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Abstra
t

In bat
h pro
esses, a unit 
an be used for various steps of the produ
tion of several di�erent

produ
ts. This leads to several advantages over 
ontinuous systems, e.g., qui
k adaption

to the 
hanging market environment. This �exibility of bat
h pro
esses, however, requires

additional 
onsideration in operational planning, as the equipment units must be s
heduled

with 
aution to satisfy all the pra
ti
al 
onstraints of the problem. Finding the most ad-

vantageous s
hedule is generally a 
omplex problem, nevertheless it is a key 
omponent of

the pro�tability of su
h systems. As a result, the s
heduling of bat
h pro
esses is a widely

resear
hed topi
, with many di�erent approa
hes published.

The goal of my PhD work was to extend the 
apabilities of the S-graph framework to be

able to address a wider range of s
heduling problems. Unlike other mathemati
al program-

ming based te
hniques, the S-graph framework guarantees a feasible and globally optimal

solution. There are, however, several pra
ti
al features, that 
ould not be ta
kled with

the former S-graph based algorithms. In this thesis, extensions of the S-graph framework

are presented to address limited-wait storage poli
ies, throughput maximization-, and ex-

pe
ted pro�t maximization problems. The developed algorithms are dis
ussed in detail, and

empiri
ally tested on various 
ase studies and literature examples.
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Absztrakt

Szakaszos üzem¶ termel® rendszerek berendezései több különböz® termék gyártásának lépé-

seinél is felhasználhatók, aminek köszönhet®en az ilyen rendszerek könnyebben alkalmazkod-

nak például a változó pia
i igényekhez, s további számos el®nnyel rendelkeznek a folytonos

rendszerek m¶ködésével szemben. Ezen szabadsági foknak köszönhet®en ugyanakkor különös

oda�gyelés szükséges a tervezés során, hogy a berendezések ütemezése minden gyakorlati

korlátozásnak eleget tegyen. A legel®nyösebb ütemezés megtalálása általában egy összetett

feladat, mely kul
sfontosságú a hasonló rendszerek nyereséges m¶ködéséhez, így a téma

széles körben kutatott, s számos módszer látott napvilágot a kap
solódó szakirodalomban.

Doktori munkám 
élja az S-gráf módszertan kiterjesztése volt, megteremtve annak széle-

sebb kör¶ alkalmazási lehet®ségeit szakaszos üzem¶ rendszerek ütemezéséhez. A mate-

matikai programozáson alapuló módszerekkel ellentétben az S-gráf módszertan korábban

kidolgozott algoritmusai garantálják az optimális megvalósítható megoldást, azonban nin-


senek felkészítve néhány fontos ipari korlátozás �gyelembe vételére. Dolgozatomban az

S-gráf módszertan több kiegészítése kerül bemutatásra, melyek alkalmazásával kezelhet®k

például az id®korlátos tárolások, vagy a pro�t valamint várható pro�t maximalizálását

meg
élzó feladatok. A kifejlesztett algoritmusok részletes ismertetését követ®en azok össze-

hasonlítása kerül bemutatásra esettanulmányokon és irodalmi példákon keresztül.
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Prefa
e

Bat
h pro
esses are be
oming more and more important in the produ
tion industry due to

their �exibility. This advantage, however, also 
omes as a short
oming, as the units need to

be s
heduled, whi
h results in an additional 
omplexity for the planning of operations. The

industry generates a wide range of bat
h s
heduling problems, where the goal in general is to

allo
ate the tasks of the pro
ess to the available equipment units in the most favorable way.

Thus, s
heduling is an important and unavoidable problem of bat
h pro
esses, for whi
h

many approa
hes has been published in the literature over the past two de
ades.

Chapter 1 �rst presents the theoreti
al foundations of ma
hine s
heduling, whi
h provides

the basis for the pra
ti
al, industrial problems des
ribed in the se
ond part of the 
hapter.

The approa
hes developed and published in the literature for bat
h s
heduling problems

are summarized in Chapter 2. The MILP programming based approa
hes presenting the

majority of publi
ations are dis
ussed in detail. The model and algorithms of the S-graph

framework and its past developments are detailed thoroughly in the se
ond part of the

Chapter, as it provides the basis for the new developments presented in this thesis.

In the next �ve 
hapters, the new results of the thesis are detailed. First, some modeling

issues are addressed in Chapter 3, that appear in the literature approa
hes. The next three


hapters provide extensions of the S-graph framework for throughput maximization (Chapter

4, limited-wait storage poli
y (Chapter 5), and sto
hasti
 pro�t maximization (Chapter 6),

respe
tively. In Chapter 7, a generalized modeling framework is presented in order to extend

the expressiveness of the S-graph framework.
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Chapter 1

S
heduling problems

S
heduling problems appear in almost every part of life, e.g., �nding the shortest path with

a shopping list in a mall, sele
ting the best order of airplanes to land during a rush hour,

or providing a robust exe
ution plan for a 
onstru
tion proje
t. The problems that arise at

di�erent parts of life often di�er in many aspe
ts, however, the underlying basi
s are the

same: the goal is to assign tasks to some kind of available resour
es and time

intervals in the most favorable way for a 
ertain obje
tive, while satisfying the


onstraints of the problem de�nition. Just like the aforementioned 
onstraints and

obje
tives vary, the terminology for the basi
 elements of the problem are also di�erent at

di�erent �elds of s
ien
e. Tasks to be performed are often 
alled jobs, a
tivities, et
. The

available resour
es in many 
ases are some kind of ma
hines that are often 
alled equipment

or units as well. The main �eld of the present work is the s
heduling of bat
h pro
esses of


hemi
al industries, thus the terms task and unit are used almost everywhere, whi
h are

the most a

epted in this �eld.

The 
lassi�
ation of s
heduling problems is di�erent for ea
h �eld. However, there are

some basi
 aspe
ts that 
an be the basis of the 
ategorization in almost any 
ase. Regardless

of the �eld spe
i�
 attributes of a s
heduling problem, it 
an be 
lassi�ed as either an online,

o�ine, or semi-o�ine problem. In the 
ase of o�ine problems, all the ne
essary input

data is available at the time of the optimization, when the s
heduling de
isions are made. In


ontrast, for an online s
heduling problem, the de
isions have to be made before some of the

problem parameters are revealed. In the semi-o�ine 
ase, some but not all information about

the problem parameters is available in advan
e before making the de
isions. In general, it

is impossible to provide an approa
h generating the optimal solution if the problem is not

o�ine. In the online and semi-o�ine 
ase the proposed methods in the literature 
an only

guarantee a 
ompetitive ratio, that is the maximum deviation of the provided solution from

the optimal one. For o�ine problems, the optimal solution is usually theoreti
ally �ndable.

Nevertheless, most of the o�ine problems are NP-hard, thus �nding the optimal solution in

a reasonable time is in many 
ases not possible or at least 
hallenging.

An other dimension for 
lassi�
ation is the un
ertainty. A s
heduling problem is 
alled

sto
hasti
 if some of the problem parameters take values only at the time of the exe
ution

3
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of the provided s
hedule, and the problem is 
alled deterministi
 otherwise. For sto
hasti


problems the de
isions to be made 
an be 
ategorized into two groups: the ones that must

take values before the sto
hasti
 parameters take values, and the ones that 
an alter their

value after that.

The two mentioned 
ategorization aspe
ts are only loosely de�ned, and thus they also

have kind of an overlap. As an example, sto
hasti
 problems 
an be 
onsidered semi-o�ine,

as some of the de
isions has to be made before knowing the exa
t values of some problem

parameters, and usually some additional information is available, e.g., the probability dis-

tribution fun
tion of them. Nevertheless, both of the aspe
ts are addressed independently,

as the most 
ommon attributes of a sto
hasti
 and a semi-o�ine problem are di�erent, as

well as the obje
tives and the developed approa
hes for solving them.

In this work, mostly deterministi
 and o�ine problems are 
onsidered if not stated

otherwise. Chapter 6 fo
uses on a 
lass of sto
hasti
 s
heduling problems. The domain of

the problems and the developed approa
hes is the s
heduling of the bat
h 
hemi
al pro
esses

although many of the algorithms may be applied for similar problems of other �elds. Se
tion

1.1 provides a brief review of the basi
 s
heduling problems in the literature of 
ombinatorial

optimization, as some of these problems are the roots for the s
heduling problems that appear

in the 
hemi
al industries. The introdu
tion of the spe
ial features of bat
h s
heduling

problems is given in Se
tion 1.2.

1.1 Basi
 s
heduling problems

In this se
tion some of the most simple s
heduling problems are dis
ussed. Simple refers

here to the des
ription of the problem, not the mathemati
al 
omplexity of solving it. As it

will be presented, some of these problems are already very di�
ult to ta
kle to begin with.

S
heduling problems in 
hemi
al industries usually involve more problem parameters and


onstraints than the problems presented in this se
tion. These problems, however, are the

basis for the more detailed pra
ti
al problems, and they provide a lower bound for their


omplexity.

1.1.1 Problem 
lasses

In the literature[101℄ of these problems, the terms job, operation, and ma
hine are used

instead of produ
ts, tasks, and units, respe
tively. The problem 
lasses are formulated with

a triple, α|β|γ, where the

α �eld des
ribes the jobs and the available infrastru
ture

β �eld provides additional parameters of the problem if any

γ �eld de�nes the obje
tive
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The α �eld des
ribes the number of ma
hines, whether they are identi
al or not, and

also the type of the jobs to be 
ompleted on those units. Without attempting to be 
om-

prehensive, some of the possible entries of the α �eld are given here:

Single stage problems

1 - Single ma
hine A single ma
hine is available, ea
h job 
onsists of a

single step to be performed on that ma
hine. The produ
ts may (and

usually do) have di�erent pro
essing times.

Pm - Identi
al parallel ma
hines m identi
al ma
hines are available,

with single step jobs, that 
an be 
ompleted on any of the ma
hines.

Qm - Parallel ma
hines with di�erent speed are similar to the Pm


ase with the di�eren
e that ea
h ma
hine has an assigned speed

fa
tor.

Rm - Unrelated ma
hines in parallel Generalization of the single stage


ase, when the pro
essing time of a job on a ma
hine is de�ned as an

input parameter.

Shop problems

Fm - Flow shop The jobs have m steps that have to be performed on the

m ma
hines in the same order for ea
h job.

FFc - Flexible �ow shop Generalization of the Fm and Pm 
ases, where

ea
h job has to go through c stages in the same order, where several

parallel ma
hines are available.

Jm - Job shop Generalization of the Fm 
ase, where the jobs 
an have

di�erent order for the ma
hines, moreover, it is not mandatory for a

job to visit all of the ma
hines.

FJc - Flexible job shop Generalization of the Jm and FFc 
ases, when

the jobs have to go through some of the stages in a job-dependent

order, and at ea
h stage, some identi
al units are available.

Om - Open shop Ea
h job has to go through all of the ma
hines. How-

ever, their order is not given by the problem de�nition.

As it is already highlighted in the des
ription, some of the 
ases are spe
ial 
ases of

others, e.g., Pm is a spe
ial 
ase of FFc when c = 1. These dependen
ies between the

di�erent α �eld values are shown in Figure 1.1, where an ar
 leading from A to B represents

that B is a spe
ial 
ase of A.

Unlike the α and γ �elds, the β �eld that provides additional 
onstraints, may 
ontain

several or no entries at all. Some of the most 
ommon entries are:
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Figure 1.1: Dependen
y between the possible entries in the α �eld

rj - release dates For ea
h job, its pro
essing 
annot start earlier than its release

date.

prmp - preemptions The pro
essing of a job on a ma
hine 
an be interrupted, and


ontinued later on any suitable ma
hine.

sjk - sequen
e dependent setup times After 
ompleting job k on a ma
hine, it

needs sjk time to be adjusted for the job j.

batch(b) - bat
h pro
essing The ma
hines 
an perform at most b jobs simultane-

ously, however, the jobs has to wait for ea
h other when starting or �nishing the

task.

brkdwn - breakdowns The ma
hines are available only in given time intervals.

Mj - ma
hine eligibility restri
tions In the 
ase of parallel ma
hines, ea
h job has

a subset of ma
hines that 
an be used to pro
ess it.

prmu - permutation In 
ase of �ow shop problems, the order of the jobs at ea
h

stage must be the same.

nwt - no wait The jobs 
an not wait between the di�erent ma
hines in 
ase of �ow-,

job-, or open shop problems.

In the 
ase of the α �eld, all of the entries were generalizations of the 1 
ase. Similarly,

the empty β �eld is a spe
ial 
ase of many other. From the above list rj, sjk, brkdwn, Mj ,

and their 
ombination are su
h entries, however, the preemptions, for example, 
hange the

problem in its 
ore.

The γ �eld de�nes the obje
tive of the optimization. Similarly to the α �eld, exa
tly

one entry is allowed (and required) here. The most 
ommon entries are:

Cmax - makespan Minimization of the maximum 
ompletion time.
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∑

wjCj - weighted 
ompletion time Minimization of the total weighted 
omple-

tion time of jobs.

Lmax - maximum lateness Minimizing the maximal violation of due dates. Lateness


an take a negative value, when a job is �nished earlier than its due date.

∑

wjTj - total weighted tardiness Minimization of the weighted sum of non-negative

lateness values of the jobs.

∑

wjUj - total weighted number of tardy jobs Minimization of the weighted num-

ber of jobs that are not 
ompleted within the given deadline.

Similarly to the other two �elds, Cmax is a spe
ial 
ase of Lmax when all the due dates

are 0, and

∑

wjCj is the spe
ial 
ase of
∑

wjTj .

Obviously, if a problem 
lass is the same or spe
ial 
ase of an other in all of the three �elds,

its solution 
an be redu
ed to the solution of the less restri
ted one. Sin
e the algorithms

for the latter are appli
able for the former one, the former 
an not be more 
omplex than

the latter one.

1.1.2 Classi�
ation of solutions of s
heduling problems

The term s
hedule refers to an assignment of ea
h task to units and time intervals in

most of the 
ases. There exist, of 
ourse, in�nitely many assignment fun
tions for a given

s
heduling problem, and the term solution is also often used when referring to a s
hedule.

The s
hedules that do not satisfy at least one of the 
onstraints of the problem des
ription

are 
alled infeasible, and the others are termed feasible. Among the feasible s
hedules,

one is 
alled non-delay if no unit is kept idle while a task is waiting for pro
essing. It

is obvious that any feasible s
hedule 
an easily be 
onverted to a non-delay s
hedule, by

shifting ea
h task as early as possible in the solution.

A s
hedule for a problem is 
alled a
tive if there exists no other feasible s
hedule in

whi
h some of the tasks start earlier, and none of them starts later. Obviously, all of the

a
tive s
hedules must be non-delay s
hedules as well.

A
tive and non-delay s
hedules play an important role in the 
ase of makespan mini-

mization obje
tive, where the optimal solution or solutions must be non-delay, and at least

one of the optimal solutions 
an be found among the a
tive s
hedules.

1.1.3 Approa
hes and 
omplexity

Some 
lasses of the aforementioned problems 
an be solved to guaranteed optimality by

simple, polynomial algorithms. Most of these problems, however, are proven to be NP-hard,

thus e�
ient algorithms are not expe
ted for them.

1

1

Note, that there are polynomial algorithms developed for some NP-hard problems, whi
h 
an provide

optimal solution for the majority of the instan
es of the problem 
lass, and a suboptimal solution for the

rest.
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A simple strategy 
ould be to assign the jobs to the ma
hines based on the in
reasing or-

der of pro
essing times. This, so-
alled SPT (Shortest Pro
essing Time) algorithm provides

optimal solution for a 
ouple of problem 
lasses if the obje
tive is

∑

Cj. If the obje
tive

is Cmax, the opposite strategy, i.e., prioritizing jobs with the longest pro
essing time, often

provides good 
ompetitive ratio for FF problems.

Among the easy to solve problems, the 2-stage �ow- and job-shop s
heduling problems

are probably the 
losest ones to industrial s
heduling problems dis
ussed later. In this


ase there are two ma
hines for either one or two stage jobs, and the obje
tive is Cmax,

i.e., the minimization of the makespan. Johnson's[61℄ and Ja
kson's[58℄ algorithm provide

an optimal solution for the s
heduling problems in this 
lasses. However, in
reasing the

number of ma
hines and stages per job makes the problem mu
h more 
omplex, and e�
ient

algorithms are not expe
ted.

Also, in many 
ases, the problem de�nition of a real industrial 
ase study involves ad-

ditional parameters that need to be addressed. In su
h 
ases, even o�ine problems with

parallel identi
al units be
ome NP 
omplete[110℄.

1.2 S
heduling problems of 
hemi
al bat
h pro
esses

S
heduling problems that arise in the 
hemi
al industry are more 
omplex in their des
rip-

tion, though they show many similarities to the basi
 problems des
ribed in the previous

se
tion.

Bat
h 
hemi
al s
heduling problems are mostly given by their

1. re
ipe

2. storage poli
y

3. obje
tive, and related parameters

4. additional parameters

These parameters are des
ribed in the following subse
tions in detail, however, some

words must be addressed to the assumptions and 
onventions of this �eld.

Assumptions

If not stated otherwise, the following assumptions are 
onsidered:

Unique allo
ation A task is assigned to a single unit in the s
hedule, even if several

appli
able ones are available.

Non-preemptivity The exe
ution of a task must not be interrupted

Bat
h pro
esses Ea
h task behaves in a bat
h-like favor. If a task is 
ontinuous, it

has su�
iently large dedi
ated storages to 
onsider it as a bat
h pro
ess.
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Fixed bat
h sizes The amount of material pro
essed in ea
h task is �xed by the

produ
tion re
ipe.

Conventions

The notation used among s
ientist is not standardized. However, several 
onventions are ap-

plied, whi
h may 
hange based on the a
tual example. To avoid further 
onfusion, the most


ommon notations are summarized here brie�y, as they will be used alternately throughout

the whole do
ument in problem des
riptions, diagrams, et
.

In 
ase studies, produ
ts, tasks, units are usually assigned a real name. However, if this

is not the 
ase (frequent for literature examples), or the notations need to be shorter, the

following 
onventions are used to label the elements of the system.

Produ
ts are often denoted by the �rst 
apital letters of the alphabet, i. e., A,B,C, . . . ,

or by P1, P2, P3, . . . .

Tasks are often labeled after their produ
t, espe
ially in sequential re
ipes, like A1, A2,

A3, . . . . In some papers, labels like T1 or T1 are applied. In mathemati
al formulations the

dummy index i is used for tasks, thus sometimes labels like i1, i1, or iA1 are used.

Units are similarly denoted by U1, U2, . . . , and sometimes labeled as Eq.1, E1, or E1 to

refer to equipment units. In 
ase of the mathemati
al formulations, the applied dummy

index is j, thus sometimes j1 or j1 is used as well.

1.2.1 Re
ipes and example problems

The word "re
ipe" itself is an ambiguous term, as the ISA SP88 standard de�nes four

levels of re
ipes: general re
ipe, site re
ipe, master re
ipe, and 
ontrol re
ipe[52℄, however,

none of these are entirely satisfying our requirements towards a re
ipe. Thus, thorough the

do
ument the term re
ipe will refer to the 
olle
tion of the following parameters:

• list of produ
ts

• list of tasks, that are to be performed in order to produ
e the produ
ts

• produ
tional pre
eden
es among tasks

2

• available units

• pro
essing times for suitable task-unit pairs

2

This is often indire
tly given by providing the inputs and outputs of tasks.
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The re
ipe of a produ
t refers to the information in the re
ipe related to that spe
i�
 produ
t.

Based on the pre
eden
e stru
ture among tasks, the re
ipes are usually 
ategorized into

the following groups starting from the simplest one to the most general one. Ea
h 
lass is a

spe
i�
 
ase of the next one.

Single stage Ea
h produ
t is produ
ed via a single step. Similar to the Pm 
ase,

but the available units are not ne
essarily identi
al or uniformly appli
able.

Simple Multiprodu
t Similar to an FFc layout, i.e, ea
h produ
t is produ
ed lin-

early through a �xed number of stages. The di�eren
e is the same as in the

previous 
ase: the units at a stage are usually not identi
al and 
an not perform

the same subset of tasks.

General Multiprodu
t Often referred to as Multiprodu
t re
ipe, the generaliza-

tion to the simple 
ase allows for a produ
tion plan to skip several stages.

Multipurpose Unlike in the Multiprodu
t 
ase, the stages 
annot be ordered in su
h

a way along a line that the produ
tion of ea
h produ
t goes from left to right.

The number of stages and their order is arbitrary. Moreover, a stage may reo

ur

several times in the same produ
tion. This is the most general sequential re
ipe.

Pre
edential The tasks in the produ
tion of a produ
t are not assigned to stages,

and the pre
eden
e between them is given apie
e. The key di�eren
e between

the multipurpose and pre
edential re
ipes is that the produ
tion of a produ
t is

not ne
essarily linear, i.e., there 
an be jun
tions in it, but in the 
ase of several

prerequisites for a task, all of them must be 
ompleted before starting it.

3

General network This is the most general re
ipe 
lass, where the tasks are given by

their inputs and outputs, whi
h indire
tly de�ne their pre
eden
es. Here, unlike

the Pre
edential 
ase, the same material may be produ
ed by several alternative

tasks making them optional and not mandatory prerequisites. Moreover, 
y
les

may o

ur in the dependen
ies.

It is important to note that although some papers have attempted to provide a 
las-

si�
ation of s
heduling problems[32, 93℄, the terminology is not standardized. Terms like

"multiprodu
t" may refer to (slightly or signi�
antly) di�erent re
ipe 
lasses in di�erent

papers.

4

The above 
lassi�
ation is the proposition of the author, that satis�es the following

important 
riteria: most of the published approa
hes 
an unambiguously assigned to one of

the de�ned problem 
lasses.

3

Obviously, the dependen
ies must not 
reate a 
y
le.

4

These de�nitions are mostly indire
t by the problem 
lasses 
overed by the presented approa
h. Many

arti
les state that the proposed approa
h or formulation solves e.g., multiprodu
t s
heduling problems.

However, the problem 
lass 
overed by these approa
hes vary for ea
h paper, making the indire
t de�nition

of the multipurpuse problem 
lass in
onsistent.
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Re
ipe representations and example problems

Single stage re
ipes are usually simply given by a table, where the rows 
orrespond to

jobs, the 
olumns to units, and ea
h 
ell 
ontains the pro
essing time if the unit is appli
able

for that produ
t. Kopanos et al.[67℄ presented su
h a 
ase study, whose data is given in Table

1.1.

5

Pro
essing times (h) U1 U2 U3 U4
P1 1.538 1.194

P2 1.500 0.789

P3 1.607 0.818

P4 1.564 2.143

P5 0.736 1.107

P6 5.263 3.200

P7 4.865 3.025 3.214

P8 1.500 1.440

P9 1.869 2.459

P10 1.282

P11 3.750 3.000

P12 6.796 7.000 5.600

P13 11.25 6.716

P14 2.632 1.527

P15 5.000 2.985

Table 1.1: Example data for a single stage problem

Multiprodu
t re
ipes 
an still be represented by tables. However, in many 
ases blo
k

diagrams are simpler to des
ribe the problem. The problem from Voudouris et al.[126℄ is

presented in Table 1.2 and as a blo
k diagram in Figure 1.2. Note, that the blo
k diagram

is only suitable if ea
h task 
an be performed by exa
tly one unit at a stage.

Pro
essing times (h)

Stage 1 Stage 2 Stage 3

U1 U2 U3 U4 U5

A 7 3 4

B 8 5 3

C 4 6 4

D 6 9 3

Table 1.2: Multiprodu
t example represented in a table

Multipurpose re
ipes are di�
ult to represent in a table, as the order of the stages

are arbitrary. If ea
h task 
an be performed only by a single unit, the blo
k diagram is a

suitable 
hoi
e, as represented in Figure 1.3 for an example by Ferrer-Nadal et al.[31℄.

5

The problem presented in the paper 
ontained additional data for 
hangeovers as well.
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Figure 1.2: Multiprodu
t example represented in a blo
k diagram

Figure 1.3: Multipurpose example represented in a blo
k diagram
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Pre
edential re
ipes are usually represented by some kind of graphs, where the tasks are

assigned to the verti
es, and the ar
s represent the produ
tional dependen
ies. An example

by Hol
zinger[52℄ is illustrated in Figure 1.4. The pro
essing time and the appli
able units

are indi
ated at ea
h vertex, and it is assumed that the pro
essing time is the same if several

units are suitable.

Figure 1.4: Pre
edential example represented in a graph

General network re
ipes are most often represented by State-Task-Networks (STN [66℄)

or Resour
e-Task-Networks (RTN [100℄). The original example for introdu
ing the STN

representation from Kondili et al.[66℄ is given in Figure 1.5. Cir
le shaped verti
es represent

materials, while re
tangles represents tasks. This graphi
al representation sometimes does

not 
ontain pro
essing times, it is provided in an additional table. The representation is

identi
al to that of the P-graph mathemati
al model introdu
ed by Friedler et al.[33℄, that

was developed for the optimal design of 
ontinuous pro
esses.[34, 36, 35℄ The key di�eren
e in

an RTN representation is that units are also represented as resour
es and tasks are dupli
ated

if several units 
an perform them. Some papers use the so-
alled State-Sequen
e-Network

representation[84℄, where dedi
ated states (mostly materials) give the verti
es, and ar
s

represent tasks.

1.2.2 Storage poli
ies

The term, storage poli
y refers to the 
onstraints for the storage of intermediate produ
ts

between 
onse
utive tasks of a re
ipe. For ea
h material there are two fa
tors that 
an

indu
e 
onstraints on its storage:

1. Chemi
al and physi
al properties of the material

2. Infrastru
tural opportunities for storage in the given plant

Thus, storage poli
y is a two dimensional property that 
an di�er for all of the intermediates

in the re
ipe. In the majority of the 
ases, however, the poli
y is uniform for all of the

intermediate materials.
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Figure 1.5: STN representation of a general network re
ipe

The 
hemi
al and physi
al properties of the material provide bounds on the time of the

storage, based on whi
h the following 
ategories are usually identi�ed:

UW - Unlimited Wait is the simplest and most 
ommon poli
y, when the material

does not lose any of its important 
hemi
al or physi
al properties by time, thus it


an wait any amount of time before going to the up
oming task of the produ
tion.

LW - Limited Wait storage poli
y is applied to the intermediate materials that

must not wait longer than a 
ertain amount of time before the next task in

order not to lose a 
ertain property, e.g., 
ooling out.

ZW - Zero Wait poli
y is stri
tly speaking the spe
ial 
ase of the LW poli
y, when

the limit on the storage time equals to 0.

The infrastru
tural 
apabilities of the given plant impose limits on the amount of material

that 
an be stored, and on the way of storing it:

UIS - Unlimited Intermediate Storage poli
y is applied when there is enough

storage pla
e available to store any amount of intermediates.

FIS - Finite Intermediate Storage poli
y is 
onsidered when there are storage

units available to store the intermediate, but it is limited.

NIS - No Intermediate Storage poli
y refers to the 
ase when dedi
ated storage

units are not available for the storage of an intermediate material, but it still 
an

wait in the pro
essing unit of the previous task.

In many papers, the storage poli
y is not de�ned by a pair, as UW poli
y is assumed

for UIS, FIS, and NIS if not stated otherwise. In the 
ase of ZW poli
y, the limit for the
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storage spa
e is irrelevant, thus it is often used in itself as it is, and this is the reason, why

it is not ta
kled as a spe
ial 
ase of LW.

Although, the 
ombination of the above mentioned poli
ies 
overs most of the 
ases, there

are always pra
ti
al problems whi
h require spe
ial de�nition. One of the most 
ommon

examples is the Common Intermediate Storage poli
y (CIS), where there is (typi
ally

�nite) storage available that is shared among several intermediates, and at most one of them


an use the storage at a time.

Storage poli
y is an important parameter of the problem de�nition, 
hanging the storage

poli
y of the problem 
an 
hange the optimal solution, the set of feasible solutions, and the

appli
able approa
hes as well.

1.2.3 Obje
tive fun
tions

Industry provides a wide range of obje
tives resulting from pra
ti
al 
onsiderations. How-

ever, the two most 
ommon obje
tives are the minimization of makespan and the max-

imization of throughput.

Makespan minimization

Makespan minimization is equivalent to the de�nition of Cmax in the previous se
tion. In

general, the minimal overall pro
essing time is to be found for a given number of bat
hes of

ea
h produ
t. In many 
ases however, the number of bat
hes is not spe
i�ed in the problem

de�nition, only the amount of produ
ts to be produ
ed, thus, the number of bat
hes 
an


hange if the re
ipe allows variable bat
h sizes. Larger number of bat
hes may lead to

better solution, when the smaller units are less loaded, or the pro
essing time depends on

the quantity.

Throughput maximization

In 
ase of throughput or pro�t maximization, the problem des
ription entails a time horizon

as well as a 
ertain bene�t value for ea
h produ
t that is usually based on mass, pro�t, and

revenue. The goal is to maximize the 
umulative bene�t of all of the produ
ed produ
ts

while keeping the produ
tion time below the time horizon. The number of bat
hes or amount

of produ
ts is usually unbounded, it is even allowed to leave out some of the produ
ts


ompletely.

Other obje
tives

Although these two are the basi
 and most 
ommon obje
tives that provide the basis for


omparison of the s
heduling approa
hes, there are plenty of other obje
tives that arise in

real life 
hemi
al produ
tion. Without attempting to be 
omprehensive, some of them are:

• minimizing the 
ost of total earliness-tardiness
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• minimizing the 
lean water use, and in parallel the wastewater e�uents (See e.g., [20,

28, 40, 44, 83℄)

• minimizing heat utility energy or 
ost (See e.g., [19, 54, 73, 74, 81, 130℄)

• optimization for a 
ombined 
ost fun
tion that may in
lude utility 
ost, 
lean water


osts, et
. (See e.g., [43, 38, 80℄)

• maximizing the overall expe
ted pro�t

• maximizing 
y
li
 pro�t (See e.g., [105, 19, 73℄)

• minimizing the over- or under
onsumption of ele
tri
ity (See, e.g., [94℄)

• minimizing transportation 
ost (See e.g., [106℄)

• et
.

1.2.4 Common additional parameters

S
heduling problems arising in industry often entail further problem spe
i�
 parameters.

Some of them may not play important role in the s
hedule, thus it is negle
ted or approxi-

mated, e.g., the temperature and 
ooling of a material, 
ontrol parameters of the pro
ess. In

many 
ases, however, these parameters must be in
luded in the problem de�nition. Without

attempting to be 
omprehensive, some of the most 
ommon additional parameters are:

Cleaning time Some tasks leave a unit 
ontaminated, making it unsuitable for any

up
oming task, thus it needs 
leaning, whi
h is often 
omparable with pro
essing

times. See e.g., the paint produ
tion example by Adonyi et al.[1℄. This parameter

usually depends on the task-unit pair.

Changeover time This parameter is similar to the 
leaning time, whi
h 
an be 
on-

sidered as a spe
ial 
ase. The di�eren
e is that a 
hangeover time also relies on

the subsequent task that is s
heduled for the unit. This happens for example

when a unit must be adjusted before undergoing a 
ertain task.

6

See e.g., the

examples in the papers by Kopanos et al.[67, 68℄.

Transfer time Often, the time required for the transfer of intermediates from one

unit to an other is not negligible. See e.g., the examples by Grau et al.[41℄.

This parameter is usually de�ned for the triple of sour
e unit, material, and

destination unit. If the transfer is 
ontinuous, both units must be available

during the material tansfer. If the transfer is dis
rete like in the 
ase of the

6

Setup times are in this sense also a spe
ial 
ase of 
hangeover times, as they do not depend on the

previous task of a unit.
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s
heduling of wet-et
h stations [5, 7, 6, 13, 12, 18, 37, 62, 95, 129, 128℄, the units

may be used for other purposes during the transfer.

7

Unit piping If the intermediates are liquid, thus their transport between the units is

mostly done via pipes and 
ompressors. Although several appli
able units may

be available for two subsequent stages of a produ
tion, the piping (or better its

absen
e between two units) limits the possible 
hoi
es. See e.g., Kopanos and

Puigjaner [69℄.

Cleaning the units, transferring materials, et
. obviously entails 
osts, energy 
onsump-

tion, 
lean water 
onsumption, wastewater generation, et
., whi
h are often 
onsidered as


onstraints for the s
hedule as well.

Some papers 
onsider s
heduling integrated with pro
ess planning[41, 70, 116℄ or 
ontrol

level de
isions[108, 15℄, and in
lude relevant parameters from that level and a 
ombined

obje
tive.

1.2.5 Representation of a s
hedule

A s
hedule is basi
ally a set of quadruplets in the form of (i, j, ts, tf ), where:

i is the task to be performed

j is the unit to perform task i

ts,tf are the starting and �nishing times respe
tively

The prevalent graphi
al visualization of this data is the Gantt 
hart, see Figure 1.6 as

an example for 8 sequential produ
ts. The x axis represents time, while the units are listed

on the y axis. Ea
h task is represented by a re
tangle in the row of the unit performing it,

ranging from its starting time to its �nishing time horizontally.

Figure 1.6: Example Gantt 
hart for 8 produ
ts

7

Note, that in 
ase of wet-et
h stations, the robot arm performing the transfer must be s
heduled as the

other units (baths in this 
ase).
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To enhan
e visibility, the re
tangles of the tasks belonging to the same produ
t are

usually highlighted with an identi
al 
olor. In many 
ases, espe
ially if 
olors are not

applied to di�erentiate between produ
ts, only the name of the produ
t is indi
ated at the

re
tangles.

If the problem in
ludes 
hangeover, 
leaning, or transfer times, they are represented

analogously with re
tangles. In Figure 1.7, a s
hedule for produ
ing PHBA (para-hydroxy

benzoi
 a
id) is illustrated. Here, four bat
hes of the same produ
t are produ
ed, thus ea
h

bat
h has its designated 
olor. The re
ipe is not sequential, while the phenolate rea
tion is

exe
uted in the �rst or se
ond phenolate rea
tor, marlotherm is �lled into and heated up in

two parallel 
arboxylation rea
tors. When the phenolate rea
tion �nishes, the intermediate

is transferred to the two sele
ted 
arboxylation rea
tors, represented by darkened re
tangles

at all of the three rea
tors. After the transfer �nishes, the phenolate rea
tors need to be


leaned, whi
h is visualized as a fading re
tangle.

Figure 1.7: Example Gantt 
hart for non-sequential re
ipe with transfer and 
leaning times



Chapter 2

Mathemati
al tools for the s
heduling of

bat
h 
hemi
al pro
esses

In the last two de
ades, many di�erent approa
hes have been published in the literature to

ta
kle the problems presented in Se
tion 1.2. They di�er in both their domain of solvable

problems, and the applied mathemati
al tools. Over the years, these approa
hes have gone

through vast development, whose goal was dual:

1. broadening the range of solvable problems

2. a

elerating the solution pro
edures in order to bring larger problems to a manageable

level

The advan
ement in both dire
tions is remarkable. The �rst, heuristi
s based approa
hes

have 
onsidered only simple multiprodu
t examples, and 
ould not guarantee optimal solu-

tions for even the smaller instan
es. The �rst optimization based methods were extended

to a wide range of problems. In terms of speed, 
omputational times were redu
ed by mag-

nitudes, allowing not only the solution of larger problems, but also integration with other


ontrol or design aspe
ts.

In order to provide a review of the state-of-the art tools of the �eld in the next se
tions,

these approa
hes must be 
ategorized before further dis
ussion. This 
ategorization 
an be

based on various aspe
ts. The most 
ommon one is to 
onsider the applied mathemati
al

tool as the major attribute[32, 93, 48℄.

The majority of the published approa
hes rely on mathemati
al programming, namely

on Mixed-Integer Linear Programming (MILP) formulations, or Mixed-Integer Non-linear

Programming (MINLP) models in rare 
ases[32, 93℄. These models are usually solved by

an implementation of general purpose MILP algorithms[127℄. In 
ase of MINLP problems,

the authors have also developed general purpose MINLP solution pro
edures.[42℄ Another

bran
h of resear
h fo
uses on applying graph theoreti
al and 
ombinatorial tools and prob-

lem spe
i�
 solution pro
edures. Among these the S-graph framework[112℄, the Alternative

Graph model[98℄, and the Timed Pri
ed Automata[99℄ or Timed Pla
e Petri Net[39℄ ap-

proa
hes are notable. A small number of papers 
onsiders mathemati
al logi
 [103℄ or

19
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Constraint Programming (CP)[128℄ to ta
kle s
heduling problems. More often, these tools

are used 
ombined with other approa
hes, like MILP formulations[87, 107℄.

These lastly introdu
ed 
lass of approa
hes will not be dis
ussed in more detail. The


lassi�
ation of 
ombinatorial approa
hes based on the exa
t tool is enough for further

dis
ussion. In the 
ase of MILP models, however, further 
ategorization is needed before

investigating them 
losely.

The further 
lassi�
ation of MILP formulations 
an be best explained by the binary

variables used to address s
heduling de
isions. Though the variables may di�er in some

details for di�erent approa
hes in the same sub
lass, these minor di�eren
es will be detailed

in the subsequent se
tions.

Pre
eden
e based formulations binary variable Xi,j,i′ represents whether task i′ is

pre
eded by task i in unit j.

Time point/slot based formulations has a binary variable yi,j,n denoting whether

unit j perform task i at time point n, or in the nth slot.

Start-Stop formulations

1

use variables Starti,j,n and Stopi,jn to represent the start-

ing and �nishing of task i in unit j at time point n

Some formulations apply several di�erent te
hniques redundantly in the hope of a better

performan
e, and thus 
annot be 
ategorized unambiguously [64℄.

Before dis
ussing these approa
hes in detail, one other 
lassi�
ation has to be noted by

Hegyhati and Friedler [47℄, that 
onsiders the underlying idea of addressing the problem as

the main 
ategorization angle. This aspe
t has various bene�ts, the approa
hes in the same

main 
ategory

• 
an usually address the same or very similar set of s
heduling problems;

• have similar performan
e

• 
an bene�t from the development of others, or implement their idea of improvement;

• su�er from the same di�
ulties and short
omings

The proposed main 
ategories are:

Time dis
retization based te
hniques 
onsist of the time slot and time point based

approa
hes, and the Start-Stop models, whi
h rely on the dis
retization of the

time horizon that 
an lead to suboptimal or even pra
ti
ally infeasible solutions.

On the other hand, they 
an address a wider range of s
heduling problems,

though the implementation of sequen
e dependent attributes are 
ompli
ated.

1

There is no 
ommonly used terminology for this set of formulations, the Start-Stop term is used only

here.
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Pre
eden
e based te
hniques 
onsider the order of tasks assigned to the same unit

as the key de
ision, rather then their exa
t timing. Pre
eden
e based MILP

models, the S-graph Framework and the Alternative Graph methods belong here.

These approa
hes often outperform the previously mentioned ones on the 
lass of

s
heduling problems they 
an ta
kle, though this domain is 
onsiderably smaller.

An additional advantage is the absen
e of suboptimal or infeasible solutions due

modeling errors.

State spa
e based te
hniques are performing the optimization via a sophisti
ated

exploration of the state spa
e of the system. Although, similarly to the pre
e-

den
e based methods, their model building ensures global optimality, in terms

of performan
e and modeling power they drop behind the aforementioned ap-

proa
hes. The signi�
ant advantage of these methods resides in the possibility of

integration with the 
ontrol level, and their straightforward extension to online

problems.

2.1 MILP formulations

As it was already dis
ussed, the MILP models play a dominant role in solving bat
h s
hedul-

ing problems. In this se
tion the di�erent bran
hes of MILP models are dis
ussed. The

related modeling issues are not dis
ussed here, only brie�y mentioned, as they will be pre-

sented in detail in Chapter 3.

Before the detailed des
ription of di�erent MILP formulation bran
hes, there is an other


lassi�
ation aspe
t that needs to be mentioned. There exist so-
alled STN and RTN models

for all of the formulation types that will be dis
ussed later. Though STN and RTN are only

representation tools, this terminology is widely used to indi
ate how pro
essing units are

ta
kled in he model. In STN formulations, units are dedi
ated elements of the model,

thus the binary variables usually have an index for units as well, indi
ating whether a tasks

starts, �nishes, or pre
edes an other in a 
ertain unit. On the other hand, RTN formulations


onsider units as any other resour
es, e.g., materials, and the tasks "
onsume" and "release"

these resour
es when their exe
ution starts and �nishes. As a result, units do not expli
itly

appear in the models, only a set of material balan
e 
onstraints refer to them. Note that in

RTN models, a task should be dupli
ated if it 
an be performed by several di�erent units.

2

In the following subse
tions the examples are given for STN models, from whose their RTN


ounterpart 
an be derived easily).

2

Note that even among RTN models, stri
t and lenient models 
an be di�erentiated, whi
h 
an have a

notable impa
t on the performan
e as indi
ated by Eles [30℄. If several identi
al units are available, the

lenient RTN models 
onsider them separate resour
es, implying a sort of redundan
y, while stri
t RTN

models 
onsider them as a single resour
e with higher availability.
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2.1.1 Time dis
retization based formulations

Chronologi
ally these types of formulations were the �rst ones to appear in the literature

[66℄. Their underlying idea is to identify several time points or time slots over the time

horizon. Time slot and time point based approa
hes [124℄ show a lot of resemblan
e, as an

interval from a time point to the next one 
an be 
onsidered as a time slot, and vi
e versa

the starting time of a time slot 
an be 
onsidered as a time point. Although time slot based

approa
hes were mainly developed for sequential pro
esses and the time point approa
hes

ta
kle general network problems, the two 
lasses of approa
hes are addressed simultaneously

in this se
tion. If not indi
ated otherwise, statements for time point approa
hes hold for

time slot approa
hes as well.

At ea
h time point, binary variables are assigned to tasks denoting whether the exe
ution

of the task is s
heduled to start at that time point or not. As a result, the number of binary

variables is roughly proportional to the number of time points, i.e., the 
omputational time

strongly depends on the number of time points. Thus, it has always been the resear
hers

intention to develop models that 
an �nd the optimal solution with minimal number of

time points. However, it is not evident, how the su�
ient number of time points 
an be

determined for a model and a problem instan
e. The most 
ommonly applied methodology

is to 
onsider a small number of time points �rst, and perform the optimization. Then the

number of time points is in
reased by one, and the optimization is 
arried out again. This

last step is repeated until the same obje
tive value is found for two 
onse
utive steps. This

te
hnique, however, does not guarantee the optimal solution, whi
h is dis
ussed in detail

in Se
tion 3.1. Nevertheless, the vast amount of development fo
used on these approa
hes

a
hieved a signi�
ant redu
tion in the ne
essary number of time points. However, the

advan
ed models often be
ame less transparent, the 
onstraints be
ame more 
ompli
ated

and modeling errors o

urred.

In general, time dis
retization tools 
an address the widest range of s
heduling problem

with general network re
ipes, re
y
ling, �exible bat
h sizes, load dependent pro
essing times,

et
. An other advantage of these models is that there is no need to de�ne the number of

bat
hes a-priori the optimization, as at ea
h time point the de
ision is made independently

on ea
h task. This feature also allows these models to address several units performing the

same tasks in parallel, without any modi�
ation.

The following subse
tions present the key properties and elements of models belonging

to a bran
h of formulations.

Fixed time point models

In the early time dis
retization models, the time points was equidistantly sele
ted prior

to the optimization pro
ess, resulting in the so-
alled Dis
rete-time models[66℄. The

used terminology in the literature is misleading in this 
ase, as the later, more advan
ed

approa
hes also dis
retize the time, the only di�eren
e is whether the pla
ing of the time
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points is �xed or not. Thus, the se
tions here use the more adequate terms Fixed time

point model and Variable time point model.

The unit distan
e between 
onse
utive time points 
ould be the largest divider among the

plausible pro
essing times. The typi
al binary variable in su
h a model is Wijt representing

that unit j starts performing task i at time point j. Sin
e the pro
essing time is known

for i in j, it is known exa
tly at whi
h time point j will be free again for other tasks. The


onstraint below is a typi
al assignment 
onstraint expressing this feature:

∑

i′∈Ij

t+t
pr
ij −1
∑

t′=t

Wi′jt′ − 1 ≤ M · (1−Wijt)

Material balan
e 
onstraints are appropriately stated at ea
h time point. The advantage

of these models is, that the above 
onstraint has tight LP relaxation

3

, and there is no need

for big M 
onstraints

4

in the model. The regular distribution of time points also makes it

simple for example to address FIS-LW storage poli
y[63℄. On the downside, the number of

time points and thus the number of binary variables, and the 
omputational need is high.

As a result, these models 
annot be applied for medium size problems.

Variable time point models

In order to redu
e the number of binary variables, the number of time points needed to be

de
reased. The next step in this development was to make the pla
ing of the time points

variable[102℄. In the developed models, a 
ontinuous variable is assigned to ea
h time point,

de�ning its exa
t position. The material balan
e and assignment 
onstraints are similar

to the previous models, the key di�eren
e lies in the timing of the time points. In order

to appropriately 
onstrain the timing di�eren
e between the time points, several big M


onstraints needed to be inserted into the model. Although these 
onstraints have worse LP

relaxations, the redu
tion in the number of binary variables has mu
h higher impa
t on the

CPU needs.

The variable time point based approa
hes 
an be 
ategorized based on several aspe
ts:

• if the pla
ing of the time points are the same for all of the units, the approa
h is 
alled

a "global time point", otherwise a "unit-spe
i�
 time point" based model

• Some of the approa
hes do not allow tasks to overlap several time points, while others

do.

As opposed to unit spe
i�
 time point models[57, 56℄, the global time point models[85℄

may require a larger number of time points to 
over the same set of s
hedules, thus they

3

By repla
ing the yet unde
ided binary variables with [0, 1] 
ontinuous ones, the optimal obje
tive value

of the resultant LP model is 
lose to that of the sour
e MILP.

4

Inequalities that be
ome non-
onstraining for 
ertain values of one or several binary variables, whi
h is

done by the produ
t of a su�
iently big number (usually denoted as M , hen
e the name) and the linear

expression of those binary variables. This type of 
onstraints usually have poor LP relaxations.
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are often slower. On the other hand, in the 
ase of unit spe
i�
 time point models, the

syn
hronization between the material �ows be
omes rather di�
ult, as the time points of

the units are independent of ea
h other. This also gives rise to the possibility of modeling

errors, see se
tion 3.3 for more detail.

If the pro
essing time of a task is 
onsiderably larger than some of the other tasks, several

s
hedules are not 
overed by those models, that do not allow time point overlaps for tasks,

regardless the number of time points. This issue does not appear for the Start-Stop models.

They provide, however, very poor performan
e results in general. For the more e�
ient time

point based models, the models had to be generalized, as dis
ussed in a little bit more detail

in Se
tion 3.3 An other mentionable attempt to ta
kle this issue used the SSN formulation

and introdu
ed additional variables for the storage availability, and usages[115℄.

2.1.2 Pre
eden
e based formulations

The �rst pre
eden
e based MILP formulations appeared around the same time, as the

introdu
tion of the S-graph framework, for multiprodu
t and multipurpose problems. Unlike

the previously dis
ussed time dis
retization based approa
hes, the pre
eden
e based models

do not need to dis
retize the time horizon, and thus they do not use any unknown parameter

in their model. Generally, they provide better 
omputational results for the problems they


an address. However, this set is mu
h smaller than that of the time dis
retization based

approa
hes. Although most of the models were introdu
ed for multiprodu
t or multipurpose

re
ipes, they 
an be extended to address more general pre
edential re
ipes in a straight-

forward way. Throughput maximization is usually not addressed, as the number of bat
hes

is an input parameter of the model.

The key foundation of these formalizations are the two sets of binary variables: Yi,j

denoting, whether task i is assigned to unit j, and the sequen
ing variable Xi,j,i′ whi
h

takes the value of 1, if both tasks i and i′ are performed in j, and i is enlisted earlier

in the produ
tion sequen
e of j. There is a number of di�erent versions of pre
eden
e

based formulations based on the exa
t binary variables and 
onstraints used, but the two

main 
ategories are the Immediate pre
eden
e and the General pre
eden
e models. In

the former 
ase, the sequen
ing variable Xi,j,i′ takes the value of 1 if only if i and i′ are


onse
utive tasks in the produ
tion sequen
e. In general, General pre
eden
e models need

half as many binary variables (as Xi,j,i′ and Xi′,j,i are ea
h others 
omplement if assigned to

the same unit), and usually outperform the immediate pre
eden
e models, but some features

are easier to be expressed by immediate pre
eden
e variables. Also, some of the models use

both variables redundantly, resulting in hybrid models[67℄; many models leave out the index

j from the sequen
ing variable[90℄; some formulations introdu
e additional binary variables

to address other features, e.g., additional resour
es[91℄.

This results in a wide range of very similar yet di�erent models, with di�erent 
ompu-

tational needs.
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2.2 Analysis based tools

Petri nets and automata are widely used for the modeling of dis
rete event systems[16℄.

There have been several attempts to extend the modeling power of these tools and apply for

the s
heduling of bat
h pro
esses. In order to do so, the basi
 models had to be extended

with timing, Timed Pla
e Petri Nets (TPPN) and Timed Pri
ed Automata (TPA) are

expressive enough to address most aspe
ts of these s
heduling problems. The approa
hes

usually use a B&B algorithm to explore the state spa
e of the system in order to �nd the

most advantageous solution 
andidate. Due to proper model building, modeling errors are

avoided: 
ross transfer (see Se
tion 3.2) for example, is eliminated as a deadlo
k situation.

Although, these approa
hes bear the advantage of straight-forward modeling, opportunity to

integrate 
ontrol level de
isions, and simple extension to rea
tive s
heduling, the e�
ien
y

of these te
hniques is still behind that of the state of the art MILP models or S-graph

algorithms.

Timed Pri
ed Automata

There are several ways to extend the automata with timing. In a so-
alled time guarded

automaton, some additional 
lo
ks are responsible for timing 
onsiderations[9, 8℄. At ea
h

transition a timing 
ondition has to be satis�ed in order for the transition to happen. After

that, some of the 
lo
ks may be reseted. Time guards 
an also appear on states as well. A

further extension of this model is the Timed Pri
ed Automaton[11℄, that has been applied by

Panek et al.[99℄ and Subbiah et al.[122℄ for bat
h pro
ess s
heduling. In these approa
hes, the

re
ipes and units are usually modeled separately, and the model of the system is generated

by applying parallel 
omposition of them. Although the resultant model is usually huge, and

di�
ult to present, its soundness is guaranteed by the mathemati
al proven model building

operation. A general 
omplexity of this approa
h is that the state of 
lo
ks is un
ountably

in�nitely large, and thus the state spa
e of the system also. In order to ta
kle this issue, the

states of the 
lo
ks are 
lustered into so-
alled 
lo
k-regions, and thus, in�nitely many states


an be des
ribed by a single region. The modeling of these regions 
an be done e�
iently

by Di�eren
e Bound Matri
es[27℄.

Timed Pla
e Petri Net

In a TPPN, the tokens of a transition are generated by a delay, that 
an present pro
essing

times, et
. Ghaeli et al.[39℄ presented su
h an approa
h for the s
heduling of bat
h pro
esses.

Some extensions for the modeling expressiveness of this approa
h were later explored[49℄.

Soares et al.[120℄ presented a timed Petri net based approa
h for the real time s
heduling

of bat
h systems.
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2.3 S-graph

The S-graph framework was the �rst published graph theoreti
 approa
h[112℄ to address

s
heduling problems of bat
h pro
esses. The framework 
onsists of a dire
ted graph based

mathemati
al model, the S-graph, and the 
orresponding algorithms[113℄.

In this se
tion the framework and the basi
 algorithm is presented in detail, as they

provide the fundamental basis for the later 
hapters. In the end of the se
tion, further

developments are brie�y introdu
ed.

2.3.1 S-graph representation

The mathemati
al model of the framework, 
alled the S-graph is a spe
ial dire
ted graph

for s
heduling problems. Note, that unlike the formerly introdu
ed re
ipe representations,

the S-graph is not only a visualization of the re
ipe, but a mathemati
al model. In the

framework both re
ipes, partial and 
omplete s
hedules are represented by S-graphs. In all

of these graphs the produ
ts and the tasks are represented by verti
es, whi
h are usually

termed as nodes. Also, if an ar
 between two tasks is said, it is to be interpreted as the ar


between the nodes representing these tasks.

The S-graph without any s
heduling de
isions is 
alled the Re
ipe graph , as it des
ribes

the re
ipe itself. An example is shown in Figure 2.1.

Figure 2.1: Example re
ipe graph

The three nodes on the right 
orrespond the produ
ts, the other nine to the tasks whi
h

need to performed in order to produ
e them.

The ar
s, 
alled re
ipe ar
s between the nodes represent the dependen
y between either:

• two tasks that depend on ea
h other, i.e., one of them generates the input for the other

• a produ
t and the task produ
ing it

In this example, ea
h produ
t is produ
ed through 3 
onse
utive steps. In general, the

model (and the algorithm from the next 
hapter) 
an ta
kle the set of Pre
edential re
ipes,

i.e., jun
tions are allowed. The sets indi
ated at ea
h task are the sets of plausible units,
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and the weight of the re
ipe ar
s are the pro
essing time of the tasks where they start. If a

task 
an be performed with several equipment units, the weight of its re
ipe-ar
 (or re
ipe

ar
s) is the smallest pro
essing time among all the units suitable to perform it.

All of the S-graph algorithms extend this graph with so-
alled s
hedule ar
s that

represent the s
heduling de
isions made by the algorithm. Whether there are still some

de
isions left or not, the S-graph is 
alled as a S
hedule graph . An example is shown in

Figure 2.2, where all the de
isions are already made and represented by blue s
hedule ar
s.

Figure 2.2: Example s
hedule graph for the re
ipe graph in Figure 2.1

Note that at ea
h task node, the set is repla
ed by the sele
ted unit, as this de
ision has

already been made. Also, the weight of s
hedule ar
s is 0 by default, when no 
hangeover-,

transfer-, or 
leaning times are in
luded in the problem. Modeling of these parameters is

simple. It is further dis
ussed in Chapter 7.1. The sequen
e of tasks assigned to the same

unit 
an easily be exploited from the graph. As an example, the sequen
e for unit E2 is

B1 → C2 → A3, as illustrated in Figure 2.3.

Figure 2.3: Sequen
e of tasks assigned to unit E2 in the s
hedule represented in Figure 2.2

Note, that the s
hedule ar
 
orresponding to the de
ision that E2 �rst performs B1 and

then C2 is expressed by a s
hedule ar
 between B2 and C2, i.e., the s
hedule ar
 of the

de
ision does not start from the previous task, but from its subsequent task or tasks. This

way, the s
hedule ar
 expresses that the unit must not only �nish a task before going under
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the next one, but also the subsequent task of this task (performed in an other unit) must

also take the intermediates.

From the s
hedule graph, the Gantt 
hart 
an easily and unambiguously be generated.

The Gantt 
hart for the s
hedule in Figure 2.2 is shown in Figure 2.4.

Figure 2.4: Gantt diagram generated from the s
hedule in Figure 2.2

2.3.2 Algorithm for makespan minimization

The algorithm des
ribed here were published by Sanmarti et al.[112℄ for the minimization

of makespan. The pseudo 
ode presented in the algorithm blo
ks 2.1 is not identi
al to the

one in the original arti
le, though the key aspe
ts are the same. The main di�eren
es are:

• The original 
ode addressed problems where ea
h task had only a single plausible unit,

i.e., only sequen
ing de
isions were needed no allo
ational ones. The algorithm pre-

sented here extends the original pseudo 
ode to a wider range of s
heduling problems,

where tasks may have several plausible units.

• The notation is simpli�ed and adjusted to the general 
onventions.

• The algorithm is no longer divided into a main and bran
hing part.

The algorithm �rst initializes the value of makespancb
to in�nity, and the set S, that will

be the set of open subproblems during the optimization. Initially, S 
ontains only the root

problem, i.e., the re
ipe graph without any assignments made so far. The simple fun
tion

re
ipe returns the re
ipe graph for the problem denoted by G(N,A1, A2, w), su
h that:

N := I ∪ P , the set of nodes

A1 := {(i, i′)|i ∈ I i′ ∈ I+i }, the set of re
ipe ar
s

A2 := ∅, the set of s
hedule ar
s

wi,i′ := minj∈Ij t
pr
i,j , the weights for all re
ipe ar
 (i, i′) ∈ A1: the minimal pro
essing

time for i

The elements of the set are quadruplets (G(N,A1, A2, w), I
′, J ′,A) su
h that
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Algorithm 2.1 Makespan minimization with the S-graph framework

makespancb := ∞
S := {(re
ipe(), I, J, ∅)}
while S 6= ∅ do
(G(N,A1, A2, w), I

′, J ′,A) :=sele
t_remove(S)
if bound(G)< makespancb

then

if I ′ = ∅ then
makespancb :=bound(G)
Gcb := G

Acb := A
else

j :=sele
t(J ′
)

for all i ∈ Ij ∩ I ′ do

Gi(N,A1, A
i
2, w

i) := G(N,A1, A2, w)
for all i′ ∈

⋃

(i′,j)∈A I+i′ \ {i} do

Ai
2 := Ai

2 ∪ {(i′, i)}
end for

for all i′ ∈ I+i do

wi
i,i′ := t

pr
i,j

end for

S := S ∪ (Gi(N,A1, A
i
2, w

i), I ′ \ {i}, J ′,A∪ {(i, j)})
end for

if I ′ ⊆
⋃

j′∈J ′,j 6=j′ Ij′ then

S := S ∪ (G(N,A1, A2), I
′, J ′ \ {j},A)

end if

end if

end if

end while

if makespancb 6= ∞ then

return (Gcb,Acb
)

end if
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G(N,A1, A2, w) is a s
hedule graph

I ′ is the set of uns
heduled tasks

J ′
is the set of units to whi
h the algorithm 
an still assign tasks

A set of task-unit assignments in the form of (i, j) pairs

In ea
h iteration a subproblem is arbitrary sele
ted and removed from S by the fun
-

tion sele
t_remove. The exa
t behavior of this fun
tion may be di�erent for di�erent

implementations, resulting in various sear
h strategies.

At the beginning of the iteration, it is evaluated, whether the subproblem has the po-

tential to provide an optimal solution ot not. This is done by the bound fun
tion, towards

whi
h the following requirements hold:

• it should provide a lower bound for the solutions that 
an be derived from the sub-

problem

• it should provide the exa
t makespan of leaf problems, i.e., for 
ompletely s
heduled

graphs

• it should return in�nity if the graph 
ontains a 
y
le, indi
ating that it is unfeasible

The mostly used bound fun
tion is the longest path in the graph, but LP based models 
an

also be used, see Hol
zinger [52℄ for details. If the bound of the subproblem is not smaller

than the best solution found so far, the iteration ends, and an other subproblem is sele
ted

(if exists).

If the bound is smaller than the value of makespancb
, the algorithm �rst 
he
ks, whether

all of the tasks are already s
heduled, i.e., whether the subproblem is 
ompletely s
heduled.

If this is the 
ase, the values of Gcb
, A, and makespancb

are updated to the S-graph of the

best solution, the 
orresponding assignments, and the value of its makespan, respe
tively.

In the 
ase of a partially s
heduled subproblem, the algorithm sele
ts an available unit

(i.e., one from J ′
) using the sele
t fun
tion. Similarly to sele
t_remove, the implemen-

tation of this fun
tion may also be di�erent to a
hieve various sear
h strategies.

For the sele
ted unit j, the algorithm assigns all the possible tasks (i ∈ Ij ∩ I ′ to the end

of its pro
essing queue.

5

For ea
h assigned task a 
opy is made of the 
urrent S-graph, or

more pre
isely about the set of s
hedule ar
s and the weights, as the set of nodes and re
ipe

ar
s do not 
hange during the optimization. This 
opy is �rst extended with the s
hedule

ar
s indu
ed by the new assignment, i.e., ar
s from all the subsequent tasks of previously

assigned tasks to j are dire
ted to i.6 Then, the weight of all of the re
ipe ar
s from i are

5

Note, that if no su
h task exist, the algorithm simply skips this loop. Avoiding this situation is not

ne
essary be
ause of the redu
tion of the J ′
.

6i itself is ex
luded to avoid loops in 
ase of assigning two subsequent tasks to the same unit. Moreover,

in the original algorithm, the ar
s were dire
ted only from the last assignment if it existed. Here all the

assignments are stored in A, whi
h makes the des
ription of the algorithm simpler. Although the additional
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updated to t
pr
i,j . Finally, a new subproblem is added to S with the modi�ed graph, a redu
ed

I ′ set, and extended A set.

If all of the uns
heduled tasks 
an be performed by other available units, a new subprob-

lem is 
reated where j be
omes unavailable for further assignments. This part is needed to

allow other units to perform the same tasks that j 
an, and to ta
kle the situation, when j

has no more 
ompatible tasks among the uns
heduled ones.

After the set S be
omes empty, the graph Gdb
and the assignments in Acb

des
ribe the

optimal solution, and are returned by the fun
tion if at least one feasible solution has been

found. Otherwise the algorithm does not return with any solution.

2.3.3 Extensions and developments of the S-graph framework

During the years, many extensions and developments of the S-graph framework has been

done and published [46℄. The algorithm presented in the previous subse
tion is often referred

to as the Equipment based algorithm , as it sele
ts a unit, and bran
hes based on whi
h

task should be the next in its produ
tion queue. A Bran
h and Bound algorithm based on

a di�erent aspe
t was presented by Adonyi [3℄, where a task is sele
ted at ea
h subproblem,

and the bran
hing is based on �nding an appropriate unit, and an appropriate pla
e in its

queue. This method is often referred to as the Task based algorithm . The performan
e

of the two algorithms were 
ompared via an extensive empiri
al analysis. As a result, it was

stated that there are problem instan
es for both of them where they outperform the other

one. However, it is not evident based on the problem des
ription, whi
h is the favorable

one, although, problems with a "bottlene
k" usually prefer the equipment based approa
h.

In many 
ases, the problem instan
es in
lude the repetitive produ
tion of several bat
hes

of the same produ
t. This is usually addressed by 
opying the re
ipe of the produ
t multiple

times. With this approa
h, however, the same solution 
an be found multiple times with

di�erent order of the identi
al produ
ts. To avoid this, and redu
e the 
omputational need,

Hol
zinger et al.[51℄ introdu
ed auxiliary ar
s in the S-graph ensuring that ea
h solutions

is found at most only on
e. With this modi�
ation, the authors a
hieved a tremendous

redu
tion in the CPU time. Hegyhati and Friedler[49℄ has shown that the same e�e
t 
an

be a
hieved for pre
eden
e based formulations by adding 
onstraints equivalent to these

auxiliary ar
s.

Next to these algorithmi
 developments, the framework has been extended to various

�elds of appli
ation, where some modi�
ations of the original framework was also needed:

Paint produ
tion Adonyi et al.[1℄ has applied the framework for the s
heduling of

a large s
ale paint produ
tion plant, where 
leaning times had to be addressed

as well.

ar
s (
ompared the the original algorithm) are redundant, they express valid relations. Moreover, the


urrent implementation also in
ludes these ar
s (although in an earlier stage) in order to sharpen the bound

fun
tion.
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Heat integration One of the most developed �eld of 
ontinuous plant design is the

design of the heat ex
hanger network, to minimize utility 
ost. Although, the

Pin
h te
hnology[65, 77, 78℄ 
an provide a de
ent targets for 
ontinuous sys-

tems, in 
ase of bat
h pro
esses the timing of streams must be 
onsidered as

well. Adonyi et al.[2℄ presented an extension of the S-graph framework, where

heat integration spe
i�
 
onstraints were addressed with an LP model that is

maintained thorough the optimization pro
ess in syn
 with the s
hedule graph.

Hol
zinger et al.[54℄ further extended this approa
h to address the s
heduling of

heat ex
hangers as well.

Train s
heduling Adonyiet al.[4℄ has extended the framework to address the s
hedul-

ing problem of the supply trains of tunnel boring ma
hines, and developed a

graphi
al interfa
e to 
onvert these problems for the S-graph solver.

An often exploited advantage of the spe
ialized solution algorithm is the possibility to

generate several di�erent solution 
andidates, whi
h 
an be really useful in pra
ti
e, if some

parameters of the original problem 
an not be in
luded in the mathemati
al model. In


ase of a single obje
tive, the n best solution 
an be easily generated, and with multiple

obje
tives, the Pareto border 
an also simply be maintained (assuming a dis
rete sear
h

spa
e). This framework also gives 
han
e for an a

elerated bi-obje
tive B&B solver, that

has been developed for other dis
rete problems[121, 26℄.

Implementational te
hniques

The outstanding 
omputational performan
e of the S-graph framework 
an only partially

be 
redited to the stru
ture of the bran
h and bound algorithms, and the algorithmi
 a
-


elerations. The other half belongs to the implementational te
hniques and a

elerations of

the solver written in C++, that are - with few ex
eptions - not presented in the s
ienti�


literature.

As the mathemati
al model of the S-graph framework is not a general model, like the

linear programming models, the solution algorithms are developed by the resear
hers. This


arries some bene�ts and short
omings as well:

speed The implementation is adjusted to the model, and optimized, thus the CPU

requirements are redu
ed, and thus the S-graph approa
hes are 
ompetitors of

not only the free MILP solvers, but the 
ommer
ial ones as well.

�exibility At ea
h extension, the resear
hers has the 
han
e to implement their ideas

in a low level of the algorithm, not in the model level.

learning 
urve These 
hanges, however, require an extensive knowledge not only

about the S-graph framework, but the software implementation as well.
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The only paper about the S-graph solver implementation of was published by Smidla

and He
kl[119℄, where the parallel Bran
h and Bound implementation is brie�y introdu
ed.

The authors provided a s
alable implementation, whi
h in some 
ases 
ould a
hieve super-

linearity.

At many points of the algorithm the longest path between two verti
es is needed ( by

the bound fun
tion, and later extensions). Although there exists a linear time algorithm to

the evaluation of the longest path between two verti
es [23℄, the memory requirement of the

S-graph solvers is negligible (
ompared to 
ommer
ial MILP solvers), thus it is bene�
ial to

store a matrix of longest paths for ea
h subproblem, and keep it updated.

If a task 
an be performed only by a single unit, or by several units, but only one of them

is in the available unit set at a 
ertain subproblem, a s
hedule ar
 
an already be inserted

from the subsequent tasks of the already assigned tasks of that unit to this task. It is not

sure that this task will be the next task in the produ
tion queue of the 
orresponding unit,

but it will de�nitely be assigned to it later. This small te
hnique 
an drasti
ally sharpen

the bounds for problems with tasks that 
an be performed only by a dedi
ated unit.

Similarly to the problem investigated by Hol
zinger et al.[51℄, the same sitution 
an

o

ur, when identi
al units are available, i.e., the same s
hedule 
an be generated multiple

times. To avoid this, a simple 
ondition is to be inserted to the algorithm whi
h ensures

that if two units are identi
al, the one with a smaller id has a �rst task on its queue with

the smaller id.

In many 
ases, the di�eren
e between a subproblem, and its 
hildren problems is small


ompared to the size of the subproblem. To save time on 
opying these obje
ts, 
ontainers

using impli
it sharing are applied.

Memory handling has also a 
ru
ial impa
t on the CPU requirements. In his diploma

work, Kova
s [71℄ details and analyses the e�e
t of di�erent mallo
 implementations. This

work details some other enhan
ements of the solver as well.

Relation to Pre
eden
e bases MILP models

Without going into formal details, the aim of this subse
tion is to reveal the strong 
onne
-

tion between the S-graph framework and the Pre
eden
e based MILP formulations. This

type of investigation is not unpre
edented in the literature, Uma et al.[125℄ investigated

the relation between the relaxation of linear formulations and graph models of s
heduling

problems, while Maraveilas[86℄ investigated the 
ombinatorial stru
ture of �xed time point

MILP formulations. As it has already been mentioned, in 
ase of the 
lassi�
ation from

Hegyháti and Friedler [49℄, the pre
eden
e based formulations and the S-graph framework

belong to the same 
ategory. Both approa
hes 
onsider the sequen
e of tasks assigned to

the same unit as the key question during the optimization. As a result, the 
apabilities,

performan
e, and sear
h spa
e are quite similar for them.

In order to illustrate the strong 
onne
tion between the two approa
hes, a partial s
hedule

of the example in Figure 2.1 is given in Figure 2.5. The �gure represents the partial s
hedule
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Figure 2.5: Illustration of the 
onne
tion between pre
eden
e based models and the S-graph

framework on a partial s
hedule of the example given in 2.1

after two steps in the S-graph based algorithm. First, the task A1 is assigned to the unit

E1, then the task B3 is assigned as the se
ond task for the same unit. The sequen
ing

between them is expressed by the ar
 between A2 and B3.

As illustrated in the �gure, the same partial s
hedule in a pre
eden
e based model would

mean, that some of the binary variables are �xed to 
ertain values:

• YA1,E1 takes the value of one, be
ause of the �rst assignment, and as a 
onsequen
e,

the value of YA1,E2 is set to zero.

• Similarly, at the se
ond step, YB3,E2 takes the value of one.

• The se
ond step, however, also de
ides the sequen
ing between A1 and B3, thus XA1,B3

is set to one, and XB3,A1 is set to zero.

If the values of these variables are substituted into some of the 
onstraints, they result in

the following form:

• STA2 ≥ STA1 + 6 is a result of the re
ipe sequen
ing 
onstraint with YA1,E1 = 1 and

YA1,E2 = 0. This 
onstraint is expressed dire
tly by the updated re
ipe ar
 between

the nodes of A1 and A2.

• STB3 ≥ STA2 = CTA1 is the result of a sequen
ing 
onstraint with XA1,B3 = 1 and

XB3,A1 = 0.

In general, the following obje
ts of the S-graph framework and the pre
eden
e based

models relate to ea
h other:
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Pre
eden
e based MILP model S-graph framework

Continuous timing variables - Nodes

Binary allo
ation variables - Assignment at nodes

Binary sequen
ing variables and 
onstraints - S
hedule ar
s

Re
ipe 
onstraints - Re
ipe ar
s

Model infeasibility - Cy
le in the S-graph

The 
onne
tions above explain why these methodologies have similar features. Though

the sear
h spa
e is the same, the way how the S-graph explores it is rather di�erent. In

ea
h bran
hing step the S-graph based algorithm de
ides all of the assignment variables at

a node, and several pre
eden
e variables as well. Thus, the bran
hing tree is mu
h smaller.

On the other hand, at ea
h subproblem, the S-graph algorithm uses the Longest path as a

bound, whi
h is weaker than the optimal solutions of the 
orresponding relaxed LP model.

These observations give rise to many opportunities for the integration of these two type of

approa
hes, e.g., a pre
eden
e based model 
an be maintained in the S-graph algorithm for

providing sharper bounds, or addressing 
ontinuous de
isions, that are di�
ult to implement

with graphs.
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Chapter 3

Criti
al modeling issues

As it has already been mentioned, most of the approa
hes, espe
ially the MILP formulations

do not go under mathemati
al validation. The 
ommon pra
ti
e is that the model is devel-

oped based on a new idea, and the validation is only empiri
al, i.e., the implementation of

the model is 
ompared on several examples with previous models from the literature. If the

result is the same on all of the tested examples, that approa
h is 
onsidered to be a

urate.

For the earlier, in a way simpler models, the equations were mostly straight-forward,

and even though, no theoreti
al proof was atta
hed. Readers 
ould a

ept with 
on�den
e

that the result will be 
orre
t. As the formulations developed, however, they be
ame more

and more 
ompli
ated. In order to redu
e the 
omputational time, the s
heduling problems

were ta
kled from di�erent and unusual "angles", whi
h brought great su

ess on one side,

the side of performan
e. On the other hand, the implementation of the same 
onstraints

be
ome more 
ompli
ated and "tri
ky". The 
onstraints are no longer straight forward,

whi
h is not a problem itself, however, the validity of the model be
ame "less 
onvin
ing".

The situation is even worse, when the problem de�nition for an approa
h is in
omplete, i.e.,

it is not unambiguously de�ned, what kind of problems are addressable with the approa
h,

what kind of assumptions are made towards the parameters or the behavior of the system

1

.

This fear is not unsubstantiated, as several modeling issues were already unveiled in the

literature, and there is nothing, whi
h would suggest, that there are no undis
overed ones.

Before introdu
ing some of these issues in detail, the nature of modeling mistakes must be

investigated �rst. All of the approa
hes dis
ussed in Chapter 2 are based on the examination

of a sear
h spa
e, and �nding the best 
andidate among them. From the mathemati
al point

of view, these approa
hes 
an have two de�
ien
ies, assuming that the ranking of solution


andidates is 
orre
t

2

: under- and over-
onstraining. To give the a

urate de�nition of these,

some additional terms should be introdu
ed �rst, whi
h will be used throughout the whole

do
ument:

1

Part of this roots ba
k to the problem of the la
k of standardized de�nitions for problem 
lasses, see

Se
tion 1.2.

2

In most of the 
ases, this holds. There are, however, examples, when the obje
tive value of a 
andidate

is not evaluated 
orre
tly[6℄

37
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solution is a term used for a s
hedule, and in the same time for its representation in

a mathemati
al model if it exist.

pra
ti
ally feasible solution is a solution that 
an be exe
uted in real life.

pra
ti
ally infeasible solution is a solution that violates some of the 
onstraints of

real life, thus it 
annot be exe
uted.

pra
ti
ally optimal solution is the best solution among the pra
ti
ally feasible

ones.

model-feasible solution is a term used with respe
t to a model or approa
h for

des
ribing a solution that is plausible for that approa
h, i.e., it is in its feasible

region.

model-infeasible solution is also de�ned for a model for those solutions that are

not in its feasible region.

model-optimal solution is the best model-feasible solution

If not stated otherwise, the terms feasible and infeasible will refer to pra
ti
ally feasible and

pra
ti
ally infeasible solutions, respe
tively.

One would assume, that in 
ase of a proper model, the set of the model-feasible solutions

is exa
tly the same as the set of the (pra
ti
ally) feasible ones. Moreover, if an approa
h

or model has model-feasible / model-infeasible solutions whi
h are (pra
ti
ally) infeasible /

feasible, then it is fundamentally wrong. These approa
hes, however, are not used for gener-

ating all of the feasible solutions, only to provide at least one optimal, thus the requirements

from the previous senten
e are unne
essarily limiting.

Having infeasible solutions in the feasible region of a model is a 
ommon pra
ti
e in

optimization to enhan
e performan
e, and it does not result in improper results as long as

it is guaranteed that the obje
tive value of the pra
ti
ally infeasible solutions will not get

better than the optimal value. As an example, the integer variables of MILP problems,

whose matri
es satisfy the requirements of total unimodularity (assignment problem for

example) 
an be relaxed to 
ontinuous variables, and the optimal solution is ensured to be

integer[127℄. This relaxation signi�
antly redu
es the 
omputational need obviously.

Similarly, redu
ing the sear
h spa
e, and ex
luding many pra
ti
ally feasible solutions is

a

eptable if it is ensured that at least one optimal solution remains in the feasible region

of the model. Hol
zinger et al.[51℄ has improved the e�
ien
y of equipment-based bran
h-

and-bound algorithm of the S-graph framework by magnitudes for problems with high bat
h

numbers using exa
tly this idea.

Thus, in order for a model to malfun
tion, it has to fail in at least one of the following

ways for some problem instan
es (not ne
essarily for all of them):
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Under-
onstraining: At least one pra
ti
ally infeasible solution is model-feasible

and it has better obje
tive value than the optimal, i.e., the model-optimal solution

is pra
ti
ally infeasible.

Over-
onstraining: All of the pra
ti
ally feasible and optimal solutions are model-

infeasible, i.e., the model-optimal solution is pra
ti
ally suboptimal.

Unfortunately, both type of mistakes has appeared in the literature of bat
h pro
ess

s
heduling, and in many 
ases the model bared both type of issues.

3

The following se
tions

will introdu
e and investigate this kind of issues.

3.1 Minimal su�
ient number of time points

As it was brie�y dis
ussed in Se
tion 2.1, variable time point based approa
hes su�er from

a 
ommon problem

4

, that is �nding a number of time points that is su�
iently large for the

model to 
ontain the optimal solution. For this se
tion, it is assumed that there is a number

of time points, where the model has at least one optimal solution in its feasible region.

5

It is 
lear, that this is an over-
onstraining issue, as the pra
ti
ally optimal solution is not

in the feasible region of the model. To investigate this issue, �rst the problem of Voudouris

et al.[126℄ - represented in Figure 1.2 - is examined with bat
h numbers 2− 1− 1− 1.

Three models are 
ompared:

M&G a global variable time point formulation by Maravelias and Grossmann[85℄

I&F the �rst unit spe
i�
 variable time point formulation by Ierapetritou and Floudas[57℄

S&F further development of the I&F model by Shaik and Floudas[118℄

6

For all of the three models the iterative method were applied, i.e., the number of time

points is in
reased until the same obje
tive value repeats. Table 3.1 
ontains the best

model-optimal solutions for ea
h investigated 
ase.

In this parti
ular 
ase, the makespan of 31 h is optimal, as it has been 
on�rmed by other

approa
hes that do not dis
retize the time. However, the number of time points needed to

�nd this solution is varying for the di�erent models, so it is 
lear to see, that �nding the

optimal number of time points (i.e., the minimal number of time points, with whi
h the

model results in the optimal solution) is not trivial.

3

Although there are models whi
h provide infeasible solutions for some instan
es and suboptimal ones for

others, there has not been an instan
e published, where a model would provide a suboptimal solution whi
h

is infeasible at the same time. Constru
ting an example like that, however, would not be a 
hallenging task.

4

Fixed time point formulations do not have this issue with throughput maximization problems, as the

number of time points is given by de�nition in that 
ase. For makespan minimization, the in
remental

in
rease of time points will obviously end up at the optimal solution, as the number of time points 
orrelates

unambiguously to the length of the produ
tion.

5

It is not always the 
ase as it will be dis
ussed in Subse
tion 3.3.1

6

The ∆ parameter is set to 0.
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n M&G I&F S&F

6 × × ×
7 × × 31

8 32 33 31

9 31 32

10 31 31

11 31

Table 3.1: Illustration of the iterative approa
h for the time point MILP formulations (n

stands for the number of time points, × indi
ates that the solver has not found any model

feasible solution)

Moreover, the 
ommon iterative approa
h 
an not ensure that the reported solution is

the globally optimal one. This issue is illustrated via a simple single stage example of three

produ
ts and three available units. The problem data is given in Table 3.2

u1 u2 u3

P1 15 h 7 h 7 h

P2 11 h 14 h 9 h

P3 14 h 5 h

Table 3.2: Pro
essing times for the single stage example

The instan
e of produ
ing 1, 4, and 5 bat
hes of produ
ts P1, P2, and P3 is solved by

the time slot model of Sundaramoorthy and Karimi [123℄. The number of slots has been

in
reased from 1 to 8, however, the model has no feasible solutions for less then 4 time

points. Table 3.3 
ontains the obje
tive value of the model optimal solutions for 4 to 8 time

slots .

Number of slots Optimal makespan

4 34 h

5 27 h

6 26 h

7 26 h

8 25 h

Table 3.3: Illustration of the time point issue

As it is shown in the table, the iterative approa
h would stop at 7 time slots with

the obje
tive value of 26 hours, although by further in
reasing the number of time points

a solutions with 25 hours 
ould have been found. This 
ounterexample proves that the

iterative approa
h 
an not guarantee the optimal solution.

Several papers tried to address this issue in the literature[114, 75℄. However, the ap-

proa
hes published in these papers has the same �aw, as the original iterative approa
h:
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their soundness is not proved, and 
ounterexamples 
an a
tually be 
onstru
ted in a similar

fashion. They may provide better solutions than the simple iterative approa
h. However, the

original problem remains: when applying �exible time point based methods, the optimality

of the provided solution 
an not be guaranteed.

3.2 Cross transfer

The root for this issue lies in the way the time needed for the transfer of intermediate

materials is addressed in 
ase of an NIS poli
y. In many 
ases, the transfer time is negligible


ompared to pro
essing times, thus it is 
ompletely left out from the problem data, and the

model 
onsiders it instantaneous. Even if the pro
essing times are 
omparable, they are

often lumped to the pro
essing time of the previous task, and the same model is used.

In this se
tion the �rst 
ase is investigated, i.e., when small transfer times are not 
on-

sidered in the model, though the se
ond approa
h 
an result in a similar error. Without

doubt, the exa
t solution provided by the approa
h will not be appli
able in pra
ti
e, as

the transfer of the intermediate will take time, and this would de�nitely shift the exe
ution

of tasks a little. This in itself is, however, the most natural thing when optimizing real life

systems that are too 
ompli
ated to be modeled with 100% a

ura
y. In general, the biggest

task of modeling is to identify the parameters and rules of the system that are important to


onsider in the model, and the ones that would just make the approa
h more 
ompli
ated,

without resulting in a signi�
ant 
hange for the provided solution. Thus, the exa
t solution

of the approa
h is not expe
ted to be implementable in pra
ti
e as it is but it is expe
ted

to remain feasible when the additional parameters are put ba
k to the solution.

Unfortunately, all of the MILP based approa
hes published in literature 
an provide

solutions for some problem instan
es that are impossible to implement in pra
ti
e. This

under-
onstraining issue has been investigated independently by Hegyhati et al.[45℄ and

Ferrer-Nadal et al.[31℄.

The malfun
tion of the MILP approa
hes 
an be illustrated on the simplest example of

two produ
ts with two stage sequential re
ipes, as illustrated in Figure 3.1.

Figure 3.1: Simple example re
ipe for illustrating the Cross Transfer issue

The problem 
an bee solved for 1 bat
h of ea
h produ
t with di�erent approa
hes. The

reported solutions would di�er based on the sele
ted approa
h. Figure 3.2 shows the Gantt


hart of the solutions provided by a) the S-graph framework and the state spa
e based

te
hniques, and b) any of the MILP formulations.
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Figure 3.2: Provided Gantt 
harts for the example in Figure 3.1

As the solutions di�er, either solution a) must be suboptimal or solution b) must be

infeasible (or both). It is easy to verify that the solution provided by the 
ombinatorial

approa
hes is in fa
t the optimal solution, and the one provided by the MILP formulations

is pra
ti
ally infeasible. In the latter solution, 2 hours after starting the produ
tion, units

U1 and U2 should simultaneously ex
hange the intermediate materials of the produ
tion of

produ
ts A and B. This is obviously not implementable without a temporary storage unit,

even if the transfer of the materials 
an be 
arried out in a negligible amount of time.

This phenomenon 
an appear between any number of units, and also o

urs on real

life examples as well. As dis
ussed by Hegyhati et al.[45℄, the same infeasible solution has

repeatedly been published by Kim et al.[64℄ and Mendez and Cerda[90℄ for the problem

shown in Figure 3.3.

Figure 3.3: Literature example for 
ross-transfer illustration

The Gantt 
hart of the solution provided by the MILP formulations is shown in Figure

3.4 - a). At 30 hours of the produ
tion, three units, U2, U3 and the S should ex
hange

materials simultaneously. The real pra
ti
ally optimal solution provided by the S-graph

framework is shown in Figure 3.4 - b).

In this example, U4 is free at the time of the 
ross transfer. In the unlikely 
ase that

this unit 
an store at least one of the intermediates of B, C, or D, the s
hedule 
an be

exe
uted. Gouws and Majozi[40℄ have investigated the bene�ts of using inherent storage,

however, their model also do not ta
kle this issue.

Further examples from Ferrer-Nadal et al.[31℄, or other examples 
ould be mentioned

to further demonstrate that this issue a�e
ts not only theoreti
al problems, but real life
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Figure 3.4: Solutions provided for the literature example of 
ross-transfer illustration
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examples as well. Solutions 
ontaining 
ross transfer usually have a denser s
hedule, thus

shorter makespan, making them favorable for the obje
tive. As a result, solutions with 
ross

transfer are likely to be reported for any multipurpose or more 
ompli
ated example.

Without doubt, the solution provided by the MILP formulations is improper. However

it is not obvious where the mistake was made. In defense of the MILP formulations, they

would have provided the 
orre
t solution if the transfer time were not have been negle
ted.

The reason behind this 
an be illustrated via some of the mathemati
al 
onstraints for the

infeasible s
hedule of the above example:

7

T s
B2 = T

f
B1 + ttrIntB

T s
A2 = T

f
A1 + ttrIntA

T s
B2 − ttrIntB ≥ t

f
A1 + T tr

IntA

T s
A2 − ttrIntA ≥ t

f
B1 + T tr

IntB

The �rst two equations refer to the re
ipes, the se
ond task of ea
h produ
t will start exa
tly

the transfer time later than the �nishing of the �rst.

8

The inequalities des
ribe that a unit


annot start the transfer of the intermediate for the up
oming task until the transfer of

the intermediate produ
t of the previous task is �nished. It is easy to see that there is no

solution to this system, if the ttr parameters are positive, thus the MILP solver would purge

this 
andidate from the B&B tree and �nd the truly optimal solution.

9

If, however, the ttr

values are 0, the model �nds the trivial solution, where all of the mentioned variables are

equal, leading to the infeasible solution.

The result of the previous examination suggests that the mistake is not done by the

MILP formulations, but it is rather the fault of the modeling pro
ess when transfer times

were negle
ted. On the other hand, it has been stated earlier that su
h simpli�
ation is

a

eptable during a modeling pro
ess, and other approa
hes did not fail in �nding the real

optimal solution.

From the pra
ti
al point of view, it is irrelevant where the mistake was made during the

modeling pro
ess. The only important thing is that using the MILP formulations with the


ommon modeling routines may end up with infeasible solutions.

From the theoreti
al point of view, to make the de
ision about where the mistake was

taken, it has to be noted that the published papers have never restri
ted their approa
h

for positive transfer times. Even the problems on whi
h the formulations were illustrated

had 0 transfer times, indi
ating that the formulation was supposed to ta
kle this problems

appropriately as well.

7

i.e., these are some of the 
onstraints that remain in the model after substituting values for the binary

variables a

ording to the given s
hedule.

8

Equations are needed, as NIS poli
y is 
onsidered. The T f
variables here refer for the ending of the

storage of the intermediates in the previous unit after its exe
ution.

9

Other MILP solution te
hniques would obviously also avoid this solution.
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What happens is that the transfers of materials indu
e logi
al 
onstraints, namely: a

transfer to a unit 
annot start when it still has the intermediate produ
t of the previous task.

When the transfer times are positive, this logi
al 
onstraint is "less 
onstraining" then the

timing 
onstraints of the model, thus it has been negle
ted. I.e., some 
onstraints be
ame

redundant for the seemingly more di�
ult problem, thus - for the reason of simpli�
ation

and performan
e - they were removed. The mistake was made when it has not been realized

that these logi
al 
onstraints are no longer 
overed by the timing 
onstraints in the "simpler"


ases.

These logi
al 
onstraints 
ould be implemented via binary variables, whi
h represents the

order of material transfers. This would, however, in
lude a huge number of binary variables

in addition (and thus in
rease the 
omputational need enormously), if the variables are not

present somehow already in the model. Ferrer-Nadal et al.[31℄ proposed an algorithm for

generating additional 
onstraints for their pre
eden
e based model to avoid 
ross-transfer,

as dis
ussed a bit later.

This logi
al 
onstraint 
ould maybe also be expressed something like T
f
A1 > T

f
B1 + ttrIntB

as well. However, MILP models 
annot a

ept stri
t inequalities. One way to over
ome

this issue is introdu
ing small values, as Ferrer-Nadal et al.[31℄ suggest in their paper: if no

transfer times are in
luded in the problem des
ription, a small value should be introdu
ed

instead of 0, and later removed when the "optimal" s
hedule is obtained. Although this

approa
h 
an over
ome this issue in many o

urren
es, it has its short
omings:

• it may not be applied for problems with ZW or LW storage poli
ies, as it 
an render

otherwise feasible s
hedules infeasible

• if the introdu
ed value is too small, it may 
ause numeri
al errors for the MILP solver

• if the introdu
ed value is too big, the approa
h may end up at a suboptimal solution

Before ending this se
tion, a few words must be said about the approa
hes that avoid

this issue. State-spa
e te
hniques do not �nd this solution, as the 
ross-transfer appears as

a deadlo
k while exploring the sear
h spa
e, and the optimization 
ontinues in a di�erent

dire
tion.

In the S-graph framework, pre
eden
es between tasks are represented by dire
ted ar
s.

In 
ase of the NIS poli
y, the s
hedule ar
s for a unit are dire
ted to the next task from

the re
ipe-subsequent task(s) of the previous task (See Chapter 2.3). These ar
s represent

exa
tly the aforementioned logi
al 
onstraints independently of the value of transfer times.

Cross transfer appears as a dire
ted, 0 weighted 
y
le in the S-graph as shown in Figure 3.5

for the wrong s
hedule in Figure 3.4 - a).

In 
ase of positive transfer times, this 
y
le would have a positive weight and the longest

path 
ould not be determined, i.e., this pro
edure would 
over the logi
al 
onstraint of the

transfer. In 
ase of 0 transfer times, the longest path pro
edure may still su

eed (as the

equations were feasible in 
ase of the MILP models). However, the logi
al information is

still kept, and the 
y
le dete
tion algorithm re
ognizes the infeasibility.
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Figure 3.5: Cy
le in the S-graph representation of the s
hedule delivered by the MILP

formulations

Sin
e the pre
eden
e based models and the S-graph framework has a lot in 
ommon, this

approa
h 
an be "translated" to pre
eden
e based MILP models as well, and it is exa
tly

what Ferrer-Nadal et al.[31℄ has published. As the algorithm is not well formulated in

the paper

10

, a reformulated, 
orre
ted, and 
lari�ed pseudo 
ode is presented in Algorithm

blo
ks 3.1 and 3.2.

The main routine goes through all of the plausible unit-task pairs, and starts a re
ursion.

To enumerate ea
h 
y
le only on
e, it is assumed without the loss of generality that the 
y
le

starts at the unit with the smallest index.

For pre
edential re
ipes, the algorithm remains the same, with the only modi�
ation

that the sear
h subroutine is 
alled re
ursively for not only i+, but for all of the subsequent

tasks of i.

At ea
h iteration it is 
he
ked, whether the subsequent task of the last assignment 
an be

performed by the unit that started the 
y
le. If yes, the 
y
le is 
losed and a new 
onstraint

is generated with the fun
tion generate. This fun
tion basi
ally generates the following


onstraint:

∑

X∈X

X +
∑

Y ∈Y

Y ≤ |X |+ |Y| − 1

The 
onstraint ensures that the 
olle
ted assignment and allo
ation variables in Y and X


annot all take the value of 1, whi
h would 
ause this 
y
le.

11

After this part, the algorithm enumerates all the possible units for the subsequent task

of the last assignment, and all the suitable tasks from those whose produ
t has not yet been

in
luded to the 
y
le. The 
y
le is extended with the assignment, and the fun
tion 
alls

10

The original publi
ation 
ontains a �ow diagram with undo
umented notations, and some errors.

11

Colle
ting the assignment and pre
eden
e variables separately is not ne
essary. However, this enhan
es

understandability.
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Algorithm 3.1 Algorithm to generate 
onstraints avoiding 
ross transfer in Pre
eden
e

based MILP models

Inputs

P set of produ
ts

nP number of stages for ea
h produ
t p ∈ P

J set of units

Ji Set of units that 
an perform task i

Notations

I ′ set of all tasks, ex
ept the last ones in the produ
tion, i.e.,

⋃

p∈P{ip,1, ip,2, . . . , ip,nk−1}

J+
j set of units that are later in an arbitrary ordering of the units.

Xi,i′ is a general pre
eden
e binary variable denoting whether task i pre
edes task

i′ if performed in the same unit

Yi,j is the assignment binary variable denoting whether task i is assigned to unit j

or not

for all j ∈ J do

for all i ∈ Ij ∩ I ′ do

sear
h(j,i,{Yj,i},∅,J
+
j ,I

′ \ Ipi,i
+
)

end for

end for
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itself re
ursively.

Algorithm 3.2 Re
ursive subroutine for Algorithm 3.1

sear
h(j0, i0,Y,X ,JR
,IR,il)

j0, i0 starting unit-task pair of the 
y
le

Y set of already �xed assignment variables

X set of already �xed pre
eden
e variables

JR
set of units not yet in the 
y
le

IR set of non-�nal tasks of produ
ts not yet in the 
y
le

il last task in the 
y
le, i.e., the subsequent task of the last assignment

if X 6= ∅ ∧ il ∈ I0j then

generate(Y ∪ {Yj0,il},X ∪ {Xi0,il})
end if

for all j ∈ JR ∩ J l
i do

for all i ∈ IR ∩ Ij do

sear
h(j0,i0,Y ∪ {Yj,il, Yj,i},X ∪ {Xi,il},J
R \ {j},IR \ Ipi,i

+
)

end for

end for

The short
oming of this approa
h is that the model 
an no longer be implemented in a

single primitive model des
ription language. A higher level language supporting loops and

generating equations is needed.

If the analogy between the pre
eden
e based models and the S-graph is used, the behavior

of the algorithm 
an loosely

12

be des
ribed as follows:

1. Take an S-graph where all of the possible s
hedule ar
s are inserted, and the re
ipe

ar
s are removed. See Figure 3.6 for the example given in 2.1.

2. Find all the zero-weighted 
y
les, and insert an equation that forbids them in the

model.

13

3.3 Other issues

In this se
tion, some other issues are introdu
ed brie�y without detailed explanation.

12

In 
ertain 
ases the same s
hedule ar
 
an belong to di�erent units as well, for whi
h additional 
are

must be taken.

13

There are e�
ient algorithms published in the literature for the enumeration of all of the 
y
les in a

graph.[60, 89, 79, 111℄
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Figure 3.6: The S-graph 
ontaining all the possible s
hedule ar
s for the Example given in

Figure 2.1

3.3.1 Long tasks

By investigating the same multiprodu
t example from Se
tion 3.1, and 
hoosing the number

of bat
hes to be 3−2−2−2, the optimal solution reported by any of the mentioned models

is suboptimal. The reason is not to be found in the iterative approa
h, as the model is

not 
apable of �nding the pra
ti
ally optimal solution with larger number of time points

either. As brie�y mentioned in Se
tion 2.1, the problem lies with the typi
al 
onstraint that

if a task starts at a time point, it will �nish by the subsequent one. This assumption will

usually not disregard the optimal solutions when the pro
essing times are very similar in

range. However, in 
ase of a long and several shorter tasks, it is feasible in pra
ti
e that

the short ones are performed after ea
h other in parallell with the long task. Many models,

however, 
annot �nd this solution, as tasks are not allowed to overlap several time points.

This issue has been already reported by several papers, and addressed partially. In both the

global time point[17℄ and the unit spe
i�
[117℄ models, the binary variables were extended

with an additional index: the �nishing time point. Thus, theoreti
ally, if there are n time

points, and k plausible unit-task pairs, the number of binary variables in
reased from n× k

to

(

n

2

)

× k = n× k× n−1
2
. As a result, the number of time points be
ame even more 
ru
ial,

and mu
h smaller problems got impossible to be solved in a reasonable time. In order

to avoid this 
omputational disadvantage, these models were extended with an additional

parameter, ∆14

that denotes the maximal number of time points that the exe
ution of a

task 
an overlap. The spe
ial 
ase, ∆ = 0 brings the model ba
k to the original 
ase. This

way, the number of binary variables is redu
ed to (n+ (n− 1) + · · ·+ (n−∆))× k that is

roughly (∆ + 1) × n × k. Although the optimal solutions 
an usually be found by using 1

or 2 for ∆, it has to be noted that these 
ases also roughly double and triple the number of

14

In the original papers it is ∆n for the unit spe
i�
, and ∆t for the global time point models.
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binary variables, resulting in huge in
rease for the 
omputational need. Also, ∆ is an other

model parameter, that has to be identi�ed a-priori the optimization, similar to the number

of time points, and thus the optimality of the solution 
annot be guaranteed. Although

there were attempts to identify the ideal value for ∆, 
ounterexamples 
an easily be 
reated

to undermine the soundness of those approa
hes.

3.3.2 Time point syn
hronization

Unit spe
i�
 models are advantageous from the 
omputational point of view. However,

the syn
hronization between the di�erent time point sets 
an be rather nontransparent.

Investigating this issue in detail would require many pages, thus it is omitted here, and only

a simple example is given as an illustration: The so 
alled "Di�erent task - di�erent unit"


onstraints in these models state, that if task i is �nishing in time point n, and produ
es

some intermediate, that 
an be 
onsumed by a task i′ whi
h will start to be performed by

an other unit at time point n, than i′ must start later than i �nishes. The problem with this

assumption is that i′ may gets its inputs from a storage or an other unit that also performed

task i, but �nished earlier, thus the model is over-
onstraining.

Summary and 
on
luding remarks

This 
hapter presented some of the modeling issues, that arise in 
ase of the MILP for-

mulations published in the literature. These issues may lead the optimization pro
ess to

suboptimal or even pra
ti
ally infeasible solutions. Some of these issues were presented in

detail and analyzed, others just mentioned and highlighted. Some of the issues are easy to

address, others are not. However, even in the former 
ase, the �x 
ould in
rease the CPU

needs drastiqually.

The overall 
on
lusion of the 
hapter is, that empiri
al tests 
an never validate

the soundness of a presented approa
h, whi
h is a 
ommon pra
ti
e in the literature.

Moreover, authors should investigate in more detail, what kind of assumptions are hardwired

into their model, and highlight them in their papers.
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Chapter 4

Throughput or pro�t maximization with

the S-graph framework

The S-graph framework was originally introdu
ed to address makespan minimization prob-

lems with NIS or UIS poli
ies. The extension to throughput-, revenue-, or pro�t maxi-

mization is not as trivial as in the 
ase of the time dis
retization based MILP approa
hes,

as the S-graph algorithms (like the pre
eden
e based formulations) 
onsider the number of

bat
hes as an input parameter, whi
h is unknown a-priori to optimization in these 
ases. In

this 
hapter, an algorithm is presented to extend the S-graph framework to address revenue

maximization problems. Throughput or pro�t maximization 
an be addressed analogi
ally.

The basi
 idea that has been presented by Majozi and Friedler[82℄ and by Hol
zinger et

al.[55℄, is to have a top-level bran
hing for the number of bat
hes for ea
h produ
t, that

will be 
alled as a 
on�guration in this 
hapter. The approa
h des
ribed in Se
tion 4.1

and 4.2 relies, however, on �xed bat
h sizes, that is not always the 
ase for throughput

maximization problems. Se
tion 4.3 introdu
es an approa
h to dis
retize the bat
h sizes

without the loss of generality in order to provide the re
ipes with �xed bat
h sizes for the

previously des
ribed algorithm.

4.1 Main algorithm for revenue maximization

In this se
tion, it is assumed, that for all produ
ts the bat
h size is �xed, i.e., the revenue

of one bat
h of a produ
t is known, and it is denoted by Rp for all p ∈ P .

As it has been mentioned before, it is not known in advan
e at what number of bat
hes

the revenue will be maximal. Thus, the basi
 
on
ept of the approa
h is to introdu
e a top

level sear
h spa
e for all the possible bat
h numbers. The pseudo 
ode of the algorithm 
an

be found in the algorithm box 4.1

Essentially, the algorithm �rst initializes the set S with all the possible bat
h numbers for

the produ
ts. (Z∗
denotes the set of non-negative integers.) Then, in ea
h iteration a bat
h

number 
on�guration is sele
ted and removed from the set by the sele
t_remove fun
tion,

53
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Algorithm 4.1 Throughput minimization with the S-graph framework

revenuecb := 0
S := (Z∗)|P |

while S 6= ∅ do
x :=sele
t_remove(S)
if feasible(re
ipe(x),tH) then

if revenue(x)> revenuecb then

revenuecb :=revenue(x)
xcb := x

update(S, revenuecb)
end if

else

S := {x′ ∈ S | x′ 6≥ x}
end if

end while

if revenuecb 6= 0 then
return (xcb, revenuecb)

end if

and tested for feasibility, i.e.whether it 
an be produ
ed within the given time horizon, tH .

If the 
on�guration is feasible, and has a higher revenue than the best found so far, the


urrently best solution is updated, as well as the set S. If the 
on�guration is infeasible all

the 
on�gurations larger

1

than the 
urrent one are removed from the set S, due to the fa
t,

that if there would be a feasible s
hedule for a larger 
on�guration, a feasible s
hedule for

x 
ould be 
reated as well by removing all the super�uous bat
hes from it. When S gets

empty, the algorithm returns with the best 
on�guration and the 
orresponding revenue if

there was a feasible solution.

Though the algorithm is simple, several aspe
ts need to be dis
ussed:

• The algorithm uses several subroutines. Some of them is dis
ussed in the next se
tion

in more detail. The fun
tion re
ipe generates the re
ipe graph of a problem where

xi bat
hes of the ith produ
t is to produ
ed for ea
h i, and all the other ne
essary

information needed by the feasibility tester subroutine, e.g., set of tasks, units. The

revenue fun
tion simply returns the revenue for the 
on�guration, whi
h in this 
ase

is the s
alar produ
t x · R.

• The set S is in�nitely large, and seemingly only one element 
an be guaranteed to

be removed from it in ea
h iteration. This suggests, that the algorithm is not �nite.

Note, however, that this is not the 
ase, the algorithm always �nishes in a �nite

number of steps if the sele
tion of 
on�gurations is appropriate. Let tmin
p be the

smallest pro
essing time for any of the tasks of produ
t p ∈ P . Obviously, [ tH

tmin
p

] is

an upper limit (though probably not very tight) for the number of bat
hes that 
an

1

A 
on�guration is 
onsidered to be larger or equal than an other one, if it entails at least as many

bat
hes from ea
h produ
t than the other 
on�guration.
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be produ
ed from p. As an upper bound exists for ea
h produ
t, the algorithm ends

in a �nite number of steps if it 
hooses 
on�gurations, su
h that xp ≤ [ tH

tmin
p

] + 1.

The 
on�gurations where xp = ⌊ tH

tmin
p

⌋ + 1 for at least one produ
t will de�nitely be

infeasible, and thus they will remove all the other 
on�gurations from S. In pra
ti
e,

i.e., in the implementation of this algorithm the set S is not initialized like this, see

more about this at the des
ription of the sele
t_remove fun
tion.

• In the presented version, the algorithm does not return the s
hedule of the optimal

solution. The implementation of 
ourse saves the feasible solution found and returns

it at the end.

Assuming that the subroutines work properly, it is easy to see, that the algorithm is

sound, as it evaluates all the possible 
on�gurations.

4.2 Subroutines for the algorithm

In this se
tion several subroutines of the revenue maximization algorithm is dis
ussed.

4.2.1 The sele
t_remove method

The only requirement towards the sele
t_remove fun
tion to make the algorithm sound

is that it should sele
t and arbitrary element of S and remove it. For the �niteness of the

algorithm however, the fun
tion should satisfy some additional 
ondition. A simple, yet

su�
ient 
ondition is that the fun
tion should never sele
t an element x su
h that none of

its "pre
eding 
on�gurations" has been sele
ted before. A 
on�guration x′
is pre
eding x if

for some k ∈ {1, . . . , |P |}, x′
k = xk − 1 and x′

i = xi for all i 6= k. It is easy to see that if

the fun
tion follows this rule, the algorithm will always have a �nite number of iterations,

as the feasible region is �nite (as dis
ussed in the previous se
tion) and its border is �nite

as well.

In the implementation, however, the fun
tion behaves a bit di�erently. First, the fun
tion

goes through the 
on�gurations where only one produ
t is produ
ed, and �nds the largest

feasible bat
h number, bmax
p for ea
h p ∈ P . Based on these values, a �nite region of interest


an be de�ned, that 
ontains all the feasible 
on�gurations (and some infeasibles as well).

For two produ
ts, the result of this initial step is illustrated in Figure 4.1.

The two produ
ts are denoted by A and B, and the two axises by NA and NB referring

to the number of bat
hes for A and B, respe
tively.

After identifying this feasible region, the fun
tion 
an have di�erent strategies to sele
t

the 
on�guration, whi
h 
ould have a major e�e
t on the CPU requirements. As shown in

Figure 4.2, the number of examined 
on�gurations 
an be signi�
antly di�erent for di�erent

sele
tion strategies.
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Figure 4.1: Finding the initial region 
ontaining the optimal solution for revenue maximiza-

tion

Figure 4.2: Illustration of the signi�
an
e of 
on�guration sele
tion on the number of itera-

tions
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As it 
an be seen from the �gure, in one of the 
ases the algorithm had 4 iterations after

the initial phase, in the other there was 6 iterations. The former one 
ould save 2 iterations

by testing the 
on�guration (2, 1), and �nding it infeasible �rst. Empiri
al test has shown,

that the most of the time needed by the algorithm belongs to infeasible 
on�gurations. Thus,

testing the "minimal" infeasible 
on�gurations �rst is 
ru
ial for redu
ing the CPU time.

Orosz [96℄ has investigated the e�e
ts of di�erent sele
tion strategies in his work.

4.2.2 The update method

Essentially, there are two tests that has to be 
arried out at ea
h 
on�guration:

• Is the 
on�guration feasible?

• Does the 
on�guration provide higher revenue than the 
urrent best?

In many pra
ti
al examples, the evaluation of the �rst question takes mu
h more time

than that of the se
ond. A

ording to experimental experien
es, this is espe
ially true, if the


on�guration is infeasible, as it takes more time for the feasibility tester to examine all the

infeasible bran
hes, than �nding a single feasible s
hedule. In these 
ases it may be more

bene�
ial to evaluate �rst the se
ond question, and if the answer is no, then purge the 
ase,

even if it 
ould be used for redu
ing the sear
h spa
e if it turns out to be infeasible.

The purpose of the update fun
tion is to make this type of behavior possible. Although

there are many possibilities, there are two implementations present:

1. The fun
tion does nothing

2. The fun
tion removes those untested 
on�gurations from the sear
h spa
e that do not

have higher revenue than the 
urrent best solutions, i.e., S := {x′ ∈ S |revenue(x′
)≤

revenuecb}

The �rst 
ase is evident; in the se
ond 
ase, the region is redu
ed ea
h time when a

feasible 
on�guration is found. Note that in this 
ase, the if statement testing whether the

revenue of x is higher than the 
urrent best is unne
essary. In the implementations this

se
ond option is only used after �nding the initial region of feasibility (see the previous

se
tion). When this region is identi�ed, one of the tested 
on�gurations provide the highest

pro�t found so far. This solution 
an immediately be used to redu
e the sear
h spa
e, as

shown in Figure 4.3.

In this 
ase, the revenue of produ
ing 3 bat
hes of A was 6, and all the 
on�gurations

indi
ated by white dots 
ould be removed from the sear
h spa
e, as they had the revenue of

at most 6.

Using the se
ond version of this fun
tion, the sear
h spa
e S gets redu
ed at ea
h iter-

ation, regardless, whether the 
on�guration x turns out to be feasible or infeasible. Using

the two sele
tion strategies shown in Figure 4.2, and the se
ond version of the updating

fun
tion, the evaluation of the sear
h spa
e is illustrated in Figure 4.4.
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Figure 4.3: Redu
ing the sear
h spa
e based on the revenue of the best feasible solution

Figure 4.4: Evaluation of 
on�gurations with revenue updates on S
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Although, this redu
tion 
an be bene�
ial in many 
ases, it has drawba
ks as well, whi
h


an be seen by 
omparing Figures 4.2 and 4.4 as well. In the latter 
ase, regardless of the

sele
tions strategy, two infeasible 
on�gurations needed to be tested, whi
h was not the 
ase

for the �rst strategy in the former one. As testing infeasible 
on�gurations usually take

most of the 
omputational time, in most of the 
ases it is advised not to redu
e S based on

the 
urrent best revenue.

4.2.3 The feasible method

The feasible method plays a key role in the maximization of the revenue, as this fun
tion

is responsible for the evaluation of ea
h 
on�guration. The fun
tion must return true if

there is a s
hedule with at most the time horizon for the given number of bat
hes, and false

otherwise.

The simplest implementation is by using the makespan minimization fun
tion des
ribed

in Subse
tion 2.3.2. At ea
h 
on�guration the number of bat
hes for ea
h produ
t are

available, thus the minimal makespan for that amount of produ
ts 
an be found. Then, the

result is 
ompared with the time horizon: if it is not larger, the 
on�guration is feasible,

and infeasible otherwise.

This approa
h however does numerous unne
essary 
al
ulations:

• Even if a solution has been found within the time horizon, the fun
tion 
ontinues to

�nd the solution with the optimal makespan, that is, in this 
ase, out of the interest

of the main algorithm.

• Even if all the subproblems has higher lower bounds then the time horizon, i.e., all of

the feasible solutions has longer makespan than the time horizon, the algorithm still


ontinues to �nd the optimal solution, although the 
on�guration will be evaluated as

infeasible anyway.

In order to avoid these unne
essary 
al
ulations the makespan minimization algorithm

must slightly be modi�ed the following way:

• The variable makespancb
must be repla
ed by tH .

• When a feasible solution is found the algorithm should return with true immediately.

The pseudo 
ode for this feasibility tester fun
tion is presented in Algorithm blo
k 4.2.

2

This simple modi�
ation 
an signi�
antly redu
e the time needed for the optimization.

However, there are still redundant 
al
ulations, sin
e if x is a 
on�guration larger than x′
,

then part of the the sear
h tree for the feasibility test of x appears in the tree of the test for

x′
as well. Orosz [96℄ has investigated this opportunity, and provided a global sear
h tree

2

Note that the presented algorithm simply returns true, and does not return the s
hedule. Obviously,

the algorithm 
an be easily modi�ed to return the s
hedule or save it in a global variable, et
.
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Algorithm 4.2 Feasibility tester subroutine for revenue maximization

feasible(G(N,A1, A2, w), I, J, t
H
)

G(N,A1, A2, w) re
ipe graph

I, J set of tasks and units, respe
tively

tH time horizon

S := {(G(N,A1, A2, w), I, J, ∅)}
while S 6= ∅ do
(G(N,A1, A2, w), I

′, J ′,A) :=sele
t_remove(S)
if bound(G)< tH then

if I ′ = ∅ then
return TRUE

else

j :=sele
t(J ′
)

for all i ∈ Ij ∩ I ′ do

Gi(N,A1, A
i
2, w

i) := G(N,A1, A2, w)
for all i′ ∈

⋃

(i′,j)∈A I+i′ \ {i} do

Ai
2 := Ai

2 ∪ {(i′, i)}
end for

for all i′ ∈ I+i do

wi
i,i′ := t

pr
i,j

end for

S := S ∪ (Gi(N,A1, A
i
2, w

i), I ′ \ {i}, J ′,A∪ {(i, j)})
end for

if I ′ ⊆
⋃

j′∈J ′,j 6=j′ Ij′ then

S := S ∪ (G(N,A1, A2), I
′, J ′ \ {j},A)

end if

end if

end if

end while

return FALSE
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based method where the feasibility testers use the results of the pre
eding 
on�gurations

to a

elerate the sear
h. The approa
h has been implemented with a task based feasibility

tester, and despite its development phase, it has shown promising results.

4.3 Flexible bat
h sizes

For many 
ase studies and literature examples the bat
h sizes are not �xed, and if several

units are 
apable of performing a task, they are allowed to do it in parallel. This type of

problem de�nition is espe
ially often for throughput/revenue maximization problem, but ap-

pears for makespan minimization as well. Time dis
retization based approa
hes 
an address

this issue as they are, the S-graph framework, however, needs some adjustments.

The previously des
ribed algorithm requires that the re
ipe is �xed, and the revenue is

known for one bat
h of a produ
t. With the aforementioned problems, however, neither of

these two is guaranteed. As an illustration for the proposed approa
h, the example from

Kondili et al.[66℄ is taken, that was shown in Figure 1.5.

The pro
ess 
onsists of 5 tasks: heating, 3 rea
tions and a separation, the material �ows

are 
learly represented in the �gure.

3

For these tasks, 4 units are available, dedi
ated Heater

and Separator, both with 100kg of 
apa
ity for the Heating and Separation, respe
tively.

For the three rea
tions, two di�erent rea
tors R1 and R2 with identi
al pro
essing times,

and 
apa
ities of 80 kg and 50 kg are available, whi
h may be used in parallel. It is assumed

that all of the units 
an operate with any load smaller than their 
apa
ity, i.e., there is no

lower bound for their load.

The pro
ess produ
es two produ
ts with identi
al revenues, and an additional 
onstraint

is given: no intermediate material may be left at the end of the produ
tion, i.e., it is not

allowed to produ
e only Produ
t 1 via the �rst part of the pro
ess. Moreover, there are no

storages available, i.e., NIS poli
y is assumed.

Ea
h rea
tion 
an be performed by either one of the rea
tors or with both of them

parallel. For the 3 rea
tions, this results in 33 = 27 di�erent "�xed re
ipes", that 
an have

di�erent bat
h size intervals, as represented in Table 4.1.

To apply the previously des
ribed S-graph algorithm for revenue maximization, a sepa-

rate S-graph re
ipe for ea
h of these 
ases must be 
reated, thus the top level sear
h region

would be
ome a 27 dimensional spa
e. This would result in an enormous CPU need for the

optimization, thus, the redu
tion on the number of 
ases is essential.

When looking at the table, it 
an easily be seen that only several di�erent values repeat.

The reason behind this 
omes from the material balan
es, for example, even if we assign

both R1 and R2 instead of just R1 to Rea
tion 3, the output will not be higher, if the supply

from the previous rea
tions does not rea
h a 
ertain level. If two di�erent 
ases c and c′ has

the same maximal revenue, but c uses only a (not ne
essarily real) subset of units for ea
h

3

In the original example, 10% of the output of separation is IntAB that is re
y
led. This is negle
ted,

as the presented algorithm is not 
apable of addressing problems with loops in their re
ipe.
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Case Rea
tion 1 Rea
tion 2 Rea
tion 3 Max revenue

1 R1 R1 R1 86.00

2 R1 R1 R2 71.67

3 R1 R1 R1&R2 86.00

4 R1 R2 R1 53.75

5 R1 R2 R2 53.75

6 R1 R2 R1&R2 53.75

7 R1 R1&R2 R1 114.67

8 R1 R1&R2 R2 71.67

9 R1 R1&R2 R1&R2 139.75

10 R2 R1 R1 86.00

11 R2 R1 R2 71.67

12 R2 R1 R1&R2 86.00

13 R2 R2 R1 53.75

14 R2 R2 R2 53.75

15 R2 R2 R1&R2 53.75

16 R2 R1&R2 R1 89.58

17 R2 R1&R2 R2 71.67

18 R2 R1&R2 R1&R2 89.58

19 R1&R2 R1 R1 86.00

20 R1&R2 R1 R2 71.67

21 R1&R2 R1 R1&R2 86.00

22 R1&R2 R2 R1 53.75

23 R1&R2 R2 R2 53.75

24 R1&R2 R2 R1&R2 53.75

25 R1&R2 R1&R2 R1 114.67

26 R1&R2 R1&R2 R2 71.67

27 R1&R2 R1&R2 R1&R2 139.75

Table 4.1: 27 di�erent "�xed re
ipes" for the example by Kondili et al.[66℄
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rea
tion of those used by c′, than c dominates c′. As an example, 
ase 9 dominates 
ase

27, and 
ase 24 is dominated by all of the 
ases 4,5,6,13,14,15,22,23. Obviously, if a 
ase

is dominated by an other, it 
an be ex
luded from the investigation without using loosing

the guarantee for the global optimality. For the example above, the 
ases, whi
h are not

dominated by an other are shown in Table 4.2 ordered by the maximal revenue.

Case Rea
tion 1 Rea
tion 2 Rea
tion 3 Max revenue

4 R1 R2 R1 53.75

5 R1 R2 R2 53.75

13 R2 R2 R1 53.75

14 R2 R2 R2 53.75

2 R1 R1 R2 71.67

11 R2 R1 R2 71.67

1 R1 R1 R1 86.00

10 R2 R1 R1 86.00

16 R2 R1&R2 R1 89.58

7 R1 R1&R2 R1 114.67

9 R1 R1&R2 R1&R2 139.75

Table 4.2: Non-dominated 
ases for the example by Kondili et al.[66℄

After this redu
tion, still, 11 di�erent 
ases should be given as input to the S-graph

algorithm. In order to further redu
e this number, several 
ases 
an be merged together. As

an example 
ases 4 and 5 are identi
al ex
ept for the sele
tion for the third Rea
tion, thus

these two 
ases 
an be merged togerther by the assignments R1, R2, R1∨R2 for Rea
tions

1,2, and 3, respe
tively. Applying the same idea, the 6 
ases shown in Table 4.3 remain.

Case Rea
tion 1 Rea
tion 2 Rea
tion 3 Max revenue

4,5,13,14 R1 ∨R2 R2 R1 ∨R2 53.75

2,11 R1 ∨R2 R1 R2 71.67

1,10 R1 ∨R2 R1 R1 86.00

16 R2 R1&R2 R1 89.58

7 R1 R1&R2 R1 114.67

9 R1 R1&R2 R1&R2 139.75

Table 4.3: Merged non-dominated 
ases for the example by Kondili et al.[66℄

To all of these merged 
ases, the re
ipe graph 
an be generated, as shown in Figure 4.5.

4.4 Empiri
al tests

In this se
tion, the results of the implemented algorithm are presented via three examples.

For ea
h example, the problem has been s
aled and solved with di�erent time horizons.

At ea
h 
ase altogether 18 variants of the throughput maximization algorithm have been
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Figure 4.5: The 
orresponding re
ipe graphs for the 6 
ases in Table 4.3
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tested and 
ompared. These variants add up by the possible 
ombinations of 3 di�erent

subproblem sele
tion rules, 3 di�erent update and 2 di�erent feasibility subroutines.

Ea
h of the subproblem sele
tion strategies �rst explores how many bat
hes of a single

produ
t 
an be produ
ed within the given time horizon, then they explore the bounded

region

LEX in a lexi
ographi
al order,

BFS via breath-�rst sear
h,

DFS via depth-�rst sear
h.

The update subroutines:

E empty, no 
on�guration is removed via the bound of a feasible solution

F only the best axial 
on�guration is used for removing some of the 
on�gurations

after the initialization phase

U the update fun
tion removes all the 
on�gurations that has lower revenue than the


urrently best feasible solution

Last, the makespan minimization (MM) and the des
ribed feasibility tester (FT) is used

for the evaluation of the 
on�gurations. At ea
h run, the time limit of 1 hour was used for

the solver algorithm.

The subse
tions present only some highlights of the results due to spa
e limitations. The

table of all of the results 
an be found in Se
tion C.1. When the algorithms have not rea
hed

the 1 hour time limit, they delivered the same globally optimal solution.

A general experien
e is that the type of the feasibility tester have a major e�e
t on the

CPU times, as expe
ted. Usually, most of the CPU time is taken for the testing of infeasible


on�gurations, where the FT does not gain any advantage of stopping after the �rst feasible

solution. The initial bound of the FT subroutine however, 
ause a signi�
ant redu
tion on

the sear
h spa
e.

4

Thus, in the following subse
tions the variants having MM subroutine

are not investigated.

For all of the examples, NIS storage poli
y were 
onsidered for all intermediates.

4.4.1 Pharma
euti
al 
ase study

This example is taken from a multinational pharma
euti
al 
ompany. There are 5 hair and

skin 
are produ
ts produ
ed, all of them via two 
onse
utive steps: mixing and pa
king. For

the pa
king, there are 3 identi
al pa
king lines available, and the pa
king time is uniformly

12 hours for all of the produ
ts. There are 4 mixing vessels available, however, they di�er

in appli
ability and pro
essing times due to the di�erent stirrer designs. The detailed

pro
essing times are given in table 4.4

4

Some additional tests were run using the makespan minimization subroutine with the initial bound, and

the results were 
lose to that of the FT approa
h.
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Produ
t Revenue (
u)

Pro
essing time (h)

Mixing vessels

Pa
king lines

V1 V2 V3 V4

Cream 1 2 10 5 5 12

Cream 2 3 12 10 7 12

Conditioner 1 12 12

Shampoo 3.5 8 13 12

Lotion 1.5 10 6 9 12

Table 4.4: Pro
essing times and revenue data for the pharma
euti
al 
ase study

A summary of the test results are shown on a logarithmi
 s
ale in Figure 4.6, where the


olors 
orrespond to 
on�guration sele
tion rules, and the shapes for the di�erent update

fun
tions.

Figure 4.6: Summary of results for the pharma
euti
al 
ase study

Based on these results the following 
on
lusions 
an be drawn for this example:

• For most of the 
ases, the alternative solution approa
hes 
ould not outperform ea
h

other more than a magnitude.

• For small problems (with time horizon less than 29) the CPU times do not in
rease

drasti
ally.

• After 29 hours of time horizon, the CPU times have a drasti
al in
rease.

• For larger problems the alternatives with the E update fun
tion dominate the others,

and there is only a negligible di�eren
e between them for the di�erent 
on�guration

sele
tion strategies.
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4.4.2 Agro
hemi
al example

In this example herbi
ide is produ
ed through three rea
tions, a separation, and an evapo-

ration. The �owsheet of the problem is given in Figure 4.7.

Figure 4.7: Flowsheet of the agro
hemi
al pro
ess for herbi
ide produ
tion

The pro
essing times, 
apa
ities of the units, output ratios, and other details of the

problem 
an be found in the paper by Majozi and Friedler [82℄. Although there is only one

produ
t, the bat
h sizes are not �xed, and two units may work parallel on the same bat
h.

Thus the algorithm of Se
tion 4.3 need to be applied to 
reate �xed re
ipes. After this

prepro
essing steps, there are two di�erent �xed re
ipes as shown in Figure 4.8, where the

revenues of F1 and F2 are 3.7 and 4.5 
ost units, respe
tively.

Figure 4.8: S-graph of the two �xed re
ipes for the agro
hemi
al pro
ess

The results of the tests are shown in Table 4.5, and the best CPU times are indi
ated in

ea
h row.
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Time CPU time (s)

horizon LEX BFS DFS

(h) U F E U F E U F E

13 3.06 3.07 3.05 3.08 3.04 3.05 3.03 3.08 3.07

14 339 340 205 405 405 414 405 402 269

15 453 451 453 583 582 591 589 583 581

16 3600 3600 3600 3600 3600 3600 3600 3600 3600

Table 4.5: Test results for the agro
hemi
al example

It is easy to see, that in 
ase of this problem, the in
rease in the time horizon has a

drasti
 e�e
t on the 
pu times. Ea
h additional hour in the time horizon resulted in at least

one magnitude growth in the CPU time. Based on this few results, it 
an be observed, that

the E update fun
tion dominates here the other two as well. Moreover, in general, the LEX


on�guration sele
tion strategy proved to be the most e�
ient.

4.4.3 Literature example

For the last 
omparisons, the example from Se
tion 4.3 is taken. As des
ribed in that

se
tion, there are 6 �xed re
ipes for this problem with two produ
ts. The results of the test

are shown in Table 4.6, and again, the best CPU times are indi
ated in ea
h row.

Time CPU time (s)

horizon LEX BFS DFS

(h) U F E U F E U F E

14 16.88 15.84 15.21 14.95 18.52 21.07 22.63 22.53 21.01

15 179 134 113 208 144 133 437 279 225

16 1260 1159 984 964 1496 1512 1594 1629 1403

17 3600 3600 3600 3600 3600 3600 3600 3600 3600

Table 4.6: Test results for the example of Se
tion 4.3

As in the 
ase of the previous examples, the LEX-E alternative provides good results.

However, interestingly, the BFS-U strategy often have good results.

Summary and 
on
luding remarks

In this 
hapter, the S-graph framework has been extended to throughput or revenue maxi-

mization problems. The algorithm is based on the enumeration and maximum sear
h of the

feasible set of 
on�gurations, i.e., bat
h numbers, whi
h are produ
able in the given time

horizon. The possibilities for di�erent variations of the general algorithm were presented

and thouroughly 
ompared after implementation. The results showed that the approa
h is
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apable to solve the 
onsidered set of problems, and provide the optimal solution e�
iently

when the 
orre
t variation is applied.
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Chapter 5

Limited- and Zero-wait storage poli
ies

in the S-graph framework

The S-graph framework was originally developed for NIS-UW and UIS-UW storage poli
ies,

and the only published storage poli
y extension of the S-graph framework[109℄ fo
used on

CIS-UW poli
y. However, in many industrial appli
ation LW or ZW poli
ies are required,

as 
ertain intermediates lose some physi
al or 
hemi
al properties over time, that would be

important for the up
oming task. In this 
hapter, several new approa
hes are introdu
ed to

ta
kle these storage poli
ies. As it has already been mentioned in Se
tion 1.2, in 
ase of ZW

poli
y, the restri
tion on the infrastru
ture is irrelevant. However, LW itself does not de�ne

the storage poli
y. In this 
hapter LW will refer to NIS-LW poli
y, and the approa
hes are

des
ribed for that, although they 
ould easily be modi�ed to address UIS-LW poli
y as well.

Moreover, if an approa
h is presented for LW poli
y, it 
an be automati
ally applied for

ZW 
ases, as it is a spe
ial 
ase of LW. Finally, it is not assumed anywhere, that all of the

intermediates share the same restri
tion for waiting time, i.e., some of them are ZW, LW,

or even UW.

Note that UW is a relaxation of ZW/LW, thus, all of the s
hedules with ZW or LW

poli
ies on some intermediates remain feasible if all of the LW intermediates are set to UW

poli
y. Later on, the terminology UW-relaxation will be used if the LW restri
tions of a

problem are disregarded this way.

Most of the 
onstraints in s
heduling has a "greater or equal" nature,e.g., a task must

start later than the �nishing of the previous task in the re
ipe, or the previous task assigned

to the same unit. LW 
onstraints, however, de�ne a "not later then" thus "smaller or

equal" type of 
onstraint, whi
h 
annot dire
tly be expressed by the ordinary S-graph ar
s.

There are, however, several ways to address this poli
y, whi
h are detailed in the following

subse
tions.

In se
tion 5.1 a hybrid approa
h is introdu
ed, where the S-graph based bran
hing pro-


edure is extended with an LP based bounding fun
tion that also in
ludes the "smaller or

equal" type of LW 
onstraints.

The approa
h introdu
ed in se
tion 5.2 relies on the fa
t that a typi
al "less or equal"

71



72 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK

type of LW 
onstrains, su
h as T start
1 ≤ T start

2 + tproc 
an easily be 
onverted to a "greater

or equal form": T start
2 ≥ T start

1 + (−tproc), whi
h 
an be modeled by regular S-graph ar
s.

The weight of the edge, however, be
omes negative (non-positive to be pre
ise), whi
h needs

some additional 
are.

In se
tion 5.3 two approa
hes are introdu
ed for problems with only UW and ZW inter-

mediates without introdu
ing negative weighted ar
s in the S-graph. Addressing LW stages

is possible through a modeling 
onversion.

Last, se
tion 5.4 
ompares the performan
e of these approa
hes through several exam-

ples.

5.1 Auxilary LP model

The smaller-or-equal type of 
onstraints of LW poli
y 
an be addressed by an LP model that


an be formulated for ea
h subproblem. The mathemati
al model 
an simply built based

on the S-graph (N,A1, A2):

• A non-negative 
ontinuous variable is assigned to ea
h node, whi
h represents its

starting time: Si, for all i ∈ N .

• S
hedule ar
s represent simple ordering in time, thus a 
onstraint in the form of Si′ ≥ Si

is added for all (i, i′) ∈ A2.

• For all re
ipe ar
, a similar 
onstraint is added: Si′ ≥ Si + wi,i′ for all re
ipe ar


(i, i′) ∈ A1, where wi,i′ is the weight of it.

• Last, for ea
h task i with LW poli
y, the 
onstraint Si′ ≤ Si + wi,i′ + maxwaiti is

added, where i′ is an up
oming task of i, i.e., (i, i′) ∈ A1, and maxwaiti the maximal

allowed waiting time.

The solution of this mathemati
al model will not provide sharper bounds than the longest

path algorithm. However, it will dete
t if a 
ertain subproblem is not feasible due to wait

restri
tions. In su
h a 
ase, the 
orresponding bran
h of the sear
h tree is pruned obviously.

Note that in 
ase of a partial s
hedule that is not even feasible for the UW-relaxation, the

S-graph approa
h will dete
t the infeasibility in the usual manner by �nding a dire
ted 
y
le,

thus the solution of the LP model is not ne
essary.

Advan
ed LP approa
h

The most serious drawba
k of the previously mentioned approa
h is that the mathemati
al

model needs to be formulated at ea
h subproblem, taking a lot of CPU time, while the LP

itself does not provide a sharper bound than the longest path approa
h. There is, however,

a more sophisti
ated way of using an LP for LW and ZW poli
ies, as suggested in subse
tion

2.3.3.
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Instead of formulating a separate LP model for ea
h subproblem, the LP relaxation of

the whole pre
eden
e based model 
an be built for the root subproblem immediately. Then,

at ea
h de
ision, this model is 
opied, and some of the binary variables are �xed by 
hanging

their upper or lower bounds.

Though, these models are mu
h bigger than the formerly introdu
ed ones, their bitwise


opying and modifying some variable bounds takes less time than building up the same

model from s
rat
h. Moreover, as they have the same number of variables and 
onstraints,

the solution of the parent LP model 
an be used as a starting basis for the dual simplex

algorithm. Finally, the solution of these models provide a tighter bound than the longest

path algorithm itself.

Note that similarly to the original approa
h, there is no need to 
opy the LP relaxation,

modify and solve it if the s
hedule graph 
ontains a 
y
le or the longest path is higher than

the 
urrent upper bound.

Moreover, as the models at the subproblems are the same ex
ept for the bounds on

variables, it may be more bene�
ial not to 
opy the model, but use it as a global variable,

and adjust the bounds at ea
h subproblem.

5.2 Combinatorial approa
h with negative weighted ar
s

As it has already been mentioned, the less-or-equal type 
onstraints in the form of T start
1 ≤

T start
2 +tproc 
an easily be 
onverted to a greater-or-equal form: T start

2 ≥ T start
1 +(−tpt). This

transformation, however, introdu
es non-positive weights on the ar
s. This idea has already

been used in for the Alternative graph model to model similar situations [88, 98, 24, 25, 22,

21℄

The limited waiting times 
an easily be modeled by negative weighted ar
s. If there is

a task i with pro
essing time t
pt
i , and maximal waiting time tmaxwait

i , then two re
ipe ar
s

should be inserted into the S-graph as illustrated in Figure 5.1:

• An ar
 with weight t
pt
i from i to its subsequent task(s).

• An ar
 with weight −t
pt
i − tmaxwait

i from the subsequent task(s) of i to i.

It is obvious to see that these ar
s express exa
tly the desired 
onstraints. In the �gure

the interval in whi
h task i′ 
an start (from T start
i + t

pt
i to T start

i + t
pt
i + tmaxwait

i ) is indi
ated

by blue 
olor on the time axis.

There are, however, some aspe
ts of the algorithm that must be taken 
are of with the

introdu
tion of these ar
s.

• The longest path algorithm must be adjusted a

ordingly. As the 
urrent implemen-

tation maintains a longest path matrix throughout the algorithm, there is no need to


hange anything with this.
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Figure 5.1: Modeling LW poli
y with negative weighted ar
s
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• Even the re
ipe graph will immediately 
ontain several 
y
les. Their weight is negative,

or in the 
ase of ZW ar
s, 0. Naturally, negative weighted 
y
les are not of great

interest. They 
an simply be disregarded. However, the 0 weighted 
y
les need extra


are, as some of them only represent a ZW 
onne
tion, while the others model a 
ross

transfer (See se
tion 3.2). The algorithm must be modi�ed in order to report only

those zero-weighted 
y
les that do not have re
ipe ar
s in them.

5.3 Combinatorial approa
h without negative weights

In this se
tion two approa
hes are des
ribed to ta
kle ZW poli
y. LW stages are not 
on-

sidered, but they 
an be addressed via a modeling transformation des
ribed in the last

subse
tion.

As brie�y dis
ussed before, a s
hedule 
an belong to one of the three groups listed below:

UW infeasible These s
hedules would be infeasible for the UW relaxation of the

problem as well.

ZW infeasible, UW feasible These s
hedules are feasible for the UW relaxation

but they violate ZW 
onstraints

ZW feasible These s
hedules are feasible for the problem.

The original S-graph algorithm fails to di�erentiate the s
hedules in the se
ond group

from the ones in the third. It does, however, eliminate all the s
hedules in the �rst group.

In order to identify s
hedules in the se
ond group, the approa
h des
ribed in the previous

se
tion introdu
ed additional, negative weighted ar
s to the problem. The s
hedules in the

se
ond group would result in a non-negative weighted 
y
le by using that approa
h, whi
h


onsists of two type of alternating parts:

• "Forward", positive ar
s belonging to either UW or ZW intermediates

• "Ba
kward", negative weighted ar
s of ZW stages

An example is given in Figure 5.2 with both the s
hedule graph and the 
orresponding Gantt


hart. The same s
hedule is infeasible if the outputs of tasks i1, i2, and i3 have ZW poli
y,

as shown in Figure 5.3. The path indi
ated by thi
k ar
s has a weight of 6, whi
h is longer

than the ZW path from i2 to i4, thus it results in a positive 
y
le.

5.3.1 Re
ursive sear
h

Even if the negative weighted ar
s are not inserted to the S-graph, the positive weighted


y
les 
an be identi�ed by a sear
h[50℄. Suppose that a partial s
hedule is ZW feasible, and

a new s
hedule ar
 is just inserted to the graph. Obviously, if the partial s
hedule is now

ZW infeasible, the newly added ar
 must be part of the non-negative 
y
le.
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Figure 5.2: Feasible UW s
hedule

Figure 5.3: Infeasible ZW s
hedule
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Even without the negative ar
s, this 
y
le 
ould be found by a simple approa
h: from

the endpoint of the new ar
, it has to be 
he
ked re
ursively whether the starting point

of the s
hedule ar
 is rea
hable via "forward" and "ba
kward" steps with a non-negative

weight or not.

1

The algorithm for that sear
h is given in blo
k 5.1.

This approa
h basi
ally 
he
ks the existen
e of a non-negative 
y
le instead of main-

taining the extended longest-path matrix of the previous approa
h. The algorithm looks for

su
h nodes in the S-graph in a re
ursive way, whose starting time 
an be bounded with the

starting time of id (the destination of the newly inserted s
hedule ar
) from below. Nodes

like that are added initially to the set Unexamined together with their lower bounds. In

ea
h iteration a node is sele
ted from Unexamined, and if is (the sour
e of the newly in-

serted s
hedule ar
) is found among them with greater or equal lower bound then −c (c

is the weight of the newly inserted s
hedule ar
) then the algorithm has found a positive

weighted "
y
le", and the partial s
hedule is infeasible. Otherwise, the node-bound pair is

added to Examined and the neighbor verti
es are added to Unexamined. The �rst for all

loop adds the verti
es that are subsequent via a ZW or UW ar
, and the se
ond loop looks

ba
kwards with only ZW ar
s. In both of the loops three 
ases are investigated, and the

sets are modi�ed a

ordingly: i) when the node does not appear in either Unvexamined or

Examined; ii) The node is waiting to be sele
ted from Unexamined but with a weaker lower

bound found on a di�erent path previously; and iii) when the node was already examined

but with a weaker bound. When all of the ne
essary nodes are examined, and no violation

is reported, the feasibility of the partial s
hedule is ensured.

Note that this approa
h 
an easily be extended to LW poli
y by using the sum of the

pro
essing time, and maximal waiting time instead of w(i′, i) in the se
ond loop. Though

the model does not need to be extended with negative-weighted ar
s, this fun
tion 
an take

up a lot of 
pu time during the optimization.

A way of a

elerating this approa
h is to dire
tly add the longest paths between those

pairs, where this path is non-negative.

This te
hnique is illustrated in Figure 5.4. The �gure represents a part of a partial

s
hedule, where the s
hedule ar
 (i10, i6), indi
ated by blue 
olor is re
ently added to the

graph by adding i6 to the pro
essing queue of j3 after i9. Some of the additional ar
s that


an be inserted by the algorithm are shown in the �gure with green 
olor. As an example,

the ar
 between i9 and i5 with weight 3 is justi�ed, as there is a "forward path" from i9 to

i6 via i10, thus i6 must start at least 6 time units later than i9. Moreover, i5 
an not start

more than 3 time units earlier than i6, i.e., it must start at least 6− 3 = 3 time units later

than i9.

1

If the s
hedule ar
 has the weight of c a path with the weight of at least −c is enough of 
ourse.
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Algorithm 5.1 Finding non-negative path between two verti
es for dete
ting ZW infeasi-

bility

zw_feasibility_test(G(N,A1, A2, w), i
s, id, c)

G(N,A1, A2, w) partially s
heduled graph

is sour
e of the newly inserted s
hedule ar


id destination of the newly inserted s
hedule ar


c weight of the newly inserted s
hedule ar


Unexamined := {(id, 0)}
Examined := ∅
while Unexamined 6= ∅ do
Sele
t (i, wi) ∈ Unexamined arbitrary

if i = is ∧ wi ≥ −c then

return false

end if

Unexamined := Unexamined \ {(i, wi)}
Examined := Examined ∪ {(i, wi)}
for all (i, i′) ∈ A1 ∪A2 do

if ∄(i′, w′) ∈ Unexamined ∪ Examined then

Unexamined := Unexamined ∪ {(i, wi + w(i, i′))}
else if ∃(i′, w′) ∈ Unexamined ∧ w′ < wi + w(i, i′) then
Unexamined := Unexamined \ {(i′, w′)} ∪ {(i, wi + w(i, i′))}

else if ∃(i′, w′) ∈ Examined ∧ w′ < wi + w(i, i′) then
Examined := Examined \ {(i′, w′)}
Unexamined := Unexamined ∪ {(i, wi + w(i, i′))}

end if

end for

for all (i′, i) ∈ A1, where (i′, i) is a ZW ar
 do

if ∄(i′, w′) ∈ Unexamined ∪ Examined then

Unexamined := Unexamined ∪ {(i, wi − w(i′, i))}
else if ∃(i′, w′) ∈ Unexamined ∧ w′ < wi − w(i′, i) then
Unexamined := Unexamined \ {(i′, w′)} ∪ {(i, wi − w(i′, i))}

else if ∃(i′, w′) ∈ Examined ∧ w′ < wi − w(i′, i) then
Examined := Examined \ {(i′, w′)}
Unexamined := Unexamined ∪ {(i, wi − w(i′, i))}

end if

end for

end while

return true
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Figure 5.4: A

eleration by inserting additional ar
s in the graph

5.3.2 Auxilary graph

The key idea behind the approa
h to be des
ribed in this se
tion lies in the fa
t that the

starting time of a task determines the starting time of all other tasks, whi
h are "ZW-


onne
ted" to it, i.e., they are 
onne
ted via one or several ZW stages. As an example, if

the starting time of task i11 of Figure 5.4 is de
ided, so is the starting time of i10 and i12.

In this approa
h, the tasks are assigned to ZW 
lasses before the optimization pro
edure

starts. Let these 
lasses be denoted by Z1, Z2, . . . . Two tasks belong to the same 
lass if

and only if they are 
onne
ted by a sequen
e of ZW ar
s. For simpler notation, the 
lass

of task i is denoted by Z(i). Moreover, ea
h 
lass has a "referen
e" task that is 
hosen

arbitrary, and denoted by i(Zk). If task i belongs to the 
lass with the referen
e task i∗ ,

i.e., i ∈ Z(i∗), then a relative distan
e, d(i) is 
al
ulated for i that is the signed sum of the

weight of the ZW ar
s 
onne
ting i and i∗. (Starting from i∗, the ar
s taken forward 
ount

as positive, the ones used ba
kwards 
ounts as negative.)

Finally, a new dire
ted graph is 
onstru
ted: G∗ = (Z, A, w∗), where

Z is the set of ZW 
lasses

A = {(Z,Z ′) | Z,Z ′ ∈ Z ∃(i, i′) ∈ A1∩Z×Z ′}, i.e., there is an ar
 between those ZW


lasses, where there is a re
ipe ar
 between any of their tasks.

w(Z,Z ′) = max(i,i′)∈A1∩Z×Z′(d(i) + w(i, i′) − d(i′)), is the weight on the ar
 between

Z and Z ′
if exists. It de�nes the relative minimal delay between the referen
e
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points of the two ZW 
lass.

An example for the re
ipe of the problem from Figures 5.2 and 5.3 is given in Figure 5.5.

Figure 5.5: Example for the graph of ZW 
lasses 
onstru
ted from the re
ipe

There are three ZW 
lasses indi
ated by 
olors green, red, and magenta, respe
tively.

The �rst one 
ontains 4 tasks, while the others are singletons. The referen
e points are

indi
ated by thi
k lines in the re
ipe graph. Initially, there is only one ar
, between Z2 and

Z3 with weight 6 due to the re
ipe ar
 between i5 and i6.

After this graph has been 
reated, the optimization pro
edure 
an start. At ea
h itera-

tion, when a new s
hedule ar
 (i, i′) or (p, i′) is added to the s
hedule graph with the weight

of c, the following has to be done:

• If Z(i) = Z(i′) and d(i) + c > d(i′), then the partial s
hedule is ZW infeasible, it has

to be pruned from the B&B tree.

• If Z(i) 6= Z(i′), then add (Z(i), Z(i′)) to A with the weight of d(i) + c− d(i′). If there

was a previous ar
 between these two verti
es, the one with the higher weight is to be

kept.

2

• If the s
hedule ar
 starts from a produ
t, i.e., (p, i′) is inserted, then for all (i, p) ∈ A1

the previous two steps are to be followed, as if the ar
 (i, i′) would have been inserted

with the weight w(i, p) + c.

• If the graph G∗

ontains a dire
ted 
y
le with non-negative weight, the s
hedule is ZW

infeasible.

2

Deleting the one with the smaller weight is optional, it does not 
hange the soundness of the approa
h.
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Using the s
hedule from Figure 5.3, the graph G∗
will be extended by 3 additional

ar
s, as shown in Figure 5.6. It is easy to see, that there is a 
y
le of weight 1 between

Z1 → Z2 → Z3 → Z1, whi
h indi
ates the infeasible s
hedule.

Figure 5.6: Example for the extended graph of ZW 
lasses based on a s
hedule

5.3.3 Model-level 
onversion of LW problems to ZW

The approa
hes in the previous two subse
tions were developed to solve problems where ea
h

material has either ZW or UW poli
y. As it has been noted at the �rst approa
h, they 
an

be modi�ed to ta
kle LW poli
y as well. There is, however, an other way of solving problems

with LW poli
y. After a simple transformation on the re
ipe graph, these approa
hes 
an

solve the problems without any modi�
ations.

The key idea behind the method is introdu
ing additional verti
es and ar
s for ea
h LW

task. If there is a LW material between tasks i and i′, then two additional verti
es are

inserted into the graph, i_c and i_w whi
h represents the 
ompletion and the weiring of

the LW material respe
tively, as shown in Figure 5.7. Moreover, several ar
s are inserted

into the graph:

(i, i_c) is a ZW re
ipe ar
 with the weight of tpr,i.e., the pro
essing time of i. This ar


ensures, that the ic, i.e., the 
ompletion of the intermediate material is exa
tly

tpr later than the start of the exe
ution of task i. Similarly,

(i_c, i_w) is a ZW re
ipe ar
 with the weight of tw, that is, the maximal waiting

time possible after the 
ompletion of the intermediate.

(i_c, i′), (i′, i_w) are zero-weighted s
hedule ar
s that ensure that i′ must start be-

tween the 
ompletion and wearing of the intermediate.
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(i, i′) is a UW re
ipe ar
 with weight of tpr. This ar
 is needed so that the s
hedule

ar
 towards the task that follows i in the same unit 
ould start from i′ not only

from i_c.

Figure 5.7: Example for model transformation of LW stages

5.4 Comparison of approa
hes

The e�
ien
y of the algorithms from the previous se
tions is illustrated on a literature

example. The example features 5 di�erent sequential produ
ts and 6 units to be s
heduled.

The re
ipe graph for the example is shown in Figure 5.8.

Figure 5.8: Example for the 
omparison of LW/ZW approa
hes

For the sake of the 
omparison, ea
h intermediate is assumed to have ZW storage pol-

i
y. The investigated algorithms were 
ompared on 14 di�erent 
on�gurations with bat
h

numbers.

These algorithms are:

sLP is the simple LP approa
h

aLP is the advan
ed LP approa
h that 
opies the model for ea
h subproblem
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aLP' is the advan
ed LP approa
h that uses only one model as a global variable

Neg is the approa
h with negative weighted ar
s

Re
 is the approa
h relying on the re
ursive sear
h

Re
+ is the re
ursive approa
h with the extended positive ar
 additions

Ea
h test run were set within a 1000 s time limit. For the 11 smaller 
on�gurations,

the approa
hes have not rea
hed this limit ex
ept for 
ouple of 
ases, and were able to �nd

the optimal solution. The data for the CPU times of the approa
hes are given in detail in

Se
tion C.2, and illustrated in Figure 5.9

Figure 5.9: CPU time of ZW/LW approa
hes for the smaller 
ases

The LP based approa
hes were usually 1 or 2 magnitudes slower than the 
ombinatorial

approa
hes, among whi
h the negative ar
 based proved to be the most e�
ient.

For the 3 larger 
on�gurations all of the approa
hes have rea
hed the 1000 se
ond time

limit, and thus stopped. For these 
ases the 
omparison of the quality of the best found
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(probably suboptimal) solution is important, and shown in Figure 5.10. The �gure also

in
ludes the 2 largest 
on�gurations from the previous ones, where the LP based approa
hes

have rea
hed the limit.

Figure 5.10: Quality of reported solutions of ZW/LW approa
hes for the larger 
ases

The aLP' approa
h 
ould not even report a feasible s
hedule for the larger 
ases. The

best solutions were reported by the negative ar
 based approa
h. The extended re
ursive

approa
h had very 
lose results. The other approa
hes �u
tuated.

In general, it 
an be stated that the most favorable approa
h seems to be the one using

negative weighted ar
s.

Summary and 
on
luding remarks

The original algorithms of the S-graph framework was developed for Unlimited Wait storage

poli
ies. In this 
hapter, di�erent options of extending the framework for Limited- and Zero-

Wait storage poli
ies has been presented and investigated. These options were implemented
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and 
ompared on a wide set of examples in terms of 
omputational needs. The results showed

that an extended model with negative-weighted ar
s, and slightly modi�ed algorithms is the

most e�
ient option.
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Chapter 6

Maximizing expe
ted pro�t in a

sto
hasti
 environment

In Chapter 4 the general algorithm for throughput maximization was introdu
ed. For many

problems, however, several parameters of these types of problems are not deterministi
.

Pistikopoulos et al.[104℄ gave a 
lassi�
ation of sto
hasti
 s
heduling problems based on the

sour
e of the un
ertainty in the pro
ess. In a 
hanging market environment, for example, the

pri
e and marked demands 
an usually be 
onsidered sto
hasti
. Both of these values 
an

have impa
t on the overall pro�t, as in 
ase of a overprodu
tion, for example, the storage

of the surplus may result in additional expenses.

Obviously, in su
h un
ertain 
ir
umstan
es, it be
omes ambiguous whi
h solution 
an

be 
onsidered as optimal: the most robust one, or the one with highest expe
ted pro�t, et
.

Li and Ierapetritou [76℄ gave an extensive review of the approa
hes that deal with di�erent

types of un
ertainties in bat
h pro
ess s
heduling. Without attempting to be 
omprehensive,

the three main dire
tion of resear
h is illustrated in Figure 6.1.

Figure 6.1: Classi�
ation of approa
hes dealing with un
ertainty

Preventive s
heduling In this dire
tion of resear
h[72, 14℄, the s
hedule must be

given a-priori, and 
annot be modi�ed after the system starts, or the realization

of un
ertain events. If there is no information about the probability distribution

87
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of the un
ertain parameters, a reasonable obje
tive 
ould be a produ
tion s
hed-

ule, that ex
eeds a 
ertain pro�t, and have the highest level of robustness. On

the other hand, an estimation about the probability distribution gives room for

optimization towards the highest expe
ted pro�t.

Rea
tive s
heduling Rea
tive approa
hes[92℄ assume an existing s
hedule, whi
h

gets disturbed by some un
ertain event. The obje
tive is to modify the rest

(unexe
uted part) of the s
hedule in a way, that leads to the best available per-

forman
e. Unlike in the previous 
ase, the optimization is 
arried out, when the

system is already running, thus usually there is a very limited amount of time

to deliver the solution. As a result, heuristi
s are often favored for this pur-

pose. On the bright side, the approa
h does not have to deal with any un
ertain

parameters, as they are already realized.

Two- and multistage approa
hes In a two-stage optimization approa
h[59℄, it is

assumed that there are some de
isions that must be done prior to the start of the

system, however, some de
isions 
an be altered later. As an example, a s
hedule

may has to be de
ided in advan
e, but the load of the units 
an be adjusted

after the un
ertain parameters o

ur. In a multi-stage approa
h, this 
on
ept is

generalized, and it is not assumed, that all of the un
ertain events realize at the

same time.

Naturally, there are a lot of developments, whi
h do not �t into these three 
ategories,

some approa
hes, e.g., 
ombine preventive and rea
tive s
heduling. Sensitivity analysis in

itself is a broad area to resear
h, but it 
an also parti
ipate as a subroutine for preemptive

s
heduling, espe
ially in 
ase of heuristi
 approa
hes.

The following se
tions introdu
e an S-graph based approa
h for the s
heduling of through-

put maximization problems 
onsidering un
ertain 
ost and demand parameters with dis
rete

probability distribution fun
tions. Se
tion 6.1 gives an exa
t de�nition of the problems to

be solved, and Se
tion 6.2 and 6.3 presents the S-graph approa
hes to address this set of

problems. In Se
tion 6.4 an extension is shown to 
ontinuous probability distribution fun
-

tions. Last, Se
tion 6.5 illustrates some of the algorithms via an example, and draws some


on
lusions.

6.1 Problem de�nition

The problems to be solved are given by similar parameters to those of a general throughput

maximization problem, i.e., ea
h produ
t is given with its re
ipe, along with the set of

equipment units and the time horizon. At this point it is assumed that there is a one to one

relation between produ
ts and re
ipes, i.e., there is no re
ipe produ
ing multiple produ
ts,

and there are no two di�erent re
ipes produ
ing the same produ
t.
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There is, however, a set of un
ertain parameters for ea
h produ
t, whose probability

distribution is dis
retized into joint s
enarios. Thus, for ea
h dis
rete s
enario the following

parameters are given:

• probability of the s
enario

• for ea
h produ
t:

� pri
e for one bat
h

� demand

� over- and underprodu
tion 
ost

The obje
tive is to make de
ision about the number of bat
hes and provide a feasible

s
hedule in way to a
hieve maximal expe
ted pro�t. Note that it is assumed that if the

a
tual produ
tion is higher than the demand, the surplus is not sold.

1

Based on the possible de
isions related to the sizes of ea
h bat
h, three di�erent problems

are identi�ed:

Preventive problem with �xed bat
h sizes when the bat
h size for ea
h produ
t

is given, and the only preventive de
ision to be made is to de
ide the number of

bat
hes for them.

Preventive problem with variable bat
h sizes is a more �exible version of the

previous problem, where not only the number of bat
hes, but also their sizes 
an

be altered in advan
e before the un
ertain events realize.

Two stage problem where the bat
h numbers have to be de
ided in advan
e, but

the bat
h sizes 
an be altered a

ordingly after the un
ertain events realized.

Se
tion 6.2 introdu
es the approa
hes that 
an solve these three di�erent problems. In

Se
tion 6.3, these approa
hes are extended to ta
kle 
ases, when a re
ipe 
an produ
e several

produ
ts, and the same produ
ts 
an be produ
ed by several re
ipes.

2

.

6.2 S-gaph based approa
hes

The three approa
hes to solve the problems presented in the previous se
tion are all based

on the throughput maximization algorithm presented in Se
tion 4.1. The main algorithm

that examines di�erent bat
h size 
on�gurations and the feasibility tester 
an remain the

same, as in the 
ase of the general throughput maximization problems. The subroutines to

sele
t a 
on�guration and to update the set of open 
on�gurations 
an be altered in order to

1

Taking the opposite assumption would not alter the stru
ture of the algorithm, the same approa
hes

would be appli
able with modi�ed input parameters.

2

The approa
h for the preventive version of this 
ase has been published in the literature[72℄
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a
hieve higher e�
ien
y, however, any of the previously mentioned implementations would

su�
e.

The key di�eren
e between the di�erent approa
hes is the revenue fun
tion, that should

provide the expe
ted pro�t, or the highest expe
ted pro�t for a 
on�guration, as it will be

dis
ussed in the following subse
tions.

In order to simplify these des
riptions, the following additional notations will be used

throughout this 
hapter next to the ones used previously:

P the set of produ
ts

bp the number of bat
hes for produ
t p in the a
tual 
on�guration

sp the size of a bat
h for produ
t p (for the �rst 
ase)

smin
p , smax

p the minimal and maximal size of a bat
h for produ
t p (for the se
ond and

third 
ase)

S the set of s
enarios

probs the probability of s
enario s ∈ S

dems,p the demand for produ
t p in s
enario s ∈ S

prices,p the pri
e of p in s
enario s ∈ S

ocs,p, ucs,p the over- and underprodu
tion 
ost of p in s
enario s ∈ S

For further simpli�
ation, the fun
tion Profits,p(x) is introdu
ed, that gives the pro�t

for x amount of produ
t p in s
enario s. The fun
tion is 
al
ulated as follows:

Profits,p(x) =







prices,p · x− (dems,p − x) · ucs,p if x < demands,p

prices,p · dems,p − (x− dems,p) · ocs,p otherwise

6.2.1 Preventive s
heduling with �xed bat
h sizes

In this 
ase, the only de
ision to be made is the number of bat
hes for ea
h produ
t, i.e.,

�nding the optimal feasible 
on�guration for the number of bat
hes. Thus, there is no

de
ision to be made for a single 
on�guration, and the 
al
ulation of the expe
ted pro�t is

rather simple:

∑

s∈S

(

probs ·
∑

p∈P

Profits,p(sp · bp)

)

As this revenue fun
tion is really simple to evaluate, the update fun
tion 
an similarly

remove the bat
h number 
on�gurations that do not provide higher expe
ted pro�t than

the 
urrent best solution. In order to do this the revenue fun
tion of ea
h 
on�guration
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need to be 
al
ulated in advan
e, as the 
on�gurations having the same expe
ted pro�t do

not lie on a line, plane, et
. Moreover, if these values are 
al
ulated in advan
e, the list of

open 
on�gurations 
an be ordered in de
reasing order, and it 
ould be an e�
ient sele
tion

strategy to �nd the �rst feasible 
on�guration there. This te
hnique requires, however, that

the number of open subproblems should be �nite, so the initial steps des
ribed in Subse
tion

4.2.1 must be 
arried out.

An additional modi�
ation 
an be applied here: as the bat
h number of a produ
t has

no in�uen
e on the number of bat
hes for an other produ
t, and thus on its pro�t, the initial

steps along the axises 
an also stop, when the revenue fun
tion stops in
reasing. To ba
k

this statement, the above expression is reformulated in this equivalent form:

∑

p∈P

(

∑

s∈S

probs · profits,p(sp · bp)

)

The expression in the bra
es is the expe
ted pro�t of sp · bp amount of produ
t p. As

this expression will be used in the following subse
tion as well, an additional notation

ExpProfitp(x) is introdu
ed:

ExpProfitp(x) =
∑

s∈S

probs · profits,p(x)

Note that the expe
ted pro�ts given by the di�erent produ
ts are independent, as none

of them shares a re
ipe. Thus, if there are two 
on�gurations with the same number of

bat
hes for a 
ertain produ
t, in
reasing or de
reasing it will have the same e�e
t on the

expe
ted pro�t, regardless of the number of bat
hes from the other produ
ts.

In order to prove the soundness of the aforementioned initial 
on�guration sele
tion

strategy, it has to be shown, that the ExpProfit fun
tion will never in
rease, after it started

de
reasing. It is easy to see that ExpProfit is a 
ontinuous, pie
ewise linear fun
tion, thus

it is enough to show, that the slope is always de
reasing. At minus in�nity the slope is

∑

s∈S probs · (prices,p + ups,p), and when the fun
tion passes a demand value, dems, the

slope de
reases by prices,p + ups,p + ops,p. As all these three parameters are 
onsidered to

be non-negative, the above mentioned te
hnique is justi�ed.

6.2.2 Preventive s
heduling with variable bat
h sizes

Unlike in the previous 
ase, the number of bat
hes does not determine the amount of the

produ
t to be produ
ed, it is another de
ision to be made by the optimizer. For ea
h bat
h,

the amount should be between smin
p and smax

p . Without the loss of generality, it 
an be

assumed that the bat
hes belonging to the same produ
t have the same bat
h size, as all

the other solutions 
an be 
onverted to su
h without 
hanging the expe
ted pro�t.

Thus, the only de
ision to be made at a bat
h number 
on�guration is 
hoosing the

amount of produ
t, xp to be produ
ed from the interval [bp · smin
p , bp · smax

p ]. Sin
e the
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produ
ts are still independent from ea
h other, and the expe
ted pro�t 
an be expressed as

∑

p∈P ExpProfitp(xp), xp needs to be the maximizer point of ExpProfit in the [bp ·s
min
p , bp ·

smax
p ] interval.

As it was dis
ussed in the previous subse
tion, ExpProfit is a pie
ewise linear fun
tion

with de
reasing slope, thus the funtion takes its maximal value at one of the demand values,

let it be dems′ .
3

Now, the sele
tion of the optimal xp is straight-forward:

xp(bp) =



















bp · s
max
p if bp · s

max
p < dems′

dems′ if bp · s
min
p ≤ dems′ ≤ bp · s

max
p

bp · s
min
p if bp · s

min
p > dems′

After identifying the xp values for all bp, the same initialization te
hnique, and bat
h

number 
on�guration sele
tion strategy 
an be used as in the previous 
ase.

6.2.3 Two stage approa
h

In the previous subse
tion, the amount of produ
t p to be produ
ed, had to be given a

priori. In this se
tion it is assumed, that this de
ision 
an be made after the realization

of the un
ertain events, i.e., when the s
enario is already known. For a bat
h number


on�guration, the value of the produ
ed amount will depend on the s
enario to happen. Let

it be denoted by xs,p.

Sele
tion of xs,p is straight forward:

xs,p(bp) =



















bp · s
max
p if bp · s

max
p < dems

dems if bp · s
min
p ≤ dems ≤ bp · s

max
p

bp · s
min
p if bp · s

min
p > dems

Based on this, the expe
ted pro�t for a bat
h 
on�guration 
an be 
al
ulated as follows:

∑

p∈P

(

∑

s∈S

probs · Profit(xs,p(bp))

)

Again, the 
al
ulation is rather simple, and 
an be 
arried out in advan
e, in order to

generate an ordered list of bat
h number 
on�gurations.

3

If a slope be
omes 0, there are in�nitely many maximizer points, in this 
ase any of them 
an be

arbitrary 
hosen instead of dems′ .
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6.3 Extended approa
hes for re
ipes with multiple prod-

u
ts

In this se
tion the assumption on the one-to-one relation between produ
ts and re
ipes

is expunged, whi
h - as it will be shown later - brings an additional 
omplexity in the

optimization pro
ess. For the sake of simpler des
ription of the approa
hes, the following

additional notations are introdu
ed:

R set of re
ipes

Pr set of produ
ts produ
ed by re
ipe r ∈ R

Rp set of re
ipes produ
ing produ
t p ∈ P

br the number of bat
hes for re
ipe r ∈ R in the a
tual 
on�guration

sr,p the maximal amount of p ∈ P that 
an be produ
ed with the re
ipe r ∈ R

minr the minimal proportion ratio on whi
h the re
ipe r ∈ R 
an be exe
uted

Several re
ipes produ
ing the same produ
t often appear when they are generated with

the algorithm des
ribed in 4.3. However, this does not in
rease the 
omputational 
omplexity

in any way if there are no re
ipes produ
ing several produ
ts, as the approa
hes remain sound

by the following modi�
ations.

• In the preventive 
ase with �xed bat
h sizes, the produ
ed amount is

∑

r∈Rp
br · sr,p

instead of bp · sp,

• In the other two 
ases the interval from whi
h xp and xs,p should be 
hosen is

[

∑

r∈Rp
minr · br · sr,p,

∑

r∈Rp
br · sr,p

]

. Based on the xp and xs,p values, the sizes of

the bat
hes for the routes 
an be 
al
ulated.

The key point is, that even though the re
ipes are not homogeneous for a produ
t, the

produ
ed amounts are still independent. This, however, does not remain true when a re
ipe

is produ
ing several di�erent produ
ts. In
reasing the bat
h size to satisfy the demands of

a produ
t 
an 
ause additional 
osts if there is a surplus already from the other produ
t

produ
ed in the same re
ipe.

6.3.1 Preventive s
heduling with �xed bat
h sizes

When the bat
h sizes are �xed, there is no additional de
ision to be made, just as in the

previous se
tion. The expe
ted pro�t 
an be evaluated and returned.
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6.3.2 Deterministi
 s
heduling for variable bat
h sizes

Before investigating the sto
hasti
 
ase, it is advantageous to solve the problem with 
omplex

re
ipes for the deterministi
 
ase, i.e., given a bat
h number 
on�guration and the value of

demand, pri
e, over- and underprodu
tion 
ost parameters, what are the optimal bat
h sizes

to maximize the pro�t.

This question already requires more sophisti
ated tools, it 
an be answered by using

an LP model for example. The 
ontinuous non-negative xr variables represent the de
ision

about the sizing of all of the re
ipes of type r. These variables must take values between

the possible range of a re
ipe, i.e.,

minr ≤ xr ≤ 1 r ∈ R

Two additional variables are introdu
ed: xop
p , x

up
p for the over- and underprodu
tion of

ea
h produ
t, respe
tively.

Having these variables, the following goal programming 
onstraints express the relation

between the produ
ed amount of a produ
t, the over- and underprodu
tion and the demand:

xup
p − xop

p +
∑

r∈Rp

br · sr,p · xr = demp ∀p ∈ P

For the sake of simpler des
ription, an additional variable 
an be introdu
ed for the

produ
ed amount of a produ
t that will not make the model more 
omplex, as it is a linear


ombination of the previous variables:

xpr
p =

∑

r∈Rp

br · sr,p · xr p ∈ P

And then the obje
tive fun
tion 
an be expressed as:

∑

p∈P

((xpr
p − xop

p ) · pricep − xop
p · ocp − xup

p · ucp) → max

Note, that the number of variables is equal to the number of re
ipe types plus twi
e

the number of produ
ts

4

, whi
h is usually small, thus solving this LP model at ea
h bat
h

number 
on�guration does not require a vast amount of time.

6.3.3 Preventive s
heduling with variable bat
h sizes

In the sto
hasti
 
ase when there are several s
enarios, with di�erent parameters and prob-

abilities, the model must be 
hanged, as follows:

The xr (and thus the xpr
p ) variables remain the same, as they are �rst-stage, and the

4

not 
ounting the xpr
p variables, as they are removed immediately by the LP solver.
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following 
onstraints are also unaltered:

minr ≤ xr ≤ 1 r ∈ R

xpr
p =

∑

r∈Rp

br · sr,p · xr p ∈ P

The over- and underprodu
tion, however, will be di�erent for ea
h s
enario, thus the

introdu
tion of variables xop
s,p and xup

s,p is ne
essary. The balan
e 
onstraint must be 
hanged

a

ordingly:

xup
s,p − xop

s,p + xpr
p = dems,p ∀s ∈ S, p ∈ P

Similarly, the obje
tive fun
tion must express the expe
ted pro�t, thus:

∑

s∈S

probs ·
∑

p∈P

((xpr
p − xop

s,p) · prices,p − xop
s,p · ocs,p − xup

s,p · ucs,p) → max

The number of 
ontinuous variables in
reased to |R| + 2 · |S| · |P |, thus, as the number

of s
enarios in
rease, i.e., dis
retization gets smoother, the LP models got more di�
ult

to solve. It would need, however, a large number of s
enarios to make this solution time


omparable to that of the feasibility test of a bat
h number 
on�guration.

It is possible to redu
e the sear
h spa
e of the LP models by eliminating a simple redun-

dan
y: sin
e the size of the bat
hes for ea
h re
ipe 
an be 
hosen between minr and 1, it is

possible in two neighbor 
on�gurations (only one of the bat
h numbers di�ers by 1) to have

the same LP optima, with the same xpr
p values. The values taken by the xr variables are of


ourse di�erent, but the solution is essentially the same, the bigger 
on�guration is produ
-

ing the same amount of produ
ts with more and less loaded bat
hes. If no other parameters

are in
luded (load dependent energy 
ost, 
leaning 
osts after a 
ertain amount of idle state

of a unit, et
.) there is no rational reason for the solution with the larger 
on�guration, as

its s
hedule (if even feasible) would be more dense with providing the same expe
ted pro�t.

This type of redundan
y 
ould be avoided by a simple inequality:

xr ≥
br − 1

br
r ∈ R

6.3.4 Two stage approa
h

When the sizes of the bat
hes 
an be de
ided after the realization of the s
enario, the


orresponding variables be
ome se
ond-stage, i.e., xs,p is introdu
ed, and the 
onstraints,

obje
tive fun
tion must 
hange a

ordingly:

minr ≤ xs,r ≤ 1 s ∈ S, r ∈ R

xpr
s,p =

∑

r∈Rp

br · sr,p · xs,r s ∈ S, p ∈ P
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xup
s,p − xop

s,p + xpr
s,p = dems,p ∀s ∈ S, p ∈ P

∑

s∈S

probs ·
∑

p∈P

((xpr
s,p − xop

s,p) · prices,p − xop
s,p · ocs,p − xup

s,p · ucs,p) → max

The number of LP variables in this 
ase is |S| · (|R| + 2 · |P |), and the spa
e redu
tion

te
hnique from the previous subse
tion 
annot be applied here.

6.4 Continuous probability distribution

In many appli
ations, the sto
hasti
 parameters are not given by a dis
rete distribution

fun
tion, but with a 
ontinuous one, e.g., normal or uniform distribution. In this 
ase,

an option is to dis
retize this fun
tion, and use the approa
hes des
ribed in the previous

two se
tions. In this 
ase, the dis
retization must be smooth in order to a
hieve a

urate

results. However, too large number of dis
rete s
enarios may in
rease the 
omputational

needs signi�
antly, espe
ially in the 
ase of the two-stage approa
h with 
omplex re
ipes.

Another way is to ta
kle the problem dire
tly in its 
ontinuous form.

In this se
tion the following assumptions are taken:

• Several re
ipes may produ
e the same produ
t, but no re
ipe produ
es several prod-

u
ts.

• The only sto
hasti
 parameters are the demands for ea
h produ
ts, whi
h are given

by invertible 
umulative distribution fun
tions.

• The pri
es, over- and underprodu
tion 
osts are deterministi
.

The approa
hes to solve problems with this type of un
ertainty are similar to that of the

approa
hes in Se
tions 6.2 and 6.3, as they rely on the same evaluation of bat
h number


on�gurations, and an altered revenue pro
edure.

6.4.1 Preventive 
ase with �xed bat
h sizes

If the bat
h sizes are �xed, there is no further de
ision to be made for a bat
h number


on�guration, the expe
ted pro�t for a bat
h 
on�guration 
an be 
al
ulated based on the

following expression:

∑

p∈P

(

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ ∞

d=xp

f(d) · (xp · pricep − (d− xp) · ucp) dd

)

Where xp is the produ
ed amount from produ
t p, and as previously,xp =
∑

r∈R sp,r · br,

and f is the probability distribution fun
tion of the demand.
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6.4.2 Preventive 
ase with �exible bat
h sizes

If the bat
h sizes are �exible, it is not trivial to 
hose the load with maximal expe
ted

pro�t. Fortunately, the purpose of the Newsvendor model [29, 10℄ is to ta
kle a similar

problem, where a vendor must de
ide on the amount of a produ
t to be produ
ed (x),

without knowing the exa
t demand (d) for it, only its 
umulative probability distribution

fun
tion (F ).5 There is a 
ost of produ
ing a single produ
t (c), and a pri
e for whi
h it


an be sold (p). The expe
ted pro�t 
an be expressed as:

E (p ·min(x, d))− x · c

In this 
ase, the value of x for whi
h the above expression takes its maximal value is:

x∗ = F−1

(

p− c

p

)

The newsvendor model 
an be extended with a salvage value s for the surplus produ
tion,


hanging the expe
ted pro�t to:

E (p ·min(x, d)) + E (s ·max(x− d, 0))− x · c

In this 
ase the optimal quantity to be produ
ed is at

x∗ = F−1

(

p− c

p− s

)

Note, that this 
ase in fa
t has the same 
omplexity as the previous one. In
reasing all

the parameters (p, c, s) with the same value, the expe
ted pro�t, and the optimal solution

will not 
hange. In the simpler model, the 
ost of the surplus produ
tion is c, whi
h is

equivalent of the overprodu
tion 
ost in our 
ase. The pro�t for the produ
tion below the

demand is p− c, from these:

• p = pricep + ocp

• c = ocp

This reformulation is equivalent to the original problem, ex
ept that the underprodu
tion


ost is not 
onsidered. Obviously, the newsvendor model 
an be applied if ucp = 0, but that

was not assumed in the problem de�nition above.

If ucp = 0, the problem 
an be 
onverted to a nearly equivalent one:

• oc′p = ocp

• uc′p = 0

• price′p = pricep + ucp

5

This fun
tion is assumed to be invertible.
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In this altered problem, there is no underprodu
tion 
ost, and the expe
ted pro�t after


hoosing to produ
e xp amount of p is:

∫ xp

d=0

f(d) · (d · price′p − (xp − d) · oc′p) dd+

∫ ∞

d=xp

f(d) · (xp · price
′
p − (d− xp) · uc

′
p) dd

=

∫ xp

d=0

f(d) · (d · (pricep + ucp)− (xp − d) · ocp) dd+

∫ ∞

d=xp

f(d) · (xp · (pricep + ucp)) dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ xp

d=0

f(d) · d · ucp dd

+

∫ ∞

d=xp

f(d) · (xp · pricep + xp · ucp)) dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ xp

d=0

f(d) · d · ucp dd

+

∫ ∞

d=xp

f(d) · (xp · pricep + d · ucpxp · ucp − d · ucp)) dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ xp

d=0

f(d) · d · ucp dd

+

∫ ∞

d=xp

f(d) · (xp · pricep + (d− xp) · ucp) dd+

∫ ∞

d=xp

f(d) · d · ucp dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ ∞

d=xp

f(d) · (xp · pricep + (d− xp) · ucp) dd

+

∫ xp

d=0

f(d) · d · ucp dd+

∫ ∞

d=xp

f(d) · d · ucp dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ ∞

d=xp

f(d) · (xp · pricep + (d− xp) · ucp) dd

+

∫ ∞

d=0

f(d) · d · ucp dd

This expe
ted pro�t di�ers only by

∫∞

d=0
f(d) ·d ·ucp dd from the original expe
ted pro�t,

and it is not dependent on xp. Thus, this problem will take its maximum for exa
tly the

same values as the original. Subsequently, the newsvendor model 
an be applied with the

following parameters:

• p = price′p + oc′p = pricep + ocp + ucp

• c = oc′p = ocp

And thus, the optimal amount for produ
tion is:

x∗ = F−1

(

pricep + ocp + ucp − ocp

pricep + ocp + ucp

)

= F−1

(

pricep + ucp

pricep + ocp + ucp

)

= F−1

(

1−
ocp

pricep + ocp + ucp

)
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6.5 Test results and 
oments

In this se
tion the algorithms with multiple produ
ts and dis
rete s
enarios are illustrated

via the same example, that has been used in Se
tion 4.3 and Subse
tion 4.4.3.

The STN re
ipe for the problem is shown in Figure 1.5 with stoi
hiometri
 data. As

dis
ussed in Se
tion 4.3, 6 di�erent �xed re
ipes 
an be generated based on the 
apa
ities

of the four available units. These re
ipes and their maximal revenue are shown in Figure

4.5, 
onsidering 10 
u/kg pri
e

6

for both of the produ
ts.

In the sto
hasti
 
ase, it is assumed, that the pri
e of the produ
ts do not 
hange in the

di�erent s
enarios, neither do the under- and overprodu
tion 
osts, whi
h are 1.5 and 2.5


u/kg, respe
tively.

The time horizon is set to 18 hours, and six di�erent s
enarios are assumed for the

demands of the produ
ts, as given in Table 6.1

S
enario Probability

Demand (kg)

P1 P2

SC1 0.167 102.3 174.8

SC2 0.167 148.8 344.2

SC3 0.167 158.6 128.2

SC4 0.167 0.0 225.1

SC5 0.167 72.0 109.1

SC6 0.167 54.6 268.8

Table 6.1: S
enarios for the illustrative example

Fixed bat
h sizes

First it is assumed, that ea
h bat
h size is �xed to its maximal 
apa
ity. In this 
ase, the

highest expe
ted pro�t is 2474.58 
u by produ
ing 1 − 0 − 3 − 0 − 1 − 0 bat
hes from the

six generated re
ipes.

Flexible bat
h sizes

If the bat
h sizes are allowed to be 
hanged a-priori, the highest expe
ted pro�t slightly

in
reases to 2475.31 
u with the 
on�guration of 1 − 0 − 3 − 0 − 0 − 1 and the bat
hes of

the third re
ipe (C) are s
aled down to 91 per
ent in average.

The optimal s
hedule is shown in Figure 6.2.

7

6

"
u" stands for 
ost unit

7

The letters A,C, and F 
orrespond to the di�erent re
ipes, while tasks 1,2,3,4,5 are Rea
tion 1, Rea
tion

2, Rea
tion 3, Separation, and Heating respe
tively.
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Figure 6.2: Optimal preventive solution for the example

Two stage 
ase

If the sizes of the bat
hes 
an be de
ided after the un
ertainty realizes, the highest ex-

pe
ted pro�t be
omes 2689.87 
u. This 
an be a
hieved by sele
ting the same previous


on�guration, 1− 0− 3− 0− 0− 1.

Remarks

In a realisti
 industrial situation, this type of optimization problems 
an o

ur rather fre-

quently, even on a daily basis, whi
h requires high e�
ien
y. It has to be noted, however,

that some of the parameters do 
hange frequently, others very seldomly. In the S-graph based

approa
h these parts are separated, and addressed with di�erent te
hniques as illustrated

in Table 6.2.

Frequently 
hanging part Permanent part

Market related parameters Te
hnology related parameters

(pri
es, demands, s
enario parameters, . . . ) (set of produ
ts and units, pro
essing times, . . . )

Expe
ted pro�t evaluation S
heduling feasibility test


omputationally easy 
omputationally di�
ult

LP problems and minimum sear
h S-graph based B&B pro
edure

Table 6.2: Polarity of the S-graph based approa
h

This polarity gives rise to the following bene�
ial appli
ation:

1. As an initialization, for all of the 
on�gurations the optimal makespan is identi�ed via

the S-graph framework within a given time horizon. Based on this horizon, this may

take up a 
onsiderable amount of time, however, it will never be repeated, until either

the set of the produ
ts, or the te
hnology 
hanges, and that is assumed to happen

seldomly.
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2. At ea
h o

urren
e, when a sto
hasti
 optimization problem appears, the following

steps need to be exe
uted:

(a) The time horizon must be identi�ed, if it is not part of the problem de�nition.

(b) The 
on�gurations with smaller makespan than the time horizon are sele
ted

from the database.

(
) Ea
h of these 
on�gurations is evaluated for expe
ted pro�t using the most re
ent

market data. This will take at most minutes.

(d) The 
on�guration with the highest expe
ted pro�t is sele
ted, and the 
orre-

sponding s
hedule is loaded from the database.

Using this pro
edure, the di�
ult part of the optimization problem must be 
arried out

only very seldomly, while the frequently 
hanging market related parts 
an be addressed

ea
h day. Also if the optimization has already been 
arried out, but a more re
ent fore
ast

arrives, the algorithms 
an be qui
kly exe
uted again to have a more a

urate estimation,

thus a better solution.

The tests above had been 
arried out with a similar pro
edure as well. The 6 dimensional

sear
h spa
e was tested for feasibility. After the initialization, the sear
h spa
e was redu
ed

to 6400 
on�gurations, among whi
h 318 was tested for feasibility, and 187 were found to be

feasible.

8

In ea
h of the three 
ases, these 187 
on�gurations were evaluated and a minimum

was found. Even for the most 
ompli
ated two-stage LP model, the solution of that 187

LPs took less then 1 minute to solve. This time would obviously in
rease, if the number of

s
enarios grow. However, as a 
omparison, the deterministi
 throughput maximization of

this example for just 17 hours 
ould not be done within 1 hour.

The additional advantage of this pro
edure is, that the de
ision maker 
an see an ordered

list of all of the feasible s
hedules, and easily sele
t from them based on other aspe
ts that

may have not been in
luded in the model.

Summary and 
on
luding remarks

In this 
hapter several S-graph based approa
hes has been presented for maximizing the

expe
ted pro�t in un
ertain environments. The algorithms are based on the throughput or

revenue maximization algorithm published in Chapter 4. The algorithms may 
onsider

• �xed or variable bat
h sizes

• purely preventive or two-stage problems

• dis
rete or 
ontinuous distribution of the un
ertain parameters

The advantages and 
apabilities of the approa
hes were dis
ussed in detail, and illustrated

via a 
ase-study.

8

The set of feasible 
on�gurations and the 
orresponding expe
ted pro�ts are given in Se
tion C.3.
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Chapter 7

Generalized S-graph model: the Event

S-graph

The previous 
hapters have shown that the S-graph framework provides e�
ient modeling

and optimization tools for the s
heduling of bat
h 
hemi
al pro
esses. Sin
e its original

introdu
tion, the framework has been extended to many problem parameters. Due to the

limited 
apabilities of the original model, some problem parameters are di�
ult to be 
on-

sidered, or it 
an be done only in a workaround fashion. Se
tion 7.1 shows some examples.

The existing extensions vary in the way they modi�ed the framework in order to extend

it to several problem parameters. Some of them modi�ed only the algorithms, others altered

the underlying mathemati
al model too. Having these inhomogeneous, separate extensions


an, however, 
ause some di�
ulties:

Compatibility issues If the trunk framework is developed to several di�erent dire
tions,

the merge between the di�erent bran
hes 
an be troublesome in some 
ases. This is espe
ially

true when not only the algorithms are modi�ed, but it has also been ne
essary to 
hange

the underlying model.

Implementation and developement software tools If the model is 
hanging, the im-

plementation needs to be 
hanged a

ordingly in order to be e�
ient. Development of a

graphi
al modeling tool be
omes also di�
ult, as it should be �exible towards unknown

future 
hanges.

To over
ome the limits on the modeling 
apabilities of the S-graph framework, and to

provide a more uniform and generi
 platform for future developments, the re-thinking and

extension of the S-graph framework is needed. The extension requires a 
areful review on

the 
urrent stru
ture of the S-graph framework, in
luding its modeling tools, models, and

optimization algorithms. This and the possible ways of future extensions is dis
ussed in

Se
tion 7.2.

103
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Based on the experien
es from these investigations, the developed, new framework is

based on three 
ornerstones:

Extended model The most signi�
ant enhan
ement. The major aspe
t for the new

model was to be general enough to address a wide range of s
heduling problems; it should

not be restri
ted to 
hemi
al bat
h pro
esses, and it should make the modeling pro
ess more

transparent. This model, the so-
alled Event S-graph or eS-graph is introdu
ed in Se
tion

7.3.

Improved modeling te
hniques Due to the very simple and restri
ted original S-graph

model, the modeling step was obvious and straightforward. Due to the extended model,

however, the eS-graph framework has a bigger emphasis on the modeling step as well. In

Se
tion 7.4, it is illustrated, how several 
ommon problem features 
an a

urately be modeled

using the eS-graph.

General purpose s
heduler Keeping the original idea of the equipment based makespan

minimizer, a general purpose algorithm is developed and introdu
ed in Se
tion 7.5 that

performs makespan minimization on any kind of problems that 
an be purely formulated

with the eS-graph, without any additional information.

7.1 Modeling di�
ulties with the original framework

In this se
tion it is illustrated that some features of bat
h (or semi-bat
h) pro
esses o

urring

in most of the s
heduling problems require various extensions of the original approa
h, whi
h

in some 
ases 
an be 
ir
uitous.

7.1.1 Transfer times

The original S-graph framework does not 
onsider the transfer of the intermediate materials.

The only transfer that is represented in the model is the removal of the �nal produ
t from

the last pro
essing unit. For approa
hes that 
annot properly address material transfers,

there are two 
ommon pra
ti
es to ta
kle the problem:

• negle
ting the transfer times if they are very small 
ompared to pro
essing times

• lumping the transfer times to the pro
essing time of the task produ
ing the interme-

diate

The key problem with both of these methods is that in 
ase of 
ontinuous material transfer

both units (the one that produ
ed the intermediate material, and the other that re
eives it)

must be free for the time of the transfer. Disregarding this 
an result in undesired solutions:

see Se
tion 3.2.
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These two methods are obviously easily appli
able in the S-graph framework as well. It

is possible, however, to model the material transfers 
orre
tly without any simpli�
ation.

Originally, if a task i′ is s
heduled to be performed after i in unit j, and i2 is the

subsequent task of i, then a zero weighted s
heduling ar
 is inserted from i2 to i′ 
onsidering

NIS poli
y as it is shown with the 
orresponding Gantt 
hart in Figure 7.1.

Figure 7.1: S
hedule ar
 in the original framework and the 
orresponding Gantt 
hart

The Gantt 
hart however should look like as it is illustrated in Figure 7.2 if there is a

transfer time (no matter how tiny it is).

Figure 7.2: A

urate Gantt 
hart representing the transfer

Having a similar, equivalent Gantt 
hart 
an be a
hieved by in
reasing the weight of the

s
hedule ar
 by the transfer time (ttr). However, this is not enough, as the unit j would still

be able to start performing i′ before the transfer �nishes. A simple workaround to ta
kle

this issue is to in
rease the pro
essing time of i′ by the transfer time as well, as shown in

Figure 7.3.

Figure 7.3: Modi�ed S-graph to address transfer time

For the 
ase when either i or i2 has several subsequent task, the approa
h is similar as

illustrated in Figure 7.4.
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Figure 7.4: Addressing transfer time with several subsequent tasks.

Although the solutions provided by this method meet the requirements above, it is more

a modeling tri
k than an appropriate solution. Moreover, some questions may arise, su
h

as how to ta
kle the problem when the transfers for i2 and i3 take di�erent times and may

happen independently, et
.

Thus, an other option is also available, whi
h requires additional verti
es inserted into

the graph whi
h represent material transfers, as shown in Figure 7.5.

Figure 7.5: Addressing transfer time with additional nodes.

The s
hedule ar
s still start from the task nodes. However, they yield to the inlet transfer

of the next s
heduled task. As it is shown, the ar
s representing the pro
essing time of i2

and i3 does not 
hange their weight, whi
h gives a more straight-forward modeling of the

problem.

7.1.2 Waiting before produ
tion

Considering NIS poli
y, the intermediates are allowed to wait in the units that produ
ed

them until they 
an be transfered to the up
oming task in the re
ipe. However, this des
rip-

tion does not spe
ify whether the intermediate 
an wait in the unit performing the up
oming

task before its exe
ution starts. If inputs of ea
h task are either raw materials, or produ
ed

by another single task, this question is irrelevant with UW poli
y (whi
h is 
onsidered for
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now), as the pro
essing and the storage phases 
an be shifted arbitrary. The situation is

di�erent, however, if two or more tasks provide the inputs for a task, as illustrated on the

example in Figure 7.6.

Figure 7.6: Example for produ
t with task of multiple inputs

In this problem, there are two produ
ts and the third step of produ
ing A requires two

di�erent intermediates from both of the �rst two steps. After modeling the problem with

the S-graph framework, and applying the B&B algorithm, two di�erent solutions 
an be

generated, as shown in Figure 7.7 with both the s
hedule graphs and the 
orresponding

Gantt-
harts. The solutions have the makespan of 12 and 13 time units, respe
tively.

Figure 7.7: Solutions provided by the S-graph algorithm for the example in Figure 7.6

However, the question arise, whether it is possible to store the output of A1 in U3 and wait,

until U2 
an also load the output of A2 into U3. If that is possible, the makespan of 10

hours 
ould be a
hieved, as illustrated in Figure 7.8.

In many appli
ations, the safety or other regulations of the fa
ility forbid the storage

of the intermediate in a unit before pro
essing, thus the solution shown in Figure 7.8 is

pra
ti
ally infeasible. However, if it is not forbidden, the original S-graph approa
h needs
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Figure 7.8: Solution with better makespan if storage if allowed before pro
essing

to be extended in order to address this situation properly. This 
an be done similarly as in

the previous se
tion, by introdu
ing some additional nodes. Hol
zinger [52℄ has investigated

a similar issue, and provided an extended S-graph model in the 
ase when the order of the

input materials and the required delay between them is �xed by the re
ipe.

7.1.3 Continuous pro
esses and multiple resour
es

Although the s
ope of this work is mainly on bat
h pro
esses, in many 
ases bat
h and


ontinuous units work simultaneously. If there is a storage before and after the 
ontinuous

unit, they 
an be viewed and modeled as a single bat
h unit. Otherwise, the bat
h unit

that produ
ed the input of a 
ontinuous pro
ess must be available throughout the whole

operation of the 
ontinuous unit. This behavior shows a lot of resemblan
es to the material

transfers that have been dis
ussed formerly. As a matter of fa
t, the transfer itself is a


ontinuous task 
arried out by a 
ompressor for example. The problem be
omes even more


omplex if there are several input or output task of a 
ontinuous task, with some of them

being 
ontinuous as well. The original S-graph framework 
onsiders only bat
h pro
esses.

However, as it has been pointed out, addressing them is rather similar to addressing the

transfers, whi
h needs to be done for bat
h pro
esses as well.

In many industrial appli
ations, a task needs several resour
es to be exe
uted, e.g., in

a furniture fa
tory, a unit 
an usually work with di�erent "heads" that are shared between

the units[53℄. Alternatively, operators, ele
tri
ity, 
oolers, et
. 
an and must be in
luded in

the s
heduling of a single pro
ess. In the original S-graph framework only one unit 
an be

assigned to the a task, and that unit is assumed to be the only unit that performs that task.

7.2 S
heme of optimization with the S-graph framework

and its extensions

In this se
tion the general optimization pro
edure of the S-graph framework is analyzed.

The basi
 
on
ept is shown in Figure 7.9

1

.

1

Note that the sele
tion of the 
onsidered variables, problem parameters, and real exe
ution of the

generated s
hedule is not in
luded in the �gure, as it is outside of the s
ope of the 
urrent interest.
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Figure 7.9: General s
heme of the S-graph based optimization pro
edure
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The problem itself 
onsists of all the problem data, as dis
ussed in Se
tion 1.2. The

�rst step is the 
onstru
tion of the mathemati
al model of the problem, namely an S-

graph. There is not mu
h dis
ussion about this step in the literature, as this step is rather

straightforward for those problems that the framework 
an address. To ea
h produ
t and

task a node is assigned, produ
tion dependen
ies are represented by ar
s, et
., as des
ribed

in Se
tion 2.3. Unlike in the 
ase of MILP approa
hes, there are no di�erent ways the model

should be formulated for the problem; it is a 
lear and unambiguous step. This highlights a

great advantage of the S-graph framework 
ompared to MILP approa
hes: the mathemati
al

model that is used by the algorithms has a straightforward relation to the problem, and the

modeling does not require any spe
ial skills.

It has to be mentioned, however, that the S-graph model has a kind of embedded model

behind the s
enes. This is the dire
ted graph itself, not in
luding any s
heduling problem

spe
i�
 information like the plausible unit sets, et
. At the moment, di�erentiating between

this subset of the model may seem unne
essary, but its importan
e will be 
lari�ed later.

As for now, the only important thing is that the s
heduling algorithm operates stri
tly only

on the S-graph model via operations like assigning a unit to a task node. This a
tion then is

interpreted in the graph model as well by 
hanging the weights of re
ipe ar
s and inserting

s
hedule ar
s.

2

Finally, the S
heduling Algorithm generates the S-graph 
orresponding to the optimal

s
hedule, whi
h also 
ontains a �nal form of the graph itself. Note that the S
heduling

Algorithm here 
an refer to many approa
hes that have been published so far, not only for

the equipment based makespan minimizer. Last but not least, this solution is interpreted,

and a Gantt 
hart is generated.

Extensions

There are several ways the extensions a�e
t the stru
ture introdu
ed above. Some of them

are brie�y introdu
ed here. The stru
tural di�eren
es between the di�erent types of exten-

sions render it obvious how di�
ult it 
an be to keep these extensions 
ompatible with one

another.

Model 
onversion In 
ase of the S-graph based Wet-et
h optimization[71, 97℄, or the

s
heduling of tunnel boring ma
hines[4℄, the stru
ture of the optimization pro
ess remains

inta
t, but the original problem is transformed to a mathemati
ally equivalent 
hemi
al

bat
h pro
ess s
heduling problem. The whole pro
ess is shown in Figure 7.10. Converting

LW problems to ZW equivalents in Subse
tion 5.3 was based on the same idea.

The obvious bene�t of this approa
h is that there is no need to 
hange the S-graph

algorithms, or the solver implementation. Thus the time needed for the developement and

2

In Se
tion 2.3 the presented algorithm has dire
t a

ess to the (N,A1, A2) stru
ture, however: a) this
stru
ture does not really represent all the information stored by a s
heduling problem, and b) the state-of-

the-art implementations do not follow that paradigm, but a layered one, as mentioned.
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Figure 7.10: Optimization pro
edure of the S-graph framework with model transformation

to get results is 
onsiderably low. On the other hand, however, the approa
h no longer holds

the aforementioned advantage, i.e., the model is no more a straightforward representation of

the problem. Moreover, this approa
h usually does not exploit any problem spe
i�
 feature,

whi
h 
an have a serious e�e
t on the e�
ien
y, as dis
ussed by Osz[97℄ for example. Also,

if the problem des
ription of the original approa
h is 
hanged for some reason, it may render

the transformation between the models impossible.

This type of extensions make the stru
ture of the S-graph based optimization pro
edure

similar to that of the MILP approa
hes, where the MILP model is an intermediate model

that is solved by a general purpose solver, and the modeling of the problem is in itself an

important step.

Algorithmi
 extension In some 
ases, the framework is extended to problem 
lasses

featuring some additional parameters that are entirely handled by the algorithmi
 part of

the approa
h. The S-graph model and its intera
tion with the internal graph model is

unaltered. This type of extension 
an be observed, e.g., at the LP based LW s
heduling

(Se
tion 5.1), extension to throughput or expe
ted pro�t maximization (Chapters 4 and 6),

or heat integration [2℄. The s
heme is shown in Figure 7.11

In a way, this type of extension is the simplest, and 
learest. However, its merge with

other extensions 
an be rather di�
ult. It also has to be noted that the additional data of

the problem needs to be parsed and passed to the algorithm. In the earlier implementations

of the S-graph framework this required a new input format, a new parser, and a new data

stru
ture. Sin
e these additional data are not required by the S-graph model itself, and

usually seldomly a

essed by the algorithm as well, Kova
s [71℄ developed a framework in

the S-graph implementation that allows arbitrary extensions of the input �le, and the parser
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Figure 7.11: Optimization pro
edure of the S-graph framework with algorithmi
 extension

automati
ally passes on the data in a generi
 stru
ture to the algorithm responsible for the

optimization without the need of any modi�
ation for the parser or main data stru
ture.

Model based extension There are several problem features that 
hange the s
heduling

problem in its 
ore, thus it is reasonable to implement these 
hanges on the model level. A

typi
al example 
an be the negative ar
 based LW algorithms (see Se
tion 5.2), and some

a

eleration, e.g., so-
alled auxiliary bat
hing ar
s[51℄, predi
tive s
hedule ar
 insertion, or

the enhan
ed wet-et
h approa
hes[97℄. The s
heme is shown in Figure 7.12

Figure 7.12: Optimization pro
edure of the S-graph framework with model based extension

Note that the problem may not have any additional information, like in the 
ase of

the previously mentioned a

elerations. In those 
ases even the interfa
e of the model

remained the same, just the model handled the internal dire
ted graph model di�erently.

This is 
ompletely 
on
ealed by the S-graph model from the algorithms, or the modeler,
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or the solution interpreter. In other 
ases, like the LW example, the problem itself has

additional information (maximal waiting times) that needs to be in
luded in the modeling

step. However, the interfa
e for the algorithm remains the same, i.e., the equipment based

algorithm for example should not be altered in any way.

An obvious advantage of the approa
h is that these extensions are usually automati
ally


ompatible with the other algorithmi
 or model based extensions. On the other hand,


ombining several model based extensions may be 
hallenging, not to mention that the

model 
an get unne
essarily 
ompli
ated for even the simpler problem 
lasses.

Other There are of 
ourse other ways of extensions as well, that are usually the 
om-

bination of the above three. The 
ombinatorial re
ursive LW approa
h (Se
tion 5.3) that

inserts additional ar
s into the model is a �ne example for a rather lumpish extension. The

algorithm is 
hanged and it dire
tly modi�es the internal graph model by bypassing the

interfa
e of the S-graph model.

7.3 Mathemati
al des
ription of the eS-graph model

The former two se
tions showed some of the limits of the S-graph framework and the 
om-

pli
ations that the di�erent type of extensions 
an 
ause. In this se
tion a generalized

S-graph model is introdu
ed that is the result of the thorough 
onsideration of the formerly

mentioned issues.

There were a 
ouple of major aspe
ts kept during the development of the new model:

• The model should be general enough to address a wide range of s
heduling problems,

and it should not be restri
ted to 
hemi
al bat
h pro
esses. This redu
es the need for

model 
onversions and model extensions for future developments.

• The range of parameters that the model 
an address should be restri
ted to timing and

s
heduling related elements. The model should not in
lude other 
ommon parameters,

like heat integration data, as the model would most probably lose its e�
ien
y. These

parameters should be addressed via external tools like LP models in the future too.

• As a se
ondary obje
tive, the model should be kept as simple as possible, and similar

to the original problem, so that the mathemati
al model (and its straight forward

graphi
al representation) should be understandable.

• The 
omplexity and detailedness of the model should also depend on the problem

at hand, i.e., if the model is 
apable of addressing, e.g., transportation times with

some additional nodes, then problems without transportation should not have a more


ompli
ated model.

• As far as possible, the model should 
on
eal its inner operations from the algorithms,

and provide a general interfa
e with a basi
 s
heduling de
ision interfa
e.
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From the pra
ti
al point of view, the model should be able to address the following

problem features with ease:

• Transfer, 
leaning, 
hangeover times

• Continuous tasks

• Tasks requiring several units simultaneously

In the following subse
tions �rst the original S-graph model is analyzed to provide the

basis for the basi
 idea of the model in the se
ond se
tion. Then the model is formally

de�ned in the last Se
tion.

7.3.1 Analysis of the original S-graph model

It has already been mentioned, that the graphi
al representation of the S-graphs is the

mathemati
al model itself. As a representation, the nodes of an S-graph represent tasks and

produ
ts. However, taking a 
loser look at the mathemati
al approa
hes reveals that the

nodes represent the starting of the exe
ution of a task, or the removal of a produ
t. These

are only some of the events that o

ur, several others are not in
luded in the model:

• ending of pro
essing a task (and starting the storage in the unit in 
ase of NIS poli
y)

• starting end ending the transfer of an intermediate

• loading the raw material into the �rst unit

• et
.

The original S-graph framework disregarded these events, as everything under the 
on-

sideration of the original problem set 
ould appropriately be modeled with only the starting

of tasks and removal of the produ
ts.

Basi
ally, the following entities have a 1-to-1 relation between them in the framework:

• task, that should be assigned to equipments

• beginning of tasks, that 
orrespond to exa
t timings

• nodes of the S-graph, from where s
hedule ar
s 
an start

The general idea for the the extended model is to separate the �rst from the latter two,

as des
ribed in the next subse
tion.

Moreover, the original formal des
ription, the S-graph model was a (N,A1, A2, w) quadru-

plet

3

, des
ribing only part of the s
heduling problem and part of the s
heduling de
isions,

whi
h is basi
ally the internal graph model mentioned in the previous se
tion. Additional

3N : the set of nodes; A1: the set of re
ipe ar
s; A2: the set of s
hedule ar
s; w: the weight fun
tion on

the ar
s. See page 28 for more detail.
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information su
h as the set of uns
heduled tasks, plausible task-unit pairs, pro
essing times,

et
. is given separately for the algorithm.

The aim in the extended model is to in
lude all these information for modularity and


lear des
ription.

7.3.2 General 
on
ept of the eS-graph model

As already mentioned in the previous subse
tion, the general 
on
ept behind the new model

is the separation of the tasks that need to be s
heduled, and the nodes of the graph in the

model that represent events. The basi
 prin
iple of the generalization is this two-layered

stru
ture where an entity to be s
heduled (task, transfer, 
leaning, et
.) 
an span over several

events of the system, and thus, several nodes of the graph. These entities in the model are


alled subpro
esses, and there is a many-to-many relation between the events/nodes and

them, unlike the one-to-one relation between the tasks and nodes/events in the original

framework.

The subpro
esses may require resour
es or a set of resour
es to be 
arried out. Subpro-


esses are assumed to be non-interruptible, like the tasks in the original S-graph framework.

Thus, if a resour
e (unit, operator, pipeline, et
.) is assigned to a subpro
ess, the resour
e is


onsidered busy in the time interval spanned by the events belonging to the subpro
ess. Be-


ause of non-interruptibility, if a resour
e is assigned to several subpro
esses (either alone or

as a member of a resour
e-set), the intervals of them should be distin
t. This also means that

a 
lear sequen
ing should be made between the subpro
esses assigned to the same resour
e,

similarly to the sequen
ing of tasks assigned to the same unit in the original framework. The

sequen
ing will be implemented as a zero-weighted s
hedule ar


4

from the node of "latest"

event of the former subpro
ess to the node of the "earliest" event of the latter subpro
ess.

Note that the dependen
ies between the events belonging to the same subpro
ess is not

ne
essary linear; a good example for this is a task with multiple inputs and/or outputs, that

arrive asyn
hronously. In this 
ase

5

, it is not evident whi
h the latest or earliest event of

the subpro
ess is, and it may also depend on the s
hedule of the other subpro
esses. Thus,

when a sequen
ing de
ision is made, the model inserts zero-weighted s
hedule ar
s from all

of the nodes of the former subpro
ess to all of the nodes of the latter one. Obviously, many

of this might be implied by many others, but in this way, the soundness is ensured, and the


ost in terms of memory or CPU is not signi�
ant.

6

An important modi�
ation is that unlike in the original framework, several resour
es 
an

be utilized simultaneously in the new framework. The model allows two ways of implement-

ing su
h problem features:

• A set of resour
e 
an be assigned to a subpro
ess.

4

More pre
isely, a [0,∞] weighted ar
, as dis
ussed later.

5

Stri
tly speaking, linear ordering is not needed, only a unique minimal or maximal element.

6

A more 
lever approa
h 
ould be to �nd the set of minimal and maximal nodes for ea
h subpro
ess and

use them. Both 
ould be 
orre
t implementation of the same 
on
ept.
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• The events of two subpro
esses overlap, and in that interval the assigned resour
es to

both of the subpro
esses are busy.

This provides a lot of expressive power to the new model that 
an be exploited, as illustrated

in some examples in Se
tion 7.4.

The limited and zero wait storage poli
ies showed an example, why "not later than" type

of 
onstraints are ne
essary to be in
luded in the model to be able to address a wide range of

problems. Thus, in the new model, the weight of ea
h ar
 is a pair of non-negative numbers

[min,max], whi
h gives bounds on the timing of the events 
orresponding the starting node

s and destination node d: ts + min ≤ td ≤ ts +max. Note that max is always greater or

equal to min, and it is allowed to take the value of in�nity as well, when there is no upper

bound on the timing di�eren
e. Also, allowing min (or max) to take negative values would

not result in additional expressive power, as an ar
 from s to d with ,e.g., min = −3 is

equivalent to an ar
 from d to s with max = 3. Note that the model may end up having

multiple ar
s between the same two nodes. They 
an of 
ourse be summed up as a single

ar
 with a maximal min, and minimal max value. In this 
ase, if the max value be
omes

lower than the min value, it means infeasibility.

7.3.3 Formal de�nitions

In this subse
tion, the formal de�nitions of the framework are given along with implementa-

tional 
omments. First, the s
ope of the interest is given by an exa
t mathemati
al de�nition

of the problem. Then, after the formalization of a s
hedule, the de�nition of an eS-graph

and its inner model is given.

S
heduling Problem

An extended s
heduling problem 
an be given by a 6-tuple, (E,SP , D, J,O ,W ) where

E is the set of events

SP ⊆ ℘(E) is a set of subpro
esses7

D is the set of dependen
ies between events

J is the set of units/resour
es to be s
heduled

O ∈ SP → ℘(℘(J)) is a set of assignment options

W is a weight fun
tion for dependen
ies based on s
heduling de
isions.

Note that an obje
tive fun
tion is not 
onsidered as part of the de�nition, as the goal of

a s
heduling problem is not ne
essarily the sear
h for an optimal solution. The framework

7℘(E) stands for the power set of E.
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may be used for 
he
king the feasibility of the problem, or generating all of the feasible

s
hedules.

E is the set of events, that is 
onsidered in the pro
ess, and SP is a set of subpro
esses

that need to be assigned to units and to be s
heduled. Ea
h subpro
ess, S ∈ SP is a

subset of E. In the above de�nition, it is not allowed for two subpro
esses to have the same

set of events. In implementation, and modeling, however, it 
an be useful to have several

subpro
esses with the event set. This relaxation will a�e
t the other parts of the formal

models or algorithms; thus it is highly advised to implement the model in that way. Here

this form is kept for simpler formalization. Note also that not all of the events are ne
essarily

in
luded at least in one of the subpro
esses.

D is the set of dependen
ies between the events. To ease formalization, for ea
h d ∈ D,

e−(d) will denote the event on whi
h e+(d) depends. From the modeling and implementa-

tional point of view, this set is given as DR∪
⋃

S∈SP DS
, where DS

is the set of dependen
ies

indu
ed by the subpro
esses, and DR
are other dependen
ies of the re
ipe independent from

the subpro
esses. The 
on
ept behind this partitioning is a modular view, where a subpro-


ess is a standalone entity, and a pro
ess 
an be built up from these building stones, and

making 
onne
tions between them.

8

Note, that D may 
ontains several parallel dependen-


ies with the same events. From the pra
ti
al point of view, only the strongest is binding.

However, this �exibility is again, advantageous from modeling and implementational pur-

poses.

As usual, J is the set of resour
es of the system that are needed for the subpro
esses to

be 
arried out. These 
an be units, pipes, operators, ele
tri
ity, et
.

O is the fun
tion of possible assignments: for ea
h S ∈ SP , O(S) is a set of resour
e

sets, that 
an 
arry out the subpro
ess, i.e., ea
h element of O(S) is a subset of J , and one

task in the s
heduling is to sele
t one of these sets.

W is the fun
tion that assigns weights to ea
h dependen
y in the system. These weights

often depend on the s
heduling de
isions (assignments and sequen
ing), thus, the formal

de�nition of this fun
tion depends on 
on
epts dis
ussed later. In many problem 
lasses,

however, this fun
tion is more simple, and has a modular stru
ture too. As an example,

in the 
ase of the previously 
onsidered problems, the weight of a dependen
y depended

only on the assignment that has been made at a subpro
ess. As a result, a wide range of

s
heduling problems 
ould be 
overed if W were de�ned as a D × S × ℘(J) → R∗ × R∗
,

where R∗
is the set of non-negative real numbers and ∞. This de�nition would, however,

not 
over the empty robot movement times of wet-et
h pro
esses for example; thus a more

general de�nition will be given later. Note that an other weakness of this simpler de�nition

would be that it does not allow to add weights to the dependen
ies that will be the result

of sequen
ing de
isions. This 
ould be avoided by repla
ing D with E × E. Following this

8

This philosophy is followed in a further extent in the 
urrent XML des
ription, where the set E is

de�ned by events sets of subpro
esses, additional events and alias rules, that merge the same events de�ned

by several subpro
esses. As a simple example, the arrival of an input of one subpro
ess may be the same as

the removal of the output of an other, whi
h depends on the a
tual pro
ess.
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philosophy, W 
ould be de�ned for the whole E × E domain, with the value of [−∞,∞]

where no dependen
y is given. However, in this 
ase, it is more di�
ult to formalize parallel

dependen
ies.

The s
hedule

In general, there are two types of de
isions that has to be made during s
heduling:

Assignement Ea
h subpro
ess has to be assigned to a plausible resour
e set.

Sequen
ing If the resour
e sets assigned to two di�erent subpro
esses have a non-

empty interse
tion, the order in whi
h they are 
arried out by the units in the

interse
tion must be given.

In order to allow the development of general s
heduling algorithms, it is not assumed

that a resour
e set is assigned to a subpro
ess always at on
e. On the 
ontrary, it is allowed

for a subpro
ess to have a single resour
e assigned to it, and the remaining elements of the

adequate resour
e set are assigned later. Also, it is not assumed that if two subpro
esses are

assigned to the same units, their sequen
ing must be in
luded in the s
hedule immediately.

The proposed formulation poses no su
h 
onstraints and allows these de
isions to be in
luded

separately at di�erent stages of the optimization.

Thus the formal des
ription of a s
hedule for a s
heduling problem (E,SP , D, J,O ,W )

is (A ,S ), where:

A ⊆ J × SP is a set of resour
e-subpro
ess assignments made so far.

S ⊆ SP × J × SP is a set of sequen
ing de
isions made so far.

To ease further des
riptions, the following notations will be applied:

A (j) = {S | (j, S) ∈ A } ∀j ∈ J

JA (S) = {j | (j, S) ∈ A } ∀S ∈ SP

S1
j
−→ S2 is true if (S1, j, S2) ∈ S , false otherwise

S is the transitive 
losure of S , i.e., if S1
j
−→ S2 and S2

j
−→ S3 then S1

j
−→ S3.

The empty s
hedule is obviously the (∅, ∅) pair. A s
hedule (A ,S ) is said to be 
omplete

for a s
heduling problem (E,SP , D, J,O ,W )

• for all S ∈ SP , JA (S) ∈ O(S), and

• for all S1, S2 ∈ SP su
h that S1 6= S2: for all j ∈ A (S1)∩A (S2): (S1
j
−→ S2)⊕ (S2

j
−→

S1)
9

9⊕ stands for the ex
lusive or logi
al operator
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The �rst rule states, that the set of resour
es assigned to a subpro
ess must be a plausible

set from the problem des
ription. The se
ond 
ondition states that if a unit is assigned to

two di�erent subpro
esses, exa
tly one of them should be s
heduled earlier than the other.

Note, that a 
omplete s
hedule is not ne
essary feasible. A very simple 
ounterexample


ould be, when there are two units that are simultaneously assigned to both of two sub-

pro
esses, i.e., j1, j2 ∈ A (S1) ∩ A (S2) and the sequen
ing de
isions are in
onsistent, i.e.,

(S1
j1
−→ S2) and (S2

j2
−→ S1).

For simpli�ed formulation let DS
denote the dependen
ies that are the results of se-

quen
ing de
isions, i.e., DS =
⋃

S1

j
−→S2

(S1 × S2 × {j}). Note that the third element in

the triplets is needed to separately identify the dependen
ies that are 
aused by di�erent

units.

10

Now the weight fun
tion of the s
heduling problem 
an be de�ned in a general way:

W : (D ∪DS )× (A ,S ) → R∗ × R∗
.

Moreover, the notations Wmin(d) and Wmax(d) 
orrespond to the lower and upper bounds

of W (d,A ,S ).

The eS-graph model

After the former introdu
tion, the eS-graph model of a partially s
heduled problem 
an

simply be given as an 8-tuple: S = (E,SP, D, J,O ,W ,A ,S ), whi
h 
onsists of all of the

problem parameters and the s
heduling de
isions made so far.

The inner model is a dire
ted graph with weighted ar
s: G(S) = (V,A, w), su
h that:

V = E

A = {(e−(d), e+(d)), (e+(d), e−(d)) | d ∈ D ∪DS }

w(v1, v2) = max

(

max d∈D∪DS

e−(d)=v1∧e+(d)=v2

Wmin(d),max d∈D∪DS

e−(d)=v2∧e+(d)=v1

−Wmin(d)

)

The verti
es are simply the events, and the ar
s represent the dependen
ies. To ea
h

dependen
y two ar
s are assigned a "forward" ar
 for the lower bound on a time di�eren
e,

and a "ba
kward" ar
 for the upper bound. The weights are assigned a

ordingly. If there

are parallel dependen
ies, the assigned weight is the maximal among them. The ar
s with

−∞ weight 
an be negle
ted, as they do not pose any real 
onstraints.

Similarly to the original S-graph framework, the longest path in this graph gives the

makespan of the s
hedule in 
ase of a 
omplete s
hedule. For in
omplete s
hedules, the

longest path provides a lower bound on the makespan, if it is assumed that the intervals

assigned by W satisfy in
lusion after any extensions on the s
hedule.

Moreover, a positive 
y
le means infeasible s
hedule in a similar way. Whether a zero-

weighted 
y
le poses an infeasibility depends on the appli
ation.

10

For more pre
ision the subpro
esses should have been in
luded as well, as it may be possible that there

are parallel dependen
ies between two events be
ause of two di�erent subsets. However, in this 
ase, the

units should be di�erent as well.
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7.4 Modeling s
heduling problems with the eS-graph

In this se
tion, modeling te
hniques with the eS-graph are illustrated. The examples provide

a guide to how real world s
heduling problems should be modeled within the new frame-

work. Most of the des
ription fo
uses on bat
h pro
ess s
heduling; however, the modeling

patterns 
an be used on other �elds as well. Formal de�nitions are omitted; only graphi
al

representations of the eS-graph model of the re
ipe are given, where

• events are represented with nodes (
ir
les)

• the initial dependen
ies between the events are represented with dire
ted ar
s.

• subpro
esses are highlighted with 
olored dashed border blo
ks, along with the plau-

sible resour
e sets.

On ea
h ar
, the initial interval is given. However, to simplify graphi
al representation,

the notations in Figure 7.13 are used throughout the se
tion.

Figure 7.13: Simpli�ed dependen
y notations for the eS-graph

It will usually not dis
ussed in detail, how the W fun
tion should work. In fa
t, it is

rather straight-forward in most of the 
ases.

Tasks Tasks are one of the basi
 subpro
esses for a s
heduling problem. The two basi


events that 
orrespond to this subpro
ess are the starting of the exe
ution of the task and
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its ending, as illustrated in Figure 7.14 with the detailed and simpli�ed notation as well.

The weight fun
tion should assign the [tpri , t
pr
i ] values based on the assigned unit sets that

Figure 7.14: eS-graph model of a simple task


an be either j1 or j3 alone. The timing di�eren
e between the two events are �xed, sin
e

the pro
ess takes an exa
t amount of time. Note that if the pro
essing time for the task

is di�erent for di�erent units, then the smallest should be the lower bound of the initial

interval, and the largest should be the upper bound.

Input, output transfers If there are inputs and outputs to be transfered into and from

the unit that is assigned to the task, then the subpro
ess should also in
lude these events, as

illustrated in Figure 7.15. The pro
ess has a single input and a single output material. The

Figure 7.15: eS-graph model of a task with input and output transfers.

transfer of the input is 
onsidered to be dis
rete, i.e., the material arrives in a single event.

On the 
ontrary, the output is removed by 
ontinuous transfer, thus the unit to be assigned

to this subpro
ess must remain until the transfer �nishes. Similarly to the pro
essing step,

the transfer takes a 
ertain amount of time. In this example, there is no upper limit on the
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�rst ar
, i.e., the input material 
an be stored in the unit after arrival arbitrarily long. The

same holds for the output material as well. If for some reason, the input should not wait

more then a tmax
amount of time due to some physi
al or 
hemi
al properties, it 
ould be

expressed by 
hanging the weight of the �rst ar
 to [0, tmax].

Overlap with transfer subpro
esses The transfer events may also be part of other

subpro
esses, as illustrated in Figure 7.16. The transfer for the intermediate is part of

Figure 7.16: eSgraph model of a task and transfers

three subpro
esses, as the sending, the re
eiving unit, and the units performing the transfer

must also be o

upied with the transfer. Note that there is only a single suitable set of units

for the transfer subpro
ess: {c1, p}, whi
h has two elements, as both the �rst 
ompressor

and the pipeline network are needed to 
arry out the transfer. (And an other transfer may

not use them during this time.)

Complex task A task may also have several inputs and outputs, and they may need to

be �lled di�erently, in a pre
ise order. In the example for whi
h the Gantt 
hart was given

in Figure 1.7, the se
ond step of the produ
tion is the 
arboxylation rea
tion. This rea
tion

has two inputs; however, one of them needs to be heated up before the intermediate arrives.

And when it does, the pro
ess must start immediately. After the pro
ess, the output 
an be

held for as long as wanted, but after that the unit must be 
leaned immediately. Modeling

this 
ompli
ated re
ipe 
an be done easily by the eS-graph, as illustrated in Figure 7.17. As

it is shown in the �gure, the subpro
ess of 
arboxylation has interse
tion with several other
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Figure 7.17: eSgraph model of part of a 
omplex re
ipe

subpro
esses. As an example, after the marlotherm is �lled, it needs to be heated up, for

whi
h an other unit is needed as well: a heater, labeled h. There are transfer subpro
esses,

shown with brown and green 
olors, analogously to the previous �gures. Note that the

transfer of phenolate is also part of the phenolation rea
tion, though it is not presented in

detail in the �gure.

Parallel resour
es The previous examples have already shown how multiple resour
es


an be busy at the same time. There are two di�erent ways of modeling this in the eS-graph

framework:

• Having more resour
es in the plausible sets

• Overlapping subpro
esses

This feature results in a modeling redundan
y, i.e., it gives rise to di�erent but mathemati-


ally 
orre
t formulations of the same problem. In most of the 
ases however, it is evident

whi
h one is the appropriate method. A good pra
ti
e is to identify the subpro
esses �rst,

and assign the plausible units to them.

There is however 
ase worth debating: let us assume that there is an operation whi
h

requires a ma
hine and an operator to operate it. Also, it is assumed that there are 3 
hoi
es

for both of them: m1, m2, m3 and o1, o2, o3, respe
tively. In this 
ase, there are two options:

Option 1 A single subpro
ess "Operation" is 
reated, with the plausible resour
e sets:

{m1, o1}, {m1, o2}, {m1, o3}, {m2, o1}, {m2, o2}, {m2, o3}, {m3, o1}, {m3, o2},

{m3, o3}.
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Option 2 Two subpro
esses are 
reated: "Operation-operator" and "Operation-ma
hine",

with plausible resour
e sets {o1}, {o2}, {o3} and {m1}, {m2}, {m3}, respe
tively.

Both models are adequate and properly express all the options available in the system. It is

easy to see that the latter one is more 
ompa
t, and generally, it is more preferred. However,

if several ma
hines are allowed to work in parallel on the same subpro
ess, then there is an

important question: should the number of assigned operators and ma
hines be the same?

If yes, option 2 
an not be extended for that 
ase, option 1 
an.

Detailedness of the model An important feature of the eS-graph modeling framework is

that the level of detail 
an depend on the problem at hand. By the level of detail the number

of events asso
iated to a subpro
ess is understood. As dis
ussed above, a task may 
onsists

of only two events: arrival of the input material starts, and removal of the output material

�nishes, or it 
an in
lude several other events as well. Whether an event is important to be

in
luded in the model or not depends on the a
tual problem.

Obviously, the events that are the boundaries of subpro
esses must be in
luded in the

model. Also, if there is a sequen
e of events, for example, between whi
h the weight of the

dependen
ies never 
hange, and either all of them are in
luded in a subpro
ess or none of

them, then only the �rst and the last event are important to be in
luded in the model.

Note that having a more detailed model will never a�e
t the soundness of the model,

it will only unne
essarily in
rease the size of the model. It will usually also not have any

e�e
t on the 
omputational performan
e. Thus in
luding additional super�uous events is

also suggested when it provides a more 
onsistent, straightforward model.

In
lusion of the original S-graph framework

In the above examples it has been shown how detailed an eS-graph model 
an be. In this

subse
tion, the eS-graph equivalent of the original S-graph models are given, whi
h has a

dual purpose:

• This model proves that everything, that 
ould be modeled with the S-framework 
an

be modeled in the new framework as well.

• The model shows an example that in
luding many events is not ne
essary if the a
tual

problem does not require it.

Note that the aim here is to provide the "smallest" eS-graph model. However, a more

detailed model for real appli
ation is advisable.

The basi
 idea behind the model is that in the original S-graph framework a unit was

busy with a task until the start of the next task. This will provide the subpro
esses of the

eS-graph model. The asso
iated events will be the same as originally: the starts of the tasks

and the removals of the produ
ts. All plausible resour
e sets will be singletons.

The de�nition of the eS-graph model of an S-graph 
an be given like this
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E = N = I ∪ P , i.e., the start of ea
h task and the removal of produ
ts

SP = {{i} ∪ I+i | i ∈ I}, i.e., a subpro
ess belongs to ea
h task node, that in
ludes

all the other nodes (events) to whi
h there leads a re
ipe ar


D = A1, i.e., all the re
ipe ar
s in the problem and nothing else

J = J ′
, i.e., all the units in the problem and nothing else

O = {({i} ∪ I+i , {{j} | j ∈ Ji}) | i ∈ I}, i.e., to ea
h of the subpro
ess all of the

plausible units are assigned as singletons.

W this weight fun
tion works exa
tly as the original, and assigns the minimal available

pro
essing time to an ar
 as a lower bound. The upper bound is in�nity ex
ept

for the dependen
ies leading to the removal of the produ
t.

11

This model de�nition is illustrated on an example in Figure 7.18

The models generated this way 
an be solved to optimal makespan by the algorithm

des
ribed in the next se
tion.

7.5 General purpose makespan minimizer for the eS-graph

In this se
tion a general purpose algorithm is shown for the eS-graph framework to minimize

the makespan of any problem modeled with the eS-graph. The algorithm may not be the

most e�
ient one for ea
h problem 
lass; the main aim is for it to stead as an illustration,

how the new framework 
an be extended. It has to be noted, however, that the algorithm

below explores an identi
al sear
h spa
e as the algorithm in blo
k 2.1, if the problem is

formulated a

ording to the instru
tions in the previous se
tion. The reason for this is that

the main 
on
ept of the original makespan minimizer algorithm has been kept, and the

details have just been adopted to the new model.

1. The algorithm �rst initializes the best makespan (makespancb
) to in�nity, and the set

of open problems (S) with the eS-graph model of the re
ipe.

2. In ea
h iteration the eS-graph model of an open problem (S) is sele
ted from this

set, and its bound is 
ompared with the makespan of the 
urrent best solution. If

the sele
ted problem has a worse bound, it is pruned, and a new iteration starts.

Otherwise:

(a) If the problem is a solution, the best solution (Scb
) and its makespan is updated.

11

It would not 
hange the soundness of the model if the upper bound were in�nity in all of the 
ases.
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Figure 7.18: eSgraph equivalent of an S-graph model
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(b) An "a
tive" resour
e is sele
ted if possible, and for all subpro
esses to whi
h it

still 
an be assigned, a subproblem is 
reated, and the subpro
esses are sequen
ed

as last into the queue of the sele
ted resour
e. Ea
h new partial s
hedule is tested

for feasibility, and then added to the set of open problems.

3. If the set of open subproblems is empty, and the 
urrent best makespan is not in�nity,

then the optimal solution is reported; otherwise, the problem has no feasible solution.

As it 
an be seen, the frame of the algorithm is the same, only some of the terms

are 
hanged. The formal algorithm is showed in blo
k 7.1. For simpler des
ription, the

notation S+
A
(j) is introdu
ed that denotes all of the subpro
esses for a partial s
hedule

whose assignment 
an be extended with j, formally:

S+
A
(j) = {S ∈ SP | ∃O ∈ O(S) {j} ∪ JA (S) ⊆ O}

If this set is empty, the unit 
an not be assigned to any subpro
esses anymore, and it is

termed not a
tive.

Algorithm 7.1 Makespan minimization with the S-graph framework

makespancb := ∞
S := {(ere
ipe(), ∅, ∅)}
while S 6= ∅ do
S = (E,SP , D, J,O ,W ,A ,S ) :=sele
t_remove(S)
if bound(S)< makespancb

then

if JA (S) ∈ O(S) ∀S ∈ SP then

makespancb :=bound(S)
Scb := S

end if

j :=sele
t({j ∈ J | S+
A
(j) 6= ∅)

if j 6= NIL then

for all S ∈ S+
A
(j) do

A S := A ∪ {(j, S)}
S S := S ∪ {(S ′, j, S) | S ′ ∈ SA (j)}
SS := (E,SP , D, J,O ,W ,A S,S S)
if feasible(SS

) then

S := S ∪ {S}
end if

end for

end if

end if

end while

if makespancb 6= ∞ then

return Scb

end if

Several notes on the subpro
edures 
alled in the algorithm:
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sele
t_remove As in the original 
ase, this fun
tion is allowed to sele
t and remove

an open subproblem arbitrarily.

bound This pro
edure may return the longest path in G(S).

sele
t This fun
tion 
an arbitrarily return any a
tive units, or NIL when none exists

feasible This pro
edure will de�nitely return false if there is a positive weighted 
y
le

in G(S). How it handles the zero-weighted 
y
les 
an depend on the problem


lass.

Note, that there are some major di�eren
es 
ompared to the algorithm in blo
k 2.1:

• Unlike G(N,A1, A2), S 
ontains all the s
heduling de
isions made in the subproblem,

so no other parameters are needed.

• The algorithm does not modify dire
tly the inner graph model of a subproblem. It

is 
arried out as an inner me
hanism of the model itself, when G(S) is generated or

maintained.

• The 
ondition for a solution and for a leaf problem is not the same, i.e., even if the

a
tual subproblem is a feasible solution, it may have 
hildren in the B&B tree. This is

due to the fa
t that a subpro
ess may have plausible resour
e sets that are the subsets

of ea
h other.

Summary and 
on
luding remarks

The S-graph framework has been introdu
ed for the s
heduling of bat
h pro
esses nearly

two de
ades ago. Next to its 
omputational power, a great advantage of the framework is

the straight-forward relation between the real problem, and the mathemati
al model. On

the other hand, the simpli
ity of the S-graph model limits its appli
ability, and requires


ontinuous extensions. In this 
hapter, a generalized, new framework is presented, whi
h is

based on the 
on
epts of the original S-graph framework, and keeps its advantages, while

providing a mu
h wider range of modeling options. As one of the most important new

building stones of the framework are the events of the pro
ess, it is named as the event-based

S-graph framework, or eS-graph framework. The se
tions illustrated the ne
essity of this

extension, the new model itself, the modeling te
hniques asso
iated with it, and a general

purpose makespan minimizer algorithm. On
e the eS-graph framework is implemented, it

will provide a tool whi
h 
an be applied for a mu
h wider range of s
heduling problems with

ease, and without any modi�
ation.
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Appendix A

Environment for 
omparisons

All the empyri
al test in the thesis were 
arried out on an IBM server with Intel Xeon

E5504 pro
essor (4 physi
al 
ores, 2 GHz), and 8 GiB RAM. The operating system was

Ubuntu 12.04 LTS. The MILP formulations were solved by Gurobi solver, and the S-graph

solver applies the COIN-OR library for solving LP models.

In many 
ases, the approa
hes were not able to solve the larger problems in reasonable

time. For many tests, a time limit of 1000 se
onds were set for the solvers, whi
h is a well

a

epted approa
h among the resear
hers of this topi
. If the exe
ution of an approa
h

rea
hed this time limit, the reported obje
tive is the best found in that time interval.
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Appendix B

Nomen
lature

List of the notations used thorough the do
ument

Parameters of the problem

Sets

P Set of produ
ts

I Set of tasks

J Set of units

Indexed sets

Ip set of tasks taking part int the produ
tion of produ
t p ∈ P

I+i set of subsequent tasks of task i ∈ I (for pre
edential re
ipe)

I−i set of prede
essor tasks of task i ∈ I (for pre
edential re
ipe)

Ij set of tasks that 
an be performed by unit j ∈ J

Ji set of units that 
an perform task i ∈ I

Paramters

t
pr
i,j ro
essing time of task i ∈ I in j ∈ Ji

ttr transfer time, whose indi
es 
an be di�erent based on the 
ontext (just a single

material or a unit-material-unit triple, et
.)

tH the time horizon

133
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Other notations

pi is the produ
t to whi
h i belong, if it is unambiguous

i+i subsequent task of task i ∈ I, if exists (for sequential re
ipes)

i−i prede
essor task of task i ∈ I, if exists (for sequential re
ipes)

ip,k kth task of the produ
tion of produ
t p ∈ P (for sequential re
ipes)

nP number of stages for produ
t p ∈ P (for sequential re
ipes)

Throughput maximization

Rp Revenue for one bat
h of produ
t p

Sto
hasti
 problems

Simple re
ipes

bp the number of bat
hes for produ
t p in the a
tual 
on�guration

sp the size of a bat
h for produ
t p (for the �rst 
ase)

smin
p , smax

p the minimal and maximal size of a bat
h for produ
t p (for the se
ond and

third 
ase)

S the set of s
enarios

probs the probability of s
enario s ∈ S

dems,p the demand for produ
t p in s
enario s ∈ S

prices,p the pri
e of p in s
enario s ∈ S

ocs,p, ucs,p the over- and underprodu
tion 
ost of p in s
enario s ∈ S

Profits,p(x) is the pro�t for x amount of produ
t p in s
enario s.

ExpProfitp(x) is the expe
ted pro�t of sp · bp amount of produ
t p

Complex re
ipes

R set of re
ipes

Pr set of produ
ts produ
ed by re
ipe r ∈ R

Rp set of re
ipes produ
ing produt p ∈ P

br the number of bat
hes for re
ipe r ∈ R in the a
tual 
on�guration
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sr,p the maximal amount of p ∈ P that 
an be produ
ed with the re
ipe r ∈ R

minr the minimal proportion ration on whi
h the re
ipe r ∈ R 
an be exe
uted

Continuous 
ase

f probability distribution fun
tion

F 
umulative probability distribution fun
tion

S-graph

G(N,A1, A2, w)

N := I ∪ P , the set of nodes

A1 := {(i, i′)|i ∈ I i′ ∈ I+i }, the set of re
ipe ar
s

A2 := ∅, the set of s
hedule ar
s

wi,i′ := minj∈Ij t
pr
i,j , the weights for all re
ipe ar
 (i, i′) ∈ A1: the minimal pro
essing

time for i

eS-graph

E is the set of events

SP ⊆ ℘(E) is a set of subpro
esses

D is the set of dependen
ies between events

J is the set of units/resour
es to be s
heduled

O ∈ SP → ℘(℘(J)) is a set of assignment options

W is a weight fun
tion for dependen
ies based on s
heduling de
isions.

(A ,S ) s
hedule

A ⊆ J × SP is a set of resour
e-subpro
ess assignements made so far.

S ⊆ SP × J × SP is a set of sequen
ing de
isions made so far.

A (j) = {S | (j, S) ∈ A } ∀j ∈ J

JA (S) = {j | (j, S) ∈ A } ∀S ∈ SP

S1
j
−→ S2 is true if (S1, j, S2) ∈ S , false otherwise

S is the transitive 
losure of S ,i.e., if S1
j
−→ S2 and S2

j
−→ S3 then S1

j
−→ S3.
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Appendix C

Full tables of test results

C.1 Throughput maximization

This se
tion 
ontains all the empiri
al results for the 18 throughput maximization. The


olumns are:

�rst Con�guration sele
tion strategy

se
ond Update subroutine

third Feasibility subroutine

rest time horizon, and the CPU times in se
onds

The time limit for the solver was 3600 se
onds.

137
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C.1.1 Pharma
euti
al 
ase study

24 25 26 27 28 29 30

LEX

U

FT 0.1 0.12 0.12 0.11 0.16 4.56 13.42

MM 3.5 3.98 3.98 3.98 5.36 21.49 3600

F

FT 0.1 0.11 0.12 0.11 0.16 7.83 14.73

MM 3.98 3.98 3.99 3.97 5.37 21.82 30.77

E

FT 0.09 0.12 0.12 0.12 0.13 8.15 15.71

MM 0.16 0.20 0.19 0.19 0.26 21.02 30.61

BFS

U

FT 0.13 0.13 0.13 0.13 0.16 5.57 15.23

MM 6.91 4.30 4.30 4.27 5.36 30.95 3600

F

FT 0.12 0.12 0.12 0.12 0.16 8.05 15.41

MM 5.75 3.98 3.98 4.00 5.35 24.17 33.41

E

FT 0.1 0.12 0.12 0.12 0.15 8.29 17.62

MM 0.17 0.21 0.21 0.21 0.26 21.72 36.87

DFS

U

FT 0.21 0.27 0.27 0.27 0.5 7.01 14.78

MM 7.30 11.93 11.81 11.90 19.82 35.96 52.41

F

FT 0.2 0.27 0.27 0.27 0.51 9.16 18.63

MM 7.05 11.87 11.96 11.88 19.98 36.17 53.55

E

FT 0.1 0.12 0.12 0.12 0.13 8.58 17.09

MM 0.17 0.21 0.20 0.21 0.26 27.99 39.49

31 32 33 34 35 36 37

LEX

U

FT 53.56 129.79 96.83 446.93 448.2 1296.92 1306.86

MM 3600 3600

F

FT 20 34.26 40.97 101.43 101.28 687.4 690.63

MM 67.82 85.77

E

FT 23.12 36.29 52.5 55.52 54.48 71.36 78.82

MM 47.00 67.74

BFS

U

FT 63.21 177.01 267.69 534.91 538.71 1385.11 1386.55

MM 3600 3600

F

FT 23.87 44.11 47.99 107.27 107.22 685.34 689.15

MM 77.18 107

E

FT 29.38 48.93 63 57.58 56.8 74.85 80.81

MM 72.77 99.26

DFS

U

FT 64.67 139.17 209.1 404.51 406.47 2960.98 2966.28

MM 3600 3600

F

FT 38.44 55.6 65.52 284.84 284.34 2978.23 2949.65

MM 256 272

E

FT 27.37 42.97 56.66 59.26 58.38 75.81 82.37

MM 69.86 88.19
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C.1.2 Agro
hemi
al example

13 14 15 16

LEX

U

FT 3.06 339.45 453.11 3600

MM 3600 3600 3600 3600

F

FT 3.07 340.04 451.78 3600

MM 3600 3600 3600 3600

E

FT 3.05 205.05 453.93 3600

MM 3600 3600 3600 3600

BFS

U

FT 3.08 405.79 583.83 3600

MM 3600 3600 3600 3600

F

FT 3.04 405.01 582.28 3600

MM 3600 3600 3600 3600

E

FT 3.05 414.03 591.55 3600

MM 3600 3600 3600 3600

DFS

U

FT 3.03 405.13 589.11 3600

MM 3600 3600 3600 3600

F

FT 3.08 402.99 583.25 3600

MM 3600 3600 3600 3600

E

FT 3.07 269.34 581.33 3600

MM 3600 3600 3600 3600

C.1.3 Literature example

14 15 16 17

LEX

U

FT 16.88 179.21 1260.14 3600

MM 276.5 2063.53 3600 3600

F

FT 15.84 134.7 1159.3 3600

MM 272.52 848.64 3600 3600

E

FT 15.21 113.79 984.94 3600

MM 30.07 484.25 3600 3600

BFS

U

FT 14.95 208.14 964.05 3600

MM 3600 3600 3600 3600

F

FT 18.52 144.16 1496.75 3600

MM 768.76 929.27 3600 3600

E

FT 21.07 133.26 1512.81 3600

MM 236.08 689.51 3600 3600

DFS

U

FT 22.63 437.39 1594.05 3600

MM 1313.48 3600 3600 3600

F

FT 22.53 279.89 1629.85 3600

MM 1308.07 3600 3600 3600

E

FT 21.01 225.55 1403.72 3600

MM 459.21 2053.05 3600 3600
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C.2 Zero-wait test results

CPU times of the ZW tests

Conf. sLP aLP aLP' Neg Re
 Re
+

11111 0.035 0.096 0.061 0.008 0.009 0.005

11112 0.099 0.139 0.225 0.007 0.017 0.009

11121 0.047 0.178 0.157 0.008 0.016 0.007

11211 0.102 0.398 0.666 0.02 0.049 0.027

12111 2.959 0.691 1.397 0.054 0.049 0.055

21111 0.099 0.47 0.264 0.019 0.026 0.014

22111 22.71 4.457 10.636 0.21 0.323 0.34

22211 188.55 40.695 83.453 1.592 3.014 4.618

22221 437.386 71.556 225.756 2.689 5.785 8.523

22222 1000 125.454 403.037 6.964 14.361 13.592

32222 1000 1000 1000 57.545 133.474 102.853

33333 1000 1000 1000 1000 1000 1000

44444 1000 1000 1000 1000 1000 1000

55555 1000 1000 1000 1000 1000 1000

CPU times of the ZW tests

Conf. sLP aLP aLP' Neg Re
 Re
+

11111 18.2 18.2 18.2 18.2 18.2 18.2

11112 18.2 18.2 18.2 18.2 18.2 18.2

11121 18.2 18.2 18.2 18.2 18.2 18.2

11211 22.7 22.7 22.7 22.7 22.7 22.7

12111 22 22 22 22 22 22

21111 18.2 18.2 18.2 18.2 18.2 18.2

22111 22 22 22 22 22 22

22211 26.5 26.5 26.5 26.5 26.5 26.5

22221 26.5 26.5 26.5 26.5 26.5 26.5

22222 47.5 27.1 27.1 27.1 27.1 27.1

32222 49.1 27.9 27.9 27.9 27.9 27.9

33333 69.8 42.9 58.7 37.9 41 37.9

44444 57.5 60.4 inf 57.2 62.2 57.2

55555 87.1 98.8 inf 79 79 79

C.3 Expe
ted pro�ts of feasible 
on�gurations for the

sto
hasti
 tests

Bat
h number Expe
ted pro�ts


on�gurations Two-stage Flexible Fixed

1 0 3 0 0 1 2689.87 2475.31 2451.15
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Bat
h number Expe
ted pro�ts


on�gurations Two-stage Flexible Fixed

1 0 3 0 1 0 2661.76 2474.58 2474.58

0 0 0 0 0 3 2643.56 2465.39 2465.39

1 0 1 0 0 2 2643.56 2465.39 2465.39

2 0 2 0 0 1 2643.56 2465.39 2465.39

0 1 1 0 1 1 2625.29 2456.09 2456.09

1 1 0 0 0 2 2607.03 2446.78 2446.78

2 1 1 0 0 1 2607.03 2446.78 2446.78

0 0 2 1 0 1 2597.9 2442.13 2442.13

1 0 3 1 0 0 2597.9 2442.13 2442.13

0 0 3 0 0 1 2586.99 2435.7 2435.7

1 0 4 0 0 0 2586.99 2435.7 2435.7

1 0 0 1 1 1 2586.97 2435.68 2435.68

0 0 0 0 1 2 2574.73 2427.92 2427.92

1 0 1 0 1 1 2574.73 2427.92 2427.92

2 0 2 0 1 0 2574.73 2427.92 2427.92

2 2 0 0 0 1 2562.47 2420.14 2420.14

2 0 0 0 0 2 2550.26 2412.41 2412.41

3 0 1 0 0 1 2550.26 2412.41 2412.41

0 1 1 1 0 1 2550.24 2412.39 2412.39

1 1 2 1 0 0 2550.24 2412.39 2412.39

0 1 1 0 2 0 2550.21 2412.36 2412.36

0 1 2 0 0 1 2538 2404.63 2404.63

1 1 3 0 0 0 2538 2404.63 2404.63

1 1 0 0 1 1 2525.74 2396.85 2396.85

2 1 1 0 1 0 2525.74 2396.85 2396.85

0 0 1 2 1 0 2525.74 2396.85 2396.85

0 0 2 1 1 0 2513.51 2389.09 2389.09

0 0 3 0 1 0 2501.28 2381.34 2381.34

1 0 0 2 0 1 2501.28 2381.34 2381.34

3 1 0 0 0 1 2501.28 2381.34 2381.34

1 0 0 1 2 0 2501.24 2381.32 2381.32

0 0 0 1 0 2 2489.04 2373.58 2373.58

1 0 1 1 0 1 2489.04 2373.58 2373.58

2 0 2 1 0 0 2489.04 2373.58 2373.58

0 2 1 0 0 1 2489.01 2373.56 2373.56

1 2 2 0 0 0 2489.01 2373.56 2373.56

0 0 0 0 2 1 2489.01 2373.56 2373.56

1 0 1 0 2 0 2489.01 2373.56 2373.56

0 0 1 0 0 2 2476.81 2365.82 2365.82

1 0 2 0 0 1 2476.81 2365.82 2365.82

2 0 3 0 0 0 2476.81 2365.82 2365.82
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Bat
h number Expe
ted pro�ts


on�gurations Two-stage Flexible Fixed

2 2 0 0 1 0 2476.75 2365.78 2365.78

2 0 0 0 1 1 2464.55 2358.05 2358.05

3 0 1 0 1 0 2464.55 2358.05 2358.05

0 1 1 1 1 0 2464.52 2358.02 2358.02

0 1 2 0 1 0 2452.2 2350.15 2350.15

1 1 0 1 0 1 2436.21 2337.14 2337.14

2 1 1 1 0 0 2436.21 2337.14 2337.14

0 0 1 3 0 0 2436.21 2337.14 2337.14

1 1 0 0 2 0 2436.18 2337.12 2337.12

0 1 0 0 0 2 2420.22 2324.14 2324.14

1 1 1 0 0 1 2420.22 2324.14 2324.14

2 1 2 0 0 0 2420.22 2324.14 2324.14

0 0 2 2 0 0 2420.22 2324.14 2324.14

0 0 3 1 0 0 2404.23 2311.13 2311.13

3 1 0 0 1 0 2404.2 2311.11 2311.11

1 0 0 2 1 0 2404.2 2311.11 2311.11

0 0 4 0 0 0 2388.24 2298.12 2298.12

0 0 0 1 1 1 2388.21 2298.1 2298.1

1 0 1 1 1 0 2388.21 2298.1 2298.1

0 2 1 0 1 0 2388.18 2298.08 2298.08

0 0 0 0 3 0 2388.18 2298.08 2298.08

0 0 1 0 1 1 2372.22 2285.1 2285.1

1 0 2 0 1 0 2372.22 2285.1 2285.1

2 2 0 1 0 0 2372.19 2285.07 2285.07

2 0 0 1 0 1 2356.23 2272.09 2272.09

3 0 1 1 0 0 2356.23 2272.09 2272.09

1 2 0 0 0 1 2356.2 2272.07 2272.07

2 2 1 0 0 0 2356.2 2272.07 2272.07

0 1 1 2 0 0 2356.2 2272.07 2272.07

2 0 0 0 2 0 2356.2 2272.07 2272.07

1 0 0 0 0 2 2340.24 2259.08 2259.08

2 0 1 0 0 1 2340.24 2259.08 2259.08

3 0 2 0 0 0 2340.24 2259.08 2259.08

0 1 2 1 0 0 2340.21 2259.06 2259.06

0 1 3 0 0 0 2324.22 2246.05 2246.05

1 1 0 1 1 0 2324.19 2246.03 2246.03

0 1 0 0 1 1 2308.2 2233.03 2233.03

1 1 1 0 1 0 2308.2 2233.03 2233.03

2 3 0 0 0 0 2292.18 2220 2220

2 1 0 0 0 1 2276.22 2207.01 2207.01

3 1 1 0 0 0 2276.22 2207.01 2207.01
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Bat
h number Expe
ted pro�ts


on�gurations Two-stage Flexible Fixed

0 0 0 2 0 1 2276.22 2207.01 2207.01

1 0 1 2 0 0 2276.22 2207.01 2207.01

0 2 1 1 0 0 2276.19 2206.99 2206.99

0 0 0 1 2 0 2276.19 2206.99 2206.99

0 0 1 1 0 1 2260.23 2194.01 2194.01

1 0 2 1 0 0 2260.23 2194.01 2194.01

0 2 2 0 0 0 2260.2 2193.98 2193.98

0 0 1 0 2 0 2260.2 2193.98 2193.98

0 0 2 0 0 1 2244.24 2181 2181

1 0 3 0 0 0 2244.24 2181 2181

2 0 0 1 1 0 2244.21 2180.98 2180.98

1 2 0 0 1 0 2244.18 2180.96 2180.96

1 0 0 0 1 1 2228.22 2167.97 2167.97

2 0 1 0 1 0 2228.22 2167.97 2167.97

3 2 0 0 0 0 2212.2 2154.94 2154.94

1 1 0 2 0 0 2212.2 2154.94 2154.94

3 0 0 0 0 1 2196.24 2141.96 2141.96

4 0 1 0 0 0 2196.24 2141.96 2141.96

0 1 0 1 0 1 2196.21 2141.94 2141.94

1 1 1 1 0 0 2196.21 2141.94 2141.94

0 3 1 0 0 0 2196.18 2141.91 2141.91

0 1 0 0 2 0 2196.18 2141.91 2141.91

0 1 1 0 0 1 2180.22 2128.93 2128.93

1 1 2 0 0 0 2180.22 2128.93 2128.93

2 1 0 0 1 0 2164.2 2115.9 2115.9

0 0 0 2 1 0 2164.2 2115.9 2115.9

0 0 1 1 1 0 2148.21 2102.89 2102.89

4 1 0 0 0 0 2132.22 2089.89 2089.89

0 0 2 0 1 0 2132.22 2089.89 2089.89

2 0 0 2 0 0 2132.22 2089.89 2089.89

1 2 0 1 0 0 2132.19 2089.87 2089.87

1 0 0 1 0 1 2116.23 2076.88 2076.88

2 0 1 1 0 0 2116.23 2076.88 2076.88

0 2 0 0 0 1 2116.2 2076.86 2076.86

1 2 1 0 0 0 2116.2 2076.86 2076.86

1 0 0 0 2 0 2116.2 2076.86 2076.86

0 0 0 0 0 2 2100.24 2063.87 2063.87

1 0 1 0 0 1 2100.24 2063.87 2063.87

2 0 2 0 0 0 2100.24 2063.87 2063.87

3 0 0 0 1 0 2081.68 2047.3 2047.3

0 1 0 1 1 0 2081.65 2047.28 2047.28
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Bat
h number Expe
ted pro�ts


on�gurations Two-stage Flexible Fixed

0 1 1 0 1 0 2059.66 2026.78 2026.78

2 1 0 1 0 0 2036.81 2005.42 2005.42

0 0 0 3 0 0 2036.81 2005.42 2005.42

1 3 0 0 0 0 2036.76 2005.38 2005.38

1 1 0 0 0 1 2013.96 1984.06 1984.06

2 1 1 0 0 0 2013.96 1984.06 1984.06

0 0 1 2 0 0 2013.96 1984.06 1984.06

0 0 2 1 0 0 1991.11 1962.7 1962.7

0 0 3 0 0 0 1968.26 1941.34 1941.34

1 0 0 1 1 0 1968.21 1941.3 1941.3

0 2 0 0 1 0 1968.15 1941.25 1941.25

0 0 0 0 1 1 1945.36 1919.94 1919.94

1 0 1 0 1 0 1945.36 1919.94 1919.94

3 0 0 1 0 0 1922.51 1898.58 1898.58

0 1 0 2 0 0 1922.45 1898.53 1898.53

2 2 0 0 0 0 1922.45 1898.53 1898.53

2 0 0 0 0 1 1899.66 1877.22 1877.22

3 0 1 0 0 0 1899.66 1877.22 1877.22

0 1 1 1 0 0 1899.6 1877.17 1877.17

0 1 2 0 0 0 1876.75 1855.81 1855.81

1 1 0 0 1 0 1853.85 1834.41 1834.41

3 1 0 0 0 0 1808.15 1791.69 1791.69

1 0 0 2 0 0 1808.15 1791.69 1791.69

0 2 0 1 0 0 1808.09 1791.64 1791.64

0 0 0 1 0 1 1785.3 1770.33 1770.33

1 0 1 1 0 0 1785.3 1770.33 1770.33

0 2 1 0 0 0 1785.24 1770.28 1770.28

0 0 0 0 2 0 1785.24 1770.28 1770.28

0 0 1 0 0 1 1762.45 1748.97 1748.97

1 0 2 0 0 0 1762.45 1748.97 1748.97

2 0 0 0 1 0 1739.54 1727.56 1727.56

4 0 0 0 0 0 1693.84 1684.84 1684.84

1 1 0 1 0 0 1693.79 1684.8 1684.8

0 3 0 0 0 0 1693.73 1684.75 1684.75

0 1 0 0 0 1 1670.94 1663.44 1663.44

1 1 1 0 0 0 1670.94 1663.44 1663.44

0 0 0 1 1 0 1625.18 1620.67 1620.67

0 0 1 0 1 0 1597.22 1594.2 1594.2

2 0 0 1 0 0 1569.13 1567.59 1567.59

1 2 0 0 0 0 1569.07 1567.55 1567.55

1 0 0 0 0 1 1541.03 1540.98 1540.98



C.3. STOCHASTIC TEST RESULTS 145

Bat
h number Expe
ted pro�ts


on�gurations Two-stage Flexible Fixed

2 0 1 0 0 0 1541.03 1540.98 1540.98

0 1 0 0 1 0 1481.51 1481.51 1481.51

0 0 0 2 0 0 1422.08 1422.08 1422.08

2 1 0 0 0 0 1422.08 1422.08 1422.08

0 0 1 1 0 0 1392.37 1392.37 1392.37

0 0 2 0 0 0 1360.07 1360.07 1360.07

1 0 0 0 1 0 1325.04 1325.04 1325.04

3 0 0 0 0 0 1255.11 1255.11 1255.11

0 1 0 1 0 0 1255.04 1255.04 1255.04

0 1 1 0 0 0 1220.08 1220.08 1220.08

1 0 0 1 0 0 1077.29 1077.29 1077.29

0 2 0 0 0 0 1077.19 1077.19 1077.19

0 0 0 0 0 1 1039.22 1039.22 1039.22

1 0 1 0 0 0 1039.22 1039.22 1039.22

1 1 0 0 0 0 886.77 886.77 886.77

0 0 0 0 1 0 772.48 772.48 772.48

2 0 0 0 0 0 696.34 696.34 696.34

0 0 0 1 0 0 505.83 505.83 505.83

0 0 1 0 0 0 467.76 467.76 467.76

0 1 0 0 0 0 315.31 315.31 315.31

1 0 0 0 0 0 124.89 124.89 124.89
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