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Supervisor: Botond Bertók
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B́ıráló neve: .................................................. (igen / nem)
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Kivonat

A P-gráf módszertan ipari alkalmazásai

Döntéshozói szinten a matematikai programozási modellek alkalmazása mindennapos

a különböző ipari alkalmazásokban. Számos olyan algoritmus és megoldási módszer

áll a döntéshozók rendelkezésére, amelyek seǵıtségével egy adott probléma egzaktan,

heurisztikák alkalmazása nélkül megoldható. Ennek ellenére még az egzakt módszerek

által adott eredmény sem feltétlenül optimális, hiszen lehet, hogy a kiindulási modell

hibásan van megkonstruálva.

A P-gráf módszertant Friedler és szerzőtársai dolgozták ki a 90-es évek elején

komplex vegyipari termelőrendszerek optimalizálására. Formálisan bizonýıtott, hogy

a módszertan által generált matematikai programozási modell garantáltan tartal-

mazza a feladat optimális megoldását.

A dolgozatban bemutatásra kerül, hogy a P-gráf módszertannal nemcsak komp-

lex vegyipari termelőrendszerek, hanem egyéb ipari, pl. logisztikai alkalmazások is

modellezhetőek, mint a jármű-hozzárendelés, vagy a fuvarszervezés. Dolgozatomban

bizonýıtom, hogy az ı́gy generált matematikai modellek garantáltan tartalmazzák a

feladat optimális megoldását.

A P-gráf módszertan seǵıtségével egyéb ipari alkalmazások, mint pl. a reakcióút-

azonośıtás is modellezhető. A dolgozat megmutatja, hogy a reakcióút-azonośıtásban

használt fogalmak, mint a direkt út, az extrém út, vagy a strukturálisan minimális út

ekvivalensek. A feladat alternat́ıv megfogalmazásai más-más megoldó módszerekhez

vezettek. A jelen dolgozatban bemutatott bizonýıtás a feladatok ekvivalenciájáról új

utat nyit a megoldó módszerek szinergikus továbbfejlesztésére is.
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Abstract

Industrial applications of the P-graph Framework

It is common practice by decision makers to use mathematical programming models

in various industrial applications. Several algorithms and solution methods exist

which render it possible to solve a given problem without any heuristics. However,

even a solution yielded by these exact methods may not be optimal since the initial

mathematical model may be poorly constructed.

The P-graph framework was developed by Friedler and his associates in the early

nineties for the optimization of complex chemical systems. It is formally proven

that the algorithm generated by the framework contains the global optimum of the

problem.

In this work it will be shown that besides the chemical systems the P-graph

framework can be used to model other industrial applications like vehicle scheduling

or vehicle routing. In this work I will prove that the generated mathematical models

contain the global optimum of the problem.

With the aid of the P-graph framework it is possible to model the reaction-pathway

identification problem as well. This work will show, that the concepts used in reaction-

pathway identification, like direct pathway, extreme pathway and structurally mini-

mal pathway are equivalent. The different concepts lead to different solution methods.

However, this new result lays the foundations for new solution methods which combine

the different concepts.
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Abstrakt

Den industriella applikationen av P-graf modellen

Gällande beslutstagande i användningen av den industriella applikationen s̊a är mate-

matiska programmeringsmodeller vanligt förekommande. Det finns ett flertal algorit-

mer och lösningsmetoder, med vilka problemet i sig exakt kan lösas, utan n̊agot behov

av heuristiker. Trots detta är resultaten av de exakta metoderna inte nödvändigtvis

optimala, för det är möjligt att utg̊angsmodellen är konstruerad p̊a ett fel sätt.

För att optimalisera komplexa kemiska applikationer, konstruerade Friedler och

hans författarkollegor P-graf metoden i början av 90-talet. Det är formellt bevisat att

den matematiska programmeringsmodell som genereras av denna metod, garanterat

inneh̊aller uppgiftens optimala lösning.

I redovisningen kartlägger jag att P-graf modellen inte enbart behöver användas

till att modellera komplexa kemiska system, utan ocks̊a till att modellera andra ap-

plikationer inom logistik, liksom fordonsschemaläggning eller fordonsdirigering. I re-

dovisningen visar jag även att de matematiska modeller som är genererade p̊a detta

sätt kommer säkerligen att inneh̊alla uppgiftens optimala lösning.

Med hjälp av P-graf metoden blir det ocks̊a möjligt att modellera reaktionsvägens

problematik. Redovisningen p̊apekar att de begrepp som används till att identifiera

vägen, liksom “direkt väg”, “extrem väg” och “den strukturellt minimala vägen” är

motsvarande. De olika idéerna leder till olika lösningsmetoder. Detta nya resultat

lägger grunden för nya lösningsmetoder, som förenar de olika idéerna.
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Chapter 1

Introduction

Mathematical programming models are often used in complex optimization problems

to support decision making. The range of applications is very wide, it includes health-

care, logistics, waste management, supply chain design and many more. The website

of informs [1] has a nice collection of success stories and Table 1.1 highlights some of

them. It is clear that often enormous savings were achieved through optimization.

However, these models are often constructed based on intuition and earlier expe-

rience. If the initial model is not constructed properly, even a complete enumeration

may miss the optimal solution since it may not be embedded in the model.

The P-graph framework was introduced more than two decades ago to solve com-

plex optimization problems arising in chemical and allied industries. The framework

is able to generate the mathematical model directly and systematically from the input

parameters. Moreover, it is formally proven, that the generated model contains the

global optimum of the problem.

The framework has been extended and adapted to solve various other practical

problems. In many cases this has been carried out by simply transforming the prob-

lems into a process-network synthesis problem and then they were solved by the

effective algorithms of the framework.

In this work it will be shown that the P-graph framework can be used to model

two common problems arising in the transportation industry, vehicle scheduling and

vehicle routing.

1
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Table 1.1: Success stories of Operations Research

Organization Problem Achievement

Texas Children’s Hospi-
tal

Minimizing Financial
Risk

Profitable revenue in-
crease of up to $17
million

U.S. Army Recruiting Reinventing U.S. Army
Recruiting

Savings of $204 million
from a $1 billion program

Compañ́ıa Sud Ameri-
cana de Vapores

Empty Container Logis-
tics Optimization

Empty container inven-
tory stocks were reduced
by 50%, CSAV saved $56
million

Waste Management Inc. Improve Route Efficiency Savings of $52 million
Eli Lilly & Co. Identifying and Neutral-

izing the Cause of Deadly
Side Effects of Anti-
cancer Drug

N/A - value of human life
is immeasurable

British Telecommunica-
tions

Dynamic Workforce
Scheduling

Savings of $150 million
in a year on operational
costs

Motorola Optimizing Parts Pur-
chasing Processes

During the first 18
months of the implemen-
tation, Motorola saved
$600 million

IBM Microelectronics Matching Assets to Sup-
ply Chain Demand

Asset utilization im-
provements of $80
million
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The P-graph framework was used earlier to solve the reaction-pathway identifi-

cation problem. This work expands these earlier results and it will show that the

different concepts used in reaction-pathway identification, like direct path, extreme

path and structurally minimal path are equivalent.

1.1 Aim

The main aim of this thesis is to utilize the P-graph framework to find the optimal

solution of industrial applications. Vehicle scheduling and vehicle routing are two

common problems often arising in the transportation industry. These problems are

often solved by mathematical programming but the quality of the solution yielded

by these models depends heavily on the quality of the model. If the initial model is

not constructed properly then even an exact solution method may miss the optimum.

Since it is formally proven that mathematical programming model generated by the

P-graph framework contains the global optimum of the problem it is subservient to

use the framework to find the optimum of these logistic problems.

• The P-graph framework should be adapted to vehicle scheduling problems. The

easiest way is perhaps the transformation of the vehicle scheduling problem into

a process-network synthesis problem. Thus, a P-graph model should be designed

which properly expresses the unique characteristics of the vehicle scheduling

problem. Furthermore, an algorithm should be designed, which systematically

generates this model from the vehicle scheduling problem. The optimal solution

of the problem is embedded in this model and it could be solved by the effective

algorithms of the P-graph framework or by any general mathematical solver.

• The P-graph framework should be adapted to vehicle routing problems, specifi-

cally for the capacitated vehicle routing problem. Essentially, a P-graph model

should be designed which properly expresses the unique characteristics of the ve-

hicle scheduling problem. Furthermore, an algorithm should be designed which

systematically generates this model from the vehicle scheduling problem. The

optimal solution of the problem is embedded in this model and it could be solved
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by the effective algorithms of the P-graph framework or by any general math-

ematical solver. The procedure involves the conversion of the vehicle routing

problem into a process-network synthesis problem.

Another practical problem often arising in applications related to chemical sys-

tems is the so-called reaction-pathway identification. The P-graph framework has

been adapted earlier to solve this problem, which slightly differs from the typical

optimization problems. Here, those earlier results will be extended.

The structurally minimal pathway is a central concept in the P-graph model of

the reaction-pathway identification problem. There are several similar concepts in the

literature and the aim here is to investigate the exact nature of these relationships.

• The exact relationship between the concept of the structurally minimal pathway

and the concept of the direct path should be determined.

• The exact relationship between the concept of the structurally minimal pathway

and the concept of the extreme pathway should be determined.

1.2 Emphasizing my own results

The major part of this thesis is written in passive voice. My own results are em-

phasized unambigously at the end of each chapter in the respective summary. These

results are collected and conceived again at the end of the thesis. Whenever I used

a previous result of someone else I made a citation and indicated the source in the

bibliography.

1.3 Notations

This thesis covers many different topics with many different notations. However, the

following guideline is generally true unless explicitly stated otherwise.

• A calligraphic letter or a sequence of calligraphic letters always denotes a set.

For example P , R O, m , o, solutions, subproblems all denotes sets.
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• An italic lowercase letter denotes an integer or a real variable. For example

x, y, i, j, k all denote variables. However, an italic lowercase latter followed by

brackets denotes a function, for example fR(m), ls(Ti), te(Ti), etc.

• An italic uppercase letter denotes an identifier which is used to denote materials

or operating units. For example A,B,C,EUR,CO2.

• Italic greek letters denote structural mappings in the P-graph framework, like

ϕ, ψ, ν, ω, ϕ+, ψ− but there are also exceptions, like α, β which denote sets.

In latter chapters greek letters may denote stoichiometric coefficients, like λ, γ.

The meaning can be always determined from the context unambigously.

• A boldface lowercase letter denotes a vector, for example x,y,λ. A boldface

uppercase letter denotes a matrix for example A,D.



Chapter 2

Problem definitions

This chapter introduces the four main topics of the thesis, all of them related to

combinatorial optimization. All of these problems are of utmost practical importance

and extremely challenging. Process-network synthesis and reaction-pathway identi-

fication are ubiquitous in chemical and allied industries while vehicle routing and

vehicle scheduling are everyday problems in distribution and logistics.

2.1 Process-network synthesis

Essentially, every product of the chemical and allied industries are manufactured

by process networks. Thus, such problems are ubiquitous in chemical and allied

industries and they have enormous practical importance.

2.1.1 General introduction to process-network synthesis

In a process network, raw materials are consumed through various chemical, physical

and biological transformations to yield desired products. The equipment or func-

tional units accomplishing these transformations are termed operating units. Hence,

a process network can be viewed as a system of operating units, each operating unit

transforming a specified number of input materials with known quality into a spec-

ified number of output materials by altering their physical, chemical, or biological

properties.

6
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Given a process system, the aim of process-network synthesis in short is to deter-

mine the optimal structure of the system and to identify the optimal types, config-

urations and capacites of the functional units performing various operations within

the system [99, 132]. The role of process synthesis is to enhance profitability through

the reduction of material and energy consumption. It is well documented [120], that

effective process synthesis can reduce the energy consumption by 50% and net-present

cost by 35%.

A process-network or process synthesis problem is defined by the available raw

materials, candidate operating units and desired products. Various other parameters

for the operating units and materials are also given. These parameters include the

coefficients for the functions expressing the costs of operating units depending on

their load, and upper bounds on their respective capacities. The relations between

the materials and operating units, i.e., the consumption rates of input and production

rates of output materials by the operating units are also defined in the problem

specification. The aim is to determine the optimal network where the objective can

be either cost minimization or profit maximization.

2.1.2 Complexity of process-network synthesis

To determine the optimal network, the structure of the entire process and the config-

urations of the operating units constituting the process should be synthesized simul-

taneously because their performances influence each other. However, this is almost

impossible to do so, since the problem is extremely complex and computationally very

demanding. This follows from the dual nature of the problem, which is both contin-

uous and discrete at the same time and the latter leads to profound combinatorial

complexity.

The present work focuses solely on the so-called macroscopic phase which is often

termed in itself as process-network synthesis. This phase involves the determination

whether a candidate operating unit is present in the optimal structure of the process

or not and consequently the existence or absence of connections between the candidate

operating units.
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Note, that the complexity of the problem magnifies exponentially due to its com-

binatorial nature, since the optimal network has to be found among 2n − 1 possible

alternative networks where n denotes the number of candidate operating units. For

instance, when n is 35, 2n − 1 yields 34.36 ×109 which is a huge number, and it

essentially doubles, when n is increased to 36.

It is easy to see intuitively that process-network synthesis problems are really

challenging. It has been also proven formally, that the process-network synthesis

problem is equivalent to the set covering problem [69]. Since the set covering problem

is one of Karp’s original 21 NP-complete problems [73], it is a direct corollary of the

theorem that the process-network synthesis problem is NP-complete.

2.1.3 Popular methods for process-network synthesis

Process-network synthesis has been studied extensively in the last few decades. As

a result, numerous papers have been published and a huge number of methods have

been devised to solve synthesis problems.

Exact methods

The use of mathematical programming is very popular, see e.g. [3, 28, 53, 54, 55,

56, 57, 72, 74, 78, 80, 109, 119]. The inclusion and the exclusion of the candidate

operating units in the resultant models are usually expressed by integer variables.

Note, that the value of the objective function is often affected more drastically by the

integer than the continuous variables, i.e., the combinatorial part of the problem.

The generated models can be solved even by general purpose mathematical pro-

gramming solvers. This is one of the greatest advantage of these approaches, since

they can benefit from the rich tools of mathematical programming. As a result of

algorithmic developments and inclusion of achievements of computer science and soft-

ware engineering, the general purpose mathematical programming solvers available

today are very capable even on a desktop PC [91].
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Methods based on heuristic

However, practical process-network synthesis problems are often such complex that

the resulting mathematical models cannot be solved in reasonable time. Thus, heuris-

tic methods are also used frequently to determine near optimal networks in process

synthesis, like

• genetic algorithms [4, 39, 84, 131]

• simulated annealing [27]

• tabu search [87]

• memetic algorithms [126]

• many other heuristic methods [5, 29, 96].

Other methods

Some of the methods combine the two above approaches, resulting in so called hybrid

methods. Note, that this is only a small fraction of the papers published in the topic.

Since process-network synthesis is essentially an optimization problem, any method

designed to solve optimization problems is able to solve process-network synthesis

problems as well (e.g. dynamic programming [40]).

2.2 Vehicle scheduling

Vehicle scheduling often arises in industrial applications, perhaps most frequently in

public transportation. The scheduling of vehicles has become an extensively studied

topic in the last four decades. Numerous exact and heuristical methods and algo-

rithms have been published along with some well-known survey papers, see e.g. [19].

2.2.1 General introduction to vehicle scheduling

Vehicle scheduling begins at the strategic level with collecting or forecasting data of

customer demand. In the following step, based on the demand, the infrastructure of
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the transportation network is defined. Then routes and stop points for different lines

are established on the defined infrastructure. After that, particular trips are defined

for given lines. The timetable specifies for each trip a departure and an arrival time

as well as start and end stations. The further planning focuses on the efficient use of

the resources.

Given a set of timetabled trips with fixed travel (departure and arrival) times and

start and end locations as well as traveling times between all pairs of end stations, the

objective is to find an assignment of trips to vehicles such that each trip is covered

exactly once, each vehicle performs a feasible sequence of trips and the overall costs

are minimized [19].

2.2.2 Variants, modifications, extensions

The problem has many variants and extensions. For example, the operational costs

can be divided into fix (like investment) and operational (e.g. fuel) costs. In prac-

tice, operational costs are often expressed in various different ways and thus many

applications leave the minimization of operational cost as a secondary objective. Of

course, the problem can be extended with several additional requirements like

• The existence of multiple depots. The existence of an additional depot

extends the problem to NP-hard complexity [77, 110].

• A heterogeneous fleet. A fleet consisting of multiple vehicle types. In this

case special vehicle types have to be used for service and it is known to be NP-

hard even without multiple depots. If the trips are restricted such that they

could be serviced only by a subset of the vehicle types then a further extension,

called vehicle type groups is inserted [65].

• Time windows. In this case variable trip departure and arrival times are

considered. Even the simplest time windowed vehicle scheduling problem is

NP-complete, since in case of time windows a vehicle scheduling problem with

one vehicle and one depot is a traveling salesman problem with time windows.

Both discrete and continous time windows are possible [26, 76].



11

• Route constraints. It is possible to force a special property on the routes of a

feasible schedule. Typical route constraints are time restrictions on the vehicle

routes. These are considered, for example, for fuel restrictions or maintenance

intervals [59].

• etc.

2.2.3 Complexity of vehicle scheduling

If the vehicle scheduling problem has a single depot then it is relatively easy to solve

in the sense that it could be formulated as a problem for which polynomial time

algorithms exist. Models for solving the single depot case include the minimal de-

composition model, the assignment model, the transportation model and the network

flow model.

However, different variants, like the existence of multiple depots extend the prob-

lem to NP-hard complexity [15, 86]. In this case different locations for starting routes

are possible. In addition, it is a frequent constraint that a vehicle has to return to

its start depot at the end of its route. The multiple depot case is often modeled with

single and multi-commodity models and set partitioning models. Note, that these

models are also applicable to vehicle routing problems.

2.2.4 Popular models for vehicle scheduling

This section introduces the most popular methods, each of them with a short descrip-

tion. They are grouped based on the number of depots defined in the problem.

Single depot case

The VSP for a single depot is relatively “easy” to solve in the sense that it could be

formulated as a problem for which polynomial time algorithms are known [19, 41, 101].

Perhaps the most popular models are the following:

• Minimal decomposition models. These models typically do not respect

operational costs. Another drawback of these kind of models that no upper
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bound can be set on the fleet size.

• Assignment models. These models handle operational costs and formulates

the problem as an assignment problem. Can be represented by bipartite graphs.

• Transportation models. In the literature some transportation models are of-

ten called quasi-assignment models and specialized assignment algorithms have

been adapted to this problem. Can be represented by bipartite graphs.

• Network flow models. In case of network flow models the solution can be

obtained by solving a specific minimum cost flow problem.

Multiple depot case

In this case, different depots for starting bus routes are possible. As an additional

restriction each vehicle has to return to its start depot at the end of its route. The

multiple depot case is proven to be NP-hard [35, 58].

• Single-commodity models. The problem is modeled by a graph where the

nodes represent the trips, depots and vehicles. The objective is to find a mini-

mum cost set of elementary circuits, such that each node is covered by exactly

one circuit, each circuit has exactly one depot/vehicle node and the number of

circuits with a node belonging to a depot never exceeds the capacity of that

depot [20].

• Multi-commodity models. In general, the multi-commodity models can be

considered as the extensions of the network flow models of the single depot ve-

hicle scheduling problems. There is an independent network for each depot and

the multi-commodity models are based on the combination of these networks

(which is a multigraph) [94].

• Set partitioning models. The main idea behind the set partitioning models is

to enumerate all feasible routes for the vehicles and then choose a proper subset

of these routes that satisfies all constraints. In contrast with other formulations



13

duty related constraints (like time or fuel restrictions) can be easily recognized

[17].

The quality of the LP is an important factor for any solution method in obtaining

the optimal integer solution. The single-commodity models provide weaker LP-bound

than the connection-based multi-commodity flow formulation which has the same

bound quality as the set partitioning model.

2.3 Vehicle routing

Since the transportation process involves all stages of the production and distribution

systems and represents a relevant component (generally from 10% to 20%) of the final

cost of the goods, the vehicle routing problem is an extremely important practical

problem. The large number of real-world applications, both in North America and

in Europe, have widely shown that the use of computerized procedures for the distri-

bution process planning produces substantial savings (generally from 5% to 20%) in

the global transportation costs. It is easy to see that the impact of these savings on

the global economic system is significant [125].

2.3.1 General introduction to vehicle routing

The Vehicle Routing Problem calls for the determination of the optimal set of routes

to be performed by a fleet of vehicles to serve a given set of customers, and it is one

of the most important and studied combinatorial optimization problems. In most

of the cases it is assumed that some goods must be distributed between depots and

customers.

The distribution of goods is carried out by a set of vehicles, which are located in

one or more depots and perform their movements by an appropriate road network.

To solve the vehicle routing problem it is necessary to determine a set of routes,

each performed by a single vehicle that starts and ends at its own depot, such that

all customer demand is satisfied with respect to the operational constraints and the

global transportation cost is minimized.
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The road network is usually represented by a directed graph. The arcs of the

graph represent the road sections while the nodes of the graph may represent depots,

customers or road junctions. If every arc of the graph can be traversed in both

directions then it is possible to represent the road network with an undirected graph.

There is a cost associated with each arc which denotes the length or the travel time

of the given road section. Note, that this parameter may depend on the vehicle type

or on the period during the road section is traversed. Unlike the road network which

is more or less the same in each application, the characteristics of the customers and

the vehicle fleet are often determined by the given application.

2.3.2 Variants, modifications, extensions

There are many different variants of the vehicle routing problem and nearly all of them

based on some real life application. In many cases it is assumed that some goods must

be distributed between depots and customers. However, typical applications may also

include waste collection, school bus routing, dial-a-ride systems and many more. Most

of the applications can be modeled by the following variants of the vehicle routing

problem:

• Capacitated vehicle routing. The capacity refers to the capacity of the

cargo hold of vehicles. This is the simplest and most studied variant of vehicle

routing.

• Distance constrained vehicle routing. A global constraint imposed on the

fleet, usually on the distance or on the time.

• Vehicle routing with time windows. Each customer must be served in an

associated time window.

• Vehicle routing with backhauls. The customer set is partitioned into two

subsets. The elements of the first subset are the linehaul customers, each of

them requiring a given quantity of product to be delivered. The second subset

contains the backhaul customers, where a given quantity of inbound product
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must be picked up. All linehaul customers must be served before any backhaul

customer is served.

• Vehicle routing with pickup and delivery. A set of transportation requests

have to be satisfied. Each request is defined by a pickup point, the corresponding

delivery point and a demand to be transported between these locations.

2.3.3 Complexity of vehicle routing

It is easy to see that the vehicle routing problem is a generalization of the well-known

travelling salesman problem which is known to be NP-hard (Note that the travelling

salesman problem is also a generalization, namely of the Hamiltionian cycle problem

which is one of Karp’s original 21 problems [73]). As the different variants of the

problem become more and more convoluted, the complexity of the problem increases

as well. However, this does not mean, that an algorithm, that can solve a complicated

variant (like vehicle routing with time windows) performs well on other “simpler” (like

capacitated vehicle routing) variants. On the contrary, practice shows that different

variants need different solution methods and algorithms.

2.3.4 Popular methods for vehicle routing

Due to its practical importance, vehicle routing is an extensively studied branch of

operations research. Exact and heuristic methods are also popular, for comprehensive

surveys see e.g. [30, 52, 82, 105, 125].

Exact methods

A typical vehicle routing problem can be formulated as an integer programming prob-

lem or a mixed-integer programming problem, see e.g. [7, 22, 25, 48, 83, 81]. The

proposed models take into account more and more characteristics of the real-world ap-

plications and the developed algorithms and implementations can find good solutions

for even industrial size problems in reasonable time.
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Methods based on heuristic

Real-life applications are often so convoluted that they cannot be solved by exact

methods. Thus, heuristic methods are also very popular and frequently used to solve

vehicle routing problems [51]. These methods include

• genetic algorithms [6, 108]

• tabu search [50, 124]

• ant-colony optimization [11, 134]

• simulated annealing [21, 100]

• many other heuristic methods [24, 106].

2.4 Reaction-pathway identification

Reaction-pathway identification plays a key role in the study of the kinetics of mech-

anisms of chemical or biochemical reactions [16]. For example, it is essential for

understanding the effects of external conditions on the rates of catalytic reactions.

Such understanding can be a basis for various applications, especially for designing

novel industrial chemical processes.

2.4.1 General introduction to reaction-pathway identification

Any chemical reaction consists of elementary reactions. Given the reactants and the

final products of the overall chemical reaction, the aim of reaction-pathway identi-

fication is to determine the most likely pathway i.e., interconnection between the

elementary reactions that yield the given final products from the precursors. Al-

though the knowledge of the rate, reversibility, equilibrium and the extent of the

reaction facilitates the ultimate identification of the definite mechanism, the reaction

pathway in itself contains no information about these parameters. Thus, the deter-

mination of a reaction pathway or mechanism consists of two phases for any given

overall reaction.
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In the first phase all of the feasible candidate mechanisms are identified and then

in the second phase the ultimate pathway or mechanism is selected from the candidate

mechanisms identified in the first phase. Those who are engaged in reaction-pathway

identification often deal with both phases. Both of these phases have their own unique

tasks and difficulties.

The first phase of reaction-pathway identification

Every reaction pathway leading from the precursors to the final products of the re-

action is a network of the elementary reactions constituting the pathway. In such

a network, each elementary reaction could contribute to the forward, reverse or no

step to the network. These three possibilites result in 59048, i.e., (310 − 1) possible

combinations even if the network consists of only ten elementary reactions. This may

result in hundreds of plausible networks from which the feasible candidate pathways

are to be identified.

Complexity

It is easy to see that this is indeed a mathematically and computationally challenging

problem. Furthermore, due to the relationship (which will be detailed later) between

the reaction-pathway identification problem and the process-network synthesis prob-

lem, the complexity of the reaction-pathway identification problem is NP-hard [16].

Due to the above, it is not a big surprise that the first phase of reaction-pathway

identification has drawn the attraction of relatively few researchers.

The second phase of reaction-pathway identification

The second phase is esentially based on the advancement of modern precision sen-

sors, high-speed computing methods and devices which resulted in the more accurate

measurements of the experimental parameters, efficient spectroscopic determination,

speedy simulation of mechanistic reaction-rate equations, reliable molecular dynamic

and quantum mechanical calculations, and robust multi-steady state or stability anal-

ysis. The resultant information from these experiments and observations is collected
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in huge knowledge and data bases.

In the second phase, the candidate pathways or mechanisms are virtually selected

from these knowledge and data bases by the researchers. Note, that in the light of

new experimental and computational results, such pathways and mechanisms could

be modified.

Interaction between the two phases of reaction-pathway identification

The latter approach has the definite possibility that a valid pathway or mechanism

may be easily overlooked. It is hard to eliminate this possibility on the basis of exper-

imental or computational results. To overcome this problem, all the valid candidate

mechanisms should be rigorously identified in the first phase. Thus, the two phases

of reaction-pathway identification should be executed successively and iteratively.

Moreover, the phases should not only undertaken sequentially, but interactively as

well.

It is not uncommon that the input elementary reactions to the first phase are

extracted from the data and knowledge bases generated by the expirements and ob-

servations in the second phase. The second phase could detect a previously unknown

active species contributing to the reaction under consideration which could result in

the addition of one or more elementary reaction or reactions to the first phase. Thus,

the synthesis of feasible candidate networks from all plausible elementary reactions

is the most rational approach for accomplishing the first phase of reaction-pathway

identification.

2.4.2 Existing methods

The first phase of reaction-pathway identification is solved by mathematical methods.

These methods have different theoretical backgrounds, like

• Linear algebra. The earliest methods were based on linear algebra [115, 116]

and this approach is still popular even today [123]. While these methods based

on linear algebra, they do not use linear algebraic bases to characterize a system
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of chemical reactions but some more refined concepts, like direct paths [64, 117]

or simplexes [122].

• Convex analysis. Convex analysis became very popular around 2000 when it

was extensively used for the analysis of metabolic networks [102, 112]. Perhaps

elementary flux modes [103, 114] and extreme pathways [104, 111, 113] are the

best known approaches.

• Graph theory. While these methods are heavily based on graph theory

[36, 37, 38], they also incorporate the elements of linear algebra and [31, 32]

mathematical programming [85, 89].

• Other methods. Methods based on other theoretical backgrounds have been

also used to accomplish the first phase, see e.g., [66, 92, 93]

Scientists engaged in the second phase usually have a background related to

catalysis, biochemistry or combustion science. Due to the industrial and practi-

cal significance of the subject matter, their number is vast and increasing, see e.g.

[18, 33, 34, 61, 62, 127, 128].



Chapter 3

The P-graph framework

This chapter overviews the main concepts and ideas behind the P-graph framework.

The framework was introduced in the early nineties to provide a mathematically

rigorous approach for complex optimization problems arising in chemical and allied

industries. Nowadays, as a result of nearly two decades of continous development it

is extended to solve various other combinatorial optimization problems often arising

in industrial applications.

3.1 Motivation

As it has been shown in section 2.1, mathematical programming methods are fre-

quently used to solve process-network synthesis problems. Moreover, these methods

are considered to be exact in contrast to heuristic methods. A typical method apply-

ing mathematical programming usually has the following steps:

1. Generate the mathematical model from the problem definition and the initial

data.

2. Solve the generated model by a solver.

3. Determine the optimal flowsheet from the solution of the mathematical pro-

gramming model.

20
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Note, that while the above procedure is considered to be exact, it does not ex-

clude heuristics entirely. The first step, the generation of the mathematical model is

often guided by intuition. While a heuristic method generates structures that can be

deduced from its rules, a mathematical programming method determines structures

embedded in the “superstructure”. Potentially optimal structures might be excluded

from consideration, if the heuristic rules or the initial superstructure is not sufficiently

complete.

This was demonstrated in [79]. For the extremely simple case, for the production of

pure products from one feed stream by simple and sharp separators, it has been always

assumed, but never rigorously proved, that the optimal structure of a separation

network cannot contain loops. While the assumption has probably been satisfied

for such a simple case, it may be invalid for some separation problems of practical

importance, such as the case of multiple feeds or multicomponent products. [79]

described a numerical example where the optimal structure of a separation system

contained a loop which demonstrated that recycling should be allowed in the minimum

cost separation system.

The P-graph framework provides an in-depth study of the fundamental math-

ematical properties of the superstructure and introduces the concept of “maximal

structure” which is analogous to the conventionally used term superstructure. The

framework directly and systematically, i.e., algorithmically constitutes the objective

function and the set of constraints from the input parameters. Based on mathemati-

cally rigorous definitions and theorems, it is formally proven that the global optimum

is included in the generated mathematical model. Moreover, the framework judi-

ciously exploits the structural features of the process to be synthesized which gives

rise to efficient algorithms which are readily implementable on computers.

3.2 Combinatorial foundations

In process-network synthesis, a material is uniquely defined by its composition, i.e., by

its components and their concentrations. The exact description may vary depending

on the desired level of abstraction and precision.
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Operating units are the functional units in a process network performing various

operations. Any operating unit can be specified by the set of its input materials and

the set of its output materials. If an operating unit is denoted by a pair (α,β), then

α is the set of inputs to and β is the set of outputs from the operating unit. An

operating unit is not defined unless its input and output materials are specified.

LetM be a given finite nonempty set of all materials to be taken into consideration

in the process synthesis.

Definition 3.2.1 (Synthesis problem) A synthesis problem is defined by the triplet

(P ,R ,O), where

P (⊂ M )

is a set of final products,

R (⊂ M , P ∩ R 6= ∅)

is a set of raw materials, and

O(⊆ ℘(M )× ℘(M ))

is a set of operating units (and ℘(M ) denotes the power set of the materials).

The relationships among the sets P ,R ,O appears to be very trivial from the stand-

point of chemical engineering. Still, it is essential to ensure mathematical rigor and

to the flawless execution of the computer algorithms for process-network synthesis.

3.3 The P-graph representation

Conventional graphs are suitable for analyzing a process structure, however, such

graphs are incapable of uniquely representing process structures in synthesis. The

examples in [44] demonstrate that the two most commonly used graphs in chemi-

cal engineering, digraphs and signal-flow graphs are semantically not rich enough to

faithfully represent a process structure. The former is not sufficient to uniquely rep-

resent individual materials and their relationship and the latter is not sufficient to

uniquely represent individual operating units and their relationship.
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3.3.1 Formal definition

To uniquely characterize a synthesis problem, a more sophisticated graph is required.

Thus, [44] proposed a special directed bipartite graph, the process graph (or P-graph

in short) to capture not only the syntactic but also the semantic contents of the

process structure. A graph is bipartite if its vertices can be partitioned into two

disjoint sets and no two vertices in the same set are adjacent. Thus a P-graph is

defined formally as follows.

Definition 3.3.1 (P-graph) Let m be a finite set and

o ⊆ ℘(m)× ℘(m). (3.3.1)

A P-graph is defined by a pair (m, o) where the vertices of the graph are the elements

of

m ∪ o (3.3.2)

and the arcs of the graph are the elements of

A = A1 ∪ A2 (3.3.3)

with

A1 = {(x, y) : y = (α, β) ∈ o and x ∈ α} (3.3.4)

and

A2 = {(y, x) : y = (α, β) ∈ o and x ∈ β}. (3.3.5)

Definition 3.3.2 (Structure of a system) Let m ⊆ M , o ⊆ O and o ⊆ ℘(m) ×

℘(m). The structure of this system is defined by P-graph (m , o).

3.3.2 Illustrative example

A material in the process is symbolized by a circle, designating an M-type vertex

while an operating unit is represented by a horizontal bar, designating an O-type

vertex. For further classification see Fig. 3.1.
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Operating unit 

Raw material

Product material

Intermediate material

Figure 3.1: P-graph symbols

For illustration, let P = {A}, R = {E,G} and O = {({B}, {A,D}), ({C}, {A,H}),

({D,E}, {B}), ({E, F}, {C}), ({G,H}, {F})}. The corresponding P-graph is depicted

on Fig. 3.2.

Since the elements of o are the pairs of some subsets of m , o satisfies (3.3.1). The

vertex set of this graph is V = {A,B,C,D,E, F,G,H, ({B}, {A,D}), ({C}, {A,H}),

({D,E}, {B}), ({E, F}, {C}), ({G,H}, {F})}. With these notations each arc in A1 is

from an M-type vertex to an O-type vertex (e.g. (B, ({B}, {A,D}))) and in A2 from

an O-type vertex to an M-type vertex (e.g. (({D,E}, {B}), B)).

The fundamental properties of the P-graph are mathematically rigorous and for-

mally proven. More of the basic definitions and many detailed proofs can be found

in [44].

3.4 Structural mappings

Both the combinatorial axioms and the combinatorial algorithms manipulating the

P-graphs can be formulated more concisely and perspicuously through structural

mappings. Given a P-graph (m ,o), the following structural mappings are defined.

Mapping ψ−(o) yields the set of materials of a process structure, each of which is

an inlet to at least one operating unit in set o:

ψ−(o) =
⋃

(α,β)∈o

α (3.4.1)

Mapping ψ+(o) is the pair of mapping ψ−(o) and thus yields the set of materials each
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of which is an outlet from at least one operating unit in set o:

ψ+(o) =
⋃

(α,β)∈o

β (3.4.2)

Mapping ψ(o) is the union of mappings ψ−(o) and ψ+(o) yielding the set of those

materials each of which is either an inlet to or an outlet from at least one operating

unit found in set o:

ψ(o) = ψ−(o) ∪ ψ+(o) (3.4.3)

Similar structural mappings can be defined on the materials to yield analog sets

of operating units. Mapping ϕ−(m) yields the set of operating units of a process

structure, each of which produces at least one material in set m :

ϕ−(m) = {(α, β) ∈ o : β ∩ m 6= ∅} (3.4.4)

Similarly, ϕ+(m) yields the set of operating units each of which consumes at least one

material in set m :

ϕ+(m) = {(α, β) ∈ o : α ∩ m 6= ∅}. (3.4.5)

The union of mappings ϕ−(m) and ϕ+(m) is mapping ϕ(m) yielding the set of oper-

ating units, each of which either produces or consumes at least one material in set

m :

ϕ(m) = ϕ+(m) ∪ ϕ−(m) (3.4.6)

Now let m1 and m2 be two sets of materials, and o be a set of operating units.

Then, relation ⇒o is defined as follows:

m1 ⇒o m2 if and only if m2 = ψ+(ϕ+(m1) ∩ o). (3.4.7)

Literally, the relation yields the set of materials produced by those operating units in

set o that consume at least one material from set m1. The reflexive, transitive closure

of ⇒o is denoted by ⇒∗o .
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3.5 Axioms of combinatorially feasible process struc-

tures

Certain combinatorial properties are inherent in all feasible process structures. For

example, a structure containing no linkage between a raw material and a final product

is unlikely to represent a practical process. The unique features of feasible processes

are formulated into a complete mathematical axiom system and thus the search for

the optimal structure is restricted to the set of feasible structures.

3.5.1 Formal definition

The following set of axioms express the necessary combinatorial properties to which

a P-graph (m , o) must conform to be a combinatorially feasible process structure or

solution structure of process-network synthesis problem (P , R , O):

Definition 3.5.1 (Solution-structure) P-graph (m , o) is a solution-structure of syn-

thesis problem (P ,R ,O) if it satisfies the following axioms:

(S1) Every final product is represented in the graph: P ⊆ m.

(S2) A vertex of the material type has no input if and only if it represents a raw

material: (m \ ψ+(o) = m ∩ R ).

(S3) Every vertex of the operating unit type represents an operating unit defined in

this synthesis problem: (o ⊆ O).

(S4) Every vertex of the operating unit type has at least one path leading to a vertex

of the material type representing a final product: ∀o ∈ o there exists a set m ′

such that ψ+({o}) ⇒∗o m
′ and m ′ ∩ P 6= ∅.

(S5) If a vertex of the material-type belongs to the graph, it must represent an input to

or an output from at least one operating unit represented in the graph: m ⊆ ψ(o).

In other words, Axiom (S1) ensures that each product is produced by at least one

operating unit in the process system; Axiom (S2) implies that no raw material should
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be generated by the process system under consideration; through Axiom (S3) only

the plausible operating units are taken into account during synthesis; Axiom (S4)

disallowes the existence of any operating unit not contributing to the generation of

any product and finally Axiom (S5) ensures that only those materials that belong to

at least one operating unit in the structure can belong to the structure.

P-graph (m , o) is defined to be a combinatorial feasible or solution structure for a

synthesis problem (P ,R ,O) if and only if it satisfies Axioms (S1) through (S5).

3.5.2 Utilization

This axiom set acts as a filter to eliminate all combinatorially infeasible or invalid

networks. In a super-structure generated by a traditional method the number of

infeasible networks can be frequently vast even when the super-structure is completely

and correctly constructed. For example, the commercial size process in [43, 47] has

35 operating units which gives rise to a complete super-structure containing (235-1)

or roughly 34.36 billion possible networks.

None of the traditional methods of process-network synthesis allows the exclusion

of the overwhelming majority of infeasible networks a priori. To find the optimal

structure among the 34.36 billion possible networks a conventional mathematical

programming has to search all of them. At this magnitude, if the efficiency of a

conventional method is increased by 100%, it is the same as if the search space is

reduced from 34.36 billion to 17.18 billion possible networks which is still an enormous

number.

In contrast to the above, with the five axioms it is possible to reduce the search

space to the combinatorially feasible solution structures. (See Fig. 3.3) In case

of the example cited from [43, 47] this means that it is sufficient to consider 3465

combinatorially feasible networks instead of 34.36 billion possible networks. Note

that the search space is reduced by roughly 99.99999% percent.
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Figure 3.3: Reduction of the search space

3.5.3 Maximal structure

Let S(P ,R ,O) be the set of all solution-structures for process-synthesis problem

(P ,R ,O). One of the basic properties of S(P ,R ,O) is that it is closed under union,

i.e., the union of two solution-structures remain a solution structure. Formally, if:

σ1 ∈ S(P ,R ,O) and σ2 ∈ S(P ,R ,O) (3.5.1)

then

(σ1 ∪ σ2) ∈ S(P ,R ,O). (3.5.2)

Definition 3.5.2 (Maximal structure) The union of all solution structures, de-

noted by µ(P ,R ,O) is defined to be the maximal structure, i.e.,

µ(P ,R ,O) =
⋃

σ∈S(P ,R ,O)

σ (3.5.3)

In the maximal structure, each arc or vertex belong to at least one solution-

structure and each solution-structure is a subgraph of the maximal structure. The

maximal structure has been extensively studied in [42] where many of its properties
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has been formally proven. Since µ(P ,R ,O) is closed under union, and its cardinality

is finite, the maximal structure is a solution structure itself.

The maximal structure of the synthesis problem (P ,R ,O) comprises all the com-

binatorially feasible structures capable of yielding the specified products from the

given raw materials. Thus, the maximal structure contains the optimal process and

the mathematical model of a process-network synthesis problem should be based on

the maximal structure.

3.6 Combinatorial algorithms

Based on axioms (S1)-(S5) two important combinatorial algorithms can be formu-

lated. Algorithm MSG generates the maximal structure of a given problem while al-

gorithm SSG generates each combinatorially feasible solution structure exactly once.

3.6.1 Algorithm MSG

Algorithm MSG (Maximal Structure Generator) generates the maximal structure of

the given (P ,R ,O) process-network synthesis problem in polynomial time. In the

reduction part algorithm MSG eliminates the materials and operating units which

should not belong to the maximal structure. This is carried out stepwisely starting

from the raw materials of the input structure validating that no node violates any of

the five axioms. In this phase the elimination of a node often leads to the elimination

of other nodes linked to it.

In the construction phase the remaining nodes are linked again stepwisely but

this time starting from the products. The linking is done with respect to the axioms.

Note, that some of the feasible linkages may be eliminated in the reduction phase and

thus they must be reestablished in the construction phase.

Running algorithm MSG to determine the maximal structure of the process-

network synthesis problem should be the first step of a solution procedure. Besides

generating the mathematical programming model of the problem it can be used to

determine whether the problem has a feasible solution, or not. Since the maximal
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structure is the union of all combinatorially feasible solution structures, the absence

of the maximal structure implies that the problem has no feasible solution.

3.6.2 Algorithm SSG

Algorithm SSG (Solution Structure Generator) has been developed to generate the set

of combinatorially feasible solution structures which is also of fundamental importance

[43]. SSG generates each combinatorially feasible solution structure exactly once.

Algorithm SSG was originally introduced as a recursive algorithm which used de-

cision mappings [47]. While recursion has a certain elegancy in expressing algorithms

it is not the most efficient approach in case of a computer implementation. Thus,

like many other recursive algorithm, SSG has a nonrecursive formulation, which is

implemented in practice.

This nonrecursive formulation of SSG is essentially a branch and bound without

a bound function and the enumeration of the combinatorially feasible solutions is

the generation of the complete search tree. Note, that while the size of the set of

combinatorially feasible solution structures is excessively large to have its elements

enumerated in practice, SSG still constitutes a fundamental building block for a

mathematical programming approach to process synthesis.

3.7 Parametric model of process-network synthe-

sis

A mathematical programming problem consists of the constraints and the objective

function. For a process-network synthesis problem, the constraints comprise the mass

balances, the availability of raw materials and the lower bounds on the amounts of

products to be manufactured to meet the demand.
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3.7.1 Mass balance constraints

For each material mj a lower bound Lp(mj) and an upper bound Up(mj) is defined

on the gross production. If material mj is a product then the lower bound Lp(mj)

on the gross result must be greater than zero; it is defined as zero otherwise.

Lp(mj) =







> 0 ∀mj ∈ P

0 otherwise.
(3.7.1)

If mj is a raw material then the upper bound on the gross result is set to zero;

otherwise, it must be greater than, or equal to Lp(mj):

Up(mj) =







0 ∀mj ∈ R

≥ Lp(mj) otherwise.
(3.7.2)

An upper bound on the gross consumption of materials is also defined; for a material

mj , it is denoted by Uc(mj). Uc(mj) must be greater than zero ifmj is a raw material;

otherwise it is defined as zero.

Uc(mj) =







> 0 ∀mj ∈ R

0 otherwise.
(3.7.3)

Every intermediate material must satisfy the mass balance constraints such that the

amount produced from each intermediate material has to be greater than or equal to

the amount consumed from that material.

3.7.2 Objective function

The objective function represents the cost of the network, which is to be minimized.

The cost of the network consists of the costs of the operating units and raw materials.

The annual cost of an operating unit is considered to be the sum of its operating

cost and its annualized investment cost:

annual cost = operating cost +
investment cost

payout period
(3.7.4)
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Since the optimization model is expected to provide the optimal loads of operating

units beside the optimal process structure, the cost is given as the function of the

mass load, e.g., by a linear function with a fixed charge

cf(oi) + cp(oi)xi (3.7.5)

where cf(oi) is the fixed charge, cp(oi) is the proportionality constant, and xi is the

load of the operating unit, which typically varies between 0 and 1, i.e., 0-100%. If

both the investment and operating costs are given by functions, then the cost function

is the combination of them. The parameters of the linear cost function with fixed

charge are the sums of the parameters cf op(oi) and cp
op(oi) of the operating cost and

the parameters cf inv(oi)
payout period

and cpinv(oi)
payout period

of the annualized investment cost:

cf(oi) =
cf inv(oi)

payout period
+ cf op(oi) (3.7.6)

cp(oi) =
cpinv(oi)

payout period
+ cpop(oi) (3.7.7)

The price of raw material mj ∈ R is denoted by cm(mj).

3.7.3 Further notations

The relation between material mj and operating unit oi is expressed by aij which

denotes the difference between the production and consumption rate of mj by oi:

αi = {mj ∈ M : aji < 0} (3.7.8)

and

βi = {mj ∈ M : aji > 0}. (3.7.9)

Now denote the set of operating units in the optimal structure by o∗ ⊆ O and the

set of materials by m∗ ⊆ M where

m∗ =
⋃

(αi,βi)∈o∗

αi ∪ βi. (3.7.10)

Furthermore, denote the vector of the optimal loads of the operating units for the

problem by x∗ = [x1, x2, ..., xn]
T and the objective value by

z∗ =
∑

(αi,βi)=oi∈o∗

(cf(oi) + x∗i (cp(oi)−
∑

mj∈α∪β

aijcm(mj))). (3.7.11)
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3.7.4 The complete parametric model

The aim of the parametric process-network synthesis problem is to determine the

optimal solution i.e., the network (m∗, o∗,x∗, z∗) satisfying the conditions in (3.7.12)-

(3.7.16) where z∗ is minimal.

∀oi = (αi, βi) ∈ o∗ : mj ∈ αi ⇐⇒ aji < 0, mj ∈ βi ⇐⇒ aji > 0 (3.7.12)

∀mj ∈ m∗ ∩ R : −Uc(mj) ≤
∑

oi∈o∗

ajix
∗
i ≤ 0 (3.7.13)

∀mj ∈ m∗ ∩ P : Lp(mj) ≤
∑

oi∈o∗

ajix
∗
i ≤ Up(mj) (3.7.14)

∀mj ∈ m∗ \ R \ P : 0 ≤
∑

oi∈o∗

ajix
∗
i ≤ Up(mj) (3.7.15)

0 < x∗i ≤ ui ⇐⇒ oi ∈ o∗ (3.7.16)

3.8 The MILP model of process-network synthesis

The P-graph framework algorithmically generates a mixed-integer linear program-

ming model for the process-network synthesis problem. Furthermore, it is mathemat-

ically proven that the generated MILP model contains the global optimum. Although

this is an integral part of the framework, most of the publications strongly empha-

sizes the combinatorial innovations of the framework. Thus, the model was published

surprisingly late in [10, 13].

3.8.1 Binary variables

In contrast to the combinatorial algorithms, the structural decisions in the MILP

formulation are represented by yi binary variables instead of sets or graphs. yi = 1

represents the inclusion of oi to a structure, while yi = 0 represents the exclusion of

oi from a structure. yi’s are often called as existence variables in the literature.

Since the load of an operating unit can only differ from 0 if it is included to

the structure, this relation have to be expressed by a linear constraint in the MILP

model. In the parametric model of the process-network synthesis an upper bound ui
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is defined for the load of each operating unit oi. ui is typically equal to 1, except when

oi can have multiple instances or available in multiple capacities in the structure, and

these alternatives can be expressed by a single cost function. If oi is included into the

structure, i.e., yi = 1, then the corresponding continuous load variable xi can be any

real value in the range of 0 to ui. Thus,

xi ≤ yiui. (3.8.1)

3.8.2 The complete MILP model

The aim is to determine the (x∗,y∗, z∗) optimal solution of the MILP problem algo-

rithmically generated from the parametric process-network synthesis problem, satis-

fying the conditions in (3.8.2) through (3.8.6) where z∗ is minimal.

∀mj ∈ R : −Uc(mj) ≤
∑

oi∈O

ajix
∗
i ≤ 0 (3.8.2)

∀mj ∈ P : Lp(mj) ≤
∑

oi∈O

ajix
∗
i ≤ Up(mj) (3.8.3)

∀mj ∈ M \ R \ P : 0 ≤
∑

oi∈O

ajix
∗
i ≤ Up(mj) (3.8.4)

0 < x∗i ≤ y∗i ui (3.8.5)

z∗ =
∑

oi∈O

(y∗i cf(oi) + x∗i (cp(oi)−
∑

mj∈(M)

aijcm(mj))) (3.8.6)

Eqns (3.8.2)-(3.8.4) are basically the (mass balance) constraints imposed on the

raw, product and intermediate materials, respectively. (3.8.5) represents the individ-

ual bounds on the capacities of the operating units. (3.8.6) is the cost of the network,

which is to be minimized.

3.8.3 Solving the MILP model

Since SSG is a branch and bound without a bound function, it is possible to generate

each of the combinatorial feasible structures, solve the corresponding mathematical

programming models and then select the one(s) with the minimum objective value.
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This is basically a complete enumeration and it is considered to be an ineffective

approach, but still, this is a valid option which is actually implemented in the software

executing P-graph framework algorithms.

However, the P-graph framework has more effective solution algorithms and per-

haps the most notable among them is ABB (Accelerated Branch-and-Bound) [46].

As its name suggest, ABB is based on the famous branch and bound principle. It

has been developed specifically for process-network synthesis problems. Using clever

enhancements, like neutral extensions, it is capable to solve process-network synthesis

problems in a reasonable time. Like each branch and bound algorithm, ABB is well

parallelizable, which is a definite advantage considering the computer architectures

available today. With parallel branch and bound methods it is possible to achieve

super linear speedup for some problem instances [121].

3.9 Relationship between the MILP model and the

combinatorial axioms

Perhaps it is worth noting, that each of the combinatorial axioms is reflected by the

MILP model:

(S1) Every final product is represented in the graph. This is analog to eqn (3.8.3).

(S2) A vertex of the material type has no input if and only if it represents a raw

material. This can be derived from eqn (3.8.2).

(S3) Every vertex of the operating unit type represents an operating unit defined

in this synthesis problem. Trivially, eqns (3.8.2)-(3.8.4) consider only those

operating units which are defined in the problem.

(S4) Every vertex of the operating unit type has at least one path leading to a vertex

of the material type representing a final product. This can be deduced from the

mass balance constraints, i.e., from the combination of eqns (3.8.2)-(3.8.4).
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(S5) If a vertex of the material-type belongs to the graph, it must represent an input

to or an output from at least one operating unit represented in the graph. Like

above, this is ensured by the mass balance constraints expressed by eqns (3.8.2)-

(3.8.4).

3.10 Extensions and adaptations

In the past decades, the P-graph framework has been successfully extended to solve

various different practical problems. For example, the framework has been extended

to

• Simultaneously synthesize a process and its fault-tolerant control system [60]

• Handle waste properly giving rise to an optimal process with integrated in-plant

waste treatment [45]

• Simultaneously synthesize a process and its heat exchanger network [98]

Note, that the framework is not limited to problems related to chemical and allied

industries. It has been adapted to

• Building-evacuation-route planning [49]

• Supply chain management [14]

• Sustainable development [75]

• The combination of the above two [129]

It is also possible to combine the framework with discrete modeling tools, like

Petri-nets [130] for the optimization and verification of IT systems. The framework

has been also adapted to solve the reaction-pathway identification problem [16]. This

is one of the main topics of this thesis, and it is covered in detail in Chapter 6.
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Chapter 4

Modeling vehicle scheduling

problems as process-network

synthesis problems

Vehicle scheduling problems arise frequently in industrial applications perhaps most

notably in public transportation. Vehicle scheduling is similar to vehicle routing in

the sense that in both cases a demand should be satisfied with a fleet of available

vehicles. However, a major difference is that in case of vehicle scheduling the routes

or more like the trips are given by the problem definition “only” the vehicles must

be assigned to them. While vehicle scheduling may seem much simpler than vehicle

routing in case of multiple depots the complexity of a VSP becomes NP-hard.

Vehicle scheduling problems are often solved by mathematical programming meth-

ods. However, as in the case of PNS the underlying mathematical models may be

constructed based on intuition and earlier experience and thus they may not contain

the global optimum. Here it will be shown that the VSP can be modeled as a PNS

problem by the P-graph framework resulting in a MILP model which contains the

global optimum.

39
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4.1 Problem definition

Vehicle scheduling is the main topic of many papers. There are many variations with

many different notations but the aim is usually the following [19] : Given a set of

timetabled trips with fixed travel (departure and arrival) times and start and end

locations as well as traveling times between all pairs of end stations, the objective is

to find an assignment of trips to vehicles such that

• Each trip is completed exactly once

• Each vehicle performs a feasible sequence of trips and

• The overall costs are minimized

4.1.1 Notations

Here, the notations proposed in [10] are used for formalization. Thus,

• T denotes the set of trips to be performed

• V denotes the set of available vehicles

• Ti ∈ T denotes a trip to be performed

• Vi ∈ V denotes a vehicle which could perform a tour

• A(Ti) denotes the set of vehicles which could perform Ti

• H (Vi) denotes the set of trips completed by Vi

• ts(Ti) denotes the starting time of a trip Ti

• te(Ti) denotes the ending time of a trip Ti

• ls(Ti) denotes the start location of Ti

• le(Ti) denotes the end location of Ti

• ld(Vi) denotes the depot of Vi
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• c(Vi) denotes the cost associated with Vi

• e(Vi) denotes the CO2 emission of Vi

• vmax(Vi) denotes the maximum speed of Vi

• d denotes the distance between a pair of locations

Note that some of the above parameters like the CO2 emission of Vi are not nec-

essary to formulate a vehicle scheduling problem. However, their incorporation into

the model makes it possible handle more sophisticated, more realistic applications.

These additional parameters can be simply ignored to formulate a conventional vehicle

scheduling problem.

4.1.2 Formal definition

Based on the above notations, the vehicle scheduling problem can be formalized in

the following way. Given a set of timetabled trips with fixed travel (departure and

arrival) times and start and end locations as well as traveling times between all pairs

of end stations, the objective is to find an assignment of trips to vehicles such that

• Each trip is completed exactly once

∀Ti ∈ T : |Ti| = 1, ∃H (Vj), Ti ∈ H (Vj), Ti /∈
n
⋃

i=1,i 6=j

H (Vi) (4.1.1)

• Each vehicle performs a feasible sequence of trips

∀Vi : Ti, Tj ∈ H (Vi) ⇒ Vi ∈ A(Ti) ∩ A(Tj), te(Ti) ≤ ts(Tj),

d(le(Ti), ls(Tj))

ts(Tj)− te(Ti)
≤ vmax(Vi)

(4.1.2)

• The cost is minimal
∑

Vi∈V

(
∑

H (Vi)

(c(Vi)d(ls(Ti), le(Ti)))

+
∑

H (Vi)
min{te(Ti)≤ts(Tj):ts(Tj)−te(Ti)}

(c(Vi)d(le(Ti), ls(Tj)))

+ c(Vi)d(ld(Vi), min{Ti ∈ H (Vi) : ts(Ti)}))

(4.1.3)
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4.2 Modeling vehicle scheduling as a synthesis prob-

lem

This section introduces the concepts of the P-graph model of the vehicle scheduling

problem. These concepts are illustrated by an example and then some important

properties of the model and the solution yielded by the model are proven.

4.2.1 Analogy between the concepts of vehicle scheduling

and process-network synthesis

In a process-network synthesis problem, a network of operating units transforms the

given raw materials into the desired products and during this procedure a set of

intermediate materials is created. In a vehicle scheduling problem, a set of trips have

to be completed by utilizing the available resources and this is carried out by traveling

between a set of places.

It is not hard to see the analogy between the concepts of vehicle scheduling and

process-network synthesis. The trips can be thought as products, which have to be

produced by a process system. The vehicles performing the trips are considered as

resources which have to be utilized in order to complete these trips and as such they

are analogous to the raw materials of a process system.

In order to complete the trips, the vehicles have to travel between a sequence of

places, which is conceptually similar to the sequence of intermediate materials leading

to a product in a process system. A travel has a starting location and a destination

similarly to an operating unit, which has a set of inputs and a set of outputs. Thus,

it is possible to create a rough mapping between the concepts of vehicle scheduling

and the concepts of process synthesis (see Table 4.1).

4.2.2 The P-graph model of vehicle scheduling

The P-graph model of vehicle scheduling is based on the above anology. As a con-

sequence, the P-graph model of vehicle scheduling will operate with materials and

operating units.
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Table 4.1: Mapping the concepts of VSP to PNS

VSP PNS

trips products
resources raw materials
locations intermediate materials
traveling operating units

Materials

A trip is modeled as a product. The position of a vehicle at a given time is modeled

by an intermediate material (e.g. Vehicle1 is in Budapest at 8:00). If a vehicle moves

between two locations, it is modeled by an operating unit. A vehicle in its initial

position, i.e, in its depot, is modeled by a raw material.

Note that while the CO2 emission is the byproduct of the traveling, for modeling

purposes it is also considered as a resource. This renders it possible to impose an

upper bound on the raw material modeling the emission. For similar reasons, the

available funds are also considered as a resource and thus it is possible to impose an

upper bound on the cost. The cost and the emission are proportional to the completed

distance, which is modeled by an intermediate material which is produced from the

cost and the emission.

Operating units

The model has three types of operating units. The first type produces an intermediate

material from the raw materials representing the cost and the emission. The produced

material represents the distance associated with a vehicle Vx. This is interpreted in the

following way: each completed kilometer costs a given amount of Euro and during

each completed kilometer a given amount of CO2 is emitted. See Figure 4.1a for

illustration.

The second type of operating unit models a movement of a particular vehicle but

this movement does not complete a trip. Actually, this covers several use cases. In

the simplest case the depot is located at the exact same place where the tour begins.
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Figure 4.1: Operating units used in vehicle scheduling

This is illustrated by Figure 4.1b.

In the second case the vehicle must leave the depot and travel to a place where it

can begin a trip. This is illustrated by Figure 4.1c.

In the third case the vehicle travels between two trips, i.e., it has completed one

trip but it has to travel to another place to begin the next. This is illustrated by

Figure 4.1d.

Finally, the third type of operating unit models a movement of a particular ve-

hicle and this movement completes a trip. This is very similar to the previous case

illustrated by Figure 4.1d. See Figure 4.1e for illustration.

The proper combination of these materials and operating units yield the P-graph

model of the VSP. In the following, the concept is clarified further by an illustrative

example.
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Table 4.2: Trips to be completed

Ti ∈ T ts(Ti) ls(Ti) te(Ti) le(Ti) A(Pi)

T1 7:00 Tihany 7:40 Almádi V1, V2
T2 8:00 Veszprém 9:20 Fehérvár V1, V3
T3 8:40 Veszprém 9:40 Tihany V1, V2

Table 4.3: The fleet of vehicles

Vi ∈ V ld(Vi) c(Vi) e(Vi) vmax(Vi)

V1 Tihany 0.6 375 90
V2 Fehérvár 0.5 400 90
V3 Kenese 0.4 300 90

4.2.3 Illustrative example

In this example a predefined set of trips have to be completed by the available vehicles.

The properties of the trips are listed in Table 4.2. This table lists the start and end

times of a trip, the start and end locations of a trip and the vehicles which could

complete the given trip. For example, T1 starts at 7:00 in Tihany, ends at 7:40 in

Almádi and could be completed by V1 or V2.

Table 4.3 lists the properties of the available vehicles. These are the location of

the depot, the cost, the CO2 emission and the maximal speed of the vehicle. In this

example, the cost is given in Euro, the maximal speed in km/h and the CO2 emission

in g. The cost and emission are proportional to the completed distance. The problem

data is visualized by Figure 4.2.

Table 4.2 gives rise to Table 4.4. The trips are represented by product materials

and the bounds are set to ensure that each trip is completed exactly once.

Table 4.5 is derived from Table 4.3. There is exactly one from each vehicle and

thus the upper bounds on these raw materials are set to 1. The costs of the vehicles

are proportional to the covered distance without any associated fix cost. On the other

hand the raw materials modeling the cost and the emission are unconstrained.
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Figure 4.2: The illustrative example

Table 4.4: Products of the synthesis problem

Products (mj ∈ P ) Lower bounds (Lp(mj)) Upper bounds (Up(mj))

T1 1 1
T2 1 1
T3 1 1
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Table 4.5: Raw materials of the synthesis problem

Raw materials (mj ∈ R ) Upper bounds (Uc(mj)) Prices (cm(mj))

V1 1 0
V2 1 0
V3 1 0

EUR ∞ 1
CO2 ∞ 0

Note that only the raw material modeling the cost has an associated price. Since

the material representing the completed distance is produced from the raw materials

representing the cost and the emission it is ensured that the overall cost and emission

are proportional to the completed distance.

Table 4.6 lists the operating units involved in the P-graph model of the vehicle

scheduling problem. A Distance type of operating unit produces the intermediate

material representing the completed distances of a vehicle. For example, Distance1

is interpreted in the following way: each completed kilometer by V1 costs 0.6 EUR

and 375 g CO2.

A Travel type of operating unit models a movement which does not complete a

trip. For example, V2 is initially located in its depot, in Fehérvár. It can complete

T1 or T3 and thus it must travel to Tihany or Veszprém to complete one of the two

trips. This is modeled by Travel1 and Travel2.

Travel3 models the case when the depot is located at the start point of a trip. In

this case after the vehicle leaves the depot it can begin the trip immediately. Note

that Travel4 and Travel5 yield to two different trips. Travel6 is analog to Travel1

and Travel2. In case of Travel7 and Travel8 the vehicle has already completed a trip

and it travels to the start point of another trip.

The rest of the operating units model movements which complete trips. For

example, T1ByV1 models that V1 travels from Tihany to Almádi and thus it completes

T1.

The maximal structure of the illustrative example is shown in Figure 4.3. Note

that the return of a vehicle to its respective depot could be easily enforced after it
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Table 4.6: Operating units of the synthesis problem

oi ∈ O αi βi lb(oi) ub(oi)

Distance1 0.6 EUR, 375 CO2 kmV1 0 ∞
Distance2 0.5 EUR, 400 CO2 kmV2 0 ∞
Distance3 0.4 EUR, 300 CO2 kmV3 0 ∞
Travel1 V2, 80 kmV2 V2V eszprem0840 0 ∞
Travel2 V2, 140 kmV2 V2T ihany0700 0 ∞
Travel3 V1 V1T ihany0700 0 ∞
Travel4 V1, 60 kmV1 V1V eszprem0840 0 ∞
Travel5 V1, 60 kmV1 V1V eszprem0800 0 ∞
Travel6 V3, 60 kmV3 V3V eszprem0800 0 ∞
Travel7 V2Almadi0740, 50 kmV2 V2V eszprem0840 0 ∞
Travel8 V1Almadi0740, 50 kmV1 V1V eszprem0840 0 ∞
T1ByV1 V1T ihany0700, 40 kmV1 V1Almadi0740, T1 1 1
T1ByV2 V2T ihany0700, 40 kmV2 V2Almadi0740, T1 1 1
T2ByV1 V1V eszprem0800, 80 kmV1 V1Fehervar0920, T2 1 1
T2ByV3 V3V eszprem0800, 80 kmV3 V3Fehervar0920, T2 1 1
T3ByV1 V1V eszprem0840, 60 kmV1 V1T ihany0940, T3 1 1
T3ByV2 V2V eszprem0840, 60 kmV2 V2T ihany0940, T3 1 1
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Figure 4.3: The maximal structure of the illustrative example
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has completed a feasible sequence of trips. However, to keep the example simple and

perspicuous this case is omitted here.

4.3 Algorithmic model generation

[10] introduced an algorithm which generates the P-graph model of the vehicle schedul-

ing problem directly from the input data. A simplified, more readable version of this

algorithm is shown by Figure 4.4. In [10] the flow rates, bounds and costs were

set directly in the pseudo code. Here, to improve readibility, these are replaced by

the functions SetDistanceProperties, SetTravelProperties and SetTripProperties

which do nothing but set the proper bounds, flow rates and the costs of the given

operating units.

In the first step the algorithm initializes the sets P ,R ,O. The set of products

is basically equivalent to the set of trips to be completed. The set of raw materials

contains the available vehicles and two other materials, one modeling the cost (EUR)

and the other modeling the emission (CO2). At this point there is no operating unit

defined and thus O is empty. n denotes a simple counter which is used to index

operating units.

The second step iterates over the set of vehicles. Here, the upper bound and the

cost is set for each vehicle. Furthermore, for each a vehicle, aDistance type of operat-

ing unit is generated and added to the model. The function SetDistanceProperties

is used to set the cost, bound and the flow rate for its input parameter. To keep the

pseudo code readable these simple assignment operations are not detailed here.

The third step iterates over the set of products. After the bounds and cost are

set for a trip, the third step iterates over the set of vehicles which could complete

the trip. This leads to step 3.1 which constructs the operating unit modeling the

movement when the vehicle leaves its depot. The function SetTravelProperties is

analog to the function SetDistanceProperties.

Step 3.2 constructs the operating unit which completes the trip. The function

SetTripProperties is analog to the previously introduced functions.

Step 3.3 searches for vehicles which could complete two consecutive trips. If a
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vehicle can complete a trip and it can arrive to the start location of another trip in

time, then this movement is modeled by an operating unit which is constructed here.

Theorem 4.3.1 The algorithm generates the P-graph model of a vehicle scheduling

problem in polynomial time.

Proof The functions called by the algorithm just set the properties of the operating

units. The properties of the materials and operating units are set in O(1) time. A new

element is also added to a set in O(1) time. The complexity of the computation of the

intersection of two sets depends on the implementation. It is possible to implement

sets such a way that their intersections can be easily computed by a simple logical

and operation. Thus, it can be computed in O(1) time. Basically, each of the atomic

operations can be computed in O(1) time.

The first step of the algorithm iterates over the set of vehicles in O(|V |) time. The

third step iterates over the step of products. In step 3.1 the algorithm iterates over the

set of those vehicles which could complete the given tour. In the worst case scenario

each vehicle could complete the given tour and this leads to O(|V |) time. Step 3.3

searches for trips which can be completed after the actual trip. In the worst case

scenario each vehicle could complete both of the trips, i.e., the intersection becomes

V and this leads to O(|V |) time. Thus, the overall complexity is O(|V | + |P |(|V | +

|P ||V |)).

✷

4.4 The validity of the model

To prove the validity of the solution and the model it has to be shown that a solution

of the vehicle scheduling problem is also a solution to the synthesis problem modeling

the vehicle scheduling problem. On the other hand, it also has to be shown that

the synthesis problem has no such solution which is not a solution to the vehicle

scheduling problem.
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Input VSP problem: T ,V , A , ts, te, ls, le, ld, D, A, ct, et, vmax

Output Parametric PNS: (P ,R ,O)

1.step P := T , R := V ∪ {EUR,CO2}, O := ∅, n := 1;
2.step for all Vk ∈ V do

Uc(Vk) := 1; cm(Vk) := 0;
Distancek := ({EUR,CO2}, {kmVk});
SetDistanceProperties(Distancek);
O := O ∪ {Distancek};

end for
3.step for all Ti ∈ P do

Lp(Ti) := 1, Up(Ti) := 1;
for all Vk ∈ A(Ti) do

3.1 step if ld(Vk) = ls(Ti) do
Traveln:=({Vk}, {Vkls(Ti)ts(Ti)});
SetTravelProperties(Traveln);

else
Traveln:=({Vk, kmVk}, {Vkls(Ti)ts(Ti)});
SetTravelProperties(Traveln);

end if
O := O ∪ {Traveln};
n := n+ 1;

3.2 step TibyVk := ({Vkls(Ti)ts(Ti), kmVk}, {Vkle(Ti)te(Ti), Ti});
SetTripProperties(TibyVk);
O := O ∪ {TibyVk};

end for
3.3 step for all Tj ∈ P do

for all Vk ∈ A(Ti) ∩ A(Tj) do

if te(Ti) ≤ ts(Tj) and
d(le(Ti),ls(Tj))

ts(Tj)−te(Ti)
≤ vmax(Vk) do

Traveln := ({Vkle(Ti)te(Ti), kmVk}, {Vkls(Ti)ts(Ti)});
SetTravelProperties(Traveln);
O := O ∪ {Traveln};
n := n + 1;

end if
end for

end for
end for

Figure 4.4: Algorithm to generate the P-graph model of a VSP
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SetDistanceProperties(ok , ct, et)
begin

lb(ok) := 0, ub(ok) := ∞;
aEUR,ok := −ct(Vk), aCO2,ok := −et(Vk);
akmVk,ok := 1;

end

Figure 4.5: The SetDistanceProperties subroutine

SetTravelPropertiesI(on, ct, et)
begin

lb(on) := 0, ub(on) := ∞;
aVi,oi := −1, aVils(Ti)ts(Ti),oi := 1;

end

Figure 4.6: The SetTravelProperties subroutine

It is also important to prove that the global optimum is embedded in the generated

mathematical model. It has to be shown that a P-graph representing a solution

structure for a vehicle scheduling problem conforms to Axioms (S1)-(S5).

Theorem 4.4.1 The solution of a vehicle scheduling problem is also solution to the

synthesis problem modeling the vehicle scheduling problem.

Proof In order to prove this theorem, it has to be shown that a solution satisfying

eqns (4.1.1)-(4.1.2) also satisfies eqns (3.8.2)-(3.8.4). Eqn (4.1.1) says that each trip

has to be completed exactly once. Since each trip is a product, this is equivalent to

eqn (3.8.3) if Lp(mj) = 1 = Up(mj) and thus each product is produced exactly once.

Eqn (4.1.2) says that each vehicle must perform a feasible sequence of trips. In

order to complete a trip, a vehicle has to travel from one place to another. This means,

that the operating unit modeling the travel must produce the material modeling the

destination from the material modeling the starting location. The material modeling

the starting location is either the destination for another travel and thus it is produced
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from another intermediate material, or it is produced by an operating unit which

models that the vehicle leaves the depot. In other words, the materials and operating

units modeling the sequence of feasible trips satisfy the mass balance constraints of

the synthesis problem defined by eqn (3.8.2) and eqn (3.8.4).

✷

Theorem 4.4.2 There is no such solution to the synthesis problem modeling the

vehicle scheduling problem which is not a solution to the vehicle scheduling problem.

In order to prove that a solution to the synthesis problem is not a solution to the

vehicle scheduling problem it has to be shown that the solution satisfies eqns (3.8.2)-

(3.8.4) but violates eqns (4.1.1)-(4.1.2).

If a solution violates eqn (4.1.1), i.e., a trip is completed more than once or it is

not completed at all, eqn (3.8.3) is also violated, since either Lp(mj) or Up(mj) is

violated. If a solution violates eqn (4.1.2) then a vehicle does not perform a feasible

sequence of trips. In an infeasible sequence of trips the operating units modeling the

movements of the vehicles are not connected properly and this leads to the violation

of the mass balance constraints defined by eqn (3.8.2) and eqn (3.8.4). Thus, if a

solution is not a solution to the vehicle scheduling problem it cannot be solution to

the synthesis problem.

✷

Theorem 4.4.3 A P-graph (m,o) representing a solution structure for a vehicle schedul-

ing problem conforms to Axioms (S1)-(S5) and thus it is a combinatorially feasible

solution structure for the process-network synthesis problem (P ,R ,O).

Proof In case of a vehicle scheduling problem the main aim is to complete a set of

trips. In the model each trip is represented by a product material. To complete all

of the trips all of the products representing them has to be included in the solution

structure and thus Axiom S1 (and eqn (3.8.3)) is satisfied.
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In the model the raw materials represent the available resources (like EUR,CO2 or

the available vehicles). None of these materials are produced but every other material

is produced from them and thus Axiom S2 (and eqn (3.8.2)) is satisfied.

The algorithm generates each operating unit systematically from the problem

definition and therefore there will be no operating unit in the synthesis problem

which is not given in the problem definition. Hence, Axiom S3 is satisfied (and eqns

(3.8.2)-(3.8.4) consider only those operating units which are defined by the problem).

An operating unit which completes a trip has a direct connection with a product

representing a trip. Each operating unit modeling a movement of a vehicle is con-

nected to an operating unit which completes a trip. Basically, a sequence where these

two types of operating units alternate can be interpreted as a route of a vehicle where

it completes trips and travels between trips.

An operating unit which produces the distance is connected to each operating unit

which represents a movement. Thus, each operating unit included in the solution

structure has at least one path leading to a material representing a final product

and Axiom S4 is satisfied (and thus the mass balance constraints expressed by eqns

(3.8.2)-(3.8.4) are also satisfied.).

The fifth axiom says that there should be no isolated vertex in the solution struc-

ture which represents a material. This is ensured by the conversion algorithm since

each material is added to the model through an operating unit (except EUR and

CO2 but they are also connected to the proper operating units). An isolated vertex

would mean that there is a place which could not be approached by a vehicle, or a

trip which could not be completed by a vehicle, etc (and this would also violate the

mass balance constraints imposed on the system by eqns (3.8.2)-(3.8.4)). ✷

Corollary 4.4.4 The mathematical programming model generated by the P-graph

framework contains the global optimum of the vehicle scheduling problem.
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4.5 Relationship with other models

Vehicle scheduling problems with multiple depots are usually modeled by commodity

flow and set partitioning formulations. In practical problems, these formulations can

provide several million integer variables.

4.5.1 Commodity flow models

The problem is modeled by a complete directed graph G = (V ,A), where the set of

vertices V = {1, 2, . . . , m+n} is partitioned into two subsets. Subset W = {1, . . . , m}

contains a vertex k for each depot Dk and subset N = {m+1, . . . , m+n} contains a

vertex m+ j for each trip Tj . An arc (i, j) with i, j ∈ N corresponds to a transition

between trips Ti−m and Tj−m while an arc (i, j) with i ∈ W corresponds to the start of

a vehicle duty (similarly, an arc (i, j) with j ∈ W corresponds to the end of a vehicle

duty). Arcs representing infeasible transitions can be removed from the graph. In

these integer programs a binary variable xij is 1 if arc (i, j) ∈ A is used in the optimal

solution, and it is 0 otherwise [90].

In multi-commodity formulations, an independent network is built for each depot.

Then the models are based on the multigraph generated from the combination of

these networks.

4.5.2 Set partitioning models

Set partitioning models enumerate all feasible routes for the vehicles and choose a

subset of these routes which fulfills all restrictions. These models are derived from

multi-commodity models and they use the same underlying graph structure. The

resultant integer programming problem has only a few constraints (in fact a constraint

for each trip to be covered) but a large number of binary variables since every feasible

path through the network for each depot is represented by a binary variable in the

model.
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Table 4.7: Trips to be completed

Ti ∈ T ts(Ti) ls(Ti) te(Ti) le(Ti) A(Pi)

T1 10:30 Tatabánya 11:25 Fehérvár V1, V2, V3, V4, V5, V6
T2 10:00 Veszprém 11:40 Érd V1, V2, V3, V4, V5, V6
T3 11:00 Keszthely 13:40 Dunaújváros V1, V2, V3, V4, V5, V6
T4 14:30 Seregélyes 15:35 Budapest V1, V2, V3, V4, V5, V6
T5 8:00 Budapest 9:15 Fehérvár V1, V2, V3, V4, V5, V6
T6 13:50 Tatabánya 16:25 Keszthely V1, V2, V3, V4, V5, V6

4.5.3 The P-graph model

In contrast with the above models, the P-graph model of vehicle scheduling does not

formalize the problem as a pure integer program. The binary variables are associ-

ated with only those operating units which produce trips, and thus the result is a

mixed-integer programming problem. A binary variable is 1 if the associated vehicle

completes the trip and 0 otherwise.

4.6 Application

The P-graph model of vehicle scheduling has been already applied to solve some real-

life problems. The following example is taken from [9] where the P-graph framework

was compared with a heuristic method. In this example the aim is to create a feasible

timetable with minimal cost, i.e., assign the buses to the trips such that the overall

cost is minimized. The trips to be completed are listed in Table 4.7 and the available

vehicle fleet in Table 4.8.

The heuristic method assigns the trips to the buses in consecutive order. The se-

lection rule is simple: the method assigns the next trip to the bus which can complete

it such that the increase in the overall cost is minimal with respect to the already

scheduled trips. While this seems to be reasonable rule, the method cannot reschedule

those trips which are already scheduled and thus it stucks in a local optimum.

The P-graph framework is able to generate alternate solutions (see [97] for details)
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Table 4.8: The fleet of vehicles

Vi ∈ V ld(Vi) c(Vi) e(Vi) vmax(Vi)

V1 Veszprém 0.8 300 60
V2 Dunaújváros 0.8 300 60
V3 Tatabánya 1.2 400 60
V4 Budapest 1.2 405 60
V5 Keszthely 1.5 375 60
V6 Budapest 1.5 375 60

Table 4.9: Alternate solutions

Solution Assignments Total mileage Cost CO2 emission
T1| T2| T3| T4| T5| T6|

#1 R3| R1| R2| R4| R4| R1| 977 888 313
#2 R4| R1| R2| R4| R4| R1| 977 888 313
. . . . . . . . . . . . . . .
#4 R6| R1| R2| R6| R6| R1| 977 967 309
. . . . . . . . . . . . . . .
#186 R3| R1| R2| R1| R4| R3| 1232 1212 412
. . . . . . . . . . . . . . .

for a given problem. Table 4.9 highlights some of the alternate solutions of the above

example. While solution #1-#2 are the most cost efficient, the least emission is

achieved through solution #4. The best solution generated by the heuristic method

in terms of cost efficiency, which is the 186th solution of the P-graph framework is

far worse than the optimal solution yielded by the P-graph framework.

This shows that while the problem seemed to be relatively easy, the optimum

could not be determined by a heuristic method even with a reasonable selection rule.

The P-graph model of vehicle scheduling was also used by the 5starz travel agency

to plan their timetables.
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4.7 Summary

In this chapter I have proposed a method and an algorithm to generate the P-graph

model of a vehicle scheduling problem. Moreover, I have proven the validity of gener-

ated the model. The benefit is obvious since the mathematical programming model

generated from the P-graph model contains the global optimum. However, the pro-

posed method also highlights through the CO2 emission that it is easy to incorporate

additional factors into the model which lays the foundations for the multi-objective

optimization by the P-graph method.
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Chapter 5

Modeling vehicle routing problems

as process-network synthesis prob-

lems

It is needless to emphasize the practical importance of vehicle routing problems.

While the problem has many different variations to properly represent a wide range

of real-life situations basically all of these variations are derived from the CVRP

(Capacitated Vehicle Routing Problem). Perhaps the most noted extensions are the

VRPB (Vehicle Routing with Backhaul), VRPTW (Vehicle Routing with Time Win-

dows) and VRPPD (Vehicle Routing with Pickup and Delivery). The relationships

among them and the importance of the CVRP is highlighted by Figure 5.1.

Vehicle routing problems are often solved by mathematical programming methods.

As it has been previously mentioned these models are often based on intuition and

thus they may not contain the global optimum of the problem. In this chapter it

will be shown that the CVRP can be modeled as a PNS problem by the P-graph

framework. Since it is proven that the P-graph model of the PNS problem contains

the global optimum of the problem this implies that the model contains the global

optimum of the CVRP as well.
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Figure 5.1: Different type of vehicle routing problems

5.1 Problem definition

Like vehicle scheduling, capacitated vehicle routing is the main topic of many papers

and thus there are many variations and many different notations. This section is

based on the excellent overview provided in [125] and it introduces the basic concepts

of the CVRP. The aim of these problems is usually the following.

Given a set of customers with demands and a fleet of vehicles, the objective

of a CVRP is to minimize the total cost of serving all customers. The total cost

is a weighted function of the number of routes and their lenght (or travel time).

The customers corresponding to deliveries and demands are known in advance, are

deterministic and cannot be split. The vehicles are identical and are based at a single

central depot. If a vehicle performs a tour then it must start it and finish it at the

depot. Besides this, only capacity restrictions are imposed for the vehicles.

The CVRP generalizes the well-known Traveling Salesman Problem (TSP) and is

known to be NP-hard. The TSP is a specific case of the CVRP when the number of

vehicles is exactly one, and the capacity of this vehicle is great enough to satisfy all of

the customer demands. In this case the aim is simply to determine a minimum-cost

simple circuit visiting all the vertices of G (or in other words, a Hamiltionian circuit).
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5.1.1 Basic concepts

This section introduces the basic concepts of the CVRP. Note that the representation

of the road network is more or less the same in each application but there might be

significant differences in the characteristics of the customers and the vehicle fleet in

different applications.

The road network

For a formal description, let G = (V ,A) be a complete graph where V = {v0, v1, . . . ,

vn} denotes the set of vertices and A denotes the set of arcs. Vertices v1, v2, . . . , vn

correspond to customers, while the depot corresponds to v0 (in some cases the depot

corresponds to a special vertex denoted by vn+1). Each customer vi has a nonnegative

demand d(vi) which has to be satisfied. The demand of the depot is d(v0) = 0.

There is a nonnegative c(vi, vj) cost associated with each arc (vi, vj) ∈ A which

represents the travel cost between vi and vj . The existence of loops is not permitted

in general and this is ensured by defining c(vi, vi) = ∞ for all vi ∈ V . If G is directed

then the cost matrix is asymmetric giving rise to asymmetric CVRP. Otherwise the

problem is symmetric CVRP and c(vi, vj) = c(vj, vi) for each (vi, vj) ∈ A . In this case

the arc set could be replaced by a set of undirected edges denoted by E .

The cost matrix

In real-life applications the cost matrix often satisfies the triangle inequality, i.e.,

c(vi, vk) + c(vk, vj) ≥ c(vi, vj) for all vi, vj, vk ∈ V . (5.1.1)

This means that the simplest way between two points i, j is the direct link. The

existence of the triangle inequality may be a requirement by the algorithms for CVRP

and could be obtained by adding a suitable large positive quantity to the cost of each

arc. However, this may distort the metric to such an extent that it may produce very

bad lower and upper bounds with respect to those corresponding to the original costs.

The cost matrix satisfies the triangle inequality if the cost of each arc of the graph is

equal to the cost of the shortest path between its endpoints.
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If the cost c(vi, vj) is defined as the Euclidean distance between the two points

corresponding to vertices i and j for each arc (vi, vj) ∈ A then the cost matrix is

symmetric and satisfies the triangle inequality. It is a common mistake to round the

real valued Euclidean arc costs to the nearest integers, since this may lead to the

violation of the triangle inequality. It can be simply avoided by rounding all of the

costs up.

The fleet of vehicles

A set of identical vehicles, each with capacity C is available at the depot. To ensure

feasibility it is assumed that d(vi) ≤ C for each i = 1, 2, . . . , n. Each vehicle may

perform at most one route and it is assumed that the number of vehicles is not smaller

than the minimum number of vehicles needed to serve all customers. The latter can

be determined by solving the Bin Packing Problem associated with the CVRP. In the

associated BPP the minimum number of bins have to be determined (each of them

having a capacity C) which are sufficient to load all n items (each of them having a

nonnegative weight d(vi), i = 1, 2, . . . , n).

Define the number of vehicles by l. In the CVRP a collection of exactly l simple

circuits has to be found with minimum cost. Each circuit corresponds to a vehicle

route and the cost is defined as the sum of the costs of the arcs belonging to the

circuits. Moreover, in a valid solution each circuit visits the depot, each vertex rep-

resenting a customer is visited by exactly one circuit and the sum of the demands of

the vertices visited by a circuit does not exceed the vehicle capacity.

In some CVRP instances, the number of available vehicles may be greater than the

minimum number of vehicles necessary to serve all customers. This renders it possible

to leave some of the vehicles unused. In this case a fixed cost may be associated with

the use of a vehicle and the objective function could be extended with an additional

objective requiring the minimization of the number of vehicles used. In other cases,

the capacities of the available vehicles are different while sometimes routes containing

only one customer are not allowed.
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The Distance-Constrained Vehicle Routing Problem

If the capacity constraint is replaced by a maximum length (or time) constraint for

each route, the CVRP becomes DVRP. In particular, a nonnegative length t(vi, vj) is

associated with each arc (vi, vj) and the total length of the arcs of each route cannot

exceed the maximum route length. If the vehicles are different, the maximum route

lengths may differ.

In another approach, the arc lengths may represent travel times. In this case it

is possible to introduce a service time s(vi) for each customer vi representing a time

period for which the vehicle must stop at its location. The service times could be

added to the travel times of the arcs, i.e,

t(vi, vj) = t′(vi, vj) +
s(vi)

2
+
s(vj)

2
∀(vi, vj) ∈ A (5.1.2)

where t′(vi, vj) is the original travel time of arc (vi, vj). In general, the cost and length

matrices are the same, i.e.,

t(vi, vj) = c(vi, vj) ∀(vi, vj) ∈ A

The Distance-Constrained Capacitated Vehicle Routing Problem

If the vehicle capacity and the maximum distance is constrained, the CVRP becomes

DCVRP.

5.1.2 Formal definition

Let vx and vy be two different locations, i.e., vx, vy ∈ V , vx 6= vy. Denote the arc,

i.e., the road section leading from vx to vy by an ordered pair (vx, vy) ∈ A . The set

of vehicles is denoted by B = {b1, b2, . . . , bl}. Hk(bj) ⊆ V × V denotes the kth set of

road sections traveled by vehicle bj .

Definition 5.1.1 (Tour) The kth set of road sections traveled by vehicle Vj is called

a tour if there exists such an ordering of the road sections in Hk(bj) that

Hk(bj) = {(vx1, vy1), (vx2, vy2), . . . , (vxq, vyq)}

where vyi = vxi+1 for all i = 1, . . . , q − 1 and vyq = vx1.
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H (bj) denotes the set of all of the tours performed by bj , i.e.,

H (bj) = H1(bj) ∪ H2(bj) ∪ . . . ∪ Hr(bj)(bj)

where r(bj) is the number of tours performed by bj and H denotes the complete set

of tours performed by the fleet, i.e.,

H =
l
⋃

j=1

H (bj).

Using these notations, we can formalize the CVRP in the following way. Given n

customers with demands and l vehicles, the objective of a CVRP is to find a set of

feasible tours such that

• Each customer is served (each customer demand is satisfied)

∀vi ∈ V : d(vi) > 0 ⇒ ∃vx (vx, vi) ∈ H (5.1.3)

• Each customer is served by exactly one vehicle (each vertex is visited by exactly

one circuit)

∀vi ∈ V : |{(vx, vy) ∈ H : vy = vi}| = 1 (5.1.4)

• Each tour is started and finished at the depot (each circuit visits the depot)

∀bj ∈ B, ∀k ∈ {1, 2, . . . , r(bj)} : Hk(bj) = {(vx1, vy1), (vx2, vy2), . . . , (vxq, vyq)}

⇒ vx1 = vyq = v0

(5.1.5)

• The sum of the demands of the customers visited by a tour does not exceed the

vehicle capacity

∀bj ∈ B, ∀k ∈ {1, 2, . . . , r(bj)} :
∑

(vx,vy)∈Hk(bj)

d(vy) ≤ C(bj) (5.1.6)

• The cost is minimal
∑

(vx,vy)∈H

c(vx, vy) (5.1.7)

Note that the first two constraints could be expressed by one single constraint.

It is separated into two different constraints because in some practical situations it

could be preferable if more than one vehicle can serve a customer. In this case, the

second constraint can be ignored.
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Table 5.1: Mapping the concepts of CVRP to PNS

CVRP PNS

goods in the depot raw materials
goods at the customer products

locations intermediate materials
traveling (transportation) operating units

5.2 Modeling capacitated vehicle routing as a syn-

thesis problem

This section introduces the concepts of the P-graph model of the capacitated vehicle

routing problem. These concepts are illustrated by examples and then some important

properties of the model and the solution yielded by the model are proven.

5.2.1 Analogy between the concepts of capacitated vehicle

routing and process-network synthesis

Like in the case of vehicle scheduling, it is possible to find an analogy between the

concepts of capacitated vehicle routing and the concepts of process synthesis. The

goal of vehicle routing is to satisfy customer demands by distributing the available

goods from the depot. This is similar to a process system, where a set of products

have to be manufactured from the available raw materials.

In order to satisfy customer demands, the goods have to travel between a sequence

of places (or to be exact, they have to be transported) starting from the depot until

they reach their respective destinations. This is similar to the sequence of intermediate

materials which leads from the raw materials to the products in a process system. A

travel has a starting location and a destination similarly to an operating unit, which

has a set of inputs and a set of outputs. This discussion is summarized by Table 5.1.
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5.2.2 The P-graph model of capacitated vehicle routing

Vehicle routing problems were first modeled by the P-graph framework in [2, 67].

These conference presentations demonstrated by examples, without any comprehen-

sive description, that it is possible to define a CVRP as a PNS. The first detailed

description was given in [8]. This section expands the concepts of the above analogy

and introduces the complete P-graph model of capacitated vehicle routing.

Modeling locations, customers and goods

The representation of locations are closely related to the representation of customers

and goods. It is modeled by an intermediate material if a vehicle is at a given place

at a given time. Similarly, an intermediate material models if a good is at a given

place at a given time.

It is easy to clarify this with a simple example. Given three customers (A,B,C),

two vehicles (V 1, V 2) and a good to be transported (G1) the following set of mate-

rials is defined: M = {V 1A, V 1B, V 1C, V 2A, V 2B, V 2C, G1AV 1, G1BV 1, G1CV 1,

G1AV 2, G1BV 2, G1CV 2}, where

• V 1A: represents that V 1 is at customer A

• V 1B: represents that V 1 is at customer B

•
...

• V 1C: represents that V 1 is at customer C

• G1AV 1: represents that G1 is at A on V 1

• G1BV 1: represents that G1 is at B on V 1

•
...

• G1CV 2: represents that G1 is at C on V 2
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Figure 5.2: Movements of vehicles and goods

Modeling the movements

The movements are modeled by operating units. Using material set M = {V 1A,

V 1B, V 1C,G1A,G1B,G1C}, the following set of operating units can be defined: O =

{({V 1A}, {V 1B}), ({V 1B}, {V 1C}), ({G1A}, {G1B}), ({G1B}, {G1C})} = {V 1AB,

V 1BC,G1AB,G1BC} where

• V 1AB represents that V 1 travels from A to B

• V 1BC represents that V 1 travels from B to C

• G1AB represents that G1 is transported from A to B

• G1BC represents that G1 is transported from B to C

These operating units can be linked by their inputs and their outputs and thus it

is possible to form complex routes. For example, if V 1 advances from A to B and

then it heads from B to C then V 1AB and V 1BC becomes connected through V 1B.

Similarly, if G1 moves from A to B then from B to C then G1AB and G1BC becomes

connected. See Figure 5.2 for illustration.

Note that these are just the movements of the vehicles and the goods, until this

point there was no actual transportation performed. In a real tour, V 1 somewhere
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Figure 5.3: V 1 transports G1 from A to B and then transports it further to C

unloads G1 and heads back to the depot without any cargo. This implies that the

movements of the vehicles and the goods must be separated.

If an operating unit is representing a movement of a vehicle between two places,

then the lower bound and the upper bound on its capacity must set to 1 (i.e. 1 =

lb(oi) ≤ xi ≤ ub(oi) = 1). This ensures that the vehicle completely travels that

section, or does not travels it at all.

Modeling the transportation

To model the transportation of goodG1 by V 1 between places A and B, the operating

unit modeling the movement of V 1 between A and B have to be connected to the

operating unit modeling the movement of G1 between A and B. A new material,

CV 1AB is used for this purpose, which expresses the transportation capacity of V 1

between A and B. See Figure 5.3 for illustration.

CV 1AB is interpreted in the following way. If the capacity of a vehicle is 10000



70

V1A

V1B

V1C G1BV1

G1AV1

G1CV1

CV1AB

CV1BC

G2AV1

G2BV1

G2CV1

V1AB

V1BC G1ABV1

G1BCV1

G2ABV1

G2BCV1

Figure 5.4: Transportation of two goods by a single vehicle

units then a travel between customers A and B creates 10000 units of transporta-

tion capacity between A and B, i.e., V 1AB creates 10000 CV 1AB (the flow rate is

10000). On the other hand, the ratio of CV 1AB and G1AV 1 is 1:1, meaning that

the transportation of 1 unit of G1 requires 1 unit from the capacity of V 1 (the flow

rates are 1-1).

If a vehicle transports more than one good, then its transportation capacity is

split among the goods. See Figure 5.4 for illustration.

Modeling the loading operation

A vehicle must be loaded with goods in the depot in order to satisfy customer de-

mands. In contrast with the traditional CVRP where the loading operation is per-

formed in a dedicated depot, the P-graph framework uses a more general loading

operation which can be performed nearly anywhere. However, if every loading opera-

tion is performed at a dedicated place then that place essentially becomes the depot.

Figure 5.6 illustrates a loading operation.
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Figure 5.5: Transportation of a single good by two vehicles
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Figure 5.6: G1 is loaded onto V 1 and V 2



72

V1A

V1B

V1C G1BV1

G1AV1

G1CV1

CV1AB

CV1BC

V2A

V2B

V2C

G1AV2

G1BV2

G1CV2

CV2AB

CV2BC

G1B

V1AB

V1BC G1ABV1

G1BCV1

G1ABV2

G1BCV2

V2BC

V2AB

unloading1 unloading2

Figure 5.7: V 1 and V 2 unloads G1

The loading operation involves a raw material, which models a good that should

be delivered to the customers. During the loading this material is converted into a

material which models that the good is on the vehicle. Note, that in this example

place B can be interpreted as the depot since both vehicle is loaded there.

It is possible to impose an upper bound on the availability of a raw material

modeling a good which is to be distributed among the customers, but in practice

this is seldom necessary. In practical applications, the dimensions of the goods and

the capacity of the vehicles may differ. For example, there is a specified number of

containers in the depot but the capacity of the vehicle is given in kilograms. In this

case, the conversion is indicated by the flow rates of the operating unit modeling the

loading operation. This conversion might be reversed during the unloading.

Modeling of the unloading operation

The unloading operation is considered to be the opposite of the loading operation

and it is also modeled by operating units. See Figure 5.7 for illustration.
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G1A
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Figure 5.8: An unloading operation

Figure 5.7 illustrates that V 1 and V 2 delivers G1 at B. The interpretation is the

following: the goods on the vehicles are converted into goods at the customers and

thus the customer demands are satisfied.

The customer demand is represented by a material, in this example by the product

G1B. The lower bound of G1B defines the minimum required quantity from G1 at B.

If this demand cannot be satisfied the problem is generally considered to be infeasible.

On Figure 5.7 a customer demand is satisfied by multiple vehicles. This violates

the classical definition of the VRP but it could address some practical situations.

Mutually exclusive operating units

The concept of mutually exclusive operating units can be implemented in several ways.

The simpler, but less elegant method is to add more materials and operating units

to the model. Figure 5.8 illustrates an unloading operation: G could be delivered by

both V 1 and V 2 in A.

In order to illustrate how the mutual exclusion works, this small example is ex-

panded with the raw material UA, two intermediate materials, V 1U and V 2U and

two operating units, ({UA}, {V 1U}) and ({UA}, {V 1U}). See Figure 5.9 for the

extended example.

If the lower bounds on the capacity of these newly added operating units is set

to one and the upper bound on the availibilty of UA is also set to one, then these

operating units cannot operate simultaneously and thus the customer demand cannot
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Figure 5.9: An unloading operation with mutual exclusion

be satisfied by more than one vehicle.

Although this is a completely valid solution, the addition of operating units and

materials may be a little tedious. Moreover, if the model is expanded with additional

operating units the number of binary variables increase. An approach that handles

mutually exclusive operating units algorihmically would be more efficient and more

elegant.

In the algorithmic approach, for each operating unit a set of operating units is

defined. If the operating unit is included in the solution structure then the operating

units in the set are excluded from the solution immediately. Thus, the elements of the

set are said to be mutually exclusive with the operating unit. Formally, let (m , o) be

a solution structure and let o′′ be an operating unit. If the set of mutually exclusive

operating units is denoted by Υ:

Υ = {o′|o′ ∈ O and o′′ ∈ (m , o) ⇒ o′ 6∈ (m , o)} (5.2.1)

Note that a set of mutually exclusive operating units can be defined not just for a

single operating unit, but for a set of operating units too.

The mutually exclusive sets will be taken into consideration by algorithms of the
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Figure 5.10: Modeling time constraints

P-graph framework like SSG and ABB (i.e., where decisions must be made about the

inclusion and the exclusion of the operating units). Whenever an algorithm includes

an operating unit into the structure, it excludes the mutually exclusive operating

units from the structure. In a way, the mutual exclusion can be thought as the

extension of decision mappings. The detailed description of mutual exclusions and

their application by the P-graph algorithms can be found in [70].

Modeling the distance constraints

The distances from the cost matrix are utilized in the following way. The total

distance which is covered by a vehicle is modeled by a raw material. This raw material

is feeded as an input to every operating unit modeling a movement of the respective

vehicle. The input flow rate of this material is set to be the distance between the

two places connected by the operating unit (which is essentially an entry in the cost

matrix). See Figure 5.10 for illustration.

Material TV 1 represents the total distance which can be covered by vehicle V 1.

It is feeded to V 1AB and V 1BC which represent the movements of V 1.

The travel cost is computed from this material also. If a price is associated with the

raw material then the travel cost is proportional to the consumption of the material.

Actually, this could be modeled through the proportional cost of the operating unit,
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but perhaps it is more elegant to set a price on the raw material.

Note, that the raw material does not represent necessarily the distance, it may

represent travel time, or any other practical thing which can be related to the move-

ment of the vehicle. This can be used, for example, to impose a CO2 emission quota

on the fleet. Since multiple resources can be assigned to a vehicle simultaneously, it

is possible to cover a wide range of sophisticated practical applications.

5.3 Algorithmic model generation

[8] introduced an algorithm which generates the P-graph model of the capacitated ve-

hicle routing problem directly from the input data. Besides this algorithm, a heuristic

approach is also presented here which can be used to reduce the number of binary

variables during the model generation.

5.3.1 Model generation

The input of the algorithm is a CVRP problem which is defined by the following

parameters: a (V ,A) weighted complete graph, which represents the underlying road-

network; a vector d which represents the demands of the customers; a nonnegative

integer Nv which represents the number of vehicles, i.e, the size of the fleet; and finally

a nonnegative integer Cv which represents the capacity of the vehicles. Note, that

(V ,A) is essentially a different representation of the cost matrix.

The dimension of d is equal to the cardinality of V . For simplicity, it is assumed

that only one good is involved in the example. Thus, each entry of d represents the

demand of customer i from the good. In case of multiple goods vector d becomes

a matrix D. The actual implementation is based on the latter case, but the pseudo

code is simpler with the former.

If the capacities of the vehicles are not the same then Cv becomes a vector Cv

which has a dimension of Nv. This is a more general case which deviates from the

standard CVRP but it is much more practical and thus it is supported in the computer

implementation.
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Input CVRP problem: (V ,A), d, Nv, Cv

Output Parametric PNS: (P ,R ,O)

0. step V 6= ∅, A 6= ∅, Nv > 0, Cv > 0, P := ∅, R := ∅, O := ∅, l = 0;
1. step for all vi ∈ V do

if d(vi) > 0 do
P ∪ {GVi};
Lp(GVi) := d(vi);
R ∪ {GV0};

end if
end for

2. step while l < Nv do
R ∪ {TKl};
set cm(TKl);

2.1 step for all vi ∈ V do
if v0 do

O ∪ {{GV0}, {GV0Kl}};
else if d(vi) > 0 do

O ∪ {{GViKl}, {GVi}};
end if

end for
2.2 step for all (vi, vj) ∈ A do

O ∪ {{KlI, TKl}, {KlJ, CKlIJ}};
O ∪ {{GViKl, CKlIJ}, {GjKl}};
ub({{KlI, TKl}, {KlJ, CKlIJ}}) := 1;
lb({{KlI, TKl}, {KlJ, CKlIJ}}) := 1;
set rates of materials

end for
l := l + 1;

end while

Figure 5.11: Algorithm to generate the P-graph model of a VRP
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At the beginning of the algorithm it is practical to validate the input data and

initialize the output data. This is not an important part of the pseudo code but a

vital part of the implementation thus it is indicated as the 0. step.

In the first step the algorithm identifies the raw materials and the products by

iterating over the vertices of V . The products are derived directly from the demands

and the raw materials from the products since it is assumed that there is enough

product to satisfy all demand. Essentially, if a customer has a nonnegative demand

from a good then a product material is added to the model which represents the given

good at the given place. In the same time, a raw material is also added to the model.

The depot is an integral part of the problem definition thus it becomes the place,

which is indicated in the name of each raw material representing a good.

As it has been mentioned above, for the sake of simplicty the pseudo code involves

only one good. Thus, the product modeling the good at place vi is denoted by GVi

and the demand of customer vi by d(vi).

The operating units are added to the model in the second step. In the beginning

of each iteration, the raw material representing the distance covered by vehicle k is

added to the model. It is crucial to set a price for this material since it is the main

component of the overall cost. In case of a DCVRP problem an upper bound should

be also set on this material. If other constraints are imposed on the vehicle then the

materials representing them should be added similarly.

After this material is added the algorithm iterates over set V again. During a

similar iteration in the first step the raw materials and the products were identified

and added to the model. This iteration complements the model with the operating

units modeling the corresponding loading and unloading operations.

The next loop iterates over set A . An arc connects two places thus it defines an

operating unit modeling a movement between the two endpoints. This also defines an

operating unit which represents a transportation between the two places. The lower

bound and the upper bound are set to one and the input flow rate of the capacity is

equal to the weight of the arc (i. e., the distance between the two places).

After this iteration is finished, the algorithm proceeds with the next vehicle. If all

of the vehicles have been processed, the algorithm terminates.
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(a) Positions on the map (b) Graph representation

Figure 5.12: A small example with a depot and three customers

Theorem 5.3.1 The algorithm generates the P-graph model of a vehicle routing prob-

lem in polynomial time.

Proof The “atomic” operations of the algorithm are very simple. Both the time of

an assignment and the addition of an element to a set is O(1). The first step iterates

over the set of vertices in O(|V |) time. Step 2.1 iterates over the set of vertices again

in O(|V |) time and step 2.2 iterates over the set of edges in O(|A|) time. However,

this is repeated Nv times. Thus, the algorithm runs in O(|V |+Nv(|V |+ |A|)) time. ✷

5.3.2 Model simplification

In case of a MILP the number of binary variables is a major factor in the computa-

tional time. If the number of binary variables is lowered then the computational time

decreases. In the P-graph model of the CVRP the number of binary variables can be

reduced by the following heuristic.

The triangle inequality

Figure 5.12 illustrates a small example with a depot (Pápa) and three customers

(Vanyola, Csót, Lovászpatona). The weights of the edges of the complete graph in
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(a) Positions on the map (b) Graph representation

Figure 5.13: The only way to Lovászpatona goes through Vanyola

Figure 5.12b express the distances between the places in meters. A closer look on the

map reveals that Lovászpatona can be reached only through Vanyola. This can be

exploited in the following way.

Given three vertices, A,B and C and three edges AB, BC and AC connecting

these vertices the triangle inequality says that

AB +BC ≤ AC (5.3.1)

In Euclidean geometry the triangle inequality is a theorem about distances. In the

above case it can be interpreted as the trip from A to C is not longer through B than

the direct trip from A to C and thus AC might be redundant. To minimize numerical

errors it is subservient to introduce a scalable ǫ and transform eqn 5.3.1 into

AB +BC ≤ AC(1 + ǫ) (5.3.2)

Using this equation it is easy to see that the edges connecting Pápa and Csót to

Lovászpatona are redundant and they can be removed from the complete graph since

Lovászpatona can be reached only through Vanyola. The resultant graph is shown

on Figure 5.13b.
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Table 5.2: Test instances

Problem Vertices Edges Materials Operating units

Route 303 4 12 38 56
Route 305 6 30 84 132
Route 307 7 42 97 182

Table 5.3: Decrease in the number of operating units

Problem Redundant Nonredundant Decrease (#) Decrease (%)

Route 303 56 40 16 29
Route 305 132 124 8 6
Route 307 182 134 48 26

Computational results

[8] contains computational results which are based on a real-life R&D project and

some of them are shown here to illustrate the performance improvement achieved

by the model simplificaton. All of these test instances use two vehicles to satisfy

customer demands (Note, that this doubles the number of operating units).

The characteristics of the test instances are shown in Table 5.2, which indicates

the number of vertices and edges of the complete graph and the number of materials

and operating units in the P-graph representation. The number of vertices includes

the depot.

Table 5.3 shows the decrease in the number of operating units. The first coloumn

shows the original number of operating units in a given instance and the second

coloumn shows the number of operating units after the removal of the redundant

ones with the triangle inequality.

Table 5.4 shows the improvement in performance. These computational times

belong to the PNS solver, which implements the algorithms of the P-graph framework.

It is not indicated in a different table, but the nonredundant graphs yield the same

optimum values as the redundant ones.
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Table 5.4: Improvement in performance - PNS Solver

Problem Redundant Nonredundant Improvement Improvement (%)

Route 303 0.604 s 0.217 s 0.387 s 64
Route 305 2 min 40.642 s 2 min 3.702 s 36.948 s 23
Route 307 3 min 45.802 s 1 min 2.659 s 2 min 43.143 s 72

Table 5.5: Improvement in performance - CBC

Problem Redundant Nonredundant Improvement Improvement (%)

Route 303 1.39 s 0.56 s 0.83 s 59
Route 305 39.53 s 31.08 s 8.45 s 21
Route 307 68.65 s 23.57 s 45.08 s 66

To separate the benchmark results of the PNS solver and the underlying math-

ematical model, [8] used a software to obtain the MILP model in a conventional

file format which can be read by general purpose mathematical solvers like CBC

or CPLEX. Table 5.5 shows the computational results of CBC while the results of

CPLEX are displayed in Table 5.6. These two mathematical solvers yielded the same

optimums and the same routes as the PNS solver.

It can be seen from the benchmark results that the triangle inequality yields a

notable improvement in the performance and this improvement is independent from

the implementation of the PNS solver. However, it is considered only as a heuristic

since it is possible to construct such problem instances where the utilization of the

triangle inequality does not lead to the optimal solution.

Table 5.6: Improvement in performance - CPLEX

Problem Redundant Nonredundant Improvement Improvement (%)

Route 303 0.05 s 0.03 s 0.02 s 40
Route 305 4.39 s 2.89 s 1.5 s 34
Route 307 5.09 s 0.86 s 4.23 s 83
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5.4 The validity of the model

To prove the validity of the solution and the model it has to be shown that a solution

of the capacitated vehicle routing problem is also a solution to the synthesis problem

modeling the capacitated vehicle routing problem. On the other hand, it also has to

be shown that the synthesis problem has no such solution which is not a solution to

the capacitated vehicle routing problem.

It is also important to prove that the global optimum is embedded in the generated

mathematical model. Thus, it has to be shown that a P-graph representing a solution

structure for a capacitated vehicle routing problem conforms to Axioms (S1)-(S5).

Theorem 5.4.1 The solution of a capacitated vehicle routing problem is also solution

to the synthesis problem modeling the capacitated vehicle routing problem.

Proof In order to prove this theorem it has to be shown that a solution satisfying eqns

(5.1.3)-(5.1.6) also satisfies eqns (3.8.2)-(3.8.4). Eqn (5.1.3) says that all customer

demand have to be satisfied. In the synthesis model of the capacitated vehicle routing

problem each customer demand is modeled by a raw material (at the depot) and a

product material (at the customer). Thus, the customer demands are satisfied if the

product materials are produced by the process system, i.e., eqn (3.8.3) is satisfied.

Eqn (5.1.4) says that each customer is served by exactly one vehicle. In the

synthesis model this is enforced by the concept of mutually exclusive operating units.

If they are implemented by additional operating units, they must satisfy the mass

balance constraints imposed on the raw materials by eqn (3.8.2).

Eqn (5.1.5) says that each tour is started and finished at the depot. In the

synthesis model there is no dedicated depot but if all of the vehicles are loaded at

a given place then that place becomes the depot. However, this place is modeled

by an intermediate material. This means that besides it is consumed by the process

system, it is also produced. Since each place is modeled by intermediate materials,

starting from the place modeling the depot, there exists a sequence of intermediate

materials that leads back to the depot. If a vehicle travels through such a sequence

it also satisfies the mass balance constraints imposed on the intermediate materials

by eqn (3.8.4).
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Eqn (5.1.6) says that the sum of the demands of the customers visited by a tour

does not exceed the vehicle capacity. In the synthesis model, the capacity of the

vehicle is modeled by an intermediate material. If the capacity is not exceeded then

the mass balance constraints imposed on the intermediate materials by eqn (3.8.4)

are satisfied.

✷

Theorem 5.4.2 There is no such solution to the synthesis problem modeling the

capacitated vehicle routing probem which is not a solution to the capacitated vehicle

routing problem.

In order to prove that a solution to the synthesis problem is not a solution to the

capacitated vehicle routing problem it has to be shown that the solution satisfies eqns

(3.8.2)-(3.8.4) but violates eqns (5.1.3)-(5.1.6).

If a solution violates eqn (5.1.3), i.e., there is at least one customer who is not

served, eqn (3.8.3) is also violated since there is a product which is not produced

properly by the process system.

If eqn (5.1.4) is violated, i.e., a customer is served by more than one vehicle, it

means that the mutually exclusive operating units consume more raw materials than

what is available and thus eqn (3.8.2) is also violated.

The violation of eqn (5.1.4) means that a tour is not started or finished at the

depot. However, this also violates eqn (3.8.4).

If the sum of the demands of the customers visited by a tour exceed the vehicle

capacity, i.e., eqn (5.1.6) is violated, then the mass balance constraints imposed on

the intermediate materials by eqn (3.8.4) are also violated.

✷

Theorem 5.4.3 A P-graph (m,o) representing a solution structure for a capacitated

vehicle routing problem conforms to Axioms (S1)-(S5) and thus it is a combinatorially

feasible solution structure for the process-network synthesis problem (P ,R ,O).
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Proof In case of a CVRP the main aim is to satisfy given customer demands. In

the model each demand is represented by a product material. To satisfy all of the

customer demands all of the products representing them has to be included in the

solution structure and thus Axiom S1 (and eqn (3.8.3)) is satisfied.

In the model the raw materials represent the available goods and resources. None

of these materials are produced and thus Axiom S2 (and eqn (3.8.2)) is satisfied.

The algorithm generates each operating unit systematically from the problem

definition and therefore there will be no operating unit in the synthesis problem

which is not given in the problem definition. Hence, Axiom S3 is satisfied (and eqns

(3.8.2)-(3.8.4) consider only those operating units which are defined by the problem).

An operating unit which models an unloading has a direct connection with a

product. In a solution, each operating unit modeling a transportation is part of a

sequence of operating units which lead from a loading operation to an unloading

operation. Thus, there exists a path from each of these operating units which leads

to a product. Each operating unit which represents the corresponding movement of

a vehicle is connected to the operating units modeling the transportations through

the material representing the capacity. Thus, there exists a path which leads to a

product from each of these operating units as well.

The above sequence of operating units should be interpreted as a route of a vehicle.

The vehicle loads the necessary goods (through the operating unit representing the

loading) and then heads for the customer (through the operating units representing

the movements) with the given goods (through the operating units representing the

transportation) to satisfy demands (with the operating unit modeling the unloading

operation). Since in a solution each operating unit is connected to the product some-

how it can be stated that Axiom S4 (and the mass balance constraints expressed by

eqns (3.8.2)-(3.8.4) ) is satisfied.

The fifth axiom is ensured by the conversion algorithm since each material is added

to the model through an operating unit (except raw materials and the products but

they are also connected to the proper operating units). Thus, there is no isolated ver-

tex in the solution structure which represents a material. An isolated vertex would

mean that there is a place which could not be approached by a vehicle, or a demand
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which could not be satisfied by a vehicle, etc. (and it would violate the mass balance

constraints imposed on the system by eqns (3.8.2)-(3.8.4)). ✷

Corollary 5.4.4 The mathematical programming model generated by the P-graph

framework contains the global optimum of the capacitated vehicle routing problem.

5.5 Relationship with other models

Those familiar with VRP models may recognize some similarities between the P-

graph model and two commonly used formalizations. In this section, some of these

similarities and differences are discussed.

5.5.1 Vehicle flow models

Two-index vehicle flow models

Basic versions of the VRP are often modeled by two-index vehicle flow models. Such

formulations use O(n2) binary variables to indicate if a vehicle traverses an arc in

the optimal solution. A variable xij takes value 1 if (i, j) ∈ A belongs to the optimal

solution and takes 0 otherwise.

Two-index vehicle flow models can be used only when the cost of the solution can

be expressed as the sum of the costs associated with the traversed arcs. Moreover, it

is not known, which vehicle traverses an arc in the solution.

Three-index vehicle flow models

Three-index vehicle flow models overcome some of the drawback of the two-index

models by explicitly indicating the vehicle that traverses an arc. These models use

O(n2l) binary variables x and O(nl) binary variables y. A variable xijk counts the

number of times arc (i, j) ∈ A is traversed by vehicle k in the optimal solution and

variable yik takes value 1 if customer i is served by vehicle k in the optimal solution

and takes 0 otherwise.
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Three-index vehicle flow models generalize the two-index models and they have

been extensively used to model more constrained versions of the VRP. Their main

drawback is the increased number of binary variables.

5.5.2 Commodity flow models

The commodity flow models extend the two-index vehicle flow formulations by a

new set of continous variables associated with the arcs, representing the amounts of

demand flowing among them. The formulation extends the graph by a copy of the

depot denoted by vertex n + 1. For any route of a feasible solution, two directed

paths are defined by the flow variables, one from vertex 0 to n + 1, whose variables

represent the vehicle load and another from vertex n+1 to vertex 0, whose variables

represent the residual capacity on the vehicle.

5.5.3 The P-graph model

In the P-graph model a binary variable is associated with an operating unit only if

the operating unit has a fix cost or a lower bound. Thus, like the three-index vehicle

flow models, the P-graph model uses O(n2l) binary variables (associated with the

operating units modeling the movements of the vehicles) but there is also a set of

continous variables (associated with the operating units modeling the movements of

the goods) which is similar to the commodity flow models.

Note, that if the mutually exclusive operating units are implemented with ad-

ditional operating units, the model is extended with a new set of binary variables

(exactly n ∗ l, where n is the number of places and l is the number of vehicles),

which is essentially equivalent to the set of y variables used in the three-index ve-

hicle flow models. However, if the mutually exclusive operating units are handled

algorithmically by the framework, then this set of binary variables can be omitted.

A two-index vehicle flow formalization may require less binary variable to model

the CVRP, but in the P-graph model it is known which vehicle traverses which road

section and this is essential to generate alternative solutions.

Also note, that in contrast with the commodity flow models, in the P-graph model
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there is no copy of the depot and thus the flow of the goods is defined between the

customers and the depot.

5.6 Summary

In this chapter I have introduced an algorithm which generates the P-graph model of

a capacitated vehicle routing problem. I have also proven the validity of the generated

mathematical model and I have shown that it contains the global optimum.

The P-graph model of the CVRP provides a good basis for further develop-

ments. With the current implementation of the loading and unloading operations

it is straightforward to model pickup and delivery problems. As a recent result, the

P-graph framework was extended with time constraints [71]. The inclusion of these

constraints into the model may yield the P-graph model of the VRPTW problem.

The initial benchmark results show that the model is more competitive than the

solver which implements the algorithms of the P-graph framework. This provides a

good basis for future solver development. The benchmark results of CPLEX and CBC

show that the potential is there which could be exploited by adjusting the PNS solver

to the characteristics of the CVRP. This could be integrated with the already existing

graphical editor of the P-graph framework to yield a complete software framework for

the CVRP which has a competitive solver, an easy to use graphical editor and strong

theoretical background.
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Chapter 6

New results in reaction-pathway

identification

A reaction-pathway identification procedure has two distinct phases. The first phase

enumerates exhaustively the feasible candidate pathways, and the second phase iden-

tifies the ultimate feasible pathway or pathways among them. Probably the most

efficient way to execute the first phase is to algorithmically generate the networks of

feasible candidate pathways from a predefined set of plausible elementary reactions.

Although the first phase of reaction-pathway identification is not as popular as

the second, still, several methods have been proposed to solve it. This chapter ex-

plores the relationship between the terms direct mechanism, extreme pathway and

structurally minimal pathway. While these methods have different theoretical back-

grounds, applying linear algebra, convex analysis and graph theory respectively, all

of them consider any chemical reaction system as a network of elementary reactions.

6.1 Direct mechanisms

This chapter briefly introduces the linear algebraic method developed by Happel and

Sellers [63]. Their work is based on that they viewed a chemical system as a network

of elementary reactions linked to one another by common reactants. To determine

the possible network configurations of a chemical system, they have reinterpreted this

89
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task mathematically and were looking for solution of the following problem: Given

a finite list of elementary reactions, determine all the possible combinations of the

given reactions that form a specified overall reaction.

6.1.1 Theoretical background

To answer this question from a mathematical viewpoint, it is necessary to define

two vector spaces, an s-dimensional space of chemical reaction mechanisms and a q-

dimensional space of chemical reactions. These two vector spaces are related to each

other since each mechanism m gives rise to a unique reaction fR(m), wherein fR is

a function transforming the mechanism into the reaction. fR is linear: the reactions

in a chemical reaction system are additive, and thus, the reaction associated with

combined mechanisms m1+m2 is fR(m1)+f
R(m2).

Steps

The simplest kind of mechanism ideally consists of a one-step molecular interaction

and is termed step. Any mechanism is a combination of such steps. Each of the steps

produces one of the elementary reactions forming a basis for the space of all reactions

involved in the chemical reaction system. For example, let s1 be a step which yields

a3 from a1 and a2 and let s2 be a step which transforms a3 into a4. Then f
R(s1) is the

vector −a1 − a2 + a3, f
R(s2) is the vector −a3 + a4 and fR(s1 + s2) is −a1 − a2 + a4.

σ denotes the rate of reaction. If a step s is repeated σ times, then the linear equa-

tion becomes fR(σs) = σfR(s). σ can be a negative value, expressing the possibility

of a reverse reaction.
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The stoichiometric matrix

Denote the species contained in the chemical reaction system by a1, a2, ..., aa. The

elementary reactions among these species are denoted by the r vectors in eqn (6.1.1)

r1 = γ11a1 + γ12a2 + . . . + γ1aaa

r2 = γ21a1 + γ22a2 + . . . + γ2aaa
...

...
...

rs = γs1a1 + γs2a2 + . . . + γsaaa

(6.1.1)

where the γ’s are stoichiometric coefficients. Usually, each elementary reaction has

one or two positive coefficients, one or two negative coefficients and the remainder

are equal to zero. An elementary reaction may have more nonzero coefficients but it

is assumed, that it has at least one negative and at least one positive coefficient.

The elementary reactions in eqn (6.1.1) may be linearly dependent. The maximum

number of linearly independent reaction vectors in a linearly independent subset is

denoted by q. This subset provides a basis for a q-dimensional vector space, termed

the reaction space. In other words, q is the rank of the s× a matrix of stoichiometric

coefficients in eqn (6.1.2).















γ11 γ12 . . . γ1a

γ21 γ22 . . . γ2a
...

...
. . .

...

γs1 . . . . . . γsa















(6.1.2)

Mechanisms and reactions

Step si denotes the molecular interaction which produces ri or f
R(si). Let mechanism

m be any linear combination of steps in the form

m = σ1s1 + σ2s2 + . . .+ σsss (6.1.3)

where the coefficients, σi, are real numbers signifying the rate of occurence of si.

The s-dimensional vector space comprising the set of all such mechanisms is called

the mechanism space. The reaction, r, corresponding to the mechanism, m, can be
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obtained by applying the linear function, fR, to the above equation, thereby resulting

in

r = σ1r1 + σ2r2 + . . .+ σsrs (6.1.4)

The equations of eqn (6.1.1) can be substituted into this expression, leading to the

following explicit linear combination:

r = fR(m) = (
s

∑

i=1

σiγi1)a1 + (
s

∑

i=1

σiγi2)a2 + . . .+ (
s

∑

i=1

σiγia)aa (6.1.5)

which can be expressed in matrix form also:

r = fR(m) = [σ1 σ2 . . . σs]















γ11 γ12 . . . γ1a

γ21 γ22 . . . γ2a
...

...
. . .

...

γs1 . . . . . . γsa





























a1

a2
...

aa















(6.1.6)

The steady-state of a chemical reaction system

Species in a chemical reaction system can be grouped into two classes. One comprises

terminal species including starting reactants and final products. The other comprises

intermediates that do not belong to the terminal species. In a steady-state mechanism,

the concentrations of all intermediates are presumed to be constant, thus implying

that the net rate of production of every intermediate is zero.

Denote the intermediate species by a1, a2, . . . , aI , and the terminal species, by

aI+1, aI+2, . . . , aI+t where I + t = a. The first i coefficients in the right-hand side of

eqn (6.1.5) will be zero. Horiuti has introduced [68] a characterization for a steady-

state mechanism as one whose coefficients µ1, µ2, . . . , µs satisfy the I linear equations:

[µ1 µ2 . . . µs]









γ11 . . . γ1I
...

. . .
...

γs1 . . . γsI









= [0 0 . . . 0] (6.1.7)

If the rank of the s×I matrix in the above equation is denoted by h, the dimension

of the space of all steady-state mechanisms, p, is equal to s− h and the dimension r

of the space of all reactions which they produce equals q − h. The reactions in the
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r-dimensional space are overall reactions, and as such, they involve terminal species

only.

Characterizing a steady-state system by linear algebraic bases

The values of s, h, r, q and p and the relations among them can be determined by

simply considering them as dimensions of vector spaces and resorting to well-known

linear algebraic concepts like basis and the linear independence of vectors. In linear

algebra, a basis for a vector space is a sequence of vectors that form a set that is

linearly independent and spans the space.

Since the dimension of a space is equal to the number of elements in the basis,

every steady-state mechanism can uniquely be expressed in terms of p steady-state

mechanisms. While this approach uniquely represents each steady-state mechanism,

it does not provide a valid classification from a chemical point of view since the choice

of basis is arbitrary and is not dictated, in general, by any consideration of chemistry.

Characterizing a steady-state system by direct mechanisms

There exists, however, a unique collection of mechanisms in every chemical reac-

tion system, called direct mechanisms, which is fundamental constitutent of any

mechanism. They are also known as “direct paths” [95] or “cycle-free mechanisms”

[115, 116]. Let m be a mechanism and r be the reaction, which it produces. Mech-

anism m is defined as direct if it is minimal in the sense that, if one step is omitted

then there is no mechanism for r, which can be formed from any linear combination

of the remaining steps.

In every chemical reaction system, the set of all direct mechanisms contains within

a basis for the vector space of all mechanisms of the given system. Usually, there are

more direct mechanisms than basis elements and thus there may exist linear depen-

dence relations among direct mechanisms, but even then, they will differ chemically.

Note, that while a linear algebraic basis for a system may be ambigous, the set of

direct mechanisms is a uniquely defined attribute of the system.
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Table 6.1: List of candidate elementary reactions

(1) H2 + ℓ⇋ H2ℓ

(2) H2ℓ+ ℓ⇋ Hℓ+Hℓ

(3) N2 + ℓ⇋ N2ℓ

(4) N2ℓ+ ℓ⇋ Nℓ +Nℓ

(5) N2ℓ+H2ℓ⇋ N2H2ℓ+ ℓ

(6) N2H2ℓ+ ℓ⇋ NHℓ+NHℓ

(7) Nℓ +Hℓ⇋ NHℓ +Nℓ

(8) NHℓ +Hℓ⇋ NH2ℓ+ ℓ

(9) NHℓ +H2ℓ⇋ NH3ℓ+ ℓ

(10) NH2ℓ+Hℓ⇋ NH3ℓ+ ℓ

(11) NH3ℓ⇋ NH3 + ℓ

Table 6.2: List of the identifiers of the species

Species H2 ℓ H2ℓ Hℓ N2 N2ℓ Nℓ N2H2ℓ NHℓ NH2ℓ NH3ℓ NH3

Notation a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

6.1.2 Illustrative example

For those not familiar with reaction-pathway identification, the modeling procedure is

illustrated through the exhaustively studied ammonia synthesis reaction. The overall

reaction produces ammonia from hydrogen and nitrogen, i.e.,

N2 + 3H2 ⇋ 2NH3 (6.1.8)

The set of plausible elementary reactions is listed in 6.1 and taken from [32]. Tables

6.2 and 6.3 list the species and steps involved, respectively, as denoted by Happel and

Sellers. The stoichiometric matrix in eqn (6.1.9) is constructed directly from Table

6.3.
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Table 6.3: Table of stoichiometric coefficients γij ’s defining the steps

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

s1 -1 -1 1
s2 -1 2
s3 -1 -1 1
s4 -1 -1 2
s5 1 -1 -1 1
s6 -1 -1 2
s7 1 -1 -1 1
s8 1 -1 -1 1
s9 1 -1 -1 1
s10 1 -1 -1 1
s11 1 -1 1

γ =















































−1 −1 1 0 0 0 0 0 0 0 0 0

0 0 −1 2 0 0 0 0 0 0 0 0

0 −1 0 0 −1 1 0 0 0 0 0 0

0 −1 0 0 0 −1 2 0 0 0 0 0

0 1 −1 0 0 −1 0 1 0 0 0 0

0 −1 0 0 0 0 0 −1 2 0 0 0

0 1 0 −1 0 0 −1 0 1 0 0 0

0 1 0 −1 0 0 0 0 −1 1 0 0

0 1 −1 0 0 0 0 0 −1 0 0 0

0 1 0 0 0 0 0 0 0 0 −1 1















































(6.1.9)

The set of direct mechanisms can be obtained by the proper solution algorithm.

The resultant set of direct mechanisms is shown in Table 6.4. The coefficient matrix

in eqn (6.1.10) is obtained directly from Table 6.4.
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Table 6.4: List of direct mechanisms for the ammonia synthesis

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

m1 3 1 1 1 2 2 2
m2 3 3 1 1 2 2 2 2
m3 3 1 1 2 1 3 1 3
m4 3 1 1 1 2 2
m5 3 2 1 1 1 2 2 2
m6 3 1 2 3 3 4 2 2 2

σ =

























3 1 1 1 0 0 2 0 2 0 2

3 3 1 1 0 0 2 2 0 2 2

3 0 1 1 0 0 2 1 3 1 3

3 0 1 0 1 1 0 0 2 0 2

3 2 1 1 1 1 0 2 0 2 2

3 0 1 2 3 3 4 2 0 2 2

























(6.1.10)

6.2 Structurally minimal pathways

Reaction-pathway identification can be defined as a class of process-network synthesis

problems where each species consists of a finite number of chemical elements in a

fixed ratio, and these chemical elements are conserved throghout the process. The

products of an elementary reaction comprise exactly the same chemical elements as

the starting reactants, and the products of an overall reaction contain exactly the

same components as the starting reactants. In the following, it will be shown, that

a reaction-pathway identification problem can be interpreted as a process-network

synthesis problem, and thus, it can be solved by the P-graph framework [16, 31].

6.2.1 Theoretical background

In this discussion, the reaction-pathway identification is defined by the quadruple

(E,O,M ,Q ) where

• Q = {q1, q2, . . . , qh} is the finite ordered set of the components of the species
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• M = {a1, a2, . . . , al} is the finite ordered set of species each of which is defined

by an aj = [a1,j , a2,j, . . . , ah,j]
T ∈ (R+

0 )
h vector of nonnegative numbers with

ak,j denoting the quantity of component qk in the species aj (k = 1, 2, . . . , h)

• E is an l-dimension vector of real numbers denoting the overall reaction, i.e.,

E = [E1, E2, . . . , El]
T ∈ R

l, where Ej signifies the difference of the production

and consumption rate of the species aj (j = 1, 2, . . . , l) by the overall reaction.

Species aj is a starting reactant of the overall reaction if and only if Ej < 0,

and it is a final product of the overall reaction if and only if Ej > 0

• O = {e1, e2, . . . , en} is the finite ordered set of elementary reactions where

every reaction ei is represented by an l-dimensional vector of real numbers,

ei = [e1,i, e2,i, . . . , el,i]
T ∈ R

l, where ej,i indicates the difference of the rate of

consumption and production of the species, aj (j = 1, 2, . . . , l), by elementary

reaction i

Presumably,

Q ∩M = M ∩ O = O ∩ Q = ∅ and E 6∈ Q ∪M ∪ O. (6.2.1)

The P-graph representation

In case of reaction-pathway identification, the graphical representation of a P-graph

is altered. Elementary reactions are depicted by horizontal bars, while chemical and

active species by circles. If a chemical species is a reactant to an elementary reaction,

the vertex representing the species is linked to the vertex representing the elementary

reaction by an arc. Similarly, if a chemical species is a product from an elementary

reaction, then the vertex representing the elementary reaction is linked by an arc to

the vertex representing the species.

The set of chemical or active species is denoted by m ⊆ M ; and the set of elemen-

tary reactions under consideration, by o ⊆ O, where

m = {aj ∈ (R+
0 )

h : j = 1, 2, . . . , l′} l′ ≤ l (6.2.2)
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and

o = {ei ∈ R
l : i = 1, 2, . . . , n′} n′ ≤ n (6.2.3)

An (m , o) P-graph representing a reaction network can be defined formally as

follows: The set of vertices is m ∪ o, and the set of arcs is A1 ∪ A2, where

A1 = {(aj, ei) : aj ∈ m , ei ∈ o, ej,i < 0} (6.2.4)

and

A2 = {(ei, aj) : ei ∈ o, aj ∈ m , ej,i > 0} (6.2.5)

An (m ′, o′) P-graph is a subgraph of the (m ′′, o′′) P-graph, i.e., (m ′, o′) ⊆ (m ′′, o′′),

if m ′ ⊆ m ′′ and o′ ⊆ o′′. The union of P-graphs (m ′, o′) and (m ′′, o′′) is defined to be

the P-graph (m ′ ∪ m ′′, o′ ∪ o′′).

Axioms of combinatorially feasible pathways

The P-graph representing a reaction pathway leading from the starting reactants

to the final products defined by the overall reaction is combinatorially feasible, if it

satisfies the following axioms:

(T1) Every final product is represented in the network.

(T2) Every starting reactant is represented in the network.

(T3) Each reaction step represented in the network is defined a priori.

(T4) Every active species represented in the network has at least one path leading

to the final product of the overall reaction.

(T5) Every chemical or active species represented in the network must be a reactant

for or a product from at least one reaction step represented in the network.

(T6) A reactant of any elementary reaction represented in the reaction network is a

starting reactant, if it is not produced by any reaction step represented in the

network.
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(T7) The network includes at most either the forward or the reverse step of each

elementary reaction represented in the network.

It is easy to see the similarities between Axioms (T1)-(T7) and Axioms (S1)-(S5)

from Section 3.5. (Note, that with the proper terminology, (S1) is equal to (T1), (S3)

to (T3) and (S5) to (T5).)

Axioms of feasible pathways

Not every combinatorially feasible structure constitutes a feasible pathway. A feasible

pathway is a pathway satisfying the following six axioms;

(R1) Every final product is totally produced by the reaction steps represented in the

pathway.

(R2) Every starting reactant is totally consumed by the reaction steps represented

in the pathway.

(R3) Every active intermediate produced by any reaction step represented in the

pathway is totally consumed by one or more reaction steps in the pathway,

and every active intermediate consumed by any reaction step represented in the

pathway is totally produced by one or more reaction steps in the pathway.

(R4) All reaction steps represented in the pathway are defined a priori.

(R5) The network representing the pathway is acyclic.

(R6) At least one elementary-reaction step represented in the pathway activates a

starting reactant.

Feasible pathways must satisfy stronger constraints then combinatorially feasible

pathways, since Axioms (T1)-(T7) are the relaxations of Axioms (R1)-(R6). Con-

sequently, every feasible pathway is a combinatorially feasible pathway, but not every

combinatorially feasible pathway is a feasible pathway.
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RPIMSG and RPISSG

Axioms (T1)-(T7) give rise to algorithms RPIMSG and RPISSG, which in the context

of reaction-pathway identification do exactly the same as algorithms MSG and SSG.

Like MSG, RPIMSG reduces the search space by excluding those elementary reactions

which do not contribute to any combinatorially feasible solution structure. The gener-

ated structure is maximal in the sense that it contains every combinatorially feasible

solution structure but Axiom (T7) is not closed under union and thus the maximal

structure may not be a solution structure itself. Analog to SSG, RPISSG yields the

set of all combinatorially feasible reaction networks from the maximal structure of

reaction networks.

RPIPBT

The feasible pathways defined by Axioms (R1)-(R6) are generated by algorithm

RPIPBT (Pathway-Back-Tracking). RPIPBT is a branch and bound like algorithm

which similarly to RPISSG, generates combinatorially feasible pathways but unlike

RPISSG, it also tests these pathways whether they satisfy Axioms (R1)-(R3) and

(R5) or not.

(R5) says that a feasible pathway must not contain cycles. This is verified by the

algorithm by a linear program, where the constraints reflect the condition that the

null vector can be expressed by a nonnegative linear combination of the elementary

reactions included in the structure. Axioms (R1)-(R3) are verified by another linear

program, which tests whether the overall reaction can be expressed by a linear com-

bination of the included and the “undecided” (at the current node of the search tree

it is not yet decided whether they are included in the structure or not) elementary

reactions, where the former have strictly positive and the latter have nonnegative

coefficients.

Structurally minimal pathways

A P-graph is termed a structurally minimal pathway or “independent pathway” if

it represents a feasible pathway and none of its proper subgraphs can represent a
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feasible pathway. For a more exact definition of structurally minimal pathways, it is

necessary to formalize Axioms (R1)-(R5) ((R6) relaxed).

A set o of elementary reactions satisfies Axioms (R1)-(R3) if and only if there

exists a positive coefficient λi for each elementary reaction ri ∈ o such that

∃λ = [λ1, λ2, . . . , λn]
T :

∑

ri∈o

λiri = E, ri ∈ o ⇐⇒ λi > 0 (6.2.6)

The above equation implies that the system must be at steady-state. Axiom (R4)

can be formulated as

o ⊆ O (6.2.7)

and finally, Axiom (R5) can be formulated as

6 ∃o′ : o′ ⊆ o, o′ 6= ∅, ∃λ′ = [λ′1, λ
′
2, . . . , λ

′
n]

T :
∑

ri∈o

riλ
′
i = 0, ri ∈ o′ ⇐⇒ λ′i > 0

(6.2.8)

From a mathematical point of view, an (m , o) P-graph is termed structurally

minimal pathway, if it satisfies the following statement: The overall reaction can

be expressed as a positive linear combination of the elementary reactions included

in the structure and (m , o) is minimal in the sense that it has no proper subgraphs

satisfying this criterion. With a slight modification, RPIPBT is able to generate the

complete set of structurally minimal pathways.

6.2.2 Illustrative example

The modeling procedure is illustrated through the previously introduced ammonia

synthesis. Two chemical elements and an active site are identified in the system. Set

Q contains two elements and the notation of the active site ℓ;

Q = {q1, q2, q3} = {Ṅ, Ḣ, ℓ̇} (6.2.9)

Set M contains twelve species;

M = {a1, a2, . . . , a12} (6.2.10)
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In an equivalent yet more detailed formulation the species are represented in vectorial

form where the components of the vectors denote the quantities of the chemical

elements in the species; as expressed below.

M = {[0, 2, 0]T , [0, 0, 1]T , . . . , [1, 3, 0]T} (6.2.11)

Often the set of species are given by simply listing the species contained in the chem-

ical reaction system omitting the notation a1, a2, . . . , a12, as follows:

M = {H2, ℓ, . . . , NH3} (6.2.12)

The following equation shows how the set of elementary reactions are given in the

terminology of structurally minimal pathways. Note, that unlike in the case of steps,

it is necessary to define the elementary reactions in both directions;

O = {e1→, e2→, . . . , e11→, e1←, e2←, . . . , e11←} (6.2.13)

A detailed form of this expression is given below where each elementary reaction step

is expressed by the vector of its stoichiometric coefficients.

O = {e1→ = [−1,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T ,

e2→ = [0, 0,−1, 2, 0, 0, 0, 0, 0, 0, 0, 0]T ,

. . .

e11→ = [0, 1, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1]T ,

e1← = [1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0]T ,

e2← = [0, 0, 1,−2, 0, 0, 0, 0, 0, 0, 0, 0]T ,

. . .

e11← = [0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 1,−1]T}

(6.2.14)

Similarly, the following equation shows the vector representing the overall reaction;

E = [−3, 0, 0, 0,−2, 0, 0, 0, 0, 0, 0, 0, 2]T (6.2.15)
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Finally listed below is the set V of structurally minimal pathways (m1, o1), (m2, o2),

. . . ,(m6, o6) determined by algorithm RPIPBT.

V = {(m1 = N2, H2, NH3, ℓ, H2ℓ,Hℓ,N2ℓ, Nℓ,NHℓ,NH3ℓ,

o1 = {e1→, e2→, e3→, e4→, e7→, e9→, e11→}),

(m2 = N2, H2, NH3, ℓ, H2ℓ,Hℓ,N2ℓ, Nℓ,NHℓ,NH2ℓ, NH3ℓ,

o2 = {e1→, e2→, e3→, e4→, e7→, e8→e10→, e11→}),

(m3 = N2, H2, NH3, ℓ, H2ℓ, N2ℓ, N2H2ℓ, NHℓ,NH3ℓ,

o3 = {e1→, e3→, e4→, e7→, e8→, e9→, e10→, e11→},

(m4 = N2, H2, NH3, ℓ, H2ℓ, N2ℓ, N2H2ℓ, NHℓ,NH3ℓ,

o4 = {e1→, e3→, e5→, e6→, e9→, e11→}),

(m5 = N2, H2, NH3, ℓ, H2ℓ,Hℓ,N2ℓ, N2H2ℓ, NHℓ,NH2ℓ, NH3ℓ,

o5 = {e1→, e2→, e3→, e5→, e6→, e8→, e10→e11→}),

(m6 = N2, H2, NH3, ℓ, H2ℓ,Hℓ,N2ℓ, Nℓ,N2H2ℓ, NHℓ,NH2ℓ, NH3ℓ,

o6 = {e1→, e3→, e4→, e5→, e6→, e7→, e8→, e10→, e11→})}

(6.2.16)

6.3 Extreme pathways

Metabolic pathway is a central paradigm in biology. There have been earlier at-

tempts in characterizing complex metabolic networks (see e.g. [23]) and the interest in

metabolic pathway analysis was increased further by the human genom project. How-

ever, the genome-scale metabolic networks reconstructed from annotation of genome

sequences demanded new network-based definitions of pathways to facilitate analysis

of their capabilities and functions [102]. This has given rise to two popular concepts

termed Elementary Flux Modes [114] and Extreme Pathways [111].

Both Elementary Flux Modes and Extreme Pathways apply convex analysis to

generate a set of unique pathways of the metabolic system. Due to their similarities

the relationship among them has been analysed and it has been found that the set

of elementary flux modes is a superset of the set of extreme pathways. For further

information about the relationship of extreme pathways and elementary flux modes

see [103]. Here, the focus will be on extreme pathways.
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6.3.1 Theoretical background

A cellular metabolic reaction network is a collection of enzymatic reactions and

transport processes that serve to replenish and drain the relative amounts of certain

metabolites. A system boundary can be drawn around all these types of physically

occurring reactions, which constitute internal fluxes operating inside the network

[111].

Internal and exchange fluxes

Some metabolites may be fully enclosed by these boundaries while others may enter

or exit the system. The latter necessiates the introduction of exchange fluxes which

can be thought as the inputs/outputs of the system. In general, the reactions are

classified as internal or exchange reactions, based on whether they cross the system

boundary, or not. Reversible internal reactions are considered as two reactions in op-

posite directions, thus internal fluxes are nonnegative. This is only for mathematical

purposes and does not influence the interpretation of the biochemical network.

Exchange reactions may be reversible but a metabolite cannot participate in more

than one exchange reaction. The activity of an exchange reaction is considered to

be positive if the metabolite is exiting and negative if the metabolite is entering the

system.

The stoichiometric matrix

Given m metabolites and n reactions, the system is represented by the stoichiometric

matrix S ∈ R
m×n. Internal fluxes are denoted by vi for i = 1, ..., nI and exchange

fluxes by bi for i = 1, ..., nE where n = nI + nE . Note, that nE can never be greater

then m, since there can be at most one exchange flux per metabolite. As usual, an

Sij element of S represents the stoichiometric coefficient of metabolite i in reaction

j, and vj represents the flux through reaction j.

For practical purposes, the internal reactions are represented by the first (nI)

series of coloumns of S and the external reactions are represented by the rest (nE

coloumns). Vector v ∈ R
n represents the relative fluxes through the reactions in the
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metabolic network and it is constructed in a similar manner like S.

Representation of the metabolic system

The pathway structure to be determined should be an invariant property of the net-

work along with stoichiometry. Thus, it is reasonable to analyse the system under

steady-state, where the material balances are

Sv = 0 (6.3.1)

The equation system in eqn (6.3.1) is usually underdetermined since the number

of reactions is typically greater than the number of metabolites. The null space

corresponds to the set of all solutions and a set of basis vectors can be selected

to describe the null space in eqn (6.3.1), where each basis vector corresponds to a

steady-state pathway [112]. For a complete analysis, further constraints have to be

introduced. Each internal flux must be nonnegative:

vi ≥ 0, ∀i (6.3.2)

The constraint on an exchange flux bj depends on the status of the corresponding

metabolite. Based on the direction of the exchange flux, the lower bound lbj and the

upper bound ubj are set to 0, −∞ or ∞. If bi is bidirectional, i.e., both a source and

a sink is present for the metabolite, then lbj is set to −∞ and ubj to ∞ leaving the

exchange flux unconstrained. Formally:

lbj ≤ bj ≤ ubj (6.3.3)

Convex analysis

Through eqns (6.3.1)-(6.3.3) a metabolic system in steady-state is described as a

system of linear equalites/inequalities which limits the use of traditional concepts of

linear algebra and gives rise to convex analysis. The solution set for this system can

be described geometrically as convex polyhedral cone emanating from the origin of

the n-dimensional space. Within this cone lie all the possible steady-state solutions; it
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is called as the steady-state flux cone. Since the flux space represents the capabilities

of the given metabolic network, it clearly defines what a network can and cannot do.

In convex analysis, the edges of the cone are half-lines emanating from the origin

and are called extreme rays. These rays are generate the cone and are systematically

independent since they cannot be decomposed into a non-trivial convex combination

of any other vectors residing in the cone. In contrast to the basis concept of linear

algebra, this minimal generating set is unique.

Extreme pathways

In the context of metabolic systems, the edges of the cone are termed extreme path-

ways [111] as each edge corresponds to a particular pathway which satisfies eqns

(6.3.1)-(6.3.3). Every point within the cone (C) can be written as a convex combi-

nation of extreme pathways. By denoting the extreme pathways by pi and the total

number of extreme pathways to generate C by k, we have

C = {v : v =

k
∑

i=1

wipi, wi ≥ 0, ∀i} (6.3.4)

where wi denotes the weight of the given pathway in a particular flux distribution.

The set of extreme pathways is similar to a coordinate system which can be used to

describe a position in the space.

Properties of extreme pathways

While every flux distribution v can be expressed as a non-negative linear combina-

tion of the extreme pathways, the decomposition of a steady-state flux vector into

the corresponding extreme pathways is not necessarily unique (in contrast with lin-

ear algebra, where such a decomposition is unique even though the basis itself is

non-unique). The unique representation of every point in the solution space can be

guaranteed only by a basis of the solution space. However, the set of extreme path-

ways form a basis only if the number of pathways equals to the dimension of the null

space.
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A set of {p1,p2, . . .pk} extreme pathways is systematically independent if no

pathway can be written as a non-trivial non-negative linear combination of the other

pathways. Thus, a set of pathways may be systematically independent while simul-

taneously being a linearly dependent set. Since the number of pathways forming the

edges of the steady-state flux cone is typically greater than the dimension of the null

space, the set of extreme pathways is linearly dependent. However, when the func-

tional aspects of a metabolic system is investigated, systemic independence should

take priority over linear independence as it is a unique property of any system and

its structural capabilities.

Classification of extreme pathways

Extreme pathways can be classified according to coefficients of the exchange fluxes:

there are pathways for which all of the coefficients of the exchange fluxes are zero, and

there are pathways in which there are non-zero coefficients for a set of exchange fluxes.

Moreover, the pathways can be classified even further, if the primary and currency

metabolites are distinguished in the metabolic system. In this case, a third class

of pathways can be introduced for which all of the exchange fluxes for the primary

metabolites equal zero, while non-zero values exist for the exchange fluxes of some of

the currency metabolites [111]:

• Type-I pathways. The exchange fluxes of the primary metabolites are active.

These pathways are major contributors to the decomposition of almost any

steady-state flux distribution and thus are of major interest.

• Type-II pathways. Only the exchange fluxes on the currency metabolites

are active. These pathways correspond to true futile cycles existing within the

network which serve to dissipate energy or reductive power.

• Type-III pathways. All of the exchange fluxes are inactive. These pathways

represent cycles that have no net overall effect on the functional capabilities

on the network. In most of the cases, these pathways denote the result of the

decomposition of a reversible reaction into two irreversible reactions.
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Figure 6.1: A sample metabolic network

6.3.2 Illustrative example

The modeling procedure is illustrated by an example taken from [111]. Fig. 6.1

depicts a simple biochemical network consisting of 5 metabolites, 6 internal and 4

exchange fluxes. All four exchange fluxes are unconstrained.

This network can formulated with respect to eqns (6.3.1)-(6.3.3) as
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(6.3.5)

with

vj ≥ 0, j = 1 . . . 6 −∞ ≤ bj ≤ ∞, j = 1, . . . , 4. (6.3.6)

The first six coloumns of S represent the internal reactions and the last four coloumns
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represent the internal reactions of the system. After executing a proper solution

algorithm (see e.g. [111]), the following set of extreme pathways is obtained:

P =
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(6.3.7)

All seven pathways are presented as coloumns in the pathway matrix.

6.4 Equivalence of direct mechanisms and struc-

turally minimal pathways

While direct mechanisms and structurally minimal pathways have a different the-

oretical background, there are also definite similarities between the two concepts.

Essentially, both of them consider a chemical reaction system as a network compris-

ing elementary chemical reactions linked to one another through shared reactants. A

closer look reveals further similarities, like the existence of a steady-state constraint.

At this point the question may arise: is there any connection between direct

mechanisms and structurally minimal pathways and if there is, what is it exactly?

This question is valid indeed, and it will be shown that while these two concepts have

different theoretical backgrounds (one rooted in linear algebra and the other in graph

theory), they are actually equivalent.

First, it has to be shown that the overall reaction produced by a direct mecha-

nism can be expressed by exactly one linear combination of the elementary reactions

produced by the steps constituting the direct mechanism.
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Theorem 6.4.1 Let m be a direct mechanism yielding the overall reaction E. Then,

the overall reaction can be expressed by exactly one linear combination of the elemen-

tary reaction vectors, r1, r2, . . . , rn, generated by the steps s1, s2, . . . , sn constituting

the direct mechanism, m.

Proof Let m be a direct mechanism yielding overall reaction E. Let s1, s2, . . . , sn be

the steps constituting the direct mechanism, m, and let r1, r2, . . . , rn be elementary

reactions generated by the steps, s1, s2, . . . , sn. Then, E can be expressed as a linear

combination of r1, r2, . . . , rn with coefficients λ1, λ2, . . . , λn:

λ1r1 + λ2r2 + . . .+ λnrn = E (6.4.1)

Suppose that the overall reaction can be written as another linear combination of

these vectors with coefficients λ∗1, λ
∗
2, . . . , λ

∗
n, as

λ∗1r1 + λ∗2r2 + ... + λ∗nrn = E (6.4.2)

and that there exists at least one such index k for which λk differs from λ∗k, i.e.,

∃k, λk − λ∗k 6= 0 (6.4.3)

For i = 1, 2, . . . , n, let εi denote the difference, λi − λ∗i . Then, the linear combination

of the elementary reaction vectors, r1, r2, . . . , rn, with coefficients ε1, ε2, . . . , εn is the

null vector, i.e.,

ε1r1 + ε2r2 + . . .+ εnrn = E− E = 0 (6.4.4)

This implies that the elementary reaction vectors are not linearly independent. Hence,

one of the elementary reactions, r1, r2, . . . , rn, can be expressed as a linear combination

of the others. For example, for rk where λk differs from λ∗k (and thus εk is nonzero):

εkrk = −
n

∑

i=1
i 6=k

εiri (6.4.5)

The above expression signifies that mechanism m is not a direct mechanism: The

overall reaction E could be expressed as a linear combination of the reaction vectors

r1, r2, . . . , rk−1, rk+1, . . . , rn omitting reaction rk as follows:

λ1r1 + λ2r2 + . . .−
λk
εk

n
∑

i=1
i 6=k

εiri + . . .+ λnrn = E (6.4.6)
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This contradiction proves the theorem. ✷

Corollary 6.4.2 To define a direct mechanism, it is sufficient to define the set of

elementary reactions constituting the direct mechanism.

This corollary implies that it is unnecessary to define the coefficients for the elemen-

tary reactions to uniquely define a direct mechanism; it is sufficient to define the set

of elementary reactions constituting the direct mechanism. Corollary 6.4.2 provides

the link between direct mechanisms and structurally minimal pathways. The combi-

nation of Corollary 6.4.2 and Theorem 6.4.3 prove that the direct mechanisms and

the structurally minimal pathways of a chemical system are identical.

Theorem 6.4.3 There is no proper subset of elementary reactions forming a struc-

turally minimal pathway that can constitute a direct mechanism.

Proof Suppose that for a vector r a given set of vectors {r1, r2, . . . , rk, rk+1, . . . , rn}

is minimal in the sense that the vector, r, cannot be written as a linear combination of

vectors of any proper subset of {r1, r2, . . . , rk, rk+1, . . . , rn} with positive coefficients,

i.e.,

r =

n
∑

i=1

λiri, ∀λi > 0 (6.4.7)

r is minimal in the sense that there is no proper subset of {r1, r2, . . . , rk, rk+1, . . . ,

rn} satisfying eqn (6.2.8). Now suppose that by relaxing the positivity constraint and

enabling negative coefficients, r can be written as a linear combination of the vectors

in {r1, r2, . . . , rk}, namely

r =
k

∑

i=1

λ∗i ri where k < n (6.4.8)

Let δ be

δ = min
λ∗

i<0

{

λi
|λ∗i |

}

(6.4.9)

This δ is positive, since if λi ≥ 0; then,

λi
|λ∗i |

≥ 0 (6.4.10)
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Multiplying both sides of eqn (6.4.8) by δ gives

δr =

k
∑

i=1

δλ∗i ri (6.4.11)

The sum of eqns (6.4.7) and (6.4.11) yields

r(1 + δ) =

k
∑

i=1

(λi + δλ∗i )ri +

n
∑

i=k+1

λiri (6.4.12)

In light of the definition of δ, in the first sum, where the minimum is attained, one

of the coefficients (λi + δλ∗i ) will be zero. By denoting the index of this coefficient by

j, we have

δ =
λj
|λ∗j |

and λj +
λj
|λ∗j |

λ∗j = 0 (6.4.13)

The other coefficients will be nonnegative: it is trivial that

λi +
λj
|λ∗j |

λ∗i ≥ 0 where λ∗i ≥ 0 (6.4.14)

and

λi +
λi
|λ∗i |

λ∗i = 0 where λ∗i < 0 (6.4.15)

Since δ is defined where the minimum is attained, it is clear, that

0 < δ =
λj
|λ∗j |

≤
λi
|λ∗i |

∀i, i 6= j (6.4.16)

thereby yielding

λi +
λj
|λ∗j |

λ∗i ≥ 0 ∀i, i 6= j (6.4.17)

Thus, the vector, r, can be written as a linear combination of the vectors of this

proper subset with positive coefficients; moreover, by dividing both sides with (1 +

δ), a proper subset of the set, {r1, r2, . . . , rk, rk+1, . . . , rn}, is obtained, as given below.

r(1 + δ) =

k
∑

i=1
i 6=j

(λi + δλ∗i )ri +

n
∑

i=k+1

λiri (6.4.18)

r =

∑k
i=1
i 6=j

(λ+ δλ∗i )ri +
∑n

i=k+1 λiri

1 + δ
(6.4.19)

This contradicts that {r1, r2, . . . rn} is structurally minimal and proves the following

theorem. ✷
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Theorem 6.4.4 Given a chemical system at steady-state, the set of direct mecha-

nisms and the set of structurally minimal pathways of the system are equivalent.

Proof Follows directly from Corollary 6.4.2 and Theorem 6.4.3. ✷

6.5 Equivalence of extreme pathways and struc-

turally minimal pathways

There is no need for detailed analysis to see the similarities between extreme path-

ways and structurally minimal pathways, or to be more exact, the similarities between

Type-I extreme pathways and structurally minimal pathways. (As a matter of fact,

this whole chapter is based on the recognition that during the tests of the software

implementing the P-graph framework reaction-pathway identification algorithms, the

number of extreme pathways and structurally minimal pathways were always the

same. However, the exact relationship was unclear at the time.) Structurally min-

imal pathways lead from input/starting metabolites to output/product metabolites

while Type-I extreme pathways involve the conversion of primary inputs into primary

outputs. In this section, it will be proven, that for a given overall reaction, the Type-I

extreme pathways and structurally minimal pathways are equivalent. The following

was proven in [111]:

Theorem 6.5.1 A convex flux cone determined by eqns (6.3.1)-(6.3.3) has a set of

systematically independent generating vectors. Furthermore, these generating vectors

(extremal rays) are unique up to a multiplication by a positive scalar. The generating

vectors are called extreme pathways.

First, it will be shown, that for a given overall reaction eqns (6.2.6)-(6.2.8) define the

same cone as eqns (6.3.1)-(6.3.3). Note, that a reaction vector oi = [o1,i, o2,i, . . . , om,i]
T

is a coloumn of the stoichiometric matrix, thus (6.2.6) can be reformulated as

S′λ = E, λi ≥ 0 i = 1, 2, . . . , n (6.5.1)

where S′ ∈ R
m×n, λ ∈ R

n and E ∈ R
m. The difference between the matrices S and S′

and the vectors v and λ is the absence of the exchange flux components. Thus, the
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column dimension of S and the dimension of v is always greater than the dimension

of S′ and λ respectively.

Only one exchange flux is permitted per metabolite. Thus, the model defined

by eqns (6.3.1)-(6.3.3) can be “generalized” in the following way: append an m×m

diagonal matrix denoted by I′ to the first n columns of S. If a metabolite has an

exchange flux assigned to it then I ′m,m is -1 and 0 otherwise. v is expanded accordingly.

Now S ∈ R
m×(n+m) and v ∈ R

(n+m). The “generalized” form of eqn (6.3.5) is eqn

(6.5.2).
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(6.5.2)

The vj ≥ 0 (j = 1 . . . n) inequalities remain valid, but for a given overall reaction,

the bj (j = 1, . . . , m) values are known. Furthermore, note that the bj components

of v constitute E, the vector of the overall reaction from eqn (6.5.1), while the vj

components, the fluxes through the reactions are the same as the λj components of

the λ vector from eqn (6.5.1). Thus, eqn (6.5.2) has the following structure;

[S′|I′]

[

λ

E

]

= 0 (6.5.3)

The result of this matrix-vector multiplication can be formulated as

S′λ+ I′E = 0 (6.5.4)

Since I′ is diagonal and has only −1 as nonzero elements, eqn (6.5.4) becomes

S′λ− E = 0 (6.5.5)
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which equals to eqn (6.5.1). Thus, the convex cone determined by eqns (6.2.6)-(6.2.8)

is equivalent to the cone determined by eqns (6.3.1)-(6.3.3).

Now it has to be shown, that like the extreme pathways, the structurally min-

imal pathways are also the edges of the cone, i.e., they have to be systematically

independent and they have to generate the cone. The property of systematic inde-

pendence follows from the definition of structurally minimal pathways, i.e., a vector

corresponding to a structurally minimal pathway cannot be written as a positive

linear combination of other structurally minimal pathways. The second property is

proven indirectly.

In the previous section, it is proven by Theorem 6.4.4 that structurally minimal

pathways are equivalent to direct mechanisms. It is also known from the previous

sections that the set of all direct mechanisms in a system contains a basis for the

vector space of all mechanisms and unlike a linear algebraic basis, the set of direct

mechanisms is a unique property of the system. It follows from the above that the

set of structurally minimal pathways is unique and every reaction pathway can be

expressed in terms of structurally minimal pathways (i.e., they generate the cone).

Thus, the following has been proven:

Theorem 6.5.2 The set of Type-I extreme pathways and structurally minimal path-

ways are equivalent for a given overall reaction.

Corollary 6.5.3 The set of Type-I extreme pathways and direct mechanisms are

equivalent for a given overall reaction.

6.6 Summary

I have proven that the terms direct mechanism, structurally minimal pathway and

Type-I extreme pathway are equivalent. Direct mechanisms were used mainly to

analyse catalytic reactions [63], extreme pathways for metabolic pathway analysis

[104, 107, 113, 133] and structurally minimal pathways for both [85, 88, 89, 118].

The latter suggests that the theoretical models developed for enzymatic and cat-

alytic reactions are similar. Now, I have formally proven, that direct mechanisms
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and Type-I extreme pathways are indeed interchangeable. Thus, the algorithms and

modeling methods developed for direct mechanisms are valid for structurally minimal

pathways and extreme pathways and this holds vice versa as well.

This has certain benefits. For example, the algorithm computing extreme path-

ways is a fairly sequential one, since it computes a sequence of tableux from the initial

tableu, the stoichiometric matrix, and each tableu is computed from the previous one

[12]. This gives only a little room for parallelization. However, the algorithm used to

determine structurally minimal pathways is based on the branch and bound principle

and is highly parallelizable. Modern computer architectures typically increase their

performance by simultaneously using multiple processors and RPIPBT is well-suited

for this approach.

There are certain similarities between the methodologies that could be exploited

further with the integration of the graph-theoretical and linear algebraic concepts.

Such a method is already under development by the supervisor of the author and

hopefully it will be published soon.

6.7 Related publications

Refereed Journal Papers

1. M. Barany, B. Bertok, C. Imreh, L. T. Fan, and F. Friedler. On the equivalence

of direct mechanisms and structurally minimal pathways, Journal of Mathemat-

ical Chemistry, 50:1347-1361, 2012. (IF=1.303)

2. M. Barany, B. Bertok, L. T. Fan, and F. Friedler. Relationship between extreme

pathways and structurally minimal pathways, Bioprocess and Biosystems En-

gineering, 36:1199-1203, 2013. (IF=1.869)
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Summary

The second chapter has introduced four problems often arising in industrial appli-

cations. These problems are generally considered to be hard but are also important

enough to have a rich literature which has been surveyed by chapter two.

Chapter three reviewed the P-graph framework which can be considered as the

common denominator of the subsequent chapters. The P-graph framework algorith-

mically generates the mathematical programming model of a process-network syn-

thesis problem directly from the input parameters. It is formally proven that the

generated model contains the global optimum.

The first new result is introduced in chapter four. Here, I have shown that a

vehicle scheduling problem can be modeled by the P-graph framework. I have proven

that the optimal solution is embedded in the generated model. Moreover, I have

proposed an algorithm which generates the P-graph model of a vehicle scheduling

problem in polynomial time.

In chapter five I have shown that it is also possible to model a CVRP problem

by the P-graph framework. I have proven, that the generated model contains the

global optimum of the problem. As in the previous chapter, I have also proposed

an algorithm which generates the P-graph model of a capacitated vehicle routing

problem.

Reaction-pathway identification problems were solved earlier by the P-graph frame-

work. In chapter six I have expanded these results further by showing and proving

117
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that the concepts direct path, extreme pathway and structurally minimal pathway

are equivalent.

At the time this thesis is written the new results in chapter four and six have been

already published in peer reviewed scientific journals. A paper based on chapter five

is under preparation.

Future work

The new scientific results of the thesis lay the foundations for the following future

developments:

• Multi-objective optimization by the P-graph framework. The proposed

model highlights through the CO2 emission that it is easy to incorporate addi-

tional factors into the model which lays the foundations for the multi-objective

optimization by the P-graph framework.

• Modeling more complex vehicle routing problems. The P-graph model

of the CVRP provides a good basis for further developments. With the current

implementation of the loading and unloading operations it is straightforward to

model pickup and delivery problems. As a recent result, the P-graph framework

was extended with time constraints. The inclusion of these constraints into the

model may yield the P-graph model of the VRPTW problem.

• Developing synergistyc methods forreaction-pathway identification.

Based on the achieved results it is possible to develop synergistic methods by

integrating the graph-theoretical and linear algebraic concepts. Already under

development.
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New scientific results

1. I have shown that vehicle scheduling problems can be modeled by the P-graph

framework.

(a) I have proven that the solution of a vehicle scheduling problem is also a

solution to the synthesis problem modeling the vehicle scheduling problem.

I have also proven that there is no such solution to the synthesis problem

modeling the vehicle scheduling problem which is not a solution to the

vehicle scheduling problem.

(b) I have proposed an algorithm which systematically generates the P-graph

model of the vehicle scheduling problem in polynomial time.

(c) I have proven that the generated model contains the global optimum of

the problem.

2. I have shown that vehicle routing problems can be modeled by the P-graph

framework.

(a) I have proven that the solution of a capacitated vehicle routing problem is

also a solution to the synthesis problem modeling the capacitated vehicle

routing problem. I have also proven that there is no such solution to the

synthesis problem modeling the capacitated vehicle routing problem which

is not a solution to the vehicle capacitated vehicle routing problem.
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(b) I have proposed an algorithm which systematically generates the P-graph

model of a capacitated vehicle routing problem in polynomial time.

(c) I have proven that the generated model contains the global optimum of

the problem.

3. I have shown that the concepts direct path and structurally minimal pathway

used in reaction pathway identification are equivalent.

(a) I have formally proven that an overall reaction can be expressed by exactly

one linear combination of the elementary reaction vectors generated by the

steps constituting a direct mechanism.

(b) I have formally proven that there is no proper subset of elementary reac-

tions forming a structurally minimal pathway that can constitute a direct

mechanism.

4. I have shown that the concepts extreme pathway and structurally minimal path-

way used in reaction pathway identification are equivalent.

(a) I have formally proven that the set of Type-I extreme pathways and struc-

turally minimal pathways are equivalent for a given overall reaction.

(b) As a consequence I have proven that the set of Type-I extreme pathways

and direct mechanisms are equivalent for a given overall reaction.
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504, 2010.

2. M. Barany, B. Bertok, Z. Kovacs, F. Friedler and L.T. Fan, Solving Vehicle

Assignment Problems by Process-network Synthesis to Minimize Cost and En-

vironmental Impact of Transportation, Clean Technologies and Environmental

Policy, 13:637-642, 2011. (IF=1.753)
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