
PARALLELIZATION OF NUMERICAL
METHODS ON PARALLEL PROCESSOR

ARCHITECTURES

Endre László
Theses of the Ph.D. Dissertation

Pázmány Péter Catholic University
Faculty of Information Technology and Bionics
Roska Tamás Doctoral School of Sciences and

Technology

Thesis Advisor:
Prof. Dr. Péter Szolgay, D.Sc.

Budapest, 2015

1 Introduction
Today the development of every scientific, engineering and financial

field that rely on computational methods is severely limited by the stag-
nation of computational performance caused by the physical limits in
the VLSI (Very Large Scale Integration) technology. This is caused by
the single processor performance of the CPU (Central Processing Unit)
due to vast heat dissipation that can not be increased. Around 2004 this
physical limit made it necessary to apply more processors onto a silicon
die and so the problem of efficient parallelization of numerical methods
and algorithms on a processor with multiple cores was born.

The primary aim of my thesis work is to take advantage of the com-
putational power of various modern parallel processor architectures to
accelerate the computational speed of some of the scientific, engineering
and financial problems by giving new algorithms and solutions.

Limits of physics Gordon Moore in the 1960’s studied the develop-
ment of the CMOS (Complementary Metal-Oxide-Semiconductor) man-
ufacturing process of integrated circuits (IC). In 1965 he concluded from
five manufactured ICs, that the number of transistors on a given silicon
area will double every year. This finding is still valid after half a century
with a major modification: the number of transistors on a chip doubles
every two years (as opposed to the original year).

This law is especially interesting since around 2004 the manufacturing
process reached a technological limit, which prevents us from increasing
the clock rate of the digital circuitry. This limit is due to the heat dissi-
pation. The amount of heat dissipated on the surface of a silicon die of
size of a few square centimetres is in the order 100s of Watts. This is the
absolute upper limit of the TDP (Thermal Design Power) that a proces-
sor can have. The ever shrinking VLSI (Very Large Scale Integration)
feature sizes cause: 1) the resistance (and impedance) of conductors to
increase; 2) the parasitic capacitance to increase; 3) leakage current on
insulators like the MOS transistor gate oxide to increase. These increas-
ing resistance and capacitance related parameters limit the clock rate
of the circuitry. In order to increase the clock rate with these parame-
ters the current needs to be increased and that leads to increased power
dissipation. Besides limiting the clock rate the data transfer rate is also
limited by the same physical facts.

The TDP of a digital circuit is composed in the following way:
PT DP = PDY N + PSC + PLEAK , where PDY N is the dynamic switch-

1

ing, PSC is the instantaneous short circuit (due to non-zero rise or fall
times) and PLEAK is the leakage current induced power dissipation.
The most dominant power dissipation is due to the dynamic switching
PDY N ∝ CV 2f , where ∝ indicates proportionality, f is the clock rate,
C is the capacitance arising in the circuitry and V is the voltage applied
to the capacitances.

Parallelisation - temporary solution to avoid the limits of
physics Earlier, the continuous development of computer engineering
meant increasing the clock rate and the number of transistors on a sil-
icon die, as it directly increased the computational power. Today, the
strict focus is on increasing the computational capacity with new solu-
tions rather than increasing the clock rate on the chip. One solution is to
parallelise on all levels of a processor architecture with the cost of cram-
ming more processors and transistors on a single die. The parallelisation
and specialization of hardware necessarily increases the hardware, algo-
rithmic and software complexity. Therefore, since 2004 new processor
architectures appeared with multiple processor cores on a single silicon
die. Also, more and more emphasise is put to increase the parallelism
on the lowest levels of the architecture. As there are many levels of par-
allelism built into the systems today, the classification of these levels
is important to understand what algorithmic features can be exploited
during the development of an algorithm.

Amdahl’s law Gene Amdahl at a conference in 1967 [1] gave a talk
on the achievable scaling of single processor performance to multiple
processors assuming a fixed amount of work to be performed. Later,
this has been formulated as Eq. (1) and now it is know as Amdahl’s
law. Amdahl’s law states that the speedup due to putting the P part of
the workload of a single processor onto N identical processors results in
S(N) speedup compared to single processor.

S(N) = 1
(1− P) + P

N

(1)

One may think of the proportion P as the workload that has been
parallelized by an algorithm (and implementation). The larger this pro-
portion, the better the scaling of the implementation will be. This setup
is also known as strong scaling. This is a highly important concept that
is implicitly used in the arguments when parallelization is discussed.

2

Gustafson’s law John Gustafson in 1988 reevaluated Amdahl’s law
[2] and stated that in the framework of weak scaling the speedup is given
by Eq. (2). Weak scaling measures the execution time when the problem
size is increased N fold when the problem is scheduled onto N parallel
processors. Eq. (2) states that the execution time (Slatency(s)) decreases
when the latency due to the P proportion - which benefits from the
parallelization - speeds up by a factor of s.

Slatency(s) = 1− P + sP (2)

2 Classification of Parallelism
The graph presented on Figure 1. shows the logical classification of

parallelism on all levels. Leaves of the graph show the processor features
and software components that implement the parallelism. Processor and
software features highlighted as GPU (Graphics Processing Unit) and
CPU/MIC (MIC - Many Integrated Core) features are key components
used in the work.

Parallelism

Data Level Parallelism Function Level Parallelism

Neural Architecture
(CNN, MLP etc.)

SIMD, vector

Instruction Level Parallelism Thread Level Parallelism Process Level Parallelism

Distributed Memory MIMD
(multi-computer)

Shared Memory MIMD
(multi-processor)

SIMT Pipeline, VLIW,
Superscalar

GPU CPU/MIC

Figure 1: Classification of parallelism along with parallel computer and
processor architectures that implement them.

Architecture dependent performance bounds Depending on the
design aims of a parallel processor architecture the computational per-
formance of these architectures vary with the problem. The performance
can be bound by the lack of some resources needed for that particular
problem, eg. more floating point units, greater memory bandwidth etc.

3

Therefore it is common to refer to an implementation being: 1) compute
bound if further performance gain would only be possible with more
compute capability or 2) memory bandwidth bound if the problem would
gain performance from higher memory bandwidth. The roofline model [3]
helps identifying whether the computational performance of the proces-
sor on a given algorithm or implementation is bounded by the available
computational or memory controller resources and also helps approxi-
mating the extent of the utilization of a certain architecture. See Figure
2 for comparing parallel processor architectures used in the dissertation.
Processor architectures that were recently introduced to the marker and
which are to be announced are also noted on the figure.

On Figure 2 the graphs were constructed based on the maximum the-
oretical computational capacity (GFLOP/s) and data bandwidth (GB/s)
metrics. In the case of FPGAs the number of implementable multipli-
ers and the number of implementable memory interfaces working at the
maximum clock rate gives the base for the calculation of the graphs.
The exact processor architectures behind the labels are the following: 1)
GPU-K40: NVIDIA Tesla K40m card with Kepler GK110B microarchi-
tecture working with “Boost” clock rate; 2) GPU-K80: NVIDIA Tesla
K80 card with Kepler GK210 microarchitecture working with “Boost”
clock rate; 3) CPU-SB: Intel Xeon E5-2680 CPU with Sandy Bridge mi-
croarchitecture; 4) CPU-HW: Intel Xeon E5-2699v3 CPU with Haswell
microarchitecture; 5) MIC-KNC: Intel Xeon Phi 5110P co-processor card
with Knights Corner microarchitecture; 6) MIC-KNL: Intel Xeon Phi
co-processor with Knights Landing microarchitecture - the exact prod-
uct signature is yet to be announced; 7) FPGA-V7: Xilinx Virtex-7
XC7VX690T; 8) FPGA-VUSP: Xilinx Virtex UltraScale+ VU13P.

As the aim of my work was achieving the fastest execution time by
parallelization the roofline model is used to study the computational
performance of the selected problems where applicable.

Parallel Processor Architectures and Languages A vast variety
of parallel architectures are used and experimented in HPC (High Per-
formance Computing) to compute scientific problems. Multi-core Xeon
class server CPU by Intel is the leading architecture used nowadays in
HPC. GPUs originally used for graphics-only computing has become a
widely used architecture to solve certain problems. In recent years Intel
introduced the MIC (Knights Corner microarchitecture) architecture in
the Xeon Phi coprocessor family. IBM with the POWER and Fujitsu
with the SPARC processor families are focusing on HPC. FPGAs (Field

4

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
Operation intensity (FLOP/byte)

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
P
e
rf

o
rm

a
n
ce

 S
P
 G

FL
O

P
/s

Bandwidth lim
ite

d

Compute limited

GPU-K40
GPU-K80
CPU-SB
CPU-HW

MIC-KNC
MIC-KNL
FPGA-V7
FPGA-VUSP

1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256
Operation intensity (FLOP/byte)

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

P
e
rf

o
rm

a
n
ce

 D
P
 G

FL
O

P
/s

Bandwidth lim
ite

d

Compute limited

GPU-K40
GPU-K80
CPU-SB
CPU-HW

MIC-KNC
MIC-KNL
FPGA-V7
FPGA-VUSP

Figure 2: Roofline model for comparing parallel processor architectures.
Note: SP stands for Single Precision and DP stands for Double Precision.

Programmable Gate Array) by Xilinx and Altera are also used for the
solution of some special problems. ARM as an IP (Intellectual Property)
provider is also making new designs for x86 CPU processors which find
application in certain areas of HPC. Also, research is conducted to create
new heterogenous computing architectures to solve the power efficiency
and programmability issues of CPUs and accelerators.

Programming languages like FORTRAN, C/C++ or Python are no
longer enough to exploit the parallelism of these multi- and many-core
architectures in a productive way. Therefore, new languages, language
extensions, libraries, frameworks and DSLs (Domain Specific Language)
appeared in recent years, see Figure 3. Without completeness the most
important of these are: 1) CUDA (Compute Unified Device Architec-
ture) C for programming NVIDIA GPUs; 2) OpenMP (Open Multi Pro-
cessing) directive based languages extension for programming multi-core
CPU or many-core MIC architectures; 3) OpenCL (Open Compute Lan-
guage) for code portable, highly parallel abstraction; 4) AVX (Advanced
Vector eXtension) and IMCI (Initial Many Core Instruction) vectorized,
SIMD (Single Instruction Multiple Data) ISA (Instruction Set Archi-
tecture) and intrinsic instructions for increased ILP (Instruction Level
Parallelism) in CPU and MIC; 5) OpenACC (Open Accelerators) direc-
tive based language extension for accelerator architectures; 6) HLS (High
Level Synthesis) by Xilinx for improved code productivity on FPGAs.

All these new architectural and programming features raise new ways
to solve existing parallelisation problems, but non of them provide high
development productivity, code- and performance portability as one so-
lution. Therefore, these problems are the topic of many ongoing research
in the HPC community.

5

CPU x86 NVIDIA GPUIntel MIC AMD GPU FPGA

MPI OpenMP OpenACCOpenCL CUDA
ASM

intrinsic
VHDL

Verilog HLS

Figure 3: Relations between processor architectures, languages and lan-
guage extensions.

Classification of scientific problems according to parallelization
Classification of the selected problems is based on the 13 “dwarves” of
“A view of the parallel computing landscape” [4]. My results are related
to the dwarves highlighted with bold fonts:

1. Dense Linear Algebra
2. Sparse Linear Algebra
3. Spectral Methods
4. N-Body Methods
5. Structured Grids
6. Unstructured Grids
7. MapReduce

8. Combinational Logic
9. Graph Traversal

10. Dynamic Programming
11. Backtrack and Branch-and-

Bound
12. Graphical Models
13. Finite State Machines

3 Selected and Parallelized Numerical
Problems

The selected numerical algorithms cover the fields of numerical math-
ematics that aim for the solution of PDEs (Partial Differential Equation)
in different engineering application areas, such as CFD (Computational
Fluid Dynamics), financial engineering, electromagnetic simulation or
image processing.

3.1 Tridiagonal System of Equations
Engineering, scientific and financial applications often require the

simultaneous solution of a large number of independent tridiagonal sys-
tems of equations with varying coefficients [5, 6, 7, 8, 9, 10]. The solution
of tridiagonal systems also arises when using line-implicit smoothers as

6

part of a multi-grid solver [11], and when using high-order compact dif-
ferencing [12, 13]. Since the number of systems is large enough to offer
considerable parallelism on many-core systems, the choice between dif-
ferent tridiagonal solution algorithms, such as Thomas, CR (Cyclic Re-
duction) or PCR (Parallel Cyclic Reduction) needs to be re-examined.
In my work I developed and implemented near optimal scalar and block
tridiagonal algorithms for CPU, Intel MIC and NVIDIA GPU with a
focus on minimizing the amount of data transfer to and from the main
memory using novel algorithms and register blocking mechanism, and
maximizing the achieved bandwidth. The latter means that the achieved
computational performance is also maximized (see Figure 4) as the solu-
tion of tridiagonal system of equations is bandwidth limited due to the
operation intensity.

On Figure 4 the computational upper limits on the graphs were
constructed based on the maximum theoretical computational capacity
(GFLOP/s) and data bandwidth (GB/s) metrics of the three proces-
sors. The operation intensity is calculated from the amount of data that
is moved through the memory bus and the amount of floating point
operations performed on this data. The total amount of floating point
operations is calculated and divided by the execution time to get the
performance in GFLOP/s. The operation intensity and GFLOP/s per-
formance metrics are calculated for each solver and they are represented
with stars on the figures.

In most cases the tridiagonal systems are scalar, with one unknown
per grid point, but this is not always the case. For example, com-
putational fluid dynamics applications often have systems with block-
tridiagonal structure up to 8 unknowns per grid point [7]. The solution
of block tridiagonal system of equations are also considered which are
sometimes required in CFD (Computational Fluid Dynamic) applica-
tions. A novel work-sharing and register blocking based Thomas solver
for GPUs is also created.

3.2 Alternating Directions Implicit Method
The numerical approximation of multi-dimensional PDE problems on

regular grids often requires the solution of multiple tridiagonal systems
of equations. In engineering applications and computational finance such
problems arise frequently as part of the ADI (Alternating Direction Im-
plicit) time discretization favored by many in the community, see [10].
The ADI method requires the solution of multiple tridiagonal systems

7

GPU: NVIDIA Tesla K40

1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256
Operation intensity (FLOP/byte)

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
P
e
rf

o
rm

a
n
ce

 S
P
 G

FL
O

P
/s

Naive

Shared

Register

ThomasPCR

Bandwid
th

 lim
ite

d

Compute limited

1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256
Operation intensity (FLOP/byte)

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

P
e
rf

o
rm

a
n
ce

 D
P
 G

FL
O

P
/s

Naive

Shared

Register

ThomasPCR

Bandwid
th

 lim
ite

d

Compute limited

CPU: Intel Xeon E5-2680

1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256
Operation intensity (FLOP/byte)

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

P
e
rf

o
rm

a
n
ce

 S
P
 G

FL
O

P
/s

Thomas along X

Thomas along YBandwid
th

 lim
ite

d
Compute limited

1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256
Operation intensity (FLOP/byte)

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

P
e
rf

o
rm

a
n
ce

 D
P
 G

FL
O

P
/s

Thomas along X

Thomas along YBandwid
th

 lim
ite

d
Compute limited

MIC: Intel Xeon Phi 5110P

1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256
Operation intensity (FLOP/byte)

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

P
e
rf

o
rm

a
n
ce

 S
P
 G

FL
O

P
/s

Thomas along X

Thomas along Y

Bandwid
th

 lim
ite

d

Compute limited

1/161/8 1/4 1/2 1 2 4 8 16 32 64 128256
Operation intensity (FLOP/byte)

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

P
e
rf

o
rm

a
n
ce

 D
P
 G

FL
O

P
/s

Thomas along X

Thomas along Y
Bandwid

th
 lim

ite
d

Compute limited

Figure 4: Roofline model applied to the implemented scalar tridiagonal
solvers on GPU, CPU and MIC processor architectures. The proximity
of stars to the upper computational limits shows the optimality of the
implementation on the architecture.

of equations in each dimension of a multi-dimensional problem, see [14,
9, 15, 16].

8

3.3 Cellular Neural Network
The CNN (Cellular Neural Network) [17] is a powerful image pro-

cessing architecture whose hardware implementation is extremely fast
[18, 19]. The lack of such hardware device in a development process can
be substituted by using an efficient simulator implementation. A GPU
based implementation of a CNN simulator using NVIDIA’s Fermi archi-
tecture provides a good alternative. Different implementation approaches
are considered and compared to a multi-core, multi-threaded CPU and
some earlier GPU implementations. A detailed analysis of the introduced
GPU implementation is presented.

3.4 Computational Fluid Dynamics
Achieving optimal performance on the latest multi-core and many-

core architectures depends more and more on making efficient use of the
hardware’s vector processing capabilities. While auto-vectorizing com-
pilers do not require the use of vector processing constructs, they are
only effective on a few classes of applications with regular memory ac-
cess and computational patterns. Other application classes require the
use of parallel programming models, and while CUDA and OpenCL are
well established for programming GPUs, it is not obvious what model to
use to exploit vector units on architectures such as CPUs or the MIC.
Therefore it is of growing interest to understand how well the Single
Instruction Multiple Threads (SIMT) programming model performs on
a an architecture primarily designed with Single Instruction Multiple
Data (SIMD) ILP parallelism in head. In many applications the OpenCL
SIMT model does not map efficiently to CPU vector units. In my disser-
tation I give solutions to achieve vectorization and avoid synchronization
- where possible - using OpenCL on real-world CFD simulations and
improve the block coloring in higher level parallelization using matrix
bandwidth minization reordering.

9

4 New scientific results
The new scientific results are grouped into thesis groups according to

their classification among the 13 dwarves. Results regarding the new so-
lutions proposed for solving tridiagonal system of equations can be cate-
gorized as the "Sparse Linear Algebra" dwarf which are detailed in Thesis
group I. Image processing and PDE solution using the ADI method is
categorized as the "Structured Grid" dwarf which is detailed in Thesis
group II. Finally, results regarding CFD computations are categorized
as the "Unstructured Grid" dwarf which is detailed in Thesis group III.
The relations between thesis groups, parallel problem classification and
parallel processor architectures are summarized in Figure 5.

GPU

MIC

CPU

FPGA

Thesis Group I:
Scalar and Block Tridiagonal System of Equations

Block Tridiagonal

Scalar Tridiagonal

Thesis I.a

Thesis I.b

Thesis I.c

Thesis I.d

Thesis Group II:
ADI, Black-Scholes and CNN

Thesis II.a

Thesis II.b

Thesis II.c

Thesis Group III:
Mini Partitioning and OpenCL

Thesis III.a

Thesis III.b

GPU

MIC

CPU

FPGA

PARALLEL PROBLEM PROCESSOR ARCHITECTURE SOLUTIONS

Sparse Linear Algebra

Structured Grids

Unstructured Grids

Figure 5: Thesis groups: relation between thesis groups, parallel problem
classification and parallel processor architectures. Colored vertical bars
right to thesis number denote the processor architecture that is used in
that thesis. Dashed grey arrow represent relation between theses.

New scientific results are published in journals(marked as [J]), confer-
ence (marked as [C]) proceedings and conference talks (marked as [CT]).

10

Publications corresponding to the thesis groups are noted below.

Thesis Group I. Efficient algorithms for sparse linear
algebra

Many times PDEs arising in the scientific, engineering and finan-
cial applications require an extensive use of sparse linear algebra which
needs to be efficiently parallelised for current and upcoming parallel pro-
cessor architectures. In particular, the numerical solution of some spe-
cial parabolic, diffusion type PDEs with implicit solvers boil down to the
solution of tridiagonal system of equations where the elements of the
tridiagonal matrix are either scalar values or blocks with size M ×M ,
where M ∈ [2, 8]. New parallel algorithms for the acceleration of such
tridiagonal solvers is therefore essential to these scientific, engineering
and financial communities to accelerate research and innovation. Theses
in this group contribute to the parallelisation and acceleration of such
methods on CPU, GPU and MIC architectures.

Corresponding publications: [J1], [C1], [CT1], [C2], [C3]

Thesis I.a I have developed new register blocking based local data trans-
position algorithms for multi- and many-core parallel processor architec-
tures to improve the memory access pattern of the Thomas algorithm
when solving tridiagonal system of equations where the coefficients are
stored in consecutive order in the memory. The overall performance gain
is: 1) up to ×4.3 on the GPU compared to the NVIDIA cuSPRASE li-
brary; 2) up to ×1.5 on the CPU compared to the Intel MKL library and
3) up to ×1.9 on the MIC compared to the Intel MKL library.

A tridiagonal system of equation is composed of three coeffcient vec-
tors a, b and c, one unknown vector u and the right hand side vector d.
All these vectors are element of RN and they have identical data layout
in the memory. The data layout of the coefficients of a tridiagonal system
of equations may depend on the grid and the numerical method where
it is applied, this can be consecutive or stride-N. Consecutive or stride-1
means that elements ak and a(k+1) of vector a are at consecutive mem-
ory addresses in the linear memory, ie. at address k and (k +1). Stride-N
means that elements ak and a(k+1) of vector a are at address k×N and
(k + 1) × N in the linear memory. In many cases the consecutive data
layout is used which results in poor cache-line utilization and therefore

11

requires memory access pattern optimization. I have developed two al-
gorithms for GPUs, to perform data load (and store) of multiple values
at once and transpose these data for calculation. I have also developed
similar transposition based solvers for the CPU and MIC architectures.
My solutions allow the transposition to be done using registers and the
use of data directly from registers.

Thesis I.b I have developed an efficient implementation of a new hy-
brid algorithm for the solution of tridiagonal system of equations on GPU
architectures using the conventional Thomas and PCR algorithms in the
case when the varying coefficients are stored in the main memory of
the GPU. This GPU specific solution allows the utilization of the large
number of registers on GPU architectures and local transposition of data
when reading the coefficients are done in registers. The resulting solver is
up to ×9 times faster than the solver in the NVIDIA cuSPARSE library
and up to ×2.1 times faster than the transposition based GPU solver
introduced in Thesis I.a.

I have created the implementation of a new hybrid algorithm which is
a combination of the Thomas and the PCR algorithms, which is optimal
in the sense that is limited either by the memory bandwidth or the com-
pute capacity of the GPU, depending on the floating point precision. This
hybrid GPU specific algorithm allows the utilization of registers which
leads to extreme efficiency when the system size is sufficiently small to
fit into the registers of the GPU. Consecutive or stride-N data layout
can both be handled with this algorithm. When needed transposition in
register can be performed without the use of shared memory. As there
is no need for storing intermediate values in global or local memory as
in the case of the regular Thomas algorithm the ratio of floating point
operations per byte is much higher for the new hybrid algorithm which
results in better performance on a high compute intensity architecture
like the GPU.

Thesis I.c I have developed a new algorithm for the solution of block
tridiagonal system of equations on GPU using a new thread work shar-
ing and register blocking approach, when the block sizes are M ×M with
M =∈ 2, 8]. The achieved computational performance of this GPU spe-
cific work sharing approach is superior compared to the know algorithms
and their implementation. I have experimentally showed that it is up to
×27 times faster than the Intel MKL banded solver and up to ×9.8 faster

12

than the PCR-based GPU solver proposed by [20].

Block tridiagonal system of equations arise in CFD (Computational
Fluid Dynamic) applications [8, 7], where block sizes vary according to
the multi-variable PDE. I gave a new thread work-sharing algorithm to
parallelise the Thomas algorithm. I have also shown that this approach
is computationally more efficient than the CR or PCR algorithms and
that sufficient parallelism can be exploited with work-sharing to exceed
the performance of the CR and PCR algorithms when block size is in
the range M =∈ 2, 8].

Thesis I.d I have developed a new implementation for the solution of
block tridiagonal system of equations on multi-core CPU and many-core
MIC with vector instructions, which outperforms the banded solver of the
Intel MKL library in terms of computational performance by a factor of
×6.5 and ×5 in the case of the CPU and MIC repectively.

I have restructured the code and data of the standard block Thomas
algorithm with C++ templates and code transformation to achieve bet-
ter data locality and guide the compiler in the vectorization procedure.
The result is a highly efficient SIMD based CPU and MIC implementa-
tion of the block Thomas algorithm.

Thesis Group II. Efficient algorithms for strucutred
grid computations

The solution of parabolic, diffusion type PDEs on a structured grid
domain can be efficiently solved using the ADI (Alternating Direction
Implicit) method which – in higher dimensions – boils down to the so-
lution of multiple tridiagonal system of equations. The memory access
pattern of the tridiagonal solves along different dimensions varies and
results in significant performance loss if conventional multi- and many
core implementations of numerical library functions are used. Therefore
new efficient algorithms are needed. Also, the solution of diffusion type
PDEs like the Black-Scholes PDE arising in financial applications and
other PDEs related to CNN based image processing require efficient par-
allelization solutions for parallel processor architectures like FPGAs and
GPUs.

Corresponding publications: [J1], [CT1], [C3], [C6]
13

Thesis II.a I have elaborated and implemented new parallel algorithms
to accelerate the calculation of the ADI (Alternating Direction Implicit)
method for the solution of PDEs in higher spatial dimensions on CPU,
MIC and GPU. The resulting ADI solver utilizes new solvers of tridi-
agonal system of equations with stride-1 and stride-N access patterns.

When solving parabolic, diffusion type multi-dimensional PDEs
many times it is possible to decouple the solution of the higher spatial
N dimensions into N number of one-dimensional problems. I have devel-
oped ways to optimize the efficiency of the solution in each dimension as
the memory access pattern changes significantly along each dimension
for arbitrary dimensions. This result is also a representative use case for
the tridiagonal solvers of Thesis I.a and Thesis I.b.

Thesis II.b I have developed a power-efficient parallel FPGA based
solver in HLS (High Level Synthesis) to accelerate the numerical solution
of the 1-factor Black-Scholes PDE. The resulting FPGA solver is on par
with the CPU solver in terms of computational performance, but it out-
performs the CPU in terms of computational efficiency (GFLOPS/W)
by a factor of 4 in the case of the explicit solution and by a factor of 1.3
when solving the implicit problem.

Solving the 1-factor Black-Scholes PDE for pricing financial deriva-
tives with one underlying asset requires an explicit or implicit solution of
the PDE. I have proposed an efficient stencil operation type solutions for
the explicit method and an efficient Thomas algorithm implementation
for the implicit method.

Thesis II.c I have experimentally proven that the utilization of the
texture cache by a double buffer approach is an efficient way to implement
a GPU based accelerator for the solution of the CNN state equation as
it increases the cache hit rate of the two dimensional texture cache due
to spatial locality and reduces the number of integer operation involved
during the memory index calculations through the built in functionality
of the texture cache.

When solving the CNN state equation to perform a diffusion opera-
tion on an image, a heat diffusion PDE is solved. The solution of such a
PDE is memory bandwidth limited. As such, a tiling or cache blocking
optimizations amortize the data transfer and allow good performance.

14

I have shown that this performance can be overcome by utilizing the
built-in texture cache capability of the GPU. With this approach the
solution of the two dimensional CNN state equation can take advantage
of the significant cache reuse of the texture cache when fetching data.
Also, significant integer operations and latency can be saved by utilizing
the built-in coordinate calculation units of the GPU.

Thesis Group III. Efficient algorithms for unstruc-
tured grid computations

Increasing the efficiency of parallel computations on unstructured grid
applications in the OP2 framework is of high importance to the scientific
community. Improving the single node scalability of the indirect incre-
ment of values in the OP2 framework is of great importance for perfor-
mance. One component of the scalability is the mini-partitioning. The
current naive mini-partitioning solution can be improved by exploiting
the use minimal matrix bandwidth reordering techniques. New methods
for an OpenCL backend of the OP2 framework can improve the perfor-
mance of unstructured grid applications on CPU and MIC, and provide
code portability.

Corresponding publications: [C4], [J2], [C5]

Thesis III.a I have experimentally proven that the efficiency of the
parallel colored indirect incrementation in unstructured grid computa-
tions can be improved by extending the mini-partitioning in OP2 using
the GPS (Gibbs-Poole-Stockmeyer) minimal bandwidth reordering algo-
rithm on real-world CFD simulation problems. This approach dramati-
cally decreases the number of block colors used in the parallel increment
and therefore increases the number of blocks within a color which can be
incremented in parallel. The reduction in the number of block colors is
up to ×37.5 for real-world test cases and the speedup resulting from this
improvement is ×7.4.

In order to increase the efficiency of parallel incrementation on un-
structured grids OP2 utilizes a two level coloring scheme to identify the
set of elements and blocks which can be incremented in parallel. The
number of colors determines the number of sequential steps during the
incrementation process. In real world applications the number of block
colors can be high due to excessive number of connections between the

15

mini-partitions. I have proposed the use of the GPS bandwidth mini-
mization algorithm to reorder meshes so that the naïve mini-partitioning
creates blocks with less neighboring connections which helps the two level
coloring algorithm to get better block coloring.

Thesis III.b I have analysed and proposed new heuristic code transfor-
mation techniques to improve the vectorization capabilities of OpenCL on
CPU and MIC architectures. The resulting OpenCL kernels within OP2
lend themselves to better parallelization properties on real world simu-
lation codes. In case of the CPU the achieved performance is on par
with the OpenMP and MPI parallelization. However, the OpenCL im-
plementation is ×1.5 faster on the MIC compared to the MPI+OpenMP
solution.

I have exploited the capabilities of the Intel OpenCL implementation
for CPU and MIC to increase their performance by implementing the
OpenCL backend of the OP2 framework. The key to this improvement
is the matching of multi-threading and SIMD vectorization features of
the CPU (or MIC) to the SIMT type kernel abstraction of the OpenCL
standard.

16

5 Application of the results
As noted in the Section 3 the problems selected for parallelization

originate from the scientific, engineering and financial disciplines and
therefore they have a direct application in these fields. The results con-
cerning scalar and block tridiagonal solvers were presented at the GPU
Technology Conference in San Jose in 2014, the largest GPU conference
by today and on conferences and journal papers..

The integration of the results from the research of scalar tridiagonal
solver to atmospheric simulations is an ongoing work by Eike Mueller
and his collegues at the Department of Mathematical Sciences at the
University of Bath, UK. In atmospheric modelling due to the structured
meshing of the atmosphere the cell geometries are too distorted which
results in numerical stability problems, also known as highly anisotropic
problem. Line-smoother in the multigrid preconditioner requires the fre-
quent inversion of a tridiagonal matrix and therefore the Thomas-PCR
algorithm may have a high impact on the performance.

My results are used to improve the performance of a Navier-Stokes
CFD solver called Turbostream. Turbostream is developed by Dr. To-
bias Brandvik and Dr. Graham Pullan in the Whittle Laboratory at
the University of Cambridge, UK. It is aimed at solving CFD problems
arising in the design of turbomachinery where the numerical solution
of the Navier-Stokes equations are done using a line-implicit or semi-
implicit Runge-Kutta method on an unstructured grid with stretched
regions. Along these stretched regions an (block tridiagonal) implicit so-
lution is required for unconditional stability, as the grid cells are highly
anisotropic.

Dr. Serge Guillas and his colleagues at the University College London,
UK used the VolnaOP2 tsunami simulation code – written by István
Reguly and me – to perform measurements for the papers [21] and [22].
This implementation make large scale tsunami simulations feasible which
result in statistically relevant results.

17

The Author’s Publications
[J1] Endre Laszló, Mike Giles, and Jeremy Appleyard. “Many-

core algorithms for batch scalar and block tridiagonal solvers
(Accepted)”. In: ACM Transactions on Mathematical Software
(TOMS) (2015).

[C1] Endre Laszló, Zoltán Nagy, Mike Giles, István Reguly, Jeremy
Appleyard, and Péter Szolgay. “Analisys of Parallel Processor
Architectures for the Solution of Tridiagonal System of Equa-
tions”. In: International Symposium on Circuits and Systems.
Lisbon, Protugal: IEEE Press, 24-27 May 2015.

[CT1] Endre László and Mike Giles. “Efficient Solution of Multiple
Scalar and Block-Tridiagonal Equations”. In: GPU Technology
Conference. San Jose, CA: NVIDIA, 2014.

[C2] Mike Giles, Endre László, István Reguly, Jeremy Appleyard,
and Julien Demouth. “GPU Implementation of Finite Differ-
ence Solvers”. In: Proceedings of the 7th Workshop on High Per-
formance Computational Finance. WHPCF ’14. New Orleans,
Louisiana: IEEE Press, 2014, pp. 1–8. isbn: 978-1-4799-7027-8.
doi: 10.1109/WHPCF.2014.10. url: http://dx.doi.org/10.
1109/WHPCF.2014.10.

[C3] Endre László, Michael B Giles, Jeremy Appleyard, and Péter
Szolgay. “Methods to utilize SIMT and SIMD instruction level
parallelism in tridiagonal solvers”. In: Cellular Nanoscale Net-
works and their Applications (CNNA), 2014 14th International
Workshop on. IEEE. 2014, pp. 1–2.

[C6] Endre László, Péter Szolgay, and Zoltán Nagy. “Analysis of a
GPU based CNN implementation”. In: Cellular Nanoscale Net-
works and Their Applications (CNNA), 2012 13th International
Workshop on. IEEE. 2012, pp. 1–5.

[C4] István Z Reguly, Endre László, Gihan R Mudalige, and Mike B
Giles. “Vectorizing Unstructured Mesh Computations for Many-
core Architectures”. In: Proceedings of Programming Models and
Applications on Multicores and Manycores. ACM. 2014, p. 39.

18

[J2] I Z. Reguly, Endre László, Gihan R. Mudalige, and Mike B.
Giles. “Vectorizing unstructured mesh computations for many-
core architectures”. In: Concurrency and Computation: Practice
and Experience (2015). issn: 1532-0634. doi: 10 . 1002 / cpe .
3621. url: http://dx.doi.org/10.1002/cpe.3621.

[C5] Mike B Giles, Gihan R Mudalige, Carlo Bertolli, Paul HJ Kelly,
Endre László, and I Reguly. “An analytical study of loop tiling
for a large-scale unstructured mesh application”. In: High Per-
formance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion: IEEE. 2012, pp. 477–482.

The Author’s Other Publications
Publications not strictly related to the doctoral theses

[J3] Béla Szentpáli, Gábor Matyi, Péter Fürjes, Endre László,
Gábor Battistig, István Bársony, Gergely Károlyi, and Tibor
Berceli. “Thermopile-based THz antenna”. In:Microsystem tech-
nologies 18.7-8 (2012), pp. 849–856.

[C7] Béla Szentpáli, Gábor Matyi, Péter Fürjes, Endre László,
Gábor Battistig, István Bársony, Gergely Károlyi, and Tibor
Berceli. “THz detection by modified thermopile”. In: SPIE Mi-
crotechnologies (2011).

[C8] Endre László, Kálmán Tornai, Gergely Treplán, and János
Levendovszky. “Novel load balancing scheduling algorithms for
wireless sensor networks”. In: CTRQ 2011, The Fourth Inter-
national Conference on Communication Theory, Reliability, and
Quality of Service. 2011, pp. 54–59.

[C9] Janos Levendovszky, Endre László, Kalman Tornai, and
Gergely Treplan. “Optimal pricing based resource management”.
In: Proceedings of the International Conference on Operations
Research (2010), p. 169.

[LN1] Zoltán Nagy, Péter Szolgay, András Kiss, and Endre László.
“GPU architektúrák”. In: Párhuzamos számítógép architektúrák,
processzortömbök. Pázmány Egyetem eKiadó, 2015. Chap. 3,
pp. 34–59.

19

References
[1] Gene M. Amdahl. “Validity of the Single Processor Approach to

Achieving Large Scale Computing Capabilities”. In: Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference.
AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM, 1967,
pp. 483–485. doi: 10 . 1145 / 1465482 . 1465560. url: http :
//doi.acm.org/10.1145/1465482.1465560.

[2] John L. Gustafson. “Reevaluating Amdahl’s Law”. In: Commu-
nications of the ACM 31 (1988), pp. 532–533.

[3] Samuel Williams, Andrew Waterman, and David Patterson.
“Roofline: An Insightful Visual Performance Model for Multicore
Architectures”. In: Commun. ACM 52.4 (Apr. 2009), pp. 65–76.
issn: 0001-0782. doi: 10.1145/1498765.1498785. url: http:
//doi.acm.org/10.1145/1498765.1498785.

[4] Krste Asanovic et al. “A View of the Parallel Computing Land-
scape”. In: Commun. ACM 52.10 (Oct. 2009), pp. 56–67. issn:
0001-0782. doi: 10.1145/1562764.1562783. url: http://doi.
acm.org/10.1145/1562764.1562783.

[5] Yushan Wang, Marc Baboulin, Jack Dongarra, Joël Falcou,
Yann Fraigneau, and Olivier Le Maître. “A Parallel Solver
for Incompressible Fluid Flows”. In: Procedia Computer Sci-
ence 18 (2013). 2013 International Conference on Computa-
tional Science, pp. 439–448. issn: 1877-0509. doi: http : / /
dx . doi . org / 10 . 1016 / j . procs . 2013 . 05 . 207. url:
http://www.sciencedirect.com/science/article/pii/
S1877050913003505.

[6] Tobias Brandvik and Graham Pullan. “An Accelerated 3D
Navier–Stokes Solver for Flows in Turbomachines”. In: Journal
of Turbomachinery 133.2 (2011), pp. 021025+. doi: 10.1115/
1.4001192. url: http://dx.doi.org/10.1115/1.4001192.

[7] Thomas H. Pulliam. “Implicit solution methods in compu-
tational fluid dynamics”. In: Applied Numerical Mathemat-
ics 2.6 (1986), pp. 441–474. issn: 0168-9274. doi: http : / /
dx . doi . org / 10 . 1016 / 0168 - 9274(86) 90002 - 4. url:
http://www.sciencedirect.com/science/article/pii/
0168927486900024.

20

[8] Thomas H Pulliam. “Solution methods in computational fluid
dynamics”. In: Notes for the von Kármán Institute For Fluid
Dynamics Lecture Series (1986).

[9] I.J.D. Craig and A.D. Sneyd. “An alternating-direction im-
plicit scheme for parabolic equations with mixed derivatives”.
In: Computers and Mathematics with Applications 16.4 (1988),
pp. 341–350. issn: 0898-1221. doi: http : / / dx . doi .
org / 10 . 1016 / 0898 - 1221(88) 90150 - 2. url: http :
/ / www . sciencedirect . com / science / article / pii /
0898122188901502.

[10] Duy M. Dang, Christina Christara, and Kenneth R. Jackson.
“Parallel Implementation on GPUs of ADI Finite Difference
Methods for Parabolic PDEs with Applications in Finance”. In:
Social Science Research Network Working Paper Series (Apr. 3,
2010). url: http://ssrn.com/abstract=1580057.

[11] Craig C. Douglas, Sachit Malhotra, and Martin H. Schultz. Par-
allel Multigrid with ADI-like Smoothers in Two Dimensions.
1998.

[12] B. Düring, M. Fournié, and A. Rigal. “High-Order ADI
Schemes for Convection-Diffusion Equations with Mixed Deriva-
tive Terms”. English. In: Spectral and High Order Methods for
Partial Differential Equations - ICOSAHOM 2012. Ed. by Mejdi
Azaiez, Henda El Fekih, and Jan S. Hesthaven. Vol. 95. Lecture
Notes in Computational Science and Engineering. Springer Inter-
national Publishing, 2014, pp. 217–226. isbn: 978-3-319-01600-9.
doi: 10.1007/978-3-319-01601-6_17. url: http://dx.doi.
org/10.1007/978-3-319-01601-6_17.

[13] Samir Karaa and Jun Zhang. “High order ADI method for
solving unsteady convection–diffusion problems”. In: Journal of
Computational Physics 198.1 (2004), pp. 1–9. issn: 0021-9991.
doi: http://dx.doi.org/10.1016/j.jcp.2004.01.002. url:
http://www.sciencedirect.com/science/article/pii/
S002199910400018X.

[14] D. W. Peaceman and Jr. Rachford H. H. “The Numerical Solu-
tion of Parabolic and Elliptic Differential Equations”. English.
In: Journal of the Society for Industrial and Applied Mathemat-
ics 3.1 (1955), issn: 03684245. url: http://www.jstor.org/
stable/2098834.

21

[15] J. Douglas and H. H. Rachford. “On the numerical solution of
heat conduction problems in two and three space variables”. In:
Transaction of the American Mathematical Society 82 (1956),
pp. 421–489.

[16] Jr. Douglas Jim and JamesE. Gunn. “A general formulation of
alternating direction methods”. English. In: Numerische Mathe-
matik 6.1 (1964), pp. 428–453. issn: 0029-599X. doi: 10.1007/
BF01386093. url: http://dx.doi.org/10.1007/BF01386093.

[17] T. Roska and L.O. Chua. “The CNN universal machine: an
analogic array computer”. In: Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on 40.3 (Mar.
1993), pp. 163–173. issn: 1057-7130. doi: 10.1109/82.222815.

[18] Balázs Gergely Soós, Ádám Rák, József Veres, and György
Cserey. “GPU Boosted CNN Simulator Library for Graphi-
cal Flow-based Programmability”. In: EURASIP J. Adv. Sig-
nal Process 2009 (Jan. 2009), 8:1–8:11. issn: 1110-8657. doi:
10.1155/2009/930619. url: http://dx.doi.org/10.1155/
2009/930619.

[19] Zsolt Vörösházi, András Kiss, Zoltán Nagy, and Péter Szolgay.
“Implementation of embedded emulated-digital CNN-UM global
analogic programming unit on FPGA and its application”. In:
International Journal of Circuit Theory and Applications 36.5-6
(2008), pp. 589–603. issn: 1097-007X. doi: 10.1002/cta.507.
url: http://dx.doi.org/10.1002/cta.507.

[20] Christopher P Stone, Earl PN Duque, Yao Zhang, David Car,
John D Owens, and Roger L Davis. “GPGPU parallel algorithms
for structured-grid CFD codes”. In: Proceedings of the 20th
AIAA Computational Fluid Dynamics Conference. Vol. 3221.
2011.

[21] Joakim Beck and Serge Guillas. “Sequential design with Mutual
Information for Computer Experiments (MICE): emulation of a
tsunami model”. In: arXiv preprint arXiv:1410.0215 (2014).

[22] Dimitra Makrina Salmanidou, Aggeliki Georgiopoulou, Serge
Guillas, and Frederic Dias. “Numerical Modelling of Mass Fail-
ure Processes and Tsunamigenesis on the Rockall Trough, NE
Atlantic Ocean”. In: Proceedings of the Twenty-fifth (2015) In-
ternational Ocean and Polar Engineering Conference (2015).

22

