column) and
the rank sum values for the non-regularized and regularized prediction errors respectively (larger value means worst prediction
error in general). In case the H0 is rejected (indicated by 1) and the rank sum corresponding to the regularization case (the second
number in the pairs) is smaller, the regularization significantly improved the prediction.

Regularization scenario
Case study Worst case Medium case Best case

P-value H0 Rank sum P-value H0 Rank sum P-value H0 Rank sum

BBG 0.6 0 (9836,10264) 0.18 0 (10601, 9499) 0.0035 1 (11245, 8855)
FHN 0.95 0 (10026,10074) 0.12 0 (10680, 9420) 0.15 0 (10640, 9460)
MAPK 0.72 0 (9903,10197) 5.5 · 10−8 1 (12274, 7826) 2.7 · 10−10 1 (12634, 7466)
GOsc 1.6 · 10−6 1 (12014, 8086) 1.6 · 10−8 1 (12365, 7735) 2.4 · 10−7 1 (12165, 7935)
TGFB 0.66 0 (10232, 9868) 0.15 0 (10644, 9456) 0.043 1 (10879, 9221)
TSMP 1.3 · 10−16 1 (13437, 6663) 6.1 · 10−7 1 (12092, 8008) 4.00 · 10−7 1 (12126, 7974)
CHM 0.0021 1 (8791,11309) 1.1 · 10−27 1 (14512, 5588) 3.8 · 10−21 1 (13913, 6187)
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D.8 Evaluation of tuning methods for regular-

ization

The evaluation of tuning methods for regularization for all the case studies can be
found on the CD supplement of the dissertation in the Dissertation CD supplement.pdf

file, in Chapter 3.
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