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Koszonetnyilvanitas

A dolgozat elkésziiltével az életem egy fontos szakasza is befejezédik. Ezen
id6szak alatt nem csupan szakmailag fejlédtem, hanem bdviilt a 14t6- és érdekl6dési
korom egyardnt. Megtanultam, hogy a kiillonboz6é elméletek leegyszer(sitése
az egyik legnehezebb feladatok egyike, de feltétele annak a széleskorben
alkalmazhaté tuddsnak, ami nem kizdr6lag a mérnoki, hanem az élet egyéb
teriiletein is sikerrel alkalmazhat6. Ebben nagy szerepe volt témavezetdmnek,
Dr. Abonyi Janosnak, aki faradhatatlanul egyensilyozott a mérnoki és gazdasagi
teriiletek hatdirmezsgyéjén, bemutatva, hogy a kiilonb6z6 tudoményteriiletek kozti
kapcsolatot az alapelvek egyezsége és kompatibilitdsa nyujtja, ahol az innovacio
az alapok ujszer( értelmezésében rejlik. Ennek eredményeként nem a klasszikus
vegyipari folyamatmérnoki problémékra fokuszaltunk a k6zos munka sordn, hanem
olyan moédszerek fejlesztésére, amelyek multidiszciplindris médon értelmezhetdk.
Koszonetet szeretnék mondani a tanszéki munkakozosségnek, akik mindeme
munka kozben gyakorlatias szemmel és konstruktivan egyengették az utamat.
Koszonetet szeretnék mondani a csaldidomnak €s mindazoknak, akik biztos hatteret
adtak akkor is, amikor a bizonyos hulldimvdlgyek aljan voltam és akkor is, amikor

egylitt tudtunk oriilni egy-egy sikernek, cikknek, sikeres k6zos munkéanak.



Kivonat

Kisérlettervezési technikak technoldogiadk elemzésére és
optimalasara

Napjainkban a vegyipari technoldgidk iizemeltetése sordn a korszerd
folyamatiranyité rendszerek egyik feladata a folyamatadatok napl6zdsa, aminek
sordn elképesztd mennyiségli informdacié bujik meg a tarolt adatokban, un.
idosorokban. A folyamatadatok felhasznaldsaban rejlé lehet6ségeket az ipari
gyakorlat csupdn az elmult években kezdte el felhaszndlni az egyes iizemek,
tizemrészek fejlesztése, soran. Ezek célja a gazdasagi haszon novelése, mikdozben
egyre kozelebb keriil az adott technoldgia a fizikai, kémiai torvényszertiségek szabta
hatdraihoz. A legkorszer(ibb hibadetektalasi, folyamatszabalyoz4si- és optimalizasi
megolddsok matematikai modelleket haszndlnak fel eldrejelzésre, ezek tovabbi
fejlesztése sziikséges a biztonsdgos iizemmenet biztositasara.

Azonban a matematikai modellek megalkotdsdhoz megfelel6 adatok
sziikségesek, amik kivédlasztdsa hosszadalmas €s nagy szakértelmet igényld munka.
Igy olyan dj eszkdzok elkészitése sziikséges, amelyek a mér tdrolt és éppen gyiijtott
folyamatadatokat felhasznélva az adatok kozti kapcsolatot is figyelembe véve képes
elkiiloniteni a célnak megfeleld, kiillonboz6 adatszegmenseket.

A dolgozat célja olyan eszkdzok bemutatdsa, amelyek kozvetleniil vagy
kozvetve hozzdjarulhatnak a termeld folyamat fejlesztéséhez a folyamatadatokat
felhaszndlva.  Egyik megkozelités, amikor a vegyipari folyamat bemeneti
és kimeneti adatait, idGsorait szakaszokra, szegmensekre bontjuk, egyidejileg

a koztik 1év6 kapcsolatot megteremtd folyamat modelljét is figyelembe

véve a tovabbi analizis alapjaként. A dinamikus fS&komponens-elemzés
linedris kapcsolatot teremt a bemeneti €s kimeneti adatok kozt. Ezt a

megkozelitést integrdlva a klasszikus egyvaltozds idésorszegmentdldsi technikdkba
egy olyan eszkozt kapunk, amely alkalmas az bemeneti-kimeneti adatok kozti
linedris kapcsolat megvaltozdsdnak detektdldsdra, ami sok esetben valamilyen
meghibasoddsbdl, rendellenességbdl adédik. Ezen idStartomdnyok ismerete a
folyamatfejlesztés elsd 1€pcsdje lehet, hiszen kivdlogathatdk azok az adatrészek,
amelyek tovdbbi matematikai modellek el6rejelzd képességét ronthatjadk. Az
igy kapott homogén id8sorszegmenseket tovabb felhasznalhatjuk a technoldgia

matematikai modelljének megkonstrudldsahoz. Sziikségessé valik azon adatok

il



elkiilonitése is, amelyek a matematikai modell paramétereinek meghatarozasakor
nagy informécidtartalommal birnak, segitségiikkel pontosan meghatarozhatdk ezek
a bizonyos paraméterek. Ezen algoritmus sordn az bemeneti-kimeneti adatok
kozti kapcsolatot pl. a Fisher informéciés matrix prezentdlhatja, amely a adott
bemeneti jelsorozat mellett a kimeneti adatok modellparaméterek szerinti parcialis
derivéltjait tartalmazza. Ennek alkalmazdsdval adott modellstruktira esetén
képesek lehetiink meghatarozni egy-egy bemeneti adatsor informdciotartalmét, azaz
azt az informdcids potencidlt, amivel az adatsor a paraméterek meghatarozédsa
szempontjabol rendelkezik, ezzel csokkentve az ipari kisérletek igényét a
modellezési folyamat sordn. Emellett egy kisérlettervezéses mddszeren alapuld
szabalyoz6hangoldsi modszert is bemutatok, ami kozvetleniil a folyamat gazdasagi
hatékonysagat mérve segiti a termeld vallalat nyereségnovelését erteljes hangstlyt

fektetve a mérnoki, miiszaki megkozelitésre.
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Abstract

Development of Experimental Design Techniques for
Analyzing and Optimization of Operating Technologies

Enormous quantity of process data and implicit information are collected and
stored as function of time, in sets of so-called time-series, thanks to the application
of modern, computer based control systems in the chemical industry. The extraction
of the hidden (not so obvious) information in the historical process data during
plant-intensification and development is a relatively new field. Just a couple of
years of experience is collected. The major aim of the intensification is to increase
the economic benefit of the company. At the meantime the production process
is keeping getting closer to its limits defined by physical and chemical laws.
That is why further investigation is necessary in field of process monitoring and
control to assure the safe operation. The recent fault detection, process control
and optimization solutions use mathematical models for prediction. The success
of these applications depends on the prediction ability of applied models. Hence
it is inevitable to develop new engineering tools, which support creating accurate
and robust process models. As most of the models are data driven, the proper
selection of stored process data used in model construction is essential to reach
success. Highlighting the goal oriented data slices is a time-series segmentation
task.

The aim of this thesis is to introduce theoretical basics of different approaches
which can support further the production process development, based on the
extracted knowledge from process data. As selection of time-frame with a
certain operation is the starting point in a further process investigation, Dynamic
Principal Component Analysis (DPCA) based time-series segmentation approach is
introduced in this thesis first. This new solution is resulted by integrating DPCA
tools into the classical univariate time-series segmentation methodologies. It helps
us to detect changes in the linear relationship of process variables, what can be
caused by faults or misbehaves. This step can be the first one in the model-based
process development since it is possible to neglect the operation ranges, which can
ruin the prediction capability of the model. In other point of view, we can highlight
problematic operation regimes and focus on finding root causes of them.

When fault-free, linear operation segments have been selected, further

Y



segregation of data segments is needed to find data slices with high information
content in terms of model parameter identification. As tools of Optimal
Experiment Design (OED) are appropriate for measuring the information content
of process data, the goal oriented integration of OED tools and classical time-
series segmentation can handle the problem. Fisher information matrix is one
of the basic tools of OED. It contains the partial derivatives of model output
respect to model parameters when considering a particular input data sequence.
A new, Fisher information matrix based time-series segmentation methodology
has been developed to evaluate the information content of an input data slice.
By using this tool, it becomes possible to select potentially the most valuable
and informative time-series segments. This leads to the reduction of number of
industrial experiments and their costs. In the end of the thesis a novel, economic-
objective function-oriented framework is introduced for tuning model predictive
controllers to be able to exploit all the control potentials and at the meantime

considering the physical and chemical limits of process.
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Chapter

Introduction

The economic crisis started in 2007 had serious effect also on the chemical industry
and it is going to have effect in the next couple of years. New strategic direction
has been evolved with the combination of increasing operation efficiency and high
return on investment, especially in short term. The importance of energy saving,
cost reduction solutions are highly appreciated and directions of these particular
research fields are highly supported. The Advanced Process Control (APC), process
monitoring and fault detection solutions can contribute to reach the goal either
explicitly by e.g. reducing the utility consumption or explicitly by detection the
occurred faults and being able to prevent further damages.

Information is a highly powerful resource to reach the previously mentioned
goals. Huge amount of process data is archived thank to the highly automated
chemical processes. These data archives have huge potential to extract valuable
information from them for different purposes. Data collection usually takes place
early in an improvement project, and is often formalized through a data collection

plan, which often contains the following activities.

e Pre-collection activity (agreement on goals, target data, definitions, methods).
e Collection of data sets.

e Present Findings - usually involves some form of sorting analysis and/or

presentation [1] .

In development projects of operating processes, targeted data collection usually
means additional experiments to carry out. In lot of cases there is no option to

make the best of extracting information from data collected in normal operation.



In Ref.[2] data collection methods and the use of historical process data in process
improvement are very well described, having focus on Knowledge Discovery in
Databases (KDD) framework. KDD has multiple steps to extract information from

process data stored in databases, which are depicted in Figure 1.1.

Knowledge

=
"
Analysis and — 4
Data mining
development
Pl
A

Preprocessing /'
—
—
b

A /

I
|
PLANT <

Figure 1.1: Knowledge Discovery in Databases - data driven development

System identification, fault detection and process monitoring, time series
analysis are considered as engineering tasks as part of KDD. The steps of this

framework can be summarized as follows:

e Data selection: similarly to the precollection activity, the main application

domain is developed and the main goal of KDD process is identified.

e Data pre-processing: the step of filtering and reconciliation of the collected

data, in order to correct measurement errors e.g. due to measurement noise.

e Data transformation: the step of finding and performing features and
application methods on process data for achieving the set of goals. This step

prepares process data for the information extraction step.

e Data mining: extraction of information from the previously transformed
process data. Various methods can be applied in this step, like clustering,

regression, classification or time-series segmentation. The result might be



either expected and it confirms premisses or it can open brand new directions

in process development.

Online detection of any misbehavior in the technology by analyzing the recently
collected process data is a well defined engineering goal (it is called knowledge
in KDD). PCA is well-known and applied approach in process monitoring.
Investigation of transient states needs dynamic PCA, since it can describe the
dynamic behavior more accurately. Conventional PCA needs a huge amount of data
for calculation of covariance matrix. Collecting enough process data to perform
a new calculation of covariance matrix ruins the possibility of accurate online
detection. Recursive PCA is for solving this problem since it needs only the latest
process data and the latest covariance matrix to update covariance matrix. In this
thesis, a combination and integration of the recursive and dynamic PCA is proposed
and it is inserted into time series segmentation techniques. This results efficient
multivariate time-series segmentation methods to detect locally linear homogenous
operation ranges. E.g. this tool helps to reach the goal of online fault detection and
separation of operation regimes, mentioned in the beginning of the paragraph. The
similarity of time-series segments is evaluated based on the Krzanowski-similarity
factor, which compares the hyperplanes determined by the PCA models.

Advanced chemical process engineering tools, like model predictive control
or soft sensor solutions require proper process model. Parameter identification
of these models needs historical data segregation of input-output data with high
information content. This engineering goal is also a time-series segmentation task,
like the detection of locally linear operation regimes in the previous case. Classical
model based Optimal Experiment Design (OED) techniques can be applied to create
experiments providing highly informative data. These solutions can also be utilized
in the selection of informative segments from historical process data. In the thesis,
a goal-oriented OED based (Fisher information matrix is the appropriate tool in

OED) based time-series segmentation algorithm is introduced to fulfil this demand.

1.1 Time-series segmentation for process monitoring

Continuous chemical processes frequently undergo number of changes from one
operating mode to another. The major aims of monitoring plant performance at
process transitions are (i) the reduction of off-specification production, (ii) the

identification of important process disturbances and (iii) the warning of process



malfunctions or plant faults. The first step in optimization of transitions is the
intelligent analysis of archive (historical) and streaming (on-line) process data ([3]).

Fault and any misbehavior detection shall be performed by collecting and
analyzing the input-output data together. This way, determination of events
becomes possible where the correlation between the input and output process
varies. Separation of input-output data during investigation of process events, and
considering them as univariate time-series is impractical and misleads the engineer.
In this case we miss considering the process itself, which should be the object of
the detailed investigation.

The detailed investigation of historical and streaming process data is recognized
by the process monitoring and control industry and complex solutions have been
provided for reaching these goals. Principal Component Analysis (PCA) and Partial
Least-Squares (PLS) ([4]) and their different modifications have been applied
more and more widespread ([5, 6, 7, 8]). Process monitoring approaches based
on these methods conduct statistical hypothesis tests on mainly two indices, the
Hotelling 72 and Q statistics in principal component and residual subspaces,
respectively. Process failures, similarly to sensor faults ([9]) can be detected
effectively by analyzing these metrics. Several approaches have been developed
to extend the applicability of these methods for non-linear problems: by combining
wavelet transformation and PCA tools ([10]) or by extension of PCA with kernel
methods ([11]). Other multivariate process monitoring approach is the integration
of qualitative trend analysis (QTA) and PCA ([12]). Correlation changes of
process variables are detected by QTA, PCA assures to handle the multivariate
characteristics of the process. In Ref. [13] a new methodology has been developed
based on applying wavelets and combining it with Markov trees to enhance the
process monitoring performance.

Nowadays nature inspired fault detection techniques become more and more
widespread, like immune system or neural networks based methodologies ([14, 15,
16]). Artificial immune system based techniques mimic the operation of the human
health defense system. "White blood cell" objects are defined and cloned to detect
any faults in the operating technology ([15, 16]). It is similar to the principle of
negative selection, where the immune system distinguish healthy body cells and
foreign cells causing defections. The application of these methodologies starts with
initialization where the definition of white blood cell objects is done. The next step
is to choose a operation range or pattern for the learning algorithm, and to choose

a test case to validate the result of the learning step. Highly experienced user has

4



the ability to select appropriate patterns and ranges for these purposes. Careful
selection of these data sets is essential to avoid disadvantages of these methods
like the constrained ability of recognition unlearnt scenarios. Artificial immune
based techniques are applicable not just detecting but diagnosing the root causes of
process faults. Artificial neural networks are also widely applied to establish even
non-linear connection between input-output data, and to detect any misbehavior.
Recent techniques from this field are summarized in details in Ref [14].
Time-series segmentation methodologies are for segregating collected process
data with considering pre-defined aspect. This method is often used to extract
internally homogeneous segments from a given time series to locate stable periods
of time, to identify change points ([17], [18]). Although in many real-life
applications a lot of variables must be simultaneously tracked and monitored, most
of the time series segmentation algorithms are based on only one variable ([3]).
One of the aims in this thesis is to introduce new time series segmentation
algorithms that is able to handle multivariate data sets to detect changes in the
correlation structure among process variables. PCA is the most frequently applied
tool to discover information in correlation structure [19] like in field of fault
detection [20]. As conventional PCA model defines a linear hyperplane and most
production processes are non-linear, this approach is restrictively applicable for
analyzing chemical technologies. To be able to locally linearize and this way follow
the non-linearity of the process, we need to use the latest data of that operation
regime to calculate proper models. This model calculation can be inaccurate if
considering older data points which have no information content regarding to the
recent PCA model. It might be necessary since computation of PCA models needs
a numerous data points. The recursive computation way of PCA models ([21])
has the capability to use only the latest data points since the recent PCA model is
yielded by updating the existing PCA model with the recent measurements. By
applying the variable forgetting factor developed by Fortescue et al. [22], it is
possible to determine the weight of the recently collected process data points in
computation of the updated and proper PCA model. As conventional PCA is for
analyzing static data, Ku et al. presented a methodology [23] called dynamic PCA
(dPCA) to be able to handle the time dependency of the process data. In dynamic
PCA the initial data matrix has been augmented with additional columns of process
data collected in previous sample times. Combining the method of recursive PCA
with dynamic PCA, a helpful tool is yielded to describe the dynamic behavior of

multivariate dynamic systems throughout analysis of process data. Choi and Lee



developed an algorithm with kernel functions to capture the nonlinear behavior of
chemical processes and combined it with dynamic PCA to describe the dynamical
characteristics ([24]).

The developed segmentation algorithm can be considered as the multivariate
extension of piecewise linear approximation (PLA) of univariate data sets ([25]).
Most of data mining algorithms utilize a simple distance measure to compare
the segments of different time series. This distance measure is calculated based
on the linear models used to describe the segments ([26]). The distance of
PCA models could be determined using the PCA similarity factor developed by
Krzanowski [27, 28]. By integrating the Krzanowski similarity measure into
classical segmentation techniques new PCA based segmentation methods are
resulted. As PCA has different metrics to describe the PCA model (Hotelling
T? statistics, Q reconstruction error) in the further research the possibilities of
utilization of these metrics are going to be investigated in details.

In the previously mentioned nature inspired methodologies ([14, 15, 16])
need learning and validating process to become ready to be used to detect and
recognize process misbehaves and faults. Unlike these tools, the developed dPCA
based technique needs only initialization by defining the initial variance-covariance
matrix. As the developed time-series segmentation based process monitoring
approach is based on continues update of PCA models and detection of differences
between the PCA models, learning and validating process can be skipped. The need
of PCA model update means changes in the correlation structure of input-output
variables. When fault diagnosis is needed beside the fault detection, supervised
learning has to be applied to learn the different fault scenarios.

The application way of the developed algorithm is presented on a simple
auto-regressive (AR) system and on the benchmark of Tennessee-Eastman (TE)
problem. Multivariate statistical tools are mostly evaluated and tested on Tennessee-
Eastman problem in chemical and process engineering practice. TE process is
applied for various goals, like [29] developed and tested his branch and bound
methodology for control structure screening. In field of process monitoring several
intuitive methodologies are developed and presented throughout TE example, like
Bin Shams et al. [30] introduced his method based on CUSUM based PCA. The
Independent Component Analysis is also widely applied for monitoring process
performance, like Lee et al. [31], who also generated test faults for his methodology
using the TE process. The application of one of the most intuitive methodologies

is also presented using this benchmark, where Srinivasan [32] developed a fault



detection framework based on dynamic locus analysis for online fault diagnosis

and state identification during process transitions.

1.2 Time-series segmentation based on information

content

Most of advanced chemical process monitoring, control, and optimization
algorithms rely on a process model. Some parameters of these models are not
known a priori, so they must be estimated from process data either collected during
targeted experiments or normal operation (historical process data). The accuracy
of these parameters largely depends on the information content of data selected to
parameter identification [33]. So there is a need for an algorithm that can support
information content based selection of data sets. As we saw previously, targeted
selection of suitable data sequences is a time-series segmentation task.

Shannon defined the information content first in the field of communication
[34]. An essential problem of communication was to reproduce a message in the end
point that was coded in the starting point. In Shannon’s theory, entropy measures
the information content of the message. It simply measures the uncertainty in the
message just like Gibbs entropy measures the disorder in a thermodynamic system.

Information content in mathematical model identification is a specific
characteristic of the chosen process data set: measures the "useful" variation of the
model input data set which causes significant changes in the model output data set.
"Useful" variation helps us the determine the model parameters using identification
techniques. Obviously, the more "useful" variation we have, the higher information
content the considered data set possesses.

Extraction of highly informative time-series segments from historical process
data requires novel, goal-oriented time-series segmentation algorithm. One of the
key ideas in this thesis is the propose the utilization of tools of optimal experiment
design (OED) in this new field. Franceschini [35] provides an overview and critical
analysis of this technique. Tools of optimal experiment design are applicable to
measure the information content of datasets [36] regarding to a pre-defined process
model. Usually OED is an iterative procedure that can maximize the information
content of experimental data through optimization of (process model) input profiles
[37]. OED is based on a sensitivity matrix - so-called Fisher information matrix,

which is constituted from partial derivatives of model outputs respect to changes



of selected model parameters. Tools and methods of sensitivity analysis are
summarized in details by Turanyi [38]. The information content of the selected
input data sequence can be measured by utilizing A, E or D criteria [36, 39] based
on the sensitivity based Fisher information matrix. As each criterion is an aggregate
metric based on the Fisher information matrix, they all have their strengths and
weaknesses. In order to mitigate these drawbacks and being able to combine
the advantages of these metrics, Telen et al. [40] developed a multi-objective
approach which enables to combine two optimization criteria. Experimental design
procedures for model discrimination and for estimation of precise model parameters
are usually treated as independent techniques. In order to match the objectives of
both procedures, Alberton et al. [41] proposes use of experimental design criteria
that are based on measures of the information gain yielded with new experiments.

Experimental design techniques are also available to design optimal
discriminatory experiments [42], when several rival mathematical models are
proposed for the same process. Performing additional experiment for each rival
model may undermine the overall goal of optimal experimental design, which is to
minimize the experimental effort. Brecht et al. deals with the design of a so-called
compromise experiment [42], which is an experiment that is not optimal for each of
the rival models, but sufficiently informative to improve the overall accuracy of the
parameters of all rival models. Alberton et al. presents a new design criterion for
discrimination of rival models [43], taking into account the number of models that
are expected to be discriminated after execution of the experimental design.

In this thesis OED techniques are utilized to extract informative segments from
a given time-series and separate different segments to identify different models
or parameters. At first the input signal should be separated into sets of input
sequences as the basis for constituting the Fisher information matrix. Fisher matrix
can possess surplus information - not just the quantity of the information but its
direction in the considered information space. Time series segments with similar
information content can be described by similar information matrices. With the
help of Krzanowski distance measure [27] it is possible to determine the similarity
of Fisher matrices by direct comparison of them. In the thesis a novel and
intuitive time-series segmentation algorithm is introduced for supporting to identify
parameter sets from the most appropriate time frame of historical process data. This

leads to reduction in the cost and time consumption of parameter estimation.



1.3 Economic based application of experiment design

The information extracted from plant historians is highly suitable for supporting
controller design. Thanks to the general non-linear behavior of chemical processes
of it is very difficult to find the right tuning parameters of the controllers in
the whole operation range. In spite of the nonlinearity of processes most of
the controllers are installed with linear algorithms. The right parameters for the
production (e.g. set-points, tuning parameters of controllers, valve positions) are
determined experimentally using the intuition of engineers. The response of the
non-linear process is approximated with linear models and each linear model is
valid only within a narrow operation range. A model library is needed to be
created to characterize the operating process in the whole operation range [44].
The possibilities of the model library conducted to the demand of re-determining
controller tuning parameters even if it is an iterative process like iterative learning
control in batch processes [45, 46]. A know-how is necessary to fulfill these
requirements, which is easy to implement even in case of operating model predictive
controllers (MPCs). The tools of classical experiment design techniques can reach
all these goals.

The production in the chemical industry represents a typical example of a
multiproduct process. One reactor is used for producing various products and
changes of production circumstances is handled by control algorithms. During
transitions between products, off-specification products are produced. This product
is generally worth less than the on-specification material (which fulfill all the
commercial and quality requirements), therefore it is crucial to minimize its
quantity. From control algorithm point of view, it means to find correct tuning
parameters which enable reaching new setpoints. Beside the importance of the
process transients, an on-specification product can be produced under varying
circumstances and at varying operating points, which motivates us to find the (e.g.
economically) optimal operation point in production stages.

The demand for time and cost reduction of grade transitions inspire researchers
to find more and more innovative solutions [47, 48]. Optimization of complex
operating processes generally begins with a detailed investigation of the process
and its control system [31]. It is important to know how information stored in
databases can support the optimization of product transition strategies. How hidden
knowledge can be extracted from stored time-series, which can assure additional

possibilities to reduce the amount of off-grade products. The optimization of



transition is a typical task in process industry [49]. Modern control algorithms and
strategies are available to handle these tasks effectively. The determination of the
tuning parameters of these algorithms are quite difficult, time and cost consuming
and experimental process.

One of the common experimentation approaches is One-Variable-At-a-Time
(OVAT) methodology, where one of the variables is varied while others are fixed.
Such approach depends upon experience, guesswork and intuition for its success.
On the contrary, tools like design of experiments (DoE) permit the investigation
of the process via simultaneous changing of factors’ levels using reduced number
of experimental runs. Such approach plays an important role in designing and
conducting experiments as well as analyzing and interpreting the data. These tools
present a collection of mathematical and statistical methods that are applicable for
modeling and optimization analysis in which a response or several responses of
interest are influenced by various designed variables (factors) [50].

There are typical grade/ operation "sequences" during running the processes
so it is possible to handle them like a "batch" in the pharmaceutical industry.
This approach allows us to integrate the iterative learning control scheme into the
optimization of the grade transition. It means that the optimal grade change strategy
- by manipulating the tuning parameters of the controller - could not be found in
one step but iteratively. The experimental design techniques need low number of
iteration during optimization, so they are beneficial if combined with the iterative
learning control theory.

In this thesis the applicability of experimental design technique is going to be
examined. This approach will be proven to be appropriate for finding the right
tuning parameters of an MPC controller. The aim of the case study is the reduction

the time consumption of transitions.
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Chapter 2

On-line detection of homogeneous

operation ranges by dynamic principal
component analysis based time-series

segmentation

Any development in process technologies should be based on the analysis of process
data. In the field of process monitoring the recursive Principal Component Analysis
(PCA) is widely applied to detect any misbehavior of the technology. Recursive
computation of PCA models means combining the existing PCA model with the
recent process measurements and it results the recent PCA model. The investigation
of transient states needs dynamic PCA to describe the dynamic behavior more
accurately. By augmenting the original data matrix of PCA with input-output data
from previous sample times conventional PCA becomes "dynamised" to catch the
time-dependency of process data. The integration and combination of recursive
and dynamic PCA into classic time series segmentation techniques results efficient
multivariate segmentation methods to detect homogenous operation ranges based
on either historical or streaming process data. By these new multivariate time-
series segmentation techniques we can support process monitoring and control by
separation of locally linear operation regimes. The performance of the proposed
methodology is presented throughout an example of a linear process and the

commonly applied Tennessee Eastman process.
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2.1 dPCA based multivariate time  series

segmentation

In the process industry we need to be able to connect manufactured products and
the operation regimes in which they were produced. It has several advantages: it
becomes possible to detect occurrences of different disturbances, there is chance
to find a suitable operation regime for model parameter estimation, etc. The first
step on this way should be the analysis of historical process data. The correlation
between input-output data is determined by the process itself, the output process
data shall be handled as complex function of input process data. Hence input-
output datasets can be considered as a multivariate time-series. Dynamic principal
component analysis is a suitable for extending the classical univariate time-series
approaches for multivariate cases and it can be the basis for developing a toolbox to
fulfill demand of segregating the homogeneous operation regimes.

The chapter is organized as follows: in the rest of this section the main parts of
the developed dynamic PCA based time-series segmentation methodology is going
to be introduced. First, the principles of time series segmentation is explained in
details. Then the connection of classical and dynamic principal component analysis
and time-series segmentation is presented. In the end of the section integration of
the most important components, like recursive computation of covariance matrices
and Krzanowski similarity measure is shown and then the detailed summary of

developed algorithm is introduced.

2.1.1 Multivariate time series segmentation algorithms

A multivariate time series 7' = {x; = [T1 4, T2k, .- -, Tnx)? |1 < k < N} is a finite
set of N n-dimensional samples labelled by time points ¢1,...,ty. A segment of
T is a set of consecutive time points which contains data point between segment
boarders of a and b. If a segment is denoted as S(a,b), it can be formalized as:
S(a,b) = {a < k < b}, and it contains data vectors of X,, X411, ..,X,. The c-
segmentation of time series 7' is a partition of 7" to ¢ non - overlapping segments
¢ ={S;i(a;,b;)|1 <i < ¢}, suchthata; = 1,b. = N, and a; = b;_; + 1. In other
words, an c-segmentation splits 7' to ¢ disjoint time intervals by segment boundaries
81 < 89 < ...< 8., where S;(s;,s;11 — 1).
The goal of the segmentation procedure is to find internally homogeneous

segments from a given time series. Data points in an internally homogeneous
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segment can be characterized by a specific relationship which is different from
segment to segment (e.g. different linear equation fits for each segments).
To formalize this goal, a cost function cost(S(a,b)) is defined for describing
the internal homogeneity of individual segments. Usually, this cost function
cost(S(a, b)) is defined based on distances between actual values of time-series and
the values given by a simple function (constant or linear function, or a polynomial
of a higher but limited degree) fitted to data of each segment (the model of the
segment). For example in [51, 52] the sum of variances of variables in segment was
defined as cost(S(a,b)):

cost(S;(a;, b)) = r——— +1 Z | x5, — vi ||%, 2.1)

70‘1

Vi = b—aﬁ—lz k>

_a,L

where v; the mean of the segment.
Segmentation algorithms simultaneously determine parameters of fitted models
used to approximate behavior of the system in segments, and a;, b; borders of the

segments by minimizing the sum of costs of the individual segments:

cost(S5) Z cost(Si(ai, b;)) . (2.2)

My aim in this thesis is to extend the univariate time series segmentation concept
to be able to handle multivariate process data. In the simplest univariate time-series
segmentation case the cost of .S; segment is the sum of the Eucledian distances of
the individual data points and the mean of the segment.

In the multivariate case a covariance matrix is calculated in every sample time,
so the result is a "covariance matrix time-series". The cost of .S; segment is the
sum of the differences of the individual PCA models to the mean PCA model
calculated from the mean covariance matrix. The similarities or differences among
multivariate PCA models can be evaluated with the PCA similarity factor, Simpc 4,
developed by Krzanowski [27, 28]. It is used to compare multivariate time series
segments. Similar to Eq(2.1), the similarity of covariance matrices in the segment to
the mean covariance matrices can be expressed as the cost of the segment. Consider
S; segment with a; and b; borders. A covariance matrix (F}) is calculated in every

sample point between the segment boarders, a; < k < b; The mean covariance
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matrix can be calculated as:

b;

1

k=a;
where F}, covariance matrix is calculated in the k%" time step from the historical
data set having n variables. PCA models of S; segment consist of p principal
components each. The eigenvectors of Fr and F, are denoted by Uy, and Uy, ,,
respectively. The Krzanowski similarity measure is used as cost of the segmentation

and it is expressed as:

b;

1 1 - .
T hi—a 1 ,; jtrace (Ur, Ui, U, Ury) - (24)

7

Simpcala;,b;)

In the equation above (Eq(2.4)) Uy, is calculated based on the decomposition
of the F;, covariance matrix F; = UkAka into a A; matrix which includes the
eigenvalues of F, in its diagonal in decreasing order, and into a Uy matrix which
includes the eigenvectors corresponding to the eigenvalues in its columns. With
the use of the first few nonzero eigenvalues (p < n, where n is the total number
of principal components, p is the number of applied principal components) and
corresponding eigenvectors, PCA model projects correlated high-dimensional data
onto a hyperplane of lower dimension and represents relationship in multivariate
data.

Since F;, represents the covariance of the multivariate process data in the k"
sample time, the calculation of F;, can be realized in different ways, e.g. in a sliding
window or recursive way. In this thesis F is calculated recursively on-line, the
detailed computation method is presented in Section 2.1.3.

The cost function Eq(2.2) can be minimized using dynamic programming by
varying the place of segment borders, a; and b; (e.g. [52]). Unfortunately, it is
computationally too expensive for many real data sets. Hence, usually one of the

following heuristic, most common approaches are followed [25]:

e Sliding window: A segment is continuously growing and the recently
collected data point is merged until the calculated cost in the segment exceeds
a pre-defined tolerance value. For example a linear model is fitted on the

observed period and the modeling error is analyzed.

e Top-down method: The historical time series is recursively partitioned until

some stopping criteria is met.
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e Bottom-up method: Starting from the finest possible approximation of

historical data, segments are merged until some stopping criteria is met.

In data mining, bottom-up algorithm has been used extensively to support a
variety of time series data mining tasks [25] for off-line analysis of process data.
The algorithm begins with creating a fine approximation of the time series, and
iteratively merge the lowest cost pair of segments until a stopping criteria is met.
When the pair of adjacent segments S;(a;, b;) and S;1(a;41,b;41) are merged a
new segment is considered S;(a;, b;11). The segmentation process continues with
calculation of the cost of merging the new segment and its right neighbor and its
left neighbor (S;_1(a;_1, b;—1) segment) and then with further segment merging.

To develop a multivariate time-series segmentation algorithm which is able to
handle streaming process data, sliding window approach should be followed. After
initialization, the algorithm merges recently collected process data to the existing
segments until the stopping criterion is met. The stopping criterion is usually a
determined value of the maximal merging cost.

This algorithm is quite powerful since merging cost evaluations requires simple
identifications of PCA models which is easy to implement and computationally
cheap to calculate. The sliding window method is not able to divide up a sequence
into a predefined a number of segments; on the other hand this is the fastest time-

series segmentation method.

2.1.2 Application of PCA for analyzing dynamic systems

The classical PCA is mainly for exploring correlations in data sets without any time
dependency. In some industrial segments (e.g. in some polymerization processes)
time consumption of process transitions is in the same order of magnitude with the
length of a steady state operation. Hence it is crucial to be able to analyze and
extract information from data sets collected in transitions. The demand of being
able to handle time dependency of the collected process data motivated Ku and his
colleagues [23] to dynamize the static PCA for the needs of dynamic processes.

Consider the following process:

Yit1 = a1yg + ... +a,,Yk—n, + b1up +... +byup_p, +c (2.5)

where a;, b; (i = 1,...,n,,5 = 1,...,n) and c are vectors of constants, n,

and n;, show the time dependency of process data, uy, is the vector of k' sample of

15



(multivariate) input and yy is the output (product) vector in the same time. Ku et al.
[23] pointed out that performing PCA on the X = [y, u] data matrix preserves the
auto and cross correlations caused by time variance of the time series such as the
ones above.Thus, Ku et al. [23] suggested that the X data matrix should be formed
by considering the process dynamics at every sample point. Generally speaking,
every sample point should be completed with the points they are depending on, i.e.

the past values:

Yi . Yie—n, Uz C. Ug—n,
Y1 oo Yek—ne+1  Qk41 -o- Ug—pu41
X = ) - ) ) (2.6)
Yi+m - Yik—ne+m Ug4m .- Ug—pytm

Process dynamics create relationship between inputs and outputs - relations are
preserved under PCA - and a model can be fitted with a model certain order. Usually
ne + ny is higher than the model order that is fitted to the data set. n, + n; is
equal to the total number of principal components, n. Performing PCA on the
modified data matrix moves unwanted correlations to noise subspace. Possible
combinations of time dependence are presented in the data matrix and we select the
most important combinations of these by using PCA. First zero (or close to zero)
eigenvalue shows linear relationship between variables revealed by the eigenvector
belongs to this eigenvalue. The method of dynamizing the PCA is recognized and
effectively applied in the field of process model identification ([53, 54]) so it proves
the relevance and applicability of dPCA in handling even streaming multivariate

process data.

2.1.3 Recursive PCA with variable forgetting factor

To detect changes in the process dynamics in time, we have to reach the acceptable
resolution which needs us to compute a PCA model in every sample time.
This is also necessary in sliding window segmentation technique or in the fine
approximation of bottom-up approach. To reach this goal the method of recursive
PCA is applied ([55, 21]). This is based on recursively updating the variance-
covariance matrix (Xka), where X, is a data matrix (like Eq (2.6)) in the k" time
step comprising p variables and n samples, proposed by Li et al. [21]. Recursive
calculation of the (d)PCA model help us to avoid the excessive expansion of data

matrix caused by frequently collected process data. This is a well-known issue in
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e.g. adaptive control [22].
The proposed algorithm for recursive computation of covariance matrices is as

follows:

1. Initialization

Nominal data, X, is defined, as previously introduced. The data set is
normalized to zero mean and unit standard deviation, X,. Vectors of mean
values, Xg, and standard deviation, sy, are saved. The initial variance-

covariance matrix can be expressed as:

XTX,
Fy="2" 2.7
0= 71 (2.7)
where [ is the number of initial samples.
The initial forgetting factor is defined as:
1
Ao =1~ (7) (2.8)

2. Application of variable forgetting factor in calculation of new covariance

matrices.

(a) The new vector of measurements, Xy, is collected. The new mean vector

is calculated as:

X = Mo—1Xp—1 + (1 — 1) Xp (2.9)

(b) The difference of the new mean, X;,, and the old mean, X;,_1, is stored in
0Xj. It is necessary since the recursive calculation of process variance

(0) is as follows:

Ok = M—1(0ko1 + 0%5) + (1 — Nemy) (36 — Xp)? (2.10)
The standard deviation in sample time k can easily be calculated from
the process variance.

(c) Next step is to normalize recently collected process data, xj, using
previously calculated mean, X, and standard deviation, s;. The

recursive calculation of variance-covariance matrix is formulated as:
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Firo = A1 Fimt + (1= Necn) (X xa) (2.11)

: : _ Xp—X

where Yy is the normalized process data vector, x; = %

(d) The final step in the recursive calculation loop is to calculate the value of
the variable forgetting factor, \;. To calculate the value of the forgetting

factor Fortescue [22] proposed an algorithm, it is calculated as follows:

Ae=1-— (2.12)

where p is the number of applied principal components, n is the
asymptotic memory length at (k—1), the 72 is the Hotelling 7" metric at
sample point k and the error term ey, is the () metric, the reconstruction

error at sample point k presented in [55].

As the forgetting factor decreases, the recent observation get more
weight in calculation of updated variance-covariance matrix with less
weight being placed on older data. Hence it is one of the basic
component for quick adaptation of dPCA models to describe the
correlation structure in the changed operation regime. It can be handled
as an indicator where dPCA model needs to be updated rapidly to

describe the new relationship of process variables.

2.1.4 Recursive dPCA based time-series segmentation

The dynamic principle component analysis was introduced in the previous section
as an approach to be able to handle the time dependence of the collected process
data (Eq (2.6)). Applying the recursive calculation method (Eq (2.11)) a new dPCA
model becomes accessible in each sample point. With the application of the variable
forgetting factor (Eq (2.12)) it becomes possible to exclude as much information as
included by the recent measurements.

The next step is to find a valid dPCA model for each segment - so-called
mean model (Eq(2.3))- and compare the recently computed dPCA models to the
mean model. The comparison of dPCA models represented by the variance-
covariance matrices become possible by using the Krzanowski similarity measure
(Eq (2.4)). Application of segmentation algorithms become available by the help of

this similarity measure so thus the segments with different dynamic behavior can be
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differentiated.
For off-line application the bottom-up segmentation method is applied. The

pseudocode for algorithm is shown in Algorithm 2.1.

Algorithm 2.1 Bottom-up segmentation algorithm
0: Calculate the covariance matrices recursively and split them into initial segments
(define initial a; and b; segment boundary indices).
0: Calculate the mean model of in the initial segments (Eq(2.3)).
0: Calculate the cost of merging for each pair of segments:
mergecost(i) = Sim(a;, biy1)
while actual number of segments > desired number of segments do
Find the cheapest pair to merge:
i = argmin;(mergecost(i))
Merge the two segments, update the a;, b; boundary indices
Calculate the mean model of in the new segment (Eq(2.3)).
recalculate the merge costs.
mergecost(i) = Simpca(a;, biy1)

mergecost(i — 1) = Simpca(a;_1,b;) where Simpcya is the Krzanowski
distance measure
end while

The previously introduced bottom-up segmentation technique is applied as off-
line time-series segmentation procedure. There are some difficulties during the
application of this methodology like the determination of initial and desired number
of segments. Stopping criterion of segmentation procedure can be either the desired
number of segments (as introduced in Algorithm 2.1) or reaching the value of a
pre defined maximal cost. If the number of the desired segments are lower than
the number of different operation regimes in the considered time scale, the result
of the segmentation procedure might be misleading, since two or more similar,
adjacent operation regime segments can be merged. If the number of the desired
segments is too high, there will be the possibility to create false segments. False
segments are subsegments of a homogenous segment and are not going to be
merged. The introduced dPCA based bottom-up segmentation algorithm can handle
this problem, since it is convergent. It means to reduce the possibility of false
segments by "collecting" borders of the false segments next to the border of the
homogeneous operation regime. In details: Assume that a process transient causes
changes in the correlation structure of input-output variables. So we are getting
from one operation range to an other. When the process is adapting to new operation
conditions the dPCA models are continuously updated. Thanks to the variable

forgetting factor the speed of this adaptation is "fast". Similarities of continuously

19



computed dPCA models to the average dPCA model of a homogeneous segment are
low during process adaptation. It is because, correlation of input and out variables
is continuously changing in transient state until it gets to the new homogeneous
operation range. Hence merge costs are the highest in the transient time stamps. As
transient state typically cannot be described by a linear PCA model, every PCA
model is significantly different from each other as well as different from PCA
model in homogeneous operation. It is the cause of the convergence. Taking the
value of forgetting factor into consideration in segmentation algorithms, remaining
superfluous and misleading segment boarders can be distinguished. If the value
of forgetting factor is rapidly decreasing and exceeds a certain limit, the boundary
of the segment could be considered as a valid segment boarder, otherwise it might
be considered as a false segment boarder. The number of initial segments is up
to definition but it can be stated that finer approximation of the time series result
more sophisticated result. Too fine approximation might ruin the robustness of
the algorithm. The only constraint is the number of data points, which have the
ability of defining the model of the initial segments. In this particular segmentation
methodology it is possible to define one variance-covariance matrix as an initial
segment.

For on-line application the sliding window segmentation method is suitable.
The pseudocode of developed algorithm for multivariate streaming data is shown in
Algorithm 2.2.

Algorithm 2.2 Sliding window segmentation algorithm
0: Initialize the first covariance matrix.
while not finished segmenting time series do
Collect the recent process data.
Calculate recent the covariance matrix recursively.
Determine the merge cost (Sim pc 1) using the Krzanowski measure.
if S < maxerror then
Merge the collected data point to the segment.
Calculate the mean model of in the segment (Eq(2.3)).
else
Start a new segment.
end if
end while

The possible differences in the results of the off-line and on-line algorithms is
caused by the totally different operation methodology, since these approaches are

heuristic in terms of minimizing the cost function in a segment. Thanks to the
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heuristic approach certain parameters of the algorithms are needed to be defined
(e.g. the number of segments in off-line case and the pre-defined error in case of
on-line approach), which might also lead to different conclusions. In general, the
results are quite similar, the possible differences make us investigate the roots of the

small variance in them.

2.1.5 Application of confidence limits in dPCA based process

monitoring

Confidence limits for Q reconstruction error and Hotelling 7 statistics are usually
defined in the commonly applied PCA based process monitoring techniques.
Augmenting the dPCA based time-series segmentation methodology with the
utilization of the confidence limits lead to a complex process monitoring tool. It
enables further and more investigation of the segmentation results. The confidence
limits can be calculated recursively, similarly to the covariance matrix.

For Hotelling 7™ statistics the confidence limit is defined as follows:

—1)?
CLTQZ <r )

(2.13)

[

s
[NIiS]
5

where 7 is the number of already collected and examined samples (r = k... m,
see Eq (2.6)), p is the number of principal components, « is the probability of false
alarm for each point plotted on the control chart Ba% rep-1 is the (1 — «) percentile
of beta distribution with parameters u; and us ([56, 57]).

For Q reconstruction error a similar limit can be defined with the following

expression:
NG —1)]%
COLo = o, |12Vl Gehollo = 1) |0 (2.14)
0, 05
where
20,05
ho=1-— 2.15
and
n Pk
04 = Z ¢ = trace(RY) — Z'y}j (2.16)
i=p+1 j=1

where 7, is the normal deviation corresponding to the upper (1 — «) percentile,
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n is the number of variables, R}, is the covariance matrix in the k" sample time, ~;
is the eigenvalue of the 7' principal component.

As a covariance matrix is defined in every sample time, Hotelling 7 and Q
prediction error could be applied as indicators of the process in every sample time.
Hotelling T represents the movement of the data in the multidimensional space,
it contains important information about the process although the variables from
which it is calculated is not independent. Utilizing the Krzanowski similarity factor
to compare the defined hyperspaces, the homogeneous operation segments can be

segregated.

2.2 Case studies

Each component of the proposed dPCA based time-series segmentation is
investigated earlier, like the recursive computation of the covariance matrix ([21])
and variable forgetting factor, defined by [22]. The novelty in the proposed
methodology is the new way of application and integration of the well-known
methods.

The use of the proposed time series segmentation methodology will be
demonstrated throughout a simple, multivariate process and as a second a much
more complex and realistic Tennessee Eastman process. Data preprocessing

methods are not used in these case studies as having synthetical data sets.

2.2.1 Multivariate AR process
Problem formulation

Consider the following process, as a benchmark of Ku et al. [23]:
0.118 —0.191 1 2
Zj, = Zp—1 + Ug—1, (2.17)
0.847 0.264 3 —4

Yr = Zi + Vi (2.18)

where u is the correlated input:

0.811 —0.226 0.193  0.689
uy = U1+ Wi—1, (2.19)
0.477 0.415 —0.320 —0.749
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The process description is formulated in the very same way as Ku et al. [23]
presented. The input w vector is a random noise with zero mean and variance 1.
The output vector, y is equal to z vector and an added random noise, v with 0
mean and variance 0.1. The values of y and u vectors are collected as process
variables. The data matrix for dynamic PCA is constructed as [y} y? , ul u} |].
Based on Ku’s examinations ([23]) five principal component are applied, since the
fourth and fifth scores still show certain auto- and cross-correlation. The remaining
three scores are independent form each other.

1000 samples from normal operation data are applied for the analysis and
the first 100 samples are utilized to compute the initial covariance matrix. The

following scenarios are considered in the examined time scale:

1. at the 400" sample time: parameters of A matrix (coefficient matrix in
Eq(2.17) has been changed to

0.380 —0.250
0.147  0.264
2. at the 600" sample time: means of w are changed from the mean of w=0 to

mean of w;=1 and the mean of wy=-1
3. at the 800" sample time: parameters of A matrix has been changed to
0.500 —0.500
0.200 0.264
So the correlation structure of input-output data changes at the 400" and 800"

sample. This leads to the expectations that 3 different operation segment shall be

found during the segmentation procedure.

Results of the time-series segmentation

Both of the different time-series segmentation methodologies have been applied
during examinations: as first, the off-line bottom-up technique (Algorithm 2.1)
and then the sliding window segmentation technique for on-line purposes
(Algorithm 2.2). As in traditional process monitoring the Hotelling 72 and Q
reconstruction error metrics are widely applied, so the values of these indicators also
examined to compare traditional result to the proposed approach. For calculating
confidence limits Eq (2.13-2.14) are utilized.

The investigated multivariate time-series is depicted in Figure 2.1.
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Figure 2.1: Process data in considered scenario of the AR process
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Figure 2.2: Hotelling 72, Q metrics and value of forgetting factor in the considered
time scale of the AR process

As the first 100 samples were chosen to initialize the covariance matrix, the
value of these indicators is 0 in these sample times as depicted in Figure 2.2.

Changes in correlation structure are clearly detectable as it has been depicted
in Figure 2.2. For quick adaptation of the dPCA model the value of the forgetting
factor should be decreased in these sample times as it can be seen in Figure 2.2. The
introduced algorithm detects these changes in the correlation structure so the value
of the forgetting factor is automatically decreased.

In the proposed scenario, there are two changes in the correlation structure: the
first at the 400"" sample, the second at the 800" sample. The mean change of w
at 600" sample is not considered as a major difference in correlation structure as
just the bias of models are different. That is why three segments are expected.
If the desired number of segments are low (4 desired segments in the first case),
boarders of segments are clearly identified, however segment boarders are a little
shifted compared to the appearance of disturbance. It is depicted in Figure 2.3.
The quantity of the delay is approximately equal to the time constant of the system.

In the representation of segmentation results any kind of process data might be
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Figure 2.3: Results of different segmentation scenarios of AR process

substituted to the y axis with the proper minimal and maximal value of scale. To
visualize results, y axis is rescaled with arbitrary minimal and maximal values (0
and 10, respectively).

If the desired number of segments is much higher than the number of different
operation regimes in the examined time scale (like 10 in this case), it will be
necessary to check to possible the extra-segment detection using the previously
proposed approach. It can be handled with checking the value of forgetting factor at
borders of segments. If the value of the forgetting factor does not vary significantly,
the segment border can be considered as a false detection. It is shown with
dashed line in Figure 2.3. A constraint for false border detection can be defined
as C' = mean(\) — 30, where o is the standard deviation of A (in this particular
case it is 0.96).

So-called quasi-segments could be detected when homogeneous operation
segments are segregated. In these quasi-segments the describing dPCA model is
permanently changing e.g. the system is in a transient state because of a disturbance
or changing the operation point. In these cases the value of the forgetting factor

decreases to assure and indicate the quick adaptation of dPCA model and crosses
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Figure 2.4: Q reconstruction error and Hotelling 7 metrics and value of forgetting
factor in the considered time scale using static PCA

the pre-defined limit. This occurs between 400" — 426" samples and 800" — 831",
where dPCA model needs to adapt to changes in the correlation structure, in the A
matrix.

As the next step the applicability of sliding window time-series segmentation
methodology (Algorithm 2.2) is investigated. By utilizing this approach, we got
similar result as in off-line segmentation scenario, it is depicted in Figure 2.3.
Similarly to the bottom-up segmentation case, the quasi-segments also could be
detected, like a segment between 800" — 832",

The same examinations and segmentation scenarios are carried out with the
conventional static PCA to confirm benefits of using dPCA. In this case the
data matrix is constituted in the [y} u}] form. In our examination the first 3
principal components found to have the largest eigenvalues, explained variance
of 97 %As first the conventional process monitoring metrics (Hotelling 72 and Q
reconstruction error) are registered to detect the changes in the correlation structure.
The result is depicted in Figure 2.4.

It is not possible to detect the changes in the correlation structure using static

PCA . In this case the value of forgetting factor does not predict to find the place
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Figure 2.5: Results of different segmentation scenarios of AR process using static
PCA

of changes in correlation structure, since in the 400" and 800" sample time the
value of the forgetting factor is 1. The result of time-series segmentation scenarios
strengths the previous conclusion as it is depicted in Figure 2.5. However the
segment boarders are convergent to each other, but their place is not even close to
the real place of changes in the correlation structure. As a conclusion the necessity
of dPCA is stated.

2.2.2 The Tennessee Eastmen process

The Tennessee Eastmen problem is widely applied in the chemical and process
engineering practice to test the industrial applicability of the developed process
monitoring techniques([8, 29, 30, 32]). This benchmark problem has all the
characteristics that an operating chemical process does, so it is suitable to evaluate
the performance of the developed time series segmentation methodology.

The Tennessee Eastmen process consist of five major unit operations: a reactor,
a product condenser, a vapor-liquid separator, a recycle compressor and a product

gas stripper. Two products are produced by two simultaneous gas-liquid exothermic
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reactions and a byproduct is generated by two additional exothermic reactions.
The process has 12 manipulated variables, 22 continuous measurements and 19
composition measurements. The process is sampled with the sample time of
0.1h. The simulator of the process was developed by Downs and Vogel in [58].
The control system used for dynamic simulations is decentralized control strategy
created by Ricker [59]. The simulator includes a set of programmed disturbances
listed in Table A.1 in Appendices. To be able to utilize the dynamic PCA the process
variables listed in Table A.2.

To check the performance of the proposed time-series segmentation
methodologies (in Algorithm 2.1 and Algorithm 2.2) the following operation
scenario is considered with disturbances included: step in A/C feed ratio at 40"
hour, random variation in C feed temperature at 60" hour, slow drift in reaction
kinetics at 80" hour, sticking of condenser cooling water valve at 100 hour and an
unknown type disturbance at 120"* hour (1%, 10", 13" 15" and 19*" disturbance
in Table A.1 in Appendices). This way 6 different segments are expected if the
disturbances change the correlation structure of the input-output variables.

Data matrix is constructed as [y: yi , u; uj_,] to build the dPCA model

Throughout our segmentation process the first 31 principal components were
applied which explain 97% of process variance. 15000 samples (150 hours long)
from normal operation data are applied for the analysis and the first 3000 samples

are utilized to compute the initial covariance matrix.

Results of the time-series segmentation

Similarly to the previous case, conventional process monitoring indicators - the
Hotelling 72 and Q reconstruction error - are applied to detect the disturbance
introduced above. Since the first 3000 (30 hours long time scale) samples are
applied to initialize the covariance matrix, the value of these indicators is O in these
sample times as depicted in Figure 2.6.

The confidence limits for the process are determined by using Eq (2.13) and Eq
(2.14). Changes in the correlation structure are detectable either in the Hotelling
T? metric or the Q reconstruction error. These metrics cannot be utilized apart
from each other: e.g. the random variation in C feed temperature is not detected
in Hotelling 7 plot but in the Q reconstruction error plot and e.g. slow drift in
reaction kinetics cannot be detected just by observing Q reconstruction error plot

since it can be detected in Hotelling 7% plot. To follow the adaptation of the dPCA
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Figure 2.6: Hotelling 72, Q metrics and value of forgetting factor in the considered
time scale of TE process

model to the changes in the correlation structure the value of forgetting factor is
examined, depicted in Figure 2.6.

As the forgetting factor shows having the most significant necessity for
adaptation in the 40" and 60" hour when the step change in A/C feed ratio
and random variation in C feed temperature occur. In the rest of the considered
scenario the value of the forgetting factor does not change relevantly (it is close to
1). It indicates the correlation structure does not change as significantly as in the
previously mentioned cases.

At first the off-line segmentation is evaluated.In the considered scenario the
number of expected segments is six assuming that every disturbances change the
correlation structure. This expectation should be modified after the examination of
Figure 2.6, which hint less than six different operation regimes. The most important
question is to determine the number of desired segments. Two cases were examined:
in the first case the number of desired segments is 10, in the second one it is 20.

The results of the bottom-up scenarios are summarized in Figure 2.7. It confirms
the expectations based on the examination of Figure 2.6, which means that the most

significant change in the correlation structure occurs in the 40" hour. Effect of
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Figure 2.7: Results of different segmentation scenarios of TE process

rest of disturbances is significantly lower, however they can be detected even with
using low number assumed segments. The only exception is the unknown type
disturbance, occurs in the 120" hour, which can not be detected in case of 10 desired
number of segments. It is in accordance with small changes of the forgetting factor
in that particular time scale, depicted in Figure 2.6. The number of false segment
border detection is quite low despite of defining high number of desired segments.

As second the on-line segmentation methodology is applied (Algorithm 2.2).
The result of the time-series segmentation scenario is shown in Figure 2.7. It is quite
similar to the bottom-up scenario with 10 desired segments, since just the unknown
type disturbance is not detected and every other disturbances are indicated. The
closely adjacent segment borders (like around 40" hour) indicates that in that
particular time scale the considered system is in a transient state and adapts to the
occurred disturbance.

Both of the off-line and on-line methodologies are capable to detect changes
in correlation structure and rate their effects. The change of step in A/C feed
ratio at 40* hour and random variation in C feed temperature at 60* hour

can be easily detected as depicted in Figure 2.6 in the plot of the forgetting
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factor. These disturbances cause significant changes in correlation structure. The
rest of the disturbances cannot cause such change in the correlation structure
(since the forgetting factor does not decrease as significantly as before), but e.g.
detailed investigation of the classical of Hotelling 7 metric we can highlight these
disturbances. The off-line time-series segmentation algorithm is convergent, which
means that the most significant disturbances are detected first and the less significant
in the end. It is shown in Figure 2.7, in the first and second plot. The segment
borders converged to the most significant disturbance as first (step in A/C feed ratio
at 40'") and then detect the other disturbances. This convergence is the reason of
multiple ("thicker") segment borders. The unknown type disturbance at 120" hour
has the less significant effect on the correlation structure, hence it is not detected in
case when the number of desired segments was 10.

The same statements can be taken by considering the on-line version of the
proposed methodology. Besides detecting the changes in the correlation structure,
this algorithm is also capable to rank the effect of the disturbances, however it
detects the effect of the slow drift in reaction kinetics (occurred in 80" hour) later
than the off-line version, depicted in Figure 2.7, in the third plot. Similarly to
the off-line version it neglects the effect of the unknown type disturbance at 120"
hour. These capabilities make the on-line version applicable for real time detection
and ranking the effect of occurred disturbances, which can support the effective

operation of the chemical technologies.

23 Summary of dPCA Dbased time-series

segmentation

In this chapter a Dynamic Principal Component Analysis based time-series
segmentation framework is introduced for detecting changes of correlation structure
in multivariate historical process data. Changes in the correlation structure can
be caused by e.g. different kind of disturbances or faults. The basis idea of
our approach is that PCA 1is one of the most frequently applied tool to discover
information in correlation structure [19] like in field of fault detection [20].
Conventional computation of PCA models needs a numerous data points which
leads inappropriate resolution of the time-series and inaccurate detection of possible
faults. The recursive computation way of PCA models ([21]) has the capability to
use only the latest data points since the recent PCA model is yielded by updating
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the existing PCA model with the recent measurements. It results high resolution
of PCA models for more accurate detection in changes of correlation structure of
input-output variables. The utilization of variable forgetting factor - developed
by Fortescue et al. [22] - makes possible to determine the weight of the recently
collected process data points in computation of the updated and proper PCA model.
As conventional PCA is for analyzing static data, we used the so-called called
dynamic PCA approach presented by Ku et al. [23] to handle the time dependency
of the process data.

By the integration all of the tools mentioned above we developed novel time-
series segmentation algorithms for detecting changes in the correlation structure of
multivariate time-series. We proposed an on-line approach for streaming data and
off-line application for historical process data. In the segmentation framework the
Krzanowski measure is utilized, as cost function.

For on-line applications the sliding window segmentation method is applied, for
off-line applications the bottom-up technique is chosen. A simple autoregressive
process and the more realistic Tennessee Eastmen process with pre-defined
disturbances are used to generate input-output data sets for time-series segmentation
in the case studies. Both of the off-line and on-line methods successfully detected
the changes in the correlation structure with low number of false detections. The
algorithm is effectively capable to detect and rank the occurred disturbances, and
with the help of segregating different operation ranges discovered knowledge can

be used to develop various, even cost effective operational strategies.
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Chapter

Fisher information matrix based
segmentation of multivariate data for

supporting model identification

Advanced chemical process engineering tools, like model predictive control
or soft sensor solutions require proper, goal oriented process models. The
applicability of the model depends on its prediction ability. During parameter
estimation, we determine model parameters to be able to predict the future
behavior of the considered process. Parameter identification of these models
needs input-output process data with high information content. Traditionally
model based optimal experimental design techniques are applied to generate
these data sets. When the traditional way cannot be followed, the extraction of
informative segments from historical data can also support system identification.
In this chapter a newly developed, goal-oriented Fisher information based time-
series segmentation algorithm has been described, aimed at selecting informative
segments from historical process data.  The Fisher information matrix is
inserted into standard bottom-up time-series segmentation approach to augment its
capabilities of handling multivariate data sets and consider the correlation between
them predefined by a mathematical model. Different segments can support the
identification of parameter sets in different order of magnitude. Hence, we propose
the use of Krzanowski’s similarity coefficient between the eigenvectors of the
Fisher information matrices obtained from the sequences and using either D- or
E-optimality as the criterion for comparing the information content of two input

sequences (neighboring segments). The efficiency of the proposed methodology
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is demonstrated by two application examples. The algorithm is capable to extract
segments with parameter-set specific information content from historical process
data.

The chapter is organized as follows. In Section 3.1, tools of the developed
algorithms are presented, like tools of Optimal Experiment Design (OED), the
calculation ways of sensitivities, then the developed algorithm is described in
details. In Section 3.2 the applicability of the proposed time-series segmentation

method is presented through demonstrative examples.

3.1 Optimal Experiment Design based time series

segmentation

Time-series segmentation extended with Optimal Experiment Design (OED) tools
is highly suitable to extract data sequences with high information content.

Information content in mathematical model identification is a specific
characteristic of the chosen process data set: measures the "useful” variation of the
model input data set which causes significant changes in the model output data set.
"Useful" variation helps us the determine the model parameters using identification
techniques. Obviously, the more "useful” variation we have, the higher information
content the considered data set possesses.

Since extracted data is used for parameter identification its information content
should be measured. It is based on Fisher information matrix which is constructed
from the sensitivities of the model output respect to the parameters. Various ways
of calculating sensitivities are presented. At the end of the section the resulted time-

series segmentation algorithm is described in details.

3.1.1 Background of model based optimal experimental design

The Fisher information matrix (F) is based on the sensitivity of the model output

(y(u(t)) respect to parameters (p), calculated as follows:

1 tend 8
F = / 9y
tend t=0 ap

The calculation of derivatives require a process model:

T oy
A
p=p" op

(t)dt 3.1)

p=p"

—— = f(x(t),u(t), p) (3.2)



y(t) = g(x(t)) (3.3)

where u = [ug ... Up,] (n, is the number of inputs) is the vector of manipulated
inputs, y = [y1...¥n,| (n, is the number of outputs) is the vector of outputs,
X = [T1...Tn,) (N, is number of states) represents the states, and p = [p1 ... py,)]
(n, 1s the number of inputs) denotes the model parameters.

Parameters in p are unknown and should be estimated using the data taken from
experiments. The estimation of these parameters is based on the minimization of

the square error between the output of the system and the output of the model:

0]

min Juu(t).p) = 7 [ et Q) -l G4
e(t) = §(u(®)) - y(u(t), p) 5)

where y(u(t)) is the output vector of the process variables for a certain u[t : te;q)

input profile, and y(u(t)) is the output of process model for the same u[t : tepq)

input profile with p parameters. Q(¢) is a user supplied square weighting matrix.
The classical optimal design criterion aims the minimization of a scalar function

of F matrix. Several criterion exist:

e D-optimal experimental design maximizes the determinant of the Fisher
matrix (Eq. 3.1), and thus maximizes the volume of the joint confidence

region.

Jp = max (det(F)) (3.6)

u[t:tend]

e E-optimal experimental design is based on the ratio of the maximal and
minimal eigenvalues of the Fisher matrix (Eq3.1). In ideal case this ratio

is approximately one.

Jg = min (Amax) 3.7)

uftitend] )\mm

3.1.2 Calculation of sensitivities

Fisher information matrix is based on parameter sensitivities. In the following
section the most common methods for the calculation of sensitivities, like direct

differentiation method and finite difference method are described.
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Sensitivities extracted from model equations

The analytical approach is the most accurate method to calculate the gradients.
Consider the class of process models defined by Eq. 3.2 - 3.3, differentiate the
state equation Eq. 3.2 respect to the model parameters, p, and then integrate the

resulted sensitivity equation on the considered time scale:

xwﬁ=ﬁ%%9mzégywmwmmﬁ (3:8)
fﬁ?zﬁyuwwm»;%ﬂﬂm (3.9)

Eq. 3.8 can be solved simultaneously with the Eq. 3.2 state equation. The
drawback of this methodology is its limited applicability due to difficulties in
analytical differentiation of complex model equations.

The second approach integrates the Eq. 3.2 state equation first and then
differentiates it respect to model parameters, p. It is basically the first step to the

numerical approximation of the sensitivities.

mm:%/ 9%%:%/ fx(tu()p)dt (3.10)

t—tsim t—tsim

dy(t)

—op ~ IGu(®) (3.11)

Sensitivities calculated by finite difference of simulation results

Finite difference method is the most commonly used approach to calculate the
sensitivities. This method is based on the finite difference approximation of the
derivative from the solved differential equation.

dy _y(1+A)p:) —y(pi)

= =1,... 12
apl Apl ? ? 7np (3 )

where Ap; is a small increment in the parameter value p; and n, is the number

of the estimated parameters. Similarly to the previous case the length of time
horizon (Z;,,), in which the model equations are solved, highly influences the value
of numerator of Eq. 3.12. As this approach is utilized in discrete form, ¢;,, means

the number of samples which are included in the calculation of sensitivities.
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When all the sensitivities are estimated at discrete time instants, calculation of

Fisher information matrix is the following:

1 N@y

=1

T ) 8y
Z - —_—
p=p° op

(3.13)

p=p°

where N is the number of samples in the time horizon of the experiment
(N=tsim/tsample)-

This popular methodology has some drawbacks: the determination of the
gradients by small perturbations of the parameters may give wrong results when
these perturbations are too large - the approximation is no longer valid - or too

small.

3.1.3 Time-series segmentation for supporting parameter

estimation

The aim in this chapter is to describe the newly developed time-series segmentation
method to support parameter estimation by extracting subsets of process data with
high information content. In classical time-series segmentation univariate signal is
analyzed. In wider interpretation the calculated sensitivities can be considered as
multivariate time-series. It is very same as in dPCA based time-series segmentation
framework (detect changes in the correlation structure of multivariate process data
[60, 61]), where a set of dPCA models are calculated in each sample time. In
Fisher matrix based approach we need to calculate sensitivities in each sample time.
Dealing with parameter sensitivities we can get information about changes having
effect in the parameter space of the model. The Fisher information matrix represents
the correlation of the sensitivities. Instead of using either D- or E-optimality as the
criterion for direct comparison of information content of two input sequences, we
propose the use of Krzanowski’s similarity coefficient between the eigenvectors
of the Fisher information matrices obtained from the sequences. Thus, whereas
the established criteria essentially compare the similarity of shapes or volumes
of confidence regions for model parameters derived from the sequences, this new
proposal also focuses on the similarity of their orientations.

The algorithm is based on the standard bottom-up scheme widely applied in off-
line analysis of process data. In the following this segmentation algorithm will be

presented.
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Bottom-up time series segmentation

In the classical, univariate time-series segmentation the data set is mostly recorded
by sensors, but in wider interpretation the calculated set of sensitivities could also
be considered as a time-series. That is why the Fisher information matrix and an
information criteria can also be calculated in each segments.

The basis for calculation of Fisher matrices is the sensitivity calculation of the
model output respect to changes in model parameters. Thanks to discrete data
acquisition, all the partial derivatives can be calculated in every sample time. In the
considered time horizon, N (see Eq3.13), a set of partial derivatives shall be applied
to calculate the Fisher matrix of an input signal sequence. Based on the Fisher
information matrices D or E-criteria (Eq3.6 and 3.7 respectively) can be calculated

to measure the information content of the considered input sequence.

Similarity of Fisher matrices

Information content of two different input sequences can be compared either
based on the D or E-criteria or the direct comparison of Fisher information
matrices. Fisher information matrix possesses superior information to criterion,
since beside the quantity of information content it shows the direction of the
examined information in the parameter space.

The similarity of Fisher matrices can be evaluated with using the Krzanowksi
similarity measure ([27, 28]). It is developed to analyze similarities of principal
component analysis (PCA) models (hyperplanes). Fisher matrix can be assumed
like the covariance matrix of PCA. It concerns model parameters, rather than data
covariances, so the end results relate to the parameter space rather than the data
space. As eigenvalues and eigenvectors of the Fisher matrix can be calculated,
it makes this tool fit for the purpose of extracting segments to find maximal

information content.

Fisher matrix based time-series segmentation

The cost function of the time-series segmentation (Eq(2.1) in general cases,
Eq(2.4) in this particular case which is the Krzanowksi similarity measure) can
be minimized by dynamic programming (e.g. [52]). As it is unfortunately
computationally intractable for many real data sets, usually one of the heuristic,

most common approaches are followed, which are proposed in Section 3.1.3.
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By calculating eigenvalues and eigenvectors of the Fisher information matrix,
the direction of information in the information space is also taken into account to

segmentation. The pseudocode of the algorithm is presented in Algorithm 3.1:

Algorithm 3.1 Fisher matrix based time-series segmentation for historical process

data
Calculate the sensitivities in every sample times.

Define the initial segments (define a; and b; segment boundary indices).
Calculate the Fisher information matrix in the initial segments.

Calculate the cost of merging for each pair of segments:

mergecost(i) = cost(a;, bii1).

The merge cost is based on sum of the differences (1- Krzanowski similarity
(Eqg2.4)) of the Fisher matrices of the segments.

The merge cost is calculated by:

bit1 — Qip1

bi — Q;
—(

COSt(ai7 bi+1) = )(1_SimF({ai+11bi+l}7{ai7bi+1}))

(3.14)
where Sp({a; b:},{a;,biii}) 18 the Krzanowski similarity measure of Fisher matrix
calculated in the segment with the boarders of a;, b; and a;, b; ., respectively.
SF({ass1,bis1}{aibi1}) 18 calculated similarly using the segment with boarders of

1-Sim ag,bi },{aq,b; +
— Fifoste) (o)) G

@it1, bit1.
while actual number of segments < desired number of segments do
Find the cheapest pair to merge:
i = argmin;(mergecost(i))
Merge the two segments, update the a;, b; boundary indices, and recalculate
the merge costs.
mergecost(i) = cost(a;, biy1)
mergecost(i — 1) = cost(a;_1,b;)
end while

Merge cost formulated in Eq3.14 is basically the sum of differences of Fisher
matrices in the "right-side" segment (with borders of a;, b;) to the recently merged
segment (with borders of a;,b;;1) and the same for the "left-side" segment
(with borders of a;i1,b;11). There are weights formulated, for considering
the length of the right-side and left-side segment and their contribution to the
information quantity of newly merged segment. It is specially important when two
segments should be merged with approximately equal length and a slightly different

information content.
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3.2 Case studies

The drawback of model based optimal experiment design is the relative high
number of experimental runs which makes the parameter estimation costly and
time consuming. Instead of optimization of the input trajectories the extraction
of informative segments from historical process data can also support parameter
estimation. This section will demonstrate the benefits of this concept by two

application examples.

3.2.1 Segmentation of the input-output data of a first order
process

First-order plus time delay models are widely applied in chemical process control,

which is described by:

dy(t)
Tt

In this study, nominal parameters of the model are X' = 1, 7 = 10 and the sample

+y(t) = Ku(t) (3.15)

time is 0.1 sec.

Calculation of sensitivities

In this example, effects of differences in calculation ways of sensitivities are

demonstrated. We investigated the dataset depicted on Figure 3.1.

Output
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Figure 3.1: Input-output process data of the first order process
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The analytical sensitivities can be calculated by differentiating Eq. 3.15 first and
then solving the partial differential equation simultaneously with the state equations

(I. approach):

ddy . 1 . 1ldyt)

i =7 (310
ddy, . 1 1 1 dy(t)
dt dt (t) = _72u<t) * sz(t) T dt -17)

The second approach presented in Section 3.1.2 is based on the solution of the

state equation (Eq. 3.15):

K fot eru(t)dt + ¢

t
T er

y() (3.18)

The direct differentiation of Eq3.18 provides the third way to calculate the
sensitivities (II. approach):
dy(t) 1 [yerult)dt+c

= 1
0K 7 o G19

y(t K tefu t)dt +c K t t t t t t
9y(t) = _—fo (t) + —(te’? / eru(t)dt — ef/ te7u(t)dt>
or T2 er T3 0 0
(3.20)

The differences in the proposed methods are shown in Figure 3.2.

The numerical approximation of the sensitivities are not exactly identical to
the analytical sensitivities (Figure 3.2). In this particular case of finite difference
method the simulation time (%;,,) is 250. Since at the calculation of Fisher matrices
normalized values of sensitivities are applied, the constant shift in the values of

sensitivities does not affect the information content (see Eq. 3.1).

Time-series segmentation scenarios

We determined the optimal input signal of the process to provide a good background
of comparison. Several studies deal with optimal design of identification
experiments [62, 63, 64, 65, 33, 66]. In this study binary signal is chosen to
determine the optimal input signal for model parameter identification. OED tools
are highly suitable for compute the optimal value of periodic time of the input

signal. Figure 3.3 shows the information content of input signal (measured by E
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Figure 3.2: Sensitivities of the first order process. Comparison of thee calculation
methods. full line - analytical sensitivity using 1. approach, dotted line - analytical
sensitivity using II. approach, dashed line - finite difference method

and D metrics) as function of different periodic times. As it is depicted, input signal
with periodic time of four has the highest information content. This periodic time
is almost the third of the time constant of the considered transfer function.

Based on the information yielded from Figure 3.3, we created a new dataset for
segmentation scenario where sequences of "optimal" input signal are inserted. We
calculated the set of sensitivity matrices and the proposed bottom-up time-series
segmentation algorithm (Algorithm 3.1) is applied to find segments with different
information content. In the Fisher information based time-series segmentation
methodology the most important eigenvectors of the Fisher information matrices
are compared directly using the Krzanowski similarity measure (Eq??). The
eigenvectors with zero eigenvalues are excluded from the calculation. Initial
segments are constituted of 2000 samples as minimal resolution. The number of
desired segments was set to ten as stopping criteria of the segmentation algorithm.

As expected result, the dataset with low frequency constitutes an entire segment
and segregated from the data set segments with high frequency. The segment with
periodic time of 33% of the time constant is also automatically detected. This

segment has the highest information content, depicted in Figure 3.4.
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Identification scenarios based on the results of time-series scenario

To prove the benefit of Fisher matrix based time-series segmentation method, three

different identification scenarios are considered:
e identification using optimal input signal sequence with the periodic time of 4.

e identification scenario based on the result of performed time-series
segmentation using the segment with the highest E criteria value. It is
for representing the segment with the lowest information content. In this

example, it is the first segment.

e identification scenario based on the result of performed time-series
segmentation using the segment with the lowest E criteria value. It is
for representing the segment with the highest information content. In this

example, it is the second segment.

The identification scenarios are performed using MATLAB and its fmincon
function. The initial condition for K=1.5, time constant = 14. Parameters of
the transfer function could be determined in all scenarios, only the number of
function evaluations of optimization (minimizing Eq3.4) was different. Using
input data sequence with the optimized information content, the lowest number of
function evaluations was needed (43 iterations). Using the result of segmentation
algorithm, the segment with high information content can provide almost the
computational demand (44 iterations). As it can be expected the first segment with
the less conditioned information matrix required the largest number of iterations (51

iterations).

3.2.2 Example with synthetic data of a polymerization process

Identification of highly nonlinear process models is more complex task than the
previously presented illustrative example. Due to the complex nonlinear effect
of parameters it is really necessary to support the parameter estimation procedure
by information rich data regarding to the estimated parameters. Polymerization
processes and their first principle models are highly suitable for representing the
characteristics of nonlinear process models. The task is to automatically determine
information rich segments that are applicable to the identify the parameters of the

white box model described in the following subsection.
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Description of the process

A continuously stirred tank reactor (CSTR)is considered in which a free radical
polymerization reaction of methyl-metacrylate using azo-bis-isobutironitril (AIBN)
as initiator and toulene as solvent. The number-average molecular weight NAMW)
is used for qualifying the product and process state. The polymerization process can

be described by the following model equations, [67]:

i (kp + kpm)CPo + v (3.21)
dCy FiCrn — FCy)
L 22
7 krCr + % (3.22)
dIr  (-AH)k,C,, UA F(T;,,—T)
— = Py — T-T)+ —m—= 3.23
ar o D ey T -ht— (5-23)
dD FD
—2 — (0.5kse + ki) P2 + ke Con Py — —— (3.24)
dt Vv
le - FDl
— = M,y (kp + ki) CrPo v (3.25)
dl;  Fepw(Two — Tj) UA
— = T-T; 3.26
i Vo Gyt ) (5:20)
where
12*Crk;p
Py=y/—— 3.27
’ g + Eye ( )
k, = A,e Br/RT r=p, fm, I, td, tc (3.28)

The mathematical model of the simple input simple output process consists of
four states (C,,, C7, Dy, Dy) and four nonlinear differential equations, where the
manipulated input is the inlet initiator flowrate and the output is the NAMW defined
by the ratio of D;/Dj.

The mathematical model of the multiple-input multiple-output process consists
of six states (C,,, Cr, T', Dy, Dy, T};) and six nonlinear differential equations. By
assuming an isotherm operation mode the process model could be reduced to four
differential equations by neglecting F¢(3.23) and FEq(3.26), which still yields a

highly nonlinear process but an easier way to investigate the proposed methodology.
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Time-series segmentation scenarios and results

The process data that shall be segmented is depicted in Figure 3.5.
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Figure 3.5: Process data used in the polymerization reactor example

Firstly all kinetic parameters of the model defined in F¢(3.28) are considered
unknown and involved in the segmentation (identification) procedure.

As the state equations are built up as complex combinations of model
parameters, the model parameter estimation is quite difficult. Also due to this
complexity the derivation of sensitivities from state equation is complicated, so the
finite difference method is chosen to generate the sensitivities. The sample time in
this case is 0.03h. In sensitivity calculation, the simulation time for sensitivity
calculation (%) is chosen to be 100 time samples, which is longer than the
dominant time constant of the process (which is almost 1h). See the definition
of simulation time in Eq. 3.12.

The first step of the segmentation procedure is the selection of the minimal
resolution. In this particular case initial segments consist of 1000 samples. Using
the bottom-up segmentation algorithm six segments were determined. The results
of the time-series segmentation is summarized in Figure 3.6.

The first segment has the lowest information content and the fifth is the richest in
this aspect. An identification procedure is performed using the data with the lowest

and the highest informative segments to confirm this difference. In the identification
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x 10 Fisher matrix based time-series segmentation
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Figure 3.6: Result of segmentation for supporting to the identification of all kinetic
parameters

process the following cost function is minimized:

N
m%l (100 - (Gir — yir)* + (Jinamw — YiNanw)’) (3.29)

ryr

=1
where y; 7, y; 1 are output and calculated temperature values in i sample time,

Yi NAMW , Yi, N Apw mean the same in terms of NAMW. The identification scenarios

are performed using MATLAB and its fmincon function.
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Figure 3.7: Results of identification scenarios (full line - original data, dashed line
- the worst scenario, dashdot line - the best scenario)
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Figure 3.7 shows informative results, the model identified from the segment with
highest information content gives much better performance than model identified
based on the worst segment. In this example all parameters were taken into account.
Two further examples were designed to check the selectivity of the method respect

to the parameter-set:

1. just the £, parameters from Eq. 3.28 are considered as unknown and involved

in the identification procedure.

2. just the A, parameters from Eq. 3.28 are involved in the identification
1

procedure.

As first, just the determination of values of exponential parameters (E,) is
examined when preexponential (k) parameters are fixed on previously determined
values. The segments with different information content are differentiated regarded
to the exponential parameters. In Figure 3.10 the result of the segmentation is
depicted with calculated the information content in each segments using the E
criteria values. To be able to differentiate the segments they are marked with

numbering.

x 10 Fisher matrix based time-series segmentation
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Figure 3.8: Result of segmentation for supporting the identification of exponential
parameters

As it is depicted in Figure 3.8 the 3" segment has the highest and the 1 has

the lowest information content, respectively. Similarly to the previous scenario

Isee results of segmentation scenarios in Appendix, Table A.3, Table A.4, Table A.5
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where all the kinetic parameters are involved in the identification procedure a new
identification process is performed to demonstrate the differences in information

content. The results are summarized in Table A.4 and in Figure 3.9.
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Figure 3.9: Result of identification of the exponential parameters (full line - original
data, dotted line - best case, dashed line - worst case)

The value of the cost function is significantly reduced comparing the best case of
this scenario and the previous case. This proves that some historical data segments
have higher information content than the other ones.

The identification of the preexponential parameters (k,.) is examined to further
improve prediction performance in the next scenario. In this case the exponential
parameters are fixed in the value of the best case of the previous scenario. In
Figure 3.10 the result of the segmentation is depicted with the information content
in each segments using the E criteria.

As Figure 3.10 and Figure 3.8 show the result of the two scenarios are the same,
but the information content of the segments are different as the identification point
of view is changed. It shows that different segments of historical data are suitable
for identification of different model parameters. Similarly to the scenarios above,
an identification procedure is performed in this case too. The richest segment in
information (related to the identification of the preexponential parameter) is 5" and
the poorest is the 2" as it is depicted in Figure 3.8. Results of this identification
scenario is summarized in Table A.5 and Figure 3.11.

As Figure 3.11 shows the best case of the recent scenario approaches the original

data quite well, since the difference is minimal (as it is shown in Table A.5).
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3.3 Summary of Fisher information based time-

series segmentation methodology

In this chapter a novel time-series segmentation framework has been introduced
to segregate segments from historical process data that are information rich in
the parameter identification procedure. The methodology is based on the Fisher
information matrix which possess the information content of a considered input
signal. The information content of a data sequence can be measured utilizing D or
E criteria.

The calculation of the Fisher information matrix is based on sensitivities of
the model output respect to changes in model parameters. Some methods for
calculation of sensitivities have been proposed in the chapter and their similarity has
been investigated in details. The continuous calculation of parameter sensitivities
makes the continuous calculation of Fisher matrices possible. This yields a time-
series of Fisher matrices which provides the possibility to segment the original
historical process data set based on their information content.

The Fisher information matrix possesses the quantity of the information and
its the direction in the "information space", unlike to information criterion. To
be able to evaluate the similarities of the Fisher matrices in the generated Fisher
matrix time-series, Krzanowksi similarity measure is utilized, which is originally
developed for comparing PCA subspaces. Integrating the Fisher information
matrix and Krzanowksi similarity measure into the classical bottom-up time-series
segmentation approach a novel tool is resulted, which can detect the changes in the
direction of information in the "information space".

The applicability of Fisher information matrix based methodology is proposed
throughout an example of simple input-simple output first order linear process
and a more complex, multivariate polymerization example. In the latter example
it has been proved that different segment are appropriate and information rich
enough to estimate the whole set of parameters of the model and other segments
can be segregated if just several parameters shall be estimated. In this example
a detailed identification procedure can be followed based on the results of the
time-series segmentation scenarios. Identification steps enhanced the assumption
above, that some certain segments have more information content in the parameter
determination point of view. In the final step of the whole identification scenario

the difference of the original data and the the simulated data with the determined
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parameters is minimal, which means that during the identification scenario the

considered model parameters are well estimated in that certain operational point.
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Chapter I

Tuning method for model predictive

controllers using experimental design

techniques

Generally, one process is used for producing various products and satisfy various
demands. So called off-specification products are produced during transitions
between products. This product is generally worth less than the on-specification
material (which fulfill all the commercial and quality requirements), therefore it
is crucial to minimize its quantity. The on-specification product can be produced
under varying circumstances and at varying operating points, which are more or
less sound from an economical point of view, motivating the optimization of the
production during production stages.

A large number of different grades are produced, and the transition times
between the productions may be relatively long and costly in comparison with
the total amount produced. The demand for reduction of the time and cost of
grade transition inspires researchers to find innovative solutions [47, 48]. The
optimization of complex operating processes generally begins with a detailed
investigation of the process and its control system [31]. It is important to know,
(i) how information stored in databases can support the optimization of product
transition strategies, (ii) how hidden knowledge can be extracted from stored time-
series, which can assure additional possibilities to reduce the amount of off-grade
products. The optimization of product grade transition is a typical and highlighted
task in process industry [49].

Advanced Process Control (APC) systems are designed to support the economic
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operation both in process transients and in steady state operation. In most cases the
operation of these control systems are based on a linear cost function, which usually
contains the cost of the production and the price of raw materials and products.
Obviously our goal is to maximize the quantity of on-specification materials and at
the same time minimize the cost of the production by applying APCs. This is the
top level of a multi-level optimization problem. As a second level of this problem
it is inevitable to assure an appropriate and effective control strategy which is for
realize the grade transitions and eliminate the effect of the disturbances as soon as
possible. As Model Predictive Controllers (MPCs) are designed for handling these
issues by defining an optimization problem, the application of MPCs is the lower
level of the previously mentioned multilevel optimization problem.

Unfortunately, it is very difficult to find the right tuning parameters of the
controllers in the whole operation range because of the nonlinearity of the process,
and identified models (for MPCs) from input-output data are mostly linear.

Since these control systems are relatively expensive (limitedly accessible), the
right parameters of the production (e.g. set-points, tuning parameters of controllers,
valve positions) are determined experimentally using the intuition of engineers.

One of the common experimentation approaches is one-variable-at-a-time
(OVAT) methodology, where one of the variables is varied while others are fixed.
Such approach depends upon experience, guesswork and intuition. On the contrary,
the statistical tools like design of experiments (DoE) permit the investigation
of the process changing of factors-levels simultaneously using reduced number
of experimental runs. Such approach plays an important role in designing and
conducting experiments as well as analyzing and interpreting the data. These tools
present a collection of mathematical and statistical methods that are applicable for
modeling and optimization analysis in which a response or several responses of
interest are influenced by various designed variables (factors) [50].

Modern optimal control and operation of a thermal plant and district heating
network shall be a great project and the phenomena are highly similar to
multiproduct chemical plants, especially if environmental aspects taken into
consideration [68] and [69]. District heating networks (DHNSs) could provide an
efficient method for house and space heating by utilizing residual industrial waste
heat. In such systems, heat is produced and/or thermally upgraded in a central
plant and then distributed to the end users through a pipeline network. To reach
environmental, operational and economical goals, proper and detailed description

of the process is clearly needed like in [70] and [71]. Optimal operation means to
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meet the consumers’ and environmental requirements and at the same time fulfill
the restrictions to make the operation of the plant safe.

Optimal control strategies meet these restrictions and at the same time minimize
operational costs and environmental effects like described in Molyneaux’s work
[72]. Model predictive control (MPC) methods are highly applicable for these
purposes since the formulation of the objective function might imply every aspects.
The whole network has to be modeled, as MPCs require proper process model. The
control strategies of these networks are rather difficult thanks to the non-linearity of
the system and the strong interconnection between the controlled variables. That is
why a non-linear model predictive controller (NMPC) could be applied to be able
to fulfill the heat demand of the consumers.

The main objective of this section is to propose a tuning method for the applied
NMPC to fulfill the control goal as soon as possible. The performance of the
controller is characterized by an economic cost function based on pre-defined
operation ranges. A methodology from the field of experiment design is applied to
tune the model predictive controller to reach the best performance. The efficiency of
the proposed methodology is proven throughout a case study of a simulated NMPC
controlled DHN.

4.1 District heating networks as motivation example

District heating was promoted in Europe in the 1950s. Nowadays EU-CHP
Directive could assure the legal framework for applying district heating for member
states of the European Union. District heating network is implemented to utilize
the heat generated by the combustion of city waste or industrial waste heat. Thanks
to the efficiency and environmental friendly characteristics, the role of the district
heating is still increasing [73]. The main advantages of district heating systems are

the following:

1. Energy efficiency thanks to the simultaneous generation of heat and electricity

in combined heat and power plants (CHPs).

2. Environment friendly by implementing renewable energy sources and

utilizing industrial waste heat.

Several variations exist for district heating networks: the district heating

network includes several consumers located in different areas like in [74], it can

59



contain an energy storage like in [75] or even lacks of thermal energy supply like
in [76]. In some cases not just the local DHNs should be analyzed but the whole
national DHN system, to investigate the sensitivity of the network to e.g. policy or
even fuel price changes [77].

Model based control strategies (MPCs) are highly applicable for satisfying
various control goals since the formulation of the objective function might imply
every aspects. Model types of a district heating network in the literature can be a
physical description of the heat and mass transfer in the network, like [78] and [79],
and utilize node method like in [80]. There can be another approach, based on a
statistical description of the transfer function from the supply point to the critical
point considered. The forecast methodology proposed in [81] and [82] is to set
an ensemble of ARMAX (auto-regressive moving average with exogenous input)
models with different fixed time delays, and to switch between models depending
on some estimated current time. In [83] the grey-box modeling approach combines
physical knowledge with data-based, statistical modeling. Physical knowledge
provides the main structure and statistical modeling provides details on structure
and the actual coefficients/ estimates.

In this chapter the aim is to reduce the transition time in a non-linear model
predictive controlled DHN by tuning the parameters of the non-linear MPC. The
efficiency of the controller is measured by a cost function considering the limits
of desired operation regime. To maximize this cost function the simplex method
is applied, which is a well-known method in field of experiment design. This
optimization method is able to handle mixed-integer optimization problems, which
is needed because of the integer values of prediction and control horizon. Since
there are periodic characteristics of heat demand, the proposed methodology can be
easily inserted into an iterative learning control scheme ([84]).

The chapter is organized as follows: the topology of the district heating network
will be described in Section 4.2. The applied MPC solution and the tuning method
are introduced tn the second part of Section 4.2 and then control and optimization

results will be examined in Section 4.3.
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4.2 Modeling and control approach of a district

heating network

4.2.1 The applied topology and modeling approach

The topology of the examined district heating network is presented in this section.
The topology depicted in Figure 4.1 is chosen to represent the main characteristics
of a district heating network. The network contains two heat production units, three
consumers, two pumps and a valve. The production unit, called Producer 1, is the
base load boiler, which may represent e.g. a waste incineration plant. The other
production unit, called Producer 2, is the peak load boiler station, which has to
satisfy the increased heat demand in the network, especially in case of Consumer 3.
HX1 and HX2 heat exchangers are for transfer the produced heat from the primary

circles to the secondary circle, which distributes the heat to the consumers directly.

J

e
Producer 1 Q

Input 1

in Consumer 3
Input 3 Output 3

Figure 4.1: Topology of the district heating network

The model of this network is developed using the method of [78], which applies
the physical description of the heat and mass transfer in the network. Structural
approach is used to obtain a convenient global model: considering the complexity
of the system, local models of the components of the network are established and

then brought together.

Heat exchangers

In order to get the proper dynamic behavior of the heat exchangers an approach
using a cell model with ordinary differential equations was chosen [10]. The heat

exchanger was divided into perfectly and instantly mixed tanks, each featuring a
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hot side and a cold side element (Figure 4.2). The logarithmic mean temperature
difference of the heat exchanger is approximated more accurately as the number of
cells increases. It is assumed that each cell is perfectly homogenous, and no back-
mixing occurred. Also, the mixing is instantaneous. In our model five cells were

used on the hot side and five cells on the cold side.

Thou

Figure 4.2: Cell model of the heat exchanger

The differential equations for the cells are shown in Eq(4.1) and Eq(4.2).

Hot side cell model:

thpCpTh (Z)

e = Vipe,(Ta(i = 1) = Ti(0))

—UA(Tp(z) — T.(2)) 4.1)

where V}, is the volume of a cell on the hot side of the heat exchanger, p and ¢,
are the density and the heat capacity of the fluid, respectively, 7}, (7) and T.(i) are
the temperature on the hot and cold side in the i** cell of the heat exchanger, A is
the area for heat transfer in a cell. To avoid the excessive complexity of the network
the resistance of the wall is included to the heat transfer coefficient (U).

The cold side cell model is the following:

dVepe,T,(i)

St = Vepey(Tu(i 4 1) = Tuli))

+UA(Ty (i) — T.(3)) 4.2)

where V, is the volume of a cell on the cold side of the heat exchanger, any

further notations means the same as above.

Heat production units

The heat production units have been similarly modeled to the heat exchangers; the
only difference is that only the cold side has been divided into cells.
Eq(4.3) represents the model of a cell (N is number of the cells, () is the

transferred heat):
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Figure 4.3: Cell model of the production unit

= Vapey (T2 — 1)~ To(i) + 2 43)

dVe.pc,T,(i)
dt

This simplification can be applied because since it is not important how the heat
has been produced in the considered network just the quantity and distribution of
the invested heat is significant. Detailed description of modeling approach a heat

producer e.g. a CHP could be found in [85].

Pipelines

Pipeline network has significant effect on the operation of the considered DHN.
This effect must be taken into account already in the piping network design ([86]).
In order to model the pipelines of a DHN, two crucial effects have to be taken
into consideration: the heat loss on the pipes could not be neglected. A more
important factor, the dead time between both ends of the pipe must also be taken
into consideration. The thermal energy propagation in pipes can then be modeled

by a partial differential equation ([78]).

I+ m(t)@_T<x )+ 2U
ot mpR2 0x cppR?

(T(z,t) —Ty) =0 4.4)

where 7' is the temperature, m is the mass flow in the pipe, p is the density of the
fluid in the pipe, R is the radius of the pipe, U is heat transfer coefficient on the wall
and 7} is the ambient temperature. This equation leads to the solution presented in
Eq(4.5 ([78]):

_2U
Tout<t) =T+ (Tm(t _ to(t)) _ To) e cppR? (t—to(t))

(4.5)

As the thermal losses on pipes are assumed very low, the previous equation is
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approximated by the following expression:

2U
Ty ~ Ty + (Ton (t — to(t)) — Tp) - (1 —
ST (- (o) - 1) (1- )

2U
~ Ton(t — to(t)) - (1 - cppR2) (4.6)

The computation of variable time delays is time consuming. That is why
constant (and for instance nominal) time delays have been considered. This
approach allows modeling thermal propagation as a simple non-linear dynamic
system, which can be solved quickly.

The mechanical losses, pressure drop in pipes are modeled by:

v? L
Ap = g%ﬁ 4.7)

where L is the length of the pipe, £ is the mechanical loss coefficient and v is the
velocity of the fluid in the pipe (J7;) . Detailed modeling approach and description
of the topology can be found in [87].

4.2.2 Multilayer optimization for DHNs

Tuning of an MPC to get better control performance can be considered as a

multilayer optimization task. This problem is depicted in Figure 4.4.
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Figure 4.4: The layers of an economic optimization of an operating technology.
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This framework is rather similar to the Advanced Process Control (APC)
systems applied in process industry for online profit optimization [? ].

The main goal is to minimize the transition time between two operation regimes
from time to time. There is a need to formalize the problem first. The certain
operation regime shall be specified by defining the upper and lower limits. The goal
is to reduce the out-of-limits operation, which usually occurs during transitions.
If the considered operation limits are not violated, the operation can be called
appropriate. The linear cost function presented in Eq(4.8) is applied for measuring

the appropriate operation time.

No
E=) P Q" (4.8)
i=1

where N, is the number of consumers, P°" is the income (economic value in e.g.
USD) when the consumed heat at the i* consumer is inside the specification limits.
QJ" means the consumed heat is between pre-determined limits (its value is 1 when
inside 0 when outside the limits). This objective function shall be maximized by
optimizing the tuning parameters of the applied model predictive controller. That
is why there is a need to find a methodology which could handle mixed-integer
optimization problems. The objective function (Eq(4.8)) represents the upper layer
of the multilayer optimization problem. The MPC in the lower layer also formulates
an optimization problem, hence the whole process optimization approach could be

considered as a multilayer optimization problem.

4.2.3 Model predictive control of the DHN

Manipulated variables

The particular DHN described in Section 4.2.1 is considered in this section,. The
possible manipulated variables are: the invested heat in Production unit 1 and 2,
pump duty of P1 and P2 pumps and the valve opening. Since the P1 pump is chosen
to compensate the pressure drop of the heat exchangers and pipelines, the P1 pump
does not take part in satisfying the heat demand of consumers, so it was considered
to be controlled by a local regulator.

The pressure drop in the direction of the Consumer 2 and in the direction of
Consumer 3 must be the same. To reach this goal two manipulated variables can
be used: the valve opening and the pump duty of the P2 pump. These manipulated

variables are for determining the split ratio on the splitter and through this control
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the flow in the two directions to be able to transfer enough heat to the consumers.

Analysis of applied models

Creating a mathematical model for control purposes is a challenging task in every
MPC ([88]). In this case, since there were no real available operating plant, the
process was replaced by the process model. This is based on the physical description
of the DHN (called "A" model). "A" model is implemented in Simulink. In the
examinations, a process model without time delays is going to be utilized for
prediction (t, = 0 in Eq(4.5)-(4.6), but also based on the physical description
of the DHN). This model is implemented in Matlab and called "B" model. In
commercial MPCs, usually linear models have been applied for prediction (such
as Dynamic Matrix Controllers, see [89]). It is necessary to update the model
parameters regularly to keep the model valid in every operation range due to the
nonlinearity of the controlled system.

The application of two different models has an important advantage: it is
possible to simulate the situation when the model is not able to describe the
operating process perfectly. A non-linear model, based on the physical description
of the system is created to reduce the necessity of updating the model parameters
and extend the validity of the model in the whole operation range. The prediction
ability of the model is based on the "measurements" of the controlled system, which
are applied for parameter estimation purposes. The difference of the "operating
network" and the process model for prediction is caused by assuming a different
time delays as described previously.

To demonstrate the differences between the "operating network" and the process
model used in the MPC an examination has been carried out. The results of the

comparison shown in Figure 4.5 with respect to the same input signals.

Objective function and constraints of the model predictive controller

The first task is to define the possible manipulated variables, when creating the
model predictive control system of a district heating network. These variables
can be either continuous ([90]) or integer variables (e.g. boiler status ([91])).
In case of optimization this leads to a mixed integer optimization problem.
Solving an optimization problem like this is rather difficult, time consuming
and computationally demanding. In this example a simple non-linear sequential

quadratic programming (SQP) method with soft constraints will be applied to avoid
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Figure 4.5: The outputs of the "operating process" and process model to the same
input signal

the difficulty of mixed integer non-linear programming (for more details see [87]).
The solution to avoid the problem of mixed-integer optimization is to augment the
conventional objective function of MPC with the absolute values of manipulated
variables. To differentiate the importance of the manipulated variables different
weights shall be applied for them in the extended objective function (e.g. utilizing
heat invested from the base load boiler rather than applying the peak load boiler).
The objective function of the utilized MPC is formalized in Eq(4.9).

min ﬁZ (k+j) —y(k+4))*+

u(k+j)
aZu(k+j)2+’yZAu2(k+j— 1) (4.9)
j=1 j=1

where w is the setpoint signal, y is the controlled variable, u and Au is the
absolute value and the change of the manipulated variable, p, ¢, «, 3, 7y are the tuning
parameters of the MPC. The aim of the controller to fulfill the heat demand of
consumers. y means the transferred heat in the consumers, calculated based on the
difference of the outlet and inlet temperature of consumers on the cold side, Eq(4.2).
The control goal is reached by varying the implemented heat in the production
units. The transferred heat in the production units are symbolized by u the same as
denoted with @) in Eq(4.3). The performance of the controller highly depends on
its’ tuning parameters and the forecast of the heat demands. So the determination
of values of tuning parameters is crucial project in reduction of transition time.

In the case study, « is a vector with four elements: the weight for Producer 1 is 0,

67



since it is not necessary to punish the control actions of Producer 1. On the contrary
the weight of the control action for Producer 2 is non-zero, since it is important
to punish its’ control action, utilizing the heat sources in Producer 1 instead. The
situation is the same in case of the valve and the P2 pump since the control action of
the valve is preferred to the control action of P2 pump. + is a constant for punishing
the change of valve position.

In the created MPC framework SQP optimization method has been utilized
to minimize the objective function presented in Eq(4.9). The optimization in the
MPC has to be realized taking into account the constraints of the process. These
constraints express that the actuators have a limited field of action as well as
determined slew rate, as in the case of valves. The input constraints in this study are
formalized as in Eq(4.10).

u(k+j_1)_Aumax §u§u<k+]_1)+Aumagﬁ
j=1...c (4.10)

where c is the length of the control horizon.

Application of Internal Model Control scheme

There is an obvious model mismatch, shown in Figure 4.5. There are differences
between process outputs and model outputs both in transients and in steady state.
This mismatch motivated us to apply the Internal Model Control (IMC) scheme
([92]), depicted in Figure 4.6.

Process Outer loop
Model

wi()

Inner loop

Optimization

Process
Model

Figure 4.6: The scheme of the implemented non-linear model predictive controller

The IMC scheme is used in a modified form as follows. The IMC structure
modifies the set point signals during transitions significantly which leads to huge
overshoot during setpoint changes. Hence, it is not advantageous to apply this

scheme during the transitions. At the same time it is very useful to apply the
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IMC scheme to eliminate the steady state offset. So a trigger is implemented in
the optimization box to switch on and switch off the IMC scheme. The trigger is

formulated with the following expression:

S ME(i) — MEy(i — 1) _
7 <

where M E is the modeling error vector in i and (i — 1) sample time, E is

K 4.11)

length of the modeling error vector, K is a constant. When the change of the model
error is smaller than a previously determined constant, the controlled variable is
relatively close to the set point. If this condition is fulfilled the IMC scheme will be

expected to switch on and eliminate the steady state offset.

4.2.4 Methodology for tuning parameter optimization

There are no common practices to determine the parameters especially in case of
punishment factors in the field of MPC tuning . A methodology has been introduced
In [93] to solve this problem based on the first order and dead time models of the
controlled object, but this method is valid only for linear MPCs.

Finding optimal tuning parameters might have numerous approaches: (i)
based on pure engineering experience, (ii) using goal oriented optimization
methods which can imply engineering experience, (iii) using pure simulation based
optimization approach. Pure engineering experience is obviously not enough to find
optimal tuning parameters, however essential to yield the parameter combination
which assure safe operation. Approaches, which imply engineering experience, is
the most transparent way of controller tuning, since control engineers can pair effect
of changes in tuning parameters and their result. Pattern search methodologies can
satisfy this need with determining the quantity and direction of changes in tuning
parameters. Beside this, this tuning approach does not require detailed process
model to find optimal parameter combination as simulation based optimization
does. As MPC tuning is a mixed-integer optimization problem, it needs different
tricks to find optimal tuning parameter combination: e.g. optimization in two
rounds: determine optimal value of the integers first and then optimizing by the
rest of parameters or using different relaxation methods. Both of the approaches
leads to loose of transparency.

In our tuning approach the well-known simplex methodology was employed
to maximize the objective function of Eq(4.8) with varying the tuning parameters

of model predictive controller. This methodology is widely applied in field of
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experimental design ([94]). The simplex method consist of the following steps:

1. In case of M pieces of variables, M + 1 pieces of experiments are necessary
to be carried out to create the initial simplex. In this paper M/ = 6 since the
following tuning parameters shall be adjusted: « (except the weight of control

action of Producer 1), v, p and c.

2. Evaluation of objective function at the peaks of the simplex. With reflecting
the peak with the lowest value (since maximizing Eq (4.10)) to the opposite
hyperplane defined by the residuary peaks, the parameters of the new

experiment is found.
3. The obtained parameters is used instead of the reflected peak.
4. Carrying out the experiment with the new parameters.

5. Continue the reflection (Step 2 and Step 3) and determine the value of
extension or contraction coefficient. Stop if the value of the objective function

reach the desired value.

The equation for the procedure of reflection can be written:

M+1

X%w:%-gxi—(k+%)-xm (4.12)

Where M is the number of optimized variables (the length of x), x; stands for
the coordinates of the simplex before reflection, x,, is the parameters of the simplex
with the worst value of objective function and A is the extension or contraction
coefficient.

The convergence of simplex methodology (or Nelder-Mead approach) has been
examined in details by Lagarias et al. in [95]. They found this method might have
failed to get the optimal solution even in simple, low dimensional optimization
cases. The other remark in their investigation is a huge advantage of this pattern
search method: it can decrease the value os the cost function very fast. Practically
in controller tuning, there is no need to find the optimal solution, but finding a much
better tuning parameter combination is much more important, which makes simplex
methodology suitable for this purpose.

As pattern search algorithms do not need the gradient of the cost function
respect to optimization parameters, most of them are suitable for this controller
tuning approach. Kiraly et al. ([96]) used Mesh Adaptive Direct Search (MADS)
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methodology ([97]) in finding optimal operation points for different controllers
respect to pre-determined constraints (standard PI controller and an MPC). Full
factorial plans of experimental design can also be applied for this reach the tuning
goal. What is common in these methodologies: pattern search algorithms enable us
to tune controllers with setting optimization parameters manually after evaluation
of the cost function. Experience of control engineers can also be implied into the

tuning process this way.

4.3 Results and discussion

In the case study the main goal is to maximize the cost function (formulated in
Eq (4.8)) by tuning the MPC. We have to define low and high limits to highlight
the range, where we consider the operation is fulfilling the requirements. In this
particular case 1% of the setpoint is considered as acceptable distance from the
desired operation value. The tuning parameters are values of the prediction and
control horizons and values of « and 7y in Eq (4.9). These parameters represents the
search space where the simplex methodology is applied.

In the optimization scenario seven simulations have been executed to initialize
the simplex, and five more to improve the control performance. Four more
experiments were evaluated to prove that the optimum solution was reached. During
these experiments the simplex seemed to rotate around, which indicates that the
maximal value of objective function (Eq (4.8)) was reached.

The performance of the controller with initial and tuned parameters have been

compared graphically first, in Figure 4.7 and Figure 4.8.
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Figure 4.7: Comparison of the transitions in outputs with initial parameters (dashed
line) and with the experimentally determined parameters (dotted line)
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Figure 4.8: Comparison of the transitions in inputs with initial parameters (dashed
line) and with the experimentally determined parameters (dotted line)

The time demand of the transition is shortened. Although a badly tuned MPC
is also capable of performing the transition, the optimization of tuning parameters
is necessary. The parameters of the MPC determine how effective the de-coupling
of the process variables is, which is presented throughout the example of Consumer
2. In this case the regulator could not eliminate the effect if there is a transition at
Consumer 1. In the optimized case the heating network fulfills the requirement of
Consumer 1, 2 and 3 more than 63 %, 52% and 57% of the examined time horizon
(it is the on-specification time in the considered period.) In case of initial guess,
these ratios were 50%, 45% and 52%, respectively. It has another advantage as
well, because the MPC tuned with the proposed method eliminates the effect of
changes in the heat demand of other consumers, quite effectively.

As a second comparison, traditional Integral of Square Error (ISE) and Integral
of Absolute Error (IAE) performance metrics are computed. These metrics
aggregate difference between setpoint and controlled value over a considered time
period. Hence these metrics can be considered stricter than Eq (4.8), since every
perturbation from the setpoint has been taken counted. Values of the metrics and

comparison of the optimized and initial tuning have been summarized in Table (4.1).

Table 4.1: ISE and IAE metrics for the considered control scenario

Metric Tuning method | Consumer 1 | Consumer 2 | Consumer 3
ISE (*10%) | Initial guess 1.75 4.61 2.82
ISE (*10%) | Optimized 1.65 1.90 2.27
ISE (%) | Spimdl 95 41 80
IAE (*10°) | Initial guess 1.66 2.75 1.98
IAE (*10°) | Optimized 1.28 1.70 1.83
IAE (%) | Spimd 77 62 92
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By further investigation of Figure 4.8, less movement in manipulated variables
can be noticed. It indicates smoother transient between operation points. To
measure the total movement of each manipulated variable, the following expression
has been defined:

N
IDU, =) " abs(Auy) (4.13)

k=1
where [ DU,, means the integral of absolute value of the Au denoted by n over
the considered time horizon (k = 1, ..., N). The following result can be summarized

in Table (4.2), based on this metric:

Table 4.2: Total movement of manipulated variables (IDU) in the considered control
scenarios

Tuning method | Producer 1 | Producer 2 | Pump duty | Valve Opening
Initial guess 9.5%10° 7.5%10° 1.74%10° 500
Optimized 5.7%10° 5.1%#10° 1.65%10° 300

Based on the results above, the following statements can be made:

e a cost function (like Eq (4.8)) or a performance metric (like ISE or IAE) shall

be defined in the first step to measure MPC controller performance.

e simplex methodology is highly applicable to improve the value of the defined
cost function by varying MPC parameters simultaneously. It needs low

number of iteration for significant improvement.

e all the cost function and performance metrics showed remarkable

improvement in control performance by tuning the controller this method.

e quicker transition between operating points, quicker disturbance elimination

can be noticed.

e less movement in the manipulated variables which indicates smoother/ more

robust control actions.

4.4 Conclusion

A multilevel optimization approach of a district heating network has been presented
in this chapter. The main goal was to fulfill the heat demand of consumers as soon

as possible in a non-linear model predictive controlled DHN. To reach the goal
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of shortening the length of transients the first task is to create a cost function for
measuring the efficiency of control. This cost function is based on the income if the
consumers’ heat demands are fulfilled. The next step is installation of the non-linear
model predictive controller (NMPC). The model applied for prediction is based on
the physical description of heat and mass transfer. The internal model control (IMC)
scheme has been utilized to take the possible model error into consideration. The
optimal tuning parameter combination of the NMPC provides the shortest transient
time and the maximal income. The simplex method can be a good choice to find
these parameters as this method involves reduced number of experimental runs to
localize the optimal value of tuning parameters. The efficiency of the proposed
methodology has been shown by a case study where the transition time is decreased
by 10% .
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Chapter

Summary

Methods of technology development become wider and wider, thanks to the
information potential in enormous amount of archived process data. The
mathematical modeling and optimization approaches are used more and more
commonly beside the intuition and experience based tools. Beside the statistical
tools - e.g. SPC (Statistical Process Control), PCA (Principal Component Analysis)
based fault detection - more complex tools, which are based on the explicit
utilization of physical-chemical laws can assure the wide-spread assistance to
solve engineering issues. There is one common characteristic in all approaches:
successful application is based on the extraction of useful information from the
data storage and at the same time considering the relationship between input-output
process data, which means creating a proper process model.

The first step of every model based process development after the detailed
investigation of the considered process is the determination of followed modeling
method and creating the appropriate model structure. The model structure depends
on the purpose: e.g. the APC (Advanced Process Control) tools use linear, black-
box models, the OTS (Operator Training System) tools use non-linear first principle
models to describe the behavior of the process. The next step of the modeling
process is to estimate the model parameters which are based on the proper selection
of the input-output data slices. It is rather important that effects of misbehavior
and process faults have to be removed and periods of linear or non-linear operation
ranges have to be segregated. The selected data sets are used in every step of model
parameter estimation from identification to validation as well as they might have
huge impact on the results of the economic studies during the last steps in a model
based process development.

The aim of the thesis is to introduce some novel and innovative tools to
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segregate the process data in order to: (i) detect changes in linearity in input-output
correlation, (ii) help to select informative segments in model parameters estimation
process. Beside these tools an aspect of economic based process development
method is also investigated.

Locally linear correlation structure of input-output data can be changed by
faults, process misbehaves or switching operation point. The commercial industrial
fault detection tools are mainly based on PCA. As a first step during application
of these tools, a fault-free operation period is selected to create the PCA model.
Using this PCA model, the difference of the recently collected process data and the
predicted process value by the PCA model is computed and determined if a possible
fault occurred. In case of using the proposed dPCA based time-series segmentation
methodology, we can extend our field of interest, during data-processing. There
might be double types of goals: (i) fault detection and (ii) detecting the changes
in the linear relationship of input-output process data. They sound similar but
there are important differences. By detecting changes in the correlation structure
of input-output data, we are interested in finding time-periods in which different
linear relationship of input-output process data is valid. This information can
be highly appreciated and very well usable in the field of Advanced Process
Control applications. Goal oriented applications are developed for segmentation of
historical and streaming process data which widen the possible field of utilization.

After segregating the data of fault-free operation ranges, one of the first tasks is
the model building and model parameter estimation. Proper selection of operation
periods is inevitable to find time-frames with high information content to support
parameter estimation. To handle this problem the Fisher information matrix can be
a very powerful tool from Optimal Experiment Design (OED) toolbox. This matrix
contains the sensitivities of model output, which is basically the partial derivatives
of model output respect to the model parameters while considering a given input
sequence. Based on the Fisher information matrix, a novel, innovative time-series
segmentation method has been proposed which helps to segregate the operation
periods with high information content in the model parameter estimation process
with a pre-defined model structure. T the same time the information content can be
measured by E and D criterias from OED toolbox.

The other type of experimental design is the classical design of experiment
methodology (DoE) which can be effective applied in data-driven, economic
oriented process development. In this field, the Advanced Process Control

(APC) applications became wide-spread, which have the basis of Model Predictive
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Controllers (MPCs). The performance of these controllers highly depends on
the applied tuning parameters beside the prediction ability of the applied process
models. These tuning parameters have huge effect on the economic performance,
which can be measured by a goal oriented objective function. The economic
optimization by varying the tuning parameters is a mixed-integer optimization
problem. A new framework has been created to systematically get closer to the
economic optimum with considering the bottlenecks and operation limits of the
process. If the detailed process model of the considered process exists, it is possible
to determine the optimal tuning parameters in the design phase of the controller.
If not, the framework can be integrated into the iterative learning control scheme,
which provides the possibility to get closer to the economic optimum step-by-step

from one product cycle to an other.

5.1 New Scientific Results

1. Off-line and on-line time series segmentation algorithms were developed
with utilizing Dynamic Principal Component Analysis and recursive
covariance matrix computation to segregate homogeneous operating
ranges and detect faults, process misbehaves or operating point changes.
(Related publications: 4, 7, 12)

A potential possibility to improve operating technologies is to detect
homogeneous operation regimes and detect the occurrence of faults and
misbehaves, which might break the homogeneity. The only thing that is
given in this case is the process data and the assumption in which the linear
relationship of input-output data is supposed. This approach is one of the key
approaches in the application of model predictive controllers since these are

based on linear models, so validity of the models can be determined.

In analysis of correlation of process variables in multivariate data sets
principal component analysis (PCA) is wide-spread applied. Since time-
dependency of process data is not taken into account in traditional PCA,
dynamic PCA is applied to handle this problem, where the data matrix -
constituted from input-output process data - is augmented with the values
collected in the previous sample times. As PCA is a statistical methodology,

high quantity of data is necessary to be able to compute covariance matrices,
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which is an obstacle in the accurate detection of the occurrence of faults. A
new covariance matrix has to be computed in every sample time to improve
the resolution. The recursive computation method of covariance matrices is
applied where actual process samples and the covariance matrix computed in
the previous sample times are used to calculate the recent covariance matrix.

Hence, we get a time-series of covariance matrices as a result.

A key element of recursive computation is the forgetting factor, which is for
weighting the recently collected process data against the previously computed
covariance matrix. The effective, Fortescue et al. defined, variable forgetting
factor is applied to assure the quick adaptation of the covariance matrices
to recent operation range. The similarity of these matrices is defined by the
Krzanowski measure in the time-series of covariance matrices, which is the

cosine of the angle of two dPCA models, practically.

Off-line and on-line multivariate time-series methodologies are developed
to detect the accurate time of the occurrence of faults and misbehavior
in historical and streaming process data by integrating these tools into
the classical bottom-up and sliding window segmentation techniques. The
developed framework is tested and examined throughout the benchmark

Tennessee Eastman process.

2. Utilizing the tools of optimal experiment design - Fisher information matrix,
D and E criterion - a novel time-series segmentation methodology has
been developed in which the historical process data can be segmented
to highlight time-frames with high information content regarding to
parameter estimation process of a mathematical process model with pre-
defined model structure. (Related publications: 1, 5, 10, 11)

As mathematical models of chemical processes become more and more
wide-spread, there is a huge demand to predict the process behavior more
and more effectively. The keystone of these solutions is to determine
the appropriate model parameters in the considered operating range. In
this model development step, we focus on the proper selection of input-
output data slices. Two options are available to reach data slices with high

information content: (i) to design and carry out proper experiments which are
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time-consuming and cost demanding or (ii) the other way is to segregate these

data sets from historical process data.

There are tools for determining the information content of a particular input-
output data set. These tools are based on the Fisher information matrix
which is constituted from partial derivatives of model outputs respect to
model parameters (sensitivity equations) using a considered input data set.
D and E criterion can be calculated to measure the information content of the

considered input data set based on the Fisher information matrix.

The Fisher information matrix implies the information content of a given data
set but at the meantime it can prove additional information about direction of
the information content in the parameter space of considered set of model
parameters. This helps to segregate the process data segments which have
the same aggregate information content (calculated with D or E criterion),
but the model parameters in the parameter set have different contribution to
aggregate information content. This information is stored in the eigenvectors
of Fisher information matrix similarly to the eigenvectors of the covariance
matrix of PCA. With utilizing this feature, a novel time-series segmentation
methodology has been developed in which the similarity of the Fisher
matrices is determined with using the Krzanowski similarity measure. These
tools have been integrated to the classical bottom-up time-series segmentation
methodology to detect the changes the direction of information content in the

information space set by model parameters.

methodology is developed based on the classical experiment design
techniques which is effectively applicable for improving and optimizing
the operation of the already installed or design-phase model predictive
controllers. (Related publications: 2, 3, 6, 8, 9, 13)

In parallel with the development of the modern control systems there is a need
to calculate and maximize the economic benefit by implementing the most
recent control techniques. In the latest advanced control technologies, model
predictive controller are wide-spread applied. Setting the tuning parameters
of these controllers properly requires a highly experienced control engineer to
achieve the highest economic performance. These tuning parameters are even
more important in case of changing operating point to minimize the possible

off-grade product.
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The developed methodology is based on an economic objective function
which has aim of either cost minimizing or benefit maximizing. This is
also for measuring the control performance beside the applied controller
tuning parameters. It is shown that by utilizing the simplex methodology
of experiment design, the tuning parameter values of model predictive
controllers can be optimized in spite of the mixed-integer optimization
problem caused by the time horizons and suppression factors and at the

meantime the operation limits can be effectively considered.

The developed methodology can be applied in various stages of controller

design and development:

(a) 1. If the mathematical model of controlled process exists then is possible
to calculate the economic performance in an operating point or grade
change with a defined tuning parameter set using the control system
- controlled object simulator. Integrating this simulator and economic
cost function with the simplex methodology, it is possible to determine
the tuning parameter set which provides the highest economic benefit in

a considered scenario.

(b) 2. If the mathematical model of the operating process is not
available then inserting the tools of classical experiment design and the
economic cost function into the iterative learning control scheme, tuning
parameters of the controllers can be set manually and the economic

performance can be improved from one production cycle to another.

5.2 Future Work

The proposed algorithms and results have the potential to follow further, interesting

research field.

e To support recently applied engineering techniques, integration of dPCA and
Fisher based time-series segmentation method can be a huge advantage, e.g.
in design phase of APC projects. It means the collected data from DCS can
be first segmented by linearity point of view and then the resulted segments

can be segregated using the Fisher information matrix based algorithm to
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select the most informative periods. A user friendly implementation of this
integration can be shorten the time-consumption of the step test phase in
which the operating process is disturbed to be able to collect data for model

parameter estimation.

An interesting research field can be the utilization of Independent Component
Analysis (ICA) and its dynamic version in fault detection and time-series
segmentation. ICA can be used to describe the relationship between input-

output process data instead of using PCA.

A huge disadvantage of PCA based time-series segmentation is to lack of
the ability to determine the reason of the occurred fault, just determining the
time of occurrence. Similarly to the Artificial Immune based fault detection
methods, it might be useful to investigate the possibility to extend the PCA
based time-series segmentation to be able to detect the reason of the change

in linearity e.g. using supervised learning techniques.

Beside the time-series segmentation methods, the further investigation of
simplex based optimization method can be also useful, since the possible
application ways of the historical process data e.g. in the initialization phase,

have not been examined in details.
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Chapter

Osszefoglald

6.1. Bevezetés

Napjaink vegyipari technoldgidit lassan kivétel nélkiil szamitégép feliigyelte
irdnyitérendszer segit iizemeltetni. Ezen rendszerek azonban mar nem csupdn
az alapvet$ szabdlyozdsi feladatokat latjak el, hanem feladatukkd valt a m{ikodés
kozben keletkezett folyamatadatok tdroldsa, naplozdsa is. Ennek kovetkeztében
az lizemmenet sordn lenyligdz6 mennyiségli adatot - ezen keresztiil informéciét -
rogzitenek.

Ennek koszonhetéen a technoldgiafejlesztési modszerek
tdrhaza is boviilni kezd, hiszen az eddig haszndlt tapasztalati eszkozok mellé
felsorakoznak a matematikai modellezés €és optimalizdlds metddusai. A statisztikai
eszkozok - pl.: SPC (Statistical Process Contol), PCA (Principal Comonent
Analysis - F6komponens-elemzés) alapd hibadetektdlds - mellett a fizikai-kémiai
Osszefiiggéseket explicit médon felhasznal6 alkalmazasok széles skaldja biztositja a
kiilonb6z6 mérnoki feladatok hatékony megoldésat, a technoldgia fejlesztését. Ezen
technikdkban pedig egy mindenképpen kozos: az eredményes felhasznélds zaloga
az éppen gy(ijtott illetve mar tarolt adatokban rejld informdci6 kiakndzdsa ugy, hogy
a folyamat bemeneti és kimeneti adatai kozti Osszefiiggéseket is vizsgaljuk, azaz
modelleket készitiink.

Minden modell alapi fejlesztés elsé 1épése, a technoldgia megfeleld
megismerése utdn, a kivant modellezési it meghatdrozdsa és a modell alapvetd
struktdrdjanak kialakitdsa. Ezen struktrira megalkotdsa az adott cél fiiggvénye:
az APC (Advanced Process Control) eszk6zok altaldban linedris modelleket,

mig pl. az OTS (Operator Training System) eszkdzok nemlinedris, fehér
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doboz modelleket haszndlnak. Minden modellezési feladat kovetkezd 1épése a
modellparaméterek meghatdrozasa, amihez ki kell vdlogatni a megfeleld bemenet-
kimenet folyamatadatokat. Ez nehéz feladat, hiszen ki kell gyomldlni az adott
miikodési zavarok idOszakait, meg kell hatdrozni a megfeleloen linearis vagy
nemlinearis mlikodési periddusok adathalmazait. Ezen adathalmazok végigkisérik
a modellezés 1épéseit az identifikdlastol kezdve a validdlasig, de fontos szerepet
jatszthatnak végsd alkalmazds gazdasdgossagi vizsgalatdnak eredményében is.

A dolgozat célja olyan innovativ eszk6zok bemutatdsa, amelyek a gydjtott
folyamatadatok szegmentdldsdval segitik a milikodési zavarok id6szakainak
elkiilonitését, detektdljdk a bemenet-kimenet adatok kozti linedris korreldcid
megvaltozasit, illetve tamogatdk a paraméteridentifikdlds sordn sziikséges
informativ adathalmazok szegregécidjat, emellett a folyamatadatok elemzésén
alapuld, gazdasigi eredmény elemzését figyelembe vev technoldgiafejlesztést.

A kereskedelmi forgalomban 1évd hibadatektdldsi metédusok j6 része PCA
alapu.Els6 1épésként kivalasztanak egy garantéltan hibamentes miikodési periddust,
aminek adatait felhasznalva kialakitjadk a PCA modellt. A tovdbbiakban Osszevetik
a PCA alapu eszkoz altal predikalt illetve a folyamatbdl gy(jtott kimeneti adatokat
és a kettd kiilonbsége alapjan dontik el, hogy hiba bekovetkezett-e vagy sem. A
dolgozatban bemutatott PCA alapu id6sorszegmentdlds sordn a cél kettSs lehet:
(i) hibadetektalas illetve (ii) a bement-kimeneti adatok kozti linedris kapcsolat
megvaltozadsa. Ez el6bbi haszna nyilvanvald, mig az utébbi segit azon idészakaszok
elkiilonitésben, ahol a bement-kimeneti adatok kozt linedris kapcsolat all fenn.
Ezen informéci6 példaul az Advanced Process Control (APC) alkalmazédsokban
eredményesen felhasznélhat6. Koszonhetéen annak, hogy mind on-line és off-line
id6sorszegmentaldsi médszert bemutattuk, igy az alkalmazasi lehet6ségek tarhdza
is boviil, hiszen mind hisztorikus, mind on-line adatok is elemezhetdvé valnak.

Megfelel6 hibamentes adatok birtokdban a modellek struktirdjanak
megalkotdsa utan az egyetlen feladattd a modellparaméterek becslésehez sziikséges
informécidgazdag id8szakaszok elkiilonitése valik. Ehhez a kisérlettervezéses
Optimal Experiment Design (OED) eszk6zok tarhdzabol kolcsonzott Fisher-
informdcids maétrixot hivtuk segitségiil. Ezen métrix tartalmazza az adott bemeneti
szekvencia mellett a modellkimenet paraméterérzékenységét, azaz a kimeneti
v’altozék paraméterek szerinti parcidlis differencidlhdnyadosait. Ezt integrdlva a
klasszikus id6sorszegmentéldsi eljardsaba egy Uj, innovativ idésorszegmentalasi
eszkOzt mutattam be, amely segitségével adott, elére meghatdrozott modelstruktira

mellett a paramétermeghatdrozas szempontjabdl informdciégazdag szegmensek
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elkiilonithetdk és az informdcidtartalom az OED-bdl ismert E és D kritériumok
segitségével mérhetdvé vilik.
Mindezek

mellett a kisérletes optimalizélds eszkozei is hatékonyan hasznalhatok az adatalapi
tecnologifejlesztés sordn a gazdasagi hatékonysagnovelés egyik eszkdzeként. Ezen
a teriileten leginkdbb elterjedté az APC alkalmazdsok véltak, amik alapjat a modell
prediktiv szabdlyozok (Model Predicitve Controller - MPC) képezik. Az MPC-
k hatdsossdgat - a modellek predikcids képessége mellett - nagyban befolyésolja
a szabdlyoz6 paramétereinek megfeleld bedllitdsa. Ez jelentds hatdssal van a
gazdasagi jellegli célfiiggvénnyel mérhetd teljesitményre, ami a folyamatadatok
ismeretében szamithatd. A nehézséget altaldban az okozza, hogy az MPC-k
hangoldéparaméterei kozt vannak olyanok, amelyek csak egész értékeket vehetnek
fel. A gazdasdgi jellegli célfiiggvényt a kisérletes optimalizdlds eszkozeivel
integralva (szimplex moddszer, teljes faktoros tervek) egy hatékony keretrendszert
mutattam be, amely a hangoldparaméterek valtoztatasdval szisztematikusan halad a
gazdasdgi optimum irdnydba a technoldgiai korlatokat és sziik keresztmetszeteket
is figyelembe véve. Abban az esetben, ha a szabdlyozott objektum modellje
rendelkezésre dllna, tigy mar a tervezés szakaszaban meghatdrozhatok az optimalis
szabalyozoparaméterek. Ha azonban ez nem lehetséges, ugy az iterativ tanuld
szabdlyozasi sémat haszndlva, 1épésrol-1épésre haladhatunk a gazdasagi optimum

felé gyartasi cikulsrdl-gyardasi ciklusra.

6.2. Ujtudomanyos eredmények

1. Kimutattam, hogy a miikodé technolégiak folyamatadatait tobbvaltozos
idosorként kezelve a dinamikus fokomponenselemzés és rekurziv
kovariancia matrix szamitas eszkozeit alapul véve olyan on-line és off-
line médon alkalmazhaté idosorszegmentalé eszkozt fejlesztettem, amely
alkalmas az esetleges zavarasok, meghibasodasok, illetve egyéb ok okozta
miikodési tartomany valtozasok detektalasara és a homogén miikodési
tartomanyok elkiilonitésére.

(Kapcsolédo publikaciok: 4, 7, 12)

A mikodd technoldgidk egyik fejlesztési lehet6sége a homogén miikodési

tartomdanyok feltdrdsa és a kiillonb6z6 miikodési tartomédnyok elkiilonitése és

84



az ezeket okoz6 zavardsok és meghibdsodasok iddpontjainak meghatdrozasa.
Ennek célja a zavards, meghibdsodds okdnak kideritése vagy csupan az
adott bemenet-kimenet adatok kozti linearitds véltozasdnak detektdldsa. Ez
leginkébb a lindris modell prediktiv szabalyozdk alkalmazasakor nyer igazén
értelmet, hiszen az alkalmazott linedris modell adott m{ikodési tartomdnyban

validitasat vagy elvesztését jelzi.

A tobbvaltozos
adatsorokban a véltozok kozti kapcsolatok vizsgalatira elterjedt médszer
a fékomponens elemzés (Principal Component Analysis - PCA). Mivel
ez a statisztikai médszer nincs tekintettel a folyamatadatok idébeliségére
igy ezek figyelembe vételére a dinamikus f6komponens elemzést (dynamic
PCA - dPCA) alkalmaztam, ahol az eredeti adatmaétrixot kiegészitik az
el6z6 idGpillanatokban mért folyamatadatok értékeivel. Statisztikai médszer
lévén a kovariancia matrixok szdmitdsdhoz nagy szdmu adat sziikséges,
ami a zavardsok id6pontjdnak pontos detektdldsdndl hatranyt jelent, igy
felbontas novelésére felmeriilt az igény arra, hogy minden mintavételezéskor
rendelkezésre dlljon egy kovariancia matrix. Ennek szdmitdsara a rekurziv
megkozelitést hasznaltam, ahol az el6z6 mintavételezési iddbeli kovariancia
matrix és az aktudlis mintavételezési id6pontban gydjtott folyamatadatok
segitségével kiszamithat6 az aktudlis mintavételezési idGpontbeli kovariancia
matrix.  Ezzel minden mintavételezési id6ben rendelkezésre all egy
kovariancia matrix. A rekurziv szdmitds egyik paramétere a felejtési
tényez6, ami az el6z6 mintavételezési idében kalkuldlt kovariancia matrix
€s az aktudlis folyamatadatok sulyozdsara szolgdl. A kovariancia matrixok
gyors és hatékony adapticidjdhoz a Fortescue féle véltozo értéki felejtési
tényez6t haszndltam. A kovariancia matrixok alkotta id6sorban a matrixok
hasonlésagéat a Krzanowski-féle hasonlésagmértékkel hatdroztam meg, ami
gyakorlatilag a dPCA modellek 4ltal reprezentalt hipersikok bezart sz6gének
cosinusanak kiszamitasa.

z_ 2

Ezeket az eszkozoket a bottom-up (lentrdl felfele torténd) €s a sliding window
(cstiszoablakos) iddsorszegmentdldsi technikdkba integrdlva off-line illetve
on-line idGsorszegmentéldsi algoritmust fejlesztettem, amik segitségével
naplézott illetve valds idejl folyamatadok alapjdn azonnal detektdlhaté az
esetleges zavards, meghibasodds. A kialakitott keretrendszer miikodését egy

benchmark példan, a Tennesse Eastman probléman is megvizsgaltam.
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2. Az optimalis Kkisérletek tervezésekor hasznalt Fisher informaciés matrix
és az ezen alapulé D és E Kkritérium segitségével olyan alkalmazast
készitettem, amely a miikodo technolégiakban gyiijtott bemenet-kimenet
idosorokat olyan homogén idosorszegmensekre bontja, amelyek egy
folyamatmodell adott paraméterkészletének identifikalasakor eltéro
informaciétartalommal birnak.

(Kapcsolddo publikaciok: 1, 5, 10, 11)

A folyamatmodelleken alapul6 eszkozok
alkalmazds’anak elterjedésével egyre n6 az igény a megbizhatéan miikodo,
a folyamatot jol reprezentdlé6 modell elkészitésére. Ezek egyik sarokkdve
a modellparaméterek pontos meghatarozdsa. A paraméteridentifikdcio egy
kulcspontja pedig azon bemenet-kimenet adasorok elkiilonitése és biztositasa,
amelyekbdl a modellparaméterek pontosan meghatdrozhatdk, azaz adatsorok
informdcioban gazdagok legyenek. Ezen adatok biztositdsdnak egyik
moédja a megfeleld kisérletek tervezése €s kivitelezése, ami id6-, eréforrds-
és tOkeigényes, mdasik modja pedig a naplozott folymatadatokbol vald

informécidgazdag id6sor részletek elkiilonitése.

Az optimdlis kisérletek tervezésekor haszndlt eszkozok segitségével egy
adatsor informécidtartalma meghatarozhaté. Ezek alapja a Fisher informécids
matrix, amely a modellkimenet modellparaméterek szerinti parcidlis
derivaltjaibdl (érzékenység egyenletekbdl) szdmithaté adott bemeneti adatok
mellett, igy a bemeneti adatok informdciétartalméara vonatkozéan kapunk
egyfajta kovariancia matrixot. A Fisher informéciés matrixb6l pedig a D
és E kritériumok segitségével egy skalar mér6szdmmal meghatdrozhaté az

informdcidtartalom nagyséiga.

A folyamatb6l gy(jtott hisztorikus adatokat felhaszndlva minden
mintavételezési idépontban kiszdmitottam az érzékenység egyenletek alapjan
a modellkimenet paramétervéltozdsra torténd érzékenységét, egy parcidlis
differencidlhdnyadosokbdl 4116 iddsort kaptam. Az igy kapott idsor alapjan
generdlhat egy Fisher informdcidés matrix id6sor, amik alapjdn a D és E

kritériumok értéke kiszamithato.

A Fisher informéciés matrix azonban az adott paraméterkészlet esetén
nem csupdn a paraméterkészletre vonatkoz6 informécidtartalom nagysdgara,

hanem a paraméterkészlet terében az irdnyara vonatkoz6 informdcidkat is
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tartalmaz. Ezen informdaciét a PCA kovariancia maétrixdhoz hasonléan
a sajatvektorok hordozzdk és bemutattam, hogy igy lehetévé vdélik az
ezeken alapul6 idésorszegmentélds is, ahol a Fisher matrixok hasonlésagat
a Krzanowski hasonldsagi
mértékkel hatdroztam meg. Ezt integrdltam a bottom-up idésorszegmentélasi
technikdba, igy egy off-line id6sorszegmentalasi eszkozt készitettem, aminek
segitségével az informdcidtartalom irdnynak megvéltozdsa az informécios

térben is detektalhato.

3. Olyan Kkeretrendszert mutattam be, ahol a Klasszikus Kkisérletes
optimalizalasi technikak hatékonyan és céliranyosan alkalmazhatok a
miikodo technolégiadk modell prediktiv alapa iranyirasi rendszerének
gazdasagi jellegii tervezésében, optimalizalasaban és miikodtetésében.
(Kapcsolédo publikaciok: 2, 3, 6, 8,9, 13)

A folyamatirdnyité rendszerek fejlédésével egyid6ben felmeriil a kérdés,
hogy a modern irdnyitasi rendszerek alkalmazdsdval nyert haszon hogyan
szamszertsithetd és ez a
haszon miként maximalizalhat6. Mivel a legdjabb irdnyitdsi rendszerekben
modell prediktiv szabdlyozok alkalmazdsa széles korben elterjedt, igy adodik
az igény azon hangoléparaméterek meghatdrozdsara, amelyek segitségével
a legkedvez6bb gazdasigi teljesitmény érhetd el. Kiilonosen fontos ez a
termék- és munkapontvaltasok esetén, ahol a cél pl. a legkevesebb selejtanyag
eldallitasa.

Az altalam kidolgozott eljards alapja egy gazdasagi jellegli célfiiggvény,
amely tartalmazza az elddllitott termék (mind a specifikiciot teljesitd és
nem teljesitd termék) értékesitési arat, az alapanyag beszerzési arit és a
gyartds kozben felmeriild egyéb koltségeket, amelyek alapjdn a gazdasagi
haszon maximalizdlhat6, az adott hangol6paraméterek 4ltal biztositott
gazdasagi teljesitmény mérhet6. Bemutattam, hogy a szimplex mddszer
alkalmazdsdval a modell prediktiv szabdlyozék hangoléparamétereinek
(predikciés horizontok és biintetd tagok) koszonhetéen a vegyes-egész
értékd optimalizéldsi feladat jOl kezelhetS, figyelembe véve a rendszerben

miikodtetése sordn felmeriild operativ korlatokat is.

(a) Amennyiben a szabdlyozott
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objektum matematikai modellje rendelkezésre 4ll és megalkothaté a
szabdlyozott rendszer - irdnyitd rendszer matematikai modellje dgy
szimuldcidval meghatdrozhatd, hogy a termék- és munkapontvéltdsok
az adott hangoldparaméterek hatdsdra milyen gazdasdgi eredménnyel
realizalédndnak. Ezt a szimuldtort a szimlex moédszer keretrendszerébe
helyeztem amivel meghatdrozhaté a legnagyobb gazdasdgi gazdasagi

haszonnal jar6 hangol6paraméter kombinacid.

(b) Amennyiben a szabdlyozott objektum matematikai modellje nem 4ll
rendelkezésre igy az iterative learning control sémaba behelyettesitve
az operdtorok a kiséletes optimalizdlds eszkozeit és a gazdasagi
célfiiggvényt haszndlva a hangoloparaméterek értékeit kiszdmolhatjak

€s manudlisan is bedllithatjak.

6.3. Tovabbi kutatasi lehetoségek

A dolgozatban bemutatott algoritmusok és a kapcsolddd eredmények szamos Uj

érdekes tovabblépési lehetdséget vetnek fel.

e A jelenleg alkalmazott mérnoki modszerek tdmogatdsira a dPCA és a
Fisher informéciés matrix alapi szegmentdldsi algoritmusok egymadsba
integralasa hatalmas segitséget jelenthet pl. Advanced Process Control
(APC) projektek kivitelezése kapcsan. Ez azt jelentené, hogy az
irdnyitérendszerbdl (Distributed Control System - DCS) gyfjtott adatok
el6szor a linearitds szempontjabdl szegmentédlhatok és az igy keletkezett
szegmensekben pedig a Fisher féle informaciés matrix alapjan elkiilonithet6k
az eltérd informdcidtartalmu periddusok. Ezek felhasznalobarat implentdldsa
az APC projektek egyik iddigényes 1€pését, a 1épéstesztelést nagyban
rovidithetné. A lépésteszt sordn a miikdodd technoldgia bemeneti valtozdin
egysegugrast gerjesztést alkalmaznak, hogy végiil a bemenet-kimenet

modellek identifikalhatok legyenek.

o Emellett érdekes kutatdsi teriilet lehet az Independent Component Analysis
(ICA) és ennek dinamikus valtozatanak hasznalata a hibadetektalds soran,
amikor is a PCA modell helyett az ICA eszkozok segitségével teremthetd

kapcsolat a bemenet-kimenet adatok kozt.
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e A dinamikus PCA alapd szegmentdlds egyik hédtrdnyaként emlithetd, hogy
a linearitds megvéaltozdsanak csak az id6pontjat adja meg, mig a kivalté okot
nem tudja meghatdrozni. Hasonl6an az Artificial Immune System (AIS) alapu
technikdkhoz, hasznos lehet megvizsgélni, hogy a PCA alapu szegmentalasi
algoritmus kiterjeszthetd-e a hiba valdszindsitett okdnak meghatdrozdsahoz is

a feliigyelt tanitdsi (supervised learning) technikdk segitségével.

o Az id6sorszegmentéldsi technikak mellett a szimplex
alapu szabdlyoz6éhangoldsi metddus tovibbfejlesztése is érdekes teriilet lehet,
hiszen a kordbbi miikddés soran gytjtott hisztorikus adatok felhaszndldsa a

pl. médszer inicializdlasakor nem keriilt részletes vizsgalatra.
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Appendix A

Tables 1n the thesis

Table A.1: Process disturbances for the Tennessee Eastmen Process

Case | Disturbance Type
1 A/C feed ratio, B composition constant Step
2 B composition ratio, A/C feed constant Step
3 D feed temperature Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature | Step
6 A feed loss Step
7 C header pressure loss - reduced availability | Step
8 A, B, C feed composition Random variation
9 D feed temperature Random variation
10 | C feed temperature Random variation
11 | Reactor cooling water inlet temperature Random variation
12 | Condenser cooling water inlet temperature | Random variation
13 | Reaction kinetics Slow drift
14 | Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking

16-20 | Unknown Unknown
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Table A.2: Process variables used for dynamic PCA

Output variables

A feed

D feed

E feed

A and C feed

Recycle flow

Reactor feed rate

Reactor temperature

Purge rate

Product separator temperature

Product separator pressure

Product separator underflow

Stripper pressure

Stripper temperature

Stripper steam flow

Reactor cooling water outlet temperature
Separator cooling water outlet temperature

Manipulated variables

D Feed

E Feed

A Feed

A+C Feed

Purge Valve
Separator Valve
Stripper Valve
Reactor Coolant
Condenser Coolant
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Appendix B

Publications related to theses

Articles in International Journals

1. L. Dobos, Z. Bankd, J. Abonyi. Qualifying and segmentation of historical
process data using optimal experiment design techniques for supporting
parameter estimation. Acta Electrotechnica et Informatica, Vol. 10, pp. 28-
32, 2010.

2. L. Dobos, J. Abonyi. Controller Tuning of District Heating Networks using
Experiment Design Techniques. Chemical Engineering Transactions, Vol.
21, DOI: 10.3303/CET1021239, 2010.

3. L. Dobos, J. Abonyi. Controller tuning of district heating networks using
experiment design techniques. ENERGY, DOI: 10.1016/j.energy.2011.04.014

4. L. Dobos, J. Abonyi. On-line detection of homogeneous operation ranges
by dynamic principal component analysis based time-series segmentation.
Chemical Engineering Science, Vol 75, pp 96-105, 2012.

5. L. Dobos, J. Abonyi. Fisher information matrix based time-series
segmentation of multivariate streaming data for supporting model

identification. Chemical Engineering Science, Vol 101, pp. 99-108, 2013.

Articles in Hungarian Journals

6. L. Dobos, J. Jaschke, J. Abonyi, S. Skogestad. Dynamic model and control of
heat exchanger networks for district heating. Hungarian Journal of Industrial
Chemistry, Vol. 37(1), pp 37-49, 2009.
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10.

1.

12.

13.

Refereed Presentations

L. Dobos, Z. Bankd, J. Abonyi. Optimal experiment design integrated with
time-series segmentation. Proceedings of the 8th International Symposium

on Applied Machine Intelligence and Informatics, pp 206-210, 2010.

. L. Dobos, J. Abonyi. Application of non-linear dynamic optimization in

advanced process control of product grade transitions of polymerization
processes. 20th European Symposium on Computer Aided Process
Engineering, pp 559-564, 2010.

L. Dobos, J. Abonyi. Controller tuning of district heating networks using
experiment design techniques. /9th International Congress of Chemical and
Process Engineering CHISA 2010, PRES 2010, 2010.

L. Dobos, J. Abonyi. Fisher information based time-series segmentation
of streaming process data for monitoring and supporting on-line parameter
estimation in energy systems. 21th European Symposium on Computer Aided
Process Engineering, pp 1844-1849, 2011.

L. Dobos, Z. Bankd, J. Abonyi. Segmentation based optimal experiment
design. 2009 Proceedings of the 10th International Symposium of Hungarian
Researchers, pp 279-289, 20009.

L. Dobos, J. Abonyi. Application of on-line multivariate time-series
segmentation for process monitoring and control. [/th International PhD

Workshop on Systems and Control, 2010.

L. Dobos, J. Abonyi. A novel economic oriented performance measure and
tuning method for model predictive controllers. Distributed Control Systems

16, International Scientific Workshop, 2011.
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