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Abstrat

In bath proesses, a unit an be used for various steps of the prodution of several di�erent

produts. This leads to several advantages over ontinuous systems, e.g., quik adaption

to the hanging market environment. This �exibility of bath proesses, however, requires

additional onsideration in operational planning, as the equipment units must be sheduled

with aution to satisfy all the pratial onstraints of the problem. Finding the most ad-

vantageous shedule is generally a omplex problem, nevertheless it is a key omponent of

the pro�tability of suh systems. As a result, the sheduling of bath proesses is a widely

researhed topi, with many di�erent approahes published.

The goal of my PhD work was to extend the apabilities of the S-graph framework to be

able to address a wider range of sheduling problems. Unlike other mathematial program-

ming based tehniques, the S-graph framework guarantees a feasible and globally optimal

solution. There are, however, several pratial features, that ould not be takled with

the former S-graph based algorithms. In this thesis, extensions of the S-graph framework

are presented to address limited-wait storage poliies, throughput maximization-, and ex-

peted pro�t maximization problems. The developed algorithms are disussed in detail, and

empirially tested on various ase studies and literature examples.
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Absztrakt

Szakaszos üzem¶ termel® rendszerek berendezései több különböz® termék gyártásának lépé-

seinél is felhasználhatók, aminek köszönhet®en az ilyen rendszerek könnyebben alkalmazkod-

nak például a változó piai igényekhez, s további számos el®nnyel rendelkeznek a folytonos

rendszerek m¶ködésével szemben. Ezen szabadsági foknak köszönhet®en ugyanakkor különös

oda�gyelés szükséges a tervezés során, hogy a berendezések ütemezése minden gyakorlati

korlátozásnak eleget tegyen. A legel®nyösebb ütemezés megtalálása általában egy összetett

feladat, mely kulsfontosságú a hasonló rendszerek nyereséges m¶ködéséhez, így a téma

széles körben kutatott, s számos módszer látott napvilágot a kapsolódó szakirodalomban.

Doktori munkám élja az S-gráf módszertan kiterjesztése volt, megteremtve annak széle-

sebb kör¶ alkalmazási lehet®ségeit szakaszos üzem¶ rendszerek ütemezéséhez. A mate-

matikai programozáson alapuló módszerekkel ellentétben az S-gráf módszertan korábban

kidolgozott algoritmusai garantálják az optimális megvalósítható megoldást, azonban nin-

senek felkészítve néhány fontos ipari korlátozás �gyelembe vételére. Dolgozatomban az

S-gráf módszertan több kiegészítése kerül bemutatásra, melyek alkalmazásával kezelhet®k

például az id®korlátos tárolások, vagy a pro�t valamint várható pro�t maximalizálását

megélzó feladatok. A kifejlesztett algoritmusok részletes ismertetését követ®en azok össze-

hasonlítása kerül bemutatásra esettanulmányokon és irodalmi példákon keresztül.
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Prefae

Bath proesses are beoming more and more important in the prodution industry due to

their �exibility. This advantage, however, also omes as a shortoming, as the units need to

be sheduled, whih results in an additional omplexity for the planning of operations. The

industry generates a wide range of bath sheduling problems, where the goal in general is to

alloate the tasks of the proess to the available equipment units in the most favorable way.

Thus, sheduling is an important and unavoidable problem of bath proesses, for whih

many approahes has been published in the literature over the past two deades.

Chapter 1 �rst presents the theoretial foundations of mahine sheduling, whih provides

the basis for the pratial, industrial problems desribed in the seond part of the hapter.

The approahes developed and published in the literature for bath sheduling problems

are summarized in Chapter 2. The MILP programming based approahes presenting the

majority of publiations are disussed in detail. The model and algorithms of the S-graph

framework and its past developments are detailed thoroughly in the seond part of the

Chapter, as it provides the basis for the new developments presented in this thesis.

In the next �ve hapters, the new results of the thesis are detailed. First, some modeling

issues are addressed in Chapter 3, that appear in the literature approahes. The next three

hapters provide extensions of the S-graph framework for throughput maximization (Chapter

4, limited-wait storage poliy (Chapter 5), and stohasti pro�t maximization (Chapter 6),

respetively. In Chapter 7, a generalized modeling framework is presented in order to extend

the expressiveness of the S-graph framework.
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Chapter 1

Sheduling problems

Sheduling problems appear in almost every part of life, e.g., �nding the shortest path with

a shopping list in a mall, seleting the best order of airplanes to land during a rush hour,

or providing a robust exeution plan for a onstrution projet. The problems that arise at

di�erent parts of life often di�er in many aspets, however, the underlying basis are the

same: the goal is to assign tasks to some kind of available resoures and time

intervals in the most favorable way for a ertain objetive, while satisfying the

onstraints of the problem de�nition. Just like the aforementioned onstraints and

objetives vary, the terminology for the basi elements of the problem are also di�erent at

di�erent �elds of siene. Tasks to be performed are often alled jobs, ativities, et. The

available resoures in many ases are some kind of mahines that are often alled equipment

or units as well. The main �eld of the present work is the sheduling of bath proesses of

hemial industries, thus the terms task and unit are used almost everywhere, whih are

the most aepted in this �eld.

The lassi�ation of sheduling problems is di�erent for eah �eld. However, there are

some basi aspets that an be the basis of the ategorization in almost any ase. Regardless

of the �eld spei� attributes of a sheduling problem, it an be lassi�ed as either an online,

o�ine, or semi-o�ine problem. In the ase of o�ine problems, all the neessary input

data is available at the time of the optimization, when the sheduling deisions are made. In

ontrast, for an online sheduling problem, the deisions have to be made before some of the

problem parameters are revealed. In the semi-o�ine ase, some but not all information about

the problem parameters is available in advane before making the deisions. In general, it

is impossible to provide an approah generating the optimal solution if the problem is not

o�ine. In the online and semi-o�ine ase the proposed methods in the literature an only

guarantee a ompetitive ratio, that is the maximum deviation of the provided solution from

the optimal one. For o�ine problems, the optimal solution is usually theoretially �ndable.

Nevertheless, most of the o�ine problems are NP-hard, thus �nding the optimal solution in

a reasonable time is in many ases not possible or at least hallenging.

An other dimension for lassi�ation is the unertainty. A sheduling problem is alled

stohasti if some of the problem parameters take values only at the time of the exeution

3
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of the provided shedule, and the problem is alled deterministi otherwise. For stohasti

problems the deisions to be made an be ategorized into two groups: the ones that must

take values before the stohasti parameters take values, and the ones that an alter their

value after that.

The two mentioned ategorization aspets are only loosely de�ned, and thus they also

have kind of an overlap. As an example, stohasti problems an be onsidered semi-o�ine,

as some of the deisions has to be made before knowing the exat values of some problem

parameters, and usually some additional information is available, e.g., the probability dis-

tribution funtion of them. Nevertheless, both of the aspets are addressed independently,

as the most ommon attributes of a stohasti and a semi-o�ine problem are di�erent, as

well as the objetives and the developed approahes for solving them.

In this work, mostly deterministi and o�ine problems are onsidered if not stated

otherwise. Chapter 6 fouses on a lass of stohasti sheduling problems. The domain of

the problems and the developed approahes is the sheduling of the bath hemial proesses

although many of the algorithms may be applied for similar problems of other �elds. Setion

1.1 provides a brief review of the basi sheduling problems in the literature of ombinatorial

optimization, as some of these problems are the roots for the sheduling problems that appear

in the hemial industries. The introdution of the speial features of bath sheduling

problems is given in Setion 1.2.

1.1 Basi sheduling problems

In this setion some of the most simple sheduling problems are disussed. Simple refers

here to the desription of the problem, not the mathematial omplexity of solving it. As it

will be presented, some of these problems are already very di�ult to takle to begin with.

Sheduling problems in hemial industries usually involve more problem parameters and

onstraints than the problems presented in this setion. These problems, however, are the

basis for the more detailed pratial problems, and they provide a lower bound for their

omplexity.

1.1.1 Problem lasses

In the literature[101℄ of these problems, the terms job, operation, and mahine are used

instead of produts, tasks, and units, respetively. The problem lasses are formulated with

a triple, α|β|γ, where the

α �eld desribes the jobs and the available infrastruture

β �eld provides additional parameters of the problem if any

γ �eld de�nes the objetive
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The α �eld desribes the number of mahines, whether they are idential or not, and

also the type of the jobs to be ompleted on those units. Without attempting to be om-

prehensive, some of the possible entries of the α �eld are given here:

Single stage problems

1 - Single mahine A single mahine is available, eah job onsists of a

single step to be performed on that mahine. The produts may (and

usually do) have di�erent proessing times.

Pm - Idential parallel mahines m idential mahines are available,

with single step jobs, that an be ompleted on any of the mahines.

Qm - Parallel mahines with di�erent speed are similar to the Pm

ase with the di�erene that eah mahine has an assigned speed

fator.

Rm - Unrelated mahines in parallel Generalization of the single stage

ase, when the proessing time of a job on a mahine is de�ned as an

input parameter.

Shop problems

Fm - Flow shop The jobs have m steps that have to be performed on the

m mahines in the same order for eah job.

FFc - Flexible �ow shop Generalization of the Fm and Pm ases, where

eah job has to go through c stages in the same order, where several

parallel mahines are available.

Jm - Job shop Generalization of the Fm ase, where the jobs an have

di�erent order for the mahines, moreover, it is not mandatory for a

job to visit all of the mahines.

FJc - Flexible job shop Generalization of the Jm and FFc ases, when

the jobs have to go through some of the stages in a job-dependent

order, and at eah stage, some idential units are available.

Om - Open shop Eah job has to go through all of the mahines. How-

ever, their order is not given by the problem de�nition.

As it is already highlighted in the desription, some of the ases are speial ases of

others, e.g., Pm is a speial ase of FFc when c = 1. These dependenies between the

di�erent α �eld values are shown in Figure 1.1, where an ar leading from A to B represents

that B is a speial ase of A.

Unlike the α and γ �elds, the β �eld that provides additional onstraints, may ontain

several or no entries at all. Some of the most ommon entries are:
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Figure 1.1: Dependeny between the possible entries in the α �eld

rj - release dates For eah job, its proessing annot start earlier than its release

date.

prmp - preemptions The proessing of a job on a mahine an be interrupted, and

ontinued later on any suitable mahine.

sjk - sequene dependent setup times After ompleting job k on a mahine, it

needs sjk time to be adjusted for the job j.

batch(b) - bath proessing The mahines an perform at most b jobs simultane-

ously, however, the jobs has to wait for eah other when starting or �nishing the

task.

brkdwn - breakdowns The mahines are available only in given time intervals.

Mj - mahine eligibility restritions In the ase of parallel mahines, eah job has

a subset of mahines that an be used to proess it.

prmu - permutation In ase of �ow shop problems, the order of the jobs at eah

stage must be the same.

nwt - no wait The jobs an not wait between the di�erent mahines in ase of �ow-,

job-, or open shop problems.

In the ase of the α �eld, all of the entries were generalizations of the 1 ase. Similarly,

the empty β �eld is a speial ase of many other. From the above list rj, sjk, brkdwn, Mj ,

and their ombination are suh entries, however, the preemptions, for example, hange the

problem in its ore.

The γ �eld de�nes the objetive of the optimization. Similarly to the α �eld, exatly

one entry is allowed (and required) here. The most ommon entries are:

Cmax - makespan Minimization of the maximum ompletion time.
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∑

wjCj - weighted ompletion time Minimization of the total weighted omple-

tion time of jobs.

Lmax - maximum lateness Minimizing the maximal violation of due dates. Lateness

an take a negative value, when a job is �nished earlier than its due date.

∑

wjTj - total weighted tardiness Minimization of the weighted sum of non-negative

lateness values of the jobs.

∑

wjUj - total weighted number of tardy jobs Minimization of the weighted num-

ber of jobs that are not ompleted within the given deadline.

Similarly to the other two �elds, Cmax is a speial ase of Lmax when all the due dates

are 0, and

∑

wjCj is the speial ase of
∑

wjTj .

Obviously, if a problem lass is the same or speial ase of an other in all of the three �elds,

its solution an be redued to the solution of the less restrited one. Sine the algorithms

for the latter are appliable for the former one, the former an not be more omplex than

the latter one.

1.1.2 Classi�ation of solutions of sheduling problems

The term shedule refers to an assignment of eah task to units and time intervals in

most of the ases. There exist, of ourse, in�nitely many assignment funtions for a given

sheduling problem, and the term solution is also often used when referring to a shedule.

The shedules that do not satisfy at least one of the onstraints of the problem desription

are alled infeasible, and the others are termed feasible. Among the feasible shedules,

one is alled non-delay if no unit is kept idle while a task is waiting for proessing. It

is obvious that any feasible shedule an easily be onverted to a non-delay shedule, by

shifting eah task as early as possible in the solution.

A shedule for a problem is alled ative if there exists no other feasible shedule in

whih some of the tasks start earlier, and none of them starts later. Obviously, all of the

ative shedules must be non-delay shedules as well.

Ative and non-delay shedules play an important role in the ase of makespan mini-

mization objetive, where the optimal solution or solutions must be non-delay, and at least

one of the optimal solutions an be found among the ative shedules.

1.1.3 Approahes and omplexity

Some lasses of the aforementioned problems an be solved to guaranteed optimality by

simple, polynomial algorithms. Most of these problems, however, are proven to be NP-hard,

thus e�ient algorithms are not expeted for them.

1

1

Note, that there are polynomial algorithms developed for some NP-hard problems, whih an provide

optimal solution for the majority of the instanes of the problem lass, and a suboptimal solution for the

rest.
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A simple strategy ould be to assign the jobs to the mahines based on the inreasing or-

der of proessing times. This, so-alled SPT (Shortest Proessing Time) algorithm provides

optimal solution for a ouple of problem lasses if the objetive is

∑

Cj. If the objetive

is Cmax, the opposite strategy, i.e., prioritizing jobs with the longest proessing time, often

provides good ompetitive ratio for FF problems.

Among the easy to solve problems, the 2-stage �ow- and job-shop sheduling problems

are probably the losest ones to industrial sheduling problems disussed later. In this

ase there are two mahines for either one or two stage jobs, and the objetive is Cmax,

i.e., the minimization of the makespan. Johnson's[61℄ and Jakson's[58℄ algorithm provide

an optimal solution for the sheduling problems in this lasses. However, inreasing the

number of mahines and stages per job makes the problem muh more omplex, and e�ient

algorithms are not expeted.

Also, in many ases, the problem de�nition of a real industrial ase study involves ad-

ditional parameters that need to be addressed. In suh ases, even o�ine problems with

parallel idential units beome NP omplete[110℄.

1.2 Sheduling problems of hemial bath proesses

Sheduling problems that arise in the hemial industry are more omplex in their desrip-

tion, though they show many similarities to the basi problems desribed in the previous

setion.

Bath hemial sheduling problems are mostly given by their

1. reipe

2. storage poliy

3. objetive, and related parameters

4. additional parameters

These parameters are desribed in the following subsetions in detail, however, some

words must be addressed to the assumptions and onventions of this �eld.

Assumptions

If not stated otherwise, the following assumptions are onsidered:

Unique alloation A task is assigned to a single unit in the shedule, even if several

appliable ones are available.

Non-preemptivity The exeution of a task must not be interrupted

Bath proesses Eah task behaves in a bath-like favor. If a task is ontinuous, it

has su�iently large dediated storages to onsider it as a bath proess.
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Fixed bath sizes The amount of material proessed in eah task is �xed by the

prodution reipe.

Conventions

The notation used among sientist is not standardized. However, several onventions are ap-

plied, whih may hange based on the atual example. To avoid further onfusion, the most

ommon notations are summarized here brie�y, as they will be used alternately throughout

the whole doument in problem desriptions, diagrams, et.

In ase studies, produts, tasks, units are usually assigned a real name. However, if this

is not the ase (frequent for literature examples), or the notations need to be shorter, the

following onventions are used to label the elements of the system.

Produts are often denoted by the �rst apital letters of the alphabet, i. e., A,B,C, . . . ,

or by P1, P2, P3, . . . .

Tasks are often labeled after their produt, espeially in sequential reipes, like A1, A2,

A3, . . . . In some papers, labels like T1 or T1 are applied. In mathematial formulations the

dummy index i is used for tasks, thus sometimes labels like i1, i1, or iA1 are used.

Units are similarly denoted by U1, U2, . . . , and sometimes labeled as Eq.1, E1, or E1 to

refer to equipment units. In ase of the mathematial formulations, the applied dummy

index is j, thus sometimes j1 or j1 is used as well.

1.2.1 Reipes and example problems

The word "reipe" itself is an ambiguous term, as the ISA SP88 standard de�nes four

levels of reipes: general reipe, site reipe, master reipe, and ontrol reipe[52℄, however,

none of these are entirely satisfying our requirements towards a reipe. Thus, thorough the

doument the term reipe will refer to the olletion of the following parameters:

• list of produts

• list of tasks, that are to be performed in order to produe the produts

• produtional preedenes among tasks

2

• available units

• proessing times for suitable task-unit pairs

2

This is often indiretly given by providing the inputs and outputs of tasks.
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The reipe of a produt refers to the information in the reipe related to that spei� produt.

Based on the preedene struture among tasks, the reipes are usually ategorized into

the following groups starting from the simplest one to the most general one. Eah lass is a

spei� ase of the next one.

Single stage Eah produt is produed via a single step. Similar to the Pm ase,

but the available units are not neessarily idential or uniformly appliable.

Simple Multiprodut Similar to an FFc layout, i.e, eah produt is produed lin-

early through a �xed number of stages. The di�erene is the same as in the

previous ase: the units at a stage are usually not idential and an not perform

the same subset of tasks.

General Multiprodut Often referred to as Multiprodut reipe, the generaliza-

tion to the simple ase allows for a prodution plan to skip several stages.

Multipurpose Unlike in the Multiprodut ase, the stages annot be ordered in suh

a way along a line that the prodution of eah produt goes from left to right.

The number of stages and their order is arbitrary. Moreover, a stage may reour

several times in the same prodution. This is the most general sequential reipe.

Preedential The tasks in the prodution of a produt are not assigned to stages,

and the preedene between them is given apiee. The key di�erene between

the multipurpose and preedential reipes is that the prodution of a produt is

not neessarily linear, i.e., there an be juntions in it, but in the ase of several

prerequisites for a task, all of them must be ompleted before starting it.

3

General network This is the most general reipe lass, where the tasks are given by

their inputs and outputs, whih indiretly de�ne their preedenes. Here, unlike

the Preedential ase, the same material may be produed by several alternative

tasks making them optional and not mandatory prerequisites. Moreover, yles

may our in the dependenies.

It is important to note that although some papers have attempted to provide a las-

si�ation of sheduling problems[32, 93℄, the terminology is not standardized. Terms like

"multiprodut" may refer to (slightly or signi�antly) di�erent reipe lasses in di�erent

papers.

4

The above lassi�ation is the proposition of the author, that satis�es the following

important riteria: most of the published approahes an unambiguously assigned to one of

the de�ned problem lasses.

3

Obviously, the dependenies must not reate a yle.

4

These de�nitions are mostly indiret by the problem lasses overed by the presented approah. Many

artiles state that the proposed approah or formulation solves e.g., multiprodut sheduling problems.

However, the problem lass overed by these approahes vary for eah paper, making the indiret de�nition

of the multipurpuse problem lass inonsistent.
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Reipe representations and example problems

Single stage reipes are usually simply given by a table, where the rows orrespond to

jobs, the olumns to units, and eah ell ontains the proessing time if the unit is appliable

for that produt. Kopanos et al.[67℄ presented suh a ase study, whose data is given in Table

1.1.

5

Proessing times (h) U1 U2 U3 U4
P1 1.538 1.194

P2 1.500 0.789

P3 1.607 0.818

P4 1.564 2.143

P5 0.736 1.107

P6 5.263 3.200

P7 4.865 3.025 3.214

P8 1.500 1.440

P9 1.869 2.459

P10 1.282

P11 3.750 3.000

P12 6.796 7.000 5.600

P13 11.25 6.716

P14 2.632 1.527

P15 5.000 2.985

Table 1.1: Example data for a single stage problem

Multiprodut reipes an still be represented by tables. However, in many ases blok

diagrams are simpler to desribe the problem. The problem from Voudouris et al.[126℄ is

presented in Table 1.2 and as a blok diagram in Figure 1.2. Note, that the blok diagram

is only suitable if eah task an be performed by exatly one unit at a stage.

Proessing times (h)

Stage 1 Stage 2 Stage 3

U1 U2 U3 U4 U5

A 7 3 4

B 8 5 3

C 4 6 4

D 6 9 3

Table 1.2: Multiprodut example represented in a table

Multipurpose reipes are di�ult to represent in a table, as the order of the stages

are arbitrary. If eah task an be performed only by a single unit, the blok diagram is a

suitable hoie, as represented in Figure 1.3 for an example by Ferrer-Nadal et al.[31℄.

5

The problem presented in the paper ontained additional data for hangeovers as well.



12 CHAPTER 1. SCHEDULING PROBLEMS

Figure 1.2: Multiprodut example represented in a blok diagram

Figure 1.3: Multipurpose example represented in a blok diagram
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Preedential reipes are usually represented by some kind of graphs, where the tasks are

assigned to the verties, and the ars represent the produtional dependenies. An example

by Holzinger[52℄ is illustrated in Figure 1.4. The proessing time and the appliable units

are indiated at eah vertex, and it is assumed that the proessing time is the same if several

units are suitable.

Figure 1.4: Preedential example represented in a graph

General network reipes are most often represented by State-Task-Networks (STN [66℄)

or Resoure-Task-Networks (RTN [100℄). The original example for introduing the STN

representation from Kondili et al.[66℄ is given in Figure 1.5. Cirle shaped verties represent

materials, while retangles represents tasks. This graphial representation sometimes does

not ontain proessing times, it is provided in an additional table. The representation is

idential to that of the P-graph mathematial model introdued by Friedler et al.[33℄, that

was developed for the optimal design of ontinuous proesses.[34, 36, 35℄ The key di�erene in

an RTN representation is that units are also represented as resoures and tasks are dupliated

if several units an perform them. Some papers use the so-alled State-Sequene-Network

representation[84℄, where dediated states (mostly materials) give the verties, and ars

represent tasks.

1.2.2 Storage poliies

The term, storage poliy refers to the onstraints for the storage of intermediate produts

between onseutive tasks of a reipe. For eah material there are two fators that an

indue onstraints on its storage:

1. Chemial and physial properties of the material

2. Infrastrutural opportunities for storage in the given plant

Thus, storage poliy is a two dimensional property that an di�er for all of the intermediates

in the reipe. In the majority of the ases, however, the poliy is uniform for all of the

intermediate materials.
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Figure 1.5: STN representation of a general network reipe

The hemial and physial properties of the material provide bounds on the time of the

storage, based on whih the following ategories are usually identi�ed:

UW - Unlimited Wait is the simplest and most ommon poliy, when the material

does not lose any of its important hemial or physial properties by time, thus it

an wait any amount of time before going to the upoming task of the prodution.

LW - Limited Wait storage poliy is applied to the intermediate materials that

must not wait longer than a ertain amount of time before the next task in

order not to lose a ertain property, e.g., ooling out.

ZW - Zero Wait poliy is stritly speaking the speial ase of the LW poliy, when

the limit on the storage time equals to 0.

The infrastrutural apabilities of the given plant impose limits on the amount of material

that an be stored, and on the way of storing it:

UIS - Unlimited Intermediate Storage poliy is applied when there is enough

storage plae available to store any amount of intermediates.

FIS - Finite Intermediate Storage poliy is onsidered when there are storage

units available to store the intermediate, but it is limited.

NIS - No Intermediate Storage poliy refers to the ase when dediated storage

units are not available for the storage of an intermediate material, but it still an

wait in the proessing unit of the previous task.

In many papers, the storage poliy is not de�ned by a pair, as UW poliy is assumed

for UIS, FIS, and NIS if not stated otherwise. In the ase of ZW poliy, the limit for the
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storage spae is irrelevant, thus it is often used in itself as it is, and this is the reason, why

it is not takled as a speial ase of LW.

Although, the ombination of the above mentioned poliies overs most of the ases, there

are always pratial problems whih require speial de�nition. One of the most ommon

examples is the Common Intermediate Storage poliy (CIS), where there is (typially

�nite) storage available that is shared among several intermediates, and at most one of them

an use the storage at a time.

Storage poliy is an important parameter of the problem de�nition, hanging the storage

poliy of the problem an hange the optimal solution, the set of feasible solutions, and the

appliable approahes as well.

1.2.3 Objetive funtions

Industry provides a wide range of objetives resulting from pratial onsiderations. How-

ever, the two most ommon objetives are the minimization of makespan and the max-

imization of throughput.

Makespan minimization

Makespan minimization is equivalent to the de�nition of Cmax in the previous setion. In

general, the minimal overall proessing time is to be found for a given number of bathes of

eah produt. In many ases however, the number of bathes is not spei�ed in the problem

de�nition, only the amount of produts to be produed, thus, the number of bathes an

hange if the reipe allows variable bath sizes. Larger number of bathes may lead to

better solution, when the smaller units are less loaded, or the proessing time depends on

the quantity.

Throughput maximization

In ase of throughput or pro�t maximization, the problem desription entails a time horizon

as well as a ertain bene�t value for eah produt that is usually based on mass, pro�t, and

revenue. The goal is to maximize the umulative bene�t of all of the produed produts

while keeping the prodution time below the time horizon. The number of bathes or amount

of produts is usually unbounded, it is even allowed to leave out some of the produts

ompletely.

Other objetives

Although these two are the basi and most ommon objetives that provide the basis for

omparison of the sheduling approahes, there are plenty of other objetives that arise in

real life hemial prodution. Without attempting to be omprehensive, some of them are:

• minimizing the ost of total earliness-tardiness
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• minimizing the lean water use, and in parallel the wastewater e�uents (See e.g., [20,

28, 40, 44, 83℄)

• minimizing heat utility energy or ost (See e.g., [19, 54, 73, 74, 81, 130℄)

• optimization for a ombined ost funtion that may inlude utility ost, lean water

osts, et. (See e.g., [43, 38, 80℄)

• maximizing the overall expeted pro�t

• maximizing yli pro�t (See e.g., [105, 19, 73℄)

• minimizing the over- or underonsumption of eletriity (See, e.g., [94℄)

• minimizing transportation ost (See e.g., [106℄)

• et.

1.2.4 Common additional parameters

Sheduling problems arising in industry often entail further problem spei� parameters.

Some of them may not play important role in the shedule, thus it is negleted or approxi-

mated, e.g., the temperature and ooling of a material, ontrol parameters of the proess. In

many ases, however, these parameters must be inluded in the problem de�nition. Without

attempting to be omprehensive, some of the most ommon additional parameters are:

Cleaning time Some tasks leave a unit ontaminated, making it unsuitable for any

upoming task, thus it needs leaning, whih is often omparable with proessing

times. See e.g., the paint prodution example by Adonyi et al.[1℄. This parameter

usually depends on the task-unit pair.

Changeover time This parameter is similar to the leaning time, whih an be on-

sidered as a speial ase. The di�erene is that a hangeover time also relies on

the subsequent task that is sheduled for the unit. This happens for example

when a unit must be adjusted before undergoing a ertain task.

6

See e.g., the

examples in the papers by Kopanos et al.[67, 68℄.

Transfer time Often, the time required for the transfer of intermediates from one

unit to an other is not negligible. See e.g., the examples by Grau et al.[41℄.

This parameter is usually de�ned for the triple of soure unit, material, and

destination unit. If the transfer is ontinuous, both units must be available

during the material tansfer. If the transfer is disrete like in the ase of the

6

Setup times are in this sense also a speial ase of hangeover times, as they do not depend on the

previous task of a unit.
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sheduling of wet-eth stations [5, 7, 6, 13, 12, 18, 37, 62, 95, 129, 128℄, the units

may be used for other purposes during the transfer.

7

Unit piping If the intermediates are liquid, thus their transport between the units is

mostly done via pipes and ompressors. Although several appliable units may

be available for two subsequent stages of a prodution, the piping (or better its

absene between two units) limits the possible hoies. See e.g., Kopanos and

Puigjaner [69℄.

Cleaning the units, transferring materials, et. obviously entails osts, energy onsump-

tion, lean water onsumption, wastewater generation, et., whih are often onsidered as

onstraints for the shedule as well.

Some papers onsider sheduling integrated with proess planning[41, 70, 116℄ or ontrol

level deisions[108, 15℄, and inlude relevant parameters from that level and a ombined

objetive.

1.2.5 Representation of a shedule

A shedule is basially a set of quadruplets in the form of (i, j, ts, tf ), where:

i is the task to be performed

j is the unit to perform task i

ts,tf are the starting and �nishing times respetively

The prevalent graphial visualization of this data is the Gantt hart, see Figure 1.6 as

an example for 8 sequential produts. The x axis represents time, while the units are listed

on the y axis. Eah task is represented by a retangle in the row of the unit performing it,

ranging from its starting time to its �nishing time horizontally.

Figure 1.6: Example Gantt hart for 8 produts

7

Note, that in ase of wet-eth stations, the robot arm performing the transfer must be sheduled as the

other units (baths in this ase).
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To enhane visibility, the retangles of the tasks belonging to the same produt are

usually highlighted with an idential olor. In many ases, espeially if olors are not

applied to di�erentiate between produts, only the name of the produt is indiated at the

retangles.

If the problem inludes hangeover, leaning, or transfer times, they are represented

analogously with retangles. In Figure 1.7, a shedule for produing PHBA (para-hydroxy

benzoi aid) is illustrated. Here, four bathes of the same produt are produed, thus eah

bath has its designated olor. The reipe is not sequential, while the phenolate reation is

exeuted in the �rst or seond phenolate reator, marlotherm is �lled into and heated up in

two parallel arboxylation reators. When the phenolate reation �nishes, the intermediate

is transferred to the two seleted arboxylation reators, represented by darkened retangles

at all of the three reators. After the transfer �nishes, the phenolate reators need to be

leaned, whih is visualized as a fading retangle.

Figure 1.7: Example Gantt hart for non-sequential reipe with transfer and leaning times



Chapter 2

Mathematial tools for the sheduling of

bath hemial proesses

In the last two deades, many di�erent approahes have been published in the literature to

takle the problems presented in Setion 1.2. They di�er in both their domain of solvable

problems, and the applied mathematial tools. Over the years, these approahes have gone

through vast development, whose goal was dual:

1. broadening the range of solvable problems

2. aelerating the solution proedures in order to bring larger problems to a manageable

level

The advanement in both diretions is remarkable. The �rst, heuristis based approahes

have onsidered only simple multiprodut examples, and ould not guarantee optimal solu-

tions for even the smaller instanes. The �rst optimization based methods were extended

to a wide range of problems. In terms of speed, omputational times were redued by mag-

nitudes, allowing not only the solution of larger problems, but also integration with other

ontrol or design aspets.

In order to provide a review of the state-of-the art tools of the �eld in the next setions,

these approahes must be ategorized before further disussion. This ategorization an be

based on various aspets. The most ommon one is to onsider the applied mathematial

tool as the major attribute[32, 93, 48℄.

The majority of the published approahes rely on mathematial programming, namely

on Mixed-Integer Linear Programming (MILP) formulations, or Mixed-Integer Non-linear

Programming (MINLP) models in rare ases[32, 93℄. These models are usually solved by

an implementation of general purpose MILP algorithms[127℄. In ase of MINLP problems,

the authors have also developed general purpose MINLP solution proedures.[42℄ Another

branh of researh fouses on applying graph theoretial and ombinatorial tools and prob-

lem spei� solution proedures. Among these the S-graph framework[112℄, the Alternative

Graph model[98℄, and the Timed Pried Automata[99℄ or Timed Plae Petri Net[39℄ ap-

proahes are notable. A small number of papers onsiders mathematial logi [103℄ or

19
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Constraint Programming (CP)[128℄ to takle sheduling problems. More often, these tools

are used ombined with other approahes, like MILP formulations[87, 107℄.

These lastly introdued lass of approahes will not be disussed in more detail. The

lassi�ation of ombinatorial approahes based on the exat tool is enough for further

disussion. In the ase of MILP models, however, further ategorization is needed before

investigating them losely.

The further lassi�ation of MILP formulations an be best explained by the binary

variables used to address sheduling deisions. Though the variables may di�er in some

details for di�erent approahes in the same sublass, these minor di�erenes will be detailed

in the subsequent setions.

Preedene based formulations binary variable Xi,j,i′ represents whether task i′ is

preeded by task i in unit j.

Time point/slot based formulations has a binary variable yi,j,n denoting whether

unit j perform task i at time point n, or in the nth slot.

Start-Stop formulations

1

use variables Starti,j,n and Stopi,jn to represent the start-

ing and �nishing of task i in unit j at time point n

Some formulations apply several di�erent tehniques redundantly in the hope of a better

performane, and thus annot be ategorized unambiguously [64℄.

Before disussing these approahes in detail, one other lassi�ation has to be noted by

Hegyhati and Friedler [47℄, that onsiders the underlying idea of addressing the problem as

the main ategorization angle. This aspet has various bene�ts, the approahes in the same

main ategory

• an usually address the same or very similar set of sheduling problems;

• have similar performane

• an bene�t from the development of others, or implement their idea of improvement;

• su�er from the same di�ulties and shortomings

The proposed main ategories are:

Time disretization based tehniques onsist of the time slot and time point based

approahes, and the Start-Stop models, whih rely on the disretization of the

time horizon that an lead to suboptimal or even pratially infeasible solutions.

On the other hand, they an address a wider range of sheduling problems,

though the implementation of sequene dependent attributes are ompliated.

1

There is no ommonly used terminology for this set of formulations, the Start-Stop term is used only

here.
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Preedene based tehniques onsider the order of tasks assigned to the same unit

as the key deision, rather then their exat timing. Preedene based MILP

models, the S-graph Framework and the Alternative Graph methods belong here.

These approahes often outperform the previously mentioned ones on the lass of

sheduling problems they an takle, though this domain is onsiderably smaller.

An additional advantage is the absene of suboptimal or infeasible solutions due

modeling errors.

State spae based tehniques are performing the optimization via a sophistiated

exploration of the state spae of the system. Although, similarly to the pree-

dene based methods, their model building ensures global optimality, in terms

of performane and modeling power they drop behind the aforementioned ap-

proahes. The signi�ant advantage of these methods resides in the possibility of

integration with the ontrol level, and their straightforward extension to online

problems.

2.1 MILP formulations

As it was already disussed, the MILP models play a dominant role in solving bath shedul-

ing problems. In this setion the di�erent branhes of MILP models are disussed. The

related modeling issues are not disussed here, only brie�y mentioned, as they will be pre-

sented in detail in Chapter 3.

Before the detailed desription of di�erent MILP formulation branhes, there is an other

lassi�ation aspet that needs to be mentioned. There exist so-alled STN and RTN models

for all of the formulation types that will be disussed later. Though STN and RTN are only

representation tools, this terminology is widely used to indiate how proessing units are

takled in he model. In STN formulations, units are dediated elements of the model,

thus the binary variables usually have an index for units as well, indiating whether a tasks

starts, �nishes, or preedes an other in a ertain unit. On the other hand, RTN formulations

onsider units as any other resoures, e.g., materials, and the tasks "onsume" and "release"

these resoures when their exeution starts and �nishes. As a result, units do not expliitly

appear in the models, only a set of material balane onstraints refer to them. Note that in

RTN models, a task should be dupliated if it an be performed by several di�erent units.

2

In the following subsetions the examples are given for STN models, from whose their RTN

ounterpart an be derived easily).

2

Note that even among RTN models, strit and lenient models an be di�erentiated, whih an have a

notable impat on the performane as indiated by Eles [30℄. If several idential units are available, the

lenient RTN models onsider them separate resoures, implying a sort of redundany, while strit RTN

models onsider them as a single resoure with higher availability.
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2.1.1 Time disretization based formulations

Chronologially these types of formulations were the �rst ones to appear in the literature

[66℄. Their underlying idea is to identify several time points or time slots over the time

horizon. Time slot and time point based approahes [124℄ show a lot of resemblane, as an

interval from a time point to the next one an be onsidered as a time slot, and vie versa

the starting time of a time slot an be onsidered as a time point. Although time slot based

approahes were mainly developed for sequential proesses and the time point approahes

takle general network problems, the two lasses of approahes are addressed simultaneously

in this setion. If not indiated otherwise, statements for time point approahes hold for

time slot approahes as well.

At eah time point, binary variables are assigned to tasks denoting whether the exeution

of the task is sheduled to start at that time point or not. As a result, the number of binary

variables is roughly proportional to the number of time points, i.e., the omputational time

strongly depends on the number of time points. Thus, it has always been the researhers

intention to develop models that an �nd the optimal solution with minimal number of

time points. However, it is not evident, how the su�ient number of time points an be

determined for a model and a problem instane. The most ommonly applied methodology

is to onsider a small number of time points �rst, and perform the optimization. Then the

number of time points is inreased by one, and the optimization is arried out again. This

last step is repeated until the same objetive value is found for two onseutive steps. This

tehnique, however, does not guarantee the optimal solution, whih is disussed in detail

in Setion 3.1. Nevertheless, the vast amount of development foused on these approahes

ahieved a signi�ant redution in the neessary number of time points. However, the

advaned models often beame less transparent, the onstraints beame more ompliated

and modeling errors ourred.

In general, time disretization tools an address the widest range of sheduling problem

with general network reipes, reyling, �exible bath sizes, load dependent proessing times,

et. An other advantage of these models is that there is no need to de�ne the number of

bathes a-priori the optimization, as at eah time point the deision is made independently

on eah task. This feature also allows these models to address several units performing the

same tasks in parallel, without any modi�ation.

The following subsetions present the key properties and elements of models belonging

to a branh of formulations.

Fixed time point models

In the early time disretization models, the time points was equidistantly seleted prior

to the optimization proess, resulting in the so-alled Disrete-time models[66℄. The

used terminology in the literature is misleading in this ase, as the later, more advaned

approahes also disretize the time, the only di�erene is whether the plaing of the time
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points is �xed or not. Thus, the setions here use the more adequate terms Fixed time

point model and Variable time point model.

The unit distane between onseutive time points ould be the largest divider among the

plausible proessing times. The typial binary variable in suh a model is Wijt representing

that unit j starts performing task i at time point j. Sine the proessing time is known

for i in j, it is known exatly at whih time point j will be free again for other tasks. The

onstraint below is a typial assignment onstraint expressing this feature:

∑

i′∈Ij

t+t
pr
ij −1
∑

t′=t

Wi′jt′ − 1 ≤ M · (1−Wijt)

Material balane onstraints are appropriately stated at eah time point. The advantage

of these models is, that the above onstraint has tight LP relaxation

3

, and there is no need

for big M onstraints

4

in the model. The regular distribution of time points also makes it

simple for example to address FIS-LW storage poliy[63℄. On the downside, the number of

time points and thus the number of binary variables, and the omputational need is high.

As a result, these models annot be applied for medium size problems.

Variable time point models

In order to redue the number of binary variables, the number of time points needed to be

dereased. The next step in this development was to make the plaing of the time points

variable[102℄. In the developed models, a ontinuous variable is assigned to eah time point,

de�ning its exat position. The material balane and assignment onstraints are similar

to the previous models, the key di�erene lies in the timing of the time points. In order

to appropriately onstrain the timing di�erene between the time points, several big M

onstraints needed to be inserted into the model. Although these onstraints have worse LP

relaxations, the redution in the number of binary variables has muh higher impat on the

CPU needs.

The variable time point based approahes an be ategorized based on several aspets:

• if the plaing of the time points are the same for all of the units, the approah is alled

a "global time point", otherwise a "unit-spei� time point" based model

• Some of the approahes do not allow tasks to overlap several time points, while others

do.

As opposed to unit spei� time point models[57, 56℄, the global time point models[85℄

may require a larger number of time points to over the same set of shedules, thus they

3

By replaing the yet undeided binary variables with [0, 1] ontinuous ones, the optimal objetive value

of the resultant LP model is lose to that of the soure MILP.

4

Inequalities that beome non-onstraining for ertain values of one or several binary variables, whih is

done by the produt of a su�iently big number (usually denoted as M , hene the name) and the linear

expression of those binary variables. This type of onstraints usually have poor LP relaxations.
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are often slower. On the other hand, in the ase of unit spei� time point models, the

synhronization between the material �ows beomes rather di�ult, as the time points of

the units are independent of eah other. This also gives rise to the possibility of modeling

errors, see setion 3.3 for more detail.

If the proessing time of a task is onsiderably larger than some of the other tasks, several

shedules are not overed by those models, that do not allow time point overlaps for tasks,

regardless the number of time points. This issue does not appear for the Start-Stop models.

They provide, however, very poor performane results in general. For the more e�ient time

point based models, the models had to be generalized, as disussed in a little bit more detail

in Setion 3.3 An other mentionable attempt to takle this issue used the SSN formulation

and introdued additional variables for the storage availability, and usages[115℄.

2.1.2 Preedene based formulations

The �rst preedene based MILP formulations appeared around the same time, as the

introdution of the S-graph framework, for multiprodut and multipurpose problems. Unlike

the previously disussed time disretization based approahes, the preedene based models

do not need to disretize the time horizon, and thus they do not use any unknown parameter

in their model. Generally, they provide better omputational results for the problems they

an address. However, this set is muh smaller than that of the time disretization based

approahes. Although most of the models were introdued for multiprodut or multipurpose

reipes, they an be extended to address more general preedential reipes in a straight-

forward way. Throughput maximization is usually not addressed, as the number of bathes

is an input parameter of the model.

The key foundation of these formalizations are the two sets of binary variables: Yi,j

denoting, whether task i is assigned to unit j, and the sequening variable Xi,j,i′ whih

takes the value of 1, if both tasks i and i′ are performed in j, and i is enlisted earlier

in the prodution sequene of j. There is a number of di�erent versions of preedene

based formulations based on the exat binary variables and onstraints used, but the two

main ategories are the Immediate preedene and the General preedene models. In

the former ase, the sequening variable Xi,j,i′ takes the value of 1 if only if i and i′ are

onseutive tasks in the prodution sequene. In general, General preedene models need

half as many binary variables (as Xi,j,i′ and Xi′,j,i are eah others omplement if assigned to

the same unit), and usually outperform the immediate preedene models, but some features

are easier to be expressed by immediate preedene variables. Also, some of the models use

both variables redundantly, resulting in hybrid models[67℄; many models leave out the index

j from the sequening variable[90℄; some formulations introdue additional binary variables

to address other features, e.g., additional resoures[91℄.

This results in a wide range of very similar yet di�erent models, with di�erent ompu-

tational needs.
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2.2 Analysis based tools

Petri nets and automata are widely used for the modeling of disrete event systems[16℄.

There have been several attempts to extend the modeling power of these tools and apply for

the sheduling of bath proesses. In order to do so, the basi models had to be extended

with timing, Timed Plae Petri Nets (TPPN) and Timed Pried Automata (TPA) are

expressive enough to address most aspets of these sheduling problems. The approahes

usually use a B&B algorithm to explore the state spae of the system in order to �nd the

most advantageous solution andidate. Due to proper model building, modeling errors are

avoided: ross transfer (see Setion 3.2) for example, is eliminated as a deadlok situation.

Although, these approahes bear the advantage of straight-forward modeling, opportunity to

integrate ontrol level deisions, and simple extension to reative sheduling, the e�ieny

of these tehniques is still behind that of the state of the art MILP models or S-graph

algorithms.

Timed Pried Automata

There are several ways to extend the automata with timing. In a so-alled time guarded

automaton, some additional loks are responsible for timing onsiderations[9, 8℄. At eah

transition a timing ondition has to be satis�ed in order for the transition to happen. After

that, some of the loks may be reseted. Time guards an also appear on states as well. A

further extension of this model is the Timed Pried Automaton[11℄, that has been applied by

Panek et al.[99℄ and Subbiah et al.[122℄ for bath proess sheduling. In these approahes, the

reipes and units are usually modeled separately, and the model of the system is generated

by applying parallel omposition of them. Although the resultant model is usually huge, and

di�ult to present, its soundness is guaranteed by the mathematial proven model building

operation. A general omplexity of this approah is that the state of loks is unountably

in�nitely large, and thus the state spae of the system also. In order to takle this issue, the

states of the loks are lustered into so-alled lok-regions, and thus, in�nitely many states

an be desribed by a single region. The modeling of these regions an be done e�iently

by Di�erene Bound Matries[27℄.

Timed Plae Petri Net

In a TPPN, the tokens of a transition are generated by a delay, that an present proessing

times, et. Ghaeli et al.[39℄ presented suh an approah for the sheduling of bath proesses.

Some extensions for the modeling expressiveness of this approah were later explored[49℄.

Soares et al.[120℄ presented a timed Petri net based approah for the real time sheduling

of bath systems.



26 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING

2.3 S-graph

The S-graph framework was the �rst published graph theoreti approah[112℄ to address

sheduling problems of bath proesses. The framework onsists of a direted graph based

mathematial model, the S-graph, and the orresponding algorithms[113℄.

In this setion the framework and the basi algorithm is presented in detail, as they

provide the fundamental basis for the later hapters. In the end of the setion, further

developments are brie�y introdued.

2.3.1 S-graph representation

The mathematial model of the framework, alled the S-graph is a speial direted graph

for sheduling problems. Note, that unlike the formerly introdued reipe representations,

the S-graph is not only a visualization of the reipe, but a mathematial model. In the

framework both reipes, partial and omplete shedules are represented by S-graphs. In all

of these graphs the produts and the tasks are represented by verties, whih are usually

termed as nodes. Also, if an ar between two tasks is said, it is to be interpreted as the ar

between the nodes representing these tasks.

The S-graph without any sheduling deisions is alled the Reipe graph , as it desribes

the reipe itself. An example is shown in Figure 2.1.

Figure 2.1: Example reipe graph

The three nodes on the right orrespond the produts, the other nine to the tasks whih

need to performed in order to produe them.

The ars, alled reipe ars between the nodes represent the dependeny between either:

• two tasks that depend on eah other, i.e., one of them generates the input for the other

• a produt and the task produing it

In this example, eah produt is produed through 3 onseutive steps. In general, the

model (and the algorithm from the next hapter) an takle the set of Preedential reipes,

i.e., juntions are allowed. The sets indiated at eah task are the sets of plausible units,
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and the weight of the reipe ars are the proessing time of the tasks where they start. If a

task an be performed with several equipment units, the weight of its reipe-ar (or reipe

ars) is the smallest proessing time among all the units suitable to perform it.

All of the S-graph algorithms extend this graph with so-alled shedule ars that

represent the sheduling deisions made by the algorithm. Whether there are still some

deisions left or not, the S-graph is alled as a Shedule graph . An example is shown in

Figure 2.2, where all the deisions are already made and represented by blue shedule ars.

Figure 2.2: Example shedule graph for the reipe graph in Figure 2.1

Note that at eah task node, the set is replaed by the seleted unit, as this deision has

already been made. Also, the weight of shedule ars is 0 by default, when no hangeover-,

transfer-, or leaning times are inluded in the problem. Modeling of these parameters is

simple. It is further disussed in Chapter 7.1. The sequene of tasks assigned to the same

unit an easily be exploited from the graph. As an example, the sequene for unit E2 is

B1 → C2 → A3, as illustrated in Figure 2.3.

Figure 2.3: Sequene of tasks assigned to unit E2 in the shedule represented in Figure 2.2

Note, that the shedule ar orresponding to the deision that E2 �rst performs B1 and

then C2 is expressed by a shedule ar between B2 and C2, i.e., the shedule ar of the

deision does not start from the previous task, but from its subsequent task or tasks. This

way, the shedule ar expresses that the unit must not only �nish a task before going under
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the next one, but also the subsequent task of this task (performed in an other unit) must

also take the intermediates.

From the shedule graph, the Gantt hart an easily and unambiguously be generated.

The Gantt hart for the shedule in Figure 2.2 is shown in Figure 2.4.

Figure 2.4: Gantt diagram generated from the shedule in Figure 2.2

2.3.2 Algorithm for makespan minimization

The algorithm desribed here were published by Sanmarti et al.[112℄ for the minimization

of makespan. The pseudo ode presented in the algorithm bloks 2.1 is not idential to the

one in the original artile, though the key aspets are the same. The main di�erenes are:

• The original ode addressed problems where eah task had only a single plausible unit,

i.e., only sequening deisions were needed no alloational ones. The algorithm pre-

sented here extends the original pseudo ode to a wider range of sheduling problems,

where tasks may have several plausible units.

• The notation is simpli�ed and adjusted to the general onventions.

• The algorithm is no longer divided into a main and branhing part.

The algorithm �rst initializes the value of makespancb
to in�nity, and the set S, that will

be the set of open subproblems during the optimization. Initially, S ontains only the root

problem, i.e., the reipe graph without any assignments made so far. The simple funtion

reipe returns the reipe graph for the problem denoted by G(N,A1, A2, w), suh that:

N := I ∪ P , the set of nodes

A1 := {(i, i′)|i ∈ I i′ ∈ I+i }, the set of reipe ars

A2 := ∅, the set of shedule ars

wi,i′ := minj∈Ij t
pr
i,j , the weights for all reipe ar (i, i′) ∈ A1: the minimal proessing

time for i

The elements of the set are quadruplets (G(N,A1, A2, w), I
′, J ′,A) suh that
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Algorithm 2.1 Makespan minimization with the S-graph framework

makespancb := ∞
S := {(reipe(), I, J, ∅)}
while S 6= ∅ do
(G(N,A1, A2, w), I

′, J ′,A) :=selet_remove(S)
if bound(G)< makespancb

then

if I ′ = ∅ then
makespancb :=bound(G)
Gcb := G

Acb := A
else

j :=selet(J ′
)

for all i ∈ Ij ∩ I ′ do

Gi(N,A1, A
i
2, w

i) := G(N,A1, A2, w)
for all i′ ∈

⋃

(i′,j)∈A I+i′ \ {i} do

Ai
2 := Ai

2 ∪ {(i′, i)}
end for

for all i′ ∈ I+i do

wi
i,i′ := t

pr
i,j

end for

S := S ∪ (Gi(N,A1, A
i
2, w

i), I ′ \ {i}, J ′,A∪ {(i, j)})
end for

if I ′ ⊆
⋃

j′∈J ′,j 6=j′ Ij′ then

S := S ∪ (G(N,A1, A2), I
′, J ′ \ {j},A)

end if

end if

end if

end while

if makespancb 6= ∞ then

return (Gcb,Acb
)

end if
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G(N,A1, A2, w) is a shedule graph

I ′ is the set of unsheduled tasks

J ′
is the set of units to whih the algorithm an still assign tasks

A set of task-unit assignments in the form of (i, j) pairs

In eah iteration a subproblem is arbitrary seleted and removed from S by the fun-

tion selet_remove. The exat behavior of this funtion may be di�erent for di�erent

implementations, resulting in various searh strategies.

At the beginning of the iteration, it is evaluated, whether the subproblem has the po-

tential to provide an optimal solution ot not. This is done by the bound funtion, towards

whih the following requirements hold:

• it should provide a lower bound for the solutions that an be derived from the sub-

problem

• it should provide the exat makespan of leaf problems, i.e., for ompletely sheduled

graphs

• it should return in�nity if the graph ontains a yle, indiating that it is unfeasible

The mostly used bound funtion is the longest path in the graph, but LP based models an

also be used, see Holzinger [52℄ for details. If the bound of the subproblem is not smaller

than the best solution found so far, the iteration ends, and an other subproblem is seleted

(if exists).

If the bound is smaller than the value of makespancb
, the algorithm �rst heks, whether

all of the tasks are already sheduled, i.e., whether the subproblem is ompletely sheduled.

If this is the ase, the values of Gcb
, A, and makespancb

are updated to the S-graph of the

best solution, the orresponding assignments, and the value of its makespan, respetively.

In the ase of a partially sheduled subproblem, the algorithm selets an available unit

(i.e., one from J ′
) using the selet funtion. Similarly to selet_remove, the implemen-

tation of this funtion may also be di�erent to ahieve various searh strategies.

For the seleted unit j, the algorithm assigns all the possible tasks (i ∈ Ij ∩ I ′ to the end

of its proessing queue.

5

For eah assigned task a opy is made of the urrent S-graph, or

more preisely about the set of shedule ars and the weights, as the set of nodes and reipe

ars do not hange during the optimization. This opy is �rst extended with the shedule

ars indued by the new assignment, i.e., ars from all the subsequent tasks of previously

assigned tasks to j are direted to i.6 Then, the weight of all of the reipe ars from i are

5

Note, that if no suh task exist, the algorithm simply skips this loop. Avoiding this situation is not

neessary beause of the redution of the J ′
.

6i itself is exluded to avoid loops in ase of assigning two subsequent tasks to the same unit. Moreover,

in the original algorithm, the ars were direted only from the last assignment if it existed. Here all the

assignments are stored in A, whih makes the desription of the algorithm simpler. Although the additional
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updated to t
pr
i,j . Finally, a new subproblem is added to S with the modi�ed graph, a redued

I ′ set, and extended A set.

If all of the unsheduled tasks an be performed by other available units, a new subprob-

lem is reated where j beomes unavailable for further assignments. This part is needed to

allow other units to perform the same tasks that j an, and to takle the situation, when j

has no more ompatible tasks among the unsheduled ones.

After the set S beomes empty, the graph Gdb
and the assignments in Acb

desribe the

optimal solution, and are returned by the funtion if at least one feasible solution has been

found. Otherwise the algorithm does not return with any solution.

2.3.3 Extensions and developments of the S-graph framework

During the years, many extensions and developments of the S-graph framework has been

done and published [46℄. The algorithm presented in the previous subsetion is often referred

to as the Equipment based algorithm , as it selets a unit, and branhes based on whih

task should be the next in its prodution queue. A Branh and Bound algorithm based on

a di�erent aspet was presented by Adonyi [3℄, where a task is seleted at eah subproblem,

and the branhing is based on �nding an appropriate unit, and an appropriate plae in its

queue. This method is often referred to as the Task based algorithm . The performane

of the two algorithms were ompared via an extensive empirial analysis. As a result, it was

stated that there are problem instanes for both of them where they outperform the other

one. However, it is not evident based on the problem desription, whih is the favorable

one, although, problems with a "bottlenek" usually prefer the equipment based approah.

In many ases, the problem instanes inlude the repetitive prodution of several bathes

of the same produt. This is usually addressed by opying the reipe of the produt multiple

times. With this approah, however, the same solution an be found multiple times with

di�erent order of the idential produts. To avoid this, and redue the omputational need,

Holzinger et al.[51℄ introdued auxiliary ars in the S-graph ensuring that eah solutions

is found at most only one. With this modi�ation, the authors ahieved a tremendous

redution in the CPU time. Hegyhati and Friedler[49℄ has shown that the same e�et an

be ahieved for preedene based formulations by adding onstraints equivalent to these

auxiliary ars.

Next to these algorithmi developments, the framework has been extended to various

�elds of appliation, where some modi�ations of the original framework was also needed:

Paint prodution Adonyi et al.[1℄ has applied the framework for the sheduling of

a large sale paint prodution plant, where leaning times had to be addressed

as well.

ars (ompared the the original algorithm) are redundant, they express valid relations. Moreover, the

urrent implementation also inludes these ars (although in an earlier stage) in order to sharpen the bound

funtion.
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Heat integration One of the most developed �eld of ontinuous plant design is the

design of the heat exhanger network, to minimize utility ost. Although, the

Pinh tehnology[65, 77, 78℄ an provide a deent targets for ontinuous sys-

tems, in ase of bath proesses the timing of streams must be onsidered as

well. Adonyi et al.[2℄ presented an extension of the S-graph framework, where

heat integration spei� onstraints were addressed with an LP model that is

maintained thorough the optimization proess in syn with the shedule graph.

Holzinger et al.[54℄ further extended this approah to address the sheduling of

heat exhangers as well.

Train sheduling Adonyiet al.[4℄ has extended the framework to address the shedul-

ing problem of the supply trains of tunnel boring mahines, and developed a

graphial interfae to onvert these problems for the S-graph solver.

An often exploited advantage of the speialized solution algorithm is the possibility to

generate several di�erent solution andidates, whih an be really useful in pratie, if some

parameters of the original problem an not be inluded in the mathematial model. In

ase of a single objetive, the n best solution an be easily generated, and with multiple

objetives, the Pareto border an also simply be maintained (assuming a disrete searh

spae). This framework also gives hane for an aelerated bi-objetive B&B solver, that

has been developed for other disrete problems[121, 26℄.

Implementational tehniques

The outstanding omputational performane of the S-graph framework an only partially

be redited to the struture of the branh and bound algorithms, and the algorithmi a-

elerations. The other half belongs to the implementational tehniques and aelerations of

the solver written in C++, that are - with few exeptions - not presented in the sienti�

literature.

As the mathematial model of the S-graph framework is not a general model, like the

linear programming models, the solution algorithms are developed by the researhers. This

arries some bene�ts and shortomings as well:

speed The implementation is adjusted to the model, and optimized, thus the CPU

requirements are redued, and thus the S-graph approahes are ompetitors of

not only the free MILP solvers, but the ommerial ones as well.

�exibility At eah extension, the researhers has the hane to implement their ideas

in a low level of the algorithm, not in the model level.

learning urve These hanges, however, require an extensive knowledge not only

about the S-graph framework, but the software implementation as well.



2.3. S-GRAPH 33

The only paper about the S-graph solver implementation of was published by Smidla

and Hekl[119℄, where the parallel Branh and Bound implementation is brie�y introdued.

The authors provided a salable implementation, whih in some ases ould ahieve super-

linearity.

At many points of the algorithm the longest path between two verties is needed ( by

the bound funtion, and later extensions). Although there exists a linear time algorithm to

the evaluation of the longest path between two verties [23℄, the memory requirement of the

S-graph solvers is negligible (ompared to ommerial MILP solvers), thus it is bene�ial to

store a matrix of longest paths for eah subproblem, and keep it updated.

If a task an be performed only by a single unit, or by several units, but only one of them

is in the available unit set at a ertain subproblem, a shedule ar an already be inserted

from the subsequent tasks of the already assigned tasks of that unit to this task. It is not

sure that this task will be the next task in the prodution queue of the orresponding unit,

but it will de�nitely be assigned to it later. This small tehnique an drastially sharpen

the bounds for problems with tasks that an be performed only by a dediated unit.

Similarly to the problem investigated by Holzinger et al.[51℄, the same sitution an

our, when idential units are available, i.e., the same shedule an be generated multiple

times. To avoid this, a simple ondition is to be inserted to the algorithm whih ensures

that if two units are idential, the one with a smaller id has a �rst task on its queue with

the smaller id.

In many ases, the di�erene between a subproblem, and its hildren problems is small

ompared to the size of the subproblem. To save time on opying these objets, ontainers

using impliit sharing are applied.

Memory handling has also a ruial impat on the CPU requirements. In his diploma

work, Kovas [71℄ details and analyses the e�et of di�erent mallo implementations. This

work details some other enhanements of the solver as well.

Relation to Preedene bases MILP models

Without going into formal details, the aim of this subsetion is to reveal the strong onne-

tion between the S-graph framework and the Preedene based MILP formulations. This

type of investigation is not unpreedented in the literature, Uma et al.[125℄ investigated

the relation between the relaxation of linear formulations and graph models of sheduling

problems, while Maraveilas[86℄ investigated the ombinatorial struture of �xed time point

MILP formulations. As it has already been mentioned, in ase of the lassi�ation from

Hegyháti and Friedler [49℄, the preedene based formulations and the S-graph framework

belong to the same ategory. Both approahes onsider the sequene of tasks assigned to

the same unit as the key question during the optimization. As a result, the apabilities,

performane, and searh spae are quite similar for them.

In order to illustrate the strong onnetion between the two approahes, a partial shedule

of the example in Figure 2.1 is given in Figure 2.5. The �gure represents the partial shedule
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Figure 2.5: Illustration of the onnetion between preedene based models and the S-graph

framework on a partial shedule of the example given in 2.1

after two steps in the S-graph based algorithm. First, the task A1 is assigned to the unit

E1, then the task B3 is assigned as the seond task for the same unit. The sequening

between them is expressed by the ar between A2 and B3.

As illustrated in the �gure, the same partial shedule in a preedene based model would

mean, that some of the binary variables are �xed to ertain values:

• YA1,E1 takes the value of one, beause of the �rst assignment, and as a onsequene,

the value of YA1,E2 is set to zero.

• Similarly, at the seond step, YB3,E2 takes the value of one.

• The seond step, however, also deides the sequening between A1 and B3, thus XA1,B3

is set to one, and XB3,A1 is set to zero.

If the values of these variables are substituted into some of the onstraints, they result in

the following form:

• STA2 ≥ STA1 + 6 is a result of the reipe sequening onstraint with YA1,E1 = 1 and

YA1,E2 = 0. This onstraint is expressed diretly by the updated reipe ar between

the nodes of A1 and A2.

• STB3 ≥ STA2 = CTA1 is the result of a sequening onstraint with XA1,B3 = 1 and

XB3,A1 = 0.

In general, the following objets of the S-graph framework and the preedene based

models relate to eah other:
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Preedene based MILP model S-graph framework

Continuous timing variables - Nodes

Binary alloation variables - Assignment at nodes

Binary sequening variables and onstraints - Shedule ars

Reipe onstraints - Reipe ars

Model infeasibility - Cyle in the S-graph

The onnetions above explain why these methodologies have similar features. Though

the searh spae is the same, the way how the S-graph explores it is rather di�erent. In

eah branhing step the S-graph based algorithm deides all of the assignment variables at

a node, and several preedene variables as well. Thus, the branhing tree is muh smaller.

On the other hand, at eah subproblem, the S-graph algorithm uses the Longest path as a

bound, whih is weaker than the optimal solutions of the orresponding relaxed LP model.

These observations give rise to many opportunities for the integration of these two type of

approahes, e.g., a preedene based model an be maintained in the S-graph algorithm for

providing sharper bounds, or addressing ontinuous deisions, that are di�ult to implement

with graphs.
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Chapter 3

Critial modeling issues

As it has already been mentioned, most of the approahes, espeially the MILP formulations

do not go under mathematial validation. The ommon pratie is that the model is devel-

oped based on a new idea, and the validation is only empirial, i.e., the implementation of

the model is ompared on several examples with previous models from the literature. If the

result is the same on all of the tested examples, that approah is onsidered to be aurate.

For the earlier, in a way simpler models, the equations were mostly straight-forward,

and even though, no theoretial proof was attahed. Readers ould aept with on�dene

that the result will be orret. As the formulations developed, however, they beame more

and more ompliated. In order to redue the omputational time, the sheduling problems

were takled from di�erent and unusual "angles", whih brought great suess on one side,

the side of performane. On the other hand, the implementation of the same onstraints

beome more ompliated and "triky". The onstraints are no longer straight forward,

whih is not a problem itself, however, the validity of the model beame "less onvining".

The situation is even worse, when the problem de�nition for an approah is inomplete, i.e.,

it is not unambiguously de�ned, what kind of problems are addressable with the approah,

what kind of assumptions are made towards the parameters or the behavior of the system

1

.

This fear is not unsubstantiated, as several modeling issues were already unveiled in the

literature, and there is nothing, whih would suggest, that there are no undisovered ones.

Before introduing some of these issues in detail, the nature of modeling mistakes must be

investigated �rst. All of the approahes disussed in Chapter 2 are based on the examination

of a searh spae, and �nding the best andidate among them. From the mathematial point

of view, these approahes an have two de�ienies, assuming that the ranking of solution

andidates is orret

2

: under- and over-onstraining. To give the aurate de�nition of these,

some additional terms should be introdued �rst, whih will be used throughout the whole

doument:

1

Part of this roots bak to the problem of the lak of standardized de�nitions for problem lasses, see

Setion 1.2.

2

In most of the ases, this holds. There are, however, examples, when the objetive value of a andidate

is not evaluated orretly[6℄

37
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solution is a term used for a shedule, and in the same time for its representation in

a mathematial model if it exist.

pratially feasible solution is a solution that an be exeuted in real life.

pratially infeasible solution is a solution that violates some of the onstraints of

real life, thus it annot be exeuted.

pratially optimal solution is the best solution among the pratially feasible

ones.

model-feasible solution is a term used with respet to a model or approah for

desribing a solution that is plausible for that approah, i.e., it is in its feasible

region.

model-infeasible solution is also de�ned for a model for those solutions that are

not in its feasible region.

model-optimal solution is the best model-feasible solution

If not stated otherwise, the terms feasible and infeasible will refer to pratially feasible and

pratially infeasible solutions, respetively.

One would assume, that in ase of a proper model, the set of the model-feasible solutions

is exatly the same as the set of the (pratially) feasible ones. Moreover, if an approah

or model has model-feasible / model-infeasible solutions whih are (pratially) infeasible /

feasible, then it is fundamentally wrong. These approahes, however, are not used for gener-

ating all of the feasible solutions, only to provide at least one optimal, thus the requirements

from the previous sentene are unneessarily limiting.

Having infeasible solutions in the feasible region of a model is a ommon pratie in

optimization to enhane performane, and it does not result in improper results as long as

it is guaranteed that the objetive value of the pratially infeasible solutions will not get

better than the optimal value. As an example, the integer variables of MILP problems,

whose matries satisfy the requirements of total unimodularity (assignment problem for

example) an be relaxed to ontinuous variables, and the optimal solution is ensured to be

integer[127℄. This relaxation signi�antly redues the omputational need obviously.

Similarly, reduing the searh spae, and exluding many pratially feasible solutions is

aeptable if it is ensured that at least one optimal solution remains in the feasible region

of the model. Holzinger et al.[51℄ has improved the e�ieny of equipment-based branh-

and-bound algorithm of the S-graph framework by magnitudes for problems with high bath

numbers using exatly this idea.

Thus, in order for a model to malfuntion, it has to fail in at least one of the following

ways for some problem instanes (not neessarily for all of them):
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Under-onstraining: At least one pratially infeasible solution is model-feasible

and it has better objetive value than the optimal, i.e., the model-optimal solution

is pratially infeasible.

Over-onstraining: All of the pratially feasible and optimal solutions are model-

infeasible, i.e., the model-optimal solution is pratially suboptimal.

Unfortunately, both type of mistakes has appeared in the literature of bath proess

sheduling, and in many ases the model bared both type of issues.

3

The following setions

will introdue and investigate this kind of issues.

3.1 Minimal su�ient number of time points

As it was brie�y disussed in Setion 2.1, variable time point based approahes su�er from

a ommon problem

4

, that is �nding a number of time points that is su�iently large for the

model to ontain the optimal solution. For this setion, it is assumed that there is a number

of time points, where the model has at least one optimal solution in its feasible region.

5

It is lear, that this is an over-onstraining issue, as the pratially optimal solution is not

in the feasible region of the model. To investigate this issue, �rst the problem of Voudouris

et al.[126℄ - represented in Figure 1.2 - is examined with bath numbers 2− 1− 1− 1.

Three models are ompared:

M&G a global variable time point formulation by Maravelias and Grossmann[85℄

I&F the �rst unit spei� variable time point formulation by Ierapetritou and Floudas[57℄

S&F further development of the I&F model by Shaik and Floudas[118℄

6

For all of the three models the iterative method were applied, i.e., the number of time

points is inreased until the same objetive value repeats. Table 3.1 ontains the best

model-optimal solutions for eah investigated ase.

In this partiular ase, the makespan of 31 h is optimal, as it has been on�rmed by other

approahes that do not disretize the time. However, the number of time points needed to

�nd this solution is varying for the di�erent models, so it is lear to see, that �nding the

optimal number of time points (i.e., the minimal number of time points, with whih the

model results in the optimal solution) is not trivial.

3

Although there are models whih provide infeasible solutions for some instanes and suboptimal ones for

others, there has not been an instane published, where a model would provide a suboptimal solution whih

is infeasible at the same time. Construting an example like that, however, would not be a hallenging task.

4

Fixed time point formulations do not have this issue with throughput maximization problems, as the

number of time points is given by de�nition in that ase. For makespan minimization, the inremental

inrease of time points will obviously end up at the optimal solution, as the number of time points orrelates

unambiguously to the length of the prodution.

5

It is not always the ase as it will be disussed in Subsetion 3.3.1

6

The ∆ parameter is set to 0.
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n M&G I&F S&F

6 × × ×
7 × × 31

8 32 33 31

9 31 32

10 31 31

11 31

Table 3.1: Illustration of the iterative approah for the time point MILP formulations (n

stands for the number of time points, × indiates that the solver has not found any model

feasible solution)

Moreover, the ommon iterative approah an not ensure that the reported solution is

the globally optimal one. This issue is illustrated via a simple single stage example of three

produts and three available units. The problem data is given in Table 3.2

u1 u2 u3

P1 15 h 7 h 7 h

P2 11 h 14 h 9 h

P3 14 h 5 h

Table 3.2: Proessing times for the single stage example

The instane of produing 1, 4, and 5 bathes of produts P1, P2, and P3 is solved by

the time slot model of Sundaramoorthy and Karimi [123℄. The number of slots has been

inreased from 1 to 8, however, the model has no feasible solutions for less then 4 time

points. Table 3.3 ontains the objetive value of the model optimal solutions for 4 to 8 time

slots .

Number of slots Optimal makespan

4 34 h

5 27 h

6 26 h

7 26 h

8 25 h

Table 3.3: Illustration of the time point issue

As it is shown in the table, the iterative approah would stop at 7 time slots with

the objetive value of 26 hours, although by further inreasing the number of time points

a solutions with 25 hours ould have been found. This ounterexample proves that the

iterative approah an not guarantee the optimal solution.

Several papers tried to address this issue in the literature[114, 75℄. However, the ap-

proahes published in these papers has the same �aw, as the original iterative approah:
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their soundness is not proved, and ounterexamples an atually be onstruted in a similar

fashion. They may provide better solutions than the simple iterative approah. However, the

original problem remains: when applying �exible time point based methods, the optimality

of the provided solution an not be guaranteed.

3.2 Cross transfer

The root for this issue lies in the way the time needed for the transfer of intermediate

materials is addressed in ase of an NIS poliy. In many ases, the transfer time is negligible

ompared to proessing times, thus it is ompletely left out from the problem data, and the

model onsiders it instantaneous. Even if the proessing times are omparable, they are

often lumped to the proessing time of the previous task, and the same model is used.

In this setion the �rst ase is investigated, i.e., when small transfer times are not on-

sidered in the model, though the seond approah an result in a similar error. Without

doubt, the exat solution provided by the approah will not be appliable in pratie, as

the transfer of the intermediate will take time, and this would de�nitely shift the exeution

of tasks a little. This in itself is, however, the most natural thing when optimizing real life

systems that are too ompliated to be modeled with 100% auray. In general, the biggest

task of modeling is to identify the parameters and rules of the system that are important to

onsider in the model, and the ones that would just make the approah more ompliated,

without resulting in a signi�ant hange for the provided solution. Thus, the exat solution

of the approah is not expeted to be implementable in pratie as it is but it is expeted

to remain feasible when the additional parameters are put bak to the solution.

Unfortunately, all of the MILP based approahes published in literature an provide

solutions for some problem instanes that are impossible to implement in pratie. This

under-onstraining issue has been investigated independently by Hegyhati et al.[45℄ and

Ferrer-Nadal et al.[31℄.

The malfuntion of the MILP approahes an be illustrated on the simplest example of

two produts with two stage sequential reipes, as illustrated in Figure 3.1.

Figure 3.1: Simple example reipe for illustrating the Cross Transfer issue

The problem an bee solved for 1 bath of eah produt with di�erent approahes. The

reported solutions would di�er based on the seleted approah. Figure 3.2 shows the Gantt

hart of the solutions provided by a) the S-graph framework and the state spae based

tehniques, and b) any of the MILP formulations.
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Figure 3.2: Provided Gantt harts for the example in Figure 3.1

As the solutions di�er, either solution a) must be suboptimal or solution b) must be

infeasible (or both). It is easy to verify that the solution provided by the ombinatorial

approahes is in fat the optimal solution, and the one provided by the MILP formulations

is pratially infeasible. In the latter solution, 2 hours after starting the prodution, units

U1 and U2 should simultaneously exhange the intermediate materials of the prodution of

produts A and B. This is obviously not implementable without a temporary storage unit,

even if the transfer of the materials an be arried out in a negligible amount of time.

This phenomenon an appear between any number of units, and also ours on real

life examples as well. As disussed by Hegyhati et al.[45℄, the same infeasible solution has

repeatedly been published by Kim et al.[64℄ and Mendez and Cerda[90℄ for the problem

shown in Figure 3.3.

Figure 3.3: Literature example for ross-transfer illustration

The Gantt hart of the solution provided by the MILP formulations is shown in Figure

3.4 - a). At 30 hours of the prodution, three units, U2, U3 and the S should exhange

materials simultaneously. The real pratially optimal solution provided by the S-graph

framework is shown in Figure 3.4 - b).

In this example, U4 is free at the time of the ross transfer. In the unlikely ase that

this unit an store at least one of the intermediates of B, C, or D, the shedule an be

exeuted. Gouws and Majozi[40℄ have investigated the bene�ts of using inherent storage,

however, their model also do not takle this issue.

Further examples from Ferrer-Nadal et al.[31℄, or other examples ould be mentioned

to further demonstrate that this issue a�ets not only theoretial problems, but real life
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Figure 3.4: Solutions provided for the literature example of ross-transfer illustration
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examples as well. Solutions ontaining ross transfer usually have a denser shedule, thus

shorter makespan, making them favorable for the objetive. As a result, solutions with ross

transfer are likely to be reported for any multipurpose or more ompliated example.

Without doubt, the solution provided by the MILP formulations is improper. However

it is not obvious where the mistake was made. In defense of the MILP formulations, they

would have provided the orret solution if the transfer time were not have been negleted.

The reason behind this an be illustrated via some of the mathematial onstraints for the

infeasible shedule of the above example:

7

T s
B2 = T

f
B1 + ttrIntB

T s
A2 = T

f
A1 + ttrIntA

T s
B2 − ttrIntB ≥ t

f
A1 + T tr

IntA

T s
A2 − ttrIntA ≥ t

f
B1 + T tr

IntB

The �rst two equations refer to the reipes, the seond task of eah produt will start exatly

the transfer time later than the �nishing of the �rst.

8

The inequalities desribe that a unit

annot start the transfer of the intermediate for the upoming task until the transfer of

the intermediate produt of the previous task is �nished. It is easy to see that there is no

solution to this system, if the ttr parameters are positive, thus the MILP solver would purge

this andidate from the B&B tree and �nd the truly optimal solution.

9

If, however, the ttr

values are 0, the model �nds the trivial solution, where all of the mentioned variables are

equal, leading to the infeasible solution.

The result of the previous examination suggests that the mistake is not done by the

MILP formulations, but it is rather the fault of the modeling proess when transfer times

were negleted. On the other hand, it has been stated earlier that suh simpli�ation is

aeptable during a modeling proess, and other approahes did not fail in �nding the real

optimal solution.

From the pratial point of view, it is irrelevant where the mistake was made during the

modeling proess. The only important thing is that using the MILP formulations with the

ommon modeling routines may end up with infeasible solutions.

From the theoretial point of view, to make the deision about where the mistake was

taken, it has to be noted that the published papers have never restrited their approah

for positive transfer times. Even the problems on whih the formulations were illustrated

had 0 transfer times, indiating that the formulation was supposed to takle this problems

appropriately as well.

7

i.e., these are some of the onstraints that remain in the model after substituting values for the binary

variables aording to the given shedule.

8

Equations are needed, as NIS poliy is onsidered. The T f
variables here refer for the ending of the

storage of the intermediates in the previous unit after its exeution.

9

Other MILP solution tehniques would obviously also avoid this solution.
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What happens is that the transfers of materials indue logial onstraints, namely: a

transfer to a unit annot start when it still has the intermediate produt of the previous task.

When the transfer times are positive, this logial onstraint is "less onstraining" then the

timing onstraints of the model, thus it has been negleted. I.e., some onstraints beame

redundant for the seemingly more di�ult problem, thus - for the reason of simpli�ation

and performane - they were removed. The mistake was made when it has not been realized

that these logial onstraints are no longer overed by the timing onstraints in the "simpler"

ases.

These logial onstraints ould be implemented via binary variables, whih represents the

order of material transfers. This would, however, inlude a huge number of binary variables

in addition (and thus inrease the omputational need enormously), if the variables are not

present somehow already in the model. Ferrer-Nadal et al.[31℄ proposed an algorithm for

generating additional onstraints for their preedene based model to avoid ross-transfer,

as disussed a bit later.

This logial onstraint ould maybe also be expressed something like T
f
A1 > T

f
B1 + ttrIntB

as well. However, MILP models annot aept strit inequalities. One way to overome

this issue is introduing small values, as Ferrer-Nadal et al.[31℄ suggest in their paper: if no

transfer times are inluded in the problem desription, a small value should be introdued

instead of 0, and later removed when the "optimal" shedule is obtained. Although this

approah an overome this issue in many ourrenes, it has its shortomings:

• it may not be applied for problems with ZW or LW storage poliies, as it an render

otherwise feasible shedules infeasible

• if the introdued value is too small, it may ause numerial errors for the MILP solver

• if the introdued value is too big, the approah may end up at a suboptimal solution

Before ending this setion, a few words must be said about the approahes that avoid

this issue. State-spae tehniques do not �nd this solution, as the ross-transfer appears as

a deadlok while exploring the searh spae, and the optimization ontinues in a di�erent

diretion.

In the S-graph framework, preedenes between tasks are represented by direted ars.

In ase of the NIS poliy, the shedule ars for a unit are direted to the next task from

the reipe-subsequent task(s) of the previous task (See Chapter 2.3). These ars represent

exatly the aforementioned logial onstraints independently of the value of transfer times.

Cross transfer appears as a direted, 0 weighted yle in the S-graph as shown in Figure 3.5

for the wrong shedule in Figure 3.4 - a).

In ase of positive transfer times, this yle would have a positive weight and the longest

path ould not be determined, i.e., this proedure would over the logial onstraint of the

transfer. In ase of 0 transfer times, the longest path proedure may still sueed (as the

equations were feasible in ase of the MILP models). However, the logial information is

still kept, and the yle detetion algorithm reognizes the infeasibility.
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Figure 3.5: Cyle in the S-graph representation of the shedule delivered by the MILP

formulations

Sine the preedene based models and the S-graph framework has a lot in ommon, this

approah an be "translated" to preedene based MILP models as well, and it is exatly

what Ferrer-Nadal et al.[31℄ has published. As the algorithm is not well formulated in

the paper

10

, a reformulated, orreted, and lari�ed pseudo ode is presented in Algorithm

bloks 3.1 and 3.2.

The main routine goes through all of the plausible unit-task pairs, and starts a reursion.

To enumerate eah yle only one, it is assumed without the loss of generality that the yle

starts at the unit with the smallest index.

For preedential reipes, the algorithm remains the same, with the only modi�ation

that the searh subroutine is alled reursively for not only i+, but for all of the subsequent

tasks of i.

At eah iteration it is heked, whether the subsequent task of the last assignment an be

performed by the unit that started the yle. If yes, the yle is losed and a new onstraint

is generated with the funtion generate. This funtion basially generates the following

onstraint:

∑

X∈X

X +
∑

Y ∈Y

Y ≤ |X |+ |Y| − 1

The onstraint ensures that the olleted assignment and alloation variables in Y and X

annot all take the value of 1, whih would ause this yle.

11

After this part, the algorithm enumerates all the possible units for the subsequent task

of the last assignment, and all the suitable tasks from those whose produt has not yet been

inluded to the yle. The yle is extended with the assignment, and the funtion alls

10

The original publiation ontains a �ow diagram with undoumented notations, and some errors.

11

Colleting the assignment and preedene variables separately is not neessary. However, this enhanes

understandability.
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Algorithm 3.1 Algorithm to generate onstraints avoiding ross transfer in Preedene

based MILP models

Inputs

P set of produts

nP number of stages for eah produt p ∈ P

J set of units

Ji Set of units that an perform task i

Notations

I ′ set of all tasks, exept the last ones in the prodution, i.e.,

⋃

p∈P{ip,1, ip,2, . . . , ip,nk−1}

J+
j set of units that are later in an arbitrary ordering of the units.

Xi,i′ is a general preedene binary variable denoting whether task i preedes task

i′ if performed in the same unit

Yi,j is the assignment binary variable denoting whether task i is assigned to unit j

or not

for all j ∈ J do

for all i ∈ Ij ∩ I ′ do

searh(j,i,{Yj,i},∅,J
+
j ,I

′ \ Ipi,i
+
)

end for

end for
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itself reursively.

Algorithm 3.2 Reursive subroutine for Algorithm 3.1

searh(j0, i0,Y,X ,JR
,IR,il)

j0, i0 starting unit-task pair of the yle

Y set of already �xed assignment variables

X set of already �xed preedene variables

JR
set of units not yet in the yle

IR set of non-�nal tasks of produts not yet in the yle

il last task in the yle, i.e., the subsequent task of the last assignment

if X 6= ∅ ∧ il ∈ I0j then

generate(Y ∪ {Yj0,il},X ∪ {Xi0,il})
end if

for all j ∈ JR ∩ J l
i do

for all i ∈ IR ∩ Ij do

searh(j0,i0,Y ∪ {Yj,il, Yj,i},X ∪ {Xi,il},J
R \ {j},IR \ Ipi,i

+
)

end for

end for

The shortoming of this approah is that the model an no longer be implemented in a

single primitive model desription language. A higher level language supporting loops and

generating equations is needed.

If the analogy between the preedene based models and the S-graph is used, the behavior

of the algorithm an loosely

12

be desribed as follows:

1. Take an S-graph where all of the possible shedule ars are inserted, and the reipe

ars are removed. See Figure 3.6 for the example given in 2.1.

2. Find all the zero-weighted yles, and insert an equation that forbids them in the

model.

13

3.3 Other issues

In this setion, some other issues are introdued brie�y without detailed explanation.

12

In ertain ases the same shedule ar an belong to di�erent units as well, for whih additional are

must be taken.

13

There are e�ient algorithms published in the literature for the enumeration of all of the yles in a

graph.[60, 89, 79, 111℄
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Figure 3.6: The S-graph ontaining all the possible shedule ars for the Example given in

Figure 2.1

3.3.1 Long tasks

By investigating the same multiprodut example from Setion 3.1, and hoosing the number

of bathes to be 3−2−2−2, the optimal solution reported by any of the mentioned models

is suboptimal. The reason is not to be found in the iterative approah, as the model is

not apable of �nding the pratially optimal solution with larger number of time points

either. As brie�y mentioned in Setion 2.1, the problem lies with the typial onstraint that

if a task starts at a time point, it will �nish by the subsequent one. This assumption will

usually not disregard the optimal solutions when the proessing times are very similar in

range. However, in ase of a long and several shorter tasks, it is feasible in pratie that

the short ones are performed after eah other in parallell with the long task. Many models,

however, annot �nd this solution, as tasks are not allowed to overlap several time points.

This issue has been already reported by several papers, and addressed partially. In both the

global time point[17℄ and the unit spei�[117℄ models, the binary variables were extended

with an additional index: the �nishing time point. Thus, theoretially, if there are n time

points, and k plausible unit-task pairs, the number of binary variables inreased from n× k

to

(

n

2

)

× k = n× k× n−1
2
. As a result, the number of time points beame even more ruial,

and muh smaller problems got impossible to be solved in a reasonable time. In order

to avoid this omputational disadvantage, these models were extended with an additional

parameter, ∆14

that denotes the maximal number of time points that the exeution of a

task an overlap. The speial ase, ∆ = 0 brings the model bak to the original ase. This

way, the number of binary variables is redued to (n+ (n− 1) + · · ·+ (n−∆))× k that is

roughly (∆ + 1) × n × k. Although the optimal solutions an usually be found by using 1

or 2 for ∆, it has to be noted that these ases also roughly double and triple the number of

14

In the original papers it is ∆n for the unit spei�, and ∆t for the global time point models.
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binary variables, resulting in huge inrease for the omputational need. Also, ∆ is an other

model parameter, that has to be identi�ed a-priori the optimization, similar to the number

of time points, and thus the optimality of the solution annot be guaranteed. Although

there were attempts to identify the ideal value for ∆, ounterexamples an easily be reated

to undermine the soundness of those approahes.

3.3.2 Time point synhronization

Unit spei� models are advantageous from the omputational point of view. However,

the synhronization between the di�erent time point sets an be rather nontransparent.

Investigating this issue in detail would require many pages, thus it is omitted here, and only

a simple example is given as an illustration: The so alled "Di�erent task - di�erent unit"

onstraints in these models state, that if task i is �nishing in time point n, and produes

some intermediate, that an be onsumed by a task i′ whih will start to be performed by

an other unit at time point n, than i′ must start later than i �nishes. The problem with this

assumption is that i′ may gets its inputs from a storage or an other unit that also performed

task i, but �nished earlier, thus the model is over-onstraining.

Summary and onluding remarks

This hapter presented some of the modeling issues, that arise in ase of the MILP for-

mulations published in the literature. These issues may lead the optimization proess to

suboptimal or even pratially infeasible solutions. Some of these issues were presented in

detail and analyzed, others just mentioned and highlighted. Some of the issues are easy to

address, others are not. However, even in the former ase, the �x ould inrease the CPU

needs drastiqually.

The overall onlusion of the hapter is, that empirial tests an never validate

the soundness of a presented approah, whih is a ommon pratie in the literature.

Moreover, authors should investigate in more detail, what kind of assumptions are hardwired

into their model, and highlight them in their papers.
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Chapter 4

Throughput or pro�t maximization with

the S-graph framework

The S-graph framework was originally introdued to address makespan minimization prob-

lems with NIS or UIS poliies. The extension to throughput-, revenue-, or pro�t maxi-

mization is not as trivial as in the ase of the time disretization based MILP approahes,

as the S-graph algorithms (like the preedene based formulations) onsider the number of

bathes as an input parameter, whih is unknown a-priori to optimization in these ases. In

this hapter, an algorithm is presented to extend the S-graph framework to address revenue

maximization problems. Throughput or pro�t maximization an be addressed analogially.

The basi idea that has been presented by Majozi and Friedler[82℄ and by Holzinger et

al.[55℄, is to have a top-level branhing for the number of bathes for eah produt, that

will be alled as a on�guration in this hapter. The approah desribed in Setion 4.1

and 4.2 relies, however, on �xed bath sizes, that is not always the ase for throughput

maximization problems. Setion 4.3 introdues an approah to disretize the bath sizes

without the loss of generality in order to provide the reipes with �xed bath sizes for the

previously desribed algorithm.

4.1 Main algorithm for revenue maximization

In this setion, it is assumed, that for all produts the bath size is �xed, i.e., the revenue

of one bath of a produt is known, and it is denoted by Rp for all p ∈ P .

As it has been mentioned before, it is not known in advane at what number of bathes

the revenue will be maximal. Thus, the basi onept of the approah is to introdue a top

level searh spae for all the possible bath numbers. The pseudo ode of the algorithm an

be found in the algorithm box 4.1

Essentially, the algorithm �rst initializes the set S with all the possible bath numbers for

the produts. (Z∗
denotes the set of non-negative integers.) Then, in eah iteration a bath

number on�guration is seleted and removed from the set by the selet_remove funtion,

53
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Algorithm 4.1 Throughput minimization with the S-graph framework

revenuecb := 0
S := (Z∗)|P |

while S 6= ∅ do
x :=selet_remove(S)
if feasible(reipe(x),tH) then

if revenue(x)> revenuecb then

revenuecb :=revenue(x)
xcb := x

update(S, revenuecb)
end if

else

S := {x′ ∈ S | x′ 6≥ x}
end if

end while

if revenuecb 6= 0 then
return (xcb, revenuecb)

end if

and tested for feasibility, i.e.whether it an be produed within the given time horizon, tH .

If the on�guration is feasible, and has a higher revenue than the best found so far, the

urrently best solution is updated, as well as the set S. If the on�guration is infeasible all

the on�gurations larger

1

than the urrent one are removed from the set S, due to the fat,

that if there would be a feasible shedule for a larger on�guration, a feasible shedule for

x ould be reated as well by removing all the super�uous bathes from it. When S gets

empty, the algorithm returns with the best on�guration and the orresponding revenue if

there was a feasible solution.

Though the algorithm is simple, several aspets need to be disussed:

• The algorithm uses several subroutines. Some of them is disussed in the next setion

in more detail. The funtion reipe generates the reipe graph of a problem where

xi bathes of the ith produt is to produed for eah i, and all the other neessary

information needed by the feasibility tester subroutine, e.g., set of tasks, units. The

revenue funtion simply returns the revenue for the on�guration, whih in this ase

is the salar produt x · R.

• The set S is in�nitely large, and seemingly only one element an be guaranteed to

be removed from it in eah iteration. This suggests, that the algorithm is not �nite.

Note, however, that this is not the ase, the algorithm always �nishes in a �nite

number of steps if the seletion of on�gurations is appropriate. Let tmin
p be the

smallest proessing time for any of the tasks of produt p ∈ P . Obviously, [ tH

tmin
p

] is

an upper limit (though probably not very tight) for the number of bathes that an

1

A on�guration is onsidered to be larger or equal than an other one, if it entails at least as many

bathes from eah produt than the other on�guration.
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be produed from p. As an upper bound exists for eah produt, the algorithm ends

in a �nite number of steps if it hooses on�gurations, suh that xp ≤ [ tH

tmin
p

] + 1.

The on�gurations where xp = ⌊ tH

tmin
p

⌋ + 1 for at least one produt will de�nitely be

infeasible, and thus they will remove all the other on�gurations from S. In pratie,

i.e., in the implementation of this algorithm the set S is not initialized like this, see

more about this at the desription of the selet_remove funtion.

• In the presented version, the algorithm does not return the shedule of the optimal

solution. The implementation of ourse saves the feasible solution found and returns

it at the end.

Assuming that the subroutines work properly, it is easy to see, that the algorithm is

sound, as it evaluates all the possible on�gurations.

4.2 Subroutines for the algorithm

In this setion several subroutines of the revenue maximization algorithm is disussed.

4.2.1 The selet_remove method

The only requirement towards the selet_remove funtion to make the algorithm sound

is that it should selet and arbitrary element of S and remove it. For the �niteness of the

algorithm however, the funtion should satisfy some additional ondition. A simple, yet

su�ient ondition is that the funtion should never selet an element x suh that none of

its "preeding on�gurations" has been seleted before. A on�guration x′
is preeding x if

for some k ∈ {1, . . . , |P |}, x′
k = xk − 1 and x′

i = xi for all i 6= k. It is easy to see that if

the funtion follows this rule, the algorithm will always have a �nite number of iterations,

as the feasible region is �nite (as disussed in the previous setion) and its border is �nite

as well.

In the implementation, however, the funtion behaves a bit di�erently. First, the funtion

goes through the on�gurations where only one produt is produed, and �nds the largest

feasible bath number, bmax
p for eah p ∈ P . Based on these values, a �nite region of interest

an be de�ned, that ontains all the feasible on�gurations (and some infeasibles as well).

For two produts, the result of this initial step is illustrated in Figure 4.1.

The two produts are denoted by A and B, and the two axises by NA and NB referring

to the number of bathes for A and B, respetively.

After identifying this feasible region, the funtion an have di�erent strategies to selet

the on�guration, whih ould have a major e�et on the CPU requirements. As shown in

Figure 4.2, the number of examined on�gurations an be signi�antly di�erent for di�erent

seletion strategies.



56 CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

Figure 4.1: Finding the initial region ontaining the optimal solution for revenue maximiza-

tion

Figure 4.2: Illustration of the signi�ane of on�guration seletion on the number of itera-

tions
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As it an be seen from the �gure, in one of the ases the algorithm had 4 iterations after

the initial phase, in the other there was 6 iterations. The former one ould save 2 iterations

by testing the on�guration (2, 1), and �nding it infeasible �rst. Empirial test has shown,

that the most of the time needed by the algorithm belongs to infeasible on�gurations. Thus,

testing the "minimal" infeasible on�gurations �rst is ruial for reduing the CPU time.

Orosz [96℄ has investigated the e�ets of di�erent seletion strategies in his work.

4.2.2 The update method

Essentially, there are two tests that has to be arried out at eah on�guration:

• Is the on�guration feasible?

• Does the on�guration provide higher revenue than the urrent best?

In many pratial examples, the evaluation of the �rst question takes muh more time

than that of the seond. Aording to experimental experienes, this is espeially true, if the

on�guration is infeasible, as it takes more time for the feasibility tester to examine all the

infeasible branhes, than �nding a single feasible shedule. In these ases it may be more

bene�ial to evaluate �rst the seond question, and if the answer is no, then purge the ase,

even if it ould be used for reduing the searh spae if it turns out to be infeasible.

The purpose of the update funtion is to make this type of behavior possible. Although

there are many possibilities, there are two implementations present:

1. The funtion does nothing

2. The funtion removes those untested on�gurations from the searh spae that do not

have higher revenue than the urrent best solutions, i.e., S := {x′ ∈ S |revenue(x′
)≤

revenuecb}

The �rst ase is evident; in the seond ase, the region is redued eah time when a

feasible on�guration is found. Note that in this ase, the if statement testing whether the

revenue of x is higher than the urrent best is unneessary. In the implementations this

seond option is only used after �nding the initial region of feasibility (see the previous

setion). When this region is identi�ed, one of the tested on�gurations provide the highest

pro�t found so far. This solution an immediately be used to redue the searh spae, as

shown in Figure 4.3.

In this ase, the revenue of produing 3 bathes of A was 6, and all the on�gurations

indiated by white dots ould be removed from the searh spae, as they had the revenue of

at most 6.

Using the seond version of this funtion, the searh spae S gets redued at eah iter-

ation, regardless, whether the on�guration x turns out to be feasible or infeasible. Using

the two seletion strategies shown in Figure 4.2, and the seond version of the updating

funtion, the evaluation of the searh spae is illustrated in Figure 4.4.
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Figure 4.3: Reduing the searh spae based on the revenue of the best feasible solution

Figure 4.4: Evaluation of on�gurations with revenue updates on S
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Although, this redution an be bene�ial in many ases, it has drawbaks as well, whih

an be seen by omparing Figures 4.2 and 4.4 as well. In the latter ase, regardless of the

seletions strategy, two infeasible on�gurations needed to be tested, whih was not the ase

for the �rst strategy in the former one. As testing infeasible on�gurations usually take

most of the omputational time, in most of the ases it is advised not to redue S based on

the urrent best revenue.

4.2.3 The feasible method

The feasible method plays a key role in the maximization of the revenue, as this funtion

is responsible for the evaluation of eah on�guration. The funtion must return true if

there is a shedule with at most the time horizon for the given number of bathes, and false

otherwise.

The simplest implementation is by using the makespan minimization funtion desribed

in Subsetion 2.3.2. At eah on�guration the number of bathes for eah produt are

available, thus the minimal makespan for that amount of produts an be found. Then, the

result is ompared with the time horizon: if it is not larger, the on�guration is feasible,

and infeasible otherwise.

This approah however does numerous unneessary alulations:

• Even if a solution has been found within the time horizon, the funtion ontinues to

�nd the solution with the optimal makespan, that is, in this ase, out of the interest

of the main algorithm.

• Even if all the subproblems has higher lower bounds then the time horizon, i.e., all of

the feasible solutions has longer makespan than the time horizon, the algorithm still

ontinues to �nd the optimal solution, although the on�guration will be evaluated as

infeasible anyway.

In order to avoid these unneessary alulations the makespan minimization algorithm

must slightly be modi�ed the following way:

• The variable makespancb
must be replaed by tH .

• When a feasible solution is found the algorithm should return with true immediately.

The pseudo ode for this feasibility tester funtion is presented in Algorithm blok 4.2.

2

This simple modi�ation an signi�antly redue the time needed for the optimization.

However, there are still redundant alulations, sine if x is a on�guration larger than x′
,

then part of the the searh tree for the feasibility test of x appears in the tree of the test for

x′
as well. Orosz [96℄ has investigated this opportunity, and provided a global searh tree

2

Note that the presented algorithm simply returns true, and does not return the shedule. Obviously,

the algorithm an be easily modi�ed to return the shedule or save it in a global variable, et.
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Algorithm 4.2 Feasibility tester subroutine for revenue maximization

feasible(G(N,A1, A2, w), I, J, t
H
)

G(N,A1, A2, w) reipe graph

I, J set of tasks and units, respetively

tH time horizon

S := {(G(N,A1, A2, w), I, J, ∅)}
while S 6= ∅ do
(G(N,A1, A2, w), I

′, J ′,A) :=selet_remove(S)
if bound(G)< tH then

if I ′ = ∅ then
return TRUE

else

j :=selet(J ′
)

for all i ∈ Ij ∩ I ′ do

Gi(N,A1, A
i
2, w

i) := G(N,A1, A2, w)
for all i′ ∈

⋃

(i′,j)∈A I+i′ \ {i} do

Ai
2 := Ai

2 ∪ {(i′, i)}
end for

for all i′ ∈ I+i do

wi
i,i′ := t

pr
i,j

end for

S := S ∪ (Gi(N,A1, A
i
2, w

i), I ′ \ {i}, J ′,A∪ {(i, j)})
end for

if I ′ ⊆
⋃

j′∈J ′,j 6=j′ Ij′ then

S := S ∪ (G(N,A1, A2), I
′, J ′ \ {j},A)

end if

end if

end if

end while

return FALSE
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based method where the feasibility testers use the results of the preeding on�gurations

to aelerate the searh. The approah has been implemented with a task based feasibility

tester, and despite its development phase, it has shown promising results.

4.3 Flexible bath sizes

For many ase studies and literature examples the bath sizes are not �xed, and if several

units are apable of performing a task, they are allowed to do it in parallel. This type of

problem de�nition is espeially often for throughput/revenue maximization problem, but ap-

pears for makespan minimization as well. Time disretization based approahes an address

this issue as they are, the S-graph framework, however, needs some adjustments.

The previously desribed algorithm requires that the reipe is �xed, and the revenue is

known for one bath of a produt. With the aforementioned problems, however, neither of

these two is guaranteed. As an illustration for the proposed approah, the example from

Kondili et al.[66℄ is taken, that was shown in Figure 1.5.

The proess onsists of 5 tasks: heating, 3 reations and a separation, the material �ows

are learly represented in the �gure.

3

For these tasks, 4 units are available, dediated Heater

and Separator, both with 100kg of apaity for the Heating and Separation, respetively.

For the three reations, two di�erent reators R1 and R2 with idential proessing times,

and apaities of 80 kg and 50 kg are available, whih may be used in parallel. It is assumed

that all of the units an operate with any load smaller than their apaity, i.e., there is no

lower bound for their load.

The proess produes two produts with idential revenues, and an additional onstraint

is given: no intermediate material may be left at the end of the prodution, i.e., it is not

allowed to produe only Produt 1 via the �rst part of the proess. Moreover, there are no

storages available, i.e., NIS poliy is assumed.

Eah reation an be performed by either one of the reators or with both of them

parallel. For the 3 reations, this results in 33 = 27 di�erent "�xed reipes", that an have

di�erent bath size intervals, as represented in Table 4.1.

To apply the previously desribed S-graph algorithm for revenue maximization, a sepa-

rate S-graph reipe for eah of these ases must be reated, thus the top level searh region

would beome a 27 dimensional spae. This would result in an enormous CPU need for the

optimization, thus, the redution on the number of ases is essential.

When looking at the table, it an easily be seen that only several di�erent values repeat.

The reason behind this omes from the material balanes, for example, even if we assign

both R1 and R2 instead of just R1 to Reation 3, the output will not be higher, if the supply

from the previous reations does not reah a ertain level. If two di�erent ases c and c′ has

the same maximal revenue, but c uses only a (not neessarily real) subset of units for eah

3

In the original example, 10% of the output of separation is IntAB that is reyled. This is negleted,

as the presented algorithm is not apable of addressing problems with loops in their reipe.
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Case Reation 1 Reation 2 Reation 3 Max revenue

1 R1 R1 R1 86.00

2 R1 R1 R2 71.67

3 R1 R1 R1&R2 86.00

4 R1 R2 R1 53.75

5 R1 R2 R2 53.75

6 R1 R2 R1&R2 53.75

7 R1 R1&R2 R1 114.67

8 R1 R1&R2 R2 71.67

9 R1 R1&R2 R1&R2 139.75

10 R2 R1 R1 86.00

11 R2 R1 R2 71.67

12 R2 R1 R1&R2 86.00

13 R2 R2 R1 53.75

14 R2 R2 R2 53.75

15 R2 R2 R1&R2 53.75

16 R2 R1&R2 R1 89.58

17 R2 R1&R2 R2 71.67

18 R2 R1&R2 R1&R2 89.58

19 R1&R2 R1 R1 86.00

20 R1&R2 R1 R2 71.67

21 R1&R2 R1 R1&R2 86.00

22 R1&R2 R2 R1 53.75

23 R1&R2 R2 R2 53.75

24 R1&R2 R2 R1&R2 53.75

25 R1&R2 R1&R2 R1 114.67

26 R1&R2 R1&R2 R2 71.67

27 R1&R2 R1&R2 R1&R2 139.75

Table 4.1: 27 di�erent "�xed reipes" for the example by Kondili et al.[66℄
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reation of those used by c′, than c dominates c′. As an example, ase 9 dominates ase

27, and ase 24 is dominated by all of the ases 4,5,6,13,14,15,22,23. Obviously, if a ase

is dominated by an other, it an be exluded from the investigation without using loosing

the guarantee for the global optimality. For the example above, the ases, whih are not

dominated by an other are shown in Table 4.2 ordered by the maximal revenue.

Case Reation 1 Reation 2 Reation 3 Max revenue

4 R1 R2 R1 53.75

5 R1 R2 R2 53.75

13 R2 R2 R1 53.75

14 R2 R2 R2 53.75

2 R1 R1 R2 71.67

11 R2 R1 R2 71.67

1 R1 R1 R1 86.00

10 R2 R1 R1 86.00

16 R2 R1&R2 R1 89.58

7 R1 R1&R2 R1 114.67

9 R1 R1&R2 R1&R2 139.75

Table 4.2: Non-dominated ases for the example by Kondili et al.[66℄

After this redution, still, 11 di�erent ases should be given as input to the S-graph

algorithm. In order to further redue this number, several ases an be merged together. As

an example ases 4 and 5 are idential exept for the seletion for the third Reation, thus

these two ases an be merged togerther by the assignments R1, R2, R1∨R2 for Reations

1,2, and 3, respetively. Applying the same idea, the 6 ases shown in Table 4.3 remain.

Case Reation 1 Reation 2 Reation 3 Max revenue

4,5,13,14 R1 ∨R2 R2 R1 ∨R2 53.75

2,11 R1 ∨R2 R1 R2 71.67

1,10 R1 ∨R2 R1 R1 86.00

16 R2 R1&R2 R1 89.58

7 R1 R1&R2 R1 114.67

9 R1 R1&R2 R1&R2 139.75

Table 4.3: Merged non-dominated ases for the example by Kondili et al.[66℄

To all of these merged ases, the reipe graph an be generated, as shown in Figure 4.5.

4.4 Empirial tests

In this setion, the results of the implemented algorithm are presented via three examples.

For eah example, the problem has been saled and solved with di�erent time horizons.

At eah ase altogether 18 variants of the throughput maximization algorithm have been
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Figure 4.5: The orresponding reipe graphs for the 6 ases in Table 4.3
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tested and ompared. These variants add up by the possible ombinations of 3 di�erent

subproblem seletion rules, 3 di�erent update and 2 di�erent feasibility subroutines.

Eah of the subproblem seletion strategies �rst explores how many bathes of a single

produt an be produed within the given time horizon, then they explore the bounded

region

LEX in a lexiographial order,

BFS via breath-�rst searh,

DFS via depth-�rst searh.

The update subroutines:

E empty, no on�guration is removed via the bound of a feasible solution

F only the best axial on�guration is used for removing some of the on�gurations

after the initialization phase

U the update funtion removes all the on�gurations that has lower revenue than the

urrently best feasible solution

Last, the makespan minimization (MM) and the desribed feasibility tester (FT) is used

for the evaluation of the on�gurations. At eah run, the time limit of 1 hour was used for

the solver algorithm.

The subsetions present only some highlights of the results due to spae limitations. The

table of all of the results an be found in Setion C.1. When the algorithms have not reahed

the 1 hour time limit, they delivered the same globally optimal solution.

A general experiene is that the type of the feasibility tester have a major e�et on the

CPU times, as expeted. Usually, most of the CPU time is taken for the testing of infeasible

on�gurations, where the FT does not gain any advantage of stopping after the �rst feasible

solution. The initial bound of the FT subroutine however, ause a signi�ant redution on

the searh spae.

4

Thus, in the following subsetions the variants having MM subroutine

are not investigated.

For all of the examples, NIS storage poliy were onsidered for all intermediates.

4.4.1 Pharmaeutial ase study

This example is taken from a multinational pharmaeutial ompany. There are 5 hair and

skin are produts produed, all of them via two onseutive steps: mixing and paking. For

the paking, there are 3 idential paking lines available, and the paking time is uniformly

12 hours for all of the produts. There are 4 mixing vessels available, however, they di�er

in appliability and proessing times due to the di�erent stirrer designs. The detailed

proessing times are given in table 4.4

4

Some additional tests were run using the makespan minimization subroutine with the initial bound, and

the results were lose to that of the FT approah.
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Produt Revenue (u)

Proessing time (h)

Mixing vessels

Paking lines

V1 V2 V3 V4

Cream 1 2 10 5 5 12

Cream 2 3 12 10 7 12

Conditioner 1 12 12

Shampoo 3.5 8 13 12

Lotion 1.5 10 6 9 12

Table 4.4: Proessing times and revenue data for the pharmaeutial ase study

A summary of the test results are shown on a logarithmi sale in Figure 4.6, where the

olors orrespond to on�guration seletion rules, and the shapes for the di�erent update

funtions.

Figure 4.6: Summary of results for the pharmaeutial ase study

Based on these results the following onlusions an be drawn for this example:

• For most of the ases, the alternative solution approahes ould not outperform eah

other more than a magnitude.

• For small problems (with time horizon less than 29) the CPU times do not inrease

drastially.

• After 29 hours of time horizon, the CPU times have a drastial inrease.

• For larger problems the alternatives with the E update funtion dominate the others,

and there is only a negligible di�erene between them for the di�erent on�guration

seletion strategies.
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4.4.2 Agrohemial example

In this example herbiide is produed through three reations, a separation, and an evapo-

ration. The �owsheet of the problem is given in Figure 4.7.

Figure 4.7: Flowsheet of the agrohemial proess for herbiide prodution

The proessing times, apaities of the units, output ratios, and other details of the

problem an be found in the paper by Majozi and Friedler [82℄. Although there is only one

produt, the bath sizes are not �xed, and two units may work parallel on the same bath.

Thus the algorithm of Setion 4.3 need to be applied to reate �xed reipes. After this

preproessing steps, there are two di�erent �xed reipes as shown in Figure 4.8, where the

revenues of F1 and F2 are 3.7 and 4.5 ost units, respetively.

Figure 4.8: S-graph of the two �xed reipes for the agrohemial proess

The results of the tests are shown in Table 4.5, and the best CPU times are indiated in

eah row.
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Time CPU time (s)

horizon LEX BFS DFS

(h) U F E U F E U F E

13 3.06 3.07 3.05 3.08 3.04 3.05 3.03 3.08 3.07

14 339 340 205 405 405 414 405 402 269

15 453 451 453 583 582 591 589 583 581

16 3600 3600 3600 3600 3600 3600 3600 3600 3600

Table 4.5: Test results for the agrohemial example

It is easy to see, that in ase of this problem, the inrease in the time horizon has a

drasti e�et on the pu times. Eah additional hour in the time horizon resulted in at least

one magnitude growth in the CPU time. Based on this few results, it an be observed, that

the E update funtion dominates here the other two as well. Moreover, in general, the LEX

on�guration seletion strategy proved to be the most e�ient.

4.4.3 Literature example

For the last omparisons, the example from Setion 4.3 is taken. As desribed in that

setion, there are 6 �xed reipes for this problem with two produts. The results of the test

are shown in Table 4.6, and again, the best CPU times are indiated in eah row.

Time CPU time (s)

horizon LEX BFS DFS

(h) U F E U F E U F E

14 16.88 15.84 15.21 14.95 18.52 21.07 22.63 22.53 21.01

15 179 134 113 208 144 133 437 279 225

16 1260 1159 984 964 1496 1512 1594 1629 1403

17 3600 3600 3600 3600 3600 3600 3600 3600 3600

Table 4.6: Test results for the example of Setion 4.3

As in the ase of the previous examples, the LEX-E alternative provides good results.

However, interestingly, the BFS-U strategy often have good results.

Summary and onluding remarks

In this hapter, the S-graph framework has been extended to throughput or revenue maxi-

mization problems. The algorithm is based on the enumeration and maximum searh of the

feasible set of on�gurations, i.e., bath numbers, whih are produable in the given time

horizon. The possibilities for di�erent variations of the general algorithm were presented

and thouroughly ompared after implementation. The results showed that the approah is
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apable to solve the onsidered set of problems, and provide the optimal solution e�iently

when the orret variation is applied.
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Chapter 5

Limited- and Zero-wait storage poliies

in the S-graph framework

The S-graph framework was originally developed for NIS-UW and UIS-UW storage poliies,

and the only published storage poliy extension of the S-graph framework[109℄ foused on

CIS-UW poliy. However, in many industrial appliation LW or ZW poliies are required,

as ertain intermediates lose some physial or hemial properties over time, that would be

important for the upoming task. In this hapter, several new approahes are introdued to

takle these storage poliies. As it has already been mentioned in Setion 1.2, in ase of ZW

poliy, the restrition on the infrastruture is irrelevant. However, LW itself does not de�ne

the storage poliy. In this hapter LW will refer to NIS-LW poliy, and the approahes are

desribed for that, although they ould easily be modi�ed to address UIS-LW poliy as well.

Moreover, if an approah is presented for LW poliy, it an be automatially applied for

ZW ases, as it is a speial ase of LW. Finally, it is not assumed anywhere, that all of the

intermediates share the same restrition for waiting time, i.e., some of them are ZW, LW,

or even UW.

Note that UW is a relaxation of ZW/LW, thus, all of the shedules with ZW or LW

poliies on some intermediates remain feasible if all of the LW intermediates are set to UW

poliy. Later on, the terminology UW-relaxation will be used if the LW restritions of a

problem are disregarded this way.

Most of the onstraints in sheduling has a "greater or equal" nature,e.g., a task must

start later than the �nishing of the previous task in the reipe, or the previous task assigned

to the same unit. LW onstraints, however, de�ne a "not later then" thus "smaller or

equal" type of onstraint, whih annot diretly be expressed by the ordinary S-graph ars.

There are, however, several ways to address this poliy, whih are detailed in the following

subsetions.

In setion 5.1 a hybrid approah is introdued, where the S-graph based branhing pro-

edure is extended with an LP based bounding funtion that also inludes the "smaller or

equal" type of LW onstraints.

The approah introdued in setion 5.2 relies on the fat that a typial "less or equal"

71
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type of LW onstrains, suh as T start
1 ≤ T start

2 + tproc an easily be onverted to a "greater

or equal form": T start
2 ≥ T start

1 + (−tproc), whih an be modeled by regular S-graph ars.

The weight of the edge, however, beomes negative (non-positive to be preise), whih needs

some additional are.

In setion 5.3 two approahes are introdued for problems with only UW and ZW inter-

mediates without introduing negative weighted ars in the S-graph. Addressing LW stages

is possible through a modeling onversion.

Last, setion 5.4 ompares the performane of these approahes through several exam-

ples.

5.1 Auxilary LP model

The smaller-or-equal type of onstraints of LW poliy an be addressed by an LP model that

an be formulated for eah subproblem. The mathematial model an simply built based

on the S-graph (N,A1, A2):

• A non-negative ontinuous variable is assigned to eah node, whih represents its

starting time: Si, for all i ∈ N .

• Shedule ars represent simple ordering in time, thus a onstraint in the form of Si′ ≥ Si

is added for all (i, i′) ∈ A2.

• For all reipe ar, a similar onstraint is added: Si′ ≥ Si + wi,i′ for all reipe ar

(i, i′) ∈ A1, where wi,i′ is the weight of it.

• Last, for eah task i with LW poliy, the onstraint Si′ ≤ Si + wi,i′ + maxwaiti is

added, where i′ is an upoming task of i, i.e., (i, i′) ∈ A1, and maxwaiti the maximal

allowed waiting time.

The solution of this mathematial model will not provide sharper bounds than the longest

path algorithm. However, it will detet if a ertain subproblem is not feasible due to wait

restritions. In suh a ase, the orresponding branh of the searh tree is pruned obviously.

Note that in ase of a partial shedule that is not even feasible for the UW-relaxation, the

S-graph approah will detet the infeasibility in the usual manner by �nding a direted yle,

thus the solution of the LP model is not neessary.

Advaned LP approah

The most serious drawbak of the previously mentioned approah is that the mathematial

model needs to be formulated at eah subproblem, taking a lot of CPU time, while the LP

itself does not provide a sharper bound than the longest path approah. There is, however,

a more sophistiated way of using an LP for LW and ZW poliies, as suggested in subsetion

2.3.3.
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Instead of formulating a separate LP model for eah subproblem, the LP relaxation of

the whole preedene based model an be built for the root subproblem immediately. Then,

at eah deision, this model is opied, and some of the binary variables are �xed by hanging

their upper or lower bounds.

Though, these models are muh bigger than the formerly introdued ones, their bitwise

opying and modifying some variable bounds takes less time than building up the same

model from srath. Moreover, as they have the same number of variables and onstraints,

the solution of the parent LP model an be used as a starting basis for the dual simplex

algorithm. Finally, the solution of these models provide a tighter bound than the longest

path algorithm itself.

Note that similarly to the original approah, there is no need to opy the LP relaxation,

modify and solve it if the shedule graph ontains a yle or the longest path is higher than

the urrent upper bound.

Moreover, as the models at the subproblems are the same exept for the bounds on

variables, it may be more bene�ial not to opy the model, but use it as a global variable,

and adjust the bounds at eah subproblem.

5.2 Combinatorial approah with negative weighted ars

As it has already been mentioned, the less-or-equal type onstraints in the form of T start
1 ≤

T start
2 +tproc an easily be onverted to a greater-or-equal form: T start

2 ≥ T start
1 +(−tpt). This

transformation, however, introdues non-positive weights on the ars. This idea has already

been used in for the Alternative graph model to model similar situations [88, 98, 24, 25, 22,

21℄

The limited waiting times an easily be modeled by negative weighted ars. If there is

a task i with proessing time t
pt
i , and maximal waiting time tmaxwait

i , then two reipe ars

should be inserted into the S-graph as illustrated in Figure 5.1:

• An ar with weight t
pt
i from i to its subsequent task(s).

• An ar with weight −t
pt
i − tmaxwait

i from the subsequent task(s) of i to i.

It is obvious to see that these ars express exatly the desired onstraints. In the �gure

the interval in whih task i′ an start (from T start
i + t

pt
i to T start

i + t
pt
i + tmaxwait

i ) is indiated

by blue olor on the time axis.

There are, however, some aspets of the algorithm that must be taken are of with the

introdution of these ars.

• The longest path algorithm must be adjusted aordingly. As the urrent implemen-

tation maintains a longest path matrix throughout the algorithm, there is no need to

hange anything with this.
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Figure 5.1: Modeling LW poliy with negative weighted ars
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• Even the reipe graph will immediately ontain several yles. Their weight is negative,

or in the ase of ZW ars, 0. Naturally, negative weighted yles are not of great

interest. They an simply be disregarded. However, the 0 weighted yles need extra

are, as some of them only represent a ZW onnetion, while the others model a ross

transfer (See setion 3.2). The algorithm must be modi�ed in order to report only

those zero-weighted yles that do not have reipe ars in them.

5.3 Combinatorial approah without negative weights

In this setion two approahes are desribed to takle ZW poliy. LW stages are not on-

sidered, but they an be addressed via a modeling transformation desribed in the last

subsetion.

As brie�y disussed before, a shedule an belong to one of the three groups listed below:

UW infeasible These shedules would be infeasible for the UW relaxation of the

problem as well.

ZW infeasible, UW feasible These shedules are feasible for the UW relaxation

but they violate ZW onstraints

ZW feasible These shedules are feasible for the problem.

The original S-graph algorithm fails to di�erentiate the shedules in the seond group

from the ones in the third. It does, however, eliminate all the shedules in the �rst group.

In order to identify shedules in the seond group, the approah desribed in the previous

setion introdued additional, negative weighted ars to the problem. The shedules in the

seond group would result in a non-negative weighted yle by using that approah, whih

onsists of two type of alternating parts:

• "Forward", positive ars belonging to either UW or ZW intermediates

• "Bakward", negative weighted ars of ZW stages

An example is given in Figure 5.2 with both the shedule graph and the orresponding Gantt

hart. The same shedule is infeasible if the outputs of tasks i1, i2, and i3 have ZW poliy,

as shown in Figure 5.3. The path indiated by thik ars has a weight of 6, whih is longer

than the ZW path from i2 to i4, thus it results in a positive yle.

5.3.1 Reursive searh

Even if the negative weighted ars are not inserted to the S-graph, the positive weighted

yles an be identi�ed by a searh[50℄. Suppose that a partial shedule is ZW feasible, and

a new shedule ar is just inserted to the graph. Obviously, if the partial shedule is now

ZW infeasible, the newly added ar must be part of the non-negative yle.
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Figure 5.2: Feasible UW shedule

Figure 5.3: Infeasible ZW shedule
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Even without the negative ars, this yle ould be found by a simple approah: from

the endpoint of the new ar, it has to be heked reursively whether the starting point

of the shedule ar is reahable via "forward" and "bakward" steps with a non-negative

weight or not.

1

The algorithm for that searh is given in blok 5.1.

This approah basially heks the existene of a non-negative yle instead of main-

taining the extended longest-path matrix of the previous approah. The algorithm looks for

suh nodes in the S-graph in a reursive way, whose starting time an be bounded with the

starting time of id (the destination of the newly inserted shedule ar) from below. Nodes

like that are added initially to the set Unexamined together with their lower bounds. In

eah iteration a node is seleted from Unexamined, and if is (the soure of the newly in-

serted shedule ar) is found among them with greater or equal lower bound then −c (c

is the weight of the newly inserted shedule ar) then the algorithm has found a positive

weighted "yle", and the partial shedule is infeasible. Otherwise, the node-bound pair is

added to Examined and the neighbor verties are added to Unexamined. The �rst for all

loop adds the verties that are subsequent via a ZW or UW ar, and the seond loop looks

bakwards with only ZW ars. In both of the loops three ases are investigated, and the

sets are modi�ed aordingly: i) when the node does not appear in either Unvexamined or

Examined; ii) The node is waiting to be seleted from Unexamined but with a weaker lower

bound found on a di�erent path previously; and iii) when the node was already examined

but with a weaker bound. When all of the neessary nodes are examined, and no violation

is reported, the feasibility of the partial shedule is ensured.

Note that this approah an easily be extended to LW poliy by using the sum of the

proessing time, and maximal waiting time instead of w(i′, i) in the seond loop. Though

the model does not need to be extended with negative-weighted ars, this funtion an take

up a lot of pu time during the optimization.

A way of aelerating this approah is to diretly add the longest paths between those

pairs, where this path is non-negative.

This tehnique is illustrated in Figure 5.4. The �gure represents a part of a partial

shedule, where the shedule ar (i10, i6), indiated by blue olor is reently added to the

graph by adding i6 to the proessing queue of j3 after i9. Some of the additional ars that

an be inserted by the algorithm are shown in the �gure with green olor. As an example,

the ar between i9 and i5 with weight 3 is justi�ed, as there is a "forward path" from i9 to

i6 via i10, thus i6 must start at least 6 time units later than i9. Moreover, i5 an not start

more than 3 time units earlier than i6, i.e., it must start at least 6− 3 = 3 time units later

than i9.

1

If the shedule ar has the weight of c a path with the weight of at least −c is enough of ourse.
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Algorithm 5.1 Finding non-negative path between two verties for deteting ZW infeasi-

bility

zw_feasibility_test(G(N,A1, A2, w), i
s, id, c)

G(N,A1, A2, w) partially sheduled graph

is soure of the newly inserted shedule ar

id destination of the newly inserted shedule ar

c weight of the newly inserted shedule ar

Unexamined := {(id, 0)}
Examined := ∅
while Unexamined 6= ∅ do
Selet (i, wi) ∈ Unexamined arbitrary

if i = is ∧ wi ≥ −c then

return false

end if

Unexamined := Unexamined \ {(i, wi)}
Examined := Examined ∪ {(i, wi)}
for all (i, i′) ∈ A1 ∪A2 do

if ∄(i′, w′) ∈ Unexamined ∪ Examined then

Unexamined := Unexamined ∪ {(i, wi + w(i, i′))}
else if ∃(i′, w′) ∈ Unexamined ∧ w′ < wi + w(i, i′) then
Unexamined := Unexamined \ {(i′, w′)} ∪ {(i, wi + w(i, i′))}

else if ∃(i′, w′) ∈ Examined ∧ w′ < wi + w(i, i′) then
Examined := Examined \ {(i′, w′)}
Unexamined := Unexamined ∪ {(i, wi + w(i, i′))}

end if

end for

for all (i′, i) ∈ A1, where (i′, i) is a ZW ar do

if ∄(i′, w′) ∈ Unexamined ∪ Examined then

Unexamined := Unexamined ∪ {(i, wi − w(i′, i))}
else if ∃(i′, w′) ∈ Unexamined ∧ w′ < wi − w(i′, i) then
Unexamined := Unexamined \ {(i′, w′)} ∪ {(i, wi − w(i′, i))}

else if ∃(i′, w′) ∈ Examined ∧ w′ < wi − w(i′, i) then
Examined := Examined \ {(i′, w′)}
Unexamined := Unexamined ∪ {(i, wi − w(i′, i))}

end if

end for

end while

return true
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Figure 5.4: Aeleration by inserting additional ars in the graph

5.3.2 Auxilary graph

The key idea behind the approah to be desribed in this setion lies in the fat that the

starting time of a task determines the starting time of all other tasks, whih are "ZW-

onneted" to it, i.e., they are onneted via one or several ZW stages. As an example, if

the starting time of task i11 of Figure 5.4 is deided, so is the starting time of i10 and i12.

In this approah, the tasks are assigned to ZW lasses before the optimization proedure

starts. Let these lasses be denoted by Z1, Z2, . . . . Two tasks belong to the same lass if

and only if they are onneted by a sequene of ZW ars. For simpler notation, the lass

of task i is denoted by Z(i). Moreover, eah lass has a "referene" task that is hosen

arbitrary, and denoted by i(Zk). If task i belongs to the lass with the referene task i∗ ,

i.e., i ∈ Z(i∗), then a relative distane, d(i) is alulated for i that is the signed sum of the

weight of the ZW ars onneting i and i∗. (Starting from i∗, the ars taken forward ount

as positive, the ones used bakwards ounts as negative.)

Finally, a new direted graph is onstruted: G∗ = (Z, A, w∗), where

Z is the set of ZW lasses

A = {(Z,Z ′) | Z,Z ′ ∈ Z ∃(i, i′) ∈ A1∩Z×Z ′}, i.e., there is an ar between those ZW

lasses, where there is a reipe ar between any of their tasks.

w(Z,Z ′) = max(i,i′)∈A1∩Z×Z′(d(i) + w(i, i′) − d(i′)), is the weight on the ar between

Z and Z ′
if exists. It de�nes the relative minimal delay between the referene
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points of the two ZW lass.

An example for the reipe of the problem from Figures 5.2 and 5.3 is given in Figure 5.5.

Figure 5.5: Example for the graph of ZW lasses onstruted from the reipe

There are three ZW lasses indiated by olors green, red, and magenta, respetively.

The �rst one ontains 4 tasks, while the others are singletons. The referene points are

indiated by thik lines in the reipe graph. Initially, there is only one ar, between Z2 and

Z3 with weight 6 due to the reipe ar between i5 and i6.

After this graph has been reated, the optimization proedure an start. At eah itera-

tion, when a new shedule ar (i, i′) or (p, i′) is added to the shedule graph with the weight

of c, the following has to be done:

• If Z(i) = Z(i′) and d(i) + c > d(i′), then the partial shedule is ZW infeasible, it has

to be pruned from the B&B tree.

• If Z(i) 6= Z(i′), then add (Z(i), Z(i′)) to A with the weight of d(i) + c− d(i′). If there

was a previous ar between these two verties, the one with the higher weight is to be

kept.

2

• If the shedule ar starts from a produt, i.e., (p, i′) is inserted, then for all (i, p) ∈ A1

the previous two steps are to be followed, as if the ar (i, i′) would have been inserted

with the weight w(i, p) + c.

• If the graph G∗
ontains a direted yle with non-negative weight, the shedule is ZW

infeasible.

2

Deleting the one with the smaller weight is optional, it does not hange the soundness of the approah.
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Using the shedule from Figure 5.3, the graph G∗
will be extended by 3 additional

ars, as shown in Figure 5.6. It is easy to see, that there is a yle of weight 1 between

Z1 → Z2 → Z3 → Z1, whih indiates the infeasible shedule.

Figure 5.6: Example for the extended graph of ZW lasses based on a shedule

5.3.3 Model-level onversion of LW problems to ZW

The approahes in the previous two subsetions were developed to solve problems where eah

material has either ZW or UW poliy. As it has been noted at the �rst approah, they an

be modi�ed to takle LW poliy as well. There is, however, an other way of solving problems

with LW poliy. After a simple transformation on the reipe graph, these approahes an

solve the problems without any modi�ations.

The key idea behind the method is introduing additional verties and ars for eah LW

task. If there is a LW material between tasks i and i′, then two additional verties are

inserted into the graph, i_c and i_w whih represents the ompletion and the weiring of

the LW material respetively, as shown in Figure 5.7. Moreover, several ars are inserted

into the graph:

(i, i_c) is a ZW reipe ar with the weight of tpr,i.e., the proessing time of i. This ar

ensures, that the ic, i.e., the ompletion of the intermediate material is exatly

tpr later than the start of the exeution of task i. Similarly,

(i_c, i_w) is a ZW reipe ar with the weight of tw, that is, the maximal waiting

time possible after the ompletion of the intermediate.

(i_c, i′), (i′, i_w) are zero-weighted shedule ars that ensure that i′ must start be-

tween the ompletion and wearing of the intermediate.
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(i, i′) is a UW reipe ar with weight of tpr. This ar is needed so that the shedule

ar towards the task that follows i in the same unit ould start from i′ not only

from i_c.

Figure 5.7: Example for model transformation of LW stages

5.4 Comparison of approahes

The e�ieny of the algorithms from the previous setions is illustrated on a literature

example. The example features 5 di�erent sequential produts and 6 units to be sheduled.

The reipe graph for the example is shown in Figure 5.8.

Figure 5.8: Example for the omparison of LW/ZW approahes

For the sake of the omparison, eah intermediate is assumed to have ZW storage pol-

iy. The investigated algorithms were ompared on 14 di�erent on�gurations with bath

numbers.

These algorithms are:

sLP is the simple LP approah

aLP is the advaned LP approah that opies the model for eah subproblem
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aLP' is the advaned LP approah that uses only one model as a global variable

Neg is the approah with negative weighted ars

Re is the approah relying on the reursive searh

Re+ is the reursive approah with the extended positive ar additions

Eah test run were set within a 1000 s time limit. For the 11 smaller on�gurations,

the approahes have not reahed this limit exept for ouple of ases, and were able to �nd

the optimal solution. The data for the CPU times of the approahes are given in detail in

Setion C.2, and illustrated in Figure 5.9

Figure 5.9: CPU time of ZW/LW approahes for the smaller ases

The LP based approahes were usually 1 or 2 magnitudes slower than the ombinatorial

approahes, among whih the negative ar based proved to be the most e�ient.

For the 3 larger on�gurations all of the approahes have reahed the 1000 seond time

limit, and thus stopped. For these ases the omparison of the quality of the best found
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(probably suboptimal) solution is important, and shown in Figure 5.10. The �gure also

inludes the 2 largest on�gurations from the previous ones, where the LP based approahes

have reahed the limit.

Figure 5.10: Quality of reported solutions of ZW/LW approahes for the larger ases

The aLP' approah ould not even report a feasible shedule for the larger ases. The

best solutions were reported by the negative ar based approah. The extended reursive

approah had very lose results. The other approahes �utuated.

In general, it an be stated that the most favorable approah seems to be the one using

negative weighted ars.

Summary and onluding remarks

The original algorithms of the S-graph framework was developed for Unlimited Wait storage

poliies. In this hapter, di�erent options of extending the framework for Limited- and Zero-

Wait storage poliies has been presented and investigated. These options were implemented
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and ompared on a wide set of examples in terms of omputational needs. The results showed

that an extended model with negative-weighted ars, and slightly modi�ed algorithms is the

most e�ient option.
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Chapter 6

Maximizing expeted pro�t in a

stohasti environment

In Chapter 4 the general algorithm for throughput maximization was introdued. For many

problems, however, several parameters of these types of problems are not deterministi.

Pistikopoulos et al.[104℄ gave a lassi�ation of stohasti sheduling problems based on the

soure of the unertainty in the proess. In a hanging market environment, for example, the

prie and marked demands an usually be onsidered stohasti. Both of these values an

have impat on the overall pro�t, as in ase of a overprodution, for example, the storage

of the surplus may result in additional expenses.

Obviously, in suh unertain irumstanes, it beomes ambiguous whih solution an

be onsidered as optimal: the most robust one, or the one with highest expeted pro�t, et.

Li and Ierapetritou [76℄ gave an extensive review of the approahes that deal with di�erent

types of unertainties in bath proess sheduling. Without attempting to be omprehensive,

the three main diretion of researh is illustrated in Figure 6.1.

Figure 6.1: Classi�ation of approahes dealing with unertainty

Preventive sheduling In this diretion of researh[72, 14℄, the shedule must be

given a-priori, and annot be modi�ed after the system starts, or the realization

of unertain events. If there is no information about the probability distribution

87
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of the unertain parameters, a reasonable objetive ould be a prodution shed-

ule, that exeeds a ertain pro�t, and have the highest level of robustness. On

the other hand, an estimation about the probability distribution gives room for

optimization towards the highest expeted pro�t.

Reative sheduling Reative approahes[92℄ assume an existing shedule, whih

gets disturbed by some unertain event. The objetive is to modify the rest

(unexeuted part) of the shedule in a way, that leads to the best available per-

formane. Unlike in the previous ase, the optimization is arried out, when the

system is already running, thus usually there is a very limited amount of time

to deliver the solution. As a result, heuristis are often favored for this pur-

pose. On the bright side, the approah does not have to deal with any unertain

parameters, as they are already realized.

Two- and multistage approahes In a two-stage optimization approah[59℄, it is

assumed that there are some deisions that must be done prior to the start of the

system, however, some deisions an be altered later. As an example, a shedule

may has to be deided in advane, but the load of the units an be adjusted

after the unertain parameters our. In a multi-stage approah, this onept is

generalized, and it is not assumed, that all of the unertain events realize at the

same time.

Naturally, there are a lot of developments, whih do not �t into these three ategories,

some approahes, e.g., ombine preventive and reative sheduling. Sensitivity analysis in

itself is a broad area to researh, but it an also partiipate as a subroutine for preemptive

sheduling, espeially in ase of heuristi approahes.

The following setions introdue an S-graph based approah for the sheduling of through-

put maximization problems onsidering unertain ost and demand parameters with disrete

probability distribution funtions. Setion 6.1 gives an exat de�nition of the problems to

be solved, and Setion 6.2 and 6.3 presents the S-graph approahes to address this set of

problems. In Setion 6.4 an extension is shown to ontinuous probability distribution fun-

tions. Last, Setion 6.5 illustrates some of the algorithms via an example, and draws some

onlusions.

6.1 Problem de�nition

The problems to be solved are given by similar parameters to those of a general throughput

maximization problem, i.e., eah produt is given with its reipe, along with the set of

equipment units and the time horizon. At this point it is assumed that there is a one to one

relation between produts and reipes, i.e., there is no reipe produing multiple produts,

and there are no two di�erent reipes produing the same produt.
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There is, however, a set of unertain parameters for eah produt, whose probability

distribution is disretized into joint senarios. Thus, for eah disrete senario the following

parameters are given:

• probability of the senario

• for eah produt:

� prie for one bath

� demand

� over- and underprodution ost

The objetive is to make deision about the number of bathes and provide a feasible

shedule in way to ahieve maximal expeted pro�t. Note that it is assumed that if the

atual prodution is higher than the demand, the surplus is not sold.

1

Based on the possible deisions related to the sizes of eah bath, three di�erent problems

are identi�ed:

Preventive problem with �xed bath sizes when the bath size for eah produt

is given, and the only preventive deision to be made is to deide the number of

bathes for them.

Preventive problem with variable bath sizes is a more �exible version of the

previous problem, where not only the number of bathes, but also their sizes an

be altered in advane before the unertain events realize.

Two stage problem where the bath numbers have to be deided in advane, but

the bath sizes an be altered aordingly after the unertain events realized.

Setion 6.2 introdues the approahes that an solve these three di�erent problems. In

Setion 6.3, these approahes are extended to takle ases, when a reipe an produe several

produts, and the same produts an be produed by several reipes.

2

.

6.2 S-gaph based approahes

The three approahes to solve the problems presented in the previous setion are all based

on the throughput maximization algorithm presented in Setion 4.1. The main algorithm

that examines di�erent bath size on�gurations and the feasibility tester an remain the

same, as in the ase of the general throughput maximization problems. The subroutines to

selet a on�guration and to update the set of open on�gurations an be altered in order to

1

Taking the opposite assumption would not alter the struture of the algorithm, the same approahes

would be appliable with modi�ed input parameters.

2

The approah for the preventive version of this ase has been published in the literature[72℄
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ahieve higher e�ieny, however, any of the previously mentioned implementations would

su�e.

The key di�erene between the di�erent approahes is the revenue funtion, that should

provide the expeted pro�t, or the highest expeted pro�t for a on�guration, as it will be

disussed in the following subsetions.

In order to simplify these desriptions, the following additional notations will be used

throughout this hapter next to the ones used previously:

P the set of produts

bp the number of bathes for produt p in the atual on�guration

sp the size of a bath for produt p (for the �rst ase)

smin
p , smax

p the minimal and maximal size of a bath for produt p (for the seond and

third ase)

S the set of senarios

probs the probability of senario s ∈ S

dems,p the demand for produt p in senario s ∈ S

prices,p the prie of p in senario s ∈ S

ocs,p, ucs,p the over- and underprodution ost of p in senario s ∈ S

For further simpli�ation, the funtion Profits,p(x) is introdued, that gives the pro�t

for x amount of produt p in senario s. The funtion is alulated as follows:

Profits,p(x) =







prices,p · x− (dems,p − x) · ucs,p if x < demands,p

prices,p · dems,p − (x− dems,p) · ocs,p otherwise

6.2.1 Preventive sheduling with �xed bath sizes

In this ase, the only deision to be made is the number of bathes for eah produt, i.e.,

�nding the optimal feasible on�guration for the number of bathes. Thus, there is no

deision to be made for a single on�guration, and the alulation of the expeted pro�t is

rather simple:

∑

s∈S

(

probs ·
∑

p∈P

Profits,p(sp · bp)

)

As this revenue funtion is really simple to evaluate, the update funtion an similarly

remove the bath number on�gurations that do not provide higher expeted pro�t than

the urrent best solution. In order to do this the revenue funtion of eah on�guration



6.2. S-GAPH BASED APPROACHES 91

need to be alulated in advane, as the on�gurations having the same expeted pro�t do

not lie on a line, plane, et. Moreover, if these values are alulated in advane, the list of

open on�gurations an be ordered in dereasing order, and it ould be an e�ient seletion

strategy to �nd the �rst feasible on�guration there. This tehnique requires, however, that

the number of open subproblems should be �nite, so the initial steps desribed in Subsetion

4.2.1 must be arried out.

An additional modi�ation an be applied here: as the bath number of a produt has

no in�uene on the number of bathes for an other produt, and thus on its pro�t, the initial

steps along the axises an also stop, when the revenue funtion stops inreasing. To bak

this statement, the above expression is reformulated in this equivalent form:

∑

p∈P

(

∑

s∈S

probs · profits,p(sp · bp)

)

The expression in the braes is the expeted pro�t of sp · bp amount of produt p. As

this expression will be used in the following subsetion as well, an additional notation

ExpProfitp(x) is introdued:

ExpProfitp(x) =
∑

s∈S

probs · profits,p(x)

Note that the expeted pro�ts given by the di�erent produts are independent, as none

of them shares a reipe. Thus, if there are two on�gurations with the same number of

bathes for a ertain produt, inreasing or dereasing it will have the same e�et on the

expeted pro�t, regardless of the number of bathes from the other produts.

In order to prove the soundness of the aforementioned initial on�guration seletion

strategy, it has to be shown, that the ExpProfit funtion will never inrease, after it started

dereasing. It is easy to see that ExpProfit is a ontinuous, pieewise linear funtion, thus

it is enough to show, that the slope is always dereasing. At minus in�nity the slope is

∑

s∈S probs · (prices,p + ups,p), and when the funtion passes a demand value, dems, the

slope dereases by prices,p + ups,p + ops,p. As all these three parameters are onsidered to

be non-negative, the above mentioned tehnique is justi�ed.

6.2.2 Preventive sheduling with variable bath sizes

Unlike in the previous ase, the number of bathes does not determine the amount of the

produt to be produed, it is another deision to be made by the optimizer. For eah bath,

the amount should be between smin
p and smax

p . Without the loss of generality, it an be

assumed that the bathes belonging to the same produt have the same bath size, as all

the other solutions an be onverted to suh without hanging the expeted pro�t.

Thus, the only deision to be made at a bath number on�guration is hoosing the

amount of produt, xp to be produed from the interval [bp · smin
p , bp · smax

p ]. Sine the
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produts are still independent from eah other, and the expeted pro�t an be expressed as

∑

p∈P ExpProfitp(xp), xp needs to be the maximizer point of ExpProfit in the [bp ·s
min
p , bp ·

smax
p ] interval.

As it was disussed in the previous subsetion, ExpProfit is a pieewise linear funtion

with dereasing slope, thus the funtion takes its maximal value at one of the demand values,

let it be dems′ .
3

Now, the seletion of the optimal xp is straight-forward:

xp(bp) =



















bp · s
max
p if bp · s

max
p < dems′

dems′ if bp · s
min
p ≤ dems′ ≤ bp · s

max
p

bp · s
min
p if bp · s

min
p > dems′

After identifying the xp values for all bp, the same initialization tehnique, and bath

number on�guration seletion strategy an be used as in the previous ase.

6.2.3 Two stage approah

In the previous subsetion, the amount of produt p to be produed, had to be given a

priori. In this setion it is assumed, that this deision an be made after the realization

of the unertain events, i.e., when the senario is already known. For a bath number

on�guration, the value of the produed amount will depend on the senario to happen. Let

it be denoted by xs,p.

Seletion of xs,p is straight forward:

xs,p(bp) =



















bp · s
max
p if bp · s

max
p < dems

dems if bp · s
min
p ≤ dems ≤ bp · s

max
p

bp · s
min
p if bp · s

min
p > dems

Based on this, the expeted pro�t for a bath on�guration an be alulated as follows:

∑

p∈P

(

∑

s∈S

probs · Profit(xs,p(bp))

)

Again, the alulation is rather simple, and an be arried out in advane, in order to

generate an ordered list of bath number on�gurations.

3

If a slope beomes 0, there are in�nitely many maximizer points, in this ase any of them an be

arbitrary hosen instead of dems′ .
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6.3 Extended approahes for reipes with multiple prod-

uts

In this setion the assumption on the one-to-one relation between produts and reipes

is expunged, whih - as it will be shown later - brings an additional omplexity in the

optimization proess. For the sake of simpler desription of the approahes, the following

additional notations are introdued:

R set of reipes

Pr set of produts produed by reipe r ∈ R

Rp set of reipes produing produt p ∈ P

br the number of bathes for reipe r ∈ R in the atual on�guration

sr,p the maximal amount of p ∈ P that an be produed with the reipe r ∈ R

minr the minimal proportion ratio on whih the reipe r ∈ R an be exeuted

Several reipes produing the same produt often appear when they are generated with

the algorithm desribed in 4.3. However, this does not inrease the omputational omplexity

in any way if there are no reipes produing several produts, as the approahes remain sound

by the following modi�ations.

• In the preventive ase with �xed bath sizes, the produed amount is

∑

r∈Rp
br · sr,p

instead of bp · sp,

• In the other two ases the interval from whih xp and xs,p should be hosen is

[

∑

r∈Rp
minr · br · sr,p,

∑

r∈Rp
br · sr,p

]

. Based on the xp and xs,p values, the sizes of

the bathes for the routes an be alulated.

The key point is, that even though the reipes are not homogeneous for a produt, the

produed amounts are still independent. This, however, does not remain true when a reipe

is produing several di�erent produts. Inreasing the bath size to satisfy the demands of

a produt an ause additional osts if there is a surplus already from the other produt

produed in the same reipe.

6.3.1 Preventive sheduling with �xed bath sizes

When the bath sizes are �xed, there is no additional deision to be made, just as in the

previous setion. The expeted pro�t an be evaluated and returned.
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6.3.2 Deterministi sheduling for variable bath sizes

Before investigating the stohasti ase, it is advantageous to solve the problem with omplex

reipes for the deterministi ase, i.e., given a bath number on�guration and the value of

demand, prie, over- and underprodution ost parameters, what are the optimal bath sizes

to maximize the pro�t.

This question already requires more sophistiated tools, it an be answered by using

an LP model for example. The ontinuous non-negative xr variables represent the deision

about the sizing of all of the reipes of type r. These variables must take values between

the possible range of a reipe, i.e.,

minr ≤ xr ≤ 1 r ∈ R

Two additional variables are introdued: xop
p , x

up
p for the over- and underprodution of

eah produt, respetively.

Having these variables, the following goal programming onstraints express the relation

between the produed amount of a produt, the over- and underprodution and the demand:

xup
p − xop

p +
∑

r∈Rp

br · sr,p · xr = demp ∀p ∈ P

For the sake of simpler desription, an additional variable an be introdued for the

produed amount of a produt that will not make the model more omplex, as it is a linear

ombination of the previous variables:

xpr
p =

∑

r∈Rp

br · sr,p · xr p ∈ P

And then the objetive funtion an be expressed as:

∑

p∈P

((xpr
p − xop

p ) · pricep − xop
p · ocp − xup

p · ucp) → max

Note, that the number of variables is equal to the number of reipe types plus twie

the number of produts

4

, whih is usually small, thus solving this LP model at eah bath

number on�guration does not require a vast amount of time.

6.3.3 Preventive sheduling with variable bath sizes

In the stohasti ase when there are several senarios, with di�erent parameters and prob-

abilities, the model must be hanged, as follows:

The xr (and thus the xpr
p ) variables remain the same, as they are �rst-stage, and the

4

not ounting the xpr
p variables, as they are removed immediately by the LP solver.
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following onstraints are also unaltered:

minr ≤ xr ≤ 1 r ∈ R

xpr
p =

∑

r∈Rp

br · sr,p · xr p ∈ P

The over- and underprodution, however, will be di�erent for eah senario, thus the

introdution of variables xop
s,p and xup

s,p is neessary. The balane onstraint must be hanged

aordingly:

xup
s,p − xop

s,p + xpr
p = dems,p ∀s ∈ S, p ∈ P

Similarly, the objetive funtion must express the expeted pro�t, thus:

∑

s∈S

probs ·
∑

p∈P

((xpr
p − xop

s,p) · prices,p − xop
s,p · ocs,p − xup

s,p · ucs,p) → max

The number of ontinuous variables inreased to |R| + 2 · |S| · |P |, thus, as the number

of senarios inrease, i.e., disretization gets smoother, the LP models got more di�ult

to solve. It would need, however, a large number of senarios to make this solution time

omparable to that of the feasibility test of a bath number on�guration.

It is possible to redue the searh spae of the LP models by eliminating a simple redun-

dany: sine the size of the bathes for eah reipe an be hosen between minr and 1, it is

possible in two neighbor on�gurations (only one of the bath numbers di�ers by 1) to have

the same LP optima, with the same xpr
p values. The values taken by the xr variables are of

ourse di�erent, but the solution is essentially the same, the bigger on�guration is produ-

ing the same amount of produts with more and less loaded bathes. If no other parameters

are inluded (load dependent energy ost, leaning osts after a ertain amount of idle state

of a unit, et.) there is no rational reason for the solution with the larger on�guration, as

its shedule (if even feasible) would be more dense with providing the same expeted pro�t.

This type of redundany ould be avoided by a simple inequality:

xr ≥
br − 1

br
r ∈ R

6.3.4 Two stage approah

When the sizes of the bathes an be deided after the realization of the senario, the

orresponding variables beome seond-stage, i.e., xs,p is introdued, and the onstraints,

objetive funtion must hange aordingly:

minr ≤ xs,r ≤ 1 s ∈ S, r ∈ R

xpr
s,p =

∑

r∈Rp

br · sr,p · xs,r s ∈ S, p ∈ P
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xup
s,p − xop

s,p + xpr
s,p = dems,p ∀s ∈ S, p ∈ P

∑

s∈S

probs ·
∑

p∈P

((xpr
s,p − xop

s,p) · prices,p − xop
s,p · ocs,p − xup

s,p · ucs,p) → max

The number of LP variables in this ase is |S| · (|R| + 2 · |P |), and the spae redution

tehnique from the previous subsetion annot be applied here.

6.4 Continuous probability distribution

In many appliations, the stohasti parameters are not given by a disrete distribution

funtion, but with a ontinuous one, e.g., normal or uniform distribution. In this ase,

an option is to disretize this funtion, and use the approahes desribed in the previous

two setions. In this ase, the disretization must be smooth in order to ahieve aurate

results. However, too large number of disrete senarios may inrease the omputational

needs signi�antly, espeially in the ase of the two-stage approah with omplex reipes.

Another way is to takle the problem diretly in its ontinuous form.

In this setion the following assumptions are taken:

• Several reipes may produe the same produt, but no reipe produes several prod-

uts.

• The only stohasti parameters are the demands for eah produts, whih are given

by invertible umulative distribution funtions.

• The pries, over- and underprodution osts are deterministi.

The approahes to solve problems with this type of unertainty are similar to that of the

approahes in Setions 6.2 and 6.3, as they rely on the same evaluation of bath number

on�gurations, and an altered revenue proedure.

6.4.1 Preventive ase with �xed bath sizes

If the bath sizes are �xed, there is no further deision to be made for a bath number

on�guration, the expeted pro�t for a bath on�guration an be alulated based on the

following expression:

∑

p∈P

(

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ ∞

d=xp

f(d) · (xp · pricep − (d− xp) · ucp) dd

)

Where xp is the produed amount from produt p, and as previously,xp =
∑

r∈R sp,r · br,

and f is the probability distribution funtion of the demand.
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6.4.2 Preventive ase with �exible bath sizes

If the bath sizes are �exible, it is not trivial to hose the load with maximal expeted

pro�t. Fortunately, the purpose of the Newsvendor model [29, 10℄ is to takle a similar

problem, where a vendor must deide on the amount of a produt to be produed (x),

without knowing the exat demand (d) for it, only its umulative probability distribution

funtion (F ).5 There is a ost of produing a single produt (c), and a prie for whih it

an be sold (p). The expeted pro�t an be expressed as:

E (p ·min(x, d))− x · c

In this ase, the value of x for whih the above expression takes its maximal value is:

x∗ = F−1

(

p− c

p

)

The newsvendor model an be extended with a salvage value s for the surplus prodution,

hanging the expeted pro�t to:

E (p ·min(x, d)) + E (s ·max(x− d, 0))− x · c

In this ase the optimal quantity to be produed is at

x∗ = F−1

(

p− c

p− s

)

Note, that this ase in fat has the same omplexity as the previous one. Inreasing all

the parameters (p, c, s) with the same value, the expeted pro�t, and the optimal solution

will not hange. In the simpler model, the ost of the surplus prodution is c, whih is

equivalent of the overprodution ost in our ase. The pro�t for the prodution below the

demand is p− c, from these:

• p = pricep + ocp

• c = ocp

This reformulation is equivalent to the original problem, exept that the underprodution

ost is not onsidered. Obviously, the newsvendor model an be applied if ucp = 0, but that

was not assumed in the problem de�nition above.

If ucp = 0, the problem an be onverted to a nearly equivalent one:

• oc′p = ocp

• uc′p = 0

• price′p = pricep + ucp

5

This funtion is assumed to be invertible.
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In this altered problem, there is no underprodution ost, and the expeted pro�t after

hoosing to produe xp amount of p is:

∫ xp

d=0

f(d) · (d · price′p − (xp − d) · oc′p) dd+

∫ ∞

d=xp

f(d) · (xp · price
′
p − (d− xp) · uc

′
p) dd

=

∫ xp

d=0

f(d) · (d · (pricep + ucp)− (xp − d) · ocp) dd+

∫ ∞

d=xp

f(d) · (xp · (pricep + ucp)) dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ xp

d=0

f(d) · d · ucp dd

+

∫ ∞

d=xp

f(d) · (xp · pricep + xp · ucp)) dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ xp

d=0

f(d) · d · ucp dd

+

∫ ∞

d=xp

f(d) · (xp · pricep + d · ucpxp · ucp − d · ucp)) dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ xp

d=0

f(d) · d · ucp dd

+

∫ ∞

d=xp

f(d) · (xp · pricep + (d− xp) · ucp) dd+

∫ ∞

d=xp

f(d) · d · ucp dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ ∞

d=xp

f(d) · (xp · pricep + (d− xp) · ucp) dd

+

∫ xp

d=0

f(d) · d · ucp dd+

∫ ∞

d=xp

f(d) · d · ucp dd

=

∫ xp

d=0

f(d) · (d · pricep − (xp − d) · ocp) dd+

∫ ∞

d=xp

f(d) · (xp · pricep + (d− xp) · ucp) dd

+

∫ ∞

d=0

f(d) · d · ucp dd

This expeted pro�t di�ers only by

∫∞

d=0
f(d) ·d ·ucp dd from the original expeted pro�t,

and it is not dependent on xp. Thus, this problem will take its maximum for exatly the

same values as the original. Subsequently, the newsvendor model an be applied with the

following parameters:

• p = price′p + oc′p = pricep + ocp + ucp

• c = oc′p = ocp

And thus, the optimal amount for prodution is:

x∗ = F−1

(

pricep + ocp + ucp − ocp

pricep + ocp + ucp

)

= F−1

(

pricep + ucp

pricep + ocp + ucp

)

= F−1

(

1−
ocp

pricep + ocp + ucp

)
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6.5 Test results and oments

In this setion the algorithms with multiple produts and disrete senarios are illustrated

via the same example, that has been used in Setion 4.3 and Subsetion 4.4.3.

The STN reipe for the problem is shown in Figure 1.5 with stoihiometri data. As

disussed in Setion 4.3, 6 di�erent �xed reipes an be generated based on the apaities

of the four available units. These reipes and their maximal revenue are shown in Figure

4.5, onsidering 10 u/kg prie

6

for both of the produts.

In the stohasti ase, it is assumed, that the prie of the produts do not hange in the

di�erent senarios, neither do the under- and overprodution osts, whih are 1.5 and 2.5

u/kg, respetively.

The time horizon is set to 18 hours, and six di�erent senarios are assumed for the

demands of the produts, as given in Table 6.1

Senario Probability

Demand (kg)

P1 P2

SC1 0.167 102.3 174.8

SC2 0.167 148.8 344.2

SC3 0.167 158.6 128.2

SC4 0.167 0.0 225.1

SC5 0.167 72.0 109.1

SC6 0.167 54.6 268.8

Table 6.1: Senarios for the illustrative example

Fixed bath sizes

First it is assumed, that eah bath size is �xed to its maximal apaity. In this ase, the

highest expeted pro�t is 2474.58 u by produing 1 − 0 − 3 − 0 − 1 − 0 bathes from the

six generated reipes.

Flexible bath sizes

If the bath sizes are allowed to be hanged a-priori, the highest expeted pro�t slightly

inreases to 2475.31 u with the on�guration of 1 − 0 − 3 − 0 − 0 − 1 and the bathes of

the third reipe (C) are saled down to 91 perent in average.

The optimal shedule is shown in Figure 6.2.

7

6

"u" stands for ost unit

7

The letters A,C, and F orrespond to the di�erent reipes, while tasks 1,2,3,4,5 are Reation 1, Reation

2, Reation 3, Separation, and Heating respetively.
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Figure 6.2: Optimal preventive solution for the example

Two stage ase

If the sizes of the bathes an be deided after the unertainty realizes, the highest ex-

peted pro�t beomes 2689.87 u. This an be ahieved by seleting the same previous

on�guration, 1− 0− 3− 0− 0− 1.

Remarks

In a realisti industrial situation, this type of optimization problems an our rather fre-

quently, even on a daily basis, whih requires high e�ieny. It has to be noted, however,

that some of the parameters do hange frequently, others very seldomly. In the S-graph based

approah these parts are separated, and addressed with di�erent tehniques as illustrated

in Table 6.2.

Frequently hanging part Permanent part

Market related parameters Tehnology related parameters

(pries, demands, senario parameters, . . . ) (set of produts and units, proessing times, . . . )

Expeted pro�t evaluation Sheduling feasibility test

omputationally easy omputationally di�ult

LP problems and minimum searh S-graph based B&B proedure

Table 6.2: Polarity of the S-graph based approah

This polarity gives rise to the following bene�ial appliation:

1. As an initialization, for all of the on�gurations the optimal makespan is identi�ed via

the S-graph framework within a given time horizon. Based on this horizon, this may

take up a onsiderable amount of time, however, it will never be repeated, until either

the set of the produts, or the tehnology hanges, and that is assumed to happen

seldomly.
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2. At eah ourrene, when a stohasti optimization problem appears, the following

steps need to be exeuted:

(a) The time horizon must be identi�ed, if it is not part of the problem de�nition.

(b) The on�gurations with smaller makespan than the time horizon are seleted

from the database.

() Eah of these on�gurations is evaluated for expeted pro�t using the most reent

market data. This will take at most minutes.

(d) The on�guration with the highest expeted pro�t is seleted, and the orre-

sponding shedule is loaded from the database.

Using this proedure, the di�ult part of the optimization problem must be arried out

only very seldomly, while the frequently hanging market related parts an be addressed

eah day. Also if the optimization has already been arried out, but a more reent foreast

arrives, the algorithms an be quikly exeuted again to have a more aurate estimation,

thus a better solution.

The tests above had been arried out with a similar proedure as well. The 6 dimensional

searh spae was tested for feasibility. After the initialization, the searh spae was redued

to 6400 on�gurations, among whih 318 was tested for feasibility, and 187 were found to be

feasible.

8

In eah of the three ases, these 187 on�gurations were evaluated and a minimum

was found. Even for the most ompliated two-stage LP model, the solution of that 187

LPs took less then 1 minute to solve. This time would obviously inrease, if the number of

senarios grow. However, as a omparison, the deterministi throughput maximization of

this example for just 17 hours ould not be done within 1 hour.

The additional advantage of this proedure is, that the deision maker an see an ordered

list of all of the feasible shedules, and easily selet from them based on other aspets that

may have not been inluded in the model.

Summary and onluding remarks

In this hapter several S-graph based approahes has been presented for maximizing the

expeted pro�t in unertain environments. The algorithms are based on the throughput or

revenue maximization algorithm published in Chapter 4. The algorithms may onsider

• �xed or variable bath sizes

• purely preventive or two-stage problems

• disrete or ontinuous distribution of the unertain parameters

The advantages and apabilities of the approahes were disussed in detail, and illustrated

via a ase-study.

8

The set of feasible on�gurations and the orresponding expeted pro�ts are given in Setion C.3.
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Chapter 7

Generalized S-graph model: the Event

S-graph

The previous hapters have shown that the S-graph framework provides e�ient modeling

and optimization tools for the sheduling of bath hemial proesses. Sine its original

introdution, the framework has been extended to many problem parameters. Due to the

limited apabilities of the original model, some problem parameters are di�ult to be on-

sidered, or it an be done only in a workaround fashion. Setion 7.1 shows some examples.

The existing extensions vary in the way they modi�ed the framework in order to extend

it to several problem parameters. Some of them modi�ed only the algorithms, others altered

the underlying mathematial model too. Having these inhomogeneous, separate extensions

an, however, ause some di�ulties:

Compatibility issues If the trunk framework is developed to several di�erent diretions,

the merge between the di�erent branhes an be troublesome in some ases. This is espeially

true when not only the algorithms are modi�ed, but it has also been neessary to hange

the underlying model.

Implementation and developement software tools If the model is hanging, the im-

plementation needs to be hanged aordingly in order to be e�ient. Development of a

graphial modeling tool beomes also di�ult, as it should be �exible towards unknown

future hanges.

To overome the limits on the modeling apabilities of the S-graph framework, and to

provide a more uniform and generi platform for future developments, the re-thinking and

extension of the S-graph framework is needed. The extension requires a areful review on

the urrent struture of the S-graph framework, inluding its modeling tools, models, and

optimization algorithms. This and the possible ways of future extensions is disussed in

Setion 7.2.

103
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Based on the experienes from these investigations, the developed, new framework is

based on three ornerstones:

Extended model The most signi�ant enhanement. The major aspet for the new

model was to be general enough to address a wide range of sheduling problems; it should

not be restrited to hemial bath proesses, and it should make the modeling proess more

transparent. This model, the so-alled Event S-graph or eS-graph is introdued in Setion

7.3.

Improved modeling tehniques Due to the very simple and restrited original S-graph

model, the modeling step was obvious and straightforward. Due to the extended model,

however, the eS-graph framework has a bigger emphasis on the modeling step as well. In

Setion 7.4, it is illustrated, how several ommon problem features an aurately be modeled

using the eS-graph.

General purpose sheduler Keeping the original idea of the equipment based makespan

minimizer, a general purpose algorithm is developed and introdued in Setion 7.5 that

performs makespan minimization on any kind of problems that an be purely formulated

with the eS-graph, without any additional information.

7.1 Modeling di�ulties with the original framework

In this setion it is illustrated that some features of bath (or semi-bath) proesses ourring

in most of the sheduling problems require various extensions of the original approah, whih

in some ases an be iruitous.

7.1.1 Transfer times

The original S-graph framework does not onsider the transfer of the intermediate materials.

The only transfer that is represented in the model is the removal of the �nal produt from

the last proessing unit. For approahes that annot properly address material transfers,

there are two ommon praties to takle the problem:

• negleting the transfer times if they are very small ompared to proessing times

• lumping the transfer times to the proessing time of the task produing the interme-

diate

The key problem with both of these methods is that in ase of ontinuous material transfer

both units (the one that produed the intermediate material, and the other that reeives it)

must be free for the time of the transfer. Disregarding this an result in undesired solutions:

see Setion 3.2.
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These two methods are obviously easily appliable in the S-graph framework as well. It

is possible, however, to model the material transfers orretly without any simpli�ation.

Originally, if a task i′ is sheduled to be performed after i in unit j, and i2 is the

subsequent task of i, then a zero weighted sheduling ar is inserted from i2 to i′ onsidering

NIS poliy as it is shown with the orresponding Gantt hart in Figure 7.1.

Figure 7.1: Shedule ar in the original framework and the orresponding Gantt hart

The Gantt hart however should look like as it is illustrated in Figure 7.2 if there is a

transfer time (no matter how tiny it is).

Figure 7.2: Aurate Gantt hart representing the transfer

Having a similar, equivalent Gantt hart an be ahieved by inreasing the weight of the

shedule ar by the transfer time (ttr). However, this is not enough, as the unit j would still

be able to start performing i′ before the transfer �nishes. A simple workaround to takle

this issue is to inrease the proessing time of i′ by the transfer time as well, as shown in

Figure 7.3.

Figure 7.3: Modi�ed S-graph to address transfer time

For the ase when either i or i2 has several subsequent task, the approah is similar as

illustrated in Figure 7.4.
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Figure 7.4: Addressing transfer time with several subsequent tasks.

Although the solutions provided by this method meet the requirements above, it is more

a modeling trik than an appropriate solution. Moreover, some questions may arise, suh

as how to takle the problem when the transfers for i2 and i3 take di�erent times and may

happen independently, et.

Thus, an other option is also available, whih requires additional verties inserted into

the graph whih represent material transfers, as shown in Figure 7.5.

Figure 7.5: Addressing transfer time with additional nodes.

The shedule ars still start from the task nodes. However, they yield to the inlet transfer

of the next sheduled task. As it is shown, the ars representing the proessing time of i2

and i3 does not hange their weight, whih gives a more straight-forward modeling of the

problem.

7.1.2 Waiting before prodution

Considering NIS poliy, the intermediates are allowed to wait in the units that produed

them until they an be transfered to the upoming task in the reipe. However, this desrip-

tion does not speify whether the intermediate an wait in the unit performing the upoming

task before its exeution starts. If inputs of eah task are either raw materials, or produed

by another single task, this question is irrelevant with UW poliy (whih is onsidered for
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now), as the proessing and the storage phases an be shifted arbitrary. The situation is

di�erent, however, if two or more tasks provide the inputs for a task, as illustrated on the

example in Figure 7.6.

Figure 7.6: Example for produt with task of multiple inputs

In this problem, there are two produts and the third step of produing A requires two

di�erent intermediates from both of the �rst two steps. After modeling the problem with

the S-graph framework, and applying the B&B algorithm, two di�erent solutions an be

generated, as shown in Figure 7.7 with both the shedule graphs and the orresponding

Gantt-harts. The solutions have the makespan of 12 and 13 time units, respetively.

Figure 7.7: Solutions provided by the S-graph algorithm for the example in Figure 7.6

However, the question arise, whether it is possible to store the output of A1 in U3 and wait,

until U2 an also load the output of A2 into U3. If that is possible, the makespan of 10

hours ould be ahieved, as illustrated in Figure 7.8.

In many appliations, the safety or other regulations of the faility forbid the storage

of the intermediate in a unit before proessing, thus the solution shown in Figure 7.8 is

pratially infeasible. However, if it is not forbidden, the original S-graph approah needs
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Figure 7.8: Solution with better makespan if storage if allowed before proessing

to be extended in order to address this situation properly. This an be done similarly as in

the previous setion, by introduing some additional nodes. Holzinger [52℄ has investigated

a similar issue, and provided an extended S-graph model in the ase when the order of the

input materials and the required delay between them is �xed by the reipe.

7.1.3 Continuous proesses and multiple resoures

Although the sope of this work is mainly on bath proesses, in many ases bath and

ontinuous units work simultaneously. If there is a storage before and after the ontinuous

unit, they an be viewed and modeled as a single bath unit. Otherwise, the bath unit

that produed the input of a ontinuous proess must be available throughout the whole

operation of the ontinuous unit. This behavior shows a lot of resemblanes to the material

transfers that have been disussed formerly. As a matter of fat, the transfer itself is a

ontinuous task arried out by a ompressor for example. The problem beomes even more

omplex if there are several input or output task of a ontinuous task, with some of them

being ontinuous as well. The original S-graph framework onsiders only bath proesses.

However, as it has been pointed out, addressing them is rather similar to addressing the

transfers, whih needs to be done for bath proesses as well.

In many industrial appliations, a task needs several resoures to be exeuted, e.g., in

a furniture fatory, a unit an usually work with di�erent "heads" that are shared between

the units[53℄. Alternatively, operators, eletriity, oolers, et. an and must be inluded in

the sheduling of a single proess. In the original S-graph framework only one unit an be

assigned to the a task, and that unit is assumed to be the only unit that performs that task.

7.2 Sheme of optimization with the S-graph framework

and its extensions

In this setion the general optimization proedure of the S-graph framework is analyzed.

The basi onept is shown in Figure 7.9

1

.

1

Note that the seletion of the onsidered variables, problem parameters, and real exeution of the

generated shedule is not inluded in the �gure, as it is outside of the sope of the urrent interest.
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Figure 7.9: General sheme of the S-graph based optimization proedure



110 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

The problem itself onsists of all the problem data, as disussed in Setion 1.2. The

�rst step is the onstrution of the mathematial model of the problem, namely an S-

graph. There is not muh disussion about this step in the literature, as this step is rather

straightforward for those problems that the framework an address. To eah produt and

task a node is assigned, prodution dependenies are represented by ars, et., as desribed

in Setion 2.3. Unlike in the ase of MILP approahes, there are no di�erent ways the model

should be formulated for the problem; it is a lear and unambiguous step. This highlights a

great advantage of the S-graph framework ompared to MILP approahes: the mathematial

model that is used by the algorithms has a straightforward relation to the problem, and the

modeling does not require any speial skills.

It has to be mentioned, however, that the S-graph model has a kind of embedded model

behind the senes. This is the direted graph itself, not inluding any sheduling problem

spei� information like the plausible unit sets, et. At the moment, di�erentiating between

this subset of the model may seem unneessary, but its importane will be lari�ed later.

As for now, the only important thing is that the sheduling algorithm operates stritly only

on the S-graph model via operations like assigning a unit to a task node. This ation then is

interpreted in the graph model as well by hanging the weights of reipe ars and inserting

shedule ars.

2

Finally, the Sheduling Algorithm generates the S-graph orresponding to the optimal

shedule, whih also ontains a �nal form of the graph itself. Note that the Sheduling

Algorithm here an refer to many approahes that have been published so far, not only for

the equipment based makespan minimizer. Last but not least, this solution is interpreted,

and a Gantt hart is generated.

Extensions

There are several ways the extensions a�et the struture introdued above. Some of them

are brie�y introdued here. The strutural di�erenes between the di�erent types of exten-

sions render it obvious how di�ult it an be to keep these extensions ompatible with one

another.

Model onversion In ase of the S-graph based Wet-eth optimization[71, 97℄, or the

sheduling of tunnel boring mahines[4℄, the struture of the optimization proess remains

intat, but the original problem is transformed to a mathematially equivalent hemial

bath proess sheduling problem. The whole proess is shown in Figure 7.10. Converting

LW problems to ZW equivalents in Subsetion 5.3 was based on the same idea.

The obvious bene�t of this approah is that there is no need to hange the S-graph

algorithms, or the solver implementation. Thus the time needed for the developement and

2

In Setion 2.3 the presented algorithm has diret aess to the (N,A1, A2) struture, however: a) this
struture does not really represent all the information stored by a sheduling problem, and b) the state-of-

the-art implementations do not follow that paradigm, but a layered one, as mentioned.
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Figure 7.10: Optimization proedure of the S-graph framework with model transformation

to get results is onsiderably low. On the other hand, however, the approah no longer holds

the aforementioned advantage, i.e., the model is no more a straightforward representation of

the problem. Moreover, this approah usually does not exploit any problem spei� feature,

whih an have a serious e�et on the e�ieny, as disussed by Osz[97℄ for example. Also,

if the problem desription of the original approah is hanged for some reason, it may render

the transformation between the models impossible.

This type of extensions make the struture of the S-graph based optimization proedure

similar to that of the MILP approahes, where the MILP model is an intermediate model

that is solved by a general purpose solver, and the modeling of the problem is in itself an

important step.

Algorithmi extension In some ases, the framework is extended to problem lasses

featuring some additional parameters that are entirely handled by the algorithmi part of

the approah. The S-graph model and its interation with the internal graph model is

unaltered. This type of extension an be observed, e.g., at the LP based LW sheduling

(Setion 5.1), extension to throughput or expeted pro�t maximization (Chapters 4 and 6),

or heat integration [2℄. The sheme is shown in Figure 7.11

In a way, this type of extension is the simplest, and learest. However, its merge with

other extensions an be rather di�ult. It also has to be noted that the additional data of

the problem needs to be parsed and passed to the algorithm. In the earlier implementations

of the S-graph framework this required a new input format, a new parser, and a new data

struture. Sine these additional data are not required by the S-graph model itself, and

usually seldomly aessed by the algorithm as well, Kovas [71℄ developed a framework in

the S-graph implementation that allows arbitrary extensions of the input �le, and the parser
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Figure 7.11: Optimization proedure of the S-graph framework with algorithmi extension

automatially passes on the data in a generi struture to the algorithm responsible for the

optimization without the need of any modi�ation for the parser or main data struture.

Model based extension There are several problem features that hange the sheduling

problem in its ore, thus it is reasonable to implement these hanges on the model level. A

typial example an be the negative ar based LW algorithms (see Setion 5.2), and some

aeleration, e.g., so-alled auxiliary bathing ars[51℄, preditive shedule ar insertion, or

the enhaned wet-eth approahes[97℄. The sheme is shown in Figure 7.12

Figure 7.12: Optimization proedure of the S-graph framework with model based extension

Note that the problem may not have any additional information, like in the ase of

the previously mentioned aelerations. In those ases even the interfae of the model

remained the same, just the model handled the internal direted graph model di�erently.

This is ompletely onealed by the S-graph model from the algorithms, or the modeler,
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or the solution interpreter. In other ases, like the LW example, the problem itself has

additional information (maximal waiting times) that needs to be inluded in the modeling

step. However, the interfae for the algorithm remains the same, i.e., the equipment based

algorithm for example should not be altered in any way.

An obvious advantage of the approah is that these extensions are usually automatially

ompatible with the other algorithmi or model based extensions. On the other hand,

ombining several model based extensions may be hallenging, not to mention that the

model an get unneessarily ompliated for even the simpler problem lasses.

Other There are of ourse other ways of extensions as well, that are usually the om-

bination of the above three. The ombinatorial reursive LW approah (Setion 5.3) that

inserts additional ars into the model is a �ne example for a rather lumpish extension. The

algorithm is hanged and it diretly modi�es the internal graph model by bypassing the

interfae of the S-graph model.

7.3 Mathematial desription of the eS-graph model

The former two setions showed some of the limits of the S-graph framework and the om-

pliations that the di�erent type of extensions an ause. In this setion a generalized

S-graph model is introdued that is the result of the thorough onsideration of the formerly

mentioned issues.

There were a ouple of major aspets kept during the development of the new model:

• The model should be general enough to address a wide range of sheduling problems,

and it should not be restrited to hemial bath proesses. This redues the need for

model onversions and model extensions for future developments.

• The range of parameters that the model an address should be restrited to timing and

sheduling related elements. The model should not inlude other ommon parameters,

like heat integration data, as the model would most probably lose its e�ieny. These

parameters should be addressed via external tools like LP models in the future too.

• As a seondary objetive, the model should be kept as simple as possible, and similar

to the original problem, so that the mathematial model (and its straight forward

graphial representation) should be understandable.

• The omplexity and detailedness of the model should also depend on the problem

at hand, i.e., if the model is apable of addressing, e.g., transportation times with

some additional nodes, then problems without transportation should not have a more

ompliated model.

• As far as possible, the model should oneal its inner operations from the algorithms,

and provide a general interfae with a basi sheduling deision interfae.
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From the pratial point of view, the model should be able to address the following

problem features with ease:

• Transfer, leaning, hangeover times

• Continuous tasks

• Tasks requiring several units simultaneously

In the following subsetions �rst the original S-graph model is analyzed to provide the

basis for the basi idea of the model in the seond setion. Then the model is formally

de�ned in the last Setion.

7.3.1 Analysis of the original S-graph model

It has already been mentioned, that the graphial representation of the S-graphs is the

mathematial model itself. As a representation, the nodes of an S-graph represent tasks and

produts. However, taking a loser look at the mathematial approahes reveals that the

nodes represent the starting of the exeution of a task, or the removal of a produt. These

are only some of the events that our, several others are not inluded in the model:

• ending of proessing a task (and starting the storage in the unit in ase of NIS poliy)

• starting end ending the transfer of an intermediate

• loading the raw material into the �rst unit

• et.

The original S-graph framework disregarded these events, as everything under the on-

sideration of the original problem set ould appropriately be modeled with only the starting

of tasks and removal of the produts.

Basially, the following entities have a 1-to-1 relation between them in the framework:

• task, that should be assigned to equipments

• beginning of tasks, that orrespond to exat timings

• nodes of the S-graph, from where shedule ars an start

The general idea for the the extended model is to separate the �rst from the latter two,

as desribed in the next subsetion.

Moreover, the original formal desription, the S-graph model was a (N,A1, A2, w) quadru-

plet

3

, desribing only part of the sheduling problem and part of the sheduling deisions,

whih is basially the internal graph model mentioned in the previous setion. Additional

3N : the set of nodes; A1: the set of reipe ars; A2: the set of shedule ars; w: the weight funtion on

the ars. See page 28 for more detail.
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information suh as the set of unsheduled tasks, plausible task-unit pairs, proessing times,

et. is given separately for the algorithm.

The aim in the extended model is to inlude all these information for modularity and

lear desription.

7.3.2 General onept of the eS-graph model

As already mentioned in the previous subsetion, the general onept behind the new model

is the separation of the tasks that need to be sheduled, and the nodes of the graph in the

model that represent events. The basi priniple of the generalization is this two-layered

struture where an entity to be sheduled (task, transfer, leaning, et.) an span over several

events of the system, and thus, several nodes of the graph. These entities in the model are

alled subproesses, and there is a many-to-many relation between the events/nodes and

them, unlike the one-to-one relation between the tasks and nodes/events in the original

framework.

The subproesses may require resoures or a set of resoures to be arried out. Subpro-

esses are assumed to be non-interruptible, like the tasks in the original S-graph framework.

Thus, if a resoure (unit, operator, pipeline, et.) is assigned to a subproess, the resoure is

onsidered busy in the time interval spanned by the events belonging to the subproess. Be-

ause of non-interruptibility, if a resoure is assigned to several subproesses (either alone or

as a member of a resoure-set), the intervals of them should be distint. This also means that

a lear sequening should be made between the subproesses assigned to the same resoure,

similarly to the sequening of tasks assigned to the same unit in the original framework. The

sequening will be implemented as a zero-weighted shedule ar

4

from the node of "latest"

event of the former subproess to the node of the "earliest" event of the latter subproess.

Note that the dependenies between the events belonging to the same subproess is not

neessary linear; a good example for this is a task with multiple inputs and/or outputs, that

arrive asynhronously. In this ase

5

, it is not evident whih the latest or earliest event of

the subproess is, and it may also depend on the shedule of the other subproesses. Thus,

when a sequening deision is made, the model inserts zero-weighted shedule ars from all

of the nodes of the former subproess to all of the nodes of the latter one. Obviously, many

of this might be implied by many others, but in this way, the soundness is ensured, and the

ost in terms of memory or CPU is not signi�ant.

6

An important modi�ation is that unlike in the original framework, several resoures an

be utilized simultaneously in the new framework. The model allows two ways of implement-

ing suh problem features:

• A set of resoure an be assigned to a subproess.

4

More preisely, a [0,∞] weighted ar, as disussed later.

5

Stritly speaking, linear ordering is not needed, only a unique minimal or maximal element.

6

A more lever approah ould be to �nd the set of minimal and maximal nodes for eah subproess and

use them. Both ould be orret implementation of the same onept.
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• The events of two subproesses overlap, and in that interval the assigned resoures to

both of the subproesses are busy.

This provides a lot of expressive power to the new model that an be exploited, as illustrated

in some examples in Setion 7.4.

The limited and zero wait storage poliies showed an example, why "not later than" type

of onstraints are neessary to be inluded in the model to be able to address a wide range of

problems. Thus, in the new model, the weight of eah ar is a pair of non-negative numbers

[min,max], whih gives bounds on the timing of the events orresponding the starting node

s and destination node d: ts + min ≤ td ≤ ts +max. Note that max is always greater or

equal to min, and it is allowed to take the value of in�nity as well, when there is no upper

bound on the timing di�erene. Also, allowing min (or max) to take negative values would

not result in additional expressive power, as an ar from s to d with ,e.g., min = −3 is

equivalent to an ar from d to s with max = 3. Note that the model may end up having

multiple ars between the same two nodes. They an of ourse be summed up as a single

ar with a maximal min, and minimal max value. In this ase, if the max value beomes

lower than the min value, it means infeasibility.

7.3.3 Formal de�nitions

In this subsetion, the formal de�nitions of the framework are given along with implementa-

tional omments. First, the sope of the interest is given by an exat mathematial de�nition

of the problem. Then, after the formalization of a shedule, the de�nition of an eS-graph

and its inner model is given.

Sheduling Problem

An extended sheduling problem an be given by a 6-tuple, (E,SP , D, J,O ,W ) where

E is the set of events

SP ⊆ ℘(E) is a set of subproesses7

D is the set of dependenies between events

J is the set of units/resoures to be sheduled

O ∈ SP → ℘(℘(J)) is a set of assignment options

W is a weight funtion for dependenies based on sheduling deisions.

Note that an objetive funtion is not onsidered as part of the de�nition, as the goal of

a sheduling problem is not neessarily the searh for an optimal solution. The framework

7℘(E) stands for the power set of E.
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may be used for heking the feasibility of the problem, or generating all of the feasible

shedules.

E is the set of events, that is onsidered in the proess, and SP is a set of subproesses

that need to be assigned to units and to be sheduled. Eah subproess, S ∈ SP is a

subset of E. In the above de�nition, it is not allowed for two subproesses to have the same

set of events. In implementation, and modeling, however, it an be useful to have several

subproesses with the event set. This relaxation will a�et the other parts of the formal

models or algorithms; thus it is highly advised to implement the model in that way. Here

this form is kept for simpler formalization. Note also that not all of the events are neessarily

inluded at least in one of the subproesses.

D is the set of dependenies between the events. To ease formalization, for eah d ∈ D,

e−(d) will denote the event on whih e+(d) depends. From the modeling and implementa-

tional point of view, this set is given as DR∪
⋃

S∈SP DS
, where DS

is the set of dependenies

indued by the subproesses, and DR
are other dependenies of the reipe independent from

the subproesses. The onept behind this partitioning is a modular view, where a subpro-

ess is a standalone entity, and a proess an be built up from these building stones, and

making onnetions between them.

8

Note, that D may ontains several parallel dependen-

ies with the same events. From the pratial point of view, only the strongest is binding.

However, this �exibility is again, advantageous from modeling and implementational pur-

poses.

As usual, J is the set of resoures of the system that are needed for the subproesses to

be arried out. These an be units, pipes, operators, eletriity, et.

O is the funtion of possible assignments: for eah S ∈ SP , O(S) is a set of resoure

sets, that an arry out the subproess, i.e., eah element of O(S) is a subset of J , and one

task in the sheduling is to selet one of these sets.

W is the funtion that assigns weights to eah dependeny in the system. These weights

often depend on the sheduling deisions (assignments and sequening), thus, the formal

de�nition of this funtion depends on onepts disussed later. In many problem lasses,

however, this funtion is more simple, and has a modular struture too. As an example,

in the ase of the previously onsidered problems, the weight of a dependeny depended

only on the assignment that has been made at a subproess. As a result, a wide range of

sheduling problems ould be overed if W were de�ned as a D × S × ℘(J) → R∗ × R∗
,

where R∗
is the set of non-negative real numbers and ∞. This de�nition would, however,

not over the empty robot movement times of wet-eth proesses for example; thus a more

general de�nition will be given later. Note that an other weakness of this simpler de�nition

would be that it does not allow to add weights to the dependenies that will be the result

of sequening deisions. This ould be avoided by replaing D with E × E. Following this

8

This philosophy is followed in a further extent in the urrent XML desription, where the set E is

de�ned by events sets of subproesses, additional events and alias rules, that merge the same events de�ned

by several subproesses. As a simple example, the arrival of an input of one subproess may be the same as

the removal of the output of an other, whih depends on the atual proess.
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philosophy, W ould be de�ned for the whole E × E domain, with the value of [−∞,∞]

where no dependeny is given. However, in this ase, it is more di�ult to formalize parallel

dependenies.

The shedule

In general, there are two types of deisions that has to be made during sheduling:

Assignement Eah subproess has to be assigned to a plausible resoure set.

Sequening If the resoure sets assigned to two di�erent subproesses have a non-

empty intersetion, the order in whih they are arried out by the units in the

intersetion must be given.

In order to allow the development of general sheduling algorithms, it is not assumed

that a resoure set is assigned to a subproess always at one. On the ontrary, it is allowed

for a subproess to have a single resoure assigned to it, and the remaining elements of the

adequate resoure set are assigned later. Also, it is not assumed that if two subproesses are

assigned to the same units, their sequening must be inluded in the shedule immediately.

The proposed formulation poses no suh onstraints and allows these deisions to be inluded

separately at di�erent stages of the optimization.

Thus the formal desription of a shedule for a sheduling problem (E,SP , D, J,O ,W )

is (A ,S ), where:

A ⊆ J × SP is a set of resoure-subproess assignments made so far.

S ⊆ SP × J × SP is a set of sequening deisions made so far.

To ease further desriptions, the following notations will be applied:

A (j) = {S | (j, S) ∈ A } ∀j ∈ J

JA (S) = {j | (j, S) ∈ A } ∀S ∈ SP

S1
j
−→ S2 is true if (S1, j, S2) ∈ S , false otherwise

S is the transitive losure of S , i.e., if S1
j
−→ S2 and S2

j
−→ S3 then S1

j
−→ S3.

The empty shedule is obviously the (∅, ∅) pair. A shedule (A ,S ) is said to be omplete

for a sheduling problem (E,SP , D, J,O ,W )

• for all S ∈ SP , JA (S) ∈ O(S), and

• for all S1, S2 ∈ SP suh that S1 6= S2: for all j ∈ A (S1)∩A (S2): (S1
j
−→ S2)⊕ (S2

j
−→

S1)
9

9⊕ stands for the exlusive or logial operator
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The �rst rule states, that the set of resoures assigned to a subproess must be a plausible

set from the problem desription. The seond ondition states that if a unit is assigned to

two di�erent subproesses, exatly one of them should be sheduled earlier than the other.

Note, that a omplete shedule is not neessary feasible. A very simple ounterexample

ould be, when there are two units that are simultaneously assigned to both of two sub-

proesses, i.e., j1, j2 ∈ A (S1) ∩ A (S2) and the sequening deisions are inonsistent, i.e.,

(S1
j1
−→ S2) and (S2

j2
−→ S1).

For simpli�ed formulation let DS
denote the dependenies that are the results of se-

quening deisions, i.e., DS =
⋃

S1

j
−→S2

(S1 × S2 × {j}). Note that the third element in

the triplets is needed to separately identify the dependenies that are aused by di�erent

units.

10

Now the weight funtion of the sheduling problem an be de�ned in a general way:

W : (D ∪DS )× (A ,S ) → R∗ × R∗
.

Moreover, the notations Wmin(d) and Wmax(d) orrespond to the lower and upper bounds

of W (d,A ,S ).

The eS-graph model

After the former introdution, the eS-graph model of a partially sheduled problem an

simply be given as an 8-tuple: S = (E,SP, D, J,O ,W ,A ,S ), whih onsists of all of the

problem parameters and the sheduling deisions made so far.

The inner model is a direted graph with weighted ars: G(S) = (V,A, w), suh that:

V = E

A = {(e−(d), e+(d)), (e+(d), e−(d)) | d ∈ D ∪DS }

w(v1, v2) = max

(

max d∈D∪DS

e−(d)=v1∧e+(d)=v2

Wmin(d),max d∈D∪DS

e−(d)=v2∧e+(d)=v1

−Wmin(d)

)

The verties are simply the events, and the ars represent the dependenies. To eah

dependeny two ars are assigned a "forward" ar for the lower bound on a time di�erene,

and a "bakward" ar for the upper bound. The weights are assigned aordingly. If there

are parallel dependenies, the assigned weight is the maximal among them. The ars with

−∞ weight an be negleted, as they do not pose any real onstraints.

Similarly to the original S-graph framework, the longest path in this graph gives the

makespan of the shedule in ase of a omplete shedule. For inomplete shedules, the

longest path provides a lower bound on the makespan, if it is assumed that the intervals

assigned by W satisfy inlusion after any extensions on the shedule.

Moreover, a positive yle means infeasible shedule in a similar way. Whether a zero-

weighted yle poses an infeasibility depends on the appliation.

10

For more preision the subproesses should have been inluded as well, as it may be possible that there

are parallel dependenies between two events beause of two di�erent subsets. However, in this ase, the

units should be di�erent as well.
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7.4 Modeling sheduling problems with the eS-graph

In this setion, modeling tehniques with the eS-graph are illustrated. The examples provide

a guide to how real world sheduling problems should be modeled within the new frame-

work. Most of the desription fouses on bath proess sheduling; however, the modeling

patterns an be used on other �elds as well. Formal de�nitions are omitted; only graphial

representations of the eS-graph model of the reipe are given, where

• events are represented with nodes (irles)

• the initial dependenies between the events are represented with direted ars.

• subproesses are highlighted with olored dashed border bloks, along with the plau-

sible resoure sets.

On eah ar, the initial interval is given. However, to simplify graphial representation,

the notations in Figure 7.13 are used throughout the setion.

Figure 7.13: Simpli�ed dependeny notations for the eS-graph

It will usually not disussed in detail, how the W funtion should work. In fat, it is

rather straight-forward in most of the ases.

Tasks Tasks are one of the basi subproesses for a sheduling problem. The two basi

events that orrespond to this subproess are the starting of the exeution of the task and
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its ending, as illustrated in Figure 7.14 with the detailed and simpli�ed notation as well.

The weight funtion should assign the [tpri , t
pr
i ] values based on the assigned unit sets that

Figure 7.14: eS-graph model of a simple task

an be either j1 or j3 alone. The timing di�erene between the two events are �xed, sine

the proess takes an exat amount of time. Note that if the proessing time for the task

is di�erent for di�erent units, then the smallest should be the lower bound of the initial

interval, and the largest should be the upper bound.

Input, output transfers If there are inputs and outputs to be transfered into and from

the unit that is assigned to the task, then the subproess should also inlude these events, as

illustrated in Figure 7.15. The proess has a single input and a single output material. The

Figure 7.15: eS-graph model of a task with input and output transfers.

transfer of the input is onsidered to be disrete, i.e., the material arrives in a single event.

On the ontrary, the output is removed by ontinuous transfer, thus the unit to be assigned

to this subproess must remain until the transfer �nishes. Similarly to the proessing step,

the transfer takes a ertain amount of time. In this example, there is no upper limit on the
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�rst ar, i.e., the input material an be stored in the unit after arrival arbitrarily long. The

same holds for the output material as well. If for some reason, the input should not wait

more then a tmax
amount of time due to some physial or hemial properties, it ould be

expressed by hanging the weight of the �rst ar to [0, tmax].

Overlap with transfer subproesses The transfer events may also be part of other

subproesses, as illustrated in Figure 7.16. The transfer for the intermediate is part of

Figure 7.16: eSgraph model of a task and transfers

three subproesses, as the sending, the reeiving unit, and the units performing the transfer

must also be oupied with the transfer. Note that there is only a single suitable set of units

for the transfer subproess: {c1, p}, whih has two elements, as both the �rst ompressor

and the pipeline network are needed to arry out the transfer. (And an other transfer may

not use them during this time.)

Complex task A task may also have several inputs and outputs, and they may need to

be �lled di�erently, in a preise order. In the example for whih the Gantt hart was given

in Figure 1.7, the seond step of the prodution is the arboxylation reation. This reation

has two inputs; however, one of them needs to be heated up before the intermediate arrives.

And when it does, the proess must start immediately. After the proess, the output an be

held for as long as wanted, but after that the unit must be leaned immediately. Modeling

this ompliated reipe an be done easily by the eS-graph, as illustrated in Figure 7.17. As

it is shown in the �gure, the subproess of arboxylation has intersetion with several other
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Figure 7.17: eSgraph model of part of a omplex reipe

subproesses. As an example, after the marlotherm is �lled, it needs to be heated up, for

whih an other unit is needed as well: a heater, labeled h. There are transfer subproesses,

shown with brown and green olors, analogously to the previous �gures. Note that the

transfer of phenolate is also part of the phenolation reation, though it is not presented in

detail in the �gure.

Parallel resoures The previous examples have already shown how multiple resoures

an be busy at the same time. There are two di�erent ways of modeling this in the eS-graph

framework:

• Having more resoures in the plausible sets

• Overlapping subproesses

This feature results in a modeling redundany, i.e., it gives rise to di�erent but mathemati-

ally orret formulations of the same problem. In most of the ases however, it is evident

whih one is the appropriate method. A good pratie is to identify the subproesses �rst,

and assign the plausible units to them.

There is however ase worth debating: let us assume that there is an operation whih

requires a mahine and an operator to operate it. Also, it is assumed that there are 3 hoies

for both of them: m1, m2, m3 and o1, o2, o3, respetively. In this ase, there are two options:

Option 1 A single subproess "Operation" is reated, with the plausible resoure sets:

{m1, o1}, {m1, o2}, {m1, o3}, {m2, o1}, {m2, o2}, {m2, o3}, {m3, o1}, {m3, o2},

{m3, o3}.
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Option 2 Two subproesses are reated: "Operation-operator" and "Operation-mahine",

with plausible resoure sets {o1}, {o2}, {o3} and {m1}, {m2}, {m3}, respetively.

Both models are adequate and properly express all the options available in the system. It is

easy to see that the latter one is more ompat, and generally, it is more preferred. However,

if several mahines are allowed to work in parallel on the same subproess, then there is an

important question: should the number of assigned operators and mahines be the same?

If yes, option 2 an not be extended for that ase, option 1 an.

Detailedness of the model An important feature of the eS-graph modeling framework is

that the level of detail an depend on the problem at hand. By the level of detail the number

of events assoiated to a subproess is understood. As disussed above, a task may onsists

of only two events: arrival of the input material starts, and removal of the output material

�nishes, or it an inlude several other events as well. Whether an event is important to be

inluded in the model or not depends on the atual problem.

Obviously, the events that are the boundaries of subproesses must be inluded in the

model. Also, if there is a sequene of events, for example, between whih the weight of the

dependenies never hange, and either all of them are inluded in a subproess or none of

them, then only the �rst and the last event are important to be inluded in the model.

Note that having a more detailed model will never a�et the soundness of the model,

it will only unneessarily inrease the size of the model. It will usually also not have any

e�et on the omputational performane. Thus inluding additional super�uous events is

also suggested when it provides a more onsistent, straightforward model.

Inlusion of the original S-graph framework

In the above examples it has been shown how detailed an eS-graph model an be. In this

subsetion, the eS-graph equivalent of the original S-graph models are given, whih has a

dual purpose:

• This model proves that everything, that ould be modeled with the S-framework an

be modeled in the new framework as well.

• The model shows an example that inluding many events is not neessary if the atual

problem does not require it.

Note that the aim here is to provide the "smallest" eS-graph model. However, a more

detailed model for real appliation is advisable.

The basi idea behind the model is that in the original S-graph framework a unit was

busy with a task until the start of the next task. This will provide the subproesses of the

eS-graph model. The assoiated events will be the same as originally: the starts of the tasks

and the removals of the produts. All plausible resoure sets will be singletons.

The de�nition of the eS-graph model of an S-graph an be given like this
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E = N = I ∪ P , i.e., the start of eah task and the removal of produts

SP = {{i} ∪ I+i | i ∈ I}, i.e., a subproess belongs to eah task node, that inludes

all the other nodes (events) to whih there leads a reipe ar

D = A1, i.e., all the reipe ars in the problem and nothing else

J = J ′
, i.e., all the units in the problem and nothing else

O = {({i} ∪ I+i , {{j} | j ∈ Ji}) | i ∈ I}, i.e., to eah of the subproess all of the

plausible units are assigned as singletons.

W this weight funtion works exatly as the original, and assigns the minimal available

proessing time to an ar as a lower bound. The upper bound is in�nity exept

for the dependenies leading to the removal of the produt.

11

This model de�nition is illustrated on an example in Figure 7.18

The models generated this way an be solved to optimal makespan by the algorithm

desribed in the next setion.

7.5 General purpose makespan minimizer for the eS-graph

In this setion a general purpose algorithm is shown for the eS-graph framework to minimize

the makespan of any problem modeled with the eS-graph. The algorithm may not be the

most e�ient one for eah problem lass; the main aim is for it to stead as an illustration,

how the new framework an be extended. It has to be noted, however, that the algorithm

below explores an idential searh spae as the algorithm in blok 2.1, if the problem is

formulated aording to the instrutions in the previous setion. The reason for this is that

the main onept of the original makespan minimizer algorithm has been kept, and the

details have just been adopted to the new model.

1. The algorithm �rst initializes the best makespan (makespancb
) to in�nity, and the set

of open problems (S) with the eS-graph model of the reipe.

2. In eah iteration the eS-graph model of an open problem (S) is seleted from this

set, and its bound is ompared with the makespan of the urrent best solution. If

the seleted problem has a worse bound, it is pruned, and a new iteration starts.

Otherwise:

(a) If the problem is a solution, the best solution (Scb
) and its makespan is updated.

11

It would not hange the soundness of the model if the upper bound were in�nity in all of the ases.
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Figure 7.18: eSgraph equivalent of an S-graph model
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(b) An "ative" resoure is seleted if possible, and for all subproesses to whih it

still an be assigned, a subproblem is reated, and the subproesses are sequened

as last into the queue of the seleted resoure. Eah new partial shedule is tested

for feasibility, and then added to the set of open problems.

3. If the set of open subproblems is empty, and the urrent best makespan is not in�nity,

then the optimal solution is reported; otherwise, the problem has no feasible solution.

As it an be seen, the frame of the algorithm is the same, only some of the terms

are hanged. The formal algorithm is showed in blok 7.1. For simpler desription, the

notation S+
A
(j) is introdued that denotes all of the subproesses for a partial shedule

whose assignment an be extended with j, formally:

S+
A
(j) = {S ∈ SP | ∃O ∈ O(S) {j} ∪ JA (S) ⊆ O}

If this set is empty, the unit an not be assigned to any subproesses anymore, and it is

termed not ative.

Algorithm 7.1 Makespan minimization with the S-graph framework

makespancb := ∞
S := {(ereipe(), ∅, ∅)}
while S 6= ∅ do
S = (E,SP , D, J,O ,W ,A ,S ) :=selet_remove(S)
if bound(S)< makespancb

then

if JA (S) ∈ O(S) ∀S ∈ SP then

makespancb :=bound(S)
Scb := S

end if

j :=selet({j ∈ J | S+
A
(j) 6= ∅)

if j 6= NIL then

for all S ∈ S+
A
(j) do

A S := A ∪ {(j, S)}
S S := S ∪ {(S ′, j, S) | S ′ ∈ SA (j)}
SS := (E,SP , D, J,O ,W ,A S,S S)
if feasible(SS

) then

S := S ∪ {S}
end if

end for

end if

end if

end while

if makespancb 6= ∞ then

return Scb

end if

Several notes on the subproedures alled in the algorithm:
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selet_remove As in the original ase, this funtion is allowed to selet and remove

an open subproblem arbitrarily.

bound This proedure may return the longest path in G(S).

selet This funtion an arbitrarily return any ative units, or NIL when none exists

feasible This proedure will de�nitely return false if there is a positive weighted yle

in G(S). How it handles the zero-weighted yles an depend on the problem

lass.

Note, that there are some major di�erenes ompared to the algorithm in blok 2.1:

• Unlike G(N,A1, A2), S ontains all the sheduling deisions made in the subproblem,

so no other parameters are needed.

• The algorithm does not modify diretly the inner graph model of a subproblem. It

is arried out as an inner mehanism of the model itself, when G(S) is generated or

maintained.

• The ondition for a solution and for a leaf problem is not the same, i.e., even if the

atual subproblem is a feasible solution, it may have hildren in the B&B tree. This is

due to the fat that a subproess may have plausible resoure sets that are the subsets

of eah other.

Summary and onluding remarks

The S-graph framework has been introdued for the sheduling of bath proesses nearly

two deades ago. Next to its omputational power, a great advantage of the framework is

the straight-forward relation between the real problem, and the mathematial model. On

the other hand, the simpliity of the S-graph model limits its appliability, and requires

ontinuous extensions. In this hapter, a generalized, new framework is presented, whih is

based on the onepts of the original S-graph framework, and keeps its advantages, while

providing a muh wider range of modeling options. As one of the most important new

building stones of the framework are the events of the proess, it is named as the event-based

S-graph framework, or eS-graph framework. The setions illustrated the neessity of this

extension, the new model itself, the modeling tehniques assoiated with it, and a general

purpose makespan minimizer algorithm. One the eS-graph framework is implemented, it

will provide a tool whih an be applied for a muh wider range of sheduling problems with

ease, and without any modi�ation.
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Appendix A

Environment for omparisons

All the empyrial test in the thesis were arried out on an IBM server with Intel Xeon

E5504 proessor (4 physial ores, 2 GHz), and 8 GiB RAM. The operating system was

Ubuntu 12.04 LTS. The MILP formulations were solved by Gurobi solver, and the S-graph

solver applies the COIN-OR library for solving LP models.

In many ases, the approahes were not able to solve the larger problems in reasonable

time. For many tests, a time limit of 1000 seonds were set for the solvers, whih is a well

aepted approah among the researhers of this topi. If the exeution of an approah

reahed this time limit, the reported objetive is the best found in that time interval.
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Appendix B

Nomenlature

List of the notations used thorough the doument

Parameters of the problem

Sets

P Set of produts

I Set of tasks

J Set of units

Indexed sets

Ip set of tasks taking part int the prodution of produt p ∈ P

I+i set of subsequent tasks of task i ∈ I (for preedential reipe)

I−i set of predeessor tasks of task i ∈ I (for preedential reipe)

Ij set of tasks that an be performed by unit j ∈ J

Ji set of units that an perform task i ∈ I

Paramters

t
pr
i,j roessing time of task i ∈ I in j ∈ Ji

ttr transfer time, whose indies an be di�erent based on the ontext (just a single

material or a unit-material-unit triple, et.)

tH the time horizon

133
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Other notations

pi is the produt to whih i belong, if it is unambiguous

i+i subsequent task of task i ∈ I, if exists (for sequential reipes)

i−i predeessor task of task i ∈ I, if exists (for sequential reipes)

ip,k kth task of the prodution of produt p ∈ P (for sequential reipes)

nP number of stages for produt p ∈ P (for sequential reipes)

Throughput maximization

Rp Revenue for one bath of produt p

Stohasti problems

Simple reipes

bp the number of bathes for produt p in the atual on�guration

sp the size of a bath for produt p (for the �rst ase)

smin
p , smax

p the minimal and maximal size of a bath for produt p (for the seond and

third ase)

S the set of senarios

probs the probability of senario s ∈ S

dems,p the demand for produt p in senario s ∈ S

prices,p the prie of p in senario s ∈ S

ocs,p, ucs,p the over- and underprodution ost of p in senario s ∈ S

Profits,p(x) is the pro�t for x amount of produt p in senario s.

ExpProfitp(x) is the expeted pro�t of sp · bp amount of produt p

Complex reipes

R set of reipes

Pr set of produts produed by reipe r ∈ R

Rp set of reipes produing produt p ∈ P

br the number of bathes for reipe r ∈ R in the atual on�guration
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sr,p the maximal amount of p ∈ P that an be produed with the reipe r ∈ R

minr the minimal proportion ration on whih the reipe r ∈ R an be exeuted

Continuous ase

f probability distribution funtion

F umulative probability distribution funtion

S-graph

G(N,A1, A2, w)

N := I ∪ P , the set of nodes

A1 := {(i, i′)|i ∈ I i′ ∈ I+i }, the set of reipe ars

A2 := ∅, the set of shedule ars

wi,i′ := minj∈Ij t
pr
i,j , the weights for all reipe ar (i, i′) ∈ A1: the minimal proessing

time for i

eS-graph

E is the set of events

SP ⊆ ℘(E) is a set of subproesses

D is the set of dependenies between events

J is the set of units/resoures to be sheduled

O ∈ SP → ℘(℘(J)) is a set of assignment options

W is a weight funtion for dependenies based on sheduling deisions.

(A ,S ) shedule

A ⊆ J × SP is a set of resoure-subproess assignements made so far.

S ⊆ SP × J × SP is a set of sequening deisions made so far.

A (j) = {S | (j, S) ∈ A } ∀j ∈ J

JA (S) = {j | (j, S) ∈ A } ∀S ∈ SP

S1
j
−→ S2 is true if (S1, j, S2) ∈ S , false otherwise

S is the transitive losure of S ,i.e., if S1
j
−→ S2 and S2

j
−→ S3 then S1

j
−→ S3.
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Appendix C

Full tables of test results

C.1 Throughput maximization

This setion ontains all the empirial results for the 18 throughput maximization. The

olumns are:

�rst Con�guration seletion strategy

seond Update subroutine

third Feasibility subroutine

rest time horizon, and the CPU times in seonds

The time limit for the solver was 3600 seonds.
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C.1.1 Pharmaeutial ase study

24 25 26 27 28 29 30

LEX

U

FT 0.1 0.12 0.12 0.11 0.16 4.56 13.42

MM 3.5 3.98 3.98 3.98 5.36 21.49 3600

F

FT 0.1 0.11 0.12 0.11 0.16 7.83 14.73

MM 3.98 3.98 3.99 3.97 5.37 21.82 30.77

E

FT 0.09 0.12 0.12 0.12 0.13 8.15 15.71

MM 0.16 0.20 0.19 0.19 0.26 21.02 30.61

BFS

U

FT 0.13 0.13 0.13 0.13 0.16 5.57 15.23

MM 6.91 4.30 4.30 4.27 5.36 30.95 3600

F

FT 0.12 0.12 0.12 0.12 0.16 8.05 15.41

MM 5.75 3.98 3.98 4.00 5.35 24.17 33.41

E

FT 0.1 0.12 0.12 0.12 0.15 8.29 17.62

MM 0.17 0.21 0.21 0.21 0.26 21.72 36.87

DFS

U

FT 0.21 0.27 0.27 0.27 0.5 7.01 14.78

MM 7.30 11.93 11.81 11.90 19.82 35.96 52.41

F

FT 0.2 0.27 0.27 0.27 0.51 9.16 18.63

MM 7.05 11.87 11.96 11.88 19.98 36.17 53.55

E

FT 0.1 0.12 0.12 0.12 0.13 8.58 17.09

MM 0.17 0.21 0.20 0.21 0.26 27.99 39.49

31 32 33 34 35 36 37

LEX

U

FT 53.56 129.79 96.83 446.93 448.2 1296.92 1306.86

MM 3600 3600

F

FT 20 34.26 40.97 101.43 101.28 687.4 690.63

MM 67.82 85.77

E

FT 23.12 36.29 52.5 55.52 54.48 71.36 78.82

MM 47.00 67.74

BFS

U

FT 63.21 177.01 267.69 534.91 538.71 1385.11 1386.55

MM 3600 3600

F

FT 23.87 44.11 47.99 107.27 107.22 685.34 689.15

MM 77.18 107

E

FT 29.38 48.93 63 57.58 56.8 74.85 80.81

MM 72.77 99.26

DFS

U

FT 64.67 139.17 209.1 404.51 406.47 2960.98 2966.28

MM 3600 3600

F

FT 38.44 55.6 65.52 284.84 284.34 2978.23 2949.65

MM 256 272

E

FT 27.37 42.97 56.66 59.26 58.38 75.81 82.37

MM 69.86 88.19
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C.1.2 Agrohemial example

13 14 15 16

LEX

U

FT 3.06 339.45 453.11 3600

MM 3600 3600 3600 3600

F

FT 3.07 340.04 451.78 3600

MM 3600 3600 3600 3600

E

FT 3.05 205.05 453.93 3600

MM 3600 3600 3600 3600

BFS

U

FT 3.08 405.79 583.83 3600

MM 3600 3600 3600 3600

F

FT 3.04 405.01 582.28 3600

MM 3600 3600 3600 3600

E

FT 3.05 414.03 591.55 3600

MM 3600 3600 3600 3600

DFS

U

FT 3.03 405.13 589.11 3600

MM 3600 3600 3600 3600

F

FT 3.08 402.99 583.25 3600

MM 3600 3600 3600 3600

E

FT 3.07 269.34 581.33 3600

MM 3600 3600 3600 3600

C.1.3 Literature example

14 15 16 17

LEX

U

FT 16.88 179.21 1260.14 3600

MM 276.5 2063.53 3600 3600

F

FT 15.84 134.7 1159.3 3600

MM 272.52 848.64 3600 3600

E

FT 15.21 113.79 984.94 3600

MM 30.07 484.25 3600 3600

BFS

U

FT 14.95 208.14 964.05 3600

MM 3600 3600 3600 3600

F

FT 18.52 144.16 1496.75 3600

MM 768.76 929.27 3600 3600

E

FT 21.07 133.26 1512.81 3600

MM 236.08 689.51 3600 3600

DFS

U

FT 22.63 437.39 1594.05 3600

MM 1313.48 3600 3600 3600

F

FT 22.53 279.89 1629.85 3600

MM 1308.07 3600 3600 3600

E

FT 21.01 225.55 1403.72 3600

MM 459.21 2053.05 3600 3600
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C.2 Zero-wait test results

CPU times of the ZW tests

Conf. sLP aLP aLP' Neg Re Re+

11111 0.035 0.096 0.061 0.008 0.009 0.005

11112 0.099 0.139 0.225 0.007 0.017 0.009

11121 0.047 0.178 0.157 0.008 0.016 0.007

11211 0.102 0.398 0.666 0.02 0.049 0.027

12111 2.959 0.691 1.397 0.054 0.049 0.055

21111 0.099 0.47 0.264 0.019 0.026 0.014

22111 22.71 4.457 10.636 0.21 0.323 0.34

22211 188.55 40.695 83.453 1.592 3.014 4.618

22221 437.386 71.556 225.756 2.689 5.785 8.523

22222 1000 125.454 403.037 6.964 14.361 13.592

32222 1000 1000 1000 57.545 133.474 102.853

33333 1000 1000 1000 1000 1000 1000

44444 1000 1000 1000 1000 1000 1000

55555 1000 1000 1000 1000 1000 1000

CPU times of the ZW tests

Conf. sLP aLP aLP' Neg Re Re+

11111 18.2 18.2 18.2 18.2 18.2 18.2

11112 18.2 18.2 18.2 18.2 18.2 18.2

11121 18.2 18.2 18.2 18.2 18.2 18.2

11211 22.7 22.7 22.7 22.7 22.7 22.7

12111 22 22 22 22 22 22

21111 18.2 18.2 18.2 18.2 18.2 18.2

22111 22 22 22 22 22 22

22211 26.5 26.5 26.5 26.5 26.5 26.5

22221 26.5 26.5 26.5 26.5 26.5 26.5

22222 47.5 27.1 27.1 27.1 27.1 27.1

32222 49.1 27.9 27.9 27.9 27.9 27.9

33333 69.8 42.9 58.7 37.9 41 37.9

44444 57.5 60.4 inf 57.2 62.2 57.2

55555 87.1 98.8 inf 79 79 79

C.3 Expeted pro�ts of feasible on�gurations for the

stohasti tests

Bath number Expeted pro�ts

on�gurations Two-stage Flexible Fixed

1 0 3 0 0 1 2689.87 2475.31 2451.15
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Bath number Expeted pro�ts

on�gurations Two-stage Flexible Fixed

1 0 3 0 1 0 2661.76 2474.58 2474.58

0 0 0 0 0 3 2643.56 2465.39 2465.39

1 0 1 0 0 2 2643.56 2465.39 2465.39

2 0 2 0 0 1 2643.56 2465.39 2465.39

0 1 1 0 1 1 2625.29 2456.09 2456.09

1 1 0 0 0 2 2607.03 2446.78 2446.78

2 1 1 0 0 1 2607.03 2446.78 2446.78

0 0 2 1 0 1 2597.9 2442.13 2442.13

1 0 3 1 0 0 2597.9 2442.13 2442.13

0 0 3 0 0 1 2586.99 2435.7 2435.7

1 0 4 0 0 0 2586.99 2435.7 2435.7

1 0 0 1 1 1 2586.97 2435.68 2435.68

0 0 0 0 1 2 2574.73 2427.92 2427.92

1 0 1 0 1 1 2574.73 2427.92 2427.92

2 0 2 0 1 0 2574.73 2427.92 2427.92

2 2 0 0 0 1 2562.47 2420.14 2420.14

2 0 0 0 0 2 2550.26 2412.41 2412.41

3 0 1 0 0 1 2550.26 2412.41 2412.41

0 1 1 1 0 1 2550.24 2412.39 2412.39

1 1 2 1 0 0 2550.24 2412.39 2412.39

0 1 1 0 2 0 2550.21 2412.36 2412.36

0 1 2 0 0 1 2538 2404.63 2404.63

1 1 3 0 0 0 2538 2404.63 2404.63

1 1 0 0 1 1 2525.74 2396.85 2396.85

2 1 1 0 1 0 2525.74 2396.85 2396.85

0 0 1 2 1 0 2525.74 2396.85 2396.85

0 0 2 1 1 0 2513.51 2389.09 2389.09

0 0 3 0 1 0 2501.28 2381.34 2381.34

1 0 0 2 0 1 2501.28 2381.34 2381.34

3 1 0 0 0 1 2501.28 2381.34 2381.34

1 0 0 1 2 0 2501.24 2381.32 2381.32

0 0 0 1 0 2 2489.04 2373.58 2373.58

1 0 1 1 0 1 2489.04 2373.58 2373.58

2 0 2 1 0 0 2489.04 2373.58 2373.58

0 2 1 0 0 1 2489.01 2373.56 2373.56

1 2 2 0 0 0 2489.01 2373.56 2373.56

0 0 0 0 2 1 2489.01 2373.56 2373.56

1 0 1 0 2 0 2489.01 2373.56 2373.56

0 0 1 0 0 2 2476.81 2365.82 2365.82

1 0 2 0 0 1 2476.81 2365.82 2365.82

2 0 3 0 0 0 2476.81 2365.82 2365.82
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Bath number Expeted pro�ts

on�gurations Two-stage Flexible Fixed

2 2 0 0 1 0 2476.75 2365.78 2365.78

2 0 0 0 1 1 2464.55 2358.05 2358.05

3 0 1 0 1 0 2464.55 2358.05 2358.05

0 1 1 1 1 0 2464.52 2358.02 2358.02

0 1 2 0 1 0 2452.2 2350.15 2350.15

1 1 0 1 0 1 2436.21 2337.14 2337.14

2 1 1 1 0 0 2436.21 2337.14 2337.14

0 0 1 3 0 0 2436.21 2337.14 2337.14

1 1 0 0 2 0 2436.18 2337.12 2337.12

0 1 0 0 0 2 2420.22 2324.14 2324.14

1 1 1 0 0 1 2420.22 2324.14 2324.14

2 1 2 0 0 0 2420.22 2324.14 2324.14

0 0 2 2 0 0 2420.22 2324.14 2324.14

0 0 3 1 0 0 2404.23 2311.13 2311.13

3 1 0 0 1 0 2404.2 2311.11 2311.11

1 0 0 2 1 0 2404.2 2311.11 2311.11

0 0 4 0 0 0 2388.24 2298.12 2298.12

0 0 0 1 1 1 2388.21 2298.1 2298.1

1 0 1 1 1 0 2388.21 2298.1 2298.1

0 2 1 0 1 0 2388.18 2298.08 2298.08

0 0 0 0 3 0 2388.18 2298.08 2298.08

0 0 1 0 1 1 2372.22 2285.1 2285.1

1 0 2 0 1 0 2372.22 2285.1 2285.1

2 2 0 1 0 0 2372.19 2285.07 2285.07

2 0 0 1 0 1 2356.23 2272.09 2272.09

3 0 1 1 0 0 2356.23 2272.09 2272.09

1 2 0 0 0 1 2356.2 2272.07 2272.07

2 2 1 0 0 0 2356.2 2272.07 2272.07

0 1 1 2 0 0 2356.2 2272.07 2272.07

2 0 0 0 2 0 2356.2 2272.07 2272.07

1 0 0 0 0 2 2340.24 2259.08 2259.08

2 0 1 0 0 1 2340.24 2259.08 2259.08

3 0 2 0 0 0 2340.24 2259.08 2259.08

0 1 2 1 0 0 2340.21 2259.06 2259.06

0 1 3 0 0 0 2324.22 2246.05 2246.05

1 1 0 1 1 0 2324.19 2246.03 2246.03

0 1 0 0 1 1 2308.2 2233.03 2233.03

1 1 1 0 1 0 2308.2 2233.03 2233.03

2 3 0 0 0 0 2292.18 2220 2220

2 1 0 0 0 1 2276.22 2207.01 2207.01

3 1 1 0 0 0 2276.22 2207.01 2207.01
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Bath number Expeted pro�ts

on�gurations Two-stage Flexible Fixed

0 0 0 2 0 1 2276.22 2207.01 2207.01

1 0 1 2 0 0 2276.22 2207.01 2207.01

0 2 1 1 0 0 2276.19 2206.99 2206.99

0 0 0 1 2 0 2276.19 2206.99 2206.99

0 0 1 1 0 1 2260.23 2194.01 2194.01

1 0 2 1 0 0 2260.23 2194.01 2194.01

0 2 2 0 0 0 2260.2 2193.98 2193.98

0 0 1 0 2 0 2260.2 2193.98 2193.98

0 0 2 0 0 1 2244.24 2181 2181

1 0 3 0 0 0 2244.24 2181 2181

2 0 0 1 1 0 2244.21 2180.98 2180.98

1 2 0 0 1 0 2244.18 2180.96 2180.96

1 0 0 0 1 1 2228.22 2167.97 2167.97

2 0 1 0 1 0 2228.22 2167.97 2167.97

3 2 0 0 0 0 2212.2 2154.94 2154.94

1 1 0 2 0 0 2212.2 2154.94 2154.94

3 0 0 0 0 1 2196.24 2141.96 2141.96

4 0 1 0 0 0 2196.24 2141.96 2141.96

0 1 0 1 0 1 2196.21 2141.94 2141.94

1 1 1 1 0 0 2196.21 2141.94 2141.94

0 3 1 0 0 0 2196.18 2141.91 2141.91

0 1 0 0 2 0 2196.18 2141.91 2141.91

0 1 1 0 0 1 2180.22 2128.93 2128.93

1 1 2 0 0 0 2180.22 2128.93 2128.93

2 1 0 0 1 0 2164.2 2115.9 2115.9

0 0 0 2 1 0 2164.2 2115.9 2115.9

0 0 1 1 1 0 2148.21 2102.89 2102.89

4 1 0 0 0 0 2132.22 2089.89 2089.89

0 0 2 0 1 0 2132.22 2089.89 2089.89

2 0 0 2 0 0 2132.22 2089.89 2089.89

1 2 0 1 0 0 2132.19 2089.87 2089.87

1 0 0 1 0 1 2116.23 2076.88 2076.88

2 0 1 1 0 0 2116.23 2076.88 2076.88

0 2 0 0 0 1 2116.2 2076.86 2076.86

1 2 1 0 0 0 2116.2 2076.86 2076.86

1 0 0 0 2 0 2116.2 2076.86 2076.86

0 0 0 0 0 2 2100.24 2063.87 2063.87

1 0 1 0 0 1 2100.24 2063.87 2063.87

2 0 2 0 0 0 2100.24 2063.87 2063.87

3 0 0 0 1 0 2081.68 2047.3 2047.3

0 1 0 1 1 0 2081.65 2047.28 2047.28
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Bath number Expeted pro�ts

on�gurations Two-stage Flexible Fixed

0 1 1 0 1 0 2059.66 2026.78 2026.78

2 1 0 1 0 0 2036.81 2005.42 2005.42

0 0 0 3 0 0 2036.81 2005.42 2005.42

1 3 0 0 0 0 2036.76 2005.38 2005.38

1 1 0 0 0 1 2013.96 1984.06 1984.06

2 1 1 0 0 0 2013.96 1984.06 1984.06

0 0 1 2 0 0 2013.96 1984.06 1984.06

0 0 2 1 0 0 1991.11 1962.7 1962.7

0 0 3 0 0 0 1968.26 1941.34 1941.34

1 0 0 1 1 0 1968.21 1941.3 1941.3

0 2 0 0 1 0 1968.15 1941.25 1941.25

0 0 0 0 1 1 1945.36 1919.94 1919.94

1 0 1 0 1 0 1945.36 1919.94 1919.94

3 0 0 1 0 0 1922.51 1898.58 1898.58

0 1 0 2 0 0 1922.45 1898.53 1898.53

2 2 0 0 0 0 1922.45 1898.53 1898.53

2 0 0 0 0 1 1899.66 1877.22 1877.22

3 0 1 0 0 0 1899.66 1877.22 1877.22

0 1 1 1 0 0 1899.6 1877.17 1877.17

0 1 2 0 0 0 1876.75 1855.81 1855.81

1 1 0 0 1 0 1853.85 1834.41 1834.41

3 1 0 0 0 0 1808.15 1791.69 1791.69

1 0 0 2 0 0 1808.15 1791.69 1791.69

0 2 0 1 0 0 1808.09 1791.64 1791.64

0 0 0 1 0 1 1785.3 1770.33 1770.33

1 0 1 1 0 0 1785.3 1770.33 1770.33

0 2 1 0 0 0 1785.24 1770.28 1770.28

0 0 0 0 2 0 1785.24 1770.28 1770.28

0 0 1 0 0 1 1762.45 1748.97 1748.97

1 0 2 0 0 0 1762.45 1748.97 1748.97

2 0 0 0 1 0 1739.54 1727.56 1727.56

4 0 0 0 0 0 1693.84 1684.84 1684.84

1 1 0 1 0 0 1693.79 1684.8 1684.8

0 3 0 0 0 0 1693.73 1684.75 1684.75

0 1 0 0 0 1 1670.94 1663.44 1663.44

1 1 1 0 0 0 1670.94 1663.44 1663.44

0 0 0 1 1 0 1625.18 1620.67 1620.67

0 0 1 0 1 0 1597.22 1594.2 1594.2

2 0 0 1 0 0 1569.13 1567.59 1567.59

1 2 0 0 0 0 1569.07 1567.55 1567.55

1 0 0 0 0 1 1541.03 1540.98 1540.98
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Bath number Expeted pro�ts

on�gurations Two-stage Flexible Fixed

2 0 1 0 0 0 1541.03 1540.98 1540.98

0 1 0 0 1 0 1481.51 1481.51 1481.51

0 0 0 2 0 0 1422.08 1422.08 1422.08

2 1 0 0 0 0 1422.08 1422.08 1422.08

0 0 1 1 0 0 1392.37 1392.37 1392.37

0 0 2 0 0 0 1360.07 1360.07 1360.07

1 0 0 0 1 0 1325.04 1325.04 1325.04

3 0 0 0 0 0 1255.11 1255.11 1255.11

0 1 0 1 0 0 1255.04 1255.04 1255.04

0 1 1 0 0 0 1220.08 1220.08 1220.08

1 0 0 1 0 0 1077.29 1077.29 1077.29

0 2 0 0 0 0 1077.19 1077.19 1077.19

0 0 0 0 0 1 1039.22 1039.22 1039.22

1 0 1 0 0 0 1039.22 1039.22 1039.22

1 1 0 0 0 0 886.77 886.77 886.77

0 0 0 0 1 0 772.48 772.48 772.48

2 0 0 0 0 0 696.34 696.34 696.34

0 0 0 1 0 0 505.83 505.83 505.83

0 0 1 0 0 0 467.76 467.76 467.76

0 1 0 0 0 0 315.31 315.31 315.31

1 0 0 0 0 0 124.89 124.89 124.89
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