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Köszönetnyilvánítás

Mindazoknak akik hittek bennem.

"Együtt hajtunk, együtt halunk, rossz fiúk tűzön–vízen át!"
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Kivonat

Számítási intelligencia alapú regressziós technikák és alkal-
mazásaik a folyamatmérnökségben

Az olyan adat alapú regressziós modellek mint a metsző hipersíkok, neurális

hálózatok vagy szupport vektor gépek széles körben elterjedtek a szabályzásban,

optimalizálásban és a folyamat monitorozásban. Mivel ezek a modellek nem értel-

mezhetőek, a folyamatmérnökök gyakran nem a legjobb gyakorlat szerint hasznosítják

ezeket. Abban az esetben, ha betekintést nyerhetnénk ezekbe a fekete doboz mod-

ellekbe, lehetőségünk nyílna a modellek validálására, további információk és össze-

függések feltárására a folyamat változok között, illetve a modell építés fázisát is

tudnánk támogatni a-priori információk beépítésével.

Az értekezés kulcs gondolata, hogy a metsző hipersíkok, neurális hálózatok

és szupport vektor gépek fuzzy modellekké alakíthatóak, és a kapott szabálybázis

alapú rendszerek értelmezése biztosítható speciális modell redukciós és vizualizá-

ciós technikákkal.

Az értekezés első harmada a metsző hipersík alapú regressziós fák identifiká-

ciójával foglakozik. A működési tartomány rekurzívan particionált egy fuzzy c-

regresszió alapú csoportosítási technikával. A kapott kompakt regressziós fa lokális

lineáris modellekből áll. Ez a modellezési struktúra jól használható modell alapú

szabályozásban, például modell prediktív szabályozás során.

A következő fejezet a neurális hálózatok validálásával, vizualizálásával és struk-

turális redukciójával foglalkozik, melyek alapjául a neurális hálózat rejtett rétegének

fuzzy szabálybázissá történő átalakítása szolgál.

Végül a szupport vektor gépek és a fuzzy modellek közti analógia kerül betu-

tatásra egy 3 lépéses redukciós algoritmus segítségével. A cél értelmezehető fuzzy

regressziós modell, melynek alapja a szupport vektor regresszió.

A fejlesztett algoritmusok vegyészmérnöki gyakorlatban történő alkalmazható-

ságát minden fejezetben esettanulmányok igazolják.
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Abstract

Computational intelligence based regression techniques and
their applications in process engineering

Data-driven regression models like hinging hyperplanes, neural networks and

support vector machines are widely applied in control, optimization and process

monitoring. Process engineers are often mistrustful of the application of these mod-

els since they are not interpretable. If we would have some insight to these black

boxes we could have the possibility to validate these models, extract hidden infor-

mation about the relationships among the process variables, and to support model

identification by incorporating some prior knowledge.

The key idea of this thesis is that hinging hyperplanes, neural networks and sup-

port vector machines can be transformed into fuzzy models and the interpretability

of the resulted rule-base systems can be ensured by special model reduction and

visualization techniques.

The first part of the thesis deals with the identification of hinging hyperplane

based regression trees. The operating regime of the model is recursively partitioned

by a novel fuzzy c-regression clustering based technique. The resulted compact

regression tree consists of local linear models, which model structure is favored in

model based control solutions, like in model predictive control.

The next section deals with the validation, visualization and structural reduction

of neural networks based on the transformation of the hidden layer of the network

into an additive fuzzy rule base system.

Finally, based on the analogy of support vector regression and fuzzy models a

three-step model reduction algorithm will be proposed to get interpretable fuzzy

regression models on the basis of support vector regression.

Real life utilization of the developed algorithms is shown by sectionwise exam-

ples taken from the area of process engineering.
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Chapter 1
Introduction

With combination of computation intelligence tools, like hinging hyperplanes (HH),

support vector regression (SVR), artificial neural networks (ANNs) and fuzzy mod-

els powerful and interpretable models can be developed. This introduction presents

the motivation of handling these techniques in one integrated framework and de-

scribes the structure of the thesis.

1.1 Data-driven techniques in process engineering

Information for process modeling and identification can be obtained from different

sources. According to the type of available information, three basic levels of model

synthesis are defined:

White-box or first-principle modeling A complete mechanistic model is const-

ructed from a priori knowledge and physical insight. Here dynamic models

are derived based on mass, energy and momentum balances of the process

[1].

Fuzzy logic modeling A linguistically interpretable rule-based model is formed

based on the available expert knowledge and measured data [1].

Black-box model or empirical model No physical insight is available or used, but

the chosen model structure belongs to families that are known to have good

flexibility and have been "successful in the past". Model parameters are iden-

tified based on measurement data [1].

This means, if we have good mechanistic knowledge about the process, this can

be transformed into white box model described by analytical (differential) equa-
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tions. If we have information like human experience described by linguistic rules

and variables, the mechanistic modeling approach is useless and the application of

rule-based approaches like fuzzy logic is more appropriate [2, 3]. Finally, there

may be situations, where the most valuable information comes from input-output

data collected during operation. In this case, the application of black box models

is the best choice. These black box models are especially valuable, when an accu-

rate model of the process dynamics is needed. Therefore, the nonlinear black box

modeling is a challenging and promising research field [4, 5, 6, 7, 8].

Black-box models are especially valuable when an accurate model of the pro-

cess dynamics is needed. In order to perform a successful data-driven model the

following steps have to be carried out [1]:

1. Selection of model structure and complexity

2. Design of exctitation signals used or identification

3. Identification of model parameters

4. Model validation

Process engineers are often mistrustful of the application of nonlinear black box

models since they are not interpretable. If we would have some insight to these

black boxes we could have the possibility to validate these models, extract hidden

information about the relationships among the process variables, selection of the

model structure based on this knowledge, and to support model identification by

incorporating some prior knowledge.

For these purposes novel model identification methods, interpretable, robust and

transparent models are needed. Since we are interested in extraction of knowledge

from process data, tools and methodologies of data mining should be also efficiently

utilized.

Historically the notion of finding useful patterns in data has been given a variety

of names including data mining, knowledge extraction, information discovery, and

data pattern processing. The term data mining has been mostly used by statisti-

cians, data analysts, and the management information systems (MIS) communities

[9]. Data mining is not just a simple tool, but a complex process consisting of mul-

tiple steps, hence this process must be integrated into the supported activity. The

process of data–based knowledge discovery can be seen on Fig. 1.1. Introducing

the knowledge discovery process allows us to give a brief definition to data mining:

2



Data mining is a decision support process to give valid, useful and a priori not

known reliable information from data sources. [10]

 

Decision 

support 

Queries and statictics

OLAP, different data cubes 

Information mining 

 

 

 

 

 

 Data sources 

Visualization

Data mining 

Data exploration 

Data warehouse/datamart

OLAP, different data cubes 

Figure 1.1: Steps of the knowledge discovery process

To understand this definition the following keywords must be further investi-

gated [1]:

process Data mining is not a product–ready delivered software generating auto-

matically consumable knowledge from stored data, but it is a complex pro-

cess consisting of well–defined steps. Regression techniques takes place dur-

ing model preparation. Improved model identification algorithms and inter-

pretable models ensure quality of acquired information at the end of KDD

process.

valid Mined information must be accurate and statistically significant. Validity

states not only accuracy but also completeness.

useful It is not enough to generate valid knowledge with the help of data mining,

explored knowledge must be utilizable for the exactly defined problem. Un-

fortunately measuring usefulness is not always solved, as sometimes affect of

the used information cannot be measured with monetary tools.

preliminarily not known Strictly speaking, data–based knowledge discovery has

twofold aim: confirmation and discovery. Confirmation means strengthen-

ing hypothesis of the data expert while discovery stands for identification of

patterns generated by the examined system. Aim of data mining basically is

3



to identify discoverable knowledge to define predictive or descriptive func-

tions. Regression–based methods are predictive exercises defining future, not

known properties or behaviors of the modeled process.

exact Result of data mining must be easily interpretable, and the model should not

deviate from from reality.

Key challenge of data mining is to capture potential information from opaque

data sources and transform data to a more compact, abstract, informative and easy-

to-use way. Hence, data mining looks for trends and patterns in large databases.

Knowledge delivered by data mining exists in a form of an interpretable model

or information represented in decision trees, rule bases, networks or mathematical

equations.

The aim of the thesis at hand is to extract interpretable regression models to

foster the usage of these models in process engineering.

1.2 Interpretability and model structure identifica-

tion

 

Interpretability

Maintenance

Complexity

Reliability

1 100

1

100

1

Figure 1.2: Tradeoffs in modeling

Zadeh stated in Principle of Incompatibility [11] "as the complexity of a system

increases our ability to make precise and yet significant statements about its behav-

ior diminishes until a threshold is reached beyond which precision and significance

(or relevance) become almost mutually exclusive characteristics." Obtaining high

degree of interpretability with sizeable complexity is a contradictory purpose and -

in practice - one of these properties prevails over the other. The problem becomes
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much more difficult to handle when model reliability and maintenance is included

to the conditions.

In most studies of process identification it is assumed that there is an opti-

mal functional structure describing relationship between measured input and output

data. It is very difficult to find a functional structure for a nonlinear system. Gen-

erally speaking, the structure identification of a system has to solve two problems:

one is to find input variables and one is to find input-output relations. The selection

the input variables can be based on the aim of the modeling exercise and on prior

knowledge related to the system to be modeled. For static systems statistical tech-

niques, correlation analysis and modeling performance based methods proposed by

Sugeno [12, 13, 14] and Jang [15] can be used. For dynamical systems, the selec-

tion of the relevant model-inputs is identical to the determination of the model order

of the NARX model.

The identified model must be validated as well. If the model is validated by

the same data set from which it was estimated, the accuracy of the model always

improves as the complexity of the model structure increases. In practice, a trade-

off is usually sought between model accuracy and complexity, and there are several

approaches to compensate for this automatic increase of the modeling performance.

Fig. 1.3 shows connection between modeling error and model complexity[1].

As this figure shows, selection of the proper model structure is a complex tasks that

requires careful selection of training and validation datasets, proper cost functions

and proper optimization strategies or heuristics that support the modeler.

 

 

 
Large 

 
Modell complexity 

 
train set 

 
test set 

 
Small 

 
Prediction error 

Figure 1.3: Model complexity versus modeling error
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1.3 Computational intelligence based models

Majority of problems arose in process engineering practice requires data-driven

modeling of nonlinear relationships between experimental and technological vari-

ables. Complexity of nonlinear regression techniques is gradually expanding with

the development of analytical and experimental techniques, hence model structure

and parameter identification is a current and important topic in the field of nonlinear

regression not just by scientific but also from industrial point of view as well.

In line with these expectations and taking interpretability of regression models

as basic requirement aim of this thesis is the development of robust computational

intelligence models in order to solve nonlinear regression identification tasks.

Tools from the armory of computational intelligence (also referred as soft com-

puting) have been in focus of researches recently, since soft computing techniques

are used for fault detection, forecasting of time-series data, inference, hypothesis

testing, and modeling of causal relationships (regression techniques) in process en-

gineering.

The meaning of soft computing was originally tailored in the early 1990s by

Dr. Zadeh [16]. Soft computing refers to a collection of computational techniques

in computer science, artificial intelligence, machine learning and some engineering

disciplines, to solve two cardinal problems:

• Learning from experimental data (examples, samples, measurements, records,

patterns) by neural networks and support vector based techniques

• Embedding existing structured human knowledge(experience, expertise, heuris-

tic) into fuzzy models [17]

These approaches attempt to study, model, and analyze very complex phenom-

ena: those for which more conventional methods have not yielded low cost, analytic,

and complete solutions. Earlier computational approaches (hard computing) could

model and precisely analyze only relatively simple systems.

As more complex systems arising in biology, medicine, the humanities, manage-

ment sciences, and similar fields often remained intractable to conventional math-

ematical and analytical methods. Where hard computing schemes –striving for ex-

actness and full truth–fail to render the given problem, soft computing techniques

deliver robust, efficient and optimal solutions to capture available design knowledge

for further analysis.
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Generally speaking, soft computing techniques resemble biological processes

more closely than traditional techniques, which are largely based on formal logical

systems, such as sentential logic and predicate logic, or rely heavily on computer-

aided numerical analysis. Hence in real life high degree of uncertainty should be

taken in to account during identification process. Soft computing tries to solve this

challenge with exploiting tolerance for imprecision, uncertainty and partial truth in

order to reach robustness and transparency at low cost.

Many systems are not amenable to conventional modeling approaches due to the

lack of precise, formal knowledge about the system, due to strongly nonlinear be-

havior, high degree of uncertainty, or time-varying characteristics. Computational

intelligence, the technical umbrella of hinging hyperplanes (HH) [18, 19, 20], sup-

port vector regression (SVR) [21, 22, 23, 24, 25], artificial neural networks (ANNs)

[26, 27, 28, 29, 30, 31] and fuzzy logic [2, 3, 32] has been recognized as a powerful

tool which is tolerant of imprecision and uncertainty, and can facilitate the effective

development of models by combining information from different sources, such as

first-principle models, heuristics and data.

Table 1.1: Evaluation criteria system
Property Description

Interpolation behavior
Character of the model
output between training data samples

Extrapolation behavior
Character of the model
outside region of training data

Locality
Locality, globality
of the basis functions

Accuracy
Model accuracy
with given number of parameters

Smoothness Smoothness of model output
Sensitivity to noise Affect of noise on model behavior

Parameter optimization
Can linear and nonlinear
model parameters estimated

Structure optimization
Possibilities of model
structure and complexity optimization

Online adaptation Possibilities of on-line model adaptable
Training speed Speed of model parameter estimation
Evaluation speed Speed of model evaluation
Curse of dimensionality Model scale up to higher input space dimensions

Interpretation
Interpretation of model
parameters and model structure

Incorporation of constraints Difficulty of constraint incorporation
Usage Acceptability and penetration of modeling structure
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Among the techniques of computational intelligence, ANNs attempt to mimic

the structures and processes of biological neural systems. They provide powerful

analysis properties such as complex processing of large input/output information

arrays, representing complicated nonlinear associations among data, and the ability

to generalize or form concepts-theory. Support vector regression in it’s nature is

very similar to ANNs and on the other hand HH models can be a good alternative

to NNs.

Based on [1] Table 1.1 summarizes several criterion can be used to evaluate

these modeling techniques. The studied nonlinear regression techniques have usu-

ally robust modeling structure, however the resulted model is often a non–inter-

pretable black–box model. This thesis focuses on the identification, utilization and

interpretability of ANNs, HHs and SVR in the realm of modeling, identification and

control of nonlinear processes.
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1.4 Motivation and outline of the thesis

This thesis has twofold aims to introduce new algorithms for nonlinear regression

(hinging hyperplanes) and to highlight possibilities to transform black–box non-

linear regression models (neural networks and support vector regression) to trans-

parent and interpretable fuzzy rule base (see fig 1.4). These techniques together

form a framework to utilize combination-of-tools-methods in order to understand,

visualize and validate non–linear black box models.

 

Neural Network Models 

Support Vector Regression Hinging hyperplanes 

Fuzzy Logic 

Figure 1.4: Framework of the thesis

Three algorithms were examined based on the evaluation criteria system men-

tioned in section 1.2 in details namely identification of regression trees based hing-

ing hyperplane, neural networks and support vector regression. Application of these

techniques eventuate black box models at first step. It will be shown how inter-

pretability could be maintained during model identification with utilization of ap-

plicable visualization and model structure reduction techniques within the fuzzy

modeling framework.

Chapter 2 Hinging hyperplanes deals with the identification of hinging hyper-

plane based regression trees. Results of the developed algorithm proves that the im-

plementation of a priori constraints enables fuzzy c-regression clustering technique

to identify hinging hyperplane models. Application of this technique recursively on

the partitioned input space ends up in a regression tree capable for modeling and

even for implementation of model predictive control of technological data coming

from real life applications. According to the evaluation system mentioned in section

1.2 the development algorithm contains major developments in hinge model identi-

fication, since the proposed method has higher accuracy, the tree–based represen-

tation enables better structure and parameter optimization and helps interpretation

of model parameters and model structure.
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Main improvements of hinging hyperplane identification is discussed in

T. Kenesei, B. Feil, J. Abonyi, Fuzzy Clustering for the Identification of Hinging

Hyperplanes Based Regression Lecture notes in computer science, Lecture notes in

artificial intelligence; 4578. ISBN:9783540733997 pp. 179-186. 2007

Detailed description of regression tree representation can be found in

T. Kenesei, J. Abonyi, Hinging hyperplane based Regression tree identified by

Fuzzy Clustering WSC16 - 16th Online World Conference on Soft Computing in

Industrial Applications 2011.

Hinging hyperplane model predictive control is published in

T. Kenesei, B. Feil, J. Abonyi, Identification of Dynamic Systems by Hinging Hy-

perplane Models ICAI 2007 - 7th International Conference on Applied Informatics

Eger 2007.

Our efforts within the framework of hinging hyperplane identification and control

is submitted to

T. Kenesei, J. Abonyi, Hinging hyperplane based Regression tree identified by

Fuzzy Clustering and its application Applied Soft Computing Journal vol 13(2)

pp. 782-792 2013.

Chapter 3 Visualization and reduction of neural networks deals with the vali-

dation, visualization and structural reduction of neural networks in order to achieve

better interpretability. With applying orthogonal least squares and similarity mea-

sure based techniques structure optimization is also performed. It is described in

details that the hidden layer of the neural network can be transformed to an additive

fuzzy rule base.

Reduction and visualization methods are described in

T. Kenesei, B. Feil, J. Abonyi, Visualization and Complexity Reduction of Neural

Networks Applications of soft computing: updating the state of art., pp. 43-52.

2009. Advances in soft computing ISBN:9783540880783 vol. 52.

Chapter 4 Interpretable Support vector regression describes connections be-

tween fuzzy regression and support vector regression, and introduces a three-step

reduction algorithm to get interpretable fuzzy regression models on the basis of sup-

port vector regression. This combination–of–tools technique retains good general-
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ization behavior and noise insensitiveness of the support vector regression however

keeps the identified model interpretable and with the application of reduction tech-

niques structure optimization is also achieved.

Three-step reduction algorithm and visualization methods can be found in

T. Kenesei, A. Roubos, J. Abonyi, A Combination-of-Tools Method for Learning

Interpretable Fuzzy Rule-Based Classifiers from Support Vector Machines Lecture

Notes in Computer Science; 4881. ISBN:978-3-540-77225-5 pp. 477-486. 2008

Application of support vector regression models is described in the following pub-

lications

T. Kenesei, J. Abonyi, Interpretable Support Vector Machines in Regression and

Classification- Application in Process Engineering, Hungarian Journal of Indus-

trial Chemistry, VOL 35. pp. 101-108 2007.

T. Kenesei, J. Abonyi, Interpretable Support Vector Regression, Artificial Intelli-

gence Research, Vol 1 (2), ISSN:1927-6974 ,2012

Real life utilization of the developed algorithms is shown by section–wise exam-

ples taken from the area of chemical engineering. Finally, Chapter 5 summarizes

the new scientific results in English and in Hungarian.

The proposed framework supports the structure and parameter identification of

regression models. To achieve this goal structure optimization techniques like or-

thogonal least squares (OLS) and decision tree based model representations are

applied. The detailed description of the regression problem are given in Appendix

A while OLS is described in details in Appendix C.

As can be seen, this thesis is based on a number of papers we published recently.

I have attempted to eliminate redundancy of these papers. To promote easier reading

consistent nomenclature list can be found in the Notations section. Source codes of

the utilized softwares written in Matlab can be found on the www.abonyilab.com

website.
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Chapter 2
Hinging Hyperplanes

Hinging hyperplane model is proposed by Breiman [20] and identification of this

type of non-linear model is several times reported in the literature due to suffer-

ing from convergency and range problems [33, 34, 35, 19]. Methods like penalty

of hinging angle were proposed to improve Breiman’s algorithm [18], or Gauss–

Newton algorithm can be used to obtain the final non–linear model [34]. Several

application examples have been also published in the literature, e.g. it can be used

in identification of piecewise affine systems via mixed-integer programming [36]

and this model also lends himself to form hierarchical models [19].

In this chapter a much more applicable algorithm is proposed for hinging hyper-

plane identification. The key idea is that in a special case (c = 2) fuzzy c-regression

method (FCRM) [37] can be used for identifying hinging hyperplane models. To

ensure that two local linear models used by fuzzy c-regression algorithm form a

hinging hyperplane function, it has to be granted that local models are intersecting

each other in the operating regime of the model. The proposed constrained FCRM

algorithm is able to identify one hinging hyperplane model, therefore to generate

more complex regression trees, described method should be recursively applied.

Hinging hyperplane models containing two linear submodels divide operating re-

gion of the model into two parts, since hinging hyperplane functions define a linear

separating function in the input space of the hinging hyperplane function. Sequence

of these separations result a regression tree where branches correspond to linear di-

vision of operating regime based on the hinge of the hyperplanes at a given node.

This type of partitioning can be considered as crisp version of a fuzzy regression

based tree described in [38]. Fortunately, in case of hinging hyperplane based re-

gression tree there is no need for selecting best splitting variable at a given node,

but on the other hand it is not as interpretable as regression trees utilizing univariate
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decisions at nodes.

The proposed modeling framework is based on the algorithm presented at the 16th

Online Conference on Soft Computing in Industrial Applications [39]. To support

the analysis and building of this special model structure novel model performance

and complexity measures are presented in this work. Special attention is given for

the modeling and controlling nonlinear dynamical systems. Therefore, application

example related to Box–Jenkins gas furnace benchmark identification problem is

added. It will be also shown that thanks to the piecewise linear model structure the

resulted regression tree can be easily utilized in model predictive control. A detailed

application example related to the model predictive control of a water heater will

demonstrate the benefits of the proposed framework.

A critical step in the application of model-based control is the development of a

suitable model for the process dynamics. This difficulty stems from lack of knowl-

edge or understanding of the process to be controlled. Fuzzy modeling has been

proven to be effective for the approximation of uncertain nonlinear processes. Re-

cently, nonlinear black-box techniques using fuzzy and neuro-fuzzy modeling have

received a great deal of attention [40]. Readers interested in industrial applications

can find an excellent overview in [41]. Details of model-based control relevant ap-

plications are well presented in [42] and [43].

Most nonlinear identification methods are based on the NARX (Nonlinear AutoRe-

gressive with eXogenous input) model [8]. The use of NARX black box models

for high-order dynamic processes in same cases are impractical. Data–driven iden-

tification techniques alone, may yield unrealistic NARX models in terms of steady-

state characteristics, local behavior and unreliable parameter values. Moreover, the

identified model can exhibit regimes which are not found in the original system

[43]. This is typically due to insufficient information content of the identification

data and the over-parametrization of the model. This problem can be remedied by

incorporating prior knowledge into the identification method by constraining the

parameters of the model [44]. Another possibility to reduce the effects of over-

parametrization is to restrict the structure of the NARX model, using for instance

the Nonlinear Additive AutoRegressive with eXogenous input (NAARX) model

[45]. In this thesis a different approach is proposed, a hierarchial set of local linear

models are identified to handle complex systems dynamics.

Operating regime based modeling is a widely applied technique for identification of

these nonlinear systems. There are two approaches for building operating regime

based models. An additive model uses sum of certain basis functions to represent a
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non-linear system, while partitioning approach partitions the input space recursively

to increase modeling accuracy locally [18]. Models generated by this approach are

often represented by trees [46]. Piecewise linear systems [47] can be easily repre-

sented in a regression tree structure [48]. Special type of regression tree is called

locally linear model tree, which algorithm combines a heuristic strategy for input

space decomposition with a local linear least squares optimization (like LOLIMOT

[1]). These models are hierarchical models consisting of nodes and branches. Inter-

nal nodes represent tests on input variables of the model, and branches correspond

to outcomes of said tests. Leaf (terminal) nodes contains regression models in case

of regression trees.

Thanks to the structured representation of the local linear models, hinging hyper-

planes lend themselves to a straightforward incorporation in model based control

schemes. In this chapter this beneficial property is demonstrated in the design of

instantaneous linearization based model predictive control algorithm [32].

This chapter organized as follows: next section discusses how hinging hyperplane

functions’ approximation is done with FCRM identification approach. The descrip-

tion of tree growing algorithm and the measures proposed to support model building

are given in Section 2.2. In Section 4.3, application examples are presented while

Section 4.4 concludes the chapter.

2.1 Identification of hinging hyperplanes

2.1.1 Hinging hyperplanes

The following section gives a brief description about the hinging hyperplane ap-

proach on the basis of [34, 18, 49], followed by how the constrains can be incor-

porated into FCRM clustering.

For a sufficiently smooth function f(xk), which can be linear or non-linear, assum-

ing that regression data {xk, yk} is available for k = 1, . . . , N . Function f(xk) can

be represented as the sum of a series of hinging hyperplane functions hi(xk), i =

1, 2, . . . , K are defined as the hinging hyperplane function. Breiman[20] proved

that we can use hinging hyperplane to approximate continuous functions on com-

pact sets, guaranteeing a bounded approximation error

∥en∥ = ∥f −
K∑
i=1

hi(x)∥ ≤ (2R)4 c2/K (2.1)
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Figure 2.1: Basic hinging hyperplane definitions

where K is the number of hinging hyperplane functions R is the radius of the sphere

in which the compact set is contained and c is such that∫
∥w∥2|f (w) |dw = c < ∞ (2.2)

The approximation with hinging hyperplane functions can get arbitrarily close if

sufficiently large number of hinging hyperplane functions are used. The sum of the

hinging hyperplane functions
∑K

i=1 hi(xk) constitutes a continuous piecewise linear

function. The number of input variables n in each hinging hyperplane function and

the number in hinging hyperlane functions K are two variables to be determined.

The explicit form for representing a function f(xk) with hinging hyperplane func-

tions becomes (see Fig. 2.1)

f(xk) =
K∑
i=1

hi(xk) =
K∑
i=1

⟨max |min⟩
(
xT
k θ1,i,x

T
k θ2,i

)
(2.3)

where ⟨max |min⟩ means max or min.

Suppose two hyperplanes are given by:

yk = xT
k θ1, yk = xT

k θ2 (2.4)

where xk = [xk,0, xk,1, xk,2, . . . , xk,n], xk,0 ≡ 1 is the kth regressor vector and yk
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is the kth output variable. These two hyperplanes are continuously joined together

at {x : xT (θ1 − θ2) = 0} as can be seen in Fig. 2.1. As a result they are called

hinging hyperplanes. The joint △ = θ1 − θ2, multiples of △ are defined hinge for

the two hyperplanes, yk = xT
k θ1 and yk = xT

k θ2. The solid/shaded part of the two

hyperplanes explicitly given by

yk = max(xT
k θ1,x

T
k θ2) or yk = min(xT

k θ1,x
T
k θ2) (2.5)

Hinging hyperplane method has some interesting advantages for non-linear function

approximation and identification:

1. Hinging hyperplanes functions could be located by a simple computation-

ally efficient method. In fact hinging hyperplane models are piecewise linear

models, the linear models are usually obtained by repeated use of linear least-

squares method, which is very efficient. The aim is to improve the whole

identification method with more sophisticated ideas.

2. For non–linear functions with resemble hinging hyperplane functions, the

hinging hyperplane method has very good and fast convergence properties.

Hinging hyperplane method practically combines some advantages of neural

networks (in particular ability to handle very large dimensional inputs) and of con-

structive wavelet based estimators (availability of very fast training algorithms).

Essential hinging hyperplane search problem can be viewed as an extension

of linear least-squares regression problem. Linear least-squares regression aims

to find the best parameter vector θ̂, by minimizing a quadratic cost function with

which regression model gives the best linear approximation to y. For nonsingular

data matrix X linear least squares estimate y = xT θ is always uniquely available.

The hinging hyperplane search problem, on the other hand, aims to find the two

parameter vectors θ1 and θ2, defined by

[θ1, θ2] = argmin
θ1,θ2

N∑
k=1

[
⟨max |min⟩

(
yk − xT

k θ1, yk − xT
k θ2
)]2

(2.6)

A brute force application of Gauss-Newton method can solve the above de-

scribed optimization problem. However, two problems exist [18]:

1. High computational requirement. The Gauss–Newton method is computa-

tionally intensive. In addition, since the cost function is not continuously
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differentiable, the gradients required by Gauss-Newton method can not be

given analytically. Numerical evaluation is thus needed which has high com-

putational demand.

2. Local minima. There is no guarantee that the global minimum can be ob-

tained. Therefore appropriate initial condition is crucial.

2.1.2 Improvements in hinging hyperplane identification

The proposed identification algorithm applies a much simpler optimization method,

the so–called alternating optimization which is a heuristic optimization technique

and has been applied for several decades for many purposes, therefore it is an ex-

haustively tested method in non–linear parameter and structure identification as

well. Within the hinging hyperplane function approximation approach, the two

linear submodels can be identified by the weighted linear least-squares approach,

but their operating regimes (where they are valid) are still an open question.

For that purpose fuzzy c-regression model (further referred as FRCM and proposed

by Hathaway and Bezdek [37]) was used. This technique is able to partition the

data and determine the parameters of the linear submodels simultaneously. With

the application of alternating optimization technique and taking advantage of the

linearity in (yk − xT
k θ1) and (yk − xT

k θ2), an effective approach is given for hinging

hyperplane function identification, hence FCRM method in a special case (c = 2)

is able to identify hinging hyperplanes. The proposed procedure is attractive in lo-

cal minima point of view as well, because in this way although the problem is not

avoided but transformed into a deeply discussed problem, namely the cluster valid-

ity problem.

The following quadratic cost function can be applied for the FCRM method

Em(U, {θi}) =
c∑

i=1

N∑
k=1

(µi,k)
mEi,k(θi) (2.7)

where m ∈ ⟨1,∞) denotes a weighting exponent which determines the fuzziness of

the resulting clusters, while θi represents the parameters of local models and µi,k ∈
U is the membership degree, which could be interpreted as a weight representing

the extent to which the value predicted by the model fi(xk, θi) matches yk. The
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prediction error is defined by:

Ei,k =
(
yk − fi(xk; θi)

)2 (2.8)

but other measures can be applied as well, provided they fulfill the minimizer prop-

erty stated by Hathaway and Bezdek [37].

One possible approach to the minimization of the objective function (2.7) is the

group coordinate minimization method that results in the following algorithm:

• Initialization Given a set of data {(x1, y1), . . . , (xN , yN)} spec-

ify c, the structure of the regression models (2.8) and the error

measure (2.7). Choose a weighting exponent m > 1 and a termi-

nation tolerance ϵ > 0. Initialize the partition matrix randomly.

• Repeat For l = 1, 2, . . .

Step 1 Calculate values for the model parameters θi that minimize the

cost function Em(U, {θi}).

Step 2 Update the partition matrix

µ
(l)
i,k =

1∑c
j=1(Ei,k/Ej,k)2/(m−1)

, 1 ≤ i ≤ c, 1 ≤ k ≤ N (2.9)

until ||U(l) −U(l−1)|| < ϵ.

A specific situation arises when the regression functions fi are linear in the param-

eters θi, fi(xk; θi) = xT
i,kθi, where xi,k is a known arbitrary function of xk. In this

case, the parameters can be obtained as a solution of a set of weighted least-squares

problem where the membership degrees of the fuzzy partition matrix U serve as the

weights.

The N data pairs and the membership degrees are arranged in the following

matrices.

X =


xT
i,1

xT
i,2
...

xT
i,N

 , y =


y1

y2
...

yN

 , Φi =


µi,1 0 · · · 0

0 µi,2 · · · 0
...

... . . . ...

0 0 · · · µi,N

 (2.10)
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The optimal parameters θi are then computed by:

θi = [XTΦiX]−1XTΦiy (2.11)

Applying c = 2 during FCRM identification these models can be used as base

identifiers for hinging hyperplane functions. For hinging hyperplane function iden-
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Figure 2.2: Hinging hyperplane identification restrictions

tification purposes, two prototypes have to be used by FCRM (c = 2), and these

prototypes must be linear regression models. However, these linear submodels have

to intersect each other within the operating regime covered by the known data points

(within the hypercube expanded by the data). This is a crucial problem in the hing-

ing hyperplane identification area [18]. To take into account this point of view

as well, constrains have to be taken into consideration as follows. Cluster centers

vi can also be computed from the result of FCRM as the weighted average of the

known input data points

vi =

∑N
k=1 xkµi,k∑N
k=1 µi,k

(2.12)

where the membership degree µi,k is interpreted as a weight representing the extent

to which the value predicted by the model matches yk. These cluster centers are

located in the ’middle’ of the operating regime of the two linear submodels. Because

the two hyperplanes must cross each other following criteria can be specified (see
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Fig. 2.9):

v1(θ1 − θ2) < 0 and v2(θ1 − θ2) > 0 or (2.13)

v1(θ1 − θ2) > 0 and v2(θ1 − θ2) < 0

These relative constrains can be used to take into account the constrains above:

Λrel,1,2

[
θ1

θ2

]
≤ 0 where Λrel,1,2 =

[
v1 −v1

−v2 v2

]
(2.14)

When linear equality and inequality constraints are defined on these prototypes,

quadratic programming (QP) has to be used instead of the least-squares method.

This optimization problem still can be solved effectively compared to other con-

strained nonlinear optimization algorithms.

Local linear constraints applied to fuzzy models can be grouped into the follow-

ing categories according to their validity region:

• Local constrains are valid only for the parameters of a regression model,

Λiθi ≤ ωi.

• Global constrains are related to all of the regression models, Λglθi ≤ ωgl, i =

1, . . . , c.

• Relative constrains define the relative magnitude of the parameters of two or

more regression models.

Λrel,i,j

[
θi

θj

]
≤ ωrel,i,j (2.15)

An example for these types of constrains are illustrated in Fig.2.3.

In order to handle relative constraints, the set of weighted optimization problems

has to be solved simultaneously. Hence, the constrained optimization problem is

formulated as follows:

min
θ

{
1

2
θTHθ + cT θ

}
(2.16)
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  θ i,2

Global constraints

Local constraints

[θ4,1 ,θ4,2
 ]

  θ i,1

[θ1,1 ,θ1,2
 ]

[θ2,1 ,θ2,2
 ]

[θ3,1 ,θ3,2
 ]

θ1,2 < θ4,2

Relative
constraints

Figure 2.3: Hinging hyperplane model with 4 local constraints and two parameters

with H = 2X′TΦX′, c = −2X′TΦy′, where

y′ =


y

y
...

y

 , θ =


θ1

θ2
...

θc

 , (2.17)

X′ =


X1 0 · · · 0

0 X2 · · · 0
...

... . . . ...

0 0 · · · Xc

 , Φ =


Φ1 0 · · · 0

0 Φ2 · · · 0
...

... . . . ...

0 0 · · · Φc

 (2.18)

where Φi contains local membership values and the constraints on θ:

Λθ ≤ ω (2.19)
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with

Λ =



Λ1 0 · · · 0

0 Λ2 · · · 0
...

... . . . ...

0 0 · · · Λc

Λgl 0 · · · 0

0 Λgl · · · 0
...

... . . . ...

0 0 · · · Λgl

{Λrel}



, ω =



ω1

ω2

...

ωc

ωgl

ωgl

...

ωgl

{ωrel}



. (2.20)

Referring back to Fig.2.1 it can be concluded with this method both part of the

intersected hyperplanes are described and that part (⟨max|min⟩) is selected which

describes the the training data in the most accurate way.

2.2 Hinging hyperplane based binary trees

So far, the hinging hyperplane function identification method is presented. The pro-

posed technique can be used to determine the parameters of one hinging hyperplane

function. The classical hinging hyperplane approach can be interpreted by identi-

fying K hinging hyperplane models consisting of global model pairs, since these

operating regimes cover the whole N dataset. This representation leads to several

problems not just during model identification but also renders model interpretabil-

ity more difficult. To overcome this problem a tree structure is proposed where the

data is recursively partitioned into subsets, while each subset used to form models

of lower levels of the tree. The concept is illustrated in Fig. 2.4, where the mem-

bership functions and the identified hinging hyperplane models are also shown.

During the identification the following phenomena can be taken into consideration

(that can be considered as benefits too):

• By using hinging hyperplane function there is no need to find splitting vari-

ables at the nonterminal nodes, since this procedure is based on the hinge.

• Populated tree is always a binary tree either balanced, or non–balanced, de-

pending on the algorithm (greedy or non–greedy). Based on binary tree, and

the hinge splitting the x data pertains to left side of the hinge θ1 always goes

to the left child, and the right side behaves the same accordingly. For ex-

ample given a simple symmetrical binary tree structure model, the first level
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Figure 2.4: Hinging hyperplane based regression tree for basic data sample in case
of greedy algorithm

contains one hinging hyperplane function, the second level contains 2 hinging

hyperplane functions, the third level contains 4 hinges, and in general the kth

level contains 2(k−1) hinging hyperplane functions.

Concluding the above and obtaining the parameters θ during recursive identifi-

cation the following cost function has to be minimized:

E({θi}, π) =
K∑
i=1

πiEmi
(θi) (2.21)

where K is the number of the hinge functions (nodes), and π is the binary (πi ∈ 0, 1)

terminal set, indicating that the given node is a final linear model (πi = 1), and can

be incorporated as a terminal node of the identified piecewise model.

Growing algorithm can be either balanced or greedy. In balanced case the identifica-

tion algorithm builds the tree till the desired stopping criteria, while the greedy one

will continue the tree building with choosing a node for splitting which performs

worst during the building procedure. Hence, this operating regime needs further

local models for better model performance. For a greedy algorithm the crucial item

is the selection of the good stopping criteria. Any of the followings can be used to

determine whether to continue the tree growing process or stop the procedure:

1. The loss function becomes zero. This corresponds to the situation where the

size of the data set is less or equal to the dimension of the hinge. Since the
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hinging hyperplanes are located by linear least–squares. From least–squares

theory, when the number of data is equal to the number of parameters to be

determined, the result would be exact, given the matrix is not singular.

2. E = E1 +E2, where Ei =
∑N

k=1 µi,k

(
yk − fi(xk; θi)

)2 represents the perfor-

mances of the left and right hand side models of the hinge. During the growth

of the binary tree, the loss function is always non-increasing, so E should be

always smaller than the performance of the parent node. When no decrease

is observed in loss function, when the tree growing should be stopped.

3. The tree building process reaches the pre-defined tree depth.

4. All of the identified terminal nodes performance meets an accuracy level (ε -

error rate ). In this case it is not necessary to specify the depth of the tree, but

it can cause overfitting of the model.

The algorithm results are represented in Fig. 2.4 where L = 3, K = 5, and π =

[0, 0, 1, 1, 1]. On Fig. 2.5 a 3–dimensional example is shown. The function

y =
sin
(√

x2
1 + x2

2 + ϵ
)

√
x2
1 + x2

2 + ϵ
(2.22)

has been approximated by hinging hyperplane based tree. On Fig. 2.5 it is shown

how the approximation becomes much more smoother with applying 1,2, and 4 level

and greedy building method. Not just the generation of the binary tree structured

model is important, but to construct a greedy algorithm and to measure the identified

model, node performance must be determined during the identification procedure,

which can be defined in different ways:

• Modeling performance of the nodes

The well–known regression performance estimators can be used for node

performance measurement, in this work root mean squared prediction error

(RMSE) was used.

RMSE =

√√√√ 1

N

N∑
k=1

(yk − ŷk)2 (2.23)

• Condition of the nodes
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Figure 2.5: Modeling a 3D function with hinging hyperplane hyperplane based tree

It is described that with two prototype clusters (c = 2) and a-priori knowl-

edge (constraints) FCRM method is able to identify hinging hyperplanes,

hence µi,k membership degree has information at a node about how many

data points are going to the slitted prototypes. Comparing this data with the

information about the hinge -based node splitting rule (how many datasam-

ples are described by the θ1, θ2 parameter vectors) we can assign a certain

condition (ϱ) to a node:

ϱn = 1− ∥m1 −
∑Nn

k=1 µ1,k∥∑2
i=1

∑Nn

k=1 µi,k

(2.24)

where m1 is the cardinality based on θ+, while Nn represents the number of

samples at node πi.

We can consider ϱ as a measurement of the FCRM hinging hyperplane identifi-

cation perfection. The closer ϱ is to 1 the better the identification. The hinge does

not ”override” the µi,k membership degrees. This measure is very similar to the

one, that was introduced in [50] and was used for identifying parameter similarity.

In Figs. 2.6 and 2.7 RMSE and ϱ results of identifying Eq. 2.22 node-by-node(axis

x) with the depth of 4 levels can be seen. On Fig. 2.6 non-greedy case can be ex-

amined while Fig. 2.7 shows performance of the greedy algorithm. It is visible that

for tree building purposes cardinality based splitting is a very good approach.
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Figure 2.6: Node by node ϱ and RMSE results for non–greedy tree building
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Figure 2.7: Node by node ϱ and RMSE results for greedy tree building

2.3 Application examples

Accuracy and transparency of the proposed algorithm are shown based on multiple

datasets, two real life and two synthetic ones followed by examples in the area of

dynamic system identification.

2.3.1 Benchmark data

All datasets have been used before, most of them are originated from well-known

data repositories. Performance of the models is measured by the root mean squared

prediction error (RMSE - see Eq. 2.23)
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Table 2.1: Comparison of RMSE results of different algorithms. (Numbers in brack-
ets are the number of models)

Data Sample HH CART FMID FRT

Fried
Train 0.87 0.84 2.41(4) 0.69
Test 0.92(8) 2.12(495.6) 2.41(12) 0.7 (15)

3Dsin
Train .17 0.09 0.50(4) 0.18
Test 0.18(11) 0.17(323.1) 0.31(12) 0.18(12)

Abalone
Train 2.62 1.19 2.20(4) 2.18
Test 2,88 (8) 2.87(664.8) 2.19(12) 2.19(4)

Kinman
Train 0.15 0.09 0.20 (4) 0.15
Test 0.16 (6) 0.23(453.9) 0.20(12) 0.15(20)

Real life datasets:

• Abalone Dataset from UCI machine learning repository1 used to predict the

age of abalone from physical measurements. Contains 4177 cases with 8

attributes (1 nominal and 7 continuous).

• Kin8nm Data containing information on the forward kinematics of an 8 link

robot arm from the DVELVE repository. Contains 8192 cases with 8 contin-

uous attributes.

Synthetic datasets:

• Fried Artificial dataset used by Friedman [51] containing 10 continuous at-

tributes with independent values uniformly distributed in the interval [0,1].

The value of the output variable is obtained with the equation:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + σ(0, 1) (2.25)

• 3DSin Artificial dataset containing 2 continuous predictor attributes uniformly

distributed in interval [−3, 3], with the output defined as

y = 3 sin(x1) sin(x2) (2.26)

3000 data points were generated using these equations.

For the robust testing of the performance of the model building algorithm, 10

fold cross validation method is utilized with data normalized to zero mean and unit
1FTP address: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/
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variance. Table 2.1 shows the performance on these datasets, compared to the re-

sults of other algorithms, can be found in [38]. Moreover Table 2.2 contains the

min, mean, max error rates of the 10 fold cross validation results for the hinging

hyperplane algorithm with the calculated standard deviation values as well. The

comparative algorithms are fuzzy based (FRT–Fuzzy Regression Tree, FMID–Fuzzy

Model Identification) and classical regression tree based also (CART–Classification

and Regression Tree). It can be concluded that the performance of the introduced

algorithm is in line with the other methods, also with moderate number of terminal

nodes in the identified model tree. Results are consistent, even the worst perfor-

mance of the 10–fold cross validation is in line.

Table 2.2: 10–fold cross validation report for hinging hyperplanes based tree
Data Sample MIN MEAN MAX Standard dev.

Fried
Train 0.5822 0.8677 1.2107 0.227
Test 0.6226 0.9208 1.2673 0.2337

3Dsin
Train 0.0906 0.1741 0.3162 0,0714
Test 0.0838 0.178 0.342 0.0801

Abalone
Train 2.3496 2.6241 2.9256 0.1532
Test 2.3242 2.8803 3.451 0.3445

Kinman
Train 0.1433 0.1515 0.1595 0.0054
Test 0.1464 0.1579 0.1729 0.0092

2.3.2 Dynamic systems

The following subsection shows results on the identification first order non–linear

dynamic system and describes performance of the proposed technique in model

predictive control.

Identification of the Box-Jenkins gas furnace

The well–known Box–Jenkins furnace data benchmark is used to illustrate the pro-

posed modeling approach and to compare its effectiveness with other methods. The

data set consists of 296 pairs of input-output observations taken from a laboratory

furnace with a sampling time of 9 seconds. The process input is the methane flow

rate and the output is the percentage of CO2 in the off gas. A number of researchers

concluded that a proper structure of a dynamic model for this system is

y(k + 1) = f(y(k), u(k − 3)) (2.27)
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Figure 2.8: Identification of the Box–Jenkins gas furnace model with hinging hy-
perplanes

The approximation power of the model can be seen in Fig. 2.8 and table 2.3.

Comparing results with other techniques referred in [52] it can be concluded that

modeling performance is in line with other techniques with moderate number of

identified hinging hyperplanes.

Table 2.3: RMSE results of the generated models
Method Training Testing Free Run HH ♯

Proposed technique 0.0266 0.0311 0.0374 4
Sjoberg model 0.0336 0.0342 0.0351 4

So far, a general nonlinear modeling technique was presented and a new iden-

tification approach was given for hinging hyperplane based nonlinear models: ŷ =

f (x(k), θ) where f (.) represents the hinging hyperplane based tree structured model

and x(k) represents the input vector of the model. To identify a discrete-time input-

output model for a dynamical system, the dynamic model structure has to be chosen

or determined beforehand. A possible often applied structure is nonlinear autore-

gressive model with exogenous input (NARX) where the input vector of the model

x(k) contains the delayed inputs and outputs of the system to be modeled [32]. In

several practical cases a simpler and more specific model structure can be used to

approximate the behavior of the system, which fits better the structure of the system.

Therefore, it can be an advantage for the identification approach (models with sim-

pler structure can be identified easier), and this model can be more accurate. One
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such special case of the NARX model is the Hammerstein model, where the same

static nonlinearity f is defined for all of the delayed control inputs (for the sake of

simplicity, SISO models are considered):

ŷ =
na∑
i=1

aiy(k − i) +

nb∑
j=1

bjf(u(k − j)) (2.28)

where y() and u() are the output and input of the system, respectively, and na

and nb are the output and input orders of the model. The parameters of the blocks of

the Hammerstein model (static nonlinearity and linear dynamics) can be identified

by the proposed method simultaneously if the same linear dynamic behavior can

be guaranteed by all of the local hinging hyperplane based models. It can be done

in an elegant way utilizing the flexibility of the proposed identification approach:

global constrains can be formulated for the ai and bj parameters of the local models

(for a detailed discussion what constrains have to be formulated, see [32]). In the

following, the hinging hyperplane modeling technique is applied on a Hammerstein

type system. It will be shown why it is an effective tool for the above–mentioned

prupose.

Model predictive control

Figure 2.9: The water heater

Modeling of a simulated water heater (Fig. 2.9) is used to illustrate the advan-

tages of the proposed hinging hyperplanes based models. The water flows through

a pair of metal pipes containing a cartridge heater. The outlet temperature, Tout, of
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the water can be varied by adjusting the heating signal, u, of the cartridge heater

(see [32] or Appendix E for details). The performance of the cartridge heater is

given by:

Q(u) = QM

[
u− sin(2πu)

2π

]
(2.29)

where QM is the maximal power and u is the heating signal (voltage). As the

equation above shows the heating performance is a static nonlinear function of the

heating signal. Hence, the Hammerstein model is a good match to this process. The

aim is to construct a dynamic prediction model from data for the output temperature

(the dependent variable, y = Tout) as a function of the control input: the heating

signal. The parameters of the Hammerstein model were chosen as na = nb = 2.

The performance of this modeling technique will be compared to linear and feed-

forward neural network models. The modeling performances can be seen in Table

2.4. Modeling errors were also calculated based on RMSE (see Eq. (2.23)). In this

example a hinging hyperplane function based tree with 4 leaves were generated.

For robust testing of the model building algorithm performance, 10–fold cross vali-

dation method is used. For comparison, a feedforward neural net and linear model

was also trained and tested using the same data. The neural net contains one hidden

layer with 4 neurons using tanh basis functions. As can be seen from the results,

the training and test error are comparable with the errors of the proposed method.

A very rigorous test of NARX models is free run simulation because the errors can
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Figure 2.10: Free run simulation of the water heater (proposed hinging hyperplane
model, neural network, linear model)

be cumulated. It can be also seen in Fig. 2.10 that the identified models (the pro-
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posed ones, linear models and the neural nets) perform very good also in free run

simulation (the system output and the simulated ones can hardly be distinguished).

Although the neural net seems to be more robust in this example, the proposed

hinging hyperplane model is much more interpretable than the neural net [1]. This

confirms that both the proposed clustering based constrained optimization strategy

and the hierarchial model structure has advantages over the classical gradient-based

optimization of global hinging hyperplane models.

Table 2.4: RMSE results of the generated models
Method Training Testing Free Run
Linear model 0.0393 0.0449 0.387
Neural network 0.0338 0.0403 0.356
Proposed method 0.0367 0.0417 0.359
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Figure 2.11: Structure of the MPC controller

In the following this model will be applied for model predictive control. Details

of model-based control of fuzzy and operating regime models can be found in [42]

and [43]. Among the wide range of possible solutions a model predictive controller

(MPC) was designed. Fig. 2.11 shows the structure of an MPC controller.

Real time control needs low computational complexity. Hence a time varying

linear MPC is designed based on time varying parameters of a linear model ex-

tracted in every time instant from the regression tree. This scheme is widely studied

and similarities to the nonlinear optimization based control solutions including con-

vergence were also shown. In [32] it was shown that there are two options to obtain
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a linear model from a nonlinear operating regime based (fuzzy) model. The Taylor-

expansion based linearization assumes the global interpretation of the model, while

the linear parameter varying (LPV) linear model extraction approach considers the

model as an interpolating system between local linear time-invariant (LTI) models

were the dynamic effect of the interpolation is negligible. Fortunately, thanks to

hinging hyperplane models and tree structured representation the proposed model

perfectly supports this interpretation, hinging hyperplanes define local linear models

and their operating regimes. Since these local models do not overlap, the negative

effect of the interpolating functions do not have to taken into account.

The classical model predictive controller computes an optimal control sequence

by minimizing the following cost quadratic cost function:

J (Hp, Hc, λ) =

Hp∑
j=1

(w (k + j)− ŷ (k + j))2 + λ

Hc∑
j=1

∆u2 (k + j − 1) (2.30)

where, ŷ (k + j) denotes the predicted process output, Hp is the maximum costing

or prediction horizon, Hc is the control horizon, and λ is a weighting coefficient.

According to the receding horizon principle only the first element of the optimized

control sequence is applied u(k), and this optimization is performed in every time

instant. This scheme allows real time control, feedback of model errors, handles

unmeasured disturbances, and supports the previously mentioned iterative liberal-

ization scheme. Details about the convergence and possible extensions of this con-

trol scheme can be found in [33]. The key equation of MPC is the prediction of the

model:

ŷ = S∆ū+ p (2.31)

where the model prediction equation is given in its vector–based form as ∆ū =

[∆u(k), . . . ,∆u(k +Hc)] , and p = [p1, p2, . . . , pHp] and ŷ = [ŷ(k+1), . . . , ŷ(k+

Hp)] and the S containing the parameters of a step-response model is an (Hp)×Hc

matrix with zero entries si,j for j − i > 1:

S =


s1 0 0 0

s2 s1 0 0
... . . .

sHp sHp−1 · · · sHp−Hc

 . (2.32)

When constraints are considered, the minimum of the cost function can be found
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by quadratic optimization with linear constraints:

minū

{
(S∆ū+ p− w)T (S∆ū+ p− w) + λ∆ūT∆ū

}
(2.33)

minū

{
1
2
∆ūTH∆ū+ d∆ū

}
with H = 2

(
STS+ λI

)
, d = −2

(
ST (w − p)

)
, where I is an (Hc × Hc) unity

matrix.

The constraints defined on u and ∆u can be formulated with the following in-

equality: 
I∆ū

−I∆ū

IHc

−IHc

∆ū ≤


umax − Iūu(k − 1)

−umin + Iūu(k − 1)

∆umax

−∆umin

 (2.34)

where IHc and Iū is an Hc × Hc unity matrix, I∆ū is an Hc × Hc lower triangular

matrix with all elements equal to one, and ∆umin,∆umax,umin,umax are Hc-vectors,

with the constraints ∆umin, ∆umax, umin, umax respectively.

To handle modeling error the MPC is applied in the well–known internal model

control (IMC) scheme where the setpoint of the controller is shifted by the filtered

modeling error. For this purpose a first-order linear filter is used:

emf (k) = αem(k) + (1− α) emf (k − 1) , (2.35)

where 0 ≤ α < 1 is determined such that a compromise between performance and

robustness is achieved. Effective suppressing of the steady-state modeling error can

be achieved by a proper tuning of this filter. The best parameters are found for the

controller: Hp = 9, Hc = 2, λ = 20 and α = 0.95. Simulation results for Hinging

hyperplane based model, the affine neural network model and the linear model are

shown in figures 2.12, 2.13, 2.14.

At the operation region edges, the MPC based on the linear model resulted unde-

sirable overshoots and undershoots. This is a direct consequence of a bad estimation

of the nonlinear gain of the system in these regions. This over-estimation of the sys-

tem gain by the linear model is also seen in the sluggish control action. In contrast,

the MPC based on the nonlinear models shows a superior performance over the

whole operating region. Among these, the MPC based on the hinging hyperplane

model results in the smallest overshoot with the fastest change in the control signal.

Notice also that the oscillatory behavior of the neural network model based MPC
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Figure 2.12: Performance of the MPC based on linear model
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Figure 2.13: Performance of the MPC based on Neural Network model
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Figure 2.14: Performance of the MPC based on hinging hyperplane

is due to the bad prediction of the steady-state gain of the system around the middle

region. However, as can be seen from Table 2.5, both nonlinear models achieved

approximately the same summed squared tracking error (SSE), although a smaller

control effort (CE) was needed for the hinging hyperplane based MPC.

The applied model in GPC SSE CE
Linear model 1085 1.61

Neural Network model 956 1.39
Hinging hyperplane model 966 0.58

Table 2.5: Simulation results (SSE - sum squared tracking error, CE - sum square of the
control actions)
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2.4 Conclusions

A novel framework for hinging hyperplane based data driven modeling has been

developed. Fuzzy c-regression clustering can be used to identify the parameters of

two hyperplanes. Hierarchical regression tree is obtained by the recursive cluster-

ing of the data. The complexity of the model is controlled by the proposed model

model performance measure. The resulted piecewise linear model can effectively

used to represent nonlinear dynamical systems. The resulted linear parameter vary-

ing (LPV) model can be easily utilized in model based control.

To illustrate the advantages of the proposed approach, benchmark datasets were

modeled and simulation example is presented for the identification and model pre-

dictive control of a laboratory water-heater.

The results show that with the use of the proposed modeling framework accurate

and transparent nonlinear models can be identified since the complexity and the ac-

curacy of the model can be easily controlled. The local linear models can be easily

interpreted and utilized to represent operating regimes of nonlinear dynamical sys-

tems. Based on this interpretation, effective model based control applications can

be designed.
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Chapter 3
Neural Networks

Neural network itself is a black-box model, so it doesn’t reveal any information

about the identified system. It is challenging task to open up this box to support

model building procedures. However, based on the extracted information model

reduction and visualization could be done on the base model. The key idea is that

the neural networks can be transformed into a fuzzy rule base where the rules can

be analyzed, visualized, interpreted and even reduced.

Section 3.1 shows how NNs work. This description is mainly based on [31],

for a detailed discussion see [1]. Having the main concepts set for NNs Sec-

tion 3.2 gives a brief introduction and overview about the applied NN transfor-

mation method which means the basis for model reduction and visualization. Sec-

tion 3.3 contains a combined approach used in this thesis to get reduced rule based

model from NN. Section 3.4 overview some NN visualization method, and propose

a new technique to measure the similarity of neurons which gives the basis of the

visualization approach. In Section 3.5 some illustrative examples are given, and

Section 3.6 concludes the chapter.

3.1 Structure of Neural Networks

The systematic study of continuous functions started in the nineteenth century. The

complexity of this function class was demonstrated by Weierstrass famous example;

the everywhere continuous but nowhere differentiable real function[53].

Theoretical foundations of the function approximation was also done by Weier-

strass: he showed in that any continuous function on a closed real interval could

uniformly approximated by polynomials[54]. Another question was the theory of
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multivariate continuous function approximation. Around 1900 Hilbert suspected

the existence of continuous multivariate functions, which cannot be approximated

by arbitrarily chosen continuous univariate functions[55]. Counter-examples for

Hilbert’s conjecture arose only in 1957. Arnold ternary continuous functions [56],

later constructive example was given by Kolmogorov for the approximation of mul-

tivariate continuous functions by continuous univariate functions[57].

Later the Kolmogorov method was simplified in the early sixties of the last cen-

tury (eg, Sprecher [58] and Lorentz [59]), it has become to the theoretical basis of

universal approximators of continuous functions. It was revealed in the eighties and

nineteens years of the last century that feedforward multilayer neural networks (eg,

[60, 61, 62, 63] and fuzzy systems constructed by Zadeh [64] are universal approx-

imators [65, 66, 67], although the limitations of the approximation capabilities of

systems constructed from finite components become clear[68, 69, 70].

Around the middle fifties Marshall Harve Stone further generalized Weierstrass

statements [71, 72], so the Stone-Weierstrass theorem is mentioned in respect to

neural networks[73, 74].

3.1.1 McCulloch-Pitts neuron

McCulloch and Pitts in 1943 developed a simple mathematical model for a neuron

(3.1).
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Figure 3.1: A biological neuron and its model (McCulloch-Pitts neuron)

The McCulloch-Pitts neuron has multiple inputs and a single output. Each of

the inputs has an associated weight. Weighted sum of the inputs is passed through

a nonlinearity to the output of the neuron as follows:
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y = f

(
N∑
i=1

wixi

)
,

{
0 = z < 0

1 = z ≥ 0
(3.1)

where xi are the inputs and y is the output of the neuron, f(z) is the non-linear

activation function in the form of the step function given above, and wi are the

strengths of the connections or weights. Multi-layer neural networks is a network

of neurons bunched together in a multiple layers network. A feedforward neural

network has one input layer, one output layer and a number of hidden layers be-

tween them. Normally we use neural networks with one hidden layer. This model

is very general. It has been shown that with one hidden layer a network can describe

any continuous function (if there are enough hidden units), and that with two hid-

den layers it can describe any function at all. Detailed description of neural network

structures, utilization and activation function types can be found [1, 17].

 
Figure 3.2: Modeling framework

Based on these model types motivation of our work is to prepare a tool where

data, prior knowledge, prediction and extracted information (see Fig. 3.2) forms

an integrated framework to help model building procedures with interpretability,

visualization and reduction of multilayer perceptron (MLP – usually one hidden

layer is applied) type neural networks with logistic hidden activation function.
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3.2 NN Transformation into Rule Based Model

A possible strategy for ’opening’ a NN is to convert it into a rule based model.

These ’linguistically sound’ rules are often fuzzy if-then rules, and are close to

human thinking: IF a set of conditions is satisfied, THEN a set of consequences

is inferred. Fuzzy logic provides a tool to process uncertainty, hence fuzzy rules

represents knowledge using linguistic labels instead of numeric values, thus, they

are more understandable for humans and may be easily interpreted [31]. If NNs

can be transformed into rules, then it makes possible to overlook and validate the

trained NN, and build in a priori knowledge to the network. The crucial question is

what the connection is between the several types of neural networks and fuzzy rule

based systems.

Under some conditions, the equivalence of normalized radial basis function net-

works (RBF) and Takagi-Sugeno fuzzy models can be obtained [1]. However, in

this thesis, multilayer perceptron (MLP) type neural networks with logistic hidden

activation function are used (in the following the notation NN will be used for MLP

type networks). An approach for NNs with tanh activation function is presented in

[75] for function approximation purposes, but it should be noted that it is an approx-

imation: the rule based model is not identical to the original trained NN, therefore

information transfer in the ’opposite’ direction, i.e. from the rule base to the NN

can be problematic. An interesting result was given in [31] where the equality of

NNs with logistic activation function and a certain type of fuzzy rule based model

called fuzzy additive system (FAS) was proven. For that purpose, a new fuzzy

logic operator had to be introduced. Because of the equality (which is stronger than

equivalence), if a method can be applied on a FAS for a certain purpose (e.g. rule

base reduction), then it is also applicable to the NN as well and vice versa.

3.2.1 Rule–based interpretation of neural networks

In the following, this equality relation is discussed based on [31]. FAS employs

rules in the following form:

Rjk : If x1 is A
1
jk and . . . and xn is An

jk then yk is δjk (x1, . . . , xn) (3.2)

where δjk (x1, . . . , xn) is a linear function of the inputs. In FAS’s, the inference

engine works as follows: for each rule, the fuzzified inputs are matched against

the corresponding antecedents in the premises giving the rule’s firing strength. It is
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obtained as the t-norm (usually the minimum operator) of the membership degrees

on the rule if-part. The overall value for output yk is calculated as the weighted

sum of relevant rule outputs. Let us suppose multi-intput single-output fuzzy rules,

having lk of them for kth output. Then yk is computed as

yk =

lk∑
j=1

βjkδjk (x1, . . . , xn) (3.3)

where βjk is the firing strength of j th rule for k th output.

To decompose the multivariate logistic function to form the rule antecedents in

the form of eq. 3.2 with univariate membership functions, a special logic operator

has to be used instead of and : interactive-or or i-or:

a ∗ b = (ab)

(1− a)(1− b) + ab
(3.4)

0

0.2

0.4

0.6

0.8

1

0
0.10.2

0.30.4
0.50.6

0.70.8
0.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Figure 3.3: Interactive or operator

To get a clearer idea of i-or behavior, see Fig. 3.3, which represents the surface

defined by the i-or operator. Using this ∗ operator, the interpretation of NNs whose

hidden neurons have biases as follows. It can be checked that

fA

(
n∑

i=1

xiwij + τj

)
= fA

(
x1w1j + τ ′j

)
∗ . . . ∗ fA

(
xnwnj + τ ′j

)
(3.5)

where τ ′j = τj/n and the first term corresponds to the fuzzy proposition ”
∑n

i=1 xiwij+

τj is A”. Likewise, fA
(
xiwij + τ ′j

)
corresponds to proposition ”xiwij + τ ′j is A”

or in a similar form ”xiwij is A − τ ′j”. Hence, the bias term means a sheer trans-

lation. The Ai
jk fuzzy sets have to be redefined to account for both the weight wij

and the bias τ ′j . Their membership function is defined by (see Fig. 3.4 for better
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explanation):

µAi
jk
(x) = µA

[(
x+ τ ′j

)
∗ wij

]
(3.6)
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Figure 3.4: Interpretation of the activation function

Based on that, the fuzzy rules extracted from the trained NN are:

Rjk : If x1 is A
1
jk ∗ . . . and ∗ xn is An

jk then yk = δjk (3.7)

An interesting and useful application possibility is to initialize the NN on the

basis of a priori knowledge. Initialization is a crucial question by NNs because

there are often a huge number of parameters and the cost function has numerous

local minima. The most often applied local (gradient based) search techniques may

trap in a local minimum. To avoid that problem, a possible approach is multi-

start method, i.e. to train the NN from several different (random) initial points.

Other solution can be based on evolutionary algorithms, see [76]. The flexibility of

evolutionary algorithms makes possible the direct rule extraction from trained NNs

(however, only crisp rules and by classification problems) as [77] shows. However,

all of these latter methods have high computational demand. The initialization using

prior knowledge based if-then rules has other advantage as well: it combines the

user’s experience with the learning capability of NN.

43



3.3 Model Complexity Reduction

In this section we focus on the combination of existing model reduction techniques

with the previously presented rule based model extraction method. An interesting

solution to NN reduction is the following: the complexity of the model is penalized,

and it is built-in to the training procedure. The method proposed in [78] uses a cost

function that consists of two terms: one for the NN accuracy (like mean square er-

ror) and one related to the NN complexity (numbers and magnitude of parameters).

However, determination of their weights or relative importance is problematic. A

weighting factor is introduced and several NNs should be trained with different

weighting parameters. To compare the trained NNs and choose the best one, [78]

applied the predicted square error measure.

In case of MLP networks and FAS systems classical OLS (see appendix C for

further details) can be applied on FAS systems to rank the rules since the parameters

of the trained NN are fixed. However, OLS is formulated as a MISO technique. If

the NN has more than one output, then the outputs can be evaluated individually

one by one. In this case (using the notation of OLS (eq. C.1- eq. C.3), y is the kth

network output, the regressors zi are the outputs of the hidden neurons, and the pa-

rameters θj corresponds to the weights from the jth hidden neuron to the kth output

neuron βjk. This approach was directly applied on NNs in [30], and it was shown

that analog method can be applied to the subset selection of the original network

inputs. In this case in eq. C.1- eq. C.3, y is the output of the kth hidden neuron, the

regressors zi are the inputs of the network, and the parameters θj corresponds to the

weights from the jth input neuron to the kth hidden neuron wjk. Other NN pruning

can also be considered, e.g. optimal brain damage [26] or optimal brain surgeon

[79], and it should be emphasized that these methods can directly be applied on

FAS systems as well. The application examples in Section 3.5 show that it can be

very effective if a model reduction technique and rule base extraction from NN are

applied together, and validate the identified models by human experts.

Note that ordering the neurons by OLS estimated error reduction ratios reveals

the unnecessary neurons (the importance of the extracted rules) in the hidden layer,

because neurons with low error reduction ratio are insignificant for the appropriate

model. As the equality of FAS and NN was proven in [31] and was discussed also

in Section 3.2, the OLS ranking means a reduction based on the consequent of the

fuzzy rule.

It should be noted that the applied i-or operator in the extracted fuzzy rules does
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not belong to the commonly applied fuzzy t-norms or t-conorms. However, it would

be interesting to test the extracted fuzzy rules with common fuzzy logic operators,

and maybe recompute the output weights (which can easily be done because the

model is linear with respect to these parameters). Our presumption is that the crisper

the activation functions are (fA), the less the difference is between the modeling

performances of the original and the modified FAS’s that uses classical fuzzy logic

operators. For that purpose, numerous tests have to be completed in the future. If

this guess proves true, then the cost function for NN training can be modified to get

’crisper’ activation functions.

3.4 NN Visualization Methods

In this section, a new technique for the visualization of neural networks is proposed.

First, methods are discussed that can directly be applied on NNs. Second, a new

approach is presented to detect the redundant neurons based on their similarity. This

method exploits the equality of NNs and FAS’s because it is based on the similarity

of fuzzy membership functions.

The output of hidden neurons zj can be seen as a h dimensional vector that

represents the range the neurons work in. If a ’hidden variable’ zj is close to zero

or one, the neuron is saturated. If a hidden neuron gives values near zero or one

for almost all inputs, hence it does not fire or fires all the time, it is useless for

the problem. The distribution of these h dimensional data can represent the NN

behavior for a human expert. Unfortunately, in several cases there is a need for

more than two or three hidden neurons. In these cases a projection or dimension-

ality reduction technique has to be used. Principal Component Analysis (PCA) is

a linear technique; therefore the information loss may be more than the admissible

level. Other (topology or distance preserving) projection techniques like Multidi-

mensional Scaling, Sammon method, Isomap or Locally Linear Embedding can be

used for that purpose. For more details see [32] and the references within.

However, there are some special visualization methods for NNs. Duch [27] pro-

posed an approach for visualization of NNs applied on classification problems. His

method can be applied for problems with K classes if the output is coded as a K

length vector: (1, 0, . . . , 0) means the first class, (0, 1, . . . , 0) the second and so on.

In this case case the classes are represented by the corners of the K dimensional

unit hypercube. The approach proposed by Duch maps the NN output into two di-

mensions, basically ’flattens’ the hypercube into two dimensions. This approach
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was thought over and applied on the output of the hidden neurons zj in [28, 29].

This method was straightforward from the former one because the hidden variables

(the activation functions) take values from [0, 1], therefore the h dimensional vec-

tors are located within the unit hypercube. This method can be used not only for

classification but also for function approximation purposes as well. Based on this

latter approach a picture of the behavior of the hidden units, their firing strength and

activation or saturation level can be obtained. The main drawback is that the number

of classes/hidden neurons is limited. To keep the figures simple and interpretable,

only 3 . . . 6 variables can be used.
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Figure 3.5: Similarity index

In the following, a different method is proposed to visualize the NN. The pre-

sented approach utilizes the antecedent part of the extracted fuzzy rules (since OLS

based model reduction uses the consequent parts, see Section 3.3). To reduce the

FAS rule base by analyzing the antecedent part of the rules is possible with mea-

suring the similarity of the membership functions, and removing the too similar

neurons. Utilizing the equality of FAS and NN, the following classical interclass

separability measure (originally for fuzzy systems) could be used to compare the

univariate functions decomposed from hidden neurons:

Si
j,l,k =

∫
min

(
Ai

j,k (xi) , A
i
l,k (xi)

)
dxi∫

max
(
Ai

j,k (xi) , Ai
l,k (xi)

)
dxi

(3.8)

where i = 1, . . . , n, j, l = 1, . . . , h.. Eq. 3.8 can be used to measure the

similarity of two clauses in the rule base, in other words the similarity of two hidden

neurons for the same input variables (see Fig. 3.5). To compare the hidden neurons
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themselves with multivariate activation functions, the following measure seems to

be straightforward:

Sj,l,k =
∏
i

Si
j,l,k, i = 1, . . . , n, j, l = 1, . . . , h. (3.9)

With this measure, pairwise similarities of hidden neurons in the range of [0, 1] can

be obtained. To get pairwise distances if needed, the simple form of 1 − Sj,l,k can

be used. Based on these distances which can be called relative data, the neurons

themselves can be mapped onto two dimensions. In this thesis, the classical mul-

tidimensional scaling will be used. This well-known technique is not discussed

here because it would exceed the size and scope of this thesis. The mapped two

dimensional points refer how similar the neurons behave. As can be seen, the above

mentioned approaches [28, 29] visualize the output of the hidden neurons, and draw

conclusions from the location of these data. The proposed approach focuses to the

behavior of hidden neurons as well, but utilizes the shape of the identified multi-

dimensional activation functions. The previous approach can be used to determine

how well the NN was trained, since the proposed one shows which neurons are sim-

ilar and redundant within the trained network. In this formulation, this method can

rather be used for complexity reduction purposes, and not to qualify the training

procedure.

3.5 Application Examples

3.5.1 pH process

For applying the introduced visualization and reduction techniques we used a dataset

of a pH process (see [32] or Appendix D), where the concentration of hydrogen

ions in a continuous stirred tank reactor is modeled (CSTR). This well-known mod-

eling problem presents difficulties due to the nonlinearity of the process dynamics.

This process can be correctly modeled as a first-order input-output (NARX) system,

where the actual output (the pH) y(k + 1), depends on pH of the reactor y(k) and

the NaOH feed u(k) at the kth sample time (sample time is ts = 0.2min):

y(k + 1) = f (y (k) , u (k)) (3.10)

Parameters of the neural network were identified by the back-propagation algo-
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  Figure 3.6: Decomposed univariate membership functions

rithm based on a uniformly distributed training data where FNaOH is in the range

of 515-525 l/min. Our experiences show that 7 neurons are sufficient in the hidden

layer of the NN. The results in Table 3.5.1 shows, that the neural network models

give very good prediction performance for this process. Numbers in the brackets

represent the number of neurons in the hidden layer and the removed neurons from

the identified NN.

Testcase Training errors(MSE) Testing Errors(MSE)
Neural Network (7) 3.088e-005 3.267e-005
Using i-or (7) 3.053e-005 3.259e-005
Network reduction (8/1 neuron) 4.434e-005 4.285e-005
Network reduction (7/1 neuron) 3.060e-005 3.247e-005
Network reduction (6/2 neuron) 2.884e-004 3.690e-004
Network reduction (6/1 neuron) 1.086e-004 1.316e-004

Table 3.1: One-step ahead prediction results.

Applying the proposed visualization and transformation techniques, Fig. 3.6

shows the decomposed univariate membership functions and the into two dimen-

sion mapped distance matrix according to the NN model parameters can be seen

on Fig. 3.7. For better interpretability, the histogram of the corresponding model

inputs are illustrated on the last two subplots.

On Fig. 3.7 the pairwise distances of the neurons (see (3.8) in the previous sec-

tion) were mapped into two dimensions with MDS and two dimensional points refer

how similar the neurons behave.

The neurons are listed according to the OLS ranking on the left of Fig. 3.8,

starting with the rules decomposed from the most important neuron in the hidden
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Figure 3.8: Error reduction ratios

network layer. The consequence of synthesizing the results is that it is possible

to remove one neuron out of 7 (in FAS the corresponding rules) from the model

without a significant increase in modeling performance, because of the low error

reduction rate of the last, 7th neuron. This achievement harmonizes with the issues

of the mapped distances, where the 2nd and the 7th neuron are closer to each other,

but OLS based ranking indicates the 2nd one as more important.

Model reduction and visualization techniques like OLS makes it possible to

overcome the problem of overfitting and the performance of the reduced model is

almost the same as the original one. A rigorous test of NARX models is free run

simulation because the errors can be cumulated. The result indicates the goodness

of the reduced model even by free run simulation (3.5 ·10−3 for neural network with
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7 neurons, 3.823 · 10−3 using i-or for FAS with 7 rules, 3.824 · 10−3 after removing

1 neuron from the hidden layer containing 7 neurons).

In table 3.5.1 shows the training errors for neural networks with different num-

ber of neurons in the hidden layer (6 − 15). These models were reduced with

1 − 14 neurons. The obtained results points on that it is worth considering to se-

lect the appropriate model structure because better modeling performance can be

achieved with reducing an overfitted model. The reason of this phenomena is that

the gradient–based training algorithms may stop in different local minimums.

3.5.2 pH dependent structural relationship model for capillary
zone electrophoresis of tripeptides

Aim of paper [80] was to study the structural descriptor–mobility relationship of

representative tripeptides in capillary zone electrophoresis(CZE) separation length

in respect to their influence on electrophoretic migration properties. For this pur-

pose a back propagation neural network was applied with the inputs of pH, effective

capillary length l, applied voltage U, peptide charge O and molecular weight Mw.

1000 iterations were used to train the neural network with the learning rate of 0.1.

Number of nodes in the hidden layer was 15 and there was 1 output layer.

In the followings this data and model will be applied for introducing model

reduction and visualization techniques.

Testcase Training errors(MSE) Testing Errors(MSE)
Neural Network (15) 3.088e-005 3.267e-005
Using i-or (15) 3.053e-005 3.259e-005
Network reduction (15/1 neuron) 4.434e-005 4.285e-005
Network reduction (16/1 neuron) 3.060e-005 3.247e-005
Network reduction (17/2 neuron) 2.884e-004 3.690e-004
Network reduction (18/3 neuron) 1.086e-004 1.316e-004

Table 3.3: One-step ahead prediction results.

The results in table 3.5.2 shows, that the originally utilized hidden layer with

15 neurons was carefully designed, because applying further reduction techniques

on this structure cause decrease in model performance. However, it can be clearly

stated as well that adding an extra neuron to the network and removing it can help

in the model performance, without causing any overfitting of the neural network

model.
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3.6 Conclusions

Neural networks are often too complex and not interpretable, therefore it is very

difficult to utilize these networks correctly. This article proposed a new complex

approach for visualization and reduction of the neural networks, and discussed that

neural network with sigmoid transfer function is identical to fuzzy additive systems.

The used similarity measure can be applied for further reduction of the rule base.

It can be done in an automatic way if a threshold value is defined previously. If the

measured similarity is greater than the threshold, the corresponding two neurons in

the original neural network can be considered as identical; therefore further reduc-

tion of the FAS rule base is possible. This technique can be used even during the

learning process of the neural network.

A possible future research area is to develop a new learning procedure for neu-

ral networks using prior knowledge based if-then rules, which combines the user’s

experience and/or constraints with the learning capability of NN.
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Chapter 4
Support Vector Machines

Application of support vector methods for the initialization of fuzzy models is not

a completely new idea. Numerous methods have been proposed to build the con-

nection between the SVR and the FIS. Chen and Wang[22, 23] propose a positive

definite fuzzy system (PDFS). In the proposed fuzzy model, the PDFS is equivalent

to a Gaussian-kernel SVM[22] if Gaussian membership functions are adopted. An-

tecedent of a fuzzy rule is obtained by a support vector (SV). Therefore the number

of fuzzy rules is the same as the number of SVs. As the number of SVs is generally

large, the size of the FIS based on an SVM is also large. To solve this problem,

researchers[81] proposed a learning algorithm to remove the irrelevant fuzzy rules.

In spite of this, the generalization performance is degraded. The above methods are

for zero-order FIS,which has one fuzzy singleton in the consequent of a fuzzy rule.

For the first order FIS, Leski[25] describes a method for obtaining a FIS by means

of the SVM with data-independent kernel matrix. Moreover, Juang et al. used a

combination of fuzzy clustering and the linear SVM to establish a fuzzy model with

less parameter number and better generalization performance. However, negligible

effort has been done to establish a HFIS(high order FIS) with kernel methods. In

[82] it was presented a HFIS with high accuracy and good generalization perfor-

mance. It was shown how to obtain the formulation of the nonlinear function for

the consequent part.

Furthermore, Catala used prototype vectors to combine with the support vectors

using geometric methods to define ellipsoids in the input space, which are later

transformed to if-then rules.[21]. In [83] special operator was utilized to achieve

equivalency between support vector machines and fuzzy rule-based system. In [84]

utilization of support vector models is described to solve the convex optimization

problem for multivariate linear regression models and it is also shown how multi-
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variate fuzzy nonlinear regression model can be formalized for numerical inputs and

fuzzy output. Multiple types of kernels[84, 83] can be used to solve crisp nonlinear

regression problems[85]. Chia et al. [86] used a combination of fuzzy clustering

and linear support vector regression to obtain Takagi-Sugeno type fuzzy rules. Sup-

port vector machines can be applied to determine the support vectors for each fuzzy

cluster obtained by fuzzy c-means clustering algorithm[87].

Visualization of fuzzy regression models is also discussed lately. Interpretation of

fuzzy regression is provided with an insight into regression intervals so that re-

gression interval analysis, data type analysis and variable selections is analytically

performed[88]. In [89] a visualization and interpretation tool is presented. Feature

space is visualized with highlighting the corresponding variables in the original in-

put data to show how they are associated to the output variable. It is shown that

which part of the input data can be utilized to estimate the output value. This tech-

nique also describes which input variable are responsible for the performance of the

support vector regression. With the combination of visualization and interpretation

the black-box support vector regression is identified in one step.

It must be taken into account that fuzzy logic does not guarantee interpretability as

a prerequisite, because obtaining fuzzy models from support vector based training

often result fuzzy models with high number of fuzzy rules. This phenomena makes

interpretability much more difficult, therefore aim of this chapter is to describe

a combination–of–tools three–step technique how to use reduction techniques on

trained SVR models to acquire transparent, but accurate fuzzy rule based regression

models. The steps are the following:

1. Application of the Reduced Set method

The identification of the SVM is followed by the application of the Reduced

Set (RS) method to decrease the number of kernel functions. Originally, this

method has been introduced by [90] to reduce the computational complexity

of SVMs. The obtained SVM is subsequently transformed into a fuzzy rule-

based regression model.

2. Similarity-based fuzzy set merging

The Gaussian membership functions of the fuzzy rule-based regression model

are derived from the Gaussian kernel functions of the SVM. The interpretabil-

ity of a fuzzy model highly depends on the distribution of the membership

functions. Hence, the next reduction step is achieved by merging fuzzy sets

based on a similarity measure [91].
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3. Rule-base simplification by orthogonal transformation

Finally, an orthogonal least-squares method is used to reduce the number of

rules and re-estimate the consequent parameters of the regression model. The

application of orthogonal transformations for reducing the number of rules

has received much attention in the recent literature [92, 93]. These methods

evaluate the output contribution of the rules to obtain the order of importance.

The less important rules are then removed according this ranking to further

reduce the complexity and increase the transparency.

This chapter organized as follows. Firstly basic notations of support vector ma-

chines and the connection between the fuzzy regression is described. After detailed

description of the three-step reduction algorithm, examples indicating the power

and the usage of described techniques on regression problems are presented.

4.1 FIS interpeted SVR

SVM has been recently introduced for solving pattern recognition and function es-

timation problems. SVM is a nonlinear generalization of the Generalized Portrait

algorithm developed in Russia in the 1960s. In its present form, the SVM was de-

veloped at AT&T Bell Laboratories by Vapnik and co-workers[24]. SVM learning

has now evolved into an active area of research. Moreover, the technique belongs

to the standard methods toolbox of machine learning.

4.1.1 Support Vector Regression Models

The basic idea behind support vector regression is the kernel function: k (xi,xj).

Using k instead of dot product in RN
i , this will correspond to map the data into a

possibly high dimensional space F , by a usually nonlinear map ϕ : RN
i → F and

take the dot product there

k (zi,x) = (ϕ (zi) , ϕ (x)) (4.1)

SVR concept will be introduced based on [94], for more detail please see [17].

Suppose we have training data {(x1, y1) , . . . , (xNd
, yNd

)} ⊂ χ × RN
i , where χ

denotes the space of input patterns. The aim is to find function f (x) that has at

most ε deviation from the targets with the obtained yi, for all the training data. In
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other words we do not care about the errors as long as they are less than ε, but any

larger deviation than ε won’t be accepted. SVR can be formulated as follows:

min
w,b,ξi,ξi

1

2
∥w∥2 + C

Nd∑
i=1

(ξi + ξ∗i )

s.t. yi −wTϕ (xi)− b ≤ ε+ ξi

wTϕ (xi) + b ≤ ε+ ξ∗i − yi

ξi, ξ
∗
i ≥ 0 (4.2)

where ϕ is the feature mapping for kernel k, ε is the tolerance error, ξi, ξ∗i are

slack variables and C > 0 is a cost coefficient, which determines the trade-off

between the model complexity and the degree of tolerance to the errors larger than

ε. The dual form of the optimization problem 4.2 becomes a quadratic programming

(QP) problem:

max
α,α∗

−1

2

Nd∑
i,j=1

(αi − α∗
i )
(
αj − α∗

j

)
k (xi,xj)

−ε

Nd∑
i=1

(αi + α∗
i ) +

Nd∑
i=1

yi (αi − α∗
i )

s.t.

Nd∑
i=1

yi (αi − α∗
i ) = 0 α, α∗ ∈ [0, C] (4.3)

where α and α∗ are the Lagrange multipliers. As an outcome of solving the QP

problem 4.3 can be rewritten to the following form:

f (x) =

Nd∑
i=1

(αi − α∗
i ) k (xi,x) + b (4.4)

Let γi = αi − α∗
i . In case γi ̸= 0 the corresponding training pattern xi can be

noted as support vector.
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4.1.2 Structure of Fuzzy Rule-based regression model

To get a fuzzy-rule based regression model from the support vector regression

model the following interpretation is needed:

y =

NR∑
i=1

βi(x)δi + b, (4.5)

where βi is the firing strength and δi is the rule consequent. The output of the

regression model is calculated by this equation. In case of fuzzy systems, fuzzy

rules can be formulated as follows

Ri if x1 is Ai1 and . . . xn is Ain then yi = δi, i = 1, . . . , NR , (4.6)

where Ri is the ith rule in the fuzzy rule-based regressor and NR denotes the

number of rules. Ai, . . . , ANi
denote the antecedent fuzzy sets that define operating

region of rule in the Ni dimensional input space. The rule consequent δi is a crisp

number. The connective is modeled by the product operator. Hence the degree of

activation of the ith rule is calculated as

βi(x) =

Ni∏
j=1

Aij(xj), i = 1, . . . , NR. (4.7)

Main principle of kernel-based support vector regressors is the identification of

a linear decision boundary in this high dimensional feature-space. The link to the

fuzzy model structure is the following: The fuzzy sets are represented by Gaussian

membership functions

Aij(xj) = exp

(
(xj − zij)

2

2σ2

)
(4.8)

The degree of fulfilment βi(x) can be written through 4.7-4.8 in a more compact

form by using Gassuian kernels.

βi(x) = exp

(
∥x− zj∥2

2σ2

)
(4.9)

This kernel interpretation of fuzzy systems shows that fuzzy models are effec-

tive in solving nonlinear problems because they map the original input space into

a nonlinear feature space by using membership functions similarly to the support

vector machine that utilize kernel functions for this purpose.
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4.2 Ensuring interpretability with three–step algorithm

In the previous sections it has been shown how a SVM, that is structurally equivalent

to a fuzzy model, can be identified. Unfortunately, this identification method cannot

be used directly for the identification of interpretable fuzzy systems because the

number of the support vectors is usually very large. Typical values are 40-60% of

the number of training data which is in our approach equal to the number of rules

in the fuzzy system. Therefore, there is a need for an interpretable approximation

of the support vector expansion. For this purpose a step-wise algorithm will be

introduced, where the first step is based on the recently published Reduced Set

(RS) method developed for reducing the computational demand of the evaluation of

SVMs [90].

4.2.1 Model Simplification by Reduced Set Method

The aim of the RS method is to approximate the high-dimensional feature space

given by the support vectors

Ψ =
Nx∑
i=1

γiϕ(xi) , (4.10)

by a reduced set expansion

Ψ′ =

NR∑
i=1

δiϕ(zi) , (4.11)

with NR < Nx < Nd, where Nx denotes the number of support vectors (the number

of xi vectors for those γi ̸= 0) and NR represents the number of the desired rules

in the fuzzy rule-based regressor that we would like to identify and zi denotes the

centers of the new kernel functions that are not necessarily training samples. NR

should be as small as possible because it determines the number of fuzzy rules. In

practice it turns out that the RS method is often able to deliver a one-tenth reduction,

so NR can be chosen as NR = Nx/10. For this model reduction, the squared error

∥Ψ−Ψ′∥2 has to be minimized. For this purpose, the ’kernel trick’ has to be applied
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because ϕ is not given explicitly

∥Ψ−Ψ′∥2 =
Nx∑

i,j=1

γiγjk(xi,xj) + (4.12)

NR∑
i,j=1

δiδjk(zi, zj)− 2
Nx∑
i

NR∑
j

γiδjk(xi, zj) .

The cost function 4.12 is minimized in a step-wise manner while the feature space

is approximated by the following iterative algorithm:

Repeat for m : 2, . . . , NR;

• Step 1:Obtain the residual space

Let Ψm mean the residual of the feature space approximation generated at the

(m-1)–th step

Ψm =
Nx∑
i=1

γiϕ(xi)−
m−1∑
i=1

δiϕ(zi) (4.13)

=
Nm∑
i=1

ϵiϕ(vi) ,

where

(ϵ1, . . . , ϵNm) = (γ1, . . . , γNx ,−δ1, . . . ,−δm−1) ,

(v1, . . . ,vNm) = (x1, . . . ,xNx , z1, . . . , zm−1) ,

Nm = Nx +m− 1 .

• Step 2:Inner iteration step for determining zm

This residual function is approximated by the determination of zm and δm in

the iterative procedure, where the following cost function has to be minimized

min
δm,zm

∥Ψm − δmϕ(zm)∥2 . (4.14)

This can be done by standard techniques or using fixed–point iteration, as
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shown in [90].

zn+1
m =

∑Nm

i=1 ϵi exp (−∥vi − znm∥2/ (2σ2))vi∑Nm

i=1 ϵi exp (−∥vi − znm∥2/ (2σ2))
, (4.15)

where the superscript n denotes the n–th inner iteration step; 4.15 is iterated

till it converges to ∥zn+1
m − znm∥2 < ϵ.

Interestingly, 4.15 can be interpreted in the context of clustering [95]. It de-

termines the center of a single Gaussian cluster, trying to capture as many of

the vi with positive δi as possible, and simultaneously avoiding those vi with

negative δi.

• Step 3:Least-squares estimation of the δi coefficients

The δm coefficient is calculated by recalculating the whole δ=[δ1, . . . , δm]
T

vector by minimizing 4.12

δ = (Kz)−1Kzxγ (4.16)

where the element of the matrices are expressed by the kernel functions Kz
ij =

k(zi, zj) and Kzx
ij = k(zi,xj).

4.2.2 Reducing the Number of Fuzzy Sets

In the previous section, it has been shown how kernel-based regression model with a

given number of kernel functions NR, can be obtained. Because the number of rules

in the transformed fuzzy system is identical to the number of kernels, it is extremely

important to get a moderate number of kernels in order to obtain a compact fuzzy

rule-based regression model.

From Eq. 4.9 it can be seen that the number of fuzzy sets in the identified

model is Ns = NRNi. The interpretability of a fuzzy model highly depends on

the distribution of these membership functions. With the simple use of Eq. 4.8,

some of the membership functions may appear almost undistinguishable. Merging

similar fuzzy sets reduces the number of linguistic terms used in the model and

thereby increases model transparency. This reduction is achieved by a rule-base

simplification method [91, 96], based on a similarity measure S(Aij, Akj), i, k =

1, . . . , n and i ̸= j. If S(Aij, Akj) = 1, then the two membership functions Aij

and Akj are equal. S(Aij, Akj) becomes 0 when the membership functions are non-
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overlapping. During the rule-base simplification procedure similar fuzzy sets are

merged when their similarity exceeds a user-defined threshold θ ∈ [0, 1]. The set-

similarity measure can be based on the set-theoretic operations of intersection and

union [91].

S(Aij, Akj) =
|Aij ∩ Akj|
|Aij ∪ Akj|

, (4.17)

where |.| denotes the cardinality of a set, and the ∩ and ∪ operators represent the

intersection and union, respectively, or it can be based on the distance of the two

fuzzy sets. Here, the following expression was used to approximate the similarity

between two Gaussian fuzzy sets [96]

S(Aij, Akj) =
1

1 + d(Aij, Akj)
(4.18)

=
1

1 +
√

(zij − zkj)2 + (σij − σkj)2
.

4.2.3 Reducing the Number of Rules by Orthogonal Transforms

By using the previously presented SVM identification and reduction techniques, the

following fuzzy rule-based regression model has been identified

y =

NR∑
i=1

Ni∏
j=1

exp

(
(xj − zij)

2

2σ2

)
δi + b. (4.19)

Due to the applied RS method and the fuzzy set merging procedure, the obtained

membership functions only approximate the original feature space identified by the

SVM. Hence, the δ=[δ1, . . . , δNr ]
T consequent parameters of the rules have to be

re-identified to minimize the difference between the decision function of the support

vector machine Eq. 4.4 and the fuzzy model Eq. 4.19

MSE =

Nd∑
j=1

(
Nx∑
i=1

γik(xj,xi)−
NR∑
i=1

δiβi(xj)

)2

(4.20)

= ∥ys −Bδ∥2 , (4.21)

where the matrix B = [b1, . . . ,bNR
] ∈ RNd×NR contains the firing strength of all

NR rules for all the inputs xi, where bj = [βj(x1), . . . , βj(xNd
)]T . As the fuzzy

rule-based regression model 4.19 is linear in the parameters δ, Eq. 4.20 can be

solved by a least-squares method(see Appendix C and Eq. C.1 for further details).

The application of orthogonal transformations for the above mentioned regres-
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sion problem Eq. 4.20 for reducing the number of rules has received much attention

in recent literature [92, 93].

For modeling purposes, the Orthogonal Least Squares (OLS) is the most ap-

propriate tool [92]. The OLS method transforms the columns of B into a set of

orthogonal basis vectors in order to inspect the individual contribution of each rule.

This ratio offers a simple mean for ordering the rules, and can be easily used to

select a subset of rules in a forward-regression manner.

Evaluating only the approximation capabilities of the rules, the OLS method

often assigns high importance to a set of redundant or correlated rules. To avoid

this, in [93, 97] some extension for the OLS method were proposed.

4.3 Application Examples

4.3.1 Illustrative example

To demonstrate the potential of Support Vector Regression techniques two examples

were introduced. Firstly, an illustrative regression problem is solved with a simple

dataset containing 51 samples (Fig.4.1). The SVR technique obtained 14 support

vectors. This model has been reduced by the RS method (Step 1.), by which we

tried to reduce the model to operate with 10 rules. Modeling results can be seen in

Table 4.1. Utilization of all the three algorithm steps reduced the number of fuzzy

rules to 6, however this indicated slight increase in modeling error.

Table 4.1: Results on Regress data
Method RMSE #Rules

SVR Identification 0.084 14
Step 1 reduction 0.0919 10
Step 2 reduction 0.2415 9
Step 3 reduction 0.3361 6

4.3.2 Identification of Hammerstein System

In this example, the support vector regression is used to approximate a Hammer-

stein system that consists of a series connection of a memory less nonlinearity, f ,

and linear dynamics, G, as shown in Fig. 4.2 where v represents the transformed

input variable. For transparent representation the Hammerstein system consist of

a first-order linear part y (k + 1) = 0, 9y(k) + 0, 1v(k) and a static nonlinearity is

62



 

0 2 -1,5 

0 

1,5 
  Regress data 

Model output 
Support vectors 
Insensitive region 

Figure 4.1: Illustrative example with model output, support vectors and the insensi-
tive region

 

Figure 4.2: Hammerstein system

represented by a polynomial, v(k) = u(k)2. The dataset contains 500 input-output

data. Support vector regression model was identified with efficiency summarized in

Table 4.2.

Table 4.2: Results on Hammerstein system identification
Method RMSE #Rules

SVR identification 0.0533 22
Step 1 reduction 0.0604 15
Step 2 reduction 0.0650 13
Step 3 reduction 0.0792 12

As Fig. 4.3 and Table 4.2 concludes, support vector regression is able to give ac-

curate models for Hammerstein system identification. Extracted, non-distinguishable

rules from this system are represented on Fig. 4.4, therefore the three-step reduction

algorithm is used to acquire interpretable models.

After applying the RS method (Step 1.), number of rules could be reduced to

15 without any major modeling error increase. Using further reductions with the
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Figure 4.3: Identified Hammerstein system, support vectors and model output after
reduction
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Figure 4.4: Non-distinguishable membership functions obtained after the applica-
tion of RS method

second and third step of the proposed algorithm, interpretable model (see Fig. 4.5)

and accurate model could be extracted.

4.4 Conclusions

Support vector based techniques and fuzzy rule-based models work in a similar

manner as both models maps the input space of the problem into a feature space with

the use of either nonlinear kernel or membership functions. The main difference

between support vector based and fuzzy rule-based systems is that fuzzy systems

have to fulfil two objectives simultaneously, i.e., they must provide a good modeling

performance and must also be linguistically interpretable, which is not an issue for
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Figure 4.5: Interpetable membership functions of the reduced fuzzy model

support vector systems. However, as the structure identification of fuzzy systems is

a challenging task, the application of kernel-based methods for model initialization

could be advantageous because of the high performance and the good generalization

properties of these type of models.

Accordingly, support vector-based initialization of fuzzy rule-based model is

used. First, the initial fuzzy model is derived by means of the support vector learn-

ing algorithm. Then the support vector model is transformed into an initial fuzzy

model that is subsequently reduced by means of the reduced set method, similarity-

based fuzzy set merging, and orthogonal transform-based rule-reduction. Because

these rule-base simplification steps do not utilize any nonlinear optimization tools,

it is computationally cheap and easy to implement them. The application of the pro-

posed approach was shown on simple one–dimensional function identification data

and Hammerstein system identification. The obtained models are very compact but

their accuracy is still adequate. Besides, it might be clear that still real progress can

be made in the development of novel methods for feature selection.

I intend this thesis also as a case study for further developments in the direction

of a combination-of-tools methodology for modeling and identification. I am seek-

ing for techniques that perform well on multiple criteria, considering here different

soft-computing tools combined to achieve a predefined trade-off between perfor-

mance and transparency.
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Chapter 5
Summary

5.1 Introduction

Majority of problems arisen in chemical engineering practice requires data-driven

modeling of nonlinear relationships between experimental and technological vari-

ables. Complexity of nonlinear regression techniques is gradually expanding with

the development of analytical and experimental techniques, hence model structure

and parameter identification is a current and important topic in the field of nonlin-

ear regression not just by scientific but also from industrial point of view as well.

Model interpretability is the most important key property besides accuracy in the re-

gression modeling of technological processes and this is essential characteristic of

these models in their application as process controllers. As it was mentioned above,

model structure and parameter identification is an actual topic with increasing im-

portance, since identified model needs to be interpretable as well. In line with these

expectations and taking interpretability of regression models as basic requirement

robust nonlinear regression identification algorithms were developed in this thesis.

Three algorithms were examined in details namely identification of regression trees

based hinging hyperplanes, neural networks and support vector regression. Appli-

cation of these techniques eventuate black box models at first step. It is shown in my

thesis how interpretability could be maintained during model identification with uti-

lization of applicable visualization and model structure reduction techniques within

the fuzzy modeling framework.

First part of the thesis deals with the identification of hinging hyperplanes based

regression trees. Results of the developed algorithm prove that the implementation

of a priori constraints enables fuzzy c-regression clustering technique to identify
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hinging hyperplane models. Application of this technique recursively on the parti-

tioned input space ends up in a regression tree capable for modeling and even for

implementation of model predictive control of technological data coming from real

life applications. The next section deals with the validation, visualization and struc-

tural reduction of neural networks. It is described in details that the hidden layer of

the neural network can be transformed to an additive fuzzy rule base.

This section is followed by the description of connections between fuzzy regres-

sion and support vector regression, and introduces a three-step reduction algorithm

to get interpretable fuzzy regression models on the basis of support vector regres-

sion.

5.2 New Scientific Results

1. I showed that hinging hyperplane models are excellent tools for the identification

of models based on technological data. I tailored a new model structure by

the hierarchical representation of hinging hyperplane models and I delivered

a new identification algorithm based on fuzzy clustering.

a) To overcome the problems of original hinge hyperplane identification

algorithm delivered by Breimann [1] I adapted a fuzzy c-regression clus-

tering algorithm for hinge identification with incorporating a priori con-

straints.

b) As further enhancement of this algorithm I developed hierarchical hinge

hyperplane based on regression tree identification technique. I showed

performance of the developed tool on multiple examples from the well–

know repositories.

c) I proved that the identified transparent and interpretable models - with

the help of the developed algorithm - are suitable for solving process

control duties of technological systems. To illustrate this feature I pre-

sented model predictive control of a simulated cartridge water heater.

(Relevant publications: 1,7,9,10,11,13,14,18,19,20)

2. To reinforce support vector regression methods, I worked out a three step reduc-

tion technique in order to reduce and transform the support vector model into

an interpretable fuzzy rule base. Further reduction of this rule base implies
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interpretable and robust regression models.

a) I examined structural equivalency between support vector and fuzzy re-

gression. I worked out a technique with the help of Gaussian kernels to

transform the identified support vector model into a fuzzy rule base.

b) Based on the identified support vector regression model, the transformed

fuzzy rule base generates large number of rules making the model inter-

pretation and validation difficult. I tailored a three step reduction algo-

rithm to overcome this problem. I used the reduced set method [2] to

select the important set of support vectors and I utilized further, similar-

ity based reduction of the generated rule base. The resulted fuzzy rule

base is linear in the consequent part, therefore I applied orthogonal least

squares algorithm for further reduction.

(Relevant publications: 2, 5, 6)

3. Interpretability of neural network models can be achieved by transforming hid-

den layer of the neural network into a fuzzy rule base and with using a spe-

cial, self–developed visualization technique of this rule base. Based on the

self–developed transformation and visualization technique I reduced the gen-

erated model with orthogonal least squares and similarity based reduction

techniques in order to support proper model structure design.

a) I examined that validation and interpretability of black box neural net-

work models can be improved by transforming the hidden layer of the

neural network models with a special operator to a fuzzy rule base.

b) I compared calculated membership functions based on similarity mea-

sure enabling the analysis of the neural network model and point out

possible further model reductions. This model structure is also linear in

parameters from the output layer point, so I used the mentioned orthog-

onal least squares technique for further model reduction.

c) Visualization of the neurons taking place on the hidden layer of neu-

ral network can be achieved by distance measure and multi-dimensional
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scaling. This technique is also a new tool to examine and validate struc-

ture of the neural network. Performance of these techniques is shown

on a technological pH process.

(Relevant publications: 3, 4, 12, 15, 16, 17, 19)

5.3 Utilization of Results

The motivation to write my thesis was to integrate data, prior knowledge and ex-

tracted information into a single framework that helps model-building procedures

with interpretability, visualization and reduction. Utilization of the developed al-

gorithms was shown by section-wise examples taken from the area of chemical

engineering. Benchmarks and experimental data were used to perform a most com-

prehensive test of novel methods.

Due to computational efficiency and easy interpretation, the hierarchical rep-

resentation of hinging hyperplane model proved to be a promising tool to develop

local linear controllers. Interpretable fuzzy regression models initialized by robust

support vector regression could help when besides quantitative relationships, qual-

itative analysis is needed as well. The interpretable property of fuzzy models is a

great vehicle for variable quality characterization. Structural validation and visual-

ization of neural network models can support modellers to solve the challenge in

case only black box model identification is possible. My self-developed technique

gives excellent feedback to determine model structure and evaluate task complex-

ity. In the chemical industry, these problems occur when trying to find connections

between complex reaction kinetic relationships and key technology- and product-

quality variables.

Future developments of the thesis at hand can branch in various directions in

the field of interactive learning where modeller experience combined with learning

capability of different identification techniques can lead to further successes.
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Összefoglaló

5.4. Bevezetés

A vegyészmérnöki gyakorlatban elõforduló problémák jelentõs része kísérleti és

technológiai változók közötti nemlineáris összefüggések adat-alapú modellezését

követeli meg. A nemlineáris regressziós problémák komplexitása a technológiák és

a kísérleti, analitikai technikák fejlõdésével folyamatosan növekszik, így a nemli-

neáris regresszió kapcsán a modellstruktúra meghatározása és a modell paraméte-

reinek identifikálása tudományos és ipari szempontból is egyre fontosabb problé-

makör. A regressziós problémák egyre növekvõ komplexitása miatt tudományos és

mûszaki szempontból is fontos és aktuális problémakör a modellstruktúra, illetve a

modell paramétereinek meghatározása. Az identifikált modellekkel szemben a pon-

tosságon túl a modell értelmezhetõsége a legfontosabb ismérv, mely a regressziós

modellek technológiai folyamatok modellezésében és szabályozásában történõ al-

kalmazhatóságnak is fontos alapja. Ezen megállapítások kapcsán a regressziós mo-

dellek értelmezhetõségét szem elõtt tartva robosztus nemlineáris regressziós model-

lezési technikákat fejlesztettem. A vizsgált metszõ hipersík alapú regressziós fákon,

neurális hálózatokon és szupport vektor regresszión alapuló modellezési technikák

alapvetõen fekete doboz modelleket identifikálnak.

Értekezésemben megmutattam, hogy a modellek identifikációja során miként

javítható a modellek értelmezhetõsége a megfelelõ megjelenítési és struktúra redu-

kálási technikák segítségével, illetve a fuzzy modellezés keretrendszerének alkal-

mazásával.

Az értekezés elsõ részében metszõ hípersik alapú modellek identifikációjával

foglalkozom. A kifejlesztett algoritmus eredményei igazolják, hogy az a prori kor-

látokon alapuló fuzzy c-regressziós csoportosítás technika alkalmas metszõ hipersík
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modellek identifikációjára, illetve a rekurzívan alkalmazott, regressziós fába rende-

zett hierarchikus modellstruktúra alkalmas technológiai folyamat modellezésre és

modell prediktív szabályzás implementálására. Az értekezés következõ fejezete a

neurális hálózatok validálásával, a hálózat rejtett rétegének fuzzy additív szabály-

bázissá való átalakításával, az eredmények transzparens ábrázolásával és a neurális

hálózat redukciójával illetve vizualizálásával foglalkozik, bemutatván az alkalma-

zott technikák erõsségeit.

A dolgozat záró fejezete a szupport vektor regresszió által identifikált modell és

a fuzzy regresszió közötti összefüggésekkel, a kapott modellstruktúra háromlépcsõs

redukciós algoritmusával foglalkozik, illetve mutatja be annak mûködését és ered-

ményességét.

5.5. Új tudományos eredmények

1. Kimutattam, hogy a metszõ hipersík modellek kitûnõ eszközök technológiai ada-

tok alapján történõ modellalkotásra. A metszõ hipersíkok hierarchikus mo-

dellbe történõ szervezésével egy új modellstruktúrát alkottam. E modellek

identifikációjára fuzzy csoportosításon alapuló technikát dolgoztam ki.

a) Breimann [1] által elsõként publikált metszõ hipersík modellek identifi-

kációjára ajánlott algoritmus hibáinak kiküszöbölésére a fuzzy c-regressziós

csoportosítás (fuzzy c-regression clustering) algoritmust a priori korlá-

tok beépítésével alkalmassá tettem metszõ hipersík modellek identifiká-

lására.

b) Az algoritmus továbbfejlesztésével egy hierarchikus metszõ hipersík alapú

regressziós fa identifikációs technikát készítettem. Az algoritmus ké-

pességeit több, az irodalomban gyakorta alkalmazott példán keresztül

bemutattam.

c) Igazoltam, hogy az elkészített algoritmus segítségével alkotott transz-

parens és értelmezhetõ modellek könnyen alkalmazhatóak technológiai

rendszerek szabályzási feladatainak elvégzésére. Ennek illusztrálására

egy valós vízmelegítõ dinamikus szimulátorának modell prediktív sza-

bályozását valósítottam meg.
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(Kapcsolódó publikációk: 1,7,9,10,11,13,14,18,19,20)

2. Szupport vektor gépek regressziós feladatainak támogatása érdekében olyan mód-

szert dolgoztam ki, amellyel a kapott szupport vektor modell redukálható, il-

letve átalakítható értelmezhetõ fuzzy szabálybázissá, és ezen szabálybázis to-

vábbi redukciójával transzparens, ugyanakkor robosztus modellek nyerhetõek.

a) Megvizsgáltam a strukturális ekvivalencia kérdését szupport vektor reg-

resszió és a fuzzy regresszió között. Olyan módszert dolgoztam ki,

amellyel a Gauss kernel függvények használatával az identifikált szup-

port vektor modell fuzzy szabálybázissá alakítható.

b) Az identifikált szupport vektor regressziós modellben kapott szupport

vektorok függvényében a fuzzy modell általában az értelmezhetõséget

megnehezítõ nagy számosságú szabályt generál, ami megnehezíti az

eredmények interpretálását és validálását ezért három lépcsõs redukciós

algoritmust készítettem. A redukált halmazok módszerét [2] alkalmazva

a lényeges szupport vektorok kiválasztására, majd az így kapott szabály-

bázist tovább csökkentettem hasonlósági mérték segítségével. Mivel

az így kapott modell a fuzzy szabálybázis következmény paramétereire

nézve lineáris, ezért az ortogonális legkisebb négyzetek módszerének

segítségével tovább redukáltam a szabályok számát.

(Kapcsolódó publikációk: 2, 5, 6)

3. A neurális hálózati modellek értelmezhetõsége megvalósítható a modellek fuzzy

szabálybázissá történõ transzformációjával és a fuzzy modell szabályainak

általam kidolgozott speciális megjelenítésével. Az általam kidolgozott transz-

formációs és megjelenítési technikán alapulva a kapott modellen ortogonális

legkisebb négyzetek módszere és a hasonlósági mértéken alapuló redukciós

technikák alkalmazhatók a modellstruktúra tervezésének támogatása érdeké-

ben.

a) Igazoltam, hogy a fekete doboz neurális hálózatok értelmezhetõsége

és validálása miképp javítható a neurális hálózati modellek rejtett ré-
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tegének egy speciális operátoron alapuló fuzzy additív szabálybázissá

transzformálásával.

b) A kapott tagsági függvényeken értelmezett hasonlósági mértékek alap-

ján lehetõség nyílik a kapott neurális hálózat elemzésére, redukálására.

Tekintettel arra, hogy a modell a kimeneti réteg paramétereire nézve li-

neáris, a további modell redukció érdekében ortogonális legkisebb négy-

zetek technika használatát javasoltam.

c) A kapott neurális hálózat rejtett rétegének neuronjait távolság mérték

alapján a többdimenziós skálázási technika segítségével vizualizáltam,

amellyel egy újabb eszközt mutattam be a modell rejtett struktúrájának

feltárására és validálására. A technikák képességeit technológiai adato-

kon, egy pH szabályozási folyamaton keresztül illusztráltam.

(Kapcsolódó publikációk: 3, 4, 12, 15, 16, 17, 19)

5.6. Az eredmények gyakorlati hasznosítása

A dolgozat motivációja, hogy olyan eszközt adjon modell építési folyamatok támo-

gatására, ahol az adat, a-priori ismeret és a kinyert információ egységes keretrend-

szert alkot. Az eszközök segítségével értelmezhetõ, vizualizálható és redukálható

modelleket kaphatunk. A fejlesztett algoritmusok használatát az egyes fejezetekben

gyakorlati példákkal illusztráltam. A lehetõ legrészletesebb tesztelés megvalósítá-

sának érdekében kísérleti és mesterséges adatokat is felhasználtam a kidolgozott

módszerek hatékonyságának bemutatására.

A metszõ hipersíkok számítási hatékonysága és könnyû értelmezhetõsége miatt

ezek a hierarchikus modellek ígéretes eszközei lehetnek a lokálisan lineáris szabá-

lyozók fejlesztésének. A robosztus szupport vektor regresszió segítségével inici-

alizált értelmezhetõ fuzzy regressziós modell jól használhatóak abban az esetben,

amikor a kvantitatív összefüggések definiálásán kívül kvalitatív elemzés is szük-

séges. E témakörben a fuzzy modellek értelmezhetõsége a változók minõségi jel-

lemzésében bizonyulhat különösen hasznos tulajdonságnak. A neurális hálózatok

struktúra validálása és vizualizációja a modellezõt tudja támogatni olyan kihívások

megoldásában ahol csupán fekete doboz modellek identifikálására van csak lehetõ-

ség. Az általam kidolgozott módszertan kitûnõ visszajelzést ad a modell struktúrá-

jának meghatározásához és a modellezési feladat komplexitásának jellemzéséhez.
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A vegyipari gyakorlatban ilyen jellegû problémák általában a komplex reakció ki-

netikai összefüggések és a technológiai és termékminõséget jellemzõ változók közti

kapcsolatok feltárása során fordulnak elõ.

A dolgozat jövõbeni fejlesztése különféle irányokba tud elágazni az interaktív

tanulás terén ahol a modellezõ tapasztalata és az identifikációs technikák tanulási

képességeinek kombinációjával érhetünk el további sikereket.
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Appendix A
Introduction to regression problems

Linear regression takes place in the following form

y = θ0 +
n∑

j=1

θjxj + ε (A.1)

where ε is the regression error. Given xj variables definition a regression model

means estimation of θj parameters. As it was mentioned above to identify a lin-

ear regression a so called train datasample is need containing N {xk,yk}, k =

1, . . . , N , known data pairs. Function f(x) is estimated by defining a connection

between dependent and independent variables in a form of model/function:

X =


x11 . . . x1n

... . . . ...

xN1 . . . xNn

 , Y =


y11 . . . y1m
... . . . ...

yN1 . . . yNm

 (A.2)

In multivariate case a hyperplane is fitted for the best approximation. In this

case one of the most used methods are the least square based methods. During

identification the LS–based method is minimizing the square of distances between

function output and the basic dataset. The distance is called residual:

ϵi = yi − ŷi (A.3)

Aim is to find such a θ parameter set to the N data points where ϵ is minimal:

RSS(θ) =
N∑
i=1

(
yi − θ0 −

N∑
i=1

(xijθj)

)
= ϵT ϵ = (y −Xθ)T (y −Xθ) (A.4)
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y = f (X, θ) + ϵ model, (where X stands for regression matrix) with matrix

representation can form the followings:
y1
...

yN

 = Y =


1 x11 . . . x1n

... . . . ...

1 xN1 . . . yNm




θ0
...

θn

+


ϵ1
...

ϵN

 (A.5)

∂(y −Xθ̂)T (y −Xθ̂)

∂θ̂
= −2XTy + 2XTXθ̂ = 0 (A.6)

by rewriting the equation, θ can be computed as follows:

θ̂ =
(
XTX

)−1
XTy (A.7)

Linearity: Dependent variable is linear combination of the independent variables.

E(y|x1, x2, . . . , xn) = θ0 + θ1x1 + θ2x2 + . . .+ θnxn.

Independence: Az ε is independent in any observation.

Unbiased: E(ε) = 0 ∀ i = 1, . . . , N .

Homogenity: Az ε standard deviation equals with the unknown value of σ.

Normal disrtibution: ε has normal distribution.

Regression linear in parameters is such a model which is linear to it’s parame-

ters. These models can be represented as

ŷ = θ0 +
M∑
k=1

θkfk (x) (A.8)

where f1, . . . , fM are nonlinear functions while θ0, . . . , θM are model parameters

and ŷ(k) is the model output and x is the regressor vector. See Table A.1 for fi
examples

The mentioned LS technique could be used for parameter estimation with min-

imizing the following cost function:

E =
N∑
i=1

(
y −

(
θ0 +

M∑
k=1

θkfk (x)

))2

(A.9)

where N is the number of datapoints. The X regression matrix (see (A.5) for
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Function Basis Function ỹ = ã+ b̃ · x̃, ã, b̃ ∈ θ

ỹ x̃ ã b̃
y = abx log y = log a+ x log b log y x log a log b

y = a+ b log x y log x a b
y = axb log y = log a+ b log x log y log x log a b

y = a+ b 1
x

y 1
x

a b
y = 1

a+bx
1
y
= a+ bx 1

y
x a b

y = A
1+cebx

ln
(

A
y
− 1
)
= ln c+ bx ln

(
A
y
− 1
)

x ln c b

Table A.1: Functions with the ability to transform them to linear forms

linear case) is:

X =


1 f1(x1) . . . fM(x1)
... . . . ...

1 f1(xN) . . . fM(yN)

 (A.10)

Regression nonlinear in parameters is a general case of nonlinear regression.

([32]):

ŷi = f (x(i), θ) (A.11)

where f function is nonlinear to θ parameters. Main advantage of this type of

regression is the generality. However, determining regression parameters is a much

more slower process, and it can happen that it is infeasible to find proper parameters

for a suitable function. A much more difficult situation implied by this type of

regression, since nonlinear local or global optimization schemes should be applied

for parameter estimation.[1]- If nonlinear optimization is to be applied the gradient

of the model output with respect to the parameters is important:

E =
1

2

N∑
i=1

e (i)2 =
1

2

N∑
i=1

(yi − ŷi)
2 (A.12)

For the application of gradient-based optimization technique the gradient of the

loss function with respect to each θ paramater is required:

∂E

∂θ
=

N∑
i=1

e (i)
∂e (i)

∂θ
= −

N∑
i=1

e (i)
∂ŷi
∂θ

(A.13)

Hence, the gradient of the model output with respect the parameters ∂ŷi
∂θ

is re-

quired.
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Appendix B
n–fold cross validation

n-fold cross-validation
This technique is intended to avoid the possible bias introduced by relying on

any one particular division into test and train components, is to partition the original

data in several different ways and to compute the average of the performances over

the different partitions. When the available data is divided into n part this approach

is called n-fold cross-validation. Because of the n identification and verification

steps, this method is computationally expensive. An extreme variant of this is to

split the N training data into a training set of size N−1 and test of size 1 and average

the squared error on the left-out pattern over the N possible ways of obtaining such

partition.

The beauty of LOO for linear in parameter models is that it can be calculated

analytically [98]. The fuzzy model is linear in its consequent parameters. Hence,

the LOO criteria and its derivatives can be easily used for these models

σ̂2
LOO =

yTP (diag(P))−2 Py

N
(B.1)

where in case of global identification, P denotes the projection matrix

y − ŷ = y −Qθ (B.2)

= y −Q
(
QTQ

)−1
QTy (B.3)

=
(
IN −Q

(
QTQ

)−1
QT
)
y (B.4)

= Py (B.5)

where the Q matrix contains the N regressors, y denotes the estimated outputs of

the model, and Pŷ the vector of the modeling error. The matrix diag(P) is the same
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size and has the same diagonal as P but it is zero off-diagonal, and IN represents

an identify matrix.
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Appendix C
Orthogonal least squares

An often applied solution is to prune the identified model trained with classical

cost function. In the following, model reduction techniques of this type will be

considered. In general it can be stated that linear model reduction methods are

preferred to nonlinear ones because they are exhaustively studied and effectively

applied for several types of problems. For that purpose the model should be linear in

parameters. A possible method family is orthogonal techniques. These methods can

roughly be divided into two groups: the rank revealing ones like SVD-QR algorithm

and those that evaluate the individual contribution of the rule or local models, like

the orthogonal least-squares approach (OLS). This later technique requires more

computations, but for system identification purposes it is preferable as it gives a

better approximation result. In the remaining part of this paper OLS is applied for

rule ranking and model reduction purposes. OLS works as follows (for a throughout

discussion see [1]). Consider a general linear in parameters model:

y = Zθ + e (C.1)

where y = [y1, . . . , yN ]
T is the measured output, Z = [z1, . . . , zn]

T is the regressor

matrix (zi = [zi1, . . . , ziN ]
T , i = 1, . . . , h are the regressors) θ = [θ1, . . . , θh] is the

parameter vector and e = [e1, . . . , eN ]
T is the prediction error. OLS transforms the

columns of the regressor matrix Z into a set of orthogonal basis vectors in order to

inspect the individual contribution of each regressor. If they were not orthogonal,

they could not been inspected individually. An orthogonalization method should be

used to perform the orthogonal decomposition Z = VR (often the simple Gram-

Schmidt method is used), where V is an orthogonal matrix such that VTV = I and

R. Substituting Z = VR into Eq. C.1, we get y = VRθ + e = Vg + e, where
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g = Rθ. Since the columns vi of V are orthogonal, the sum of squares of yk can

be written as

yTy =
h∑

i=1

g2i v
T
i vi + eTe (C.2)

The part of the output variance yTy/N explained by regressors is
∑h

i=1 g
2
i v

T
i vi/N

and an error reduction ratio due to an individual regressor i can be defined as

erri =
g2i v

T
i vi

yTy
, i = 1, . . . , h. (C.3)

This ratio offers a simple means of ordering the regressors. As [1] shows, ”there

are only two restrictions to the application of this subset selection technique. First,

the model has to be linear in parameters. Second, the set of regressors from which

the significant ones will be chosen must be precomputed.” This later one is an

important restriction because it means that all regressors are fixed during this pro-

cedure. By normalized RBF networks and Takagi-Sugeno fuzzy models this re-

quirement is not met, therefore the original version of OLS cannot be applied. It is

because the normalization denominator changes with the number of selected rules,

thus the fuzzy basis functions (here: regressors) change. To overcome this problem

the value of the denominator can be fixed, but in this case interpretability issues are

discarded completely. However, OLS can be very useful for various purposes; mod-

ified versions of OLS can also be applied to determine the centers of radial basis

functions, or to generate Takagi-Sugeno-Kang fuzzy models.
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Appendix D
Model of the pH Process

The modeling and control of pH (the concentration of hydrogen ions) in a con-

tinuous stirred tank reactor (CSTR) is a well-known control problem that presents

difficulties due to the nonlinearity of the process dynamics. The CSTR is shown

schematically in Fig. D.1.

Figure D.1: Scheme of the pH setup.

A dynamic model of the pH in a tank can be obtained by considering the mate-

rial balances on [Na+] and the total acetate [HAC+AC-] and assuming that acid-base

equilibrium and electroneutrality relationships hold [99].
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Total acetate balance:

FHAC [HAC]in − (FHAC + FNaOH)[HAC + AC−] = V
d[HAC + AC−]

dt

Sodium ion balance:

FNaOH [NaOH]in − (FHAC + FNaOH)[Na+] = V
d[Na+]

dt

HAC equilibrium:
[AC−][H+]

[HAC]
= Ka

Water equilibrium:

[H+][OH−] = Kw

Electroneutrality:

[Na+] + [H+] = [OH−] + [AC−]

The pH can be calculated from the previous equations as

[H+]3+[H+]2(Ka+[Na+])+[H+]([Na+]Ka−[HAC+AC−]Ka−Kw)−KwKa = 0

pH = − log[H+]

The parameters used in our simulations are taken from [100] and are given in Ta-

ble D.1.

Table D.1: Parameters used in the simulations.
Parameter Description Nominal Value
V Volume of the tank 1000 [l]
FHAC Flow rate of acetic acid 81 [l/min]
FNaOH Flow rate of NaOH 515 [l/min]
[NaOH]in Inlet conc. of NaOH 0.05 [mol/l]
[HAC]in Inlet conc. of acetic acid 0.32 [mol/l]
[Na+] Initial conc. of sodium in the CSTR 0.0432 [mol/l]
[HAC + AC−] Initial conc. of acetate in the CSTR 0.0432 [mol/l]
Ka Acid equilibrium constant 1.75310−5

Kw Water equilibrium constant 10−14
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Appendix E
Model of electrical water heater

The schematic diagram of the water-heater is shown in Fig. E.1.

Figure E.1: The scheme of the physical system.

The water comes from the water pipeline into the heater through a control valve

and a pair of metal pipes containing a cartridge heater. The control task is to control

the Tout outlet temperature by adjusting the u heating signal of the cartridge heater.

The temperature measurement is realized by Pt100 thermometers. The system

has four analogue inputs (Tin inlet temperature, Tout outlet temperature, valve po-

sition and the F flow-rate), and two digital (open and close of the valve, CVO and

CVC) and one analogue output (heating control signal, u). The heaters are linked

parallel and have a performance of 1 kW. The process is connected to a PC computer

through ADVANTECH LabCard PCLD-780 and PCL-812 data acquisition boards.

GENIE 3.02 data acquisition and control software was used to filter and convert the
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input signals (0-5V). The control algorithm runs in MATLAB 4.2. The program gets

the filtered and converted measured data through DDE in every 2 seconds [101].

For the purpose of physical modeling the system was decomposed into four in-

teracting elements: the cartridge-heater (subscript h), the streaming water (subscript

w), the pipe wall (subscript p) and the environment (subscript e). The following

three heat balances in the form of partial differential equations can be established:

VhρhCph

∂Th

∂t
(t, z) = Q(u)− α1A1(Th − Tw)

VwρwCpw

∂Tw

∂t
(t, z) + (FρCp)w

∂Tw

∂z
(t, z) = α1A1(Th − Tw)− α2A2(Tw − Tp)

VpρpCpp

∂Tp

∂t
(t, z) = α2A2(Tw − Tp)− αeAe(Tp − Te)

where, z ∈ [0, L] with L denotes the length of the pipe. The description and the

nominal values of the parameters are given in Table E.1.

Table E.1: Parameters used in the simulation model of the heating system.
Parameter Description Nominal value
L Length of the pipe 2× 48010−3m
ϱh Density of the cartridge 3650 kg/m3

Cph Heat capacity of he cartridge 1047 J/kgK
Ah Surface of the cartridge 2.41× 10−2m2

Vh Volume of the cartridge 4.82× 10−5m3

α1 h− w heat transfer coefficient 316.3Wm−2K−1
ϱw Density of the water 1000 kg/m3

Cpw Heat capacity of the water 4186 J/kgK
Tin Inlet water temperature 11.8C
Vw Volume of the water 1.16× 10−4m3

α2 w − p heat transfer coefficient 1196.1Wm−2K−1
ϱp Density of the wall 7850 kg/m3

Cpp Heat capacity of the wall 502 J/kgK
te Temperature of the environment 21.6C
Ap Inner surface of the wall 4.46× 10−2m2

Vp Volume of the wall 7.37× 10−5m3

Ae Outer surface of the wall 5.36× 10−2m2

αe p− e heat transfer coefficient 1015.9Wm−2K−1

The performance of the cartridge heater is given by:

Q(u) = QM

[
u− sin(2πu)

2π

]
(E.1)

where QM is the maximal power, and u is the heating signal (voltage). The partial
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differential equations are approximated by eight compartments of equal volume. As

Eq. E.1 shows, the heating performance is a static nonlinear function of the heating

signal (control input).
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