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Koszonetnyilvanitas

Mindazoknak akik hittek bennem.

"Egyiitt hajtunk, egyiitt halunk, rossz fiuk tlizon—vizen at!"



Kivonat

Szamitasi intelligencia alapi regresszios technikak és alkal-
mazasaik a folyamatmérnokségben

Az olyan adat alapu regressziés modellek mint a metszd hipersikok, neurélis
haldzatok vagy szupport vektor gépek széles korben elterjedtek a szabélyzasban,
optimalizalasban €s a folyamat monitorozdsban. Mivel ezek a modellek nem értel-
mezhetbek, a folyamatmérnokok gyakran nem a legjobb gyakorlat szerint hasznositjak
ezeket. Abban az esetben, ha betekintést nyerhetnénk ezekbe a fekete doboz mod-
ellekbe, lehetdségiink nyilna a modellek validéldsara, tovabbi informdciok és 0ssze-
fliggések feltarasara a folyamat véltozok kozott, illetve a modell épités fazisat is
tudndnk tdmogatni a-priori informacidk beépitésével.

Az értekezés kulcs gondolata, hogy a metsz6 hipersikok, neurdlis hal6zatok
és szupport vektor gépek fuzzy modellekké alakithatéak, és a kapott szabdlybazis
alapu rendszerek értelmezése biztosithat6 specidlis modell redukcios és vizualiza-
cids technikakkal.

Az értekezés elsd harmada a metsz6 hipersik alapu regressziés fak identifika-
cigjaval foglakozik. A miikodési tartomany rekurzivan particiondlt egy fuzzy c-
regresszio alapu csoportositasi technikdval. A kapott kompakt regresszios fa lokalis
linearis modellekbdl all. Ez a modellezési struktira jol haszndlhaté modell alapd
szabdlyozasban, példaul modell prediktiv szabdlyozds soran.

A kovetkezd fejezet a neurdlis hdlézatok validdlasaval, vizualizdl4dsaval és struk-
turdlis redukcidjaval foglalkozik, melyek alapjdul a neurdlis hal6zat rejtett rétegének
fuzzy szabdlybazissa torténd dtalakitdsa szolgdl.

Végiil a szupport vektor gépek és a fuzzy modellek kozti analégia keriil betu-
tatdsra egy 3 1épéses redukcids algoritmus segitségével. A cél értelmezehetd fuzzy
regresszids modell, melynek alapja a szupport vektor regresszio.

A fejlesztett algoritmusok vegyészmérnoki gyakorlatban torténd alkalmazhato-

sagat minden fejezetben esettanulméanyok igazoljak.
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Abstract

Computational intelligence based regression techniques and
their applications in process engineering

Data-driven regression models like hinging hyperplanes, neural networks and
support vector machines are widely applied in control, optimization and process
monitoring. Process engineers are often mistrustful of the application of these mod-
els since they are not interpretable. If we would have some insight to these black
boxes we could have the possibility to validate these models, extract hidden infor-
mation about the relationships among the process variables, and to support model
identification by incorporating some prior knowledge.

The key idea of this thesis is that hinging hyperplanes, neural networks and sup-
port vector machines can be transformed into fuzzy models and the interpretability
of the resulted rule-base systems can be ensured by special model reduction and
visualization techniques.

The first part of the thesis deals with the identification of hinging hyperplane
based regression trees. The operating regime of the model is recursively partitioned
by a novel fuzzy c-regression clustering based technique. The resulted compact
regression tree consists of local linear models, which model structure is favored in
model based control solutions, like in model predictive control.

The next section deals with the validation, visualization and structural reduction
of neural networks based on the transformation of the hidden layer of the network
into an additive fuzzy rule base system.

Finally, based on the analogy of support vector regression and fuzzy models a
three-step model reduction algorithm will be proposed to get interpretable fuzzy
regression models on the basis of support vector regression.

Real life utilization of the developed algorithms is shown by sectionwise exam-

ples taken from the area of process engineering.

il
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Chapter 1

Introduction

With combination of computation intelligence tools, like hinging hyperplanes (HH),
support vector regression (SVR), artificial neural networks (ANNs) and fuzzy mod-
els powerful and interpretable models can be developed. This introduction presents
the motivation of handling these techniques in one integrated framework and de-

scribes the structure of the thesis.

1.1 Data-driven techniques in process engineering

Information for process modeling and identification can be obtained from different
sources. According to the type of available information, three basic levels of model

synthesis are defined:

White-box or first-principle modeling A complete mechanistic model is const-
ructed from a priori knowledge and physical insight. Here dynamic models

are derived based on mass, energy and momentum balances of the process

[1].

Fuzzy logic modeling A linguistically interpretable rule-based model is formed

based on the available expert knowledge and measured data [1].

Black-box model or empirical model No physical insight is available or used, but
the chosen model structure belongs to families that are known to have good
flexibility and have been "successful in the past". Model parameters are iden-

tified based on measurement data [1].

This means, if we have good mechanistic knowledge about the process, this can

be transformed into white box model described by analytical (differential) equa-

1



tions. If we have information like human experience described by linguistic rules
and variables, the mechanistic modeling approach is useless and the application of
rule-based approaches like fuzzy logic is more appropriate [2, 3]. Finally, there
may be situations, where the most valuable information comes from input-output
data collected during operation. In this case, the application of black box models
is the best choice. These black box models are especially valuable, when an accu-
rate model of the process dynamics is needed. Therefore, the nonlinear black box
modeling is a challenging and promising research field [4, 5, 6, 7, 8].

Black-box models are especially valuable when an accurate model of the pro-
cess dynamics is needed. In order to perform a successful data-driven model the

following steps have to be carried out [1]:
1. Selection of model structure and complexity
2. Design of exctitation signals used or identification
3. Identification of model parameters
4. Model validation

Process engineers are often mistrustful of the application of nonlinear black box
models since they are not interpretable. If we would have some insight to these
black boxes we could have the possibility to validate these models, extract hidden
information about the relationships among the process variables, selection of the
model structure based on this knowledge, and to support model identification by
incorporating some prior knowledge.

For these purposes novel model identification methods, interpretable, robust and
transparent models are needed. Since we are interested in extraction of knowledge
from process data, tools and methodologies of data mining should be also efficiently
utilized.

Historically the notion of finding useful patterns in data has been given a variety
of names including data mining, knowledge extraction, information discovery, and
data pattern processing. The term data mining has been mostly used by statisti-
cians, data analysts, and the management information systems (MIS) communities
[9]. Data mining is not just a simple tool, but a complex process consisting of mul-
tiple steps, hence this process must be integrated into the supported activity. The
process of data—based knowledge discovery can be seen on Fig. 1.1. Introducing

the knowledge discovery process allows us to give a brief definition to data mining:



Data mining is a decision support process to give valid, useful and a priori not

known reliable information from data sources. [10]

Decision
{ support
/Visualization
Data mining
/ Information mining
Data exploration
/ Queries and statictics
Data warehouse/datamart
/ OLAP, different data cubes
Data sources
/ OLAP, different data cubes

Figure 1.1: Steps of the knowledge discovery process

To understand this definition the following keywords must be further investi-
gated [1]:

process Data mining is not a product-ready delivered software generating auto-
matically consumable knowledge from stored data, but it is a complex pro-
cess consisting of well-defined steps. Regression techniques takes place dur-
ing model preparation. Improved model identification algorithms and inter-
pretable models ensure quality of acquired information at the end of KDD

process.

valid Mined information must be accurate and statistically significant. Validity

states not only accuracy but also completeness.

useful It is not enough to generate valid knowledge with the help of data mining,
explored knowledge must be utilizable for the exactly defined problem. Un-
fortunately measuring usefulness is not always solved, as sometimes affect of

the used information cannot be measured with monetary tools.

preliminarily not known Strictly speaking, data—based knowledge discovery has
twofold aim: confirmation and discovery. Confirmation means strengthen-
ing hypothesis of the data expert while discovery stands for identification of

patterns generated by the examined system. Aim of data mining basically is



to identify discoverable knowledge to define predictive or descriptive func-
tions. Regression—based methods are predictive exercises defining future, not

known properties or behaviors of the modeled process.

exact Result of data mining must be easily interpretable, and the model should not

deviate from from reality.

Key challenge of data mining is to capture potential information from opaque
data sources and transform data to a more compact, abstract, informative and easy-
to-use way. Hence, data mining looks for trends and patterns in large databases.
Knowledge delivered by data mining exists in a form of an interpretable model
or information represented in decision trees, rule bases, networks or mathematical
equations.

The aim of the thesis at hand is to extract interpretable regression models to

foster the usage of these models in process engineering.

1.2 Interpretability and model structure identifica-
tion

Reliability
¥

Interpretability - c lexit
omplexity

4

Maintenance

Figure 1.2: Tradeoffs in modeling

Zadeh stated in Principle of Incompatibility [11] "as the complexity of a system
increases our ability to make precise and yet significant statements about its behav-
ior diminishes until a threshold is reached beyond which precision and significance
(or relevance) become almost mutually exclusive characteristics." Obtaining high
degree of interpretability with sizeable complexity is a contradictory purpose and -

in practice - one of these properties prevails over the other. The problem becomes



much more difficult to handle when model reliability and maintenance is included
to the conditions.

In most studies of process identification it is assumed that there is an opti-
mal functional structure describing relationship between measured input and output
data. It is very difficult to find a functional structure for a nonlinear system. Gen-
erally speaking, the structure identification of a system has to solve two problems:
one is to find input variables and one is to find input-output relations. The selection
the input variables can be based on the aim of the modeling exercise and on prior
knowledge related to the system to be modeled. For static systems statistical tech-
niques, correlation analysis and modeling performance based methods proposed by
Sugeno [12, 13, 14] and Jang [15] can be used. For dynamical systems, the selec-
tion of the relevant model-inputs is identical to the determination of the model order
of the NARX model.

The identified model must be validated as well. If the model is validated by
the same data set from which it was estimated, the accuracy of the model always
improves as the complexity of the model structure increases. In practice, a trade-
off is usually sought between model accuracy and complexity, and there are several
approaches to compensate for this automatic increase of the modeling performance.

Fig. 1.3 shows connection between modeling error and model complexity[1].
As this figure shows, selection of the proper model structure is a complex tasks that
requires careful selection of training and validation datasets, proper cost functions

and proper optimization strategies or heuristics that support the modeler.

Prediction error
A

train set

test set

>
>

Small Modell complexity Large

Figure 1.3: Model complexity versus modeling error



1.3 Computational intelligence based models

Majority of problems arose in process engineering practice requires data-driven
modeling of nonlinear relationships between experimental and technological vari-
ables. Complexity of nonlinear regression techniques is gradually expanding with
the development of analytical and experimental techniques, hence model structure
and parameter identification is a current and important topic in the field of nonlinear
regression not just by scientific but also from industrial point of view as well.

In line with these expectations and taking interpretability of regression models
as basic requirement aim of this thesis is the development of robust computational
intelligence models in order to solve nonlinear regression identification tasks.

Tools from the armory of computational intelligence (also referred as soft com-
puting) have been in focus of researches recently, since soft computing techniques
are used for fault detection, forecasting of time-series data, inference, hypothesis
testing, and modeling of causal relationships (regression techniques) in process en-
gineering.

The meaning of soft computing was originally tailored in the early 1990s by
Dr. Zadeh [16]. Soft computing refers to a collection of computational techniques
in computer science, artificial intelligence, machine learning and some engineering

disciplines, to solve two cardinal problems:

e [ earning from experimental data (examples, samples, measurements, records,

patterns) by neural networks and support vector based techniques

e Embedding existing structured human knowledge(experience, expertise, heuris-

tic) into fuzzy models [17]

These approaches attempt to study, model, and analyze very complex phenom-
ena: those for which more conventional methods have not yielded low cost, analytic,
and complete solutions. Earlier computational approaches (hard computing) could
model and precisely analyze only relatively simple systems.

As more complex systems arising in biology, medicine, the humanities, manage-
ment sciences, and similar fields often remained intractable to conventional math-
ematical and analytical methods. Where hard computing schemes —striving for ex-
actness and full truth—fail to render the given problem, soft computing techniques
deliver robust, efficient and optimal solutions to capture available design knowledge

for further analysis.



Generally speaking, soft computing techniques resemble biological processes
more closely than traditional techniques, which are largely based on formal logical
systems, such as sentential logic and predicate logic, or rely heavily on computer-
aided numerical analysis. Hence in real life high degree of uncertainty should be
taken in to account during identification process. Soft computing tries to solve this
challenge with exploiting tolerance for imprecision, uncertainty and partial truth in
order to reach robustness and transparency at low cost.

Many systems are not amenable to conventional modeling approaches due to the
lack of precise, formal knowledge about the system, due to strongly nonlinear be-
havior, high degree of uncertainty, or time-varying characteristics. Computational
intelligence, the technical umbrella of hinging hyperplanes (HH) [18, 19, 20], sup-
port vector regression (SVR) [21, 22, 23, 24, 25], artificial neural networks (ANNs)
[26, 27, 28, 29, 30, 31] and fuzzy logic [2, 3, 32] has been recognized as a powerful
tool which is tolerant of imprecision and uncertainty, and can facilitate the effective
development of models by combining information from different sources, such as

first-principle models, heuristics and data.

Table 1.1: Evaluation criteria system

Property | Description

Character of the model

output between training data samples
Character of the model

outside region of training data
Locality, globality

Interpolation behavior

Extrapolation behavior

Locali : .
& of the basis functions
Model accuracy
Accuracy o
with given number of parameters
Smoothness Smoothness of model output

Affect of noise on model behavior
Can linear and nonlinear

model parameters estimated
Possibilities of model

Sensitivity to noise

Parameter optimization

Structure optimization

Online adaptation
Training speed
Evaluation speed
Curse of dimensionality

Interpretation

Incorporation of constraints
Usage

structure and complexity optimization

Possibilities of on-line model adaptable

Speed of model parameter estimation

Speed of model evaluation

Model scale up to higher input space dimensions
Interpretation of model

parameters and model structure

Difficulty of constraint incorporation

Acceptability and penetration of modeling structure



Among the techniques of computational intelligence, ANNs attempt to mimic
the structures and processes of biological neural systems. They provide powerful
analysis properties such as complex processing of large input/output information
arrays, representing complicated nonlinear associations among data, and the ability
to generalize or form concepts-theory. Support vector regression in it’s nature is
very similar to ANNs and on the other hand HH models can be a good alternative
to NNGs.

Based on [1] Table 1.1 summarizes several criterion can be used to evaluate
these modeling techniques. The studied nonlinear regression techniques have usu-
ally robust modeling structure, however the resulted model is often a non—inter-
pretable black—box model. This thesis focuses on the identification, utilization and
interpretability of ANNs, HHs and SVR in the realm of modeling, identification and

control of nonlinear processes.



1.4 Motivation and outline of the thesis

This thesis has twofold aims to introduce new algorithms for nonlinear regression
(hinging hyperplanes) and to highlight possibilities to transform black—box non-
linear regression models (neural networks and support vector regression) to trans-
parent and interpretable fuzzy rule base (see fig 1.4). These techniques together
form a framework to utilize combination-of-tools-methods in order to understand,

visualize and validate non—linear black box models.

Fuzzy Logic Neural Network Models

Hinging hyperplanes Support Vector Regression

Figure 1.4: Framework of the thesis

Three algorithms were examined based on the evaluation criteria system men-
tioned in section 1.2 in details namely identification of regression trees based hing-
ing hyperplane, neural networks and support vector regression. Application of these
techniques eventuate black box models at first step. It will be shown how inter-
pretability could be maintained during model identification with utilization of ap-
plicable visualization and model structure reduction techniques within the fuzzy

modeling framework.

Chapter 2 Hinging hyperplanes deals with the identification of hinging hyper-
plane based regression trees. Results of the developed algorithm proves that the im-
plementation of a priori constraints enables fuzzy c-regression clustering technique
to identify hinging hyperplane models. Application of this technique recursively on
the partitioned input space ends up in a regression tree capable for modeling and
even for implementation of model predictive control of technological data coming
from real life applications. According to the evaluation system mentioned in section
1.2 the development algorithm contains major developments in hinge model identi-
fication, since the proposed method has higher accuracy, the tree—based represen-
tation enables better structure and parameter optimization and helps interpretation

of model parameters and model structure.



Main improvements of hinging hyperplane identification is discussed in

T. Kenesei, B. Feil, J. Abonyi, Fuzzy Clustering for the Identification of Hinging
Hyperplanes Based Regression Lecture notes in computer science, Lecture notes in
artificial intelligence; 4578. ISBN:9783540733997 pp. 179-186. 2007

Detailed description of regression tree representation can be found in

T. Kenesei, J. Abonyi, Hinging hyperplane based Regression tree identified by
Fuzzy Clustering WSC16 - 16th Online World Conference on Soft Computing in
Industrial Applications 2011.

Hinging hyperplane model predictive control is published in

T. Kenesel, B. Feil, J. Abonyi, Identification of Dynamic Systems by Hinging Hy-
perplane Models ICAI 2007 - 7th International Conference on Applied Informatics
Eger 2007.

Our efforts within the framework of hinging hyperplane identification and control
is submitted to

T. Kenesei, J. Abonyi, Hinging hyperplane based Regression tree identified by
Fuzzy Clustering and its application Applied Soft Computing Journal vol 13(2)
pp. 782-792 2013.

Chapter 3 Visualization and reduction of neural networks deals with the vali-
dation, visualization and structural reduction of neural networks in order to achieve
better interpretability. With applying orthogonal least squares and similarity mea-
sure based techniques structure optimization is also performed. It is described in
details that the hidden layer of the neural network can be transformed to an additive
fuzzy rule base.

Reduction and visualization methods are described in

T. Kenesei, B. Feil, J. Abonyi, Visualization and Complexity Reduction of Neural
Networks Applications of soft computing: updating the state of art., pp. 43-52.
2009. Advances in soft computing ISBN:9783540880783 vol. 52.

Chapter 4 Interpretable Support vector regression describes connections be-
tween fuzzy regression and support vector regression, and introduces a three-step
reduction algorithm to get interpretable fuzzy regression models on the basis of sup-

port vector regression. This combination—of—tools technique retains good general-
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ization behavior and noise insensitiveness of the support vector regression however
keeps the identified model interpretable and with the application of reduction tech-

niques structure optimization is also achieved.

Three-step reduction algorithm and visualization methods can be found in

T. Kenesei, A. Roubos, J. Abonyi, A Combination-of-Tools Method for Learning
Interpretable Fuzzy Rule-Based Classifiers from Support Vector Machines Lecture
Notes in Computer Science; 4881. ISBN:978-3-540-77225-5 pp. 477-486. 2008

Application of support vector regression models is described in the following pub-
lications

T. Kenesei, J. Abonyi, Interpretable Support Vector Machines in Regression and
Classification- Application in Process Engineering, Hungarian Journal of Indus-
trial Chemistry, VOL 35. pp. 101-108 2007.

T. Kenesei, J. Abonyi, Interpretable Support Vector Regression, Artificial Intelli-
gence Research, Vol 1 (2), ISSN:1927-6974 ,2012

Real life utilization of the developed algorithms is shown by section—wise exam-
ples taken from the area of chemical engineering. Finally, Chapter 5 summarizes
the new scientific results in English and in Hungarian.

The proposed framework supports the structure and parameter identification of
regression models. To achieve this goal structure optimization techniques like or-
thogonal least squares (OLS) and decision tree based model representations are
applied. The detailed description of the regression problem are given in Appendix
A while OLS is described in details in Appendix C.

As can be seen, this thesis is based on a number of papers we published recently.
I have attempted to eliminate redundancy of these papers. To promote easier reading
consistent nomenclature list can be found in the Notations section. Source codes of
the utilized softwares written in Matlab can be found on the www.abonyilab.com

website.
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Chapter 2

Hinging Hyperplanes

Hinging hyperplane model is proposed by Breiman [20] and identification of this
type of non-linear model is several times reported in the literature due to suffer-
ing from convergency and range problems [33, 34, 35, 19]. Methods like penalty
of hinging angle were proposed to improve Breiman’s algorithm [18], or Gauss—
Newton algorithm can be used to obtain the final non—linear model [34]. Several
application examples have been also published in the literature, e.g. it can be used
in identification of piecewise affine systems via mixed-integer programming [36]
and this model also lends himself to form hierarchical models [19].

In this chapter a much more applicable algorithm is proposed for hinging hyper-
plane identification. The key idea is that in a special case (¢ = 2) fuzzy c-regression
method (FCRM) [37] can be used for identifying hinging hyperplane models. To
ensure that two local linear models used by fuzzy c-regression algorithm form a
hinging hyperplane function, it has to be granted that local models are intersecting
each other in the operating regime of the model. The proposed constrained FCRM
algorithm is able to identify one hinging hyperplane model, therefore to generate
more complex regression trees, described method should be recursively applied.
Hinging hyperplane models containing two linear submodels divide operating re-
gion of the model into two parts, since hinging hyperplane functions define a linear
separating function in the input space of the hinging hyperplane function. Sequence
of these separations result a regression tree where branches correspond to linear di-
vision of operating regime based on the hinge of the hyperplanes at a given node.
This type of partitioning can be considered as crisp version of a fuzzy regression
based tree described in [38]. Fortunately, in case of hinging hyperplane based re-
gression tree there is no need for selecting best splitting variable at a given node,

but on the other hand it is not as interpretable as regression trees utilizing univariate
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decisions at nodes.

The proposed modeling framework is based on the algorithm presented at the 16th
Online Conference on Soft Computing in Industrial Applications [39]. To support
the analysis and building of this special model structure novel model performance
and complexity measures are presented in this work. Special attention is given for
the modeling and controlling nonlinear dynamical systems. Therefore, application
example related to Box—Jenkins gas furnace benchmark identification problem is
added. It will be also shown that thanks to the piecewise linear model structure the
resulted regression tree can be easily utilized in model predictive control. A detailed
application example related to the model predictive control of a water heater will
demonstrate the benefits of the proposed framework.

A critical step in the application of model-based control is the development of a
suitable model for the process dynamics. This difficulty stems from lack of knowl-
edge or understanding of the process to be controlled. Fuzzy modeling has been
proven to be effective for the approximation of uncertain nonlinear processes. Re-
cently, nonlinear black-box techniques using fuzzy and neuro-fuzzy modeling have
received a great deal of attention [40]. Readers interested in industrial applications
can find an excellent overview in [41]. Details of model-based control relevant ap-
plications are well presented in [42] and [43].

Most nonlinear identification methods are based on the NARX (Nonlinear AutoRe-
gressive with eXogenous input) model [8]. The use of NARX black box models
for high-order dynamic processes in same cases are impractical. Data—driven iden-
tification techniques alone, may yield unrealistic NARX models in terms of steady-
state characteristics, local behavior and unreliable parameter values. Moreover, the
identified model can exhibit regimes which are not found in the original system
[43]. This is typically due to insufficient information content of the identification
data and the over-parametrization of the model. This problem can be remedied by
incorporating prior knowledge into the identification method by constraining the
parameters of the model [44]. Another possibility to reduce the effects of over-
parametrization is to restrict the structure of the NARX model, using for instance
the Nonlinear Additive AutoRegressive with eXogenous input (NAARX) model
[45]. In this thesis a different approach is proposed, a hierarchial set of local linear
models are identified to handle complex systems dynamics.

Operating regime based modeling is a widely applied technique for identification of
these nonlinear systems. There are two approaches for building operating regime

based models. An additive model uses sum of certain basis functions to represent a
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non-linear system, while partitioning approach partitions the input space recursively
to increase modeling accuracy locally [18]. Models generated by this approach are
often represented by trees [46]. Piecewise linear systems [47] can be easily repre-
sented in a regression tree structure [48]. Special type of regression tree is called
locally linear model tree, which algorithm combines a heuristic strategy for input
space decomposition with a local linear least squares optimization (like LOLIMOT
[1]). These models are hierarchical models consisting of nodes and branches. Inter-
nal nodes represent tests on input variables of the model, and branches correspond
to outcomes of said tests. Leaf (terminal) nodes contains regression models in case
of regression trees.

Thanks to the structured representation of the local linear models, hinging hyper-
planes lend themselves to a straightforward incorporation in model based control
schemes. In this chapter this beneficial property is demonstrated in the design of
instantaneous linearization based model predictive control algorithm [32].

This chapter organized as follows: next section discusses how hinging hyperplane
functions’ approximation is done with FCRM identification approach. The descrip-
tion of tree growing algorithm and the measures proposed to support model building
are given in Section 2.2. In Section 4.3, application examples are presented while

Section 4.4 concludes the chapter.

2.1 Identification of hinging hyperplanes

2.1.1 Hinging hyperplanes

The following section gives a brief description about the hinging hyperplane ap-
proach on the basis of [34, 18, 49], followed by how the constrains can be incor-
porated into FCRM clustering.

For a sufficiently smooth function f(xy), which can be linear or non-linear, assum-
ing that regression data {xy, yx } is available for k = 1,..., N. Function f(x) can
be represented as the sum of a series of hinging hyperplane functions h;(xy),7 =
1,2,..., K are defined as the hinging hyperplane function. Breiman[20] proved
that we can use hinging hyperplane to approximate continuous functions on com-

pact sets, guaranteeing a bounded approximation error

lenll = 11f = Zh Il < 2R)' /K 2.1)
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’ Hinging Hyperplanes

v

Figure 2.1: Basic hinging hyperplane definitions

where K is the number of hinging hyperplane functions R is the radius of the sphere

in which the compact set is contained and c is such that

/ Jwl2Lf () Jdw = ¢ < oo 2.2)

The approximation with hinging hyperplane functions can get arbitrarily close if
sufficiently large number of hinging hyperplane functions are used. The sum of the
hinging hyperplane functions Zfil hi(x}) constitutes a continuous piecewise linear
function. The number of input variables n in each hinging hyperplane function and
the number in hinging hyperlane functions K are two variables to be determined.
The explicit form for representing a function f(xj) with hinging hyperplane func-
tions becomes (see Fig. 2.1)

K K
f(xg) = Z hi(xx) = Z(max | min) (x; 61, %, 02;) (2.3)
i=1 i=1
where (max | min) means max or min.

Suppose two hyperplanes are given by:

Yr = Xi 01, yp = X;. 0 (2.4)

where X, = [0, Tk1, Tk2, - - - s Thkon), Tko = 1is the kth regressor vector and yj,
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is the kth output variable. These two hyperplanes are continuously joined together
at {x : x7 (6; — 0,) = 0} as can be seen in Fig. 2.1. As a result they are called
hinging hyperplanes. The joint A = 6; — 6, multiples of A are defined hinge for
the two hyperplanes, y, = x160; and y,, = x}. 0,. The solid/shaded part of the two
hyperplanes explicitly given by

yp = max(x; 01, %3 0) or y, = min(x3 0y, x;, ) (2.5)

Hinging hyperplane method has some interesting advantages for non-linear function

approximation and identification:

1. Hinging hyperplanes functions could be located by a simple computation-
ally efficient method. In fact hinging hyperplane models are piecewise linear
models, the linear models are usually obtained by repeated use of linear least-
squares method, which is very efficient. The aim is to improve the whole

identification method with more sophisticated ideas.

2. For non-linear functions with resemble hinging hyperplane functions, the

hinging hyperplane method has very good and fast convergence properties.

Hinging hyperplane method practically combines some advantages of neural
networks (in particular ability to handle very large dimensional inputs) and of con-
structive wavelet based estimators (availability of very fast training algorithms).

Essential hinging hyperplane search problem can be viewed as an extension
of linear least-squares regression problem. Linear least-squares regression aims
to find the best parameter vector ¢/9\, by minimizing a quadratic cost function with
which regression model gives the best linear approximation to y. For nonsingular
data matrix X linear least squares estimate y = x’ ) is always uniquely available.
The hinging hyperplane search problem, on the other hand, aims to find the two

parameter vectors 6; and 05, defined by

N
[01,05] = arg gninz [(max | min) (yx — %61,y — XZ&Q)]Q (2.6)

,0
1 2k:1

A brute force application of Gauss-Newton method can solve the above de-

scribed optimization problem. However, two problems exist [18]:

1. High computational requirement. The Gauss—Newton method is computa-

tionally intensive. In addition, since the cost function is not continuously

16



differentiable, the gradients required by Gauss-Newton method can not be
given analytically. Numerical evaluation is thus needed which has high com-

putational demand.

2. Local minima. There is no guarantee that the global minimum can be ob-

tained. Therefore appropriate initial condition is crucial.

2.1.2 Improvements in hinging hyperplane identification

The proposed identification algorithm applies a much simpler optimization method,
the so—called alternating optimization which is a heuristic optimization technique
and has been applied for several decades for many purposes, therefore it is an ex-
haustively tested method in non-linear parameter and structure identification as
well. Within the hinging hyperplane function approximation approach, the two
linear submodels can be identified by the weighted linear least-squares approach,
but their operating regimes (where they are valid) are still an open question.

For that purpose fuzzy c-regression model (further referred as FRCM and proposed
by Hathaway and Bezdek [37]) was used. This technique is able to partition the
data and determine the parameters of the linear submodels simultaneously. With
the application of alternating optimization technique and taking advantage of the
linearity in (y;, — x1 60,) and (yx — x1 6), an effective approach is given for hinging
hyperplane function identification, hence FCRM method in a special case (¢ = 2)
is able to identify hinging hyperplanes. The proposed procedure is attractive in lo-
cal minima point of view as well, because in this way although the problem is not
avoided but transformed into a deeply discussed problem, namely the cluster valid-
ity problem.

The following quadratic cost function can be applied for the FCRM method

U, {0;}) = ZZ i)™ Ei i @.7)

=1 k=1

where m € (1, 00) denotes a weighting exponent which determines the fuzziness of
the resulting clusters, while 0, represents the parameters of local models and ; ;, €
U is the membership degree, which could be interpreted as a weight representing

the extent to which the value predicted by the model f;(xy, ;) matches y;. The
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prediction error is defined by:

2

B = (e — filxk:05)) (2.8)

but other measures can be applied as well, provided they fulfill the minimizer prop-
erty stated by Hathaway and Bezdek [37].

One possible approach to the minimization of the objective function (2.7) is the

group coordinate minimization method that results in the following algorithm:

e Initialization Given a set of data {(x1,¥1),..., (X~,yn)} spec-
ify ¢, the structure of the regression models (2.8) and the error
measure (2.7). Choose a weighting exponent m > 1 and a termi-

nation tolerance € > 0. Initialize the partition matrix randomly.
e RepeatFor/=1,2,...

Step 1 Calculate values for the model parameters #; that minimize the
cost function E,,(U, {6;}).

Step 2 Update the partition matrix

) 1
C Y (Bik/ By )Y 1)

1<i<c,1<k<N (29

!
b

until ||[UD — U] <.

A specific situation arises when the regression functions f; are linear in the param-
eters 0;, fi(xx;0;) = xgkﬁi, where x; j, is a known arbitrary function of x;. In this
case, the parameters can be obtained as a solution of a set of weighted least-squares
problem where the membership degrees of the fuzzy partition matrix U serve as the
weights.

The N data pairs and the membership degrees are arranged in the following

matrices.
- X1 - - (7 - [ pia 0 ]
X = X; y=| " ®= 9 foz 9 (2.10)
_XZN_ | v | I 0 o --- 1|
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The optimal parameters 6; are then computed by:
0, = [ X"®;X] ' X" ®,y (2.11)

Applying ¢ = 2 during FCRM identification these models can be used as base
identifiers for hinging hyperplane functions. For hinging hyperplane function iden-

A
y . .
' hinge function
\/ “-. hinging hyperplanes
P oyt
] : 1
; hinge !
e X
A |
il s
1 1 1
X

Vi \Z:

Figure 2.2: Hinging hyperplane identification restrictions

tification purposes, two prototypes have to be used by FCRM (¢ = 2), and these
prototypes must be linear regression models. However, these linear submodels have
to intersect each other within the operating regime covered by the known data points
(within the hypercube expanded by the data). This is a crucial problem in the hing-
ing hyperplane identification area [18]. To take into account this point of view
as well, constrains have to be taken into consideration as follows. Cluster centers
v; can also be computed from the result of FCRM as the weighted average of the

known input data points
N
D1 Xnbik
- N
Zkzl Hi ks

where the membership degree 1, i, is interpreted as a weight representing the extent

v; (2.12)

to which the value predicted by the model matches y,. These cluster centers are
located in the *'middle’ of the operating regime of the two linear submodels. Because

the two hyperplanes must cross each other following criteria can be specified (see
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Fig. 2.9):

Vl(el — 92) <0 and V2(6‘1 — 92) > (0 or (213)
Vl(gl — 02) >0 and Vg(el — 92) <0

These relative constrains can be used to take into account the constrains above:

0
Arel,l,Q [ 9:

When linear equality and inequality constraints are defined on these prototypes,

< 0 where Ayg 12 = i (2.14)
—Vy Vo

quadratic programming (QP) has to be used instead of the least-squares method.
This optimization problem still can be solved effectively compared to other con-
strained nonlinear optimization algorithms.

Local linear constraints applied to fuzzy models can be grouped into the follow-

ing categories according to their validity region:

e Local constrains are valid only for the parameters of a regression model,

¢ Global constrains are related to all of the regression models, Ayt; < wy, ¢ =

1,...,c

e Relative constrains define the relative magnitude of the parameters of two or

more regression models.

0;
Arel,i,j

] S Wreli,j (215)

J

An example for these types of constrains are illustrated in Fig.2.3.

In order to handle relative constraints, the set of weighted optimization problems
has to be solved simultaneously. Hence, the constrained optimization problem is
formulated as follows:

min {%HTHH + cTe} (2.16)

20



Global constraints

012<04, %

Relative
congtraints

[6411942]

[ 62,1 ) 62,2] "

Local constraints

5.

Figure 2.3: Hinging hyperplane model with 4 local constraints and two parameters

with H = 2XT®X’, ¢ =

X' =

—2X/ T(IJy’ , where

o, |
05
0.
&, 0
0 @,
0 0

where ®; contains local membership values and the constraints on 6:

A< w
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0
(2.18)
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with

A 0O --- 0 w1
0 Ay -+ 0 Wo
0 0 - A, We
A=| Ay, 0 0 | w=1| wy (2.20)
0 Agl Wyl
0 0 - Ay Wy
L {Arel} i L {wrel} i

Referring back to Fig.2.1 it can be concluded with this method both part of the
intersected hyperplanes are described and that part ({(max|min)) is selected which

describes the the training data in the most accurate way.

2.2 Hinging hyperplane based binary trees

So far, the hinging hyperplane function identification method is presented. The pro-
posed technique can be used to determine the parameters of one hinging hyperplane
function. The classical hinging hyperplane approach can be interpreted by identi-
fying K hinging hyperplane models consisting of global model pairs, since these
operating regimes cover the whole N dataset. This representation leads to several
problems not just during model identification but also renders model interpretabil-
ity more difficult. To overcome this problem a tree structure is proposed where the
data is recursively partitioned into subsets, while each subset used to form models
of lower levels of the tree. The concept is illustrated in Fig. 2.4, where the mem-
bership functions and the identified hinging hyperplane models are also shown.

During the identification the following phenomena can be taken into consideration

(that can be considered as benefits too):

e By using hinging hyperplane function there is no need to find splitting vari-

ables at the nonterminal nodes, since this procedure is based on the hinge.

e Populated tree is always a binary tree either balanced, or non—balanced, de-
pending on the algorithm (greedy or non—greedy). Based on binary tree, and
the hinge splitting the x data pertains to left side of the hinge ¢; always goes
to the left child, and the right side behaves the same accordingly. For ex-

ample given a simple symmetrical binary tree structure model, the first level
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Figure 2.4: Hinging hyperplane based regression tree for basic data sample in case
of greedy algorithm

contains one hinging hyperplane function, the second level contains 2 hinging
hyperplane functions, the third level contains 4 hinges, and in general the kth

(k=1)

level contains 2 hinging hyperplane functions.

Concluding the above and obtaining the parameters 6 during recursive identifi-

cation the following cost function has to be minimized:

K

E{6:},7) =) _ 7B (6:) 2.21)
i=1

where K is the number of the hinge functions (nodes), and 7 is the binary (7; € 0, 1)
terminal set, indicating that the given node is a final linear model (7; = 1), and can
be incorporated as a terminal node of the identified piecewise model.
Growing algorithm can be either balanced or greedy. In balanced case the identifica-
tion algorithm builds the tree till the desired stopping criteria, while the greedy one
will continue the tree building with choosing a node for splitting which performs
worst during the building procedure. Hence, this operating regime needs further
local models for better model performance. For a greedy algorithm the crucial item
is the selection of the good stopping criteria. Any of the followings can be used to

determine whether to continue the tree growing process or stop the procedure:

1. The loss function becomes zero. This corresponds to the situation where the

size of the data set is less or equal to the dimension of the hinge. Since the
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hinging hyperplanes are located by linear least—squares. From least—squares
theory, when the number of data is equal to the number of parameters to be

determined, the result would be exact, given the matrix is not singular.

2. E=F\ + Ey, where E; = S0 i (g — fi(x; Gi))Q represents the perfor-
mances of the left and right hand side models of the hinge. During the growth
of the binary tree, the loss function is always non-increasing, so £ should be
always smaller than the performance of the parent node. When no decrease

is observed in loss function, when the tree growing should be stopped.
3. The tree building process reaches the pre-defined tree depth.

4. All of the identified terminal nodes performance meets an accuracy level (¢ -
error rate ). In this case it is not necessary to specify the depth of the tree, but

it can cause overfitting of the model.

The algorithm results are represented in Fig. 2.4 where L = 3, K = 5, and 7 =

[0,0,1,1,1]. On Fig. 2.5 a 3—dimensional example is shown. The function

sin <\/x% + 232 +e>
y:
Vi + a3 +e

has been approximated by hinging hyperplane based tree. On Fig. 2.5 it is shown

(2.22)

how the approximation becomes much more smoother with applying 1,2, and 4 level
and greedy building method. Not just the generation of the binary tree structured
model is important, but to construct a greedy algorithm and to measure the identified
model, node performance must be determined during the identification procedure,

which can be defined in different ways:

e Modeling performance of the nodes

The well-known regression performance estimators can be used for node
performance measurement, in this work root mean squared prediction error
(RMSE) was used.

N
RMSE = | = (yx — )’ (2.23)
k=1

==

e Condition of the nodes
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Figure 2.5: Modeling a 3D function with hinging hyperplane hyperplane based tree

It is described that with two prototype clusters (¢ = 2) and a-priori knowl-
edge (constraints) FCRM method is able to identify hinging hyperplanes,
hence i, , membership degree has information at a node about how many
data points are going to the slitted prototypes. Comparing this data with the
information about the hinge -based node splitting rule (how many datasam-
ples are described by the 6,6, parameter vectors) we can assign a certain

condition (o) to a node:

N»,
_ [ = 3202 el

2 N,
D it D Mk

where m; is the cardinality based on #*, while V,, represents the number of

on =1 (2.24)

samples at node ;.

We can consider g as a measurement of the FCRM hinging hyperplane identifi-
cation perfection. The closer g is to 1 the better the identification. The hinge does
not “override” the p;; membership degrees. This measure is very similar to the
one, that was introduced in [50] and was used for identifying parameter similarity.
In Figs. 2.6 and 2.7 RMSE and p results of identifying Eq. 2.22 node-by-node(axis
x) with the depth of 4 levels can be seen. On Fig. 2.6 non-greedy case can be ex-
amined while Fig. 2.7 shows performance of the greedy algorithm. It is visible that

for tree building purposes cardinality based splitting is a very good approach.
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Figure 2.7: Node by node o and RMSE results for greedy tree building

2.3 Application examples

Accuracy and transparency of the proposed algorithm are shown based on multiple

datasets, two real life and two synthetic ones followed by examples in the area of

dynamic system identification.

2.3.1 Benchmark data

All datasets have been used before, most of them are originated from well-known

data repositories. Performance of the models is measured by the root mean squared

prediction error (RMSE - see Eq. 2.23)
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Table 2.1: Comparison of RMSE results of different algorithms. (Numbers in brack-
ets are the number of models)

Data [Sample| HH | CART | FMID | FRT
Friod Train 0.87 0.84 2.41(4) 0.69
Test 0.92(8) | 2.12(495.6) | 2.41(12) | 0.7 (15)
3Dsin Train 17 0.09 0.50(4) 0.18
Test || 0.18(11) | 0.17(323.1) | 0.31(12) | 0.18(12)
Abalone | TrAID 2.62 1.19 2.20(4) 2.18
Test 2,88 (8) | 2.87(664.8) | 2.19(12) | 2.19(4)
Kinman | TFin 0.15 0.09 020(4) | 0.15
Test 0.16 (6) | 0.23(453.9) | 0.20(12) | 0.15(20)

Real life datasets:

e Abalone Dataset from UCI machine learning repository' used to predict the
age of abalone from physical measurements. Contains 4177 cases with 8

attributes (1 nominal and 7 continuous).

e Kin8nm Data containing information on the forward kinematics of an 8 link
robot arm from the DVELVE repository. Contains 8192 cases with 8 contin-

uous attributes.
Synthetic datasets:

e Fried Artificial dataset used by Friedman [51] containing 10 continuous at-
tributes with independent values uniformly distributed in the interval [0,1].

The value of the output variable is obtained with the equation:

= 10sin(m229) + 20(z5 — 0.5)% + 1024 + 525 + 0(0,1) (2.25)

e 3DSin Artificial dataset containing 2 continuous predictor attributes uniformly

distributed in interval [—3, 3|, with the output defined as

y = 3sin(xq) sin(zy) (2.26)
3000 data points were generated using these equations.

For the robust testing of the performance of the model building algorithm, 10

fold cross validation method is utilized with data normalized to zero mean and unit

'FTP address: ftp:/ftp.ics.uci.edu/pub/machine-learning-databases/
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variance. Table 2.1 shows the performance on these datasets, compared to the re-
sults of other algorithms, can be found in [38]. Moreover Table 2.2 contains the
min, mean, max error rates of the 10 fold cross validation results for the hinging
hyperplane algorithm with the calculated standard deviation values as well. The
comparative algorithms are fuzzy based (FRT-Fuzzy Regression Tree, FMID—-Fuzzy
Model Identification) and classical regression tree based also (CART-Classification
and Regression Tree). It can be concluded that the performance of the introduced
algorithm is in line with the other methods, also with moderate number of terminal
nodes in the identified model tree. Results are consistent, even the worst perfor-

mance of the 10—fold cross validation is in line.

Table 2.2: 10—fold cross validation report for hinging hyperplanes based tree
Data | Sample | MIN | MEAN | MAX | Standard dev.

Fried Train | 0.5822 | 0.8677 | 1.2107 0.227
Test 0.6226 | 0.9208 | 1.2673 0.2337
3Dsin Train || 0.0906 | 0.1741 | 0.3162 0,0714
Test 0.0838 | 0.178 | 0.342 0.0801
Abalone Train || 2.3496 | 2.6241 | 2.9256 0.1532
Test 2.3242 | 2.8803 | 3.451 0.3445
Kinman Train || 0.1433 | 0.1515 | 0.1595 0.0054
Test 0.1464 | 0.1579 | 0.1729 0.0092

2.3.2 Dynamic systems

The following subsection shows results on the identification first order non—linear
dynamic system and describes performance of the proposed technique in model

predictive control.

Identification of the Box-Jenkins gas furnace

The well-known Box-Jenkins furnace data benchmark is used to illustrate the pro-
posed modeling approach and to compare its effectiveness with other methods. The
data set consists of 296 pairs of input-output observations taken from a laboratory
furnace with a sampling time of 9 seconds. The process input is the methane flow
rate and the output is the percentage of C'O, in the off gas. A number of researchers

concluded that a proper structure of a dynamic model for this system is
y(k+1) = fy(k),u(k — 3)) (2.27)
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Figure 2.8: Identification of the Box—Jenkins gas furnace model with hinging hy-
perplanes

The approximation power of the model can be seen in Fig. 2.8 and table 2.3.
Comparing results with other techniques referred in [52] it can be concluded that
modeling performance is in line with other techniques with moderate number of

identified hinging hyperplanes.

Table 2.3: RMSE results of the generated models

Method \ Training Testing Free Run \ HH 1
Proposed technique | 0.0266  0.0311 0.0374 4
Sjoberg model 0.0336  0.0342  0.0351 4

So far, a general nonlinear modeling technique was presented and a new iden-
tification approach was given for hinging hyperplane based nonlinear models: 3 =
f (x(k), @) where f (.) represents the hinging hyperplane based tree structured model
and x(k) represents the input vector of the model. To identify a discrete-time input-
output model for a dynamical system, the dynamic model structure has to be chosen
or determined beforehand. A possible often applied structure is nonlinear autore-
gressive model with exogenous input (NARX) where the input vector of the model
x(k) contains the delayed inputs and outputs of the system to be modeled [32]. In
several practical cases a simpler and more specific model structure can be used to
approximate the behavior of the system, which fits better the structure of the system.
Therefore, it can be an advantage for the identification approach (models with sim-

pler structure can be identified easier), and this model can be more accurate. One
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such special case of the NARX model is the Hammerstein model, where the same
static nonlinearity f is defined for all of the delayed control inputs (for the sake of

simplicity, SISO models are considered):

ny

7= el — i)+ 3 by f(ulk - ) (228)

j=1

where y() and u() are the output and input of the system, respectively, and n,
and n;, are the output and input orders of the model. The parameters of the blocks of
the Hammerstein model (static nonlinearity and linear dynamics) can be identified
by the proposed method simultaneously if the same linear dynamic behavior can
be guaranteed by all of the local hinging hyperplane based models. It can be done
in an elegant way utilizing the flexibility of the proposed identification approach:
global constrains can be formulated for the a; and b; parameters of the local models
(for a detailed discussion what constrains have to be formulated, see [32]). In the
following, the hinging hyperplane modeling technique is applied on a Hammerstein
type system. It will be shown why it is an effective tool for the above—mentioned

prupose.

Model predictive control
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Figure 2.9: The water heater

Modeling of a simulated water heater (Fig. 2.9) is used to illustrate the advan-
tages of the proposed hinging hyperplanes based models. The water flows through

a pair of metal pipes containing a cartridge heater. The outlet temperature, 7,,;, of
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the water can be varied by adjusting the heating signal, u, of the cartridge heater
(see [32] or Appendix E for details). The performance of the cartridge heater is
given by:

(2.29)

Qu) = Qu [u - M]

27

where (), is the maximal power and wu is the heating signal (voltage). As the
equation above shows the heating performance is a static nonlinear function of the
heating signal. Hence, the Hammerstein model is a good match to this process. The
aim is to construct a dynamic prediction model from data for the output temperature
(the dependent variable, y = T,,,;) as a function of the control input: the heating
signal. The parameters of the Hammerstein model were chosen as n, = n, = 2.
The performance of this modeling technique will be compared to linear and feed-
forward neural network models. The modeling performances can be seen in Table
2.4. Modeling errors were also calculated based on RMSE (see Eq. (2.23)). In this
example a hinging hyperplane function based tree with 4 leaves were generated.
For robust testing of the model building algorithm performance, 10—fold cross vali-
dation method is used. For comparison, a feedforward neural net and linear model
was also trained and tested using the same data. The neural net contains one hidden
layer with 4 neurons using tanh basis functions. As can be seen from the results,
the training and test error are comparable with the errors of the proposed method.

A very rigorous test of NARX models is free run simulation because the errors can
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Figure 2.10: Free run simulation of the water heater (proposed hinging hyperplane
model, neural network, linear model)

be cumulated. It can be also seen in Fig. 2.10 that the identified models (the pro-
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posed ones, linear models and the neural nets) perform very good also in free run
simulation (the system output and the simulated ones can hardly be distinguished).
Although the neural net seems to be more robust in this example, the proposed
hinging hyperplane model is much more interpretable than the neural net [1]. This
confirms that both the proposed clustering based constrained optimization strategy
and the hierarchial model structure has advantages over the classical gradient-based

optimization of global hinging hyperplane models.

Table 2.4: RMSE results of the generated models
Method \ Training Testing Free Run

Linear model 0.0393 0.0449 0.387
Neural network 0.0338 0.0403 0.356
Proposed method | 0.0367  0.0417 0.359

Linearized model parameters

.

Controller .| Hingemode |
design linearization

Controller parameters

v

Controller u Process

Figure 2.11: Structure of the MPC controller

In the following this model will be applied for model predictive control. Details
of model-based control of fuzzy and operating regime models can be found in [42]
and [43]. Among the wide range of possible solutions a model predictive controller
(MPC) was designed. Fig. 2.11 shows the structure of an MPC controller.

Real time control needs low computational complexity. Hence a time varying
linear MPC is designed based on time varying parameters of a linear model ex-
tracted in every time instant from the regression tree. This scheme is widely studied
and similarities to the nonlinear optimization based control solutions including con-

vergence were also shown. In [32] it was shown that there are two options to obtain
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a linear model from a nonlinear operating regime based (fuzzy) model. The Taylor-
expansion based linearization assumes the global interpretation of the model, while
the linear parameter varying (LPV) linear model extraction approach considers the
model as an interpolating system between local linear time-invariant (LTI) models
were the dynamic effect of the interpolation is negligible. Fortunately, thanks to
hinging hyperplane models and tree structured representation the proposed model
perfectly supports this interpretation, hinging hyperplanes define local linear models
and their operating regimes. Since these local models do not overlap, the negative
effect of the interpolating functions do not have to taken into account.

The classical model predictive controller computes an optimal control sequence

by minimizing the following cost quadratic cost function:

HP Hc
J(Hy, Ho N) =Y (wk+5)—g(k+7)"+ XY _Av®(k+j-1) (230)
j=1 Jj=1

where, § (k + j) denotes the predicted process output, H,, is the maximum costing
or prediction horizon, H, is the control horizon, and ) is a weighting coefficient.
According to the receding horizon principle only the first element of the optimized
control sequence is applied u(k), and this optimization is performed in every time
instant. This scheme allows real time control, feedback of model errors, handles
unmeasured disturbances, and supports the previously mentioned iterative liberal-
ization scheme. Details about the convergence and possible extensions of this con-
trol scheme can be found in [33]. The key equation of MPC is the prediction of the
model:

vy =SAu+p (2.31)

where the model prediction equation is given in its vector—based form as Au =
[Au(k),...,Au(k + H.)|,and p = [p1, D2, ..., pmp| andy = [y(k+1),...,9(k+
H,)] and the S containing the parameters of a step-response model is an (H,,) x H,

matrix with zero entries s; ; for j —¢ > 1:

S1 0
s s 0 0
s=| 7 7 . (2.32)
| SHy SHy-1 """ SHpy—H. |

When constraints are considered, the minimum of the cost function can be found
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by quadratic optimization with linear constraints:

ming {(SAﬁ tp—w) (SAG+p—w) + )\AﬁTAﬁ} (2.33)
ming {%AﬁTHAﬁ + dAﬁ}

with H=2 (S"S+ AI), d = -2 (S” (w — p)), where I is an (H. x H.) unity
matrix.

The constraints defined on v and Aw can be formulated with the following in-

equality:
IAﬁ Umax — Iﬁu(k — 1)
_I a — WUmin + Iﬁ k - 1
At fap< | 7 u(k —1) (2.34)
IHC Aumax
_IHC _Aumin

where Iy and I is an H,. X H. unity matrix, Iag 1s an H,. x H. lower triangular

matrix with all elements equal to one, and Au,,,Au u,... are H.-vectors,

min’ “max

max U
with the constraints A, AlUmax, Umin, Umax respectively.

To handle modeling error the MPC is applied in the well-known internal model
control (IMC) scheme where the setpoint of the controller is shifted by the filtered

modeling error. For this purpose a first-order linear filter is used:
emf(k) = aen(k) + (1 —a)enp(k—1), (2.35)

where 0 < a < 1 is determined such that a compromise between performance and
robustness is achieved. Effective suppressing of the steady-state modeling error can
be achieved by a proper tuning of this filter. The best parameters are found for the
controller: H, =9, H, = 2, A\ = 20 and a = 0.95. Simulation results for Hinging
hyperplane based model, the affine neural network model and the linear model are
shown in figures 2.12, 2.13, 2.14.

At the operation region edges, the MPC based on the linear model resulted unde-
sirable overshoots and undershoots. This is a direct consequence of a bad estimation
of the nonlinear gain of the system in these regions. This over-estimation of the sys-
tem gain by the linear model is also seen in the sluggish control action. In contrast,
the MPC based on the nonlinear models shows a superior performance over the
whole operating region. Among these, the MPC based on the hinging hyperplane
model results in the smallest overshoot with the fastest change in the control signal.

Notice also that the oscillatory behavior of the neural network model based MPC
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Figure 2.12: Performance of the MPC based on linear model
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Figure 2.13: Performance of the MPC based on Neural Network model
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Figure 2.14: Performance of the MPC based on hinging hyperplane

is due to the bad prediction of the steady-state gain of the system around the middle
region. However, as can be seen from Table 2.5, both nonlinear models achieved
approximately the same summed squared tracking error (SSE), although a smaller

control effort (CE) was needed for the hinging hyperplane based MPC.

The applied model in GPC SSE  CE
Linear model 1085 1.61
Neural Network model 956 1.39
Hinging hyperplane model 966 (.58

Table 2.5: Simulation results (SSE - sum squared tracking error, CE - sum square of the
control actions)
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2.4 Conclusions

A novel framework for hinging hyperplane based data driven modeling has been
developed. Fuzzy c-regression clustering can be used to identify the parameters of
two hyperplanes. Hierarchical regression tree is obtained by the recursive cluster-
ing of the data. The complexity of the model is controlled by the proposed model
model performance measure. The resulted piecewise linear model can effectively
used to represent nonlinear dynamical systems. The resulted linear parameter vary-
ing (LPV) model can be easily utilized in model based control.

To illustrate the advantages of the proposed approach, benchmark datasets were
modeled and simulation example is presented for the identification and model pre-
dictive control of a laboratory water-heater.

The results show that with the use of the proposed modeling framework accurate
and transparent nonlinear models can be identified since the complexity and the ac-
curacy of the model can be easily controlled. The local linear models can be easily
interpreted and utilized to represent operating regimes of nonlinear dynamical sys-
tems. Based on this interpretation, effective model based control applications can

be designed.
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Chapter

Neural Networks

Neural network itself is a black-box model, so it doesn’t reveal any information
about the identified system. It is challenging task to open up this box to support
model building procedures. However, based on the extracted information model
reduction and visualization could be done on the base model. The key idea is that
the neural networks can be transformed into a fuzzy rule base where the rules can
be analyzed, visualized, interpreted and even reduced.

Section 3.1 shows how NNs work. This description is mainly based on [31],
for a detailed discussion see [1]. Having the main concepts set for NNs Sec-
tion 3.2 gives a brief introduction and overview about the applied NN transfor-
mation method which means the basis for model reduction and visualization. Sec-
tion 3.3 contains a combined approach used in this thesis to get reduced rule based
model from NN. Section 3.4 overview some NN visualization method, and propose
a new technique to measure the similarity of neurons which gives the basis of the
visualization approach. In Section 3.5 some illustrative examples are given, and

Section 3.6 concludes the chapter.

3.1 Structure of Neural Networks

The systematic study of continuous functions started in the nineteenth century. The
complexity of this function class was demonstrated by Weierstrass famous example;
the everywhere continuous but nowhere differentiable real function[53].
Theoretical foundations of the function approximation was also done by Weier-
strass: he showed in that any continuous function on a closed real interval could

uniformly approximated by polynomials[54]. Another question was the theory of
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multivariate continuous function approximation. Around 1900 Hilbert suspected
the existence of continuous multivariate functions, which cannot be approximated
by arbitrarily chosen continuous univariate functions[55]. Counter-examples for
Hilbert’s conjecture arose only in 1957. Arnold ternary continuous functions [56],
later constructive example was given by Kolmogorov for the approximation of mul-
tivariate continuous functions by continuous univariate functions[57].

Later the Kolmogorov method was simplified in the early sixties of the last cen-
tury (eg, Sprecher [58] and Lorentz [59]), it has become to the theoretical basis of
universal approximators of continuous functions. It was revealed in the eighties and
nineteens years of the last century that feedforward multilayer neural networks (eg,
[60, 61, 62, 63] and fuzzy systems constructed by Zadeh [64] are universal approx-
imators [65, 66, 67], although the limitations of the approximation capabilities of
systems constructed from finite components become clear[68, 69, 70].

Around the middle fifties Marshall Harve Stone further generalized Weierstrass
statements [71, 72], so the Stone-Weierstrass theorem is mentioned in respect to

neural networks[73, 74].

3.1.1 McCulloch-Pitts neuron

McCulloch and Pitts in 1943 developed a simple mathematical model for a neuron
(3.1).

inputs McCulloch-Pits
j neuron
e T~ output

~—~ N >(N . . .
dondiies Summer Activation function

Figure 3.1: A biological neuron and its model (McCulloch-Pitts neuron)

The McCulloch-Pitts neuron has multiple inputs and a single output. Each of
the inputs has an associated weight. Weighted sum of the inputs is passed through

a nonlinearity to the output of the neuron as follows:
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where z; are the inputs and y is the output of the neuron, f(z) is the non-linear
activation function in the form of the step function given above, and w; are the
strengths of the connections or weights. Multi-layer neural networks is a network
of neurons bunched together in a multiple layers network. A feedforward neural
network has one input layer, one output layer and a number of hidden layers be-
tween them. Normally we use neural networks with one hidden layer. This model
is very general. It has been shown that with one hidden layer a network can describe
any continuous function (if there are enough hidden units), and that with two hid-
den layers it can describe any function at all. Detailed description of neural network

structures, utilization and activation function types can be found [1, 17].

N

Prior
Data knowlede
||
Extracted -
information Prediction

Figure 3.2: Modeling framework

Based on these model types motivation of our work is to prepare a tool where
data, prior knowledge, prediction and extracted information (see Fig. 3.2) forms
an integrated framework to help model building procedures with interpretability,
visualization and reduction of multilayer perceptron (MLP — usually one hidden

layer is applied) type neural networks with logistic hidden activation function.
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3.2 NN Transformation into Rule Based Model

A possible strategy for ’opening’ a NN is to convert it into a rule based model.
These ’linguistically sound’ rules are often fuzzy if-then rules, and are close to
human thinking: IF a set of conditions is satisfied, THEN a set of consequences
is inferred. Fuzzy logic provides a tool to process uncertainty, hence fuzzy rules
represents knowledge using linguistic labels instead of numeric values, thus, they
are more understandable for humans and may be easily interpreted [31]. If NNs
can be transformed into rules, then it makes possible to overlook and validate the
trained NN, and build in a priori knowledge to the network. The crucial question is
what the connection is between the several types of neural networks and fuzzy rule
based systems.

Under some conditions, the equivalence of normalized radial basis function net-
works (RBF) and Takagi-Sugeno fuzzy models can be obtained [1]. However, in
this thesis, multilayer perceptron (MLP) type neural networks with logistic hidden
activation function are used (in the following the notation NN will be used for MLP
type networks). An approach for NNs with tanh activation function is presented in
[75] for function approximation purposes, but it should be noted that it is an approx-
imation: the rule based model is not identical to the original trained NN, therefore
information transfer in the "opposite’ direction, i.e. from the rule base to the NN
can be problematic. An interesting result was given in [31] where the equality of
NN with logistic activation function and a certain type of fuzzy rule based model
called fuzzy additive system (FAS) was proven. For that purpose, a new fuzzy
logic operator had to be introduced. Because of the equality (which is stronger than
equivalence), if a method can be applied on a FAS for a certain purpose (e.g. rule

base reduction), then it is also applicable to the NN as well and vice versa.

3.2.1 Rule-based interpretation of neural networks

In the following, this equality relation is discussed based on [31]. FAS employs

rules in the following form:
R, If 2y is Ajl-k and...and x, is A% then yy is dj; (v1,...,2,)  (3.2)

where 0, (z1,...,2,) is a linear function of the inputs. In FAS’s, the inference
engine works as follows: for each rule, the fuzzified inputs are matched against

the corresponding antecedents in the premises giving the rule’s firing strength. It is
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obtained as the ¢-norm (usually the minimum operator) of the membership degrees
on the rule if-part. The overall value for output y; is calculated as the weighted
sum of relevant rule outputs. Let us suppose multi-intput single-output fuzzy rules,

having [, of them for kth output. Then y; is computed as

Uk
Y = Z ﬁjkéjk (161, e ,l’n) (3.3)

j=1

where 3;;, is the firing strength of j th rule for £ th output.
To decompose the multivariate logistic function to form the rule antecedents in
the form of eq. 3.2 with univariate membership functions, a special logic operator

has to be used instead of and : interactive-or or ¢-0r:

B (ab)
Al G TG e G4

Figure 3.3: Interactive or operator

To get a clearer idea of i-or behavior, see Fig. 3.3, which represents the surface
defined by the i-or operator. Using this * operator, the interpretation of NNs whose

hidden neurons have biases as follows. It can be checked that

n
fa Za:iwij +7 | = fa (mlwlj + 7']') ...k fa (xnwnj + TJ,) (3.5)
i=1
where 7/ = 7;/n and the first term corresponds to the fuzzy proposition Ty W,
7; is A”. Likewise, fa (xl-wl-j + 7']/) corresponds to proposition “r;w;; + 7; is A”
or in a similar form "z;w;; is A — T]f”. Hence, the bias term means a sheer trans-
lation. The A;'-k fuzzy sets have to be redefined to account for both the weight w;;

and the bias 7;. Their membership function is defined by (see Fig. 3.4 for better
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explanation):

fai (T) = pia [(x + 7']') * wij} (3.6)

Jk

1
W HoT
4

A,j (Xj) :r-}_e_(ijmJ f(x)= f0+%(x—r)

!

f(¥) =1=x=-1, +2
w

f(¥)=0=x=-1, —v%

[}

=T; e.g. T[C]

Figure 3.4: Interpretation of the activation function

Based on that, the fuzzy rules extracted from the trained NN are:
Rj,: If 2y is Ajl-k *...and x x, is Aj), then yp = 0, (3.7

An interesting and useful application possibility is to initialize the NN on the
basis of a priori knowledge. Initialization is a crucial question by NNs because
there are often a huge number of parameters and the cost function has numerous
local minima. The most often applied local (gradient based) search techniques may
trap in a local minimum. To avoid that problem, a possible approach is multi-
start method, i.e. to train the NN from several different (random) initial points.
Other solution can be based on evolutionary algorithms, see [76]. The flexibility of
evolutionary algorithms makes possible the direct rule extraction from trained NNs
(however, only crisp rules and by classification problems) as [77] shows. However,
all of these latter methods have high computational demand. The initialization using
prior knowledge based if-then rules has other advantage as well: it combines the

user’s experience with the learning capability of NN.
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3.3 Model Complexity Reduction

In this section we focus on the combination of existing model reduction techniques
with the previously presented rule based model extraction method. An interesting
solution to NN reduction is the following: the complexity of the model is penalized,
and it is built-in to the training procedure. The method proposed in [78] uses a cost
function that consists of two terms: one for the NN accuracy (like mean square er-
ror) and one related to the NN complexity (numbers and magnitude of parameters).
However, determination of their weights or relative importance is problematic. A
weighting factor is introduced and several NNs should be trained with different
weighting parameters. To compare the trained NNs and choose the best one, [78]
applied the predicted square error measure.

In case of MLP networks and FAS systems classical OLS (see appendix C for
further details) can be applied on FAS systems to rank the rules since the parameters
of the trained NN are fixed. However, OLS is formulated as a MISO technique. If
the NN has more than one output, then the outputs can be evaluated individually
one by one. In this case (using the notation of OLS (eq. C.1- eq. C.3), y is the kth
network output, the regressors z; are the outputs of the hidden neurons, and the pa-
rameters ¢; corresponds to the weights from the jth hidden neuron to the kth output
neuron ;. This approach was directly applied on NNs in [30], and it was shown
that analog method can be applied to the subset selection of the original network
inputs. In this case in eq. C.1- eq. C.3, y is the output of the kth hidden neuron, the
regressors z; are the inputs of the network, and the parameters ¢/; corresponds to the
weights from the jth input neuron to the kth hidden neuron w;. Other NN pruning
can also be considered, e.g. optimal brain damage [26] or optimal brain surgeon
[79], and it should be emphasized that these methods can directly be applied on
FAS systems as well. The application examples in Section 3.5 show that it can be
very effective if a model reduction technique and rule base extraction from NN are
applied together, and validate the identified models by human experts.

Note that ordering the neurons by OLS estimated error reduction ratios reveals
the unnecessary neurons (the importance of the extracted rules) in the hidden layer,
because neurons with low error reduction ratio are insignificant for the appropriate
model. As the equality of FAS and NN was proven in [31] and was discussed also
in Section 3.2, the OLS ranking means a reduction based on the consequent of the
fuzzy rule.

It should be noted that the applied i-or operator in the extracted fuzzy rules does
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not belong to the commonly applied fuzzy ¢-norms or t-conorms. However, it would
be interesting to test the extracted fuzzy rules with common fuzzy logic operators,
and maybe recompute the output weights (which can easily be done because the
model is linear with respect to these parameters). Our presumption is that the crisper
the activation functions are (f4), the less the difference is between the modeling
performances of the original and the modified FAS’s that uses classical fuzzy logic
operators. For that purpose, numerous tests have to be completed in the future. If
this guess proves true, then the cost function for NN training can be modified to get

"crisper’ activation functions.

3.4 NN Visualization Methods

In this section, a new technique for the visualization of neural networks is proposed.
First, methods are discussed that can directly be applied on NNs. Second, a new
approach is presented to detect the redundant neurons based on their similarity. This
method exploits the equality of NNs and FAS’s because it is based on the similarity
of fuzzy membership functions.

The output of hidden neurons z; can be seen as a h dimensional vector that
represents the range the neurons work in. If a "hidden variable’ z; is close to zero
or one, the neuron is saturated. If a hidden neuron gives values near zero or one
for almost all inputs, hence it does not fire or fires all the time, it is useless for
the problem. The distribution of these i dimensional data can represent the NN
behavior for a human expert. Unfortunately, in several cases there is a need for
more than two or three hidden neurons. In these cases a projection or dimension-
ality reduction technique has to be used. Principal Component Analysis (PCA) is
a linear technique; therefore the information loss may be more than the admissible
level. Other (topology or distance preserving) projection techniques like Multidi-
mensional Scaling, Sammon method, Isomap or Locally Linear Embedding can be
used for that purpose. For more details see [32] and the references within.

However, there are some special visualization methods for NNs. Duch [27] pro-
posed an approach for visualization of NNs applied on classification problems. His
method can be applied for problems with K classes if the output is coded as a K
length vector: (1,0, ...,0) means the first class, (0,1, ...,0) the second and so on.
In this case case the classes are represented by the corners of the K dimensional
unit hypercube. The approach proposed by Duch maps the NN output into two di-

mensions, basically "flattens’ the hypercube into two dimensions. This approach
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was thought over and applied on the output of the hidden neurons z; in [28, 29].
This method was straightforward from the former one because the hidden variables
(the activation functions) take values from [0, 1], therefore the 4 dimensional vec-
tors are located within the unit hypercube. This method can be used not only for
classification but also for function approximation purposes as well. Based on this
latter approach a picture of the behavior of the hidden units, their firing strength and
activation or saturation level can be obtained. The main drawback is that the number
of classes/hidden neurons is limited. To keep the figures simple and interpretable,

only 3...6 variables can be used.

[ min(A (%), A (x))dx
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Figure 3.5: Similarity index

In the following, a different method is proposed to visualize the NN. The pre-
sented approach utilizes the antecedent part of the extracted fuzzy rules (since OLS
based model reduction uses the consequent parts, see Section 3.3). To reduce the
FAS rule base by analyzing the antecedent part of the rules is possible with mea-
suring the similarity of the membership functions, and removing the too similar
neurons. Utilizing the equality of FAS and NN, the following classical interclass
separability measure (originally for fuzzy systems) could be used to compare the

univariate functions decomposed from hidden neurons:

f min ( ;k, (x;), }k (xl)) dx;
Jmax (AL (x;), Al (2)) do;

Sk = (3.8)

where ¢ = 1,...,n, j,0 = 1,...,h.. Eq. 3.8 can be used to measure the
similarity of two clauses in the rule base, in other words the similarity of two hidden

neurons for the same input variables (see Fig. 3.5). To compare the hidden neurons
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themselves with multivariate activation functions, the following measure seems to

be straightforward:
Sk =[S i=1,....n, j,l=1,...,h. (3.9)

With this measure, pairwise similarities of hidden neurons in the range of [0, 1] can
be obtained. To get pairwise distances if needed, the simple form of 1 — S, can
be used. Based on these distances which can be called relative data, the neurons
themselves can be mapped onto two dimensions. In this thesis, the classical mul-
tidimensional scaling will be used. This well-known technique is not discussed
here because it would exceed the size and scope of this thesis. The mapped two
dimensional points refer how similar the neurons behave. As can be seen, the above
mentioned approaches [28, 29] visualize the output of the hidden neurons, and draw
conclusions from the location of these data. The proposed approach focuses to the
behavior of hidden neurons as well, but utilizes the shape of the identified multi-
dimensional activation functions. The previous approach can be used to determine
how well the NN was trained, since the proposed one shows which neurons are sim-
ilar and redundant within the trained network. In this formulation, this method can
rather be used for complexity reduction purposes, and not to qualify the training

procedure.

3.5 Application Examples

3.5.1 pH process

For applying the introduced visualization and reduction techniques we used a dataset
of a pH process (see [32] or Appendix D), where the concentration of hydrogen
ions in a continuous stirred tank reactor is modeled (CSTR). This well-known mod-
eling problem presents difficulties due to the nonlinearity of the process dynamics.
This process can be correctly modeled as a first-order input-output (NARX) system,
where the actual output (the pH) y(k + 1), depends on pH of the reactor y(k) and
the NaOH feed u(k) at the kth sample time (sample time is t; = 0.2min):

y(k+1) = f(y (k) ,u(k)) (3.10)

Parameters of the neural network were identified by the back-propagation algo-
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Figure 3.6: Decomposed univariate membership functions

rithm based on a uniformly distributed training data where F'y,op 1s in the range
of 515-525 1/min. Our experiences show that 7 neurons are sufficient in the hidden
layer of the NN. The results in Table 3.5.1 shows, that the neural network models
give very good prediction performance for this process. Numbers in the brackets
represent the number of neurons in the hidden layer and the removed neurons from
the identified NN.

Testcase | Training errors(MSE) | Testing Errors(MSE)
Neural Network (7) 3.088e-005 3.267e-005
Using i-or (7) 3.053e-005 3.259e-005
Network reduction (8/1 neuron) 4.434e-005 4.285e-005
Network reduction (7/1 neuron) 3.060e-005 3.247e-005
Network reduction (6/2 neuron) 2.884e-004 3.690e-004
Network reduction (6/1 neuron) 1.086e-004 1.316e-004

Table 3.1: One-step ahead prediction results.

Applying the proposed visualization and transformation techniques, Fig. 3.6
shows the decomposed univariate membership functions and the into two dimen-
sion mapped distance matrix according to the NN model parameters can be seen
on Fig. 3.7. For better interpretability, the histogram of the corresponding model
inputs are illustrated on the last two subplots.

On Fig. 3.7 the pairwise distances of the neurons (see (3.8) in the previous sec-
tion) were mapped into two dimensions with MDS and two dimensional points refer
how similar the neurons behave.

The neurons are listed according to the OLS ranking on the left of Fig. 3.8,

starting with the rules decomposed from the most important neuron in the hidden
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network layer. The consequence of synthesizing the results is that it is possible
to remove one neuron out of 7 (in FAS the corresponding rules) from the model
without a significant increase in modeling performance, because of the low error
reduction rate of the last, 7th neuron. This achievement harmonizes with the issues
of the mapped distances, where the 2nd and the 7th neuron are closer to each other,
but OLS based ranking indicates the 2nd one as more important.

Model reduction and visualization techniques like OLS makes it possible to
overcome the problem of overfitting and the performance of the reduced model is
almost the same as the original one. A rigorous test of NARX models is free run
simulation because the errors can be cumulated. The result indicates the goodness

of the reduced model even by free run simulation (3.5- 10~ for neural network with
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7 neurons, 3.823 - 1073 using i-or for FAS with 7 rules, 3.824 - 10~3 after removing
1 neuron from the hidden layer containing 7 neurons).

In table 3.5.1 shows the training errors for neural networks with different num-
ber of neurons in the hidden layer (6 — 15). These models were reduced with
1 — 14 neurons. The obtained results points on that it is worth considering to se-
lect the appropriate model structure because better modeling performance can be
achieved with reducing an overfitted model. The reason of this phenomena is that

the gradient-based training algorithms may stop in different local minimums.

3.5.2 pH dependent structural relationship model for capillary

zone electrophoresis of tripeptides

Aim of paper [80] was to study the structural descriptor-mobility relationship of
representative tripeptides in capillary zone electrophoresis(CZE) separation length
in respect to their influence on electrophoretic migration properties. For this pur-
pose a back propagation neural network was applied with the inputs of pH, effective
capillary length /, applied voltage U, peptide charge O and molecular weight Mw.
1000 iterations were used to train the neural network with the learning rate of 0.1.
Number of nodes in the hidden layer was 15 and there was 1 output layer.

In the followings this data and model will be applied for introducing model

reduction and visualization techniques.

Testcase \ Training errors(MSE) \ Testing Errors(MSE)
Neural Network (15) 3.088e-005 3.267e-005
Using i-or (15) 3.053e-005 3.259¢-005
Network reduction (15/1 neuron) 4.434e-005 4.285e-005
Network reduction (16/1 neuron) 3.060e-005 3.247e-005
Network reduction (17/2 neuron) 2.884e-004 3.690e-004
Network reduction (18/3 neuron) 1.086e-004 1.316e-004

Table 3.3: One-step ahead prediction results.

The results in table 3.5.2 shows, that the originally utilized hidden layer with
15 neurons was carefully designed, because applying further reduction techniques
on this structure cause decrease in model performance. However, it can be clearly
stated as well that adding an extra neuron to the network and removing it can help
in the model performance, without causing any overfitting of the neural network

model.
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3.6 Conclusions

Neural networks are often too complex and not interpretable, therefore it is very
difficult to utilize these networks correctly. This article proposed a new complex
approach for visualization and reduction of the neural networks, and discussed that
neural network with sigmoid transfer function is identical to fuzzy additive systems.

The used similarity measure can be applied for further reduction of the rule base.
It can be done in an automatic way if a threshold value is defined previously. If the
measured similarity is greater than the threshold, the corresponding two neurons in
the original neural network can be considered as identical; therefore further reduc-
tion of the FAS rule base is possible. This technique can be used even during the
learning process of the neural network.

A possible future research area is to develop a new learning procedure for neu-
ral networks using prior knowledge based if-then rules, which combines the user’s

experience and/or constraints with the learning capability of NN.
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Chapter I

Support Vector Machines

Application of support vector methods for the initialization of fuzzy models is not
a completely new idea. Numerous methods have been proposed to build the con-
nection between the SVR and the FIS. Chen and Wang[22, 23] propose a positive
definite fuzzy system (PDFS). In the proposed fuzzy model, the PDFES is equivalent
to a Gaussian-kernel SVM[22] if Gaussian membership functions are adopted. An-
tecedent of a fuzzy rule is obtained by a support vector (SV). Therefore the number
of fuzzy rules is the same as the number of SVs. As the number of SVs is generally
large, the size of the FIS based on an SVM is also large. To solve this problem,
researchers[81] proposed a learning algorithm to remove the irrelevant fuzzy rules.
In spite of this, the generalization performance is degraded. The above methods are
for zero-order FIS,which has one fuzzy singleton in the consequent of a fuzzy rule.
For the first order FIS, Leski[25] describes a method for obtaining a FIS by means
of the SVM with data-independent kernel matrix. Moreover, Juang et al. used a
combination of fuzzy clustering and the linear SVM to establish a fuzzy model with
less parameter number and better generalization performance. However, negligible
effort has been done to establish a HFIS(high order FIS) with kernel methods. In
[82] it was presented a HFIS with high accuracy and good generalization perfor-
mance. It was shown how to obtain the formulation of the nonlinear function for
the consequent part.

Furthermore, Catala used prototype vectors to combine with the support vectors
using geometric methods to define ellipsoids in the input space, which are later
transformed to if-then rules.[21]. In [83] special operator was utilized to achieve
equivalency between support vector machines and fuzzy rule-based system. In [84]
utilization of support vector models is described to solve the convex optimization

problem for multivariate linear regression models and it is also shown how multi-
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variate fuzzy nonlinear regression model can be formalized for numerical inputs and
fuzzy output. Multiple types of kernels[84, 83] can be used to solve crisp nonlinear
regression problems[85]. Chia et al. [86] used a combination of fuzzy clustering
and linear support vector regression to obtain Takagi-Sugeno type fuzzy rules. Sup-
port vector machines can be applied to determine the support vectors for each fuzzy
cluster obtained by fuzzy c-means clustering algorithm[87].

Visualization of fuzzy regression models is also discussed lately. Interpretation of
fuzzy regression is provided with an insight into regression intervals so that re-
gression interval analysis, data type analysis and variable selections is analytically
performed[88]. In [89] a visualization and interpretation tool is presented. Feature
space is visualized with highlighting the corresponding variables in the original in-
put data to show how they are associated to the output variable. It is shown that
which part of the input data can be utilized to estimate the output value. This tech-
nique also describes which input variable are responsible for the performance of the
support vector regression. With the combination of visualization and interpretation
the black-box support vector regression is identified in one step.

It must be taken into account that fuzzy logic does not guarantee interpretability as
a prerequisite, because obtaining fuzzy models from support vector based training
often result fuzzy models with high number of fuzzy rules. This phenomena makes
interpretability much more difficult, therefore aim of this chapter is to describe
a combination—of—tools three—step technique how to use reduction techniques on
trained SVR models to acquire transparent, but accurate fuzzy rule based regression

models. The steps are the following:
1. Application of the Reduced Set method
The identification of the SVM is followed by the application of the Reduced

Set (RS) method to decrease the number of kernel functions. Originally, this
method has been introduced by [90] to reduce the computational complexity
of SVMs. The obtained SVM is subsequently transformed into a fuzzy rule-

based regression model.

2. Similarity-based fuzzy set merging

The Gaussian membership functions of the fuzzy rule-based regression model
are derived from the Gaussian kernel functions of the SVM. The interpretabil-
ity of a fuzzy model highly depends on the distribution of the membership
functions. Hence, the next reduction step is achieved by merging fuzzy sets

based on a similarity measure [91].
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3. Rule-base simplification by orthogonal transformation

Finally, an orthogonal least-squares method is used to reduce the number of
rules and re-estimate the consequent parameters of the regression model. The
application of orthogonal transformations for reducing the number of rules
has received much attention in the recent literature [92, 93]. These methods
evaluate the output contribution of the rules to obtain the order of importance.
The less important rules are then removed according this ranking to further

reduce the complexity and increase the transparency.

This chapter organized as follows. Firstly basic notations of support vector ma-
chines and the connection between the fuzzy regression is described. After detailed
description of the three-step reduction algorithm, examples indicating the power

and the usage of described techniques on regression problems are presented.

4.1 FIS interpeted SVR

SVM has been recently introduced for solving pattern recognition and function es-
timation problems. SVM is a nonlinear generalization of the Generalized Portrait
algorithm developed in Russia in the 1960s. In its present form, the SVM was de-
veloped at AT&T Bell Laboratories by Vapnik and co-workers[24]. SVM learning
has now evolved into an active area of research. Moreover, the technique belongs

to the standard methods toolbox of machine learning.

4.1.1 Support Vector Regression Models

The basic idea behind support vector regression is the kernel function: k (x;,x;).
Using k instead of dot product in R, this will correspond to map the data into a
possibly high dimensional space F, by a usually nonlinear map ¢ : RY — F and
take the dot product there

k(2i,x) = (¢ (2i) , ¢ (x)) 4.1)

SVR concept will be introduced based on [94], for more detail please see [17].
N

7 ?

Suppose we have training data {(z1,v1),...,(Zn,.yn,)} C x X R;', where x
denotes the space of input patterns. The aim is to find function f (x) that has at

most ¢ deviation from the targets with the obtained y;, for all the training data. In
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other words we do not care about the errors as long as they are less than ¢, but any

larger deviation than € won’t be accepted. SVR can be formulated as follows:

Ny
1 2
min —||lwl||*+C i F &
i 5+ 36 €
sty —wlo(x) —b<e+&
wig(x)+b<e+& —y

&, >0 4.2)

where ¢ is the feature mapping for kernel £, € is the tolerance error, &;, & are
slack variables and C' > 0 is a cost coefficient, which determines the trade-off
between the model complexity and the degree of tolerance to the errors larger than

. The dual form of the optimization problem 4.2 becomes a quadratic programming
(QP) problem:

1
max =3 2 (s =) (0 — ) (i)
Nq Ny
—e Y (ait+ai) + )yl —aj)
i=1 i=1
Ng
st. Y yi(ai—a])=0 a,a” €[0,C] (4.3)

where o and o* are the Lagrange multipliers. As an outcome of solving the QP
problem 4.3 can be rewritten to the following form:
Na
f@) =2 (ai—ai)k(xi,x) +b (4.4)

i=1

Let v; = o; — . In case 7; # 0 the corresponding training pattern x; can be

noted as support vector.
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4.1.2 Structure of Fuzzy Rule-based regression model

To get a fuzzy-rule based regression model from the support vector regression

model the following interpretation is needed:

y=> Bi(x)5; +b, (4.5)

where (; is the firing strength and 9; is the rule consequent. The output of the
regression model is calculated by this equation. In case of fuzzy systems, fuzzy

rules can be formulated as follows
Riif xyis Ajpand...x, is Ay, theny; =6;, 1=1,...,Ng, (4.6)

where R; is the ith rule in the fuzzy rule-based regressor and Ny denotes the
number of rules. A;, ..., Ay, denote the antecedent fuzzy sets that define operating
region of rule in the V; dimensional input space. The rule consequent ¢; is a crisp
number. The connective is modeled by the product operator. Hence the degree of

activation of the 7th rule is calculated as

N;

BZ(X) = HAZ']‘(X]‘), 1= ]., e ,NR. (47)

j=1

Main principle of kernel-based support vector regressors is the identification of
a linear decision boundary in this high dimensional feature-space. The link to the
fuzzy model structure is the following: The fuzzy sets are represented by Gaussian

membership functions

202

2

The degree of fulfilment (3;(x) can be written through 4.7-4.8 in a more compact

form by using Gassuian kernels.

Bi(x) = exp (M> (4.9)

202
This kernel interpretation of fuzzy systems shows that fuzzy models are effec-
tive in solving nonlinear problems because they map the original input space into
a nonlinear feature space by using membership functions similarly to the support

vector machine that utilize kernel functions for this purpose.
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4.2 Ensuring interpretability with three—step algorithm

In the previous sections it has been shown how a SVM, that is structurally equivalent
to a fuzzy model, can be identified. Unfortunately, this identification method cannot
be used directly for the identification of interpretable fuzzy systems because the
number of the support vectors is usually very large. Typical values are 40-60% of
the number of training data which is in our approach equal to the number of rules
in the fuzzy system. Therefore, there is a need for an interpretable approximation
of the support vector expansion. For this purpose a step-wise algorithm will be
introduced, where the first step is based on the recently published Reduced Set
(RS) method developed for reducing the computational demand of the evaluation of
SVMs [90].

4.2.1 Model Simplification by Reduced Set Method

The aim of the RS method is to approximate the high-dimensional feature space

given by the support vectors

Na:
U => vo(x), (4.10)
=1
by a reduced set expansion
Ngr
=" 0i(z) (4.11)
=1

with Np < N, < Ny, where N, denotes the number of support vectors (the number
of x; vectors for those 7; # 0) and Ny represents the number of the desired rules
in the fuzzy rule-based regressor that we would like to identify and z; denotes the
centers of the new kernel functions that are not necessarily training samples. Np
should be as small as possible because it determines the number of fuzzy rules. In
practice it turns out that the RS method is often able to deliver a one-tenth reduction,
so Ng can be chosen as N = N,./10. For this model reduction, the squared error

| ¥ — ¥’||? has to be minimized. For this purpose, the *kernel trick” has to be applied
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because ¢ is not given explicitly

Nz
U= = Y vk, x;) + (4.12)
i,j=1
NR Nm NR
Z 62-(5jk(zi, Zj) -2 Z Z ’}/Z'(Sjl{?(xi, Zj) .
i,5=1 (]

The cost function 4.12 is minimized in a step-wise manner while the feature space

is approximated by the following iterative algorithm:

Repeatfor m : 2,..., Ng;

e Step 1:0btain the residual space

Let ¥,, mean the residual of the feature space approximation generated at the

(m-1)—th step

Ny m—1
U = D %io(xi) — Y 6ib(2) (4.13)
i=1 i=1
Nm,
= Z€i¢(vi)7
i=1
where
(617 ceey 6Nm) = (717 « ooy YNy _617 ceey _5m—1) 5
(Vi, ooy VN,) = (X1, ooy XN,y 21y e e e Zine1)

Np,=N,+m—1.

e Step 2:Inner iteration step for determining z,,

This residual function is approximated by the determination of z,, and 4,, in

the iterative procedure, where the following cost function has to be minimized
min |, — 5,,0(zm)|* . (4.14)

myZm

This can be done by standard techniques or using fixed—point iteration, as
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shown in [90].

Npm n
v _ 20 e exp (—lvi — =/ (20%) v
" S aexp (—[lvi -z [/ (20)

z , (4.15)
where the superscript n denotes the n—th inner iteration step; 4.15 is iterated

till it converges to ||zt — 2" ||? < e.

Interestingly, 4.15 can be interpreted in the context of clustering [95]. It de-
termines the center of a single Gaussian cluster, trying to capture as many of
the v; with positive 9; as possible, and simultaneously avoiding those v; with

negative 9;.

e Step 3:Least-squares estimation of the d; coefficients

The 6, coefficient is calculated by recalculating the whole d=[dy, . .., 0|7

vector by minimizing 4.12

§=(K*) 1K™~ (4.16)

where the element of the matrices are expressed by the kernel functions K7; =
k(z;,z;) and Kip = k(z;,x;).

4.2.2 Reducing the Number of Fuzzy Sets

In the previous section, it has been shown how kernel-based regression model with a
given number of kernel functions N, can be obtained. Because the number of rules
in the transformed fuzzy system is identical to the number of kernels, it is extremely
important to get a moderate number of kernels in order to obtain a compact fuzzy
rule-based regression model.

From Eq. 4.9 it can be seen that the number of fuzzy sets in the identified
model is Ng = NrN;. The interpretability of a fuzzy model highly depends on
the distribution of these membership functions. With the simple use of Eq. 4.8,
some of the membership functions may appear almost undistinguishable. Merging
similar fuzzy sets reduces the number of linguistic terms used in the model and
thereby increases model transparency. This reduction is achieved by a rule-base
simplification method [91, 96], based on a similarity measure S(A;;, Ax;), i,k =
1,...,nand i # j. If S(A;;, Ar;) = 1, then the two membership functions A;;

and Ay; are equal. S (Aij, Ay;) becomes 0 when the membership functions are non-
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overlapping. During the rule-base simplification procedure similar fuzzy sets are
merged when their similarity exceeds a user-defined threshold 6 € [0, 1]. The set-
similarity measure can be based on the set-theoretic operations of intersection and

union [91]. A A
ij [ Ak

_ 4.1
|Aij U Agj| @17

S(Aij, Axj) =

where |.| denotes the cardinality of a set, and the N and U operators represent the
intersection and union, respectively, or it can be based on the distance of the two
fuzzy sets. Here, the following expression was used to approximate the similarity

between two Gaussian fuzzy sets [96]

1
1+ d(Ay, Ay
1

L+ /(25 — 21j)* + (03 — ons)?

S(Ais, Agy) (4.18)

4.2.3 Reducing the Number of Rules by Orthogonal Transforms

By using the previously presented SVM identification and reduction techniques, the

following fuzzy rule-based regression model has been identified

Zﬂexp( )2>5 + b. (4.19)

=1 j=1

Due to the applied RS method and the fuzzy set merging procedure, the obtained
membership functions only approximate the original feature space identified by the
SVM. Hence, the 6=[d1,...,dn,]T consequent parameters of the rules have to be
re-identified to minimize the difference between the decision function of the support

vector machine Eq. 4.4 and the fuzzy model Eq. 4.19

Ng N, Ng 2
MSE = Z (Z Vik (X5, %) — Z&&(Xﬁ) (4.20)
j=1 \i=1 —1
= |lys = Bd|*, 421)
where the matrix B = [by,...,by,] € R¥*Nr contains the firing strength of all

Ng, rules for all the inputs x;, where b; = [3;(x1), ..., 3;(xn,)]". As the fuzzy
rule-based regression model 4.19 is linear in the parameters 6, Eq. 4.20 can be
solved by a least-squares method(see Appendix C and Eq. C.1 for further details).

The application of orthogonal transformations for the above mentioned regres-
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sion problem Eq. 4.20 for reducing the number of rules has received much attention
in recent literature [92, 93].

For modeling purposes, the Orthogonal Least Squares (OLS) is the most ap-
propriate tool [92]. The OLS method transforms the columns of B into a set of
orthogonal basis vectors in order to inspect the individual contribution of each rule.
This ratio offers a simple mean for ordering the rules, and can be easily used to
select a subset of rules in a forward-regression manner.

Evaluating only the approximation capabilities of the rules, the OLS method
often assigns high importance to a set of redundant or correlated rules. To avoid

this, in [93, 97] some extension for the OLS method were proposed.

4.3 Application Examples

4.3.1 Illustrative example

To demonstrate the potential of Support Vector Regression techniques two examples
were introduced. Firstly, an illustrative regression problem is solved with a simple
dataset containing 51 samples (Fig.4.1). The SVR technique obtained 14 support
vectors. This model has been reduced by the RS method (Step 1.), by which we
tried to reduce the model to operate with 10 rules. Modeling results can be seen in
Table 4.1. Utilization of all the three algorithm steps reduced the number of fuzzy

rules to 6, however this indicated slight increase in modeling error.

Table 4.1: Results on Regress data
Method RMSE #Rules
SVR Identification | 0.084 14
Step 1 reduction | 0.0919 10
Step 2 reduction | 0.2415 9
Step 3 reduction | 0.3361 6

4.3.2 Identification of Hammerstein System

In this example, the support vector regression is used to approximate a Hammer-
stein system that consists of a series connection of a memory less nonlinearity, f,
and linear dynamics, G, as shown in Fig. 4.2 where v represents the transformed
input variable. For transparent representation the Hammerstein system consist of

a first-order linear part y (k + 1) = 0,9y(k) + 0, lv(k) and a static nonlinearity is
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Figure 4.1: Illustrative example with model output, support vectors and the insensi-
tive region
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Figure 4.2: Hammerstein system

represented by a polynomial, v(k) = u(k)?. The dataset contains 500 input-output
data. Support vector regression model was identified with efficiency summarized in
Table 4.2.

Table 4.2: Results on Hammerstein system identification
Method RMSE | #Rules
SVR identification | 0.0533 22
Step 1 reduction | 0.0604 15
Step 2 reduction | 0.0650 13
Step 3 reduction | 0.0792 12

As Fig. 4.3 and Table 4.2 concludes, support vector regression is able to give ac-
curate models for Hammerstein system identification. Extracted, non-distinguishable
rules from this system are represented on Fig. 4.4, therefore the three-step reduction
algorithm is used to acquire interpretable models.

After applying the RS method (Step 1.), number of rules could be reduced to

15 without any major modeling error increase. Using further reductions with the
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Figure 4.4: Non-distinguishable membership functions obtained after the applica-
tion of RS method

second and third step of the proposed algorithm, interpretable model (see Fig. 4.5)

and accurate model could be extracted.

4.4 Conclusions

Support vector based techniques and fuzzy rule-based models work in a similar
manner as both models maps the input space of the problem into a feature space with
the use of either nonlinear kernel or membership functions. The main difference
between support vector based and fuzzy rule-based systems is that fuzzy systems
have to fulfil two objectives simultaneously, i.e., they must provide a good modeling

performance and must also be linguistically interpretable, which is not an issue for
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Figure 4.5: Interpetable membership functions of the reduced fuzzy model

support vector systems. However, as the structure identification of fuzzy systems is
a challenging task, the application of kernel-based methods for model initialization
could be advantageous because of the high performance and the good generalization
properties of these type of models.

Accordingly, support vector-based initialization of fuzzy rule-based model is
used. First, the initial fuzzy model is derived by means of the support vector learn-
ing algorithm. Then the support vector model is transformed into an initial fuzzy
model that is subsequently reduced by means of the reduced set method, similarity-
based fuzzy set merging, and orthogonal transform-based rule-reduction. Because
these rule-base simplification steps do not utilize any nonlinear optimization tools,
it is computationally cheap and easy to implement them. The application of the pro-
posed approach was shown on simple one—dimensional function identification data
and Hammerstein system identification. The obtained models are very compact but
their accuracy is still adequate. Besides, it might be clear that still real progress can
be made in the development of novel methods for feature selection.

I intend this thesis also as a case study for further developments in the direction
of a combination-of-tools methodology for modeling and identification. I am seek-
ing for techniques that perform well on multiple criteria, considering here different
soft-computing tools combined to achieve a predefined trade-off between perfor-

mance and transparency.
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Chapter

Summary

5.1 Introduction

Majority of problems arisen in chemical engineering practice requires data-driven
modeling of nonlinear relationships between experimental and technological vari-
ables. Complexity of nonlinear regression techniques is gradually expanding with
the development of analytical and experimental techniques, hence model structure
and parameter identification is a current and important topic in the field of nonlin-
ear regression not just by scientific but also from industrial point of view as well.
Model interpretability is the most important key property besides accuracy in the re-
gression modeling of technological processes and this is essential characteristic of
these models in their application as process controllers. As it was mentioned above,
model structure and parameter identification is an actual topic with increasing im-
portance, since identified model needs to be interpretable as well. In line with these
expectations and taking interpretability of regression models as basic requirement
robust nonlinear regression identification algorithms were developed in this thesis.
Three algorithms were examined in details namely identification of regression trees
based hinging hyperplanes, neural networks and support vector regression. Appli-
cation of these techniques eventuate black box models at first step. It is shown in my
thesis how interpretability could be maintained during model identification with uti-
lization of applicable visualization and model structure reduction techniques within
the fuzzy modeling framework.

First part of the thesis deals with the identification of hinging hyperplanes based
regression trees. Results of the developed algorithm prove that the implementation

of a priori constraints enables fuzzy c-regression clustering technique to identify
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hinging hyperplane models. Application of this technique recursively on the parti-
tioned input space ends up in a regression tree capable for modeling and even for
implementation of model predictive control of technological data coming from real
life applications. The next section deals with the validation, visualization and struc-
tural reduction of neural networks. It is described in details that the hidden layer of
the neural network can be transformed to an additive fuzzy rule base.

This section is followed by the description of connections between fuzzy regres-
sion and support vector regression, and introduces a three-step reduction algorithm
to get interpretable fuzzy regression models on the basis of support vector regres-

sion.

5.2 New Scientific Results

1. I showed that hinging hyperplane models are excellent tools for the identification
of models based on technological data. I tailored a new model structure by
the hierarchical representation of hinging hyperplane models and I delivered

a new identification algorithm based on fuzzy clustering.

a) To overcome the problems of original hinge hyperplane identification
algorithm delivered by Breimann [1] I adapted a fuzzy c-regression clus-
tering algorithm for hinge identification with incorporating a priori con-

straints.

b) As further enhancement of this algorithm I developed hierarchical hinge
hyperplane based on regression tree identification technique. I showed
performance of the developed tool on multiple examples from the well—

know repositories.

c) I proved that the identified transparent and interpretable models - with
the help of the developed algorithm - are suitable for solving process
control duties of technological systems. To illustrate this feature I pre-

sented model predictive control of a simulated cartridge water heater.

(Relevant publications: 1,7,9,10,11,13,14,18,19,20)

2. To reinforce support vector regression methods, I worked out a three step reduc-
tion technique in order to reduce and transform the support vector model into

an interpretable fuzzy rule base. Further reduction of this rule base implies
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interpretable and robust regression models.

a)

b)

I examined structural equivalency between support vector and fuzzy re-
gression. I worked out a technique with the help of Gaussian kernels to

transform the identified support vector model into a fuzzy rule base.

Based on the identified support vector regression model, the transformed
fuzzy rule base generates large number of rules making the model inter-
pretation and validation difficult. I tailored a three step reduction algo-
rithm to overcome this problem. I used the reduced set method [2] to
select the important set of support vectors and I utilized further, similar-
ity based reduction of the generated rule base. The resulted fuzzy rule
base is linear in the consequent part, therefore I applied orthogonal least

squares algorithm for further reduction.

(Relevant publications: 2, 5, 6)

3. Interpretability of neural network models can be achieved by transforming hid-

den layer of the neural network into a fuzzy rule base and with using a spe-

cial, self-developed visualization technique of this rule base. Based on the

self-developed transformation and visualization technique I reduced the gen-

erated model with orthogonal least squares and similarity based reduction

techniques in order to support proper model structure design.

a)

b)

I examined that validation and interpretability of black box neural net-
work models can be improved by transforming the hidden layer of the

neural network models with a special operator to a fuzzy rule base.

I compared calculated membership functions based on similarity mea-
sure enabling the analysis of the neural network model and point out
possible further model reductions. This model structure is also linear in
parameters from the output layer point, so I used the mentioned orthog-

onal least squares technique for further model reduction.

Visualization of the neurons taking place on the hidden layer of neu-

ral network can be achieved by distance measure and multi-dimensional
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scaling. This technique is also a new tool to examine and validate struc-
ture of the neural network. Performance of these techniques is shown

on a technological pH process.

(Relevant publications: 3, 4, 12, 15, 16, 17, 19)

5.3 Utilization of Results

The motivation to write my thesis was to integrate data, prior knowledge and ex-
tracted information into a single framework that helps model-building procedures
with interpretability, visualization and reduction. Utilization of the developed al-
gorithms was shown by section-wise examples taken from the area of chemical
engineering. Benchmarks and experimental data were used to perform a most com-
prehensive test of novel methods.

Due to computational efficiency and easy interpretation, the hierarchical rep-
resentation of hinging hyperplane model proved to be a promising tool to develop
local linear controllers. Interpretable fuzzy regression models initialized by robust
support vector regression could help when besides quantitative relationships, qual-
itative analysis is needed as well. The interpretable property of fuzzy models is a
great vehicle for variable quality characterization. Structural validation and visual-
ization of neural network models can support modellers to solve the challenge in
case only black box model identification is possible. My self-developed technique
gives excellent feedback to determine model structure and evaluate task complex-
ity. In the chemical industry, these problems occur when trying to find connections
between complex reaction kinetic relationships and key technology- and product-
quality variables.

Future developments of the thesis at hand can branch in various directions in
the field of interactive learning where modeller experience combined with learning

capability of different identification techniques can lead to further successes.
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Osszefoglald

5.4. Bevezetés

A vegyészmérnoki gyakorlatban eldfordulé problémdk jelentds része kisérleti és
technoldgiai valtozok kozotti nemlinedris Osszefiiggések adat-alapi modellezését
koveteli meg. A nemlinedris regresszids problémak komplexitdsa a technoldgidk és
a kisérleti, analitikai technikdk fejlodésével folyamatosan novekszik, igy a nemli-
nedris regresszid kapcsdn a modellstruktira meghatdrozdsa és a modell paraméte-
reinek identifikdldsa tudomanyos €s ipari szempontbdl is egyre fontosabb problé-
makor. A regresszids problémak egyre novekvo komplexitdsa miatt tudoményos és
miszaki szempontbdl is fontos €s aktudlis problémakor a modellstruktira, illetve a
modell paramétereinek meghatarozédsa. Az identifikdlt modellekkel szemben a pon-
tossagon tdl a modell értelmezhetdsége a legfontosabb ismérv, mely a regresszids
modellek technoldgiai folyamatok modellezésében és szabdlyozasdban torténd al-
kalmazhatésdgnak is fontos alapja. Ezen megéllapitdsok kapcsan a regresszidés mo-
dellek értelmezhetdségét szem elott tartva robosztus nemlinedris regresszios model-
lezési technikdkat fejlesztettem. A vizsgalt metszd hipersik alapt regresszids fakon,
neurdlis hdlozatokon €s szupport vektor regresszion alapulé modellezési technikak
alapvetden fekete doboz modelleket identifikdlnak.

Ertekezésemben megmutattam, hogy a modellek identifikdcija sordn miként
javithat6 a modellek értelmezhetdsége a megfeleld megjelenitési és struktira redu-
kalasi technikdk segitségével, illetve a fuzzy modellezés keretrendszerének alkal-
mazasaval.

Az értekezés elso részében metszd hipersik alapi modellek identifikdcidjaval
foglalkozom. A Kkifejlesztett algoritmus eredményei igazoljak, hogy az a prori kor-

latokon alapul6 fuzzy c-regresszids csoportositds technika alkalmas metszd hipersik
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modellek identifik4cidjdra, illetve a rekurzivan alkalmazott, regresszids faba rende-
zett hierarchikus modellstruktira alkalmas technoldgiai folyamat modellezésre és
modell prediktiv szabdlyzas implementédldsara. Az értekezés kovetkezo fejezete a
neurdlis hdlézatok validédldsaval, a hal6zat rejtett rétegének fuzzy additiv szabaly-
bazissa valo atalakitasdval, az eredmények transzparens dbrdzoldsdval és a neuralis
halézat redukcidjdval illetve vizualizaldsaval foglalkozik, bemutatvan az alkalma-
zott technikak erdsségeit.

A dolgozat zar6 fejezete a szupport vektor regresszio altal identifikalt modell és
a fuzzy regresszio kozotti osszefiiggésekkel, a kapott modellstruktira haromlépcsds
redukcids algoritmusdval foglalkozik, illetve mutatja be annak mkodését és ered-

ményességét.

5.5. Uj tudomanyos eredmények

1. Kimutattam, hogy a metszo hipersik modellek kitiino eszkozok technologiai ada-
tok alapjdn torténo modellalkotdsra. A metszo hipersikok hierarchikus mo-
dellbe torténo szervezésével egy uj modellstruktiirdt alkottam. E modellek

identifikdciojdra fuzzy csoportositason alapulo technikdt dolgoztam ki.

a) Breimann [1] 4ltal elsoként publikalt metszd hipersik modellek identifi-
kaciodjara ajanlott algoritmus hibdinak kikiiszobolésére a fuzzy c-regresszios
csoportositds (fuzzy c-regression clustering) algoritmust a priori korla-
tok beépitésével alkalmassd tettem metszd hipersik modellek identifika-

lasara.

b) Az algoritmus tovabbfejlesztésével egy hierarchikus metszd hipersik alapd
regressziOs fa identifikdcios technikat készitettem. Az algoritmus ké-
pességeit tobb, az irodalomban gyakorta alkalmazott példdn keresztiil

bemutattam.

c) Igazoltam, hogy az elkészitett algoritmus segitségével alkotott transz-
parens és értelmezhetd modellek konnyen alkalmazhatdak technolégiai
rendszerek szabalyzdsi feladatainak elvégzésére. Ennek illusztrdlasara
egy valds vizmelegitd dinamikus szimuldtoranak modell prediktiv sza-

balyozdsat valdsitottam meg.
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(Kapcsolédo publikaciok: 1,7,9,10,11,13,14,18,19,20)

2. Szupport vektor gépek regresszios feladatainak tamogatdsa érdekében olyan mod-
szert dolgoztam ki, amellyel a kapott szupport vektor modell redukdlhato, il-
letve dtalakithato értelmezheto fuzzy szabdlybdzissd, és ezen szabdlybdzis to-

vdbbi redukciojdaval transzparens, ugyanakkor robosztus modellek nyerhetoek.

a) Megvizsgdltam a strukturdlis ekvivalencia kérdését szupport vektor reg-
resszié és a fuzzy regresszié kozott. Olyan mddszert dolgoztam ki,
amellyel a Gauss kernel fiiggvények haszndlataval az identifikélt szup-

port vektor modell fuzzy szabalybézissé alakithato.

b) Az identifikalt szupport vektor regresszids modellben kapott szupport
vektorok fiiggvényében a fuzzy modell éltaldban az értelmezhetdséget
megnehezitd nagy szdmossagu szabdlyt generdl, ami megneheziti az
eredmények interpretdldsat és validalasat ezért harom 1épcsds redukcios
algoritmust készitettem. A redukélt halmazok modszerét [2] alkalmazva
a lényeges szupport vektorok kivélasztasara, majd az igy kapott szabaly-
bazist tovdbb csokkentettem hasonlésdgi mérték segitségével. Mivel
az igy kapott modell a fuzzy szabdlybdzis kovetkezmény paramétereire
nézve linedris, ezért az ortogondlis legkisebb négyzetek modszerének

segitségével tovabb redukdltam a szabélyok szdmit.

(Kapcsol6do publikaciok: 2, 5, 6)

3. A neurdlis hdlozati modellek értelmezhetosége megvalosithaté a modellek fuzzy
szabdlybdzissd torténé transzformdciojdaval és a fuzzy modell szabdlyainak
dltalam kidolgozott specidlis megjelenitésével. Az dltalam kidolgozott transz-
formdcios és megjelenitési technikdn alapulva a kapott modellen ortogonadlis
legkisebb négyzetek modszere és a hasonlosdgi mértéken alapulo redukcios
technikdk alkalmazhatok a modellstruktiira tervezésének tamogatdsa érdeké-

ben.

a) Igazoltam, hogy a fekete doboz neurdlis hédl6zatok értelmezhetdsége

és validalasa miképp javithaté a neurdlis halézati modellek rejtett ré-
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tegének egy specidlis operdtoron alapul6 fuzzy additiv szabdlybazissa

transzformalasaval.

b) A kapott tagsagi fiiggvényeken értelmezett hasonlésagi mértékek alap-
jan lehetdség nyilik a kapott neurdlis halozat elemzésére, redukaldsara.
Tekintettel arra, hogy a modell a kimeneti réteg paramétereire nézve li-
nedris, a tovabbi modell redukci6 érdekében ortogonalis legkisebb négy-

zetek technika hasznélatat javasoltam.

c) A kapott neurdlis hdldzat rejtett rétegének neuronjait tdvolsag mérték
alapjdn a tobbdimenzids skéldzasi technika segitségével vizualizaltam,
amellyel egy djabb eszkozt mutattam be a modell rejtett struktirdjanak
feltardsara €s validdlasara. A technikdk képességeit technoldgiai adato-

kon, egy pH szabdlyozasi folyamaton keresztiil illusztraltam.

(Kapcsolédo publikaciok: 3, 4, 12, 15, 16, 17, 19)

5.6. Az eredmények gyakorlati hasznositasa

A dolgozat motivacidja, hogy olyan eszkozt adjon modell épitési folyamatok tdmo-
gatdsdra, ahol az adat, a-priori ismeret €s a kinyert informdci6 egységes keretrend-
szert alkot. Az eszkozok segitségével értelmezhetd, vizualizalhaté €s redukalhatd
modelleket kaphatunk. A fejlesztett algoritmusok hasznélatat az egyes fejezetekben
gyakorlati példdkkal illusztrdltam. A lehetd legrészletesebb tesztelés megvaldsita-
sanak érdekében kisérleti €s mesterséges adatokat is felhaszndltam a kidolgozott
modszerek hatékonysdganak bemutatdsara.

A metszd hipersikok szamitasi hatékonysiga és konny( értelmezhetdsége miatt
ezek a hierarchikus modellek igéretes eszkozei lehetnek a lokdlisan linedris szaba-
lyozdk fejlesztésének. A robosztus szupport vektor regresszio segitségével inici-
alizélt értelmezhetd fuzzy regressziés modell jOl hasznilhatéak abban az esetben,
amikor a kvantitativ 0sszefiiggések definidldsin kiviil kvalitativ elemzés is sziik-
séges. E témakorben a fuzzy modellek értelmezhetdsége a valtozok mindségi jel-
lemzésében bizonyulhat kiillondsen hasznos tulajdonsdgnak. A neurélis hal6zatok
struktdra validaldsa és vizualizdcidja a modellezdt tudja tdmogatni olyan kihivasok
megoldédsdban ahol csupédn fekete doboz modellek identifikédlasdra van csak lehetd-
ség. Az altalam kidolgozott médszertan kitlind visszajelzést ad a modell struktira-

janak meghatarozdsahoz és a modellezési feladat komplexitdsdnak jellemzéséhez.
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A vegyipari gyakorlatban ilyen jellegli problémadk altaldban a komplex reakci6 ki-
netikai 0sszefiiggések és a technoldgiai és termékmindséget jellemzd véltozok kozti
kapcsolatok feltdrdsa sordan fordulnak eld.

A dolgozat jovobeni fejlesztése kiilonféle iranyokba tud eldgazni az interaktiv
tanulds terén ahol a modellezd tapasztalata €s az identifikdcids technikdk tanuldsi

képességeinek kombindcidjaval érhetiink el tovébbi sikereket.

74



Publications related to theses

Articles in International and Hungarian Journals

1. T. Kenesei, B. Feil, J. Abonyi, Fuzzy Clustering for the Identification of Hing-
ing Hyperplanes Based Regression Trees Lecture notes in computer science,
Lecture notes in artificial intelligence; 4578. ISBN:9783540733997 pp. 179-
186. 2007

2. T. Kenesei, A. Roubos, J. Abonyi, A Combination-of-Tools Method for Learn-
ing Interpretable Fuzzy Rule-Based Classifiers from Support Vector Machines
Lecture Notes in Computer Science; 4881. ISBN:978-3-540-77225-5 pp.
477-486. 2008

3. T. Kenesei, B. Feil, J. Abonyi, Visualization and Complexity Reduction of
Neural Networks Applications of soft computing: updating the state of art.,
pp- 43-52. 2009. Advances in soft computing; ISBN:9783540880783 vol. 52.

4. T. Kenesei, B. Feil, J. Abonyi, Complexity Reduction of Local Linear Models
Extracted from Neural Networks, Acta Agraria Kaposvdriensis, Volume 11
No 22007, ISSN 1418-1789s, 259-271

5. T. Kenesei, J. Abonyi, Interpretable Support Vector Machines in Regression
and Classification- Application in Process Engineering, Hungarian Journal
of Industrial Chemistry, Veszprém 2007, VOL 35. 101-108

6. T. Kenesei, J. Abonyi, Interpretable Support Vector Regression, Artificial In-
telligence Research, Vol 1 (2), ISSN:1927-6974 ,2012

7. T. Kenesei, J. Abonyi, Hinging hyperplane based regression tree identified
by Fuzzy Clustering and its application, Applied Soft Computing ISSN:1568-
4946, vol 13(2) pp. 782-792 2013.

75



10.

11.

12.

13.

14.

15.

16.

Book Chapter

. Kenesei Tamds, Madar Janos, Abonyi Janos: Adatbdnyészat, a hatékonysag

eszkoze (Gyakorlati utmutaté kezddknek és haladéknak)Regresszids tech-
nikdk, Computerbooks, 2006

Refereed Presentations

. Hinging hyperplane based Regression tree identified by Fuzzy Clustering

WSC16 - 16th Online World Conference on Soft Computing in Industrial Ap-
plications 2011

Visualization and Complexity Reduction of Neural Networks WSC12 -12th
Online World Conference on Soft Computing in Industrial Applications, 2007

Fuzzy Clustering for the Identification of Hinging Hyperplanes Based Regres-
sion Trees WILF - International Workshop on Fuzzy Logic and Application,
2007

Identification of Dynamic Systems by Hinging Hyperplane Models ICAI 2007
- 7th International Conference on Applied Informatics Eger 2007.

Non-Refereed Presentations

T. Kenesei, B. Balasko, J. Abonyi, A MATLAB Toolbox and its Web based
Variant for Fuzzy Cluster Analysis, Magyar Kutaték Nemzetkozi Szimpozi-
uma, Budapest 2006

Tamas Kenesei, Balazs Feil, Janos Abonyi, Identification of Hinging Hyper-
plane Models by Fuzzy c-Regression Clustering, Magyar Kutatok Nemzetkozi
Szimpoziuma, Budapest 2006

Hinging Hyperplane Model based Control of Hammerstein Systems Miiszaki
Kémiai Napok, Veszprém, 2007.

Complexity Reduction of Local Linear Models Extracted from Neural Net-

works VI. Alkalmazott Informatika Konferencia Kaposvar, 2007.

76



17.

18.

19.

20.

Petroleum Supply Chain Optimization with Linear Programming APS Forum,
Balatonfiired, 2010.

Interactive training of neural network models 27th International Workshop on

Chemical Engineering Mathematics Veszprém, 2007.

Other

Kenesei Tamas, Neurdlis hdl6zatok alkalmazasi lehetdségei, Molekuldk biolo-

giai aktivitasdanak adat-alapu becslésére alkalmas algoritmusok dttekintése;
2006

Kenesei Tamds, Outlierek hatdsainak kiszlirésére alkalmas regressziés mod-
ellek eloallitasa és alkalmazasi lehetdségei, Molekuldk biologiai aktivitdsd-

nak adat-alapii becslésére alkalmas algoritmusok dttekintése; 2006

71






Appendix A

Introduction to regression problems

Linear regression takes place in the following form

n
y=0o+> Ojz;+e (A.1)

j=1
where ¢ is the regression error. Given x; variables definition a regression model
means estimation of 6; parameters. As it was mentioned above to identify a lin-
ear regression a so called train datasample is need containing N {x,yx}, k =
1,..., N, known data pairs. Function f(x) is estimated by defining a connection

between dependent and independent variables in a form of model/function:

i1 ... Tip Vi --- Yim
X=| + -~ |, Y= -~ (A.2)
N1 --- INnp YNt -+ YNm

In multivariate case a hyperplane is fitted for the best approximation. In this
case one of the most used methods are the least square based methods. During
identification the LS—based method is minimizing the square of distances between

function output and the basic dataset. The distance is called residual:
€ = Ui — Ui (A.3)
Aim is to find such a § parameter set to the N data points where € is minimal:
N N
RSS(0) = Z (y,- — 0y — Z (xijﬁj)> =cle=(y—X0)T(y —X0) (A4
' i=1
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y = f(X,0) + € model, (where X stands for regression matrix) with matrix

representation can form the followings:

U1 1 T11 A T1n 00 €1
=Y =|; S A (A.5)
YN 1 IN1 -+ YNm 6)n EN

~ ~

Oy — X0)" (y — X6)
00
by rewriting the equation, # can be computed as follows:

= 2XTy +2XTX0 =0 (A.6)

f= (X"X)"' XTy (A7)
Linearity: Dependent variable is linear combination of the independent variables.
E(y|z1, 29, ..., 2,) = g + 0121 + Oog + ... + O,
Independence: Az ¢ is independent in any observation.
Unbiased: F(¢) =0Vi=1,...,N.
Homogenity: Az e standard deviation equals with the unknown value of o.
Normal disrtibution: ¢ has normal distribution.

Regression linear in parameters is such a model which is linear to it’s parame-

ters. These models can be represented as

M
Y =00+ Oifr(x) (A.8)

k=1
where f1,..., fys are nonlinear functions while 6y, ..., 6, are model parameters

—

and y(k) is the model output and x is the regressor vector. See Table A.1 for f;
examples
The mentioned LS technique could be used for parameter estimation with min-

imizing the following cost function:

E=) (y - <60 +> Ot (x))) (A9)

where NV is the number of datapoints. The X regression matrix (see (A.5) for
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Function Basis Function y=a+0b-2,a,bed
g e a b
y = ab” logy =loga + xlogb logy x loga | logb
=a+blogx Y log x a b
y = az’ logy = loga + blog x logy logx | loga b
y:a+bo—lj Yy i a b
y:aﬁbw iza—l—bx % x a b
yzlﬂ% ln<——1):lnc+bx ln<§—1> x Inc b

Table A.1: Functions with the ability to transform them to linear forms

linear case) is:
L filw) - fu(a)
X=11 : (A.10)
L filen) oo fu(yw)
Regression nonlinear in parameters is a general case of nonlinear regression.
([32]):
yi = [ (x(i),0) (A.11)

where f function is nonlinear to 6 parameters. Main advantage of this type of
regression is the generality. However, determining regression parameters is a much
more slower process, and it can happen that it is infeasible to find proper parameters
for a suitable function. A much more difficult situation implied by this type of
regression, since nonlinear local or global optimization schemes should be applied
for parameter estimation.[1]- If nonlinear optimization is to be applied the gradient

of the model output with respect to the parameters is important:

N
Z (A.12)

i=1 =1

&
[\3|||H
M

CB
l\DIH

For the application of gradient-based optimization technique the gradient of the

loss function with respect to each 6 paramater is required:

—E i ——ie(i) i (A.13)
00 — — 00
Hence, the gradient of the model output with respect the parameters %yé is re-

quired.
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Appendix B

n—fold cross validation

n-fold cross-validation

This technique is intended to avoid the possible bias introduced by relying on
any one particular division into test and train components, is to partition the original
data in several different ways and to compute the average of the performances over
the different partitions. When the available data is divided into n part this approach
is called n-fold cross-validation. Because of the n identification and verification
steps, this method is computationally expensive. An extreme variant of this is to
split the NV training data into a training set of size /N —1 and test of size 1 and average
the squared error on the left-out pattern over the N possible ways of obtaining such
partition.

The beauty of LOO for linear in parameter models is that it can be calculated
analytically [98]. The fuzzy model is linear in its consequent parameters. Hence,
the LOO criteria and its derivatives can be easily used for these models

R TP (diag(P)) 2 P
Uioo:y ( g]\(] ) Y (B.1)

where in case of global identification, P denotes the projection matrix

y-y = y—Q0 (B.2)
= y-Q(Q"Q) ' QTy (B.3)
- (v-Q@"'Q)'Q")y (B.4)
= Py (B.5)

where the (Q matrix contains the N regressors, y denotes the estimated outputs of

the model, and Py the vector of the modeling error. The matrix diag(P) is the same
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size and has the same diagonal as P but it is zero off-diagonal, and 1, represents

an identify matrix.
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Appendix

Orthogonal least squares

An often applied solution is to prune the identified model trained with classical
cost function. In the following, model reduction techniques of this type will be
considered. In general it can be stated that linear model reduction methods are
preferred to nonlinear ones because they are exhaustively studied and effectively
applied for several types of problems. For that purpose the model should be linear in
parameters. A possible method family is orthogonal techniques. These methods can
roughly be divided into two groups: the rank revealing ones like SVD-QR algorithm
and those that evaluate the individual contribution of the rule or local models, like
the orthogonal least-squares approach (OLS). This later technique requires more
computations, but for system identification purposes it is preferable as it gives a
better approximation result. In the remaining part of this paper OLS is applied for
rule ranking and model reduction purposes. OLS works as follows (for a throughout

discussion see [1]). Consider a general linear in parameters model:

y=70+e (C.1)
wherey = [yq, ... ,yN]T is the measured output, Z = [z, . .. ,zn]T is the regressor
matrix (z; = [z, . .. ,ziN]T, i =1,..., hare the regressors) 0 = [0y, ..., 0] is the
parameter vector and e = [eq, ..., ey]" is the prediction error. OLS transforms the

columns of the regressor matrix Z into a set of orthogonal basis vectors in order to
inspect the individual contribution of each regressor. If they were not orthogonal,
they could not been inspected individually. An orthogonalization method should be
used to perform the orthogonal decomposition Z = VR (often the simple Gram-
Schmidt method is used), where V is an orthogonal matrix such that VTV =T1and
R. Substituting Z = VR into Eq. C.1, we gety = VRO + e = Vg + e, where
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g = R4A. Since the columns v; of V are orthogonal, the sum of squares of y;, can

be written as

h
y'y =Y givivi+e'e (C2)
=1

The part of the output variance y’y /N explained by regressors is Z?Zl gvIv,/N

2

and an error reduction ratio due to an individual regressor 7 can be defined as

i=1,...,h (C.3)

err; =

This ratio offers a simple means of ordering the regressors. As [1] shows, “there
are only two restrictions to the application of this subset selection technique. First,
the model has to be linear in parameters. Second, the set of regressors from which
the significant ones will be chosen must be precomputed.” This later one is an
important restriction because it means that all regressors are fixed during this pro-
cedure. By normalized RBF networks and Takagi-Sugeno fuzzy models this re-
quirement is not met, therefore the original version of OLS cannot be applied. It is
because the normalization denominator changes with the number of selected rules,
thus the fuzzy basis functions (here: regressors) change. To overcome this problem
the value of the denominator can be fixed, but in this case interpretability issues are
discarded completely. However, OLS can be very useful for various purposes; mod-
ified versions of OLS can also be applied to determine the centers of radial basis

functions, or to generate Takagi-Sugeno-Kang fuzzy models.
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Appendix D

Model of the pH Process

The modeling and control of pH (the concentration of hydrogen ions) in a con-
tinuous stirred tank reactor (CSTR) is a well-known control problem that presents
difficulties due to the nonlinearity of the process dynamics. The CSTR is shown

schematically in Fig. D.1.

&FNaOH Fonc
I v

FrnaontFrac
>

Figure D.1: Scheme of the pH setup.

A dynamic model of the pH in a tank can be obtained by considering the mate-
rial balances on [Na+] and the total acetate [HAC+AC-] and assuming that acid-base

equilibrium and electroneutrality relationships hold [99].
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Total acetate balance:

_ dHAC + AC~
FuaclHAC)m — (Fuac + Fyaon)[HAC + AC-] = v . )
Sodium ion balance:
d[Na*t
Frnoon[NaOH)ym — (Fiac + Fyeon)[Nat] =V [ = ]
HAC equilibrium:
117+
]
[HAC]

Water equilibrium:
[HT[OH™] = K,

Electroneutrality:
[Na™] + [HT] = [OH ] + [AC7]

The pH can be calculated from the previous equations as
[HP+[HP(Ko+[Nat)+[HY|([Na"|K,~[HAC+ACTK,— K,,)— KK, = 0

pH = —log[H™"]

The parameters used in our simulations are taken from [100] and are given in Ta-
ble D.1.

Table D.1: Parameters used in the simulations.

Parameter Description Nominal Value
Vv Volume of the tank 1000 [1]

Fyac Flow rate of acetic acid 81 [1/min]
Fnoon Flow rate of NaOH 515 [1/min]
[NaOH];, Inlet conc. of NaOH 0.05 [mol/1]
[HAC;, Inlet conc. of acetic acid 0.32 [mol/1]
[Na™| Initial conc. of sodium in the CSTR  0.0432 [mol/l]
[HAC + AC~] Initial conc. of acetate in the CSTR  0.0432 [mol/1]
K, Acid equilibrium constant 1.753107°

K, Water equilibrium constant 10~
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Appendix E

Model of electrical water heater

The schematic diagram of the water-heater is shown in Fig. E.1.

TOLI[

() :
Heating

. PC
i EVAVAVAVAVAV: — i

cvo
= pcLsiz]
g
‘ [ | ] ‘water

cvC ‘ —_—
Figure E.1: The scheme of the physical system.

[

@AA

The water comes from the water pipeline into the heater through a control valve
and a pair of metal pipes containing a cartridge heater. The control task is to control
the 7,,; outlet temperature by adjusting the u heating signal of the cartridge heater.

The temperature measurement is realized by Pt100 thermometers. The system
has four analogue inputs (7}, inlet temperature, 7}, outlet temperature, valve po-
sition and the F' flow-rate), and two digital (open and close of the valve, CVO and
CVC) and one analogue output (heating control signal, u). The heaters are linked
parallel and have a performance of 1 kW. The process is connected to a PC computer
through ADVANTECH LabCard PCLD-780 and PCL-812 data acquisition boards.

GENIE 3.02 data acquisition and control software was used to filter and convert the
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input signals (0-5V). The control algorithm runs in MATLAB 4.2. The program gets
the filtered and converted measured data through DDE in every 2 seconds [101].
For the purpose of physical modeling the system was decomposed into four in-
teracting elements: the cartridge-heater (subscript h), the streaming water (subscript
w), the pipe wall (subscript p) and the environment (subscript e). The following

three heat balances in the form of partial differential equations can be established:

o1,
VipnCy, 5 (1.2) = Q(u) = n Ay(Ty = T,,)
oT,, I,
prprwW(t, Z) + (chp%ug(t, Z) = OélAl(Th — Tw) — CYQAQ(TU} — Tp)
oT,

V;’ppcppﬁ@? Z) = a2A2(Tw - Tp) - aeAe<Tp - Te)

where, z € [0, L] with L denotes the length of the pipe. The description and the

nominal values of the parameters are given in Table E.1.

Table E.1: Parameters used in the simulation model of the heating system.

Parameter Description Nominal value

L Length of the pipe 2 x 480103 m

on Density of the cartridge 3650 kg/m?

Coh Heat capacity of he cartridge 1047 J/kgK

Ay, Surface of the cartridge 2.41 x 1072 m?

Vi Volume of the cartridge 4.82 x 107> m?

oy h — w heat transfer coefficient 316.3Wm—2K~1
Ow Density of the water 1000 kg/m3

Cpuw Heat capacity of the water 4186 J/kgK

s Inlet water temperature 11.8C

Vi Volume of the water 1.16 x 10~*m?

Qo w — p heat transfer coefficient 1196.1 Wm—2K~1
op Density of the wall 7850 kg/m?

Chp Heat capacity of the wall 502 J/kgK

te Temperature of the environment 21.6 C'

A, Inner surface of the wall 4.46 x 1072 m?

v, Volume of the wall 7.37 x 107> m?

A, Outer surface of the wall 5.36 x 1072 m?

Qe p — e heat transfer coefficient 1015.9Wm2K~1

The performance of the cartridge heater is given by:

(E.T1)

Q) = Qu [u— 2]

2

where () is the maximal power, and w is the heating signal (voltage). The partial
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differential equations are approximated by eight compartments of equal volume. As
Eq. E.1 shows, the heating performance is a static nonlinear function of the heating

signal (control input).
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