PhD thesis

Maté Hegyhéati

DOI: 10.18136/PE.2015.585

Veszprém

2015


Egyházy Tiborné
Beírt szöveg
DOI: 10.18136/PE.2015.585



PhD thesis

Batch Process Scheduling:

Extensions of the S-graph Framework

Maté Hegyhati

Supervisor: Ferenc Friedler, DSc

Doctoral School of Information Science and Technology

University of Pannonia
Veszprém

2015



iii

BATCH PROCESS SCHEDULING:
EXTENSIONS OF THE S-GRAPH FRAMEWORK

Ertekezés doktori (PhD) fokozat elnyerése érdekében

Irta:

Hegyhati Maté

Késziilt a Pannon Egyetem Informatikai Tudomanyok Doktori Iskolaja keretében

Témavezeté: Dr. Friedler Ferenc

Elfogadasra javaslom (igen / nem)
(alairas)
A jelolt a doktori szigorlaton ... % -ot, ért el.

Veszprém,

a Szigorlati Bizottsag elndke

Az értekezést biraloként elfogadasra javaslom:

Biralo neve: (igen /nem)
(alairas)
Biralo neve: (igen /nem)
(alairas)
A jelolt az értekezés nyilvanos vitAjan ... % - ot ért el.
Veszprém,

a Birdlo Bizottsig elnoke

A doktori (PhD) oklevél mingsitése

Az EDT elnoke



iv



Abstract

In batch processes, a unit can be used for various steps of the production of several different
products. This leads to several advantages over continuous systems, e.g., quick adaption
to the changing market environment. This flexibility of batch processes, however, requires
additional consideration in operational planning, as the equipment units must be scheduled
with caution to satisfy all the practical constraints of the problem. Finding the most ad-
vantageous schedule is generally a complex problem, nevertheless it is a key component of
the profitability of such systems. As a result, the scheduling of batch processes is a widely
researched topic, with many different approaches published.

The goal of my PhD work was to extend the capabilities of the S-graph framework to be
able to address a wider range of scheduling problems. Unlike other mathematical program-
ming based techniques, the S-graph framework guarantees a feasible and globally optimal
solution. There are, however, several practical features, that could not be tackled with
the former S-graph based algorithms. In this thesis, extensions of the S-graph framework
are presented to address limited-wait storage policies, throughput maximization-, and ex-
pected profit maximization problems. The developed algorithms are discussed in detail, and

empirically tested on various case studies and literature examples.



vi



Absztrakt

Szakaszos iizemi termel§ rendszerek berendezései tobb kiilonb6z6 termék gyartasinak lépé-
seinél is felhasznalhatok, aminek készonhetGen az ilyen rendszerek kénnyebben alkalmazkod-
nak példaul a valtozo piaci igényekhez, s tovabbi szamos elénnyel rendelkeznek a folytonos
rendszerek miikodésével szemben. Ezen szabadsagi foknak koszénhetGen ugyanakkor kiilonos
odafigyelés sziikséges a tervezés soran, hogy a berendezések iitemezése minden gyakorlati
korlatozasnak eleget tegyen. A legelényGsebb iitemezés megtalaldsa altalaban egy Gsszetett
feladat, mely kulcsfontossagti a hasonld rendszerek nyereséges miikodéséhez, igy a téma
széles korben kutatott, s szimos modszer latott napvilagot a kapcsolodo szakirodalomban.

Doktori munkam célja az S-graf modszertan kiterjesztése volt, megteremtve annak széle-
sebb kort alkalmazasi lehetGségeit szakaszos iizemd rendszerek iitemezéséhez. A mate-
matikai programozason alapul6 modszerekkel ellentétben az S-graf modszertan korabban
kidolgozott algoritmusai garantaljak az optiméalis megvalosithaté megoldast, azonban nin-
csenek felkészitve néhany fontos ipari korlatozas figyelembe vételére. Dolgozatomban az
S-graf modszertan tobb kiegészitése keriil bemutatasra, melyek alkalmazéasaval kezelhetSk
példaul az idGkorlatos tarolasok, vagy a profit valamint varhato profit maximalizalasat
megcélzo feladatok. A kifejlesztett algoritmusok részletes ismertetését kovetGen azok Gssze-

hasonlitasa keriil bemutatésra esettanulmanyokon és irodalmi példakon keresztiil.

Vil



viii



Contents

[Prefacd
1 Scheduling problemsd

|1 1 Basic scheduling nroblemsl ............................

|1 2 Scheduling problems of chemical batch nrocesses] ................
|1 2.1  Recipes and example nroblems] ......................
|1 2.2 Storage policieJ ..............................

X

vii

xXvi

© 0~ -1 e W

13
15
16
17

19
21
22
24
25
26
26
28
31



X CONTENTS

|3 3.1 TLong tasksl ................................. 49

|3 3.2  Time point Svnchronizationl ....................... 50

|4 1__Main algorithm for revenue maximizatior] .................... 53
|4 2 Subroutines for the algorithnl .......................... 5h)
M&dm_mmm&mﬂhml ...................... 55
|4 2.2 __The update methori ........................... o7

Wd Empirical testd . . . oot 63
|_4.4.| Pharmaceutical case sjmdyl ........................ 65
|4 4.2 _Agrochemical examnlel .......................... 67
|4 4.3 Literature examr)lel ............................ 68

|5 1 __Auxilary LP mode]l ................................ 72
|5 2 _Combinatorial approach with negative weighted ar('sl .............. 73
|5 3 Combinatorial approach without negative Weightsl ............... 75
31 Recwrsivesearcll ... ... .. ... ... ... 75
|5 3.2 Auxilary grap}J .............................. 79

b M ——y o

|6 2 S-gaph based approacheJ ............................. 89
|6 2.1 Preventive scheduling with fixed batch SiZPSI .............. 90
|6.2.2 Preventive scheduling with variable batch sized ............. 91
|6 2.3 Two stage approachl ............................ 92

|6 3 Extended approaches for recipes with multiple nrodu(‘tsl ............ 93
|6 3.1 Preventive scheduling with fixed batch sizesl .............. 93
|6 3.2 Deterministic scheduling for variable batch SiZPSI ............ 94
6.3.3 Preventive scheduling with variable bhatch sized . . . . . . . .. .. .. 04
|6 3.4 Two stage approachl ............................ 95

|6 4 Continuous probability distributionl ....................... 96




|7 1.2 Waiting before produ(‘tiorl ..

|Z. .3 Continuous processes and multiple resgumes’ ..............

|7 2 Scheme of optimization with the S-graph frameworkl ..............

|7 3 Mathematical description of the eS-graph modei ................

|7 3.1 Analysis of the original S-graph modell .................

List of Figures

xi

103
104
104
106
108
108
113
114
115
116
120
125
128

131

133

137
137
138
139
139
140
140

147

158



LIST OF FIGURES

5.1 Simple example recipe for illustrating the Cross Transfer issud . . . . . . . . 11

3.2 Provided Gantt charts for the example in Figure a .............. 42

W&mﬂ&bum&ﬁmnﬂﬂhﬁmﬂm] ................ 42

|3 5 _Cycle in the S-graph representation of the MILP Solutiorl ........... 46
5.6 The S-graph containing all the possible schedule ared . . . . . . . ... ... 49
|4 1 _Finding the initial region for revenue maximizationl .............. 56
|4 2 Significance of configuration selection on the number of iterationsl ...... 56
|4 3 __Reducing the search space based on the best feasible solutionl ......... 58
Mhmmghmnﬁgmammhm&mmmmumﬁ ............ 58
4.5 The corresponding recipe graphs for the 6 cases in Table @ ......... 64

ical casestudvl . . . .. ... ... .. 66
|4 7__Flowsheet of the agrochemical process for herbicide nrodu(‘tiorl ........ 67
|4 8 S-graph of the two fixed recipes for the agrochemical pmgessl ......... 67
|5 1 Modeling LW policy with negative weighted arcsl ................ 74

|5 4 _Acceleration by inserting additional arcs in the qraphl ............. 79
|5 5 Example for the graph of ZW classes constructed from the re(‘ipel ...... 80
|5 6 Example for the extended graph of ZW classes based on a schedulel ..... 81
|5 7__Example for model transformation of W sta.gesl ................ 82
|5 8 Example for the comparison of LW /ZW approa.('hesl .............. 82
|5 9 CPU time of ZW/IW approaches for the smaller ('a.sesl ............ 83
|5.|!! Quality of reported solutions of ZW /T.W appmaches’ .............. 84
|6 1 Classification of approaches dealing with un('ertaintyl ............. 87




|7 1 Schedule arc in the original framework and the Gantt ('ha.ﬂl .......... 105

|7 2 __Accurate Gantt chart representing the transferl ................. 105
|7 3 Modified S-graph to address transfer time] ................... 105
|7 4 _Addressing transfer time with several subsequent. tasks] ............ 106
|7 5 Addressing transfer time with additional nodes] ................ 106
|7 6 ___Example for product with task of multiple innuts] ............... 107
|7 7 __Solutions provided by the S-graph algorithm for the exa.mpld ......... 107
|7 8 Solution with better makespan if storage if allowed before nrocessinel . ... 108
|7 9 General scheme of the S-graph based optimization meﬂiu_d ......... 109
|7 10 _Optimization procedure with model transformation . . . . . . .. .. .. .. 111
|7 11 _Optimization procedure with algorithmic extensiorl .............. 112
|7 12_Optimization procedure with model based extensiorl .............. 112
[7.13 Simplified dependency notations for the eSegraphl . . . . .« o o oo ... 120
|7 14 eS-graph model of a simple taskl ......................... 121
|7 15 eS-graph model of a task with input and output, tra.nsfers] .......... 121
|7 16 _eSgraph model of a task and transf@rd ...................... 122
|7 17 _eSgraph model of part of a_complex re(‘inel ................... 123

List of Tables

|1 1 Example data for a single stage nrobleml .................... 11

|3 2__Processing times for the single stage examnlel .................. 40

........................ 40
4.1 27 different "fixed recipes" for the example by Kondili et al.@ﬂ ....... 62
4.2 Non-dominated cases for the example by Kondili et al.@ﬂ .......... 63
4.3 Merged non-dominated cases for the example by Kondili et al.@ ...... 63
|4 4 Processing times and revenue data for the pharmaceutical case studyl ... 66

|_4.5 [est results for the agrochemical examEg% .................... 68
4.6 Test results for the example of Sectionld3 . . . . . . . ... ... ... ... 68




xXiv

LIST OF ALGORITHMS

NAING 1NOoN-nega C_Patll DELTWEEC WO

Makespan minimization with the S-graph framework



Achnowledgements

First of all, T would like to thank to my supervisor and all members of the Scheduling Re-
search Group at the Department of Computer Science and Systems Technology, Faculty of
Information Technology, University of Pannonia, for helping me making my own contribu-
tion to the field of batch process scheduling. Prof. Ferenc Friedler, my supervisor aided
my research with many suggestions, corrections, and continuous guidance thourough our
evening meetings despite all the strains He beard as the rector of our University. Dr. Tibor
Holczinger, my senior colleague at the research group provided me with many great insights
and suggestions, and showed always infinite patience towards me, though I often meant a
hindrance in our joint works. T am exceptionally thankful to all the students I had the luck
to work with: Akos Orosz, Andras Szoldatics, Andras Eles, Balazs Kovécs, Benjamin Téth,
Olivér Osz, and Zsolt Nemes, as they were very active, resourceful, creative, and stimulative
colleagues during this last 5 years.

For providing a supportive aura and workplace for my research T am thankful to my
friends, family, and all the staff (including lecturers, researchers, administrative and cleaning
personnel, etc.) of the Department and the University, as well as the city of Veszprem itself.
Special thanks is in order for Gergely Vakulya, who shared the same office with me thorough
this last couple of years, and proved to be a supporting roommate, with whom I shared many
scientifically inspiring discussions.

The Paul Erdos Talent Care Program and Dr. Ferenc Pinter played a key role shepherd-
ing me towards the academic career, for which I am now utmost grateful. Over my 21 years
of being a student, many people contributed in developing skills necessary for graduating as
a PhD student, including all my teachers, students, orchestra members, powerhiking fellows,

and rivals in competitions.

XV



Xvi Achnowledgements

This research has been supported by the European Union and Hungary and co-financed
by the European Social Fund through the project TAMOP-4.2.2.C-11/1/KONV-2012-0004
- National Research Center for Development and Market Introduction of Advanced Infor-

mation and Communication Technologies.



Preface

Batch processes are becoming more and more important in the production industry due to
their flexibility. This advantage, however, also comes as a shortcoming, as the units need to
be scheduled, which results in an additional complexity for the planning of operations. The
industry generates a wide range of batch scheduling problems, where the goal in general is to
allocate the tasks of the process to the available equipment units in the most favorable way.
Thus, scheduling is an important and unavoidable problem of batch processes, for which
many approaches has been published in the literature over the past two decades.

Chapter[dlfirst presents the theoretical foundations of machine scheduling, which provides
the basis for the practical, industrial problems described in the second part of the chapter.
The approaches developed and published in the literature for batch scheduling problems
are summarized in Chapter Bl The MILP programming based approaches presenting the
majority of publications are discussed in detail. The model and algorithms of the S-graph
framework and its past developments are detailed thoroughly in the second part of the
Chapter, as it provides the basis for the new developments presented in this thesis.

In the next five chapters, the new results of the thesis are detailed. First, some modeling
issues are addressed in Chapter Bl that appear in the literature approaches. The next three
chapters provide extensions of the S-graph framework for throughput maximization (Chapter
A limited-wait storage policy (Chapter [), and stochastic profit maximization (Chapter [),
respectively. In Chapter [ a generalized modeling framework is presented in order to extend

the expressiveness of the S-graph framework.






Chapter 1

Scheduling problems

Scheduling problems appear in almost every part of life, e.g., finding the shortest path with
a shopping list in a mall, selecting the best order of airplanes to land during a rush hour,
or providing a robust execution plan for a construction project. The problems that arise at
different parts of life often differ in many aspects, however, the underlying basics are the
same: the goal is to assign tasks to some kind of available resources and time
intervals in the most favorable way for a certain objective, while satisfying the
constraints of the problem definition. Just like the aforementioned constraints and
objectives vary, the terminology for the basic elements of the problem are also different at
different fields of science. Tasks to be performed are often called jobs, activities, etc. The
available resources in many cases are some kind of machines that are often called equipment
or units as well. The main field of the present work is the scheduling of batch processes of
chemical industries, thus the terms task and unit are used almost everywhere, which are
the most accepted in this field.

The classification of scheduling problems is different for each field. However, there are
some basic aspects that can be the basis of the categorization in almost any case. Regardless
of the field specific attributes of a scheduling problem, it can be classified as either an online,
offline, or semi-offiine problem. In the case of offline problems, all the necessary input
data is available at the time of the optimization, when the scheduling decisions are made. In
contrast, for an online scheduling problem, the decisions have to be made before some of the
problem parameters are revealed. In the semi-offline case, some but not all information about
the problem parameters is available in advance before making the decisions. In general, it
is impossible to provide an approach generating the optimal solution if the problem is not
offline. In the online and semi-offline case the proposed methods in the literature can only
guarantee a competitive ratio, that is the maximum deviation of the provided solution from
the optimal one. For offline problems, the optimal solution is usually theoretically findable.
Nevertheless, most of the offline problems are NP-hard, thus finding the optimal solution in
a reasonable time is in many cases not possible or at least challenging.

An other dimension for classification is the uncertainty. A scheduling problem is called

stochastic if some of the problem parameters take values only at the time of the execution



4 CHAPTER 1. SCHEDULING PROBLEMS

of the provided schedule, and the problem is called deterministic otherwise. For stochastic
problems the decisions to be made can be categorized into two groups: the ones that must
take values before the stochastic parameters take values, and the ones that can alter their
value after that.

The two mentioned categorization aspects are only loosely defined, and thus they also
have kind of an overlap. As an example, stochastic problems can be considered semi-offline,
as some of the decisions has to be made before knowing the exact values of some problem
parameters, and usually some additional information is available, e.g., the probability dis-
tribution function of them. Nevertheless, both of the aspects are addressed independently,
as the most common attributes of a stochastic and a semi-offline problem are different, as
well as the objectives and the developed approaches for solving them.

In this work, mostly deterministic and offline problems are considered if not stated
otherwise. Chapter [0l focuses on a class of stochastic scheduling problems. The domain of
the problems and the developed approaches is the scheduling of the batch chemical processes
although many of the algorithms may be applied for similar problems of other fields. Section
[LIlprovides a brief review of the basic scheduling problems in the literature of combinatorial
optimization, as some of these problems are the roots for the scheduling problems that appear
in the chemical industries. The introduction of the special features of batch scheduling

problems is given in Section

1.1 Basic scheduling problems

In this section some of the most simple scheduling problems are discussed. Simple refers
here to the description of the problem, not the mathematical complexity of solving it. As it
will be presented, some of these problems are already very difficult to tackle to begin with.

Scheduling problems in chemical industries usually involve more problem parameters and
constraints than the problems presented in this section. These problems, however, are the
basis for the more detailed practical problems, and they provide a lower bound for their

complexity.

1.1.1 Problem classes

In the literatureﬂﬂ] of these problems, the terms job, operation, and machine are used
instead of products, tasks, and units, respectively. The problem classes are formulated with

a triple, a|f3|y, where the
a field describes the jobs and the available infrastructure
[ field provides additional parameters of the problem if any

~ field defines the objective



1.1. BASIC SCHEDULING PROBLEMS 5

The « field describes the number of machines, whether they are identical or not, and
also the type of the jobs to be completed on those units. Without attempting to be com-

prehensive, some of the possible entries of the « field are given here:

Single stage problems

1 - Single machine A single machine is available, each job consists of a
single step to be performed on that machine. The products may (and

usually do) have different processing times.

Pm - Identical parallel machines m identical machines are available,

with single step jobs, that can be completed on any of the machines.

@m - Parallel machines with different speed are similar to the Pm
case with the difference that each machine has an assigned speed

factor.

Rm - Unrelated machines in parallel Generalization of the single stage
case, when the processing time of a job on a machine is defined as an

input parameter.

Shop problems

F'm - Flow shop The jobs have m steps that have to be performed on the

m machines in the same order for each job.

FFc - Flexible flow shop Generalization of the F'm and Pm cases, where
each job has to go through c stages in the same order, where several

parallel machines are available.

Jm - Job shop Generalization of the F'm case, where the jobs can have
different order for the machines, moreover, it is not mandatory for a

job to visit all of the machines.

FJc - Flexible job shop Generalization of the Jm and F'F'c cases, when
the jobs have to go through some of the stages in a job-dependent

order, and at each stage, some identical units are available.

Om - Open shop Each job has to go through all of the machines. How-

ever, their order is not given by the problem definition.

As it is already highlighted in the description, some of the cases are special cases of
others, e.g., Pm is a special case of F'F'c when ¢ = 1. These dependencies between the
different « field values are shown in Figure [T, where an arc leading from A to B represents
that B is a special case of A.

Unlike the o and ~ fields, the § field that provides additional constraints, may contain

several or no entries at all. Some of the most common entries are:



CHAPTER 1. SCHEDULING PROBLEMS

1 4— Pm 4— Qm <4— Rm

P

Om Fm <4— FFc

P

Jm 4— FJc

Figure 1.1: Dependency between the possible entries in the « field

r; - release dates For each job, its processing cannot start earlier than its release
date.

prmp - preemptions The processing of a job on a machine can be interrupted, and

continued later on any suitable machine.

s - sequence dependent setup times After completing job k on a machine, it

needs s;;, time to be adjusted for the job j.

batch(b) - batch processing The machines can perform at most b jobs simultane-
ously, however, the jobs has to wait for each other when starting or finishing the
task.

brkdwn - breakdowns The machines are available only in given time intervals.

M; - machine eligibility restrictions In the case of parallel machines, each job has

a subset of machines that can be used to process it.

prmu - permutation In case of flow shop problems, the order of the jobs at each

stage must be the same.

nwt - no wait The jobs can not wait between the different machines in case of flow-,

job-, or open shop problems.

In the case of the « field, all of the entries were generalizations of the 1 case. Similarly,

the empty 3 field is a special case of many other. From the above list 7, s;,, brkdwn, M;,

and their combination are such entries, however, the preemptions, for example, change the

problem in its core.

The ~ field defines the objective of the optimization. Similarly to the « field, exactly

one entry is allowed (and required) here. The most common entries are:

Chnae - makespan Minimization of the maximum completion time.



1.1. BASIC SCHEDULING PROBLEMS 7

> w;C; - weighted completion time Minimization of the total weighted comple-

tion time of jobs.

Lyper - maximum lateness Minimizing the maximal violation of due dates. Lateness

can take a negative value, when a job is finished earlier than its due date.

> w;T; - total weighted tardiness Minimization of the weighted sum of non-negative

lateness values of the jobs.

> w;U; - total weighted number of tardy jobs Minimization of the weighted num-

ber of jobs that are not completed within the given deadline.

Similarly to the other two fields, (.. is a special case of L,,,, when all the due dates
are 0, and > w;C} is the special case of ) w;T;.

Obviously, if a problem class is the same or special case of an other in all of the three fields,
its solution can be reduced to the solution of the less restricted one. Since the algorithms
for the latter are applicable for the former one, the former can not be more complex than

the latter one.

1.1.2 Classification of solutions of scheduling problems

The term schedule refers to an assignment of each task to units and time intervals in
most, of the cases. There exist, of course, infinitely many assignment functions for a given
scheduling problem, and the term solution is also often used when referring to a schedule.
The schedules that do not satisfy at least one of the constraints of the problem description
are called infeasible, and the others are termed feasible. Among the feasible schedules,
one is called non-delay if no unit is kept idle while a task is waiting for processing. It
is obvious that any feasible schedule can easily be converted to a non-delay schedule, by
shifting each task as early as possible in the solution.

A schedule for a problem is called active if there exists no other feasible schedule in
which some of the tasks start earlier, and none of them starts later. Obviously, all of the
active schedules must be non-delay schedules as well.

Active and non-delay schedules play an important role in the case of makespan mini-
mization objective, where the optimal solution or solutions must be non-delay, and at least

one of the optimal solutions can be found among the active schedules.

1.1.3 Approaches and complexity

Some classes of the aforementioned problems can be solved to guaranteed optimality by
simple, polynomial algorithms. Most of these problems, however, are proven to be NP-hard,

thus efficient algorithms are not expected for them

'Note, that there are polynomial algorithms developed for some NP-hard problems, which can provide
optimal solution for the majority of the instances of the problem class, and a suboptimal solution for the
rest.



8 CHAPTER 1. SCHEDULING PROBLEMS

A simple strategy could be to assign the jobs to the machines based on the increasing or-
der of processing times. This, so-called SPT (Shortest Processing Time) algorithm provides
optimal solution for a couple of problem classes if the objective is > C;. If the objective
is C)haz, the opposite strategy, i.e., prioritizing jobs with the longest processing time, often
provides good competitive ratio for F'F' problems.

Among the easy to solve problems, the 2-stage flow- and job-shop scheduling problems
are probably the closest ones to industrial scheduling problems discussed later. In this
case there are two machines for either one or two stage jobs, and the objective is C4.,
i.e., the minimization of the makespan. Johnson’s[@] and Jackson’s[@] algorithm provide
an optimal solution for the scheduling problems in this classes. However, increasing the
number of machines and stages per job makes the problem much more complex, and efficient
algorithms are not expected.

Also, in many cases, the problem definition of a real industrial case study involves ad-
ditional parameters that need to be addressed. In such cases, even offline problems with

parallel identical units become NP complete|110)].

1.2 Scheduling problems of chemical batch processes

Scheduling problems that arise in the chemical industry are more complex in their descrip-
tion, though they show many similarities to the basic problems described in the previous
section.

Batch chemical scheduling problems are mostly given by their

1. recipe

2. storage policy

3. objective, and related parameters

4. additional parameters

These parameters are described in the following subsections in detail, however, some
words must be addressed to the assumptions and conventions of this field.
Assumptions
If not stated otherwise, the following assumptions are considered:

Unique allocation A task is assigned to a single unit in the schedule, even if several

applicable ones are available.
Non-preemptivity The execution of a task must not be interrupted

Batch processes Each task behaves in a batch-like favor. If a task is continuous, it

has sufficiently large dedicated storages to consider it as a batch process.



1.2. SCHEDULING PROBLEMS OF CHEMICAL BATCH PROCESSES 9

Fixed batch sizes The amount of material processed in each task is fixed by the

production recipe.

Conventions

The notation used among scientist is not standardized. However, several conventions are ap-
plied, which may change based on the actual example. To avoid further confusion, the most
common notations are summarized here briefly, as they will be used alternately throughout
the whole document in problem descriptions, diagrams, etc.

In case studies, products, tasks, units are usually assigned a real name. However, if this
is not the case (frequent for literature examples), or the notations need to be shorter, the

following conventions are used to label the elements of the system.

Products are often denoted by the first capital letters of the alphabet, i. e., A, B,C, ...,
or by P1, P2, P3,....

Tasks are often labeled after their product, especially in sequential recipes, like A1, A2,
A3, .... In some papers, labels like T'1 or T} are applied. In mathematical formulations the

dummy index i is used for tasks, thus sometimes labels like i1, i1, or i4; are used.

Units are similarly denoted by U1, U2, ..., and sometimes labeled as Fq.1, E1, or E; to
refer to equipment units. In case of the mathematical formulations, the applied dummy

index is 7, thus sometimes j1 or j; is used as well.

1.2.1 Recipes and example problems

The word "recipe" itself is an ambiguous term, as the ISA SP88 standard defines four
levels of recipes: general recipe, site recipe, master recipe, and control recipe@], however,
none of these are entirely satisfying our requirements towards a recipe. Thus, thorough the

document the term recipe will refer to the collection of the following parameters:
e list of products
e list of tasks, that are to be performed in order to produce the products
e productional precedences among tasksH
e available units

e processing times for suitable task-unit pairs

2This is often indirectly given by providing the inputs and outputs of tasks.



10 CHAPTER 1. SCHEDULING PROBLEMS

The recipe of a product refers to the information in the recipe related to that specific product.
Based on the precedence structure among tasks, the recipes are usually categorized into
the following groups starting from the simplest one to the most general one. Each class is a

specific case of the next one.

Single stage Each product is produced via a single step. Similar to the Pm case,

but the available units are not necessarily identical or uniformly applicable.

Simple Multiproduct Similar to an F'F'c layout, i.e, each product is produced lin-
early through a fixed number of stages. The difference is the same as in the
previous case: the units at a stage are usually not identical and can not perform

the same subset of tasks.

General Multiproduct Often referred to as Multiproduct recipe, the generaliza-

tion to the simple case allows for a production plan to skip several stages.

Multipurpose Unlike in the Multiproduct case, the stages cannot be ordered in such
a way along a line that the production of each product goes from left to right.
The number of stages and their order is arbitrary. Moreover, a stage may reoccur

several times in the same production. This is the most general sequential recipe.

Precedential The tasks in the production of a product are not assigned to stages,
and the precedence between them is given apiece. The key difference between
the multipurpose and precedential recipes is that the production of a product is
not necessarily linear, i.e., there can be junctions in it, but in the case of several

prerequisites for a task, all of them must be completed before starting it

General network This is the most general recipe class, where the tasks are given by
their inputs and outputs, which indirectly define their precedences. Here, unlike
the Precedential case, the same material may be produced by several alternative
tasks making them optional and not mandatory prerequisites. Moreover, cycles

may occur in the dependencies.

It is important to note that although some papers have attempted to provide a clas-
sification of scheduling problems[@, |, the terminology is not standardized. Terms like
"multiproduct" may refer to (slightly or significantly) different recipe classes in different
papersﬁ

The above classification is the proposition of the author, that satisfies the following
important criteria: most of the published approaches can unambiguously assigned to one of

the defined problem classes.

3Obviously, the dependencies must not create a cycle.

4These definitions are mostly indirect by the problem classes covered by the presented approach. Many
articles state that the proposed approach or formulation solves e.g., multiproduct scheduling problems.
However, the problem class covered by these approaches vary for each paper, making the indirect definition
of the multipurpuse problem class inconsistent.



1.2. SCHEDULING PROBLEMS OF CHEMICAL BATCH PROCESSES 11

Recipe representations and example problems

Single stage recipes are usually simply given by a table, where the rows correspond to
jobs, the columns to units, and each cell contains the processing time if the unit is applicable

for that product. Kopanos et al.[67] presented such a case study, whose data is given in Table

w1l
Processing times (h) | Ul U2 U3 U4

P1 | 1.538 1.194
P2 | 1.500 0.789
P3| 1.607 0.818
P4 1.564 2.143
P5 0.736  1.107
P6 | 5.263 3.200
PT7 | 4.865 3.025 3.214
P8 1.500 1.440
P9 1.869 2.459

P10 1.282

P11 3.750 3.000

P12 6.796 7.000 5.600

P13 | 11.25 6.716

P14 | 2.632 1.527

P15 | 5.000 2.985

Table 1.1: Example data for a single stage problem

Multiproduct recipes can still be represented by tables. However, in many cases block
diagrams are simpler to describe the problem. The problem from Voudouris et al. | is
presented in Table and as a block diagram in Figure Note, that the block diagram

is only suitable if each task can be performed by exactly one unit at a stage.

. . Stage 1 | Stage 2 | Stage 3
Processing times (h) 1 0303 Ui G
Al 7 3 4
B 8 5 3
C 4 16 4
D 6 | 9 3

Table 1.2: Multiproduct example represented in a table

Multipurpose recipes are difficult to represent in a table, as the order of the stages
are arbitrary. If each task can be performed only by a single unit, the block diagram is a

suitable choice, as represented in Figure [[3] for an example by Ferrer-Nadal et al.|31].

5The problem presented in the paper contained additional data for changeovers as well.



12 CHAPTER 1. SCHEDULING PROBLEMS

i
[ 7] [ 5]
[ 8] [ 6]
X -
[ /] [5]

L
L[] B,
(7]
(7]
(7]

n \ D»

A>
: / .
ol 7] 11/

Figure 1.2: Multiproduct example represented in a block diagram

| iy | L

ol (7] [7] [71 (4,

ol (7] [77] 771 |5,
7] 761 |C, ol [F1]
(7110, ol [7] [77]

Figure 1.3: Multipurpose example represented in a block diagram



1.2. SCHEDULING PROBLEMS OF CHEMICAL BATCH PROCESSES 13

Precedential recipes are usually represented by some kind of graphs, where the tasks are
assigned to the vertices, and the arcs represent the productional dependencies. An example
by Holczinger@] is illustrated in Figure [[4l The processing time and the applicable units
are indicated at each vertex, and it is assumed that the processing time is the same if several

units are suitable.

PT: 6h (—w PT: 9h

U1,U2 Us, Uy \
PT: 16h (—w PT: 19h -
/ Us U6 Product A
PT: 7n || PT: 9
U1,U2 U3,42
PT: 9h |—»| PT: 15h |—»| PT: 17h |~ PT: 7h > roduct B
U2 U3, U6 Ut U4, U5 oaue
\ PT: 25h >
Us, U7 Product C

Figure 1.4: Precedential example represented in a graph

General network recipes are most often represented by State-Task-Networks (STN [@])
or Resource-Task-Networks (RTN ). The original example for introducing the STN
representation from Kondili et al.[66] is given in Figure[[3l Circle shaped vertices represent
materials, while rectangles represents tasks. This graphical representation sometimes does
not contain processing times, it is provided in an additional table. The representation is
identical to that of the P-graph mathematical model introduced by Friedler et al.@], that
was developed for the optimal design of continuous processes.@, @, @] The key difference in
an RTN representation is that units are also represented as resources and tasks are duplicated
if several units can perform them. Some papers use the so-called State-Sequence-Network
representation|84|, where dedicated states (mostly materials) give the vertices, and arcs

represent tasks.

1.2.2 Storage policies

The term, storage policy refers to the constraints for the storage of intermediate products
between consecutive tasks of a recipe. For each material there are two factors that can

induce constraints on its storage:

1. Chemical and physical properties of the material

2. Infrastructural opportunities for storage in the given plant

Thus, storage policy is a two dimensional property that can differ for all of the intermediates
in the recipe. In the majority of the cases, however, the policy is uniform for all of the

intermediate materials.



14 CHAPTER 1. SCHEDULING PROBLEMS

Product 1 Product 2

% 40% % 90%

100% ] 100% 40% 60% ]
Heating Reacton 2 Separation

Feed A Hot A 60% Int AB 100%
Int BC 80% Impure E
100% 100%
50%
Reaction 1 » Reaction 3|
Feed B A A
50% 20%
Feed C

Figure 1.5: STN representation of a general network recipe

The chemical and physical properties of the material provide bounds on the time of the

storage, based on which the following categories are usually identified:

UW - Unlimited Wait is the simplest and most common policy, when the material
does not lose any of its important chemical or physical properties by time, thus it

can wait any amount of time before going to the upcoming task of the production.

LW - Limited Wait storage policy is applied to the intermediate materials that
must not wait longer than a certain amount of time before the next task in

order not to lose a certain property, e.g., cooling out.

ZW - Zero Wait policy is strictly speaking the special case of the LW policy, when

the limit on the storage time equals to 0.

The infrastructural capabilities of the given plant impose limits on the amount of material

that can be stored, and on the way of storing it:

UIS - Unlimited Intermediate Storage policy is applied when there is enough

storage place available to store any amount of intermediates.

FIS - Finite Intermediate Storage policy is considered when there are storage

units available to store the intermediate, but it is limited.

NIS - No Intermediate Storage policy refers to the case when dedicated storage
units are not available for the storage of an intermediate material, but it still can

wait in the processing unit of the previous task.

In many papers, the storage policy is not defined by a pair, as UW policy is assumed
for UIS, FIS, and NIS if not stated otherwise. In the case of ZW policy, the limit for the



1.2. SCHEDULING PROBLEMS OF CHEMICAL BATCH PROCESSES 15

storage space is irrelevant, thus it is often used in itself as it is, and this is the reason, why
it is not tackled as a special case of LW.

Although, the combination of the above mentioned policies covers most of the cases, there
are always practical problems which require special definition. One of the most common
examples is the Common Intermediate Storage policy (CIS), where there is (typically
finite) storage available that is shared among several intermediates, and at most one of them
can use the storage at a time.

Storage policy is an important parameter of the problem definition, changing the storage
policy of the problem can change the optimal solution, the set of feasible solutions, and the

applicable approaches as well.

1.2.3 Objective functions

Industry provides a wide range of objectives resulting from practical considerations. How-
ever, the two most common objectives are the minimaization of makespan and the max-

imization of throughput.

Makespan minimization

Makespan minimization is equivalent to the definition of C,,, in the previous section. In
general, the minimal overall processing time is to be found for a given number of batches of
each product. In many cases however, the number of batches is not specified in the problem
definition, only the amount of products to be produced, thus, the number of batches can
change if the recipe allows variable batch sizes. Larger number of batches may lead to
better solution, when the smaller units are less loaded, or the processing time depends on

the quantity.

Throughput maximization

In case of throughput or profit maximization, the problem description entails a time horizon
as well as a certain benefit value for each product that is usually based on mass, profit, and
revenue. The goal is to maximize the cumulative benefit of all of the produced products
while keeping the production time below the time horizon. The number of batches or amount
of products is usually unbounded, it is even allowed to leave out some of the products

completely.

Other objectives

Although these two are the basic and most common objectives that provide the basis for
comparison of the scheduling approaches, there are plenty of other objectives that arise in

real life chemical production. Without attempting to be comprehensive, some of them are:

e minimizing the cost of total earliness-tardiness



16 CHAPTER 1. SCHEDULING PROBLEMS

e minimizing the clean water use, and in parallel the wastewater effluents (See e.g., [@,

o4, ad, 44, ls3))
e minimizing heat utility energy or cost (See e.g., ﬂﬁ, Iﬂ, B, Iﬂ, @, Iﬂ])

e optimization for a combined cost function that may include utility cost, clean water

costs, etc. (See e.g., , , @])
e maximizing the overall expected profit

e maximizing cyclic profit (See e.g., M, , IE])

e minimizing the over- or underconsumption of electricity (See, e.g., M])
e minimizing transportation cost (See e.g., M])

o ctc.

1.2.4 Common additional parameters

Scheduling problems arising in industry often entail further problem specific parameters.
Some of them may not play important role in the schedule, thus it is neglected or approxi-
mated, e.g., the temperature and cooling of a material, control parameters of the process. In
many cases, however, these parameters must be included in the problem definition. Without

attempting to be comprehensive, some of the most common additional parameters are:

Cleaning time Some tasks leave a unit contaminated, making it unsuitable for any
upcoming task, thus it needs cleaning, which is often comparable with processing
times. See e.g., the paint production example by Adonyi et al.[1]. This parameter

usually depends on the task-unit pair.

Changeover time This parameter is similar to the cleaning time, which can be con-
sidered as a special case. The difference is that a changeover time also relies on
the subsequent task that is scheduled for the unit. This happens for example
when a unit must be adjusted before undergoing a certain task!l See e.g., the

examples in the papers by Kopanos et al.[@, .

Transfer time Often, the time required for the transfer of intermediates from one
unit to an other is not negligible. See e.g., the examples by Grau et al.].
This parameter is usually defined for the triple of source unit, material, and
destination unit. If the transfer is continuous, both units must be available

during the material tansfer. If the transfer is discrete like in the case of the

6Setup times are in this sense also a special case of changeover times, as they do not depend on the
previous task of a unit.



1.2. SCHEDULING PROBLEMS OF CHEMICAL BATCH PROCESSES 17

scheduling of wet-etch stations [B, H, B, , , , @ @, @, , ], the units

may be used for other purposes during the transferﬁ

Unit piping If the intermediates are liquid, thus their transport between the units is
mostly done via pipes and compressors. Although several applicable units may
be available for two subsequent stages of a production, the piping (or better its
absence between two units) limits the possible choices. See e.g., Kopanos and

Puigjaner [69].

Cleaning the units, transferring materials, etc. obviously entails costs, energy consump-
tion, clean water consumption, wastewater generation, etc., which are often considered as
constraints for the schedule as well.

Some papers consider scheduling integrated with process planning, @, ] or control
level decisions[@, ], and include relevant parameters from that level and a combined

objective.

1.2.5 Representation of a schedule

A schedule is basically a set of quadruplets in the form of (4, j, #*,t/), where:
1 is the task to be performed
7 is the unit to perform task ¢
t*,t/ are the starting and finishing times respectively

The prevalent graphical visualization of this data is the Gantt chart, see Figure as
an example for 8 sequential products. The x axis represents time, while the units are listed
on the y axis. Each task is represented by a rectangle in the row of the unit performing it,

ranging from its starting time to its finishing time horizontally.

s [

js C o ] (24

i [

, ] S ——

» win

jt B1 [51] Time (h)

5 10 15 20 25 30 85 40 45 50 55 60 65 770 75 80 8 90 95 100 105

Figure 1.6: Example Gantt chart for 8 products

"Note, that in case of wet-etch stations, the robot arm performing the transfer must be scheduled as the
other units (baths in this case).



18 CHAPTER 1. SCHEDULING PROBLEMS

To enhance visibility, the rectangles of the tasks belonging to the same product are
usually highlighted with an identical color. In many cases, especially if colors are not
applied to differentiate between products, only the name of the product is indicated at the
rectangles.

If the problem includes changeover, cleaning, or transfer times, they are represented
analogously with rectangles. In Figure [[7, a schedule for producing PHBA (para-hydroxy
benzoic acid) is illustrated. Here, four batches of the same product are produced, thus each
batch has its designated color. The recipe is not sequential, while the phenolate reaction is
executed in the first or second phenolate reactor, marlotherm is filled into and heated up in
two parallel carboxylation reactors. When the phenolate reaction finishes, the intermediate
is transferred to the two selected carboxylation reactors, represented by darkened rectangles
at all of the three reactors. After the transfer finishes, the phenolate reactors need to be

cleaned, which is visualized as a fading rectangle.

Ph. React. 1
Ph. React. 2
C. React. 1
C. React. 2
C. React. 8
C. React. 4
Settler 1

Settler 2

S
[
~
S
~
>
IS
S
®
<o
>

Figure 1.7: Example Gantt chart for non-sequential recipe with transfer and cleaning times



Chapter 2

Mathematical tools for the scheduling of

batch chemical processes

In the last two decades, many different approaches have been published in the literature to
tackle the problems presented in Section They differ in both their domain of solvable
problems, and the applied mathematical tools. Over the years, these approaches have gone

through vast development, whose goal was dual:

1. broadening the range of solvable problems

2. accelerating the solution procedures in order to bring larger problems to a manageable

level

The advancement in both directions is remarkable. The first, heuristics based approaches
have considered only simple multiproduct examples, and could not guarantee optimal solu-
tions for even the smaller instances. The first optimization based methods were extended
to a wide range of problems. In terms of speed, computational times were reduced by mag-
nitudes, allowing not only the solution of larger problems, but also integration with other
control or design aspects.

In order to provide a review of the state-of-the art tools of the field in the next sections,
these approaches must be categorized before further discussion. This categorization can be
based on various aspects. The most common one is to consider the applied mathematical
tool as the major attribute@, @, ]

The majority of the published approaches rely on mathematical programming, namely
on Mixed-Integer Linear Programming (MILP) formulations, or Mixed-Integer Non-linear
Programming (MINLP) models in rare casesﬁgé, |. These models are usually solved by
an implementation of general purpose MILP algorithmsﬂﬂ]. In case of MINLP problems,
the authors have also developed general purpose MINLP solution procedures.] Another
branch of research focuses on applying graph theoretical and combinatorial tools and prob-
lem specific solution procedures. Among these the S-graph frameworkﬂﬁ], the Alternative
Graph model[@], and the Timed Priced Automatal99] or Timed Place Petri Net[39] ap-

proaches are notable. A small number of papers considers mathematical logic [103] or

19



20 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING

Constraint Programming (CP)[@] to tackle scheduling problems. More often, these tools
are used combined with other approaches, like MILP formulations ,].

These lastly introduced class of approaches will not be discussed in more detail. The
classification of combinatorial approaches based on the exact tool is enough for further
discussion. In the case of MILP models, however, further categorization is needed before
investigating them closely.

The further classification of MILP formulations can be best explained by the binary
variables used to address scheduling decisions. Though the variables may differ in some
details for different approaches in the same subclass, these minor differences will be detailed

in the subsequent sections.

Precedence based formulations binary variable X, ; s represents whether task ¢’ is

preceded by task ¢ in unit j.

Time point/slot based formulations has a binary variable y; ; ,, denoting whether

unit j perform task ¢ at time point n, or in the nth slot.

Start-Stop formulations El use variables Start; ;,, and Stop; j, to represent the start-

ing and finishing of task ¢ in unit j at time point n

Some formulations apply several different techniques redundantly in the hope of a better
performance, and thus cannot be categorized unambiguously [64].

Before discussing these approaches in detail, one other classification has to be noted by
Hegyhati and Friedler |47|, that considers the underlying idea of addressing the problem as
the main categorization angle. This aspect has various benefits, the approaches in the same

main category
e can usually address the same or very similar set of scheduling problems;
e have similar performance
e can benefit from the development of others, or implement their idea of improvement;
e suffer from the same difficulties and shortcomings
The proposed main categories are:

Time discretization based techniques consist of the time slot and time point based
approaches, and the Start-Stop models, which rely on the discretization of the
time horizon that can lead to suboptimal or even practically infeasible solutions.
On the other hand, they can address a wider range of scheduling problems,

though the implementation of sequence dependent attributes are complicated.

!There is no commonly used terminology for this set of formulations, the Start-Stop term is used only
here.



2.1. MILP FORMULATIONS 21

Precedence based techniques consider the order of tasks assigned to the same unit
as the key decision, rather then their exact timing. Precedence based MILP
models, the S-graph Framework and the Alternative Graph methods belong here.
These approaches often outperform the previously mentioned ones on the class of
scheduling problems they can tackle, though this domain is considerably smaller.
An additional advantage is the absence of suboptimal or infeasible solutions due

modeling errors.

State space based techniques are performing the optimization via a sophisticated
exploration of the state space of the system. Although, similarly to the prece-
dence based methods, their model building ensures global optimality, in terms
of performance and modeling power they drop behind the aforementioned ap-
proaches. The significant advantage of these methods resides in the possibility of
integration with the control level, and their straightforward extension to online

problems.

2.1 MILP formulations

As it was already discussed, the MILP models play a dominant role in solving batch schedul-
ing problems. In this section the different branches of MILP models are discussed. The
related modeling issues are not discussed here, only briefly mentioned, as they will be pre-
sented in detail in Chapter Bl

Before the detailed description of different MILP formulation branches, there is an other
classification aspect that needs to be mentioned. There exist so-called STN and RTN models
for all of the formulation types that will be discussed later. Though STN and RTN are only
representation tools, this terminology is widely used to indicate how processing units are
tackled in he model. In STN formulations, units are dedicated elements of the model,
thus the binary variables usually have an index for units as well, indicating whether a tasks
starts, finishes, or precedes an other in a certain unit. On the other hand, RTN formulations
consider units as any other resources, e.g., materials, and the tasks "consume'" and "release"
these resources when their execution starts and finishes. As a result, units do not explicitly
appear in the models, only a set of material balance constraints refer to them. Note that in
RTN models, a task should be duplicated if it can be performed by several different unitsH
In the following subsections the examples are given for STN models, from whose their RTN

counterpart can be derived easily).

2Note that even among RTN models, strict and lenient models can be differentiated, which can have a
notable impact on the performance as indicated by Eles @] If several identical units are available, the
lenient RTN models consider them separate resources, implying a sort of redundancy, while strict RTN
models consider them as a single resource with higher availability.



22 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING

2.1.1 Time discretization based formulations

Chronologically these types of formulations were the first ones to appear in the literature

|. Their underlying idea is to identify several time points or time slots over the time
horizon. Time slot and time point based approaches | show a lot of resemblance, as an
interval from a time point to the next one can be considered as a time slot, and vice versa
the starting time of a time slot can be considered as a time point. Although time slot based
approaches were mainly developed for sequential processes and the time point approaches
tackle general network problems, the two classes of approaches are addressed simultaneously
in this section. If not indicated otherwise, statements for time point approaches hold for
time slot approaches as well.

At each time point, binary variables are assigned to tasks denoting whether the execution
of the task is scheduled to start at that time point or not. As a result, the number of binary
variables is roughly proportional to the number of time points, i.e., the computational time
strongly depends on the number of time points. Thus, it has always been the researchers
intention to develop models that can find the optimal solution with minimal number of
time points. However, it is not evident, how the sufficient number of time points can be
determined for a model and a problem instance. The most commonly applied methodology
is to consider a small number of time points first, and perform the optimization. Then the
number of time points is increased by one, and the optimization is carried out again. This
last step is repeated until the same objective value is found for two consecutive steps. This
technique, however, does not guarantee the optimal solution, which is discussed in detail
in Section B.Jl Nevertheless, the vast amount of development focused on these approaches
achieved a significant reduction in the necessary number of time points. However, the
advanced models often became less transparent, the constraints became more complicated
and modeling errors occurred.

In general, time discretization tools can address the widest range of scheduling problem
with general network recipes, recycling, flexible batch sizes, load dependent processing times,
etc. An other advantage of these models is that there is no need to define the number of
batches a-priori the optimization, as at each time point the decision is made independently
on each task. This feature also allows these models to address several units performing the
same tasks in parallel, without any modification.

The following subsections present the key properties and elements of models belonging

to a branch of formulations.

Fixed time point models

In the early time discretization models, the time points was equidistantly selected prior
to the optimization process, resulting in the so-called Discrete-time models|66]. The
used terminology in the literature is misleading in this case, as the later, more advanced

approaches also discretize the time, the only difference is whether the placing of the time



2.1. MILP FORMULATIONS 23

points is fixed or not. Thus, the sections here use the more adequate terms Fixed time
point model and Variable time point model.

The unit distance between consecutive time points could be the largest divider among the
plausible processing times. The typical binary variable in such a model is W;;; representing
that unit j starts performing task ¢ at time point j. Since the processing time is known
for ¢ in j, it is known exactly at which time point j will be free again for other tasks. The

constraint below is a typical assignment constraint expressing this feature:

t+thL1
DYDY Wip—1< M- (1—Wiy)
icl;  t'=t
Material balance constraints are appropriately stated at each time point. The advantage
of these models is, that the above constraint has tight LP relaxationH , and there is no need
for big M constrainteH in the model. The regular distribution of time points also makes it
simple for example to address FIS-LW storage policy[@]. On the downside, the number of
time points and thus the number of binary variables, and the computational need is high.

As a result, these models cannot be applied for medium size problems.

Variable time point models

In order to reduce the number of binary variables, the number of time points needed to be
decreased. The next step in this development was to make the placing of the time points
variable[@]. In the developed models, a continuous variable is assigned to each time point,
defining its exact position. The material balance and assignment constraints are similar
to the previous models, the key difference lies in the timing of the time points. In order
to appropriately constrain the timing difference between the time points, several big M
constraints needed to be inserted into the model. Although these constraints have worse LP
relaxations, the reduction in the number of binary variables has much higher impact on the
CPU needs.

The variable time point based approaches can be categorized based on several aspects:

e if the placing of the time points are the same for all of the units, the approach is called

a "global time point", otherwise a "unit-specific time point" based model

e Some of the approaches do not allow tasks to overlap several time points, while others
do.

As opposed to unit specific time point models@, @], the global time point models@]

may require a larger number of time points to cover the same set of schedules, thus they

3By replacing the yet undecided binary variables with [0, 1] continuous ones, the optimal objective value
of the resultant LP model is close to that of the source MILP.

“Inequalities that become non-constraining for certain values of one or several binary variables, which is
done by the product of a sufficiently big number (usually denoted as M, hence the name) and the linear
expression of those binary variables. This type of constraints usually have poor LP relaxations.



24 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING

are often slower. On the other hand, in the case of unit specific time point models, the
synchronization between the material flows becomes rather difficult, as the time points of
the units are independent of each other. This also gives rise to the possibility of modeling
errors, see section [B.3] for more detail.

If the processing time of a task is considerably larger than some of the other tasks, several
schedules are not covered by those models, that do not allow time point overlaps for tasks,
regardless the number of time points. This issue does not appear for the Start-Stop models.
They provide, however, very poor performance results in general. For the more efficient time
point based models, the models had to be generalized, as discussed in a little bit more detail
in Section B.3] An other mentionable attempt to tackle this issue used the SSN formulation

and introduced additional variables for the storage availability, and usagesﬂﬂ].

2.1.2 Precedence based formulations

The first precedence based MILP formulations appeared around the same time, as the
introduction of the S-graph framework, for multiproduct and multipurpose problems. Unlike
the previously discussed time discretization based approaches, the precedence based models
do not need to discretize the time horizon, and thus they do not use any unknown parameter
in their model. Generally, they provide better computational results for the problems they
can address. However, this set is much smaller than that of the time discretization based
approaches. Although most of the models were introduced for multiproduct or multipurpose
recipes, they can be extended to address more general precedential recipes in a straight-
forward way. Throughput maximization is usually not addressed, as the number of batches
is an input parameter of the model.

The key foundation of these formalizations are the two sets of binary variables: Y ;
denoting, whether task 7 is assigned to unit j, and the sequencing variable X;;; which
takes the value of 1, if both tasks 7 and 7' are performed in j, and ¢ is enlisted earlier
in the production sequence of j. There is a number of different versions of precedence
based formulations based on the exact binary variables and constraints used, but the two
main categories are the Immediate precedence and the General precedence models. In
the former case, the sequencing variable X, ;; takes the value of 1 if only if ¢ and ¢ are
consecutive tasks in the production sequence. In general, General precedence models need
half as many binary variables (as X; ;; and X ;; are each others complement if assigned to
the same unit), and usually outperform the immediate precedence models, but some features
are easier to be expressed by immediate precedence variables. Also, some of the models use
both variables redundantly, resulting in hybrid models[@]; many models leave out the index
j from the sequencing variable|90|; some formulations introduce additional binary variables
to address other features, e.g., additional resources|91].

This results in a wide range of very similar yet different models, with different compu-

tational needs.



2.2. ANALYSIS BASED TOOLS 25

2.2 Analysis based tools

Petri nets and automata are widely used for the modeling of discrete event systems@].
There have been several attempts to extend the modeling power of these tools and apply for
the scheduling of batch processes. In order to do so, the basic models had to be extended
with timing, Timed Place Petri Nets (TPPN) and Timed Priced Automata (TPA) are
expressive enough to address most aspects of these scheduling problems. The approaches
usually use a B&B algorithm to explore the state space of the system in order to find the
most advantageous solution candidate. Due to proper model building, modeling errors are
avoided: cross transfer (see Section B.2]) for example, is eliminated as a deadlock situation.
Although, these approaches bear the advantage of straight-forward modeling, opportunity to
integrate control level decisions, and simple extension to reactive scheduling, the efficiency
of these techniques is still behind that of the state of the art MILP models or S-graph

algorithms.

Timed Priced Automata

There are several ways to extend the automata with timing. In a so-called time guarded
automaton, some additional clocks are responsible for timing considerationsﬂa, ] At each
transition a timing condition has to be satisfied in order for the transition to happen. After
that, some of the clocks may be reseted. Time guards can also appear on states as well. A
further extension of this model is the Timed Priced Automatonﬂi that has been applied by
Panek et al.[@] and Subbiah et al.@] for batch process scheduling. In these approaches, the
recipes and units are usually modeled separately, and the model of the system is generated
by applying parallel composition of them. Although the resultant model is usually huge, and
difficult to present, its soundness is guaranteed by the mathematical proven model building
operation. A general complexity of this approach is that the state of clocks is uncountably
infinitely large, and thus the state space of the system also. In order to tackle this issue, the
states of the clocks are clustered into so-called clock-regions, and thus, infinitely many states
can be described by a single region. The modeling of these regions can be done efficiently

by Difference Bound Matrices|21].

Timed Place Petri Net

In a TPPN, the tokens of a transition are generated by a delay, that can present processing
times, etc. Ghaeli et al.[@] presented such an approach for the scheduling of batch processes.
Some extensions for the modeling expressiveness of this approach were later explored@].
Soares et al.@] presented a timed Petri net based approach for the real time scheduling

of batch systems.



26 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING
2.3 S-graph

The S-graph framework was the first published graph theoretic approachﬂﬁ] to address
scheduling problems of batch processes. The framework consists of a directed graph based
mathematical model, the S-graph, and the corresponding algorithms].

In this section the framework and the basic algorithm is presented in detail, as they
provide the fundamental basis for the later chapters. In the end of the section, further

developments are briefly introduced.

2.3.1 S-graph representation

The mathematical model of the framework, called the S-graph is a special directed graph
for scheduling problems. Note, that unlike the formerly introduced recipe representations,
the S-graph is not only a visualization of the recipe, but a mathematical model. In the
framework both recipes, partial and complete schedules are represented by S-graphs. In all
of these graphs the products and the tasks are represented by vertices, which are usually
termed as nodes. Also, if an arc between two tasks is said, it is to be interpreted as the arc
between the nodes representing these tasks.

The S-graph without any scheduling decisions is called the Recipe graph, as it describes
the recipe itself. An example is shown in Figure 211

-0
OO
OO

Figure 2.1: Example recipe graph

The three nodes on the right correspond the products, the other nine to the tasks which
need to performed in order to produce them.

The arcs, called recipe arcs between the nodes represent the dependency between either:
e two tasks that depend on each other, i.e., one of them generates the input for the other
e a product and the task producing it

In this example, each product is produced through 3 consecutive steps. In general, the
model (and the algorithm from the next chapter) can tackle the set of Precedential recipes,

i.e., junctions are allowed. The sets indicated at each task are the sets of plausible units,



2.3. S-GRAPH 27

and the weight of the recipe arcs are the processing time of the tasks where they start. If a
task can be performed with several equipment units, the weight of its recipe-arc (or recipe
arcs) is the smallest processing time among all the units suitable to perform it.

All of the S-graph algorithms extend this graph with so-called schedule arcs that
represent the scheduling decisions made by the algorithm. Whether there are still some
decisions left or not, the S-graph is called as a Schedule graph. An example is shown in

Figure 2221 where all the decisions are already made and represented by blue schedule arcs.

Figure 2.2: Example schedule graph for the recipe graph in Figure 2.1]

Note that at each task node, the set is replaced by the selected unit, as this decision has
already been made. Also, the weight of schedule arcs is 0 by default, when no changeover-,
transfer-, or cleaning times are included in the problem. Modeling of these parameters is
simple. It is further discussed in Chapter [[.Jl The sequence of tasks assigned to the same

unit can easily be exploited from the graph. As an example, the sequence for unit E2 is

Bl — C2 — A3, as illustrated in Figure 2.3l

l

Figure 2.3: Sequence of tasks assigned to unit £2 in the schedule represented in Figure

Note, that the schedule arc corresponding to the decision that E2 first performs B1 and
then C2 is expressed by a schedule arc between B2 and C2, i.e., the schedule arc of the
decision does not start from the previous task, but from its subsequent task or tasks. This

way, the schedule arc expresses that the unit must not only finish a task before going under



28 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING

the next one, but also the subsequent task of this task (performed in an other unit) must
also take the intermediates.

From the schedule graph, the Gantt chart can easily and unambiguously be generated.
The Gantt chart for the schedule in Figure is shown in Figure 2.4]

Jo C1 B3 | A1]
B2 B1 C2 [43]
£3 B2 c3 [[42]

0 &5 10 15 20 25 30 35 40 45 50 565 60

Figure 2.4: Gantt diagram generated from the schedule in Figure

2.3.2 Algorithm for makespan minimization

The algorithm described here were published by Sanmarti et al.] for the minimization
of makespan. The pseudo code presented in the algorithm blocks 2.1]is not identical to the

one in the original article, though the key aspects are the same. The main differences are:

e The original code addressed problems where each task had only a single plausible unit,
i.e., only sequencing decisions were needed no allocational ones. The algorithm pre-
sented here extends the original pseudo code to a wider range of scheduling problems,

where tasks may have several plausible units.
e The notation is simplified and adjusted to the general conventions.
e The algorithm is no longer divided into a main and branching part.

The algorithm first initializes the value of makespan to infinity, and the set S, that will
be the set of open subproblems during the optimization. Initially, S contains only the root
problem, i.e., the recipe graph without any assignments made so far. The simple function

recipe returns the recipe graph for the problem denoted by G(N, A, Ay, w), such that:
N := [ UP, the set of nodes
Ay = {(i,i)|i € I i € I}, the set of recipe arcs
Ay := (), the set of schedule arcs

w; = mingey, 7, the weights for all recipe arc (i,7') € A;: the minimal processing

time for ¢

The elements of the set are quadruplets (G(N, Ay, Ay, w), I, J'; A) such that



2.3. S-GRAPH

29

Algorithm 2.1 Makespan minimization with the S-graph framework

makespan® := oo
S := {(recipe(), I, J,0)}
while S # () do
(G(N, A1, Ay, w), I', J', A) :==select _remove(S)
if bound(G)< makespan® then
if I’ = () then
makespan® :=bound(G)
G =G
A= A
else
j =select(J')
for alli e ;NI do
GZ(N, Al, Aé, wz) = G(N, Al, AQ, w)
for all i’ € Ui jyea I \ {i} do
Al = AL U{(7,4)}
end for
for all 7/ € I do
w; =t
end for
S:=SU(GYN, A, As,w), I'\ {i}, J', AU{(i,5)})
end for
if I' CUjicy sy Iy then
S =8SU (G(N, Al, Ag), I/, J \ {j}, A)
end if
end if
end if
end while
if makespan® # oo then
return (G?, A?)
end if




30 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING

G(N, Ay, Ay, w) is a schedule graph

I' is the set of unscheduled tasks

J'" is the set of units to which the algorithm can still assign tasks
A set of task-unit assignments in the form of (i, j) pairs

In each iteration a subproblem is arbitrary selected and removed from & by the func-
tion select remove. The exact behavior of this function may be different for different
implementations, resulting in various search strategies.

At the beginning of the iteration, it is evaluated, whether the subproblem has the po-
tential to provide an optimal solution ot not. This is done by the bound function, towards

which the following requirements hold:

e it should provide a lower bound for the solutions that can be derived from the sub-

problem

e it should provide the exact makespan of leaf problems, i.e., for completely scheduled

graphs
e it should return infinity if the graph contains a cycle, indicating that it is unfeasible

The mostly used bound function is the longest path in the graph, but LLP based models can
also be used, see Holczinger [52] for details. If the bound of the subproblem is not smaller
than the best solution found so far, the iteration ends, and an other subproblem is selected
(if exists).

If the bound is smaller than the value of makespan, the algorithm first checks, whether
all of the tasks are already scheduled, i.e., whether the subproblem is completely scheduled.
If this is the case, the values of G%, A, and makespan® are updated to the S-graph of the
best solution, the corresponding assignments, and the value of its makespan, respectively.

In the case of a partially scheduled subproblem, the algorithm selects an available unit
(i.e., one from J’) using the select function. Similarly to select remove, the implemen-
tation of this function may also be different to achieve various search strategies.

For the selected unit j, the algorithm assigns all the possible tasks (i € ;N I’ to the end
of its processing queueH For each assigned task a copy is made of the current S-graph, or
more precisely about the set of schedule arcs and the weights, as the set of nodes and recipe
arcs do not change during the optimization. This copy is first extended with the schedule
arcs induced by the new assignment, i.e., arcs from all the subsequent tasks of previously

assigned tasks to j are directed to ¢4 Then, the weight of all of the recipe arcs from ¢ are

®Note, that if no such task exist, the algorithm simply skips this loop. Avoiding this situation is not
necessary because of the reduction of the J'.

67 itself is excluded to avoid loops in case of assigning two subsequent tasks to the same unit. Moreover,
in the original algorithm, the arcs were directed only from the last assignment if it existed. Here all the
assignments are stored in 4, which makes the description of the algorithm simpler. Although the additional



2.3. S-GRAPH 31

updated to tf;-. Finally, a new subproblem is added to & with the modified graph, a reduced
I’ set, and extended A set.

If all of the unscheduled tasks can be performed by other available units, a new subprob-
lem is created where j becomes unavailable for further assignments. This part is needed to
allow other units to perform the same tasks that j can, and to tackle the situation, when j
has no more compatible tasks among the unscheduled ones.

After the set S becomes empty, the graph G and the assignments in A describe the
optimal solution, and are returned by the function if at least one feasible solution has been

found. Otherwise the algorithm does not return with any solution.

2.3.3 Extensions and developments of the S-graph framework

During the years, many extensions and developments of the S-graph framework has been
done and published |46]. The algorithm presented in the previous subsection is often referred
to as the Equipment based algorithm, as it selects a unit, and branches based on which
task should be the next in its production queue. A Branch and Bound algorithm based on
a different aspect was presented by Adonyi [E], where a task is selected at each subproblem,
and the branching is based on finding an appropriate unit, and an appropriate place in its
queue. This method is often referred to as the Task based algorithm. The performance
of the two algorithms were compared via an extensive empirical analysis. As a result, it was
stated that there are problem instances for both of them where they outperform the other
one. However, it is not evident based on the problem description, which is the favorable
one, although, problems with a "bottleneck" usually prefer the equipment based approach.

In many cases, the problem instances include the repetitive production of several batches
of the same product. This is usually addressed by copying the recipe of the product multiple
times. With this approach, however, the same solution can be found multiple times with
different order of the identical products. To avoid this, and reduce the computational need,
Holczinger et al.] introduced auxiliary arcs in the S-graph ensuring that each solutions
is found at most only once. With this modification, the authors achieved a tremendous
reduction in the CPU time. Hegyhati and Friedlerm] has shown that the same effect can
be achieved for precedence based formulations by adding constraints equivalent to these
auxiliary arcs.

Next to these algorithmic developments, the framework has been extended to various

fields of application, where some modifications of the original framework was also needed:

Paint production Adonyi et al.@] has applied the framework for the scheduling of
a large scale paint production plant, where cleaning times had to be addressed

as well.

arcs (compared the the original algorithm) are redundant, they express valid relations. Moreover, the
current implementation also includes these arcs (although in an earlier stage) in order to sharpen the bound
function.



32 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING

Heat integration One of the most developed field of continuous plant design is the
design of the heat exchanger network, to minimize utility cost. Although, the
Pinch technology[@, Iﬁ, | can provide a decent targets for continuous sys-
tems, in case of batch processes the timing of streams must be considered as
well. Adonyi et al.[B] presented an extension of the S-graph framework, where
heat integration specific constraints were addressed with an LP model that is
maintained thorough the optimization process in sync with the schedule graph.
Holczinger et al.[54] further extended this approach to address the scheduling of

heat exchangers as well.

Train scheduling Adonyiet al.@] has extended the framework to address the schedul-
ing problem of the supply trains of tunnel boring machines, and developed a

graphical interface to convert these problems for the S-graph solver.

An often exploited advantage of the specialized solution algorithm is the possibility to
generate several different solution candidates, which can be really useful in practice, if some
parameters of the original problem can not be included in the mathematical model. In
case of a single objective, the n best solution can be easily generated, and with multiple
objectives, the Pareto border can also simply be maintained (assuming a discrete search
space). This framework also gives chance for an accelerated bi-objective B&B solver, that
has been developed for other discrete problems, ]

Implementational techniques

The outstanding computational performance of the S-graph framework can only partially
be credited to the structure of the branch and bound algorithms, and the algorithmic ac-
celerations. The other half belongs to the implementational techniques and accelerations of
the solver written in C+-+, that are - with few exceptions - not presented in the scientific
literature.

As the mathematical model of the S-graph framework is not a general model, like the
linear programming models, the solution algorithms are developed by the researchers. This

carries some benefits and shortcomings as well:

speed The implementation is adjusted to the model, and optimized, thus the CPU
requirements are reduced, and thus the S-graph approaches are competitors of

not only the free MILP solvers, but the commercial ones as well.

flexibility At each extension, the researchers has the chance to implement their ideas

in a low level of the algorithm, not in the model level.

learning curve These changes, however, require an extensive knowledge not only

about the S-graph framework, but the software implementation as well.



2.3. S-GRAPH 33

The only paper about the S-graph solver implementation of was published by Smidla
and Heckldﬁ

The authors provided a scalable implementation, which in some cases could achieve super-

|, where the parallel Branch and Bound implementation is briefly introduced.

linearity.

At many points of the algorithm the longest path between two vertices is needed ( by
the bound function, and later extensions). Although there exists a linear time algorithm to
the evaluation of the longest path between two vertices |23], the memory requirement of the
S-graph solvers is negligible (compared to commercial MILP solvers), thus it is beneficial to
store a matrix of longest paths for each subproblem, and keep it updated.

If a task can be performed only by a single unit, or by several units, but only one of them
is in the available unit set at a certain subproblem, a schedule arc can already be inserted
from the subsequent tasks of the already assigned tasks of that unit to this task. It is not
sure that this task will be the next task in the production queue of the corresponding unit,
but it will definitely be assigned to it later. This small technique can drastically sharpen
the bounds for problems with tasks that can be performed only by a dedicated unit.

Similarly to the problem investigated by Holczinger et al., the same sitution can
occur, when identical units are available, i.e., the same schedule can be generated multiple
times. To avoid this, a simple condition is to be inserted to the algorithm which ensures
that if two units are identical, the one with a smaller id has a first task on its queue with
the smaller id.

In many cases, the difference between a subproblem, and its children problems is small
compared to the size of the subproblem. To save time on copying these objects, containers
using implicit sharing are applied.

Memory handling has also a crucial impact on the CPU requirements. In his diploma
work, Kovacs [71] details and analyses the effect of different malloc implementations. This

work details some other enhancements of the solver as well.

Relation to Precedence bases MILP models

Without going into formal details, the aim of this subsection is to reveal the strong connec-
tion between the S-graph framework and the Precedence based MILP formulations. This
type of investigation is not unprecedented in the literature, Uma et al.[@] investigated
the relation between the relaxation of linear formulations and graph models of scheduling
problems, while Maraveilas@] investigated the combinatorial structure of fixed time point
MILP formulations. As it has already been mentioned, in case of the classification from
Hegyhati and Friedler @], the precedence based formulations and the S-graph framework
belong to the same category. Both approaches consider the sequence of tasks assigned to
the same unit as the key question during the optimization. As a result, the capabilities,
performance, and search space are quite similar for them.

In order to illustrate the strong connection between the two approaches, a partial schedule

of the example in Figure2Ilis given in Figure[Z5l The figure represents the partial schedule



34 CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING

vy —7|(5T. 5T,+6 ST, ~ ST,,= CT,,
A1E1
YA1,E2=0
ST, ST, ST,
Al 6 A2 9 A8 7
Bl {E3} {E2,E3} A
ST, ST,, ST.,
9 15 B3 17
OmOinC B
Y....=1
STC1 STC2 STC3 B3,E1
() ——(c)
XA1,B3=1
XB3,A1=0

Figure 2.5: Illustration of the connection between precedence based models and the S-graph
framework on a partial schedule of the example given in 2]

after two steps in the S-graph based algorithm. First, the task Al is assigned to the unit
E1, then the task B3 is assigned as the second task for the same unit. The sequencing
between them is expressed by the arc between A2 and B3.

As illustrated in the figure, the same partial schedule in a precedence based model would

mean, that some of the binary variables are fixed to certain values:

o Y41 m takes the value of one, because of the first assignment, and as a consequence,

the value of Y41 g2 is set to zero.
e Similarly, at the second step, Yps g2 takes the value of one.

e The second step, however, also decides the sequencing between Al and B3, thus X 41 p3

is set to one, and Xpj3 4 is set to zero.

If the values of these variables are substituted into some of the constraints, they result in

the following form:

o STys > ST4 + 6 is a result of the recipe sequencing constraint with Y4, g1 = 1 and
Y 41,52 = 0. This constraint is expressed directly by the updated recipe arc between
the nodes of A1 and A2.

o STp3 > STxs = CTyy is the result of a sequencing constraint with X4y g3 = 1 and
Xps3 a1 = 0.

In general, the following objects of the S-graph framework and the precedence based

models relate to each other:



2.3. S-GRAPH

Precedence based MILP model

35

S-graph framework

Continuous timing variables

Binary allocation variables

Binary sequencing variables and constraints
Recipe constraints

Model infeasibility

Nodes

Assignment at nodes
Schedule arcs
Recipe arcs

Cycle in the S-graph

The connections above explain why these methodologies have similar features. Though

the search space is the same, the way how the S-graph explores it is rather different. In

each branching step the S-graph based algorithm decides all of the assignment variables at

a node, and several precedence variables as well. Thus, the branching tree is much smaller.

On the other hand, at each subproblem, the S-graph algorithm uses the Longest path as a

bound, which is weaker than the optimal solutions of the corresponding relaxed LP model.

These observations give rise to many opportunities for the integration of these two type of

approaches, e.g., a precedence based model can be maintained in the S-graph algorithm for

providing sharper bounds, or addressing continuous decisions, that are difficult to implement

with graphs.



36

CHAPTER 2. MATHEMATICAL TOOLS FOR BATCH SCHEDULING



Chapter 3

Critical modeling issues

As it has already been mentioned, most of the approaches, especially the MILP formulations
do not go under mathematical validation. The common practice is that the model is devel-
oped based on a new idea, and the validation is only empirical, i.e., the implementation of
the model is compared on several examples with previous models from the literature. If the
result is the same on all of the tested examples, that approach is considered to be accurate.

For the earlier, in a way simpler models, the equations were mostly straight-forward,
and even though, no theoretical proof was attached. Readers could accept with confidence
that the result will be correct. As the formulations developed, however, they became more
and more complicated. In order to reduce the computational time, the scheduling problems
were tackled from different and unusual "angles", which brought great success on one side,
the side of performance. On the other hand, the implementation of the same constraints
become more complicated and "tricky". The constraints are no longer straight forward,
which is not a problem itself, however, the validity of the model became "less convincing".
The situation is even worse, when the problem definition for an approach is incomplete, i.e.,
it is not unambiguously defined, what kind of problems are addressable with the approach,
what kind of assumptions are made towards the parameters or the behavior of the system{!.

This fear is not unsubstantiated, as several modeling issues were already unveiled in the
literature, and there is nothing, which would suggest, that there are no undiscovered ones.
Before introducing some of these issues in detail, the nature of modeling mistakes must be
investigated first. All of the approaches discussed in Chapter[2 are based on the examination
of a search space, and finding the best candidate among them. From the mathematical point
of view, these approaches can have two deficiencies, assuming that the ranking of solution
candidates is correctd: under- and over-constraining. To give the accurate definition of these,
some additional terms should be introduced first, which will be used throughout the whole

document:

IPart of this roots back to the problem of the lack of standardized definitions for problem classes, see
Section

2In most of the cases, this holds. There are, however, examples, when the objective value of a candidate
is not evaluated correctlyﬂa]

37



38 CHAPTER 3. CRITICAL MODELING ISSUES

solution is a term used for a schedule, and in the same time for its representation in

a mathematical model if it exist.
practically feasible solution is a solution that can be executed in real life.

practically infeasible solution is a solution that violates some of the constraints of

real life, thus it cannot be executed.

practically optimal solution is the best solution among the practically feasible

ones.

model-feasible solution is a term used with respect to a model or approach for
describing a solution that is plausible for that approach, i.e., it is in its feasible

region.

model-infeasible solution is also defined for a model for those solutions that are

not in its feasible region.
model-optimal solution is the best model-feasible solution

If not stated otherwise, the terms feasible and infeasible will refer to practically feasible and
practically infeasible solutions, respectively.

One would assume, that in case of a proper model, the set of the model-feasible solutions
is exactly the same as the set of the (practically) feasible ones. Moreover, if an approach
or model has model-feasible / model-infeasible solutions which are (practically) infeasible /
feasible, then it is fundamentally wrong. These approaches, however, are not used for gener-
ating all of the feasible solutions, only to provide at least one optimal, thus the requirements
from the previous sentence are unnecessarily limiting.

Having infeasible solutions in the feasible region of a model is a common practice in
optimization to enhance performance, and it does not result in improper results as long as
it is guaranteed that the objective value of the practically infeasible solutions will not get
better than the optimal value. As an example, the integer variables of MILP problems,
whose matrices satisfy the requirements of total unimodularity (assignment problem for
example) can be relaxed to continuous variables, and the optimal solution is ensured to be
integer]. This relaxation significantly reduces the computational need obviously.

Similarly, reducing the search space, and excluding many practically feasible solutions is
acceptable if it is ensured that at least one optimal solution remains in the feasible region
of the model. Holczinger et al.] has improved the efficiency of equipment-based branch-
and-bound algorithm of the S-graph framework by magnitudes for problems with high batch
numbers using exactly this idea.

Thus, in order for a model to malfunction, it has to fail in at least one of the following

ways for some problem instances (not necessarily for all of them):



3.1. MINIMAL SUFFICIENT NUMBER OF TIME POINTS 39

Under-constraining: At least one practically infeasible solution is model-feasible
and it has better objective value than the optimal, i.e., the model-optimal solution

is practically infeasible.

Over-constraining: All of the practically feasible and optimal solutions are model-

infeasible, i.e., the model-optimal solution is practically suboptimal.

Unfortunately, both type of mistakes has appeared in the literature of batch process
scheduling, and in many cases the model bared both type of issuesH The following sections

will introduce and investigate this kind of issues.

3.1 Minimal sufficient number of time points

As it was briefly discussed in Section 2.1l variable time point based approaches suffer from
a common problemH, that is finding a number of time points that is sufficiently large for the
model to contain the optimal solution. For this section, it is assumed that there is a number
of time points, where the model has at least one optimal solution in its feasible region

It is clear, that this is an over-constraining issue, as the practically optimal solution is not
in the feasible region of the model. To investigate this issue, first the problem of Voudouris
et al.@] - represented in Figure - is examined with batch numbers 2 -1 -1 — 1.

Three models are compared:
M&G a global variable time point formulation by Maravelias and Grossmann[@]
I1&F' the first unit specific variable time point formulation by Ierapetritou and Floudas@]

S&F further development of the & F' model by Shaik and Floudas[@ﬂ

For all of the three models the iterative method were applied, i.e., the number of time
points is increased until the same objective value repeats. Table B.Il contains the best
model-optimal solutions for each investigated case.

In this particular case, the makespan of 31 h is optimal, as it has been confirmed by other
approaches that do not discretize the time. However, the number of time points needed to
find this solution is varying for the different models, so it is clear to see, that finding the
optimal number of time points (i.e., the minimal number of time points, with which the

model results in the optimal solution) is not trivial.

3 Although there are models which provide infeasible solutions for some instances and suboptimal ones for
others, there has not been an instance published, where a model would provide a suboptimal solution which
is infeasible at the same time. Constructing an example like that, however, would not be a challenging task.

4Fixed time point formulations do not have this issue with throughput maximization problems, as the
number of time points is given by definition in that case. For makespan minimization, the incremental
increase of time points will obviously end up at the optimal solution, as the number of time points correlates
unambiguously to the length of the production.

5Tt is not always the case as it will be discussed in Subsection B.3.1]

6The A parameter is set to 0.



40 CHAPTER 3. CRITICAL MODELING ISSUES

n | M&G | IGF | S&F |

6 X X X
7 X X 31
8 32 33 31
9 31 32
10 31 31
11 31

Table 3.1: Tllustration of the iterative approach for the time point MILP formulations (n
stands for the number of time points, x indicates that the solver has not found any model
feasible solution)

Moreover, the common iterative approach can not ensure that the reported solution is
the globally optimal one. This issue is illustrated via a simple single stage example of three
products and three available units. The problem data is given in Table

‘ ul u2 u3l
Pl1|15h 7h T7h
P2|11h 14h 9h
P3|14h 5h

Table 3.2: Processing times for the single stage example

The instance of producing 1, 4, and 5 batches of products P1, P2, and P3 is solved by
the time slot model of Sundaramoorthy and Karimi ] The number of slots has been
increased from 1 to 8, however, the model has no feasible solutions for less then 4 time
points. Table contains the objective value of the model optimal solutions for 4 to 8 time

slots .

Number of slots H Optimal makespan H

4 34 h
5 27 h
6 26 h
7 26 h
8 25 h

Table 3.3: Illustration of the time point issue

As it is shown in the table, the iterative approach would stop at 7 time slots with
the objective value of 26 hours, although by further increasing the number of time points
a solutions with 25 hours could have been found. This counterexample proves that the
iterative approach can not guarantee the optimal solution.

Several papers tried to address this issue in the literature[m, @] However, the ap-

proaches published in these papers has the same flaw, as the original iterative approach:



3.2. CROSS TRANSFER 41

their soundness is not proved, and counterexamples can actually be constructed in a similar
fashion. They may provide better solutions than the simple iterative approach. However, the
original problem remains: when applying flexible time point based methods, the optimality

of the provided solution can not be guaranteed.

3.2 Cross transfer

The root for this issue lies in the way the time needed for the transfer of intermediate
materials is addressed in case of an NIS policy. In many cases, the transfer time is negligible
compared to processing times, thus it is completely left out from the problem data, and the
model considers it instantaneous. Even if the processing times are comparable, they are
often lumped to the processing time of the previous task, and the same model is used.

In this section the first case is investigated, i.e., when small transfer times are not con-
sidered in the model, though the second approach can result in a similar error. Without
doubt, the exact solution provided by the approach will not be applicable in practice, as
the transfer of the intermediate will take time, and this would definitely shift the execution
of tasks a little. This in itself is, however, the most natural thing when optimizing real life
systems that are too complicated to be modeled with 100% accuracy. In general, the biggest
task of modeling is to identify the parameters and rules of the system that are important to
consider in the model, and the ones that would just make the approach more complicated,
without resulting in a significant change for the provided solution. Thus, the exact solution
of the approach is not expected to be implementable in practice as it is but it is expected
to remain feasible when the additional parameters are put back to the solution.

Unfortunately, all of the MILP based approaches published in literature can provide
solutions for some problem instances that are impossible to implement in practice. This
under-constraining issue has been investigated independently by Hegyhati et al.] and
Ferrer-Nadal et al.[@].

The malfunction of the MILP approaches can be illustrated on the simplest example of

two products with two stage sequential recipes, as illustrated in Figure B.1

Ll
2 o E,

|
Bl 11,

Figure 3.1: Simple example recipe for illustrating the Cross Transfer issue

The problem can bee solved for 1 batch of each product with different approaches. The
reported solutions would differ based on the selected approach. Figure shows the Gantt
chart of the solutions provided by a) the S-graph framework and the state space based
techniques, and b) any of the MILP formulations.



42 CHAPTER 3. CRITICAL MODELING ISSUES

Ul [B2] Ul B2
U2 U2 l
o1 2 3 4 5% Tz 5%
a) S-graph solution b) MILP solution

Figure 3.2: Provided Gantt charts for the example in Figure B.1]

As the solutions differ, either solution a) must be suboptimal or solution b) must be
infeasible (or both). It is easy to verify that the solution provided by the combinatorial
approaches is in fact the optimal solution, and the one provided by the MILP formulations
is practically infeasible. In the latter solution, 2 hours after starting the production, units
U1 and U2 should simultaneously exchange the intermediate materials of the production of
products A and B. This is obviously not implementable without a temporary storage unit,
even if the transfer of the materials can be carried out in a negligible amount of time.

This phenomenon can appear between any number of units, and also occurs on real
life examples as well. As discussed by Hegyhati et al.], the same infeasible solution has
repeatedly been published by Kim et al.[64] and Mendez and Cerda@] for the problem
shown in Figure

allm 0
Ao/ i \ = =1 | B
ol [70] [20] (7] (731 | 18],
20 7 9 [5] |
¢| ——18] | 7 il /

-

Figure 3.3: Literature example for cross-transfer illustration

The Gantt chart of the solution provided by the MILP formulations is shown in Figure
- a). At 30 hours of the production, three units, U2,U3 and the S should exchange
materials simultaneously. The real practically optimal solution provided by the S-graph
framework is shown in Figure B4 - b).

In this example, U4 is free at the time of the cross transfer. In the unlikely case that
this unit can store at least one of the intermediates of B, C, or D, the schedule can be
executed. Gouws and Majozi@] have investigated the benefits of using inherent storage,
however, their model also do not tackle this issue.

Further examples from Ferrer-Nadal et al.ﬂil], or other examples could be mentioned

to further demonstrate that this issue affects not only theoretical problems, but real life



3.2. CROSS TRANSFER

ui h aT o ]

2
Us

U4

Storage

Cc-S [+9

15 20 25 30 35 40 45 50 55 60

a) MILP solution

U1

(N
~
S

. I
2 —r—
2 (2]

U4

Storage

[
|

5 10 15 20 25 30 35 40 45 50 55 60 65 10

b) S-graph solution

Figure 3.4: Solutions provided for the literature example of cross-transfer illustration

43



44 CHAPTER 3. CRITICAL MODELING ISSUES

examples as well. Solutions containing cross transfer usually have a denser schedule, thus
shorter makespan, making them favorable for the objective. As a result, solutions with cross
transfer are likely to be reported for any multipurpose or more complicated example.
Without doubt, the solution provided by the MILP formulations is improper. However
it is not obvious where the mistake was made. In defense of the MILP formulations, they
would have provided the correct solution if the transfer time were not have been neglected.
The reason behind this can be illustrated via some of the mathematical constraints for the

infeasible schedule of the above example

Tp, = T£1+t32t3
T3 = T/J;I—i_t?;ztA
Thy = they = th+Th,
Tho =ty = tpy+ Tiney

The first two equations refer to the recipes, the second task of each product will start exactly
the transfer time later than the finishing of the ﬁrstH The inequalities describe that a unit
cannot, start the transfer of the intermediate for the upcoming task until the transfer of
the intermediate product of the previous task is finished. It is easy to see that there is no
solution to this system, if the ' parameters are positive, thus the MILP solver would purge
this candidate from the B&B tree and find the truly optimal solutionH If, however, the ¢!
values are 0, the model finds the trivial solution, where all of the mentioned variables are
equal, leading to the infeasible solution.

The result of the previous examination suggests that the mistake is not done by the
MILP formulations, but it is rather the fault of the modeling process when transfer times
were neglected. On the other hand, it has been stated earlier that such simplification is
acceptable during a modeling process, and other approaches did not fail in finding the real
optimal solution.

From the practical point of view, it is irrelevant where the mistake was made during the
modeling process. The only important thing is that using the MILP formulations with the
common modeling routines may end up with infeasible solutions.

From the theoretical point of view, to make the decision about where the mistake was
taken, it has to be noted that the published papers have never restricted their approach
for positive transfer times. Even the problems on which the formulations were illustrated
had 0 transfer times, indicating that the formulation was supposed to tackle this problems

appropriately as well.

"i.e., these are some of the constraints that remain in the model after substituting values for the binary
variables according to the given schedule.

8Equations are needed, as NIS policy is considered. The T/ variables here refer for the ending of the
storage of the intermediates in the previous unit after its execution.

2Other MILP solution techniques would obviously also avoid this solution.



3.2. CROSS TRANSFER 45

What happens is that the transfers of materials induce logical constraints, namely: a
transfer to a unit cannot start when it still has the intermediate product of the previous task.
When the transfer times are positive, this logical constraint is "less constraining" then the
timing constraints of the model, thus it has been neglected. I.e., some constraints became
redundant for the seemingly more difficult problem, thus - for the reason of simplification
and performance - they were removed. The mistake was made when it has not been realized
that these logical constraints are no longer covered by the timing constraints in the "simpler"
cases.

These logical constraints could be implemented via binary variables, which represents the
order of material transfers. This would, however, include a huge number of binary variables
in addition (and thus increase the computational need enormously), if the variables are not
present, somehow already in the model. Ferrer-Nadal et al.[31] proposed an algorithm for
generating additional constraints for their precedence based model to avoid cross-transfer,

as discussed a bit later.

tr
Intp

as well. However, MILP models cannot accept strict inequalities. One way to overcome

This logical constraint could maybe also be expressed something like le > Tél +1

this issue is introducing small values, as Ferrer-Nadal et al.[31] suggest in their paper: if no
transfer times are included in the problem description, a small value should be introduced
instead of 0, and later removed when the "optimal" schedule is obtained. Although this

approach can overcome this issue in many occurrences, it has its shortcomings:

e it may not be applied for problems with ZW or LW storage policies, as it can render
otherwise feasible schedules infeasible

e if the introduced value is too small, it may cause numerical errors for the MILP solver

e if the introduced value is too big, the approach may end up at a suboptimal solution

Before ending this section, a few words must be said about the approaches that avoid
this issue. State-space techniques do not find this solution, as the cross-transfer appears as
a deadlock while exploring the search space, and the optimization continues in a different
direction.

In the S-graph framework, precedences between tasks are represented by directed arcs.
In case of the NIS policy, the schedule arcs for a unit are directed to the next task from
the recipe-subsequent task(s) of the previous task (See Chapter [Z3]). These arcs represent
exactly the aforementioned logical constraints independently of the value of transfer times.
Cross transfer appears as a directed, 0 weighted cycle in the S-graph as shown in Figure [3.5]
for the wrong schedule in Figure B4 - a).

In case of positive transfer times, this cycle would have a positive weight and the longest
path could not be determined, i.e., this procedure would cover the logical constraint of the
transfer. In case of 0 transfer times, the longest path procedure may still succeed (as the
equations were feasible in case of the MILP models). However, the logical information is

still kept, and the cycle detection algorithm recognizes the infeasibility.



46 CHAPTER 3. CRITICAL MODELING ISSUES
RESSCaR OO
R ONS GOS0

N
OO0
a2
@ ‘fa D=0

Figure 3.5: Cycle in the S-graph representation of the schedule delivered by the MILP
formulations

©

(e
<

~
)

Since the precedence based models and the S-graph framework has a lot in common, this
approach can be "translated" to precedence based MILP models as well, and it is exactly
what Ferrer-Nadal et al.[@] has published. As the algorithm is not well formulated in
the paper@, a reformulated, corrected, and clarified pseudo code is presented in Algorithm
blocks B.1 and 3.2

The main routine goes through all of the plausible unit-task pairs, and starts a recursion.
To enumerate each cycle only once, it is assumed without the loss of generality that the cycle
starts at the unit with the smallest index.

For precedential recipes, the algorithm remains the same, with the only modification
that the search subroutine is called recursively for not only i+, but for all of the subsequent
tasks of 7.

At each iteration it is checked, whether the subsequent task of the last assignment can be
performed by the unit that started the cycle. If yes, the cycle is closed and a new constraint
is generated with the function generate. This function basically generates the following
constraint:

X+ V<X + |y -1

XeXx Yey
The constraint ensures that the collected assignment and allocation variables in ) and X
cannot all take the value of 1, which would cause this cycle

After this part, the algorithm enumerates all the possible units for the subsequent task
of the last assignment, and all the suitable tasks from those whose product has not yet been

included to the cycle. The cycle is extended with the assignment, and the function calls

10The original publication contains a flow diagram with undocumented notations, and some errors.
" Collecting the assignment and precedence variables separately is not necessary. However, this enhances
understandability.



3.2. CROSS TRANSFER 47

Algorithm 3.1 Algorithm to generate constraints avoiding cross transfer in Precedence
based MILP models
Inputs

P set of products

np number of stages for each product p € P

J set of units

J; Set of units that can perform task ¢
Notations

I’ set of all tasks, except the last ones in the production, i.e.,

Upep{ip,la ip,2; - - - >ip,nk—1}
J;r set of units that are later in an arbitrary ordering of the units.

X is a general precedence binary variable denoting whether task i precedes task
1" if performed in the same unit

Y; ; is the assignment binary variable denoting whether task 7 is assigned to unit j
or not

for all j € J do
for allic I;NI' do
search(j,i,{Y;},0,J; 1" \ I,,i")
end for
end for




48 CHAPTER 3. CRITICAL MODELING ISSUES

itself recursively.

Algorithm 3.2 Recursive subroutine for Algorithm [3.1]

search(j°,%,),X,J1, 11,

49,4 starting unit-task pair of the cycle

Y set of already fixed assignment variables

X set of already fixed precedence variables

JE set of units not yet in the cycle

I% set of non-final tasks of products not yet in the cycle

il last task in the cycle, i.e., the subsequent task of the last assignment

if X #0 Ai' el then
generate(Y U {Yjo ;1 },& U{X;0.})
end if
for all j € JEN J! do
for alli e I®N1I; do
search(j%i%,Y U{Y; 1, YiohyX UL X0} T2\ (17 I i)
end for
end for

The shortcoming of this approach is that the model can no longer be implemented in a
single primitive model description language. A higher level language supporting loops and
generating equations is needed.

If the analogy between the precedence based models and the S-graph is used, the behavior
of the algorithm can loosel be described as follows:

1. Take an S-graph where all of the possible schedule arcs are inserted, and the recipe
arcs are removed. See Figure for the example given in 211

2. Find all the zero-weighted cycles, and insert an equation that forbids them in the
rnodel

3.3 Other issues

In this section, some other issues are introduced briefly without detailed explanation.

12In certain cases the same schedule arc can belong to different units as well, for which additional care
must be taken.
13There are efficient algorithms published in the literature for the enumeration of all of the cycles in a

graph.[6d, (84, [7d, [111]



3.3. OTHER ISSUES 49

Figure 3.6: The S-graph containing all the possible schedule arcs for the Example given in
Figure 2.1

3.3.1 Long tasks

By investigating the same multiproduct example from Section B.1I], and choosing the number
of batches to be 3 —2 —2 — 2, the optimal solution reported by any of the mentioned models
is suboptimal. The reason is not to be found in the iterative approach, as the model is
not capable of finding the practically optimal solution with larger number of time points
either. As briefly mentioned in Section 2.J the problem lies with the typical constraint that
if a task starts at a time point, it will finish by the subsequent one. This assumption will
usually not disregard the optimal solutions when the processing times are very similar in
range. However, in case of a long and several shorter tasks, it is feasible in practice that
the short ones are performed after each other in parallell with the long task. Many models,
however, cannot find this solution, as tasks are not allowed to overlap several time points.
This issue has been already reported by several papers, and addressed partially. In both the
global time point[17] and the unit specific|117] models, the binary variables were extended
with an additional index: the finishing time point. Thus, theoretically, if there are n time
points, and k plausible unit-task pairs, the number of binary variables increased from n x k
to (g) Xk=nxkx "T’l As a result, the number of time points became even more crucial,
and much smaller problems got impossible to be solved in a reasonable time. In order
to avoid this computational disadvantage, these models were extended with an additional
parameter, A that denotes the maximal number of time points that the execution of a
task can overlap. The special case, A = 0 brings the model back to the original case. This
way, the number of binary variables is reduced to (n + (n — 1) +--- + (n — A)) x k that is
roughly (A + 1) x n x k. Although the optimal solutions can usually be found by using 1
or 2 for A, it has to be noted that these cases also roughly double and triple the number of

'4In the original papers it is An for the unit specific, and At for the global time point models.



50 CHAPTER 3. CRITICAL MODELING ISSUES

binary variables, resulting in huge increase for the computational need. Also, A is an other
model parameter, that has to be identified a-priori the optimization, similar to the number
of time points, and thus the optimality of the solution cannot be guaranteed. Although
there were attempts to identify the ideal value for A, counterexamples can easily be created

to undermine the soundness of those approaches.

3.3.2 Time point synchronization

Unit specific models are advantageous from the computational point of view. However,
the synchronization between the different time point sets can be rather nontransparent.
Investigating this issue in detail would require many pages, thus it is omitted here, and only
a simple example is given as an illustration: The so called "Different task - different unit"
constraints in these models state, that if task ¢ is finishing in time point n, and produces
some intermediate, that can be consumed by a task 7' which will start to be performed by
an other unit at time point n, than 7" must start later than 7 finishes. The problem with this
assumption is that i’ may gets its inputs from a storage or an other unit that also performed

task 7, but finished earlier, thus the model is over-constraining.

Summary and concluding remarks

This chapter presented some of the modeling issues, that arise in case of the MILP for-
mulations published in the literature. These issues may lead the optimization process to
suboptimal or even practically infeasible solutions. Some of these issues were presented in
detail and analyzed, others just mentioned and highlighted. Some of the issues are easy to
address, others are not. However, even in the former case, the fix could increase the CPU
needs drastiqually.

The overall conclusion of the chapter is, that empirical tests can never wvalidate
the soundness of a presented approach, which is a common practice in the literature.
Moreover, authors should investigate in more detail, what kind of assumptions are hardwired

into their model, and highlight them in their papers.

Related publications

e Hegyhati, M., T. Majozi, T. Holczinger, F. Friedler, Practical infeasibility of cross-
transfer in batch plants with complex recipes: S-graph vs MILP methods, Chemical
Engineering Science, 64, 605-610 (2009). [IF — 2.136]

e Hegyhati, M., F. Friedler, Overview of Industrial Batch Process Scheduling, Chemical
Engineering Transactions, 21, 895-900 (2010).



3.3. OTHER ISSUES 51

Related conference presentations

e Hegyhati, M., A. Eles, F. Friedler, Modeling issues of mathematical programming
based approaches in batch process scheduling, presented at: PRES 2012, Prague,
Czech Republic, Aug 25-29, 2012.

e Hegyhati, M., T. Holczinger, F. Friedler, In-Depth Study and Comparison of S-Graph
Framework and Precedence Based MILP Formulations for Batch Process Scheduling,
presented at : AIChE Annual Meeting 2011, Minneapolis, USA, October 16-21, 2011.

e Hegyhati, M. and F. Friedler, Overview of industrial batch process scheduling, pre-
sented at: PRES 2010, Prague, Czech Republic, August 29 - September 1, 2010.

e Hegyhati, M., T. Majozi, T. Holczinger, F. Friedler, Practical feasibility of mathemat-
ical models in scheduling, presented at: VOCAL 2008, Veszprem, Hungary, December
15-17, 2008.

Related conference posters

e Eles A., B. Kovécs, B. Toth, M. Hegyhati, Empirical Analysis of Methods and Software
Tools for Batch Process Scheduling, presented at: VOCAL 2012, Veszprém, Hungary,
Dec 11-14, 2012.

e Hegyhati, M., A. Eles, F. Friedler, Modeling issues of mathematical programming
based approaches in batch process scheduling, presented at: PRES 2012, Prague,
Czech Republic, Aug 25-29, 2012.



52

CHAPTER 3. CRITICAL MODELING ISSUES



Chapter 4

Throughput or profit maximization with

the S-graph framework

The S-graph framework was originally introduced to address makespan minimization prob-
lems with NIS or UIS policies. The extension to throughput-, revenue-, or profit maxi-
mization is not as trivial as in the case of the time discretization based MILP approaches,
as the S-graph algorithms (like the precedence based formulations) consider the number of
batches as an input parameter, which is unknown a-priori to optimization in these cases. In
this chapter, an algorithm is presented to extend the S-graph framework to address revenue
maximization problems. Throughput or profit maximization can be addressed analogically.
The basic idea that has been presented by Majozi and F‘riedler[@] and by Holczinger et
al.ﬂﬁ], is to have a top-level branching for the number of batches for each product, that
will be called as a configuration in this chapter. The approach described in Section
and relies, however, on fixed batch sizes, that is not always the case for throughput
maximization problems. Section introduces an approach to discretize the batch sizes
without the loss of generality in order to provide the recipes with fixed batch sizes for the

previously described algorithm.

4.1 Main algorithm for revenue maximization

In this section, it is assumed, that for all products the batch size is fixed, i.e., the revenue
of one batch of a product is known, and it is denoted by R, for all p € P.

As it has been mentioned before, it is not known in advance at what number of batches
the revenue will be maximal. Thus, the basic concept of the approach is to introduce a top
level search space for all the possible batch numbers. The pseudo code of the algorithm can
be found in the algorithm box E.1]

Essentially, the algorithm first initializes the set S with all the possible batch numbers for
the products. (Z* denotes the set of non-negative integers.) Then, in each iteration a batch

number configuration is selected and removed from the set by the select remove function,

53



54 CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

Algorithm 4.1 Throughput minimization with the S-graph framework

revenue® := 0
S = (z*)IP
while S # () do
z :=select remove(S)
if feasible(recipe(z),t) then
if revenue(r)> revenue® then

revenue® :=revenue(xr)
=z
update(S, revenue®)
end if
else
S={2eS |2 %z}
end if
end while
if revenue® # 0 then
return (2, revenue®)
end if

and tested for feasibility, i.e.whether it can be produced within the given time horizon, t.
If the configuration is feasible, and has a higher revenue than the best found so far, the
currently best solution is updated, as well as the set S. If the configuration is infeasible all
the configurations largeil] than the current one are removed from the set S, due to the fact,
that if there would be a feasible schedule for a larger configuration, a feasible schedule for
x could be created as well by removing all the superfluous batches from it. When & gets
empty, the algorithm returns with the best configuration and the corresponding revenue if
there was a feasible solution.

Though the algorithm is simple, several aspects need to be discussed:

e The algorithm uses several subroutines. Some of them is discussed in the next section
in more detail. The function recipe generates the recipe graph of a problem where
x; batches of the ith product is to produced for each 7, and all the other necessary
information needed by the feasibility tester subroutine, e.g., set of tasks, units. The
revenue function simply returns the revenue for the configuration, which in this case

is the scalar product = - R.

e The set § is infinitely large, and seemingly only one element can be guaranteed to
be removed from it in each iteration. This suggests, that the algorithm is not finite.
Note, however, that this is not the case, the algorithm always finishes in a finite
number of steps if the selection of configurations is appropriate. Let tzm be the
smallest processing time for any of the tasks of product p € P. Obviously, [én—lfn] is

an upper limit (though probably not very tight) for the number of batches that can

'A configuration is considered to be larger or equal than an other one, if it entails at least as many
batches from each product than the other configuration.



4.2. SUBROUTINES FOR THE ALGORITHM 95

be produced from p. As an upper bound exists for each product, the algorithm ends
in a finite number of steps if it chooses configurations, such that z, < [tfn—}fn] + 1.

P
tH

min
tP

The configurations where z, = |

| 4+ 1 for at least one product will definitely be
infeasible, and thus they will remove all the other configurations from S. In practice,
i.e., in the implementation of this algorithm the set S is not initialized like this, see

more about this at the description of the select remove function.

e In the presented version, the algorithm does not return the schedule of the optimal
solution. The implementation of course saves the feasible solution found and returns
it at the end.

Assuming that the subroutines work properly, it is easy to see, that the algorithm is

sound, as it evaluates all the possible configurations.

4.2 Subroutines for the algorithm

In this section several subroutines of the revenue maximization algorithm is discussed.

4.2.1 The select remove method

The only requirement towards the select remove function to make the algorithm sound
is that it should select and arbitrary element of S and remove it. For the finiteness of the
algorithm however, the function should satisfy some additional condition. A simple, yet
sufficient condition is that the function should never select an element x such that none of
its "preceding configurations" has been selected before. A configuration 2’ is preceding z if
for some k € {1,...,|P|}, }, = 2 — 1 and 2} = z; for all i # k. It is easy to see that if
the function follows this rule, the algorithm will always have a finite number of iterations,
as the feasible region is finite (as discussed in the previous section) and its border is finite
as well.

In the implementation, however, the function behaves a bit differently. First, the function
goes through the configurations where only one product is produced, and finds the largest
feasible batch number, b;"** for each p € P. Based on these values, a finite region of interest
can be defined, that contains all the feasible configurations (and some infeasibles as well).
For two products, the result of this initial step is illustrated in Figure 11

The two products are denoted by A and B, and the two axises by N4 and Npg referring
to the number of batches for A and B, respectively.

After identifying this feasible region, the function can have different strategies to select
the configuration, which could have a major effect on the CPU requirements. As shown in
Figure 4.2l the number of examined configurations can be significantly different for different

selection strategies.



56 CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

N ‘ - Region containing the optimal solution
Revenue
'A

@ Tested and infeasible configuration
48 @

@ Configuration yet to be tested

@ Tested and feasible configuration

@ g
55 Npltevense

Figure 4.1: Finding the initial region containing the optimal solution for revenue maximiza-
tion

- Region containing the optimal solution
- Infeasible region

QO  Configuration removed from S
@ Tested and infeasible configuration
@ Tested and feasible configuration

= Order of selected configurations

N Revenue N Revenue
‘A ‘A

/A

Nplrevenue]
11 2[2) 33 414 55

Np revenue]
1(1) 2(g 3(3 4 5[5

Figure 4.2: Illustration of the significance of configuration selection on the number of itera-
tions



4.2. SUBROUTINES FOR THE ALGORITHM 57

As it can be seen from the figure, in one of the cases the algorithm had 4 iterations after
the initial phase, in the other there was 6 iterations. The former one could save 2 iterations
by testing the configuration (2, 1), and finding it infeasible first. Empirical test has shown,
that the most of the time needed by the algorithm belongs to infeasible configurations. Thus,
testing the "minimal" infeasible configurations first is crucial for reducing the CPU time.

Orosz [@] has investigated the effects of different selection strategies in his work.

4.2.2 The update method

Essentially, there are two tests that has to be carried out at each configuration:
e [s the configuration feasible?
e Does the configuration provide higher revenue than the current best?

In many practical examples, the evaluation of the first question takes much more time
than that of the second. According to experimental experiences, this is especially true, if the
configuration is infeasible, as it takes more time for the feasibility tester to examine all the
infeasible branches, than finding a single feasible schedule. In these cases it may be more
beneficial to evaluate first the second question, and if the answer is no, then purge the case,
even if it could be used for reducing the search space if it turns out to be infeasible.

The purpose of the update function is to make this type of behavior possible. Although

there are many possibilities, there are two implementations present:
1. The function does nothing

2. The function removes those untested configurations from the search space that do not
have higher revenue than the current best solutions, i.e., S := {2/ € S |revenue(z’)<

revenue}

The first case is evident; in the second case, the region is reduced each time when a
feasible configuration is found. Note that in this case, the if statement testing whether the
revenue of x is higher than the current best is unnecessary. In the implementations this
second option is only used after finding the initial region of feasibility (see the previous
section). When this region is identified, one of the tested configurations provide the highest
profit found so far. This solution can immediately be used to reduce the search space, as
shown in Figure

In this case, the revenue of producing 3 batches of A was 6, and all the configurations
indicated by white dots could be removed from the search space, as they had the revenue of
at most 6.

Using the second version of this function, the search space S gets reduced at each iter-
ation, regardless, whether the configuration x turns out to be feasible or infeasible. Using
the two selection strategies shown in Figure 4.2, and the second version of the updating

function, the evaluation of the search space is illustrated in Figure [4.4]



58 CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

I:I Region with suboptimal revenue
‘ - Region containing the optimal solution

N [evenue

Configuration yet to be tested
Tested and infeasible configuration

Tested and feasible configuration

oS
(o)
®
O @0 0

Configuration removed from S

Revenue=6

O L
513 Nl Revenue

Figure 4.3: Reducing the search space based on the revenue of the best feasible solution

- Region containing the optimal solution
I:l Region with suboptimal revenue
- Infeasible region

QO  Configuration removed from S
@ Tested and infeasible configuration

@ Tested and feasible configuration

= Order of selected configurations

o4 o}

Az

N, [fecend]

Revenue=7 Revenue=7

Revenue=6 12 @ O O O

Nilicoen]
O
503 0[0 101 2[2 3[3 414

Revenue=6

N Rewenn]
o
505

Figure 4.4: Evaluation of configurations with revenue updates on &



4.2. SUBROUTINES FOR THE ALGORITHM 29

Although, this reduction can be beneficial in many cases, it has drawbacks as well, which
can be seen by comparing Figures and [£.4] as well. In the latter case, regardless of the
selections strategy, two infeasible configurations needed to be tested, which was not the case
for the first strategy in the former one. As testing infeasible configurations usually take
most of the computational time, in most of the cases it is advised not to reduce & based on

the current best revenue.

4.2.3 The feasible method

The feasible method plays a key role in the maximization of the revenue, as this function
is responsible for the evaluation of each configuration. The function must return true if
there is a schedule with at most the time horizon for the given number of batches, and false
otherwise.

The simplest implementation is by using the makespan minimization function described
in Subsection At each configuration the number of batches for each product are
available, thus the minimal makespan for that amount of products can be found. Then, the
result is compared with the time horizon: if it is not larger, the configuration is feasible,
and infeasible otherwise.

This approach however does numerous unnecessary calculations:

e Even if a solution has been found within the time horizon, the function continues to
find the solution with the optimal makespan, that is, in this case, out of the interest

of the main algorithm.

e Even if all the subproblems has higher lower bounds then the time horizon, i.e., all of
the feasible solutions has longer makespan than the time horizon, the algorithm still
continues to find the optimal solution, although the configuration will be evaluated as

infeasible anyway.

In order to avoid these unnecessary calculations the makespan minimization algorithm

must slightly be modified the following way:
e The variable makespan® must be replaced by ¢.
e When a feasible solution is found the algorithm should return with true immediately.

The pseudo code for this feasibility tester function is presented in Algorithm block H
This simple modification can significantly reduce the time needed for the optimization.

However, there are still redundant calculations, since if = is a configuration larger than a2/,

then part of the the search tree for the feasibility test of x appears in the tree of the test for

x’ as well. Orosz |96] has investigated this opportunity, and provided a global search tree

?Note that the presented algorithm simply returns true, and does not return the schedule. Obviously,
the algorithm can be easily modified to return the schedule or save it in a global variable, etc.



60 CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

Algorithm 4.2 Feasibility tester subroutine for revenue maximization
feasible(G(N, Ay, Ay, w), I, J, 1)

G(N, Ay, Ay, w) recipe graph
I,J set of tasks and units, respectively

t7 time horizon

S :={(G(N, Ay, Ay, w), 1, J,0)}
while S # () do
(G(N, Ay, Ay, w), I', J', A) :=select _remove(S)
if bound(G)< ¢ then
if I’ =0 then
return TRUE
else
j =select(J')
for alli e ;NI do
GH(N, Ay, Ab, w) == G(N, Ay, Ao, w)
for all i’ € U jyea I \ {i} do
Ay = Ay U{(, )}
end for

wt ., =t

S:=8SU(GYN, A, As,w), I'\ {i}, J', AU{(i,5)})
end for
if I' C U ey jzyo Iy then
S =8SU (G(N, Al,Ag), I/, J \ {j},A)
end if
end if
end if
end while
return FALSE




4.3. FLEXIBLE BATCH SIZES 61

based method where the feasibility testers use the results of the preceding configurations
to accelerate the search. The approach has been implemented with a task based feasibility

tester, and despite its development phase, it has shown promising results.

4.3 Flexible batch sizes

For many case studies and literature examples the batch sizes are not fixed, and if several
units are capable of performing a task, they are allowed to do it in parallel. This type of
problem definition is especially often for throughput/revenue maximization problem, but ap-
pears for makespan minimization as well. Time discretization based approaches can address
this issue as they are, the S-graph framework, however, needs some adjustments.

The previously described algorithm requires that the recipe is fixed, and the revenue is
known for one batch of a product. With the aforementioned problems, however, neither of
these two is guaranteed. As an illustration for the proposed approach, the example from
Kondili et al.[66] is taken, that was shown in Figure

The process consists of 5 tasks: heating, 3 reactions and a separation, the material flows
are clearly represented in the ﬁgureH For these tasks, 4 units are available, dedicated Heater
and Separator, both with 100kg of capacity for the Heating and Separation, respectively.
For the three reactions, two different reactors R1 and R2 with identical processing times,
and capacities of 80 kg and 50 kg are available, which may be used in parallel. It is assumed
that all of the units can operate with any load smaller than their capacity, i.e., there is no
lower bound for their load.

The process produces two products with identical revenues, and an additional constraint
is given: no intermediate material may be left at the end of the production, i.e., it is not
allowed to produce only Product 1 via the first part of the process. Moreover, there are no
storages available, i.e., NIS policy is assumed.

Each reaction can be performed by either one of the reactors or with both of them
parallel. For the 3 reactions, this results in 3% = 27 different "fixed recipes", that can have
different batch size intervals, as represented in Table .11

To apply the previously described S-graph algorithm for revenue maximization, a sepa-
rate S-graph recipe for each of these cases must be created, thus the top level search region
would become a 27 dimensional space. This would result in an enormous CPU need for the
optimization, thus, the reduction on the number of cases is essential.

When looking at the table, it can easily be seen that only several different values repeat.
The reason behind this comes from the material balances, for example, even if we assign
both R1 and R2 instead of just R1 to Reaction 3, the output will not be higher, if the supply
from the previous reactions does not reach a certain level. If two different cases ¢ and ¢ has

the same maximal revenue, but ¢ uses only a (not necessarily real) subset of units for each

3In the original example, 10% of the output of separation is IntAB that is recycled. This is neglected,
as the presented algorithm is not capable of addressing problems with loops in their recipe.



CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

Case | Reaction 1 Reaction 2 Reaction 3 | Max revenue
1 R1 R1 R1 86.00
2 R1 R1 R2 71.67
3 R1 R1 R1&R2 86.00
4 R1 R2 R1 53.75
5 R1 R2 R2 53.75
6 R1 R2 R1&R2 53.75
7 R1 R1&R2 R1 114.67
8 R1 R1&R2 R2 71.67
9 R1 R1&R2 R1&R2 139.75

10 R2 R1 R1 86.00
11 R2 R1 R2 71.67
12 R2 R1 R1&R2 86.00
13 R2 R2 R1 53.75
14 R2 R2 R2 53.75
15 R2 R2 R1&R2 53.75
16 R2 R1&R2 R1 89.58
17 R2 R1&R2 R2 71.67
18 R2 R1&R2 R1&R2 89.58
19 R1&R2 R1 R1 86.00
20 R1&R2 R1 R2 71.67
21 R1&R2 R1 R1&R2 86.00
22 R1&R2 R2 R1 53.75
23 R1&R2 R2 R2 53.75
24 | RI1&R2 R2 R1&R2 53.75
25 R1&R2 R1&R2 R1 114.67
26 R1&R2 R1&R2 R2 71.67
27| R1&R2 R1&R2 R1&R2 139.75

Table 4.1: 27 different "fixed recipes" for the example by Kondili et al.@]



4.4. EMPIRICAL TESTS 63

reaction of those used by ¢, than ¢ dominates ¢/. As an example, case 9 dominates case
27, and case 24 is dominated by all of the cases 4,5,6,13,14,15,22,23. Obviously, if a case
is dominated by an other, it can be excluded from the investigation without using loosing
the guarantee for the global optimality. For the example above, the cases, which are not

dominated by an other are shown in Table ordered by the maximal revenue.

Case | Reaction 1 Reaction 2 Reaction 3 | Max revenue
4 R1 R2 R1 53.75
5 R1 R2 R2 53.75

13 R2 R2 R1 53.75
14 R2 R2 R2 53.75
2 R1 R1 R2 71.67
11 R2 R1 R2 71.67
1 R1 R1 R1 86.00
10 R2 R1 R1 86.00
16 R2 R1&R2 R1 89.58
7 R1 R1&R2 R1 114.67
9 R1 R1&R2 R1&R2 139.75

Table 4.2: Non-dominated cases for the example by Kondili et al.@]

After this reduction, still, 11 different cases should be given as input to the S-graph
algorithm. In order to further reduce this number, several cases can be merged together. As
an example cases 4 and 5 are identical except for the selection for the third Reaction, thus
these two cases can be merged togerther by the assignments R1, R2, R1V R2 for Reactions
1,2, and 3, respectively. Applying the same idea, the 6 cases shown in Table [4.3] remain.

Case | Reaction 1 Reaction 2 Reaction 3 | Max revenue
4,5,13,14 | R1V R2 R2 R1V R2 | 53.75
2,11 | R1V R2 R1 R2 71.67
1,10 | R1V R2 R1 R1 86.00
16 R2 R1&R2 R1 89.58
7 R1 R1&R2 R1 114.67
9 R1 R1&R2 R1&R2 139.75

Table 4.3: Merged non-dominated cases for the example by Kondili et al.@]
To all of these merged cases, the recipe graph can be generated, as shown in Figure .5

4.4 Empirical tests

In this section, the results of the implemented algorithm are presented via three examples.
For each example, the problem has been scaled and solved with different time horizons.

At each case altogether 18 variants of the throughput maximization algorithm have been



64

CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

Merged Cases
4,5,13,15

Revenue
53.75

Merged Cases
2,11

Revenue
71.67

Merged Cases
1,10

Revenue
86.00

Case
16

Revenue
89.58

P Product 1/2)

| Product 1/1

Case
7

Revenue
114.67

| Product 1/2)

| Product 1/1

Case
9

Revenue
189.75

| Product 1/2)

Figure 4.5: The corresponding recipe graphs for the 6 cases in Table




4.4. EMPIRICAL TESTS 65

tested and compared. These variants add up by the possible combinations of 3 different
subproblem selection rules, 3 different update and 2 different feasibility subroutines.

Each of the subproblem selection strategies first explores how many batches of a single
product can be produced within the given time horizon, then they explore the bounded

region
LEX in a lexicographical order,
BFS via breath-first search,

DFS via depth-first search.
The update subroutines:

E empty, no configuration is removed via the bound of a feasible solution

F only the best axial configuration is used for removing some of the configurations
after the initialization phase

U the update function removes all the configurations that has lower revenue than the

currently best feasible solution

Last, the makespan minimization (MM) and the described feasibility tester (FT) is used
for the evaluation of the configurations. At each run, the time limit of 1 hour was used for
the solver algorithm.

The subsections present only some highlights of the results due to space limitations. The
table of all of the results can be found in Section[C.Il When the algorithms have not reached
the 1 hour time limit, they delivered the same globally optimal solution.

A general experience is that the type of the feasibility tester have a major effect on the
CPU times, as expected. Usually, most of the CPU time is taken for the testing of infeasible
configurations, where the FT does not gain any advantage of stopping after the first feasible
solution. The initial bound of the FT subroutine however, cause a significant reduction on
the search spaceH Thus, in the following subsections the variants having MM subroutine
are not investigated.

For all of the examples, NIS storage policy were considered for all intermediates.

4.4.1 Pharmaceutical case study

This example is taken from a multinational pharmaceutical company. There are 5 hair and
skin care products produced, all of them via two consecutive steps: mixing and packing. For
the packing, there are 3 identical packing lines available, and the packing time is uniformly
12 hours for all of the products. There are 4 mixing vessels available, however, they differ
in applicability and processing times due to the different stirrer designs. The detailed

processing times are given in table 4]

4Some additional tests were run using the makespan minimization subroutine with the initial bound, and
the results were close to that of the FT approach.



CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

66
Processing time (h)
Product Revenue (cu) Mixing vessels o
V1 ‘ V9 ‘ V3 ‘ V4 Packing lines

Cream 1 2 10 | 5 5 12
Cream 2 3 12 110 | 7 12
Conditioner 1 12 12
Shampoo 3.5 8 | 13 12
Lotion 1.5 10 | 6 9 12

Table 4.4: Processing times and revenue data for the pharmaceutical case study

A summary of the test results are shown on a logarithmic scale in Figure [4.6] where the

colors correspond to configuration selection rules, and the shapes for the different update

functions.

B LEX-U + LEX-F — LEX-E M BFS-U + BFS-F — BFS-E B DFS-U + DFS-F — DFS-E

10000
il
1000
L a e
100 ; : 8t - -
¥
[ |

10 .
1
o B 8 B B

0.01

CPU time (s)

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Time horizon (h)

Figure 4.6: Summary of results for the pharmaceutical case study

Based on these results the following conclusions can be drawn for this example:
e For most of the cases, the alternative solution approaches could not outperform each
other more than a magnitude.

e For small problems (with time horizon less than 29) the CPU times do not increase

drastically.

o After 29 hours of time horizon, the CPU times have a drastical increase.

e For larger problems the alternatives with the E update function dominate the others,
and there is only a negligible difference between them for the different configuration

selection strategies.



4.4. EMPIRICAL TESTS

4.4.2 Agrochemical example

67

In this example herbicide is produced through three reactions, a separation, and an evapo-

ration. The flowsheet of the problem is given in Figure [L.1]

Rawl1

Raw2 —¢

SE1
Raw3 %
Rl R3

Raw4 > 4 y l

SE2

v

Effluent

R2 R4 SE3

» Waste

Product A

EV2

Storage

Figure 4.7: Flowsheet of the agrochemical process for herbicide production

The processing times, capacities of the units, output ratios, and other details of the

problem can be found in the paper by Majozi and Friedler

|. Although there is only one

product, the batch sizes are not fixed, and two units may work parallel on the same batch.

Thus the algorithm of Section [£3] need to be applied to create fixed recipes. After this

preprocessing steps, there are two different fixed recipes as shown in Figure 4.8 where the

revenues of F'1 and F2 are 3.7 and 4.5 cost units, respectively.

F2R2-1
(R,R,}

Figure 4.8: S-graph of the two fixed recipes for the agrochemical process

The results of the tests are shown in Table 4.5l and the best CPU times are indicated in

each row.



68 CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH

Time CPU time (s)
horizon LEX BFS DFS
(h) U F E|U F E| U F E

13 3.06 3.07 3.05 | 3.08 3.04 3.05]|3.03 3.08 3.07
14 339 340 205 | 405 405 414 | 405 402 269
15 453 451 453 | 583 582 591 | 589 583 581
16 3600 3600 3600 | 3600 3600 3600 | 3600 3600 3600

Table 4.5: Test results for the agrochemical example

It is easy to see, that in case of this problem, the increase in the time horizon has a
drastic effect on the cpu times. Each additional hour in the time horizon resulted in at least
one magnitude growth in the CPU time. Based on this few results, it can be observed, that
the E update function dominates here the other two as well. Moreover, in general, the LEX

configuration selection strategy proved to be the most efficient.

4.4.3 Literature example

For the last comparisons, the example from Section is taken. As described in that
section, there are 6 fixed recipes for this problem with two products. The results of the test

are shown in Table [L.6, and again, the best CPU times are indicated in each row.

Time CPU time (s)
horizon LEX BFS DFS
(h) U F E U F E U F E
14 16.88 15.84 15.21 | 14.95 18.52 21.07 | 22.63 22.53 21.01
15 179 134 113 208 144 133 437 279 225
16 1260 1159 984 964 1496 1512 | 1594 1629 1403
17 3600 3600 3600 | 3600 3600 3600 | 3600 3600 3600

Table 4.6: Test results for the example of Section

As in the case of the previous examples, the LEX-E alternative provides good results.

However, interestingly, the BFS-U strategy often have good results.

Summary and concluding remarks

In this chapter, the S-graph framework has been extended to throughput or revenue maxi-
mization problems. The algorithm is based on the enumeration and maximum search of the
feasible set of configurations, i.e., batch numbers, which are producable in the given time
horizon. The possibilities for different variations of the general algorithm were presented

and thouroughly compared after implementation. The results showed that the approach is



4.4. EMPIRICAL TESTS 69

capable to solve the considered set of problems, and provide the optimal solution efficiently

when the correct variation is applied.

Related publication

Holczinger, T., T. Majozi, M. Hegyhati, F. Friedler, An automated algorithm for
throughput maximization under fixed time horizon in multipurpose batch plants: S-
Graph approach, 17th European Symposium on Computer Aided Process Engineering
Elsevier, 24, 649 - 654 (2007).

Related conference presentations

Majozi, T., F. Friedler, T. Holczinger, M. Hegyhati, S-graph based continuous-time
approach for throughput maximization in multipurpose batch plants, presented at:
IFORS 2008, Johannesburg, South Africa, July 13-18, 2008

Hegyhati M., T. Holczinger, T. Majozi, F. Friedler, Transforming STN based schedul-
ing problems to S-graph representation, presented at: XIX Polish Conference of Chem-
ical and Process Engineering, Rzeszow, Poland, September 3-7, 2007.

Holczinger, T.,T. Majozi, M. Hegyhati, F. Friedler, Throughput Maximization in Mul-
tipurpose Batch Plants: S-graph vs Time Point Based Methods, presented at: PRES
2007, Ischia Island, Italy, June 24-27, 2007.

Holczinger, T.,T. Majozi, M. Hegyhati, F. Friedler, An Automated Algorithm for
Throughput Maximization Under Fixed Time Horizon in Multipurpose Batch Plants:
S-Graph Approach, presented at: ESCAPE 17, Bucharest, Romania, May 27-30, 2007.

Holczinger, T., T. Majozi, M. Hegyhati, F. Friedler, Using S-graph for Throughput
Maximization in Multipurpose Batch Plants, presented at: VOCAL 2006, Veszprem,
Hungary, December 12-15, 2006.



70

CHAPTER 4. THROUGHPUT MAXIMIZATION WITH S-GRAPH



Chapter 5

Limited- and Zero-wait storage policies

in the S-graph framework

The S-graph framework was originally developed for NIS-UW and UIS-UW storage policies,
and the only published storage policy extension of the S-graph framework|109] focused on
CIS-UW policy. However, in many industrial application LW or ZW policies are required,
as certain intermediates lose some physical or chemical properties over time, that would be
important for the upcoming task. In this chapter, several new approaches are introduced to
tackle these storage policies. As it has already been mentioned in Section [L2] in case of ZW
policy, the restriction on the infrastructure is irrelevant. However, LW itself does not define
the storage policy. In this chapter LW will refer to NIS-LW policy, and the approaches are
described for that, although they could easily be modified to address UIS-LW policy as well.
Moreover, if an approach is presented for LW policy, it can be automatically applied for
ZW cases, as it is a special case of LW. Finally, it is not assumed anywhere, that all of the
intermediates share the same restriction for waiting time, i.e., some of them are ZW, LW,
or even UW.

Note that UW is a relaxation of ZW /LW, thus, all of the schedules with ZW or LW
policies on some intermediates remain feasible if all of the LW intermediates are set to UW
policy. Later on, the terminology UW-relaxation will be used if the LW restrictions of a
problem are disregarded this way.

Most of the constraints in scheduling has a "greater or equal" nature,e.g., a task must
start later than the finishing of the previous task in the recipe, or the previous task assigned
to the same unit. LW constraints, however, define a "not later then" thus "smaller or
equal" type of constraint, which cannot directly be expressed by the ordinary S-graph arcs.
There are, however, several ways to address this policy, which are detailed in the following
subsections.

In section 0.1l a hybrid approach is introduced, where the S-graph based branching pro-
cedure is extended with an LP based bounding function that also includes the "smaller or
equal" type of LW constraints.

The approach introduced in section relies on the fact that a typical "less or equal"

71



72 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK

type of LW constrains, such as T < Titert 4 ¢P7°¢ can easily be converted to a "greater
or equal form": Tytert > Tgtart 4+ (—¢Pro)  which can be modeled by regular S-graph arcs.
The weight of the edge, however, becomes negative (non-positive to be precise), which needs
some additional care.

In section 5.3l two approaches are introduced for problems with only UW and ZW inter-
mediates without introducing negative weighted arcs in the S-graph. Addressing LW stages
is possible through a modeling conversion.

Last, section compares the performance of these approaches through several exam-

ples.

5.1 Auxilary LP model

The smaller-or-equal type of constraints of LW policy can be addressed by an LP model that
can be formulated for each subproblem. The mathematical model can simply built based
on the S-graph (V, Ay, Ay):

e A non-negative continuous variable is assigned to each node, which represents its

starting time: S;, for all : € N.

e Schedule arcs represent simple ordering in time, thus a constraint in the form of S;; > .5;
is added for all (i,i") € As.

e For all recipe arc, a similar constraint is added: Sy > S; + w;;» for all recipe arc

(i,i") € Ay, where w; s is the weight of it.

e Last, for each task ¢ with LW policy, the constraint Sy < S; + w; s + mazwait; is
added, where ¢ is an upcoming task of i, i.e., (i,7') € Ay, and mazwait; the maximal

allowed waiting time.

The solution of this mathematical model will not provide sharper bounds than the longest
path algorithm. However, it will detect if a certain subproblem is not feasible due to wait
restrictions. In such a case, the corresponding branch of the search tree is pruned obviously.
Note that in case of a partial schedule that is not even feasible for the UW-relaxation, the
S-graph approach will detect the infeasibility in the usual manner by finding a directed cycle,

thus the solution of the LP model is not necessary.

Advanced LP approach

The most serious drawback of the previously mentioned approach is that the mathematical
model needs to be formulated at each subproblem, taking a lot of CPU time, while the LP
itself does not provide a sharper bound than the longest path approach. There is, however,

a more sophisticated way of using an LP for LW and ZW policies, as suggested in subsection

233



5.2. COMBINATORIAL APPROACH WITH NEGATIVE WEIGHTED ARCS 73

Instead of formulating a separate LLP model for each subproblem, the LP relaxation of
the whole precedence based model can be built for the root subproblem immediately. Then,
at each decision, this model is copied, and some of the binary variables are fixed by changing
their upper or lower bounds.

Though, these models are much bigger than the formerly introduced ones, their bitwise
copying and modifying some variable bounds takes less time than building up the same
model from scratch. Moreover, as they have the same number of variables and constraints,
the solution of the parent LP model can be used as a starting basis for the dual simplex
algorithm. Finally, the solution of these models provide a tighter bound than the longest
path algorithm itself.

Note that similarly to the original approach, there is no need to copy the LP relaxation,
modify and solve it if the schedule graph contains a cycle or the longest path is higher than
the current upper bound.

Moreover, as the models at the subproblems are the same except for the bounds on
variables, it may be more beneficial not to copy the model, but use it as a global variable,

and adjust the bounds at each subproblem.

5.2 Combinatorial approach with negative weighted arcs

As it has already been mentioned, the less-or-equal type constraints in the form of 757%™ <
Tstert 4 Proc can easily be converted to a greater-or-equal form: T3t > Tgtert 4 (—¢P) . This
transformation, however, introduces non-positive weights on the arcs. This idea has alread

been used in for the Alternative graph model to model similar situations @, @, Iﬂ, IE, Iﬁ:

2
The limited waiting times can easily be modeled by negative weighted arcs. If there is

pt
70

a task ¢ with processing time #*, and maximal waiting time ¢"%*“%* then two recipe arcs

should be inserted into the S-graph as illustrated in Figure b1k
e An arc with weight " from i to its subsequent task(s).
e An arc with weight —¢" — #7%%*%% from the subsequent task(s) of i to i.

It is obvious to see that these arcs express exactly the desired constraints. In the figure
the interval in which task ¢’ can start (from Tt 4¢P to Tt 4"  gmaeewait) g indicated
by blue color on the time axis.

There are, however, some aspects of the algorithm that must be taken care of with the
introduction of these arcs.

e The longest path algorithm must be adjusted accordingly. As the current implemen-
tation maintains a longest path matrix throughout the algorithm, there is no need to

change anything with this.



74 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK

Y

. tlpt (L W < trm(wwait} ,
l i i l
J J!

_tpt_t mazwait
i i

pt mazwait
1+,

) -

pt mazwait
t; t

Y

start start pt start pt mazwait
T Tttt Ty,

start t 2 t start
T ,s ari _tp —t mazwai T»/s art
i l 3 3

Figure 5.1: Modeling LW policy with negative weighted arcs



5.3. COMBINATORIAL APPROACH WITHOUT NEGATIVE WEIGHTS 75

e Even the recipe graph will immediately contain several cycles. Their weight is negative,
or in the case of ZW arcs, 0. Naturally, negative weighted cycles are not of great
interest. They can simply be disregarded. However, the 0 weighted cycles need extra
care, as some of them only represent a ZW connection, while the others model a cross
transfer (See section B.2)). The algorithm must be modified in order to report only

those zero-weighted cycles that do not have recipe arcs in them.

5.3 Combinatorial approach without negative weights

In this section two approaches are described to tackle ZW policy. LW stages are not con-
sidered, but they can be addressed via a modeling transformation described in the last
subsection.

As briefly discussed before, a schedule can belong to one of the three groups listed below:

UW infeasible These schedules would be infeasible for the UW relaxation of the

problem as well.

ZW infeasible, UW feasible These schedules are feasible for the UW relaxation
but they violate ZW constraints

ZW feasible These schedules are feasible for the problem.

The original S-graph algorithm fails to differentiate the schedules in the second group
from the ones in the third. It does, however, eliminate all the schedules in the first group.
In order to identify schedules in the second group, the approach described in the previous
section introduced additional, negative weighted arcs to the problem. The schedules in the
second group would result in a non-negative weighted cycle by using that approach, which

consists of two type of alternating parts:
e "Forward", positive arcs belonging to either UW or ZW intermediates
e "Backward", negative weighted arcs of ZW stages

An example is given in Figure 5.2l with both the schedule graph and the corresponding Gantt
chart. The same schedule is infeasible if the outputs of tasks 1,42, and i3 have ZW policy,
as shown in Figure 5.3l The path indicated by thick arcs has a weight of 6, which is longer
than the ZW path from 2 to ¢4, thus it results in a positive cycle.

5.3.1 Recursive search

Even if the negative weighted arcs are not inserted to the S-graph, the positive weighted
cycles can be identified by a search[@]. Suppose that a partial schedule is ZW feasible, and
a new schedule arc is just inserted to the graph. Obviously, if the partial schedule is now

ZW infeasible, the newly added arc must be part of the non-negative cycle.



76 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK

p2

6 i 5 o
kS -

i i5
2
j3 i2 \ i6 \
0 7 7 3 7 3 3 7 5 7 kel

Figure 5.2: Feasible UW schedule

.9 9
2 : T R
s \ i6 |
0 7 P 7 7 3 G 7 3 7 70 >

Figure 5.3: Infeasible ZW schedule



5.3. COMBINATORIAL APPROACH WITHOUT NEGATIVE WEIGHTS 7

Even without the negative arcs, this cycle could be found by a simple approach: from
the endpoint of the new arc, it has to be checked recursively whether the starting point
of the schedule arc is reachable via "forward" and "backward" steps with a non-negative

weight or not
The algorithm for that search is given in block .11

This approach basically checks the existence of a non-negative cycle instead of main-
taining the extended longest-path matrix of the previous approach. The algorithm looks for
such nodes in the S-graph in a recursive way, whose starting time can be bounded with the
starting time of i (the destination of the newly inserted schedule arc) from below. Nodes
like that are added initially to the set Unexamined together with their lower bounds. In
each iteration a node is selected from Unexamined, and if i* (the source of the newly in-
serted schedule arc) is found among them with greater or equal lower bound then —c¢ (¢
is the weight of the newly inserted schedule arc) then the algorithm has found a positive
weighted "cycle", and the partial schedule is infeasible. Otherwise, the node-bound pair is
added to Fxamined and the neighbor vertices are added to Unexamined. The first for all
loop adds the vertices that are subsequent via a ZW or UW arc, and the second loop looks
backwards with only ZW arcs. In both of the loops three cases are investigated, and the
sets are modified accordingly: i) when the node does not appear in either Unvexamined or
Examined, ii) The node is waiting to be selected from Unexamined but with a weaker lower
bound found on a different path previously; and iii) when the node was already examined
but with a weaker bound. When all of the necessary nodes are examined, and no violation

is reported, the feasibility of the partial schedule is ensured.

Note that this approach can easily be extended to LW policy by using the sum of the
processing time, and maximal waiting time instead of w(i’,7) in the second loop. Though
the model does not need to be extended with negative-weighted arcs, this function can take

up a lot of cpu time during the optimization.

A way of accelerating this approach is to directly add the longest paths between those

pairs, where this path is non-negative.

This technique is illustrated in Figure 5.4l The figure represents a part of a partial
schedule, where the schedule arc (i10,:6), indicated by blue color is recently added to the
graph by adding 6 to the processing queue of j3 after :9. Some of the additional arcs that
can be inserted by the algorithm are shown in the figure with green color. As an example,
the arc between 9 and 5 with weight 3 is justified, as there is a "forward path" from 79 to
16 via 210, thus 76 must start at least 6 time units later than 9. Moreover, 75 can not start
more than 3 time units earlier than 76, i.e., it must start at least 6 — 3 = 3 time units later
than 9.

'Tf the schedule arc has the weight of ¢ a path with the weight of at least —c is enough of course.



78 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK

Algorithm 5.1 Finding non-negative path between two vertices for detecting ZW infeasi-
bility
zw_feasibility test(G(N, Ay, Ay, w), i, 44, c)

G(N, Ay, Ay, w) partially scheduled graph

1® source of the newly inserted schedule arc

i destination of the newly inserted schedule arc

¢ weight of the newly inserted schedule arc

Unexamined := {(i¢,0)}
Ezamined := ()
while Unexamined # () do
Select (i, w;) € Unexamined arbitrary
if i =4 Aw; > —c then
return false
end if
Unexamined := Unexzamined \ {(i,w;)}
Examined := Examined U {(i,w;)}
for all (i,7) € Ay U A, do
if A(7/,w') € Unexamined U Examined then
Unexamined := Unexamined U { (i, w; +w(i,d’))}
else if 3(i', w') € Unexamined A w' < w; + w(i,?') then
Unexamined := Unexamined \ {(i',w")} U {(i,w; +w(i, 7))}
else if 3(¢/,w') € Examined N w' < w; +w(i,i) then
Examined := Examined \ {(i',w")}
Unexamined := Unexamined U { (i, w; +w(i, "))}
end if
end for
for all (¢7/,i) € Ay, where (7/,4) is a ZW arc do
if A(7/,w') € Unexamined U Examined then
Unexamined := Unexamined U {(i,w; —w(7',7))}
else if 3(i', w') € Unexamined A w' < w; — w(i',i) then
Unexamined := Unexamined \ {(i',w")} U {(i,w; —w(7',7))}
else if 3(¢/,w') € Examined N w' < w; — w(d',7) then
Examined := Examined \ {(i',w")}
Unexamined := Unexamined U {(i,w; —w(7',7))}
end if
end for
end while
return true




5.3. COMBINATORIAL APPROACH WITHOUT NEGATIVE WEIGHTS 79

Figure 5.4: Acceleration by inserting additional arcs in the graph

5.3.2 Auxilary graph

The key idea behind the approach to be described in this section lies in the fact that the
starting time of a task determines the starting time of all other tasks, which are "ZW-
connected" to it, i.e., they are connected via one or several ZW stages. As an example, if
the starting time of task i11 of Figure is decided, so is the starting time of 710 and 712.

In this approach, the tasks are assigned to ZW classes before the optimization procedure
starts. Let these classes be denoted by Zi, Zs,.... Two tasks belong to the same class if
and only if they are connected by a sequence of ZW arcs. For simpler notation, the class
of task i is denoted by Z(i). Moreover, each class has a "reference" task that is chosen
arbitrary, and denoted by i(Zy). If task ¢ belongs to the class with the reference task i* ,
i.e., i € Z(i*), then a relative distance, d(i) is calculated for i that is the signed sum of the
weight of the ZW arcs connecting ¢ and i*. (Starting from *, the arcs taken forward count
as positive, the ones used backwards counts as negative.)

Finally, a new directed graph is constructed: G* = (Z, A, w*), where

Z 1is the set of ZW classes

A={Z2)]22 € Z3(,i") € AiNZ x Z'}, i.e., there is an arc between those ZW

classes, where there is a recipe arc between any of their tasks.

w(Z,2") = max;inea,nzxz (d(i) +w(i,i’) — d(i')), is the weight on the arc between

Z and Z' if exists. It defines the relative minimal delay between the reference



80 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK

points of the two ZW class.

An example for the recipe of the problem from Figures 5.2l and (.3]is given in Figure (.5

I(ZWB(ZWQ(ZW 2 0
6 .
i6 3
. > 2

7,~{i5}
i(2,)=i5
7, ~{i1,i2,i3,i4} :

i(7,)=i8 4(i5)=0
d(i1)=-4 6
d(i2)=-3 y
d(i5)=0 Z,~{i6}
dfu)=2 i(2,)~i6

d(i6)=0

Figure 5.5: Example for the graph of ZW classes constructed from the recipe

There are three ZW classes indicated by colors green, red, and magenta, respectively.
The first one contains 4 tasks, while the others are singletons. The reference points are
indicated by thick lines in the recipe graph. Initially, there is only one arc, between Z, and
Z3 with weight 6 due to the recipe arc between 5 and 6.

After this graph has been created, the optimization procedure can start. At each itera-
tion, when a new schedule arc (¢,4") or (p,7') is added to the schedule graph with the weight

of ¢, the following has to be done:

o If Z(i) = Z(i') and d(i) + ¢ > d(7'), then the partial schedule is ZW infeasible, it has
to be pruned from the B&B tree.

o If Z(i) # Z(i"), then add (Z(i), Z(i')) to A with the weight of d(i) + ¢ — d(i’). If there
was a previous arc between these two vertices, the one with the higher weight is to be
kept

e If the schedule arc starts from a product, i.e., (p,d’) is inserted, then for all (i,p) € A;
the previous two steps are to be followed, as if the arc (i,4") would have been inserted
with the weight w(i, p) + c.

e [f the graph G contains a directed cycle with non-negative weight, the schedule is ZW

infeasible.

?Deleting the one with the smaller weight is optional, it does not change the soundness of the approach.



5.3. COMBINATORIAL APPROACH WITHOUT NEGATIVE WEIGHTS 81

Using the schedule from Figure (.3, the graph G* will be extended by 3 additional
arcs, as shown in Figure It is easy to see, that there is a cycle of weight 1 between
Z1 — Zy — Zz — Z, which indicates the infeasible schedule.

7,~{i5}
/ i(2)=is
Z,={i1,i2,i3,i}} 2 .
i(Z,)=i8 4(i5)=0
d(i1)=-4 6
d(i2)=-3 - y
d(13)=0 \ 7 ~{i6}
du)=# 0 i(2,)-i6
d(i6)=0

Figure 5.6: Example for the extended graph of ZW classes based on a schedule

5.3.3 Model-level conversion of LW problems to ZW

The approaches in the previous two subsections were developed to solve problems where each
material has either ZW or UW policy. As it has been noted at the first approach, they can
be modified to tackle LW policy as well. There is, however, an other way of solving problems
with LW policy. After a simple transformation on the recipe graph, these approaches can
solve the problems without any modifications.

The key idea behind the method is introducing additional vertices and arcs for each LW
task. If there is a LW material between tasks ¢ and ¢/, then two additional vertices are
inserted into the graph, ¢ ¢ and ¢ w which represents the completion and the weiring of
the LW material respectively, as shown in Figure 5.7l Moreover, several arcs are inserted

into the graph:

(¢, c) is a ZW recipe arc with the weight of ¢ i.e., the processing time of ¢. This arc
ensures, that the i., i.e., the completion of the intermediate material is exactly

tP" later than the start of the execution of task ¢. Similarly,

(¢_c,i_w) is a ZW recipe arc with the weight of ¢, that is, the maximal waiting

time possible after the completion of the intermediate.

(¢_c,'), (7,1 _w) are zero-weighted schedule arcs that ensure that 7/ must start be-

tween the completion and wearing of the intermediate.



82 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK

(1,7") is a UW recipe arc with weight of t*". This arc is needed so that the schedule
arc towards the task that follows 7 in the same unit could start from ¢’ not only

from i_c.

0 t”' (L W: tUI) 0

Figure 5.7: Example for model transformation of LW stages

5.4 Comparison of approaches

The efficiency of the algorithms from the previous sections is illustrated on a literature
example. The example features 5 different sequential products and 6 units to be scheduled.

The recipe graph for the example is shown in Figure 5.8

Figure 5.8: Example for the comparison of LW /ZW approaches

For the sake of the comparison, each intermediate is assumed to have ZW storage pol-
icy. The investigated algorithms were compared on 14 different configurations with batch
numbers.

These algorithms are:
sLP is the simple LP approach

aLLP is the advanced LP approach that copies the model for each subproblem



5.4. COMPARISON OF APPROACHES 83

aLP’ is the advanced LP approach that uses only one model as a global variable
Neg is the approach with negative weighted arcs

Rec is the approach relying on the recursive search

Rec+ is the recursive approach with the extended positive arc additions

Each test run were set within a 1000 s time limit. For the 11 smaller configurations,
the approaches have not reached this limit except for couple of cases, and were able to find
the optimal solution. The data for the CPU times of the approaches are given in detail in
Section [C.2] and illustrated in Figure

—@— sLP —— qLP —%— qLP' —®— Neg —%— Rec —+— Rec+

1000

100

10

CPU time (s)

0.1

0.01

0
11111 11112 11121 11211 12111 21111 22111 22211 22221 22222 32222

Batch number configurations

Figure 5.9: CPU time of ZW /LW approaches for the smaller cases

The LP based approaches were usually 1 or 2 magnitudes slower than the combinatorial
approaches, among which the negative arc based proved to be the most efficient.

For the 3 larger configurations all of the approaches have reached the 1000 second time
limit, and thus stopped. For these cases the comparison of the quality of the best found



84 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK

(probably suboptimal) solution is important, and shown in Figure E.I0L The figure also
includes the 2 largest configurations from the previous ones, where the LLP based approaches

have reached the limit.

—— sLP —— qLP —%— qLP' —®— Neg —%— Rec —+— Rec+

1.9

1.7

1.5

1.8

Normalized quality of reported makespans

1.1

0.9
22222 32222 33333 44444 55965

Batch number configurations

Figure 5.10: Quality of reported solutions of ZW /LW approaches for the larger cases

The aLLP’ approach could not even report a feasible schedule for the larger cases. The
best solutions were reported by the negative arc based approach. The extended recursive
approach had very close results. The other approaches fluctuated.

In general, it can be stated that the most favorable approach seems to be the one using

negative weighted arcs.

Summary and concluding remarks

The original algorithms of the S-graph framework was developed for Unlimited Wait storage
policies. In this chapter, different options of extending the framework for Limited- and Zero-

Wait storage policies has been presented and investigated. These options were implemented



5.4. COMPARISON OF APPROACHES 85

and compared on a wide set of examples in terms of computational needs. The results showed
that an extended model with negative-weighted arcs, and slightly modified algorithms is the

most efficient option.

Related publication

e Hegyhati, M., T. Holczinger, A. Szoldatics, F. Friedler, Combinatorial Approach to
Address Batch Scheduling Problems with Limited Storage Time, Chemical Engineering
Transactions, 25, 495-500 (2011)

Related conference presentations

e Hegyhati, M., T. Holczinger, A. Szoldatics, F. Friedler, Combinatorial Approach to Ad-
dress Batch Scheduling Problems with Limited Storage Time, presented at: PRES’11,
Florence, Italy, May 8-11, 2011.

e Hegyhati, M., T. Majozi, F. Friedler, Throughput maximization in a multipurpose
batch plant, presented at: PRES 2008, Prague, Czech Republic, August 24-28, 2008



86 CHAPTER 5. LW AND ZW POLICIES IN THE S-GRAPH FRAMEWORK



Chapter 6

Maximizing expected profit in a

stochastic environment

In Chapter @l the general algorithm for throughput maximization was introduced. For many
problems, however, several parameters of these types of problems are not deterministic.
Pistikopoulos et al. | gave a classification of stochastic scheduling problems based on the
source of the uncertainty in the process. In a changing market environment, for example, the
price and marked demands can usually be considered stochastic. Both of these values can
have impact on the overall profit, as in case of a overproduction, for example, the storage
of the surplus may result in additional expenses.

Obviously, in such uncertain circumstances, it becomes ambiguous which solution can
be considered as optimal: the most robust one, or the one with highest expected profit, etc.
Li and Terapetritou |76] gave an extensive review of the approaches that deal with different
types of uncertainties in batch process scheduling. Without attempting to be comprehensive,

the three main direction of research is illustrated in Figure

System starts Realization of
Present working uncertain parameters
| | | Time
| | | o
Preventive Reactive
scheduling scheduling

— v

Two- and multi-stage stochastic scheduling

Figure 6.1: Classification of approaches dealing with uncertainty

Preventive scheduling In this direction of researchﬂa, Iﬂ], the schedule must be
given a-priori, and cannot be modified after the system starts, or the realization

of uncertain events. If there is no information about the probability distribution

87



88 CHAPTER 6. MAXIMIZING EXPECTED PROFIT

of the uncertain parameters, a reasonable objective could be a production sched-
ule, that exceeds a certain profit, and have the highest level of robustness. On
the other hand, an estimation about the probability distribution gives room for

optimization towards the highest expected profit.

Reactive scheduling Reactive approaches[@] assume an existing schedule, which
gets disturbed by some uncertain event. The objective is to modify the rest
(unexecuted part) of the schedule in a way, that leads to the best available per-
formance. Unlike in the previous case, the optimization is carried out, when the
system is already running, thus usually there is a very limited amount of time
to deliver the solution. As a result, heuristics are often favored for this pur-
pose. On the bright side, the approach does not have to deal with any uncertain

parameters, as they are already realized.

Two- and multistage approaches In a two-stage optimization approach@], it is
assumed that there are some decisions that must be done prior to the start of the
system, however, some decisions can be altered later. As an example, a schedule
may has to be decided in advance, but the load of the units can be adjusted
after the uncertain parameters occur. In a multi-stage approach, this concept is
generalized, and it is not assumed, that all of the uncertain events realize at the

same time.

Naturally, there are a lot of developments, which do not fit into these three categories,
some approaches, e.g., combine preventive and reactive scheduling. Sensitivity analysis in
itself is a broad area to research, but it can also participate as a subroutine for preemptive
scheduling, especially in case of heuristic approaches.

The following sections introduce an S-graph based approach for the scheduling of through-
put maximization problems considering uncertain cost and demand parameters with discrete
probability distribution functions. Section gives an exact definition of the problems to
be solved, and Section and presents the S-graph approaches to address this set of
problems. In Section an extension is shown to continuous probability distribution func-
tions. Last, Section illustrates some of the algorithms via an example, and draws some

conclusions.

6.1 Problem definition

The problems to be solved are given by similar parameters to those of a general throughput
maximization problem, i.e., each product is given with its recipe, along with the set of
equipment units and the time horizon. At this point it is assumed that there is a one to one
relation between products and recipes, i.e., there is no recipe producing multiple products,

and there are no two different recipes producing the same product.



6.2. S-GAPH BASED APPROACHES 89

There is, however, a set of uncertain parameters for each product, whose probability
distribution is discretized into joint scenarios. Thus, for each discrete scenario the following

parameters are given:

e probability of the scenario
e for each product:

— price for one batch
— demand

— over- and underproduction cost

The objective is to make decision about the number of batches and provide a feasible
schedule in way to achieve maximal expected profit. Note that it is assumed that if the
actual production is higher than the demand, the surplus is not sold

Based on the possible decisions related to the sizes of each batch, three different problems

are identified:

Preventive problem with fixed batch sizes when the batch size for each product
is given, and the only preventive decision to be made is to decide the number of
batches for them.

Preventive problem with variable batch sizes is a more flexible version of the
previous problem, where not only the number of batches, but also their sizes can

be altered in advance before the uncertain events realize.

Two stage problem where the batch numbers have to be decided in advance, but

the batch sizes can be altered accordingly after the uncertain events realized.

Section introduces the approaches that can solve these three different problems. In
Section [6.3] these approaches are extended to tackle cases, when a recipe can produce several

products, and the same products can be produced by several recipes. [1.

6.2 S-gaph based approaches

The three approaches to solve the problems presented in the previous section are all based
on the throughput maximization algorithm presented in Section LIl The main algorithm
that examines different batch size configurations and the feasibility tester can remain the
same, as in the case of the general throughput maximization problems. The subroutines to

select a configuration and to update the set of open configurations can be altered in order to

!Taking the opposite assumption would not alter the structure of the algorithm, the same approaches
would be applicable with modified input parameters.
2The approach for the preventive version of this case has been published in the literature@]



90 CHAPTER 6. MAXIMIZING EXPECTED PROFIT

achieve higher efficiency, however, any of the previously mentioned implementations would
suffice.

The key difference between the different approaches is the revenue function, that should
provide the expected profit, or the highest expected profit for a configuration, as it will be
discussed in the following subsections.

In order to simplify these descriptions, the following additional notations will be used

throughout this chapter next to the ones used previously:

P the set of products
b, the number of batches for product p in the actual configuration
s, the size of a batch for product p (for the first case)

s;”m, s,'* the minimal and maximal size of a batch for product p (for the second and

third case)
S the set of scenarios
probs the probability of scenario s € S
dems, the demand for product p in scenario s € S
prices, the price of p in scenario s € §

0Cs p, UCs , the over- and underproduction cost of p in scenario s € S

For further simplification, the function Profits,(x) is introduced, that gives the profit

for  amount of product p in scenario s. The function is calculated as follows:

, prices, - x — (dems, — x) - ucs if x < demand,
Profits,(x) =
prices, - dems, — (x — dems,,) - ocs, otherwise

6.2.1 Preventive scheduling with fixed batch sizes

In this case, the only decision to be made is the number of batches for each product, i.e.,
finding the optimal feasible configuration for the number of batches. Thus, there is no
decision to be made for a single configuration, and the calculation of the expected profit is

rather simple:

Z (probs : Z Profits (s, - bp)>

ses peP
As this revenue function is really simple to evaluate, the update function can similarly
remove the batch number configurations that do not provide higher expected profit than

the current best solution. In order to do this the revenue function of each configuration



6.2. S-GAPH BASED APPROACHES 91

need to be calculated in advance, as the configurations having the same expected profit do
not lie on a line, plane, etc. Moreover, if these values are calculated in advance, the list of
open configurations can be ordered in decreasing order, and it could be an efficient selection
strategy to find the first feasible configuration there. This technique requires, however, that
the number of open subproblems should be finite, so the initial steps described in Subsection
must be carried out.

An additional modification can be applied here: as the batch number of a product has
no influence on the number of batches for an other product, and thus on its profit, the initial
steps along the axises can also stop, when the revenue function stops increasing. To back

this statement, the above expression is reformulated in this equivalent form:

Z (Z probs - profits (s, - bp)>

peP \seS

The expression in the braces is the expected profit of s, - b, amount of product p. As
this expression will be used in the following subsection as well, an additional notation
ExpProfit,(x) is introduced:

ExpProfit,(z) = Zprobs -profits,(x)
ses

Note that the expected profits given by the different products are independent, as none
of them shares a recipe. Thus, if there are two configurations with the same number of
batches for a certain product, increasing or decreasing it will have the same effect on the
expected profit, regardless of the number of batches from the other products.

In order to prove the soundness of the aforementioned initial configuration selection
strategy, it has to be shown, that the ExpProfit function will never increase, after it started
decreasing. It is easy to see that ExpProfit is a continuous, piecewise linear function, thus
it is enough to show, that the slope is always decreasing. At minus infinity the slope is
Y ecg Probs - (prices, + ups,), and when the function passes a demand value, dems, the
slope decreases by prices, + ups, + ops,. As all these three parameters are considered to

be non-negative, the above mentioned technique is justified.

6.2.2 Preventive scheduling with variable batch sizes

Unlike in the previous case, the number of batches does not determine the amount of the
product to be produced, it is another decision to be made by the optimizer. For each batch,

man max
- and sy

assumed that the batches belonging to the same product have the same batch size, as all

the amount should be between s Without the loss of generality, it can be
the other solutions can be converted to such without changing the expected profit.

Thus, the only decision to be made at a batch number configuration is choosing the

by - s9%]. Since the

min

amount of product, =, to be produced from the interval [b, - Sp



92 CHAPTER 6. MAXIMIZING EXPECTED PROFIT

products are still independent from each other, and the expected profit can be expressed as

> pep ExpProfit,(z,), x, needs to be the maximizer point of ExpProfit in the [b,-s7"", b,-

max

7ar] interval.

S

As it was discussed in the previous subsection, ExpProfit is a piecewise linear function
with decreasing slope, thus the funtion takes its maximal value at one of the demand values,

let it be demy 11 Now, the selection of the optimal z, is straight-forward:

by - sy if by - 51 < demy
zp(by) = < demy if by - 57" < demg < by - 57
by - sy if by - s > demy

After identifying the x, values for all b,, the same initialization technique, and batch

number configuration selection strategy can be used as in the previous case.

6.2.3 Two stage approach

In the previous subsection, the amount of product p to be produced, had to be given a
priori. In this section it is assumed, that this decision can be made after the realization
of the uncertain events, i.e., when the scenario is already known. For a batch number
configuration, the value of the produced amount will depend on the scenario to happen. Let

it be denoted by z,,,.

Selection of z,, is straight forward:

b, - Sy if b, - syt < dem
Tsp(bp) = ¢ dems if b, - s;”m < demg < by - s

b, - s;,”m if b, - s;,”m > demy

Based on this, the expected profit for a batch configuration can be calculated as follows:

Z (Z prob, - Prof’it(xsvp(bp))>

peEP seS

Again, the calculation is rather simple, and can be carried out in advance, in order to

generate an ordered list of batch number configurations.

3If a slope becomes 0, there are infinitely many maximizer points, in this case any of them can be
arbitrary chosen instead of demg:.



6.3. EXTENDED APPROACHES FOR RECIPES WITH MULTIPLE PRODUCTS 93

6.3 Extended approaches for recipes with multiple prod-

ucts

In this section the assumption on the one-to-one relation between products and recipes
is expunged, which - as it will be shown later - brings an additional complexity in the
optimization process. For the sake of simpler description of the approaches, the following

additional notations are introduced:

R set of recipes

P, set of products produced by recipe r € R

R, set of recipes producing product p € P

b, the number of batches for recipe » € R in the actual configuration

srp the maximal amount of p € P that can be produced with the recipe r € R

man, the minimal proportion ratio on which the recipe » € R can be executed

Several recipes producing the same product often appear when they are generated with
the algorithm described in[.3l However, this does not increase the computational complexity
in any way if there are no recipes producing several products, as the approaches remain sound

by the following modifications.

e In the preventive case with fixed batch sizes, the produced amount is ) _ R, by - Spp

instead of b, - s,

e In the other two cases the interval from which x, and z,, should be chosen is
[ZTGRP ming - by - Srp, > ,ep br sr,p}. Based on the x, and x,, values, the sizes of

the batches for the routes can be calculated.

The key point is, that even though the recipes are not homogeneous for a product, the
produced amounts are still independent. This, however, does not remain true when a recipe
is producing several different products. Increasing the batch size to satisfy the demands of
a product can cause additional costs if there is a surplus already from the other product

produced in the same recipe.

6.3.1 Preventive scheduling with fixed batch sizes

When the batch sizes are fixed, there is no additional decision to be made, just as in the

previous section. The expected profit can be evaluated and returned.



94 CHAPTER 6. MAXIMIZING EXPECTED PROFIT

6.3.2 Deterministic scheduling for variable batch sizes

Before investigating the stochastic case, it is advantageous to solve the problem with complex
recipes for the deterministic case, i.e., given a batch number configuration and the value of
demand, price, over- and underproduction cost parameters, what are the optimal batch sizes
to maximize the profit.

This question already requires more sophisticated tools, it can be answered by using
an LP model for example. The continuous non-negative x, variables represent the decision
about the sizing of all of the recipes of type r. These variables must take values between

the possible range of a recipe, i.e.,

min, <z, <1 reR

Two additional variables are introduced: x%

o7, P for the over- and underproduction of

each product, respectively.
Having these variables, the following goal programming constraints express the relation

between the produced amount of a product, the over- and underproduction and the demand:

x,? — )l + Zbr-snpmcr:demp VpeP

reRp

For the sake of simpler description, an additional variable can be introduced for the
produced amount of a product that will not make the model more complex, as it is a linear

combination of the previous variables:

xiT:Zbr-s,ﬂ,p-xr peP

rER,

And then the objective function can be expressed as:

Z((:pgr —a,F) - price, — 2P - ocp, — 1" - ucy) — max
peEP
Note, that the number of variables is equal to the number of recipe types plus twice
the number of productsH, which is usually small, thus solving this LP model at each batch

number configuration does not require a vast amount of time.

6.3.3 Preventive scheduling with variable batch sizes

In the stochastic case when there are several scenarios, with different parameters and prob-
abilities, the model must be changed, as follows:

The x, (and thus the 27") variables remain the same, as they are first-stage, and the

“not counting the xh" variables, as they are removed immediately by the LP solver.



6.3. EXTENDED APPROACHES FOR RECIPES WITH MULTIPLE PRODUCTS 95

following constraints are also unaltered:

min, <z, <1 re R
xﬁT:Zbr-sr,pn:r peP
rER,

The over- and underproduction, however, will be different for each scenario, thus the
introduction of variables z, and x? is necessary. The balance constraint must be changed
accordingly:

Similarly, the objective function must express the expected profit, thus:

Zp'r’obs . Z((azﬁ” —ah) - prices, — xd -0cs, — wh - uc, ) — max
ses peEP

The number of continuous variables increased to |R| 4 2 - |S| - |P|, thus, as the number
of scenarios increase, i.e., discretization gets smoother, the LP models got more difficult
to solve. It would need, however, a large number of scenarios to make this solution time
comparable to that of the feasibility test of a batch number configuration.

It is possible to reduce the search space of the LP models by eliminating a simple redun-
dancy: since the size of the batches for each recipe can be chosen between min, and 1, it is
possible in two neighbor configurations (only one of the batch numbers differs by 1) to have
the same LP optima, with the same 27" values. The values taken by the x, variables are of
course different, but the solution is essentially the same, the bigger configuration is produc-
ing the same amount of products with more and less loaded batches. If no other parameters
are included (load dependent energy cost, cleaning costs after a certain amount of idle state
of a unit, etc.) there is no rational reason for the solution with the larger configuration, as
its schedule (if even feasible) would be more dense with providing the same expected profit.

This type of redundancy could be avoided by a simple inequality:

re R

6.3.4 Two stage approach

When the sizes of the batches can be decided after the realization of the scenario, the
corresponding variables become second-stage, i.e., z, is introduced, and the constraints,

objective function must change accordingly:

min, < s, <1 seSreRr

IEQ);:Zbr'Sr,p'%,r seSpeP

rER,



96 CHAPTER 6. MAXIMIZING EXPECTED PROFIT

up __ .0p pro__
x ) —ad, +al, = demsg, VseS,pe P

S prob, - (el — a%) - price., — a%, - ocs, — 2 - ucs,) > mas
SES peP
The number of LP variables in this case is |S|- (|R| + 2 - |P|), and the space reduction

technique from the previous subsection cannot be applied here.

6.4 Continuous probability distribution

In many applications, the stochastic parameters are not given by a discrete distribution
function, but with a continuous one, e.g., normal or uniform distribution. In this case,
an option is to discretize this function, and use the approaches described in the previous
two sections. In this case, the discretization must be smooth in order to achieve accurate
results. However, too large number of discrete scenarios may increase the computational
needs significantly, especially in the case of the two-stage approach with complex recipes.
Another way is to tackle the problem directly in its continuous form.

In this section the following assumptions are taken:

e Several recipes may produce the same product, but no recipe produces several prod-

ucts.

e The only stochastic parameters are the demands for each products, which are given

by invertible cumulative distribution functions.
e The prices, over- and underproduction costs are deterministic.

The approaches to solve problems with this type of uncertainty are similar to that of the
approaches in Sections and [6.3] as they rely on the same evaluation of batch number

configurations, and an altered revenue procedure.

6.4.1 Preventive case with fixed batch sizes

If the batch sizes are fixed, there is no further decision to be made for a batch number
configuration, the expected profit for a batch configuration can be calculated based on the

following expression:

Z ( N f(d)-(d-price, — (x, — d) - oc,) dd + b f(d) - (z, - price, — (d — x,) - uc,) dd)

Where z, is the produced amount from product p, and as previously,z, = > _p spr - by,

and f is the probability distribution function of the demand.



6.4. CONTINUOUS PROBABILITY DISTRIBUTION 97

6.4.2 Preventive case with flexible batch sizes

If the batch sizes are flexible, it is not trivial to chose the load with maximal expected
profit. Fortunately, the purpose of the Newsvendor model[@, ] is to tackle a similar
problem, where a vendor must decide on the amount of a product to be produced (z),
without knowing the exact demand (d) for it, only its cumulative probability distribution
function (F) There is a cost of producing a single product (¢), and a price for which it

can be sold (p). The expected profit can be expressed as:

E (p-min(z,d)) —x-c

In this case, the value of x for which the above expression takes its maximal value is:

or (5]
p

The newsvendor model can be extended with a salvage value s for the surplus production,

changing the expected profit to:

E(p-min(z,d)) + E (s - max(z — d,0)) —z - ¢

In this case the optimal quantity to be produced is at

¥ =F"! p=c¢
p—s

Note, that this case in fact has the same complexity as the previous one. Increasing all
the parameters (p, ¢, s) with the same value, the expected profit, and the optimal solution
will not change. In the simpler model, the cost of the surplus production is ¢, which is
equivalent of the overproduction cost in our case. The profit for the production below the

demand is p — ¢, from these:
® p = price, + 0c,
® c=oc,

This reformulation is equivalent to the original problem, except that the underproduction
cost is not considered. Obviously, the newsvendor model can be applied if uc, = 0, but that
was not assumed in the problem definition above.

If uc, = 0, the problem can be converted to a nearly equivalent one:
® oc), = oc,
e uc,=0

e price, = price, + uc,

5This function is assumed to be invertible.



98 CHAPTER 6. MAXIMIZING EXPECTED PROFIT

In this altered problem, there is no underproduction cost, and the expected profit after

choosing to produce x, amount of p is:

v f(d)-(d-price, — (v, —d) - oc,) dd + h f(d) - (x, - price;, — (d — ) - uc,) dd

d=0 d=a,
= dmz f(d) - (d- (price, + uc,) — (x, — d) - oc,) dd + d°° f(d) - (zp - (price, + uc,)) dd
_ dmp F(d) - (d- price, — (z, — d) - oc,) dd + dwp f(d)-d-uc, dd
=0 =0
i doo f(d) - (xp - price, + xp - ucy)) dd
_ dmp F(d) - (d- price, — (z, — d) - oc,) dd + dwp f(d)-d-uc, dd
=0 =0
by price, + ey, ey — - uey)
_ dmp F(d) - (d- price, — (z, — d) - oc,) dd + dwp f(d)-d-uc, dd
—0 =0
[ 1@ Gy price, (@ 1)) dd [T p@)d ey d
= [ @ (@ price, 0, = ) 06) dd+ [T 5(@) -Gy pricey + (4= ) 1) dd
+ v f(d)-d-uc, dd+/oo f(d)-d-uc, dd
d=0 d=a,
= [ @ (@ price, = 0, = ) 06) dd+ [T 5(@) -Gy pricey + (4= ) 1) dd
+ Oof(d)-d-ucp dd
d=0

This expected profit differs only by [ doio f(d)-d-uc, dd from the original expected profit,
and it is not dependent on x,. Thus, this problem will take its maximum for exactly the
same values as the original. Subsequently, the newsvendor model can be applied with the

following parameters:
oy ;o
® p = price, + oc, = price, + 0Cp + UCy
— J—
® c=o0c,=0¢

And thus, the optimal amount for production is:

©_ et price, + oc, + uc, — oc, -l price, + ucy 1 ocy
xr = —_— — _
price, + oc, + uc, price, + oc, + ucy price, + oc, + uc,



6.5. TEST RESULTS AND COMENTS 99
6.5 Test results and coments

In this section the algorithms with multiple products and discrete scenarios are illustrated
via the same example, that has been used in Section and Subsection {.4.3]

The STN recipe for the problem is shown in Figure with stoichiometric data. As
discussed in Section [£3] 6 different fixed recipes can be generated based on the capacities
of the four available units. These recipes and their maximal revenue are shown in Figure
[4.3] considering 10 cu/kg priceH for both of the products.

In the stochastic case, it is assumed, that the price of the products do not change in the
different scenarios, neither do the under- and overproduction costs, which are 1.5 and 2.5
cu/kg, respectively.

The time horizon is set to 18 hours, and six different scenarios are assumed for the
demands of the products, as given in Table

. . Demand (kg)
Scenario | Probability P P9

SC1 0.167 102.3 | 174.8
SC2 0.167 148.8 | 344.2
SC3 0.167 158.6 | 128.2
SC4 0.167 0.0 225.1
SCh 0.167 72.0 | 109.1
SC6 0.167 54.6 | 268.8

Table 6.1: Scenarios for the illustrative example

Fixed batch sizes

First it is assumed, that each batch size is fixed to its maximal capacity. In this case, the
highest expected profit is 2474.58 cu by producing 1 — 0 — 3 — 0 — 1 — 0 batches from the

six generated recipes.

Flexible batch sizes

If the batch sizes are allowed to be changed a-priori, the highest expected profit slightly
increases to 2475.31 cu with the configuration of 1 — 0 —3 — 0 — 0 — 1 and the batches of

the third recipe (C') are scaled down to 91 percent in average.
The optimal schedule is shown in Figure El

61cu" stands for cost unit

"The letters A,C, and F correspond to the different recipes, while tasks 1,2,3,4,5 are Reaction 1, Reaction
2, Reaction 3, Separation, and Heating respectively.



100 CHAPTER 6. MAXIMIZING EXPECTED PROFIT

fE O EE E

Ml EEaEEEmDE T
ATSE  EEaoEELT

s Co] Dl (o] v o]

\j

10 12 14 16 18

Figure 6.2: Optimal preventive solution for the example

Two stage case

If the sizes of the batches can be decided after the uncertainty realizes, the highest ex-

pected profit becomes 2689.87 cu. This can be achieved by selecting the same previous

configuration, 1 —0—-3—-0—0—1.

Remarks

In a realistic industrial situation, this type of optimization problems can occur rather fre-

quently, even on a daily basis, which requires high efficiency. It has to be noted, however,

that some of the parameters do change frequently, others very seldomly. In the S-graph based

approach these parts are separated, and addressed with different techniques as illustrated

in Table 6.2

Frequently changing part

Permanent part

Market related parameters
(prices, demands, scenario parameters, ... )

Expected profit evaluation

Technology related parameters

(set of products and units, processing times, ...

Scheduling feasibility test

computationally easy
LP problems and minimum search

computationally difficult
S-graph based B&B procedure

Table 6.2: Polarity of the S-graph based approach

This polarity gives rise to the following beneficial application:

1. As an initialization, for all of the configurations the optimal makespan is identified via

the S-graph framework within a given time horizon. Based on this horizon, this may

take up a considerable amount of time, however, it will never be repeated, until either

the set of the products, or the technology changes, and that is assumed to happen

seldomly.



6.5. TEST RESULTS AND COMENTS 101

2. At each occurrence, when a stochastic optimization problem appears, the following

steps need to be executed:

(a) The time horizon must be identified, if it is not part of the problem definition.

(b) The configurations with smaller makespan than the time horizon are selected
from the database.

(c) Each of these configurations is evaluated for expected profit using the most recent

market data. This will take at most minutes.

(d) The configuration with the highest expected profit is selected, and the corre-

sponding schedule is loaded from the database.

Using this procedure, the difficult part of the optimization problem must be carried out
only very seldomly, while the frequently changing market related parts can be addressed
each day. Also if the optimization has already been carried out, but a more recent forecast
arrives, the algorithms can be quickly executed again to have a more accurate estimation,
thus a better solution.

The tests above had been carried out with a similar procedure as well. The 6 dimensional
search space was tested for feasibility. After the initialization, the search space was reduced
to 6400 configurations, among which 318 was tested for feasibility, and 187 were found to be
feasibleH In each of the three cases, these 187 configurations were evaluated and a minimum
was found. Even for the most complicated two-stage LLP model, the solution of that 187
LPs took less then 1 minute to solve. This time would obviously increase, if the number of
scenarios grow. However, as a comparison, the deterministic throughput maximization of
this example for just 17 hours could not be done within 1 hour.

The additional advantage of this procedure is, that the decision maker can see an ordered
list of all of the feasible schedules, and easily select from them based on other aspects that

may have not been included in the model.

Summary and concluding remarks

In this chapter several S-graph based approaches has been presented for maximizing the
expected profit in uncertain environments. The algorithms are based on the throughput or

revenue maximization algorithm published in Chapter @ The algorithms may consider
e fixed or variable batch sizes
e purely preventive or two-stage problems

e discrete or continuous distribution of the uncertain parameters

The advantages and capabilities of the approaches were discussed in detail, and illustrated

via a case-study.

8The set of feasible configurations and the corresponding expected profits are given in Section



102 CHAPTER 6. MAXIMIZING EXPECTED PROFIT

Related publication

e Lainez, J. M., M. Hegyhati, F. Friedler, L. Puigjaner, Using S-graph to address un-
certainty in batch plants, Clean Technologies and Environmental Policy, 12, 105-115
(2010). [IF = 1.120]

Related conference posters

e Hegyhati, M., J. M. Lainez, L. Puigjaner, F. Friedler, Preemptive optimization of
chemical batch processes with continuous external uncertainties based on a novel S-
graph branching strategy presented at: PRES 2010, Prague, Czech Republic, August
29 - September 1, 2010.

e Lainez, J., M. Hegyhati, L.. Pugjaner, F. Friedler, Using S-graph to address uncertainty
in batch plants, presented at: PRES 2008, Prague, Czech Republic, August 24-28, 2008



Chapter 7

(GGeneralized S-graph model: the Event
S-graph

The previous chapters have shown that the S-graph framework provides efficient modeling
and optimization tools for the scheduling of batch chemical processes. Since its original
introduction, the framework has been extended to many problem parameters. Due to the
limited capabilities of the original model, some problem parameters are difficult to be con-
sidered, or it can be done only in a workaround fashion. Section [Z.]] shows some examples.

The existing extensions vary in the way they modified the framework in order to extend
it to several problem parameters. Some of them modified only the algorithms, others altered
the underlying mathematical model too. Having these inhomogeneous, separate extensions

can, however, cause some difficulties:

Compatibility issues If the trunk framework is developed to several different directions,
the merge between the different branches can be troublesome in some cases. This is especially
true when not only the algorithms are modified, but it has also been necessary to change

the underlying model.

Implementation and developement software tools If the model is changing, the im-
plementation needs to be changed accordingly in order to be efficient. Development of a
graphical modeling tool becomes also difficult, as it should be flexible towards unknown

future changes.

To overcome the limits on the modeling capabilities of the S-graph framework, and to
provide a more uniform and generic platform for future developments, the re-thinking and
extension of the S-graph framework is needed. The extension requires a careful review on
the current structure of the S-graph framework, including its modeling tools, models, and
optimization algorithms. This and the possible ways of future extensions is discussed in
Section

103



104 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

Based on the experiences from these investigations, the developed, new framework is

based on three cornerstones:

Extended model The most significant enhancement. The major aspect for the new
model was to be general enough to address a wide range of scheduling problems; it should
not be restricted to chemical batch processes, and it should make the modeling process more

transparent. This model, the so-called Event S-graph or eS-graph is introduced in Section

3

Improved modeling techniques Due to the very simple and restricted original S-graph
model, the modeling step was obvious and straightforward. Due to the extended model,
however, the eS-graph framework has a bigger emphasis on the modeling step as well. In
Section[7.4] it is illustrated, how several common problem features can accurately be modeled

using the eS-graph.

General purpose scheduler Keeping the original idea of the equipment based makespan
minimizer, a general purpose algorithm is developed and introduced in Section that
performs makespan minimization on any kind of problems that can be purely formulated

with the eS-graph, without any additional information.

7.1 Modeling difficulties with the original framework

In this section it is illustrated that some features of batch (or semi-batch) processes occurring
in most of the scheduling problems require various extensions of the original approach, which

in some cases can be circuitous.

7.1.1 Transfer times

The original S-graph framework does not consider the transfer of the intermediate materials.
The only transfer that is represented in the model is the removal of the final product from
the last processing unit. For approaches that cannot properly address material transfers,

there are two common practices to tackle the problem:
e neglecting the transfer times if they are very small compared to processing times

e lumping the transfer times to the processing time of the task producing the interme-
diate

The key problem with both of these methods is that in case of continuous material transfer
both units (the one that produced the intermediate material, and the other that receives it)
must be free for the time of the transfer. Disregarding this can result in undesired solutions:
see Section



7.1. MODELING DIFFICULTIES WITH THE ORIGINAL FRAMEWORK 105

These two methods are obviously easily applicable in the S-graph framework as well. Tt
is possible, however, to model the material transfers correctly without any simplification.

Originally, if a task ¢’ is scheduled to be performed after ¢ in unit j, and 42 is the
subsequent task of ¢, then a zero weighted scheduling arc is inserted from 42 to i’ considering

NIS policy as it is shown with the corresponding Gantt chart in Figure [[11

—
Time

Figure 7.1: Schedule arc in the original framework and the corresponding Gantt chart

The Gantt chart however should look like as it is illustrated in Figure if there is a

transfer time (no matter how tiny it is).

T~
J9fsund],

—
Time

Figure 7.2: Accurate Gantt chart representing the transfer

Having a similar, equivalent Gantt chart can be achieved by increasing the weight of the
schedule arc by the transfer time (¢*"). However, this is not enough, as the unit j would still
be able to start performing i’ before the transfer finishes. A simple workaround to tackle

this issue is to increase the processing time of i by the transfer time as well, as shown in

Figure
J
2

pr pry tr
p ¢ N L
j ;
tr
Time

Figure 7.3: Modified S-graph to address transfer time

For the case when either 7 or i2 has several subsequent task, the approach is similar as
illustrated in Figure



106 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

—
Time

Figure 7.4: Addressing transfer time with several subsequent tasks.

Although the solutions provided by this method meet the requirements above, it is more
a modeling trick than an appropriate solution. Moreover, some questions may arise, such
as how to tackle the problem when the transfers for 2 and i3 take different times and may
happen independently, etc.

Thus, an other option is also available, which requires additional vertices inserted into

the graph which represent material transfers, as shown in Figure

Figure 7.5: Addressing transfer time with additional nodes.

The schedule arcs still start from the task nodes. However, they yield to the inlet transfer
of the next scheduled task. As it is shown, the arcs representing the processing time of 72
and 3 does not change their weight, which gives a more straight-forward modeling of the

problem.

7.1.2 Waiting before production

Considering NIS policy, the intermediates are allowed to wait in the units that produced
them until they can be transfered to the upcoming task in the recipe. However, this descrip-
tion does not specify whether the intermediate can wait in the unit performing the upcoming
task before its execution starts. If inputs of each task are either raw materials, or produced

by another single task, this question is irrelevant with UW policy (which is considered for



7.1. MODELING DIFFICULTIES WITH THE ORIGINAL FRAMEWORK 107

now), as the processing and the storage phases can be shifted arbitrary. The situation is
different, however, if two or more tasks provide the inputs for a task, as illustrated on the
example in Figure

o8-

171\.
- Nco | [,
/

(31| /

IITI B

-

Figure 7.6: Example for product with task of multiple inputs

In this problem, there are two products and the third step of producing A requires two
different intermediates from both of the first two steps. After modeling the problem with
the S-graph framework, and applying the B&B algorithm, two different solutions can be
generated, as shown in Figure [[ 7] with both the schedule graphs and the corresponding
Gantt-charts.  The solutions have the makespan of 12 and 13 time units, respectively.

@ i CarT 51 ]
(2

U2
s 45 ]

2 4 6 8 10 12 14

\

Figure 7.7: Solutions provided by the S-graph algorithm for the example in Figure

However, the question arise, whether it is possible to store the output of Al in U3 and wait,
until U2 can also load the output of A2 into U3. If that is possible, the makespan of 10
hours could be achieved, as illustrated in Figure [.8]

In many applications, the safety or other regulations of the facility forbid the storage
of the intermediate in a unit before processing, thus the solution shown in Figure is

practically infeasible. However, if it is not forbidden, the original S-graph approach needs



108 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

U1

U2
o

2 4 6 8 10 12 14

L J

Figure 7.8: Solution with better makespan if storage if allowed before processing

to be extended in order to address this situation properly. This can be done similarly as in
the previous section, by introducing some additional nodes. Holczinger ﬂa] has investigated
a similar issue, and provided an extended S-graph model in the case when the order of the

input materials and the required delay between them is fixed by the recipe.

7.1.3 Continuous processes and multiple resources

Although the scope of this work is mainly on batch processes, in many cases batch and
continuous units work simultaneously. If there is a storage before and after the continuous
unit, they can be viewed and modeled as a single batch unit. Otherwise, the batch unit
that produced the input of a continuous process must be available throughout the whole
operation of the continuous unit. This behavior shows a lot of resemblances to the material
transfers that have been discussed formerly. As a matter of fact, the transfer itself is a
continuous task carried out by a compressor for example. The problem becomes even more
complex if there are several input or output task of a continuous task, with some of them
being continuous as well. The original S-graph framework considers only batch processes.
However, as it has been pointed out, addressing them is rather similar to addressing the
transfers, which needs to be done for batch processes as well.

In many industrial applications, a task needs several resources to be executed, e.g., in
a furniture factory, a unit can usually work with different "heads" that are shared between
the units@]. Alternatively, operators, electricity, coolers, etc. can and must be included in
the scheduling of a single process. In the original S-graph framework only one unit can be

assigned to the a task, and that unit is assumed to be the only unit that performs that task.

7.2 Scheme of optimization with the S-graph framework

and its extensions

In this section the general optimization procedure of the S-graph framework is analyzed.
The basic concept is shown in Figure )

INote that the selection of the considered variables, problem parameters, and real execution of the
generated schedule is not included in the figure, as it is outside of the scope of the current interest.



7.2. SCHEME OF OPTIMIZATION WITH THE S-GRAPH FRAMEWORK 109

Batch Process Batch Process Schedule
Scheduling Problem

Task — Unit — Interval
* Products Triplets

. Tasjks 7\
* Units

* Processing times
* Storage policies
* Objective

| Interpretation
Modeling I

'

S-graph model S-graph model

of the problem of the optimal solution
e Product nodes > Scheduling " |+ Product nodes
e Task nodes < Algorithm e Task nodes
» Unit sets - » Unit sets

* Recipe arcs

* Recipe arcs :
e Weight of arcs

e Weight functions

> Schedule tasks
> Get makespan
> Check feasibility

* Vertices
e Arcs
* Weights

Directed graph

> Assign unit to task i

Directed graph

* Vertices
e Arcs
» Weights

»> Change arc weight
> Insert arc

> Get longest path

> Detect cycle

Figure 7.9: General scheme of the S-graph based optimization procedure



110 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

The problem itself consists of all the problem data, as discussed in Section The
first step is the construction of the mathematical model of the problem, namely an S-
graph. There is not much discussion about this step in the literature, as this step is rather
straightforward for those problems that the framework can address. To each product and
task a node is assigned, production dependencies are represented by arcs, etc., as described
in Section 2.3l Unlike in the case of MILP approaches, there are no different ways the model
should be formulated for the problem; it is a clear and unambiguous step. This highlights a
great advantage of the S-graph framework compared to MILP approaches: the mathematical
model that is used by the algorithms has a straightforward relation to the problem, and the
modeling does not require any special skills.

It has to be mentioned, however, that the S-graph model has a kind of embedded model
behind the scenes. This is the directed graph itself, not including any scheduling problem
specific information like the plausible unit sets, etc. At the moment, differentiating between
this subset of the model may seem unnecessary, but its importance will be clarified later.
As for now, the only important thing is that the scheduling algorithm operates strictly only
on the S-graph model via operations like assigning a unit to a task node. This action then is
interpreted in the graph model as well by changing the weights of recipe arcs and inserting
schedule arcs.

Finally, the Scheduling Algorithm generates the S-graph corresponding to the optimal
schedule, which also contains a final form of the graph itself. Note that the Scheduling
Algorithm here can refer to many approaches that have been published so far, not only for
the equipment based makespan minimizer. Last but not least, this solution is interpreted,

and a Gantt chart is generated.

Extensions

There are several ways the extensions affect the structure introduced above. Some of them
are briefly introduced here. The structural differences between the different types of exten-
sions render it obvious how difficult it can be to keep these extensions compatible with one
another.

Model conversion In case of the S-graph based Wet-etch optimization[ﬂ, Iﬂ], or the
scheduling of tunnel boring machines|4], the structure of the optimization process remains
intact, but the original problem is transformed to a mathematically equivalent chemical
batch process scheduling problem. The whole process is shown in Figure [ I0. Converting
LW problems to ZW equivalents in Subsection (.3 was based on the same idea.

The obvious benefit of this approach is that there is no need to change the S-graph

algorithms, or the solver implementation. Thus the time needed for the developement and

2Tn Section the presented algorithm has direct access to the (N, Ay, A2) structure, however: a) this
structure does not really represent all the information stored by a scheduling problem, and b) the state-of-
the-art implementations do not follow that paradigm, but a layered one, as mentioned.



7.2. SCHEME OF OPTIMIZATION WITH THE S-GRAPH FRAMEWORK 111

| Original Problem | Schedule
of the original problem
A

Model

X ) Solution
transformation

transformation

v

Batch Process | Batch Process Schedule
Scheduling Problem 7y

I -
E | Interpretation
Y

S-graph model > Scheduling = S-graph model
of the problem < Algorithm of the optimal solution
| Directed graph | | Directed graph |

Figure 7.10: Optimization procedure of the S-graph framework with model transformation

to get results is considerably low. On the other hand, however, the approach no longer holds
the aforementioned advantage, i.e., the model is no more a straightforward representation of
the problem. Moreover, this approach usually does not exploit any problem specific feature,
which can have a serious effect on the efficiency, as discussed by Osz|97| for example. Also,
if the problem description of the original approach is changed for some reason, it may render
the transformation between the models impossible.

This type of extensions make the structure of the S-graph based optimization procedure
similar to that of the MILP approaches, where the MILP model is an intermediate model
that is solved by a general purpose solver, and the modeling of the problem is in itself an
important step.

Algorithmic extension In some cases, the framework is extended to problem classes
featuring some additional parameters that are entirely handled by the algorithmic part of
the approach. The S-graph model and its interaction with the internal graph model is
unaltered. This type of extension can be observed, e.g., at the LP based LW scheduling
(Section [5.1]), extension to throughput or expected profit maximization (Chapters [ and []),
or heat integration |2]. The scheme is shown in Figure [[.11]

In a way, this type of extension is the simplest, and clearest. However, its merge with
other extensions can be rather difficult. It also has to be noted that the additional data of
the problem needs to be parsed and passed to the algorithm. In the earlier implementations
of the S-graph framework this required a new input format, a new parser, and a new data
structure. Since these additional data are not required by the S-graph model itself, and
usually seldomly accessed by the algorithm as well, Kovacs [71] developed a framework in

the S-graph implementation that allows arbitrary extensions of the input file, and the parser



112 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

Batch Process
Scheduling Problem | Batch Process Schedule

A

4 Modeling I |[nterpretation

S-graph model - Modzfu.:d = S-graph model
of the problem < Scheduling of the optimal solution
« Algorithm

! !

| Directed graph | | Directed graph |

Figure 7.11: Optimization procedure of the S-graph framework with algorithmic extension

automatically passes on the data in a generic structure to the algorithm responsible for the

optimization without the need of any modification for the parser or main data structure.

Model based extension There are several problem features that change the scheduling
problem in its core, thus it is reasonable to implement these changes on the model level. A
typical example can be the negative arc based LW algorithms (see Section [5.2]), and some
acceleration, e.g., so-called auxiliary batching arcsﬁ], predictive schedule arc insertion, or
the enhanced wet-etch approaches|97]. The scheme is shown in Figure

Batch Process
Scheduling Problem

| Batch Process Schedule
A

Modeling I | Interpretation
\d
Scheduling [
Algorithm

Figure 7.12: Optimization procedure of the S-graph framework with model based extension

Note that the problem may not have any additional information, like in the case of
the previously mentioned accelerations. In those cases even the interface of the model
remained the same, just the model handled the internal directed graph model differently.

This is completely concealed by the S-graph model from the algorithms, or the modeler,



7.3. MATHEMATICAL DESCRIPTION OF THE eS-GRAPH MODEL 113

or the solution interpreter. In other cases, like the LW example, the problem itself has
additional information (maximal waiting times) that needs to be included in the modeling
step. However, the interface for the algorithm remains the same, i.e., the equipment based
algorithm for example should not be altered in any way.

An obvious advantage of the approach is that these extensions are usually automatically
compatible with the other algorithmic or model based extensions. On the other hand,
combining several model based extensions may be challenging, not to mention that the

model can get unnecessarily complicated for even the simpler problem classes.

Other There are of course other ways of extensions as well, that are usually the com-
bination of the above three. The combinatorial recursive LW approach (Section B.3]) that
inserts additional arcs into the model is a fine example for a rather lumpish extension. The
algorithm is changed and it directly modifies the internal graph model by bypassing the
interface of the S-graph model.

7.3 Mathematical description of the eS-graph model

The former two sections showed some of the limits of the S-graph framework and the com-
plications that the different type of extensions can cause. In this section a generalized
S-graph model is introduced that is the result of the thorough consideration of the formerly
mentioned issues.

There were a couple of major aspects kept during the development of the new model:

e The model should be general enough to address a wide range of scheduling problems,
and it should not be restricted to chemical batch processes. This reduces the need for

model conversions and model extensions for future developments.

e The range of parameters that the model can address should be restricted to timing and
scheduling related elements. The model should not include other common parameters,
like heat integration data, as the model would most probably lose its efficiency. These

parameters should be addressed via external tools like LP models in the future too.

e As a secondary objective, the model should be kept as simple as possible, and similar
to the original problem, so that the mathematical model (and its straight forward

graphical representation) should be understandable.

e The complexity and detailedness of the model should also depend on the problem
at hand, i.e., if the model is capable of addressing, e.g., transportation times with
some additional nodes, then problems without transportation should not have a more

complicated model.

e As far as possible, the model should conceal its inner operations from the algorithms,

and provide a general interface with a basic scheduling decision interface.



114 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

From the practical point of view, the model should be able to address the following

problem features with ease:
e Transfer, cleaning, changeover times
e Continuous tasks
e Tasks requiring several units simultaneously

In the following subsections first the original S-graph model is analyzed to provide the
basis for the basic idea of the model in the second section. Then the model is formally
defined in the last Section.

7.3.1 Analysis of the original S-graph model

It has already been mentioned, that the graphical representation of the S-graphs is the
mathematical model itself. As a representation, the nodes of an S-graph represent tasks and
products. However, taking a closer look at the mathematical approaches reveals that the
nodes represent the starting of the execution of a task, or the removal of a product. These

are only some of the events that occur, several others are not included in the model:
e ending of processing a task (and starting the storage in the unit in case of NIS policy)
e starting end ending the transfer of an intermediate
e loading the raw material into the first unit
e etc.

The original S-graph framework disregarded these events, as everything under the con-
sideration of the original problem set could appropriately be modeled with only the starting
of tasks and removal of the products.

Basically, the following entities have a 1-to-1 relation between them in the framework:
e task, that should be assigned to equipments

e beginning of tasks, that correspond to exact timings

e nodes of the S-graph, from where schedule arcs can start

The general idea for the the extended model is to separate the first from the latter two,
as described in the next subsection.

Moreover, the original formal description, the S-graph model was a (N, A;, Ay, w) quadru-
pletH, describing only part of the scheduling problem and part of the scheduling decisions,

which is basically the internal graph model mentioned in the previous section. Additional

3N: the set of nodes; A;: the set of recipe arcs; As: the set of schedule arcs; w: the weight function on
the arcs. See page 28] for more detail.



7.3. MATHEMATICAL DESCRIPTION OF THE eS-GRAPH MODEL 115

information such as the set of unscheduled tasks, plausible task-unit pairs, processing times,
etc. is given separately for the algorithm.
The aim in the extended model is to include all these information for modularity and

clear description.

7.3.2 General concept of the eS-graph model

As already mentioned in the previous subsection, the general concept behind the new model
is the separation of the tasks that need to be scheduled, and the nodes of the graph in the
model that represent events. The basic principle of the generalization is this two-layered
structure where an entity to be scheduled (task, transfer, cleaning, etc.) can span over several
events of the system, and thus, several nodes of the graph. These entities in the model are
called subprocesses, and there is a many-to-many relation between the events/nodes and
them, unlike the one-to-one relation between the tasks and nodes/events in the original
framework.

The subprocesses may require resources or a set of resources to be carried out. Subpro-
cesses are assumed to be non-interruptible, like the tasks in the original S-graph framework.
Thus, if a resource (unit, operator, pipeline, etc.) is assigned to a subprocess, the resource is
considered busy in the time interval spanned by the events belonging to the subprocess. Be-
cause of non-interruptibility, if a resource is assigned to several subprocesses (either alone or
as a member of a resource-set), the intervals of them should be distinct. This also means that
a clear sequencing should be made between the subprocesses assigned to the same resource,
similarly to the sequencing of tasks assigned to the same unit in the original framework. The
sequencing will be implemented as a zero-weighted schedule arcH from the node of "latest"
event of the former subprocess to the node of the "earliest" event of the latter subprocess.
Note that the dependencies between the events belonging to the same subprocess is not
necessary linear; a good example for this is a task with multiple inputs and/or outputs, that
arrive asynchronously. In this CaseH, it is not evident which the latest or earliest event of
the subprocess is, and it may also depend on the schedule of the other subprocesses. Thus,
when a sequencing decision is made, the model inserts zero-weighted schedule arcs from all
of the nodes of the former subprocess to all of the nodes of the latter one. Obviously, many
of this might be implied by many others, but in this way, the soundness is ensured, and the
cost in terms of memory or CPU is not significant

An important modification is that unlike in the original framework, several resources can
be utilized simultaneously in the new framework. The model allows two ways of implement-

ing such problem features:

e A set of resource can be assigned to a subprocess.

“More precisely, a [0, co] weighted arc, as discussed later.

5Strictly speaking, linear ordering is not needed, only a unique minimal or maximal element.

6 A more clever approach could be to find the set of minimal and maximal nodes for each subprocess and
use them. Both could be correct implementation of the same concept.



116 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

e The events of two subprocesses overlap, and in that interval the assigned resources to

both of the subprocesses are busy.

This provides a lot of expressive power to the new model that can be exploited, as illustrated
in some examples in Section

The limited and zero wait storage policies showed an example, why "not later than" type
of constraints are necessary to be included in the model to be able to address a wide range of
problems. Thus, in the new model, the weight of each arc is a pair of non-negative numbers
[min, maz|, which gives bounds on the timing of the events corresponding the starting node
s and destination node d: t5 + min < t; <ty +maz. Note that max is always greater or
equal to min, and it is allowed to take the value of infinity as well, when there is no upper
bound on the timing difference. Also, allowing min (or mazx) to take negative values would
not result in additional expressive power, as an arc from s to d with ,e.g., min = —3 is
equivalent to an arc from d to s with max = 3. Note that the model may end up having
multiple arcs between the same two nodes. They can of course be summed up as a single
arc with a maximal min, and minimal max value. In this case, if the max value becomes

lower than the min value, it means infeasibility.

7.3.3 Formal definitions

In this subsection, the formal definitions of the framework are given along with implementa-
tional comments. First, the scope of the interest is given by an exact mathematical definition
of the problem. Then, after the formalization of a schedule, the definition of an eS-graph

and its inner model is given.

Scheduling Problem
An extended scheduling problem can be given by a 6-tuple, (E,SP, D, J, 0, #') where
E is the set of events
SP C p(FE) is a set of subprocesseSH
D is the set of dependencies between events
J is the set of units/resources to be scheduled
O € SP — p(p(J)) is a set of assignment options

W is a weight function for dependencies based on scheduling decisions.

Note that an objective function is not considered as part of the definition, as the goal of

a scheduling problem is not necessarily the search for an optimal solution. The framework

"o(E) stands for the power set of E.



7.3. MATHEMATICAL DESCRIPTION OF THE eS-GRAPH MODEL 117

may be used for checking the feasibility of the problem, or generating all of the feasible
schedules.

E is the set of events, that is considered in the process, and SP is a set of subprocesses
that need to be assigned to units and to be scheduled. Each subprocess, S € SP is a
subset of E. In the above definition, it is not allowed for two subprocesses to have the same
set, of events. In implementation, and modeling, however, it can be useful to have several
subprocesses with the event set. This relaxation will affect the other parts of the formal
models or algorithms; thus it is highly advised to implement the model in that way. Here
this form is kept for simpler formalization. Note also that not all of the events are necessarily
included at least in one of the subprocesses.

D is the set of dependencies between the events. To ease formalization, for each d € D,
e~ (d) will denote the event on which e*(d) depends. From the modeling and implementa-
tional point of view, this set is given as DRUUsesP D%, where D is the set of dependencies
induced by the subprocesses, and D are other dependencies of the recipe independent from
the subprocesses. The concept behind this partitioning is a modular view, where a subpro-
cess is a standalone entity, and a process can be built up from these building stones, and
making connections between themd Note, that D may contains several parallel dependen-
cies with the same events. From the practical point of view, only the strongest is binding.
However, this flexibility is again, advantageous from modeling and implementational pur-
poses.

As usual, J is the set of resources of the system that are needed for the subprocesses to
be carried out. These can be units, pipes, operators, electricity, etc.

O is the function of possible assignments: for each S € SP, €(S) is a set of resource
sets, that can carry out the subprocess, i.e., each element of () is a subset of J, and one
task in the scheduling is to select one of these sets.

W is the function that assigns weights to each dependency in the system. These weights
often depend on the scheduling decisions (assignments and sequencing), thus, the formal
definition of this function depends on concepts discussed later. In many problem classes,
however, this function is more simple, and has a modular structure too. As an example,
in the case of the previously considered problems, the weight of a dependency depended
only on the assignment that has been made at a subprocess. As a result, a wide range of
scheduling problems could be covered if # were defined as a D x S x p(J) — R* x R*,
where R* is the set of non-negative real numbers and oco. This definition would, however,
not cover the empty robot movement times of wet-etch processes for example; thus a more
general definition will be given later. Note that an other weakness of this simpler definition
would be that it does not allow to add weights to the dependencies that will be the result
of sequencing decisions. This could be avoided by replacing D with £ x E. Following this

8This philosophy is followed in a further extent in the current XML description, where the set E is
defined by events sets of subprocesses, additional events and alias rules, that merge the same events defined
by several subprocesses. As a simple example, the arrival of an input of one subprocess may be the same as
the removal of the output of an other, which depends on the actual process.



118 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

philosophy, #  could be defined for the whole E x E domain, with the value of [—o0, 0]
where no dependency is given. However, in this case, it is more difficult to formalize parallel

dependencies.

The schedule

In general, there are two types of decisions that has to be made during scheduling:
Assignement Each subprocess has to be assigned to a plausible resource set.

Sequencing If the resource sets assigned to two different subprocesses have a non-
empty intersection, the order in which they are carried out by the units in the

intersection must be given.

In order to allow the development of general scheduling algorithms, it is not assumed
that a resource set is assigned to a subprocess always at once. On the contrary, it is allowed
for a subprocess to have a single resource assigned to it, and the remaining elements of the
adequate resource set are assigned later. Also, it is not assumed that if two subprocesses are
assigned to the same units, their sequencing must be included in the schedule immediately.
The proposed formulation poses no such constraints and allows these decisions to be included
separately at different stages of the optimization.

Thus the formal description of a schedule for a scheduling problem (E,SP, D, J, 0, %)
is (o7, .7), where:

o/ C J x SP is a set of resource-subprocess assignments made so far.
S CSP x Jx 8P is a set of sequencing decisions made so far.
To ease further descriptions, the following notations will be applied:
A(j) ={510,5)ed} Vjel
Js(S) ={j|(y,S) e} VS eSP
Sy L5 S, is true if (S1,7,52) € ., false otherwise
.7 is the transitive closure of .7, i.e., if S; i> Sy and Sy i> S3 then S5 i) Ss3.

The empty schedule is obviously the (@), () pair. A schedule («7,.7) is said to be complete
for a scheduling problem (E,SP,D,J, 0, %)
o forall S € SP, J,(5) € 0(S), and
. for)HaH S1,So € SP such that Sy # So: for all j € &7 (S)) N7 (Se): (S1 L o) & (Ss L
S1

9@ stands for the exclusive or logical operator



7.3. MATHEMATICAL DESCRIPTION OF THE eS-GRAPH MODEL 119

The first rule states, that the set of resources assigned to a subprocess must be a plausible
set from the problem description. The second condition states that if a unit is assigned to
two different subprocesses, exactly one of them should be scheduled earlier than the other.

Note, that a complete schedule is not necessary feasible. A very simple counterexample
could be, when there are two units that are simultaneously assigned to both of two sub-
processes, i.e., ji,j2 € </ (S1) N </ (Ss) and the sequencing decisions are inconsistent, i.e.,
(S1 25 S,) and (Se 2 S)).

For simplified formulation let D” denote the dependencies that are the results of se-
quencing decisions, i.e., D7 = Usli>sg(51 x Sy x {7}). Note that the third element in
the triplets is needed to separately identify the dependencies that are caused by different
units]ﬁ

Now the weight function of the scheduling problem can be defined in a general way:
W . (DUD”) x (of,.7) = R* x R*,

Moreover, the notations #;,,(d) and #},..(d) correspond to the lower and upper bounds

of #(d, o, 7).

The eS-graph model

After the former introduction, the eS-graph model of a partially scheduled problem can
simply be given as an 8-tuple: S = (E,SP, D, J, 0, % , <, ), which consists of all of the
problem parameters and the scheduling decisions made so far.

The inner model is a directed graph with weighted arcs: G(S) = (V, A, w), such that:

V=F

A = {(e(d).e*(d)), (*(d),e"(d)) | d € DUD”}

w(vy,v2) = max (max deDUDS Winin(d), max_ ,cpups —Wmm(d))

e~ (d)=viAeT (d)=vg e~ (d)=voAet (d)=vq

The vertices are simply the events, and the arcs represent the dependencies. To each
dependency two arcs are assigned a "forward" arc for the lower bound on a time difference,
and a "backward" arc for the upper bound. The weights are assigned accordingly. If there
are parallel dependencies, the assigned weight is the maximal among them. The arcs with
—oo weight can be neglected, as they do not pose any real constraints.

Similarly to the original S-graph framework, the longest path in this graph gives the
makespan of the schedule in case of a complete schedule. For incomplete schedules, the
longest path provides a lower bound on the makespan, if it is assumed that the intervals
assigned by # satisfy inclusion after any extensions on the schedule.

Moreover, a positive cycle means infeasible schedule in a similar way. Whether a zero-

weighted cycle poses an infeasibility depends on the application.

19For more precision the subprocesses should have been included as well, as it may be possible that there
are parallel dependencies between two events because of two different subsets. However, in this case, the
units should be different as well.



120 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

7.4 Modeling scheduling problems with the eS-graph

In this section, modeling techniques with the eS-graph are illustrated. The examples provide
a guide to how real world scheduling problems should be modeled within the new frame-
work. Most of the description focuses on batch process scheduling; however, the modeling
patterns can be used on other fields as well. Formal definitions are omitted; only graphical

representations of the eS-graph model of the recipe are given, where
e events are represented with nodes (circles)
e the initial dependencies between the events are represented with directed arcs.

e subprocesses are highlighted with colored dashed border blocks, along with the plau-

sible resource sets.

On each arc, the initial interval is given. However, to simplify graphical representation,

the notations in Figure [[.13] are used throughout the section.

Simplified notation Original notation

[0, 0

[t, %]

[0,0]

O|O0|0
0000

-O
-O
[t:1] >O
O

QOO 0O

Figure 7.13: Simplified dependency notations for the eS-graph

It will usually not discussed in detail, how the # function should work. In fact, it is

rather straight-forward in most of the cases.

Tasks Tasks are one of the basic subprocesses for a scheduling problem. The two basic

events that correspond to this subprocess are the starting of the execution of the task and



7.4. MODELING SCHEDULING PROBLEMS WITH THE eS-GRAPH 121

its ending, as illustrated in Figure [[.14] with the detailed and simplified notation as well.

The weight function should assign the [t!", "] values based on the assigned unit sets that
Subprocess i ) Subprocess i
[tipr7 tipr/ tipr
i start i start
Plausible unit sets: {j },{j,} Plausible unit sets: {j },{j,}

Figure 7.14: eS-graph model of a simple task

can be either j; or j3 alone. The timing difference between the two events are fixed, since
the process takes an exact amount of time. Note that if the processing time for the task
is different for different units, then the smallest should be the lower bound of the initial

interval, and the largest should be the upper bound.

Input, output transfers If there are inputs and outputs to be transfered into and from
the unit that is assigned to the task, then the subprocess should also include these events, as

illustrated in Figure[[.I3l The process has a single input and a single output material. The

" Subprocess i

pr 4 pr
input [0; OO/ ) [tl ’ ti ] [07 OO/ output [ttr; ttr] output
arrives 1 start transfer transfer
start finish

Plausible unit sets: {j },{j.}

" Subprocess i

trr ttr
input i output output
i i start transfer transfer
arrives o
start finish

Plausible unit sets: {j },{j.}

Figure 7.15: eS-graph model of a task with input and output transfers.

transfer of the input is considered to be discrete, i.e., the material arrives in a single event.
On the contrary, the output is removed by continuous transfer, thus the unit to be assigned
to this subprocess must remain until the transfer finishes. Similarly to the processing step,

the transfer takes a certain amount of time. In this example, there is no upper limit on the



122 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

first arc, i.e., the input material can be stored in the unit after arrival arbitrarily long. The
same holds for the output material as well. If for some reason, the input should not wait
more then a t"* amount of time due to some physical or chemical properties, it could be

expressed by changing the weight of the first arc to [0, t™**].

Overlap with transfer subprocesses The transfer events may also be part of other
subprocesses, as illustrated in Figure [[.T6l = The transfer for the intermediate is part of

~ Subprocess i

input
arrives
trr
@ i @
Subprocess

{intermediate transfer |

{ Subprocess i'

inter-
mediate

mediate
transfer transfer
finish

t.rr
start \ i’
Plausible unit sets: {j },{j,}

Plausible unit sets: {j,}

inter-

Plausible unit sets: {c.p} |

Figure 7.16: eSgraph model of a task and transfers

three subprocesses, as the sending, the receiving unit, and the units performing the transfer
must also be occupied with the transfer. Note that there is only a single suitable set of units
for the transfer subprocess: {c;,p}, which has two elements, as both the first compressor
and the pipeline network are needed to carry out the transfer. (And an other transfer may

not use them during this time.)

Complex task A task may also have several inputs and outputs, and they may need to
be filled differently, in a precise order. In the example for which the Gantt chart was given
in Figure [T, the second step of the production is the carboxylation reaction. This reaction
has two inputs; however, one of them needs to be heated up before the intermediate arrives.
And when it does, the process must start immediately. After the process, the output can be
held for as long as wanted, but after that the unit must be cleaned immediately. Modeling
this complicated recipe can be done easily by the eS-graph, as illustrated in Figure[.I7 As

it is shown in the figure, the subprocess of carboxylation has intersection with several other



7.4. MODELING SCHEDULING PROBLEMS WITH THE eS-GRAPH 123

Subprocess Phenonlation

Subprocess carbozylation ‘ _ Subprocess phen. transfer |

Plausible unit sets: {c,p }

th wr
marl. heating
fill start
Subprocess

Plausible unit sets: {h} | ) intermediate transfer

ttr
output output
transfer transfer
start finish

Plausible unit sets: {j },{j,} |

Plausible unit sets: {c,,p,}

Figure 7.17: eSgraph model of part of a complex recipe

subprocesses. As an example, after the marlotherm is filled, it needs to be heated up, for
which an other unit is needed as well: a heater, labeled h. There are transfer subprocesses,
shown with brown and green colors, analogously to the previous figures. Note that the
transfer of phenolate is also part of the phenolation reaction, though it is not presented in

detail in the figure.

Parallel resources The previous examples have already shown how multiple resources
can be busy at the same time. There are two different ways of modeling this in the eS-graph

framework:

e Having more resources in the plausible sets

e Overlapping subprocesses

This feature results in a modeling redundancy, i.e., it gives rise to different but mathemati-
cally correct formulations of the same problem. In most of the cases however, it is evident
which one is the appropriate method. A good practice is to identify the subprocesses first,
and assign the plausible units to them.

There is however case worth debating: let us assume that there is an operation which
requires a machine and an operator to operate it. Also, it is assumed that there are 3 choices

for both of them: my, my, m3 and o1, 09, 03, respectively. In this case, there are two options:

Option 1 A single subprocess "Operation" is created, with the plausible resource sets:
{mla 01}7 {mla 02}7 {m17 03}7 {m27 01}7 {mZa 02}7 {mZa 03}7 {m3a 01}7 {m37 02}7

{ms, 03}.



124 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

Option 2 Two subprocesses are created: "Operation-operator" and "Operation-machine",

with plausible resource sets {01}, {02}, {03} and {mi}, {mso}, {ms}, respectively.

Both models are adequate and properly express all the options available in the system. It is
easy to see that the latter one is more compact, and generally, it is more preferred. However,
if several machines are allowed to work in parallel on the same subprocess, then there is an
important question: should the number of assigned operators and machines be the same?

If yes, option 2 can not be extended for that case, option 1 can.

Detailedness of the model An important feature of the eS-graph modeling framework is
that the level of detail can depend on the problem at hand. By the level of detail the number
of events associated to a subprocess is understood. As discussed above, a task may consists
of only two events: arrival of the input material starts, and removal of the output material
finishes, or it can include several other events as well. Whether an event is important to be
included in the model or not depends on the actual problem.

Obviously, the events that are the boundaries of subprocesses must be included in the
model. Also, if there is a sequence of events, for example, between which the weight of the
dependencies never change, and either all of them are included in a subprocess or none of
them, then only the first and the last event are important to be included in the model.

Note that having a more detailed model will never affect the soundness of the model,
it will only unnecessarily increase the size of the model. Tt will usually also not have any
effect on the computational performance. Thus including additional superfluous events is

also suggested when it provides a more consistent, straightforward model.

Inclusion of the original S-graph framework

In the above examples it has been shown how detailed an eS-graph model can be. In this
subsection, the eS-graph equivalent of the original S-graph models are given, which has a

dual purpose:

e This model proves that everything, that could be modeled with the S-framework can

be modeled in the new framework as well.

e The model shows an example that including many events is not necessary if the actual

problem does not require it.

Note that the aim here is to provide the "smallest" eS-graph model. However, a more
detailed model for real application is advisable.

The basic idea behind the model is that in the original S-graph framework a unit was
busy with a task until the start of the next task. This will provide the subprocesses of the
eS-graph model. The associated events will be the same as originally: the starts of the tasks
and the removals of the products. All plausible resource sets will be singletons.

The definition of the eS-graph model of an S-graph can be given like this



7.5. MAKESPAN MINIMIZER FOR THE eS-GRAPH 125
E =N =1U P, i.e., the start of each task and the removal of products

SP = {{i} UL |i € I}, ie., a subprocess belongs to each task node, that includes
all the other nodes (events) to which there leads a recipe arc

D = Ay, i.e., all the recipe arcs in the problem and nothing else
J = J', i.e., all the units in the problem and nothing else

O = {({iy U {{j} | j e J}) | i€ I}, ie., to each of the subprocess all of the
plausible units are assigned as singletons.

W this weight function works exactly as the original, and assigns the minimal available
processing time to an arc as a lower bound. The upper bound is infinity except
for the dependencies leading to the removal of the product .

This model definition is illustrated on an example in Figure [[.I§]
The models generated this way can be solved to optimal makespan by the algorithm

described in the next section.

7.5 General purpose makespan minimizer for the eS-graph

In this section a general purpose algorithm is shown for the eS-graph framework to minimize
the makespan of any problem modeled with the eS-graph. The algorithm may not be the
most efficient one for each problem class; the main aim is for it to stead as an illustration,
how the new framework can be extended. It has to be noted, however, that the algorithm
below explores an identical search space as the algorithm in block 2.l if the problem is
formulated according to the instructions in the previous section. The reason for this is that
the main concept of the original makespan minimizer algorithm has been kept, and the
details have just been adopted to the new model.

1. The algorithm first initializes the best makespan (makespan®) to infinity, and the set

of open problems (S) with the eS-graph model of the recipe.

2. In each iteration the eS-graph model of an open problem (S) is selected from this
set, and its bound is compared with the makespan of the current best solution. If
the selected problem has a worse bound, it is pruned, and a new iteration starts.
Otherwise:

(a) If the problem is a solution, the best solution (S°) and its makespan is updated.

Tt would not change the soundness of the model if the upper bound were infinity in all of the cases.



126 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

cs 8
3 {E2,E3}

End o
remouval
of A

Plausible unit sets: {E2},{E3} ,

End o
removal
of B

End o
remouval
of C

Plausible unit sets: {E2} {E3}

Plausible unit sets: {E2} |

Figure 7.18: eSgraph equivalent of an S-graph model



7.5. MAKESPAN MINIMIZER FOR THE eS-GRAPH 127

(b) An "active" resource is selected if possible, and for all subprocesses to which it
still can be assigned, a subproblem is created, and the subprocesses are sequenced
as last into the queue of the selected resource. Each new partial schedule is tested

for feasibility, and then added to the set of open problems.

3. If the set of open subproblems is empty, and the current best makespan is not infinity,

then the optimal solution is reported; otherwise, the problem has no feasible solution.

As it can be seen, the frame of the algorithm is the same, only some of the terms
are changed. The formal algorithm is showed in block [[.Il For simpler description, the
notation S (j) is introduced that denotes all of the subprocesses for a partial schedule

whose assignment can be extended with j, formally:
St()=4{SeSP |30 € 0(S) {jtUJu(S)CO}

If this set is empty, the unit can not be assigned to any subprocesses anymore, and it is

termed not active.

Algorithm 7.1 Makespan minimization with the S-graph framework

makespan® := oo
S := {(erecipe(),,0)}
while S # () do
S=(E,SP,D,J, 0, W, ) =select _remove(S)
if bound(S)< makespan® then
if J,(S) € O0(S) VS € SP then
makespan® :=bound(S)
S®:=8§
end if
j =select({j € J | S4(j) # )
if j # NIL then
for all S € S} (j) do
oS = o V{5, 5)}
=S U{(5,5,89) | 5" € Swr(j)}
S%:=(E,SP,D,J, 0, W, ", 75)
if feasible(S®) then
S :=SU{S}
end if
end for
end if
end if
end while
if makespan® # oo then
return S
end if

Several notes on the subprocedures called in the algorithm:



128 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH

select remove As in the original case, this function is allowed to select and remove

an open subproblem arbitrarily.
bound This procedure may return the longest path in G(S).
select This function can arbitrarily return any active units, or NI L when none exists

feasible This procedure will definitely return false if there is a positive weighted cycle
in G(S). How it handles the zero-weighted cycles can depend on the problem

class.
Note, that there are some major differences compared to the algorithm in block 2.1k

e Unlike G(N, Ay, Ay), S contains all the scheduling decisions made in the subproblem,

so no other parameters are needed.

e The algorithm does not modify directly the inner graph model of a subproblem. It
is carried out as an inner mechanism of the model itself, when G(S) is generated or

maintained.

e The condition for a solution and for a leaf problem is not the same, i.e., even if the
actual subproblem is a feasible solution, it may have children in the B&B tree. This is
due to the fact that a subprocess may have plausible resource sets that are the subsets

of each other.

Summary and concluding remarks

The S-graph framework has been introduced for the scheduling of batch processes nearly
two decades ago. Next to its computational power, a great advantage of the framework is
the straight-forward relation between the real problem, and the mathematical model. On
the other hand, the simplicity of the S-graph model limits its applicability, and requires
continuous extensions. In this chapter, a generalized, new framework is presented, which is
based on the concepts of the original S-graph framework, and keeps its advantages, while
providing a much wider range of modeling options. As one of the most important new
building stones of the framework are the events of the process, it is named as the event-based
S-graph framework, or eS-graph framework. The sections illustrated the necessity of this
extension, the new model itself, the modeling techniques associated with it, and a general
purpose makespan minimizer algorithm. Once the eS-graph framework is implemented, it
will provide a tool which can be applied for a much wider range of scheduling problems with

ease, and without any modification.



7.5. MAKESPAN MINIMIZER FOR THE eS-GRAPH 129

Related publication

e Hegyhati, M., F. Friedler, Combinatorial Algorithms of the S-Graph Framework for
Batch Scheduling, Industrial & Engineering Chemistry Research, 50 (9), 5169-5174
(2011). [IF = 2.237|

Related conference presentation

e Holczinger, T. M. Hegyhati, F. Friedler, S-graph as an integrated modelling and op-
timization tool for the scheduling of industrial batch processes, presented at: VOCAL
2010, Veszprem, Hungary, December 13-15, 2010.



130 CHAPTER 7. GENERALIZED S-GRAPH MODEL: THE EVENT S-GRAPH



Appendix A

Environment for comparisons

All the empyrical test in the thesis were carried out on an IBM server with Intel Xeon
E5504 processor (4 physical cores, 2 GHz), and 8 GiB RAM. The operating system was
Ubuntu 12.04 LTS. The MILP formulations were solved by Gurobi solver, and the S-graph
solver applies the COIN-OR library for solving LP models.

In many cases, the approaches were not able to solve the larger problems in reasonable
time. For many tests, a time limit of 1000 seconds were set for the solvers, which is a well
accepted approach among the researchers of this topic. If the execution of an approach

reached this time limit, the reported objective is the best found in that time interval.

131



132 APPENDIX A. ENVIRONMENT FOR COMPARISONS



Appendix B

Nomenclature

List of the notations used thorough the document

Parameters of the problem
Sets

P Set of products
I Set of tasks

J Set of units

Indexed sets

I, set of tasks taking part int the production of product p € P
L7 set of subsequent tasks of task i € I (for precedential recipe)
I set of predecessor tasks of task i € I (for precedential recipe)

I; set of tasks that can be performed by unit j € J

J; set of units that can perform task ¢z € I

Paramters

ti; rocessing time of task 7 € [ in j € J;

' transfer time, whose indices can be different based on the context (just a single

material or a unit-material-unit triple, etc.)

t7 the time horizon

133



134 APPENDIX B. NOMENCLATURE

Other notations
p; is the product to which ¢ belong, if it is unambiguous
+

i subsequent task of task i € I, if exists (for sequential recipes)

i; predecessor task of task i € I, if exists (for sequential recipes)

ipr kth task of the production of product p € P (for sequential recipes)

np number of stages for product p € P (for sequential recipes)

Throughput maximization

R, Revenue for one batch of product p

Stochastic problems
Simple recipes
b, the number of batches for product p in the actual configuration

s, the size of a batch for product p (for the first case)

min  ,max
Sp R Sp

third case)

the minimal and maximal size of a batch for product p (for the second and

S the set of scenarios

probs the probability of scenario s € S

dems, the demand for product p in scenario s € S

prices, the price of p in scenario s € S

0Cs p, UCs, the over- and underproduction cost of p in scenario s € S
Profit,(x) is the profit for 2 amount of product p in scenario s.

ExpProfit,(z) is the expected profit of s, - b, amount of product p

Complex recipes

R set of recipes
P, set of products produced by recipe r € R
R, set of recipes producing produt p € P

b, the number of batches for recipe r € R in the actual configuration



135

srp the maximal amount of p € P that can be produced with the recipe r € R

min, the minimal proportion ration on which the recipe » € R can be executed

Continuous case

f probability distribution function

I cumulative probability distribution function

S-graph

G(N, Ay, Ay, w)
N := [ UP, the set of nodes
Ay = {(i,i)|i € I i € I}, the set of recipe arcs
Ay := (), the set of schedule arcs

pr

w; i = minjey, ', the weights for all recipe arc (4,i') € A;: the minimal processing

time for ¢

eS-graph
E is the set of events
SP C p(F) is a set of subprocesses
D is the set of dependencies between events
J is the set of units/resources to be scheduled
O € SP — p(p(J)) is a set of assignment options
W is a weight function for dependencies based on scheduling decisions.
(o,.7) schedule

o/ C J x SP is a set of resource-subprocess assignements made so far.

< CSP x Jx SP is a set of sequencing decisions made so far.
() ={510,5) e} Vje
Jz(5) ={j 1, 5) e &} VS eSP
Sy L S, is true if (S1,7,52) € ., false otherwise

.7 is the transitive closure of .% i.e., if S; EN Sy and Sy EN S3 then S EN Ss3.



136 APPENDIX B. NOMENCLATURE



Appendix C

Full tables of test results

C.1 Throughput maximization

This section contains all the empirical results for the 18 throughput maximization. The

columns are:

first Configuration selection strategy

second Update subroutine

third Feasibility subroutine

rest time horizon, and the CPU times in seconds

The time limit for the solver was 3600 seconds.

137



138 APPENDIX C. FULL TABLES OF TEST RESULTS

C.1.1 Pharmaceutical case study

= | 24 25 2% 27 28 29 30

FT | 0.1 012 012 011 0.16 456 13.42
Ulnng | 35 398 398 398 536 2149 3600
e | p | FT[ 01 011 012 01l 016 783 1473
MM || 3.98 398 3.99 397 537 2182 30.77
FT | 009 012 012 012 013 815 15.71
Elan|o16 020 019 019 026 2102 30.61
FT | 0.13 013 013 013 0.16 557 1523
Ul | 691 430 430 427 536 3095 3600
FT | 012 012 012 012 016 805 15.41
BES v | 575 308 398 400 535 2417 3341
FT | 0.1 012 012 012 015 829 17.62
Elani 017 021 o021 021 026 2172 3687
FT | 021 027 027 027 05 701 1478
Ulang | 730 1193 1181 1100 1982 3596 52.41
FT | 0.2 027 027 027 051 9.6 18.63
DES | Eann | 705 1187 1106 1188 1998 3617 53.55
FT | 0.1 012 012 012 013 8538 17.09
Elani 017 021 020 021 026 27.99 39.49
|| | 31 32 33 34 35 36 37
FT || 53.56 120.79 96.83 446.93 4482 1296.92 1306.86
Ul | 3600 3600
Cex | p | FT | 20 3426 4097 10143 10128 6874 690.63
MM || 67.82  85.77
FT | 2312 3629 525 5552 5448  71.36  78.82
Bl | 4700 6774
FT || 63.21 177.01 267.69 534.91 53871 1385.11 1386.55
Ul | 3600 3600
FT | 2387 44.11 47.99 107.27 107.22 685.34  689.15
BES I E ot | 7ras 107
FT || 29.38 4893 63  57.58 568 7485  80.81
Bl | 7277 0026
FT || 64.67 139.17 209.1 40451 406.47 2960.98 2966.28
Ul | 3600 3600
FT | 3844 55.6 6552 284.84 9284.34 297823 2949.65
DES | Flann | 256 om
FT || 27.37 4297 56.66 59.26 5838 7581  82.37
B | 69.86 8819




C.1. THROUGHPUT MAXIMIZATION 139

C.1.2 Agrochemical example

|| | 13 14 15 16

FT || 3.06 339.45 453.11 3600
MM | 3600 3600 3600 3600
FT || 3.07 340.04 451.78 3600
MM | 3600 3600 3600 3600
FT || 3.05 205.06 453.93 3600
MM | 3600 3600 3600 3600
FT || 3.08 405.79 583.83 3600
MM | 3600 3600 3600 3600
FT || 3.04 405.01 582.28 3600
MM | 3600 3600 3600 3600
FT || 3.05 414.03 591.55 3600
MM | 3600 3600 3600 3600
FT || 3.03 405.13 589.11 3600
MM | 3600 3600 3600 3600
FT || 3.08 402.99 583.25 3600
MM | 3600 3600 3600 3600
FT || 3.07 269.34 581.33 3600
MM | 3600 3600 3600 3600

U

LEX | F

BFS | F

DFS | F

C.1.3 Literature example

\ \ H 14 15 16 17
y| FT | 1688 17921 1260.14 3600
MM || 2765  2063.53 3600 3600
FT | 1584 1347 11593 3600

LEX | F
MM || 27252  848.64 3600 3600
o FT | 1521 11379 98494 3600
MM || 30.07 48425 3600 3600
y| FT | 1495 20814 96405 3600
MM || 3600 3600 3600 3600
FT | 1852 14416 1496.75 3600

BFS | F
MM || 76876  929.27 3600 3600
o FT| 2007 13326 151281 3600
MM || 236.08 689.51 3600 3600
y| FT [ 2263 43739 159405 3600
MM | 1313.48 3600 3600 3600
FT | 2253 27989 1629.85 3600

DFS | F
MM || 1308.07 3600 3600 3600
o FT| 2101 22555 140372 3600
MM || 459.21  2053.05 3600 3600




140 APPENDIX C. FULL TABLES OF TEST RESULTS

C.2 Zero-wait test results

CPU times of the ZW tests

Conf. sL.P alLP alLP’ Neg Rec Rec+
11111 || 0.035 0.096 0.061 0.008 0.009 0.005
11112 || 0.099 0.139 0.225 0.007 | 0.017 0.009
11121 || 0.047 0.178 0.157 | 0.008 0.016 0.007
11211 || 0.102 0.398 0.666 0.02 0.049 0.027
12111 || 2.959 0.691 1.397 | 0.054 0.049 0.055
21111 0.099 0.47 0.264 0.019 0.026 0.014
22111 22.71 4.457 10.636 0.21 0.323 0.34
22211 || 188.55 | 40.695 | 83.453 | 1.592 3.014 4.618
22221 || 437.386 | 71.556 | 225.756 | 2.689 5.785 8.523
22222 1000 125.454 | 403.037 | 6.964 14.361 13.592
32222 1000 1000 1000 | 57.545 | 133.474 | 102.853
33333 1000 1000 1000 1000 1000 1000
44444 1000 1000 1000 1000 1000 1000
55555 1000 1000 1000 1000 1000 1000

CPU times of the ZW tests

Conf. || sLP | aLP | aLP’ | Neg | Rec | Rec+
11111 || 18.2 | 182 | 18.2 | 182 | 18.2 | 18.2
11112 || 18.2 | 18.2 | 18.2 | 182 | 18.2 | 18.2
11121 || 18.2 | 18.2 | 18.2 | 182 | 18.2 | 18.2
11211 || 22.7 | 22.7 | 22.7 | 22.7 | 22.7 | 22.7
12111 | 22 22 22 22 22 22

21111 || 18.2 | 18.2 | 182 | 182 | 182 | 18.2
22111 || 22 22 22 22 22 22

22211 | 26.5 | 26.5 | 26.5 | 26.5 | 26.5 | 26.5
22221 | 26.5 | 26.5 | 26.5 | 26.5 | 26.5 | 26.5
22222 || 475 | 27.1 | 27.1 | 27.1 | 27.1 | 27.1
32222 | 49.1 | 27.9 | 279 | 279|279 | 27.9
33333 || 69.8 | 42.9 | 58.7 | 37.9 | 41 | 37.9
44444 || 57.5 | 60.4 | inf | 57.2 | 62.2 | 57.2
55555 || 87.1 | 98.8 | inf 79 79 79

C.3 Expected profits of feasible configurations for the

stochastic tests

Batch number Expected profits
configurations Two-stage ‘ Flexible ‘ Fixed

1 0 3 0 0 1] 2689.87 | 2475.31 | 2451.15 |




C.3. STOCHASTIC TEST RESULTS

Batch number

Expected profits

configurations Two-stage | Flexible | Fixed
1 03 0 1 0 2661.76 | 2474.58 | 2474.58
000 0 0 3 2643.56 | 2465.39 | 2465.39
1 01 0 0 2 2643.56 | 2465.39 | 2465.39
2 0 2 0 0 1 2643.56 | 2465.39 | 2465.39
01 1 0 1 1 2625.29 | 2456.09 | 2456.09
1 1.0 0 0 2 2607.03 | 2446.78 | 2446.78
21 1 0 0 1 2607.03 | 2446.78 | 2446.78
00 2 1 0 1 2597.9 2442.13 | 2442.13
1 0 3 1 0 0 2597.9 2442.13 | 2442.13
0 0 3 0 0 1 2586.99 2435.7 | 2435.7
1 04 0 0 0 2586.99 2435.7 | 2435.7
1 0o 0 1 1 1 2586.97 | 2435.68 | 2435.68
0 00 0 1 2 2574.73 | 2427.92 | 2427.92
1 01 0 1 1 2574.73 | 2427.92 | 2427.92
2 0 2 0 1 0 2574.73 | 2427.92 | 2427.92
2 2 0 0 0 1 2562.47 | 2420.14 | 2420.14
2 0 0 0 0 2 2550.26 | 2412.41 | 2412.41
3 01 0 0 1 2550.26 | 2412.41 | 2412.41
01 1 1 0 1 2550.24 | 2412.39 | 2412.39
1 1.2 1 0 0 2550.24 | 2412.39 | 2412.39
0 1.1 0 2 0 2550.21 | 2412.36 | 2412.36
01 2 0 0 1 2538 2404.63 | 2404.63
1 1.3 0 0 0 2538 2404.63 | 2404.63
1 1.0 0 1 1 2525.74 | 2396.85 | 2396.85
21 1 0 1 0 2525.74 | 2396.85 | 2396.85
0 01 2 1 0 2525.74 | 2396.85 | 2396.85
00 2 1 1 0 2513.51 | 2389.09 | 2389.09
0 0 3 010 2501.28 | 2381.34 | 2381.34
1 00 2 0 1 2501.28 | 2381.34 | 2381.34
31 0 0 0 1 2501.28 | 2381.34 | 2381.34
1 0 0 1 2 0 2501.24 | 2381.32 | 2381.32
00 0 1 0 2 2489.04 | 2373.58 | 2373.58
1 01 1 0 1 2489.04 | 2373.58 | 2373.58
2 0 2 1 0 0 2489.04 | 2373.58 | 2373.58
0 2 1 0 0 1 2489.01 | 2373.56 | 2373.56
1 2 2 0 0 0 2489.01 | 2373.56 | 2373.56
00 0 0 2 1 2489.01 | 2373.56 | 2373.56
1 01 0 2 0 2489.01 | 2373.56 | 2373.56
001 0 0 2 2476.81 | 2365.82 | 2365.82
1 02 0 0 1 2476.81 | 2365.82 | 2365.82
2 0 3 0 0 0 2476.81 | 2365.82 | 2365.82

141



142 APPENDIX C. FULL TABLES OF TEST RESULTS

Batch number Expected profits
configurations Two-stage | Flexible | Fixed
2 0 0 1 2476.75 | 2365.78 | 2365.78

2464.55 2358.05 | 2358.05
2464.55 2358.05 | 2358.05
2464.52 2358.02 | 2358.02
2452.2 2350.15 | 2350.15
2436.21 2337.14 | 2337.14
2436.21 2337.14 | 2337.14
2436.21 2337.14 | 2337.14
2436.18 2337.12 | 2337.12
2420.22 2324.14 | 2324.14
2420.22 2324.14 | 2324.14
2420.22 2324.14 | 2324.14
2420.22 2324.14 | 2324.14
2404.23 2311.13 | 2311.13
2404.2 2311.11 | 2311.11
2404.2 2311.11 | 2311.11
2388.24 | 2298.12 | 2298.12
2388.21 2298.1 | 2298.1
2388.21 2298.1 | 2298.1
2388.18 2298.08 | 2298.08
2388.18 2298.08 | 2298.08
2372.22 2285.1 | 2285.1
2372.22 2285.1 | 2285.1
2372.19 2285.07 | 2285.07
2356.23 2272.09 | 2272.09
2356.23 2272.09 | 2272.09
2356.2 2272.07 | 2272.07
2356.2 2272.07 | 2272.07
2356.2 2272.07 | 2272.07
2356.2 2272.07 | 2272.07
2340.24 | 2259.08 | 2259.08
2340.24 | 2259.08 | 2259.08
2340.24 | 2259.08 | 2259.08
2340.21 2259.06 | 2259.06
2324.22 2246.05 | 2246.05
2324.19 2246.03 | 2246.03
2308.2 2233.03 | 2233.03
2308.2 2233.03 | 2233.03
2292.18 2220 2220

2276.22 2207.01 | 2207.01
2276.22 2207.01 | 2207.01

W N N P O R © O W P N O N~ W NN~ O O O F O O F Wwo O N~k O F O N FB O O W N N
— = W R =R RO O O O DN DN OO NO OO N O OO O o0 MO O FFRFHFHOFRF R+ oo
_ O O B O O W NN OO FEORFROONDNFEORFF O k= O O W N FEHF O O RF F=ODND -~ = O
o O O O O = O =B O O O O N O O = =2 O O O O Fk = O NN O F N O O O O WM~k M=ok o O
O O O = = B O O O O O N O O O O O O = F Wk FPF ORF FHF O OO o O O hh O O O = - = =
O = O O = O O O O = N O O O = O = O OO =, O OO O M= O O O O o O = N o o o = o o ©o© = O




C.3. STOCHASTIC TEST RESULTS

Batch number

Expected profits

configurations Two-stage | Flexible | Fixed
00 0 2 0 1 2276.22 | 2207.01 | 2207.01
1 01 2 0 0 2276.22 | 2207.01 | 2207.01
02 1 1 0 0 2276.19 | 2206.99 | 2206.99
000 1 2 0 2276.19 | 2206.99 | 2206.99
0 01 1 0 1 2260.23 | 2194.01 | 2194.01
1 02 1 0 0 2260.23 | 2194.01 | 2194.01
0 2 2 0 0 0 2260.2 2193.98 | 2193.98
001 0 2 0 2260.2 2193.98 | 2193.98
00 2 0 0 1 2244.24 2181 2181
1 03 0 0 O 2244.24 2181 2181
2 0 01 1 0 2244.21 | 2180.98 | 2180.98
1 2 0 0 1 0 2244.18 | 2180.96 | 2180.96
1 00 0 1 1 2228.22 | 2167.97 | 2167.97
2 01 0 1 0 2228.22 | 2167.97 | 2167.97
3 2 0 0 0 0 2212.2 2154.94 | 2154.94
1 1.0 2 0 0 2212.2 2154.94 | 2154.94
3 0 0 0 0 1 2196.24 | 2141.96 | 2141.96
4 01 0 0 O 2196.24 | 2141.96 | 2141.96
01 0 1 0 1 2196.21 | 2141.94 | 2141.94
1 1.1 1 0 0 2196.21 | 2141.94 | 2141.94
0 3 1.0 0 0 2196.18 | 2141.91 | 2141.91
0 1.0 0 2 0 2196.18 | 2141.91 | 2141.91
01 1 0 0 1 2180.22 | 2128.93 | 2128.93
1 1.2 0 0 0 2180.22 | 2128.93 | 2128.93
21 0 0 1 0 2164.2 21159 | 2115.9
000 2 1 0 2164.2 2115.9 | 2115.9
0 01 1 1 0 2148.21 | 2102.89 | 2102.89
4 1. 0 0 0 O 2132.22 | 2089.89 | 2089.89
0 0 2 0 1 0 2132.22 | 2089.89 | 2089.89
2 0 0 2 0 0 2132.22 | 2089.89 | 2089.89
1 2 0 1 0 0 2132.19 | 2089.87 | 2089.87
1 00 1 0 1 2116.23 | 2076.88 | 2076.88
2 01 1 0 0 2116.23 | 2076.88 | 2076.88
0 2 0 0 0 1 2116.2 2076.86 | 2076.86
1 2 1 0 0 0 2116.2 2076.86 | 2076.86
1 00 0 2 0 2116.2 2076.86 | 2076.86
000 0 0 2 2100.24 | 2063.87 | 2063.87
1 01 0 0 1 2100.24 | 2063.87 | 2063.87
2 0 2 0 0 0 2100.24 | 2063.87 | 2063.87
300 0 1 0 2081.68 2047.3 | 2047.3
0101 10 2081.65 | 2047.28 | 2047.28

143



144 APPENDIX C. FULL TABLES OF TEST RESULTS

Batch number Expected profits
configurations Two-stage | Flexible | Fixed
1 1 0 1 2059.66 | 2026.78 | 2026.78

2036.81 2005.42 | 2005.42
2036.81 2005.42 | 2005.42
2036.76 | 2005.38 | 2005.38
2013.96 1984.06 | 1984.06
2013.96 1984.06 | 1984.06
2013.96 1984.06 | 1984.06
1991.11 1962.7 | 1962.7
1968.26 1941.34 | 1941.34
1968.21 1941.3 | 1941.3
1968.15 1941.25 | 1941.25
1945.36 1919.94 | 1919.94
1945.36 1919.94 | 1919.94
1922.51 1898.58 | 1898.58
1922.45 1898.53 | 1898.53
1922.45 1898.53 | 1898.53
1899.66 1877.22 | 1877.22
1899.66 1877.22 | 1877.22
1899.6 1877.17 | 1877.17
1876.75 1855.81 | 1855.81
1853.85 1834.41 | 1834.41
1808.15 1791.69 | 1791.69
1808.15 1791.69 | 1791.69
1808.09 1791.64 | 1791.64
1785.3 1770.33 | 1770.33
1785.3 1770.33 | 1770.33
1785.24 1770.28 | 1770.28
1785.24 1770.28 | 1770.28
1762.45 1748.97 | 1748.97
1762.45 1748.97 | 1748.97
1739.54 1727.56 | 1727.56
1693.84 1684.84 | 1684.84
1693.79 1684.8 | 1684.8
1693.73 1684.75 | 1684.75
1670.94 1663.44 | 1663.44
1670.94 1663.44 | 1663.44
1625.18 1620.67 | 1620.67
1597.22 1594.2 | 1594.2
1569.13 1567.59 | 1567.59
1569.07 1567.55 | 1567.55
1541.03 1540.98 | 1540.98

=N O O R O O BN~ O O O O O F WK OO WNDNOWHH~HOOHF, OO O N~ R~ © N O
O N OO O = WRE O O OO O N OO NO R FHFERFRFOONMEOOODINOOOORFE = WwWo =
O O O =B O BH O O O O O NN FHF O F MFHF OO O O O NNFHF MF OO OO MF O OO WNRFEFFH=HOOO O
o O B O B O O O B O O O O O O = K N O O O, O O O N+~ O O O© = O F N O O O W =
O O O = B O O O O O FH O O N O O O OO0 O+ O O O o oo o o FHFE F@FMOoOOoO oo oo o o
_ O O O O O = O O O O O +r O O O = O © O O O©O O O — O © © O O O O O o oo —= O O O O




C.3. STOCHASTIC TEST RESULTS

Batch number

Expected profits

configurations Two-stage | Flexible | Fixed
2 01 0 00 1541.03 | 1540.98 | 1540.98
010 0 1 0 1481.51 1481.51 | 1481.51
00 0 2 0 0 1422.08 | 1422.08 | 1422.08
2 1.0 0 0 0 1422.08 | 1422.08 | 1422.08
0 01 1 00 1392.37 | 1392.37 | 1392.37
00 2 0 0 O 1360.07 | 1360.07 | 1360.07
1 00 0 1 0 1325.04 | 1325.04 | 1325.04
300 0 0 0 1255.11 1255.11 | 1255.11
010 1 0 0 1255.04 | 1255.04 | 1255.04
0 1.1 .0 00 1220.08 | 1220.08 | 1220.08
1 001 0 0 1077.29 | 1077.29 | 1077.29
02 0 0 0 0 1077.19 | 1077.19 | 1077.19
0 0 0 0 0 1 1039.22 | 1039.22 | 1039.22
1 01 0 0 O 1039.22 | 1039.22 | 1039.22
1 1.0 0 0 0 886.77 886.77 | 886.77
000 0 1 0 772.48 772.48 | 77248
2.0 0 0 0 0 696.34 696.34 | 696.34
000 1 00 505.83 505.83 | 505.83
001 0 0 0 467.76 467.76 | 467.76
01 0 0 0 O 315.31 315.31 | 315.31
1 0 0 0 0 O 124.89 124.89 | 124.89

145



146 APPENDIX C. FULL TABLES OF TEST RESULTS



Bibliography

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

[10]

R. Adonyi, G. Biros, T. Holczinger, and F. Friedler. “Effective scheduling of a large-
scale paint production system”. In: Journal of Cleaner Production 16 (2) (2008),
pp. 225232,

R. Adonyi, J. Romero, L. Puigjaner, and F. Friedler. “Incorporating heat integration
in batch process scheduling”. In: Applied Thermal Engineering 23 (2003), pp. 1743~
1762.

R. Adonyi. “Batch process scheduling with the extensions of the S-graph framework”.
PhD thesis. Doctoral School of Information Science and Technology - University of
Veszprem, 2008.

R. Adonyi, I. Heckl, A. Szalamin, and F. Olti. “Routing of Railway Systems with the
S-graph Framework for Effective Scheduling”. In: Chemical Engineering Transactions
21, Jiri Klemes and Hon Loong Lam and Petar Varbanov (2010), pp. 913-918.

A. M. Aguirre, C. A. Méndez, and P. M. Castro. “A novel optimization method to
automated wet-etch station scheduling in semiconductor manufacturing systems”. In:
Computers & Chemical Engineering 35.12 (2011), pp. 2960-2972.

A. M. Aguirre, C. A. Méndez, A. Garcia-Sanchez, M. Ortega-Mier, and P. M. Cas-
tro. “General Framework for Automated Manufacturing Systems: Multiple Hoists

Scheduling Solution”. In: Chemical Engineering Transactions 32 (2013), pp. 1381
1386.

A. M. Aguirre, C. A. Méndez, G. Gutierrez, and C. D. Prada. “An improvement-
based MILP optimization approach to complex AWS scheduling”. In: Computers €
Chemical Engineering 47 (2012), pp. 217-226.

R. Alur. “Timed Automata”. In: Theoretical Computer Science 126 (1999), pp. 183—
235.

R. Alur and D. L. Dill. “A theory of timed automata”. In: Theoretical Computer
Science 126.2 (Apr. 1994), pp. 183-235.

K. Arrow, T. Harris, and J. Marshak. “Optimal Inventory Policy”. In: Econometrica
19.3 (1951), pp. 250-272.

147



148

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

BIBLIOGRAPHY

G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, and J. Romijn. “FEf-
ficient Guiding Towards Cost-Optimality in UPPAAL”. In: 7th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01).
Genowva, Italy, April 2 to 6, 2001. LNCS 2031. 2001, pp. 174-188.

S. Bhushan and I. A. Karimi. “An MILP Approach to Automated Wet-Etch Station
Scheduling”. In: Industrial €& Engineering Chemistry Research 42.7 (2003), pp. 1391
1399.

S. Bhushan and I. Karimi. “Heuristic algorithms for scheduling an automated wet-
etch station”. In: Computers € Chemical Engineering 28.3 (2004), pp. 363-379.

A. Bonfill, A. Espuna, and L. Puigjaner. “Proactive approach to address the uncer-
tainty in short-term scheduling”. In: Computers € Chemical Engineering 32.8 (Aug.
2008), pp. 1689-1706.

E. Capon-Garcia, M. Moreno-Benito, and A. Espuna. “Improved Short-Term Batch
Scheduling Flexibility Using Variable Recipes”. In: Industrial € Engineering Chem-
istry Research 50.9 (2011), pp. 4983-4992.

C. Cassandras and S. Lafortune. Introduction to Discrete Fvent Systems. Springer-
Link Engineering. Springer, 2008. 1SBN: 9780387333328.

P. M. Castro, A. P. Barbosa-Povoa, H. A. Matos, and A. Q. Novais. “Simple Continuous-
Time Formulation for Short-Term Scheduling of Batch and Continuous Processes”.
In: Industrial & Engineering Chemistry Research 43 (2004), pp. 105-118.

P. M. Castro, L. J. Zeballos, and C. A. Méndez. “Hybrid time slots sequencing model
for a class of scheduling problems”. In: AIChE Journal 58.3 (2012), pp. 789-800.

C.-L. Chen and C.-Y. Chang. “A resource-task network approach for optimal short-
term/periodic scheduling and heat integration in multipurpose batch plants”. In:
Applied Thermal Engineering 29.5-6 (Apr. 2009), pp. 1195-1208.

C.-L. Chen, C.-Y. Chang, and J.-Y. Lee. “Resource-Task Network Approach to Si-
multaneous Scheduling and Water Minimization of Batch Plants”. In: Industrial &

Engineering Chemistry Research (Oct. 2011).

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. “Optimal inter-area coordi-
nation of train rescheduling decisions”. In: Transportation Research Part E: Logistics

and Transportation Review (2011), pages.

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. “Optimal inter-area coordi-
nation of train rescheduling decisions”. In: Procedia - Social and Behavioral Sciences
17 (2011), pp. 58-81.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
3rd. MIT Press, 2009.



BIBLIOGRAPHY 149

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

33]

[34]

[35]

A. D’Ariano, D. Pacciarelli, and M. Pranzo. “A branch and bound algorithm for
scheduling trains in a railway network”. In: European Journal of Operational Research
183.2 (Dec. 2007), pp. 643-657.

A. D’Ariano, D. Pacciarelli, and M. Pranzo. “Assessment of flexible timetables in
real-time traffic management of a railway bottleneck”. In: Transportation Research
Part C: Emerging Technologies 16.2 (Apr. 2008), pp. 232-245.

C. Delort and O. Spanjaard. “Using bound sets in multiobjective optimization: Appli-
cation to the biobjective binary knapsack problem”. In: 9th International Symposium
on Ezperimental Algorithms (SEA 2010). Vol. 6049. Lecture Notes in Computer Sci-
ence. 2010, pp. 253-265.

D. Dill. “Timing assumptions and verification of finite-state concurrent systems”. In:
Proc. Automatic Verification Methods for Finite State Systems. Ed. by J. Sifakis.
Vol. 407. LNCS. Springer, 1990, pp. 197-212.

E.-L. Dogaru and V. Lavric. “Dynamic Water Network Topology Optimization of
Batch Processes”. In: Industrial € Engineering Chemistry Research (Aug. 2011).

F. Y. Edgeworth. “The Mathematical Theory of Banking”. In: Journal of the Royal
Statistical Society 51 (1) (1888), pp. 113-127.

A. Eles. “Decision supporting software for the scheduling of batch processes (In
Hungarian, original title: Utemezési feladatmegoldd modszer valasztasat tamogato
szoftver)”. Bachelor thesis. Faculty of Information Technology, University of Pan-

nonia, Jan. 2014.

S. Ferrer-Nadal, E. Capon-Garcia, C. A. Méndez, and L. Puigjaner. “Material transfer
operations in batch scheduling. A critical modeling issue”. In: Industrial € Engineer-
ing Chemistry Research 47 (2008), pp. 7721-7732.

C. A. Floudas and X. Lin. “Continuous-time versus discrete-time approaches for
scheduling of chemical processes: a review”. In: Computers & Chemical Engineering
28.11 (Oct. 2004), pp. 2109-2129.

F. Friedler, K. Tarjan, Y. W. Huang, and L. T. Fan. “Graph-Theoretic Approach to
Process Synthesis: Axioms and Theorems”. In: Chem. Engng Sci. 47 (1992), pp. 1973~
1988.

F. Friedler, K. Tarjan, Y. Huang, and L. Fan. “Graph-theoretic approach to process
synthesis: Polynomial algorithm for maximal structure generation”. In: Computers €
Chemical Engineering 17.9 (Sept. 1993), pp. 929-942.

F. Friedler, J. B. Varga, E. Feher, and L. T. Fan. “Nonconvex Optimization and
Its Applications, State of the Art in Global Optimization, Computational Methods
and Applications”. In: ed. by C. A. Floudas and P. M. Pardalos. Kluwer Academic
Publishers, 1996. Chap. Combinatorially Accelerated Branch-and-Bound Method for
Solving the MIP Model of Process Network Synthesis, pp. 609-626.



150

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

BIBLIOGRAPHY

F. Friedler, J. Varga, and L. Fan. “Decision-mapping: A tool for consistent and com-
plete decisions in process synthesis”. In: Chemical Engineering Science 50.11 (June
1995), pp. 1755-1768.

C. D. Geiger, K. G. Kempf, and R. Uzsoy. “A Tabu search approach to scheduling
an automated wet etch station”. In: Journal of Manufacturing Systems 16.2 (1997),
pp. 102-116.

M. C. Georgiadis and L. G. Papageorgiou. “Optimal scheduling of heat-integrated
multipurpose plants under fouling conditions”. In: Applied Thermal Engineering 21.16
(Nov. 2001), pp. 1675-1697.

M. Ghaeli, P. A. Bahri, P. Lee, and T. Gu. “Petri-net based formulation and algorithm
for short-term scheduling of batch plants”. In: Computers & Chemical Engineering
29.2 (Jan. 2005), pp. 249-2509.

J. F. Gouws and T. Majozi. “Usage of inherent storage for minimisation of wastewater
in multipurpose batch plants”. In: Chemical Engineering Science 64.16 (Aug. 2009),
pp. 3545-3554.

R. Grau, M. Graells, J. Corominas, A. Espuna, and L. Puigjaner. “Global strategy for
energy and waste analysis in scheduling and planning of multiproduct batch chemical
processes”. In: Computers € Chemical Engineering 20.6-7 (1996), pp. 853-868.

[. E. Grossmann. “Review of Nonlinear Mixed-Integer and Disjunctive Programming
Techniques”. In: Optimization and Engineering 3 (2002), pp. 227-252.

[. Halim and R. Srinivasan. “Sequential methodology for integrated optimization of

energy and water use during batch process scheduling”. In: Computers & Chemical
Engineering 35.8 (Aug. 2011), pp. 1575-1597.

I[. Halim and R. Srinivasan. “Sequential Methodology for Simultaneous Batch Process

Scheduling and Water Reuse Optimization”. In: Chemical Engineering Transactions
21 (2010), pp. 727-732.

M. Hegyhéati, T. Majozi, T. Holczinger, and F. Friedler. “Practical infeasibility of
cross-transfer in batch plants with complex recipes: S-graph vs MILP methods”. In:
Chemical Engineering Science 64.3 (2009), pp. 605-610.

M. Hegyhati and F. Friedler. “Combinatorial Algorithms of the S-Graph Framework
for Batch Scheduling”. In: Industrial & Engineering Chemistry Research 50.9 (May
2011), pp. 5169-5174.

M. Hegyhati and F. Friedler. “In-Depth Study and Comparison of S-Graph Frame-
work and Precedence Based MILP Formulations for Batch Process Scheduling”. In:
AIChE Annual Meeting. Oct. 2011.



BIBLIOGRAPHY 151

48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

M. Hegyhati and F. Friedler. “Overview of Industrial Batch Process Scheduling”. In:
Chemical Engineering Transactions 21, Jiri Klemes and Hon Loong Lam and Petar
Varbanov (2010), pp. 895-900.

M. Hegyhati and F. Friedler. “Tools of Discrete Event Systems for Batch Process
Scheduling”. In: CAPE forum. Veszprem, Hungary, Mar. 2013.

M. Hegyhati, T. Holczinger, A. Szoldatics, and F. Friedler. “Combinatorial Approach
to Address Batch Scheduling Problems with Limited Storage Time”. In: Chemical
Engineering Transactions 25 (2011), pp. 495-500.

T. Holczinger, J. Romero, L. Puigjaner, and F. Friedler. “Scheduling of Multipurpose
Batch Processes with Multiple Batches of the Products”. In: Hung. J. Ind. Chem. 30
(2002), pp. 305-312.

T. Holczinger. “Method for scheduling non-intermediate storage batch process sys-
tems”. PhD thesis. Doctoral School of Information Science and Technology - Univer-

sity of Veszprem, 2004.
T. Holczinger. OWI ZALA igényfelmérés. Tech. rep. University of Pannonia, 2008.

T. Holczinger, M. Hegyhati, and F. Friedler. “Simultaneous Heat Integration and
Batch Process Scheduling”. In: Chemical Engineering Transactions 29 (2012), pp. 337
342.

T. Holczinger, T. Majozi, M. Hegyhati, and F. Friedler. “An automated algorithm for
throughput maximization under fixed time horizon in multipurpose batch plants: S-
Graph approach”. In: Computer Aided Chemical Engineering. Computer Aided Chem-
ical Engineering 24 (2007). Ed. by V. Plesu and P. S. Agachi, pp. 649-654.

M. G. Terapetritou and C. A. Floudas. “Effective continuous-time formulation for
short-term scheduling. Part 1. Multipurpose batch processes”. In: Industrial & Engi-
neering Chemistry Research 37 (1998), pp. 4341-4359.

M. G. Terapetritou and C. A. Floudas. “Short Term Scheduling: New Mathematical
Models vs Algorithmic Improvements”. In: Computers € Chemical Engineering 22
(1998), S419-S426.

J. Jackson. “An Extension of Johnson’s Results on Job Lot Scheduling”. In: Naval
Research Logistics Quarterly 3 (1956), pp. 201-203.

Z. Jia and M. G. Ierapetritou. “Generate Pareto optimal solutions of scheduling
problems using normal boundary intersection technique”. In: Computers € Chemical
Engineering 31.4 (Feb. 2007), pp. 268-280.

D. B. Johnson. “Finding all the elementary circuits of a directed graph”. In: STAM
Journal of Computing 4.1 (Mar. 1975), pp. 77-84.

S. Johnson. “Optimal Two and Three-Stage Production Schedules with Setup Times
Included”. In: Naval Research Logistics Quarterly 1 (1954), pp. 61-67.



152

62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

BIBLIOGRAPHY

I. Karimi, Z. Y. Tan, and S. Bhushan. “An improved formulation for scheduling an
automated wet-etch station”. In: Computers & Chemical Engineering 29.1 (2004),
pp. 217-224.

0. A. Kilic, D. P. van Donk, and J. Wijngaard. “A discrete time formulation for
batch processes with storage capacity and storage time limitations”. In: Computers
& Chemical Engineering 35 (2011), pp. 622-629.

S. B. Kim, H.-K. Lee, [.-B. Lee, E. S. Lee, and B. Lee. “Scheduling of non-sequential
multipurpose batch processes under finite intermediate storage policy”. In: Computers
& Chemical Engineering 24.2-7 (July 2000), pp. 1603-1610.

J. Klemes, F. Friedler, I. Bulatov, and P. Varbanov. Sustainability in the Process In-
dustry: Integration and Optimization: Integration and Optimization. Green manufac-
turing & systems engineering. McGraw-Hill Education, 2010. 1SBN: 9780071605557.

E. Kondili, C. Pantelides, and R. Sargent. “A general algorithm for short-term schedul-
ing of batch operations—I. MILP formulation”. In: Computers & Chemical Engineering
17.2 (Feb. 1993), pp. 211-227.

G. M. Kopanos, J. M. Lainez, and L. Puigjaner. “An Efficient Mixed-Integer Linear
Programming Scheduling Framework for Addressing Sequence-Dependent Setup Is-
sues in Batch Plants”. In: Industrial & Engineering Chemistry Research 48.13 (July
2009), pp. 6346-6357.

G. M. Kopanos, C. A. Mendez, and L. Puigjaner. “Solving Scheduling Problems in a
Multi-stage Multi-product Batch Pharmaceutical Industry”. In: Chemical Engineer-
ing Transactions 21 (2010), pp. 511-516.

G. M. Kopanos and L. Puigjaner. “Simultaneous Batching and Scheduling in Multi-
product Multi-stage Batch Plants through Mixed-Integer Linear Programming”. In:
Chemical Engineering Transactions 21 (2010), pp. 505-510.

G. M. Kopanos, L. Puigjaner, and C. T. Maravelias. “Production Planning and
Scheduling of Parallel Continuous Processes with Product Families”. In: Industrial
& Engineering Chemistry Research (2011).

B. Kovacs. “Extension of the S-graph solver for AWS problems (In Hungarian, orig-
inal title: S-graf megold6 tovabbfejlesztése az automated wet-etch station feladat
kezelésére)”. Bachelor thesis. Faculty of Information Technology, University of Pan-
nonia, 2014.

J. M. Lainez, M. Hegyhati, F. Friedler, and L. Puigjaner. “Using S-graph to address
uncertainty in batch plants”. In: Clean Technologies and Environmental Policy 12.2
(2010), pp. 105-115.

B. Lee and G. Reklaitis. “Optimal scheduling of cyclic batch processes for heat
integration—I. Basic formulation”. In: Computers & Chemical Engineering 19.8 (Aug.
1995), pp. 883-905.



BIBLIOGRAPHY 153

[74]

[75]

[76]

7]

78]

[79]
[80]

[81]

[82]

83]

[84]

[85]

[86]

B. Lee and G. Reklaitis. “Optimal scheduling of cyclic batch processes for heat
integration-I1. Extended problems”. In: Computers ¢ Chemical Engineering 19.8
(Aug. 1995), pp. 907-931.

J. Liand C. A. Floudas. “Optimal Event Point Determination for Short-Term Schedul-
ing of Multipurpose Batch Plants via Unit-Specific Event-Based Continuous-Time
Approaches”. In: Industrial €& Engineering Chemistry Research 49.16 (Aug. 2010),
pp. 7446-7469.

Z. Li and M. Ierapetritou. “Process scheduling under uncertainty: Review and chal-
lenges”. In: Computers & Chemical Engineering 32.4-5 (Apr. 2008), pp. 715-727.

B. Linnhoff and J. R. Flower. “Synthesis of heat exchanger networks: I. Systematic
generation of energy optimal networks”. In: AIChE Journal 24.4 (1978), pp. 633—642.

B. Linnhoff and J. R. Flower. “Synthesis of heat exchanger networks: II. Evolutionary
generation of networks with various criteria of optimality”. In: AIChE Journal 24.4
(1978), pp. 642-654.

H. Liu and J. Wang. “A new way to enumerate cycles in graph”. In: 2006, p. 57.

T. Majozi. “Heat integration of multipurpose batch plants using a continuous-time
framework”. In: Applied Thermal Engineering 26.13 (Sept. 2006), pp. 1369-1377.

T. Majozi. “Minimization of energy use in multipurpose batch plants using heat
storage: an aspect of cleaner production”. In: Journal of Cleaner Production 17.10
(July 2009), pp. 945-950.

T. Majozi and F. Friedler. “Maximization of throughput in a multipurpose batch plant
under fixed time horizon: S-graph approach”. In: Industrial € Engineering Chemistry
Research 45 (2006), pp. 6713-6720.

T. Majozi and J. F. Gouws. “A mathematical optimisation approach for wastewater
minimisation in multipurpose batch plants: Multiple contaminants”. In: Computers
E&amp; Chemical Engineering 33.11 (Nov. 2009), pp. 1826-1840.

T. Majozi and X. X. Zhu. “A novel continuous-time MILP formulation for multipur-
pose batch plants. 1. Short-term scheduling”. In: Industrial € Engineering Chemistry
Research 40(25) (2001), pp. 5935-5949.

C. T. Maravelias and 1. E. Grossmann. “A New Continous-Time State Task Network
Formulation for Short Term Scheduling of Multipurpose Batch Plants”. In: Computer
Aided Chemical Engineering 14 (2003), pp. 215-220.

C. T. Maravelias. “On the combinatorial structure of discrete-time MIP formulations
for chemical production scheduling”. In: Computers &amp; Chemical Engineering 38
(Mar. 2012), pp. 204-212.



154

187]

[83]

[89]

[90]

[91]

[92]

193]

[94]

[95]

[96]

197]

(98]

BIBLIOGRAPHY

C. T. Maravelias and I. E. Grossmann. “A hybrid MILP/CP decomposition approach
for the continuous time scheduling of multipurpose batch plants”. In: Computers &
Chemical Engineering 28.10 (Sept. 2004), pp. 1921-1949.

A. Mascis and D. Pacciarelli. “Job-shop scheduling with blocking and no-wait con-
straints”. In: European Journal of Operational Research 143.3 (Dec. 2002), pp. 498—
517.

P. Mateti and N. Deo. “On Algorithms for Enumerating all Circuits of Graph”. In:
STIAM 5.1 (Mar. 1976), pp. 90-99.

C. A. Mendez and J. Cerda. “An MILP Continuous-Time Framework for Short-Term
Scheduling of Multipurpose Batch Processes Under Different Operation Strategies”.
In: Optimization and Engineering 4 (2003), pp. 7-22.

C. A. Mendez, G. P. Henning, and J. Cerda. “An MILP continuous-time approach to
short-term scheduling of resource-constrained multistage flowshop batch facilities”.
In: Computers & Chemical Engineering 25.4-6 (May 2001), pp. 701-711.

C. A. Mendez and J. Cerda. “An MILP framework for batch reactive scheduling
with limited discrete resources”. In: Computers € Chemical Engineering 28.6-7 (June
2004), pp. 1059-1068.

C. A. Mendez, J. Cerda, I. E. Grossmann, I. Harjunkoski, and M. Fahl. “State-of-the-
art review of optimization methods for short-term scheduling of batch processes”. In:
Computers & Chemical Engineering 30.6-7 (May 2006), pp. 913-946.

K. Nolde and M. Morari. “Electrical load tracking scheduling of a steel plant”. In:
Computers &amp; Chemical Engineering 34.11 (2010), pp. 1899-1903.

J. M. Novas and G. P. Henning. “A comprehensive constraint programming approach
for the rolling horizon-based scheduling of automated wet-etch stations”. In: Com-
puters & Chemical Engineering 42 (2012), pp. 189-205.

A. Orosz. “Analysis and acceleration of S-graph based throughput maximization al-
gorithms (In Hungarian, original title: S-graf alaptu throughput-maximalizalasi al-
goritmusok vizsgalata és tovabbfejlesztése)”. Bachelor thesis. Faculty of Information

Technology, University of Pannonia, 2012.

0. Osz. “Novel S-graph based algorithms for the scheduling of automated wet-etch
stations (In Hungarian, original title: Uj S-graf alapu algoritmusok kifejlesztése auto-
mated wet-etch station {itemezésére)”. Bachelor thesis. Faculty of Information Tech-

nology, University of Pannonia, 2014.

D. Pacciarelli and M. Pranzo. “Production scheduling in a steelmaking-continuous
casting plant”. In: Computers & Chemical Engineering 28.12 (Nov. 2004), pp. 2823—
2835.



BIBLIOGRAPHY 155

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

S. Panek, S. Engell, S. Subbiah, and O. Stursberg. “Scheduling of multi-product batch
plants based upon timed automata models”. In: Computers & Chemical Engineering
32.1-2 (Jan. 2008), pp. 275-291.

C. C. Pantelides. “Unified frameworks for optimal process planning and scheduling”.
In: Proceedings of the second international conference on foundations of computer-
aided process operations. Ed. by R.-p. D. W. T., H. J. C., and D. J. 1993, pp. 253—
274.

M. Pinedo. Scheduling: Theory, Algorithms and Systems. Ed. by -. Third. Prentice
Hall, July 2008, 678 pages.

J. M. Pinto and I. E. Grossmann. “A Continuous Time Mixed Integer Linear Pro-
gramming Model for Short Term Scheduling of Multistage Batch Plants”. In: Ind.
Eng. Chem. Res. 34.9 (Sept. 1995), pp. 3037-3051.

J. M. Pinto and I. E. Grossmann. “A logic-based approach to scheduling problems
with resource constraints”. In: Computers & Chemical Engineering 21.8 (Apr. 1997),
pp- 801-818.

E. Pistikopoulos. “Uncertainty in process design and operations”. In: Computers &
Chemical Engineering 19, Supplement 1 (1995), pp. 553-563.

Y. Pochet and F. Warichet. “A tighter continuous time formulation for the cyclic
scheduling of a mixed plant”. In: Computers & Chemical Engineering 32.11 (Nov.
2008), pp. 2723-2744.

G. Robertson, A. Palazoglu, and J. Romagnoli. “A multi-level simulation approach
for the crude oil loading/unloading scheduling problem”. In: Computers € Chemical
Engineering 35.5 (2011), pp. 817-827.

B. Roe, L. G. Papageorgiou, and N. Shah. “A hybrid MILP/CLP algorithm for mul-
tipurpose batch process scheduling”. In: Computers € Chemical Engineering 29.6
(May 2005), pp. 1277-1291.

J. Romero, A. Espuna, F. Friedler, and L. Puigjaner. “A New Framework for Batch
Process Optimization Using the Flexible Recipe”. In: Industrial and Engineering
Chemistry Research 42(2) (2003), pp. 370-379.

J. Romero, L. Puigjaner, T. Holczinger, and F. Friedler. “Scheduling Intermediate
Storage Multipurpose Batch Plants Using the S-Graph”. In: AIChE Journal 50(2)
(2004), pp. 403-417.

A. J. Ruiz-Torres, J. C. Ho, and F. J. Lopez. “Generating Pareto schedules with
outsource and internal parallel resources”. In: International Journal of Production
Economics 103.2 (Oct. 2006), pp. 810-825.



156

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

BIBLIOGRAPHY

K. Sankar and A. Sarad. “A time and memory efficient way to enumerate cycles
in a graph”. In: Intelligent and Advanced Systems, 2007. ICIAS 2007. 25-28 2007,
pp. 498-500.

E. Sanmarti, F. Friedler, and L. Puigjaner. “Combinatorial Technique for Short Term
cheduling of Multipurpose Batch Plants Based on Schedule-Graph Representation”.
In: Computer Aided Chemical Engineering 22 (1998), S847-850.

E. Sanmarti, T. Holczinger, L. Puigjaner, and F. Friedler. “Combinatorial framework
for effective scheduling of multipurpose batch plants”. In: AICRE Journal 48(11)
(2002), pp. 2557-2570.

R. Seid and T. Majozi. “A novel technique for prediction of time points for scheduling
of multipurpose batch plants”. In: Chemical Engineering Science 68.1 (Jan. 2012),
pp- H4-T1.

R. Seid and T. Majozi. “A robust mathematical formulation for multipurpose batch

plants”. In: Chemical Engineering Science 68.1 (Jan. 2012), pp. 36-53.
N. K. Shah and M. G. Terapetritou. “Integrated production planning and schedul-

ing optimization of multisite, multiproduct process industry”. In: Computers Eamp;
Chemical Engineering 37 (2012), pp. 214-226.

M. A. Shaik and C. A. Floudas. “Novel unified modeling approach for short-term
scheduling.” In: Industrial €& Engineering Chemistry Research 48(6) (2009), pp. 2947—
2964.

M. A. Shaik, C. A. Floudas, J. Kallrath, and H.-J. Pitz. “Production scheduling of
a large-scale industrial continuous plant: Short-term and medium-term scheduling”.
In: Computers & Chemical Engineering 33.3 (Mar. 2009), pp. 670-686.

J. Smidla and 1. Heckl. “S-graph based parallel algorithm to the scheduling of mul-
tipurpose batch plants”. In: Chemical Engineering Transactions 21 (2010), pp. 937—
942.

M. d. S. Soares, S. Julia, and J. Vrancken. “Real-time scheduling of batch systems
using Petri nets and linear logic”. In: Journal of Systems and Software 81.11 (Nov.
2008), pp. 1983-1996.

F. Sourd and O. Spanjaard. “A multi-objective branch-and-bound framework. Ap-
plication to the bi-objective spanning tree problem”. In: INFORMS Journal of Com-
puting 20.3 (2008), pp. 472-484.

S. Subbiah, T. Tometzki, S. Panek, and S. Engell. “Multi-product batch scheduling
with intermediate due dates using priced timed automata models”. In: Computers
&amp; Chemical Engineering 33.10 (Oct. 2009), pp. 1661-1676.



BIBLIOGRAPHY 157

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

A. Sundaramoorthy and I. Karimi. “A simpler better slot-based continuous-time for-
mulation for short-term scheduling in multipurpose batch plants”. In: Chemical En-
gineering Science 60.10 (May 2005), pp. 2679-2702.

N. Susarla, J. Li, and I. A. Karimi. “A novel approach to scheduling multipurpose
batch plants using unit-slots”. In: AIChE Journal 56.7 (2010), pp. 1859-1879.

R. Uma, J. Wein, and D. P. Williamson. “On the relationship between combinato-
rial and LP-based lower bounds for NP-hard scheduling problems”. In: Theoretical
Computer Science 361.2-3 (Sept. 2006), pp. 241-256.

V. T. Voudouris and I. E. Grossmann. “MILP model for scheduling and design of a
special class of multipurpose batch plants”. In: Computers & Chemical Engineering
20.11 (1996), pp. 1335-1360.

L. Wolsey. Integer Programming. Wiley-Interscience Series in Discrete Mathematics
and Optimization. Wiley, 1998. 1SBN: 9780471283669.

L. J. Zeballos, P. M. Castro, and C. A. Meendez. “Integrated Constraint Programming
Scheduling Approach for Automated Wet-Etch Stations in Semiconductor Manufac-
turing”. In: Industrial & Engineering Chemistry Research 50.3 (Feb. 2011), pp. 1705~
1715.

C. Zhao, J. Fu, and Q. Xu. “Production-ratio oriented optimization for multi-recipe
material handling via simultaneous hoist scheduling and production line arrange-
ment”. In: Computers € Chemical Engineering 50 (2013), pp. 28-38.

X. Zhao, B. O’neill, J. Roach, and R. Wood. “Heat Integration For Batch Processes:
Part 1: Process Scheduling Based on Cascade Analysis”. In: Chemical Engineering
Research and Design 76.6 (Sept. 1998), pp. 685-699.



Index

« field, [
S field, @
~ field, [
eS-graph, [13]

Multiproduct recipe,

active schedule, [1
algorithmic extension, 11l
Alternative graph model,

changeover time,
CIS policy, [4]
cleaning time,

Commmon Intermediate Storage policy, I4]

configuration,
Cross-transfer, A1

deterministic scheduling, @l
discrete-time models,

equipment based algorithm, BT]

feasible schedule, [7]

Finite Intermediate Storage policy, 4]
FIS policy, 14

Flow shop,

General multiproduct recipe, [0l
General Network recipe, [I0

infeasible schedule, [7]
Job shop,

Limited Wait storage policy, [
LW policy, [[4]

makespan,
makespan minimization,
MILP formulations, 21

model based extension,
model conversion, [[10]
model-feasible solution,
model-infeasible solution, B8l
model-optimal solution, B8]

Multipurpose recipe,

NIS policy, I4
No Intermediate Storage policy, [[4]
non-delay schedule, [7]

objective function,
offline scheduling, Bl
online scheduling, [
Open shop,
over-constraining,

overproduction cost,

practically feasible solution,
practically infeasible solution,
practically optimal solution,
Precedence based formulation,
Precedential recipe, [0
preemptions, [@

preventive scheduling,

reactive scheduling,

recipe,

recipe arc,

recipe graph,

Resource-Task-Network representation,
RTN representation,

S-graph,

schedule arc,

schedule graph,

semi-offline scheduling,
Simple multiproduct recipe,

158



INDEX 159

Single stage recipe, [0

solution, 37

SSN representation, [I3]

Start-Stop formulation,
State-Task-Network representation,
STN representation,

stochastic scheduling,

storage policy, I3

subprocess,

task based algorithm, [31]

throughput maximization,

time discretization based techniques,
Time point based formulation,
Timed Place Petri Net,

Timed Priced Automata,

transfer time,

two-stage approach,

UIS policy, I4

under-constraining,

underproduction cost,

Unit piping,

Unlimited Intermediate Storage policy, 4]
Unlimited Wait storage policy, [4]

UW policy, I4

UW-relaxation, [71]

Zero Wait storage policy, [[4
ZW policy, 4



	Abstract
	Abstract in Hungarian
	Achnowledgements
	Preface
	Scheduling problems
	Basic scheduling problems
	Problem classes
	Classification of solutions of scheduling problems
	Approaches and complexity

	Scheduling problems of chemical batch processes
	Recipes and example problems
	Storage policies
	Objective functions
	Common additional parameters
	Representation of a schedule


	Mathematical tools for batch scheduling
	MILP formulations
	Time discretization based formulations
	Precedence based formulations

	Analysis based tools
	S-graph
	S-graph representation
	Algorithm for makespan minimization
	Extensions and developments of the S-graph framework


	Critical modeling issues
	Minimal sufficient number of time points
	Cross transfer
	Other issues
	Long tasks
	Time point synchronization

	Summary and concluding remarks

	Throughput maximization with S-graph
	Main algorithm for revenue maximization
	Subroutines for the algorithm
	The select_remove method
	The update method
	The feasible method

	Flexible batch sizes
	Empirical tests
	Pharmaceutical case study
	Agrochemical example
	Literature example

	Summary and concluding remarks

	LW and ZW policies in the S-graph framework
	Auxilary LP model
	Combinatorial approach with negative weighted arcs
	Combinatorial approach without negative weights
	Recursive search
	Auxilary graph
	Model-level conversion of LW problems to ZW

	Comparison of approaches
	Summary and concluding remarks

	Maximizing expected profit
	Problem definition
	S-gaph based approaches
	Preventive scheduling with fixed batch sizes
	Preventive scheduling with variable batch sizes
	Two stage approach

	Extended approaches for recipes with multiple products
	Preventive scheduling with fixed batch sizes
	Deterministic scheduling for variable batch sizes
	Preventive scheduling with variable batch sizes
	Two stage approach

	Continuous probability distribution
	Preventive case with fixed batch sizes
	Preventive case with flexible batch sizes

	Test results and coments
	Summary and concluding remarks

	Generalized S-graph model: the Event S-graph
	Modeling difficulties with the original framework
	Transfer times
	Waiting before production
	Continuous processes and multiple resources

	Scheme of optimization with the S-graph framework
	Mathematical description of the eS-graph model
	Analysis of the original S-graph model
	General concept of the eS-graph model
	Formal definitions

	Modeling scheduling problems with the eS-graph
	Makespan minimizer for the eS-graph
	Summary and concluding remarks

	Environment for comparisons
	Nomenclature
	Full tables of test results
	Throughput maximization
	Pharmaceutical case study
	Agrochemical example
	Literature example

	Zero-wait test results
	Stochastic test results

	References
	Index



