EGYES FENOTÍPUSOS TULAJDONSÁGOK ÖSSZFÜGGÉSEI GÍMSZARVASBAN (Cervus elaphus hippocrepis)

Készítette:
BOKOR JULIANNA

KAPOSVÁR
2015

DOI: 10.17166/KE.2016.001
<table>
<thead>
<tr>
<th>Tartalomjegyzék</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bevezetés ... 1</td>
</tr>
<tr>
<td>2. Irodalmi áttekintés .. 4</td>
</tr>
<tr>
<td>2.1. A gímszarvasok agancsa (trófea) és fejlődését befolyásoló főbb tényezők .. 4</td>
</tr>
<tr>
<td>2.1.1. A gímszarvas agancs és fejlődése .. 4</td>
</tr>
<tr>
<td>2.1.2. Az agancs növekedésénak szakaszai ... 5</td>
</tr>
<tr>
<td>2.1.2.1. A fiatalkori agancsnövekedés .. 6</td>
</tr>
<tr>
<td>2.1.2.2. Az agancs intenzív növekedése ... 7</td>
</tr>
<tr>
<td>2.1.2.3. Az agancs mineralizációja ... 8</td>
</tr>
<tr>
<td>2.1.2.4. Az agancstisztítás ... 8</td>
</tr>
<tr>
<td>2.1.2.5. A csontos agancs és a hullatás ideje 8</td>
</tr>
<tr>
<td>2.1.3. Az agancsnövekedést befolyásoló tényezők 9</td>
</tr>
<tr>
<td>2.1.3.1. Kor ... 9</td>
</tr>
<tr>
<td>2.1.3.2. Testtömeg .. 12</td>
</tr>
<tr>
<td>2.1.3.3. Fiatalkori fejlődés .. 12</td>
</tr>
<tr>
<td>2.1.3.4. Testméretek .. 13</td>
</tr>
<tr>
<td>2.1.4. A gímszarvas agancsának jelentősége 14</td>
</tr>
<tr>
<td>2.1.5. A gímszarvas agancs minősítése .. 14</td>
</tr>
<tr>
<td>2.2. A gímszarvas agancsának jelentősége 19</td>
</tr>
<tr>
<td>2.2.1. A gímszarvasok növekedése .. 19</td>
</tr>
<tr>
<td>2.2.1.1. Növekedés magzati (embrionális) korban 19</td>
</tr>
<tr>
<td>2.2.1.2. Növekedés a születést követően (posztembrionális korban) 19</td>
</tr>
<tr>
<td>2.2.1.3. Növekedés szezonális változása .. 23</td>
</tr>
<tr>
<td>2.2.1.4.1. Születési idő .. 25</td>
</tr>
<tr>
<td>2.2.1.4.2. Ivar ... 26</td>
</tr>
<tr>
<td>2.2.1.4.3. Az anyai hatás ... 27</td>
</tr>
<tr>
<td>2.2.1.4.4. Szociális rangsorban elfoglalt hely 28</td>
</tr>
<tr>
<td>2.2.1.4.5. Takarmányozás ... 29</td>
</tr>
<tr>
<td>2.2.1.5. A testtömeg és testméretek ... 29</td>
</tr>
<tr>
<td>2.2.1.6. Növekedési modellek ... 30</td>
</tr>
<tr>
<td>2.2.2. A gímszarvas szaporodásbiológiája .. 32</td>
</tr>
<tr>
<td>2.2.2.1. Szabadterületi felmérések .. 32</td>
</tr>
<tr>
<td>2.2.2.2. Farmon tartott állományokra vonatkozó megfigyelések 32</td>
</tr>
<tr>
<td>2.2.2.2.1. A vemhesülést/fogamzást befolyásoló tényezők 32</td>
</tr>
<tr>
<td>2.2.2.2.2. A borjúnevelést befolyásoló tényezők 34</td>
</tr>
<tr>
<td>3. Célkitűzés ... 36</td>
</tr>
<tr>
<td>4. A vizsgálatok anyaga és módszere .. 38</td>
</tr>
<tr>
<td>4.1. Szabadterületi gímszarvas állományok agancsparamétereinek elemzése két eltérő ökológiai régióban .. 38</td>
</tr>
</tbody>
</table>
4.1.1. Adatbázis .. 38
4.1.2. Statisztikai analízis .. 40
4.2. Farmon tartott gímszarvas állományok vizsgálata 41
4.2.1. A különböző testméretek alakulása farmon nevelt gímszarvas állományokban ... 41
 4.2.1.1. A vizsgált állomány és jellemzői ... 41
 4.2.1.2. Statisztikai analízis ... 44
4.2.2. A különböző testméretek közötti összefüggések vizsgálata........ 45
 4.2.2.1. A vizsgált állomány és jellemzői ... 45
 4.2.2.2. Alkalmazott statisztikai módszerek 45
4.2.3. Különböző növekedési modellek tesztelése gímszarvas borjakon,
 születésükktől 7-8 hónapos korukig .. 46
 4.2.3.1. A vizsgált állomány .. 46
 4.2.3.2. Alkalmazott statisztikai módszerek 48
4.2.4. A gímszarvas tehén korának, testtömegének és ellési arányának összefüggései ... 50
 4.2.4.1. A vizsgált állomány jellemzői .. 50
 4.2.4.2. Az alkalmazott statisztikai módszerek 51
4.2.5. Különböző korú tehén állományoktól származó gímszarvas borjak
 testtömege ... 52
 4.2.5.1. A vizsgált állomány jellemzői .. 52
 4.2.5.2. Az alkalmazott statisztikai módszerek 52
5. Eredmények .. 53
 5.1. A szabadterületi gímszarvas állomány agancs paramétereinek
 elemzése ... 53
 5.1.1. Az elejtett gímszarvas állomány jellemzői Bács-Kiskun és
 Somogy megyében ... 53
 5.1.2. A „megey” hatása az agancs paraméterekre 58
 5.1.3. A kor hatása az agancs paraméterekre a vizsgált időszakban 59
 5.1.4. Korreláció vizsgálatok .. 63
 5.1.5. Faktor analízis .. 65
5.2. Farmon tartott gímszarvas állományok vizsgálata 70
 5.2.1. A testtömeg és egyes testméretek alakulása farmon nevelt
gímszarvas populációkban .. 70
 5.2.1.1. Borjak ivarának hatása a különböző vizsgált testparaméterekre
 .. 71
 5.2.2.2. A születési év hatásának vizsgálata a gímszarvas borjak
 testtömegére és testméreteire ... 76
 5.2.2.3. Az ivarnak, a születési évenk (évhatás) és azok
 kölcsönhatásának elemzése a varianciakomponensek alapján 83
 5.2.3. A különböző testméretek közötti összefüggések vizsgálata 85
5.2.4. Különböző növekedési modellek tesztelése gímszarvas borjakon születésüktől 7-8 hónapos korukig, farmon tartott gímszarvas állományon

5.2.4.1. Leíró statisztika .. 88
5.2.4.2. Növekedési görbék .. 93

5.2.5. A gímszarvas tehének korának, testtömegének és borjazási arányának összefüggései, farmon tartott gímszarvas állományban 98
5.2.6. Farmon tartott, különböző korú tehén állományoktól származó gímszarvas borjak testtömege ... 101

6. Az eredmények megvitatása, következtetések és javaslatok 102
6.1. Szabadterületi gímszarvas állományok agancsparamétereinek elemzése két eltérő ökológiai régióban ... 102
6.1.1. A „megye” hatása az agancsparaméterekre 103
6.1.2. A kor hatása az agancsparaméterekre ... 104
6.1.3. Korreláció vizsgálatok ... 105
6.1.4. Faktoranalízis .. 106
6.2. Farmon tartott gímszarvas állományok vizsgálata 108
6.2.1. A testtömeg és egyes testméretek alakulása farmon nevelt gímszarvas állományokban ... 108
6.2.1.1. Ivari dimorfizmus .. 108
6.2.1.2. Év hatás .. 110
6.2.2. Fenotípusos tulajdonságok összefüggései 112
6.2.3. Különböző növekedési modellek tesztelése gímszarvas borjakon születésüktől 7-8 hónapos korukig.. 113
6.2.3.1. Születéskori testtömeg és fiatalkori növekedés 113
6.2.3.2. Növekedési görbék ... 115
6.2.4. A gímszarvas tehének korának, testtömegének és ellési arányának összefüggései ... 117
6.2.5. Különböző korú tehén populációktól származó gímszarvas borjak testtömege ... 119

7. Új tudományos eredmények .. 121
8. Összefoglalás .. 124
9. Summary ... 128
10. Köszönőnyilvánítás .. 132
11. Irodalom jegyzék .. 133
12. Az értekezés témakörében megjelent publikációk 152
13. Az értekezés témakörén kívül megjelent publikációk 154
14. Szakmai önletrajz .. 159
15. MELLÉKLETEK ... 160
1. Bevezetés

Hazánk legnagyobb testű vadfaja a gímszarvas. A Kárpát-medencében a legrégebbi időktől kezdve állandóan éltek szarvasok. A legrégebb csontleletek a pleisztocénból származnak. Történelmünk során a gímszarvas vadászatáról és vadaskerti gondozásáról középkori feljegyzések tanúskodnak.

A magyar gímszarvasok világszerte híresek kiváló agancsukról. Több világrekord agancsú bika is elesett már hazánkban, mely ezt alátámasztja. A magyar szarvasállomány kiváló minőségét fémjelzi, hogy a világ vezető gímszarvasanyagészeti országában, Új-Zélandon, még napjainkban is használnak magyar vérvonalú egyedeket a tenyésztésben (barkás agancs- és hús termelés).

Hazánkban elsősorban vadászati hasznosítása terjedt el a gímszarvasnak, míg a hús csak, mint a vadászat mellékterméke jelenik meg a piacon és ennek nagy része is exportra kerül.

A gímszarvas bikák évről évre új agancsot fejlesztenek, melynek nagysága folyamatosan emelkedik, az irodalom szerint 10-12 éves korukig (Faragó, 1994).

Az agancsok fejlődéséről a kor előrehaladtával már van információink, de az agancsparaméterek közötti kapcsolatok feltárásával igen kevesen foglalkoztak eddig, mely fontos lehet a szelekció szempontjából. Ezek vizsgálata a kor hatásának figyelembevételével sok, még feltáratlan információt nyújthat.

A gímszarvas zárttéri, illetve farmi tartása hazánkban is egyre jobban terjedő gazdálkodási forma napjainkban.

Hazánkban a Kaposvári Mezőgazdasági Főiskola és jogutódjai keretében kezdődött - új-zélandi tapasztalatok alapján - a zárttéri, farmszerű körülmények között történő gímszarvas tenyésztés. Az 1985-ben megkezdett munka egy kísérleti, kis területű szarvasfarmon, Gálosfán indult, borjak mesterséges szarvastejen történő felnevelésével, amely során gímszarvas
A program sikeresége szükségessé tette egy jóval nagyobb gímszarvas telep létesítését Bőszénfán (HORN ÉS MTSAI, 2003). A magyar gímszarvas sajátosságait is figyelembe vevő farmszerű tartásrendszer alapvetően legelőre alapozott. A bőszénfai szarvastelepen a hasznosítás célja hárommirányú. Egyrészt vadásztatásra alkalmas, jó minőségű trófeajú szarvasbikák előállítása vadaskertek részére; másrészt különösen jó minőségű, a termelés egész folyamatán nyomon kísérelhető szarvashús előállítás magas igényeket támasztó vendéglátói szektor részére; harmadrészt pedig, tekintettel az állatállományok magas genetikai értékére és kiemelkedően jó állategészségügyi státuszára, tenyészanyag előállítás különböző európai országok igényei szerint.

Az elmúlt 25 évben döntően magyar génbázisokból származó gímszarvas állomány szelekcija folyamatosan történik a nőivarú egyedek esetében is. A nyugodt vérmérséklet, a szaporaság és a borjúnevelő képesség az alapvető kritériumok, míg a tenyészbika jelöltek kiválasztásánál a nyugodt vérmérséklet mellett az elsődleges szempont az agancsfejlesztő képesség, valamint a testnagyság.

Nagyon kevés adatunk van arra vonatkozóan, hogy farmszerű körülmények között tartott szarvasok, nevezetesen a magyar genetikai hátterű állományok növekedése és különböző testméretei hogyan változnak 2 hónapos kortól 1,5 éves korig. Így a testsúly változásával kapcsolatban a különböző testméretek, mint a csípőszélesség, a mellkas körméret, a fejhossz és a fejszélesség milyen összefüggéseket mutatnak ivartól függően. Az egyes testméretek és a testsúly változás közötti összefüggések feltárása is vizsgálatra szorul.

Gímszarvasban Új-Zélandon megállapítást nyert, hogy összefüggés van a téli átlagos testsúly és a következő évi barkás agancs súlya között (BALL ÉS MTSAI, 1994; TUCKWELL, 2003), illetve az agancs sűrűsége között (HYVARIEN, 1977).
A 2 hónapos kortól 1,5 éves korig különböző testméretek felvételével nyomon kísért gímszarvas állomány nőivarú egyedeinek vemhesülési képessége, az ellési százaléka, valamint a tehenek után választott borjak súlya is fontos információ lehet, különös tekintettel arra, hogy szakmai és gyakorlati szempontból is érdekes, hogy fiatal korban milyen arányban vemhesülnek az ünök, hogyan alakul az ellési százalék és az anyai tulajdonságokra utaló választott borjak súlya (pl. tejtermelés). A különböző testméretek és a korai vemhesülési képesség közötti összefüggések is fontos támpontul szolgálhatnak a jövőre nézve.

A szarvasokra jellemző, hogy a téli időszakban, összefüggésben a fotoperiódus csökkenésével, a szarvasok súlygyarapodása lelassul vagy leáll. A kiváló genetikai hátterű magyar gímszarvasra vonatkozóan a téli testtömeg-változásokról nincsenek még adataink, ezért hézagpótló szerepe van az ilyen típusú méréseknek és vizsgálatoknak, ugyanakkor a nemzetközi szakirodalomban vannak adatok különböző típusú és genetikai hátterű szarvas állományokra vonatkozóan (SUTTIE ÉS MTSAI, 1983).
2. IRODALMI ÁTTEKINTÉS

Európában régóta tartotta az ember a gímszarvast vadaskertekben. Valószínűleg a vadhús az ember húsellátásában komoly szerepet játszott egészen a XVII. századig, a mezőgazdasági tevékenység intenzívebb módszereinek elterjedéséig. Jellemző, hogy például Angliában és Skóciában több mint 2300 vadaspark létezése bizonyítható a Középkorban. Ezek elsődleges funkciója a vadászatok terítékének szolgáltatása volt, de a melléktermék, a hús előállítása kétségtelenül lényeges elemét képezte az adott időszak gazdaságának (HORN, 2004).

Tenyésztett szarvas legnagyobb létszámában Új-Zélandon található, ami ma kb. 2 millió szarvast jelent, ami közel 50%-a a Föld tenyésztett szarvas populációjának (DEER FARMER, 2012). A tenyésztés több célú lehet: hús, barkás agancs, trófea.

2.1. A gímszarvasok agancsa (trófea) és fejlődését befolyásoló főbb tényezők

2.1.1. A gímszarvas agancs és fejlődése

A gímszarvas (Cervus elaphus) különleges képessége az agancs fejlesztése, mely egy többnyire elágazó csontos képződmény, a hím iva egyedek fején. Ez egy évente megújuló különleges képződmény, melynek létrejöttét bonyolult élettani folyamatok befolyásolják, vezérlik. Méretét, formáját többek között a genetikai képesség, valamint a mikro- és makro környezeti tényezők határozzák meg. A hazai vadászati kultúrában meghatározó szereppel bír, és ezen keresztül nagy a nemzetgazdasági jelentősége is.
Az agancs/szarv évenkénti, évszakfüggő megújulása egyedülálló példája az élettani szervregenerálódásnak, ami csak a szarvasfélék családjára és a villásszarvú antilopra jellemző (BUBENIK, 1982). Szociális funkciója miatt az agancsfejlődés szoros kapcsolatban van az adott faj szaporodásbiológiai ciklusával (CLUTTON-BROCK ÉS MTSAI, 1982). Az agancsfejlesztő képesség az ivari dimorfízmus jeleként a hímivarú egyedeken mutatkozik meg, kivéve a rénszarvast (*Rangifer tarandus*), ahol mindkét ivar tagjai növesztenek agancsot (BUBENIK, 1982).

2.1.2. A gímszarvas agancsnövekedésének szakaszai

A gímszarvasok első agancsuk építésekor homloksontjukon (*os frontale*) ún. agancstövet fejlesztenek, majd ennek folytatásában növesztkik agancsukat. Ez először egy finom szőrű bőrrel borított porc képződmény (ún. barkás agancs), mely nyár közepén elcsontosodik (*mineralizáció*).

Az elcsontosodás vége felé megjelenik a hímivarra jellemző magatartásforma, a tisztítás. Ekkor a bikák fákhoz, bokrokhoz dörzsölik az agancsukat, ezzel a bőrt letisztítják róla, illetve az ágak végét kifénik. Így készülnek a párhási időszakra, melyre nyár végén, ősszel kerül sor. A csontos agancsot a szarvasok következő év kora tavaszáig viselik, ekkor lehullatják és elkezdik fejleszteni a következőt. Az agancs fejlődését évről évre az 1. kép szemlélteti.
1. kép: *A gímszarvas agancs fejlődése az 1.-től a 7. agancsig*
(KE, Vadgazdálkodási Tájközpont)

2.1.2.1. A fiata lkori agancsnövekedés

Már születés előtt, magzati korban is fellelhetők a jelek a növesztendő agancsról, a homloktájékon található, épphogy tapintható bütyök formájában (LINCOLN, 1973). Újszülött korban a kis bütykök helyét szőrforgók is jelzik. Az első agancs fejlődése az agancstő növekedésével kezdődik, mely a homlokcsont csontnövekedésével együtt történik. Ennek kezdete 34-38 hetes korra tehető (GASPAR-LÓPEZ ÉS MTSAI, 2008), mely egybeesik a nemi aktivitás kialakulásával. SUTTIE ÉS KAY (1982) szerint a fiatal gímszarvas bikák megfelelő fejlődési szint (testtömeg) elérésekor kezdik növeszteni az agancstövüket, függetlenül a kortól és az uralkodó fényviszonyoktól. A kezdeti agancstő különbözik a környező koponyacsontoktól, mert szivacsos

Az agancstő fejlesztést követően a további agancs-növekedés hasonlóan történik, mint hullatás után az idősebb egyedek esetében. Azonnal elkezd fejlődni fejükön a barkás agancs.

2.1.2.2. Az agancs intenzív növekedése

A barkás agancs nagyon gyorsan fejlődik, ami a jávorszarvasok (Alces alces) és a wapiti (Cervus canadensis) esetében akár naponta a 2 cm-t is eléri (Göss, 1983). Az agancsnövekedés iránya - a középponttól kifelé - sugarsas. Az ágak eltérő irányba nőnek, majd ezek nyúlása lassul, míg a szár hosszirányú növekedése eltart az agancsnövekedés végéig. A növekvő (barkás) agancs idegekkel és erekkel bőven ellátott szerv, hiszen az intenzív anyagcsere folyamatokhoz ezek a feltételek szükségesek. Az agancsszövet hasonló fejlődésű a teljes mineralizációja előtt, mint a vázalkotó csontoké a születés utáni időszakban. Az intenzív agancsfejlődés során a Havers csatornák felépítése és a közbeeső lemezkék megalkotása viszont csak ritkán történik meg (Bubenik, 1982).
Ebben az időszakban a bikák nyugodtak. A nap nagy részét evéssel, pihenéssel, napozással töltik.

2.1.2.3. Az agancs mineralizációja

Mint más csontot, a szarvasagancsot is két egyidejű folyamat eredményezi: a csontszövet képződése és lebomlása.

A látszólag gyors agancskeményedés az agancsnövekedési szakasz végén van. A gyors meszesedés, az agancs letisztítását megelőző néhány hétben történik, mikor az ásványi sók beépülnek a szilárd csontgyűrűbe. Az agancs belső szerkezetének mineralizációja a koponya felé, föntről lefelé haladva fokozatosan történik (BUBENIK, 1982).

2.1.2.4. Az agancstisztítás

Az agancs-elcsontosodás befejezésének közeledtével a bikák viselkedése is változik. A tisztításra jellemző magatartásforma a barka száradásakor, illetve azt követően jelentkezik. A fenési, dörzsölési viselkedés pontos oka nem ismert. Ez általában nem sokkal a barka-száradás után kezdődik. Számos esetben megfigyelhető, hogy bár már elkezdi dörzsölni az agancsot a bika, de még nem száradt a barka, emiatt nagyon vérzik (BUBENIK, 1982).

2.1.2.5. A csontos agancs és a hullatás ideje

A tisztítás után az agancs kapcsolatban marad az agancstövön keresztül az élő szövetekkel. Ez a kapcsolat egyedülálló az emlősök között, mert a szervezet általában gyorsan elszeparálja és eltávolítja az ilyen részeket. Ezt a csontos agancsot az egyedek 6–8 hónapig viselik, majd lehullatják (GOSS, 1983). Hazánkban a hullatás ideje általában a februártól májusig tartó időszakra

2.1.3. Az agancsnövekedést befolyásoló tényezők

Az agancsnövekedését, így a későbbi trófeatétés mérséklété számos tényező befolyásolja. Az agancs súlya szoros kapcsolatban van a bika korával, testtömegével, táplálkozási körülményeivel, és az előző agancs hullatásának idejével (MUIR, 1985).

2.1.3.1. Kor

Az agancstő körmérete évről évre nő, koncentrikus csont gyűrűk formájában (BANFIELD, 1960), és a hullatás ideje is egyre korábbra esik a bikák korának előre haladtával (BEHREND ÉS McDOWELL, 1967; BERGERUD, 1976; JACOBSON ÉS GRIFFIN, 1983). HUXLEY (1926) leírta, hogy a bikák hullott agancsának súlya és méretei emelkednek a korral és általában a tízediknél érik el a csúcsot. WOLFE (1983) hasonló adatokat közölt wapitivel kapcsolatban, ahol a legsúlyosabb és leghosszabb agancsokat a 10 év körüli bikák növesztették.

A magyar gímszarvas (Cervus elaphus hippelaphus) évre évre történő agancsfejlődését többen is leírták:

Az első agancs a bikaborjú születését követő év októberére már kifejlődik, ez általában még ágatlan, csapos agancs. Hazánkban a kiváló minőségű populációkban, pl. Duna ártér alsó szakaszán, az első agancsnak is vannak fent, a koronában elágazásai. Az első agancs hullatása után azonnal elkezd fejlődni a második. Ekkor már legalább 3–3 ág lenne kivánatos száranként a
trófea építés szempontjából. A kiváló dél-dunántúli állományokban ez lehet 5(6)-5(6) is, míg a gyengébbekben a 3-3 ágat se érik el száranként. Ez után évről évre fejlődik az agancs és hazai viszonylatban 8–12 éves korban éri el fejlődésének tetőpontját. Ezt követően lassan hanyatlani kezd. Ezt elsősorban az agancs felső részén, tehát a koronájában vesszük észre (SZEDERJEI, 1960).

Az agancs évről évre történő fejlődéséről FARAGÓ (1994) eltérő adatokat közöl. Az első agancs koszorú nélküli és általában egy ágú. A második agancs, melyet a bika harmadfű korában fejleszt, szerinte gyakran egyágú; a különbség az első agancshoz viszonyítva az, hogy ennek már van koszorúja (rózsája). Előfordulhat, hogy ebben a korban a bika már szemágat, középágat és olykor koronaágakat is rak fel, a jégág ekkor még nem jellemző. A harmadik agancson általában megjelenhet a jégág és már lehet 12-es is. A szárhossz ebben a korban 60-80 cm. A negyedik agancson a jégág már döntően megjelenik és tompa koronaágak jellemzik, a színe és gyöngyözőttsége még nem végleges. A szerző szerint a magyar gímszarvas legnagyobb agancsát 12–14 éves korában fejleszti, majd ezt követően hanyatlani kezd. Ez elsősorban az ágak számának (koronaágak) és az ághosszak csökkenésében látszik.

BÁN ÉS MTSAI (1986) szerint az első agancs általában 20–60 cm hosszú és előfordulhatnak rajta rövid koronaágak, nagy ritkán szemág is. A második agancson már van rózsa és többnyire megjelenik rajta a szem-, a jég- és a középág, továbbá a korona villája. Gyengébb populációkban előfordul, hogy a második agancs is elágazás nélküli szárból áll (nyársas). A szárhossz általában 40–70 cm. A harmadik agancs szárhossza általában 60–90 cm közötti, és többnyire tízágú. A negyedik agancs általában 70–100 cm hosszú és ezen általában megjelenik a korona. Ebben a korban vehető észre először jelentősebb szárvasstagság. Az ötödik agancson már hosszúak a koronaágak, kialakult a szín és gyöngyözőttség. A szárhossz 80–110 cm körüli. A
középkorú bikáknál (6–10 év) az agancs fejlődése lelassul. A középszerű bikák fejlődése gyakran 10 éves korban le is áll, míg az ígéretesek tovább fejlődnek. A fejlődés üteme ugyan tovább lassul, de ezeknél lehet leginkább észrevenni, hogy vastagszik az agancs szára. A bikák agancsának legtöbb értékmérője 13 éves korban éri el a maximumát, míg a szárhossz 14-, az alsó és felső körméret 15 éves korban. 16 éves bikáknál minden agancs paraméter hanyatlásnak indul.

SZIDNAI (1978) szerint a fiatalkorú (3-6 éves) bika agancsát rövid szemágak és jégágak – gyakran ez utóbbi hiányzik – jellemzik, aminek az alsó felső körmérete közel ugyanolyan vastag (esetleg a felső vastagabb). A középkorú bikáknál (6-10 éves) gyakori a szétnövés, mert nagy különbségek tapasztalhatók a jó és a gyengébb képességű egyedek között. Ebben a korban alakul ki az agancs formája, amely évről évre hasonló lesz csak vastagszik, néhány ággal gyarapszik. A golyóérett és öreg bikák (11-15 év) esetében nagy különbségek lehetnek a későn érő és a gyors fejlődésű egyedek között. A későn érő bikák agancsa 11-12 éves korban fejlődik ki teljesen, míg a gyors fejlődésű egyedek ebben a korban már visszarakott jellegét mutatnak. A szerző szerint a szárhossz ebben a korban éri el a maximumát és a visszarakás sem ennek rovására történik, hanem először a koronaágak száma csökken.

A négy szerző szerint az első agancs általában ágatlan 20-60 cm hosszú és nincs koszorúja, BÁN ÉS MTSAI (1986) szerint ritkán lehet koronaága vagy kicsi szemága. A második agancs esetében nagyon eltérőek a leírások. A harmadik agancs esetében már kisebb eltéréssel jellemeztek a bikákat. Az ötödik agancs esetében a szárhossz jellemzésében csak 10 cm különbség volt a szerzők között. A szín és gyöngyözöttség kialakulásának idejében találtam még eltérést illetve a legnagyobb agancs felrakásának a korát mindegyik
szerző másként ítélte meg. Az idős bikák visszarakását, hanyatlását hasonlóan jellemezték.

2.1.3.2. Testtömeg

HUXLEY (1926, 1931) azt tapasztalta, hogy az agancs súly pozitív kapcsolatban van a bika korával és testtömegével. HYVARIEN ÉS MTSAI (1977) közlése szerint azonos korú bikáknál a nagyobb testű bikák agancsa volt nehezebb. Később FENNESSY (1982) is közölte, hogy egykorosztályon belül az agancsok súlya a testtömeggel emelkedik azonos populációban és azonos környezeti adottságok mellett.

MUIR (1985) leírta, hogy az azonos korú bikák közül általában a nagyobb bikák hullatnak előbb és az agancsuk is valószínűleg nehezebb.

A bikák kondíciója különböző módon befolyásolja a hullatás idejét a különböző szarvas fajokban. LONG ÉS MTSAI (1959) tapasztalatai szerint a rossz (gyenge) kondíciójú fehér-farkú szarvas bikák agancs hullatása akár 10 héttel előbb is elkezdődhet, míg gímszarvasoknál WATSON (1971) azt találta, hogy a legjobb tartalékokkal rendelkező bikák hullatnak először.

2.1.3.3. Fiatalkori fejlődés

VOGT (1937) megállapította, hogy a korán születő (május), télre jól felkészült, erős borjuktól várható el jó minőségű agancs, míg a gyengébb,
kisebb egyedek ezt már később se tudják kompenzálni. Ezt SUTTIE ÉS MTSAI (1983) is alátámasztották.

2.1.3.4. Testméretek

SZEDERJEI (1960) szerint a nagy testű, erős csontú és hosszú fejű szarvasbikák és a nagy fejű tehenek ivadékai is jó agancsot fejlesztenek. Vizsgálatai során azt tapasztalta, hogy a hosszú fejű tehenek bikaborjainak hosszú agancsszára volt.

VOGT (1937) is leírja, hogy csak erős testű tehenektől várható, hogy erős borjakat neveljenek.

Sajnos ezeket a megállapításokat a szerzők nem támasztották alá konkrét adatokkal.

2.1.3.5. Élőhely

A hazai vadgazdálkodás eltérő környezeti tényezőit BENCZE (1972) részletesen leírta és kiemelkedően jó adottságúnak ítélte a Dél-Dunántúli régiót a gímszarvasok számára.

2.1.4. A gímszarvas agancsának jelentősége

Hazánk legjelentősebb nagyvadja a gímszarvas. A vadgazdálkodás legjelentősebb árbevételi forrását jelenti. Számos olyan trófea került ki a hazai területekről, amely világszerte kiemelkedőnek bizonyult.

2.1.5. A gímszarvas agancs minősítése

A múlt század végéig a vadászok „szemre” bírálták és néhány szembetűnő tulajdonság alapján rangsorolták a trófeákat (pl. az ágak száma szerint) (SZIDNAI, 1978).
Az első nyilvános trófeakiállítást 1871-ben rendezték a budapesti Lovarda épületében, ahol a bizottság már kezdetleges „képlettel” rangsorolta a szarvasagancsokat. Ettől kezdve évenként minden összel megrendezték az év folyamán zsákmányolt trófeák kiállítását. 1896-ban használták az első úgynevezett „bírálati képletet”, amely csak 1 évig szolgált a szarvastrófeák összehasonlítására, majd visszatértek ismét a szemmértékkel történő rangsoroláshoz.

Az első világháború megszakította a kiállítások sorát, így a bírálati képlet sem fejlődhetett 1925-ig, amikor a Nemzeti Vadászati Védegylet által rendezett kiállításra új képletet dolgoztak ki. A bíráló bizottság tagja volt Nadler Herbert is, aki felismerte a korábbi képletek hibáit és kidolgozott egy új bírálati képletet, mely Nadler-képlet néven vált ismertté. 1937-ben még történt néhány módosítás, de azóta változás nélkül jelenleg is használjuk.

A nemzetközi képlet tulajdonképpen a Nadler-képlet kibővítése, amelynek részleteit a táblázat tartalmazza. A középágot a szemággal egyenlően értékel, a korona maximális pontértékét 6-ról 10-re emeli. A jégágak jelenlétét 1-1 ponttal értékel, s a terpesztésnél enyhébb feltételeket szab a 3 pont eléréséhez (SZIDNAI, 1978). A két pontozás szorzó számait és intervallumait az 1. táblázat tartalmazza.

Európában jelenleg a nemzetközi pontozás (CIC) a trófea bírálat elfogadott és alkalmazott módja. A tengeren túli országokban (Új-Zéland, USA) más minősítési rendszereket (SCI – Safari Club International, illetve a Douglas pontozás) használnak, ahol nem a hosszú szárú, kevesebb ágú agancsok élveznek előnyt, hanem a vastag, sok ágúak.

1. táblázat: A gímszarvas-trófea bírálat szorzó számai és intervallumai a Nadler-képlet és a Nemzetközi pontozás (CIC) esetében (BÁN és mtsai nyomán, 1986)

<table>
<thead>
<tr>
<th>Gímszarvas-trófea paraméter</th>
<th>Nadler (pont)</th>
<th>Nemzetközi (pont)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aganessúly (kg)</td>
<td>x2</td>
<td>x2</td>
</tr>
<tr>
<td>Agancs szárhossz átlag (cm)</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>Koronaágak tényleges száma (db)</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>Szemághossz átlag (cm)</td>
<td>x0,25</td>
<td>x0,25</td>
</tr>
<tr>
<td>Középgáthossz átlag (cm)</td>
<td></td>
<td>x0,25</td>
</tr>
<tr>
<td>Rózsa körméret átlag (cm)</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>Alsó körméret:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jobb (cm)</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>bal (cm)</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>Felső körméret:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jobb (cm)</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>bal (cm)</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>Ágak tényleges száma (db)</td>
<td>x1</td>
<td>x1</td>
</tr>
<tr>
<td>Szépségpontok:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>szín</td>
<td>0-2</td>
<td>0-2</td>
</tr>
<tr>
<td>gyöngyözöttség</td>
<td>0-2</td>
<td>0-2</td>
</tr>
<tr>
<td>ágvégek</td>
<td>0-2</td>
<td>0-2</td>
</tr>
<tr>
<td>jégágak</td>
<td>0</td>
<td>0-2</td>
</tr>
<tr>
<td>korona</td>
<td>0-6</td>
<td>0-10</td>
</tr>
<tr>
<td>Terpesztés a szárhossz %-ában:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 %-ig</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65 %-ig</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>70 %-ig</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>75 %-ig</td>
<td>1,5</td>
<td>2</td>
</tr>
<tr>
<td>80 %-ig</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>85 %-ig</td>
<td>2,5</td>
<td>3</td>
</tr>
<tr>
<td>90 %-ig</td>
<td>2,5</td>
<td>3</td>
</tr>
<tr>
<td>90 % és felette</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Hibapont</td>
<td>0-3</td>
<td>0-3</td>
</tr>
<tr>
<td>Korrekción a minőségi sorrend helyesbítése céljából</td>
<td>1-3</td>
<td>-</td>
</tr>
</tbody>
</table>
2.2. A gímszarvasnöviés eredményességét befolyásoló fontosabb tényezők, farmszerű tartásban

2.2.1. A gímszarvasok növekedése

2.2.1.1. Növekedés magzatől (embrionális) korban

A felnevelés alatti növekedés és fejlődés a megtermékenyülés pillanatától a felnőtt kor eléréséig tartó összetett élettani folyamat.

A gímszarvasok vemheségi ideje átlagosan 234 nap. Ez bikaborjaknál kicsit hosszabb 236,1 ± 4,8, míg az ünőborjaknál 234,2 ± 5,0 nap a rhum-szigeti vizsgálatok alapján (CLUTTON-BROCK ÉS MTSAI, 1982). A magzat tömege a vemhesség 75. napjaig hozzávetőleg a 44 g-ot éri el, majd egyre gyorsabban fejlődve a 233. napra kb. 8 kg-os tömeget ér el (WENHAM ÉS MTSAI, 1986).

ASHER ÉS MTSAI (2005) vizsgálataik során computer tomográf (CT) segítségével becsülték a gímszarvas magzatok testtömegét a tehenek vemhességének 215. napján, mely a tehenek takarmányozásának függvényében 6,78 és 7,70 kg között változott. Ezen borjak későbbi születési súlya 8,2–8,4 kg volt (a vizsgálati eredmények új-zélandi gímszarvasokra vonatkoznak).

2.2.1.2. Növekedés a születést követően (posztembrionális korban)

A gímszarvas borják hazánkban április közepétől június végéig születnek. A tehenek általában minden évben egy borjat ellenek (unipara). Az ikervemhesség aránya 0,3–0,5% szabad területi állományokban (FARAGÓ, 1994).

VOGT (1937) szerint az erős gím borjak 7–8 kg-os testsúlytal születnek (kerti viszonyok között). A gímszarvas borják születési testtömegét különböző szerzők szerint a 2. táblázat tartalmazza. SZEDERJEI (1960) takarmányozási
kísérleteiben a kiegészítő takarmányozás hatását vizsgálta a születési testtömegre zárttéri viszonyok között, mely pozitív eredményeket mutatott a kontroll csoporthoz képest. Sajnos az adatok alapján a hatáskeveredés nem zárható ki, mert nem azonos korú tehén populációkon belül vizsgálták az összefüggéseket. A 2. táblázatban szereplő születési súlyok nagy változatosságot mutatnak. Ez valószínűleg az eltérő populációk (angol, új-zélandi, magyar, spanyol) genetikai különbségeire és környezeti adottságok (időjárás, takarmányozás) eltérő voltára vezethető vissza.

2. táblázat: A gímszarvas borjak születési súlya, különböző szerzők szerint

<table>
<thead>
<tr>
<th>Szerzők</th>
<th>Születési testtömeg [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOGT (C. elaphus elaphus) (1937)</td>
<td>7,0-8,0</td>
</tr>
<tr>
<td>SZEDERJEI kontroll borjak (C. elaphus hippelaphus) (1960)</td>
<td>6,0-7,0</td>
</tr>
<tr>
<td>SZEDERJEI kísérleti borjak (C. elaphus hippelaphus) (1960)</td>
<td>8,0-12,0</td>
</tr>
<tr>
<td>CLUTTON-BROK ÉS MTSAI (C. elaphus scoticus) (1982)</td>
<td>6,0-7,0</td>
</tr>
<tr>
<td>PÁLL ÉS SUGÁR (C. elaphus hippleaphus) (1985)</td>
<td>7,0-12,0</td>
</tr>
<tr>
<td>ASHER ÉS ADAM (1985)</td>
<td>8,9-9,4</td>
</tr>
<tr>
<td>MOORE ÉS MTSAI (1988)</td>
<td>6,2-9,6</td>
</tr>
<tr>
<td>HARBORD (2005)</td>
<td>9,0</td>
</tr>
<tr>
<td>LANDETE-CASTILLEJOS ÉS MTSAI (C. elaphus hispanicus) (2009)</td>
<td>6,7</td>
</tr>
</tbody>
</table>

A borjak életük első három hetében anyjuk közelében tartózkodnak, ezt követően már messzebbre is elmerészkednek. Ebben az időszakban fő táplálékuk az anyatej. A legnagyobb tejtermelés a rhum-szigeti szarvasoknál naponta 1,42–1,98 l/nap volt (CLUTTON-BROCK ÉS MTSAI, 1982), míg kelet-európai szarvasoknál 3,0–4,5 l/nap (BUBENIK, 1965). A tehenek napi 8-14 alkalommal is szoptatnak. A borjak 2 hetes korban már növényi részeket csipegetnek és a bendő érdemi funkciója 1 hónapos kor körül alakul ki. A tehenek tejtermelése nyár közepén éri el csúcspontját. Ebben az időben a
Nagyszámú borjak már nagyobb mennyiségű zöldtakarmányt is fogyasztanak (NAGY, 2006). A borjakat a tehenek hat–nyolc hónapos korukig szoptatják. Mesterséges (zárttéri) körülmények között a választás történhet korai, üzekedési időszak előtti (a borjak 2,5–3,5 hónapos korában, augusztusban), közepes, üzekedési szezonban (a borjak négy hónapos korában, szeptemberben) és késői, üzekedési időszak utáni (a borjak öt–hat hónapos korában, október és november között) időpontokban. A korai választásnak az intenzív gazdálkodást folytató farmokon a minél jobb szaporodási biológiai mutatók elérése érdekében van jelentősége, azért hogy a tehenek a tenyész-szezonban jobb kondícióval induljanak és minél előbb ciklusba lendüljenek. A korai választású borjak általában kisebbek tél elején, mint a késői választásúak. Az üzekedési időszaki választáskor a később született borjak már nagyobb süllyel választhatók. Késői választás esetén a borjak jó kondícióval fogják a telet elkezdeni, de a következő évi ellések valószínűleg el fognak húzódni (TUCKWELL, 2003).

A különböző időpontokban (korai, közepes és késői) választott gímszarvas borjak tizenegy–tizenkét hónapos kori testtömege között már nem találtak különbséget hazai farmon nevelt állományban (PADOS ÉS MTSAI, 2006).

BLAXTER ÉS MTSAI (1974) mérései alapján a kézzel nevelt és sok abrak takarmányt fogyasztó skót gímszarvas bikák testtömege már két éves korban meghaladhatja a 160 kg-ot is. A felnevelés körülményei, így döntően a takarmányozás - a tapasztalatok szerint - tehát számottevően befolyásolja a testtömeg-gyarapodást.

Az új-zélandi szarvaspopulációk esetében fontos megjegyezni, hogy az 1980-as évek közepéig az egész állomány tipikusan a skóciaihoz volt hasonló, mert annak felszaporodása révén jött létre.

Az 1980-as évek közepétől érdemi és széleskörű állományjavítás kezdődött nagyobb testű és agancsméretű gímszarvas típusok importja révén, amelyben jelentős szerepet játszottak hazai (magyarországi) kiemelkedő képességű bikák is (HORN, 2004).

A modern új-zélandi farmon tartott gímszarvas állomány típusában és értékmérő tulajdonságaiban már jelentősen eltér az 1990 előtti időszakra jellemzőtől.

Hazánkban a bikák testtömege kifejlett korban eléri a 160–200 kg-ot. Figyelemre méltó, hogy a legnagyobb testtömegű bika 425 kg volt (Északi-

2.2.1.3. Növekedés szezonális változása

A gímszarvas borjak növekedése a leggyorsabb az életük első évében nyáron, ami a téli időszakban lecsökken (Blaxter és Mtsai, 1974).

Freudenberg és Mtsai (1994) azt tapasztalták, hogy a gímszarvasok bendő emésztési folyamatai szezonális eltéréseket mutatnak. Nyáron növekszik a bendő mérete, így a takarmány felvétele is (ebből következően az intenzív bendőemésztés révén a zsírsav és az ammónia tartalma és ammónia termelése is).

A növekedés és az étvágy éves ciklusa alkalmazkodás a zord környezeti feltételekhez, ami nélkülözhetetlen a túléleshez (Suttie és Mtsai, 1983).

A téli időjárás fontos szerepet játszik a szabad területen élő populáció életében. Rövidtávon a borjak túlélésére- (nagyom kemény télen kisebb az esély a túlélésre), hosszú távon a kifejlett kori testtömegre hat (zord és/vagy elhúzódó tél kisebb kifejlett kori testtömeget eredményezhet) (Loison és Langvatn, 1998).

Chapple (1994) a választott gímszarvas borjak testtömeggyarapodását és táplálóanyag-szükségleteit vizsgálta évszakokénti bontásban, melyet a 3.
táblázat tartalmaz. Ezek a vizsgálatok Spanyolországban történtek, helyi gímszarvas állományon (*C. elaphus hispanicus*).

3. táblázat: *A választott gímszarvas borjak gyarapodása és napi szükségletei a szezonalityás tükrében (CHAPPLE 1994)*

<table>
<thead>
<tr>
<th></th>
<th>Testtömeg gyarapodás (g/nap)</th>
<th>Szárazanyag (kg/nap)</th>
<th>Energia (ME MJ/nap)</th>
<th>Nyersfehérje (sz.a. %-ában)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ősz (3-6 hónapos kor)</td>
<td>140-200</td>
<td>1-1,5</td>
<td>16-18</td>
<td>16-17</td>
</tr>
<tr>
<td>Tél (6-8 hónapos kor)</td>
<td>0-40</td>
<td>1-1,3</td>
<td>11-12</td>
<td>10</td>
</tr>
<tr>
<td>Tavasz (8-11 hónapos kor)</td>
<td>90-270</td>
<td>1,3-2,2</td>
<td>15-27</td>
<td>12-17</td>
</tr>
<tr>
<td>Nyár (11-16 hónapos kor)</td>
<td>100-200</td>
<td>1,5-2,5</td>
<td>16-24</td>
<td>14</td>
</tr>
</tbody>
</table>

2.2.1.4. A növekedést befolyásoló tényezők

A növekedést alapvetően a genetikai és a környezeti tényezők határozzák meg. A magzati növekedés szakaszában az anya fejlettsége és kondíciója meghatározó, melyeket egyéb tényezők is befolyásolnak (kor, takarmányozás).

A születés utáni növekedést a korai időszakban befolyásolja az anya (takarmányellátotsága, rangsorban elfoglalt helye), a születés időpontja és a borjú ivara. Később elsősorban az egyed genotípusa, ivara, takarmányellátotsága és rangsorban elfoglalt helye a döntő.
2.2.1.4.1. Születési idő

A korai születés nagyobb takarmányfelvételt tesz lehetővé a hosszabb legelési időszak révévé, valamint a jobb vegetációval kötődően az anyák tejhozama is nő (ADAM ÉS MTSAI, 1992), mely nagyobb választási testőmeget (ADAM ÉS MOIR, 1987) eredményez. Ezt BIRGERSSON ÉS EKVALL (1997) azzal magyarázza dámszarvasnál (Dama dama), hogy a korábban született borjak hosszabb ideig szophatnak, mert a tehenek egyidejűleg fejezik be a tejtermelést, novemberben.

LANDETE-CASTILLEJOS ÉS MTSAI (2001) szerint, zártterén tartott spanyol gímszarvasoknál (C. elaphus hispanicus), a későbbi születés az anyák tejtermelésének csökkenésével párosul, valamint a tej beltartalma is változik (a tejfehérje csökken, míg a tejzsír tartalma emelkedik). Ezek a negatív hatások a korai születésű borjak esetében nem érvényesülnek, így növekedésük gyorsabb. Ennek hátterében valószínűleg a spanyolországi időjárási viszonyok állhatnak, mert öntözés nélküli területen a legelők május végére már teljesen kiszáradnak, így a tehenek tejtermelése is visszaesik. Későbbi kutatások (GÓMEZ ÉS MTSAI, 2002) során azt tapasztalták, hogy a tejtermelést nem befolyásolja az ellés ideje, ennek adatait a 4. táblázat tartalmazza. Ezek az adatok is spanyol állományból származnak. A különbséget okozhatja a két vizsgálat között az eltérő hely (eltérő környezeti

25
adottságok), eltérő technológia (öntözés és intenzív gyepgazdálkodás) és az eltérő évek eltérő időjárási viszonyai is.

Születés után a növekedést további két szakaszra lehet bontani: választás előtti és választás utáni szakaszokra. Választásig a borjú az anyjával tartózkodik, és döntő táplálékát az anyatej teszi ki.

4. táblázat: A különböző időpontokban ellett tehenek tejének beltartalma és mennyisége a laktáció 18. hetéig (GÓMEZ ÉS MTSAI, 2002; n=12)

<table>
<thead>
<tr>
<th>Ellés ideje</th>
<th>Termelés (kg)</th>
<th>Szárazanyag (%)</th>
<th>Fehérje (%)</th>
<th>Zsir (%)</th>
<th>Laktóz (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Május</td>
<td>242,7 ± 13,1</td>
<td>23,45 ± 0,94</td>
<td>6,6 ± 0,30</td>
<td>9,74 ± 0,60</td>
<td>5,51 ± 0,13</td>
</tr>
<tr>
<td>Június</td>
<td>278,5 ± 12,2</td>
<td>23,39 ± 0,49</td>
<td>6,32 ± 0,25</td>
<td>10,49 ± 0,44</td>
<td>5,56 ± 0,14</td>
</tr>
</tbody>
</table>

2.2.1.4.2. Ivar

A legtöbb szarvasfélénél jelentős az ivari dimorfizmus. A gímszarvasnál ez nem csak a bikák agancsfejlesztésében nyilvánul meg, hanem a testméretekben is. Hazánkban a bikák testtömege elérheti a 140-300 kg-ot, míg a teheneké csak 70-140 kg közötti (SZEDERJEI, 1960), a Zselicségben a
bikák zsigerelt tömege (fej és lábvégek nélkül) 118-172, míg a teheneké 84-94 kg közötti volt SUGÁR ÉS MTSAI vizsgálata szerint (1985).

Új-Zélalndi gímszarvas (C. e. scoticus) állományok esetében a bikaborjak a tavaszi-nyári intenzív növekedési periódusban 48 %-kal, összel a csökkenő intenzitású növekedési periódusban 8 %-kal és télen mikor a növekedés igen erősen visszaesik 76 % -kal jobban gyarapodnak az ünöknél (MOORE ÉS MTSAI, 1988).

2.2.1.4.3. Az anyai hatás

Azokat a tényezőket, melyek az anyán keresztül befolyásolják az utód teljesítményét „anyai hatásnak” nevezzük (MOUSSEAU ÉS FOX, 1998). Emlősöknél ezek nagy része nem genetikai hatás, ilyen a vemhesség (tehén takarmányellátottsága, rangsorban elfoglalt helye, kora) és tágabb értelemben a laktáció is (OFTEDAL, 1985), habár utóbbira a genotípus is hat. GUINNESS ÉS MTSAI (1978) rhum szigeti megfigyeléseik során azt tapasztalták, hogy a tehenek kora hatással van a borjak születési testtömegére. A legnagyobbszületési testtömegű borjak a 9–10 éves tehenekre jellemzők.

Új-Zélalndi kísérletek során bizonyították, hogy a tehenek 15–17 nappal korábban ivarzanak az ünöknél, emiatt a fiatal (2 éves) tehenek borjai 2 héttel

Új-Zélandi tapasztalatok alapján az anya testtömege is hatást gyakorol a borjú választási testtömegére. Egy 90 kg testtömegű tehéntől várhatóan átlagosan 40 kg-os borjat lehet választani, míg egy 120 kg-os tehén után 53 kg testtömegű borjat (HARBORD, 2007), azonos tartási feltételek között.

2.2.1.4.4. Szociális rangsorban elfoglalt hely

2.2.1.4.5. Takarmányozás

A gímszarvas (Cervus elaphus) a legelőtípusú (őz) táplálkozási viselkedésű fajok között elhelyezkedő átmeneti táplálkozási típusúak közé tartozik (HOFMAN, 1985). Több szerző (MÁTRAI ÉS KABAI (1989); MÁTRAI ÉS SZEMETHY (2000); SZEMETHY ÉS MTSAI (2000)) szerint hazánkban, a szabad területen élő gímszarvas populációk tápléláka az év folyamán elsősorban fásszárú növényekből áll.

Zárttáé tartott skót gímszarvas borjak növekedése szoros összefüggést mutatott választásig a legelő minőségével és mennyiségével (LOUDON ÉS MTSAI, 1984). Tanulmányukban a borjak napi testtömeg gyarapodása közötti különbség elérte a 100 g-ot, a legelők közötti eltérés miatt. Ez a különbség 100 napos választási korban 10 kg-ot jelent a választáskori testtömegben. SUTTIE ÉS MTSAI (1983) szerint a téli takarmány megvonás, vagy zord környezeti viszonyok az élet első évében a fejlődésben behozhatatlan lemaradást eredményeznek a gímszarvas bikák testtömegében.

Zárttéri viszonyok között tartott gímszarvas állományok esetében számos vizsgálatot végeztek, farmszerű tartásmód mellett, különböző botanikai összetételű legelők hatására vonatkozóan (gímszarvasokkal). Ilyen kísérletek jelenleg is folynak a Kaposvári Egyetem Vadgazdálkodási Tájközpontjában. Utóbbiak más PhD munkák témái.

2.2.1.5. A testtömeg és testméretek

A testtömeg mérések sajnos nem adak elegendő információt az adott egyedről. Ezért más állatfajokban különböző módszereket dolgoztak ki, hogy felmérjék az egyed kondícióját és testméreteit.

A testtömeg és a testméretek felvétele gyakori a különböző haszonállatfajok, vagy egyes fajták tipizálása, vizsgálata során. Gyakran ezekkel az adatokkal
írják le a különböző fajták jellemzőit lovaknál (BROOKS ÉS MTSAI, 2010), szarvasmarháknál (BENE ÉS MTSAI, 2007; OZKAYA ÉS BOZKURT, 2009; UDEH ÉS MTSAI, 2011), juhoknál (HANDIWIRAWAN ÉS MTSAI, 2011). A leggyakrabban mért testméretek a testtömeg mellett: a testhossz, a marmagasság, az övméret, a mellkas mélység, a csípő vagy far magasság, szélesség.

SZUNYOGHY (1963) hazánkban lőtt gímszarvasokon (C. e. hippelaphus) mért testméreteket (testtömeg, marmagasság, hátsó lábhossz, farok hossz és fülhossz). Ezen mérései mellett koponyánként 33 méretet vett fel.

SUGÁR ÉS MTSASI (2007) vadászaton elejbet gímszarvas borjakon és különböző korú tarvadakon végeztek méréseket, ahol az állkapocshosszt és az elülső lábközépcsont hosszát mérték egyéb vizsgálatok mellett.

TÓTH ÉS MTSAI (2010) szintén végeztek méréseket lőtt gímszarvas bikákon (zsigerelt testtömeg és koponya, illetve agancs méretek).

Testméretek elemzéséről, vizsgálatától hazai gímszarvas állományok vonatkozásában kevés adatunk van. Azok is elejtett egyedekre vonatkoznak. Zárttéri állományokra, farmszerű tartásban tartott populációkra korábban nem végeztek testméret felvételeket.

2.2.1.6. Növekedési modellek

A növekedési görbék megmutatják az élettartam alatt az összefüggést az egyedben rejlő növekedés és kifejlett kori testnagyság, valamint a környezet között. A környezet meghatározza az egyed termelési szintjét. Az első növekedéssel kapcsolatos matematikai elemzéseket, melyek figyelembe vették a biológiai sajátosságokat, BRODY (1945) készítette. A növekedési görbe általában sigmoid típusú, mely az egyed élettartama során többször ismételten mért adatokra illeszthető. A leggyakrabban a méret - kor függvények (testtömeg - kor, csípő magasság - kor stb.).
Szarvasmarha, vagy ló esetében a testtömeg - életkor vagy testméret - életkor összefüggések empirikus leírása egy technikát biztosít a növekedési tulajdonságok formáját leíró és jellemző változók számának csökkentésére (BROWN ÉS MTSAI, 1976; MCMANUS ÉS MTSAI, 2010).

MOREL ÉS MTSAI (2007) angol telivér csikók testtömeg-gyarapodását vizsgálták születéstől választásig (107-217 napos korig). Elemzésük során az egyik legjobb illeszkedést a \(\{b_0*születéskori\ testtömeg*kor + születéskori\ testtömeg^{b_1}\}^{b_2}\) függvény mutatta.

MCMANUS ÉS MTSAI (2010) 4 különböző genotípusú (hannoveri, razil sportló, angol telivér, és brazil katonaló) állomány testtömeg és marmagasság adataira (6 hónapos kortól kifejlett korig) illesztett növekedési görbéket, melyek közül a Brody féle függvény írta le legjobban a növekedésüket.

Szarvasmarha testtömeg növekedés leírására kifejlett korig a legpontosabb becslést a Richards féle görbe adta (BROWN ÉS MTSAI, 1976).

Lovak esetében a Brody és Weibull görbék illeszkedtek legjobban a növekedési adatokra (MCMANUS ÉS MTSAI, 2010), míg szarvasmarháknál a Richards és Brody modellek mutatták a legjobb becsléseket (BROWN ÉS MTSAI, 1976).

Növekedési modelleket teszteltek gímszarvasokra vonatkozóan is, és a Brody féle exponenciális modell illeszkedett legjobban a skót szarvasok (Cervus elaphus scoticus) növekedési adataira, ahol figyelembe vették a biológiai jellemzőket (DELGADILLO ÉS MTSAI, 2006).
A gímszarvas nőivarú egyedi 16-18 hónapos korban válnak ivaréretté és élőhelytől függően, vagy már ebben a korban, vagy csak a következő években fogamzanak. Az ünök fogamzóképessége populációként és évenként is változhat. Hazánkban szabad területen a Dél-Dunántúlon bizonyos években közel 100 %-os, míg a Börzsönyben ebben a korban valószínűleg ez kivételes esetben fordul csak elő (PÁLL ÉS SUGÁR, 1985; SUGÁR, 2003).

DEGMEČIĆ ÉS MTSAI (2010) az ünöknél 48 %-os, míg a teheneknél 85 %-os vemhesülést tapasztaltak Duna menti szabad területen, Horvátországban. Szabad területen a sikeres utódnevelés (laktáció miatt) az anya kondíció romlásával jár, amely a következő fogamzás esélyét csökkenti (CLUTTON-BROCK ÉS MTSAI, 1983), rum szigeti állományban. Szabad területen a nőivarú egyedek fogamzását csak kilövés után, post-mortem lehet vizsgálni, míg zártterén tartott állományokban lehetőség van ultrahangos vizsgálatokat is végezni, így a magzatelhalások arányáról kaphatunk infomációt. Ezen kívül lehetőség van az egyedek borjúnevelő képességét is vizsgálni, az ellést követően.

2.2.2.2. Farmon tartott állományokra vonatkozó megfigyelések

2.2.2.2.1. A vemhesülést/fogamzást befolyásoló tényezők

Új-Zélandi gímszarvasoknál AUDIGÉ ÉS MTSAI (1999a) azt tapasztalták, hogy különböző farmokon (n=15) tartott állományokban az ünök 8,3-95 %-a fogamzott, míg a tehenek 77,6-98,4 %-a. Megállapították, hogy a méhen belüli magzatelhalás 1 % alatti volt az ünök és a tehenek esetében is.

AUDIGÉ ÉS MTSAI (1998) kidolgoztak egy 1-től 5-ig terjedő skálázású kondíciópontozási rendszert - nőivarú gímszarvasokra, mert szoros összefüggést találtak a nőivarú egyedek kondíciója valamint fogamzása és annak ideje között.

Az ünök fogamzását és annak idejét elsősorban a tenyészszezon megelőző kondíció (2,5 pont feletti) befolyásolja. A kistesttömegű ünök is vemhesülhetnek, ha jól takarmányozzák őket, de valószínűleg csak későbbi időpontban fogamzanak. A testtömeg és kondíció mellet rendkívül fontos befolyásoló tényezők még: a szociális stressz (állományon belüli csapatösszetétel változások, főleg idősebb tehenekkel), az ünök elhelyezése (árnyék és búvóhely jelenléte) és az emberi zavarás (AUDIGÉ ÉS MTSAI, 1999c). Az ünök fogamzását még befolyásolhatja az állomány mérete is, ennek függvényében a nagyobb állományokban rosszabb a fogamzás aránya (BEATSON ÉS MTSAI, 2000).

A tehenek fogamzását és annak idejét befolyásolja a testtömeg (HAMILTON ÉS BLAXTER, 1980). A tenyészszezon előtt a közepesen gyenge kondíciót (2 pont feletti) elérő egyedek már a szezon elején ivarzanak. A testtömeg és kondíció mellet rendkívül fontos befolyásoló tényezők még: a bika és a tehenek aránya, a legelő minősége, a tehén csapat elhelyezése (távol a kezelő épületétől) és az emberi zavarás (AUDIGÉ ÉS MTSAI, 1999b)
2.2.2.2.2. A borjúnevelést befolyásoló tényezők

A borjúnevelés az újszülött borjú táplálását és védelmét jelenti. A tehén és borjú közötti szoros kapcsolat már a születést követően órákban kezd kialakulni. A borjúba bevésődnek az anyja/gondozója sajátságai. Szabad területen a tehén 3-4 hétig még idegen szarvasokat sem enged borja közelébe, és más tehén borját elutasítja. A 8. hét után már nagyobb területeket is bejár a borjú az anyjával és ekkor csatlakoznak korábbi csapattrásaikhoz (PÁLL ÉS SUGÁR, 1985).

A farmokon (Új-Zélandon) a gyakorló farmerek nem végeznek ultrahangos vemhesség vizsgálatot, és legtöbb esetben a születéseket sem figyelik, hanem a választáskor vagy egyéb állomány kezelés során ellenőrzik, hogy szoptat-e a tehén. A nem szoptató tehénket kiselejtezik az állományból. Emiatt nincs információ a naposkori vagy ellés folyamán elhullott borjakról. Ennek aránya BEATSON ÉS MTSAI (2000) szerint átlagosan ünnökknél lehet 15 % és a teheneknél 8 %. A fiatalkori elhullás oka 50 %-ban a nehézellés, fertőző vagy hiánybetegség, 5-20 %-ban a menedzsment (ennek jelentős része kerítés hibával kapcsolatos).

AUDIGÉ ÉS MTSAI (1999a) vizsgálatai alapján a borjak 84,1 %-a eléte meg a választást az ünnök esetében, míg a tehenek borjainál ez 91,6 % volt.

5,1-13,2 kg-mal kisebbek az idősebb tehenek borjainál. Az említett testtömeg adatok jól tükrözik az új-zélandi gímszarvas állományban végzett szelekciós munka eredményét, mely a hústermelésre is irányult, az 1980-as évek elejétől.
3. CÉLKITŰZÉS

Vizsgálataim alapvetően két területet érintettek. Hazánkban a gímszarvas ma már - életterét tekintve - szabadterületi populációkra és zárttéri rendszerekben fenntartott és tenyészetet állományokra (kert, park, farm) osztható. Mivel zárttéri populációban nem volt lehetőségem (a korlátozott idő) évről évre követni, megfelelő létszámú gímszarvas bika agancs fejlődését; így az agancsfejlesztő képességgel kapcsolatban szabadterületről származó agancsok adatait dolgoztam fel. Mindkét rendszerben levő állományaink egyrészt hazánk és Európa élővilágát színesítik, melyben fontos részei az ökológiai rendszereknek, és sokoldalú gazdasági hasznot is hajtanak.

A hazai szabadterületi gímszarvas populációkra vonatkozóan:

Tekintettel arra, hogy hazánkban bővül a zárttéri, farmszerű körülmények között tartott, tenyészett szarvasállomány létszáma és gazdasági jelentősége, és ma még e viszonylag fiatal új ágazatra, érthetően kevés kísérleti adatunk van, ezért az így tartott magyar populációk számos jellemző sajátosságával kapcsolatban a következő kérdésekre kerestem a választ:

2. Különböző testméretek alakulása farmon nevelt populációkban a növekedés során az ivartól függően, figyelemmel az ún. évhatásra is, 10 hónapos korig.

3. A különböző testméretek közötti összefüggések elemzése, 10 hónapos korig.

5. A szarvastehenek korának, testtömegének és borjazási arányának összefüggései.

A célkitűzéseimnek megfelelően a disszertációban az egyes kérdésköröket a fenti a sorrendben fogom tárgyalni. Ez vonatkozik a saját vizsgálatokat leíró kísérleti módszertani fejezetre, valamint az eredményekre és azok megvitatására is.
4. A VIZSGÁLATOK ANYAGA ÉS MÓDSZERE

4.1. Szabadterületi gímszarvas állományok
agancsparamétereinek elemzése két eltérő ökológiai régióban

4.1.1. Adatbázis

konzultációját követően is csak két megye szürt adatait (a paramétereket csak átlagolva és csak az érmes kategóriát) kaptam meg, fizetés ellenében. A másik korlátozó tényező, hogy személyes információim szerint (a helyi trófeabírálatot végző személyektől), a trófea bírálat során, ha a trófeán szemrevételezésre látszik, hogy nem lesz érmes, akkor nem is pontozzák le. Ebben az esetben csak a súlyt, a szárhosszt és az ágak számát rögzítik az adatbázisban.

Somogy megye területe 5939 km², míg Bács-Kiskun megyéé 3893 km². Ezek a megyék Magyarország dél-dunántúli régiójában, illetve a Duna-Tisza közének nyugati területén helyezkednek el. A két megye területe egymással nem határos és két különböző élőhelyet képez. Jelen tanulmány az érmes trófeák adatainak elemzésével foglalkozik, mert a nem érmes kategóriájú trófeáknál a bírálók csak a tömeget és a szárhosszt mérík. Így az adatbázis 6868 (Somogy megyéből: 5946 Bács-Kiskun megyéből: 921) lőtt bika trófea adatait tartalmazta (4-16 éves korosztályokban).

Agancsparaméterek
A vizsgálat során a hivatalos pontozáshoz (CIC) felvett agancs méretek, illetve azok átlag értékeit használtuk:
- átlagos szárhossz (cm)
- átlagos szemág hossz (cm)
- átlagos jégág hossz (cm)
- átlagos középg hossz (cm)
- trófea súly (kg)
- átlagos rózsa körméret (cm)
- átlagos alsó szárkörméret (cm)
- átlagos felső szárkörméret (cm)
- ágak száma (db)

Nem használtam azokat a pontokat (szépség pontok, terpesztés, korona), amelyek nem értékelhetők objektíven és az összpontszámoknak csak kis részét képezik.

4.1.2. Statisztikai analízis

A kor várhatóan minden agancs paraméterre hatással volt.

A különböző megyékből származó agancsokat diszkriminancia analízissel (Proc DISCRIM) elemeztem, és próbáltam kategorizálni megyénként.

Az agancs paraméterek közötti összefüggés vizsgálatokat korreláció vizsgálatokkal végezt a SAS (SAS, 2004) szoftver STAT moduljának segítségével (Proc CORR), melyek eredményeit parciális korreláció számítással egészítettem ki (két változó közötti kapcsolatot, úgy jellemez, hogy kiszűri egy harmadik további változó közvetítő hatását), ahol a modellbe parciális tényezőnek beépítettem a kort, mivel minden paraméterre szignifikáns hatással volt.

A korreláció vizsgálatokon kívül végezt faktoranalízist a paraméterek közötti összefüggések részletesebb megismerése céljából.
A faktornalizist több célból is lehet alkalmazni. Az egyik, hogy olyan háttérösszefüggésekre derítsünk fényt, melyek más alkalmazások segítségével nem kiszámíthatók. A másik a dimenzió csökkentés sok változó esetén. Célom a háttérösszefüggések keresése volt.

A faktoranalízis során új értékeket képeztem a korrelációs mátrix alapján. Ezek az úgynevezett faktorok. A faktoranalízis során lehetőségünk van a faktorok forgatására, további esetleges kapcsolatok feltárására.

4.2. Farmon tartott gímszarvas állományok vizsgáálata

4.2.1. A különböző testméretek alakulása farmon nevelt gímszarvas állományokban

4.2.1.1. A vizsgált állomány és jellemzői

legelőfű mellett kiegészítő takarmányozásban részesültek (nedves répaszelet, kukoricaszilázs), a kialakult üzemi gyakorlat szerint.

A testméretek kiválasztásában nagy segítséget jelentett, hogy más állatfajokon korábban hol és milyen paramétereket mértek (pl.: ló, szarvasmarha, juh esetében a marmagasság és az övméret). Ezeket próbáltam kiegészíteni olyan paraméterekkel, melyek szerepét játszhatnak az agancs fejlesztése során: fejhossz, fejszélesség, övméret (mellkas körméret). Az övméretet azért tartottam fontosnak, mert a laposcsontok (bordák) is tartalékát képezik az agancs mineralizációs folyamatának. Ezen kívül a szaporodásbiológiai tulajdonságok vonatkozásában a csípőszélesség is fontos lehet.

A testtömeg mellett sikerült az övméretet, a csípőszélességet, a fejhosszt és a fejszélességet is mérni. Más testméreteket (marmagasság, testhossz, lábszárhossz) - a gímszarvas viselkedési sajátosságai miatt - nem sikerült felvenni. A mérések során a borjakat ugyanabban az álló testhelyzetben mértem. 2008-ban 161 borjat (♂: 73, ♀: 88), 2009-ben 131 borjat (♂: 70, ♀: 61) mértem a munkatársak segítségével.

Testméretek felvétele:

- testtömeg: a kezelőben egy speciálisan gímszarvasok mérésére kialakított állatmérleggel (Tru-test) mértem
- övméret (mellkas körméret): a mérőszalagot (150 cm-es szabócenti) a mellkas alatt átvéve körbevezettem a mellkason a lapockák mögött, kilégzéskor leolvasva
- csípő szélesség: tolómérővel (40 cm) az álló gímszarvas borjakon a külső csípőszögleteknél mértem
- fejhossz: a mérőszalaggal a nyakszirttől a homlokon és az orrháton keresztül vezetve az orrhégyig
fejszélesség: a gímszarvasok feje a szemükkel a legszélesebb, de ott élő állaton nem lehet mért, ezért a szem mögött mértem a homlok csontot, a legkeskenyebb helyen. Később a bikaborjaknál, az agancs növekedés kezdete után a szemgödör és az agancstő közötti legkeskenyebb helyen.

Az 1. mérés 2008 júliusában történt, mert ebben a hónapban szokták a borjakat egyedi füljelzővel ellátni. A méréseket igyekeztem egyéb kezelésekkel egyben elvégezni, hogy ne okozzak az állatoknak felesleges stresszt.

A 2. mérés 2008 októberében történt. Ekkor volt a borjak választása. A választás után a borjakat istállóba szállították és a következő év tavaszáig ott tartották. Az istállóban 8 darab 48 m²-es és 2 darab 64 m²-es bokszban voltak elhelyezve és azonos módon voltak takarmányozva (lucerna széna étvágy szerint, a nedves répaszelet és a kukorica szilázs adagolva).

Az istállóban töltött időszak során további méréseket végeztem (január, március), amíg ki nem kerültek onnan a legelőre. A bikák agancsnövekedése és technológiai okok miatt nem mértem többször a növendékeket.

Ezen mérések alapján lehetőségem nyílt vizsgálni az ivarok- valamint a születési évek (2008, 2009) közötti különbségeket is.

Az elvégzett méréseket és azok pontos dátumát születési évenkénti bontásban az 5. táblázat tartalmazza.
5. táblázat: Az elvégzett mérések a különböző években született borjakon
(2008 és 2009)

<table>
<thead>
<tr>
<th>Kor (hónap)</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>161</td>
<td>131</td>
</tr>
<tr>
<td>1. mérés (július)</td>
<td>2</td>
<td>07.21.-08.01.</td>
</tr>
<tr>
<td>2. mérés (október)</td>
<td>5</td>
<td>10.21.-29.</td>
</tr>
<tr>
<td>3. mérés (január)</td>
<td>8</td>
<td>01.28.-29.</td>
</tr>
<tr>
<td>4. mérés (március)</td>
<td>10</td>
<td>03.18.-19.</td>
</tr>
</tbody>
</table>

A bőszenfai farmon mért borják napra pontos születési dátuma nem ismert (nem ismert a pontos kora az egyedeknek), de a két vizsgált évben a mérési időpontok között csak néhány nap eltérés van. A tehenek borjazása mindkét évben azonos időszakra esett (május).

4.2.1.2. Statisztikai analízis

Mérési hiba számítás
A feltételezett mérési hiba számításához tesztméréseket végeztem. Ezen mérések alkalmával 10 növendék ünöt mértem le 3-szor, véletlen sorrendben egymás után. Minden egyed 3 mérésére testméretenként (mellkas körméret, csípőszélesség, fejhozz, fejszélesség) számoltam átlagot és a legnagyobb (maximum) eltéréssel számoltam az abszolút hibát, melyből tovább számoltam a relatív hibát.

A 6. táblázatban bemutatom a relatív hibaszámítások százalékos eredményeit paraméterenként.

6. táblázat: A relatív hiba százalékos értékei testparaméterenként

<table>
<thead>
<tr>
<th>Testméret</th>
<th>Relatív átlagos hiba (%)</th>
<th>Relatív maximális hiba (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Övméret</td>
<td>±1,2</td>
<td>±5,8</td>
</tr>
<tr>
<td>Csípő szélesség</td>
<td>±0,6</td>
<td>±3,4</td>
</tr>
<tr>
<td>Fejhozz</td>
<td>±0,9</td>
<td>±5,4</td>
</tr>
<tr>
<td>Fejszélesség</td>
<td>±1,1</td>
<td>±4,0</td>
</tr>
</tbody>
</table>
Ivar és év hatás vizsgálata

4.2.2. A különböző testméretek közötti összefüggések vizsgálata

4.2.2.1. A vizsgált állomány és jellemzői

A különböző tulajdonságok közötti összefüggés vizsgálatokhoz az előző fejezetben ismertetett állomány és az ott felvett testparaméterek (testtömeg, övméret, csípőszélesség, fejhossz és fejszélesség) szolgáltatták az adatbázist.

4.2.2.2. Alkalmazott statisztikai módszerek

A testtömeg és a testméretek közötti összefüggés vizsgálatokat korreláció analízissel végeztem (Proc CORR) a fenotípusos összefüggések megállapítására. A korrelációkat külön számítottam az 5 hónapos korban (választáskor) felvett adatokra és a 10 hónapos korban mért paraméterekre. Külön elemeztem a két mérési időpontban felvett adatok közötti kapcsolatokat is.
4.2.3. Különböző növekedési modellek tesztelése gímszarvas borjakon, születésüktől 7-8 hónapos korukig

4.2.3.1. A vizsgált állomány

A gímszarvasok növekedésének matematikai módszerekkel történő leírásához a pontos születési dátum ismerete elengedhetetlen. Ezen kívül a születéskor a testtömeg és testparaméterek felvétele is alapvetően fontos. Az ilyen típusú adatok gyűjtése átlagos farmszerű tartásmódban is rendkívül nehéz, ebből következően minden olyan egzakt kísérletben, ahol a születéskori testtömeg és időpont fontos, a különböző vizsgálatok során kis létszámú állatot – n=13-18 között – lehetett csak beállítani (STEVENS ÉS MTSAI, 2014; ASHER ÉS MTSAI, 2011; LANDETE-CASTILLEJOS ÉS MTSAI, 2001) és az ivarok megoszlása is rendkívül változó volt. Saját tapasztalataim alapján az ilyen jellegű adatok felvétele oly mértékben zavarta meg az anyaállományt, hogy jelentős borjú elhullásokkal kellett számolni. Ezért még jól működő szarvasfarmokon is, mint Bőszénfa, abba kellett hagyni az előzőekben említett adatok felvételét. Az előbbi tapasztalatokból kiindulva 2010-ben saját szarvasfarmunkon, ahol a bőszénfainál kisebb állomány nagymértékben hozzászokott az emberi jelenléthez, tudtam elvégezni az adatgyűjtést, amelyet a következőkben foglalkok össze.

A saját szarvasfarmunkon születéskor (születéstől számított 24 órán belül) fekvő testhelyzetben vettem fel azokat a testméreteket, amelyeket az előzőekben leírt vizsgálatok során ismertették. A testméretek (mellkas körméret, csípő szélesség, fejhossz és fejszélesség) és testtömeg mérése még további 5 alkalommal (szeptember, október, november, december, január) (összesen 6-szor) már az állatok álló helyzetében történt. A pontos születési dátum ismeretében minden egyed kora a mérések időpontjában az adatok értékelésénél egzakt módon volt figyelembe vehető.
Lehetőségeimből adódóan csak viszonylag kis létszámú állomány vizsgálata történhetett meg 5 bika- és 5 űnőborjú bevonásával, melyek azonos apától származtak. A genetikai hátterük megegyezett a böszénfai állományéval. A vizsgált állomány a régió szarvas farmjaira jellemző, telepített gyeppelem fedett legelőterületen nyert elhelyezést, új-zélandi típusú kerítéssel határolt, 2 hektáros területen. A gyep összetételét 50 % angol perje, 25 % fehérhere és 25 % vöröshere képezte.

2. ábra: A kísérleti borjak (2010-ben született) testtömeg adatai

Ezen kis létszámú populáció mérési adatain növekedési modelleket teszteltem és kiemeltem a legjobban illeszkedő egyenleteket minden testmérettére és a testtömegre. A borjak növekedése a korábbi évek adatai és az irodalom alapján télen lelassul, ezért valószínűleg a rá illeszthető görbe ellaposodó képet mutat (2. ábra).
4.2.3.2. Alkalmazott statisztikai módszerek

Tulajdonságonként 60 mérési (10 egyed 6 alkalommal mérve) adaton 34 különböző növekedési függvényt (7. táblázat) teszteltem a gímszarvas borjak különböző testparaméterei növekedésének leírására, születésüktől 7-8 hónapos korukig.

A tesztelt görbéket a 7. táblázat tartalmazza. Ezeket a görbéket korábban más állatfajok (ló, szarvasmarha) növekedésének leírására alkalmazták.

Az ivar hatását a testtömegre és testméretekre, születéstől a kísérlet befejezéséig, egytényezős varianciaanalizissel elemeztem (PROC ANOVA; SAS, 2004).

A borjakat különböző évszakokban mértem (nyár, ősz, tél) és emiatt testtömeg-gyarapodásukat (g/nap) és testméreteik növekedését (mm/nap) minden évszakra vonatkozóan kiszámíthattam.

Az egyes növekedési függvényekkel minden borjú testtömegére és testméreteire becsléseket végeztem (PROC NLIN; SAS, 2004), és a szabadságfokot, és a reziduumok szórását (RSD) kiszámítottam. Minden egyes borjú növekedési adataira teszteltem minden modellt és azokat a függvényeket kizártam a későbbi vizsgálatokból, amelyek nem voltak alkalmasak testparaméter becslésére egy vagy több egyednél (nem illeszkedtek az adatokra).
7. táblázat: Növekedési függvények fajtái (Delgadillo és MtSAI, 2006; Morel és MtSAI, 2007)

<table>
<thead>
<tr>
<th>Sorszám</th>
<th>Függvény</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(b_0 \cdot \text{kor}^{b_1})</td>
</tr>
<tr>
<td>2</td>
<td>(b_0 \cdot \text{kor}^{b_1})</td>
</tr>
<tr>
<td>3</td>
<td>(b_0 + b_1 \cdot \text{kor}^{b_2})</td>
</tr>
<tr>
<td>4</td>
<td>(b_0 \cdot b_1 \cdot \text{kor}^{b_2})</td>
</tr>
<tr>
<td>5</td>
<td>(\log(\text{kor} - b_0))</td>
</tr>
<tr>
<td>6</td>
<td>(\log(b_0 + b_1 \cdot \text{kor}))</td>
</tr>
<tr>
<td>7</td>
<td>(1/(1 + b_0 \cdot \text{kor}))</td>
</tr>
<tr>
<td>8</td>
<td>(\text{kor} \div (b_0 + b_1 \cdot \text{kor}))</td>
</tr>
<tr>
<td>9</td>
<td>(b_0 \div (1 + b_0 \cdot \text{kor}))</td>
</tr>
<tr>
<td>10</td>
<td>(1/(b_0 + b_1 \cdot \text{kor} + b_2 \cdot \text{kor} \cdot \text{kor}))</td>
</tr>
<tr>
<td>11</td>
<td>(\exp(\text{kor} \cdot b_0))</td>
</tr>
<tr>
<td>12</td>
<td>(1 - \exp(-\text{kor}^{b_0}))</td>
</tr>
<tr>
<td>13</td>
<td>(1 - \exp(-b_0 \cdot \text{kor}^{b_0}))</td>
</tr>
<tr>
<td>14</td>
<td>(1 - \exp(-\exp(b_0 \cdot b_1 \cdot \text{kor})))</td>
</tr>
<tr>
<td>15</td>
<td>(b_0 \cdot \exp(-\exp(b_1 \cdot \text{kor} \cdot \text{kor})))</td>
</tr>
<tr>
<td>16</td>
<td>(b_0 \cdot \exp(b_1 \div (\text{kor} \cdot \text{kor})))</td>
</tr>
<tr>
<td>17</td>
<td>(b_0 \div (1 + \exp(b_1 \cdot b_2 \cdot \text{kor})))</td>
</tr>
<tr>
<td>18</td>
<td>(b_0 \cdot \exp(\text{kor} \cdot b_1))</td>
</tr>
<tr>
<td>19</td>
<td>(b_0 \cdot \exp(b_1 \div (\text{kor} \cdot \text{kor})))</td>
</tr>
<tr>
<td>20</td>
<td>(b_0 \cdot (1 - \exp(-b_1 \cdot \text{kor} \cdot \text{kor})))</td>
</tr>
<tr>
<td>21</td>
<td>(b_0 \cdot (1 - \exp(-b_1 \cdot \text{kor} \cdot \text{kor})))</td>
</tr>
<tr>
<td>22</td>
<td>(b_0 \cdot (1 - \exp(-b_1 \cdot \text{kor} \cdot \text{kor})))</td>
</tr>
<tr>
<td>23Brody (exponential)</td>
<td>(b_0 \cdot (1 - b_1 \cdot \exp(-b_2 \cdot \text{kor})))</td>
</tr>
<tr>
<td>24Von Bertalanffy (sigmoid)</td>
<td>(b_0 \cdot (1 - b_1 \cdot \exp(-b_2 \cdot \text{kor})))</td>
</tr>
<tr>
<td>25Richards (sigmoid)</td>
<td>(b_0 \cdot (1 - b_1 \cdot \exp(-b_2 \cdot \text{kor})))</td>
</tr>
<tr>
<td>26Gompertz (sigmoid)</td>
<td>(b_0 \cdot \exp(-b_1 \cdot \exp(-b_2 \cdot \text{kor})))</td>
</tr>
</tbody>
</table>

Születéskor mért paraméterek tartalmazó modelek

<table>
<thead>
<tr>
<th>Sorszám</th>
<th>Függvény</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>(((b_0 \cdot \text{kor} \cdot BW) + (BW^{b_1}))^{b_2})</td>
</tr>
<tr>
<td>28</td>
<td>((b_0 \cdot \text{kor} \cdot BW) + (BW^{b_1}))</td>
</tr>
<tr>
<td>29</td>
<td>(BW \cdot (b_0 \cdot \exp(-b_1 \cdot \text{kor})))</td>
</tr>
<tr>
<td>30</td>
<td>(BW \cdot (b_0 \cdot \exp(b_1 \cdot \text{kor})))</td>
</tr>
<tr>
<td>31</td>
<td>(b_0 + b_1 \cdot BW \cdot \text{kor}^{b_2})</td>
</tr>
<tr>
<td>32</td>
<td>(b_0 \cdot \text{kor} + BW^{b_1})</td>
</tr>
<tr>
<td>33</td>
<td>(b_0 \cdot (\text{kor} \cdot BW) + (BW^{b_1})^{b_2})</td>
</tr>
<tr>
<td>34</td>
<td>(((\text{kor}^{b_0}) + (BW^{b_1}))^{b_2})</td>
</tr>
</tbody>
</table>

BW: testparaméter születéskor; kor: nap, \(b_0, b_1, b_2 \): becsült paraméterek
Az egyes modellek szelekcióját az Akaike információs kritérium (AIC) alapján végezték, amely általánossan elfogadott és ajánlott eljárás a legjobban illeszkedő modellek kiválasztására (HUISMAN ÉS MTSAI, 2002).

A 7. táblázatban szereplő, becső függvények paramétereinek becsült értékeit b_0, b_1 és b_2 jelöli. E becsült paraméterek alapján lehetőségünk van a mért tulajdonság értékeinek meghatározására. A program minden egyed minden mérésére becsült paramétert, illetve paramétereket. Majd az AIC alapján kiválasztott modellek esetében varianciaanalizissel (PROC ANOVA; SAS, 2004) vizsgáltam az ivarok közötti különbségek statisztikai megbízhatóságát a regressziós együtthatókra vonatkozóan.

4.2.4. A gímszarvas tehene korának, testtömegének és ellési arányának összefüggései

4.2.4.1. A vizsgált állomány jellemzői

A 2 éves, először ellett teheneket 10 hónapos koráig négy alkalommal mértem, melyekből az 5 (október, választás) és 10 (március) hónapos kori mérések adatait elemeztem. A mérések során a testtömeg mellett felvettem a
már korábban is felsorolt testméreteket, melyek közül a testtömeggel szoros korrelációt mutatókat (övméret és csípőszélesség) vizsgáltam tovább a reprodukciós tulajdonságok vonatkozásában.

4.2.4.2. Az alkalmazott statisztikai módszerek

A vizsgált tehénállomány kora ismert, melynek eloszlását a 8. táblázat tartalmazza. Látható, hogy az idősebb (4 éves kortól) tehenei koreloszlása igen egyenletlen, valamint a 3 évnél idősebb tehenei már a korábbi években is neveltek borjat. Emiatt a 3 évesnél idősebb tehenei egy csoportba soroltam.

8. táblázat: A vizsgált gímszarvas tehén állomány koreloszlása

<table>
<thead>
<tr>
<th>Tehenek kora</th>
<th>Egyed (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
</tr>
<tr>
<td>4</td>
<td>84</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
</tr>
</tbody>
</table>

A tehenei 3 csoportra bontottam az ellések száma (egyszer és többször ellett) és a kor miatt. Előbbiek alapján a következő csoportokat képeztem:

- 2 éves, egyszer ellett
- 3 éves, egyszer ellett
- idősebb, többször ellett.
A csoportok közötti különbségek megbízhatóságának megbizhatóságát a borjazási eredmények vonatkozásában Chi-négyzet próbával teszteltem. A 2 éves, először ellett teheneket két további csoportra osztottam: ellettekre és nem ellettekre. A csoportok közötti eltérést egytényezős variancia analízissel vizsgáltam a fiatalkorban (5 és 10 hónapos korban) mért testtömegre és testméretekre, illetve azok növekedésére vonatkozóan.

4.2.5. Különböző korú tehén állományoktól származó gímszarvas borjak testtömege

4.2.5.1. A vizsgált állomány jellemzői

A bőszénfai szarvas farmon tartott nőivarú gímszarvas tehén állomány és azok szaporulata képezte a vizsgálataim alapjait. A borjak 2011-ben választáskor, és később 11 hónapos korukban voltak mérve. A vizsgálatban szereplő borjakat 3 csoportba soroltam:

- 2 éves, első ellésű tehenektől származó borjak (vemhesülési idő: 16-18 hónap),
- 3 éves, első ellésű tehenektől származó borjak (vemhesülési idő: 28-29 hónap),
- idősebb, többször ellett tehenektől származó borjak.

4.2.5.2. Az alkalmazott statisztikai módszerek

5. **EREDMÉNYEK**

5.1. A szabadterületi gímszarvas állomány agancs paramétereinek elemzése

5.1.1. Az elejtett gímszarvas állomány jellemzői Bács-Kiskun és Somogy megyében

A megyénként elejtett gímszarvas létszám adatokra trendvonallalat illesztem (1997-2007), melyek pontosságát a számított R^2 értékek jelzik. A vizsgált időszakban Bács-Kiskun megyében az elejtett bikák évenkénti száma 188-ról 376 egyedre emelkedett ($R^2=0,90$).

A tehén és borjú elejtések alakulása is hasonló tendenciát mutatott (tehén: 330 egyed/évről 407 egyed/évre /$R^2=0,56/$; borjú: 389 egyed/évről 563

A tendencia Somogy megyében is hasonló képet mutatott. Az elejtett bikák évenkénti száma 810 egyed/évről 1448 egyed/évre emelkedett ($R^2=0,74$). A vizsgált időszakban a tehén és borjú elejtések alakulása hasonló tendenciát
mutatott, mint a bikáké (tehén: 1008 egyed/évről 2275 egyed/évre /R²=0,51/; borjú: 1266 egyed/évről 2183 egyed/évre /R²=0,44/ emelkedett.). A bikák kilövése 1997-ről 2007-re 78,8 %-kal, a tehennék 125,7 %-kal és a borjaké 72,4 %-kal emelkedett (5. ábra). A vizsgált időszakban a megoszlás változó volt a bika és tarvad állomány között. Arányaiban a legtöbb tarvadat 2002-től 2004-ig terjedő időszakban lötték, majd az arányuk elkezdett csökkeni 2007-ig.

A vadászati év mindig átnyúlik a következő naptári év első hónapjaira, míg a bika még az előző évben fejlesztette ezt az agancsát. A környezeti tényezők (időjárás, mezőgazdasági kultúra, stb.) erősen befolyásolják az agancs növekedését, sőt még az agancs felrakást megelőző év is. Emiatt minden agancs adatát abban az évben vettem számításba, amikor a bika fejlesztette.

Ellentétben az évről évre emelkedő kilövések számával, a trófea paraméterek nem mutattak visszaesést a 10 év során, kivéve a bikák becsült korát. Az átlagos életkor a vizsgált időszakban 9,2 évről 8,4 évre csökkent Bács-Kiskun
megyében (7. ábra) és 9,9 évről 8,3 évre Somogy megyében (8. ábra). Mindkét megye esetében a becsült kor változására a vizsgált időszakban trendvonal volt illeszthető (Bács-Kiskun megye $R^2=0,62$; Somogy megye $R^2=0,97$).

7. ábra: A lőtt bikák becsült korának és átlagos agancs tömegének a változása 1997-től 2007-ig Bács-Kiskun megyében

A bikák korának és a trófea tömegének évről évre történő változását 1997-től 2007-ig az 7. és a 8. ábra szemlélteti. A trófea tömege a vizsgált időszakban Bács-Kiskun megyében erősen ingadozó volt ($R^2=0,01$). Somogy megyében is hasonló tendenciát mutatott a trófea tömege, kisebb ingadozásokkal ($R^2=0,15$). Mindkét megyében a legkisebb átlagos trófea tömeget 2003-ban tapasztaltam.
8. ábra: A lőtt bikák becsült korának és átlagos trófea tömegnek a változása 1997-től 2007-ig Somogy megyében

5.1.2. A „megye” hatása az agancs paraméterekre

A trófea paraméterek átlagát megyénkénti eloszlásban (Bács-Kiskun megye: 921 elejtett bika, Somogy megye: 5946 eljtett bika) és a megyék közötti különbséget jelölve a 9. táblázat foglalja össze.

Statisztikailag igazolt különbséget (P<0,05) találtam a megyék között a szárhossz, a szemághossz, a jégághossz, és a középághossz esetében. A szárhossz és a középághossz tekintetében a Somogy megyei trófeák voltak hosszabbak, míg a többi paraméter esetében a Bács-Kiskun megyeiek voltak nagyobbak.

58
9. táblázat: Az agancs paraméterek átlagai és köztük lévő szignifikáns ($P<0,05$) különbségek a két megyére vonatkozóan

<table>
<thead>
<tr>
<th>Paraméterek</th>
<th>Átlag</th>
<th>MSE</th>
<th>P érték megye</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bács-Kiskun megye</td>
<td>Somogy megye</td>
<td></td>
</tr>
<tr>
<td>Trófea tömeg (kg)</td>
<td>8,22</td>
<td>8,28</td>
<td>1,08</td>
</tr>
<tr>
<td>Szárhossz (cm)</td>
<td>101,32</td>
<td>102,87</td>
<td>6,41</td>
</tr>
<tr>
<td>Szemághossz (cm)</td>
<td>37,4</td>
<td>36,32</td>
<td>5,67</td>
</tr>
<tr>
<td>Jégághossz (cm)</td>
<td>23,26</td>
<td>21,89</td>
<td>11,33</td>
</tr>
<tr>
<td>Középághossz (cm)</td>
<td>32,78</td>
<td>35,49</td>
<td>7,28</td>
</tr>
<tr>
<td>Rózsa körméret (cm)</td>
<td>25,62</td>
<td>25,61</td>
<td>2,23</td>
</tr>
<tr>
<td>Alsó körméret (cm)</td>
<td>15,35</td>
<td>15,36</td>
<td>1,46</td>
</tr>
<tr>
<td>Felső körméret (cm)</td>
<td>14,32</td>
<td>14,34</td>
<td>1,34</td>
</tr>
<tr>
<td>Szárankénti ágak száma</td>
<td>6,65</td>
<td>6,58</td>
<td>1,06</td>
</tr>
</tbody>
</table>

5.1.3. A kor hatása az agancs paraméterekre a vizsgált időszakban

Az elejtett bikák agancsai esetében “becsült kor”-ról beszélhetünk. Felmerült, hogy a trófeák korosztályaiba (fiatal-, közép- és öreg kor) sorolása célszerűbb lenne, de ezt a megoldást elvetettem a következők miatt. A vizsgálatokban csak az érmes kategóriájú trófeák adatai szerepelnek, mert csak ezek álltak rendelkezésémre. Az érmes bikák esetében a legfiatalabb egyedek becsült kora 4 év, így a fiatal kategória szinte teljesen hiányzik a vizsgálatokból. Mivel a trófeák bírálata során becsülik a kort, és ezt mindig ugyanazok a személyek végzik el, ezért minden korcsoport igen nagy valószínűséggel azonos mértékben terhelt hibával.

Mivel a két megye között több vizsgált agancs paraméter esetében is szignifikáns ($P<0,05$) különbséget találtam, így a megyék adatainak elemzését külön-külön végeztem el.

Somogy megyében a vizsgált időszakban 5946 érmes bika esett. Ezek koreloszlása évenkénti bontásban a 10. ábrán szerepel.

10. ábra: Az elejtett szarvasbikák becsült kor szerinti megoszlása a vizsgált időszakban, Somogy megyében

Az agancs súlya a 11 év során hullámzóan alakult, a kor függvényében. A súly változása követi a korosztályok szerint várhatót – miszerint a kor előrehaladtával egyre nagyobb agancsot rak fel a bika (kisebb átfedések előfordulnak az egymáshoz közel eső korcsoportok között). Ebben a megyében ez alól kivételek a 13 és 14 éves korcsoportok, melyek hullámzóan
alakultak. Több korcsoport esetében is megfigyelhető kisebb visszaesés 2000-ben. A szárhossz esetében a Somogy megyei agancsok átlagosan 90-115 cm közötti tartományban mozogtak. A 4 évesek szárhossza többségük esetében rövidebb volt. A szemág tekintetében a korosztályok nem különbözték el egymástól, de a vizsgált időszakban arányaiban sokkal nagyobb szórások voltak a 14 és 15 éves korosztályokban. A jégágnál a korosztályok között nem volt nagy különbség, de a 13, 14 és 15 éves korosztályok arányaiban nagy eltéréseket mutattak a vizsgált időszakban. A középág hossz esetében a korcsoportok hasonló tartományban mozogtak, mely alól a 14 éves korosztálynál erős eltérések mutatkoztak, negatív és pozitív irányban is. A Somogy megyei agancsok ágak száma tekintetében átlagosan 5-8,8 közötti értékeket mutattattak, száranként. A Somogy megyei agancsparaméterek átlag és szórás értékeit korosztályonkénti bontásban az 1. melléklet tartalmazza.

Majdnem minden paraméter folyamatosan nő 12-14 éves korig. Ezt követően általában elkezdenek csökkenni. Ennek üteme megtekinthető az 1. és a 2. mellékletben. A legnagyobb hanyatlást a főágak (szemág, jégág, középág) esetében tapasztaltam. A trófea tömege, a körméretei és a szárhossza esetében stagnálás vagy enyhe csökkenés látható, ami jelentősen nem befolyásolja a CIC pontszámot. A 16 éves kategóriában 1 lőtt bika adatai szerepelnek, amelynek majdnem minden trófea paraméterre magas értéket mutatott. A kor az összes agancs paraméterre szignifikáns (P<0,05) hatást gyakorolt.

Mivel a kor minden agancs paraméterre hatást gyakorol, a további elemzések során ezt mindig figyelembe kell venni.
5.1.4. Korreláció vizsgálatok

Az agancs paraméterek közötti összefüggéseket először korreláció vizsgálatokkal elemeztem. Mivel a kor minden paraméterre szignifikáns (P<0,05) hatással volt és a vizsgált megyék között is találtam eltérést (P<0,05), úgy lenne korrekt, ha korosztályonként és megyénként is külön-külön mutatnám be ezeket. Az összesített (minden korosztályra együttesen vonatkozó) korreláció vizsgálatokat, megyénként különválasztva a 10. táblázat mutatja be.

10. táblázat: A korrelációs együtthatók a gímszarvas agancs paraméterek

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>0,51</td>
<td>0,37</td>
<td>0,29</td>
<td>0,42</td>
<td>0,49</td>
<td>0,63</td>
<td>0,63</td>
<td>0,73</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>0,53</td>
<td>0,24</td>
<td>0,08</td>
<td>0,15</td>
<td>0,05</td>
<td>0,35</td>
<td>0,30</td>
<td>0,33</td>
<td></td>
</tr>
<tr>
<td>V3</td>
<td>0,34</td>
<td>0,20</td>
<td>0,29</td>
<td>0,34</td>
<td>0,19</td>
<td>0,26</td>
<td>0,21</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>0,30</td>
<td>0,07</td>
<td>0,25</td>
<td>0,36</td>
<td>0,32</td>
<td>0,17</td>
<td>0,04</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>V5</td>
<td>0,42</td>
<td>0,13</td>
<td>0,37</td>
<td>0,32</td>
<td>0,36</td>
<td>0,20</td>
<td>0,27</td>
<td>0,21</td>
<td></td>
</tr>
<tr>
<td>V6</td>
<td>0,52</td>
<td>0,13</td>
<td>0,15</td>
<td>0,30</td>
<td>0,29</td>
<td>0,22</td>
<td>0,22</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>V7</td>
<td>0,50</td>
<td>0,26</td>
<td>0,39</td>
<td>0,18</td>
<td>0,35</td>
<td>0,17</td>
<td>0,63</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>V8</td>
<td>0,52</td>
<td>0,26</td>
<td>0,34</td>
<td>0,13</td>
<td>0,45</td>
<td>0,21</td>
<td>0,71</td>
<td>0,78</td>
<td></td>
</tr>
<tr>
<td>V9</td>
<td>0,60</td>
<td>0,27</td>
<td>0,38</td>
<td>0,16</td>
<td>0,37</td>
<td>0,31</td>
<td>0,68</td>
<td>0,83</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)V1: Agancs tömeg; V2: Szárhossz; V3: Szemághossz; V4: Jégághossz; V5: Középághossz; V6: Szárankénti ágak száma; V7: Rózsakörmeret; V8: Alsó körmeret; V9: Felső körmeret
\(^2\) A becsült összefüggések statisztikailag igazolhatók voltak minden esetben (P<0,05); trófeák száma Somogy megyében = 5946.
\(^3\) A becsült összefüggések statisztikailag igazolhatók voltak minden esetben (P<0,05); trófeák száma Bács-Kiskun megyében = 921.

Mivel szignifikáns különbséget tapasztaltam néhány paraméter esetében (szárhossz, szemághossz, jégághossz, középághossz és a szárankénti ágak
száma) a két megye között, a korreláció vizsgálatokat mindkét megyére vonatkozóan külön végeztem el, melyeket külön-külön tartalmaz a 11. táblázat. A korrelációs együthatók hasonló tendenciát mutatnak mindkét megye esetében.

A Somogy megyei agancs paraméterek esetében szoros korrelációt tapasztaltam az alsó és a felső körmérét között, \((r=0,80)\) közepeset a rózsa körmérét és az alsó körmérét \((r=0,66)\), illetve a rózsa körmérét és a felső körmérét \((r=0,62)\) között.

11. táblázat: A (parciális) korrelációs együthatók a gímszarvas agancs paraméterek\(^1\) Somogy\(^2\) megyére (átló alatt) és Bács-Kiskun\(^3\) megyére (átló felett), ahol a parciális tényező a kor

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>V6</th>
<th>V7</th>
<th>V8</th>
<th>V9</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td></td>
<td>0,35</td>
<td>0,32</td>
<td>0,29</td>
<td>0,38</td>
<td>0,43</td>
<td>0,42</td>
<td>0,48</td>
<td>0,61</td>
</tr>
<tr>
<td>V2</td>
<td>0,33</td>
<td></td>
<td>0,17</td>
<td>0,04*</td>
<td>0,07</td>
<td>-0,06</td>
<td>0,14</td>
<td>0,12</td>
<td>0,15</td>
</tr>
<tr>
<td>V3</td>
<td>0,30</td>
<td>0,13</td>
<td></td>
<td>0,28</td>
<td>0,31</td>
<td>0,15</td>
<td>0,19</td>
<td>0,13</td>
<td>0,15</td>
</tr>
<tr>
<td>V4</td>
<td>0,33</td>
<td>0,04</td>
<td>0,24</td>
<td></td>
<td>0,35</td>
<td>0,31</td>
<td>0,14</td>
<td>0,00*</td>
<td>0,04*</td>
</tr>
<tr>
<td>V5</td>
<td>0,38</td>
<td>0,04</td>
<td>0,34</td>
<td>0,32</td>
<td></td>
<td>0,33</td>
<td>0,11</td>
<td>0,20</td>
<td>0,12</td>
</tr>
<tr>
<td>V6</td>
<td>0,43</td>
<td>-0,04</td>
<td>0,10</td>
<td>0,29</td>
<td>0,24</td>
<td></td>
<td>0,09</td>
<td>0,11</td>
<td>0,25</td>
</tr>
<tr>
<td>V7</td>
<td>0,33</td>
<td>0,07</td>
<td>0,35</td>
<td>0,17</td>
<td>0,30</td>
<td>0,04</td>
<td></td>
<td>0,48</td>
<td>0,47</td>
</tr>
<tr>
<td>V8</td>
<td>0,41</td>
<td>0,11</td>
<td>0,30</td>
<td>0,11</td>
<td>0,41</td>
<td>0,10</td>
<td>0,66</td>
<td></td>
<td>0,70</td>
</tr>
<tr>
<td>V9</td>
<td>0,49</td>
<td>0,10</td>
<td>0,34</td>
<td>0,15</td>
<td>0,32</td>
<td>0,20</td>
<td>0,62</td>
<td>0,62</td>
<td>0,80</td>
</tr>
</tbody>
</table>

\(^1\)V1: Agancs tömeg; V2: Szárhossz; V3: Szemághossz; V4: Jégághossz; V5: Középághossz; V6: Szárrankénti ágak száma; V7: Rózsa körmérét; V8: Alsó körmérét; V9: Felső körmérét

\(^2\) A becsült összefüggések statisztikailag igazolhatók voltak minden esetben \((P<0.05)\); trófeák száma Somogy megyében \(= 5946\).

\(^3\) A becsült összefüggések statisztikailag igazolhatók voltak minden esetben \((P<0.05)\); kivéve V2 – V4 V4 – V8 és V4 – V9; trófeák száma Bács-Kiskun megyében \(= 921\).

A Bács-Kiskun megye területén kilőtt bikák agancs paraméterei között gyengébb kapcsolatot találtam az alsó és felső körmérét \((r=0.70)\), a rózsa körmérét és az alsó körmérétn \((r=0.48)\), valamint a rózsa körmérétn és a felső körmérétn \((r=0.47)\) között.
Minden agancs paraméter közepesen-gyengén vagy közepesen (r=0,3-0,49) korrelált a trófea tömegével Somogy megyében. Bács-Kiskun megyében ez hasonlóan alakult, de a körméretek (rózsa körméret r= 0,42; alsó körméret r= 0,48; felső körméret r= 0,61) egy kicsit szorosabb, míg a főágak közül a szemág (r= 0,32) és a jégág (r=0,29) egy kicsit gyengébb kapcsolatot mutattak az agancstömegeggel. Mindkét megyében gyenge kapcsolatot tapasztaltam a szárhossz és a többi agancs paraméter között, kivéve a tömeget.

5.1.5. Faktor analízis

Az agancs paraméterek közötti kapcsolatokról több háttérinformációt szerettem volna nyerni, mely a korrelációsázmításokból nem derült ki, ezért faktor analízist végeztem. Mivel szignifikáns különbséget tapasztaltam 4 agancs paraméter (szárhossz, szemághossz, jégághossz és középághossz) esetében a két megye között, ezért a faktor analízist külön-külön végeztem el a megyékre.

A faktor analízis során szakmai indokok és a saját értékek kommunalitás értékei miatt 4 faktor további vizsgálatát tartottam célszerűnek mindkét megyében. A 4 faktor sajátértékei a teljes varianciának Bács-Kiskun megyében 73%-át, és Somogy megyében 75%-át magyarázták, amit a 12. és a 13. táblázat kommunalitás értékei mutatnak.
12. táblázat: A faktor analízis sajátértékei és kommunalitás értékei Bács-Kiskun megyei agancsokon

<table>
<thead>
<tr>
<th>Faktorok száma</th>
<th>Sajátérték</th>
<th>Kommunalitás</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,14</td>
<td>0,35</td>
</tr>
<tr>
<td>2</td>
<td>1,55</td>
<td>0,52</td>
</tr>
<tr>
<td>3</td>
<td>1,09</td>
<td>0,64</td>
</tr>
<tr>
<td>4</td>
<td>0,81</td>
<td>0,73</td>
</tr>
<tr>
<td>5</td>
<td>0,72</td>
<td>0,81</td>
</tr>
<tr>
<td>6</td>
<td>0,64</td>
<td>0,88</td>
</tr>
<tr>
<td>7</td>
<td>0,50</td>
<td>0,94</td>
</tr>
<tr>
<td>8</td>
<td>0,31</td>
<td>0,97</td>
</tr>
<tr>
<td>9</td>
<td>0,23</td>
<td>1,00</td>
</tr>
</tbody>
</table>

13. táblázat: A faktor analízis sajátértékei és kommunalitás értékei a Somogy megyei agancsokon

<table>
<thead>
<tr>
<th>Faktorok száma</th>
<th>Sajátérték</th>
<th>Kommunalitás</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,43</td>
<td>0,38</td>
</tr>
<tr>
<td>2</td>
<td>1,37</td>
<td>0,53</td>
</tr>
<tr>
<td>3</td>
<td>1,08</td>
<td>0,65</td>
</tr>
<tr>
<td>4</td>
<td>0,89</td>
<td>0,75</td>
</tr>
<tr>
<td>5</td>
<td>0,66</td>
<td>0,83</td>
</tr>
<tr>
<td>6</td>
<td>0,64</td>
<td>0,90</td>
</tr>
<tr>
<td>7</td>
<td>0,39</td>
<td>0,94</td>
</tr>
<tr>
<td>8</td>
<td>0,36</td>
<td>0,98</td>
</tr>
<tr>
<td>9</td>
<td>0,17</td>
<td>1,00</td>
</tr>
</tbody>
</table>

A faktor analízis során lehetőség van a faktorok különböző forgatására. Forgatás után a faktor elemek új értékeket kapnak - a forgatás módjától függően. A varimax forgatás után szakmailag indokolható értékeket kaptam a
faktor elemekre, melyeket a 14. és 15. táblázatban foglaltam össze, külön-külön a két megyére vonatkozóan.

14. táblázat: A Bács-Kiskun megyei agancsok paramétereihez faktor analízissel számolt faktor elemek, forgatás után

<table>
<thead>
<tr>
<th>Paraméternek</th>
<th>Faktorok</th>
<th>Kommunalitás</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Agancs tömeg</td>
<td>0,57</td>
<td>0,26</td>
</tr>
<tr>
<td>Szárhossz</td>
<td>0,08</td>
<td>0,08</td>
</tr>
<tr>
<td>Szemághossz</td>
<td>0,17</td>
<td>0,80</td>
</tr>
<tr>
<td>Jégághossz</td>
<td>-0,05</td>
<td>0,68</td>
</tr>
<tr>
<td>Középághossz</td>
<td>0,08</td>
<td>0,56</td>
</tr>
<tr>
<td>Szárankénti ágak száma</td>
<td>0,10</td>
<td>0,12</td>
</tr>
<tr>
<td>Rózsa körméret</td>
<td>0,75</td>
<td>0,25</td>
</tr>
<tr>
<td>Alsó körméret</td>
<td>0,87</td>
<td>-0,01</td>
</tr>
<tr>
<td>Felső körméret</td>
<td>0,85</td>
<td>-0,05</td>
</tr>
<tr>
<td>Sajátérték</td>
<td>3,14</td>
<td>1,55</td>
</tr>
<tr>
<td>Variancia</td>
<td>2,42</td>
<td>1,57</td>
</tr>
</tbody>
</table>

Ebben a faktorban a szárhossz kapott magas értéket. A kommunalitásban a becsült értékek 0,53 és 0,95 között változott (14. táblázat). Ez azt jelenti, hogy az adott tulajdonságot milyen arányban magyarázza a 4 faktor. A négy faktort különböző színekkel és formákkal jelölve a 11. ábra mutatja be, forgatás után, Bács-Kiskun megyére vonatkozóan.

11. ábra: A forgatott faktor elemek Bács-Kiskun megyéből az 1., 2. és 3. faktor függvényében

A Somogy megyei agancsoknál az első faktor az eredeti 9 tulajdonság teljes varianciájának a 38%-át adta (13. táblázat). Ez a faktor reprezentálta a körméreteket, mely a 15. táblázatban látható, az adott faktor elemek értékeiből. A második faktor a teljes variancia 15%-át foglalta magába.
15. táblázat: A Somogy megyei agancsok paramétereihez főkomponens analizissel számolt factor elemek, forgatás után

<table>
<thead>
<tr>
<th>Paraméterek</th>
<th>Faktorok</th>
<th>Kommunalitás</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Agancs tömeg</td>
<td>0,39</td>
<td>0,26</td>
</tr>
<tr>
<td>Szárhossz</td>
<td>0,03</td>
<td>0,03</td>
</tr>
<tr>
<td>Szemághossz</td>
<td>0,28</td>
<td>0,74</td>
</tr>
<tr>
<td>Jégághossz</td>
<td>-0,06</td>
<td>0,70</td>
</tr>
<tr>
<td>Középághossz</td>
<td>0,32</td>
<td>0,62</td>
</tr>
<tr>
<td>Szárankénti ágak száma</td>
<td>0,04</td>
<td>0,11</td>
</tr>
<tr>
<td>Rózsa körméret</td>
<td>0,81</td>
<td>0,24</td>
</tr>
<tr>
<td>Alsó körméret</td>
<td>0,91</td>
<td>0,12</td>
</tr>
<tr>
<td>Felső körméret</td>
<td>0,88</td>
<td>0,10</td>
</tr>
<tr>
<td>Sajátérték</td>
<td>3,43</td>
<td>1,37</td>
</tr>
<tr>
<td>Variancia</td>
<td>2,59</td>
<td>1,59</td>
</tr>
</tbody>
</table>

Ezt a faktort magas értékekkel képviselték a főágak (szemághossz, jégághossz, középághossz). A harmadik faktor a teljes variancia 12%-át adta. Ez a faktor az agancs tömeget és a szárankénti ágak számát foglalta magában, magas értékekkel. A negyedik faktor a teljes variancia 9%-át adta. Ebben a faktorban a szárhossz kapta a legmagasabb értéket. A 9 paraméterre vonatkozó kommunalitás Somogy megyében 0,54 és 0,93 között változott (15. táblázat). Ez azt jelenti, hogy az adott tulajdonságot milyen arányban magyarázza a 4 faktor. A Somogy megyei agancsokról a négy elforgatott faktort különböző színekkel és formákkal jelölve a 12. ábra szemlélteti.
A két megyében azonban különböző faktorokba került az agancstömeg, mely azzal magyarázható, hogy a két populációban más tulajdonságok határozzák meg a súlyt.
12. ábra: *A forgatott faktor elemek Somogy megyéből az 1., 2. és 3. faktor függvényében*

Somogy megyében az ágak száma (mely szerint minél több ág van az agancson, annál nehezebb), míg a Bács-Kiskun megyei agancsománál a körméretek határozzák meg az agancs tömegét (minél vastagabb a szár, annál nehezebb).

5.2. Farmon tartott gímszarvas állományok vizsgálata

5.2.1. A testtömeg és egyes testméretek alakulása farmon nevelt gímszarvas populációkban

A bőszénfai szarvasfarmon 2008-ban született 70 hím és 58 nőivarú borjú és 2009-ben született 69 hím és 61 nőivarú borjú képezte a vizsgált állományt. Mindkét évben a borjak mérését azonos időpontokban (az összehasonlíthatóság miatt közel azonos korban) végeztem.
5.2.1.1. Borjak ivarának hatása a különböző vizsgált testparaméterekre

Testtömeg

A gímszarvas borjak testtömege esetében a bikaborjak szignifikánsan (P<0,05) nagyobbak voltak, mint az ünőborjak. Ez a különbség az idő előre haladával folyamatosan növekedett.

13. ábra: A gímszarvas borjak átlagos testtömege ivaronként

Amíg a borjak legelőn voltak az anyjukkal (júliustól októberig, 95,2 nap) a bikaborjak testtömeg gyarapodása 349,7 g/nap, míg az ünőborjaké 301,4 g/nap volt. Ez választás után (októbertől márciusig, 144,9 nap) erősen
visszaesett. A bikaborjak 68,6 g/nap, míg az ünöborjak 17,2 g/nap tömeggyarapodást mutattak átlagosan.
A 13. ábra szemlélteti az ivarok közötti különbséget (P<0,05) az átlagos testtömegekre vonatkozóan a különböző időpontokban tartott méréseknél (július, október, január, március).
Júliusban az ivarok közötti különbség átlagosan 10,5 % volt és ez az eltérés márciusig 16,1 %-ra nőtt.

Övméret

Az övméret esetében is statisztikailag igazolható különbséget (P<0,05) tapasztaltam az ivarok között a bikaborjak javára. Ennél a paraméternél kisebb volt a relatív a különbség, mint a testtömeg esetében, minden mérési időpontban.

14. ábra: A gímszarvas borjak átlagos övmérete ivaronként

Az övméret növekedése esetében választás előtt és után is szignifikáns különbséget (P<0,05) találtam az ivarok között. Választás előtt (júliustól
októbereig, 95,2 nap) a bikaborjak övmérete naponta átlagosan 2,6 mm-t nőtt, míg az ünőborjaké 2,4 mm-t. Választás után (októbertől márciusig, 144,9 nap) ez gyakorlatilag stagnálást mutatott. A 14. ábra bemutatja az ivarok közötti különbséget.

Júliusban az ivarok közötti különbség átlagosan 2,5 % volt, és a vizsgálatok befejezéséig (március) ez 5,5 %-ra nőtt. Az ivarok közötti különbség minden mérésnél meghaladta a számolt relatív hiba (1,2 %) értékét, de a maximális hibáért (5,8 %) csak a 2009-ben mért borjak márciusi mérésénél érte el.

Csipőszélesség

A bikaborjak csipőszélessége minden mérési időpontban meghaladta (P<0,05) az ünőborjaké (15. ábra). A relatív különbség jelen esetben is kisebb mértékű volt, mint a testtömegnél.

15. ábra: A gímszarvas borjak átlagos csipőszélessége ivaronként

A júliustól októberig terjedő időszakban (választás előtt, 95,2 nap) a csipőszélesség növekedésében az ivarok közötti különbség nem érte el a
szignifikáns (P<0,05) különbség mértékét. Választás után (októbertől márciusig, 144,9 nap) a különbség ugyan kismértékű volt az ivarok között, de szignifikánsnak bizonyult. Ebben az időszakban a bikaborjak átlagos csípőszélesség növekedése 1,3 cm, míg az ünőborjak esetében 0,7 cm volt. Az 15. ábra reprezentálja az ivarok közötti különbséget a csípőszélesség méreteiben és növekedésében.

Júliusban az ivarok között átlagosan 4,6 % volt a különbség a csípőszélesség esetében, és ez márciusra 6,7 %-ra emelkedett, a 2008-ban született borjaknál 5,1 %, míg a 2009-ben születetteknél 4,2 % volt arányaiban a különbség az ivarok között. Márciusra ez elérte a 6,4 és a 7,1 %-ot. Az ivarok közötti különbség minden mérésnél meghaladta a számolt relatív hiba (0,6 %) és a maximális hiba (3,4 %) értékét is.

Fejhossz

A gímszarvas borjak fejhossza esetében is szignifikáns különbség (P<0,05) mutatkozott az ivarok között (16. ábrán). A különbség mértéke ebben az esetben is számottevően kisebb a testtömegénél. A fejhossz növekedés esetében szignifikáns különbség volt már választás előtti időszakban (júliustól októberig, 95,2 nap) is az ivarok között. A bikaborjak fejhossza átlagosan 4,7 cm-t, míg az ünőborjaké 4,4 cm-t nőtt. Választás után (októbertől márciusig, 144,9 nap) is megmaradt a különbség, viszont a növekedés intenzitása kicsit csökkent, a bikaborjak fejhossza 4,3 cm-t, míg az ünőké 3,6 cm-t nőtt. A 16. ábra szemlélteti a gímszarvas borjak fejhossz adatait ivaronkénti bontásban, mérésenként.
Júliusban az ivarok közötti különbség átlagosan 3,4 % volt, és a vizsgálatok végére (március) ez 5,1 %-ra emelkedett. Az ivarok közötti különbség minden mérésnél meghaladta a számolt relatív hiba (0,9 %) értékét, de a maximális hibáét (5,4 %) csak a 2009-ben született borjak esetében múlta felül (5,5 %) a különbség januárban.

Fejszélesség

A fejszélesség esetében szignifikáns különbség (P<0,05) volt az ivarok között minden méréskor. A bikaborjaknak minden esetben szélesebb volt a fejük, mint az ünőborjaknak. A különbség a mérések során egyre nagyobb lett, mely jól látható az 17. ábrán.

Választás előtt (júliustól októberig, /átlag 95,2 nap/) a borjak fejszélesség növekedése ivaronként eltért. A bikaborjaké 1,1 cm-t, míg az ünőborjaké 0,8 cm-t nőtt ebben az időszakban. Választás után (októbertől márciusig, /átlag
144,9 nap/) a bikaborjaknál további 1,1 cm-t nőtt, míg az ünőborjak esetében stagnált (0,05 cm).

17. ábra: A gímszarvas borjak átlagos fejszélessége ivaronként

Júliusban az ivarok közötti különbség átlagosan 4,1 % volt. és márciusra ez 14,1 %-ra nőtt. Az ivarok közötti különbség minden mérésnél meghaladta a számolt relatív hiba (1,1 %) értékét. A maximális hibáérték (4,0 %) is minden mérésnél mindkét évben felülmúlták, kivéve a 2008-ban mért borjak júliusi és októberi (3,3 %) méréseinél.

5.2.2.2. A születési év hatásának vizsgálata a gímszarvas borjak testtömegére és testméreteire

Az un. évhatások megállapíthatósága érdekében a 2008-ban és a 2009-ben mért borjak azonos korra vonatkozó adatait összehasomlítottam egymással.
Testtömeg
A borjak testtömege esetében minden méréskor (július, október, január, március) statisztikailag igazolható (P<0,05) különbséget találtam a 2008-ban és a 2009-ben született állomámy között, mindkét ivarban (16. táblázat).

16. táblázat: A gímszarvas borjak testtömegének és napi testtömeggyarapodásának átlag és szórás értékei, születési évenként, ivaronkénti bontásban

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bika</td>
<td>ünő</td>
<td>bika</td>
</tr>
<tr>
<td>Paraméterek júliusban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egyedek száma (n)</td>
<td>70</td>
<td>88</td>
<td>69</td>
</tr>
<tr>
<td>testtömeg (kg)</td>
<td>48,3±7,9</td>
<td>43,3±8,2</td>
<td>51,0±4,9</td>
</tr>
<tr>
<td>Paraméterek októberben</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egyedek száma (n)</td>
<td>70</td>
<td>87</td>
<td>67</td>
</tr>
<tr>
<td>testtömeg (kg)</td>
<td>78,5±9,5</td>
<td>70,2±8,3</td>
<td>87,4±8,0</td>
</tr>
<tr>
<td>Paraméterek januárban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egyedek száma (n)</td>
<td>65</td>
<td>84</td>
<td>64</td>
</tr>
<tr>
<td>testtömeg (kg)</td>
<td>81,1±9,2</td>
<td>70,6±7,0</td>
<td>91,9±8,6</td>
</tr>
<tr>
<td>Paraméterek márciusban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>egyedek száma (n)</td>
<td>63</td>
<td>84</td>
<td>58</td>
</tr>
<tr>
<td>testtömeg (kg)</td>
<td>88,4±9,7</td>
<td>73,7±7,6</td>
<td>96,8±8,5</td>
</tr>
<tr>
<td>Növekedés júliustól-márciusig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>napok száma</td>
<td>237,2</td>
<td>243,6</td>
<td></td>
</tr>
<tr>
<td>testtömeg (g/nap)</td>
<td>170,5±34,0</td>
<td>128,1±30,7</td>
<td>189,1±28,7</td>
</tr>
</tbody>
</table>

A 2009-ben született borjak mindkét ivarban nagyobb testtömegűek voltak a 2008-ban születetteknél.
A 2009-ben született borjak már 2 hónapos korukban átlagosan 3,3 kg-mal nehezebbek voltak, és a különbség választásig (október) 8,9 kg-ra nőtt. Választás után januárra a különbség még kis mértékben emelkedett (9,0 kg), majd márciusra kicsit csökkent (6,9 kg).
A két vizsgált évben a mérések során a különbség ingadozott. Júliusban a 2009-ben született bikaborjak 5,3 %-kal, az ünőborjak 6,5 %-kal voltak nagyobbak a 2008-ban születetteknél. Ez a különbség az októberi és januári méréseknél emelkedett, majd lecsökkent 8,7 (bika) és 6 (ünő) %-ra.

Övméréte
A két év során született borjak övméréte között júliusban nem, míg a többi mérésnél (október, január, március) már volt szignifikáns (P<0,05) különbség (17. táblázat).

17. táblázat: A gímszarvas borjak övméretének és övméret növekedésének átlag és szórás értékei, születési évenként, ivaronkénti bontásban

<table>
<thead>
<tr>
<th>Paraméterek júliusban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyének száma (n)</td>
<td>70</td>
<td>88</td>
<td>69</td>
</tr>
<tr>
<td>övméréte (cm)</td>
<td>84,2±4,7</td>
<td>81,6±5,0</td>
<td>84,1±4,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek októberben</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyének száma (n)</td>
<td>70</td>
<td>87</td>
<td>67</td>
</tr>
<tr>
<td>övméréte (cm)</td>
<td>106,3±5,6</td>
<td>102,1±5,1</td>
<td>112,2±3,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek januárban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyének száma (n)</td>
<td>65</td>
<td>84</td>
<td>64</td>
</tr>
<tr>
<td>övméréte (cm)</td>
<td>105,3±4,6</td>
<td>102,0±4,1</td>
<td>111,5±4,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek márciusban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyének száma (n)</td>
<td>63</td>
<td>84</td>
<td>58</td>
</tr>
<tr>
<td>övméréte (cm)</td>
<td>107,0±4,2</td>
<td>101,5±3,8</td>
<td>111,0±3,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Növekedés júliustól-márciusig</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>napok száma</td>
<td>237,2</td>
<td>243,6</td>
<td></td>
</tr>
<tr>
<td>övméréte (cm)</td>
<td>23,1±3,6</td>
<td>20,1±3,8</td>
<td>27,1±4,7</td>
</tr>
</tbody>
</table>

ns: nem szignifikáns

A csipőszélességben a legnagyobb mértékű és szignifikáns évhatás választáskor (október) mutatkozott, mindkét ivaron. Választáskor a 2009-ben született borjak övméréte 6,39 cm-rel nagyobb volt, mint a 2008-ban.
született borjaké. Ezt követően ez fokozatosan csökkent (januárban: 5,54 cm, márciusban: 3,47 cm).

A két vizsgált évben a mérések során a különbség ingadozott. Júliusban a 2009-ben született bikaborjak 0,1 %-kal kisebbek, az ünőborjak 1,2 %-kal nagyobbak voltak a 2008-ban születetteknél (nem szignifikáns). Ez a különbség az októberi (bika: 5,3 %; ünő: 5,6 %) és januári (5,6 %; ünő: 4,3 %) méréseknél emelkedett, majd lecsökkent 3,6 (bika) és 3 (ünő) %-ra. A különbségek a júliusi mérések kivételével meghaladták a számított relatív hiba (1,2 %) értékét.

Csípőszélesség
A csípőszélesség esetében minden mérés alkalmával mindkét ivarban a 2009-ben született borjak szignifikáns (P<0,05) mértékben multák felül a 2008-as évjárat állatait.

A választás előtti (július) mérésnél átlagosan 1,17 cm-rel voltak nagyobbak a 2009-ben született borjak. Ez választáskor (október) már 1,59 cm-re emelkedett, majd fokozatosan csökkent (januárban: 0,89 cm, márciusban: 0,79 cm) (18. táblázat).

Júliusban a 2009-ben született bikaborjak csípőszélessége 6,0 %-kal, az ünőborjaké 6,9 %-kal haladta meg a 2008-ban születettekét. Ez a különbség az októberi (bika: 6,9 %; ünő: 8,2 %) méréseknél növekedett, majd januárban (bika: 5,6 %; ünő: 4,3 %) és márciusban lecsökkent (bika: 4 %; ünő: 3,3 %).
18. táblázat: A gímszarvas borjak csipőszélességének és csipőszélesség növekedésének átlag és szórás értékei születési évenként, ivaronkénti bontásban

<table>
<thead>
<tr>
<th>Paraméterek júliusban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyedek száma (n)</td>
<td>70</td>
<td>88</td>
<td>69</td>
</tr>
<tr>
<td>csipőszélesség (cm)</td>
<td>15,8±1,0</td>
<td>15,0±1,0</td>
<td>16,8±0,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek októberben</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyedek száma (n)</td>
<td>70</td>
<td>87</td>
<td>67</td>
</tr>
<tr>
<td>csipőszélesség (cm)</td>
<td>20,1±1,0</td>
<td>19,1±0,9</td>
<td>21,6±0,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek januárban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyedek száma (n)</td>
<td>65</td>
<td>84</td>
<td>64</td>
</tr>
<tr>
<td>csipőszélesség (cm)</td>
<td>21,0±1,0</td>
<td>20,0±0,8</td>
<td>21,9±0,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek márciusban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyedek száma (n)</td>
<td>63</td>
<td>84</td>
<td>58</td>
</tr>
<tr>
<td>csipőszélesség (cm)</td>
<td>21,7±1,0</td>
<td>20,3±0,9</td>
<td>22,6±0,8</td>
</tr>
</tbody>
</table>

Növekedés júliustól-márciusig

<table>
<thead>
<tr>
<th>napok száma</th>
<th>237,2</th>
<th>243,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>csipőszélesség (cm)</td>
<td>5,9±0,9</td>
<td>5,3±0,9</td>
</tr>
</tbody>
</table>

ns: nem szignifikáns

Fejhossz
A két vizsgált év során született borjak fejhossza minden mérésnél statisztikailag igazoltan (P<0,05) különbözőtt, kivéve a júliusi (2 hónapos kori) mérést. Ebben az esetben is a 2009-ben született borjak felülmúlták a 2008-ban születetteket.

A választás előtti mérésnél (július) a különbség még csak 0,38 cm volt. Ez 0,68 cm-re emelkedett októberre (választás), az ezt követő mérésig (január) stagnált (0,68 cm), majd megemelkedett 1, 49 cm-re a márciusi mérésnél (19. táblázat).
19. táblázat: A gímszarvas borjak fejhosszának és fejhossz növekedésének átlag és szórás értékei születési évenként, ivaronkénti bontásban

<table>
<thead>
<tr>
<th>Paraméterek júliusban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyének száma (n)</td>
<td>70</td>
<td>88</td>
<td>69</td>
</tr>
<tr>
<td>fejhossz (cm)</td>
<td>29,9±1,6</td>
<td>28,8±1,6</td>
<td>30,0±0,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek októberben</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyének száma (n)</td>
<td>70</td>
<td>87</td>
<td>67</td>
</tr>
<tr>
<td>fejhossz (cm)</td>
<td>34,4±1,4</td>
<td>33,0±1,3</td>
<td>34,9±1,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek januárban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyének száma (n)</td>
<td>65</td>
<td>84</td>
<td>64</td>
</tr>
<tr>
<td>fejhossz (cm)</td>
<td>37,3±1,5</td>
<td>35,6±1,2</td>
<td>38,1±1,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek márciusban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyének száma (n)</td>
<td>63</td>
<td>84</td>
<td>58</td>
</tr>
<tr>
<td>fejhossz (cm)</td>
<td>38,2±1,6</td>
<td>36,3±1,2</td>
<td>39,6±1,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Növekedés júliustól-márciusig</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>napok száma</td>
<td>237,2</td>
<td>243,6</td>
<td></td>
</tr>
<tr>
<td>fejhossz (cm)</td>
<td>8,3±1,2</td>
<td>7,5±1,3</td>
<td>9,7±1,0</td>
</tr>
</tbody>
</table>

ns: nem szignifikáns

Az ivar hatása ennél a paraméternél is erősödött a kor előrehaladtával. A teljes variancia 11,8%-át magyarázta 2 hónapos korban, majd márciusra ez 30,1%-ra nőtt.

A két vizsgált évben a mérések során a különbség az ünőborjak esetében kis mértékben ingadozott, míg a bikaborjanál folyamatosan emelkedett. Júliusban a 2009-ben született bikaborjak fejhossza 0,3 %-kal, az ünőborjaké 1,0 %-kal haladta meg a 2008-ban születetteket (nem szignifikáns).

Októberre a különbségek az évjáratok között nőttek (bika: 1,4%, ünő: 1,8%) és a márciusi méréskor mindkét ivarban elérte a maximális 3,5%-os különbséget. A különbségek a júliusi méréseknél az ünőborjaknál meghaladták, de a bikaborjaknál nem a számított relatív hiba (0,9%) értékét.

A későbbi méréseknél már minden esetben felülmúlták. A teljes, mintegy 8
hónapos időszak alatt a fejhossz növekedésében az évjáratok között a hímivarban 1,4 cm-es (18%), a nőívarban 1,1 cm-es (15%) különbség (P<0,05) volt kimutatható.

Fejszélesség
A fejszélesség esetében csak a választás előtti és a választáskori mérésnél volt szignifikáns (P<0,05) különbség a két különböző évben született borjak között. Választás előtt (július) a 2008-ban született borjak fejszélessége nagyobb volt a 2009-ben születettekének, 0,26 cm-rel. Ez a választáskori mérésre megfordult és a 2009-ben született borjaké lett nagyobb, 0,18 cm-rel. A későbbi méréseknél a különbségek már nem álltak fenn (20. táblázat).

20. táblázat: A gímszarvas borjak fejszélességének és fejszélesség növekedésének átlag és szórás értékei születési événként, ivaronkénti bontásban

<table>
<thead>
<tr>
<th>Paraméterek júliusban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyedek száma (n)</td>
<td>70</td>
<td>88</td>
<td>69</td>
</tr>
<tr>
<td>fejszélesség (cm)</td>
<td>10,0±0,6</td>
<td>9,8±0,7</td>
<td>9,9±0,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek októberben</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyedek száma (n)</td>
<td>70</td>
<td>87</td>
<td>67</td>
</tr>
<tr>
<td>fejszélesség (cm)</td>
<td>10,8±0,4</td>
<td>10,4±0,4</td>
<td>11,2±0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek januárban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyedek száma (n)</td>
<td>65</td>
<td>84</td>
<td>64</td>
</tr>
<tr>
<td>fejszélesség (cm)</td>
<td>11,7±0,6</td>
<td>10,5±0,4</td>
<td>12,0±0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paraméterek márciusban</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>egyedek száma (n)</td>
<td>63</td>
<td>84</td>
<td>58</td>
</tr>
<tr>
<td>fejszélesség (cm)</td>
<td>12,1±0,4</td>
<td>10,5±0,5</td>
<td>12,1±0,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Növekedés júliustól-márciusig</th>
<th>2008</th>
<th>2009</th>
<th>P-érték (év)</th>
</tr>
</thead>
<tbody>
<tr>
<td>napok száma</td>
<td>237,2</td>
<td>243,6</td>
<td></td>
</tr>
<tr>
<td>fejszélesség (cm)</td>
<td>2,1±0,6</td>
<td>0,7±0,6</td>
<td>2,3±0,5</td>
</tr>
</tbody>
</table>

ns: nem szignifikáns
A két vizsgált évben a mérések során a különbség ingadozott. Júliusban a 2008-ban született bikaborjak 1,0 %-kal, az ünőborjak 5,1 %-kal voltak nagyobbak a 2009-ben születetteknél. A különbség fordítottan változott az ivarok között az októberi (bika: 3,6 %; ünő: 1,0 %) és a januári (bika: 2,5 %; ünő: 1,9 %) méréseknél, majd márciusban lecsökkent vagy stagnált (bika: 0 %; ünő: 1,9 %). A különbségek a bikák esetében júliusban és januárban nem, de a többi esetben és az ünőborjak összes mérésénél meghaladták a számított relatív hiba (1,1 %) értékét.

5.2.2.3. Az ivarnak, a születési évnek (évhatás) és azok kölcsönhatásának elemzése a varianciakomponensek alapján

A farmon nevelt gímszarvas állományok borjai testtömegében és testméreteiben (övméret, csípőszélesség, fejhossz és fejszélesség) általában jelentős és szignifikáns (P<0,05) ivar és évhatásokat mutattam ki. A testtömeget, az övméretet és a csípőszélességet erős ivar és évhatások befolyásolják. A fejhosszát sokkal kevésbé, míg a fejszélesség varianciáját gyakorlatilag nem befolyásolja az évhatás. Az összes testparaméter közül a fejszélesség mutatta a legnagyobb ivari dimorfizmust.

21. táblázat: Az ivar hatása az összvariancia %-ában a különböző paraméterekre, a kor függvényében

<table>
<thead>
<tr>
<th>Mérés hónapja</th>
<th>Kor hónapja</th>
<th>Paraméter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Testtömeg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>variancia %</td>
</tr>
<tr>
<td>Július</td>
<td>2</td>
<td>11,3*</td>
</tr>
<tr>
<td>Október</td>
<td>5</td>
<td>20,1*</td>
</tr>
<tr>
<td>Január</td>
<td>8</td>
<td>30,5*</td>
</tr>
<tr>
<td>Március</td>
<td>10</td>
<td>45,7*</td>
</tr>
</tbody>
</table>

*P<0,001
A 21. táblázatban összefoglalt adatok azt mutatják, hogy az ivar hatása a júliustól márciusig terjedő időszakban az összes vizsgált paraméter esetében az összvariancia mind nagyobb hányadát határozta meg. Különösen jelentős a növekedés tendenciája és mértéke a fejszélesség esetében, ezt sorrendben a testtömeg követi.

A születési év (évhatás) varianciára gyakorolt hatása jelentős a testtömeg és az avval szorosabban összefüggő ovuméret és csípőszélesség esetében. A fejhossz és különösen a fejszélesség varianciáját sokkal kisebb mértékben befolyásolja, illetve utóbbit nem is befolyásolja szignifikánsan (22. táblázat).

22. táblázat: A születési év (évhatás) hatása az összvariancia %-ában a különböző paraméterekre, a kor függvényében

<table>
<thead>
<tr>
<th>Mérés hónapja</th>
<th>Kor (hónap)</th>
<th>Testtömeg</th>
<th>Övméret</th>
<th>Csípőszélesség variancia %</th>
<th>Fejhossz</th>
<th>Fejszélesség</th>
</tr>
</thead>
<tbody>
<tr>
<td>Július</td>
<td>2</td>
<td>3,2*</td>
<td>ns</td>
<td>21,1**</td>
<td>ns</td>
<td>4,4**</td>
</tr>
<tr>
<td>Október</td>
<td>5</td>
<td>15,6**</td>
<td>24,9**</td>
<td>37,5**</td>
<td>3,5**</td>
<td>1,8**</td>
</tr>
<tr>
<td>Január</td>
<td>8</td>
<td>15,6**</td>
<td>22,5**</td>
<td>14,9**</td>
<td>3,4**</td>
<td>ns</td>
</tr>
<tr>
<td>Március</td>
<td>10</td>
<td>7,2**</td>
<td>10,5**</td>
<td>10,1**</td>
<td>15,2**</td>
<td>ns</td>
</tr>
</tbody>
</table>

**P<0,001; * P<0,05; ns: nem szignifikáns

A születési év hatása az októberi méréseknél volt a legszembenőbb a testtömeg, az övméret és a csípőszélesség esetében. A születési év hatása a fejszélességhez 2 hónapos korban volt a legnagyobb és januárra ez már nem volt statisztikailag igazoltan kimutatható. A fejhossz esetében az évhatás az összvarianciában októbertől márisig jelentősen nőtt.

Az ivar és a születési év kölcsönhatásoknak az összvariancián belül nagyon csekély az arányuk és az esetek döntő többségében nem is szignifikánsak (23. táblázat).
23. táblázat: Az ivar és születési év kölcsönhatás mértéke az összvariancia %-ában a különböző paraméterekre, a kor függvényében

<table>
<thead>
<tr>
<th>Mérés hónapja</th>
<th>Kor (hónap)</th>
<th>Paraméter</th>
<th>Testtömeg</th>
<th>Övméret</th>
<th>Cspípőszélesség</th>
<th>Fejhossz</th>
<th>Fejszélesség variancia %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Július</td>
<td>2</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>1,9*</td>
</tr>
<tr>
<td>Október</td>
<td>5</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>5,4*</td>
</tr>
<tr>
<td>Január</td>
<td>8</td>
<td>0,7*</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>1,1*</td>
</tr>
<tr>
<td>Március</td>
<td>10</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

*P<0,05; ns: nem szignifikáns

A fejszélesség esetében a legnagyobb mértékű és érdemi interakció (5,4%) az októberi mérés esetében volt kimutatható, ahol a 2009-ben született bikaborjak fejszélessége – ha csekély mértékben is, de - szignifikánsan meghaladta a 2008-ban született bikaborjakét (+0,4 cm).

5.2.3. A különböző testméretek közötti összefüggések vizsgálata

Az összefüggés vizsgálatokat két mérési időpont testméretei között végeztem el. Az egyik a választáskori, mert a külföldi (Új-Zélandon, BEATSON ÉS MTSAI, 2000) és hazai gyakorlatban (pl. a bőszénfai szarvasfarmon) egyaránt ebben az időpontban mérík leggyakrabban a gímszarvas borjakat. A második mérés a téli takarmányozás befejezésekori időpont (március) volt. A korreláció számításokat ivaronként külön-külön végeztem, mert minden paraméterre vonatkozóan azok szignifikánsan (P<0,05) különbözik egymástól. A két évet nem vizsgáltam külön-külön, mert a fenotípusos tulajdonságok közötti összefüggések általános tapasztalatok szerint nagymértékben hasonlóak. A korrelációs együthatotkát a 24. táblázat tartalmazza. Minden vizsgált összefüggés statisztikailag szignifikáns (P<0,05) volt.
24. táblázat: A gímszarvas borjak választáskor (október) és a következő év márciusában mért testparaméterei, illetve azok közötti korrelációs együttthatók ivaronkénti bontásban (az átló felett a bikaborjakra, az átló alatt az ünő borjakra vonatkozóan)

<table>
<thead>
<tr>
<th></th>
<th>Október</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P5</td>
<td>P6</td>
<td>P7</td>
<td>P8</td>
<td>P9</td>
<td>P10</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P5</td>
<td>P6</td>
<td>P7</td>
<td>P8</td>
<td>P9</td>
<td>P10</td>
<td>P1</td>
<td>P2</td>
<td>P3</td>
<td>P4</td>
<td>P5</td>
<td>P6</td>
<td>P7</td>
<td>P8</td>
</tr>
<tr>
<td>Október</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>0,86</td>
<td>0,82</td>
<td>0,70</td>
<td>0,58</td>
<td></td>
<td>0,83</td>
<td>0,74</td>
<td>0,66</td>
<td>0,78</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>0,76</td>
<td>0,77</td>
<td>0,59</td>
<td>0,47</td>
<td>0,71</td>
<td>0,70</td>
<td>0,59</td>
<td>0,77</td>
<td>0,67</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>0,63</td>
<td>0,61</td>
<td>0,51</td>
<td>0,36</td>
<td>0,57</td>
<td>0,43</td>
<td>0,47</td>
<td>0,68</td>
<td>0,33</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>0,45</td>
<td>0,32</td>
<td>0,19</td>
<td>0,32</td>
<td>0,58</td>
<td>0,57</td>
<td>0,45</td>
<td>0,54</td>
<td>0,45</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>0,78</td>
<td>0,66</td>
<td>0,59</td>
<td>0,44</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>0,70</td>
<td>0,66</td>
<td>0,58</td>
<td>0,42</td>
<td>0,29</td>
<td>0,83</td>
<td>0,66</td>
<td>0,66</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>0,60</td>
<td>0,49</td>
<td>0,66</td>
<td>0,35</td>
<td>0,11</td>
<td>0,70</td>
<td>0,70</td>
<td>0,62</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>0,74</td>
<td>0,72</td>
<td>0,67</td>
<td>0,55</td>
<td>0,30</td>
<td>0,65</td>
<td>0,58</td>
<td>0,51</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>0,28</td>
<td>0,16</td>
<td>0,09</td>
<td>0,30</td>
<td>0,59</td>
<td>0,32</td>
<td>0,22</td>
<td>0,16</td>
<td>0,24</td>
<td></td>
</tr>
</tbody>
</table>

P1: testtömeg (választáskor, októberben), P2: övméret (választáskor, októberben), P3 csípőszélesség (választáskor, októberben), P4: fejhossz (választáskor, októberben), P5: fejszélesség (választáskor, októberben), P6: testtömeg (márciusban), P7: övméret (márciusban), P8: csípőszélesség (márciusban), P9: fejhossz (márciusban), P10: fejszélesség (márciusban)

A bikaborjak esetében az azonos időben felvett testméretek között tapasztaltam a legszorosabb összefüggést, melyek közül a legerősebbek a testtömeg és az övméret között választáskor (r=0,86) és a márciusi méréskor (r=0,81) voltak. A testtömegre és a csípőszélességre vonatkozó korrelációs együtthatók is szorosak voltak (r_{választáskor}=0,82; r_{márciusban}=0,81). A fejhossz és a testtömeg között is szoros kapcsolat mutatkozott mindkét mérésnél (r_{választáskor}=0,70; r_{márciusban}=0,74). A fejhossz az övmérettel és a csípőszélességgel közepesen (r=0,43-0,66) korrelált. A fejszélesség még választáskor közepes kapcsolatot (r=0,47-0,58) mutatott a többi paraméterrel, kivéve a fejhosszt (r=0,36). A márciusban mért fejszélesség már sokkal gyengébben korrelált a többi vizsgált testparaméterrel (r=0,28-0,38).
A bikaborjaknál a választáskor mért testméretek közül a testtömeg mutatta a legszorosabb összefüggést a márciusban mért testtömeggel \((r=0,83)\), míg a többi márciusban mért testparaméterrel változót \((r=0,32-0,78)\). A leggyengébb korrelációkat a márciusban mért fejszélesség és a többi választáskor mért testparaméter \((r=0,2-0,45)\) között tapasztaltam.

Az ünő borjak esetében is hasonlóak voltak a tendenciák, csak a korrelációk általában gyengébben bizonyultak. A legszorosabb korrelációkat itt is az azonos mérési időpontokban (választáskor, és márciusban) felvett paraméterek között találtam. A legszorosabb kapcsolatot a testtömeg és az övmért között tapasztaltam \((r_{választáskor}=0,86; \; r_{márciusban}=0,83)\).

A testtömeg és a csípőszélesség \((r_{választáskor}= 0,76; \; r_{márciusban}= 0,70)\), valamint az övmért és a csípőszélesség \((r_{választáskor}= 0,77; \; r_{márciusban}= 0,70)\) is szoros összefüggést mutattak. A fejhossz a testtömegeggel \((r_{választáskor}= 0,63; \; r_{márciusban}= 0,65)\), az övmérettel \((r_{választáskor}= 0,61; \; r_{márciusban}= 0,58)\), és a csípőszélességgel \((r_{választáskor}= 0,51; \; r_{márciusban}= 0,51)\) is közepesen szoros-szoros kapcsolatban állt. A fejszélesség választáskor minden paraméterrel közepes (testtömegeggel: 0,45) vagy gyenge (0,19-0,32) összefüggésben volt, míg a márciusi méréskor minddel gyenge (0,16-0,32) korrelációban állt.

Az ünőborjaknál a választáskor mért testméretek közül a testtömeg mutatja a legszorosabb kapcsolatot a márciusban mért testtömegeggel (0,78), míg a többi márciusban mért testparaméterrel változót (0,28-0,70), hasonlóan a bikaborjakhoz, csak kisebb korrelációs együtthatókkal. Az ünőborjak esetében is a márciusban mért fejszélesség és a választáskor mért többi testparaméter között (0,09-0,30) tapasztaltam a leggyengébb összefüggéseket.

87
5.2.4. Különböző növekedési modellek tesztelése gímszarvas borjakon születésüktől 7-8 hónapos korukig, farmon tartott gímszarvas állományon

A növekedési modellek teszteléséhez szükséges alapadatok felvétele saját gímszarvas farmunkon született és nevelt állományon történt.

5.2.4.1. Leíró statisztika

Tekintettel arra, hogy mind a nő, mind a hím ivarú borjak életkorában az egyes mérések során nem volt szignifikáns különbség, így az eredményeket az életkortól függő hatások nem torzították.

Testtömeg

Születéskor nem volt szignifikáns különbség a hím és nőivarú borjak testtömegében. 119, 154, 182, 214 és 242 napos korban a bika- és az ünőborjak között számottevő különbség alakult ki a testtömegben. 119 napos korra az ivarok közötti különbség meghaladta a 12 %-ot és ez később 14 %-ig emelkedett. Az ivarok közötti különbségek a vizsgált időpontok többségében szignifikánsak is voltak (25. táblázat).

A borjak szezonális testtömeg-gyarapodását a 26. táblázat tartalmazza. A borjak napi testtömeg-gyarapodása születéštől szeptemberig a nyári időszakban kiemelkedően a legmagasabb volt. A bikák és az ünők közötti testtömeg-gyarapodási különbség erősen szignifikáns volt (P=0,007) nyáron. A bikák megközelítőleg 60 g-mal gyarapodtak többet az ünőknél naponta. Az őszi időszakban (szeptember 25-től november 27-ig) a napi tömeggyarapodás jelentősen lassult mindkét ivarban, de a bikáké ekkor is jelentősen meghaladta az ünőkét. A bikaborjak abszolút tömeggyarapodási fölénye viszonylagosan még növekedett is az ünőkéhez képest (a különbség
54 g/nap, de az ünök átlagos gyarapodása már csak: 222,2 g/nap). A téli időszakra a napi tömeggyarapodás drasztikusan visszaesett mindkét ivarban (bikaborják: 62 g/nap, ünőborják: 43 g/nap). A bikák tömeggyarapodása a nyári időszakhoz képest 85 %-kal, míg az ünöké 88 %-kal csökkent.

25. táblázat: A testtömeg és a testméretek átlag és szórás értékei ivaronként és a különbségek P-értékei

<table>
<thead>
<tr>
<th>Ivar</th>
<th>Bikák</th>
<th>Ünök</th>
<th>P-érték (ivar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Születéskori mérések (május, június)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testtömeg (kg)</td>
<td>9,39±0,90</td>
<td>9,38±0,42</td>
<td>ns</td>
</tr>
<tr>
<td>Fejhossz (cm)</td>
<td>20,50±0,71</td>
<td>20,30±0,57</td>
<td>ns</td>
</tr>
<tr>
<td>Fejszélesség (cm)</td>
<td>7,44±0,21</td>
<td>7,58±0,29</td>
<td>ns</td>
</tr>
<tr>
<td>Övméret (cm)</td>
<td>48,10±0,89</td>
<td>47,70±0,97</td>
<td>ns</td>
</tr>
<tr>
<td>Cspöszélesség (cm)</td>
<td>8,92±0,47</td>
<td>8,92±0,16</td>
<td>ns</td>
</tr>
<tr>
<td>Januári mérések</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testtömeg (kg)</td>
<td>79,50±5,83</td>
<td>68,20±6,57</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Fejhossz (cm)</td>
<td>36,00±0,71</td>
<td>34,30±1,10</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Fejszélesség (cm)</td>
<td>11,00±0,19</td>
<td>9,98±0,33</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Övméret (cm)</td>
<td>110,80±4,09</td>
<td>106,0±5,15</td>
<td>ns</td>
</tr>
<tr>
<td>Cspöszélesség (cm)</td>
<td>21,68±0,86</td>
<td>20,04±0,69</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Növekedés születéstől januárig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Átlagos testtömeg gyarapodás (g/nap)</td>
<td>289,2±20,55</td>
<td>242,1±16,1</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Átlagos fejhossz növekedés (mm/nap)</td>
<td>0,64±0,04</td>
<td>0,58±0,02</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Átlagos fejszélesség növekedés (mm/nap)</td>
<td>0,15±0,01</td>
<td>0,10±0,01</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Átlagos övméret növekedés (mm/nap)</td>
<td>2,59±0,11</td>
<td>2,40±0,08</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Átlagos csipöszélesség növekedés (mm/nap)</td>
<td>0,53±0,03</td>
<td>0,46±0,04</td>
<td>p<0,05</td>
</tr>
<tr>
<td>Kor januárban (nap)</td>
<td>242±5,03</td>
<td>242±18,27</td>
<td>ns</td>
</tr>
</tbody>
</table>

ns = nem szignifikáns

Övméret

Születéskor nem tapasztaltam szignifikáns különbséget a hím és nőivarú borják övmérete között. 119, 154, 182, 214 és 242 napos korban a bika- és az ünőborják között különbség alakult ki az övméretben. 119 napos korra az
ivarok közötti különbség elérte a 8 %-ot, majd ingadozott 4,5 – 6 % között. Az ivarok közötti különbségek a vizsgált időpontok közül csak novemberben és januárban voltak szignifikánsak (25. táblázat).

A borjak szezonális övméret növekedését a 26. táblázat tartalmazza. A borjak napi övméret növekedése születéstől szeptemberig a nyári időszakban kiemelkedően a legmagasabb volt. A bikák és az ünök közötti övméret növekedés különbsége nyáron nem volt szignifikáns. A bikák övméréte megközelítőleg 0,2 mm-rel nőtt többet az ünöknél naponta. Az őszi időszakban (szeptember 25-től november 27-ig) a napi növekedés römlött mindkét ivarban, de a bikáké ekkor is meghaladta az ünökét. A bikaborjak abszolút övméret növekedésbeli főlénye viszonylagosan még növekedett is az ünökéhez képest (a különbség 0,5 mm/nap, de az ünök átlagos gyarapodása: 2,2 mm/nap). A téli időszakra a napi övméret növekedés drasztikusan visszaesett mindkét ivarban, de az ünőborjaké kisebb mértékben (bikaborjak: 0,77 mm/nap, ünőborjak: 1,05 mm/nap). A bikák övméret növekedése a nyári időszakhoz képest 77 %-kal, míg az ünöké 69 %-kal csökkent.

26. táblázat: A testtömeg és a testméretek növekedése évszakonként mindkét ivarban

<table>
<thead>
<tr>
<th></th>
<th>Nyár</th>
<th></th>
<th>Ósz</th>
<th></th>
<th>Tél</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bikák</td>
<td>Ünök</td>
<td>Bikák</td>
<td>Ünök</td>
<td>Bikák</td>
<td>Ünök</td>
</tr>
<tr>
<td>Átlag életkor (nap)</td>
<td>119,4</td>
<td>119,8</td>
<td>182,4</td>
<td>182,8</td>
<td>242,4</td>
<td>242,8</td>
</tr>
<tr>
<td>Testtömeg gyarapodás (g/nap)</td>
<td>410</td>
<td>352</td>
<td>276</td>
<td>222</td>
<td>61,7</td>
<td>43,3</td>
</tr>
<tr>
<td>Övméret növekedés (mm/nap)</td>
<td>3,4</td>
<td>3,2</td>
<td>2,7</td>
<td>2,2</td>
<td>0,77</td>
<td>1,05</td>
</tr>
<tr>
<td>Csipőszélesség növekedés (mm/nap)</td>
<td>0,70</td>
<td>0,63</td>
<td>0,51</td>
<td>0,51</td>
<td>0,20</td>
<td>0,08</td>
</tr>
<tr>
<td>Fejhossz növekedés (mm/nap)</td>
<td>0,90</td>
<td>0,79</td>
<td>0,41</td>
<td>0,33</td>
<td>0,37</td>
<td>0,40</td>
</tr>
<tr>
<td>Fejszélesség növekedés (mm/nap)</td>
<td>0,18</td>
<td>0,15</td>
<td>0,11</td>
<td>0,08</td>
<td>0,12</td>
<td>0,03</td>
</tr>
</tbody>
</table>
Csípőszélesség

Születéskor nem tapasztaltam szignifikáns különbséget a hím és nőivarú borjak csípőszélessége között. 119, 154, 182, 214 és 242 napos korban a bika- és az önöborjak között különbség alakult ki a csípőszélességben. 119 napos korra az ivarok közötti különbség elérte az 5,6 %-ot, majd ingadozott 4,9 – 8,2 % között. Az ivarok közötti különbségek a vizsgált időpontok közül októberben, decemberben és januárban voltak szignifikánsak (25. táblázat).

A borjak szezonális csípőszélesség növekedését a 26. táblázat tartalmazza. A borjak napi csípőszélesség növekedése születéstől szeptemberig a nyári időszakban kiemelkedően a legmagasabb volt. A bikák és az önök közötti csípőszélesség növekedés különbség szignifikáns volt (P=0,01). A bikák megközelítőleg 0,07 mm-rel nőttek többet az önöknél naponta. Az őszi időszakban (szeptember 25-től november 27-ig) a napi növekedés romlott mindkét ivarban és a bikáké megegyezett az önökével (0,51 mm/nap). A téli időszakra a napi csípőszélesség növekedés drasztikusan visszaesett mindkét ivarban (bikaborjak: 0,77 mm/nap, önöborjak: 1,05 mm/nap). A bikák csípőszélesség növekedése a nyári időszakhoz képest 71 %-kal, míg az önöké 87 %-kal csökkent.

Fejhossz

Születéskor nem tapasztaltam szignifikáns különbséget a hím és nőivarú borjak fejhossza között. 119, 154, 182, 214 és 242 napos korban a bika- és az önöborjak között különbség alakult ki a fejhosszban. 119 napos korra az ivarok közötti különbség elérte a 4,7 %-ot majd ingadozott 3 – 6 % között. Az ivarok közötti különbségek a vizsgált időpontok közül szeptemberben, novemberben és januárban voltak szignifikánsak (25. táblázat).

A borjak szezonális fejhossz növekedését a 26. táblázat tartalmazza. A borjak napi fejhossz növekedése születéstől szeptemberig a nyári időszakban volt a legmagasabb. A bikák és az önök közötti fejhossz növekedésbeli különbsége
nyáron nem volt szignifikáns. A bikák megközelítőleg 0,1 mm-rel nőttek többet az ünöknél naponta. Az őszi időszakban (szeptember 25-től november 27-ig) a napi növekedés romlott mindkét ivarban, de a bikáké ekkor is meghaladta az ünökét. A bikaborjak abszolút növekedésbeli fölénye viszonylagosan még növekedett is az ünökéhez képest (a különbség 0,08 mm/nap, de az ünök átlagos növekedése: 0,33 mm/nap). A téli időszakra a napi fejhossz növekedés visszaesett mindkét ivarban, de az ünöborjaké kisebb mértékben (bikaborjak: 0,37 mm/nap, ünöborjak: 0,40 mm/nap). A bikák fejhossz növekedése a nyári időszakhoz képest 59 %-kal, míg az ünöké 49 %-kal csökkent.

Fejszélesség
Születéskor nem tapasztaltam szignifikáns különbséget a hím és nőivarú borjak fejszélessége között. 119, 154, 182, 214 és 242 napos korban a bika- és az ünöborjak között különbség alakult ki a fejszélességein. 119 napos korra az ivarok közötti különbség elérte a 2,8 %-ot, majd ingadozott 4,9 – 10,2 % között. Az ivarok közötti különbségek a vizsgált időpontok közül csak születéskor és szeptemberben nem voltak szignifikánsak (25. táblázat). A borjak szezonális fejszélesség növekedését a 26. táblázat tartalmazza. A borjak napi fejszélesség növekedése születéstől szeptemberig a nyári időszakban kiemelkedően a legmagasabb volt. A bikák és az ünök közötti fejszélesség növekedése közötti különbség nyáron nem volt szignifikáns. A bikák megközelítőleg 0,03 mm-rel nőttek többet az ünöknél naponta. Az őszi időszakban (szeptember 25-től november 27-ig) a napi növekedés romlott mindkét ivarban, de a bikáké ekkor is meghaladta az ünökét. A bikaborjak abszolút növekedésbeli fölénye viszonylagosan sokat növekedett az ünökéhez képest (a különbség 0,03 mm/nap, de az ünök átlagos növekedése: 0,08 mm/nap). A téli időszakra a napi fejszélesség növekedés drasztikusan visszaesett az ünök esetében, de a bikaborjaké az őszihez képest emelkedett
(bikaborjak: 0,12 mm/nap, ünöborjak: 0,03 mm/nap). A bikák fejszélesség növekedése a nyári időszakhoz képest 33 %-kal, míg az ünöké 80 %-kal csökkent.

5.2.4.2. Növekedési görbék

A módszertani fejezetben leírt tesztelt modellek közül az AIC alapján legjobban illeszkedő 5 függvényt a 27. táblázatban adom meg. A táblázatban közlöm a reziduumok szórás értékét (RSD) – amely értékek kg-ban adják meg a gímszarvas borjak élőtömegének átlagos becslési pontosságát mindkét ivarra vonatkozóan, és a becsült paraméterek értékeit (b₀, b₁, b₂). Egyúttal megjelölöm a regressziós koefficienseket, melyek esetében az adott modellben szignifikáns különbség mutatkozott az ivarok között.

Testtömeg

A 27. táblázatban megadott, az adataimra legjobb illeszkedést mutató függvény képlete a testtömeg esetében: \(-0.95+10.27\times \text{kor}^{0.39}\) volt, mely alapján szerkesztettem meg a 18. ábrát. Ez a növekedési görbe átlagosan 2 kg-os pontossággal becsülte a gímszarvas borjak testtömegét. A 18. ábrán a gímszarvas borjak ténylegesen mért és a képlet alapján becsült testtömeg adatait ábrázolom. A 18. ábra jól tükrözi azt, hogy a becsült és a ténylegesen mért testtömeg között milyen csekély különbségek mutatkoznak. A modell becslési pontosságát nem befolyásolja a gímszarvas borjú ivara és a modell nem teszi szükségessé a születési testtömeg mérését, de a születés időpontjának ismerete a modell alkalmazásának nélkülözhetetlen feltétele.
27. táblázat: A gímszarvas borjak születéstől 7-9 hónapos korig mért adataira legjobban illeszkedő öt növekedési görbe illeszkedés vizsgálatainak adatai testparaméterenkénti bontásban: Akakie kritérium (AIC), reziduumok szórása (RSD) és a becsült paraméterek

<table>
<thead>
<tr>
<th>#</th>
<th>Egyenlet</th>
<th>AIC</th>
<th>RSD</th>
<th>b0</th>
<th>b1</th>
<th>b2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testtömeg</td>
<td>3</td>
<td>$b_0 + b_1 \cdot \text{kor}^{b_2}$</td>
<td>356.7</td>
<td>2.0</td>
<td>-0.95</td>
<td>10.27</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$b_0 + \text{kor}^{b_1}$</td>
<td>357.1</td>
<td>2.2</td>
<td>9.13</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>$b_0 + b_1 \cdot \text{BW} \cdot \text{kor}^{b_2}$</td>
<td>363.2</td>
<td>2.0</td>
<td>-0.95</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>$\text{kor}/(b_0 + b_1 \cdot \text{kor})$</td>
<td>366.9</td>
<td>3.6</td>
<td>0.96</td>
<td>0.01+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$b_0 + \text{kor}^{b_1}$</td>
<td>366.9</td>
<td>12.43</td>
<td>0.77</td>
<td>0.01+</td>
</tr>
<tr>
<td>Övméret</td>
<td>30</td>
<td>$\text{BG} \cdot (b_0 - \exp(b_1 \cdot \text{kor}))$</td>
<td>293.5</td>
<td>1.8</td>
<td>3.71</td>
<td>1.00+</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>$(b_0 \cdot \text{kor} \cdot \text{BG}) + (BG^{b_1})^{b_2}$</td>
<td>300.3</td>
<td>1.7</td>
<td>250.31</td>
<td>3.01</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>$b_0 + b_1 \cdot \text{BG} \cdot \text{kor}^{b_2}$</td>
<td>300.3</td>
<td>1.8</td>
<td>44.17</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>$(\text{kor}^{b_0}) + (BG^{b_1})^{b_2}$</td>
<td>303.1</td>
<td>1.8</td>
<td>0.47</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$b_0 + b_1 \cdot \text{kor}^{b_2}$</td>
<td>304.6</td>
<td>1.8</td>
<td>44.17</td>
<td>3.65</td>
</tr>
<tr>
<td>Csípőszélesség</td>
<td>4</td>
<td>$b_0 + b_1 \cdot b_2^{\text{kor}}$</td>
<td>130.9</td>
<td>0.4</td>
<td>24.40+</td>
<td>15.62+</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>$(b_0 \cdot \text{kor} \cdot \text{BH}) + (BH^{b_1})^{b_2}$</td>
<td>136.4</td>
<td>0.4</td>
<td>50.50</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$b_0 + b_1 \cdot \text{kor}^{b_2}$</td>
<td>140.1</td>
<td>0.4</td>
<td>7.93</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$b_0 + \text{kor}^{b_1}$</td>
<td>140.7</td>
<td>0.5</td>
<td>7.86</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>$b_0 + b_1 \cdot \text{BH} \cdot \text{kor}^{b_2}$</td>
<td>142.1</td>
<td>0.4</td>
<td>7.93</td>
<td>0.11</td>
</tr>
<tr>
<td>Fejhossz</td>
<td>3</td>
<td>$b_0 + b_1 \cdot \text{kor}^{b_2}$</td>
<td>168.9</td>
<td>0.5</td>
<td>19.24</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$b_0 + \text{kor}^{b_1}$</td>
<td>169.3</td>
<td>0.6</td>
<td>19.36</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>$b_0 - b_1 \cdot b_2^{\text{kor}}$</td>
<td>170.5</td>
<td>0.6</td>
<td>41.00</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>$(\text{kor}^{b_0}) + (BL^{b_1})^{b_2}$</td>
<td>173.1</td>
<td>0.5</td>
<td>0.54</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>$b_0 + b_1 \cdot \text{BL} \cdot \text{kor}^{b_2}$</td>
<td>175.7</td>
<td>0.5</td>
<td>19.24</td>
<td>0.06</td>
</tr>
<tr>
<td>Fejszélesség</td>
<td>4</td>
<td>$b_0 - b_1 \cdot b_2^{\text{kor}}$</td>
<td>175.7</td>
<td>0.5</td>
<td>19.24</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>$\log(b_0 + b_1 \cdot \text{kor})$</td>
<td>175.7</td>
<td>0.5</td>
<td>19.24</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$b_0 + \text{kor}^{b_1}$</td>
<td>130.9</td>
<td>0.4</td>
<td>24.40+</td>
<td>15.62+</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$b_0 + \text{kor}^{b_1}$</td>
<td>136.4</td>
<td>0.4</td>
<td>50.50</td>
<td>3.16</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>$\text{BH} \cdot \exp(b_1)$</td>
<td>70.4</td>
<td>0.3</td>
<td>3.74</td>
<td>1.00+</td>
</tr>
</tbody>
</table>

BW: testtömeg születéskor, BG: övméret születéskor, BH: csípő szélesség születéskor, BL: fejhossz születéskor, BHW: fejszélesség születéskor, *: szignifikáns különbség (P<0,05) az ivarok között
18. ábra: A mért és becsült testtömeg adatok a \(-0.95+10.27*\text{kor}^{0.39}\) képletű modell esetében

Testméretek
19. ábra: A mért és becsült övméret adatok a \{születéskor mért övméret*(3,71-exp(1,00kor))\} képletű modell esetében

20. ábra: A mért és becsült csipőszélesség adatok a \{24,4-15,62*0,99kor\} képletű modell esetében
21. ábra: A mért és becsült fejhossz adatok a \(19,24 + 1,16 \times \text{kor}^{0.53}\) képletű modell esetében

22. ábra: A mért és becsült fejszélesség adatok \(12,01 - 4,53 \times 0.99^{\text{kor}}\) képletű modell adatai alapján
5.2.5. A gímszarvas tehenek korának, testtömegének és borjazási arányának összefüggései, farmon tartott gímszarvas állományban

A borjazási (júliusi kezeléskor még szoptató tehén) eredményeket statisztikailag igazolhatóan befolyásolta a tehenek kora. A 2 éves teheneknek csak 65,5%-a, míg a 3 éveseknek 85,4%-a vezetett borjat. Mindkét korosztálynak ez volt az első ellése. Az idősebb, többször ellett tehenek 88,6%-a vezetett borjat 2011-ben. Az erre vonatkozó adatokat a 28. táblázat tartalmazza.

28. táblázat: Borjazási eredmények 2011-ben

<table>
<thead>
<tr>
<th>Tehenek kora</th>
<th>N</th>
<th>Testtömeg (kg)</th>
<th>Ellési %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 év</td>
<td>55</td>
<td>119,2±9,15</td>
<td>65,5</td>
</tr>
<tr>
<td>3 év</td>
<td>41</td>
<td>123,5±7,86</td>
<td>85,4</td>
</tr>
<tr>
<td>Idősebb</td>
<td>175</td>
<td>127,4±10,64</td>
<td>88,6</td>
</tr>
</tbody>
</table>

A borjazási arányban (%) mutatkozó különbségek megbizhatóságát Chi-négyzet próbával teszteltem, melynek eredményeit a 29. táblázat tartalmazza a vizsgált csoportokra vonatkozóan.

29. táblázat: A különböző tehén korscsoportok borjazási arányra vonatkozó

Chi-négyzet próba eredményei

<table>
<thead>
<tr>
<th></th>
<th>2 éves</th>
<th>3 éves</th>
<th>Idősebb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 éves</td>
<td></td>
<td>P<0,05</td>
<td>P<0,01</td>
</tr>
<tr>
<td>3 éves</td>
<td>P<0,05</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Idősebb</td>
<td>P<0,01</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
| ns: nem szignifikáns

A Chi-négyzet próba eredményeiből látszik, hogy a 2 éves első ellésű tehenek szignifikánsan (P<0,05) rosszabb borjazási eredményeket mutattak a
másik két csoport teheneihez képest. A 3 éves teheneknél az idősebb állomány 3,2 %-kal jobb borjazási aránnyal volt jellemezhető, a különbség azonban nem volt szignifikáns (P>0,05).

A kor előre haladtával, 10 éves kor után a szaporodásbiológiai mutatók tendenciájukban fokozatosan csökkenek. Az 19. ábrán látható, hogy a borjazási arány 15 éves kor felett már drasztikusan lecsökkent 50-60%-ra, habár utóbbi korcsoportokban csupán néhány tehén volt az ellenőrzött populációban.

A 23. ábrán látható, hogy a tehenek testtömege 5 éves korig emelkedik. Az adatokból látszik, hogy a tehenek 2 éves korukra már majdnem elérik a 120 kg-os testtömeget, melyet a 3 éves korosztály csak néhány kg-mal, az idősebb tehenek pedig átlagosan kb. 7 kg-mal haladnak meg. Az adatokból látszik, hogy a gímszarvas teheneknek a kifejlett kori testtömege kb. 3 éves korra alakul ki, abban a genetikai hátterű, magyar gímszarvas állományban, farmszerű tartásban, amelyet vizsgáltam.

Az eredmények azt mutatták, hogy a tehenek 3 éves korukra már eléri a kifejlett kori testtömegüket. Az ellési eredmények a kor előrehaladtával változtak, mely szerint a 2 évesek szignifikánsan gyengébb ellési eredményeket mutattak, mint a 3 éves és az idősebb tehenek. Az ellési százalék 15 éves kor fölött erősen visszaesett.

A 2 éves, először ellett tehenek csoportjánál vizsgáltam, hogy a fiatalkori növekedés esetében tapasztalható-e különbség az üresen maradó és borjat vezető tehenek között.
Nem tapasztaltam szignifikáns eltérést a két csoport (borjat vezető és nem vezető) között az 5 hónapos kori (választáskori) és 10 hónapos kori testtömeg, övméret és csípőszélesség illetve azok növekedése esetében. A vizsgált két csoport testtömeg és testméret adatainak átlag és szórás értékeit a 30. táblázat tartalmazza.

30. táblázat: A 2 éves tehenek 5 (választáskori) és 10 hónaposkori testtömeg, övméret és csípőszélesség adatainak átlag és szórás értékei

<table>
<thead>
<tr>
<th></th>
<th>Borjat vezető</th>
<th>Borjat nem vezető</th>
<th>P-érték</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 hónapos korban (választáskor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testtömeg (kg)</td>
<td>76,06±7,44</td>
<td>73,89±8,39</td>
<td>ns</td>
</tr>
<tr>
<td>Övméret (cm)</td>
<td>108,19±3,22</td>
<td>109,21±3,45</td>
<td>ns</td>
</tr>
<tr>
<td>Csípőszélesség (cm)</td>
<td>20,90±0,79</td>
<td>20,91±0,85</td>
<td>ns</td>
</tr>
<tr>
<td>10 hónapos kori (márciusban)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testtömeg (kg)</td>
<td>78,17±6,02</td>
<td>76,21±6,21</td>
<td>ns</td>
</tr>
<tr>
<td>Övméret (cm)</td>
<td>104,64±4,30</td>
<td>103,79±4,04</td>
<td>ns</td>
</tr>
<tr>
<td>Csípőszélesség (cm)</td>
<td>21,06±0,76</td>
<td>20,76±0,91</td>
<td>ns</td>
</tr>
</tbody>
</table>

ns: nem szignifikáns (P<0,05)
5.2.6. Farmon tartott, különböző korú tehén állományoktól származó gímszarvas borjak testtömege

2011-ben az összes tehenet (n=271) lemértük a borjak választásakor a bőszénfai szarvas farmon. A 2008-ban és 2009-ben született teheneket fiatal korukban többször is mértem, így lehetőségem nyílt, hogy a fiatal kori növekedésük hatását vizsgáljam a későbbi szaporodásbiológiai mutatókra. Ebbe a vizsgálatba bevontam az idősebb, többször ellett tehenek adatait is az összehasonlításhoz.

Az idősebb tehenek szignifikánsan (P<0,05) nagyobb borjakat neveltek mindkét ivarban, mint a 2 és 3 évesek, valamint a 3 éves tehenek borjai is nagyobbak voltak a 2 évesekéinél (31. táblázat).

31. táblázat: A 2011-ben született borjak (n=201) testtömeg adatai a tehenek kora alapján

<table>
<thead>
<tr>
<th>Tehenek kora</th>
<th>Választási testtömeg (kg)</th>
<th>11 hónapos testtömeg (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bika átlag</td>
<td>ünő átlag</td>
</tr>
<tr>
<td>2 év</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bika</td>
<td>N=12</td>
<td>61,9±9,5</td>
</tr>
<tr>
<td>ünő</td>
<td>N=12</td>
<td>54,7±5,4</td>
</tr>
<tr>
<td>3 év</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bika</td>
<td>N=14</td>
<td>63,9±9,2</td>
</tr>
<tr>
<td>ünő</td>
<td>N=17</td>
<td>63,2±6,9</td>
</tr>
<tr>
<td>idősebb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bika</td>
<td>N=72</td>
<td>75,8±7,3</td>
</tr>
<tr>
<td>ünő</td>
<td>N=72</td>
<td>67,0±8,5</td>
</tr>
</tbody>
</table>

P-érték ivar: <0,05
P-érték tehén kora: <0,05
6. AZ EREDMÉNYEK MEGVITATÁSA, KÖVETKEZTETÉSEK ÉS JAVASLATOK

6.1. Szabadterületi gímszarvas állományok agancsparamétereinek elemzése két eltérő ökológiai régióban

Mivel a bikákat fiatalabb korban ejtik el, így az idősebb korosztály eltűnik, vagy arányuk erősen lecsökken. A bika populáció egyre fiatalabb, ha ez a trend továbbra is érvényesül, a trófea paraméterek romlásával lehet számolni. Előfordulhat, hogy ez már napjainkra bekövetkezett, de erre vonatkozó adatok nem állnak rendelkezésemre.

BARNA ÉS MTSAI (2009) Somogy megyei becslései szerint a csökkenő populáció méret a trófea (agancs) paraméterek romlásához vezet a következő években. Eredményeim ezt nem támasztották alá, mivel a legtöbb agancsparaméter kisebb, az agancs súlya nagyobb mértékben javult a vizsgált időszakban, mindkét megyében. RIVRUD ÉS MTSAI (2013) vizsgálatai szerint a vadászat önmagában nem vezet a trófea súlyának csökkenéséhez hosszú távon, viszont hangsúlyozzák, hogy a bikákat hagyni kell megöregedni, hogy elérhessék a legnagyobb agancs méretet.

6.1.1. A „megye” hatása az agancsparaméterekre

Különbséget találtam több agancs paraméter esetében is a két vizsgált megye között. A különbségek kismértékűek voltak és nem is tekinthetők igazán érdemi biológiai, és gyakorlati szempontból is számottevő különbségnek. Az, hogy a kis különbségek statisztikailag szignifikánsnak bizonyultak, a nagy mintaszámnak tulajdoníthatók. Diszkriminancia analízissel az agancsok nem voltak besorolhatók a származás i hely szerint (Bács-Kiskun megye, Somogy megye).

A két megye közötti kis különbség oka lehet részben genetikai eredetű, valamint környezeti tényezőknek (flora, fauna, csapadék mennyisége, napsütéses órák száma, a mezőgazdasági területek nagysága és a rajtuk termesztett növények minősége) és az eltérő vadgazdálkodási hasznosításnak köszönhető, illetve ezek együttessé kölcsönhatása. Ezek pontosítása további vizsgálatokat igényel.

Genetikai vizsgálatokat már többen is végeztek a magyarországi gímszarvas állományon. HARTL ÉS MTSAI (1990) szerint a magyar gímszarvas állományon belül a tájegységek között nincs nagy genetikai különbség, de jól elkülöníthető a francia és osztrák állományoktól. HARTL ÉS KÖLLER (1998) vizsgálatainak eredményei sem támasztották alá, hogy genetikailag nagyon eltérő „típusok” fordulnak elő a magyar gímszarvasok között.

LEHOCZKI (2011) disszertációjában elemzte az élőhely és az öz agancs tömege közötti összefüggést, és az állomány sűrűsége pozitív összefüggést mutatott az agancs súlyával. Ezen kívül megállapította, hogy a hasznosítás arányának negatív hatása van az agancs súlyára. Ezt azzal magyarázta, hogy a hasznosított mennyiség növekedésével több fiatal bak került terítékre. Másik indoka volt, hogy a jobb állományokkal jellemezhető területek alulhasznosítottak, míg a gyengébb állományú területeken arányaiban nagyobb mennyiséget hoztak terítékre. Véleményem szerint ilyen irányban is szükséges lenne a gímszarvas agancsok további vizsgálata a teljes adatbázisra vonatkozóan (nem csak érmes) illetve a teljes dél-dunántúli régióra vonatkozóan.

6.1.2. A kor hatása az agancsparaméterekre

Az összes trófea (agancs) paraméter a kor előre haladtával növekedett 12-13 éves korig, majd ezt követően a paraméterek romlottak. Az agancs
paraméterek változásában a vizsgált időszakban a legnagyobb eltéréseket Bács-Kiskun megyében általában a 4, 11 és 12 éves, míg Somogy megyében a 4, 14 és 15 éves korcsoportokban tapasztaltam. Valószínűleg 4 évesek esetében a nagyon jók kerültek az érmes kategóriába, így lehet, hogy ezek „hibás” lelővések voltak. A 11, 12 és a 14, 15 éves korosztályú agancsoknál már jelentkezhettek a „visszarakás” jelei és a korbecslésben is előfordulhattak hibák.

KILVINGER (2001) közölt adatokat zártterű (Bőszénfa) gímszarvas állomány bikáinak agancsfejlődéséről 1-től 4-ig agancsos korig, ahol megállapította, hogy az általa vizsgált agancsparaméterek (tömeg, szárhossz, alsó- és felsőkörméret, nemzetközi pontszám) a kor előrehaladtával évről évre nőttek. Ezeket az eredményeket még ki lehetne egészíteni egy populációból származó bikák hullott- vagy vágott agancsainak mérési eredményeivel a tényleges kor ismeretében (idősebb korosztályokra vonatkozóan is), így egyes bikák agancs sorozatán pontosan lehetne követni azok fejlődését évről-évre. Érdemes lenne esetleg több ökológiailag erősen és gyakorlatilag is jól elkülöníthető régióban az előbbiekben leírtakat vizsgálni és az adatokat elemezni.

6.1.3. Korreláció vizsgálatok

A korreláció vizsgálatok során alacsonyabb értékű korrelációs együtthatókat kaptam, mint NAGY ÉS MTSAI (2005). Ők a trófea tömege és a körméret között közepesen szoros (ra=0,66, rfelső=0,74 rróza=0,68), valamint a tömeg és a szárhossz között szoros (r=0,8) korrelációt tapasztaltak a Somogy megyei trófeákra vonatkozóan. A különbséget valószínűleg az okozza, hogy nem vették figyelembe a kor hatását, továbbá minden kategóriájú (nem csak az érmes) trófea adatait felhasználták az adatbázisban és hosszú időszakot ölelt fel az adatsor (1964-2001).
6.1.4. Faktoranalízis

Tekintve, hogy legjobb tudomásom szerint faktor analízist mások nem végeztek a gímszarvasok agancsparamétereinek elemzésére, így nincs módom saját eredményeimet összehasonlítani másokéval.

A Somogy megyében elejtett gímszarvas bikák agancsai esetében az első faktorban legnagyobb értékeket a rózsa-, az alsó- és a felső körméret adták. A második faktor esetében a legmagasabb értékeket a szemág, a jégág és a középág nyújtotta. A harmadik faktor legnagyobb részét az ágak száma és az agancs tömege adták, míg a negyedik faktornál a legmagasabb értéket a szárhossz nyújtotta.

A Bács-Kiskun megye területéről származó agancsok esetében az első faktorban legnagyobb értékeket az agancs tömeg, a rózsa-, az alsó- és a felső körméret adták. A második faktor esetében a legmagasabb értékeket a szemág, a jégág és a középág nyújtotta. A harmadik faktor legnagyobb részét az ágak száma nyújtotta, míg a negyedik faktornál a legmagasabb értéket a szárhossz adta.

Ezek alapján az agancs paramétereket négy csoportra lehet bontani mindkét megyében: az első a körméretek, a második a főágak, a harmadik az ágak száma, míg a negyedik a szárhossz. A két megye között a különbség az agancs tömeg csoportba sorolása esetében volt. Bács-Kiskun megyei agancsok esetében a faktoranalízis a tömeget az első csoportba sorolta a körméretekhez, míg Somogy megyéből származó adatoknál a harmadik csoportba, az összes ágszámhoz. A csoportok összetétele a két megye esetében az agancs tömeg kivételével teljesen megegyezik.

A két megyében a különböző agancs tömeg besorlás feltehető okai lehetnek olyan formai eltérések, melyeket nem mérnek a bírálat során (pl.:
koronaalakulások, vagy az ágak vastagsága). Ezeket érdemes lenne vizsgálni. Így lehetne nagyobb sikerrel tipizálni a különböző élőhelyről származó agancsokat (pl.: Dráva ártéri bogkorona).

A két megyében különböző faktorokba került az agancs tömege, mely még azzal is magyarázható, hogy a két populációban más tulajdonságok határozzák meg a súlyt. Somogy megyében az ágak száma (mely szerint minél több ág van az agancson annál nehezebb), míg a Bács-Kiskun megyei agancsnál a körméretek nagyobb mértékben határozzák meg az agancs tömegét (minnél vastagabb a szár annál nehezebb).

Ezeket a faktorokat figyelembe lehet venni a szelekció során a magyar gímszarvas esetében. Ezek az eredmények további molekuláris genetikai kutatások alapját így lehet képezhetik (az azonos csoportokban szereplő paraméterekért felelős gének valószínűleg egymáshoz közel helyezkednek el vagy pleiotrop hatásaik vannak).
6.2. Farmon tartott gímszarvas állományok vizsgálata

6.2.1. A testtömeg és egyes testméretek alakulása farmon nevelt gímszarvas állományokban

6.2.1.1. Ivari dimorfizmus

Testtömeg

A bikaborjak testtömege minden méréskor szignifikánsan (P<0,05) nagyobb volt az ünöborjakénál. A testtömeg növekedése mindkét ivarban hasonló tendenciát mutatott a vizsgált időszakban. Az ivarok közötti különbség aránya emelkedett (2008-ban 3,7 %-ról 5 %-ra, 2009-ben 3 %-ról 5,1 %-ra).

A vizsgálatomban szereplő bőszénfai gímszarvas borjak kb. 5 hónapos korban lettek választva, de a júliusban mért kb. 2 hónaposkori testtömegük közel hasonló (bikaborjak átlag testtömege: 49,6±6,7 kg; ünöborjak átlag testtömege: 44,4±7,0 kg) volt az új-zélandi 3 hónaposan választott borjakéhoz. A különbség valószínűleg a magyar gímszarvas nagyobb növekedési erélyének köszönhető, mert Új-Zélandon a tenyésztésben használnak és használtak kisebb testű angol (C. e. scotticus) vérvonalakat is.

A választás előtti gyarapodás hasonló értéket (bikaborjak 349 g/nap, ünöborjak: 301 g/nap) mutatott a MOORE ÉS MTSAI (1988) által leírthoz, új-zélandi gímszarvas borjakon, mely 300 g/nap körüli volt születéstől 3 hónapos korig, vegyes ivarban.

108
Övméret

Az övméret esetében hasonló tendenciákat tapasztaltam, mint a testtömegnél, de arányaiban a különbségek az ivarok között kisebbek voltak.
Más állatfajokban az övméret kapcsolatát számos paraméterrel vizsgálták, de gímszarvasban, élő állaton még nem mérték.

Fejhossz

A fejhossz esetében is különbséget tapasztaltam az ivarok között. A fej csontozatában tapasztalható ivarok közötti különbséget SZUNYOGHY (1963) is megfigyelte és az agancs fejlesztésével magyarázta. Leírásaiban a 3-4 napos kori (becsült kor) koponyahossz 16,2 cm. A fent említett szerző vizsgálatait nem élő állaton végezte, hanem elhullott vagy elejtett egyedeken, így csak a koponyacsont képezte a minták alapját (egyéb szövetek nélkül). Sajnos az élő állaton felvett fejhossz kevésbé pontos értéket ad, és a csont borítottsága miatt nagyobb, ezért nem összehasonlítható. Az általam mért élő borjak fejhossza átlagosan 28-30 cm között változott kb. 2 hónapos korban.

Fejszélesség

SZUNYOGHY (1963) hangsúlyozta a fejszélesség esetében az ivarok közötti különbséget, és azt is, hogy ez a kor előrehaladával milyen arányban változik (napos korban az agykoponya dominál, kifejlett korban az arckoponya túlsúlya jellemző). Leírásában a 3-4 napos gímszarvas borjak legszélesebb
(szemgödörnél) homlokszélessége 7,9 cm. A méréseimben szereplő 2 hóanpos, élő borjak fejszélessége (szemgödör mögötti legkeskenyebb helyen mért) 9,3-10 cm között változott. Az eltérő kor és -mérési módszer miatt nem összehasonlíthatók az adatok.

Az ivarnak az összvariancián belül egyértelműen nőtt a hatása minden testparaméter esetében a kor előrehaladával. A fej hosszának alakulásában egészen kismértékű ivarhatás mérséklődés volt megfigyelhető, ugyanakkor szemben a fejszélesség varianciájának igen erőteljes növekvő részhányada az összvariancián belül, amely messze meghaladja minden más testparaméterét. Ez a jelenség világosan tükrözi azt, hogy a bikaborjak koponyafejlődése az agancsfejlesztésre való felkészülést szolgálja.

Ezt az információt fontosnak tartom technológiai szempontból, mert ez indokolhatja az ivarok eltérő takarmány igényét már a választás utáni időszakban.

6.2.1.2. Év hatás

A 2008 és a 2009-ben született borjak összehasonlítása során az un. évhatás elemzése világosan mutatja, hogy az egyes évjáratok közötti különbségek a testparamétereket milyen eltérő mértékben befolyásolják. A borjak testtömegét, övméretét és csípőszélességét az évhatás legnagyobb mértékben a július-október közötti időszakban befolyásolta, ami logikus, hiszen az eltérő évek legelőviszonyai ebben az időszakban hatnak leginkább a borjak és a tehenek táplálék és tápanyagellátottsági állapotára, legelőre alapozott tartásmódban.

Ezt alátámasztja az, hogy 2008-ban kevesebb csapadék (80 mm) esett a nyári hónapokban és az átlag hőmérséklet (+1-2 °C) is magasabb volt. Ennek köszönhetően 2008-ban a gyepek hamarabb kiégtek és a tehenek kevesebbet tudtak legelni. Ez alapvetően befolyásolta a választási- testtömeget és
testméreteket. A választás utáni stagnálás köszönhető a választás utáni stressznek (választás, új hely, új takarmány, esetleg új csapattársak) és a gímszarvasokra jellemző növekedésben mutatkozó szezonalitásnak, melyet mások is leírtak (MILNE, ÉS MTSAI, 1978; BARRY ÉS MTSAI, 1991; KAY, 1979). A választás után a varianciák közötti különbségek 7,2%-át magyarázta a születési év. Ezt az magyarázhatja, hogy a borjak téli és kora tavaaki takarmányozása nem különbözőt a két év során, így a különbségek is csökkentek, mely főleg az ünök esetében volt látható (16. táblázat).

A születési évek hatása a fejszélességnél elenyésző volt. Ezt HAMMOND (1952) már klasszikusnak számító vizsgálatai is magyarázzák, mert még koplaltatott állatok esetében is csekély különbség mutatkozik a koponya méretei esetében a jól tápláltakhoz képest, mivel itt foglal helyet az agy és az azt védő koponya, mely a tápanyagellátás szempontjából a legnagyobb védeltséget élvezi minden más szervrendszerrel szemben.

Ehhez még hozzájárult, hogy a 2008/09-es téli nagyon enyhe volt, így a tehenek kondíciója kevesebbet romlott a téli hónapok alatt. Emiatt valószínűsíthető, hogy már nagyobb súlytal is születtek a borjak 2009-ben.

A márciusi adatok csökkenő évjárathatásai a téli mesterséges takarmányozás kiegysenítő hatását mutatják.

A borjak fejhosszának és főleg fejszélességének varianciájára az évhatásnak igen kismértékű befolyása volt jellemző, így az azt, hogy a biológiaiag-élettanilag a fej alatt tér el a koponya fejlődése elsőleges „védelmet” élvez a környezet kedvezőtlen hatásaival szemben. Ez okozza a minimális évehatást az egyébként kritikusnak tekinthető július-októberi időszakban.

Figyelemreméltó, hogy az összes variancia százalékában az évhatások aránya a testtömeggel szorosan korreláló tulajdonságok (övméret, csipőszélesség) esetében meghaladják az iuvatását is az intenzív növekedési periódusban (július, október) és élettanilag is indokolhatóan csökkent a rövidnappalos, téli időszakban, amikor amúgyis növekedés intenzitásuk erősen lecsökken és
a mesterséges takarmányozásuk évhatásoktól független. Az ivar és az évhatás közötti interakció minden vizsgált testparaméter esetében az összvariancia igen kis hányadát determinálta és az esetek döntő többségében nem is volt szignifikáns, így evvel a tényezővel a gyakorlatban, érdemben nem kell számolni.

6.2.2. Fenotípusos tulajdonságok összefüggései

Tekintettel arra, hogy a vizsgált gímszarvas állományra vonatkozóan (2008 és 2009-es évjáratok) rendelkeztem a különböző testparaméterekre vonatkozó adatokkal, elvégeztem az egyes paraméterek közötti összefüggések elemzését is. A külföldi, elsősorban új-zélandi (BEATSON ÉS MTSAI, 2000) és a hazai gyakorlatot (pl. bőszénfai szarvasfarm) figyelembevéve a választáskori (5 hónaposkor) időpontban és a téli tartás befejezésekor (március, 10 hónapos kor) felvett adatok szolgáltak korreláció számításain alapjául. Az összefüggésvizsgálatokat külön végeztem el a hímivarú és a nőivarú állományokra vonatkozóan.

A korrelációs együtthatókat a 24. táblázat tartalmazza. A közölt korrelációs együtthatók szignifikánsak (P<0,05) voltak.

Tudomásom szerint különböző testparaméterek közötti korrelációkat gímszarvas állományokban nem vizsgáltak.

Mindkét ivar esetében a legszorosabb fenotípusos korreláció a testtömeg és az övméret között mutatkozott választáskor (r=0,86). Gyakorlati szempontból is figyelemreméltó, hogy a választáskor mért testtömeg (5 hónapos kor) és a márciusban mért testtömeg (10 hónapos kor) között is igen szorosnak bizonyult a kapcsolat, különösen a bikaborjak esetében (r=0,83).

A csipőszélesség, a fejhossz és a testtömeg korreláció viszonyai a választáskori mérések alapján, valamint ezek összefüggései a 10 hónapos
korban mért paraméterekkel számottevően lazább kapcsolatokra utalnak, és a korrelációs koefficiensek döntően a közepes tartományon belül szóródnak.

Feltűnő, hogy a fejszélesség mindkét ivar esetében viszonylag milyen gyenge összefüggést mutat a többi mért testparaméterrel.

A bőszénfai borjaknál a választáskori testparaméterek minden esetben statisztikailag igazoltan szoros kapcsolatban voltak a későbbi mérések (január, március) eredményeivel. Ennek oka, hogy fiatal korban a legintenzívebb a növekedés. Ez körülbelül a választásig (október) tartott. Választás után a borjak Bőszénfán istállóba kerültek. A szarvasborjakra jellemző, hogy télen növekedésük drasztikusan lelassul és étvágyuk is lecsökken. Valószínűleg ezért a választási paraméterek meghatározóak maradtak a későbbi mérések eredményeire is. Az általam tapasztalt szoros korrelációk a minőségi és gazdaságos szarvashús termelés szempontjából is figyelembe veendők.

6.2.3. Különböző növekedési modellek tesztelése gímszarvas borjakon születésüktől 7-8 hónapos korukig

6.2.3.1. Születéskori testtömeg és fiatalkori növekedés

Az általam vizsgált borjak (C. e. hippocampus) születéskori testtömege egyezett a jelenlegi új-zélandi populációk esetében jól kontrollált körülmények között mért borjak testtömegével (Asher és Mtsai, 2013; Stevens és Mtsai, 2014). Stevens és Mtsai (2014) szignifikánsan nagyobb születési testtömeget mérték új-zélandi gímszarvas tehenek wapiti (C. e. nelsoni) bikától származó borjai esetében (n=10, x=11,3 kg). Úgy tűnik a különböző gímszarvas populációkban nagyok a borjak születési testtömegében a különbségek, mert Clutton-Brock és Mtsai (1982) rum szigeti szarvasoknál (C. e. scoticus) 6,04 kg-os, Landete-Castillejos és...
MTSAI (2009) spanyolországi (C. e. hispanicus) populációban 6,7 kg-os átlagos születési testtömeget mérték.

A kísérletben nevelt borjak (C. e. hippelaphus) testtömege már 3-4 hónapos korban és 7-8 hónapos korban mintegy 10 %-kal meghaladta a modern új-zélandi típusú gímszarvas borjakét (STEVENS ÉS MTSAI, 2014). Még nagyobb, 30 %-ot meghaladó földényt mutattak a C. e. scoticus mexikói típusának borjaival szemben, mindkét ivarban, hasonló életkorban (DELGADILLO ÉS MTSAI, 2006). Wapiti (C. e. nelsoni) bikáktól és új-zélandi típusú gímszarvas tehenektől származó F1 keresztezett borjak mind születéskori testtömegükben, mind növekedési kapacitásukban jelentősen felülmúlják még az általam vizsgált kárpát-medencei gímszarvas borjak teljesítményét is (STEVENS ÉS MTSAI, 2014). Ez a földény 6-7 hónapos korban mintegy 14 %.

A mai új-zélandi farmokon tenyésztett gímszarvasok testtömegben, növekedési intenzitásban jelentősen különbözik a C. e. scoticus eredeti típusától, ami jelenlegi volt az állományokra az 1980-as évek elejéig. Az akkori új-zélandi gímszarvasok fiatalkori tömeggyarapodása több, mint 30 %-kal maradt el a magyar C. e. hippelaphusétól, amit jól mutattak a mesterséges szarvastejen nevelt borjak által kísérleti körülmények között kapott eredmények is (FENNESSY ÉS MTSAI, 1981; KAY 1985; HORN 1987).

Születéstől január végéig a bikaborjak szignifikánsan (P<0,05) nagyobb, 289 g/napos tömeggyarapodást mutattak, míg az ünök 242 g/napos gyarapodást érték el. Az eredmények a fő tendenciákat illetően összhangban vannak más szerzők által leírtakkal (CLUTTON-BROCK ÉS MTSAI, 1982, BEATSON ÉS MTSAI, 2000; LANDETE-CASTILLEJOS ÉS MTSAI, 2001), annak ellenére, hogy különböző genetikai hátterű populációkról van szó.

A testméretek növekedésével kapcsolatban kevés adat állt rendelkezésre más szerzőktől és azok általában kifejlett, lőtt egyedekre vonatkoztak. 3-4 napos kori fejhosszról és fejszélességről közölt adatokat SZUNYOGHY (1963), melyeket már korábban leírtam, de nem vethető össze a saját farmon mért
állomány adataival sem, a fejhossz esetében a csont borítottsága, a fejszélesség esetében az eltérő mérési módszer miatt.
A mérsékelt éghajlati zónában tartott gímszarvasok növekedésének szezonalitását és az azt befolyásoló élettani tényezőket többen vizsgálták farmszerű tartásban is. A jelenség független az adott populáció genetikai hátterétől, amint azt többek között a C. e. hispanicusra, C. e. scoticusra és a C. e. hippelaphusra is érvényesnek találtak (BOKOR ÉS MTSAI, 2014).
A szezonalitást korábban a testtömegre vonatkozóan írták csak le, de más testméretre vonatkozó adatokat még nem közölték. Kiemelten fontosnak tartom, hogy a fejszélesség bikaborjak esetében csekély szezonalitást mutatott más testparaméterekhez viszonyítva, melynek hátterében valószínűleg az első agancs növekedése áll.

6.2.3.2. Növekedési görbék

A vizsgálataimban szereplő gímszarvas állomány testtömeg-gyarapodásának modellezését arra az időszakra koncentráltam, amely időszak a farmon tartott gímszarvas populációk esetében nagy mértékben befolyásolja a szarvashús-termelés gazdaságosságát.

A növekedési modellek esetében az irodalmi áttekintésben hivatkoztam DELGADILLO ÉS MTSAI (2006) hasonló témakörű elemzésére, amelyben különböző növekedési görbék vizsgáltak Mexikóban C. e. scoticus típusú szarvas populációján. Elemzésük során a Brody exponenciális növekedési függvényt tartották a legmegfelelőbbnek. Ők az átlagos négyzetes hiba (MSE) alapján rangsorolták, így a Von Bertalanffy, a Richards és a Gompertz függvényeket kevésbé találták alkalmasnak. Saját vizsgálataim és idézett szerzők elemzése között az a döntő különbség, hogy 5 alkalommal mérték a testtömeget (megközelítőleg születéskor, 3 hónapos, 8 hónapos, 13 hónapos és 22 hónapos korban). Gyakorlatilag ez a majdnem 2 évet átfogó időszak
magába foglal 2 késő öszi-téli évszakot is, amikor rendkívüli mértékben – a gímszarvas biológiai adottsága miatt – visszaesik, esetleg stagnál a gímszarvasok növekedése. Ezen túlmenően a Mexikóban vizsgált gímszarvasok minden mérés időpontjában messze elmaradtak élőtömegegen az általam vizsgált állományéttől. A különbséget jól érzékelheti az állományok között az, hogy a bikaborjak 13 hónapos korban érték el a 65 kg-os élőtömeget, az ünőborjak az 55 kg ot ugyanakkor, az általam vizsgált gímszarvasok már 4,5 hónapos korban elérték ugyanezket a paramétereket. A Mexikóban farmon tartott C. e.scoticus típusú szarvasok mai teljesítménye, vagy a C. e. hispanicus teljesítményéhez hasonlóítható, vagy leginkább a 30-35 évvel ezelőtti új-zélandi állományokéhoz. Új-Zélandon az eredeti C. e. scoticus típusú állomány a három événtes cél tudatos szelektció és számottevő importálalományok keresztesztése révén – ebben kiváló genetikai értéket képviselő somogyi bikák is meghatározó szerepet kaptak (HORN, 2004) – értékmérő tulajdonságaiban nagyon sokat javult. Az általam legjobb becslést adó modell alkalmazásra, hogy farmszerű tartásban rendkívül fontos időszakban 7-8 hónapos korig, nagy pontossággal teszi lehetővé az élőtömeg becslését, a viszonylag nehezen kivitelezhető születéskori testtömeg mérése nélkül is. A születési dátum ismerete ennél a függvényénél is elengedhetetlen, de ennek gyakorlati megállapítása megfigyeléssel, az állomány nagyobb zavarása nélkül is kivitelezhető. Tapasztalataim szerint ez utóbbi rendkívül fontos tényező a gyakorlatban. Matematikai szempontból megfontolandó a második legjobb becslést mutató modell \{9,13*kor^{0.39}\} alkalmazása, mert egyszerűbb. Az illeszkedés vizsgálati eredménye elenyésző mértékben rosszabb csak az elsőhöz viszonyítva. A testméretek esetében is hasonlóan pontos becsléseket adó modelleket találtam, melyek segítségével jól leírható ezek növekedése 7-8 hónapos korig.
Az övméretet a legjobban a \(\text{születéskor mért övméret} \times (3,71-\exp(1,00\text{kor})) \) függvény becsülte.
A csípőszélesség növekedését a leg pontosabban a \(\{24,4-15,62*0,99^{\text{kor}}\} \) növekedési görbe jellemezte.
A fejhossz növekedését a \(\{19,24+1,16*0,53^{\text{kor}}\} \) függvény becsülte a leg pontosabban.
A fejszélesség növekedésének leírására a \(\{12,01-4,53*0,99^{\text{kor}}\} \) növekedési görbét találtam a legalkalmasabbnak.

Gyakorlati szempontból legfontosabbnak azt tartom, hogy a fiatalkori növekedés leírására legalkalmasabbnak bizonyuló növekedési modellel egyetlen időpontban történő (pl.: választás) mérés alapján átlagosan 2 kg pontossággal becsülhető a borjak élőtömege - ívartól függetlenül, a gímszarvas egyedfejlődése szempontjából rendkívüli fontosságú időszakban: születéstől 7-8 hónapos korig.

6.2.4. A gímszarvas tehenek korának, testtömegének és ellési arányának összefüggései

2011-ben lehetőség nyílt a tehenek testtömegének mérésére, így vizsgálhattam a kor, a testtömeg és borjazási eredmények összefüggéseit.

Magyarországon szabad területen az általam megállapított nál jobb vemhesülési eredményeket tapasztaltak teheneknél (SUGÁR 2003, PÁLL ÉS SUGÁR, 1985), Horvátországban, Duna menti szabad területen DEGMEČIĆ ÉS MTSAI (2010), viszont az ünöknél rosszabb, míg teheneknél hasonló vemhesülést tapasztaltak az általam vizsgált állományéhoz. A különbség és a rosszabb eredmények oka lehet, hogy a szabadterületi vizsgálatokat post mortem végezték, ahol gyakorlatilag a fogamzási eredményeket közölték, míg a vizsgálataimban szereplő állomány esetében élő, vezetett borjakra vonatkoznak az adatok. Ezen kívül szabad területen a bika egész télen
fedezhet tehenet (a későn ivarzókat is), míg a vizsgált állományban a bikát a csapatból október végén kiveszik, és külön helyezik el.

A hazai (és saját farmi) valamint új-zélandi farmok tapasztalatai szerint is a naposkori borjú elhullás igen jelentős lehet, melynek oka lehet nehéz ellés, hiánybetegség vagy menedzsmentbeli hiányosságok. Ennek aránya az ünőknél magasabb, mint a teheneknél. A vizsgált állományban nincs adatom a borjúkori elhullásokról, mert ebben az időszakban az állomány zavarása még tovább emelheti az elhullások mértékét. Emiatt nem lehet összehasonlítani szabadterületi eredményekkel az általam vizsgált farmon tartott tehén állomány borjazási eredményeit.

Az általam közölt idős kori borjazási eredmények megegyeznek korábbi angliai szabad területi eredményekkel (CLUTTON-BROCK ÉS MTSAI, 1983), habár jelen esetben kevés idős tehén volt az általam vizsgált állományban.

A 2 éves tehenek borjazási eredményét nem befolyásolta a fiatalkori növekedésük (10 hónapos korig).

A 2 éves magyar gímszarvasoknál is gyengébb a reprodukciós teljesítmény, valószínűleg még 2 éves korban számottevő a testnövekedés is. Ugyanakkor a 3 éves állomány szaporodásbiológiai képessége magas szinten stabilizálódik kb. 14 éves korig. A hosszú hasznos élettartam a farmi tartásmódban számottevő előnyt jelent más állattenyésztési, legelőre alapozott hústermelő ágazatokhoz képest (pl.: húsmarha, juh). Ebből következően viszonylag az állomány kisebb aránya tartozik a fiatal (2 éves), a nőivarú utánpótlás populációba, amely állományra kétségtelenül szignifikánsan gyengébb reprodukciós kapacitás a jellemző.
6.2.5. Különböző korú tehén populációktól származó gímszarvas borjak testtömege

Vizsgálataimban a 2 éves, először ellett tehenek nevelték a legkisebb, míg az idősebb, többször ellett tehenek a legnagyobb borjakat. Ez megegyezik a korábbi eredményekkel (LANDETE-CASTILLEJOS ÉS MTSAI, 2009), amelyek azt mutatták, hogy a 2-, 3 éves és idősebb tehenek a kor függvényében egyre nagyobb születési testtömeggel adnak életet borjaiknak és a tejtermelésük is hasonló tendenciát mutat spanyol (C. e. hispanicus) populációban. Új-zélandi farmokon csak a 2 éves és idősebb teheneket hasonlították össze és azt tapasztalták, hogy a 2 éves tehenek borjai választáskor kisebb testtömegűek az idősebb tehenek borjainál. Ezt avval indokolták, hogy az ünök (16 hónapos, később 2 évesként ellő tehén) átlagosan 17 nappal később ivarzanak, emiatt az ellésük is későbbre esik (így választáskor borjaik a többinél fiatalabbak). Ezen kívül az ünök borjai kisebb testtömeggel születnek (CLUTTON-BROCK ÉS MTSAI, 1982; LANDETE-CASTILLEJOS ÉS MTSAI, 2009) és a laktáció alatt is rosszabb a gyarapodásuk, mint az idősebb tehenekeké (BEATSON ÉS MTSAI, 2000). Ez utóbbi oka lehet, hogy a 2 éves tehenek testnagysága még nem érte el a kifejlettkorit, még növekedésben is vannak, emiatt kevesebb tejet is termelnek.

HARBORD (2007) szerint az anya testtömege jelentős szerepet játszik a borjak választási testtömegében. Szerinte egy 90 kg testtömegű új-zélandi tehén után átlagosan 40 kg-os, míg egy 120 kg testtömegű tehéntől átlagosan 53 kg-os borjat lehet választani. Hazai gímszarvas állományban (C. e. hippelaphus) egy 90 kg-os tehén messze átlagon aluli testtömegűnek minősül. A vizsgálatimban szereplő állományban a 2 éves tehenek átlagos testtömege is már 119,2 kg volt, melyek közül a legkisebb 104 kg-ot ért el és borjat is nevelt.
Adataim alapján egyértelmű, hogy a magyar gímszarvas állományokra jellemző hosszú hasznos élettartam és az ezzel összefüggő viszonylag kislétszámú pótlásra szükséges ünőállomány (2 éves), avval a kedvező hatással jár, hogy az idősebb tehénállományok esetében tapasztalt nagyobb választási élőtömeg az általuk nevelt borjak esetében kedvező összefüggésrendszer, ami az ágazat hústermelési potenciáját magas szinten képes stabilizálni.
7. ÚJ TUDOMÁNYOS EREDMÉNYEK

1. A vizsgált két megye (Somogy és Bács-Kiskun) területén elesett bikák trófeái (agancs) között csekély különbséget tapasztaltam a szárhossz, a szemág-, a jégág-, és a középág hossz esetében, a kis különbségek azonban szignifikánsak (P<0,05) voltak.

2. Az agancs paraméterek (tömeg, szárhossz, szemághossz, jégághossz, középághossz, rózsa körméret, alsó körméret, felső körméret, ágak száma, szárhossz) közötti parciális korrelációk faktoranalízissel történő elemzésének legfontosabb eredményei:
 - A szárhossz gyakorlatilag csekély összefüggést mutatott a többi paraméterrel
 - A körméretek (rózsa, alsó, felső) egymással szoros korrelációt mutattak
 - A trófea tömege az egyik megyében az ágak számával (Somogy megye), míg a másikban a körméretekkel (Bács-Kiskun megye) korrelált szorosabban.

3. A farmon nevelt gímszarvas populációk borjainak testtömegét és testméreteit (övméret, csipőszélesség, fejhossz és fejszélesség) vizsgálva, szignifikáns (P<0,05) és jelentős ivar- és év hatásokat mutattam ki a különböző testparaméterekre vonatkozóan. A bikaborjak fejszélessége a többi testparamétertől eltérő növekedést mutatott mindkét vizsgált populáció esetében. A fejszélességet nem befolyásolta az évhatás.

4. Az egyes testparaméterek varianciájának arányát az összvariancián belül közel azonos mértékben befolyásolták az ivar és évhatások. Az ivar és az év kölcsönhatások egyik paraméter esetében sem játszottak érdemi szerepet.
5. A saját farmon mért gímszarvas borjak testparamétereire különböző növekedési függvényeket teszteltem az illeszkedés szempontjából és meghatároztam hozzájuk a becslő paramétereket születéstől 7-8 hónapos korig. A legjobban illeszkedő növekedési modellek testparaméterenként az alábbiak voltak:

- testtömeg-gyarapodásra: \(-0,61+9,93\times \text{kor}^{0,41}\)
- mellkas körméret növekedésre: \((264,12\times \text{kor}\times \text{születéskori mellkas körméret})+(\text{születéskori mellkas körméret}^{2,97})^{0,34}\)
- csipőszélesség növekedésre: \(25,56-16,78\times \text{kor}^{0,99}\)
- fejhossz növekedésre: \(19,23+1,28\times \text{kor}^{0,50}\)
- fejszélesség növekedésre: \(13,43-6,02\times \text{kor}^{0,99}\)

Gyakorlati szempontból különösen jelentős a testtömeg-gyarapodást becslő függvény, mely átlagosan 2 kg pontossággal becsli a gímszarvas borjak élőtömegét az ivartól függetlenül és alkalmazásához nem szükséges a gyakorlatban nehezen kivitelezhető születéskori mérés, csupán a születés idejének ismerete szükséges.

6. A választáskori (5 hónapos kori) és 10 hónapos korban mért testtömeg és azzal szorosan összefüggő testméretek (övméret és csipőszélesség) nem hatottak a 2 éveskori borjazási eredményekre az általam vizsgált állományban.

7. A 2 éves, a 3 éves és az idősebb korú tehenek borjainak testtömege választáskor és 11 hónapos korban szignifikánsan (P<0,05) eltért egymástól mindkét ivarban. A legkisebb élőtömeg a 2 éves tehenek borjaira volt jellemző, a legnagyobb élőtömeget a 3 évesnél idősebb tehenek borjainál tapasztaltam, mindkét mérés esetében. A kapott eredmények tendenciáikban megegyeznek mind a skót (Cervus elaphus scoticus), mind az új-zélandi állományokban tapasztaltakkal, annak ellenére, hogy más a genetikai hátterük, más a klima illetve más a legelő típusa és a menedzsment számos eleme. Az általam
vizsgált borjak abszolút testtömege azonban számottevően meghaladja a skót gímszarvasokét és közel hasonló a 40 éves szelekcióval nemesített és import állományok javításával továbbtenyésztett korszerű új-zélandi gímszarvasokéhoz.
8. ÖSSZEFOGLALÁS

Vizsgálataim két egymástól jól elkülöníthető kérdéskörre irányultak: 1. Szabadterületi gímszarvas állományok trófeáinak összehasonlító elemzése, 2. Farmon tartott gímszarvas állományokkal kapcsolatos vizsgálatok

8.1. Szabadterületi gímszarvas állományok trófeáinak összehasonlító vizsgálata

A hazai szabadterületi vad gímszarvas populációkra vonatkozóan az elejtett gímszarvas bikák trófea paramétereinek elemzését tűztem ki célul.

Az agancsparaméterek elemzését két magyarországi megye területéről (Somogy megye: 5946 egyed és Bács-Kiskun megye: 921 egyed) származó lött gímszarvas bika (6868) 9 trófea paraméterét (az agancs tömege, szárhossz, szemág hossz, jégág hossz, középág hossz, rózsa körméret, alsó körméret, felső körméret, ágak száma) végeztem. A bikák 1997 és 2007 között estek el, és a becsült koruk 4-16 év közötti volt. A kor és a „megye” hatását a trófea paraméterekre általános lineáris modell segítségével állapítottam meg. A kor minden vizsgált, míg a „megye” több paraméterre szignifikáns hatást gyakorolt. Ezért a további elemzéseket megyénként külön-külön végeztem el. Gyenge és közepesen szoros korrelációt (figyelembe véve a kor hatását) találtam a trófea paraméterek között mindkét esetben (Somogy megye: 0,04-0,8, Bács-Kiskun megye: 0,06-0,7). Főkomponens analízissel (ortogonális forgatással) 4 faktort azonosítottam, melyek Bács-Kiskun megyében az összes variancia 73%-át és Somogy megyében, az előzőhöz közel azonos tartományban, 75%-át magyarázták. Az első faktor a körméreteket, a második a főágak hosszát (szemág, jégág középág) tartalmazta. A harmadik faktor a trófea ágainak számát, míg a negyedik a szár hosszát foglalta magában. A meghatározott faktorok lehetőséget nyújtanak a jelenlegi vadgazdálkodási gyakorlatban alkalmazott
8.2. Farmon tartott gímszarvas állományok vizsgálata

Magyarországon bővül a zárttéri, farmszerű körülmények között tartott, tenyésztett szarvasállomány létszáma és gazdasági jelentősége.

Hazánkban a Kaposvári Mezőgazdasági Főiskolán és jogutódjain kezdődött - új-zélandi tapasztalatok alapján - a zárttéri, farmszerű körülmények között történő gímszarvas tenyésztés. A magyar gímszarvas sajátosságait is figyelembe vevő farmszerű tartásrendszer alapvetően legelőre alapozott.

Az elmúlt 25 évben a gímszarvas állomány szelekciója folyamatosan történik a nőivarú egyedek esetében is. Alapvetően a nyugodt vérmérséklet, a szaporaság és a borjúnevelő képesség az alapvető kritériumok, míg a tenyészbika jelöltek kiválasztásánál a nyugodt vérmérséklet mellett az elsődleges szempont az agancsfejlesztő képesség, valamint a testnagyság.

A borjak növekedése szezonálitást mutatott minden testparaméter vonatkozásában, mindkét ivarban. A különböző testparaméterek növekedése eltérő mértékben esett vissza a téli hónapokban az ünö és bikaborjak esetében. Az ünöborjak minden testparaméterének növekedése jelentős visszaesést mutatott, míg a bikaborjaknál a fejszélesség növekedése nem csökkent olyan mértékben. Ez valószínűleg összefügg a bikaborjak első agancsának növekedésével.
Különbséget találtam a különböző évben született borjak azonos korban felvett méretei között. Minden vizsgált testparaméter esetében a 2009-ben született borjak nagyobbak voltak a 2008-ban születetteknél. Ez valószínűleg annak köszönhető, hogy 2008-ban kevesebb csapadék (80 mm) esett a nyári hónapokban és az átlag hőmérséklet (+1-2 °C) is magasabb volt. Ennek köszönhetően 2008-ban a gyepek hamarabb kiégtek és a tehének kevesebbet tudtak legelni. Ehhez még hozzájárult, hogy a 2008/09-es tél nagyon enyhe volt, így a tehének kondíciója kevesebbet romlott a téli hónapok alatt. Szignifikáns (P<0,05) ivar és évhatásokat tapasztaltam minden testparaméter esetében, kivéve a fejszélességet, melynél nem volt kimutatható az évek közötti különbség. Az ivar és az évhatás közötti interakció minden vizsgált testparaméter esetében az összvariancia igen kis hányadát determinálta és az esetek döntő többségében nem is volt szignifikáns.

A fenotípusos tulajdonságok összefüggés vizsgálatai során nagyon szoros kapcsolatot találtam a testtömeg, a mellkas körméret és a csípőszélesség között, melynek oka lehet, hogy a testtömeg növekedése együtt jár mindegyik felsorolt paraméter növekedésével. A fejhossz és különösen a fejszélesség határozottan gyengébb korrelációt mutattak a két előbb említett testparaméterrel.

A gímszarvas borjakat mérem a saját farmunkon születéstől 7-8 hónapos korig, így lehetőségem nyílt növekedési görbék illeszkedését tesztni a mért testparaméterekre.

A gímszarvas borjak növekedését leíró növekedési görbék ellaposodó képe jól mutatta a növekedésük visszaesését a téli időszakban, minden testparaméter esetében.

A testtömeget a {-0,95+10,27*kor^{0.39}}, az övméretet a {születéskor mért övméret*(3,71-exp(1,00 kor))} a csípőszélességet a {24,4-15,62*0,99^{kor}}, a fejhosszt a {19,24+1,16*kor^{0,53}}, és a fejszélességet a {12,01-4,53*0,99^{kor}} növekedési görbék jellemezték a legnagyobb pontossággal.
Gyakorlati szempontból különösen fontos, hogy a fiatalkori növekedés leírására legalkalmasabbnak bizonyuló növekedési modellel egyetlen időpontban történő (pl.: választás) mérés alapján átlagosan 2 kg pontossággal becsülhető a borjak élőtömege ivartól függetlenül, a gímszarvas egyedfejlődése szempontjából rendkívüli fontosságú időszakban: születéstől 7-8 hónapos korig.

A 2 éves tehenek borjazási aránya szignifikánsan (P<0,05) alacsonyabb volt, mint a 3 éves és az idősebb teheneké. A vizsgálatok 55 2 éves, 41 3 éves és 175 idősebb tehén adatain alapultak ugyanabban az állományban és azonos tartási körülmények között 2011-ben.

A választáskori (5 hónapos kori) és 10 hónapos korban mért testtömeg és azzal szorosan összefüggő testméretek (övméret és csípőszélesség) nem hatottak a 2 éveskori borjazási eredményekre az általam vizsgált állományban.

A vizsgálatok során, melyben 199 különböző korú (24 2 éves korban, 31 3 éves korban és 144 idősebb) tehén borjai szerepelték, azt tapasztaltam, hogy a 2 éves tehenek borjai szignifikánsan (P<0,05) kisebb testtömegűek voltak, összehasonlítva a 3 éves és idősebb tehenek borjaival, mindkét ivar vonatkozásában. A tehenek kora szignifikánsan hatott a borjak választáskori (5 hónapos) és 11 hónapos testtömegére.
9. SUMMARY

My examinations cover two broad fields: questions related to free ranging red deer populations, and problems associated with farmed red deer stocks. All data originated from typical Hungarian populations, lacking foreign genetic influence.

9.1. Free ranging red deer populations

Considering the Hungarian wild feral red deer population the aim was the statistical analysis of the trophy parameters of harvested red deer stags.

I analyzed data of 9 trophy parameters (weight of the antler, length of main beam, length of brow tine, length of bay tine, length of tray tine, circumference of coronet, lower circumference of main beam, upper circumference of main beam, number of total tines) of 6868 red deer stags shot between 1997 and 2007 and estimated ages were between 4-16 years, from two counties of Hungary (5946 from Somogy and 921 from Bács-Kiskun). General linear model was used to evaluate age and “county” effects on the trophy parameters. Age was a significant source of variation for all studied traits while county affected some of the studied parameters. Consequently the dataset was analyzed separately for each county. Low to high correlations (adjusted for age effect) were found both in Somogy ($r=-0.04 - 0.80$) and in Bács-Kiskun ($r=-0.06 - 0.70$) counties. Using principal component analysis (with orthogonal rotation) 4 factors were extracted which accounted for 73 % and 75 % of total variance in Bács-Kiskun and Somogy county respectively. The first factor represents the circumferences of the trophy, the second factor the main tines (brow, bay, tray) of the antler. The third and fourth factors represented the number of total tines of the trophies and the length of main beam respectively. These identified factors provide possibility to increase the objectivity of selection criteria applied in the
present game management, they could be considered in selection/evaluation of the trophies in Hungarian red deer instead of the traditionally used measurements in order to maintain a more effective selection of type and quality of the red deer trophy in Hungary.

9.2. Examination of farm red deer herds

Considering that in Hungary the number of red deer kept and bred in closed farm type system increases, its economic importance increases too. The aim was to collect data and describe growth and related characteristics and reproductive performance of red deer under farm conditions in Hungary. In Hungary the red deer breeding started under farm conditions based on New Zealand experiences at the Agricultural College in Kaposvár and later at its legal successors. The maintenance of the deer herds is mainly based on pasture during the vegetation period.

Over the last 25 years the selection of red deer herd was continuously practised. The main selection criteria in case of females have been the temperament, reproduction- and calf raising ability. Regarding the stags the temperament, body and antler size and its quality are the most important traits.

For the growth examinations the data were collected from red deer stock bred on the Bőszénfa farm during 2008 and 2009.

During the two study years 292 weaned red deer calves were measured at the Kaposvár University’s Game Management Centre in Bőszénfa.

There were significant differences (P<0.05) between the sexes, in case of all body parameters measured (live weight, girth, width of hip, length of head, width of head) the stag calves were larger, than the hinds.

The growth of red deer calves showed seasonality in case of all body parameters in both sexes. In winter the growth of body parameters decreased to a different degree in case of the two sexes. The growth of all body parameters of hind calves showed significant decreases, while the growth
intensity of head width of the stag calves declined much less compared to hinds. Probably this is connected with the first antler growth of stags. There were significant (P<0,05) differences between body parameters of calves born in different years (2008, 2009) at the same age. In case of all body parameters the calves born in 2009 were bigger than those which were born in 2008. Probably this is due to the fact that the rainfall was less (80mm) in 2008 in summer and also the average temperature was higher (+1-2 C°). As a result of this the grasslands burned out earlier and the hinds could graze less in 2008. The winter in 2008/09 was very mild, in this way the hinds’ maintained better body condition during winter. Important and significant (P<0,05) sex and year effects were found for all traits measured. Only head width was not influenced significantly by year effect. Interactions between sex and year were not influencing the variances regarding the measured traits. Very high phenotypic correlations were found between the live weight and girth and live weight and hip width. The reason of this can be that the growth of the body goes parallel with an increase in all three body parameters /autocorrelation/. Head length and width showed distinctly lower correlations with bodyweight, and closely correlated traits to it. On our own deer farm there was an opportunity to measure red deer calves from birth to January, thus enabling to test various growth curves for best fit regarding body parameters, from birth till 7-8 month of age. The shape of growth curves for red deer calves shows intensive growth till the end of October, a slowes down to stagnation in winter, curves tending to go flat for all tested parameters. The best fitting curves were for the liveweight: \{-0,95+10,27*kor^{0.39}\}, for the girth \{girth at birth*(3,71-exp(1,00kor))\}, width of hip \{24,4-15,62*0,99kor\}, head length \{19,24+1,16*kor^{0.53}\}, and for the width of head \{12,01-4,53*0,99kor\} respectively.
It deserves special attention in the field practice that by using the best fitting curve, estimation liveweight of red deer calves, is possible with 2 kg accuracy by taking one single measurement (for example at weaning) irrespective of sex during the most important period of red deer growth: from birth till 7-8 months of age.

Calving rate of 2 years old hinds was significantly (P<0.05) lower compared to 3 years old and older hinds. Evaluations were based on records of 55 2 years, 41 3 years and 175 older hinds belonging to the same base population and managed in the same way during 2011.

The live weight and body measurements (girth and width of hip) correlating closely with it at 5 (at weaning) and 10 month of age did not affect calving rate of red deer hinds at 2 years of age in the examined herd.

During an examination including a total of 199 hinds (24 being 2 years old, 31 being 3 years old and 144 being older) it was found that both, male and female calves born from 2 years old hinds were significantly smaller (P<0.05) compared to calves reared by 3 years old or older hinds. The live weight of the calves significantly differed both at weaning and at 11 month of age as it was influenced by age of dam.
10. KÖSZÖNETNYILVÁNÍTÁS

Ezúton szeretném megköszönni a segítséget témavezetőimnek, különösen Dr. Horn Péter akadémikus Úrnak és Dr. Nagy István tudományos főmunkatárs Úrnak a disszertáció elkészítése során nyújtott értékes tanácsaikat és türelmüket.

Köszönöm a segítséget a Vadgazdálkodási Tájközpont összes dolgozójának, különösen Nagy Jánosnak és Szabó Józsefnék a kísérletem során nyújtott szakmai tanácsokat, valamint közreműködésüket a kísérlet sikeres elvégzésében.

Szeretném megköszönni a segítséget Dr. Farkas Jánosnak és Dr. Barna Róbertnek a statisztikai és egyéb szakmai kérdések megválaszolásában nyújtott hasznos tanácsaikat.

Hálás köszönettel tartozom férjemnek Dr. Bokor Árpádnak, türelméért és a kitartásáért, valamint szakmai tanácsaiért.

Köszönettel tartozom szüleimnek, Sebestyén Józsefné és Sebestyén Józsefnénnek, szeretetteli biztatásukért és türelmükéért.
11. IRODALOM JEGYZÉK

138

forages at difference times of the year by shepp and the red deer (Cervus elaphus). British Journal of Nutrition 40: 347-357.

submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy in the University of Canterbury. p. 156.

12. AZ ÉRTEKEZÉS TÉMAKÖRÉBEN MEGJELENT PUBLIKÁCIÓK

Lektorált idegen nyelvű folyóiratban megjelent közlemény:

Lektorált folyóiratban magyarul megjelent közlemény:

Proceedingben teljes terjedelemben, idegen nyelven megjelent:

Sugár L., Tóth Cs., Nagy M., **Sebestyén J., Nagy J. (2008)** Yearling antler characteristics of farmed and free living red deer, Enclosures: a Dead end?
Influence on game biology, conservation and hunting. Symposium proceedings Sopron. 88-95.

Proceedingben teljes terjedelemben, magyar nyelven megjelent:

Előadás magyar nyelven:

Magyar nyelvű ismeretterjesztő folyóiratban megjelent:

13. AZ ÉRTEKEZÉS TÉMAKÖRÉN KÍVÜL MEGJELENT PUBLIKÁCIÓK

Lektorált folyóiratban idegen nyelven megjelent közlemény

Lektorált folyóiratban magyarul megjelent közlemények

Magyar nyelvű ismeretterjesztő cikkek

14. SZAKMAI ÖNÉLETRAJZ

1998-ban 1 hónapot töltöttem farm gyakorlaton Hollandiában.
1999-ben II. helyezést értem el a Guba Sándor emlékversenyen.
1999-ben érettségi vizsgát tettem és még ebben az évben felvételt nyertem a kaposvári Pannon Agrártudományi Egyetemre.
2002 novemberétől 11 hónapot voltam az Amerikai Egyesült Államokban szakmai gyakorlaton.
2004-ben államilag elismert szakmai (mezőgazdasági) középfokú „C” típusú nyelvvizsgát tettem angol nyelvből.
2004-ben inszeminátori és felsőfokú vadgazda képesítést szereztem.
2006-ban 3 hónapot töltöttem Új-Zélandon, ahol a Massey Egyetem kutató csoport munkájában vettem részt.
2007-től a Kaposvári Egyetem Vadgazdálkodási Tájközpontnál dolgozom, ahol több pályázati munkában is aktívan részt vettem (GAK, Baross Gábor Program K+F projektek támogatása Reg_DD_KFI_09, TAMOP 4.2.2/A-11/1KONV).
2008 és 2011 között a Kaposvári Egyetem Állattenyésztési Doktori Iskola nappali tagozatos hallgatója voltam.
2009-ben „fiatal gazda” támogatást (Az Európai Mezőgazdasági és Vidékfejlesztési Alapból a fiatal mezőgazdasági termelők számára nyújtotándó támogatás) nyertem és férjemmel gímszarvas farmot létesítettünk, ami azóta, folyamatosan működik.
2012-ben államilag elismert általános alapfokú „C” típusú nyelvvizsgát tettem német nyelvből.
2012 áprilisában sikeres doktori szigorlati vizsgát tettem.
15. MELLÉKLETEK

1. melléklet: Az agancsparaméterek átlag és szórás értékei korosztályonként Bács-Kiskun megyében

<table>
<thead>
<tr>
<th>Kor (év)</th>
<th>n</th>
<th>Trófea tömeg (kg)</th>
<th>Rózsa köréré (cm)</th>
<th>Alsó köréré (cm)</th>
<th>Felső köréré (cm)</th>
<th>Szárhossz (cm)</th>
<th>Szemág (cm)</th>
<th>Jégág (cm)</th>
<th>Közpág (cm)</th>
<th>Ágak száma (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>6,62 ± 0,34</td>
<td>22,64 ± 1,60</td>
<td>13,62 ± 0,62</td>
<td>12,58 ± 0,17</td>
<td>86,88 ± 5,12</td>
<td>36,37 ± 5,03</td>
<td>22,90 ± 9,48</td>
<td>36,28 ± 6,79</td>
<td>6,7 ± 0,570</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>6,51 ± 0,45</td>
<td>23,34 ± 1,16</td>
<td>14,14 ± 0,75</td>
<td>12,92 ± 0,73</td>
<td>94,80 ± 4,96</td>
<td>36,67 ± 3,06</td>
<td>21,55 ± 8,66</td>
<td>30,55 ± 4,79</td>
<td>6,16 ± 0,96</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>7,00 ± 0,78</td>
<td>23,90 ± 2,39</td>
<td>14,46 ± 1,61</td>
<td>13,12 ± 1,38</td>
<td>97,05 ± 6,29</td>
<td>35,84 ± 5,28</td>
<td>21,74 ± 10,36</td>
<td>30,95 ± 6,43</td>
<td>6,06 ± 0,94</td>
</tr>
<tr>
<td>8</td>
<td>201</td>
<td>7,47 ± 0,84</td>
<td>24,66 ± 1,73</td>
<td>14,78 ± 0,96</td>
<td>13,51 ± 0,88</td>
<td>99,52 ± 6,86</td>
<td>37,18 ± 5,01</td>
<td>22,81 ± 9,89</td>
<td>33,15 ± 6,76</td>
<td>6,29 ± 0,87</td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td>8,20 ± 1,06</td>
<td>25,60 ± 1,55</td>
<td>15,45 ± 1,09</td>
<td>14,16 ± 1,05</td>
<td>101,90 ± 6,20</td>
<td>37,72 ± 5,40</td>
<td>24,23 ± 10,56</td>
<td>33,83 ± 7,90</td>
<td>6,58 ± 1,02</td>
</tr>
<tr>
<td>10</td>
<td>155</td>
<td>8,56 ± 1,03</td>
<td>26,07 ± 1,70</td>
<td>15,48 ± 1,14</td>
<td>14,29 ± 1,00</td>
<td>103,29 ± 6,94</td>
<td>38,22 ± 5,22</td>
<td>24,35 ± 10,92</td>
<td>35,16 ± 5,98</td>
<td>6,82 ± 1,14</td>
</tr>
<tr>
<td>11</td>
<td>76</td>
<td>9,19 ± 1,38</td>
<td>26,86 ± 1,60</td>
<td>16,11 ± 1,16</td>
<td>14,59 ± 1,40</td>
<td>103,90 ± 6,71</td>
<td>39,64 ± 5,48</td>
<td>24,72 ± 11,35</td>
<td>34,83 ± 9,31</td>
<td>7,12 ± 1,34</td>
</tr>
<tr>
<td>12</td>
<td>76</td>
<td>9,18 ± 1,32</td>
<td>27,26 ± 1,63</td>
<td>16,23 ± 1,37</td>
<td>14,98 ± 1,52</td>
<td>104,42 ± 6,44</td>
<td>39,96 ± 6,18</td>
<td>25,67 ± 10,77</td>
<td>36,48 ± 7,95</td>
<td>6,83 ± 1,18</td>
</tr>
<tr>
<td>13</td>
<td>16</td>
<td>9,13 ± 1,76</td>
<td>27,80 ± 2,10</td>
<td>16,89 ± 2,16</td>
<td>15,45 ± 1,80</td>
<td>105,69 ± 5,51</td>
<td>39,08 ± 7,93</td>
<td>23,30 ± 14,36</td>
<td>35,23 ± 7,88</td>
<td>6,75 ± 1,08</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>10,05 ± 2,21</td>
<td>29,26 ± 1,94</td>
<td>17,23 ± 1,75</td>
<td>16,35 ± 2,27</td>
<td>109,50 ± 5,70</td>
<td>40,05 ± 6,36</td>
<td>26,65 ± 14,30</td>
<td>35,54 ± 12,19</td>
<td>6,91 ± 1,66</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>10,86 ± 3,24</td>
<td>28,82 ± 5,76</td>
<td>19,55 ± 4,38</td>
<td>18,00 ± 4,81</td>
<td>104,00 ± 4,95</td>
<td>25,00 ± 6,36</td>
<td>14,62 ± 20,68</td>
<td>26,62 ± 7,60</td>
<td>5,75 ± 0,35</td>
</tr>
</tbody>
</table>
2. melléklet: Az agancsparaméterek átlag és szórás értékei korosztályonként Somogy megyében

<table>
<thead>
<tr>
<th>Kor (év)</th>
<th>n</th>
<th>Trófea tömeg (kg)</th>
<th>Rézsa körméret (cm)</th>
<th>Alsó körméret (cm)</th>
<th>Felső körméret (cm)</th>
<th>Szárhossz (cm)</th>
<th>Szemág (cm)</th>
<th>Jégág (cm)</th>
<th>Középag (cm)</th>
<th>Ágak száma (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>6,16 ± 0,23</td>
<td>23,10 ± 1,48</td>
<td>13,85 ± 1,48</td>
<td>85,48 ± 3,09</td>
<td>36,6 ± 7,45</td>
<td>24,63 ± 5,33</td>
<td>31,30 ± 1,13</td>
<td>6,0 ± 1,00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>133</td>
<td>6,59 ± 0,67</td>
<td>23,59 ± 1,54</td>
<td>13,12 ± 0,97</td>
<td>94,92 ± 6,06</td>
<td>33,66 ± 4,64</td>
<td>21,28 ± 8,94</td>
<td>34,08 ± 5,56</td>
<td>6,18 ± 0,88</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>528</td>
<td>6,73 ± 0,53</td>
<td>23,83 ± 1,39</td>
<td>13,01 ± 0,67</td>
<td>96,27 ± 5,80</td>
<td>34,79 ± 4,43</td>
<td>21,41 ± 10,06</td>
<td>34,08 ± 5,60</td>
<td>5,93 ± 0,80</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>866</td>
<td>7,14 ± 0,72</td>
<td>24,14 ± 2,16</td>
<td>13,28 ± 1,24</td>
<td>98,81 ± 6,20</td>
<td>35,52 ± 5,17</td>
<td>21,01 ± 10,64</td>
<td>34,72 ± 6,48</td>
<td>6,05 ± 0,91</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1103</td>
<td>7,68 ± 0,91</td>
<td>24,89 ± 1,54</td>
<td>13,77 ± 0,95</td>
<td>101,01 ± 6,56</td>
<td>36,1 ± 5,14</td>
<td>21,68 ± 10,91</td>
<td>35,60 ± 6,62</td>
<td>6,29 ± 1,03</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>970</td>
<td>8,13 ± 1,06</td>
<td>25,44 ± 2,08</td>
<td>14,01 ± 1,32</td>
<td>102,68 ± 6,27</td>
<td>36,69 ± 5,51</td>
<td>22,25 ± 11,68</td>
<td>36,19 ± 7,63</td>
<td>6,46 ± 1,03</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>865</td>
<td>8,47 ± 1,16</td>
<td>26,00 ± 2,27</td>
<td>14,24 ± 1,33</td>
<td>104,28 ± 6,27</td>
<td>37,43 ± 5,77</td>
<td>22,60 ± 11,91</td>
<td>37,04 ± 7,65</td>
<td>6,52 ± 1,14</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>666</td>
<td>8,97 ± 1,24</td>
<td>26,60 ± 2,26</td>
<td>14,59 ± 1,43</td>
<td>106,08 ± 6,99</td>
<td>38,11 ± 5,94</td>
<td>23,33 ± 12,16</td>
<td>38,32 ± 7,53</td>
<td>6,88 ± 1,14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>554</td>
<td>9,48 ± 1,52</td>
<td>26,83 ± 3,16</td>
<td>14,90 ± 1,86</td>
<td>107,48 ± 6,41</td>
<td>38,32 ± 6,95</td>
<td>24,74 ± 12,42</td>
<td>39,10 ± 8,77</td>
<td>7,10 ± 1,26</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>197</td>
<td>10,06 ± 1,84</td>
<td>27,76 ± 4,04</td>
<td>15,23 ± 2,33</td>
<td>108,58 ± 7,31</td>
<td>38,09 ± 8,36</td>
<td>22,79 ± 13,64</td>
<td>39,73 ± 8,88</td>
<td>7,25 ± 1,36</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>47</td>
<td>9,51 ± 1,66</td>
<td>26,65 ± 6,11</td>
<td>15,72 ± 3,59</td>
<td>108,79 ± 5,98</td>
<td>33,39 ± 9,90</td>
<td>16,90 ± 12,99</td>
<td>36,35 ± 10,6</td>
<td>7,20 ± 1,19</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>9,56 ± 1,68</td>
<td>26,13 ± 8,09</td>
<td>15,61 ± 5,26</td>
<td>109,38 ± 4,14</td>
<td>35,78 ± 12,52</td>
<td>17,68 ± 13,17</td>
<td>35,03 ± 14,78</td>
<td>7,42 ± 2,23</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>10,61 ±</td>
<td>31,05 ±</td>
<td>18,25 ±</td>
<td>113,85 ±</td>
<td>36,55 ±</td>
<td>1,5 ±</td>
<td>30 ±</td>
<td>7,5 ±</td>
<td></td>
</tr>
</tbody>
</table>