
Memory Access Optimization for Computations
on Unstructured Meshes

Thesis submitted for the degree of Doctor of Philosophy

Antal Hiba M.Sc.

Supervisors:

Dr. Péter Szolgay, Dr. Miklós Ruszinkó

Pázmány Péter Catholic University

Faculty of Information Technology and Bionics

Roska Tamás Doctoral School of Sciences and Technology

Budapest, 2015

DOI:10.15774/PPKE.ITK.2016.007

DOI:10.15774/PPKE.ITK.2016.007

Contents

1. Introduction 1

1.1. Motivation and scope . 1

1.2. Thesis outline . 3

2. Bandwidth limitations in mesh computing 5

2.1. Processors and Memory Interfaces . 6

2.1.1. Comparison of different processor architectures from 2013 6

2.1.2. Processor architectures from 2015 7

2.1.3. Possible Hardware Solutions to the Memory Wall 10

2.2. Mesh Computing . 10

2.3. Dataflow Computing . 12

2.3.1. Dataflow computing on a mesh . 12

2.3.2. Memory access optimization and interprocessor communication . . . 14

2.3.3. Data Locality in Mesh Computing 15

3. Dataflow Machines 17

3.1. FPGA and All Programmable System on Chip (APSoC) architectures . . . 17

3.1.1. Field Programmable Gate Array (FPGA) 17

3.1.2. All Programmable System on Chip (APSoC) 20

3.2. Existing hardware solutions of DMs . 22

3.2.1. Maxeler accelerator architecture . 22

3.2.2. HC1 coprocessor board . 23

3.2.3. Multi-Banked Local Memory with Streaming DMA 24

3.2.4. Large-Scale FPGA-based Convolutional Networks 25

3.2.5. Pipelined Maxeler Accelerators . 26

i

DOI:10.15774/PPKE.ITK.2016.007

ii CONTENTS

3.3. Off-chip memory streaming techniques . 28

3.4. Special-Purpose DMs for mesh computing 31

3.4.1. DM for structured meshes . 31

3.4.2. DM for unstructured meshes . 33

3.4.3. Implementation of the DM for unstructured meshes 35

4. Static Mapping 39

4.1. Graph Partitioning . 39

4.1.1. Bipartitioning methods . 40

4.1.2. Generalizations of Graph Partitioning 41

4.1.2.1. Hybrid Architecture: . 42

4.1.2.2. Heterogeneous Processes: 42

4.1.2.3. Multi-Constraint Partitioning: 42

4.1.2.4. Skewed Partitioning Model: 42

4.1.2.5. Target Graph Representation: 42

4.2. Sparse Matrix Reordering . 43

4.3. Data locality and interprocessor communication 43

4.3.1. Description of Graph Bandwidth Minimization and related work . . 44

4.3.2. Connection between Graph Bandwidth and Mesh Structure 45

5. Bandwidth-Limited Partitioning 49

5.1. Problem definition . 49

5.2. AM1 partitioning method . 50

5.2.1. AM1 reordering method . 50

5.2.1.1. Two data locality bounds based on graph bandwidth . . . 51

5.2.1.2. Algorithm for bandwidth reduction 51

5.2.1.3. Description of AM1 . 52

5.2.1.4. Results and conclusions . 53

5.2.2. AM1 as a partitioner . 54

5.2.2.1. AM1 based bounded S BW method 55

5.2.2.2. Results and conclusions . 57

5.3. Depth-Level Structure based partitioning 58

5.3.1. Depth Level Structure (DLS) Based Bisection 58

DOI:10.15774/PPKE.ITK.2016.007

CONTENTS iii

5.3.1.1. Objective . 59

5.3.1.2. Basic Entities and Operations 59

5.3.1.3. DLS Bisection . 61

5.3.2. Results . 63

5.3.2.1. Bounded BW partitioning 66

5.3.3. Conclusions . 66

5.4. BLP method for structured meshes . 67

5.4.1. Grid-Type BLP Partitions . 67

5.4.2. Quality of Grid-Type BLP partitions 69

5.5. BLP method for unstructured meshes . 70

5.5.1. METIS-AM1 hybrid method for handling BLP 71

5.5.2. METIS-AM1 results on unstructured meshes 71

5.6. Conclusions . 73

6. Applicable Partial Solution Generation for Fast-response Combinatorial

Optimization 75

6.1. Variable Subset Merger . 77

6.1.1. Variations of subset selection . 78

6.1.1.1. VSM-Const . 79

6.1.1.2. VSM-PLoss . 79

6.1.1.3. VSM-CLoss . 79

6.1.1.4. VSM-PCLoss . 80

6.1.2. VSM Hybrid Methods . 80

6.1.2.1. With best-known not real-time solver 80

6.1.2.2. With best-known real-time solver 80

6.1.3. VSM models for specific optimization problems 81

6.2. VSM for the Disc Scheduling Problem (DSP) 81

6.2.1. VSM model for the Disc Scheduling Problem 82

6.3. VSM for the Generalized Assignment Problem 83

6.3.1. Generalized Assignment Problem (GAP) 83

6.3.2. VSM model for GAP . 83

6.4. VSM for the Sequential Ordering Problem 85

6.4.1. Sequential Ordering Problem (SOP) 85

DOI:10.15774/PPKE.ITK.2016.007

6.4.2. VSM-SOP . 85

6.4.3. Compulsory Validations . 86

6.5. Results . 87

6.5.1. Subset selection and optimality . 87

6.5.2. Response time . 90

6.5.3. Operations with optimization time complexity 91

6.6. Conclusions . 92

7. Theses of the Dissertation 95

7.1. Methods and tools . 95

7.2. New scientific results . 96

7.3. Applicability of the results . 103

References 105

iv

DOI:10.15774/PPKE.ITK.2016.007

Kivonat

A gráfok rendḱıvül hatékony eszköznek bizonyultak a világ matematikai

modellezésében, kezdve a közúti hálózatoktól egészen egy emberi ér 3D

térbeli léırásáig. A modellekből származó numerikus algoritmusok gyakran

számı́tásigényesek, ezért több processzáló csomópont között fel kell oszta-

ni a feladatot. A felosztás során egy gráf particionálási feladatot kell meg-

oldani. A cél a lehető leggyorsabb párhuzamośıtott számı́tás az erőforrások

maximális kihasználásával. Az egymagos lassú kommunikációs csatornákkal

összekötött processzorok idejében egyértelműen a minimális kommunikációt

eredményező azonos méretű részgráfokat tartalmazó felosztásokat tekint-

hettük optimálisnak. Napjaink processzor-architektúrái azonban akár sok

ezer műveletvégző egységet is tartalmazhatnak, és kommunikációs csa-

tornáik sávszélessége csak egy nagyságrenddel marad el a saját közpon-

ti memóriaelérésük sávszélességétől. Kutatásom célja, hogy megvizsgáljam

mely felosztások optimálisak az új kiloprocesszoros architektúrák számára, és

természetesen az ilyen felosztások generálására módszereket is szeretnék meg-

adni.

A dolgozatban bemutatom korunk legjobb processzorait, és ezek pa-

raméterein keresztül a memória sávszélességkorlát általános problémáját. A

sávszélességkorlát leküzdésének általam leghatékonyabbnak talált irányát az

adatfolyam alapú architektúrákat (DM) részletesen is bemutatom. Ezen spe-

ciális processzorok FPGA-n valóśıthatóak meg vagy VLSI célhardvareként.

A DM-ek legfontosabb tulajdonsága, hogy a processzáló egységek egy ma-

ximális sávszélességgel beérkező adatfolyamra csatlakoznak, a részeredmények

ugyańıgy haladnak tovább a chip-en további proceszáló elemek felé majd a

végeredmény vissza a központi memóriába. A DM-ek maximálisan kihasználják

a memória és a processzor közötti sávszélességet, viszont az adatfolyamnak csak

egy nagyon kis része érhető el egy adott időpillanatban (on-chip cache). Az egy

DOI:10.15774/PPKE.ITK.2016.007

művelethez tartozó bemeneti adatoknak közel kell lenniük egymáshoz a soros

adatfolyamban, különben a művelet nem lesz elvégezhető (az egyik operandus

még nem ér be, amikor a másikat már ki kell dobni a cache-ből). Az összefüggő

adatok maximális távolságát a folyamban adatlokalitásnak nevezzük.

Mivel az adatlokalitás erős korlát, szükséges egy olyan módszer, amely egy

adatlokalitás korlát teljesülését képes garantálni a létrejövő részgráfokban. Az

adatlokalitás jav́ıtása a mátrix sávszélesség minimalizálás feladatára vezethető

vissza. Az irodalomban talált heurisztikus módszerek vizsgálata után, a Gibbs-

Pole-Stockmeyer (GPS) módszert alaḱıtottam át olyan particionálási eljárássá

(AM1), amely adott mátrix sávszélesség korlát alatt sorośıtható részgráfokat

hoz létre. Az AM1 lehetővé teszi a DM-ek alkalmazását nagyobb részgráfokra

is, viszont a részgráfok számát nem lehet elő́ırni, és a létrejövő részgráfok

mérete szintén nem egységeśıthető. Az AM1 önmagában csak az egy DM által

kezelhető részgráf méretét növeli meg szignifikánsan egy virtuális particionálás

seǵıtségével.

Az adatlokalitás matematikai vizsgálata több egyszerű összefüggést is

eredményezett az adatlokalitás szempontjából kedvező particiókkal kapcso-

latban. Ezek alapján bevezettem a Mélységi Szint Struktúrát (DLS), amely

a gráf végpontjaiból (vagy határhalmazból) ind́ıtott szélességi keresés hoz

létre. Elsőként biszekcióval foglalkoztam, és a legmélyebb szinteket szétvágó

szeparátorokat generáló módszert dolgoztam ki. A létrejövő részgráfok adat-

lokalitás szempontból jól viselkedtek, viszont a proceszorközi kommunikáció

megnövekedése és az irreguláris rácsok változatossága miatt a módszer nem

lett eredményes.

A strukturált 2D és 3D téglalap vizsgálata során sikerült egy közel op-

timális módszert kidolgozni, amelyben az adatlokalitás és a processzorközi

kommunikáció együttesen kezelhetővé vált. Ez alapján megfogalmaztam a

Sávszélesség-korlátos Particionálás (BLP) feladatát. Megvizsgáltam hogyan

lehetne korunk egyik legjobb particionálási módszerét (METIS) a BLP fel-

adat megoldására felhasználni. Több izgalmas összefüggés mellett egy hib-

rid módszert kaptam, amely több METIS próba particionálás eredményéből

kiszámol egy kezdeti particionálást, melynek elemeit átadja az AM1-nek.

vi

DOI:10.15774/PPKE.ITK.2016.007

A párhuzamośıtást seǵıtő új particionálási módszerek mellett a dolgozat

második részében magának az optimalizációnak a gyorśıtását tűzöm ki célul.

Maga a gráf particionálási feladat is felfogható egy kombinatorikus optima-

lizációs (CO) feladatként, ahol minden csomóponthoz tartozik egy döntési

változó, amely meghatározza hogy hányas sorszámú részgráfba kerül az adott

csomópont. Az ilyen feladatok megoldását úgy ḱıvánom gyorśıtani, hogy

egy részfeladatot megoldok, és miközben a részmegoldást már felhasználom,

folytatom a megmaradó döntési változók optimalizációját. A módszertant

általánosan sikerült kidolgozni, és a Soros Rendezési Problémán (SOP) a Lemez

Ütemezési Problémán (DSP) és az Általános Hozzárendelési Problémán (GAP)

be is mutatom az előnyeit és gyenge pontjait. Sajnos a BLP megoldásának

gyorśıtására nem ajánlható a módszer, viszont sok más esetben, ahol egy

részmegoldás ismerete nagyobb előnyökkel jár (feladatok sorbarendezése -

SOP) jelentős gyorśıtás érhető el.

vii

DOI:10.15774/PPKE.ITK.2016.007

DOI:10.15774/PPKE.ITK.2016.007

Abstracts

Graphs have been found an effective tool in modeling the real world from the

road network to the 3D volumetric description of a human vein. Numerical

algorithms that come from these models are often computationally expensive,

thus these tasks have to be divided. This division is defined by the solution

of the graph partitioning problem. The partitioning aims for the best possible

parallelism with maximal resource utilization. In the age of slow interconnec-

tions and single-core processors, the optimal solution was clearly the one with

minimal communication need and identically sized parts. However, the current

processor architectures have thousands of processing elements, and the band-

width of their interconnections is just one order of magnitude slower than the

bandwidth of their main memory. The goal of my research is to investigate the

properties of optimal partitions in the case of these novel processor architec-

tures and naturally, I want to also give methods to generate these partitions.

In this work, I show the best processor architectures available today and th-

rough them the general problem of memory bandwidth limitation. I present

in details Dataflow Machines (DM) which provides the best solution to this

problem in my view. These specific processors can be realized in FPGA or

custom VLSI. The most important property of DMs is streaming, that is, the

processing elements connected to a maximal bandwidth data flow and the inter-

mediate results propagated the same way to other processing elements on-chip

and finally the result is streamed back to the main memory. DMs utilize the

whole memory bandwidth, but only a small portion of the data flow can be

accessed on-chip at the same time. The operands of an operation have to be

close to each other in the serialized data stream, otherwise, the operation can

not be executed (one of the operands has not arrived when an other operand

must be thrown out from the cache). The maximal distance of connected data

elements is called data locality.

DOI:10.15774/PPKE.ITK.2016.007

Data locality has a strict bound thus a method is required which can gua-

rantee the desired locality in the resulting subgraphs. Data locality minimi-

zation of a stream can be traced back to the matrix bandwidth minimization

problem. After the investigation of known methods, I modified the Gibbs-Pole-

Stockmeyer (GPS) method into a partitioner (AM1), which creates subgraphs

with the desired data locality. AM1 makes it possible to use DMs for larger

subgraphs, however, the number of subgraphs can not be defined and the size

of the subgraphs can not be controlled as well. AM1 itself can increase only

the size of possible inputs for DMs with a virtual partitioning.

Mathematical analysis of data locality results many simple rules about the par-

titions with good data locality. Based on these observations I defined the Depth

Level Structure (DLS), which is created by a Breadth-First Search started from

the endpoints of the graph (or boundary elements). First, I work on bisections

and I created a method which cuts the deepest areas of the graph. The resulted

subgraphs have good data locality, however, the interprocesor communication

need increased significantly and the variability of irregular meshes makes this

approach unsuccessful.

Investigations of 2D and 3D structured rectangular meshes results a specific

method which nearly optimal for these graphs, furthermore data locality and

interprocessor communication can be handled together. Based on this result

I can formulate the problem of Bandwidth Limited Partitioning (BLP). I do

examinations with one of the best-known partitioners (METIS), how it can

handle the BLP. I found some interesting connections, and I created a hybrid

method which creates multiple METIS trials, and based on them creates an

initial partition which is further partitioned with AM1.

After the improvements of parallelization, in the second part of this work I

deal with the acceleration of the optimization itself. The graph partitioning

problem is a Combinatorial Optimization (CO) problem, where each node has

a decision variable that describes the index of the subgraph which will contain

that node. I want to accelerate this optimization by the usage of partial solu-

tions, before the optimization creates a complete solution. A general solver is

defined and its derivative methods are shown for the Sequential Ordering Prob-

x

DOI:10.15774/PPKE.ITK.2016.007

lem (SOP), Disc Scheduling Problem (SDP) and the Generalized Assignment

Problem (GAP) to demonstrate the advantages and highlight the weak points

of the approach. Unfortunately, this approach is not beneficial for the BLP,

but in other cases in which a partial solution gives more advantage (ordering

tasks - SOP) it provides significant speedup.

xi

DOI:10.15774/PPKE.ITK.2016.007

DOI:10.15774/PPKE.ITK.2016.007

Abbreviations

APSG Applicable Partial Solution Generation

ASIC Application-Specific Integrated Circuit

BFS Breadth-First Search

BLP Bandwidth Limited Partitioning

BW Bound Data Locality bound - Graph Bandwidth bound

C BW Central Bandwidth

CM Cuthill McKee method

CO Combinatorial Optimization

COMM Bound Computation over Communication Ratio bound

CPU Central Processor Unit

DDR Double Data Rate memory

DFE Data-Flow Engine

DLS Depth Level Structure

DM Dataflow Machine

DMA Direct Memory Access

DP Double Precision

DPSO Discrete Particle Swarm Optimization

xiii

DOI:10.15774/PPKE.ITK.2016.007

DRAM Dynamic Random-access Memory

DSP Digital Signal Processor

DSP Disc Scheduling Problem

EACS Enchanted Ant-Colony System

FIFO First In First Out container

FLOPS Floating-point Operation Per Second

FPGA Field Programmable Gate Array

G BW Graph Bandwidth

GAP Generalized Assignment Problem

GDDR Graphics Double Data Rate memory

GPS Gibbs Pole Stockmeyer method

GPU Graphics Processing Unit

GRASP Greedy Randomized Adaptive Search Procedure

MAC Multiply-Accumulate

PCI Peripheral Component Interconnect

PDE Partial Differencial Equation

PE Processing Element

S BW Serial Bandwidth

SIMD Single Instruction Multiple Data

SOP Sequential Ordering Problem

SP Single Precision

TSP Travelling Salesman Problem

VSM Variable Subset Merger

xiv

DOI:10.15774/PPKE.ITK.2016.007

1. Chapter

Introduction

1.1. Motivation and scope

Recent processor architectures consist many parallel cores. These chips with high computa-

tional capacity are common and also the building blocks of current scientific and industrial

supercomputers. The theoretical computational power reached 1 Tera-FLOPS/chip, but

the utilization of such processors can be just 10-15% in a real-life application. The common

reason is the difference between the memory bandwidth and the computational capacity

of the processor. The speed of computation is not limited by the processing elements (PE),

rather the memory bandwidth, which becomes a kind of wall between the processor and

the memory [R1]. This effect is getting stronger because the computational capacity incre-

ases faster than the memory bandwidth. Several projects aim for a solution to the memory

wall [R2] from these approaches I prefer the integration of memory with the processor ar-

ray with 3D chip technology [R3, R4]. The Memory interface is not only a speed limiting

factor, but it also increases the power consumption thus the optimized usage of these in-

terfaces becomes important for economical and green computing reasons too.

Memory access optimization means the local memory (cache) handling methods of the

processor, which decreases the number of transfers from/to the slow off-chip memory,

and also includes the methods, which support the utilization of available off-chip memory

bandwidth. The number of data transfers can be decreased by the on-chip cache if a data

element can be reused during the computation. The utilization of available off-chip me-

mory bandwidth can be increased by optimized memory access patterns. For the current

DRAM technology, the serial access pattern is the most appropriate thus it is beneficial to

1

DOI:10.15774/PPKE.ITK.2016.007

2 1. INTRODUCTION

organize the input data to reach serial access patterns during the computation. The task

becomes more complex when the input problem is distributed among multiple processor

chips. In this case, the inter-processor communication comes into the scene, which has to

be considered to reach the best possible performance.

Classical distribution approaches consider only the interprocessor communication and

identical part sizes. The elementary operators inside a task define a graph, where the

nodes represent elementary operators, and the edges describe data dependencies. At this

point, we reach the graph partitioning problem, which aims for identically sized subgraphs

with minimal edge cut (communication need). The optimization of memory access is done

by a node ordering algorithm, which increases data locality after the partitioning phase.

Data locality maximization leads to the Matrix Bandwidth Minimization problem in which

a matrix is transformed into a narrow banded form. Unfortunately, Graph Partitioning

and Matrix Bandwidth Minimization are NP-complete [R5, R6] thus an optimal solution

can not be obtained in polynomial time assuming P!=NP. Thanks to many successful re-

search attempts there are several good heuristics to handle these problems. Because data

locality becomes more and more important, a question arises: Should we consider data

locality at the partitioning phase?

The primary goal of this dissertation is to investigate the connections between the par-

titions and the reachable data locality, and based on this knowledge, construct methods

which can consider data locality and inter-processor communication at the same time.

This approach can ensure better processor utilization and evade the wasting of resources.

Parallelization and better memory bandwidth utilization require the solution of complex

optimization tasks. Surely we do not want to spend much time with these optimization

tasks. Novel efficient heuristics are often called metaheuristics which mean these methods

are not simple task-specific heuristics, there is something ’more’. The possible solutions of

a CO problem define a solution space. Metaheuristics provide dimension reduction (multi-

level) or scouting techniques in the solution space (gradient, variable neighborhood search,

simulated annealing, genetic algorithm, etc.) which description is task-independent [R7,

R8]. In the case of graph partitioning, the dimension reduction methods are the most

effective [R9], while for the matrix bandwidth minimization task-specific heuristics are

used [R10, R11].

The second part of this dissertation makes an attempt to find new possibilities in dimension

DOI:10.15774/PPKE.ITK.2016.007

1.2 Thesis outline 3

reduction, not limited to the graph partitioning problem.

1.2. Thesis outline

The thesis is organized as follows. In chapter 2, I show the best processor architectures

available in 2013 and 2015 and through them the general problem of memory bandwidth

limitation. In the following chapter, I present in details Dataflow Machines (DM) which

provides the best solution to this problem in my view. Chapter 4 presents the existing

variants of static mapping and introduces the problem of inter-processor communication

and data locality in mesh partitioning. Chapter 5 contains the main results of bandwidth-

limited mesh partitioning, which supports memory access optimization in the partitioning

phase. The 6th chapter introduces a metaheuristic framework for fast-response combinato-

rial optimization. The last chapter summarizes the results and concludes the dissertation.

DOI:10.15774/PPKE.ITK.2016.007

DOI:10.15774/PPKE.ITK.2016.007

2. Chapter

Bandwidth limitations in mesh

computing

Nowadays many-core architectures GPUs and FPGAs have hundreds of Processing Ele-

ments (PEs), which leads to high theoretical computational capacity (TeraFLOPS/chip).

However, the utilization of PEs is low in many applications, because these architectures

are very sensitive to irregular memory access patterns.

First of all, there is not enough theoretical memory bandwidth to feed all PEs simulta-

neously from off-chip memory. For utilizing all processing elements, loaded data must be

reused several times from on-chip cache. Furthermore, the theoretical memory bandwidth

can be reached only by sequential bursts (multiple data transfers together), and required

data have to fit the provided access granularity (64 - 256 bit). In the case of random

32-bit reads, the real memory bandwidth can be many times lower than the theoretical

maximum. Irregular memory access leads to poor memory bandwidth utilization, and high

cache-miss rate, which are the sources of low PE utilization. Preoptimization of input data

increases the regularity of the access pattern, but these effects still curtail PE efficiency.

This chapter gives some insight into the sources of memory bandwidth limitations and

general solutions. Then, the case of mesh computing is discussed in more details. Dataflow

Machines (DM) are introduced as a possible solution to the memory bandwidth limitation

problem.

5

DOI:10.15774/PPKE.ITK.2016.007

6 2. BANDWIDTH LIMITATIONS IN MESH COMPUTING

2.1. Processors and Memory Interfaces

The theoretical computational power of processor architectures and the theoretical

memory bandwidth of memory interfaces are increasing. However, the trends of their

growth are different, and the gap between memory bandwidth and computational power

become a performance bottleneck.

2.1.1. Comparison of different processor architectures from 2013

The processing capabilities and corresponding memory interfaces of processor chips are

shown in Table 2.1. CPUs, GPUs and FPGAs have different purpose thus nobody can say

that one is better than an other. The goal of this comparison is to show that all of these

architectures suffer from the memory wall.

Intel core i7-4770K is a desktop CPU with 4 Haswell cores, where each core can perform

2x4 double precision (DP) floating-point multiply-accumulate (MAC) operations, which

means 16 DP floating-point operation (FLOP) per cycle. The theoretical peak perfor-

mance of i7-4770K is 249.6 GigaFLOP per second (GFLOPS). Intel Xeon E5-2695V2 is

used as server CPU, it has 12 Sandy Bridge cores, where each core provides 8 DP FLOP

per cycle, and it has more than three times large on-chip memory (30 MB L3), with a

better memory interface. The on-chip memory hiearchy (L1-L3) could create an on-chip

memory wall, but in this work I focus on the off-chip memory interface that is the main

bottleneck. IBM BlueGene/Q was the state of the art CPU architecture in 2013, which is

the building block of power-efficient supercomputing systems. BlueGene/Q has 16 cores

with 4 DP MAC per cycle, which results in 204 GFLOPS. E5-2695V2 has 307.2 GFLOPS

peak performance at 115W while BlueGene/Q provides 204 GFLOPS at only 55W. Nvidia

Tesla K20X represents the family of GPUs. Tesla K20X has 2688 cuda cores operating at

732 MHz, where cuda cores do single precision MAC operations. According to the manu-

facturer, DP performance of Tesla K20X is 1310 GFLOPS.

The last important class of computing chips is the family of FPGAs. Xilinx Virtex

XC7VX1140T was one of the most powerful FPGAs in the case of floating-point mul-

tiplications with 3360 DSP slices. The balanced comparison of an FPGA to other pro-

cessor architectures is challenging. DSP slices of Xilinx Virtex 7 FPGAs perform 25x18

DOI:10.15774/PPKE.ITK.2016.007

2.1 Processors and Memory Interfaces 7

bit fixed-point MAC, and every FPGA design is a processor architecture, which has its

own computational capability, and memory interface. The maximum operating frequency

of a DSP48E1 slice is 741 MHz [R12]. Two connected DSP48E1 slices can perform a

single-precision floating-point MAC at the same frequency, thus 2431 SP GFLOPS can be

achieved. In the case of DP floating-point, 305 MAC units can be formed at 453 MHz that

results in 269.85 DP GFLOPS.

GPUs and FPGAs have more than 1 SP TeraFLOPS theoretical computational power

Table 2.1. Bandwidth limitation of different architectures (2013)

Chip (cores/threads)
Bandwidth

Memory Type1
L2-L3 cache

GB/s MB
Intel i7-4770K 3.9 GHz (4/8) 25 DDR3 2x1600x64 8

Intel E5-2695V2 3.2 GHz (12/24) 58.3 DDR3 4x1866x64 30
IBM BlueGene/Q 1.6 GHz (16/64) 41.65 DDR3 4x1333x64 32

Nvidia Tesla K20X (2688 cuda cores) 250 GDDR5 6x2662x128 1.5
Xilinx XC7VX1140T (3360 DSP slices) 50 DDR3 4x1600x64 10.42

Chip (cores/threads) GFLOPS GFLOPS*
Caching

Multiplier
Intel i7-4770K 3.9 GHz (4/8) 249.6 3.125 79.87

Intel E5-2695V2 3.2 GHz (12/24) 307.2 7.28 42.19
IBM BlueGene/Q 1.6 GHz (16/64) 204.8 5.2 39.38

Nvidia Tesla K20X (2688 cuda cores) 1310 31.25 41.92
Xilinx XC7VX1140T (3360 DSP slices) 269.85 6.25 86.35
1 : Type (number of channels) x (Mega Transfers / s) x (bits)
GFLOPS* : if 1 MAC (2 FLOP) needs 2x8 byte input from main memory (no cache)

per chip, however, the available off-chip memory bandwidth (25-250 GB/s) can support

input only for 3-30 GFLOPS. Caching Multiplier indicates the number of on-chip data

reuse that necessary for feeding all PEs continuously. The difference between zero-cache

GFLOPS* and the maximum theoretical GFLOPS is 42 times for the GPU and 86 times

for the FPGA, and also 42-80 times for the CPUs. It means that input data have to be

reused 40-90 times from on-chip memory to reach 100% utilization of PEs.

2.1.2. Processor architectures from 2015

In 2013, all of the processor architectures suffer from memory bandwidth limitation. Two

years later the problem is the same as can be seen in Table 2.2. Caching Multiplier can

be the measure of memory bandwidth limitation because it shows the difference between

computational capacity and the feeding capability of the memory interface. This mea-

sure has become worse since 2013 (Fig. 2.1), especially for the FPGA. Intel, Nvidia and

DOI:10.15774/PPKE.ITK.2016.007

8 2. BANDWIDTH LIMITATIONS IN MESH COMPUTING

Table 2.2. Bandwidth limitation of different architectures (2015)

Chip (cores/threads)
Bandwidth

Memory Type1
L2-L3 cache

GB/s MB
Intel i7-6700K 4.2 GHz (4/8) 34.1 DDR4 2x2133x64 8
Intel i7-5960X 3.5 GHz (8/16) 68 DDR4 4x2133x64 20

Intel E5-2699v3 3.6 GHz (18/36) 68 DDR4 4x2133x64 45
Nvidia Tesla K80 (4992 cuda cores) 480 GDDR5 12x2500x128 3.25
Xilinx VU13P (12288 DSP slices) 83.3 DDR4 4x2666x64 56.8

Chip (cores/threads) GFLOPS GFLOPS*
Caching

Multiplier
Intel i7-6700K 4.2 GHz (4/8) 268,8 4.25 63.24
Intel i7-5960X 3.5 GHz (8/16) 448 8.5 52.7

Intel E5-2699v3 3.6 GHz (18/36) 504 8.5 59.29
Nvidia Tesla K80 (4992 cuda cores) 2910 60 48.5
Xilinx VU13P (12288 DSP slices) 1850 10.41 177.7

1 : Type (number of channels) x (Mega Transfers / s) x (bits)
GFLOPS* : if 1 MAC (2 FLOP) needs 2x8 byte input from main memory (no cache)

Figure 2.1. Caching Multipliers in 2013 and 2015.

Xilinx (and their competitors) reached great improvement on DP computing capability,

while the memory bandwidth improvement was slighter. Nvidia seems to solve the prob-

lem (doubled performance with doubled memory bandwidth), but the Tesla K80 is in fact

two GK210 GPU with two instances of the GDDR5 interface of Tesla K20X. CPUs and

FPGAs strengthen with the new DDR4 interface, but the bandwidth growth is less than

the computational capacity growth as can be seen in Fig. (2.1). Xilinx ultrascale FPGAs

can also use serial memory interface which consists 64 instances of 15 Gbps channels pro-

viding 120 GB/s memory bandwidth. Xilinx improved the DP capability of the FPGAs

DOI:10.15774/PPKE.ITK.2016.007

2.1 Processors and Memory Interfaces 9

with the new DSP48E2 slice which performs 27*18 bit multiplications at 891 Mhz thus

the DP MAC units require less DSP slices. On the Xilinx VU13P chip, 1755 DP MAC

units can be placed with 540 MHz maximum operating frequency. Even with the better

120 GB/s memory interface, more than 100 on-chip data reuse is necessary for the FPGA

to reach the 100% utilization.

Processor architectures are bounded by the Speed (GFLOPS)—Power (Watt)—Area (die

Table 2.3. Price and power efficiency of different architectures (2015)

Chip (cores/threads) Type
Price Power Consumption DP Efficiency
USD Watt GFLOPS/Watt

Intel i7-6700K 4.2 GHz (4/8) CPU 350 91 2.94
Intel i7-5960X 3.5 GHz (8/16) CPU 1000 140 3.2

Intel E5-2699v3 3.6 GHz (18/36) CPU 3700 145 3.47
Nvidia Tesla K80 (4992 cuda cores) GPU 5000 2x150 9.7
Xilinx VU13P (12288 DSP slices) FPGA 20000* 40* 46.25*

*:based on approximations

mm2 or USD) triangle. Table (2.3) shows the main design aspects of different proces-

sor types. High-end GPUs and CPUs utilize the maximum possible power (150 W) with

market-driven chip sizes, while high-end FPGAs have 20.000 USD price and reach multiple

times better theoretical power efficiency.

Current DRAM (Dynamic Random-Access Memory) technologies are DDR3-DDR4 and

GDDR5. These memories are not fully random access because all of them use 8n prefetch-

ing, which increases the theoretical memory bandwidth, but also increases the minimal

amount of data per transmission. For DDR3, the access granularity is 8x(8-16) bit and

8x32 bit for GDDR5. In GDDR5X the 8n prefetch will be increased to 16n which results

in higher theoretical bandwidth, but makes the interface more sensitive to small random

memory transactions. DRAMs divide memory into banks, rows, and columns. Two con-

secutive reads can take a different amount of time. The most efficient way to use a DDR

memory is to read a row by burst reads, followed by reading an other row from a different

bank, because banks work independently. While a bank closes a row, the other can opens

one. With appropriate addressing (bank interleaving), this is a sequential memory read.

Any other memory access pattern have less utilized memory bandwidth than the theore-

tical maximum.

Kilo-processor architectures are memory bandwidth limited, and heavy on-chip data reuse

is necessary to provide input for PEs. Furthermore, the memory interface is sensitive to

DOI:10.15774/PPKE.ITK.2016.007

10 2. BANDWIDTH LIMITATIONS IN MESH COMPUTING

small random accesses. Sequential memory access pattern is needed for maximum utiliza-

tion of the off-chip memory bandwidth.

2.1.3. Possible Hardware Solutions to the Memory Wall

Better Memory Interface: Higher theoretical memory bandwidth is not enough, the

access granularity, and latencies between random accesses are also important. With shorter

transmission lines the frequency of the memory interface can be increased. Recent trends

try to connect main memory and the processor through 3D via technology [R3, R4], which

decreases the wire latencies and makes possible to create wide interfaces with 1024-2048

bits. While latencies drop down and theoretical memory bandwidth increases significantly,

the sensitivity of the interface to random access patterns is still high.

Decreased Operating Frequency: Decreased frequency lowers GFLOPS of the pro-

cessor. With the same memory interface this leads to better efficiency. Computational

power linearly depends on the operating frequency, but the power consumption of a pro-

cessor chip has quadratic frequency dependence. The main indicator of Green Computing

GFLOPS/Watt becomes better if the frequency of the processor is decreased.

Increased On-Chip Memory: The rate of on-chip data reuse can be improved with

increased on-chip memory. This approach can lead to better PE utilization, but increased

on-chip memory needs more chip area, thus less PE can be placed on the same chip,

which results in less GFLOPS.

Hardware manufacturers do extensive development to handle memory wall effect, but

this is not enough. Software engineers have to use optimized memory access patterns.

2.2. Mesh Computing

Graphs often appear in scientific and industrial computational tasks. The spatial discre-

tization of a 2D surface or a 3D volume can be represented by a graph. These graphs

are called meshes and are used in numerical simulations of space-time behavior of sound,

heat, elasticity, electrodynamics or fluid flow dynamics. From the design of an airplane to

weather estimation, these simulations become the most frequent tasks on supercomputers.

DOI:10.15774/PPKE.ITK.2016.007

2.2 Mesh Computing 11

If the mesh has a uniform rule-based organization it is called regular/structured, other-

wise it is irregular/unstructured. Irregular meshes make possible the change of mesh

density, which is beneficial in many cases. The same numerical precision can be achieved

with an irregular mesh with much fewer elements than a regular mesh requires. However,

computations on irregular meshes are more complex.

In mesh computing, the following questions arise: How to generate the mesh? (regu-

lar/irregular, number of elements); How to partition a mesh for parallel computing? (opti-

mization goals, partitioning method, number of parts); How to organize the corresponding

data in main memory? In this work I deal with the second and third questions, further-

more, I want to show that these two questions are in fact one.

In the later sections, I use the task of explicit numerical approximation of a system of

Figure 2.2. 2D vertex-centered mesh example. The black node depends on the white ne-
ighboring nodes.

partial differential equations (PDE) where the spatial discretization is defined by a mesh.

The discretization is called vertex-centered if the represented physical variable is defi-

ned at the vertices. In the case of cell-centered discretization the represented physical

variable is defined at the center of the primitive element (triangle, tetrahedron, etc.). The

discretization stencil defines which neighboring elements and how contributes to the dy-

namics of each element. The simplest discretization stencil contains the directly connected

neighbors (Fig. 2.2), which has one distance from the current node in the graph.

DOI:10.15774/PPKE.ITK.2016.007

12 2. BANDWIDTH LIMITATIONS IN MESH COMPUTING

2.3. Dataflow Computing

In dataflow computing, an operation is executed immediately if its operands are available.

In the case of classic von Neumann computing, an operation is executed when the serial

control reaches the operation. The result of a dataflow operation can invoke multiple

operations which can be executed in parallel. Dataflow computers are typically pipelined

architectures in which a continuous data stream goes through an acyclic graph structure

of operators.

Neumann machines often support SIMD (Single Instruction Multiple Data) computing to

utilize multiple processing elements in parallel. Dataflow machines could provide the same

extension with multiple identical pipes. This technique increases the input and output

bandwidth requirements of the architecture, but gives linear speedup.

2.3.1. Dataflow computing on a mesh

As I mentioned in the previous section, in this work an explicit PDE solver is used as a

test problem. In each time step, the state variables of all discrete mesh elements have to

be updated. For the update, all the constants and state variables of the given node and

its neighborhood are required. Mesh data have to go through the dataflow processor unit

which can update a finite number of nodes at the same time. The necessary input has to

be loaded on-chip for a node update, thus, all the required neighboring nodes have to be

stored. The processor has finite memory resources which make a limit on the maximum

distance of dependent nodes in the input stream, otherwise, the mesh data need to be

loaded multiple times, and we lose most of the benefits which come from the dataflow

concept.

Fig. (2.3) shows the memory transfers in the case of a dataflow machine that works on

Figure 2.3. Linearized mesh data goes through on-chip memory buffer.

mesh data. First, the mesh elements have to be ordered into a serial stream, which goes

DOI:10.15774/PPKE.ITK.2016.007

2.3 Dataflow Computing 13

through an on-chip memory buffer, from which the dataflow arithmetic can access the

required data for a node update. Ordering is a key step for dataflow computing because

the ordering defines the maximum distance of dependent elements in the stream. If we

see the adjacency matrix of the graph, this distance is equal to the largest distance of

nonzeros in a row of the matrix. If we consider always updating the middle element of the

on-chip memory buffer, this distance is two times the largest distance of a nonzero from

the main diagonal, which distance is called graph or matrix bandwidth (G BW). The size

of on-chip memory buffer gives an upper bound on possible graph bandwidth.

An ordering is required which results in less G BW than a bound. There are effective

matrix bandwidth minimization heuristics, however, to find an optimal ordering is NP-

complete. In Fig. (2.4) the adjacency matrix is shown for the same graph before and after

reordering. Reordering heuristics like Cuthill-McKee or GPS are effective and fast, but it is

possible that a graph can not be reordered under a given G BW bound. In later chapters,

I will give some possible solution to this problem.

Figure 2.4. Nonzero elements position in the adjacency matrix of a mesh before (left) and
after (right) reordering. The two matrices represent the same mesh with different node
ordering, thus the number of edges (nz) remains the same. Node reordering can decrease
the graph bandwidth significantly.

DOI:10.15774/PPKE.ITK.2016.007

14 2. BANDWIDTH LIMITATIONS IN MESH COMPUTING

2.3.2. Memory access optimization and interprocessor communication

Optimized memory access is essential for high processor efficiency. Current mesh partit-

ioning methods focus only on inter-processor communication, however, processor-memory

communication is also critical for recent processor architectures. This contribution sug-

gests considering the properties of inter-processor and processor-memory interfaces with

the processor’s caching capability in mesh partitioning.

Dataflow Computing is a possible solution for memory wall effect because it requires a

continuous input data stream. Streams have fully sequential memory access pattern, which

means optimal memory bandwidth efficiency. Recently, Dataflow Machines are introduced

for explicit PDE computations on structured [R13] and unstructured [J1] meshes, and

they are proved to be much faster than any other architecture.

The benefits of these architectures can be exploited only if the input stream has optimized

data locality. A segment of the input stream can be cached in the on-chip memory. Howe-

ver, all data dependencies have to be inside a segment. The size of the available on-chip

memory defines an upper bound (BW Bound) on the maximum distance of dependent

data in the stream. This is a hard constraint. If dependent data have greater distance in

the stream than the bound, DM can not handle it.

Inter-processor communication is also important for Dataflow Machines. If the processors

have to wait for data from the inter-processor communication channel, the efficiency also

becomes lower. To evade this effect, Eq. (2.1) must be considered, which defines a bound

(COMM Bound) on the ratio of inter-processor communication.

communication [byte]

input for computation [byte]
≤ inter-processor bandwidth [byte/s]

off-chip memory bandwidth [byte/s]
(2.1)

COMM Bound is defined by the ratio of the inter-processor and off-chip DRAM

bandwidth. In [J1] Alpha-Data ADM-XRC-6T1 cards are used which provide 12.5 GB/s

theoretical off-chip memory bandwidth, and 1.25 GB/s bandwidth between the cards, thus

COMM Bound = 0.1. In [R13] two custom PCI Express add-on cards are presented. The

first has 9.375 GB/s off-chip memory bandwidth with 2.5 GB/s inter-processor bandwidth,

which results COMM Bound = 0.26. The second configuration has 37.5 GB/s off-chip

memory bandwidth with 5 GB/s inter-processor bandwidth, thus COMM Bound = 0.13.

DOI:10.15774/PPKE.ITK.2016.007

2.3 Dataflow Computing 15

2.3.3. Data Locality in Mesh Computing

A graph G can be associated to each mesh, by converting each mesh element to a vertex,

and each face to an edge. In the case of an explicit PDE solver, data locality is the

maximum distance between adjacent nodes in the linearized stream of mesh data. This

distance is proportional to Bf (G), which is is the graph bandwidth of G according to

node ordering f (details in Sec. 4.3). Data dependencies in the numerical method are

described by the discretization stencil. When the discretization stencil includes only the

adjacent elements, its width is s = 3. With these notations, the maximum distance of

dependent nodes is (s− 1) ·Bf (G) + 1. Multiple explicit iterations can be computed with

one off-chip read if the intermediate results are also stored in an on-chip buffer, and the

dataflow arithmetic units are connected in a pipeline [J1]. The relation between the graph

bandwidth and the BW Bound is given in Eq. (2.2).

Iterations · {(s− 1) ·Bf (G) + 1} ≤ BW Bound (2.2)

BW Bound is determined by the maximum size of available on-chip memory. Data

Locality bounds are 30-90K and 40-300K for architectures described in [J1], and [R13],

respectively.

Minimization of the graph bandwidth can provide data streams with feasible data locality.

The goal of minimization is to find an ordering f , for which the graph bandwidth is

minimal. The achievable minimal graph bandwidth depends on the graph. A partitioning

method defines subgraphs, which affect the achievable graph bandwidth. This effect is

investigated in Section 4.3.

Data locality (BW Bound) and inter-processor communication (COMM Bound) have

to be considered together in mesh partitioning. In the following chapter, an overview is

given on existing dataflow architectures which can utilize my results on data locality based

mesh partitioning.

DOI:10.15774/PPKE.ITK.2016.007

DOI:10.15774/PPKE.ITK.2016.007

3. Chapter

Dataflow Machines

This chapter gives an overview on existing dataflow machine architectures of different

application areas. The case of mesh computing is presented in more details through two

special-purpose dataflow machines.

3.1. FPGA and All Programmable System on Chip (APSoC)

architectures

Dataflow machines require high hardware flexibility which can be only achieved by ASIC

or FPGA chips. Before I introduce DM applications, I give a brief overview of FPGA and

APSoC architectures through Xilinx products.

3.1.1. Field Programmable Gate Array (FPGA)

The evolution of FPGA chips has started from real logic gate arrays (Field Programmable

Logic Array—FPLA) and has shifted towards more complex building blocks. The current

FPGA technology is grounded on the LCA (Logic Cell Array) architecture which is int-

roduced by Xilinx in 1985 [R14]. This minimal design has a grid of logic cells which is

surrounded by Input/Output Blocks (IOB). The LCA has a programmable interconnect

between all elements. Each logic cell consists a logic function generator and 1-bit stor-

age (flip-flop).

Later, more complex and special building blocks appear in the Virtex architectu-

re (Fig. 3.1). Logic cells evolved to Configurable Logic Blocks (CLB) that consists 4 Lok-Up

Tables (LUT), 4 Carry generators and 4 flip-flops as it can be seen in Fig. 3.2. CLBs form

17

DOI:10.15774/PPKE.ITK.2016.007

18 3. DATAFLOW MACHINES

Figure 3.1. The Virtex Architecture ([R14]).

a grid, which is surrounded by IOBs. IOBs are connected to the CLB matrix through

special programmable interconnect (I/O Routing) while CLB-CLB connections are provi-

ded by the General Routing Matrix (GRM). The new Delayed Locked Loop (DLL) blocks

are responsible for clock handling, and dedicated memory units are also added to the

dsign (Block RAMs). Each BRAM module is a 4 Kbit dual-port RAM with independent

control signals and configurable data width. LUTs in CLBs are not only function genera-

tors, but they can also be used as RAMs or shift registers. CLBs can perform full-adder

logic and multiplexing.

The key ability of FPGAs is the programmable hardware connections. Fig. (3.3) shows

Figure 3.2. 2-Slice Virtex CLB ([R14]).

DOI:10.15774/PPKE.ITK.2016.007

3.1 FPGA and All Programmable System on Chip (APSoC) architectures 19

the direct connections between neighboring CLBs and GRM crosses. Each programmable

wire cross adds a delay to the signal path, thus long range and mid range lines are also

added to the design for routing long-distance paths.

In later generations, the size of LUTs and BRAMs increased, and new blocks appeared

Figure 3.3. Local interconnects in a Virtex FPGA. ([R14]).

such as DSP slices and dedicated Ultra RAMs. Based on the most common applications,

more and more functionalities got dedicated support on the chip. For instance, in ultra-

csale FPGAs the BRAMs have dedicated cascade support as it can be seen in Fig. (3.4).

Because of the demand for larger on-chip memory, Xilinx added a new type of memory

resource which is called Ultra RAM. Ultra RAMs have less reconfigurability than Block

RAMs, but they are perfect for larger on-chip memory formation. Ultra RAM has 288 Kbit

memory in a single block and dedicated cascade support as BRAMs.

The most important module in the case of High-Performance Computing (HPC) is the

DSP slice because it can perform multiplications. Fig. (3.5) shows the DSP48E2 slice of

the ultrascale family. As I mentioned in the previous chapter, this module performs 27*18

bit multiplications at 891 Mhz. One of the benefits of FPGAs is custom precision compu-

ting, however, the need for standard double precision in real applications forces Xilinx to

increase the bit width of the multiplier.

DOI:10.15774/PPKE.ITK.2016.007

20 3. DATAFLOW MACHINES

Figure 3.4. Dedicated Block RAM Cascade in UltraScale Architecture ([R15]).

Figure 3.5. Enhanced DSP in UltraScale Architecture ([R15]).

3.1.2. All Programmable System on Chip (APSoC)

Complex applications require different types of computing functionalities. Hybrid archi-

tectures are developed to handle these challenges. Here I show the Zynq 7000 APSoC

chip (Fig. 3.6) which consists a dual-core ARM Cortex-A9 processor (Processing System—

PS) and a 7th series Xilinx FPGA part (Programmable Logic—PL).

DOI:10.15774/PPKE.ITK.2016.007

3.1 FPGA and All Programmable System on Chip (APSoC) architectures 21

Figure 3.6. Zynq-7000 All Programmable SoC Overview ([R16]).

The PS side of the chip can replace the host CPU and can communicate with the

FPGA part on-chip. The PS side can be programmed in C, and the Vivado toolchain

generates the necessary drivers for the custom logic on the FPGA side which makes the

APSoC easy to use. The benefits of custom FPGA cores and a standard ARM CPU are

joined. 32/64 bit AXI4 interfaces to connect the different types of custom PL modules

and the PS. As shown in Figure (3.7), these interfaces connect the PL to the memory

interconnect via a FIFO controller. Two of the three output ports go to the DDR memory

controller, and the third goes to the dual-ported on-chip memory (OCM).

The PS side runs at maximum 1 GHz while the FPGA part maximum frequency is

based on the application (250 MHz for Zynq PS AXI interface). If the application can

utilize the parallel computing capabilities of the PL side the result is a power-efficient

high-performance design.

DOI:10.15774/PPKE.ITK.2016.007

22 3. DATAFLOW MACHINES

Figure 3.7. PL Interface to PS Memory Subsystem ([R16]).

3.2. Existing hardware solutions of DMs

The following examples represent the common application areas and hardware solutions of

dataflow machines. Except the NeuFlow ASIC implementation, all of these architectures

are realized on FPGA chips.

3.2.1. Maxeler accelerator architecture

This architecture could be the general framework example. The DM is placed on an

FPGA-based accelerator board which is connected to a general purpose CPU host

through PCI Express.

The application kernel is transformed automatically from a dataflow graph into a

pipelined FPGA architecture, which can utilize a large amount of the parallel computing

resources on the FPGA chip. The host application manages the interaction with the

FPGA accelerators while the kernels implement the arithmetic and logic computations

in the algorithm. The manager orchestrates data flow on the FPGA between kernels and

to/from external interfaces such as PCI Express. In [R17] this architecture is used for

resonance-based imaging in a geoscientific application which searches for new oilfields.

The implementation involves 4 MAX3 FPGA accelerator cards. Each card has a lar-

ge Xilinx Virtex-6 FPGA and is connected to the other FPGAs via a MaxRing connection.

DOI:10.15774/PPKE.ITK.2016.007

3.2 Existing hardware solutions of DMs 23

Figure 3.8. Maxeler accelerator architecture ([R17]).

3.2.2. HC1 coprocessor board

In paper [R18], the authors present an accelerator board which is made for the investiga-

tion of evolutionary relations of different species. The computational problem includes a

maximum likelihood-based phylogenetic interface with the Felsenstein cut method. BE-

AGLE is a programming library which contains phylogenetic algorithm implementations

for many architectures. This library is also extended to FPGA platforms which name is

Convey HC-1.

The corresponding hardware solution is based on a Xeon server CPU host with 24 GB

memory. The accelerator includes 4 Virtex-5 FPGAs, which can access 16 GB on-board

memory through a full crossbar network (Fig. 3.9). The FPGAs have a ring topology

inter-FPGA communication network. When the input problem is distributed among the

FPGAs, the topology has to be considered, because the communication between neighbors

is multiple times cheaper than the communication of 2 FPGA-s which are not adjacent.

The large on-board memory makes possible to ignore the relatively slow PCI Express

interface during the computation.

DOI:10.15774/PPKE.ITK.2016.007

24 3. DATAFLOW MACHINES

Figure 3.9. The HC1 coprocessor board. Four application engines connect to eight memory
controllers through a full crossbar ([R18]).

3.2.3. Multi-Banked Local Memory with Streaming DMA

In the project that is shown in [R19] a special on-chip memory organization is used. The

multi-way parallel access memory is a perfect solution to feed the dataflow arithmetic.

The on-chip memory is filled by a streaming DMA which reads the off-chip memory con-

tinuously. This DMA strategy utilizes the whole off-chip DRAM bandwidth which is the

limiting factor in many applications.

Figure (3.10) shows the organization and connections of an Application-Specific Vector

Processor (ASVP). Each ASVP has a simple scalar processor (sCPU) for scheduling the

vector instructions (α), for programming the streaming DMA engine (γ) and for optional

synchronization with other ASVPs through Communications Backplane (δ). The vector

instructions are performed by the Vector processing Unit (VPU) which can access the

BRAM-based Local Storage banks in parallel (β). The maximal operating frequencies

of the VPU are 166MHz, 200MHz, and 125MHz, for Virtex 5 (XC5VLX110T-1), Vir-

tex 6 (XC6VLX240T-1), and Spartan 6 (XC6SLX45T-3) FPGAs, respectively.

Multiple ASVPs can be connected to the streaming memory interface, if there is enough

resource on the FPGA and there is enough off-chip memory bandwidth. For different app-

DOI:10.15774/PPKE.ITK.2016.007

3.2 Existing hardware solutions of DMs 25

lications, only the Vector Processing Unit has to be changed, most of the architecture can

be unchanged which saves development cost.

Figure 3.10. A system-level organization of an Application-Specific Vector Processor core
([R19]).

3.2.4. Large-Scale FPGA-based Convolutional Networks

An important application area is the 2D or higher dimensional convolutions. These comp-

utational tasks appear in almost all image or video processing applications, and they are

computationally expensive. In Fig. (3.11) the architecture of [R21, R20] is shown when it is

configured for a complex image processing task. The processor is formed by a 2D matrix of

processor blocks. Each block has 6 predefined computing module with independent in/out

interfaces which can be connected optionally through a connection matrix. In the given

example, the 3 upper blocks perform a 3x3 convolution while the middle 3 block perform

another 3x3 convolution. The two results are added by the left down block, and then the

down center block computes a function.

In Fig. (3.12) can be seen the manufactured chip layout. It is interesting that the streaming

part is as large as the computing part on the chip. The flow CPU is used for programming

DOI:10.15774/PPKE.ITK.2016.007

26 3. DATAFLOW MACHINES

Figure 3.11. NeuFlow application example ([R20]).

the other parts and makes possible fast reconfigurations during the computation.

Figure 3.12. Chip layout in a 2.5× 5 mm2 die area ([R20]).

3.2.5. Pipelined Maxeler Accelerators

This architecture is based on the one mentioned in [R17]. Fig. (3.13) show the Maxeler

MPC-C architecture and the corresponding design flow. The usage of dataflow machines

becomes much easier with the projects like Maxeler, which provides frameworks which

requires only C-like programming skills, and generates the hardware description codes

automatically. In the paper [R22] this architecture is used for electromagnetic field simu-

DOI:10.15774/PPKE.ITK.2016.007

3.2 Existing hardware solutions of DMs 27

Figure 3.13. MPC-C platform architecture and Maxeler design flow ([R22]).

lations. The host consists general purpose CPUs (two Intel Xeon X5650 2.7GHz 6-core

CPUs), which communicate with FPGA-based boards (four MAX3 DFE cards) through

PCI Express. The FPGAs has their DRAM, and they are connected in a ring topology.

Here I want to show the possibility of deep pipelining. In the case of an iterative method,

the operations of one iteration can be copied after each other or with timesharing and

data back feeding multiple iterations can be computed without off-chip memory transfers.

The Figure (3.14) shows the possible pipelining depths. The electric (E) and magnetic

(H) fields can be computed in two steps on the same processor unit (a). E and H can

be computed in a pipeline which means two times speedup with two processor units (b),

and if there are enough resources, more iterations can be performed at once with deep

pipelining (c).

DOI:10.15774/PPKE.ITK.2016.007

28 3. DATAFLOW MACHINES

Figure 3.14. Possible pipelined approaches. (a) no pileline (b) single iteration (c) multiple
iterations ([R22]).

3.3. Off-chip memory streaming techniques

This section gives an overview of the three most common streaming techniques between

main memory and the dataflow processor unit. In [R23] the authors did experiments based

on the Himeno benchmark which is frequently used in performance evaluation. The met-

hod is named after Dr. Ryutaro Himeno and includes the Jacobi iteration based solution

of the Poisson equation which is part of the Navier-Stokes equations.

For the investigations, the MAX3 acceleration card was used which has a Virtex-6 SX475T

Figure 3.15. Direct feed from host main memory through PCI-Express ([R23]).

DOI:10.15774/PPKE.ITK.2016.007

3.3 Off-chip memory streaming techniques 29

FPGA, 24GB DDR3 memory and PCI express gen2 x8 interface. On the FPGA multiple

dataflow solver units (pipe) can be implemented. The number of pipes is limited by the

logic resources of the FPGA, however, these pipes require high memory bandwidth.

In the benchmark problem Np denotes the number of sample points in the 3D spatial doma-

in, where the pressure (p) must be determined in each iteration. The number of iterations is

nn thus Np×nn data elements must be communicated during the computation. The tests

are done for 3 different sized problems: S 65x65x129 (2.1 MB), M 129x129x257 (16.3 MB)

and L 257x257x513 (129.3 MB). The clock speed of FPGA designs is set to 100 MHz.

The first possible way of streaming is the direct feed from the main memory of the host

through the PCI-Express bus as we can see in Fig. (3.15). In this case, only 8 pipes can

be supplied because the PCI Express memory bandwidth limits the performance at 8.33

GFLOPS.

The other extreme case when the whole problem is placed in an on-chip memory buffer.

Figure 3.16. Input loaded to on-chip local memory and processors feeded from on-chip
memory ([R23]).

It is viable only for small problems (S data set) because the on-chip memory need is re-

lative to the size of the problem, but this case shows the maximal performance available.

Figure. (3.16) shows the block diagram and figure (3.17) the measurement results, which

indicates 145 GFLOPS at only 100 Mhz with 48 parallel pipes. The design with 48 pipes

could run at maximum 110 MHz which results in 155 GFLOPS peak performance.

DOI:10.15774/PPKE.ITK.2016.007

30 3. DATAFLOW MACHINES

Figure 3.17. Results of on-chip buffer feeding ([R23]).

The on-board 24 GB DDR memory can handle relative large problems and can also exc-

Figure 3.18. Input loaded to on-board DRAM and processors feeded from on-board me-
mory through off-chip memory interface ([R23]).

lude the slow PCI Express bus (Fig. (3.18)). In the beginning, the input data is loaded to

the on-board DDR and after the whole computation, the final result is sent back to the

host. In this case, the FPGA has to include memory address generators which consume

resources thus only 32 pipes can be implemented. The peak performance is 97,6 GFLOPS

(Fig. (3.19)), however, this approach is applicable for large problems as well. In high-

performance computing, this technique is the most common to feed dataflow processors.

DOI:10.15774/PPKE.ITK.2016.007

3.4 Special-Purpose DMs for mesh computing 31

Figure 3.19. Results of the on-board memory feeding ([R23]).

In the following section, two special-purpose mesh computing dataflow machines are int-

roduced, and both of them use the on-board DDR memory streaming.

3.4. Special-Purpose DMs for mesh computing

The following two architectures are specialized for mesh computing. Both of them have

found to be the best architectures in the case of explicit PDE computing, because of the

total off-chip memory bandwidth utilization [R13, J1]. The previous chapter has given an

introduction to these special DMs.

3.4.1. DM for structured meshes

The Maxeler framework has been mentioned multiple times in this chapter. Here I show

the application of [R13] and focus on the case of distributed mesh computation on mul-

tiple DMs. The corresponding hardware solution includes 4-16 FPGA-based accelerators

which are connected to the host through PCI Express and has a ring topology intercon-

nection network. Each FPGA (Dataflow chip) has its on-board memory as can be seen in

Fig. (3.20).

The input is a 3D structured discretization of a rectangular space domain. Fig. (3.21)

shows the distribution of the domain among the DMs. The domain has been cut according

to one dimension into equal sized pieces. This distribution is ideal for the ring topology,

furthermore, if the DMs are synchronized, they can share the boundary cell information

DOI:10.15774/PPKE.ITK.2016.007

32 3. DATAFLOW MACHINES

Figure 3.20. Architecture of a compute node. Each of the Data-Flow Engines (DFE) is con-
nected to the CPUs via PCI Express and has a high bandwidth MaxRing interconnection
to its neighbors ([R13]).

Figure 3.21. One-dimmensional decomposition of the problem domain to parallelize across
multiple DFEs linked with MaxRing ([R13]).

with each other without extra off-chip memory transfers. This architecture also has a data

locality limit which comes from the available memory resources on the FPGA chip, as it

has been mentioned in Sec. (2.3).

DOI:10.15774/PPKE.ITK.2016.007

3.4 Special-Purpose DMs for mesh computing 33

3.4.2. DM for unstructured meshes

Figure 3.22. Block diagramm of the proposed dataflow processor unit ([J1]).

The main difference between structured and unstructured mesh computing is the

additional knowledge of neighbors in the structured case. For unstructured meshes

connectivity is not a trivial rule, it has to be stored and transferred to the processor

unit. In Fig. (3.22) the dataflow processor unit of [J1] is shown with its input and output

channels. During the explicit PDE computation, the corresponding state variables have

to be updated at each mesh element at every timestep. Connectivity descriptors are also

transferred through off-chip memory interface to a local address generator module which

addresses the processor’s Memory Unit which is a large FIFO that is filled continuously

with mesh data.

Multiple dataflow processor units can be placed in a chain if there are enough resources

on the FPGA chip. Fig. (3.23) presents the complete architecture with multiple pipelined

processors on the same FPGA. The deeper levels need their memory units thus the

increased number of these modules makes harder the limit on data locality. If data locality

can be optimized better, it allows the usage of deeper pipelining on the same FPGA.

The arithmetic is pipelined according to the dataflow graph of the numerical algorithm.

In the presented 2D cell-centered problem, each cell (triangle) has three interfaces, and

the state variables are updated based on a flux function computed at the three interfaces.

(For mathematical formulation, see [J1]) This arithmetic is optimized to reach the highest

DOI:10.15774/PPKE.ITK.2016.007

34 3. DATAFLOW MACHINES

Figure 3.23. Outline of the proposed architecture. The processors are connected to each
other in a chain to provide linear speedup without increasing memory bandwidth requi-
rements. The number of processors is only limited by the available resources of the given
FPGA ([J1]).

Figure 3.24. A partitioned data-flow graph generated from an explicit PDE solver numeri-
cal method and partitioned with the algorithm described in [R24]. Each part has its own
local control ([C1]).

possible operating frequency. The dataflow structure is partitioned as can be seen in

Fig. (3.24) where each part has its local control.

DOI:10.15774/PPKE.ITK.2016.007

3.4 Special-Purpose DMs for mesh computing 35

3.4.3. Implementation of the DM for unstructured meshes

In the project of [J1] I was responsible for the memory bandwidth optimization part,

which was performed by a special mesh node reordering and virtual partitioning method.

In this section, I present our implementation results on an AlphaData ADM-XRC-6T1

reconfigurable development system equipped with a Xilinx Virtex-6 XC6VSX475T FPGA

and 2 Gbyte on-board DRAM. This FPGA architecture was introduced in 2010, thus its

performance is compared to the CPU and GPU architectures from 2010. I also investigate

the effect of increased data locality on CPU and GPU performance.

The architecture was implemented using Xilinx and AlphaData IP cores at double pre-

cision. The optimized arithmetic unit for dissipation-free, inviscid, compressible fluid dy-

namics computation (cell-centered 2D) had 325 MHz maximum clock frequency. The AU

performs a cell update in 3 clock cycles. Computation of each new state value requires

loading and storing of one state variable vector (2x32 byte), loading of the area of the tri-

angle (8 byte), and loading of three connectivity descriptors (3x26 byte) that are 150 byte

altogether. Therefore, a 16.3 Gbyte/s memory bandwidth is required to feed the processor

with valid data in every third clock cycle. However, our four 32-bit wide memory banks

running on 800 MHz providing 12.8 Gbyte/s peak theoretical bandwidth. This limitation

can be removed by slightly modifying the architecture shown in Figure (3.23) and con-

necting two Memory Units to one AU creating two virtual processors. One Memory unit

is enabled in even clock cycles, whereas the other is enabled in odd clock cycles. In this

case, one physical AU computes 2 time iterations, thus the necessary input bandwidth

decreases to 8.2 Gbyte/s. This technique requires more on-chip memory resources for each

physical AU, thus the data locality requirement of the dataflow architecture increases. It

means that the mesh elements have to be reordered to provide lower graph bandwidth.

Table (3.1) summarizes the resource needs of the architecture that is shown in Fig. (3.22).

Table 3.1. Area requirements of the architecture.

DSP LUT FF
Number of elements 525 43754 61936

XC6VSX475T utilization 26% 14.7% 10.4%

The most limiting factor is the number of DSP slices which enables 3 physical AUs on

the Virtex-6 XC6VSX475T FPGA. In case of three processors, maximum bandwidth of

DOI:10.15774/PPKE.ITK.2016.007

36 3. DATAFLOW MACHINES

the adjacency matrix of the mesh is 14,848 nodes; however, to avoid memory bandwidth

bottleneck on our prototyping board, three AUs and six memory units have been imple-

mented reducing the maximum bandwidth to 6,144 nodes.

Three clock cycles are required to update the state of one triangle; therefore, the per-

formance of one processor is 108.3m triangle update/s. Computation of one triangle

requires 213 floating-point operations; therefore, the performance of our architecture is

23.08 GFLOPs. On the Virtex-6 XC6VSX475T FPGA, three AUs can be implemented

and connected in a pipeline resulting in 69.22 GFLOPs cumulative computing perfor-

mance.

The performance of our architecture was compared with both a high-performance Intel

Figure 3.25. Measured performance of Intel Xeon E5620 microprocessor by using 1, 2, 4,
and 8 threads ([J1]).

Xeon E5620 microprocessor and an Nvidia GeForce GTX 570 graphics card. The perfor-

mance of the Intel Xeon E5620 microprocessor by using 1, 2, 4, and 8 threads is shown

in Figure (3.25). As we expected, without reordering, the performance is decreasing as

the mesh size is increased, whereas reordering preserves the performance. In case of the

largest mesh and 8 threads, the reordered case outperforms the original one by 28.2% and

reaches 33.22m triangle update/s or equivalently 6.86 GFLOPs.

The average performance of the simulator over various mesh sizes is shown in Figure (3.26)

to investigate the speedup caused by the increasing number of threads. The average per-

formance scales well with the number of threads in both the reordered and the original

case; however, in both cases, the speedup compared with a single thread remains below

DOI:10.15774/PPKE.ITK.2016.007

3.4 Special-Purpose DMs for mesh computing 37

Figure 3.26. Measured average performance of Intel Xeon E5620 microprocessor over va-
rious mesh sizes using different number of threads ([J1]).

the number of threads. The peak performance of the CPU with 16 threads on reordered

data is 38.6m triangle update/s which is nearly 9 times less than the 3× 108.3m triangle

update/s performance of our architecture.

Measurements were also performed on an Nvidia GeForce GTX 570 graphics card, which

Figure 3.27. Measured performance of NVidia GTX570 GPU ([J1]).

has 480 cores running on 1464 MHz frequency, and 1280 MB GDDR5 memory with

152 GB/s bandwidth. The GPU program consists of a simple framework and a kernel,

which computes a full triangle update. Figure (3.27) indicates that data locality imp-

rovement has large impact on the GPU performance. In the case of the largest mesh,

DOI:10.15774/PPKE.ITK.2016.007

38 3. DATAFLOW MACHINES

the application with reordered input outperforms the original input by 48% and reaches

108.12m triangle update/s or equivalently 23.02 GFLOPs. The GPU was still 3 times slo-

wer than our deeply pipelined dataflow architecture.

Data locality improvement gives speedup for the CPU and the GPU but in the case of

our dataflow architecture, it has a strict bound. If the input data stream fulfills the data

locality constraint, the presented architecture outperforms both CPU and GPU in the

case of 2D cell-centered fluid dynamics simulations.

In the paper [J1] only 1 FPGA chip took part in the computation. In the case of multip-

le FPGA-s, a special partitioning method is required for unstructured meshes which can

handle the data locality bound inside the submeshes. As I presented in the previous chap-

ter, the data locality and interprocessor communication have to be considered together. In

the next chapter, I introduce the existing graph partitioning techniques and some findings

of the relation of data locality and interprocessor communication in mesh partitioning.

DOI:10.15774/PPKE.ITK.2016.007

4. Chapter

Static Mapping

Mapping computation to k physical processors is a well-studied problem, with several so-

lution techniques. Mapping can be defined as labeling of a process graph, where processes

of the program are vertices and edges represent data dependencies between processes. Pro-

cesses with identical labels are placed on the same physical processor. If a mapping does

not change during the computation, it is called static mapping.

The goal of mapping is to reach maximum speedup with k processors against a single

processor solution. This optimization problem is NP-complete in general because it can be

traced back to the Multiprocessor Scheduling Problem which is known to be NP-complete

[R5]. Many suboptimal heuristic solutions were developed for specific architecture topolo-

gies, such as hypercube [R25, R26]. In the case of having a complete graph as communica-

tion network topology, the static mapping is equivalent to the graph partitioning problem

[R27].

4.1. Graph Partitioning

The k-way partitioning problem is the following: Given a graph G(V,E), with vertex

set V (|V | = n) and edge set E. A partition Q = {P1, P2, .., Pk} is required, such that⋃k
i=1 Pi = V , Pi

⋂
Pj = 0 for i 6= j, the subsets have balanced size |Pi| ≈ n/k, and the

total number of edges between vertices belonging to different Pi subsets (edge cut) is

minimal.

Size balance of Pi subsets provides balanced workload for all processors, and the minimi-

zed edge cut minimizes the communication between processors. This objective function

39

DOI:10.15774/PPKE.ITK.2016.007

40 4. STATIC MAPPING

may lead to a poor real speedup because the topology of processors is not taken into

consideration [R26, R28].

Best known solvers are based on the Multi-Level (ML) scheme which is a general

partitioning routine. ML has a partitioner as an input parameter and has three phases:

coarsening, partitioning and uncoarsening. The size of input graph is decreased to a

relatively small graph in coarsening phase. Coarsening is performed by node and edge

unification steps. The input partitioner creates a partition of the coarsest graph in

partitioning phase. In uncoarsening phase, the created partition is projected back to the

original graph.

K-way partitioning is often solved by recursive bisection. Bisecting divides the input

graph into two equal sized subsets, with minimized edge cut. With log2k steps k subsets

are created. This technique is very simple, and has some limits on solution quality [R29],

however, it has been found effective in practice. There are few alternative methods, which

perform the k-way partition directly. One class of them uses the ML paradigm to get the

k-way partition [R30], with contracting until the number of vertices in the coarsest graph

is the same as the number of subdomains.

4.1.1. Bipartitioning methods

Bipartitioning methods play an important role in k-way partitioners, a brief overview on

them is necessary before generalized graph partitioning problems are introduced.

Spectral: The Laplacian matrix of graph G is L=D-A, where D is the degree matrix

and A is the adjacency matrix of G. The elements of L are lii = deg(vi) and lij = −1

if (vi, vj) ∈ E lij = 0 otherwise. L is positive semidefinite and has rank n-1 if G is

connected. The eigenvalues of L are 0 = λ1 < λ2 ≤ ... ≤ λn. An n element vector x is

a separator if xi = {−1, 1} and
∑

i xi = 0. It can be shown that xTLx is 4 times the

edge cut of separator x. The eigenvector, which corresponds to the second eigenvalue

is v2, which minimizes the edge cut. A separator vector x is chosen which is closest

to v2. The corresponding computational problem has high complexity thus many

attempts were made to improve the speed of spectral methods [R31, R32, R33].

DOI:10.15774/PPKE.ITK.2016.007

4.1 Graph Partitioning 41

Spatial Coordinate: If spatial coordinates are available, bisection can be performed

based on the coordinates of vertices. An axis is chosen, which has the widest coordi-

nate range. The vertices are sorted according to this axis, and the first half of them

is assigned to the first subdomain, and the rest to the second. This method assumes

that the grid resolution is nearly the same for all axis.

Inertial: A variant of the coordinate method. Each node has unit mass; the axis is chosen

for which the moment of inertia of the nodes is minimized.

Greedy Graph Growing: A starting node is given, which forms a subdomain. A node

is added to that subdomain iteratively, which leads to the minimal increase in the

communication cost function. If balance reached the process stops, and another

starting node is chosen. The output is the best separator.

Gibbs-Poole-Stockmeyer: GPS method was created for sparse matrix reordering. In

the first stage, two endpoints of a pseudo-diameter of G is calculated. Breadth-first

search is started from one of the endpoints until size balance reached.

Band: This is a refinement strategy; it needs an initial partition. Form the separator,

a breadth first search is used to define a band graph. The separator is optimized

inside this band. The banded graph is much smaller than the input problem, thus

expensive heuristics can be used to create better solutions.

Exactifier: If load balance of a solution has to be improved, exactifier method can be

applied. It moves nodes to the smaller subdomain in a greedy fashion.

Fiduccia-Mattheyses: Almost-linear variant of Kernighan-Lin iterative improvement

method [R34]. It performs node swaps which decrease the cost function of the par-

tition until a local optimum is reached.

4.1.2. Generalizations of Graph Partitioning

Graph partitioning in its original form does not handle many important factors. Genera-

lized partitioning models have been created to satisfy these needs. All generalizations use

additional information about the processor architectures and the corresponding commu-

nication topology.

DOI:10.15774/PPKE.ITK.2016.007

42 4. STATIC MAPPING

4.1.2.1. Hybrid Architecture:

If the processor nodes have different computational capabilities, the workload has to be

distributed according to processing powers, thus |Pi| = powi ·n, where powi is the norma-

lized computational capability of processor i.

4.1.2.2. Heterogeneous Processes:

Processes in V can have different computational complexities, described by a weight func-

tion wv(vi). In this case, the workload of a processor is the sum of weights inside the

corresponding subdomain. Real communication needs can be modeled by a weight functi-

on on the edges we(eij).

4.1.2.3. Multi-Constraint Partitioning:

Multiple balancing constraints can be modeled by using weight vectors instead of simple

weights. For instance, weight can be defined as the computation need and another for the

memory need [R35].

4.1.2.4. Skewed Partitioning Model:

The model can be improved by adding some penalty functions (skew) to the cost function.

Let p(vi) be the part Pl in Q = {P1, P2, .., Pk} to which vi is assigned, and dPj (vi) is the

desire of the vertex vi to be in Pj . The cost function Eq. (4.1) should be minimized.

∑
eij

 we(eij) if p(vi) 6= p(vj)

0 otherwise
−
∑
vi

dp(vi)(vi) (4.1)

Desire functions can be used to hold additional knowledge about good solutions [R36].

4.1.2.5. Target Graph Representation:

Target or architecture graph representation gives an opportunity to model real commu-

nication costs [R37]. A target graph T is given, which has physical processors as its

vertices V (T) and real communication links as its edge set E(T). Both process graph

G and target graph T have weight functions defined on their vertices Gwv(vk), Twv(vl)

and edges Gwe(eij), Twe(ekl). Two functions are required: τG,T : V (G) → V (T) and

DOI:10.15774/PPKE.ITK.2016.007

4.2 Sparse Matrix Reordering 43

ρG,T : E(G)→ P(E(T)), where P(E(T)) denotes the set of all simple loopless paths which

can be built from E(T). Data exchanges between not adjacent processors, require trans-

missions through a route ρG,T (eij), which results additional cost. In communication cost

function Eq. (4.2) every communication weight is multiplied by the length of its route.

fC(τG,T , ρG,T) =
∑

eij∈E(G)

Gwe(eij)|ρG,T (eij)| (4.2)

4.2. Sparse Matrix Reordering

The adjacency matrix A of a graph G is defined as aij = 1 if eij ∈ E(G) aij = 0 otherwise.

Matrix reordering transforms A by the product A′ = PAP T , where P is a permutation

matrix.

In many applications, large Ax = b linear systems have great importance. Efficient solvers

use the Cholesky factorization A = LTL where L is a lower triangular matrix. The goal

of many matrix reordering methods is to minimize the number of nonzero elements in

the Cholesky factor L. Cholesky factorization exists only for positive definite A matrices,

otherwise, A = LU factorization is used where U is an upper triangular matrix. The second

class of reordering methods transforms A to a narrow banded matrix, which increases data

locality.

Mapping assigns a physical processor to each process, but the schedule of processes which

belong to the same processor is still not defined. The local memory placement of data

structures is also not defined. With reordering techniques, the schedule of processes and

the memory placement of data structures can be determined. These questions become more

and more important because novel processor architectures are hardly limited by memory

bandwidth. Many improved partitioning models were developed, but none of them can

handle data locality directly. A model is needed, which can consider memory bandwidth

limitation and inter-processor communication together.

4.3. Data locality and interprocessor communication

The relation of mesh structure and communication need has been studied since the begin-

ning of the development of graph partitioners. The communication need is proportional to

the edge-cut of a submesh, which is geometrically the surface of the given submesh. It is

DOI:10.15774/PPKE.ITK.2016.007

44 4. STATIC MAPPING

easy to observe, that an abstract sphere has the best surface to volume ratio. This section

gives a brief mathematical investigation of data locality and mesh structure dependencies.

Data locality of a mesh is defined by the corresponding graph bandwidth.

4.3.1. Description of Graph Bandwidth Minimization and related work

Let G(V,E) be a graph with vertex set V (|V | = n) and edge set E. Labeling is a function

f which exclusively assigns an integer from interval [1, n] to each vertex, i.e., f(v) = f(u)

if and only if u = v where u, v ∈ V . Let N(v) denote the set of vertices which are adjacent

to v.

1. Definition. The bandwidth Bf (v) of a vertex v respect to labeling f is

Bf (v) = max
u∈N(v)

|f(v)− f(u)|. (4.3)

2. Definition. The bandwidth of a graph G respect to labeling f is the maximum of vertex

bandwidths:

Bf (G) = max
v∈V

Bf (v) (4.4)

3. Definition. The bandwidth of a grapf G is

B(G) = min
f
Bf (G). (4.5)

Minimal bandwidth labeling of a graph was shown to be NP-complete by Papadimitri-

ou [R6], so exact methods can not be applied to large problems. Many heuristic algorithms

were developed from the well-known Cuthill-McKee (CM) algorithm [R10] to recent meta-

heuristic approaches for instance a simulated annealing [R38], or a Tabu search [R39]. One

of the most promising metaheuristics regarding solution quality is the GRASP (Greedy

Randomized Adaptive Search Procedure) with Path Relinking [R40]. The most practical

solution is the GPS (Gibbs, Poole, and Stockmeyer) method [R11], which is one of the

fastest heuristics with good solution quality. Metaheuristic methods give better solutions,

but their runtime is many times higher than runtime of the GPS. The GPS algorithm was

given in 1976, afterward, there were many attempts to improve the original method, see

Luo et al. [R41]. Most of the improved GPS heuristics have higher time complexity, which

is an important issue in the case of large meshes which arise in practice.

DOI:10.15774/PPKE.ITK.2016.007

4.3 Data locality and interprocessor communication 45

Fast reordering methods make mesh adaptation possible (refinement where it is neces-

sary), but in this work, I assume a static mesh. Speed of the reordering method remains

important because it is used for graph bandwidth measurement (good upper bound) in

my proposed bandwidth limited partitioners.

4.3.2. Connection between Graph Bandwidth and Mesh Structure

The exact value of graph bandwidth B(G) can not be efficiently calculated, but lower and

upper bounds can be given for investigating dependencies between B(G) and the mesh

structure.

Any labeling can be used to get an upper bound on B(G). A lower bound can be obtained

as follows.

4. Definition (Graph diameter). For every pair of vertices u, v let dmin(u, v) denotes

the length of the shortest path between u and v. The diameter of a graph G is

diam(G) = max
{u,v}∈V 2(G)

dmin(u, v) (4.6)

1. Theorem. B(G) ≥
⌈

n−1
diam(G)

⌉
Proof:

Let f be an optimal labeling of G. The total change of labels along a path from

arbitrary u to v is |f(u) − f(v)|. Therefore, there are two consecutive vertices where the

labels change by at least
⌈
|f(u)−f(v)|

d(u,v)

⌉
. Let u and v be the vertices for which f(u) = 1 and

f(v) = n. The compulsory change in the corresponding shortest path is
⌈

n−1
dmin(u,v)

⌉
. The

highest possible value of dmin(u, v) is diam(G), thus in the shortest path from f(u) = 1 to

f(v) = n there must be two consecutive vertices, which labels differ in at least
⌈

n−1
diam(G)

⌉
.

A structured mesh of a rectangle (a ≤ b) and labeling f are given on Figure 4.1.

Bf (G) of this mesh with labeling f is 11 (a+ 1 in general), because this is the maximum

difference between labels, which correspond to adjacent nodes. diam(G) is 17 (b − 1 in

general). According to Theorem 1 B(G) ≥
⌈

179
17

⌉
= 11, thus labeling f is optimal.

The bound of Theorem 1 is weak in some cases, but can be efficiently computed for every

graph. If the above mesh contains only vertical and horizontal edges, a weaker lower bound

DOI:10.15774/PPKE.ITK.2016.007

46 4. STATIC MAPPING

Figure 4.1. Example of structured mesh labeling. a=10, b=18, Bf (G) = 11, the minimal
size of on-chip cache is BW=23. Node 14 can be updated, if [3..25] elements are in the
on-chip memory.

can be obtained, because diam(G) changes to a− 1 + b− 1 = 26. In the following theorem

we show that this labeling f is still optimal if a ≤ b.

2. Theorem. Given an a × b rectangular grid G, i. e., a · b vertices with horizontal and

vertical connections. If a ≤ b then B(G) ≥ a.

Proof: According to an arbitrary f we can start to index the vertices from 1 in increasing

order. Let i be the first index, when all vertices in a column or in a row become indexed.

First assume that a row is fulfilled. Then there is no fulfilled column, thus in every column

must be an indexed vertex which is adjacent to an unindexed one. There are b different

columns, thus the smallest index of these indexed vertices can not be grater than i− b+1.

The label of an unindexed vertex according to f can not be smaller than i + 1, thus the

difference between them must be grater or equal to b.

Assuming that first a column is fulfilled, using the same argument we get that the minimum

difference is a.

Since a ≤ b, the statement of the theorem is proved.

Based on these simple examples, we can observe that B(G) can be independent of

the size of the problem. If columns are added to the example mesh on Fig. 4.1, B(G)

remains the same. In geometric view, assuming structured grids, ideal mesh shapes have

a lengthwise direction like a long a × a × b rod (b � a), which can contain a large

DOI:10.15774/PPKE.ITK.2016.007

4.3 Data locality and interprocessor communication 47

number of elements with low B(G). Worst shapes are sphere and cube because these shapes

have no lengthwise direction, which can consume nodes with no extra bandwidth need.

Unfortunately, these shapes have the lowest surface to volume ratio, which is proportional

to the communication need.

For a partitioner both data locality and inter-processor communication are important.

Unfortunately, there is a conflict between them because the minimization of inter-processor

communication leads to abstract spheres, which are bad for data locality minimization.

Tools are needed, which can provide tradeoffs between the two optimization goals.

DOI:10.15774/PPKE.ITK.2016.007

DOI:10.15774/PPKE.ITK.2016.007

5. Chapter

Bandwidth-Limited Partitioning

5.1. Problem definition

Based on the experiences with Dataflow Machines, I introduce Bandwidth-Limited Par-

titioning. The main goal of partitioning methods is to give a distribution of computation

and data among physical processor nodes, which leads to minimal computation time. The

goal of BLP is slightly different. BLP aims for high processor efficiency, which means in

some case longer computational time because fewer processors with higher efficiency can

be slower than much more processors with lower utilization.

BLP has four inputs: a mesh G(V,E), a bound on communication to computation ratio

COMM Bound, a bound on data locality BW Bound, and the number of available pro-

cessors K. The two bounds are determined by the parameters of the processor architecture

as described in Section 2.3.

In BLP, k the number of utilized processors is also optimized, because a k-way partition

is required which fits to the constraints. k is restricted by the COMM Bound constraint

and K the number of available processors.

5. Definition (Bandwidth-Limited Partitioning). Given a graph G(V,E), with ver-

tex set V (|V | = n) and edge set E. BW Bound, COMM Bound and K are given para-

meters. A partition Q = {P1, P2, .., Pk} is needed which maximizes the number of parts k

considering the following conditions:

Let Out(Pi) denotes the set of outgoing edges of Pi.

k ≤ K (5.1)

49

DOI:10.15774/PPKE.ITK.2016.007

50 5. BANDWIDTH-LIMITED PARTITIONING

max
i

{
|Out(Pi)|
|Pi|

}
≤ COMM Bound (5.2)

max
i
{2 ·Bfi(Pi) + 1} ≤ BW Bound (5.3)

|Pi| ≈
n

k
∀ i (5.4)

Bounds on inter-processor communication (5.2) and data locality (5.3) provide the desired

efficiency. Size balance is described by equation (5.4).

In equation (5.3) I assume the simplest discretization stencil with one explicit iteration,

which means s = 3 and Iterations = 1 in Eq. (2.2). In case of other values of Iterations

and s, BW Bound in Eq. (5.3) has to be modified according to Eq. (2.2). Because of the

constrained nature of BLP, it is possible that there is no solution. In the case when BLP

has no solution, one of the bounds must be relaxed to a higher value.

BLP claims partitions with optimized communication to computation ratio and data lo-

cality.

5.2. AM1 partitioning method

This section introduces a special and fast reordering method which aims at ordering f

with minimized Bf (G) while a proper estimation of bandwidth need is provided. Based

on the estimation feature of the reordering method it can be used as a bandwidth limited

partitioner. In this section, the notations of Sec. (4.3) are used in definitions and equa-

tions. Matrix bandwidth minimization and graph bandwidth minimization have the same

meaning because of the strong connection between graphs and their adjacency matrices.

5.2.1. AM1 reordering method

The connections of data locality and graph bandwidth and the existing graph bandwidth

minimization techniques are shown in Sec. (4.3). Here I present a simple constructive

reordering method which has proper estimation of graph bandwidth during its labeling

procedure.

DOI:10.15774/PPKE.ITK.2016.007

5.2 AM1 partitioning method 51

5.2.1.1. Two data locality bounds based on graph bandwidth

Using the definition of graph bandwidth, the size of the on-chip memory can be given as

(Bf (G) ·2+1)∗sizeof(data element). (Bf (G) ·2+1) is called central bandwidth (C BW)

because it assumes that the central element of the on-chip memory buffer has to be updated

and the stream is moving continuously. If the input stream can be stopped and optional

element of it can be updated we get another data locality descriptor which is called serial

bandwidth (S BW).

6. Definition (Serial-Bandwidth). Serial bandwidth of a graph can be given as the

maximum distance of nonzeros in a row of its adjacency matrix. With basic notations:

s(i) = MIN{f(v) : v ∈ N(u), f(u) = i}

e(i) = MAX{f(v) : v ∈ N(u), f(u) = i}

S(i) = MIN{s(i), s(i+ 1), ..., s(n)}

E(i) = MAX{e(1), e(2), ..., e(i)}

S BW = MAXi{E(i)− S(i)}

Based on the adjacency matrix it can be seen that S BW ≤ 2·Bf (G) and Bf (G) ≤ S BW .

With the definition of C BW = 2 ·Bf (G)+1 we get the relation of these two data locality

descriptors:

S BW ≤ C BW − 1 ≤ 2 · S BW (5.5)

5.2.1.2. Algorithm for bandwidth reduction

Several methods have been shown in the literature for minimizing Bf (G). In this section,

I define Amoeba1 (AM1) algorithm for direct serial bandwidth minimization. Our goal is

to create a fast, effective constructive method which has proper, easy to calculate S BW

bounds in each construction step(details in next subsection). The method can be easily

modified to handle C BW based optimization.

Notations and definitions AM1 is a constructive method, in which a solution element

is chosen and labeled in each step. Solution elements are the vertices of the input mesh,

DOI:10.15774/PPKE.ITK.2016.007

52 5. BANDWIDTH-LIMITED PARTITIONING

and the method grows a part till all of the vertices are covered.

Figure 5.5. shows the structure of a solution part P with n elements. Each node(i) has

Figure 5.1. Structure of solution part P.

three base parameters: local index=i, s(i), u(i).

s(i): is the distance between node(i) and its lowest indexed neighbor in the part: s(i) =

MAX{i− j : j ∈ N(i)}.

u(i): is the set of nodes which uncovered by P, but must be added in later steps because

of node(i): u(i) = {v : v ∈ N(i) AND v /∈ P}.

I: is the index of the first elemet which has not empty u() set, so for every node(i)

where i < I all neighbors covered by P.

With these parameters, we can give bounds on the serial bandwidth. In AM1 method I

use a simple lower bound for describing the importance of node(i):

imp(i) = (n− i) + |u(i)|+ s(i)

This is obviously a lower bound on serial bandwidth need of the current node, because if

we add node v /∈ u(i) to part P we still have to add all elements of u(i) to the part. For

every node(i) i < I imp(i)=0, because these nodes have all of their neighbors involved, so

their effect on bandwidth does not depend on the later decisions.

5.2.1.3. Description of AM1

AM1 algorithm has two base steps: finding a starting vertex, and the labeling loop. The

result is an ordering of the vertices.

DOI:10.15774/PPKE.ITK.2016.007

5.2 AM1 partitioning method 53

Finding a starting vertex The quality of the result of constructive bandwidth-

reduction heuristics depends on which is the starting vertex. In GPS method, the authors

presented a simple and effective solution for this problem. They gave an algorithm which

returns the two endpoints of a pseudo-diameter. The AM1 algorithm uses this subroutine

for finding the starting vertex.

Choosing a solution element AM1 Alg. (1) selects a node from u(I), which has a

neighbor in P with maximal importance. Because all nodes in u(I) has node(I) as its

neighbor, only l 6= node(I) neighbors take part in the search. AM1 adds the candidate to

Algorithm 1 AM1 - Choosing a solution element

1: candidate ← random element of u(I)
2: global max ← 0
3: for ∀k ∈ u(I) do
4: for ∀l ∈ N(k) : l ∈ P and l 6= node(I) do
5: if l.imp() > local max then
6: local max ← l.imp()

7: if local max > global max then
8: candidate ← k
9: global max ← local max

10: return candidate

the part with index=n+1, and chooses the next element till the whole mesh is indexed.

AM1 performs a kind of breadth-first indexing.

5.2.1.4. Results and conclusions

AM1 is a simple constructive algorithm for large problems, I compare its results to the

fast and effective GPS method. As mentioned earlier, better quality algorithms exist for

bandwidth reduction, but these methods can not be applied to large meshes(≥ 100.000

vertex) because of their complexity. Test cases are generated by Gmsh with different mesh

density parameters which appear in the names of the example meshes. The cases showed

on Table 5.1 comes from 2-dimmensional meshes, with assigning a vertex to each triangle

and an edge between vertices which are represent adjacent triangles, so we get a mesh with

maximal degree = 3. These meshes appears when we use finite volume solver during the

solution of a partial differential equation. In these low-degree cases AM1 provides similar

solution quality (S BW) to GPS, in 4% less time. Serial bandwidth need of the reordered

DOI:10.15774/PPKE.ITK.2016.007

54 5. BANDWIDTH-LIMITED PARTITIONING

mesh data defines the necessary on-chip memory requirement which has to be fulfilled

in the case of a dataflow machine. The running time of both methods depends on the

number of vertices, and the structure of the mesh(finding a starting vertex). The results

Table 5.1. Results of Amoeba1 method compared to GPS.

Case N S BW GPS S BW AM1 GPS time(s) AM1 time(s)
step 2d bc cl30 7063 122 122 0,078 0,052
step 2d bc cl40 12297 176 175 0,154 0,109
step 2d bc cl50 20807 253 227 0,175 0,1
step 2d bc cl70 42449 359 341 0,633 0,49
step 2d bc cl90 68271 481 506 0,998 0,785
step 2d bc cl110 112093 569 591 2,144 1,955
step 2d bc cl130 157099 740 738 1,59 1,316
step 2d bc cl150 201069 794 805 3,239 3,094
step 2d bc cl170 252869 972 923 4,316 3,92
step 2d bc cl190 316715 1030 1082 5,913 5,707
step 2d bc cl200 394277 1093 1155 5,855 5,532
step 2d bc cl320 930071 1923 1809 17,035 18,687
S BW: serial-bandwidth of solutions, N: number of vertices.
Algorithms tested on one core of an Intel P8400 processor

for high-degree(20-30) cases can be found on Table 5.2. These cases generated from the

same complex 3D geometry, by increasing the density of the mesh. I found that GPS is

29% superior on these general instances, but 13% slower than AM1. These results show

that the difference is not increasing with the complexity of the problems. AM1 is proposed

for bandwidth limited access pattern generation in the case of dataflow machines. The goal

of this comparison is to demonstrate that the main advantages of the leading reordering

method (GPS) are preserved in AM1. AM1 is proposed for large problems where the

reordered mesh data still have too high S BW need. For the architecture in [J1] the S BW

limit is 6144 which can not be satisfied for the three largest problems on Table 5.2. AM1

can handle these cases too with a simple extension which does not affect the solution

quality of the method.

5.2.2. AM1 as a partitioner

In the case of large problems it is possible, that the renumbered mesh has larger bandwidth

than the available on-chip memory, these cases should be handled too. Here I show an AM1

based method, which generates an input order which has at most a pre-specified serial-

bandwidth. In the input order every vertex is executed once, but can be loaded many times,

DOI:10.15774/PPKE.ITK.2016.007

5.2 AM1 partitioning method 55

Table 5.2. Results for 3D high-degree cases

Case N S BW GPS S BW AM1 GPS time(s) AM1 time(s)
3d 075 3652 381 391 0,279 0,27
3d 065 5185 500 763 0,144 0,107
3d 055 8668 712 764 0,655 0,587
3d 045 15861 1066 1478 0,468 0,42
3d 035 33730 1880 1863 2,209 2,22
3d 025 88307 3384 3443 7,569 6,42
3d 018 244756 6582 10110 39,509 27,598
3d 015 417573 9066 14930 85,797 59,958
3d 012 519983 20561 23554 413,72 383,075

so we need a flag Ex to store it is only a ghost node(false) or have to be calculated(true).

Serial bandwidth in this job means the following: for every Ex=true vertex, all of their

neighbors surely be in the on-chip memory when the execution reaches them. If the defined

bound is less than the serial-bandwidth for whole mesh provided by the AM1 method, the

input will be r-times longer, where 1 ≤ r. The bound on bandwidth obviously has to be

more than the maximal degree of the graph.

5.2.2.1. AM1 based bounded S BW method

The main concept of handling the bounded bandwidth is the usage of a proper serial

bandwidth estimation, which is available in AM1 method. When a Part reaches the S BW

bound, the process calculates which vertices can be executed, and calls the AM1 method

for the rest of vertices where Ex is not true. The main process starts new AM1 parts until

all vertices are Ex=true. The output of the method is an access pattern(list of {index,Ex}

pairs), where all vertex has true execute flag once, and can be appear many times as a

ghost node.

Estimation of serial-bandwith: Given an AM1 Part, the task is to estimate its serial

bandwidth. AM1 estimates the part’s bandwidth in each construction step. If i < I for

node(i) in part P, it has all of its neighbors inside the part, so if the bandwidth is less than

the bound when I becomes larger than k, node(k) can not increases S BW anymore. As

shown earlier imp(i) is a lower bound on serial-bandwidth, but in the estimation a proper

upper bound is required for the stopping condition. Because in all step AM1 adds a node

from u(I) to the part, we can calculate more than a proper upper bound for a node(i), we

DOI:10.15774/PPKE.ITK.2016.007

56 5. BANDWIDTH-LIMITED PARTITIONING

can give the exact value.

S BW (i) = (n− i) + |
⋃

I≤k≤i
u(k)|+ s(i) I ≤ i (5.6)

Eq. 5.6 is equivalent to the definition of serial bandwidth1 Equation 5.6 could be a stopping

condition, but the proposed method has a less complex and useful upper bound for stopping

decision defined in Eq. 5.7.

S BWBound ≥MAX︸ ︷︷ ︸
I≤k≤n

imp(k) (5.7)

If Eq. 5.7 holds, AM1 continues to add nodes to part P, stops otherwise. This condition

is not an upper bound for the whole part, but it provides in every step that node(I) has

lower serial-bandwidth than the given bound. If I jumps to a higher index I’ after AM1

adds node(n) to P, we can be sure that for all node(i) I ≤ i ≤ I ′ serial bandwidth is under

the bound, because
⋃

I≤k≤I′ u(k) = {node(n)}, so imp(i) = S BW (i) inside the range [I

,I’].

Finalizing a Part: When Eq. 5.7 not holds, the proposed algorithm finalizes the part

and starts a new instance of AM1 on the rest of the not executed nodes. Finalization has

two tasks: it has to label vertices which are executed in part P, and have to label vertices

which has only executed neighbours because these nodes can be cut out of the mesh(I

call them perfect nodes Pr=true). Ex=true and Pr=false vertices have to be loaded again

because they have at least one Ex=false neighbor. In AM1 imp(i)=0 and u(i)={} for all

node(i) for which Ex=true.

s∗ = MIN︸ ︷︷ ︸
I≤k≤n

{k − s(k)}

Algorithm 2 AM1 - Finalizing a Part

1: for ∀k ∈ P do
2: if k.local index < s∗ and k.Ex ! = true then
3: k.Pr ← true
4: if k.local index < I then
5: k.Ex ← true

1the authors have a proof

DOI:10.15774/PPKE.ITK.2016.007

5.2 AM1 partitioning method 57

5.2.2.2. Results and conclusions

It is obvious that the proposed algorithm generates access patterns which have lower S BW

than a given bound. The input length multiplier r is a good parameter for measuring the

solution quality. (r-1)*100% of the vertices have to be reloaded from the main memory,

but the processing still has 0% cache-miss1.

Measurements on three meshes with different S BW bounds can be found on Table 5.3.

Table 5.3. Results of AM1 bounded bandwidth optimization

Case AM1 BW S BW Bound num. of parts N overall length r time(s)
3d 075 391 392 1 3562 3562 1 0,255
3d 075 391 380 4 3562 4288 1,203 0,392
3d 075 391 300 9 3562 4945 1,388 0,7
3d 075 391 200 20 3562 5929 1,664 1,148

3d 035 1863 1864 1 33730 33730 1 2,317
3d 035 1863 1800 6 33730 38053 1,128 7,78
3d 035 1863 1500 5 33730 38702 1,147 4,439
3d 035 1863 500 88 33730 58171 1,724 36,095

3d 015 14930 14931 1 417573 417573 1 70,108
3d 015 14930 14000 2 417573 431081 1,032 77,004
3d 015 14930 10000 2 417573 427211 1,023 71,278
3d 015 14930 7500 8 417573 449441 1,076 91,058
3d 015 14930 5000 34 417573 476170 1,140 53,247
3d 015 14930 2500 130 417573 557190 1,334 687,385
AM1 BW: the bandwidth provided by AM1 for the whole mesh
overall length: length of the generated access pattern
N: number of vertices, Algorithm tested on one core of an Intel P8400 processor

The results show that the solution quality (r-factor) mainly depends on the distance of the

S BW bound from the S BW need of the mesh and also depends on the maximal degree

of the mesh. This is a really good news because maximal degree is around 20-30 for a

typical 3D mesh, while the S BW bound is around 10-40k2 nowadays and increasing with

each new generation of FPGA-s. The number of generated parts determine the time con-

sumption of the proposed method because in each restart of AM1 the algorithm calculates

the pseudo-diameter for the rest of the graph. The results on 3d 015 show that we can go

below 25% of the original S BW with 15-30% reload. This method gives the opportunity

of deciding the size of the on-chip memory synthesized to the FPGA, so the designers can

have more free area with sacrificing computational time.

1assuming the handling of multiplicity problems
2the bound is depending on sizeof(data element)

DOI:10.15774/PPKE.ITK.2016.007

58 5. BANDWIDTH-LIMITED PARTITIONING

AM1 is beneficial for accelerators with 1 FPGA chip because the size of possible input

graphs becomes much higher. However, in high performance computing the usage of mul-

tiple accelerator chips is a must. If AM1 is used as a partitioner for multi-chip solutions

the interprocessor communication and size-balance constraints can not be controlled.

5.3. Depth-Level Structure based partitioning

If the reordered input has greater on-chip memory requirement than the available resour-

ces, or we want to use more FPGA chips, the input mesh must be divided into parts.

Famous partitioning methods, for instance, METIS[R42], minimize the edge-cut between

the parts and balance the size of the generated parts. The size-balance is important beca-

use each part is given to a multi-processor, and the overall runtime is determined by the

multi-processor which gets the largest part. The edge-cut is proportional to the communi-

cation required between the processors. Graph bandwidth of the resulting parts is smaller

than the graph bandwidth of the whole mesh, but the methods do not deal with the graph

bandwidth directly.

The graph bandwidth of the resulting parts is important because it determines the mini-

mal size of on-chip memory, which is necessary for maximal data reuse. The edge-cut is

also relevant because it is proportional to the number of random accesses, which appear

when the PE reads data from adjacent parts (ghost nodes).

In many cases, the covering surface (set of boundary nodes) of the mesh is also known,

which gives information about the geometry, but not used by traditional partitioners. In

this section a novel partitioning method is shown, which creates parts with minimized

graph bandwidth, using geometrical information derived from the cover. The proposed

method is an example, which presents new possibilities in mesh partitioning.

5.3.1. Depth Level Structure (DLS) Based Bisection

DLS is a hidden structure in every unstructured mesh for which the covering node set is

defined. Depth is the distance from the cover. Nodes of the mesh with same depth belong

to a level. Nodes in the deepest levels represent the critical areas of the mesh in case of

bandwidth minimization.

DOI:10.15774/PPKE.ITK.2016.007

5.3 Depth-Level Structure based partitioning 59

5.3.1.1. Objective

The primary goal of DLS-Based Bisection is to reduce the bandwidth of the resulting

parts. However, the objective of bandwidth minimization alone is meaningless because the

bandwidth of the resulting parts can be decreased optionally by increasing the edge-cut. In

Figure 5.2 a 2D example is shown, where the bandwidth of the parts are reduced with large

edge-cut. The edge-cut is also important because communication between the processors

is proportional to the edge-cut.

Reducing the bandwidth of the parts with acceptable communication requirement is the

objective of the DLS-Based method. The acceptable communication requirement (edge-

cut) is an application-specific parameter. In novel FPGA array, the cost of reading data

from the off-chip memory of an adjacent FPGA is usually 10 times slower than reading

from its off-chip memory. In the case of using Alpha-Data ADM-XRC-6T1 cards, the

theoretical memory bandwidth is 12.8 Gbyte/s inside, and 1.25 Gbyte/s between the

cards[R43]1. When only 10% of the whole memory accesses are external reads and their

occurrences are balanced, the whole memory bandwidth can be utilized to feed PEs.

Figure 5.2. 2D example where good bandwidth reduction partitioning leads to unaccept-
able communication need.

5.3.1.2. Basic Entities and Operations

DLS-Based partitioning uses some subroutines which are general tools for manipulating

node sets. The most important node set is the covering surface, furthermore, the separators

are also node sets in our nomenclature. These operations are based on waves (breadth-

first search - BFS) which are starting from a set of nodes and spreading through the

1the number of adjacent parts is limited

DOI:10.15774/PPKE.ITK.2016.007

60 5. BANDWIDTH-LIMITED PARTITIONING

mesh. Spatial waves of BFS are useful to get node sets, which can be used as surfaces or

separators.

Cover Set of nodes belonging to the covering surface.

Deepest(DLS) Set of nodes in the deepest levels of DLS. The Deepest set contains the

three deepest levels of the DLS structure. An example is shown in Figure 5.3.

Level Structure(in: in set, out: LS) Generates a level-structure from in set. LS is a

series of sets (levels), where the elements of in set form the zero level, and the rest nodes

associated to the level according to their minimal distance from in set.

Level(in: node, LS) A function which returns the level index of node in LS.

Pseudo Diameter(in: in set, out: (u,v)) Gives the two endpoints of a pseudo-

diameter on in set. The method is similar to the first step of GPS method, returns two

points which have maximal distance from each other.

Grow(in: start node, border set, out: out set) Grows a set from start node, by

adding the neighbors of included elements into the set. An element is added if it has no

node from border set as its neighbor. Grow is a kind of diletation, for which border set is

a bound.

Figure 5.3. Deepest set of tunnel202, xyz projections are shown. Points are the vertices of
covering surface, nodes of Deepest set represented by tetrahedrons.

DOI:10.15774/PPKE.ITK.2016.007

5.3 Depth-Level Structure based partitioning 61

5.3.1.3. DLS Bisection

The base concept of DLS bisection is the division of the mesh along the deepest set of no-

des. Here I show the method that is presented in [C2]. GPS method creates level-structures

from a boundary node and indexes nodes level by level. Bandwidth of the solution is pro-

portional to the size of the largest level. In geometrical view, the ordering starts from a

boundary surface and creates onion skins through the mesh, and the bandwidth is pro-

portional to the largest cutting surface. In the case of a structured grid of a rectangle, the

bandwidth of GPS solution is proportional to the smaller side, which is often optimal. The

elements of Deepest set take place on a line which is perpendicular to the smaller side.

Furthermore, the line separates the rectangle into two equal sized parts.

DLS can be obtained by the Level Structure() routine, starting the BFS from the Cover

set, the resulting level structure will be the DLS structure. The Deepest set is the union

of the three deepest levels in DLS. The method uses the three deepest levels, because the

deepest level may contain only one node, and the base idea of the bisection is to cut the

deepest area of the mesh. Using pseudo-diameter routine, the method gets two endpoints

of Deepest set, which have maximal distance from each other in the whole mesh(Deepest

set is not necessarily connected). The DLS-Based bisecting method generates the sepa-

rating surface in two steps. In the first stage, a set of nodes is obtained which have the

same distance from the two endpoints of the Deepest set’s pseudo-diameter (Alg. 3). The

resulting set is used during the second stage. The final set separates the mesh into two

parts.

The resulting separator is parallel to the pseudo-diameter of the Deepest set, but the

Algorithm 3 Get Separator

Precondition: Cover
1: Level Structure(Cover,DLS)
2: Pseudo Diameter(Deepest(DLS), (u, v))
3: Level Structure({u}, LU)
4: Level Structure({v}, LV)
5: sep1 = {x : Level(x, LU)− Level(x, LV) ∈ {0, 1}}
6: Pseudo Diameter(sep1, (u, v))
7: Level Structure({u}, LU)
8: Level Structure({v}, LV)
9: sep2 = {x : Level(x, LU)− Level(x, LV) ∈ {0, 1}}

10: return sep2

DOI:10.15774/PPKE.ITK.2016.007

62 5. BANDWIDTH-LIMITED PARTITIONING

Figure 5.4. sep2 of tunnel202, xyz projections are shown. Points are the vertices of covering
surface, nodes of the separator represented by tetrahedrons.

separator not necessarily intersects the Deepest set. The correction step (Alg. 4) is respon-

sible for placing the separator to the middle of the Deepest set. Separator sep2 is the set of

nodes which have the same distance from the endpoints of the pseudo-diameter of sep1. If

the Deepest set is closer to one of the two endpoints, the separator must be moved towards

that point. All levels of the level-structure started from sep2, is equal to two separators

which appear at the sides of sep2. The correction phase removes the further node set from

each level. The level is chosen as corrected separator which has the largest intersection

with Deepest set. The partition method is not completed by determining the separator

Figure 5.5. Separator of tunnel100 before correction (up), and after (down).

surface, because our separator is a set of nodes, therefore the partition is ambiguous. Two

DOI:10.15774/PPKE.ITK.2016.007

5.3 Depth-Level Structure based partitioning 63

Algorithm 4 Separator Correction

Precondition: Separator sep2, nodes u and v with corresponding level sructures LU
and LV

1: dist u ← MIN{Level(x, LU) | x ∈ Deepest}
2: dist v ← MIN{Level(x, LV) | x ∈ Deepest}
3: if dist u < dist v then
4: Level Structure({u}, LS1)
5: Level Structure({v}, LS2)
6: else
7: Level Structure({v}, LS1)
8: Level Structure({u}, LS2)

9: Level Structure(sep2, LSep)
10: for ∀x ∈ LSep do . Remove the further node set
11: if Level(x, LS1) > Level(x, LS2) then
12: delete x from LSep

13: Separator ← level L of LSep for which|L ∩Deepest| is maximal
14: return Separator

parts are obtained by using the Grow subroutine, but the separator and its nearest ne-

ighborhood still remain unpartitioned. Unpartitioned nodes are added to the smaller part

(Alg. 5). The method can be finished at this point, but the size balance is not guaranteed.

A simple solution is to grow the smaller part till balance reached.

Algorithm 5 Get parts from separator

Precondition: Separator
1: s /∈ Separator
2: Grow(s, Separator, part1)
3: s /∈ Separator ∪ part1
4: Grow(s, Separator, part2)
5: rest = {x : x /∈ part1 ∪ part2}
6: Add rest to the smaller part
7: Grow smaller part till balance reached
8: return part1, part2

5.3.2. Results

My test environment is based on Gmsh[R44], which is a three-dimensional finite element

mesh generator with built-in pre- and post-processing facilities. In Gmsh simple 3D mo-

dels can be defined, meshed and partitioned. The covering surfaces are given as physical

surfaces, which makes possible for our algorithm to get the cover of the mesh.

DOI:10.15774/PPKE.ITK.2016.007

64 5. BANDWIDTH-LIMITED PARTITIONING

The test models are shown in Figure 5.6. Meshes generated from sgrid are structured grids

of hexahedrons, from snake and weight unstructured tetrahedron-based meshes are gene-

rated with uniform density, in case of tunnel the density of the mesh is increased around

the step. A comparison is shown in Table 5.4 between the DLS-Based and the METIS-

Figure 5.6. Test shapes. sgrid, weight (up), tunnel, snake(down)

recursive partitioning. The objectives of the two partitioners are different, but there is no

other known method, which minimizes the graph bandwidth of the resulting partitions,

and METIS is one of the most popular solvers. METIS solutions are generated by the se-

quential implementation because its solution quality (edge-cut or external reads) is better

or equal to the quality of parallel partitioning schemes for instance ParMETIS [R45]. No-

vel results of mtMETIS aim for better running times on parallel architectures and better

scaling [R46, R47] but their solution quality has not been improved.

For the structured brick-shaped problems, the DLS method provides in average 28% better

BW partition, with acceptable communication ratio (external reads / inner). The COMM

ratio is better for larger problems, in the case of sgrid4, which has 1M vertices, the COMM

ratio is only 1,6%. The values depend on the ratio between the side lengths, but the ten-

dencies are independent.

The communication ratio (edge-cut ratio) is getting better when the mesh density is

increased for all problem instances. This is obvious because the cutting surface has N-1

dimension in the case of an N-dimensional mesh. This feature is important because DLS

computes a kind of N-1 dimensional surface, which separates the mesh into two parts.

DLS-Based solutions can have unacceptable communication need for small meshes, for

DOI:10.15774/PPKE.ITK.2016.007

5.3 Depth-Level Structure based partitioning 65

Table 5.4. Results of DLS-Based Partitioning

Problem N Orig BW MET BW MET COMM DLS BW DLS COMM
sgrid1 2200 221 181 0,0388 141 0,1216
sgrid2 16800 841 641 0,0192 479 0,0628
sgrid3 131200 3281 2517 0,0087 1719 0,0323
sgrid4 1036800 12961 9967 0,0045 6599 0,0164

snake100 7821 777 689 0,0254 531 0,079
snake038 158544 5701 5371 0,0074 4941 0,0095
tunnel202 18210 2353 1385 0,0292 1303 0,0262
tunnel100 191592 12525 5675 0,017 5949 0,027
weight045 4899 641 581 0,0169 311 0,1764
weight022 35922 2363 2131 0,0078 1411 0,0559
weight012 230891 8087 8785 0,0037 8785 0,0075
N: number of vertices. Orig BW: GPS BW for the whole mesh.
MET/DLS BW: BW of partitions.
MET/DLS COMM: number of outgoing edges / number of internal edges

example weight045, where the COMM ratio is 17,5%.

Using DLS-Based bisection, the resulting partitions have 40% reduced graph bandwidth

compared to the whole mesh, and create 20% better solutions than METIS. METIS mi-

nimizes the edge-cut and provides size-balance, the DLS-Based solutions have same size

balance quality, however, the edge-cut is several times higher. There is a tradeoff bet-

ween graph bandwidth and communication need, and DLS creates partitions with higher

COMM ratio to provide reduced graph bandwidth.

DLS reduces the bandwidth by 40-50% by separating the mesh along the Deepest set, in

case of tunnel geometry the METIS solution has the same reduction ratio, for tunnel202

the partition is nearly similar, and DLS has better COMM ratio, for tunnel100 the METIS

solution has better graph bandwidth.

The difference between the traditional methods and DLS-Based partitioning can be ob-

served on Figure 5.7, where the separator of weight022 is shown. DLS-Based bisection

cuts the weight shape in the longitudinal direction, instead of choosing the small edge-cut

between the two weights. This partition leads to 34% better graph bandwidth reduction

with 5,6% COMM ratio.

If the DLS separator does not provide size balance, the proposed method grows the smal-

ler part until the balance is reached. This strategy can increase the graph bandwidth of

the solution. For weight012, the BW of the resulting parts are 6741 without size balance,

and 8785 after because the balance leads to a quasi-similar partition to METIS. The graph

DOI:10.15774/PPKE.ITK.2016.007

66 5. BANDWIDTH-LIMITED PARTITIONING

Figure 5.7. Separator of weight022.

bandwidth of the parts can be higher than the original mesh because GPS is a heuristic

algorithm, and the graph bandwidth mainly depends on the largest cutting surface.

5.3.2.1. Bounded BW partitioning

The proposed method is created for providing partitions which meet constraints on the

graph bandwidth. If the original mesh has larger GPS bandwidth than the given bound,

the method bisects the mesh. Parts can be bisected if the constraint on the bound is still

unsatisfied. The constraints on graph bandwidth can be reached in fewer bisection steps

with the DLS-Based method, than with other traditional partitioners.

5.3.3. Conclusions

In this section, a novel partitioning approach was presented, which focuses on the band-

width reduced node ordering of the resulting parts. The motivation of this kind of par-

titioning is based on FPGA designs, where the graph bandwidth of the input parts has

to be below a bound. The proposed solver uses the covering node set of the given mesh,

which contains information from the geometry without spatial coordinates. The covering

surface is often given (physical simulations) but is not used by traditional partitioners.

The proposed method is an example of using covering surface in partitioning techniques.

The components of the DLS-Based method are operations on node-sets, which operations

use spatial waves to compute abstract surfaces (node sets) inside the mesh.

DOI:10.15774/PPKE.ITK.2016.007

5.4 BLP method for structured meshes 67

The results show that the proposed partitioning algorithm creates partitions with better

graph-bandwidth quality than METIS, with acceptable edge-cut. The size-balancing steps

of the method should be improved, because the graph-bandwidth quality of the solution

can be damaged. The main shortcoming of this method is the uncontrolled edge-cut which

has to be considered with data locality in BLP. The following sections give solvers for the

BLP in the cases of structured and unstructured meshes.

5.4. BLP method for structured meshes

For special structured meshes near optimal BLP partitions can be obtained. Here we show

optimal grid-type BLP partitions for a × b and a × b × c structured grids, where only

horizontal, vertical and depth connections are defined.

5.4.1. Grid-Type BLP Partitions

Figure 5.8. Example of Grid-Type partitoning. The structured grid is divided according
to a ga× gb grid.

Grid-type partition of an a× b mesh is a ga× gb grid of uniform a
ga
× b

gb
submeshes, as

it can be seen in Fig.(5.8). Let sa =
⌊

a
ga

⌋
, sb =

⌊
b
gb

⌋
and Sa =

⌈
a
ga

⌉
, Sb =

⌈
b
gb

⌉
denote

the possible sizes of the sides of a submesh. A grid-type partition may contain submeshes

of size Sa×Sb, Sa× sb, sa×Sb and sa× sb. According to Theorem 2 the maximum graph

bandwidth of these parts is min{Sa, Sb}.

|Out(Pi)| = 2 ·sa +2 ·sb if Pi is enclosed by other parts. If ga = 1, |Out(Pi)| = 2 ·sa +0 ·sb,

because sb sides are on the boundary of the mesh. If ga = 2, |Out(Pi)| = 2 · sa + 1 · sb
because Pi has one sb side which is adjacent to an other part. In |Out(Pi)| only the non-

boundary sides are accounted, each side is multiplied by {0, 1, 2}. Let ma,mb denote the

maximum side multipliers. With these notations we get Eq. (5.8) as BLP goal function.

DOI:10.15774/PPKE.ITK.2016.007

68 5. BANDWIDTH-LIMITED PARTITIONING

In Eq. (5.9) I use sa, sb because this choice maximizes the left hand side.

max
k≤K
(5.9)

{k = ga · gb} (5.8)

2 ·min {Sa, Sb}+ 1 ≤ BW Bound

ma · sa +mb · sb
sa · sb

≤ COMM Bound
(5.9)

The statement of Theorem 2 can be generalized to a × b × c grids. In this case, graph

bandwidth can not be smaller than the size of the smallest side (Sa · Sb or Sa · Sc or

Sb · Sc), and an ordering is also known, which can provide this graph bandwidth. Side

multipliers mab, mac and mbc should be defined. The BLP goal function in this case is Eq.

(5.10).

max
k≤K
(5.11)

{k = ga · gb · gc} (5.10)

2 ·min {Sa · Sb, Sa · Sc, Sb · Sc}+ 1 ≤ BW Bound

mab · sa · sb +mac · sa · sc +mbc · sb · sc
sa · sb · sc

≤ COMM Bound
(5.11)

Size of the solution space is K2 for a × b and K3 for a × b × c grids. This search space

can be efficiently reduced, if we consider that ga · gb · gc ≤ K. In the case of an a× b grid

we can start the search with gb = 1 for which ga can take values from {1 . . .K}, then for

gb = 2 ga can take values from {1 . . . bK/2c}, and so on. After the bK/2c-th step ga = 1

remains the only one available value. The size of the reduced search space is (5.12).

K −
⌊
K

2

⌋
+

bK/2c∑
i=1

⌊
K

i

⌋
(5.12)

Which is O(K · ln(K)) because of the behavior of harmonic series. This size is suitable for

an exhaustive search, the optimal grid-type partition can be obtained. In case of a× b× c

grids, for each gc value we have a subspace which has complexity of (5.12), where K is

divided by gc. This adds another harmonic series component, which leads to O(K·(ln(K))2)

complexity, which is still suitable for exhaustive search.

DOI:10.15774/PPKE.ITK.2016.007

5.4 BLP method for structured meshes 69

5.4.2. Quality of Grid-Type BLP partitions

In Section 4.3 I showed that partitions with best inter-processor communication have bad

data locality (spheres vs. rods). Using Optimal Grid-Type Partitions, we can investigate

this problem experimentally.

For the architecture presented in [J1] COMM Bound = 0.1 is a hard limit. If an a×a×a

cube is given, the smallest a which can satisfy this bound is a = 60 where 6·a2
a3
≤ 0.1,

and this part has 216000 nodes. A part with 216K nodes is suitable for a kilo-processor

dataflow unit, but the number of these units k is hardly limited by COMM Bound. For a

100M node 500×500×400 mesh, the optimal Grid-type partition with BW Bound = Inf

COMM Bound = 0.1 K = Inf is a 8× 8× 7 grid partition, which has 448 dataflow pro-

cessors and BW = 7309. The smallest part is a 62 × 62 × 57 submesh which is almost a

cube and has 219108 nodes. If BW Bound = 5000 is set, the result is a 12 × 4 × 7 grid

partition, which has only 336 processors. The smallest part is a 41 × 125 × 57 submesh

with 292125 nodes, and its shape has a lengthwise direction. For BW Bound = 4000 the

partition contains 41 × 45 × 200 rod-shaped submeshes. For COMM Bound = 0.2 the

resulted partition can support 3468 dataflow units with BW = 1801.

METIS is one of the best partitioners for the minimization of inter-processor communica-

tion. The comparison of METIS and Optimal Grid-Type partitions shows the gap between

METIS and the achievable partition quality. Measurements on small and medium sized

structured grids are presented in Table 5.5. BW Bound is set to Infinity (Inf) or to the

lowest possible value, which has Grid-Type solution with the given COMM Bound. In

Grid-Type partitions, all bounds are satisfied. kopt is the number of parts in the optimal

grid-type partition, and METk is a kopt-way METIS partition.

Results on the first three instances show the efficiency of METIS in the minimization of

inter-processor communication. METIS solutions have only 0.004 difference from optimal

grid-type communication ratios, and the graph bandwidth quality is also extremely good.

This is possible because the minimal change in the COMM Bound can result in signi-

ficant change in the achievable graph bandwidth. With 0.002 relaxation of the METIS

communication ratio, BW need can be reduced from 1377 to 799 for 37 × 41 × 77 and

from 2895 to 2133 for the 73× 81× 153 grid. For larger instances like 100× 81× 200 there

is much more room for development. Optimal grid-type partitioner without BW Bound

reaches 0.059 better communication ratio (sphere) than METIS, better spheres have a

DOI:10.15774/PPKE.ITK.2016.007

70 5. BANDWIDTH-LIMITED PARTITIONING

Table 5.5. Comparison of METIS and Optimal Grid-Type Partitions

Instance
BW COMM Grid-Type METk METk
Bound Bound kopt BW COMM

19x21x39 Inf 0.1 2 621 0.05
19x21x39 419 0.1 2 621 0.05

37x41x77 Inf 0.1 4 1377 0.104
37x41x77 1483 0.1 4 1377 0.104
37x41x77 799 0.106 4 1377 0.104

73x81x153 Inf 0.1 12 2895 0.104
73x81x153 3035 0.1 12 2895 0.104
73x81x153 2133 0.106 12* 2895 0.104

100x81x200 Inf 0.1 20 3233 0.159
100x81x200 3281 0.1 20 3233 0.159
100x81x200 1641 0.159 20* 3233 0.159
100x81x200 1559 0.159 44 2039 0.222
100x81x200 799 0.222 44* 2039 0.222

*: K is fixed to the given value, otherwise K=Infinity (Inf)

slightly larger BW need. In the case of 20-way partitioning, with the same communication

ratio, BW need can be decreased from 3233 to 1641, and from 2039 to 799 in the case

of 44-way partitioning. These results show that direct data locality handling is important

and possible. The available partitioning methods which decrease only the inter-processor

communication create partitions which have bad shapes (sphere). Optimal grid-type BLP

partitioning is a simple and efficient tool for partitioning the most important class of

structured meshes.

5.5. BLP method for unstructured meshes

Bandwidth Limited Partitioning is a challenging task. My DLS-based algorithms which

create partitions with good data locality often suffer from bad communication to comp-

utation ratios. The minimization of inter-processor communication is a well-studied field

with effective existing solvers, for instance, METIS. Currently, the best way of handling

BLP is a METIS-AM1 hybrid.

DOI:10.15774/PPKE.ITK.2016.007

5.5 BLP method for unstructured meshes 71

5.5.1. METIS-AM1 hybrid method for handling BLP

METIS-AM1 has two stages. First the number of parts k is defined by multiple METIS tri-

als. From k = 2 METIS recursive bisections are performed, until K is reached or the com-

munication need exceeds COMM Bound. If the last partition exceeds COMM Bound,

with interval halving method the largest k can be found, for which COMM Bound is sa-

tisfied. At this point, a k-way METIS partition is given, which has better communication

to computation ratio than the COMM Bound. In the second stage, METIS-AM1 calls

AM1 to each METIS part.

Unfortunately, this method does not solve BLP but makes it possible to handle data loca-

lity and inter-processor communication together. COMM Bound fully and BW Bound

virtually can be satisfied.

5.5.2. METIS-AM1 results on unstructured meshes

The main goal of Bandwidth-Limited Partitioning is to maximize k, the number of submes-

hes, for which the bounds on inter-processor communication and data locality are satisfied.

k is mainly limited by the communication bound, thus it can be determined by METIS. If

a k-way METIS partition has larger communication need than the communication bound,

there is little hope to find a (k + 1)-way partition which fits to the conditions. METIS

does not deal with data locality directly, but with sufficiently high k, the k-way METIS

partition can fit to the BW Bound.

For a dataflow machine, the input mesh must be partitioned according to the BW Bound.

In Table 5.6 a comparison between METIS-only and METIS-AM1 solutions for unstruc-

tured meshes is shown. Our test instances are generated by Gmsh [R44], which is an open

source mesh generator. COMM k is the largest k, for which the communication bound

holds, and BW k is the smallest k, for which the bound on data locality is satisfied in

the k-way METIS partition (Fig. 5.9). For all instances, the first BW Bound is set to the

data locality need of the METCOMM k partition, thus no further partitioning is required.

Then BW Bound is decreased, which forces METIS-only to increase k, and METIS-AM1

to create virtual partitions.

The bound on the communication ratio allows only 2 or 4 parts for small and medium

sized instances in Table 5.6. This does not generate any problem because each part is given

to a kilo-processor dataflow unit. The results show that BW can be halved with AM1 at

DOI:10.15774/PPKE.ITK.2016.007

72 5. BANDWIDTH-LIMITED PARTITIONING

Figure 5.9. Relation of k-way METIS partitions to the bounds on data locality and inter-
processor communication.

the cost of 10-20% data reload for larger meshes while METIS-only solutions have 0.2-0.3

communication to computation ratios. METIS-AM1 solutions have fewer dataflow units

with high utilization and power efficiency while METIS-only solutions have more dataflow

units, which suffer from inter-processor communication limits.

Typical values of BW Bound is 30-100K for existing dataflow architectures. For these

small and medium size problems, assuming BW Bound = 30K COMM Bound = 0.1,

METIS partitions which created in the first stage of METIS-AM1 are solutions for the

BLP, and can be applied to dataflow units after GPS node reordering. However, parame-

ters in Eq. (2.2) should be integrated into the BW Bound. If the discretization stencil has

s = 5 width, BW Bound have to be divided by 2. On-chip memory resources of the FP-

GA are distributed among the on-chip cache, the pipelined arithmetic, and I/O buffers. In

the case of a complex numerical method, BW Bound should also be decreased to provide

memory resources to other modules on the chip.

The BW Bound becomes important, when K is relatively small: n
K > 1M . In these cases,

BLP solutions are heavily limited by the BW Bound, while COMM Bound can be easily

satisfied. Cases with relatively small K are important because dataflow units have 2-48

GB off-chip DRAM that enables them to handle large submeshes, which is needed to reach

the best power efficiency [R13]. It may happen, that BLP has no solution for relatively

small K-s. In these cases, METIS-AM1 can still create an applicable partition with node

DOI:10.15774/PPKE.ITK.2016.007

5.6 Conclusions 73

Table 5.6. Comparison of METIS-only and METIS-AM1 BLP Solutions

Instance n
BW COMM COMM BW METBW k AM1
Bound Bound k k COMM r − factor

snake 02 33737 2329 0.1 2 2 0.067 1
snake 02 33737 2000 0.1 2 3 0.266 1.114
snake 02 33737 1200 0.1 2 8 0.634 1.370

snake 03 225041 6939 0.1 2 2 0.036 1
snake 03 225041 6000 0.1 2 3 0.158 1.124
snake 03 225041 3500 0.1 2 10 0.504 1.281

tunnel 01 79161 7641 0.1 1 1 0 1
tunnel 01 79161 7000 0.1 1 2 0.135 1.131
tunnel 01 79161 3700 0.1 1 3 0.222 1.147

tunnel 02 537690 19068 0.1 2 2 0.073 1
tunnel 02 537690 18000 0.1 2 3 0.124 1.063
tunnel 02 537690 9500 0.1 2 4 0.223 1.113

weight 04 171859 8046 0.1 2 2 0.026 1
weight 04 171859 7000 0.1 2 3 0.224 1.138
weight 04 171859 4000 0.1 2 6 0.298 1.209

weight 05 1243064 20811 0.1 4 4 0.099 1
weight 05 1243064 18000 0.1 4 5 0.132 1.056
weight 05 1243064 9000 0.1 4 11 0.246 1.0965
weight 05 1243064 9000 0.2 8 11 0.246 1.0961

orderings for the dataflow units.

5.6. Conclusions

In this chapter, the Bandwidth Limited Partitioning of meshes is presented. This is moti-

vated by Dataflow Machines (DM) that can utilize total off-chip memory bandwidth with

perfect caching. DMs need data streams with maximized data locality. BLP uses bounds

on data locality which is connected to the available cache size. The ratio of inter-processor

bandwidth and off-chip memory bandwidth is also used to define bound on communicati-

on to computation ratio. These architecture dependent bounds can ensure high processor

utilization, which is the main goal of BLP. The optimization of the number of processors

is an important novelty of BLP. The bound on communication ratio determines the ma-

ximum number of processors, which evades the waste of processor resources.

DOI:10.15774/PPKE.ITK.2016.007

74 5. BANDWIDTH-LIMITED PARTITIONING

With simple mathematical tools I showed that the goals of inter-processor communication

and data locality are conflicting, thus existing communication minimization methods are

not able to solve BLP effectively.

A modified reordering method, AM1 is presented for the generation of data locality boun-

ded memory access patterns which are a kind of virtual partitioning (parts are given to the

same physical processor). A new DLS-based mesh partitioning method is also presented

which focuses on data locality property of the resulting parts, but can not deal directly

with the interprocessor communication need.

Optimal Grid-type BLP partitioning is proposed for structured meshes, which time comp-

lexity O(K · (ln(K))2) is independent of the mesh size. Measurement results show that

heavy data locality improvement can be achieved with minimal relaxation of the bound

on inter-processor communication. METIS solutions can be surpassed in all parameters.

METIS-AM1 hybrid method is proposed for unstructured meshes. This method does not

solve BLP, but creates partitions in which COMM Bound fully and BW Bound is virtu-

ally satisfied. If the given BLP has no solution, METIS-AM1 can still create an applicable

partition with node orderings for the dataflow units.

Improved data locality is essential for DMs, and also important for other processor archi-

tectures. Inter-processor communication is still the most important factor in mesh partit-

ioning, but there is great potential in considering data locality. In future work, I want to

give complete solution for unstructured meshes, and consider the communication topology

of the processors.

DOI:10.15774/PPKE.ITK.2016.007

6. Chapter

Applicable Partial Solution

Generation for Fast-response

Combinatorial Optimization

Combinatorial Optimization (CO) problems play an important role in many applications.

Vehicle routing, production planning, resource assignment, or task scheduling problems

require the best possible solution while the corresponding CO problems are NP-hard. CO

solutions contain decision variables for which optimized values are assigned. In many cases,

it is beneficial to know the optimized values of a subset of these variables. For instance,

if a robot has 100 elementary tasks and knows the first 5 tasks in the optimized schedule,

it can start the execution. In a resource assignment case, the corresponding resources can

be transferred to the assigned agent before the complete assignment is created.

Because of the NP-hard nature of many CO problems, the most efficient solvers are heuris-

tics which search for solutions in an exponentially growing solution space [R8]. The quality

of solutions depends on the available time for the search, thus, the response time of the

optimizer and solution quality are conflicting. Applicable partial solution generation pro-

vides a better trade-off between optimization time and quality because it makes possible

to restrict response time only for a subset of decision variables instead of the termination

of the whole optimization process when the required response time is reached.

In applicable partial solution generation (APSG), a fixed partial solution is required in

constrained time, which is extendable to a feasible, complete solution. APSG has similari-

75

DOI:10.15774/PPKE.ITK.2016.007

76
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

ties to real-time online optimization, but there are differences. APSG differs from real-time

optimization because it requires only a partial solution in constrained time. It is not si-

milar to online optimization because the whole problem instance is known.

In APSG, the intermediate partial solution cannot be modified because it will be appli-

ed before the solver generates the complete solution. While APSG solutions reduce the

response time of the optimizer significantly, fixed partial solutions restrict the solution

space. Therefore, fast partial solution generation can harm the reachable optimality of

the complete solution. If the goal function describes the execution time of operations,

it is possible that the use of a partial solution leads to better overall time performance

because running time of the optimizer is also accounted. Figure (6.1) shows an example,

where execution time of the solution (optimality) is worse, but the corresponding overall

time needed is better. Except these cases, fast-response APSG methods generate inferior

complete solutions compared to slow-response high-quality methods.

Much effort has been made to define good constructive heuristics and high-quality comp-

Figure 6.1. Task scheduling example: Execution started after a complete solution is gene-
rated (Up). Partial solution is applied before the optimization is completed. (Down)

lex approximation methods. These results should be used in APSG. Most of the novel

approximation methods are defined as derivatives of problem-independent metaheuristics.

Metaheuristic formulation makes the integration and cooperation of different methods ea-

sier [R7, R8]. A metaheuristic framework is needed, which can support fast algorithm

component integration and highlights the central questions of APSG.

There are several definitions for metaheuristics. I prefer the following definition which has

been given by M. Dorigo who is the author of Ant-Colony Optimization: ,,A metaheuristic

is a set of concepts that can be used to define heuristic methods that can be applied to

a wide set of different problems. In other words, a metaheuristic can be seen as a general

algorithmic framework which can be applied to different optimization problems with rela-

DOI:10.15774/PPKE.ITK.2016.007

6.1 Variable Subset Merger 77

tively few modifications to make them adapted to a specific problem.”

Basic metaheuristics are Local Search, Simulated Annealing (Kirkpatric 1983), TABU Se-

arch (Glover 1989), Variable Neighbourhood Search (VNS), Guided Local Search (GLS),

Ant-Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Evolutional

Optimization (Holland 1975, Fogel 1994), summary and references can be found in [R7].

In [C3] Variable Subset Merger (VSM) metaheuristic is proposed for APSG, which has su-

bordinate heuristics to define the importance order of decision variables the desired value

for a variable and the clustering of the variables.

This chapter investigates the possibilities and limitations of applicable partial solution

generation with VSM.

6.1. Variable Subset Merger

A constrained optimization problem can be given by three components: a finite set X

of decision variables Xi, i = 1, . . . , n, an objective function f(X1, . . . , Xn) and a set of

constraints among the variables. These constraints can be precedence constraints given

by a directed graph P (X,R) for permutation-based problems, where edges in R descri-

be precedence. System of equations and inequations gk(X) ≤ ck, k = 1, . . . ,maxk and

hl(X) = dl, l = 1, . . . ,maxl can also be given. Minimization or maximization of f over the

decision variables is required considering the constraints.

Subsets of decision variables define subproblems. If some variables in a subset have as-

signed values, these variables define a subset solution. These solutions can be extended

by assigning values to free variables in the corresponding subset. Subset solutions form

together a partial solution to the original problem, which is applicable in the case when a

complete, feasible solution exists that contains it. Variable Subset Merger (VSM) descri-

Algorithm 6 Variable Subset Merger

1: assign subset Si to every Xi

2: while number of subsets 6= 1 do . Main Loop
3: all subsets recommend value for their unfixed variable
4: select subset Si
5: fix recommended value for the unfixed Xk ∈ Si
6: select Sj for Si , j 6= i
7: Si = Si ∪ Sj
8: set the last unfixed variable.

DOI:10.15774/PPKE.ITK.2016.007

78
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

bes the extension of multiple subset solutions until they form a complete solution. During

the VSM process, each subset has one free decision variable and has fixed assignments for

the rest of variables in it.

As a first step, the optimization problem is divided into n sub-problems; each contains only

one decision variable. In all construction steps (Main loop) one decision variable is fixed.

At the beginning all subsets recommend a value for their free decision variable (step 3),

then a subset Si is selected (step 4) and its recommendation is accepted (step 5). At this

point it has no free variable, thus Si should be merged with another subset Sj (step 6).

After Si and Sj were merged (step 7), the unified subset has exactly one free variable, and

the number of subsets is decreased by one. After n−1 iterations, only one subset remains,

which has n− 1 fixed variable and one free variable.

I demonstrate the VSM method on the Travelling Salesman Problem (TSP), where the

successor of a city is the decision variable. VSM has three subordinate heuristics. The first

one is the subset solver heuristic (step 3), which defines the values for the recommendati-

on. In our TSP example, the nearest neighbor heuristic can be used. The second heuristic

handles the subset selection (step 4). The subset selection heuristic defines the order of

importance of the free decision variables. The third heuristic selects a subset Sj , which is

the most appropriate for Si to merge with (step 6). Decision variables in TSP define Sj

directly. The subset that contains the successor of Si-s last city is the compulsory choice.

Figure (6.2) shows a TSP example, where three subsets take part in the recommendation

phase (left), and two remain after the construction step (right).

6.1.1. Variations of subset selection

When a recommendation is accepted, the corresponding subset solution generates addi-

tional constraints for the other subsets. In Fig. (6.2) for example, the extension of S1

makes the recommendation of X8 = 1 unavailable, because it would cause inner circle in

the unified S1. Subset selection defines which subset is the most important. The role of

subset solving heuristics is to define the order of possible values for a free decision vari-

able. Subset selection makes the connection between subsets. This heuristic handles the

minimization of optimality loss that comes from fixed subsolutions. All subset selections

have a connection to a branch and bound method because a fixed decision drops out a

branch in the search tree. Next I list the basic variants of subset selection.

DOI:10.15774/PPKE.ITK.2016.007

6.1 Variable Subset Merger 79

Figure 6.2. Variable Subset Merger TSP example. On the left there are three subsets
S1 = {X1 = 2, X2 = 3, X3 = 4, X4*=5}, S2 = {X5 = 6, X6 = 7, X7 = 8, X8*=1}, S3 =
{X9*=1, X10 = 9, X11 = 10} ’=’ denotes fixed, and ’*=’ recommended assignments respec-
tively. On the right S1 and S2 are merged, variable X4 = 5 is fixed, and new recommen-
dations are calculated for the remaining two free variables X8 and X9.

6.1.1.1. VSM-Const

VSM-Const is the simplest way of subset selection. The same subset Si is selected during

the whole process. Only one subset solution is extended to a complete solution. In this

case VSM is similar to the subset solving heuristic.

6.1.1.2. VSM-PLoss

When a recommended value of the free variable becomes unavailable, a new recommenda-

tion has to be created, which is inferior for the subset. Possible Loss for a subset Si is the

cost difference between the second (r2) and the first (r1) recommendation. In Eq. (6.1) fSi

denotes the restricted version of the objective function f , where only Xl ∈ Si variables are

accounted and Xk is the free variable. VSM-PLoss selects the subset that has the highest

possible loss.

p loss(Si) = fSi(Xk = r2)− fSi(Xk = r1) (6.1)

VSM-Ploss is strongly connected to the Little branch and bound method [R48].

6.1.1.3. VSM-CLoss

Instead of evading high possible losses, VSM-CLoss minimizes the overall caused loss of

a construction step. Caused Loss for subset Si is the sum of possible losses of all subsets,

DOI:10.15774/PPKE.ITK.2016.007

80
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

which recommendations become unavailable if Si is selected. VSM-CLoss selects the subset

that has the lowest caused loss.

c loss(Si) =
∑
Sj∈L

p loss(Sj) (6.2)

In Eq. (6.2), L is the set of subsets, which suffer their possible losses, if subset Si is

selected. The caused loss is important because this loss surely appears in the final solution’s

cost. It is possible that the second recommendation also becomes unavailable, therefore

Eq. (6.2) is only a lower bound on real caused loss. Calculating caused loss for all subsets

is computationally expensive because the next construction step has to be performed

virtually to get L.

6.1.1.4. VSM-PCLoss

pc loss(Si) = αSi · c loss(Si)− βSi · p loss(Si) (6.3)

The two main subset selection heuristics can be combined with αSi and βSi parameters,

which can depend on Si. VSM-PCLoss selects the subset, which has minimal pc loss.

Parameters can provide multiple functionalities. For instance set αSi = 0, while βSi can

depend on the size of the subset or the number of constraints. The parameters can be time

dependent too. If a subset solution needs to be extended immediately (execution reaches

the end of the subset solution), the corresponding βSi parameter can be set to inf .

6.1.2. VSM Hybrid Methods

6.1.2.1. With best-known not real-time solver

VSM creates an applicable partial solution with appropriate subordinate heuristics, then

call the best-known not real-time solver for the rest of the problem.

6.1.2.2. With best-known real-time solver

With best-known real-time solver, VSM creates a candidate solution in constrained time,

and the first part of the candidate solution is given as the applicable partial solution. In

the next stage a more complex method, for instance, a population-based solver searches

for better solutions on the free decision variables. Elements of the candidate solution are

DOI:10.15774/PPKE.ITK.2016.007

6.2 VSM for the Disc Scheduling Problem (DSP) 81

seen as recommendations for the VSM process, which accepts them according to its subset

selection mechanism. Clearly, the resulting solution will be better than the best solution

can be obtained with a single real-time method while the response of the optimization

process is still real-time.

6.1.3. VSM models for specific optimization problems

When VSM is applied to a particular problem, first the decision variables have to be

defined, and then a heuristic is required, which provides their importance order at each

construction step (subset selection). A known greedy method is sufficient to use for the

subset recommendations (subset solver). If the distribution of decision variables affect the

subset solver or the subset solutions have applicable meaning (TSP subtours), the merger

method has to be defined accordingly.

When the feasibility is a hard constraint, the recommendations of subsets calculated by

the subset solver heuristic have to be validated. A recommended solution element is valid

if its fixation does not prevent feasibility.

6.2. VSM for the Disc Scheduling Problem (DSP)

Scheduling of data transfers for a hard disc drive is a combinatorial optimization problem

which requires fast response time. A disk request Ti is given by its ready time ri, deadline

time di sector number li, data size bi, and track location ai. A transfer can start after its

ready time and must be finished before the corresponding deadline time. The time need

of a transfer Ti which succeeds Tj is given by Eq. (6.4)

cj,i = seek time(aj − ai) + rotational latency(li) + transfer time(bi) (6.4)

Tw(1), Tw(2), ..., Tw(n) is a schedule where w(i) is an index function which describes the

ordering of the disc requests. Finish time of request Tw(i) is fw(i) = max{ri, f(w(i−1))}+

cw(i−1),w(i). A schedule is feasible if fw(i) ≤ dw(i) for all requests. Finding a feasible sche-

dule with minimal fw(n) is the goal of disc scheduling.

Traditional DSP solvers are fast greedy heuristics such as Shortest Seek-Time

First (SSTF), Earliest Deadline First (EDF), SCAN and their modifications. Better re-

sults can be obtained by population based more complex heuristics [R49], but their time

DOI:10.15774/PPKE.ITK.2016.007

82
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

complexity is too high compared to the constructive methods.

6.2.1. VSM model for the Disc Scheduling Problem

In the simplest case, Xi decision variables define the successor of a request in the schedule.

SSTF, EDF and other constructive greedy DSP solvers are special VSM heuristics, where

VSM Const subset selection is used, and the subset solving heuristic is the corresponding

greedy method itself.

With the VSM concept, more sophisticated construction methods can be defined.

Let Xi denote the predecessor of request Ti. A particular schedule is Partm =

Twm(1), Twm(2), ..., Twm(last). The free decision variable of Partm is the predecessor of its

first task. The approximate finish time f(Partm) for Partm can be calculated based on

its members. If the finish time of the chosen predecessor is greater than the ready time

of the particular schedule of Partm, the whole schedule is delayed by that difference. The

time pool of a part is the maximal delay which does not cause deadline time conflict in

Partm. Poolm = minTk∈Partm{dk − fk}.

In a VSM solver, SSTF can be used as subset solver heuristic to define Twm(0) for all

Partm subsets. The subset selection heuristic can deal with deadline time conflicts. That

subset is chosen which has minimal time pool. Subset solver heuristic can be sensitive to

the deadlines too, if the approximate finish times of the candidates are also accounted

with the seek times. Subset selection can also focus on finish time, if that subset is chosen

which has the latest approximate finish time.

I do not want to give a concrete method for DSP here, my goal is to show the possibili-

ties and methods of the generation of VSM-based heuristics. First, the decision variables

have to be defined, which declare the attributes of subsets: partial objective function

(f(Partm)), and measurable other factors (Poolm). Based on the previous step the subor-

dinate subset solver and subset selection heuristics can be defined.

A question arises. How can we guarantee the applicability of partial solutions? Valida-

tion of recommendations is required in applicable partial solution generation to ensure

applicability. DSP heuristic solutions often violate the deadline constraints, thus I do not

suggest validation of recommendations in DSP. Example of validation is presented for the

Sequential Ordering Problem (SOP) in the next section.

DOI:10.15774/PPKE.ITK.2016.007

6.3 VSM for the Generalized Assignment Problem 83

6.3. VSM for the Generalized Assignment Problem

In Sec. (6.1) VSM is presented with a TSP example, which has permutation-based search

space representation. Here I apply VSM for a not permutation-based problem through the

steps of Sec. (6.1.3).

6.3.1. Generalized Assignment Problem (GAP)

Given n jobs J = {1...n} and m agents I = {1...m}. The assignment xij ∈ {0, 1} of jobs

j ∈ J to agents i ∈ I is required. Each assignment has cij cost and aij resource need from

agent i which agent has bi resource capacity.

minimize
∑
i∈I

∑
j∈J

xij · cij

subject to
∑
j∈J

xij · aij ≤ bi ∀i ∈ I,

∑
i∈I

xij = 1 ∀j ∈ J,

xij ∈ {0, 1} ∀i ∈ I and∀j ∈ J,

(6.5)

GAP is known to be NP-hard (e.g.,[R50]), thus metaheuristics paly important role in

handling such problems. The best-known method in solution quality is PREC [R51] a

path relinking approach with ejection chains.

6.3.2. VSM model for GAP

There are existing GAP solvers that use variable ordering approach to reach fast running

times in the case of complete solution generation. These methods can be redefined with the

VSM nomenclature to produce applicable partial solutions. Here I redefine the approach

of Martello and Toth [R52] as a VSM.

Each job has a decision variable that is the index of the assigned machine. The subset

selection heuristic is VSM-PLoss. Examples of subset solver heuristics used by Martello

and Toth are:

(i) minimize cij

(ii) minimize aij

DOI:10.15774/PPKE.ITK.2016.007

84
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

(iii) minimize aij/bi

The first (i) subset solver aims for cost minimization only, the heuristics (ii) and (iii) focus

on absolute and relative resource optimization. In [R53] the authors attempt to join the

two goals with the family of the following subset solvers:

minimize cij + λ · aij

The distribution of decision variables does not affect these subset solvers and has no addi-

tional meaning for subset solutions, therefore subset selection can give back an arbitrary

subset.

These methods may produce an infeasible solution, which has to be considered when a

partial solution is applied. Unfortunately, validation of an assignment cannot be efficient

for GAP because the problem of judging the existence of a feasible solution for GAP is

NP-complete. Without effective validation the constraints have to be soft constraints be-

cause feasibility can not be guaranteed.

Imagine a server grid and a large bunch of processes. An assignment is required in which all

processes are done before a deadline. A VSM-based solver can assign almost immediately

one job to all machines according to its subordinate heuristics and assigned processes can

be initiated. However, some processes may be assigned to a machine, which has not enough

free capacity to handle them without deadline conflict. The probability of such infeasible

assignments can be decreased by penalty functions, but could not be zero. Without VSM,

one can sacrifice predefined amount of time to generate a complete solution with good

quality. However, the machines stay idle during the optimization while the deadline is the

same.

In the next section I show a constrained combinatorial optimization problem, where vali-

dation of solution elements can be performed, therefore hard constraints are allowed for

VSM.

DOI:10.15774/PPKE.ITK.2016.007

6.4 VSM for the Sequential Ordering Problem 85

6.4. VSM for the Sequential Ordering Problem

6.4.1. Sequential Ordering Problem (SOP)

SOP is a combinatorial optimization task, which was defined by Escudero [R54]. SOP

can be derived from the TSP by adding precedence constraints to the cities. Every city

can have a list of other nodes, which have to precede them in the solution. Since all

TSP instances are SOP ones without ordering, SOP is also NP-hard. Many real-world

tasks lead to SOP: vehicle routing with pick-up and delivery tasks, production planning,

transportation problems in flexible manufacturing systems, robot action planning. Exact

algorithms were developed by Ashauer and Escudero [R55, R56]. A sophisticated branch

and bound method is also introduced in [R57]. Several metaheuristics were published to

solve SOP: a genetic algorithm based on Voronoi quantized crossover (VGA) by Seo [R58],

an ant-colony system (ACS) by Gambardella [R59, R60] where a new 3-Excange method

is also presented and a discrete particle swarm optimization (DPSO) by Anghinolfi [R61].

The best-known method is an enchanted ant-colony system (EACS)[R62].

SOP is a challenging CO problem with constraints. The formal definition is as follows: Gi-

ven a directed complete graph G(V,E) and a weight-function on the edges ci,j = c(evi,vj)

vi, vj ∈ V e ∈ E. Furthermore, a precedence digraph P (V,R) with no directed cycles is

also given, where R holds precedence constraints. evi,vj = (vi, vj) ∈ R means that vi has

to precede vj in every feasible solution.

6.4.2. VSM-SOP

VSM-SOP is a concrete algorithm that is created for the investigation of multiple subset

solution extension in a constrained problem. The satisfiability of constraints defined by P

is preserved during the construction. Satisfiability is ensured by compulsory validations of

the recommendations.

Decision variables Xi define the successors of nodes vi. R is contradiction-free and tran-

sitively closed. The subsets partial objective function is the length of subtours. VSM-SOP

uses the Nearest Neighbor Heuristic for creating the recommendations. A validated vr1 is

recommended for variable Xi, for which ci,r1 is minimal.

Subset selection is performed by the VSM-PLoss heuristic. p loss(Si) = ck,r2−ck,r1, where

DOI:10.15774/PPKE.ITK.2016.007

86
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

Xk is the free variable in Si, and vr1,vr2 are the first and second validated recommenda-

tions. If only one recommendation is valid for a variable, p loss(Si) = inf . If more than

one of the subsets have the maximal possible loss, the method chooses the subset with the

lowest index. Because of the reserved satisfiability, if a subset has no valid recommendation

the corresponding subset solution surely will be the last element in the ordering (has no

successor).

In the case of SOP, decision variables define the subset Sj for the merger. Sj is the subset

that contains vr1.

6.4.3. Compulsory Validations

The output of VSM-SOP is a feasible solution, in which all constraints are satisfied. It

is achieved by compulsory validations of recommended solution elements, which preserve

resolvability of the constraints.

Algorithm 7 Compulsory Validations for VSM SOP

Precondition: S denotes a subset, X a decision variable v: an SOP node AND vk ∈ Si
iff Xk ∈ Si AND vr is the recommended value for the free variable of Si AND vr ∈ Sr

1: function Validation 1(Si, vr)
2: if ∃vk ∈ Si, ∃vm ∈ Sr : (vm, vk) ∈ R then
3: vr is unavailable for Si
4: function Validation 2(Si, vr)
5: if ∃vk ∈ Si, ∃vm ∈ Sr, ∃vl /∈ Si ∪ Sr : (vk, vl) ∈ R and (vl, vm) ∈ R then
6: vr is unavailable for Si
7: function Validation 3(Si, vr)
8: if ∃vk ∈ Si, ∃vm ∈ Sr, ∃vl /∈ Si ∪ Sr : (vl, vk) ∈ R and (vm, vl) ∈ R then
9: vr is unavailable for Si

Subset solutions in VSM-SOP are ordered sets of nodes, where the successor of

the last node is the open variable of the subset. The recommended successor vr is the

starting node of Sr. It is obvious, if a node in Sr has to precede a node that is in Si, the

recommendation of vr directly violates the constraints (Validation 1). If a node exists that

has to be placed between Si and Sr, the merge of the two subset solutions will lead to

unsatisfiability (Validation 2). It is also impracticable if a node has to be before and after

the merged subset solutions at the same time (Validation 3). All of the recommendations

must pass the three compulsory tests in VSM-SOP. The high computational complexity

of these validations can be decreased by defining relations between the subsets instead

DOI:10.15774/PPKE.ITK.2016.007

6.5 Results 87

of the nodes. However, relations that defined on subsets have to be updated in every

construction step.

6.5. Results

6.5.1. Subset selection and optimality

Recent papers on SOP [R61, R62] use the SOPLIB benchmark, which is available online1.

The instances in SOPLIB are denoted as R.n.r.p, where n is the number of nodes, r is the

cost range, and p is the percentage of precedence constraints. TSPLIB is an old problem

set2, where the optimal solution has been already known for many instances3. It involves

real-life problems for example (rbgxxxa), which derives from a stacker crane application,

and randomly generated instances (prob.x). Problems (ftxx.x and kroxxxp.x) have been

generated starting from asymmetric traveling salesman problem instances by adding pre-

cedence constraints. The comparison of different methods is based on the published results

on the same problem instances. However, the authors used different processor architectu-

res for the evaluation, thus the difference between the processors must be considered. To

make it easier, I present single thread results on my Core 2 Duo processor.

EACS is the state-of-the-art method for SOP, but no running time information is publis-

hed, only the 600 sec bound. DPSO results are close to EACS and running time information

is available, therefore I use DPSO as reference solver in the later.

DPSO has 3 weighting parameters: reservation of previous particle velocity (inertia para-

meter), moving towards the local best solution of the particle (cognitive parameter) and

moving towards the best-known solution of all particles (social parameter). The authors of

[R61] explored many parameter configurations and also proposed a parameter adaptation

and stagnation avoidance mechanism. In the comparisons, I use the best achieved results

of DPSO during the experimental campaign of parameter tuning, with the published aver-

age running times.

The investigated VSM variants for the SOP use the Nearest Neighbor Heuristic as subset

solver. VSM-CONST represents the class of simple greedy constructive methods, where

1http://www.idsia.ch/∼roberto/SOPLIB06.zip
2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/sop/
3known solution cost is equal to a lower bound

DOI:10.15774/PPKE.ITK.2016.007

88
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

always the same subset is chosen in the VSM procedure, thus VSM-CONST is equal to the

subset solver heuristic. VSM-SOP is the proposed VSM-based solver for the SOP, which

uses the PLoss subset selection heuristic. VSM-SOP is a deterministic procedure which

provides the same output for the same input. VSM-CONST provides different solutions

based on the selection of the first node, thus the average and best results of 10 runs are

used.

Table (6.1) shows the results for TSPLIB instances. On this problem set VSM-SOP pro-

vides average 7.5% better solutions than VSM-CONST, with 29% average distance from

best known solutions. Best VSM-CONST solutions from 10 runs are also outperformed by

3.2%. Best solutions can be obtained by iterative population based methods like VGA [67]

and DPSO [R61], which use iterative local search for improving their results. Furthermo-

re, these methods are not deterministic, solution costs have 1-10% dispersion. VGA has

extremely slow convergence on larger problems, DPSO seems fast, but also many times

slower than VSM-SOP on TSPLIB problem set. Real-time requirements can be satisfied

with VSM-SOP, response times are under 1 second.

The comparison between VSM-SOP complete solutions and best-known solutions can

Table 6.1. Results for the TSPLIB benchmark

Instance n |R| VSM-CONSTa VSM-SOPa VGA[67]b DPSO[R61]c

10 avg 10 best time(s) resp(s) cost time(s) cost time(s) cost time(s)
ESC78 80 283 22600 22600 0.155 0.019 22310 0.11 18230 0.91 18230 55
ft70.1 71 17 45599 44646 0.044 0.022 41808 0.20 39313 6.27 39313 98.2
ft70.2 71 48 47774 47503 0.043 0.015 43883 0.07 40419 7.66 40419 62.1
ft70.3 71 215 55438 52067 0.049 0.027 47772 0.07 42535 2.38 42535 54.4
ft70.4 71 1325 62862 62534 0.094 0.033 57148 0.12 53530 3.83 53530 82.5

kro124p.1 101 33 53521 50582 0.405 0.068 51235 0.10 39420 12.92 39420 62.8
kro124p.2 101 68 55492 52707 0.371 0.060 60699 0.11 41336 12.49 41336 60.5
kro124p.3 101 266 73799 63662 0.250 0.092 79250 0.19 49499 12.71 49499 76.2
kro124p.4 101 2305 97863 94675 0.183 0.067 108199 0.30 76103 8.36 76103 143.8
prob.100 100 41 2739 2184 0.146 0.064 3455 0.11 1163 1767 1213 183.8
rbg109a 111 5329 1474 1443 0.394 0.072 1131 0.70 1038 11.88 1038 118.7
rbg150a 152 10334 2215 2168 0.440 0.113 1862 2.25 1750 34.2 1750 176.2
rbg174a 176 13955 2441 2440 0.311 0.171 2168 3.84 2033 85.85 2033 136.1
rbg253a 255 30181 3556 3554 0.943 0.452 3125 17.33 2950 325 2950 98.2
rbg323a 325 48202 4032 4032 0.922 0.937 3333 41.38 3140 2515 3140 214.5
rbg341a 343 54303 3785 3785 1.447 1.146 2984 54.29 2568 10164 2570 308.9
rbg358a 360 56536 4112 4108 1.306 1.085 3152 56.82 2545 24340 2550 368
rbg378a 380 63585 4082 4079 1.571 1.392 3287 71.50 2816 33774 2817 395.4

a: Core 2 Duo 2.26 GHz (single thread)
b: Pentium III. 1.1 GHz
c: AMD Opteron250 2.4 GHz
n: number of nodes, |R|: number of precedence constraints

demonstrate the scale of optimality loss caused by fixed partial solutions. Table 6.2 shows

DOI:10.15774/PPKE.ITK.2016.007

6.5 Results 89

Table 6.2. Optimality of different subset selection methods, EACS and DPSO on the
SOPLIB benchmark

Instance RND10 CONST10 PLOSS CLOSS PC-LOSS DPSO Best[R61] EACS10[R62]
PLOSS DPSO

Time (s)b Time (s)a

R.200.100.1 462.7 384 142 400 345 64 67.2 0.03 224.3
R.200.100.15 5096.2 4062 3866 4133 3809 1796 1818.3 0.80 228.6
R.200.100.60 82781.7 78198 73400 75925 72890 71749 71749 1.30 18.6
R.200.1000.1 5120.1 4554 2149 5022 5022 1414 1432.5 0.03 303.9
R.200.1000.15 50084.9 41323 33260 42634 32758 20481 20717 0.86 200.3
R.200.1000.60 83716.4 84431 76850 76700 76039 71556 71556 1.35 112.6
R.400.100.1 463.2 351 191 285 285 21 22.6 0.13 411.6
R.400.100.15 10137.1 8899 7464 7459 7370 3946 3986.2 20.47 462.7
R.400.100.60 17290.8 17376 15856 16404 15930 15228 15228 26.96 310.5
R.400.1000.1 5945.9 5226 2180 4437 4437 1484 1475.5 0.14 518.5
R.400.1000.15 99890.1 83803 79494 76766 77026 40054 40122.9 21.43 493.3
R.400.1000.60 165258 159888 145432 149359 147390 140816 140816 27.71 290.3
R.600.100.1 463.7 424 143 378 114 11 9.4 0.31 449.4
R.600.100.15 14530.9 13120 10584 11617 11472 5923 5881.7 134.50 573.7
R.600.100.60 26427.8 26661 24498 24418 24079 23259 23293 170.52 400.3
R.600.1000.1 6147.5 5675 3009 4931 4931 1628 1598.9 0.31 499.1
R.600.1000.15 148322 121845 118660 120242 108118 59177 58281.6 125.87 572.5
R.600.1000.60 247309 255691 229523 232013 227681 214608 214608 169.16 384.2
R.700.100.1 490.8 442 120 446 93 9 7.9 0.44 413.0
R.700.100.15 17968.7 14564 13679 14527 13146 7719 7444 267.51 582.1
R.700.100.60 28017.8 27107 24998 26006 24943 24116 24172 347.69 366.2
R.700.1000.1 6236.9 5326 2243 4886 4886 1606 1614.8 0.48 429.0
R.700.1000.15 175869 150198 119095 134316 126182 72618 68630 265.30 575.3
R.700.1000.60 284384 277559 256211 260507 253260 245589 245684 325.33 364.4
Bold entries indicate the best VSM-based results
a: AMD Opteron250 2.4 GHz
b: Core i7 3630QM 3.4 GHz (single thread)

the complete solution costs of different subset selection methods. RND10 is the average

of 10 runs with random subset selection, CONST10 and EACS10 are 10 average results

respectively. Nearest neighbor is used as subset solver heuristic for all VSM methods.

Complete solutions generated by PLoss surpass the CONST selection for all instances,

which indicates that subset selection can increase the power of the subset solver. Percen-

tage differences between the CONST and Ploss subset selection methods are presented in

Fig. (6.3). The benefits of Ploss subset selection for the SOP prove that the possibility of

subset selection improves the solutions of the subproblem solving heuristic, especially for

the unconstrained problem instances.

According to Table 6.2 optimality loss can be significant, but it decreases with the size

of the instances and the number of constraints. The population-based DPSO method may

be weaker for these instances because the population generation does not consider the

constraints directly. The results of complete VSM-only solutions are just upper bounds on

the solution cost in the case of hybridization, where for instance EACS can be used for

DOI:10.15774/PPKE.ITK.2016.007

90
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

Figure 6.3. Positive effect of subset selection on the performance of the subset solver.
Percentage difference = 100 ∗ (A−B)/avg(A,B) %

completing the fixed partial solution.

The validation process is applied for the recommendations in each step, which can affect

the running time significantly. For large instances, complete solution time reaches the time

complexity of population-based hybrid methods Table 6.2. The fastest selection method

is the CONST because validations and preparations have to be done for only one subset.

The number of selectable subsets can be decreased for PLoss and CLoss to reach better

running time, but it affects the quality of the results.

6.5.2. Response time

Response time (resp1) indicates when the first applicable solution element is created. It

includes the necessary initializations, therefore the second solution element can be com-

puted several times faster resp2 − resp1 � resp1 where respk is the time need for an

applicable partial solution with k elements. Figure 6.4 shows the time evolution of the

partial solution for the R.700.1000.60 problem instance. In the case of not VSM-based

solvers, the response time is equal to the complete solution time resp1 = respn because

all solution elements can be changed during the optimization.

DOI:10.15774/PPKE.ITK.2016.007

6.5 Results 91

Figure 6.4. Number of fixed decision variables over time. The first decision variable is
ready at resp1=42.013 sec which includes initialization. The next 100 variables fixed in
100 seconds (1 second each), then the process is getting faster with the decreased number
of free decision variables.

Initialization of VSM-SOP includes the input parsing from a text file, the ordering of

possible connections for all subsets, and the validation of the first and second recommen-

dations for all subsets. These steps can be time-consuming for large instances. Response

times can be further decreased with parallelization and the restriction of the number of

selectable subsets.

6.5.3. Operations with optimization time complexity

VSM is presented to give applicable partial solutions fast in a hybrid optimizer. However,

there are situations where a VSM-based method can be the most effective solver alone.

If the objective function is time, the optimizer running time becomes an additional cost.

For the largest R.700.1000.60 instance VSM-SOP provides a solution with only 5% cost

difference from the best available solution obtained in 364 seconds by DPSO. Assuming

a 700 seconds solution with DPSO, it results in a 735 seconds solution with VSM-SOP,

while the response time is 320 seconds faster, thus the overall time of operations with

optimization would be 285 seconds faster. It means more than 25% speedup and 9 times

faster response.

Assume that SOPLIB instances describe time minimization problems. Let C denote the

DOI:10.15774/PPKE.ITK.2016.007

92
6. APPLICABLE PARTIAL SOLUTION GENERATION FOR FAST-RESPONSE

COMBINATORIAL OPTIMIZATION

Figure 6.5. Comparison of operations with optimization performance on SOPLIB instan-
ces. Time exchange factor C is defined at the point where the two approaches have similar
overall time need.

exchange factor between the costs of SOPLIB solutions and execution times of the corres-

ponding rountrips1. In Eq. (6.6) C is given at the point where operations with optimization

cost is equal for VSM-SOP and DPSO (Fig. 6.5). With this C the average operation time

cost can be obtained. If the average operation time cost is smaller than oper avg in Eq.

(6.6), VSM-SOP provides better operations with optimization time cost.

(DPSO resp1 − V SM SOP resp1) = (V SM SOP −DPSO) · C

oper avg =
1

n
· C ·DPSO

(6.6)

Table 6.3 presents the bounds of average operation time cost for the investigated SOPLIB

instances. Bounds vary from 0.05 to 21.7 seconds and always greater than 0.9 sec for

constrained instances. In a robotic application assuming a fast actuator, VSM-SOP can

be sufficient to handle SOP without hybridization. Conversely in a logistic routing task,

these average operation time cost bounds are extremely small.

6.6. Conclusions

In this chapter, Variable Subset Merger a general framework for applicable partial

solution generation is presented. The basic possible subordinate heuristics are discussed.

Algorithm development examples are shown for GAP and SOP.

VSM can be used for optimization problems, where a partial solution has utilizable

meaning, and response time of the optimizer is important. If the existence of a feasible

solution cannot be efficiently checked (GAP example), the constraints must be seen as

soft constraints. Otherwise, validation procedures can be defined to ensure feasibility

(SOP example). The compulsory validation of an intermediate partial solution is the only

factor that limits the usage of applicable partial solution generation, and this limitation

1SOP is an asymmetric TSP with precedence constraints

DOI:10.15774/PPKE.ITK.2016.007

6.6 Conclusions 93

Table 6.3. Operations with optimization time complexity analysis

Instance DPSO[R61]
VSM DPSO[R61] VSM-SOP oper avg*
SOP resp1a (s) resp1b (s) bound (s)

R.200.100.1 64 142 224.3 0.0351 0.9200
R.200.100.15 1796 3866 228.6 0.0823 0.9911
R.200.100.60 71749 73400 18.6 0.2788 3.9557
R.200.1000.1 1414 2149 303.9 0.0332 2.9227
R.200.1000.15 20481 33260 200.3 0.0862 1.6041
R.200.1000.60 71556 76850 112.6 0.2723 7.5836
R.400.100.1 21 191 411.6 0.1284 0.1270
R.400.100.15 3946 7464 462.7 0.8938 1.2939
R.400.100.60 15228 15856 310.5 3.8903 18.4886
R.400.1000.1 1484 2180 518.5 0.1347 2.7628
R.400.1000.15 40054 79494 493.3 0.8964 1.2492
R.400.1000.60 140816 145432 290.3 3.7833 21.7309
R.600.100.1 11 143 449.4 0.2878 0.0623
R.600.100.15 5923 10584 573.7 4.7716 1.2007
R.600.100.60 23259 24498 400.3 22.1376 11.5428
R.600.1000.1 1628 3009 499.1 0.2996 0.9797
R.600.1000.15 59177 118660 572.5 4.4375 0.9388
R.600.1000.60 214608 229523 384.2 20.3528 8.5219
R.700.100.1 9 120 413 0.3724 0.0477
R.700.100.15 7719 13679 582.1 9.3776 1.0524
R.700.100.60 24116 24998 366.2 42.2405 11.9660
R.700.1000.1 1606 2243 429 0.4084 1.5430
R.700.1000.15 72618 119095 575.3 9.1183 1.2552
R.700.1000.60 245589 256211 364.4 42.0132 10.0696
a: AMD Opteron250 2.4 GHz
b: Core i7 3630QM 3.4 GHz (single thread)
*:In Eq. (7.7) VSM SOP resp1 is multiplied by 1.417
to consider different processors.

is independent of VSM.

Experimental analysis of the SOP solvers confirmed that the usage of subset selection can

increase the performance of the subset solving heuristic. VSM-SOP alone is not sufficient

to create complete solutions for the SOP. However, in special applications where SOP

defines a time minimization problem, and the average time cost of decisions is relatively

small, VSM-SOP provides the best overall time performance. The results on SOPLIB

benchmark indicate that VSM can support real-time handling of large combinatorial

optimization problems.

The metaheuristic formulation makes the hybridization easy with the best-known

real-time and not real-time methods. The solutions of best real-time heuristics can be

further optimized with the same response time and VSM makes the use of not real-time

heuristics possible in real-time systems.

DOI:10.15774/PPKE.ITK.2016.007

DOI:10.15774/PPKE.ITK.2016.007

7. Chapter

Theses of the Dissertation

This chapter gives a concise summary of the main scientific contributions of this disserta-

tion as well as the methods and tools used, and briefly discusses the applicability of the

results.

7.1. Methods and tools

Most of the experiments were implemented in own-written C++ environments which were

created in Microsoft Visual Studio 2008/2012 development tools. Matlab 2008 was also

applied for developing test scripts. Graphical User Interfaces were developed with Win-

dows Forms technology. Standard file formats (.msh) were used for data transfers between

the own-written and third party software elements. Gmsh [R44], an open-source mesh ge-

neration and partitioner tool was used for mesh generation and visualization of the results.

I chose METIS [R42] and SCOTCH [R37] for deeper analysis from the available mesh par-

titioning tools METIS, CHACO, SCOTCH, JOSTLE, and PARTY [R63]. I used METIS

as reference solver in performance comparisons.

A dataflow architecture for unstructured mesh computations was analysed on an Alpha-

Data ADM-XRC-6T1 reconfigurable development system. Further memory interface tests

were made on a Xilinx Zedboard developer board, which consists a Xilinx Zinq SoC proces-

sor. This environment has an embedded FPGA, which was programmed with the Vivado

HLS 14.4 toolchain.

The performance comparison of the generalized method for applicable partial solution

generation was evaluated on two scientific benchmarks TSPlib [R64] and SOPlib [R65].

95

DOI:10.15774/PPKE.ITK.2016.007

96 7. THESES OF THE DISSERTATION

DPSO [R61] was used as reference solver which is one of the best available metaheuristic

solutions for SOP.

During my research, I made most of the time experimental analysis but for some special

cases, I have proved some simple theorems too.

7.2. New scientific results

1. Thesis Group: Joint handling of memory access and inter-processor

communication in mesh partitioning.

Related publications: [J1, C2, C1, C4, C5]

The available mesh partitioning tools do not consider data locality of the output submes-

hes directly, however, this is crucial in memory access optimization. Partitioning packages

provide data locality improvement inside the submeshes. The achievable data locality is

defined by the submeshes thus partitioning has major effect on data locality.

My goal is to create a partitioning scheme in which a limit can be defined on data loca-

lity which limit depends on the physical parameters of a processor architecture (on-chip

memory size). This requirement appeared in the FPGA realizations of Dataflow Machi-

nes. These architectures were found to be the most power-efficient in the case of explicit

numerical approximation of partial differential equations [R13, J1]. The success of these

processors is based on the perfect caching mechanism which works with zero cache-miss.

However, the input data stream can not exceed a data locality limit. Partitions which

are optimized for inter-processor communication often have to be modified to fit the data

locality limit, which modifications degrade the quality of inter-processor communication.

The connections between the two optimization goals become important to analyze.

1.1. I showed that the minimization of inter-processor communication and

the maximization of data locality are conflicting goals, thus, data locality also

must be considered in mesh partitioning. I have experimentally proved that

with minimal inter-processor communication growth (<1%), data locality can

be increased significantly (>30%).

The optimal ordering of the mesh is necessary for the determination of graph bandwidth

which is the indicator of data locality. The corresponding problem is known to be NP-hard,

DOI:10.15774/PPKE.ITK.2016.007

7.2 New scientific results 97

so there is no efficient way to generate the optimal ordering. Empirical and theoretical in-

vestigations gave some relations which make the comparison of graph bandwidth of graphs

possible. The basic connections were already known, for instance, the connection between

the graph diameter and graph bandwidth on which the CM [R10] and GPS [R11] met-

hods are grounded. On the side of inter-processor communication, it was known that the

good partitions consist sphere-like submeshes because this geometry has the smallest sur-

face (edge-cut). I have just connected the results of the two optimization problems.

Data locality can be improved optionally with the increase of inter-processor communica-

tion. If we have more processors than the chromatic number of the graph, and the graph

is partitioned according to the color classes, all data dependencies become inter-processor

communication. Conversely, the inter-processor communication can not be decreased under

a limit (minimal edge-cut partitioning) with more processors or with worse data locality.

Here, the extreme case is when only one processor takes part in the computation, and

there is no inter-processor communication. Experimental results showed that partitioning

has a major impact on data locality. With the same number of processors for multiple

mesh instances, only 0,002 growth in the communication to computation ratio was enough

to increase data locality by 30-40%.

1.2. I experimentally showed that if the boundary node set of the mesh is

known, the deepest levels of the breadth-first search tree started from this set

defines a critical region which has to be cut by a separator to reach better data

locality. I also gave a partitioning method which cuts these regions and reaches

30-40% better data locality than METIS in the case of bipartitioning at the

expense of inter-processor communication.

In many applications like spatial meshes of PDE approximations, the boundary node set

is known (boundary conditions). If a breadth-first search is started from this node set,

the search tree defines a depth-level structure (DLS), in which the deepest levels contain

nodes which have the largest distance from the surface. DLS structure shows the regions

where the center points of the largest spheres reside. The best separators for data locality

have to cut these spheres.

The measurement of data locality was performed by the GPS method which is a fast and

efficient mesh reordering heuristic.

DOI:10.15774/PPKE.ITK.2016.007

98 7. THESES OF THE DISSERTATION

1.3. I gave an extension of the graph partitioning problem (Bandwidth-

Limited Partitioning) which consists the joint handling of inter-processor com-

munication and data locality and also optimizes the number of utilized pro-

cessors. I proved that the solutions of BLP are better for the FPGA-based

dataflow architectures than the solutions of the original problem.

In our case, the goal of graph partitioning is to define a distribution of tasks defined by the

graph which distribution leads to the fastest running time. For dataflow machines beyond

uniform size and minimal edge-cut, more factors have to be considered.

7. Definition (Bandwidth-Limited Partitioning). Given a graph G(V,E), with ver-

tex set V (|V | = n) and edge set E. BW Bound, COMM Bound and K are given para-

meters. A partition Q = {P1, P2, .., Pk} is needed which maximizes the number of parts k

considering the following conditions:

Let Out(Pi) denotes the set of outgoing edges of Pi.

k ≤ K (7.1)

max
i

{
|Out(Pi)|
|Pi|

}
≤ COMM Bound (7.2)

max
i
{2 ·Bfi(Pi) + 1} ≤ BW Bound (7.3)

|Pi| ≈
n

k
∀i (7.4)

Bounds on inter-processor communication (7.2) and data locality (7.3) provide the desired

efficiency. Size balance is described by equation (7.4).

Because of the constrained nature of BLP, it is possible that there is no solution. In the

case when BLP has no solution, one of the bounds must be relaxed to a higher value.

The limit on communication to computation ratio COMM R defines the point where the

importance of inter-processor communication and data locality are equal. COMM R also

limits the number of processors, because the communication to computation ratio becomes

larger with more submeshes.

DOI:10.15774/PPKE.ITK.2016.007

7.2 New scientific results 99

1.4. I developed a Gibbs Pole Stockmeyer (GPS)-based algorithm (AM1)

which creates bandwidth-limited partitioning without optimization of the pro-

cessor number (partial BLP).

The method extends the GPS reordering mechanism with a proper graph bandwidth est-

imation. If the bandwidth need of the already labeled part of the mesh reaches the graph

bandwidth limit, the algorithm initiates a new part until the whole mesh is partitioned [J1].

1.5. I gave a near-optimal complete BLP solution for all rectangular 2-3D

structured grids with grid-type BLP partitioning.

The experiences with rectangular structured meshes gave deeper understanding of the

BLP task.

Grid-type partition of an a× b mesh is a ga× gb grid of uniform a
ga
× b

gb
submeshes. In the

case of grid-type partitioning the inequalities of BLP take a verifiable form (7.5), where

sa =
⌊

a
ga

⌋
, sb =

⌊
b
gb

⌋
and Sa =

⌈
a
ga

⌉
, Sb =

⌈
b
gb

⌉
denote the possible sizes of the sides. In

|Out(Pi)| only the non-boundary sides are accounted, each side is multiplied by {0, 1, 2}.

Let ma,mb denote the maximum side multipliers.

2 ·min {Sa, Sb}+ 1 ≤ BW Bound

ma · sa +mb · sb
sa · sb

≤ COMM Bound
(7.5)

Because ga x gb has to be smaller than K, the number of possible partitions is defined

by (7.6) which is small enough to use exhaustive search to find the best grid-type BLP

partition. In 3D the method is still viable, because there ga x gb x gc has to be smaller

than K which gives only a harmonic multiplier to (7.6).

K −
⌊
K

2

⌋
+

bK/2c∑
i=1

⌊
K

i

⌋
(7.6)

The best grid-type solution is not necessarily optimal. There are counter examples, where

ga is not the divisor of a or gb is not the divisor of b. In these cases, there is a better

BLP partition which is not grid-type.

1.6. I developed a METIS-AM1 hybrid method for unstructured mesh

DOI:10.15774/PPKE.ITK.2016.007

100 7. THESES OF THE DISSERTATION

partitioning.

Since the inter-processor communication can not be decreased except with reduced

number of processors, it is not surprising that the bound on it limits the number of

utilized processors (k). Many decades of research has been made to handle inter-processor

communication. If a k-way METIS partition does not fit the communication bound, it is

not probable that there is a k+1-way partition which fulfills this requirement. The base

idea of the METIS-AM1 hybrid is to use METIS to define k. Recursive bisections are

performed until the bound is not reached, and between the last two steps interval halving

determinates the largest k for which the k-way METIS partition fits the inter-processor

communication bound. For each part in the k-way METIS partition, AM1 is applied.

2. Thesis Group: Applicable Partial Solution Generation for Fast-

response Combinatorial Optimization.

Related publications: [C3]

Solution time of a combinatorial optimization task mainly depends on the number of

decision variables, in other words, it depends on the dimension of the solution space.

Applicable partial solution generation (APSG) is a possible way for dimension reduction.

A partial solution is created as partial output in constrained time. While the partial

solution is applied, the optimization of the remaining part is continued. The time need of

partial solution generation defines response time of the solver because the utilization of

the solution can be started. Because of the NP-hard nature of many CO problems, the

most efficient solvers are heuristics which search for solutions in an exponentially growing

solution space. The quality of solutions depends on the available time for the search, thus,

the response time of the optimizer and solution quality are conflicting. Applicable partial

solution generation provides a better trade-off between optimization time and quality

because it makes possible to restrict response time only for a subset of decision variables

instead of the termination of the whole optimization process when the required response

time is reached. Because multi-level methods could provide fast partitioning, the results

of this thesis group are not applied to the acceleration of BLP. However, it is useful for

other CO applications.

DOI:10.15774/PPKE.ITK.2016.007

7.2 New scientific results 101

2.1 I gave a metaheuristic framework for applicable partial solution

generation (Variable Subset Merger - VSM). I showed the advantages and

weak points of VSM on the Sequential Ordering Poblem (SOP), the Disk

Scheduling Problem (DSP) and the Generalized Assignment Problem (GAP).

I gave the basic subordinate heuristics and a hybridization method which

improves the solutions of real-time algorithms.

Variable Subset Merger (VSM) describes the extension of multiple subset solutions until

they form a complete solution. During the VSM process, each subset has one free decision

variable and has fixed assignments for the rest of variables in it.

VSM can be used for optimization problems, where a partial solution has utilizable

meaning, and response time of the optimizer is important. If the existence of a feasible

solution cannot be efficiently checked (GAP example), the constraints must be seen as

soft constraints. Otherwise, validation procedures can be defined to ensure feasibility

(SOP example). The compulsory validation of an intermediate partial solution is the only

factor that limits the usage of applicable partial solution generation, and this limitation

is independent of VSM.

The results on SOPLIB benchmark indicate that VSM can support real-time handling of

large combinatorial optimization problems.

The metaheuristic formulation makes the hybridization simple with the best-known

real-time and not real-time methods. The solutions of best real-time heuristics can be

further optimized with the same response time, and VSM makes the use of not real-time

heuristics possible in real-time systems.

2.2 I experimentally proved that the possibility of subset selection improves

the solutions of the subproblem solving heuristic. VSM-Ploss subproblem se-

lection outperforms the constant selection with 7.5% on TSPLIB (n=71..280)

and 26% on SOPLIB (n=200..700) respectively.

Measurements on SOPLIB instances confirm that VSM-Ploss selection (VSM-SOP) can

provide better quality solutions than the VSM-Const. VSM-SOP provides 26% better

solutions on these larger instances. In the VSM concept, I want to define good strategies

DOI:10.15774/PPKE.ITK.2016.007

102 7. THESES OF THE DISSERTATION

for subproblem selection and decisions, which do not lead to bad quality solutions. Results

of VSM-SOP shows that it is possible to create more efficient heuristics for the generation

of fixed partial solutions by using VSM.

2.3 I experimentally proved that VSM-SOP is the most efficient solver if

SOP represents minimal time task scheduling and the running time of the

optimizer is also counted in the cost. For the SOPLIB bechmark VSM-SOP

outperforms DPSO if the average time need of a task is less than 1-20 seconds.

VSM is presented to give applicable partial solutions fast in a hybrid optimizer. However,

there are situations where VSM can provide best solutions alone. If the objective function

is time, the optimizer running time becomes an additional cost. For the largest SOPLIB

instance with 700 variables, VSM-SOP provides a solution with only 5% cost difference

from the best available solution obtained in 364 seconds by DPSO. Assuming a 700 seconds

solution with DPSO, it results in a 735 seconds solution with VSM-SOP, while the response

time is 320 seconds faster, thus, the overall time of operations with optimization would be

285 seconds faster. It means more than 25% speedup and nine times faster response.

(DPSO resp1 − V SM SOP resp1) = (V SM SOP −DPSO) · C

oper avg =
1

n
· C ·DPSO

(7.7)

Assume that SOPLIB instances describe time minimization problems. Let C denote

Figure 7.1. Comparison of operations with optimization performance on SOPLIB instan-
ces. Time exchange factor C is defined at the point where the two approaches have similar
overall time need.

the exchange factor between the costs of SOPLIB solutions and execution times of the

corresponding rountrips1. In Eq. (7.7) C is given at the point where operations with

optimization cost is equal for VSM-SOP and DPSO (Fig. 7.1). With this C the average

operation time cost can be obtained. If the average operation time cost is smaller than

oper avg in Eq. (7.7), VSM-SOP provides better operations with optimization cost.

1SOP is an asymmetric TSP with precedence constraints

DOI:10.15774/PPKE.ITK.2016.007

7.3 Applicability of the results 103

7.3. Applicability of the results

Results of the first thesis group support the usage of dataflow machines in mesh computing.

The AM1 algorithm provides access patterns with constrained data locality. The optimi-

zed and bounded access patterns are essential for dataflow machines and enables them to

handle larger meshes. AM1 improves the applicability of 1-chip dataflow machines. The

second part of the first thesis group provides techniques to create data locality bounded

mesh partitioning. Multi-chip dataflow architectures were known for structured grids, but

the definition of the corresponding partitioning problem and solvers for the unstructured

case were not given earlier.

BLP partitioning is essential for dataflow machines but has an impact on other architec-

tures too when a submesh that is given for one chip is large enough (>300k nodes). For

small submeshes, the minimization of inter-processor communication is more important

than data locality. However, processor chips have more and more processing capability

and off-chip DRAM, which trend makes BLP possibly important for other architectures

as well. The results of the first thesis group could also be used for the determination of

optimal processor number before partitioning which optimization evades the wasting of

resources.

The second thesis group gives methods for response time reduction with applicable partial

solution generation in combinatorial optimization. It is useful for CO problems, where a

partial solution has utilizable meaning, and response time of the optimizer is important.

The metaheuristic formulation makes the hybridization easy with the best-known real-

time and not real-time methods. The solutions of best real-time heuristics can be further

optimized with the same response time, and VSM makes the use of not real-time heuris-

tics possible in real-time systems. The method without hybridization has been found to

be effective for task scheduling when hundreds of short (1-20 sec) tasks with precedence

constraints are given.

DOI:10.15774/PPKE.ITK.2016.007

DOI:10.15774/PPKE.ITK.2016.007

References

Author’s journal publications

[J1] Nagy, Z. Nemes, C. Hiba, A. Cśık, Á. Kiss, A. Ruszinkó, M. Szolgay, P. “Ac-

celerating unstructured finite volume computations on field-programmable gate

arrays”. In: Concurrency and Computation: Practice and Experience 26.3 (2014),

pp. 615–643.

[J2] Zsedrovits, T. Bauer, P. Hiba, A. Nemeth, M. Pencz, B. J. M. Zarandy, A. Vanek,

B. Bokor, J. “Performance Analysis of Camera Rotation Estimation Algorithms in

Multi-Sensor Fusion for Unmanned Aircraft Attitude Estimation”. In: Journal of

Intelligent & Robotic Systems (2016), pp. 1–19.

[J3] Zsedrovits, T. Bauer, P. Pencz, B. J. M. Hiba, A. Gozse, I. Kisantal, M. Nemeth,

M. Nagy, Z. Vanek, B. Zarandy, A. Bokor, J. “Onboard Visual Sense and Avoid

System for Small Aircraft”. In: IEEE Aerospace and Electronic Systems Magazine

(accepted) (2016).

Author’s conference publications

[C1] Nagy, Z. Nemes, C. Hiba, A. Kiss, A. Cśık, Á. Szolgay, P. “FPGA based acce-

leration of computational fluid flow simulation on unstructured mesh geometry”.

In: Field Programmable Logic and Applications (FPL), 2012 22nd International

Conference on. IEEE. 2012, pp. 128–135.

[C2] Hiba, A. Nagy, Z. Ruszinko, M. “Memory access optimization for computations

on unstructured meshes”. In: Proc. 13th International Workshop on Cellular Na-

noscale Networks and their Applications. 2012.

105

DOI:10.15774/PPKE.ITK.2016.007

[C3] Hiba, A. Ruszinko, M. “Real-time combinatorial optimization with applicable

partial solution generation”. In: 1st International Conference on Engineering and

Applied Sciences Optimization. 2014, pp. 590–599.

[C4] Nagy, Z. Nemes, C. Hiba, A. Kiss, A. Cśık, Á. Szolgay, P. “Accelerating Unstruc-

tured Finite Volume Solution of 2-D Euler Equations on FPGAs”. In: Conference

on Modelling Fluid Flow (CMFF’12). 2012.

[C5] Hiba, A. Nagy, Z. Ruszinkó, M. Szolgay, P. “Data locality-based mesh partition-

ing methods for dataflow machines”. In: 14th International Workshop on Cellular

Nanoscale Networks and their Applications. IEEE, 2014.

[C6] Zsedrovits, T. Zarandy, A. Pencz, B. Hiba, A. Nameth, M. Vanek, B. “Distant

aircraft detection in sense-and-avoid on kilo-processor architectures”. In: Circuit

Theory and Design (ECCTD), 2015 European Conference on. IEEE. 2015, pp. 1–4.

[C7] Bauer, P. Hiba, A. Vanek, B. Zarandy, A. Bokor, J. “Monocular Image-based Ti-

me to Collision and Closest Point of Approach Estimation”. In: 24th Mediterranean

Conference on Control and Automation. 2016.

[C8] Hiba, A. Zsedrovits, T. Bauer, P. Zarandy, A. “Fast horizon detection for airborne

visual systems”. In: 2016 International Conference on Unmanned Aircraft Systems.

2016.

[C9] Hiba, A. Orzo, L. “Retina simulator challenges, image processing with a varying

resolution sensor”. In: 15th International Workshop on Cellular Nanoscale Net-

works and their Applications. 2016.

[C10] Hiba, A. Zarandy, A. Pencz, B. “Remote Aircraft Detection against Sky Backg-

round”. In: 15th International Workshop on Cellular Nanoscale Networks and their

Applications. 2016.

[C11] Orzo, L. Hiba, A. Zarandy, A. “Deconvolution as a model of blur adaptation in the

visual cortex”. In: 15th International Workshop on Cellular Nanoscale Networks

and their Applications. 2016.

106

DOI:10.15774/PPKE.ITK.2016.007

Related publications

[R1] Wulf, W. A. McKee, S. A. “Hitting the Memory Wall: Implications of the Obvious”.

In: SIGARCH Comput. Archit. News 23.1 (Mar. 1995), pp. 20–24. issn: 0163-5964.

doi: 10.1145/216585.216588. url: http://doi.acm.org/10.1145/216585.

216588.

[R2] Xie, Y. “Future memory and interconnect technologies”. In: Design, Automation

Test in Europe Conference Exhibition (DATE), 2013. 2013, pp. 964–969. doi: 10.

7873/DATE.2013.202.

[R3] Huang, Y.-J. Li, J.-F. “Yield-enhancement Schemes for Multicore Processor and

Memory Stacked 3D ICs”. In: ACM Trans. Embed. Comput. Syst. 13.3s (Mar.

2014), 106:1–106:22. issn: 1539-9087. doi: 10.1145/2567933. url: http://doi.

acm.org/10.1145/2567933.

[R4] Borkar, S. “Thousand Core Chips: A Technology Perspective”. In: Proceedings of

the 44th Annual Design Automation Conference. DAC ’07. San Diego, Califor-

nia: ACM, 2007, pp. 746–749. isbn: 978-1-59593-627-1. doi: 10.1145/1278480.

1278667. url: http://doi.acm.org/10.1145/1278480.1278667.

[R5] Garey, M. R. Johnson, D. S. Computers and Intractablility: A Guide to the Theory

of NP-completeness. W. H. Freeman, 1979. isbn: 0-7167-1044-7.

[R6] Papadimitriou, C. H. “The NP-completeness of the bandwidth minimization prob-

lem.” In: Computing 16 (1976), pp. 263–270.

[R7] Blum, C. Aguilera, M. Roli, A. Sampels, M. Hybrid Metaheuristics: An Emerging

Approach to Optimization. Studies in Computational Intelligence. Springer, 2008.

isbn: 9783540782940.

[R8] Blum, C. Puchinger, J. Raidl, G. R. Roli, A. “Hybrid metaheuristics in combina-

torial optimization: A survey”. In: Applied Soft Computing 11.6 (2011), pp. 4135–

4151.

[R9] Karypis, G. Kumar, V. “Multilevel k-way partitioning scheme for irregular graphs”.

In: Journal of Parallel and Distributed Computing 48.1 (1998), pp. 96–129.

107

DOI:10.15774/PPKE.ITK.2016.007

http://dx.doi.org/10.1145/216585.216588
http://doi.acm.org/10.1145/216585.216588
http://doi.acm.org/10.1145/216585.216588
http://dx.doi.org/10.7873/DATE.2013.202
http://dx.doi.org/10.7873/DATE.2013.202
http://dx.doi.org/10.1145/2567933
http://doi.acm.org/10.1145/2567933
http://doi.acm.org/10.1145/2567933
http://dx.doi.org/10.1145/1278480.1278667
http://dx.doi.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1278480.1278667

[R10] Cuthill, E. McKee, J. “Reducing the bandwidth of sparse symmetric matrices”.

In: Proceedings of the ACM National Conference, Association for Computing Ma-

chinery, New York. 1969, pp. 157–172.

[R11] Gibbs, N. Poole, W. Stockmeyer, P. “An algorithm for reducing the bandwidth and

profile of sparse matrix”. In: SIAM Journal on Numerical Analysis 13.2 (1976),

pp. 236–250.

[R12] Hill, T. “Accelerating Design Productivity with 7 Series FPGAs and DSP Plat-

forms, Xilinx WP406 (v1.1)”. In: 2013.

[R13] Pell, O. Bower, J. Dimond, R. Mencer, O. Flynn, M. J. “Finite-Difference Wave

Propagation Modeling on Special-Purpose Dataflow Machines”. In: Parallel and

Distributed Systems, IEEE Transactions on 24.5 (2013), pp. 906–915. issn: 1045-

9219. doi: 10.1109/TPDS.2012.198.

[R14] Nagy, Z. Szolgay, P. Kiss, A. László, E. Párhuzamos számı́tógép architektúrák,

processzortömbök. Pázmány Egyetem eKiadó, 2015.

[R15] Kolluri, S. “UltraScale Architecture Low Power Technology Overview, Xilinx

WP451 (v1.1)”. In: 2015.

[R16] “Zynq-7000 All Programmable SoC Overview, Xilinx DS190 (v1.9)”. In: 2016.

[R17] Lindtjorn, O. Clapp, R. Pell, O. Fu, H. Flynn, M. Mencer, O. “Beyond traditional

microprocessors for geoscience high-performance computing applications”. In: Ieee

Micro 2 (2011), pp. 41–49.

[R18] Jin, Z. Bakos, J. D. “Extending the BEAGLE library to a multi-FPGA platform”.

In: BMC bioinformatics 14.1 (2013), p. 25.

[R19] Sykora, J. Kohout, L. Bartosinski, R. Kafka, L. Danek, M. Honzik, P. “The ar-

chitecture and the technology characterization of an FPGA-based customizable

Application-Specific Vector Processor”. In: Design and Diagnostics of Electronic

Circuits & Systems (DDECS), 2012 IEEE 15th International Symposium on. IE-

EE. 2012, pp. 62–67.

[R20] Pham, P.-H. Jelaca, D. Farabet, C. Martini, B. LeCun, Y. Culurciello, E. “Ne-

uFlow: Dataflow vision processing system-on-a-chip”. In: Circuits and Systems

108

DOI:10.15774/PPKE.ITK.2016.007

http://dx.doi.org/10.1109/TPDS.2012.198

(MWSCAS), 2012 IEEE 55th International Midwest Symposium on. IEEE. 2012,

pp. 1044–1047.

[R21] Farabet, C. LeCun, Y. Kavukcuoglu, K. Culurciello, E. Martini, B. Akselrod, P.

Talay, S. “Large-scale FPGA-based convolutional networks”. In: Machine Learning

on Very Large Data Sets 1 (2011).

[R22] Giefers, H. Plessl, C. Förstner, J. “Accelerating finite difference time domain simu-

lations with reconfigurable dataflow computers”. In: ACM SIGARCH Computer

Architecture News 41.5 (2014), pp. 65–70.

[R23] Sato, Y. Inoguchi, Y. Luk, W. Nakamura, T. “Evaluating reconfigurable dataflow

computing using the Himeno benchmark”. In: Reconfigurable Computing and FP-

GAs (ReConFig), 2012 International Conference on. IEEE. 2012, pp. 1–7.

[R24] Nemes, C. Nagy, Z. Szolgay, P. “Efficient mapping of mathematical expressions

to fpgas: exploring different design methodologies”. In: Circuit Theory and Design

(ECCTD), 2011 20th European Conference on. IEEE. 2011, pp. 717–720.

[R25] Ercal, F. Ramanujam, J, Sadayappan, P, “Task allocation onto a hypercube by

recursive mincut bipartitioning”. In: Journal of Parallel and Distributed Computing

10.1 (1990), pp. 35–44.

[R26] Hammond, S. “Mapping unstructured grid computations to massively parallel com-

puters.” PhD thesis. Rensselaer Polytechnic Institute, Troy, New-York, 1992.

[R27] Pellegrini, F. “Scotch and libScotch 5.1 User’s Guide”. In: 2010.

[R28] Walshaw, C. Cross, M. Everett, G. “Partitioning and mapping of unstructured mes-

hes to parallel machine topologies.” In: Proc. Irregular’95, number 980 in LNCS.

1995, pp. 121–126.

[R29] Simon, H. D. Teng, S.-H. “How good is recursive bisection?” In: SIAM Journal on

Scientific Computing 18.5 (1997), pp. 1436–1445.

[R30] Walshaw, C. Cross, M. “Mesh partitioning: a multilevel balancing and refinement

algorithm”. In: SIAM Journal on Scientific Computing 22.1 (2000), pp. 63–80.

[R31] Pothen, A. Simon, H. D. Liou, K.-P. “Partitioning sparse matrices with eigen-

vectors of graphs”. In: SIAM Journal on Matrix Analysis and Applications 11.3

(1990), pp. 430–452.

109

DOI:10.15774/PPKE.ITK.2016.007

[R32] Hendrickson, B. Leland, R. An Improved Spectral Graph Partitioning Algorithm

for Mapping Parallel Computations. Tech. rep. Sandia National Laboratories, Al-

buquerque, 1992.

[R33] Barnard, S. T. Simon, H. D. “A fast multilevel implementation of recursive spectral

bisection for partitioning unstructured problems”. In: Proc. 6th SIAM Conf. Pa-

rallel Processing for Scientific Computing. 1993, pp. 711–718.

[R34] Fiduccia, C. M. Mattheyses, R. M. “A linear-time heuristic for improving net-

work partitions”. In: Proceedings of the 19th Design Automation Conference. 1982,

pp. 175–181.

[R35] Karypis, G. Kumar, V. “Multilevel algorithms for multi-constraint graph partit-

ioning”. In: Proceedings of the 1998 ACM/IEEE conference on Supercomputing

(CDROM). IEEE Computer Society. 1998, pp. 1–13.

[R36] Hendrickson, B. Leland, R. Van Driessche, R. “Skewed graph partitioning”. In:

Proceedings of the 8th SIAM Conference on Parallel Processing for Scientific Com-

puting. 1997.

[R37] Pellegrini, F. “Graph partitioning based methods and tools for scientific comput-

ing”. In: Parallel computing 23.1 (1997), pp. 153–164.

[R38] Dueck, G, Jeffs, J. “A heuristic bandwidth reduction algorithm”. In: Journal of

combinatorial mathematics and computers 18 (1995), pp. 97–108.

[R39] Martı, R. Laguna, M. Glover, F. Campos, V. “Reducing the bandwidth of a sparse

matrix with tabu search”. In: European Journal of Operational Research 135.2

(2001), pp. 450–459.

[R40] Pinana, E. Plana, I. Campos, V. Martı, R. “GRASP and path relinking for the

matrix bandwidth minimization”. In: European Journal of Operational Research

153.1 (2004), pp. 200–210.

[R41] Luo, J. “Algorithms for reducing the bandwidth and profile of a sparse matrix”.

In: Computers and Structures 44 (1992), pp. 535–548.

[R42] Karypis, G. Kumar, V. “A fast and high quality multilevel scheme for partitioning

irregular graphs”. In: SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–

392.

110

DOI:10.15774/PPKE.ITK.2016.007

[R43] WEB, Alpha-data web size. www.alpha-data.com.

[R44] Geuzaine, C. Remacle, J.-F. “Gmsh: A 3-D finite element mesh generator with

built-in pre-and post-processing facilities”. In: International Journal for Numerical

Methods in Engineering 79.11 (2009), pp. 1309–1331.

[R45] Karypis, G. Kumar, V. “Parallel multilevel series k-way partitioning scheme for

irregular graphs”. In: Siam Review 41.2 (1999), pp. 278–300.

[R46] LaSalle, D. Karypis, G. “Multi-threaded graph partitioning”. In: Parallel & Dist-

ributed Processing (IPDPS), 2013 IEEE 27th International Symposium on. IEEE.

2013, pp. 225–236.

[R47] LaSalle, D. Patwary, M. M. A. Satish, N. Sundaram, N. Dubey, P. Karypis, G.

“Improving graph partitioning for modern graphs and architectures”. In: Procee-

dings of the 5th Workshop on Irregular Applications: Architectures and Algorithms.

ACM. 2015, p. 14.

[R48] Little, J. D. C. Murty, K. G. Sweeney, D. W. Karel, C. “An Algorithm for the

Traveling Salesman Problem”. In: Operations Research 11.6 (1963), pp. 972–989.

[R49] Bonyadi, M. R. Rahmani, H. Moghaddam, M. E. “A genetic based disk scheduling

method to decrease makespan and missed tasks”. In: Information Systems 35.7

(2010), pp. 791 –803. issn: 0306-4379. doi: http://dx.doi.org/10.1016/j.is.

2010.04.002. url: http://www.sciencedirect.com/science/article/pii/

S0306437910000281.

[R50] Sahni, S. Gonzalez, T. “P-Complete Approximation Problems”. In: J. ACM 23.3

(July 1976), pp. 555–565. issn: 0004-5411. doi: 10.1145/321958.321975. url:

http://doi.acm.org/10.1145/321958.321975.

[R51] Yagiura, M. Ibaraki, T. Glover, F. “A path relinking approach with ejection cha-

ins for the generalized assignment problem”. In: European journal of operational

research 169.2 (2006), pp. 548–569.

[R52] Martello, S. Toth, P. “An algorithm for the generalized assignment problem”. In:

Operational research 81 (1981), pp. 589–603.

[R53] Romeijn, H. E. Morales, D. R. “A class of greedy algorithms for the generalized

assignment problem”. In: Discrete Applied Mathematics 103.1 (2000), pp. 209–235.

111

DOI:10.15774/PPKE.ITK.2016.007

http://dx.doi.org/http://dx.doi.org/10.1016/j.is.2010.04.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.is.2010.04.002
http://www.sciencedirect.com/science/article/pii/S0306437910000281
http://www.sciencedirect.com/science/article/pii/S0306437910000281
http://dx.doi.org/10.1145/321958.321975
http://doi.acm.org/10.1145/321958.321975

[R54] Escudero, L. “An inexact algorithm for the sequential ordering problem”. In: Euro-

pean Journal of Operational Research 37.2 (1988), pp. 236 –249.

[R55] Ascheuer, N. Escudero, L. Grötschel, M. Stoer, M. “A Cutting Plane Approach to

the Sequential Ordering Problem (with Applications to Job Scheduling in Manu-

facturing)”. In: SIAM Journal on Optimization 3.1 (1993), pp. 25–42.

[R56] Escudero, L. Guignard, M. Malik, K. “A Lagrangian relax-and-cut approach for

the sequential ordering problem with precedence relationships”. In: Annals of Ope-

rations Research 50.1 (1994), pp. 219–237. doi: 10.1007/BF02085641.

[R57] Hernadvolgyi, I. T. “Solving the Sequential Ordering Problem with Automatically

Generated Lower Bounds”. In: Operations Research Proceedings. Vol. 2003. Sprin-

ger Berlin Heidelberg, 2004, pp. 355–362. isbn: 978-3-540-21445-8.

[R58] Seo, D.-I. Moon, B.-R. “A Hybrid Genetic Algorithm Based on Complete Graph

Representation for the Sequential Ordering Problem”. In: Genetic and Evolution-

ary Computation — GECCO 2003. Vol. 2723. Lecture Notes in Computer Science.

2003, pp. 669–680.

[R59] Gambardella, L. M. Dorigo, M. “An Ant Colony System Hybridized with a New

Local Search for the Sequential Ordering Problem”. In: INFORMS J. on Compu-

ting 12.3 (2000), pp. 237–255. issn: 1526-5528.

[R60] Montemannia, R. Smith, D. Gambardella, L. “A heuristic manipulation technique

for the sequential ordering problem”. In: Computers and Operational Research 35

(2008), pp. 3931–3944.

[R61] Anghinolfi, D. Montemanni, R. Paolucci, M. Gambardella, L. “A hybrid particle

swarm optimization approach for the sequential ordering problem”. In: Computers

and Operational Research 38 (2011), pp. 1076–1085.

[R62] Gambardella, L. M. Montemanni, R. Weyland, D. “Coupling ant colony systems

with strong local searches”. In: European Journal of Operational Research 220.3

(2012), pp. 831–843.

[R63] Margoules, F. Mesh Partitioning Techniques and Domain Decomposition Methods.

Saxe-Coburg Publications, 2007. isbn: 978-1-874672-29-6.

112

DOI:10.15774/PPKE.ITK.2016.007

http://dx.doi.org/10.1007/BF02085641

[R64] WEB, TSPLIB95 SOP problem package, http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/sop/. 2014.

[R65] WEB, SOPLIB problem package, http://www.idsia.ch/∼roberto/SOPLIB06.zip.

2014.

[R66] Pinana, E. Plana, I. Campos, V. Marti, R. “GRASP and path relinking for the

matrix bandwidth minimization”. In: European Journal of Operational Research

153.1 (2004), pp. 200–210.

113

DOI:10.15774/PPKE.ITK.2016.007

	1 Introduction
	1.1 Motivation and scope
	1.2 Thesis outline

	2 Bandwidth limitations in mesh computing
	2.1 Processors and Memory Interfaces
	2.1.1 Comparison of different processor architectures from 2013
	2.1.2 Processor architectures from 2015
	2.1.3 Possible Hardware Solutions to the Memory Wall

	2.2 Mesh Computing
	2.3 Dataflow Computing
	2.3.1 Dataflow computing on a mesh
	2.3.2 Memory access optimization and interprocessor communication
	2.3.3 Data Locality in Mesh Computing

	3 Dataflow Machines
	3.1 FPGA and All Programmable System on Chip (APSoC) architectures
	3.1.1 Field Programmable Gate Array (FPGA)
	3.1.2 All Programmable System on Chip (APSoC)

	3.2 Existing hardware solutions of DMs
	3.2.1 Maxeler accelerator architecture
	3.2.2 HC1 coprocessor board
	3.2.3 Multi-Banked Local Memory with Streaming DMA
	3.2.4 Large-Scale FPGA-based Convolutional Networks
	3.2.5 Pipelined Maxeler Accelerators

	3.3 Off-chip memory streaming techniques
	3.4 Special-Purpose DMs for mesh computing
	3.4.1 DM for structured meshes
	3.4.2 DM for unstructured meshes
	3.4.3 Implementation of the DM for unstructured meshes

	4 Static Mapping
	4.1 Graph Partitioning
	4.1.1 Bipartitioning methods
	4.1.2 Generalizations of Graph Partitioning
	4.1.2.1 Hybrid Architecture:
	4.1.2.2 Heterogeneous Processes:
	4.1.2.3 Multi-Constraint Partitioning:
	4.1.2.4 Skewed Partitioning Model:
	4.1.2.5 Target Graph Representation:

	4.2 Sparse Matrix Reordering
	4.3 Data locality and interprocessor communication
	4.3.1 Description of Graph Bandwidth Minimization and related work
	4.3.2 Connection between Graph Bandwidth and Mesh Structure

	5 Bandwidth-Limited Partitioning
	5.1 Problem definition
	5.2 AM1 partitioning method
	5.2.1 AM1 reordering method
	5.2.1.1 Two data locality bounds based on graph bandwidth
	5.2.1.2 Algorithm for bandwidth reduction
	5.2.1.3 Description of AM1
	5.2.1.4 Results and conclusions

	5.2.2 AM1 as a partitioner
	5.2.2.1 AM1 based bounded S_BW method
	5.2.2.2 Results and conclusions

	5.3 Depth-Level Structure based partitioning
	5.3.1 Depth Level Structure (DLS) Based Bisection
	5.3.1.1 Objective
	5.3.1.2 Basic Entities and Operations
	5.3.1.3 DLS Bisection

	5.3.2 Results
	5.3.2.1 Bounded BW partitioning

	5.3.3 Conclusions

	5.4 BLP method for structured meshes
	5.4.1 Grid-Type BLP Partitions
	5.4.2 Quality of Grid-Type BLP partitions

	5.5 BLP method for unstructured meshes
	5.5.1 METIS-AM1 hybrid method for handling BLP
	5.5.2 METIS-AM1 results on unstructured meshes

	5.6 Conclusions

	6 Applicable Partial Solution Generation for Fast-response Combinatorial Optimization
	6.1 Variable Subset Merger
	6.1.1 Variations of subset selection
	6.1.1.1 VSM-Const
	6.1.1.2 VSM-PLoss
	6.1.1.3 VSM-CLoss
	6.1.1.4 VSM-PCLoss

	6.1.2 VSM Hybrid Methods
	6.1.2.1 With best-known not real-time solver
	6.1.2.2 With best-known real-time solver

	6.1.3 VSM models for specific optimization problems

	6.2 VSM for the Disc Scheduling Problem (DSP)
	6.2.1 VSM model for the Disc Scheduling Problem

	6.3 VSM for the Generalized Assignment Problem
	6.3.1 Generalized Assignment Problem (GAP)
	6.3.2 VSM model for GAP

	6.4 VSM for the Sequential Ordering Problem
	6.4.1 Sequential Ordering Problem (SOP)
	6.4.2 VSM-SOP
	6.4.3 Compulsory Validations

	6.5 Results
	6.5.1 Subset selection and optimality
	6.5.2 Response time
	6.5.3 Operations with optimization time complexity

	6.6 Conclusions

	7 Theses of the Dissertation
	7.1 Methods and tools
	7.2 New scientific results
	7.3 Applicability of the results

	References

