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1 Preliminaries

In recent decades, curved beams have been widely used in numerous engi-
neering applications as load carrying members. Let us just think about arch
bridges, roof structures or sti�eners in the aerospace or marine industry. Sci-
entists and designers are always being interested in the mechanical behaviour
(stresses, displacements, load carrying capabilities, etc.) of such structural
elements to prevent failure (e.g.: yielding, buckling, self-excited vibrations)
under given loads and circumstances. Therefore, there are a number of books,
articles and other scienti�c works delivering relevant results, see, e.g., [1, 2, 3]
for calculating the stresses, [4,5,6] for stability problems and [6,7,8] as regards
the issue of vibrations.

Nowadays not only homogeneous members but inhomogeneous or hetero-
geneous ones are also getting more and more widespread. These beams can
have more advantageous properties compared to the homogeneous ones, such
as reduced weight; improved corrosion, fatigue and chemical resistance and
higher strength. A class of nonhomogeneous material composition is the so-
called cross-sectional inhomogeneity. It means that the material parameters �
say, Young's modulus E or the Poisson ratio ν � have symmetric distribution
with respect to the cross-sectional axis ζ. This distribution is either contin-
uous or constant over each segment (layer). Some illustrative examples are
shown in Figure 1. In this way it is possible to simply model multilayered or
functionally graded materials. For planar, elastic, isotropic circular beams of
this kind, I intend to focus on three mechanical issues: stresses, stability and
vibrations.

Figure 1: The concept of cross-sectional inhomogeneity.

As regards the mechanical behaviour of curved beams, investigations be-
gan in the 19th century. The foremost load-displacement relationship was
established by Bresse (1854). Winkler was the �rst to derive a formula for
the normal stress distribution (1858) and Grashof is known for developing an
equilibrium method (1878) for the calculation of the shear stresses. These
results are well collected in the works [1, 9].
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The interest is still live, as new models for di�erent loading cases, geome-
tries, and even for nonhomogeneous materials are continuously being pub-
lished. For instance, Ascione and Fraternali [10] use the �nite element method
to obtain solutions for the stresses in perfectly bonded layered curved beams.
They assume that each layer is a Timoshenko beam. They compute interlam-
inar, normal and shear stresses as well. Segura and Armengaud [11] propose
simple analytical solutions for the normal and shearing stress distributions in
composites under bending loads. The normal stress distribution due to the
bending moment and the axial force is hyperbolic over the cross-section. The
authors have also managed to extend Bredt's formula for composite curved
beams to get the shear stresses. Article [12] by Baksa and Ecsedi provides
formulae for the stress distributions in straight beams with cross-sectional in-
homogeneity under pure bending. Book [1] by Kozák and Szeidl also deserves
mentioning as it presents how to derive the stresses in straight beams with
cross-sectional inhomogeneity and also gathers formulae for the stress distri-
butions in homogeneous curved beams. According to the literature review,
it seems that curved beams with cross-sectional inhomogeneity have not yet
been investigated.

Another popular topic is the buckling behaviour of beams. In 1757, Euler
derived his well-known formula for the critical (buckling) load of straight bars
under compression. Considering the behaviour of curved members, stability
investigations began much later: around the beginning of the 19th century.
The early literature ignored the extensibility of the centerline � see, e.g., [13]
by Hurlbrink. Then Chwalla and Kollbrunner [14] showed that account for
the axial strain can notably a�ect the critical load. After the 1950s, work
became more intensive. Szeidl in his PhD thesis [6] determines the critical
load of circular beams under radial dead load given that the Fourier series of
the load is known. Paper [15] by DaDeppo and Schmidt provides solution to
the buckling load of deep circular beams whose loading is a vertical force. The
authors have shown that quadratic terms should be accounted in the analysis.

When dealing with shallow circular beams Pi, Bradford et al. have pointed
out [4, 16] that account even for the pre-buckling deformations is likewise es-
sential not to overestimate the permissible load. The authors have been in-
tensively investigating the stability of homogeneous (shallow and deep) arches
using their analytical model, which accounts for all the above mentioned prop-
erties. Nonlinearities are considered through the square of the in�nitesimal ro-
tations. The authors have evaluated their model for various loads (distributed,
concentrated) and boundary conditions (pinned, �xed, elastic supports, mixed
supports, etc.). Bateni et al. [5] use the same kinematical hypotheses as pre-
sented in [4] to analyse shallow arches under a concentrated load. However,
their model is valid for functionally graded materials.
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The vibrations of curved beams has been a �eld of interest as of the 1920s.
Den Hartog was the �rst to investigate the free vibrations of such structural
elements (1928). Early but still notable contributions � assuming the inex-
tensibility of the centerline � were provided in [17,18].

Szeidl in his PhD thesis [6] investigates how the extensibility of the center-
line can change the eigenfrequencies of the free vibrations of planar circular
beams under a constant radial load. The author achieves results using the
Green function matrix, with what, the related boundary value problem is
transformed to a problem governed by Fredholm integral equations. Kang et
al. [19] obtain the frequencies (eigenvalues) for the in- and out-of-plane vi-
brations of circular Timoshenko arches given that rotatory inertia and shear
deformations are accounted. Tüfekçi and Arpaci [7] managed to gain exact an-
alytical solutions for the in-plane free harmonic vibrations of circular arches.
The authors account for the extensibility of the centerline and also for the
transverse shear and rotatory inertia e�ects. Kovács [8] deals with layered
arches assuming the possibility of both perfect and even imperfect bonding
between any two nearby layers.

In the reviewed literature there are some sources, which use the Green
function to tackle some dynamic issues. Szeidl et al. [20] determine the natu-
ral frequencies of pinned and �xed circular arches using this technique. Kele-
men [21] extends the former model. She computes the natural frequencies
as functions of a constant distributed radial load. Li et al. [22] consider the
forced vibrations of straight Timoshenko beams when these are under a time
harmonic concentrated load. Damping e�ects at the ends are accounted.

2 Objectives

Based on the reviewed open literature, the main objectives of the candidate are
related to cross-sectional inhomogeneity and are detailed in the forthcoming.

Objective 1: Generalization of some classical results valid for homogeneous
materials. These investigations are aimed to lead to the following re-
sults:

� Generalization of two elementary relationships (valid for homogeneous
curved beams) � that provide the normal stress caused by an axial force
and a bending moment � for curved beams with cross-sectional inhomo-
geneity.

� Setting up a further formula for computing the shear stress.

� In addition, a formula for the shear correction factor is also to be derived.

3



� The results obtained for the stresses should be compared with those
obtained by �nite element computations.

Objective 2: On the basis of the literature overview, no investigations have
been carried out concerning the stability problem of (shallow) circular
beams under the assumption of cross-sectional inhomogeneity. Within
the frames of what has been mentioned above, Objective 2 is summarized
in the following items.

� I intend to develop a new nonlinear model for non-strictly shallow curved
beams from the principle of virtual work. It is aimed to be more accurate
than those presented in [4,23] and should be applicable to cross-sectional
inhomogeneity as well.

� I would like to evaluate the new model for pinned-pinned, �xed-�xed and
rotationally restrained supports provided that the beam is subjected to
a central load at the crown point. This would involve the determination
of the critical load both for symmetric snap-through and antisymmetric
bifurcation buckling.

� At the same time, the typical buckling ranges and its endpoints are also
of interest.

� Comparison of the results with those available in the literature and with
the Abaqus commercial �nite element software should also be performed.

Objective 3 is related to the in-plane vibrations of loaded circular beams
with cross-sectional inhomogeneity. I intend

� to derive those boundary value problems, which can make it clear how
a radial load a�ects the natural frequencies of pinned-pinned and �xed-
�xed beams,

� to construct the corresponding Green function matrices by taking into
account that the central load at the crown point can either be compres-
sive or tensile (four Green function matrices are to be determined),

� to reduce the eigenvalue problems set up for the natural frequencies
(which depend on the load) to eigenvalue problems governed by homo-
geneous Fredholm integral equation systems (four systems should be
established),

� to replace these eigenvalue problems with algebraic ones and to solve
them numerically,

� to clarify how the vertical force at the crown point a�ects the frequencies
of the vibrations (when this load is removed, I have to get back the
results valid for free vibrations),

� to verify some results by Abaqus and/or experiments.
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3 Investigations performed

While establishing the mechanical models, the validity of the following com-
mon hypotheses were considered:

� there is cross-sectional inhomogeneity,
� the displacements and deformations are su�ciently small,
� the beam models are one-dimensional,
� the (E-weighted) centerline remains in its own plane,
� the curved beam has uniform cross-section and constant initial radius,
� the cross-section is symmetric,
� the classical single-layer theory applies,
� the magnitude of the normal stress σξ is much greater than that of the
stress components ση and σζ .

When deriving simple closed-form solutions for the normal stress distribu-
tion, the validity of the Euler-Bernoulli theory is assumed. Such loads that
cause bending action and axial strain can be applied (with shearing e�ects
neglected). First, an exact formula is derived. Then further transformations
and simpli�cations lead to the generalized form of the Grashof (Winkler) for-
mula. Accordingly, the bending moment has a constant and hyperbolic e�ect
on the normal stress distribution while the axial force causes constant stress.
A further achievement is another formula for the normal stress and for the
location of the neutral axis in the case of pure bending � both are dependent
on the material composition.

The shear stresses are obtained by using equilibrium equations for a por-
tion of the beam (i.e., the kinematical relations are not completely satis�ed).
The result is the extension of Grashof's equilibrium method for cross-sectional
inhomogeneity. The advantage of this procedure is the relatively simple out-
come. Moreover, a formula is proposed for the shear correction factor.

The static stability model is based on the Euler-Bernoulli hypothesis. The
kinematical assumption contains a quadratic term, that is, the square of the
in�nitesimal rotations. Given that the investigated structural element is pri-
marily a shallow arch, the e�ect of the tangential displacements on the former
quantity is neglected. As the pre-buckling deformations are substantial, the
change in the equilibrium state due to the deformations is accounted. The
governing equilibrium equations under concentrated and distributed loads for
non-uniform rotational end restraints are established using the principle of vir-
tual work. However, solution is calculated only when there is a concentrated
dead load exerted at the crown point. Due to the symmetry properties, a
half-beam model is examined. The nonlinear axial strain on the centerline
is constant under these conditions. In this way, a fourth-order ordinary dif-
ferential equation governs the problem mathematically, which can be solved
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in closed-form. The former statements are valid even for the incremental
quantities, which are measured after the loss of stability.

Semi-analytical evaluations are carried out for symmetrically supported
pinned, �xed and rotationally restrained circular beams. These evaluations,
on the one hand, include the determination of the pre-buckling equilibrium
in terms of the material, geometry and loading. On the other hand, it is also
pointed out that there are two possible buckling modes: antisymmetric bifur-
cation buckling with no strain increment and symmetric snap-through mode
with a changing centerline length. The related critical strains and therefore
the critical loads are determined in terms of the geometry. It is found that
there are beams for which there is no buckling. As for the others it is also
sought which of the two buckling modes dominates in terms of the geometry.

For pinned beams, mostly antisymmetric buckling can be expected. How-
ever, for �xed ones the symmetric type governs. When the spring sti�ness
of the supports is (equal to zero) [tends to in�nity] we get back the solu-
tions valid for (pinned) [�xed] beams. To better understand the behaviour of
the members, the primary equilibrium paths are also plotted for each typi-
cal buckling range. Commercial �nite element computations and comparison
with the literature indicate that the results can be considered as valid for all
checked supports and even for not strictly shallow arches. Simple numerical
examples show that material heterogeneity can have a signi�cant impact on
the permissible loads, therefore account for this property seems inevitable.

The vibration analysis is based on linearized strains and the Euler-Bernoulli
hypothesis. At the same time, the e�ect of the tangential displacements on
the rigid body rotations are kept so that the results are applicable for deep
arches as well. The natural frequencies are sought and that how a central
concentrated load changes these frequencies. The equilibrium equations are
derived from the principle of virtual work for a beam under concentrated and
distributed loads. The strain the concentrated load causes is constant on
the centerline. The pre-buckling (initial) equilibrium is governed by ordinary
di�erential equations.

As for the dynamic part of the issue, the forces of inertia are accounted
and undamped time harmonic vibrations are considered. The derivations
lead to an eigenvalue problem where the square of the eigenfrequencies are
proportional to the eigenvalues. Solutions are sought for those cases when the
central vertical concentrated force causes compression and tension.

The Green function matrix is constructed in closed-form for both loading
cases of pinned and �xed beams. The application of this technique requires
linear ordinary di�erential equations with closed-form general solutions and
self-adjoint eigenvalue problems. With the corresponding Green functions in
hand, each eigenvalue problem governed by ordinary di�erential equations
and the corresponding boundary conditions can be replaced by homogeneous
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Fredholm integral equations and following the procedure presented in [6],
they can numerically be reduced to algebraic equation systems (eigenvalue
problems).

When dealing with the vibrations, we must also be aware of the critical
loads because if this limit is reached, buckling occurs. So these loads are also
determined. Since in practise, the load is the known quantity and the model
has the strain as parameter, a unique relationship between these quantities is
provided.

Results are evaluated both for the free and loaded vibrations and are
compared with the literature and commercial �nite element software compu-
tations. Moreover, colleagues from Romania contributed with some measure-
ments regarding the free vibrations of �xed beams. Thanks to their e�orts it
became possible to compare some numerical results also with experiments to
con�rm the validity of the model.

Regarding the outcomes, the quotients of the even unloaded frequencies of
curved and straight beams with the same length and material only depend on
the central angle and the supports, while the odd ones are also functions of
the cross-sectional geometry and material distribution. It turns out that for
pinned beams the quotient of the square of the second loaded and unloaded
frequencies (increase) [decrease] almost linearly under (tension) [compression]
in terms of the strain-critical strain ratio, meanwhile the central angle, ge-
ometry and material do not a�ect these relations. The experiences are more
likely quadratic and more dependent on the geometry for �xed members. The
e�ect of the material composition on the frequencies is illustrated through
simple numerical examples.

4 Novel results

The �rst objective was to provide simple formulae for calculating the stress
state of heterogeneous curved beams by generalizing the formulae valid for
homogeneous curved beams. These involved the expressions of the normal
stress and shear stress. The shear correction factor was also determined. The
most important results are gathered in

Statement 1.

1.a. I have derived an exact and two approximative relationships that pro-
vide the normal stress caused by an axial force and a bending moment
in curved beams with cross-sectional inhomogeneity. The latter two
are generalizations of well-known relationships valid for homogeneous
curved beams. A further formula has been established for computing
the shearing stress.
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1.b. In addition, a formula for the shear correction factor has also been de-
rived. The results obtained by the relationships set up for the stresses
are compared with �nite element computations. A good agreement is
found between the di�erent models.

As regards the corresponding publications see references (8), (12) and (19).
Though the title is the same for (12) and (19), the former one is more detailed.

Statement 2.

I have investigated the in-plane elastic static stability of circular beams with
cross-sectional inhomogeneity provided that the beam is subjected to a verti-
cal force at the crown point.

2.a. I have derived a new model both for the pre-buckling and post-buckling
radial displacements - in the later case both for symmetric and anti-
symmetric buckling. Cross-sectional inhomogeneity is implied in these
equations via the parameter m (which is a function of the E-weighted
radius of gyration and the radius of curvature). The equations I have
established are more accurate than those recently set up by Bradford et
al. in [4,24] for homogeneous and by Bateni and Eslami [5] for function-
ally graded material. Though I neglected the e�ect of the tangential
displacements on the angle of rotation, papers [4, 24] also apply this
assumption. Altogether, as the new model uses less neglects, the re-
sults for the critical load are more accurate than those published in the
formerly cited works.

2.b. Solutions are provided for (a) pinned-pinned, (b) �xed-�xed and (c)
rotationally restrained beams. For each case I have determined what
character the stability loss can have: no buckling, limit point buckling,
bifurcation buckling after limit point buckling, bifurcation buckling pre-
cedes limit point buckling. The endpoints of the corresponding intervals
are not constant in the modi�ed slenderness λ as in the previous models
but further depend on the parameter m (on the E-weighted radius of
gyration and the radius of curvature).

2.c. Comparisons have been made with previous results and �nite element
computations as well. These prove that the results obtained are applica-
ble also for not strictly shallow beams, up until the semi-vertex angle ϑ
is not greater than 1.5. For small central angles the di�erences between
the models are, in general, smaller than for greater central angles.

2.d. Cross-sectional inhomogeneity can have a serious e�ect on the critical
load. This is proven via a simple example.
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As regards the corresponding publications see references (2), (3), (5), (10),
(11), (13)-(18) and (20).

Statement 3.

I have investigated the vibrations of circular beams with cross-sectional inho-
mogeneity, subjected to a vertical force at the crown point.

3.a. I have derived the governing equations of those boundary value prob-
lems which make it possible to determine how a radial load a�ects the
natural frequencies. For pinned-pinned and �xed-�xed beams I have
determined the Green function matrices assuming that the beam is pre-
stressed by a central load. When computing these matrices I had to
take into account that the system of ordinary di�erential equations that
govern the problem is degenerated.

3.b. Making use of the Green function matrices, I have reduced the self-
adjoint eigenvalue problems set up for the eigenfrequencies to eigenvalue
problems governed by homogeneous Fredholm integral equation systems
� four homogenous Fredholm integral equation systems have been es-
tablished. These integral equations can directly be used for those dead
loads, which result in a constant, otherwise either negative or positive
axial strain on the E-weighted centerline. I have replaced these eigen-
value problems with algebraic ones and solved them numerically.

3.c. It has turned out that the square of the quotient of the second loaded
and unloaded natural frequencies depends almost linearly on the axial
strain-critical strain ratio and is actually independent of the curved
beam geometry and material inhomogeneity for pinned-pinned beams.
The relations for �xed-�xed beams are more dependent on the central
angle and are rather quadratic. In the knowledge of the load-strain
relationship we can determine the strain due to the load, and then the
natural frequencies of the loaded structure. If the strain is zero, we get
back those results which are valid for the free vibrations.

3.d. In some cases, the numerical results are veri�ed by commercial �nite
element calculations and experiments as well. According to these, it
turns out that the numerical model approximates the eigenfrequencies
with a good accuracy.

As regards the corresponding publications see references (1), (4), (6), (7), (9),
(11) and (20).
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5 Possible application of the results

The results achieved can be applied to homogeneous or heterogeneous cir-
cular beams as structural elements to predict the behaviour (possible failure
regarding the stresses, stability and vibrations) of the members under given
circumstances. With new and improved models continuously being made, it is
possible to gain more and more accurate results and thus, reduce uncertainties
and save costs.

Some of the results could be harnessed in the education as nowadays non-
homogeneous materials are gradually gathering ground. Primarily, I am think-
ing about the simple closed-form solutions for the normal and shear stress
distributions in circular beams with cross-sectional inhomogeneity. Moreover,
a simpli�ed form of the stability model could as well be included in the cur-
riculum to broaden the student's view of the phenomenon of buckling, which
is many times restricted to the classical Euler column.

Moreover, the models and solutions obtained could be used for benchmark
purposes to verify other models.

6 Future research

Based on the presented models, several additional improvements and general-
izations could be made. In the simplest way, by changing the loading and/or
the supports � even considering not symmetric conditions, or three-hinged
beams � so that the investigations could be extended even more. Research is
in progress for the vibration model when the beam is pinned at the left end
and is �xed at the right end and there are equal rotational end restraints.

Keeping the hypotheses of the presented stability model, an interesting
question is how the buckling loads, buckling shapes and the typical ranges
change if the beam is subjected to a radial or vertical load at a point, other
than the crown point. The post-buckling behaviour might also be worthy
of dealing with and moreover, the dynamic behaviour could also be modeled
some way. It would also be desirable to develop a one-dimensional �nite ele-
ment model, taking �nite strains and/or rotations into account when dealing
with the stability problem.

But such questions could as well be arisen how to harness the experiences
of the presented models to tackle some issues of curved but not circular beams,
out-of plane problems, bi-modular materials, to account for shear deforma-
tions, interlayer slip, etc.

It would also be satisfying to verify the results with experiments. Concern-
ing this idea, there is an ongoing cooperation with some generous colleagues
of the Transilvania University of Bra³ov.
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7 The candidate's relevant publications

Journal articles in foreign language

(1) L. Kiss and Gy. Szeidl: Vibrations of pinned-pinned heterogeneous
circular beams subjected to a radial force at the crown point. Mechanics
Based Design of Structures and Machines: An International Journal,
43(4), 2015, 424-449.

(2) L. Kiss and Gy. Szeidl: Nonlinear in-plane stability of heterogeneous
curved beams under a concentrated radial load at the crown point. Tech-
nische Mechanik, 35(1), 2015, 1-30.

(3) L. Kiss and Gy. Szeidl: In-plane stability of �xed-�xed heteroge-
neous curved beams under a concentrated radial load at the crown point.
Technische Mechanik, 35(1), 2015, 31-48.

(4) L. Kiss, Gy. Szeidl, S. Vlase, B. P. Gálfi, P. Dani, I. R.

Munteanu, R. D. Ionescu and J. Száva: Vibrations of �xed-�xed
heterogeneous curved beams loaded by a central force at the crown point.
International Journal for Engineering Modelling, 27(3-4), 2014, 85-100.

(5) L. Kiss: In-plane buckling of rotationally restrained heterogeneous shal-
low arches subjected to a concentrated force at the crown point. Journal
of Computational and Applied Mechanics, 9(2), 2014, 171-199.

Journal articles in Hungarian language

(6) Kiss L. P.: Heterogén anyagú síkgörbe rúd szabadrezgéseinek saját-
frekvenciái, GÉP, LXIV(5), (2013), 16-21.

(7) Kiss L. P. And Szeidl Gy.: Tet®pontjában sugárirányú koncentrált
er®vel terhelt heterogén anyagú síkgörbe rúd rezgései,Multidiszciplináris
tudományok: A Miskolci Egyetem közleménye, 3(1-2), (2013), 67-82.

(8) Kiss L. P.: Heterogén síkgörbe rudak lehetséges mechanikai modellje,
Multidiszciplináris tudományok: A Miskolci Egyetem közleménye, 2(1),
(2012), 61-76.

Conference papers in book

(9) Gy. Szeidl and L. Kiss (Editor: S. Vlase): Vibrations of heteroge-
neous curved beams subjected to a radial force at the crown point, Pro-
ceedings of the 5th International Conference Computational Mechanics
and Virtual Engineering, COMEC 2013, 24 - 25 October 2013, Bra³ov,
Romania, pp. 24-33. ISBN: 978-606-19-0225-5.
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(10) Gy. Szeidl and L. Kiss (Editor: S. Vlase): A nonlinear mechanical
model for heterogeneous curved beams, Proceedings of the 4th Interna-
tional Conference on Advanced Composite Materials Engineering, CO-
MAT, 18 - 20 October 2012, Bra³ov, Romania, Volume 2, pp. 589-596.
ISBN 0981730051.

(11) Gy. Szeidl and L. Kiss (Editor: S. Vlase): Vibrations and stability of
heterogeneous curved beams, Proceedings of the 4th International Con-
ference on Computational Mechanics and Virtual Engineering COMEC
2011, 20 - 22 October 2011, Bra³ov, Romania, pp. 471-476. ISBN
978-973-131-122-7.

(12) L. Kiss And Gy. Szeidl: Stresses in curved beams made of heteroge-
neous materials, microCAD 2011: International Scienti�c Conference,
31 March - 1 April 2011, Miskolc, Hungary, Section: Applied Mechanics,
pp. 13-18. ISBN 978-963-661-958-9.

Conference papers on CD

(13) Gy. Szeidl and L. Kiss: Stability analysis of pinned-pinned shallow
circular beams under a central concentrated load. microCAD 2014: In-
ternational Multidisciplinary Scienti�c Conference, 10 - 11 April 2014,
Miskolc, Hungary, Section D4: Mechanical Modelling and Finite Ele-
ment Simulation, Paper 40., 8p. ISBN 978-963-358-051-6.

(14) L. Kiss: Stability of heterogeneous curved beams: A nonlinear formu-
lation of the problem. microCAD 2013: International Scienti�c Confer-
ence, 21 - 22 March 2013, Miskolc, Hungary, Section: Applied Mechan-
ics, Paper 7., 6p. ISBN 978-963-358-018-9.

(15) L. Kiss: In-plane stability of heterogeneous circular arches, 8th Inter-
national Conference of PhD Students, 6 - 10 August 2012, Miskolc,
Hungary, Section: Engineering Sciences, Paper 9., 8p. ISBN 978-963-
661-994-7.

(16) Gy. Szeidl And L. Kiss: Stability of heterogeneous shallow arches
subjected to a concentrated dead load, microCAD 2012: International
Scienti�c Conference, 29 - 30 March 2013, Miskolc, Hungary, Paper 9.,
8p. ISBN 978-963-661-773-8.

Conference papers in Hungarian language

(17) Kiss L. and Szeidl Gy.: Heterogén lapos görbe rudak stabilitásvizs-
gálata, OGÉT 2012, 20th International Conference on Mechanical Engi-
neering, 19 - 22 April 2012, Cluj-Napoca, Romania, pp. 234-237. ISSN
2068-1267.
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Full papers that appeared in other1 proceedings

(18) Kiss L.: Heterogén anyagú lapos görbe rudak stabilitásvizsgálata. Diák-
tudomány: A Miskolci Egyetem Tudományos Diákköri Munkáiból 2011-
2012. (2012), pp. 82-88. ISSN 2062-07-21.

(19) Kiss L.: Stresses in Curved Beams Made of Heterogeneous Materials.
Diáktudomány: A Miskolci Egyetem Tudományos Diákköri Munkáiból
2010-2011. (2011), pp. 51-56. ISSN 2062-07-21.

Conference talks

(20) Kiss L., Szeidl Gy.: Heterogén anyagú síkgörbe rudak szabadrezgé-
seinek és stabilitásának vizsgálata. 9th Hungarian Conference on The-
oretical and Applied Mechanics. 29-31 August 2011, Miskolc.
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