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Abstract 

Intel produced the 8080 processor chip in 1974, which consisted of approximately 4500 

transistors. The revolutionary development of silicon-based manufacturing technology 

led to the possibility to produce integrated circuits (IC) using several billion transistors in 

a single chip [8]. Such a large amount of basic elements opens the way to commercialize 

chips with thousands of connected – but independently controlled – parallel computation 

components, called processor cores. From the aspect of computer science it raises a new 

challenge to formulate the theory of many-core computing: the structure of the commu-

nication network to support maximal data transfer rate between computing nodes to keep 

them busy with new inputs to process and to transfer outputs to their destination. New 

algorithms are needed to maximally exploit these novel hardware capabilities, and new 

methods are required to split problems into parts that can be evaluated in parallel. The 

optimization of data-communication time enforces the precedence of locality and the 

utilization of cellular structures [9]. 

The obvious efficacy of biological vision systems may motivate engineers to mimic two 

major characteristics (parallelism and foveal processing) during the design of artificial 

solutions that are embedded into real world-environments. When many salient regions 

arise after preprocessing, all of these should be better explored. This is the multi-fovea 

model. Successful works (for example [10]) highlighted the importance and efficiency of 

this design concept that called for a unified algorithm description. 

In my work I primarily focused on data-parallel interpretation and processing of topolog-

ical problems, in particular image processing tasks, by using cellular processing struc-

tures within the Multi-Fovea Architecture and Algorithmic Framework. The research 

question from the theoretical point of view was to create a unified software model that 

supports the selection of parallel architecture and also covers hardware specific details 

for a given device. The particular practical application inspiring the theoretical work was 



 

to analyze algorithms for visual navigation systems applicable in mini / micro unmanned 

air vehicles (UAVs). 

The elaborated virtual platform consists of separate processor arrays specialized for 

parallel execution of preprocessing and foveal computation. The proposed heterogeneous 

structure can fit the special characteristic of various operators processing the highly 

parallel data input. I gave a design guideline for Multi-Fovea Architecture and presented 

it by the comparison of 2D registration methods for ground object motion detection from 

mini unmanned aerial vehicles. After giving an analytic comparison of registration 

methods, I proposed a novel method exploring the proposed architecture by running a 

larger percent of the task in parallel and in cellular structures. 
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C h a p t e r  O n e   

INTRODUCTION 

1.1. Preface 

The rapid development in material science and semiconductor technology and processor 

enhancements lead to the greatly increased performance, falling prices and widespread 

applications. Digital cameras with 10 Mega Pixels have become commodity. High-end 

video cameras are capable of capturing sequences of up to many thousand frames per 

second and sensors operating in the infrared domain can form images in darkness. 

Medical diagnostics deeply rely on imaging, for example x-ray or ultrasound, whereas 

physics boosted by computer science offers further methods like magnetic resonance 

imaging (MRI) or positron emission tomography (PET). The acquired data set has 

implicit data parallelism in 2D or 3D topology. 

Most common everyday computer programs like word processors or internet applications 

do not take advantage of multi-core processing since their tasks cannot be easily split into 

parallel segments. Processor vendors have so far been competing in increasing the 

operation frequency of their serial-execution systems. Lately, however, the spread of 

digital multimedia (pictures, videos and music) introduced new kind of data and new 

kind of processing task to personal computers. The remarkable degree of structure within 

this type of data opened up the necessity to split up the data for parallel processing using 

multiple arithmetic cores and later produce the output after joining the partial results. 

This commercial motivation prompted large investments in multi- and many-core 

technology. 

The need for scientific modeling of parallel processing is obvious concerning the huge 

variable space dimension and data size. Numerous important phenomena can be modeled 

via joint dynamic systems [11], which in turn raises the need to extend the classical 

algorithm definition originally formulated for integer numbers. The underlying cellular 

structure of broad classes of problems calls for the design of topologically connected 

many-core processor arrays and the algorithmic approaches could rely on the results of 

the cellular wave computing theory [12][13]. 
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1.2. Research Goals and Results 

The aim of my research was to create a virtual hardware model (Multi-Fovea Architec-

ture) to support comparison of image processing algorithms that apply the multi-fovea 

model. The elaborated platform consists of separate processor arrays specialized for 

parallel execution of preprocessing and foveal computation. They are synchronized by a 

conventional serial processor via a proposed intelligent memory management unit. This 

heterogeneous structure can fit the special characteristic of various operators processing 

the highly parallel data input, like video flow.  

I gave a design guideline for Multi-Fovea Architecture and presented it by the compari-

son of 2D registration methods for ground object motion detection from mini unmanned 

aerial vehicles (UAV).  

After giving an analytic comparison of registration methods, I proposed a novel method 

exploring the proposed architecture by running a larger percent of the task in parallel and 

in cellular structures. 

1.3. Methods Used in the Experiments 

My research was motivated by the most recent neurobiological results in retina-modeling 

and other neuromorphic engineering solutions [14][15] along with psychophysical 

experiments. 

Backgrounds for the proposed architecture are collected from projective geometry, image 

processing, topologic cellular operators and algorithms [16], parallel computing and 

graph theory. 

The preference of local communication (cellular structures) both at the virtual and 

physical level is a fundamental part of the model [13]. 

The notation used for describing the algorithms of the thesis within the mathematical 

framework is a directed acyclic graph (DAG), which is widely used for scheduling 

problems. This description may be considered as a generalization of the Universal 

Machine on Flows (UMF) diagram [17] that was specially designed for cellular neural 

networks (CNN) algorithms executed on SIMD/MIMD type many-core processors built 

in highly regular topology. 

After setting up the theoretical framework for complexity evaluation, I modeled relevant 

state of the art algorithms. To test quantitative quality of the algorithms I made a 

software framework in PC environment. Furthermore, I made measurements using many-
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core hardware configurations such as the ACE16K chip [18], the EyeRis chip [19] and 

the Nvidia GeForce 8800 platform [20], using their specific development tools and 

programming languages. 

Within the framework of the ALFA project [9] I participated in the field experimental 

series, using a small UAV that was flying above the airport of Gödöllő (small town near 

Budapest), thus I could also use real video sequences in the algorithm development and 

testing beside the ones rendered via 3D simulation.  

The comparative analysis was performed in the Matlab / Simulink programming 

environments [9][21]. In addition, some modules were implemented in the C/C++ 

language, and some reference implementations were also used from third party sources. 

1.4. Framework of the Dissertation 

After this introductory Chapter the reader may find the definitions of concepts used in the 

dissertation in Chapter two. 

In Chapter three the Multi-Fovea Architecture is described in detail together with the first 

thesis. 

State-of-the-art global registration-based algorithms are presented in Chapter four to 

underline the capabilities of the architecture. After the description of the algorithms, 

evaluation results for four video sequences are presented. The results of this comparative 

analysis give the basis of the second thesis group. Based on the analysis, a new algorithm 

is proposed called the Elastic Grid Multi-Fovea Detector or Elastic Grid Algorithm 

(ELG) in short. For easier comparison, the algorithm is presented together with the base 

algorithms. The connected thesis is formulated in Chapter five. 

Summarization of the main findings concludes the dissertation. 
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C h a p t e r  T w o   

COMPUTATION MODEL 

2.1. Basic Definitions 

The definitions introduced below are from the fields of computer science and computer 

architectures. They are widely used and well known; still it is important to clarify the 

concepts used in the dissertation. I formulated the definitions leaning on the textbook of 

Vipin Kumar [22]. 

2.1.1. Modeling Logical Data and Computational Elements 

Programming is the way of instructing machines to do something meaningful. The 

computers are machines dealing with numerical data. Embedded computers are special 

purpose devices directly interacting with the physical environment, acquiring data 

through sensors and give output response via actuators. 

The world – or some phenomenon – is modeled and represented using some numerical 

data. Pieces of data are called entities. Obviously numerous meaningful groupings may 

exist. In most cases, the key for successful modeling is to follow natural structures of 

objects in a real environment. The programs and the data together form the software 

aspects of computing. 

Some basic definitions can be found in APPENDIX B. 

In computer science the formal definition and theorems for algorithm complexity are 

based on the Turing machine model with its limited operator set and unlimited memory. 

In practice an upper limit should be specified for the memory in use and far more 

complex operators are needed. In the dissertation a slightly modified definition for 

algorithm will be used, than the original Turing model. 

Definition 1 Operator, Operand 

An operator is a mapping defined on some single values or on a tuple of some entities 

of extended type resulting in a single entity. For given input dimensions the output 

dimension should be the same for any input values. Unary operators take a single 

entity whereas binary operators take a pair of entities as input. 
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A unary operator applied to a list (compatible with the base type of the list) results in a 

list of all elements processed by the operator. 

An operand is one input tuple for the given operator. 

Number of operands (i.e. the number of input tuples) may be different depending of the 

operand type. For example addition and multiplication can work on arbitrary number of 

operands, while others, like comparison assumes two operands.  

 

Definition 2 Algorithm, Program 

An algorithm is a recursive series of operators applied on inputs resulting in outputs. The 

program is the encoded version of the algorithm implementing operators via a hierarchy 

of instructions available on the actual machine.  

 Time-independent inputs and outputs are values of extended type. 

 In case of any time-dependent input, output is also time-dependent. All algo-

rithms are causal – depends only on current and past input elements – in a li-

mited time span: final memory model. 

Definition 3 Iteration of an algorithm  

The calculation of all output values for a given time index – using the older results in 

the time span stored in memory – is an iteration of the algorithm. 

2.1.2. Modeling Physical Components 

After introduction of the software terms and definitions we can turn to physical compo-

nents realizing the computation, generally referred to as the hardware. In this subsection 

an abstract definition is given for a general architecture. 

Nowadays most of the computers are electrical devices, using a binary number represen-

tation, implemented in silicon integrated circuit chips (IC), mounted and connected via 

printed circuit boards (PCB). The ICs are complex reusable functional blocks. Main 

component of computers is the Central Processing Unit (CPU). A CPU can be imple-

mented in a separate IC, or built onto one chip with other components. CPUs are built 

with Very Large Scale Integration (VLSI) technology. 

General purpose CPU instructions are designed to deal with a fixed number of bits at a 

time. This number is the word-size – one of the most characteristic attribute of the 

computer. Nowadays the typical value is 32 bit, allowing operations with integers in the 

range of 320..2 1  (or 16 162 ..2 1 ) while CPUs with 64 bit word-size are emerging. 
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Data has some internal representation inside the computer. 

Definition 4 Variable 

A basic variable is a scalar number represented by internal coding. Attributes of other 

types can be represented by a group of variables. 

Definition 5 Instruction, Code block 

Machine level instructions are (digitally) coded commands for elementary operator 

executions and data transfers. There are also instructions for altering the sequence of 

execution. Instructions may be grouped into code blocks. 

 

From a top-down aspect the computer has two main building-blocks: processor (CPU) 

and memory, the former for computing, the latter for storing data. In most cases they are 

separate chips on the PCB with non-negligible transfer latency and limited transfer 

speed. 

Definition 6 Memory 

Memory is a temporal storage holding a large number of variables and instructions. 

The physical realization of the memory unit can be different; some structures are 

designed for fast access, others for capacity. Some circuits are placed into the processor 

itself, others are separate chips. In most cases, not bits but instead larger groups are 

accessed at once. The most common addressing mechanism is indexed using bytes (8 

bits) or words (matching the internal structure of integer representation) as units. Some 

clustering may exist on elementary units for effective mass data transfer. 

Definition 7 Long term memory 

Long term memory is the memory needed to store results in the time span to minimize 

calculation for the next iteration. 

Definition 8 Short term memory 

Memory needed to store intermediate results during a given iteration is called short 

term memory. 

 

Registers are distinguished memory circuits practically without access latency inside the 

processor. 
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Definition 9 Register 

A register is a temporal storage holding variables to be used as operands in a 

calculation (in the near future). 

The number of registers is in the magnitude of one or ten in typical cases, thus they are 

dedicated for calculation rather than storage. In most architecture, operations can only be 

executed by referencing registers, some allow operands to be taken from memory 

directly. Some registers can be distinguished for some instructions as being the preferred 

or obligatory operands. 

 

Some operators are realized directly in hardware structures, some others are implemented 

as mini programs. 

CPUs consist of some main building blocks: Processing Element and Instruction Unit.  

Definition 10 Arithmetic and Logical Unit 

The Arithmetic and Logical Unit (ALU) is a controllable circuit executing various 

elementary calculations.  

Definition 11 Processing Element, Local Memory 

A processing element is the smallest compact hardware unit for calculation. It consists 

of some registers and the Arithmetic and Logical Unit, and some sub-unit for internal 

control and to access memory. Optional low-latency local memory can be placed inside 

the processing element that is also called register-file. 

Definition 12 Instruction Unit, program counter, micro-stages 

An instruction unit first fetches the next instruction from a special program memory 

region storing a code block. As a second step it decodes the instruction, and by using 

internal control mechanisms it executes the command on all connected processing 

elements, probably in multiple execution steps. The steps are called micro-stages. 

Different architectures may use different micro-stages, even a non-uniform sequence of 

them for different instructions. Typical further micro-stages are operand fetch and 

result write-back. The next instruction is selected by the program counter, which is a 

distinguished register. In most cases the counter is incremented as the last step of the 

execution of the instruction, or it can be updated to implement branches in the 

algorithm, conditional jumps or function calls. 
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Definition 13 Execution Unit (processor core), Local memory, Global memory 

The execution unit (processor core) is the hardware unit for program execution with 

some processing elements. It is standalone by having an instruction unit. A complex 

program can be deployed to several collaborating execution units. Local memory is a 

low-latency memory situated inside the unit. Larger external memory – global memory 

and input/output peripherals are also accessible with higher latency. Global memory is 

probably accessible for more than one execution units whereas local memory is 

dedicated to the enclosing unit. 

Definition 14 Address space, memory management unit 

Data is accessed via I/O instructions using addressing. Instruction level addresses are 

resolved by a memory management unit or some control logic to access the 

corresponding memory module. The possible address values span the address space. In 

most cases, continuous address intervals are used and mapped mainly to the global 

memory and certain ranges may be mapped to local memory as well. 

Data must be transferred from one memory unit to others. Speed critical transfers 

between units within the same PCB are done via bus systems. The transfer may be 

parallel using dedicated wire connection for each bits (e.g. PCI bus), or serial using time 

multiplexing transfer (e.g. PCIe link). In some cases the address is sent through a 

dedicated line called address bus. Since the memory management unit hides the details of 

physical implementation key features may be summarized in three properties: 

Definition 15 Bus width, Memory bandwidth, Latency 

Bus width is the amount of data that can be accessed in one step, and bandwidth is the 

maximal data transfer rate (for example measured in Mega Bytes per Second). In case 

of multiple accesses issued by the same unit the delay between first data request and 

respond is the latency. Some memory systems have preference for block addressing, 

supported by processor independent mechanisms (e.g. Direct Memory Access, DMA).  

 

Computation deals with neighboring data elements frequently. This property is called 

locality. Locality is also characteristic for instructions. A sequence of commands can be 

aligned in memory with a small number of branching instructions. The off-chip commu-

nication to load new data has massive latency – typically two or three order of magnitude 

higher compared to numerical calculation – thus caching into on-chip memory is 

essential to exploit locality. 
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Figure 2.1.  Main processing elements of a single-core computing hardware configuration. 

The Processor and the Global Memory are two different chips mounted to a printed circuit board. 

Instructions and variables are stored in the memory circuits that are accessed using addressing. On-chip 

Local Memory is accessed with small latency whereas Global Memory has considerably high response 

time. The Instruction Unit is fetching the instructions and controlling the Arithmetic and Logic Unit (ALU) 

to perform computations. Registers are special memory circuits for holding operands for the upcoming 

calculation. A Processing Element consists of an ALU, the connected registers and the control logic 

(denoted as C). It may also contain some Local Memory that is also called register-file. Nowadays a 

processor may contain multiple Execution Units (multi-core architectures). The Cache Memory is an 

automatic element holding a local copy of variables to decrease the effect of memory access latency. The 

original von Neumann architecture did not contain any Local Memory or a Cache unit. 

Definition 16 Caching, Cache memory 

To exploit locality and multiple access of a single entity, a local copy of values can be 

stored to eliminate multiple data-fetches and to fetch a larger quantity of data in one 

packet with a single communication latency penalty. These strategies are called 

caching, and pre-fetching or buffering. Cache memory is a special on-chip memory. It 

stores indices to real addresses and variable values from that location. It cannot be 

accessed directly since it is handled by the memory manager hardware. In case of 

multiple processing elements, great effort is needed to maintain their consistency. 

Local memory is handled programmatically (explicitly), whereas caching is an 

automatic (implicit) mechanism.  
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Definition 17 Processor, Array-processor 

Processors that are containing more than one processing element are called multi-

cored. If the cores are organized in some topology, the unit is called array-processor. A 

processor in most cases is a standalone chip itself. 

 

2.2. From Serial Execution to Parallelism 

2.2.1. Serial Execution on Single Processor Architecture 

Control and computational problems may be formulated into programs and decomposed 

into smaller units using many design concepts and paradigms. The conventional way is to 

separate problems into a sequence of tasks: sub-problems to be solved step-by-step to 

achieve the final goal. Conditional execution of some tasks and iterations are necessary 

to solve complex problems.  

Definition 18 Task 

A program can be decomposed into logical sections called tasks. All instructions in a 

task are executed serially by a selected execution unit. 

 

For a given decomposition a flowchart diagram may be given. The description may use 

hierarchy. 

Definition 19 Flowchart diagram 

A flowchart diagram is a graph-based description of the process realized by the system. 

In our case the given computation or control algorithm defined on time-independent 

variables or evaluation of one time-instant for time-dependent variables. Flowcharts 

contain pictograms for tasks as vertices connected by directed edges representing 

constraints for ordering. In a flowchart description tasks share a common state space. It 

has special vertices for „START‟ and „STOP‟ as beginning and terminating points of 

the whole program. Special pictograms exist for conditional branching and I/O. 

Flowchart graphs may contain circles for representing iterations. 

 

The expression that tasks share a common state space means that if something is altered 

by a given task the successor tasks a flowchart may access the updated value. The 

description allows split and merge in control flow. The flowchart diagram was originally 
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designed for von Neumann architectures with a single program counter, thus a total 

serialization was used during implementation, although some tasks may be executed in 

parallel. 

Definition 20 Code block of a task 

From a given hierarchy level, the descriptions of tasks turn from abstract operators into 

a set of programming language instructions. After compilation the corresponding sets 

form a code block for the given task. The entry point is a special point of the code 

block for starting the execution, and the exit point is for termination. 

 

Let us suppose that the solution for the given problem is somehow formulated with a 

corresponding data-set and an algorithm. A traditional algorithm is a single serial 

sequence of instructions with a single flow of execution designed to be executed by a 

serial processor. It can be achieved using a complete ordering of the tasks.  

Complex problems may be decomposed into smaller logical groups of elementary 

instructions, usually by using some level of hierarchy. This is the imperative way of 

programming. It means commanding the system to make calculations on input values and 

assign results to variables. Again, the execution is purely sequential. An instruction is 

evaluated, and then the next is processed, although the execution may branch. Branches 

are possible via reference labels to instructions. 

Typical control flow commands are: 

 Continuation at a different instruction (unconditional jump – GOTO) 

 Continuation at a different instruction and later returning (subroutine call) 

 Executing a sequence of instruction only if some condition is met (conditional 

execution via conditional jump) 

 Executing a sequence of instructions iteratively while some condition is met 

(while loop) 

 Stopping the execution (termination) 

Using unstructured GOTO statements made programs hard to read, so it was an impor-

tant theoretical result that any Turing complete algorithms can be formulated with 

conditional execution and while loops [23]. On the other hand, extended flow control 

statements – like multiple choice continuation and other loop constructs – turned out to 

be practical.  
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Non-local extensions of the control flow – such as exception handling – give extra 

convenience to programming, although they are not covered in this Chapter since they 

make program parallelizing extremely hard, and can be avoided with structured coding 

practice.  

 

For a given decomposition and a selected valid serialization a control flow graph may be 

given. This description may also use hierarchy via function calls.  

Definition 21 Control flow graph, Basic block 

The control flow graph is a representation of all possible control paths during program 

execution. Vertices in the graph are basic blocks. They are sequences of instructions 

(function calls and assignments) without any jumps or jump target points. Directed 

edges point to possible continuation points, witch may be targets of an unconditional 

jump, a conditional branch, or simply the next instruction of a program. The entry and 

exit blocks for a function are special ones encapsulating all incoming and outgoing 

possibilities. Control flow graphs may contain circles for representing iterations. 

 

At a low (instruction) level, possible variables referred by machine code operations are 

basically scalars. To handle composed data structures, indirect references are used. 

Operators are defined on references to give access to all elements of an indexed structure 

relative to the base element. Each variable has its scope. Some of them are global, 

belonging to the main scope of all tasks; others may be local for a given function. 

2.2.2. Concurrency 

Each problem has an upper limit for economical calculation time. Nobody would wait 

hours for the answer to a simple train-schedule query. Concurrency is the possibility of 

doing some work steps in parallel without altering the result. 

Independent workloads may be pipelined. This is similar to the assembly line of a 

factory. Let us assume that ten hours is the production time of a car. If this process can be 

split into ten identically long serial steps, and each of them can be assigned to a stage of 

the assembly line, with this method the overall throughput of the factory is a car in every 

hour. This simple pipelining is only possible if work pieces are independent of each 

other. 
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In case of program execution, independence of two instructions holds true if their 

attributes are not altered during the execution of the other. 

Definition 22 Read-set, Write-set 

The read-set of an instruction is the set of operand variables; the write-set is a set of 

variables that the new values are assigned to. 

Definition 23 Data dependency 

Instruction 1i depends on instruction 2i if the read-set of 1i intersects with the write-set 

of 2i . 

Since branching is common, some prediction of the more probable control flow is 

necessary to fill the pipeline. If the prediction does not turn out to be true, the remaining 

instructions must be discarded, and the instructions from the alternative flow must be 

processed. Referring to the assembly line example, a branch prediction miss is analogous 

to a sudden and high priority request to switch production to sedan cars from coupés. The 

already started coupés must be abandoned and the production of the sedan is started. It 

means not only the loss off half-ready cars but also latency before the first coupé is 

ready. 

As it was described above, locality is an important attribute for memory access patterns. 

In general, neighboring instructions reuse data produced in the near past. Moreover, 

variables that are logically connected and probably referenced together can be organized 

in memory to be close. Caching, as it was introduced before (Definition 16) is a good 

automatic mechanism to reduce the memory access penalty.  

 

Besides the memory, computer systems also have some limited resources, for example 

keyboard, printer, files that may be accessed only by a single processing element at a 

given time, in a well defined order. Their scheduling, the handling of resource and I/O 

conflict can be handled similarly to memory management (in some systems I/O is 

mapped to memory space directly), although the resource access times are normally in 

two or three orders of magnitude higher than memory transactions. 

Definition 24 Instruction level parallelism 

Considering control flow at finest detail, instruction level parallelism is exploited if 

more than one instruction of an algorithm is executed concurrently. In the von 

Neumann execution model with a single instruction pointer, neighboring instructions 

may overlap at a micro-stage level. 
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Definition 25 Out-of-order execution 

If some operand for the next calculation is not in the cache, the time for fetching may 

be utilized by execution of some other instruction that is not dependent. This technique 

is called out-of-order execution. 

 

These methods (Definition 24, Definition 25) need intensive hardware support: pre-

fetching of instructions, branch prediction and caching. All of these are implemented in 

CPUs of modern PCs to increase throughput. Since hardware capabilities are limited, 

outstanding compilers are needed to order instructions in a way to ensure that this 

implicit parallelism becomes creditable. 

2.2.3. Explicit Parallelism 

A higher dimension of parallelism is to use multiple lines of execution. Explicit paral-

lelism, defined by the programmer makes it clear what to run in parallel, and how to 

organize communication. Handling the extreme workload of numerous complex 

problems is not feasible using even the best available serial processor to be beneficial at 

all. For these cases it is important to identify tasks of the problem that can be executed in 

parallel without altering the final result, and distribute them to multiple processing units. 

The flowchart of a program may contain visibly parallel tasks. The existence of global 

variables makes it necessary to define a complete ordering that ensures the correct 

behavior of the program. Some tasks are truly independent of each other; since they do 

not have any data dependencies, their execution order is interchangeable. 

Definition 26 Parallel task, task parallelism 

Parallel tasks are special tasks that can be run in any serialized order to get the same 

result. The correctness offers the possibility to execute them in parallel. 

Definition 27 Thread, context switching 

A thread is the execution context of a code block on a processing element consisting of 

the data, a code block itself, and the actual position of the instruction pointer. 

With hardware support, all states of a thread can be encoded, saved to memory, and 

restored later. This mechanism is called context switching. It is an important feature for 

a large number of threads executed in parallel on a smaller number of processing 

elements. 
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Definition 28 Data Parallelism 

Multiple threads may be useful to complete the workload of a single task, in case of 

processing elements of a non-scalar structured data set. This form of parallelism is data 

parallelism.  

 

For special parallel tasks with the same code block, program counters can be run 

simultaneously and they can be mapped to processing elements sharing a common 

instruction unit. This is the Single Instruction Multiple Data stream hardware configura-

tion.  

Data dependency is not an exclusive fact against running multiple threads. Using 

synchronization methods, mutual exclusion for write set elements and necessary 

ordering, valid operation can be ensured. 

Definition 29 Level of parallelism, granularity 

The average number of instructions between synchronization steps is the granularity of 

the parallelization. Fine grain solutions utilize a large number of threads and frequent 

synchronization, whereas course grain solutions process more work per thread using a 

smaller number of execution contexts. 

 

The common state space concept of flowchart representation can be supported by 

architectures following the shared memory model. Most important software libraries in 

use are OpenMP and Posix thread, offering different thread creation and synchronization 

methods. 

Definition 30 Shared Memory Model 

In case of a shared memory model of parallel computing, the address space of each 

processing unit contains an overlapping global memory region. This can be accessed 

by all processing units, and is protected by synchronization mechanisms. 

For a large number of processing units, synchronization hardware to protect a large 

address space effectively can become complex. Furthermore, disjoining memory spaces 

and using local memories offers higher bandwidth if the granularity is large enough that 

the threads can work efficiently without the need of frequent data exchange. 

The distributed memory model eliminates the global region from address space 

completely. 
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Definition 31 Distributed Memory Model 

An alternative way of connecting parallel processing unit is message passing. The 

address space of all processing units is separated. They may exchange data and 

synchronize via messages. This is the Distributed Memory Model of parallel 

computing. 

 

The dataflow diagram offers an explicit notation for parallelism and an execution model. 

Optimizing compilers also generate low-level dataflow graphs beside the control flow 

graphs to find independent instructions. This graph contains a node for every assignment.  

The data-driven execution model originates back to the ‟70s [24][25]. In the next three 

definitions concepts collected by Johnson et al. will be used [26]. In contrast to control 

flow diagrams, this notation focuses on data paths rather than control paths. 

Definition 32 Dataflow diagram 

The dataflow diagram is a graph-based description of the algorithm. It describes the 

evaluation of problems defined on time independent variables or evaluation of one 

time-instant for time dependent variables. In this model, tasks represent connected 

black-box systems, each having a separate variable space. Data exchange is explicit 

and implemented by messages. In dataflow diagrams, tasks are represented by vertices 

and communication links are modeled as directed edges. For every parameter passed, a 

distinct edge is added. Diagrams may have special vertices for environmental input – 

Sources and output – Sinks. Special pictograms exist for conditional enabling, merging 

and splitting of data paths. A dataflow diagram does not contain explicit ordering for 

task execution. Every task may be evaluated when all input messages have arrived then 

after calculation output messages have been sent. This is the data driven execution 

model. Dataflow graphs may contain circles for representing iterations. 

 

Serial ordering is not needed in the case of dataflow programming, since variable spaces 

of tasks are independent. All data exchange is explicit. Variables may have direct 

representation as nodes; although they are never overwritten by direct loops, outputs of 

calculations are fed to new versions. The execution is fully parallel in an asynchronous or 

synchronous way. Inner loops may have a higher update frequency than the global 

iteration cycle correlating to the update of time-dependent inputs. 
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The dataflow model is excellent for describing explicit parallelism. Software environ-

ments – for example LabView from National Instruments, Simulink from Matlab and 

System Generator from Xilinx – are designed for hardware in the loop measurements. 

They all follow dataflow programming methods. 

  

The message passing programming concept can be used in several programming 

languages through the quasi standard Message Passing API.  

In the dissertation the synchronous evaluation is used, which is more compatible to the 

time series concept introduced before. A further restriction is used: only well-behaved 

dataflow models are considered. 

 

Definition 33 Stream model 

In the case of well-behaved dataflow models, exactly one set of output messages is 

generated for a set of input messages, and all messages have predefined dimensions. 

Elements of a non-scalar structured data set are processed one-by-one. Merging of data 

paths must be defined uniquely, by using well formed network of conditional enabling 

or priority levels. This model is called stream model, as input data is streaming through 

the transforming steps of the system. 

 

The stream model was popularized through the Stream and Stretch processors around the 

Millennium by a Stanford University group and later a spinoff company [27]. 

Using the stream model, the graph of an algorithm can be evaluated via breadth-first 

traversal started from the input sources (data-driven model) triggering the evaluation of 

all successors, or from the output sinks using depth-first traversal (demand-driven 

model). In case of time-dependent input signals, the push model is more natural. 

The streaming model allows sub-results belonging to inputs at different time instances in 

the graph at different processing stages, and to split complex values into a series of 

elements and process one-by-one. 

Definition 34 Pipelined dataflow execution 

For dataflow graphs following the stream model, messages belonging to a given time 

instant may wave through the system and data from different input sets may be present 

at different stages of the evaluation. This is the pipelined evaluation model. 
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For an algorithm that stops in a Turing sense, the number of all iterations should be finite 

in function of the input size, moreover for a limited input size this iteration limit can be 

majorated by a constant. It means that iterations may be unrolled to sequences that are 

probably shortened if some condition is true (break from the loop). 

 

Dataflow diagrams may be created in hierarchy. Each task can be described with 

dataflow diagrams containing operators at the lower level of abstraction. At the most 

detailed level, only operators matching the instruction set of the current (virtual) machine 

are allowed.  

 

Using a pure dataflow model offers high utilization of parallelism and eliminates the 

need for global shared memory. In contrary, it needs fine grain communication compared 

to calculation done in each stage. 

States of a black-box represented by a task may change in the function of the input 

values. Some tasks may be assigned to the same processor core or cores accessing the 

same memory; the data exchange is still modeled as message passing, although in this 

case communication overhead is small. 

A hybrid model describing fine details with a sequence of instructions sharing a common 

variable space offers coarse grain communication. Moreover, state-variables may be 

stored in local memory. These facts underline the definition of task (Definition 18) 

For communication-effective implementation of an algorithm, the goal is to move all 

steps involved in a loop into a common task to formulate loop-less top level description. 

If it is feasible, the graph is a directed acyclic graph (DAG). It may contain delayed 

versions of the previous calculations (stored in long term memory). 

 

In the frame of this dissertation my main goal was to deal with video processing algo-

rithms that can be modeled with a DAG at the top level of hierarchy. 
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C h a p t e r  T h r e e  

MULTI-FOVEA ARCHITECTURE 

3.1. Image Flow Processing 

The main targets of the Multi-Fovea Architecture are the image processing algorithms. 

Basic concepts are summarized shortly in this section. 

Images are results from 2D sensors sampling (light) intensity with finite spatial resolu-

tion. Color images are handled as multiple 2D channels. For practical reasons Images 

will be defined using a more general structure than a matrix: 

Definition 35 Image, pixel 

Image is a type qualifier for entities described by a 2D to 1D function: 

 [ 1.. 2]1.. 2] ,:[ y y Px x PI , 

Values are defined for integer locations by the image matrix. In the function „x‟, „y‟ 

components of a left-handed Cartesian coordinate system is used, following the image 

processing terminology. Elements of the image matrix are called pixels. They are 

indexed in row, column order. For sub-pixel locations image values are defined via an 

interpolation function: 

,
, ; 1,2,.. ; 1,2,.. ; ,

v u
I u v u n v m n mI  

,I Interpolatex I x  

The size of an image is equal to the size of its image matrix. 

I x I  

If the range of the function is binary, the image is called a mask, highlighting that some 

property is true or false at a given location. In other cases the image is called a map 

describing some spatial attribute. 

Processing of single images is the study of image processing. In case of snapshots taken 

continuously it is possible to extract temporal information beside spatial information 

from the environment. Video processing algorithms are dealing with flows generated by 

imagers. 
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Definition 36 Image-to-image operators 

Operators taking images as attributes and resulting in images are image-to-image 

operators. The output image must be specified by defining all elements of its image 

matrix. Spatial transformations alter the domain of the image, while range 

transformations alter only the values of the functions. Spatial transformations may 

refer to (u,v) values that are outside the domain of the input image. In this case a 

default value is used.   

Definition 37 2D Operator 

A 2D operator is an image-to-image operator that is defined on the elements of the 

input image matrix. 

Definition 38 Image flow, Frame, Frame rate 

Image flow or video is a list of images of the same size ( kI ) taken at regular 

intervals. The index represents time using the constant time step.  

Individual images are also called frames. Frame rate is the number of image matrices 

generated by a source in a second. 

Definition 39 Image flow/video processing algorithm 

Video processing is an algorithm using an image flow as its main input. The 

discretized time unit is aligned to the frame time (reciprocal of the frame rate) of the 

device supporting the input flow. 

 

Neighboring pixels of the image matrix are closely connected in a logical sense. In most 

cases they are projections from the same real-world object. The topologic connectivity of 

the pixels must be respected during processing. 

The high level description of the algorithm consists of operators defined at the image 

level, not at the pixel level. This abstraction is useful since usually preprocessing (noise 

reduction, spatial filtering for feature extraction) is highly uniform at the pixel level. A 

wide range of operators either combine two images point by point – for example, image 

subtraction and addition – or when defined for a single input image, process a small 

neighborhood of pixels (typically3 3 ,5 5 ) – for example, convolution. 
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3.2. Introduction of the Multi-Fovea Approach 

Processing the entire data captured by an image sensor at full resolution is computation-

ally expensive, and in most cases unnecessary. Even in the human visual system, data 

convergence can be observed: the amount of data processed and transferred from 

photoreceptors in the retina to cortical structures via the optic nerve significantly 

decreases, whereas the abstraction of the information extracted increases. Light intensity 

is captured by roughly 130 million sensory cells and is transferred by only 1 million 

ganglion cells.  

Similarly to biological vision mechanisms, in an artificial visual system a decision can be 

made at an early stage of the image flow processing algorithm to locate interesting 

regions. Thus, the computational effort can be focused on critical areas, and an efficient 

processing scheme can be formulated with moderate data transfer between modules. 

I have designed a virtual heterogeneous many-core architecture for image processing 

algorithms that are convergent, starting from direct sensory input and can be described by 

acyclic dataflow graphs. Convergence is referring to the extraction of compact informa-

tion from inputs represented with topological maps with smaller resolution, image parts, 

or scalar values. This property calls for heterogeneous processor structures. In applica-

tions, where the high frame-rate is important (e.g. 10.000 fps), sensor pixels can be built 

in the processing topology to eliminate the need of wide and/or ultrafast cross chip 

communication circuits. If the program can be transformed into a representation contain-

ing iterations and recursions only at operator level an acyclic dataflow graph can be 

created. In this case, program execution can be mapped to many cooperative processors 

requiring clean and pre-calculated synchronizations. 

Hardware realization can be designed to solve data parallel tasks in each region, or 

existing vision processors can be utilized. The concept is to define a virtual architecture 

that can work as a common abstraction level. It offers high level algorithm design and 

analysis opportunity hiding the underlying hardware.  

Selected regions are called foveal windows analog to the fovea of the mammalian retina. 

They are rectangular regions covering a part of the original input frame depending on the 

scale factor.  
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Fovea-based video processing algorithms use image processing operators on original or 

scaled images or at extracted interesting regions. The basics of this model were also 

described in [28].  

One of the key topics of the dissertation is to summarize design considerations utilizing 

this concept. Some restrictions are used to achieve maximal parallel computation. 

Algorithmic capabilities are presented in the field of independent motion detection. Four 

different classes of state-of-the-art algorithms were observed. Common high-level 

elements of the algorithms under consideration can be separated into three major 

categories: at first interesting regions are selected by using mainly topological 2D 

operators (Class 1), then the regions are processed using local adaptation in each region 

(Class 2) and some numerical descriptors are extracted. Finally, depending on the 

topology of the windows and the extracted values, a global decision is made (Class 3) for 

aligning consecutive frames. Their flow-chart can be found in APPENDIX C. 

Processing steps in the upper three classes are highly different in terms of the required 

operator set. In the next section a unified virtual architecture is proposed for optimal 

computation with three different types of processors: the Frontend Processor Array 

(FPA), the Foveal Processor Array (FVA) and the Backend Processor (BP). They 

communicate via an intelligent Memory Manager Unit. The virtual architecture can be 

realized on various hardware components, offering a common platform for the algo-

rithms. 

Based on the analysis, a new algorithm is proposed called the Elastic Grid Multi-Fovea 

Detector or Elastic Grid Algorithm (ELG) in short. It is characterized by moderate 

hardware complexity while maintaining competitive detection quality. 

Algorithm design using the Multi-Fovea approach can be formulated as follows. To 

describe a general video processing algorithm, a dataflow diagram is used (modeling). 

Then, all processing blocks are mapped to a virtual processor depending on the required 

operator set and transfer times (partitioning). For a given underlying hardware platform 

the individual blocks are implemented, code segments and parameters could also be 

optimized (implementation). 

3.3. Virtual Hardware Model 

Computationally extensive applications need special balance between hardware and 

software components to achieve performance in an economical way. Low level pro-
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gramming for a given hardware can result in very efficient code although the current 

hardware capabilities limit the thinking of the programmer, and the code is not reusable 

for new software versions and especially not for next generation of the hardware. 

Moreover, programs may not be portable at all. Software development also requires deep 

knowledge of the current hardware. On the other hand, high level conceptual program-

ming is comfortable for the programmers and offers good effort tuning possibilities; 

however, the effort to write the necessary compilers is out of scope of smaller hardware 

companies. 

Defining common software programming interfaces (Application Programming Interfac-

es - API) and writing hardware specific drivers is a working solution. For high definition 

computing it is necessary to specify communication and synchronization schemes, 

memory hierarchies and efficient high-level operators beside the specification of the 

basic instruction set.  

Virtualization may offer a solution and split the needed effort between the players in 

business. A programming method for the virtual architecture to be used by developers 

may be defined. The common abstraction layer may be defined over several different 

hardware platforms. Vendors can still find their competitive edge and customers by 

implementing some aspects faster while offering all services at an adequate level. In that 

case, the effort to write the compiler to the virtual machine can be shared and the 

machine-specific implementation effort is probably acceptable by manufacturers. The 

biggest advantage is that vendors can persuade software companies to use emerging 

technologies, since the gap between the conceptual programming and the hardware level 

is hidden by the compiler and the running environment. Moreover, virtual architectures 

may offer larger-scale services than are actually implemented in some emulated way, 

extending technical limitations. 

The most prominent virtual architecture nowadays is probably the JAVA virtual machine 

and .NET platform, used by millions of programmers on several different platforms, 

offering enormous scalability spanning from heavy-duty server applications to games in 

handheld devices. 

In our case – since the multi-fovea image processing needs different operators in 

preprocessing, foveal processing and classification stages – multiple virtual units are 

defined. While analyzing the different algorithms, the minimal set of operations may be 

collected that must be supported by the units. 
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3.4. Multi-Fovea Framework 

As it was declared in (Section 2.2.2), the stream model and dataflow description is used 

for describing the image flow processing algorithms. This high level description is close 

to conceptual level, still may be implemented in a straightforward way. In the frame of 

the Multi Fovea Approach, two important extensions to the basic stream model are 

required. In the basic stream model, data flows of composite types are allowed with 

predefined dimensions. This means continuous traversing of all elements and homogen-

ous operator application is valid along with merging of all results in the same predefined 

serial order. 

In case of video processing (especially for preprocessing) high level operators are 

defined as image-image transformations. Elements for stream processing may be a 

rectangular region of pixels. Since neighboring pixels are needed for topological 

operators, neighboring packets must be accessible or temporarily stored in memory. This 

is the first extension that allows referring neighboring packets in 2D topology. 

Furthermore, extracting the interesting portion of the stream is also added to minimize 

data transfer and calculation. A hybrid architecture is needed to support these features. 

This is described in this section in detail. 

 

In [4] I proposed the virtual hardware architecture called Multi-Fovea Framework 

comprising of three different types of processors for ideal computation of each image 

processing step, which communicate via a complex Memory Manager Unit (Figure 3.1). 

The first processing unit is called Frontend Processor Array (FPA) used for preprocess-

ing, and it also contains the sensor (or interface) for image capturing. 

3.4.1. Frontend Processor Array 

The data-parallel structure of the problem allows the usage of a large number of indepen-

dent threads, each processing small, possibly overlapping partitions of the input image 

maps. Since the data and operators rely on 2D pixel topology, it is practical to identify 

the threads with 2D ID-s. If the threads are branchless, Processing Elements may share a 

common Instruction Unit. 

The underlying implementation of the FPA can be a strong single threaded processor or a 

pixel-pipeline. Alternatively, a real array of cores may be designed executing many data 

parallel threads with distributed local memory. In the later case, communication links are 
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required to neighbors for sharing overlapping data either in a coarse grain or a fine grain 

configuration.  

As a result of preprocessing, the fixed sequence of operators produces some filtered 

versions of the input frame combined with some images from the past. Combination of 

grayscale maps should produce at least one feature mask indicating interesting locations. 

Preprocessing should run in real time keeping up with the frame rate of the input source. 

This unit must have enough local memory to store all intermediate data in the processing 

step of a given input frame – Short Term Local Memory (STLM), and even some extra 

memory to store results from previous time instant(s) – Long Term Local Memory 

(LTLM). 

 

 

Figure 3.1.  Main processing elements of the virtual hardware architecture: the Frontend Processor Array 

(FPA) for data-parallel steps with Processing Elements in 2D topology; the Foveal Processor Array (FVA) 

for task-parallel steps, and the Backend Processor (BP) responsible for control, organization, and 

classification. 

A Processing Element (PE) consists of some registers and a logic and arithmetic unit (ALU) and optionally 

some local memory. An instruction unit can support multiple PEs. Images can be stored in a distributed 

way in the FPA to grant fast access to mapped image parts if communication link for neighbors are present 

for sharing overlapping data. 

Processors interact via an intelligent Memory Manager and some direct control lines. List of 2D vectors, 

scalars and images of full or scaled size are transferred through the communication channel “A”. Channel 

“B” is for images of foveal size and scalars (or vectors). Images of arbitrary size and scalars (or vectors) 

are transferred through channel “C”.  
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The basic operators used in preprocessing are enumerated as follows.  

The resolution of the sensor array is 
0A  ( m rows and n  columns). In some cases a 

smaller resolution is enough for describing the scene. Support for down-sampling to 

create images with scale factor (2,4,8..) pixels is highly desirable. 

Definition 40 Image scaling operator, scale factor 

An image scaling operator is a unary image to image operator resulting in a smaller 

image matrix. The resolution of the sensor array is 
0 [ , ]A M N  ( M rows and N  

columns). The image downscaled with factor s  has the resolution
1

02

1
sA A

s
. 

The mapping for image matrix elements is implementation specific. 

 

For data parallel execution it is important to split images into smaller pieces and 

implement image-image operators using those parts. 

Definition 41 Image window (window)  

An image window (or window, in short) w is a pair ,c r defining a rectangular region 

of an image. c is the center vector, and r is the radius vector (half size along both 

dimensions). 

Definition 42 Extracting operator (CutOut) 

An extracting operator is an operator resulting in a part of the image defined by a 

window. The extracting operator may have a boundary condition for image parts not 

covered by the input image matrix in case of an overextended window. 

1

1 2

1 1 2

2

2 ) :( , ( ,[ , ])E w r r

r r

I x I x I x

I x

c

 

The Frontend Processor Array is a virtual regular 2D topology of processing elements. 

The image must be split into tiles to allow one-to-one mapping between processing 

element and image windows. A regular topology can be described by simple constraints: 

the common radius values for windows, and a grid describing center points. The memory 

manager can be used to position the grid with some offset. The radius for extraction can 

be set to cover all image pixels, or some pixels may be excluded. Overlapped windows 

are not preferred, since processing elements can access the needed data from their 

neighbors through communication mechanisms.  The processor – window mapping is 
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rigid one-to-one association that must be defined in the program. The defined grid 

dimensions mapped to the physical processor structure through virtualization. If the 

physical dimension is larger, some processing elements are in idle state.  

 

Definition 43 m n Grid 

An m n  grid is a 2D list of vectors , ,{ }: [ , ] ; 1,2,.. ; 1,2,..T

v u v u u v v m u ng g , or 

scaled and translated: , ,*v u v ug g t . 

Definition 44 Tiles of an image 

Tiles of an image compose a 2D list of images extracted from an image by using all the 

vectors of a grid with the same radius, covering all pixels once. 

, , ,
, , , ( , )v u v u T v u

T r E w rI g I g I  

Definition 45 Concatenation operator (Merge) 

Images with proper sized image matrices can be concatenated (horizontally or 

vertically) by concatenating their image matrices. 

1 2 3 3 1 2

1

1 2 4 4

2

, ;

, ;

h

v

C I I I

C I I I

x x x I I I

I
x x x I

I

  

The concatenation of an 1D image list is a single image, defined by the concatenation 

of image matrices in the order of indexing. For a 2D image list along the first 

dimension, horizontal concatenation is done for all images in a given row, resulting in 

a 1D image list, then a vertical concatenation is applied resulting in a final image. 

The concatenation of non-image typed arguments is a list. 

 

Image processing operators following a pure stream model may be calculated over tiles 

of images. This splitting allows the use of many processing threads. Pointvise operators, 

for example addition can be calculated by applying a core operator (Add in the example) 

to each pair of tiles and then by concatenating partial results. 
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Definition 46 Pointvise operators 

The operator F is a pointvise binary image operator if the image matrices of the 

operands are defined to generate results equal in size to the inputs, and all elements of 

the output matrix are dependent only on the corresponding input element. 

, , ,: ,v u v u v uF fF I J  

 

A special class of operator, neighborhood operators or 2D topologic operators are 

definable with a grid and a core operator, thus they are good targets for parallelization. A 

core operator refers a range of pixels in a given radius as read set, and updates a smaller 

range of pixels. In that case the write sets are disjoint and cover the full image, although 

the read sets overlap. The most widely used neighborhood operator is convolution. In 

finest granularity, convolution is defined for separate output pixels.  

To implement such operators, overlapped tiling (T*) is needed. The union of all tiles is 

always larger than the original image matrix. 

3 3 ,

1.. 1 1..

, ,

,

1

:

, ,* ,3

x v u v u

i v v j

j

u u

i
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To avoid overlapping tiles, a possible solution is to give read access to the core operators 

to neighboring tiles. This can be solved by communication between threads or buffered 

pipeline processing. 

Details on efficiently implementing topological operators using various hardware 

configurations can be found in [29]. 

The main purpose of preprocessing is the localization of interesting regions, this is the 

final important functionality connected to the Frontend Processor Array is the location 

extraction function. It results in a vector of positions that can be used to define foveal 

windows. 

Definition 47 Location extraction operator (Locate) 

L is the unary location operator that results in a list of vectors that covers all true 

elements of the input mask: 

,

,
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v u
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3.4.2. Foveal Processors 

After preprocessing, interesting regions with a resolution of mw nw  ( Aw size) are 

selected and stored in a list. Individual windows are referred to as 
iw , whereas the 

coordinate of the corresponding center is referred to as 
iw . Foveal windows are extracted 

from some preprocessed image by the Memory Manager Unit, and sent to a processing 

element of the Foveal Processor Array. 

Definition 48 Foveal image 

iFI x  is a foveal image, the result of an extraction operator applied to a given 

image. 

,:i ii
ww EFI x I  

Since the windows are not covering the full image, this operator is called the CutOut 

operator. CutOut may take multiple images. In that case it is a group of operators 

resulting in multiple lists of foveas taken from the same regions of each image (see 

Figure 3.2). 

Foveal processors (cores inside FVA) are fed by the Memory Manager Unit. This unit 

maps the corresponding windows of the filtered images to the memory space of a 

processing unit. Improved analysis needs more sophisticated algorithms with branching; 

therefore, these steps are task-parallel rather than data-parallel. It means the possibility 

for pipelined processing is limited.  

The foveal windows can be distributed in various configurations and their overlapping is 

small, thus topological thread – processing element mapping is not reasonable.  
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Figure 3.2.  On the preprocessed maps interesting locations are marked. Since feature points can be 

distributed in various configurations and they are not linked, 2D fovea indexing is not necessary. Foveal 

regions are squared windows extracted from the maps. A window is referred to as 
iw ,whereas the 

coordinate of the corresponding center is referred to as 
iw . Foveas cover mw nw  sized regions. 

Operations executed inside foveas can be sophisticated, characterized by large neighborhood ( mt nt

sized) and possibly branching in their control flow. 

 

To describe a feature by a support region, some fixed number of pixels is required to 

have enough variance. In most cases, this means that window size in pixels does not 

depend on the scale of the given map. Instead the size of the window is fixed; therefore, 

the coordinates of the centers are scaled before merging. 

Operations inside foveas usually use large neighborhood ( mt nt ), and refer only some 

locations inside the foveal window, and not all possible placements. This function may 

be supported by local CutOut or more efficiently by indirect addressing. This operator is 

called Index to distinguish it from the one working in the memory manager.  

Definition 49 Local extraction operator (Index) 

Index is an extracting operator working locally inside a Foveal Processor Array 

resulting in a part of the image, defined by an offset vector and a radius. The index 

operator may have a boundary condition for image parts not covered by the input 

image matrix in case of an overextended region definition. 
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Accumulation of partial results through commutative operators –addition, for example – 

is common. Support for so called scan primitives is a useful additional feature in foveas. 
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Since the number of the foveas may be much larger than the number of the processing 

elements, long term local memory is not required at this level. All results needed for the 

next iteration need to be saved. The frame is processed when all foveas are ready. Foveal 

processors may have more sophisticated programs with branches and limited iterations as 

well, optionally supported with high level data-parallel instructions implemented by 

further threads. In this case templates may have large radius and may be executed only at 

given locations, not for all possible placements inside the foveal windows.  

Output of a fovea may be an image part backprojected by the memory manager unit to a 

global image using the position of the fovea in the original frame, or some scalars 

collected to a list.  

3.4.3. Backend Processor 

The Backend Processor is a serial processor that can access any global memory space 

and conducts all the serial calculation. BP is capable of setting up the window configura-

tion for foveas and loading the program for both foveas and frontend units.  

Algorithmic steps should be analyzed, and depending on their properties, different 

mappings could be applied. Considering data transfers, computational steps should be 

assigned to the appropriate virtual hardware module. This is the partitioning step of the 

algorithm design. 

To sum up the requirements about the virtual architecture, the following definitions are 

given: 

Definition 50 Frontend Processor Array (FPA) 

The Frontend Processor Array is one array processor of the virtual hardware model for 

processing full-sized images in cellular data parallel fashion through 2D indexed 

threads, with efficient global synchronization. The main operator family consists of 

fine grained 2D topological operators with small neighborhood, defined by branchless 

core operators described on finest granularity. It should support numerous Short Term 

Local Memories, and some Long Term Local Memories in full image size. CutOut and 

Merge should be implemented (or may be implicit via distributed memory space). 

Read-only access for data space of neighboring threads should be granted.  
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It should provide an interface to the image sensor for full image upload. and download 

to the Memory Manager Unit, and should implement Locate. As an additional feature, 

it may implement scaling operators, and it may offer an interface to the Memory 

Manager Unit to CutOut foveas directly. 

Definition 51 Foveal Processor Array (FVA) 

The Foveal Processor Array is one array processor of the virtual hardware model for 

processing foveal regions extracted from images in task parallel fashion, with efficient 

local synchronization for threads processing a given fovea. It should handle 2D 

topological operators with larger neighborhood. Foveas are evaluated independently, 

control flows may diverge. It should support efficient synchronization between threads 

of a given fovea, and some mechanism between all foveas. Access to the data space of 

threads of a given fovea should be granted. It should support numerous Short Term 

Local Memories in foveal image size. It should provide an interface to the Memory 

Manager unit to upload and download foveal sized images. An indexing operator 

(indirect addressing) is a required feature in accessing local memory space. As 

additional features, it may implement Long Term Local Memory and communication 

between foveas, and direct accumulation. 

Definition 52 Backend Processor (BP) 

The Backend Processor is the serial processor of the virtual hardware model, for 

processing non-image data, or image data not fitting the capabilities of the other two 

execution units. It is responsible for coordinating the other modules. 

Definition 53 Memory Manager Unit 

The Memory Manager Unit provides data from the global memory for the other 

processors. Communication can be synchronized by the Backend Processor. This unit 

implements the CutOut and Merge operators for the Foveal Processor Array. 

 

3.5. Implementation 

The virtual architecture is feasible if a large portion can be realized in real hardware. 

With the emerging new devices the Multi-Fovea Architecture becomes more and more 

feasible and important to offer abstraction for different solutions. 
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3.5.1. Cellular Architectures 

Along with the spreading of the Cellular Neural Network [30] paradigm, hardware 

implementations were introduced. The operators in the CNN paradigm may cover 

morphologies, convolution-like templates and kernel-based wave functions. The latter 

are implemented via direct feedback or iteration. The algorithmic capabilities of the 

CNN-UM [31] (CNN universal machine) were inspiring the definition of the Frontend 

Processor Array with its cellular distributed structure.  

Implementations may be categorized into three major groups. The first and usually the 

most powerful is the mixed-mode (analog and digital) VLSI implementation like the 

Ace16K [18], the SCAMP chip [32], and the eye-RIS chip [19]. They are also referred to 

as focal plane processors since they have direct optical input via sensors integrated into 

processing elements. These architectures employ one-to-one mapping between pixels and 

processors. Vision Systems are created based on them like the Bi-i system [33] or the 

eye-RIS system designed for industrial purposes.  

The second class is the emulated digital class that splits into two subcategories. The first 

is the pipelined version – such as the FALCON [34] architectures implemented on DSPs 

or FPGAs – while the other is the coarse grained processor array, for example Xenon 

[35], where n pixels are mapped to m processors in sparse-grain configuration. 

The third category consists of optical implementations like POAC [36] which takes the 

advantage of optically feasible filters (e.g. lens).  

These implementations give researchers a handful of tools for processing two or three 

dimensional sensory data flows which are received usually from visual or tactile sources. 

Universal Machine on Flows (UMF) [17] flow-chart is the basic algorithmic notation.  

Systems built using these cellular arrays were always extended with a strong serial 

processor (or the CPU of the host system was used) to do serial classification tasks. 

The foveal concept was introduced in the third version of the Bi-i system, through the 

Cellular Multi-core Video Analytics (CMVA) engine and in the highly configurable 

Xenon architecture. Those extensions are important for efficiently processing inhomo-

genous operators. 

The latest development of the Eutecus Ltd. called VISCUBE [37] – designed in a joint 

effort with the researchers of Anafocus Ltd., and the Cellular Sensory Wave Computing 

Laboratory – is a true multi-foveal architecture. 
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3.5.2. Compute Unified Device Architecture 

In the PC environment the multi-core tendency had a high impact on the video card 

market. Nowadays Graphics Processing Units (GPUs) with 128 processor cores are 

widely available. Owens et al. show in their survey [38] that more than five times greater 

computational power can be achieved compared to nowadays‟ CPU used worldwide in 

personal computers. The new architectures using general purpose cores in multiple single 

instruction multiple data (SIMD) groups offer data-parallel and also task-parallel 

parallelism. Nvidia discovered the extreme need for general purpose programming 

environments and released the Compute Unified Device Architecture (CUDA) environ-

ment [39] for their general purpose (GP-GPU) cards (Figure 3.3). Threads may be 

lunched in 2D or 3D topology with user defined granularity and core function. The 

contexts running on the same multiprocessor may synchronize. This setup is isomorphic 

to the Foveal Processor Array structure. In [1] we have described a mapping to realize 

functionalities of the Frontend Processor Array.  

 

Figure 3.3.  Hardware model of the Nvidia GeForce 8 series cards [20]. It is a new, unified hardware 

architecture with multiprocessors (MPs) that have dedicated shared memory accessed by a few scalar-

based processors. Processors (processing units) work with their own registers and are driven by a common 

Instruction Unit forming a single instruction multiple data architecture. Algorithms can run on multiple 

MPs, although communication between MPs via the Device Memory is relatively slow. Data can be loaded 

from the read-only Constant and Texture Cache as well. 

 



Conclusion 

 

39 

3.6. Conclusion 

In this Chapter, the Virtual Multi-Fovea Architecture and computational framework has 

been proposed, which decomposes a broad class of image processing algorithms into 

topologically different parallel processor arrays. The description of the virtual architec-

ture was also given to support the optimal hardware oriented decomposition from the 

initial description of an algorithm. It was shown that this concept is more effective for 

converging algorithms than the popular streaming model. 

Thesis I.: Algorithms dealing with direct topographic sensory inputs may contain large 

number of steps suitable for data-parallel execution due to the natural structure of 

the data. Based on this observation, I have worked out a novel virtual hardware ar-

chitecture model (Multi-Fovea Architecture) enabling communication-effective de-

composition of those family of image processing algorithms, that are convergent, 

starting from direct sensory input and can be described by acyclic data flow graphs. 

The proposed structure effectively evaluates algorithms consisting of operators with 

different radii of coupling and topology, and nonhomogeneous spatial coverage by 

using three specific processor arrays. This heterogeneous structure fits the family of 

algorithms better than the general homogeneous parallel structures without losing 

general programmability. 
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C h a p t e r  F o u r  

MULTI-FOVEA ALGORITHMS 

4.1. Overview 

4.1.1. Unmanned Aerial Vehicles  

Unmanned aerial vehicles offer economical solutions for vegetation classification, flood 

and fire defense and large area surveillance. Today unmanned airplanes are capable of 

flying over the operation zone following a predefined path using an intelligent navigation 

system based on GPS and motion sensors. During the flight, they can gather information 

and transmit to a ground station via radio connections. Recorded video shots can be 

analyzed after landing in offline mode: consequently, thorough analysis is feasible either 

by human experts or using machine intelligence. The flight path can be modified when 

interesting events are detected in order to collect more detailed information. The aim of 

the ALFA project was to devise an optimal architecture for an onboard visual system 

capable of making these decisions. The Multi-Fovea Architecture had been designed to 

be universal for a wide range of video processing tasks. It is reviewed and analyzed 

focusing on the specific application area of independent ground motion detection. 

4.1.2. Airborne Motion Detection  

In large field airborne surveillance applications [40] the detection of moving ground 

objects is a key issue. After detection of these objects, they can be followed by the 

airplane and with enough information they can be identified as well. A good review for 

tracking can be found in [41]. Besides military applications, another application field is 

traffic monitoring [42]. 

For medium altitude video flows (100-300m) main streams in detection are optical flow 

[43][44][45] and registration-based methods using background subtraction. For low 

altitude videos, a real 3D analysis of the scene is required [46][47][48][49][50]. Howev-

er, in large field surveillance tasks medium altitude is more common. 

For a good review on general optical flow methods and registration methods, refer to 

[51] and [52], respectively.  
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In this Chapter, feature-based registration methods for background subtraction are 

reviewed and compared to highlight the capability of the framework. This approach for 

independent motion detection is popular among researchers [53][54][55][56]. Creating 

panoramic images from frames captured by a rotating camera is also an active research 

field. This problem covers similar registration tasks but may use offline algorithms with 

much larger computational needs [57][58][59][60][61]. 

Mikolajczyk and Schmid recently compared local image feature descriptors [62]. They 

highlighted the efficiency of the popular Scale Invariant Feature Transform [63]. I will 

compare the SIFT-based algorithm and the Kanade-Lucas Tracker [64][65] with 

traditional Block Matching [66] and Harris corner [67] -based Corner Pairing Algo-

rithms. On the basis of the overall analysis, I propose a new algorithm called the Elastic 

Grid Multi-Fovea Detector, which is characterized by moderate hardware complexity 

while maintaining competitive detection quality. 

 

4.2. Independent Motion Analysis 

4.2.1. Images and Video Frames 

Let us assume that the airplane flying over the inspection area carries a camera that faces 

the ground. The camera captures frames on regular time instances. Frames tI x  (

1,2,..t K ) are sampled light intensities that are projected to the image plane (sensor 

array) collected into a list for all time instances. 

Homogenous representation of points on the image plane is a column vector 

3
1, 2, 3 1, 2, 3H

T
x x x x x xx , 1, 2, 3x x x , where the corresponding point in Cartesian 

coordinates is 2 1', 2 'x xx , 1' 1/ 3; 2 ' 2 / 3x x x x x x . Scene points (points in the 3D 

world) are represented by Cartesian coordinates in most cases 3 1, 2, 3x x xx ,

1, 2, 3x x x . Homogenous representation will be denoted by the symbol “H” in 

subscript over the dimension.  

Images are described by functions, and defined and stored using matrices. In practice, 

video sensors have finite resolution; therefore, intensity values in frames are defined at 

integer coordinated pixels only – m  rows n  columns by the image matrix 
kI , in 
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horizontal and vertical order, respectively ( 1,..u n , 1,..v m ), 
,

, :k k v u
u vI I . For 

noninteger points, values can be interpolated – 2 3
, Hk kI x I x . 

 

The camera projects scene points to image points:  

 
3 4H HPx x  (4.1) 

P  is defined more precisely in the 4.2.3 subsection. It assigns a ray of 3D points to an 

image point.  

In a simplified capturing model we have light sources and reflecting surfaces. Pixel value 

in a frame is the total intensity coming from the specific ray; therefore, we are interested 

in the point 
3x  where the ray intersects a surface element of the scene. We consider 

surfaces that exhibit Lambertian reflectance (diffuse reflection). Therefore intensity for 

an image point depends on the incoming intensity and emission at the corresponding 3D 

location but not on the relative orientation of the surface element and the camera since 

the surface causes omnidirectional reflection. 

 2 3kI x I x  (4.2) 

Detailed description of epipolar geometry and camera models can be found in [68] and 

[69]. 

 

4.2.2. Background and Objects 

The scenes considered – namely large open-field areas or highways – with region of 

interest constraints may be regarded as flat surfaces, since the variation in height of the 

ground is small compared to the distance from the camera. Thus, we can model the 

ground as a plane with a texture map 2B x . This texture is the background image, 

describing the intensity values of the static empty screen. In some cases a small part of 

the sky is also visible in the frames. The bounded volumes of the 3D scene having non-

negligible height or changing their position are objects. Objects in frames can be 

described by their shapes and appearances. The silhouette of an object is the region 

where it covers the background. The shape is the description of the silhouette, and the 

appearance is the model how it alters the background. Both properties are time-dependent 
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because of the camera motion. By definition, areas where shadow is cast also belong to 

the specific object. 

4.2.3. Global Image Motion Model 

Using a homogenous vector representation of image coordinates 
3Hx  and world points 

4Hx , camera mapping (4.1) may be directly described as a 3 4  linear projection: 

 33 : 4 4( ', ',1) ( ) , , ,1H H

Tk

k
x y P H x y zx x  (4.3) 

This representation may be used for pinhole or orthographic camera models representing 

camera pose-dependent external parameters and internal parameters as well. This linear 

model is a good approximation if the lens distortion is compensated or negligible as in 

our case. The world coordinate system may be defined as the ground plane lying in the 

”X–Y” plane. The camera at time instant k  is located at 
3:kc  and has a specific orienta-

tion. During the frame-by-frame time the camera center is moved and its orientation is 

changed. Points from the surface are projected to image planes, forming video frames 

kI x  and 1kI x . Since for all background points the z coordinate component is zero, 

mapping can be simplified. The plane-to-plane transformation for the actual image can be 

described by a 3 3  linear assignment. 
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 (4.4) 

Or a direct relation may be expressed between points in images k  and 1k : 

 3 3
1

1
1

3 33 3H H

k k

k k
H Hx x  (4.5) 

 1

3

,

3 313H H

k

k k

kHx x  (4.6) 

 

This transformation maps points from the coordinate system of the k th
 frame to the 

coordinate system of th1k frame. The geometrical transformation may be calculated for 

all image points of 
kI : 

 

1,

33 [ , ,1]

{1,2,.. }

[

; {1,2,.. }

, ,1]k k T T

k kk H u v u v

n v mu

I IJ
 (4.7) 
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This means that frames containing common parts from the background can be aligned by 

a linear transformation matrix by using homogenous representation. In the most general 

case this can be a projective transformation. This is the global model for image motion 

(global motion model) describing the effect of the camera motion in consecutive frames.  

 

To calculate a smooth transformation, integer coordinates are used in the target coordi-

nate frame and interpolation is applied in the source frame (inverse mapping): 

 
3

1
1,

3[ ', ',1] [ '

{1,2,.. }; ' {1,2,.

, ', ]

. }

1

'

T k k T

k k

n v m

u v H u v

u

IJ
 (4.8) 

 

4.2.4. Motion Detection 

Using a global motion model, more frames can be aligned to a common coordinate 

frame. A large mosaic image can be created from aligned images combining image 

matrices where they overlap (blending), and fill uncovered regions with a default value. 

In most cases the airplane flies above an unknown field, which means the background 

image is unknown; if the background image is known, then the pose of the airplane is 

unknown. Indeed for the InputFrame ( 1kI x ), the previous image BaseFrame may be 

used as a reference after estimating the proper global motion and AlignedFrame can be 

calculated ( kJ x ) from kI x . They both cover parts of the background and different 

snapshots of the moving objects. The detection is the process of creating DetectionMask 

with “1” elements for locations that are recognized to be part of an object silhouette in 

the frame of 1kI x . The clusters in DetectionMask are listed in separate masks 

jO x  (ObjectMasks). 

The first task is to calculate frame-to-frame alignment. If it is reliable for a sequence of 

consecutive frames, a local background mosaic can be constructed from them. It is a 

robust estimate for a part of the background image, more reliable than using only a single 

frame from the past. For slowly moving objects or objects with special motion vectors, a 

small projected motion vector arises, resulting in small changes for shapes in consecutive 

frames. For a steady camera, the solution is to decrement the frame rate, but for a moving 

observer, a large overlap is also needed for efficient frame-to-frame registration. Small 
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errors in frame-to-frame registration do not limit the detection capability. However, the 

time span of reliable local background mosaics is limited, since the error accumulates. 

Building a reliable global mosaic for estimating the background image and to track the 

full path of the airplane (Simultaneous Localization and Mapping) is a difficult problem 

and it is not covered in this work. The main objective was to solve the detection task. 

4.3. Algorithms  

As it was described in Section 4.2.1, the series of input image frames are considered as 

the main input to the system. They are projections of the scene at different camera 

locations and orientations since the airplane is moving. 

In most cases, objects alter the background image in a special way, thus separate images 

can be analyzed for spatial features (e.g. colorful cars on the gray street). If the size of the 

object is known, even a filter tuned for a certain spatial frequency can be used. Since the 

background may also be textured and it is difficult to link features to form contours, it is 

more tempting to extract primitive spatial features and evaluate the change of their 

position in time. This means spatio-temporal analysis of the flow. 

First, feature pairs are (i) extracted and (ii) matched. Using this point-to-point correspon-

dence, (iii) a global motion model can be estimated. Finally, (iv) this transformation can 

be calculated for all pixel points in a frame using interpolation. The first four steps 

(Figure 4.2 a-d) of the process are called registration [52]. Since numerous feature pairs 

can be part of an object, a robust technique is necessary. 

An error measure can be defined on the intersecting frame regions, and outstanding 

regions can be detected. Since background regions must fit with small error, extracted 

regions are objects. This concept works only if the objects cover a small portion of the 

frame. For a basic solution the necessary steps are summarized in Figure 4.2, representa-

tive stages in Figure 4.3. 

The first step (a) is FeatureSelection. Feature points are selected from the new frame 

captured by the sensor (called InputFrame, or 
1kI ). At first a list of feature point 

locations is created, fp  containing 
1l  elements. For the extraction either some foveas 

are used or the full image is processed. Some feature locations are robust so they are 

selected for tracking: BasePoints bp . BasePoints used at a given step are derived from 

kI . 
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The second step (b) is FeatureMatching. On the basis of image parts extracted from 
kI  

from the vicinity of BasePoint locations and on FeaturePoints, a list of vectors is created, 

called InputPoints. For all elements in BasePoint a location is assigned with a similarity 

measure value (mu). If a point is lost, { }mu i  will be zero; if matching is robust, then 

{ }mu i  will be equal to one. Matching is done by using 
2l  numbers of foveal windows. 

Typically, this is the length of bp  list. The signed difference between { }iip  and { }ibp  

is the i
th

 displacement vector, { }ih .  

Using a threshold on mu values, reliable point correspondences are selected. The number 

of matched point pairs is 
3l . Illustration for steps (a) and (b) is given in Figure 4.1. 

 

Figure 4.1.  BasePoints are feature points selected for tracking on BaseFrame. New FeaturePoints are 

extracted from the incoming frame InputFrame – 
1k

I x  and matched, or search is applied in the vicinity 

of the BasePoint locations. During correspondence search / match InputPoints{i} is assigned to Base-

Points{i}. InputPoint{i} is NULL if BasePoint{i} is lost. 

 

Steps (a) and (b) can be done simultaneously (Block Matching Algorithms - BMA). The 

regions around point pairs can be matched. There exists a transformation that maps one 

region to its corresponding pair in the consecutive frame regarding the chosen error 

measure. For short time intervals, even pure displacement can be used as a local motion 

model. 

After extracting point features and forming pairs, based on (6), a transformation matrix 

can be linearly estimated using four point-to-point pairs. This is the third step of the 

algorithm (c). Since points are located with moderate precision in frames, some error 

arises even for background pairs. If the matrix is used for registering the full image 

afterward, it is crucial to use more correspondences with some robust fitting technique, 

Tracked BasePoint
Lost BasePoint

InputPoint
Unpaired FeaturePoint 

Ik Ik+1

Tracked BasePoint
Lost BasePoint

InputPoint
Unpaired FeaturePoint 

Ik Ik+1
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for example RANdom SAmple Consensus (RANSAC) [70] or Least Median Square. 

Outliers after the fitting indicate moving objects with high probability. 

 

Figure 4.2.  Global Registration Based Algorithm Family 

a) Feature/template selection: locates robust feature point locations on the incoming frame, 

InputFrame 
1k

I x . 

- Some grayscale maps are extracted along with the vector of robust feature point locations, 

FeaturePoints j
fp .  

- BasePoints or 
i

bp is a list of feature points selected for tracking in frame k
I x  

b) Feature/template matching: matches feature pairs, finds corresponding InputPoints 
i

ip on 
1k

I x  

(or select form j
fp ) for all BasePoints. 

- iip =NULL if  ibp is lost. 

- mu
i

 is also defined holding similarity measure for matching pairs.  

- Certain maps are stored for the next frame to support localization. 

c) Global transformation model estimation: estimates transformation on point correspondences. 

- A robust transformation matrix 3 3

, 1k k
H is calculated to map points in ibp to iip   

d) Alignment:  calculates transformation for k
I x and interpolates it. 

- The full image k
I x is transformed to the coordinate system of 1k

I x   

- The resulting image, AlignedFrame k
J x  should be defined for all pixel coordinates, thus 

inverse mapping is applied with interpolation in the frame of k
I x  

, 1, ,1
3

, ,1
3

T Tk ku v u vk kJ HI   

e) Detection:  

e/1; calculates error map - DiffMap(AlignMap). 

- DiffMap( E x ) is a grayscale image highlighting possible objects. Global registration based 

algorithms use AlignMap( A
E x ). 
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1
absdiff

A k k
E x I x J x  

e/2; performs segmentation to create DetectionMask. 

 

 

The BaseFrame can be aligned using the estimated transformation (d). DiffMap is a 

grayscale description with high pixel vales for suspected object regions. Global registra-

tion-based methods calculate an error measure; AlignMap takes the absolute-difference 

of the InputFrame and the aligned version of the previous frame. For this group of 

algorithms, DiffMap is defined to be equal to AlignMap.  

 

Figure 4.3.  Intermediate Results for the Global Registration Based Ground –Motion Detection Algo-

rithms: matched feature point pairs displayed over the previous frame (a); InputFrame (b); grayscale 

detection result (d); binary result with white blobs for moving objects (e). The overlayed edge-images (c) 

demonstrate the quality of the alignment.  

 

Since frames have finite resolution, fine features – textures and region boundaries – are 

mapped to discrete pixels, the exact location depending on the interpolation strategy. 

This one pixel ambiguity can lead to high registration error around edges. Another reason 

for possibly high error values is when the underlying assumption of the flat-world model 

is violated. In those cases when an object changes its position between frames high error 

values also arise around present and previous silhouette locations. Thus, the analysis of 

the error map can highlight objects, especially moving ones. This method can identify 

object boundaries and non-overlapping object parts but not the exact object shape. 

Therefore, this process is called moving object detection as opposed to object extraction 

where the goal is to recover the exact object shape. However, this detection framework is 

considered to give a focusing mechanism for shape extraction. Foveas can be directed to 

Alignment 

e d c 

b a 
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these regions and further analysis is required to extract the object shape in a more 

computationally effective way. 

If an object is detected in more frames, a tracker can be initialized to describe the motion 

of the object and possibly to build up a better object shape. Later on the track can be 

classified as belonging to a moving or a static object. 

 

In the next four subsections four different methods will be shortly described. All of them 

utilize the basic algorithmic concept but focus different amounts of computational effort 

on specific stages of the estimation-detection procedure. 

4.3.1. Corner Pairing Algorithm 

One of the most widely used point feature extractors is the Harris Corner Detector [67]. It 

uses autocorrelation-function to extract locations with a small support region that 

robustly differ from their neighborhood, that is, have large intensity changes in both x  

and y directions inside their surrounding regions. These feature points are likely to be 

present in the next frame as well. Corners are extracted from the incoming frame and 

stored for matching in the next time step. If the support region of a corner in the Base-

Frame is similar to a support region in the InputFrame, they are considered as projections 

form the same 3D region and paired. Feature extraction and matching routines were 

taken from Torr‟s toolbox [71], which uses the sum of the absolute differences (SAD) as 

similarity measure for matching. 

To extract interesting locations, the following image operators are needed: 

Pointvise: gain (multiplication with constant), product (binary pv multiplication), 

addition 

Cellular (with 1r ):  derivation in x and y direction, Gaussian low-pass filter, 

Locate:  maximum location based locate in 3x3 neighborhoods  

For constructing correspondence, there exist more sophisticated methods, for example 

graph cut [72]. As an alternative, a simple search for pairs may also be applied with 

gating based on Manhattan distance to keep complexity low (e.g., the three closest 

corners in 1k th
 frame are considered for each BasePoint). For this algorithm the second 

approach is used. 

Since the feature extraction can be done with small neighborhood, it is tempting to do 

this step on the frontend processor array. Then, for each location in frame k  the support 



Multi-Fovea Algorithms 

 

50 

window is extracted and matched with 3  windows from frame 1k . This step is within 

the capabilities of a foveal processor (AbsDiff and Accumulation operators are needed). 

If one matching is stronger than the others and also larger than a predefined threshold 

level, the pairing is considered to be successful. Since there is no search (possible 

locations are predefined), the window size can be equal to the template size. In the 

comparisons, this algorithm will be referred to as Corner Pairing Algorithm (CPA). 

4.3.2. Block Matching Algorithms 

If there is no hardware to support efficient array calculation to estimate autocorrelation 

for all pixels, larger regions can be handled together. One possibility is to define 

FeaturePoints statically as points of a sparse grid without locating feature points. After 

filtering uninteresting locations with negligible variation in pixel values, displacements 

are estimated for support regions centered at grid points. These techniques are called 

Block Matching Algorithms (BMA) or pattern matching algorithms.  

The feature selection in this case can be done in the Foveal Processor Array with similar 

operators to the ones applied in CPA, except that Gaussian filtering may be exchanged to 

accumulation for the full window. The result from each fovea is a variation descriptor 

value that can be used to exclude bad windows from further processing. 

A rectangular pattern, a template, is extracted from kI x  around BasePoint locations 

and matched against displaced image parts of the same size as 1kI x . Since there are 

no previously determined possible locations a search is performed in a given range. 

These search locations are displacements of integer values. They can be characterized by 

a similarity map centered around zero displacement. The basic operator of the search is 

the calculation of the similarity measure between the template and the corresponding 

image part of a given displacement at every try. It is called the match operator. In most 

cases this measure is the sum of the absolute differences or the sum of the squared 

differences. If the search radius is large, the Brute-force or Full Search method (BMA-FS) 

with exhaustive search can be outperformed by suboptimal or adaptive methods and 

solutions such as the Spiral Search, which focuses on smaller displacements at the 

beginning. They make an effort to keep count of already processed locations when 

selecting the next one. On the contrary, they calculate less elements of the similarity map 

than the Brute-force search. Block matching algorithms are widely used in video 

encoding for motion-compensation [MPEG1, MPEG2]. 
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The search logic and the match operator may be implemented in the Foveal Processor 

Array. Since evaluation of different foveas may diverge, this is a real task-parallel 

problem. In each iterations of a given fovea the calculated matching for the current 

displacement vector is accumulated locally, and finally the best batch is sent for merging. 

Diamond Search (BMA-DS) is one of the preferred adaptive methods. Diamond Search 

uses two diamond shaped search patterns: a Large Diamond Search Pattern (LDSP; 

5 5 ) and a Small Diamond Search Pattern (SDSP; 3 3 ). The similarity measure is 

calculated at every displacement grid point masked by the actual pattern and registered, 

thus overlapping possibilities are calculated only once. However, all of them are 

considered when optimum is chosen for the current step. Search starts with LDSP step 

which is repeated until the actual optimum is at the center of the mask, at which point a 

final SDSP is applied to find the exact solution. 

In Figure 4.4 an example is presented. Optimal displacement is 4,1  which is found 

using 21 search operators as opposed to 81 operators in the case of Full Search. 

Since BasePoints are fixed, there is no guarantee that the support region has significant 

intensity variance to support matching, thus a relatively large template size is necessary 

and autocorrelation-based prefiltering can be useful to eliminate BasePoints in homoge-

neous image regions. 

 

 

Figure 4.4.  Diamond Search Steps: 1. apply LDSP around (0,0) grid point and step East. 2. apply LDSP 

around (2,0) and step South-East, 3. apply LDSP around (3,1) . Since best choice is (3,1) which is the 

center element, apply an SDSP around (3,1). The final result is (4,1).  Altogether 9+5+3+4=21 match 

operators were executed, whereas for a Full Search with radius=4 81operators are needed. The example is 

from [81]. 
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4.3.3. Kanade-Lucas Tracker Based Algorithm 

The Kanade-Lucas Tracker (KLT) algorithm is a well-known solution for tracking 

feature points in a video flow. The basic concept of Lucas-Kanade optical flow calcula-

tion was presented in 1981 [64] and later extended to track feature points [65].  

Point features are extracted exploiting the properties of the selected local matching 

model. In the basic realization a pure displacement model is used for consecutive frames, 

although an extension for affine changes also exists.  

The template is extracted from the BaseFrame and matched in the new InputFrame. The 

similarity measure is the (weighted) sum of squared differences for all the pixels of the 

template. The matching is done with subpixel accuracy; therefore, interpolation is 

needed. 

 

 
2

1E= k k

T

I x I xh  (4.9) 

The optimization for the minimal similarity measure is done using a zero constraint for 

the gradient. 
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If h is small, 1kI x h may be estimated by its Taylor polynomial. 
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ix  elements are taken from a rectangular area; therefore, k iI x  and 1kI x  values can 

be collected after interpolation to F and G matrices, respectively. Using subscript 

notations “x” and “y” for spatial derivatives and  for element wise product (12) 

translates to: 
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22 2 2hZ e  (4.14) 

 

This linear equation system can be solved, thus the local optimum can be found for the 

displacement vector. In order to calculate h , the Z matrix must be invertible. This holds 

true if both eigenvalues are large positive numbers. This property is used for selecting 

good features to track. This feature selection is analogue to Harris corner extraction. The 

linearization error is moderate only for small displacement values; therefore, an image 

pyramid is created to support coarse-to-fine processing. Furthermore, an iterative search 

is applied at all levels to handle large displacements. 

The pyramid creation can be supported by the Frontend Processor Array. The operators 

required for corner extraction were enlisted in the section of the Corner Pairing Algo-

rithm. The displacement estimation fits to the Foveal Processor Array. Displacements are 

represented with 1/8 pixel accuracy with fix-point rational numbers.  

The Index&Interpolate function can be implemented using linear weights on the 

corresponding parts of the image matrix. This function is not the implemented by the 

Memory Manager Unit as the CutOut operator, but executed directly in the short term 

local memory inside the Foveal Processor Array. 

To implement division special arithmetical unit is needed inside the Foveal Processor 

Array. 

 

4.3.4. Scale Invariant Feature Transform Based Algorithm 

Scale Invariant Feature Transform (SIFT) [63] is a state-of-the-art solution for Key Point 

matching with two algorithmic steps. It extends the local displacement model with 

rotation and scale. The first phase extracts a scale invariant point set from Gaussian 

scale-space, whereas the second phase creates a distinctive descriptor vector that enables 

highly reliable feature point correspondence matching. This description is quasi invariant 

to affine transformations and illumination changes. The major drawback of the method is 

the numerical complexity, thus it cannot be realized exclusively on serial processors.  
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First, a Gaussian scale-space pyramid is generated using a series of convolutions of the 

input image and a Gaussian kernel ( , , )x yG . 

 

2 2

2

(x y )

2
2

1
G(x, y, ) e

2
 (4.15) 

Parameter  describes scaling. For consecutive octaves  of the Gaussian convolution 

the kernel doubles, whereas the effective resolution of the image decreases by half. By 

resampling every second pixel, a starting image for the next octave is generated. The  

values are selected to span O octaves, with ns subdivisions in each. When the pyramid is 

ready, filtered images with consecutive scales are subtracted from each other to produce 

the difference of Gaussian scale-space (approximation of the Laplacian of Gaussian 

operator). (Figure 4.5). 

 L(x, y, ) G(x, y, ) I(x, y)  (4.16) 

The feature points (key points) are selected from this three-dimensional image stack. A 

point is selected if it is a local maximum or minimum – depending on whether the 

luminance of the object was light or dark – of the neighboring ( 3 3 3 27) pixel 

values.  

In his original work Lowe proposed to start scale-space generation from an interpolated 

double resolution image (up-scaling) and to calculate three intermediate scales for each 

octave. 

 

 

Figure 4.5.  Top row: The input image is convolved with the Gaussian function (for example four monotone 

increasing sigma values: 1.5, 3.0, 6.0, 12.0), Bottom row: The nearest filtered images are subtracted from 

each other, creating the Difference of Gaussian (DoG) scale-space. Local extremes are extracted from the 

middle image using 3x3x3 connectivity as feature locations. 
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The size of the objects will shrink according to octaves, and small zooming effects may 

be cancelled due to the subdivisions in scale-space. 

For locating the interesting points, several Gaussian filters are needed. They can be 

implemented by a series of 3x3 convolutions. 3x3x3 maximum location over consecutive 

differences may be implemented with a series of 3x3 maximums and 3x3 logical 

functions, thus the feature selection may be assigned to the Frontend Processor Array. 

The SIFT descriptor is extracted from the vicinity of the key point (template region) in 

the corresponding scale-map. First, the gradient vectors for all pixels indexed by their 

magnitude and orientation are calculated, and an orientation histogram with 36  bins is 

created. To achieve rotation invariance, a transformed template is calculated for all 

regions by rotating the templates. The amount of rotation is determined by the maximum 

peak of the weighted histogram to align most edges in vertical direction. Multiple 

descriptors are created if several significant peaks exist, which increases the robustness. 

Second, the updated templates are divided into 4 4  subregions, and a 8 -bin histogram 

is calculated from the gradient vectors for each subregion in the same fashion as in the 

first step, resulting in a 128 -long vector descriptor for all key points. 

Creation of the descriptors would push the definition for Foveal Processor Array to be 

extended. It requires among topological steps the creation of histograms and localization 

of maximum positions. They are hard to implement in parallel. The efficient implementa-

tion of arctangent and square-root functions needs lookup tables that can only accessed 

serially. The imager rotation is also definitely a serial step. Altogether only a small 

percentage of a fovea‟s workload can be executed in parallel. 

Descriptor vectors can be matched with gating on proximity using the scalar product as a 

similarity measure by the serial Backend Processor. 

 

4.3.5. Global Registration-Based Detection 

InputPoints and BasePoints can be filtered to remove unreliable elements:

,bp bpf ip ipf . 
3l  denotes the number of point pairs. After point corres-

pondences are extracted, alignment can be done by searching for optimal transformation. 

The global motion model is a projection that is estimated by the Direct Linear Transform 

(DLT) method [68]. To make this review self-contained, a brief summary is given. 
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Equation (4.6) may be rewritten using filtered points 

 3

1,

33 3
: H H

k kk k H kipf bpf  (4.17) 

This mapping is defined on homogenous coordinates, which means that the vectors are 

not equal but parallel, differing by a non-zero scale factor. It is better to emphasize that 

they are collinear by using cross product. 
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Furthermore, 
1 1

3 3 3 3

T T
h bpf bpf h  
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This gives equations for all corresponding feature pairs. Since the equations are corres-

ponding to homogenous vectors, they are not independent. To solve the system, at least 

four point pairs are needed. The resulting over-determined linear system can be solved by 

using singular value decomposition (SVD). The singular values comprise H . 

To make the optimization robust against outliers, the RANSAC method can be applied. 

Its concept is to use a minimal set of points selected randomly to determine a transforma-

tion and then calculate a score for this selection. The score depends on the number of 

inliers consistent with the model of this transformation. For inliers distance measure is 

smaller than a threshold limit. In this case four point pairs are selected. Degenerate point 

sets with collinear points should be avoided: before running SVD, a test should be 

performed. The transformation with the largest number of inliers (
4l ) is selected among 

many tries. 

 

If the probability of any point pair belonging to the background is q, the probability that 

any of the four selected point pairs is part of the foreground can be estimated as: 

 41 q  (4.21) 
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To be sure to have selected only inliers at least once with – for example – a 99% 

probability, more trials should be evaluated (N). 

 
41 1 0.99

N

q  (4.22) 

After estimating the transformation and having a 
inl  number of point pairs consistent with 

the actual best try, we can estimate q using the relative frequency: 

 3

in

l
q

l
 (4.23) 

Then, it is possible to evaluate (4.22) using the estimate q and decide whether to generate 

further random sets. In addition, a hard limit for N can be defined to limit the number of 

iterations. 

The best transformation candidate defines the final inlier set. As a last step, a DLT 

routine can be applied to all of the reliable pairs using the first two independent lines of 

(4.20) to yield the final estimate. 

The complexity of the small SVD for all tries is: 

 2 39*12 12 3024  (4.24) 

whereas for the final DLT step complexity is in the magnitude of 

 
2 3

9* 2* 4 2* 4l l  (4.25) 

Since this is cubic in the number of used pairs, the 
4l number is limited to 20. 

For the implementation, the toolbox by Kovesi was used [73]. 

4.4. Elastic Grid Method 

The calculation of the projective transformation of the global motion model is rather time 

consuming since a global spatial transformation with interpolation is required. The 

algorithm described in this section gives an alternative solution by estimating the global 

transformation with tiles and local displacements. It performs a joint optimization 

process through coupling of the local displacement estimations utilizing the multi-fovea 

concept and the possibility of using foveal windows for efficient calculation. 

Even projective transformation conserves collinearity: if a point lies on a line defined by 

others, the points will still be collinear after the transformation. This property can be used 

to define an adaptive iterative search mechanism. 
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Elastic contours are popular tools for image processing applications, for example 

segmenting noisy images. The contour is built up from segments defined by control 

points. These points are iteratively moved in the image by a task-specific external force 

towards an exact segmentation result, whereas internal force balances this effect to keep 

contours pleasant (e.g. having low curvature). The elastic contour concept may be 

extended to an elastic grid, which could also be viewed as an extension and generaliza-

tion of the Block Matching family. In this case bp  points are not located feature 

points, but fixed points placed along a regular sparse grid. Since they are placed in a 2D 

topology, they can be naturally indexed with {row, column} indices, { , }k lbp .  

The algorithm starts with calculating the similarity measure for the template and 

corresponding region with integer displacements in a given range using normalized Sum 

of Absolute Difference (SAD). SAD values may be collected into a potential map for all 

{i,j} locations. Searching starts with 0, 0
T

 displacement. During the search, a 3 3  box 

search pattern is used. It follows that nine elements of the similarity measure surface are 

calculated. 

In all iterations of the elastic grid evolution, for all windows the missing values are 

computed from the potential maps selected by the 3 3  search mask centered at the 

current { , }k lip  locations, and the smallest among them is selected to compute the 

corresponding external force (
extF ). The amplitude is the difference between potential 

values of the current center and that of the selected location pointing in its direction. 

By construction, all { , }k lbp  form collinear points with their neighbors and the same 

must stand for corresponding { , }k lip  points. An elastic grid can be defined in Input-

Points as control points, with the internal forces having ( 2 2)-neighbor connectivity 

(Figure 4.6). The collinearity constraint translates to the grid being pleasant, if connect-

ing line segments are almost parallel or displacement vectors are close to the average of 

their neighbors. For calculating x and y components of internal forces ( int int,
x y

F F ) 

only data from neighbors in the west and east or in the north and south are used. Compo-

nents of internal forces are defined as the difference from the sum of the corresponding 

displacement vector components weighted with their similarity measure: 

 

 
int

1,1
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int

1,1

, , , , ,
y y y

k

i j mu i j i j mu i j k i j kF h h  (5.2) 

 

Depending on the sum of internal and external forces, one neighboring element of the 

displacement grid is selected for all locations.  

The search moves all control points toward smaller error values, but when the distortion 

of the grid grows, it is lowered by climbing to a slightly worse location of its potential 

field.  

This joint optimization method can find a good solution for untextured windows with flat 

potential maps and can find global optima without the need for exhaustive search. 

 

Figure 4.6. Elastic Grid Multi-Fovea Detector. BasePoints are not located but placed on a predefined 2D 

topology. They are indexed with 2D indices. Templates are extracted around BPs from the BaseFrame and 

matched against image parts from the InputFrame using the sum of absolute differences as a similarity 

measure. An elastic grid is defined on InputPoints. Grid starts from zero displacements and converges 

towards optimal displacement values. SAD values are arranged to form potential maps for external force 

calculation (a). Internal forces are calculated using 2+2 connectivity for x and y components (b). 

In the Elastic Grid algorithm the global motion model is not estimated, and no global 

projective image alignment is done. Instead, the calculated displacements are applied to 

all corresponding regions. 

A window containing an object with independent motion component would deform the 

grid that is mainly formed by the background features. Therefore, after a few iterations 

locations with high-amplitude internal force highlight possible object regions. 
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The multiple displacement model gives a tiled-alignment used for DiffMap calculation 

that can be analyzed in the same way as the first four algorithms. Alternatively, only the 

highlighted regions can be selected for analysis. 

Since it cannot be presumed that enough cores exist in the Foveal Processor Array to 

cover all foveas at the same time, external handling of Long Term Local Memories are 

required. On the other hand, since the access can be scheduled together with the foveas, 

efficient transfer is possible. 

4.5. Performance of Methods  

4.5.1. Metrics for Quality 

The quality of the algorithmic output can be assessed and compared both at the registra-

tion and the detection level. The overall metrics are defined to take both aspects into 

consideration.  

Registration is described by: 

the edge coverage defined on high-pass-filtered versions of images  

( 1
min( , )

edge edge

Edge

edge edge

I J
e

I J
) 

If the global transformation estimation is successful, homogenous regions are perfectly 

overlapping and a high percent of the boundaries (edges) are covered. A large percent of 

feature points should be part of the background, thus during optimization they should 

turn out to be inliers leading to a small global symmetric distance. 

The ground-truth reference was created manually for all frames marking all objects with 

an independent blob (Ri). DetectionMap is labeled to result in a set of detection blobs 

(Oi). An object is detected if any detection blob intersects the corresponding reference. 

The set H contains objects that are detected. 1P is the set of blobs that overlaps with any 

reference markings, whereas 2P is the set of false positive detection patches. (Figure 4.7) 
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Figure 4.7.  Two levels of the performance comparision - Left: registration level. Right: detection level. 

Edges of InputFrame are displayed in green. AlignedFrame is valid inside a region marked in blue. Edges 

of AlignedFrame are displayed in red. Alignment is perfect at regions where edges overlap, marked in 

yellow. 

The ground-truth reference is created manually for all frames. Reference objects  ( iR ) are displayed in 

green, whereas detection patches ( jO ) are shown in blue. The set H contains detected objects. 1P is the set 

of blobs that overlaps with any reference marking, whereas 2P is the set of false positive detection patches. 

  

4.5.2. Time Complexity of Algorithms 

The time complexity of each algorithm is presented using larger units. The steps defined 

in previous sub-sections are refined to functions and functions to elementary building 

blocks. The dataflow of an algorithm represents the elementary blocks and their connec-

tions. Complexity is given for all functions in the corresponding tables. Blocks within a 

given function are mapped to a common processor. The necessary data is fetched from 

the global memory and the results are written back in case they are needed for a function 

that is mapped to another processor or in case they do not fit to local memory.  

 

Topological steps assigned to the Frontend Processor Array or to the Foveal Processor 

Array can be realized in serial, pipelined or array hardware components. For more details 

on efficient implementation of topological operators see [74]. 

 

In case of a fully serial solution for any calculations, all operands should be read to 

registers from local memory and subsequently all results should be written back. 

Transfers and operators are considered to consume 1 unit time per pixel. Enough 

registers should exist to hold intermediate data and constant values during an elementary 

operation. Indirect memory addressing may be used for processing a full matrix pixel-by-

pixel. For this at least 3 indirect references are needed. Incrementing the address does not 

give extra time overhead. A core with a small number of registers can process all pixels 
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and all the blocks of the dataflow in a serialized order. To store intermediate matrices 

Local Short Term Memory is needed.  

 

It is tempting to use overlapping read, calculation, and write instructions since data can 

be processed in a well-defined serialized order. For overlapping neighborhoods, it is 

inefficient to fetch data multiple times. Instead, it is better to use an internal buffer from 

registers and pump data through it. For each time tick, one element from all input 

matrices is pushed in and one element of the output is produced after some delay. The 

computation is not characterized by execution time but by pixel-delay. If all blocks are 

realized with independent cores and connected with extra smoothing buffers to equalize 

uneven delays, the full function can be realized with a pipeline. 

 

In case of fully parallel array processors, images are stored in a distributed manner. All 

cores have a small portion of multiple images in their registers. Point-by-point arithmetic 

can be done in one step, whereas it takes a few extra communication steps to calculate a 

neighborhood operator. To evaluate a function, intermediate images must be stored 

locally and building blocks are processed in a serialized order. 

 

During comparison, array processor implementation for FPA with one-to-one pixel 

processor mapping was considered, with enough local memory, supporting point-point 

arithmetic, gauss filtering, downscaling, and logic operations. The complexity of foveal 

calculation was multiplied by the number of foveas. Since these parts are fully task 

parallel, the scale factor for these functions‟ execution time is roughly inversely propor-

tional to the number of physical execution units.  

4.6. Comparison  

To evaluate the capabilities and performance of the algorithms, output results for four 

video recordings have been compared. All videos had 240x320 pixel resolution. The first 

sequence is a rendered artificial 3D model – Artificial Sequence. Three sequences 

Godollo_1, Godollo_2, Godollo_3 were captured during the ALFA project by a micro 

UAV above the airport of Gödöllő (a city in Hungary). In the next subsections, mea-

surements for quality and the time complexity are presented for all the four sequences 

with different parameters. 
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The most robust Full Search method is capable of giving reliable frame-to-frame 

registrations for long time spans. This was used as reference to show the correctness of 

the used plane-model for the sequences. 

After analyzing a large number of frame-to-frame results, and accumulated results, I can 

state that image pairs with EdgeE  - the error measure for full image alignment in high 

spatial frequency - less than 0.55 can be used to build local background mosaics and to 

track objects in the ground-based coordinate frame without significant accumulated 

registration error. In the case of larger error a new mosaic should be started. If EdgeE  is 

smaller than 0.7, AlignedFrame can be used for detection without yielding large false 

positive error. 

In the following sections, quality and computational complexity is analyzed and pre-

sented for sequences with different parameters. 

For hardware (computational) complexity, the analyzed parameters are the template 

width and the prescribed number of feature points for region-based methods, whereas for 

the SIFT, it is the number of octaves (O) and intermediate scales (ns).  

For detection quality, outputs with template width equal to 8 and 80 point features are 

compared to the case when SIFT was running on 2 octaves and 2 sub-scales (Table 1.).  

 

The results presented in next subsections will also contain the values of the Elastic-Grid 

Multi-Fovea Detector. 

 

 Artificial 

135/130 

Godollo_1 

120/79 

Godollo_2 

300/230 

Godollo_3 

35/31 

Complexity 

(operation per pixel) 

SIFT 130 52 200 29 ~1100 

KLT 130 52 217 29 ~450 

BMA 128 61 208 29 ~100 

CPA 125 55 183 27 ~75 

ELD 92 52 194 28 ~50 

Table 1. True-positive detection results and computational complexity of the algorithms 

Total number of frames in a sequence / the frame number on which target ‘1’ is visible is 

given for each sequence in the header. Rows contain the number of true-positive 

detection results based on hand-made references together with the average computational 

steps normalized with the pixel count of the frames. 
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4.6.1. Artificial Sequence 

Table 2contains some representative frames from the Artificial Sequence. This is a 

generated sequence of 135 frames. The airplane is flying above a green field with some 

brushes and trees. The ground plane is flat with a grass-like texture. There are also two 

fire spots. Two vehicles are moving on a long straight road of concrete. One of them is a 

fast moving car, the other one is a truck. The sequence is aligned to the 10-th frame and 

montage for displaying the global alignment is also displayed in the table. 

The airplane is flying ahead for about 80 frames and when it is roughly above the road, it 

turns right. The size of the car is between 47 and 61 pixels, 56 in average. The size of the 

truck is between 277 and 301 pixels, 284 in average. 
 

 

t=80 

 

t=100 

 

t=120 

 

t=50 

 

red: t=10      green: t=120 
 

t=10 

Table 2. Representative frames of the Artificial Sequence 

In the figure reference transformations are used to show the views in a common frame. The edge image of 

the starting (red) and last frames (green) and boundaries of intermediate ones (blue) are displayed. 

As it is presented, global alignment to a starting frame is possible using the composition of frame-to-frame 

transformations. The figure highlights that the flat-world model is adequate, giving large registration error 

for tall objects (brushes), and moving objects. 
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Table 3. Registration error evaluation for the Artificial Sequence 
General considerations 

Registration results are presented for the algorithms (Block Matching-Diamond Search, Block Matching-Full 

Search, Elastic Grid, Kanade-Lucas Tracker, Scale Invariant Feature Transform, Corner Pairing Algorithm). The 

Edge Coverage Error describes the registration error in the high spatial frequency domain. This metrics is more 

sensitive than the widely used L1 or L2 norm. Values are given as function of the two major complexity influen-

cing parameters. For the first five algorithms these parameters are (i) maximum number of feature points/foveal 

windows (y axis) and (ii) radius of the feature matching template (x axis).  

The SIFT algorithm processes the input image in many scales generated by Gaussian filters. Applying a filter with 

2.0  reduces the effective image resolution degenerate by a factor of two. This step in scale-space is called 

an octave. After that the image can be downsampled with factor of 2. The computational complexity of the SIFT 

algorithm is dominantly parameterized by the (i) number of octaves in use (Num. octaves), and the intermediate 

scales calculated for each octave (Num. scales). 

Comparative analysis 

-Block matching algorithms use autocorrelation prefiltering to skip flat matching templates. Full search achieves 

better results than adaptive diamond search, since it evaluates all possible displacement vectors in the given range. 

With a larger support region, the matching and prefiltering performance increases. Since displacements are esti-

mated using integer precision, larger number of point pairs gives additional transformation estimation precision. 

-ELG calculates estimates for all templates along its grid even for flat regions, although model based regularization 

compensates for missing information. The diagram of ELG shows that r=2 is enough using the robustness of joined 

search of all foveas. It is necessary to use more foveas since displacements are estimated using integer preci-

sion. 

-Since CPA extracts corners, r=2 is reliable for matching (templates have extreme variance). Since it uses direct 

pairing, and not search, it must extract a large number of individual features to have the pair of each from the 

previous frame. 

-KLT finds a reliable pair to almost any starting feature, since it locates reliable locations first. To estimate the 

transformation minimally, 8 reliable pairs are needed. Since KLT gives subpixel results, having 48 initial features 

is robust. KLT uses more octaves for searching. Due to downscaling, it is beneficial to have a larger support radius. 

-SIFT:  frame-to-frame zooming is small intermediate scales gives a small benefit to robust matching. For this 

sequence enough feature pairs can be found in the first octave. 
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Table 4. Numerical complexity  evaluation for the Artificial Sequence 
General considerations 

Registration results are presented for the algorithms (Block Matching-Diamond Search, Block Matching-Full 

Search, Elastic Grid, Kanade-Lucas Tracker, Scale Invariant Feature Transform, Corner Pairing Algorithm). The 

Edge Coverage Error describes the registration error in the high spatial frequency domain. This metrics is more 

sensitive than the widely used L1 or L2 norms. Values are given as function of the two major complexity influen-

cing parameters. For the first five algorithms these parameters are (i) maximum number of feature points/foveal 

windows (y axis) and (ii) radius of the feature matching template (x axis).  

The SIFT algorithm processes the input image in many scales generated by Gaussian filters. Applying a filter with 

2.0  reduces the effective image resolution degenerate to the half. This step in scale-space is called an 

octave. After that the image can be downsampled with factor of 2. The computational complexity of the SIFT 

algorithm is dominantly parameterized by the (i) number of octaves in use (Num. octaves), and the intermediate 

scales calculated for each octave (Num. scales). 

Comparative analysis 

Both SIFT and KLT pay complexity to localize reliable features in full-size image processing. They both do 

sophisticated calculation for matching in foveas. SIFT also needs serial computation. For this sequence, there is an 

extremely large number of fine features due to sharp textures without motion blur effect. Those are traceable for 

KLT; however, SIFT is tuned for slightly larger features to deal with real videos. Matching complexity for SIFT is 

less in this case but KLT performs better.  

CPA uses KLT-like corner localization placed in the frontend, and needs primitive foveal processing but a large 

number of windows. 

The ELG and BMA methods do not need a frontend processor. Since Full Search can be implemented without any 

adaptation, it needs the most primitive hardware structure. Diamond Search uses only local adaptation, and can be 

realized with small number of stateless foveal processors with context switching. ELG offers good registration 

results with moderate complexity in the case of enough foveal processors arranged in 2D topology. 
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4.6.2. Godollo_1 Sequence  

This sequence was captured above Gödöllő (120 frames). The airplane was flying above 

a dirty road on which a car was approaching. The ground of the airport is roughly flat. A 

crossing concrete road with a line of trees limits the meadow. Beyond the road there are 

some buildings as well. The path of the airplane was almost parallel to the ground (at 

roughly 70m altitude), thus a part of the sky is also visible in all frames. The size of the 

car varies between 30 and 110 pixels with a mean of 36. Representative frames are 

displayed in Table 5  

 

 

t=100 

 

t=105 

 

t=110 

 

t=60 

 

red:   t=60 

green:  t=120 

 

 

 

Table 5. Representative frames of Godollo_1 Sequence 

In the figures reference transformations are used to show the views in a few typical frames. The edge 

images of the first (red) and last frames (green) and boundaries of intermediate ones (blue) are displayed. 

During the flight the airplane travels a long path resulting in a large change inside the fore-scene and zoom 

to the previously back-scene parts. Two montages are needed to show the full path. The large distortion of 

the rectangular frame highlights the need for a perspective motion model. 
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Table 6. Registration error evaluation for the Godollo_1 Sequence 
General considerations 

Registration results are presented for the algorithms (Block Matching-Diamond Search, Block Matching-Full 

Search, Elastic Grid, Kanade-Lucas Tracker, Scale Invariant Feature Transform, Corner Pairing Algorithm). The 

Edge Coverage Error describes the registration error in the high spatial frequency domain. This metrics is more 

sensitive than the widely used L1 or L2 norms. Values are given as function of the two major complexity in-

fluencing parameters. For the first five algorithms these parameters are (i) maximum number of feature 

points/foveal windows (y axis) and (ii) radius of the feature matching template (x axis).  

The SIFT algorithm processes the input image in many scales generated by Gaussian filters. Applying a filter 

with 2.0  reduces the effective image resolution degenerate to the half. This step in scale-space is called 

an octave. After that the image can be downsampled with factor of 2. The computational complexity of the SIFT 

algorithm is dominantly parameterized by the (i) number of octaves in use (Num. octaves), and the intermediate 

scales calculated for each octave (Num. scales). 

Comparative analysis 

Best competitors regarding quality: both SIFT and KLT pay complexity to localize reliable features in full-size 

image processing. They both do sophisticated calculation for matching in foveas. SIFT also needs serial compu-

tation. 

CPA uses KLT-like corner localization placed in the frontend, and needs primitive foveal processing but a large 

number of windows. 

ELG and BMA methods do not need a frontend processor. Since Full Search can be implemented without any 

adaptation it needs the most primitive hardware structure. Diamond Search uses only local adaptation, and can 

be realized with small number of stateless foveal processors with context switching. ELG offers good registra-

tion results with moderate complexity in the case of enough foveal processors arranged in 2D topology. 
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Table 7. Numerical complexity  evaluation for the Godollo_1 Sequence 
General considerations 

Registration results are presented for the algorithms (Block Matching-Diamond Search, Block Matching-Full 

Search, Elastic Grid, Kanade-Lucas Tracker, Scale Invariant Feature Transform, Corner Pairing Algorithm). The 

Edge Coverage Error describes the registration error in the high spatial frequency domain. This metrics is more 

sensitive than the widely used L1 or L2 norm. Values are given an function of the two major complexity influen-

cing parameters. For the first five algorithms these parameters are (i) maximum number of feature points/foveal 

windows (y axis) and (ii) radius of the feature matching template (x axis).  

The SIFT algorithm processes the input image in many scales generated by Gaussian filters. Applying a filter 

with 2.0  reduces the effective image resolution degenerate to the half. This step in scale-space is called 

an octave. After that the image can be downsampled with factor of 2. The computational complexity of the SIFT 

algorithm is dominantly parameterized by the (i) number of octaves in use (Num. octaves), and the intermediate 

scales calculated for each octave (Num. scales). 

Comparative analysis 

Both SIFT and KLT pays complexity to localize reliable features in full-size image processing. They both do 

sophisticated calculation for matching in foveas. SIFT also needs serial computation. 

CPA uses KLT-like corner localization placed in the frontend, and needs primitive foveal processing but a large 

number of windows. 

The ELG and BMA methods do not need a frontend processor. Since Full Search can be implemented without 

any adaptation, it needs the most primitive hardware structure. Diamond Search uses only local adaptation, and 

can be realized with small number of stateless foveal processors with context switching. ELG offers good regis-

tration results with moderate complexity in the case of enough foveal processors arranged in 2D topology. 
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4.6.3.  Godollo_2 Sequence  

The Godollo_2 Sequence (See Table 8) was also captured above Gödöllő (300 frames) 

on a different day with a different color balance setup. The airplane was flying above the 

same dirty road on a similar path as in the Godollo_1 Sequence. There were some people 

walking on the ground and a car was moving on the road with parallel direction to the 

airplane. In the first 100 frames the altitude of the UAV is largely decreasing; after this 

time, the path of the airplane is almost horizontal to frame 200 when it starts climbing. 

The size of the car varies between 68 and 209 pixels with a mean of 185.  
 

 

t=200 

 

t=230 
 

t=250 

 

t=140 

 

red: t=200        green: t=250 

 
 

red: t=140  

green: t=100 
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t=100 

 

red: t=10        green: t=100 

 

t=10 

Table 8. Representative frames of Godollo_2 Sequence 

In the figures reference transformations are used to show the views in a few typical frames. The edge 

images of the first (red) and last frames (green) and boundaries of intermediate ones (blue) are displayed. 

During the flight the airplane travels a long path resulting in a large change inside the fore-scene and zoom 

to the previously back-scene parts. Three montages are needed to show the full path. The large distortion of 

the rectangular frame highlights the need for a perspective motion model. 
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Table 9. Registration error evaluation for the Godollo_2 Sequence 
General considerations 

Registration results are presented for the algorithms (Block Matching-Diamond Search, Block Matching-Full 

Search, Elastic Grid, Kanade-Lucas Tracker, Scale Invariant Feature Transform, Corner Pairing Algorithm). The 

Edge Coverage Error describes the registration error in the high spatial frequency domain. This metrics is more 

sensitive than the widely used L1 or L2 norms. Values are given as function of the two major complexity in-

fluencing parameters. For the first five algorithms these parameters are (i) maximum number of feature 

points/foveal windows (y axis) and (ii) radius of the feature matching template (x axis).  

The SIFT algorithm processes the input image in many scales generated by Gaussian filters. Applying a filter 

with 2.0  reduces the effective image resolution degenerate to the half. This step in scale-space is called 

an octave. After that the image can be downsampled with factor of 2. The computational complexity of the SIFT 

algorithm is dominantly parameterized by the (i) number of octaves in use (Num. octaves), and the intermediate 

scales calculated for each octave (Num. scales). 

Comparative analysis 

This sequence spans along low and high altitudes that can be considered during operation. SHIFT can take ad-

vantage of its capability to find features in more scales. It performs the best on average.  

Both SIFT and KLT pay complexity to localize reliable features in full-size image processing. They both do 

sophisticated calculation for matching in foveas. SIFT also needs serial computation. 

CPA uses KLT-like corner localization placed in the frontend, and needs primitive foveal processing but a large 

number of windows. 

ELG and BMA methods do not need a frontend processor. Since Full Search can be implemented without any 

adaptation it needs the most primitive hardware structure. Diamond Search uses only local adaptation, and can 

be realized with small number of stateless foveal processors with context switching. ELG offers good registra-

tion results with moderate complexity in the case of enough foveal processors arranged in 2D topology. 
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Table 10. Numerical complexity  evaluation for the Godollo_2 Sequence 
General considerations 

Registration results are presented for the algorithms (Block Matching-Diamond Search, Block Matching-Full 

Search, Elastic Grid, Kanade-Lucas Tracker, Scale Invariant Feature Transform, Corner Pairing Algorithm). The 

Edge Coverage Error describes the registration error in the high spatial frequency domain. This metrics is more 

sensitive than the widely used L1 or L2 norms. Values are given as function of the two major complexity in-

fluencing parameters. For the first five algorithms these parameters are (i) maximum number of feature 

points/foveal windows (y axis) and (ii) radius of the feature matching template (x axis).  

The SIFT algorithm processes the input image in many scales generated by Gaussian filters. Applying a filter 

with 2.0  reduces the effective image resolution degenerate to the half. This step in scale-space is called 

an octave. After that the image can be downsampled with factor of 2. The computational complexity for SIFT 

algorithm is dominantly parameterized by the (i) number of octaves in use (Num. octaves), and the intermediate 

scales calculated for each octave (Num. scales). 

Comparative analysis 

Both SIFT and KLT pays complexity to localize reliable features in full-size image processing. They both do 

sophisticated calculation for matching in foveas. SIFT also needs serial computation. 

CPA uses KLT-like corner localization placed in the frontend, and needs primitive foveal processing but a large 

number of windows. 

The ELG and BMA methods do not need a frontend processor. Since Full Search can be implemented without 

any adaptation it needs the most primitive hardware structure. Diamond Search uses only local adaptation, and 

can be realized with small number of stateless foveal processors with context switching. ELG offers good regis-

tration results with moderate complexity in the case of enough foveal processors arranged in 2D topology. 
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4.6.4.  Godollo_3 Sequence  

The Godollo_3 Sequence (See Table 11) was originated from the same flight as the 

previous one. In this sequence the car was approaching towards the airplane. This is a 35 

frame long video. The size of the car varies between 280 and 960 pixels with a mean of 

526.  

 

 

t=15 

 

t=20 
 

t=25 

 

t=10 

red: t=1      green: t=25 

 
 

t=1 

Table 11. Representative frames of Godollo_3 Sequence 

This video sequence is captured from the lowest altitude. The feature blobs are large, and corner-like 

features are mostly around the road structures. This uneven distribution makes model fitting a hard task. 

On the other hand, the car object covers a large number of pixels, thus it can be detected with slightly 

worse alignment and morphological post-processing. 
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Table 12. Registration error evaluation for the Godollo_3 Sequence 
General considerations 

Registration results are presented for the algorithms (Block Matching-Diamond Search, Block Matching-Full 

Search, Elastic Grid, Kanade-Lucas Tracker, Scale Invariant Feature Transform, Corner Pairing Algorithm). The 

Edge Coverage Error describes the registration error in the high spatial frequency domain. This metrics is more 

sensitive than the widely used L1 or L2 norms. Values are given as function of the two major complexity in-

fluencing parameters. For the first five algorithms these parameters are (i) maximum number of feature 

points/foveal windows (y axis) and (ii) radius of the feature matching template (x axis).  

The SIFT algorithm processes the input image in many scales generated by Gaussian filters. Applying a filter 

with 2.0  reduces the effective image resolution degenerate to the half. This step in scale-space is called 

an octave. After that the image can be downsampled with factor of 2. The computational complexity of the SIFT 

algorithm is dominantly parameterized by the (i) number of octaves in use (Num. octaves), and the intermediate 

scales calculated for each octave (Num. scales). 

Comparative analysis 

This video sequence is captured from the lowest altitude. The feature blobs are large, and corner-like features are 

mostly around the road structures. This uneven distribution makes model fitting a hard task. 

Both SIFT and KLT pays complexity to localize reliable features in full-size image processing. They both do 

sophisticated calculation for matching in foveas. SIFT also needs serial computation. 

CPA uses KLT-like corner localization placed in the frontend, and needs primitive foveal processing but a large 

number of windows. 

ELG and BMA methods do not need a frontend processor. Since Full Search can be implemented without any 

adaptation it needs the most primitive hardware structure. Diamond Search uses only local adaptation, and can 

be realized with small number of stateless foveal processors with context switching. ELG offers good registra-

tion results with moderate complexity in the case of enough foveal processors arranged in 2D topology. 
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Table 13. Numerical complexity  evaluation for the Godollo_3 Sequence 
General considerations 

Registration results are presented for the algorithms (Block Matching-Diamond Search, Block Matching-Full 

Search, Elastic Grid, Kanade-Lucas Tracker, Scale Invariant Feature Transform, Corner Pairing Algorithm). The 

Edge Coverage Error describes the registration error in the high spatial frequency domain. This metrics is more 

sensitive than the widely used L1 or L2 norms. Values are given as function of the two major complexity in-

fluencing parameters. For the first five algorithms these parameters are (i) maximum number of feature 

points/foveal windows (y axis) and (ii) radius of the feature matching template (x axis).  

The SIFT algorithm processes the input image in many scales generated by Gaussian filters. Applying a filter 

with 2.0  reduces the effective image resolution degenerate to the half. This step in scale-space is called 

an octave. After that the image can be downsampled with factor of 2. The computational complexity for SIFT 

algorithm is dominantly parameterized by the (i) number of octaves in use (Num. octaves), and the intermediate 

scales calculated for each octave (Num. scales). 

Comparative analysis 

Both SIFT and KLT pays complexity to localize reliable features in full-size image processing. They both do 

sophisticated calculation for matching in foveas. SIFT also needs serial computation. For this sequence, there are 

more extremely large features that are out of the scope of SIFT, so it tracks less points than in average. 

CPA uses KLT-like corner localization placed in the frontend, and needs primitive foveal processing but large 

number of windows. 

The ELG and BMA methods do not need a frontend processor. Since Full Search can be implemented without 

any adaptation it needs the most primitive hardware structure. Diamond Search uses only local adaptation, and 

can be realized with small number of stateless foveal processors with context switching. ELG offers good regis-

tration results with moderate complexity in the case of enough foveal processors arranged in 2D topology. 
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4.7.  Conclusion 

In this Chapter the description power of the virtual framework was presented through 

modeling, partitioning, and implementing five algorithms in the field of moving platform 

surveillance. 

Among other important findings the most important results are the following for average 

flight paths: 

 using the best result from all algorithms for each consecutive image pairs, a glob-

al mosaic can be created. Using this as reference, the flat 2D model was vali-

dated; 

 the Gaussian filter based feature extraction gives enough feature points for match-

ing even with limited effort; 

 it is not important to maintain rotation invariance at local motion estimation level 

to achieve good registration results; 

 the fine sub-pixel based matching part of the KLT algorithm is reliable even in 

case of a small number of point pairs; 

 Block Matching algorithms offer an efficient alternative if the Frontend Processor 

Array is not supported by the hardware. 

As conclusion the following thesis points can be stated: 

Thesis II.: I have shown that the proposed virtual architecture can uniformly cover 

important problems in sensory image processing. As a proof of concept, 2D registra-

tion based ground motion detection methods for mini Unmanned Aerial Vehicles 

(UAV) were presented. I have given models for the state-of-the-art solutions by creat-

ing the data-flow diagrams, I have mapped the operators to processing structures 

and I have compared the algorithms in a unified simulation environment. I have giv-

en performance analysis concerning the computational complexity, registration qual-

ity, detection robustness, and parameter sensibility of the algorithms. Based on the 

detailed analysis of the algorithms I have proposed modifications to achieve better 

complexities, which I summarize in two sub-theses.  

A: I have shown that up-scaling is unnecessary for scale-space based point feature 

detection in the sequences captured by a mini UAV flying at medium altitude. This 

means that processing does not need to be more fine-grained than the original sen-
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sor resolution. Furthermore, I have experimentally validated that the visible zoom 

factor due to altitude changes between consecutive frames is small (less than one 

percent) and as a result, evaluating more than two inter-octave scales does not 

give any benefit in alignment capability.  

B: I have shown that the KLT and SIFT algorithms can be merged effectively, in case 

hardware support for diffusion and extrema localizing operator working in a 3x3 

neighborhood exist in the cellular processor array.  
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C h a p t e r  F i v e  

ELASTIC GRID MULTI-FOVEA DETECTOR 

5.1. Elastic Grid Method 

A novel algorithm (Elastic Grid Multi-Fovea Detector, or shortly Elastic Grid Method) 

was proposed to utilize the advantages of the Virtual Multi-Fovea Architecture. This 

algorithm relies on topologically connected foveal processors to create a “locally 

interacting” motion map of the observed field. It was experimentally shown that the 

multiple displacement motion model used is appropriate for detecting objects moving on 

the ground from a mini UAV. The proposed algorithm was compared with state-of-the 

art methods highlighting its good output quality and moderate computational complexity. 

Thesis III: I have proposed a novel independent motion detection algorithm (Elastic Grid 

Multi-Fovea Detector), that exploits the parallel and cellular capabilities and com-

munication model of the proposed architecture. I have experimentally shown that the 

model based connected multiple displacement method is adequate for the detection of 

ground objects moving on an open field from a mini Unmanned Air Vehicle (UAV). I 

have proven by using complex metrics that the proposed algorithm offers a better 

trade-off than previous solutions using the same scene assumptions. 
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C h a p t e r  S i x   

SUMMARY 

6.1. Main Findings and Results 

I have created a virtual hardware model (Virtual Multi-Fovea Architecture) to support 

comparison of image processing algorithms that can fit in the multi-fovea model. By 

defining this virtual layer, existing hardware platforms and programming methods may 

be interfaced. The platform consists of separate processor arrays specialized to parallel 

execution of preprocessing and foveal computation. They are synchronized by a conven-

tional serial processor via a proposed intelligent memory management unit. This 

heterogeneous structure can fit the special characteristics of various operators processing 

the input video flow.  

I have given a design guideline for the Virtual Multi-Fovea Architecture and presented it 

by the comparison of 2D registration methods for ground object motion detection from 

mini UAVs.  

After giving an analytical comparison of registration methods I proposed a novel method 

exploring the proposed architecture by running a larger percentage of the tasks in parallel 

and in cellular structures. 

6.2. New Scientific Results 

Algorithms dealing with direct topographic sensory inputs may contain large percent of 

steps suitable for data-parallel execution due to the natural structure of the data. 

Based on this observation I have worked out a novel virtual hardware architecture 

model (the Virtual Multi-Fovea Architecture) enabling communication-effective de-

composition of those family of image processing algorithms, that are convergent 

starting from direct sensory input and can be described by acyclic data flow graphs. 

The proposed structure effectively evaluates algorithms consisting of operators with 

different radius of coupling and topology, and nonhomogoneous spatial coverage by 

using three specific processor arrays. This heterogeneous structure fits the family of 

algorithms better than the general homogenous parallel structures without losing 

general programmability. 

Published in [1][5] 
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Processors built to deal with integers or floating point numbers are calculating opera-

tors on a small set of inputs (two in most cases). They incorporate a small amount of 

dedicated memory – the so-called registers – for storing only a few numbers that can 

be used as operands. The great majority of the data is stored in an external memory 

chip. The programs consist of calculation and data transfer instructions. The evaluation 

of the code may branch depending on some results or it can run in iterations (loops). 

The computation deals with neighboring data elements frequently; this property is 

called locality. Locality is also characteristic for instructions: commands of a subrou-

tine can be aligned in memory resulting sequences and a minimal number of branching 

instructions. The off chip communication to load new data has massive latency – 

typically two or three order of magnitude higher compared to numerical calculation – 

thus caching into on-chip memory is essential to exploit locality. 

The principal fraction of computer problems is formulated in serial form, although the 

intermediate results are not used immediately and the operand of a binary operator can 

be evaluated in an arbitrary order (instruction level parallelism). To permit the opti-

mizing, the pre-fetching of instructions is necessary. Processors in modern PCs contain 

more execution lines; moreover, some independent instructions may be reordered and 

processed while waiting for memory access (out-of-order execution). In the case of 

handling branches in the program, all paths should be analyzed or some heuristic 

method is needed to make a decision. The sweep of vector instruction sets and wide 

registers for handling structured data have further increased the complexity of the 

already extremely complex processor structure. 

Handling the extreme workload of numerous problems on a single processor is not fast 

enough to be beneficial at all. Nobody would wait hours for the answer to a simple 

train-schedule query. For these cases it is important to identify tasks of the problem 

that can be executed in parallel without altering the final result, and distribute them to 

multiple processors. 

All devices should be supplied with task and data and in addition, a communication 

network should be built to connect them for enabling exchange of partial results and 

synchronization. Parallel computing raises new challenges: multiple accesses to com-

mon resources (most important ones are the memory and the communication network) 

should be granted while maintaining (cache) coherency. The further increase of the 

operation frequency is limited by physical constraints. On the other hand, the place-
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ment of many cores on a chip is feasible, thus exploiting parallelism efficiently is 

essential. 

Imperative programming languages handle large data stacks by processing elements in 

loops. The multimedia inputs offer a great level of data parallelism. Each element 

should be handled the same way; in most cases, calculations depend only on neighbor-

ing structures. These functions are called cellular operators. Loops implementing such 

operators may be evaluated using many execution contexts. Due to the known locality 

of the given operators, the large amount of automatically handled cache memory can 

be replaced with a small amount of local memory circuits dedicated to a given arith-

metic unit loaded with direct instructions. The most extensively used imperative 

language is C/C++. OpenMP [75] is an extension for shared memory multi-threading 

that can create parallel code for loops to be executed on multi-core processors using 

the explicit locality constraints given by the programmer. 

Parallel data container structures without constraints for traversal but having explicit 

notion of locality offer great potential for compile-time optimization (RapidMind [76], 

Intel Threading Building Blocks [77]). In the case of serial description of a program, 

the dependencies between operators should be scouted by the compiler to enable 

parallelization. It is worth to ask the programmer to explicitly express producer-

consumer locality by drawing dataflow diagrams. 

Custom application-specific integrated circuits (ASIC) that were directly designed to 

boost performance of specific tasks can exploit all parallelism in a given algorithm, in 

exchange for completely losing software programmability. For example, encoder chips 

for multimedia compression are common in handheld devices. Homogenous structures 

of general purpose processors offer a programmable and more scalable solution. 

However, it is worthwhile to design hybrid hardware structure to fit specific algorith-

mic classes. 

I have designed a virtual heterogeneous many-core architecture (Figure 3.1), for image 

processing algorithms that are convergent, starting from direct sensory input and can 

be described by acyclic dataflow graphs. Convergence is referring to the extraction of 

compact information from inputs represented with topological maps with smaller 

resolution, image parts, or scalar values. This property calls for heterogeneous proces-

sor structures. In applications, where the high frame-rate is important (e.g. 10.000 fps), 

sensor pixels can be built in the processing topology to eliminate the need of wide 

and/or ultrafast cross chip communication circuits. If the program can be transformed 
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into a representation containing iterations and recursions only at operator level an 

acyclic dataflow graph can be created. In this case, program execution can be mapped 

to many cooperative processors requiring clean and pre-calculated synchronizations. 

The virtual architecture hides the details of the physical hardware from the software 

engineering point of view, but models the scheduling and communication latencies. 

The proposed virtual architecture contains a dedicated cellular processor array to take 

advantage of cellular locality and data parallelism which is characteristic of the family 

of cellular image processing operators [78]. This is designed to handle full images 

through space invariant operators without data-dependent branching, thus it may be 

controlled by a single instruction unit in SIMD fashion.  

For the majority of image processing algorithms the final goal is to highlight specific 

regions (segmentation and classification), or to detect and possibly identify objects 

and/or events. This means that after some topological steps they focus on selected 

portions of the input image flow. The thorough analysis of chosen windows is sup-

ported by another dedicated processor array, the Foveal Processor Array. The arithmet-

ic units (or small groups) in this array are controlled by independent instruction units 

to support data dependent branching. The communication and synchronization be-

tween the foveas is indirect. The generated results are either window sized topological 

data or descriptor vectors. 

The non-parallelizable tasks and the evaluation of descriptor vectors are executed in a 

serial processor, the Backend Processor. It is also responsible for synchronizing the 

other arrays. The data transfer (sensor sized or scaled images, windows, and scalars) is 

supported by an intelligent multi-port Memory Management unit. 

The Virtual Multi-Fovea Architecture is designed to hide a specific physical imple-

mentation. Execution time can be assigned to data transfers and global image 

processing operators, thus different algorithms for the same problem can be compared. 

The most important issues from the hardware implementation aspect are (i) used global 

operators (with a minimal instruction set for the core operators, explicit locality and 

topology description), (ii) the separation of program code segments with and without 

branching (iii) continuous data block definitions for data transfer. 

One of the most powerful universal parallel technologies in PC environment is the 

General Purpose Graphic Processing Unit (GP-GPU) based Compute Unified Device 

Architecture (CUDA) from NVIDIA [79]. AMD-ATI also offers GP-GPU computing, 
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although their software support is more focused on graphical applications at the 

present stage. 

The fovea-based parallel array and the serial processor are common elements in both, 

thus the uniqueness of the latter is the dedicated cellular unit for evaluating 2D topo-

logic operators that are working on image parts in a small connection radius. In the 

preprocessing stage most of the image processing algorithms need such operators (for 

example, convolution and image morphology) transforming the whole input image 

with each of them working on a neighborhood of a few pixels with full-grain connec-

tivity, thus the parallel evolution requires local communication on a massive scale. I 

have shown that the GP-GPU array may implement the functions of the Frontend 

Preprocessor Array, thus this architecture may also covered by the virtual architecture. 
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I have shown that the proposed virtual architecture can uniformly cover important 

problems in sensory image processing. As a proof of concept 2D registration based 

ground motion detection methods for mini Unmanned Aerial Vehicles (UAV) were 

presented. I have given models for the state-of-the-art solutions by creating the data-

flow diagrams, I have mapped the operators to processing structures and I have 

compared the algorithms in a unified simulation environment. I have given perfor-

mance analysis concerning the computational complexity, registration quality, detec-

tion robustness, and parameter sensibility of the algorithms. Based on the detailed 

analysis of the algorithms I have proposed modifications to achieve better complexi-

ties, which I summarize in two sub-theses.  

Published in: [4] 

2D image registration techniques can be applied to data from Mini UAVs operating at 

the altitude of 80-100m flying over a flat inspection area to detect ground motion [53]. 

Consecutive projections of a flat screen captured from different locations can be 

aligned to a common coordinate frame. Changes may occur due to moving objects on 

the ground. 

Salient points in the given image respecting a robust metric – for example corner at the 

intersection of edges – are called Feature points (or Point features). Point feature based 

alignment is one of the mainstream solutions for 2D image registration.  

Besides the thoroughly discussed Harris Corner [67] (used by the Corner Pairing Algo-

rithm, CPA) and Kanade-Lucas Tracker – KLT [64][65] the most cited point-feature 

extractor is the Scale Invariant Feature Transform – SIFT [63]. Video compression 

pushes for the improvement of block matching techniques [66] (BMA) as well. 

Robust registration [68] and motion detection methods based on these representative 

groups of algorithms were covered in my assessment. Many surveys give comparative 

results for registration quality [62] [52], although none of them include hardware com-

plexity factors in the evaluation metrics. The general flowchart of the diagram is given 

in Figure 4.2, and the intermediate results were presented in Figure 4.3. 

I have evaluated the algorithms on synthetic and many real-world video sequences for 

ground object motion detection and presented the design tradeoffs. In case of large-

field inspection the common flight path follows a rectangular shape with long straight 

edges and short rotating maneuvers. The sequences were taken from the straight por-

tions of flight videos. The simulated sequence consists of sharp still images rendered 

from different calculated locations; on the contrary, the real shots are slightly distorted 
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by the motion-blur effect and video compression artifacts. All sequences use 320x240 

pixel resolution and were taken at 20 frames per second. The maximal measured 

displacement was 12 pixels in any direction. Higher sampling rate with high-sensitivity 

sensors would be desired to keep the average displacement in the 1-2 pixel range. 

 

All algorithms used conceptually identical registration and detection steps. 

The complexity of the CPA, BMA and KLT algorithms may be parameterized using 

two factors: (i) the number of foveal regions and (ii) the size of template images used 

for matching. The preprocessing phase is non-tunable. On the other hand, the SIFT 

algorithms can be described via parameters of preprocessing. 

The detection robustness of the algorithms was compared after selecting the optimal 

parameters. Table 1 shows that their capabilities are similar even though they consume 

computational complexity in a quite different range. If the mission of the UAV is not 

only to detect the presence of moving object, but also to localize and identify them, the 

considerably high complexity of KLT and SIFT are justified since the results may be 

efficiently reused in further processing. 

The registration capabilities for frame-to-frame alignment were compared in the high 

spatial frequency domain via the overlapping ratio of the binary edge images. In the 

case of high precision estimation, the consecutive transformation matrices may be 

accumulated and longer series of images can be transformed to a common coordinate 

frame. This advanced capability can be used to detect objects at relatively low motion 

speeds compared to the image sampling frequency. 

The different algorithms are optimal for different hardware setups. SIFT is outstanding 

in quality, but it requires a very complex preprocessor and foveal arrays to be effec-

tive. On the other hand, the calculated description vectors may also be used for object 

identification. KLT involves fovea intensive calculations using branches and fractional 

number representation; although the preprocessing computation is less intensive com-

pared to the one in the case of SIFT. Both methods are characterized with high regis-

tration quality. 

Block Matching methods do not need a preprocessing array (although their perfor-

mance could be enhanced by preprocessing). The different strategies of Diamond 

Search and Full Search can balance complexity and registration quality. The latter 

incorporates high number of searching steps (n) and finds global optima. It does not 
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need branching, thus it can be implemented in less complex hardware; on the other 

hand, the first method converges to a local optimum rapidly ( n ). 

The Corner Pairing Algorithm offers lower registration quality; its small computation 

complexity, however, is remarkable for detection purposes. 

Based on the detailed analysis of the algorithms, I have proposed specific modifica-

tions leading to significant improvements which will be summarized in the corres-

ponding three sub-theses.  

 

I.1.  I have shown that up-scaling is unnecessary for scale-space based point feature 

detection in the sequences captured by a mini UAV flying in medium altitude. 

This means no processing is needed in finer grid than the original sensor resolu-

tion. Furthermore, I have experimentally validated that the visible zoom factor 

due to altitude changes between consecutive frames is small (less then one per-

cent) and as a result, evaluating more than two inter-octave scale does not give 

any benefit in alignment capability.  

The SIFT algorithm applies a series of Gaussian filters (low-pass characteristic in 

space, smoothing the image) and calculates differences between filtered images. These 

intermediate maps can be used to robustly localize blob-like features with different 

sizes in the original image. The Gaussian filter with σ=2 parameter gives an output 

with an effective resolution of half of the original, meaning an octave in scale-space. 

Lowe in [63] proposed to start scale-space generation from an interpolated double 

resolution image (up-scaling) and to calculate three intermediate scales for each oc-

tave. 

Gaussian filtering can be effectively calculated in a dedicated full-grain cellular pro-

cessor array [18]. Creating a double resolution array increases complexity at least by a 

factor of four, and using more intermediate scales implies additional components. 

During the evaluation of registration quality I have experimentally shown that ade-

quate feature pairing can be calculated in case of two intermediate scales, and that the 

number of feature point pairs is large enough to robustly estimate alignment transfor-

mation. 

The simplified algorithm does not differ from the original regarding its average detec-

tion robustness. 
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I.2.  I have shown the KLT and SIFT algorithms can be merged effectively, in case 

hardware support for diffusion and extrema localizing operator working in 3x3 

neighborhood exist in the cellular processor array  

The extrema localizing operator working in a 3x3x3 pixel neighborhood is needed for 

feature point localization in the case of the scale-space approach. This can be calcu-

lated using a subroutine in current hardware configurations while direct realization is 

also possible. Using the simplifications that were described in the previous section, the 

running time of feature point localization is reduced to the millisecond range.  

The most important additional results for average flight paths are the following: (i) it is 

not important to maintain rotation invariance in local motion estimation level to 

achieve good registration results; (ii) the fine sub-pixel based matching part of the 

KLT algorithm is reliable even in case of a small number of point pairs. Therefore, the 

combination of scale-space based feature extraction and KLT like feature matching 

offers a good solution. 
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I have proposed a novel independent motion detection algorithm (Elastic Grid Multi-

Fovea Detector), that exploits the parallel and cellular capabilities and communica-

tion model of the proposed architecture. I have experimentally shown that the model 

based connected multiple displacement method is adequate for the detection of 

ground objects moving on open field from a mini Unmanned Air Vehicle (UAV). I 

have proven by using complex metrics that the proposed algorithm offers better 

trade-off than previous solutions using the same scene assumptions. 

Published in [2] [3]  

The mainstream methods estimate a single global image transformation (projection) 

for 2D registration, directly fitting the flat-world assumption. Their estimation process 

needs complex floating point operations and the transformation itself requires a non-

continuous memory access pattern. However, the proposed model-driven multiple 

displacement estimation can deal with moderate relief variation and operates only by 

using the continuous coalescing windowing memory access mechanisms.  

The scheme of the method is presented in Figure 4.6. The computation is focused on 

the foveal processor array. The local partial results converge through iterations, using 

the results from the neighboring foveas. 

 Artificial 

135/130 

Godollo_1 

120/79 

Godollo_2 

300/230 

Godollo_3 

35/31 

Complexity 

(operation per pixel) 

SIFT 130 52 200 29 ~1100 

KLT 130 52 217 29 ~450 

BMA 128 61 208 29 ~100 

CPA 125 55 183 27 ~75 

EGMD 92 52 194 28 ~50 

Table 14. True-positive detection results and computational complexity for the algorithms 
Total number of frames in a sequence / the frame number on which target ‘1’ is visible are given for each sequence in the header. 

Rows contain the number of true-positive detection results based on hand-made references together with the average computational 

steps normalized with the pixel count of the frames. 

 

I have proven the effectiveness of my algorithm using a simulated and multiple real-

life sequences. In case of momentous flight maneuvers, on average the Elastic Grid 

Multi-Fovea Detector gives similar detection results to the more complex algorithms 

for usual surveillance flight paths. On the contrary, it requires far less computational 

effort (Table 14). 

6.3. Application of the Results 

The Virtual Multi-Fovea Architecture is an adequate computational model for small and 

compact embedded detection-classification systems. In the frame of the VISCUBE 
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project a multi-foveal chip is under design and prototype production. My algorithmic 

research fundamentally influenced the decision on what hardware-implemented instruc-

tion set is to be used in the first generation of the VISCUBE chip to be manufactured in 

3D silicon technology. 

The Multi-Fovea Architecture can be implemented using other many-core devices like 

FPGA-s. The related design considerations that were discussed in the dissertation are 

applicable in the parallel implementation of wide range of video processing algorithms. 

Numerous integrated circuit and system manufacturer (for example IBM, Intel, Nokia, 

Apple) supports the upcoming standard called OpenCL that is extremely similar to 

CUDA in its concept. The predictable general spread of those platforms will grant 

application potential to my results. 
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 APPENDIX A 

Complexities 

 

Complexities for the algorithms are briefly described in the following tables. Functions 

are described in rows. They can be optimally implemented on the Frontend Processor 

Array (FPA), on the Foveal Processor Array (FVA) or on the serial Backend Processor 

(BP): one of them is marked. In case of foveal processing, the number of used foveal 

windows is also displayed. The Input/Output is described using notation S for scalars, and 

p for points (two scalars). 

At first, complexity for the global registration based detection part is given (Table 15), 

and then all the algorithms one by one.  

 

 
Detection part of 

algorithms 
FPA FVA BP fovea 

Read/ 

Write 
Algo Step STLM LTLM  

 

c Global tr model est.         

 

RANSAC: for l3 

feature pairs l4 of 

them will turn to be 

inlier in N iterations  

  X  
R-l3x2p  

W-l4x2p 
N*15000   

 
Estimate: linear 

estimation for inliers 
  X  

R-l4x2p  

W-9S 

2
49 2

2

5

4
3

l

l

   

d Alignment         

 
Transform: transform 

previous frame 
  X  

R-1As  

R-9S  

W-1As 
30As   

e Detection         

ser 
Detect: Ab-

sDiff+threshold+morp

hology 
X    

R-1As  

W-l5xp 

W-1As 

5As+10As 

1As 
1As 

(Frame) arr 3As 

Table 15. Complexity of the global registration based detection part of the algorithms (steps c,d,e). 
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Corner Pairing 

Algorithm 
FPA FVA BP 

fo-

veas 
Read/ 

Write 
Algo Step STLM LTLM  

a 
Feature/template 

selection 
        

 
ReadCamera: input 

frame from sensor 
X    W-1As   

1As 

(Frame) 

ser 
Extract: Harris corner 

extraction 
X    W-l1xp 

89As+ 20As 
3As  

arr 12As+ 16As 

b 
Feature/template 

matching 
        

 
SelectA: possible 

pairs with gating 
  X  

R-l1xp  

W-l2xp 5
2

1l    

 
Check: correlation 

check 
 X  l2 

R-2At  

W-S 
5At   

 
SelectB: keep good 

pairs 
  X  

R-l2xS 

 R-l2xp  

W-l3x2p 
3xl2x10   

c Global tr model est.         

 

RANSAC: for l3 

feature pairs l4 of 

them will turn to be 

inlier in N iterations  

  X  
R-l3x2p  

W-l4x2p 
N*15000   

 
Estimate: linear 

estimation for inliers 
  X  

R-l4x2p  

W-9S 

2
49 2

2

5

4
3

l

l

   

d Alignment         

 
Transform: transform 

previous frame 
  X  

R-1As  

R-9S  

W-1As 
30As   

e Detection         

ser 
Detect: Ab-

sDiff+threshold+morp

hology 
X    

R-1As  

W-l5xp 

W-1As 

5As+10As 

1As 
1As 

(Frame) arr 3As 

Table 16. Complexity of Corner Pairing algorithm, together with global transformation registra-

tion based detection. 
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 Block Matching Algorithm FPA FVA BP fovea 
Read/ 

Write 
Algo Step STLM LTLM  

a 
Feature/template 

selection 
        

 
ReadCamera: input frame 

from sensor 
X    W-1As   

1As 

(Frame) 

 
Prefilter: autocorrelation 

filtering in l1 windows on a 

fixed grid (l1= Mc x Nc)  
 X  l1 

R-1At  

W-2S 
[2*4+3*4]At+ 

20 
3At  

 
SelectA: select good 

locations (l2 from l1)  
  X  

R-l1xp  

W-l2xp 
4l1   

b 
Feature/template 

matching 
        

 

CalcDisplacement: 

AbsDiff for templates with 

[full,diamond] search, q 

steps 

 X  l2 
R-2Aw  

W-5S 

6

2
2

2 A

q

A q tt

  
4At 

1Aw 
 

 
SelectB: select reliable 

matches (l3 from l2)  
  X  

R-l2x5S 

 W-l3x2p 
4l2   

Table 17. Complexity of the BMA algorithms.  

For full search 2(2 )q r , for diamond search 9 5q r , where r is the maximal displacement of the video 

flow. The global transformation based detection is used in the same way as in the previous algorithms (steps 

c,d,e also described in Table 15) 
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 KLT Algorithm FPA FVA BP foveas 
Read/ 

Write 
Algo Step STLM LTLM  

a 
Feature/template 

selection 
        

 
ReadCamera: 

input frame from 

sensor 
X    W-1As   

1As 

(Frame) 

ser 
Extract: Harris 

corner extraction 
X    W-l1xp 

89As+ 20As 
3As  

arr 12As+ 16As 

b 
Feature/template 

matching 
        

 
CalcDisplace-

ment: k KLT 

steps for s scale 
 X  sxl2 

R-2Aw  

W-5S 

18
27
32

7

5

1 2

2

8
Aw
A

Aw

A

t

q
t
t

A

 9Aw  

 
SelectB: keep 

good pairs 
  X  

R-l2x5S 

W-l3x2p 
4l2   

          

Table 18. Complexity of the KLT algorithm.  

q is typically 5, s is the 2-based-logarithm of r (the maximal displacement of the video flow). The global 

transformation based detection is used in the same way as in the previous algorithms (steps c,d,e described 

in Table 15) 
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 SIFT Algorithm FPA 
FV

A 
B

P 
fo-

veas 
Read/Write Algo Step STLM LTLM  

a 
Feature/template 

selection 
        

 
ReadCamera: 

input frame from 

sensor 
X    W-1As   

1As 

(Frame) 

ser 
Extract: Gauss 

scale space, 

differences,3D 

local maxima 

X    
W-l1xp  

W-OxnsxAs 

( 2)30
( 2)3

1 2 27n

O ns
osAs n

s
s

os

 
5As 

1As 

(Frame) 

arr 
( 2)2
( 2)1

2 27ns

ns
O As ns  

 

Descriptor1: 

create edge 

histograms, find 

peaks 

Descriptor2: 

rotate 

Descriptor3: 

create 

descriptors 

 X  l1 
R-At  

W-128xS 

5

20 10

10 36

At At

At

 3At 

128xS 
 

b 
Feature/template 

matching 
        

 
Match: matching 

descriptors  
  X  

R-2xl1x128S 

W-l3x2p 
822 212l    

Table 19. Complexity of the SIFT algorithm.  

O is the number of octaves used, ns is the number of sub-scales in each. The global transformation based 

detection is used in the same way as in the previous algorithms (steps c,d,e also described in Table 15) 
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 ELG Algorithm FPA FVA BP 
iterations, 

foveas 
Read/Write Algo Step STLM LTLM  

a 
Feature/template 

selection 
        

 
ReadCamera: input 

frame from sensor 
X    W-1As   

1As 

(Frame) 

 

Prefilter: autocorrela-

tion filtering in l1 

windows on a fixed grid 

(l1= Mc x Nc)  

 X  l1 
R-1At  

W-2S 
[2*4+3*4]At+20 3At  

 
SelectA: select good 

locations (l2 from l1)  
  X  

R-l1xp  

W-l2xp 
4l1   

b 
Feature/template 

matching 
        

 

CalcDisplacement: 

AbsDiff for templates 

with joined search, q 

steps with topological 

interaction 

 X  qxl2 
2

4 3
3

R Aw
R Aw
R S
W S

 8At+40 4At (Aw) 

 “Select” l3:=l2   X  
R-l2x5S 

W-l3x2p 
4l2   

c Global tr model est.         

          

          

d Alignment         

 
Transform: transform 

previous frame 
  X  

R-1As  

R-l3x3S 

W-1As 
5As   

e Detection         

ser 
Detect: Ab-

sDiff+threshold+morph

ology 
X    

R-1As  

W-l5xp  

W-1As 

5As+10As 

1As 
1As 

(Frame) arr 3As 

Table 20. Complexity of the Elastic Grid based Multi-Fovea algorithm.  

q is typically 3 times r (the maximal displacement of the video flow). Steps c,d are different from the global 

registration based detection. 
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APPENDIX B 

Some basic software related definitions are listed based on the IEEE-Software and 

Systems Engineering Vocabulary [80].  

Definition 54 Entity 

An entity can be anything that can be measured (estimated, defined) and can be 

expressed with numerical values for modeling some portion of the environment. 

 

The mathematical formulation of computers, computation theory was originally the 

science of handling integer numbers, although it was shortly extended to procedural 

handling of any rational number represented with final precision (with a limited number 

of fractional digits as fixed-point, or the more flexible floating-point representation). 

Addition and multiplication are the most important basic operators, they form a special 

algebraic structure called field with the rational numbers. In practical cases the data 

handled by a computer is far more than a simple number: it is modeling many diverse 

objects from the environment with many factors. 

Definition 55 Attribute 

Complex entities may be characterized with multiple properties (parameters). 

Description of a specific property of an entity is an attribute.  

 

Some attributes of the entities may have some meaningful ordering and can be organized 

into 1D or 2D indexed structures. Structures with higher dimensions can be organized 

into multiple structures of lower dimensions. 

Definition 56 Basic type qualifiers  

Scalar – atomic numerical attribute (with addition and multiplication operators) 

Vector – 1D structure of scalars with a predefined number of elements 

Matrix – , R CA A 2D structure of scalars, indexed in row column order with a 

predefined number of elements. 

Elements can be referred as: ,, ,
, ,R C r cr c r c

A A a where  

1, 2..

1, 2,..

r R

c C
, R and C is the number of rows and columns, respectively. 

The size of a matrix is denoted by ,R CA A , and R C RCA  
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The data may have some more secondary structures among a group of attributes for an 

entity or defined on entities sharing some common property. The set S of some values 

without ordering and with 1D or 2D ordering is also used to describe a structure: 

Definition 57 Tuple , , ,...a b c , 1 2 3, , ,...a a a  

Values of arbitrary type can be grouped into a tuple. Elements can be referred to by 

indices. For example, an entity may be described as a tuple of all attributes. 

Definition 58 List - ,,i r ca a  

A structure containing values of the same type is called a list (formally it is a well-

ordered set). 1D or 2D indices can be used for referring to any element. 2D indices are 

in row column order. The typography of the name reflects the type of the elements. 

Elements can be referred as: ,( ), ( , ), ,i i ja i a i j a a  

The size of a list is denoted by ,,i r ca a , where 

1,2,..

1,2..

1,2,..

,i R C

i N

r R

c C

a N L R C

 

Indices for complex structures are given in decreasing order of the hierarchy, for 

example , ,k y x k y x
I I is used for matrix elements in a list of matrices. 

 

A wide range of attributes can be coded into the above structures using special encodings 

for non-numerical data, such as the ASCII code – for characters of the Latin alphabet and 

some other symbols – and 1-D lists of characters for text. 

 

Definition 59 Compound type, extended type 

Tuple and list types are compound types. Functions may also be defined as taking 

compound values. Type qualifier extended type may refer to operands of any basic or 

compound types.   

 

Some entities that are valid for a long time can be considered constant, or at least do not 

change their values without direct interaction with the environment. Others are time 

dependent, and their model should be updated by measurement or tracked using some 

internal model of their dynamics. 
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Definition 60 Time series 

In case of time-dependent entities, a common time unit is used for time-discretization (a 

value that is smaller than all Nyquist-rates). After sampling, values are represented in 

lists sharing the common time index. 
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APPENDIX C 

Dataflow graphs 

 

In the next subsections dataflow diagrams of the algorithms are presented. General 

notations are summarized in Table 21. The main three computational structures (Frontend 

Processor Array (FPA), Foveal Processor Array (FVA), Backend Processor (BP)) and 

memory management functionalities are distinguished using the colors blue, green, white 

and orange, respectively. 

 

 

Table 21. General notations for dataflow diagram

Operation on Foveal Processor Array

Operation on 
Frontend Processor Array (FPA) 

Operation on 
Backend Processor  (BP)

Memory Manager Function

Local Short Term Memory inside FVA

Local Short Term Memory inside FPA

1/z

Local Long Term Memory inside FPA

Global Short Term Memory

1/z

Global Long Term Memory

Controller inside 
Foveal Processor Array (FVA)
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6.4. Corner Pairing Algorithm 
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6.5. Block Matching Algorithm 
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6.6.  KLT Algorithm 
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6.7. SIFT Algorithm 
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6.8. Elastic Grid Algorithm 
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LIST OF ABBREVIATIONS 

ALU Arithmetic and Logical Unit 

Algo algorithm 

API Application Programming Interfaces 

ASIC Application Specific Integrated Circuit 

BMA Block Matching Algorithm 

BMA-DS Diamond Search Block Matching Algorithm 

BMA-FS Full Search Block Match Algorithm 

BP Backend Processor 

CMVA Cellular Multi-core Video Analytics 

CNN Cellular Neural/Nonlinear Network 

CNN-UM CNN Universal Machine 

CPA Corner Pairing Algorithm 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture 

DAG Directed Acyclic Graph 

DMA Direct Memory Access 

DoG Difference of Gaussian 

DSP Digital Signal Processor 

e.g. for example 

ELG Elastic Grid Multi-Fovea Detector or Elastic Grid Algorithm 

FPA Frontend Processor Array 

FPGA Field Programmable Gate Array 

FVA FoVeal Processor Array 

GPU Graphics Processing Unit 

GP-GPU general purpose GPU 

i.e. id est (Latin) 

IC Integrated Circuit 

I/O input/output 

KLT Kanade-Lucas Tracker 

LDSP Large Diamond Search Pattern 
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LTLM Long Term Local Memory 

MIMD multiple instruction multiple data 

MP Multiprocessor 

MRI Magnetic Resonance Imaging 

PC Personal Computer 

PCB Printed Circuit Board 

PCI local bus Peripheral Component Interconnect local bus 

PCIe  PCI Express 

DLT Direct Linear Transform  

PE Processing Element 

PET Positron Emission Tomography 

RANSAC RANdom SAmple Consensus 

SAD sum of absolute differences 

SDSP Small Diamond Search Pattern 

SIFT Scale Invariant Feature Transform 

SIMD single instruction multiple data 

STLM Short Term Local Memory 

SVD Singular Value Decomposition 

UAV Unmanned Air Vehicle 

UMF Universal Machine on Flows 

VLSI Very Large Scale Integration 
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