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Abstract

At our present time, the production of many products and the provision of many
services are preceded by a thorough planning. This is due to the large number of
possibilities regarding the selection of raw materials and technologies, distribution
of resources, and exact decisions for executing tasks. The most common goal is
profit maximization, however, several other aspects such as environmental impact
and sustainability are gaining increasing attention. Energy supply in particular is a
field with many problems where these aspects become relevant. Renewable energy
sources may have limited availability and spatial distribution, requiring the formu-
lation of complex optimization problems to obtain their full potential. Transporta-
tion itself can also be a critical component of a supply chain, as it can significantly
contribute to costs and environmental impacts.

In my thesis, optimization models and solutions for multiple optimization prob-
lems targeting energy and general utility providing systems are presented. The
P-Graph framework, which is a general purpose modeling and optimization tool for
Process Network Synthesis (PNS) problems, was applied to an energy supply prob-
lem of a single processing plant. This problem focuses on the decision of whether
investment into biogas utilization and solar panels is economical in the long term,
and determines which types of the locally available biomass are the most advanta-
geous for this purpose. The approach involves the multi-period modeling scheme
and an operating unit model with flexible inputs. In the second part, a general mod-
eling technique is presented, which makes complex operations with flexible inputs
possible to be managed with the tools of the P-Graph framework. This technique
allows arbitrary linear constraints on the inputs of an operation. The flexible input
scheme is also demonstrated on a case study involving the energy supply of a rural
area by locally produced biomass. Afterwards, a Mixed-Integer Linear Program-
ming (MILP) model and an algorithmic framework are presented, which are capable
of solving the mobile workforce management problem with a slot-based modeling
technique. The model takes a wide range of circumstances into account, including
packing and unpacking times, time windows, resource utilization and task relations.
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Tartalmi kivonat

Manapság sok termék és szolgáltatás előállítását előzi meg alapos tervezés. Ennek
oka, hogy sok lehetőség van a nyersanyagok, technológiák megválasztására, az erő-
források elosztására, és a tevékenységek pontos végrehajtására. A leggyakoribb cél a
profit maximalizálása, azonban több egyéb szempont kap egyre nagyobb figyelmet,
mint például a környezeti hatások vagy a fenntarthatóság. Az energiaellátás konkré-
tan egy olyan problémákat felvető terület, ahol ezek a szempontok meghatározók.
A megújuló energiaforrások elérhetősége korlátozott és földrajzilag elszórt lehet, így
a bennük rejlő potenciál kiaknázása összetett optimalizálási feladatok formális meg-
fogalmazását teszi szükségessé. Maga a szállítás is kritikus eleme lehet egy ellátási
láncnak, mivel lényegesen hozzájárulhat a költségekhez és a környezeti hatásokhoz.

Dolgozatomban optimalizálási modelleket és megoldásokat mutatok be, amelyek
általános energia- és egyéb szolgáltató rendszereket céloznak meg. A P-Gráf keret-
rendszerrel, amely folyamathálózat-szintézis (PNS) feladatok megoldására egy ál-
talános célú modellező és optimalizáló eszköz, egy gyár energiaellátására vonatkozó
feladatot oldottam meg. Ez a feladat arra fókuszál, hogy biogáz- vagy napener-
gia alapú energiatermelésbe megéri-e befektetni hosszabb távon, és meghatározza,
hogy a biomassza mely típusai a legkedvezőbbek erre. A megközelítés többperió-
dusú modellezési módszert és rugalmas bemenetű műveleti egység modellt használ.
A második részben egy általános modellezési technikát ismertetek, amely lehetővé
teszi összetett, rugalmas bemenetű műveletek kezelését a P-Gráf módszertan esz-
közeivel. Ez a technika tetszőleges lineáris korlátozást támogat a művelet be-
meneteire. A rugalmas bemenetű modellezési módszert egy esettanulmány is de-
monstrálja, amelyben egy kisebb vidéki terület energiaellátásának a helyben termelt
biomassza felhasználásával való megoldása a cél. Ezt követően egy Kevert Egészes
Lineáris Programozási (MILP) modellt és keretalgoritmust mutatok be, amik képe-
sek egy mobil munkaerő menedzsment feladat megoldására számos körülmény, mint
a pakolási idők, időablakok, erőforrások kezelése és taszkok közötti relációk fi-
gyelembe vételével.
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Resumen

En la actualidad, la producción de muchos productos y la prestación de muchos
servicios están precedidos por una minuciosa planificación. Esto se debe a la gran
cantidad de posibilidades en cuanto a la selección de materias primas y tecnologías,
la distribución de recursos y las decisiones exactas para ejecutar las varias tareas.
El objetivo más común es la maximización de las ganancias, sin embargo, varios
otros aspectos, como el impacto ambiental y la sostenibilidad, están ganando cada
vez más atención. El suministro de energía en particular es un campo con muchos
problemas donde estos aspectos toman gran relevancia. Las fuentes de energía ren-
ovable pueden tener disponibilidad y distribución espacial limitadas, lo que requiere
la formulación de problemas complejos de optimización para obtener todo su po-
tencial. El transporte en sí mismo también puede ser un componente crítico de una
cadena de suministro, ya que puede contribuir significativamente a los costos y los
impactos ambientales.

En mi tesis, se presentan modelos de optimización y soluciones para múltiples
problemas de optimización dirigidos a sistemas de suministro de energía y de ser-
vicios generales. La estructura teórica y “software” de P-Graph es una herramienta
de modelado y optimización de propósito general para los problemas de Síntesis de
Redes de Procesos (Process Network Synthesis, PNS). Esta se aplicó a un problema
de suministro de energía de una sola planta de procesamiento. Este problema se
centra en la decisión de si la inversión en la utilización de biogás y paneles solares es
económica a largo plazo, y determina qué tipos de biomasa disponible localmente
son los más ventajosa para este propósito. El enfoque implica el esquema de mod-
elado multiperíodo y un modelo de unidad operativa con entradas flexibles. En la
segunda parte, se presenta una técnica general de modelado, que permite gestionar
operaciones complejas con entradas flexibles con las herramientas de P-Graph. Esta
técnica permite restricciones lineales arbitrarias en las entradas de una operación.
El esquema de entrada flexible también se demuestra en el estudio de un caso que
involucra el suministro de energía de una zona rural utilizando biomasa producida
localmente. Posteriormente, se presenta un modelo de programación lineal entera
mixta (Mixed Integer Linear Programming, MILP) y un método algorítmico, que
son capaces de resolver el problema de gestión de la fuerza laboral móvil con una
técnica de modelado basada en ranuras. El modelo tiene en cuenta una amplia
gama de circunstancias, incluidos los tiempos de embalaje y desembalaje, ventanas
de tiempo, utilización de recursos y relaciones de tareas.
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Chapter 1

Introduction

1.1 Motivation

Optimization in general means looking for a solution of some given problem that
best fits our needs. This goal is characterized by the freedom of choice we have,
the criteria determining which solutions are acceptable, and the objective telling
how good a particular solution is. What makes optimization an important field
of mathematics and information technology is the complexity of these problems
arising from practice, including real-world instances. Organizing the supply chain
of a resource, provision of a service, decision on production in a single facility, down
to managing the transportation of personnel and resources, and calculating exact
timing of activities are just a few examples where optimization can be crucial.
The number of system components, their interactions, viable choices on possible
resources, used technologies and procedures, and exact decisions from design to
operation may have a significant impact on feasibility, profitability, sustainability
and other properties of the whole system. The traditional method for supporting
decision making, which is relying on the intuition of experts of the given area can
be insufficient to tackle problems with this complexity. This establishes the need
of computational methods that systematically take into account a wide range of
possible decisions, preferably all that can be advantageous.

Naturally, the economical benefits had been in focus of decision making. For
this reason, profit or throughput maximization, cost minimization are common ob-
jectives in real-world optimization problems. However, other aspects like long-term
sustainability, environmental and social impacts are gaining increasing attention.
These aspects orient optimization problems in the form of available opportunities to
choose from, restrictions on the search space, or alteration of the objective, making
problem formulations more complex.

Sustainability governs efforts to find practically possible ways of providing con-
ditions on Earth suitable for human life in the long term. This is quite a challenge
due to several reasons. The human population is large and increasing [1], which
causes a steady increase in energy footprints [2], while the consumption of resources
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1. INTRODUCTION

is also showing an increasing trend. There was a fourfold increase in private con-
sumption expenditures from 1960 to 2000 [3]. The human population is using a
large portion, approximately 38% of the world terrestrial Net Primary Production
(NPP), leaving a smaller amount to the planetary ecosystem [4], and energy pro-
duction is still heavily relying on fossil fuels [5]. The supply chain of a product or
service may use a large amount of energy, due to manufacturing, transportation,
and management of waste. Therefore, one possibly effective way of decreasing the
human footprint is the optimization of the parts of these already existing processes,
considering the propagation of technologies and methods which are more sustain-
able, while economically still viable. Developing effective tools to support decision
making, on a level capable of managing the complexity of such conflicting goals is
at the core of my interest.

1.2 Optimization methods

In the recent years I met several instances of optimization problems that were
motivated by a real-world application and/or had a theoretical importance. It
is apparent that there are some well-established and general solution techniques.
Generality in this sense means that the same technique can be adapted to a large
number of otherwise unrelated case studies. On the other hand, the extension of an
existing framework or the combination of different tools might also yield the best
result. Algorithms may exist that both guarantee fast performance and globally
optimal result, but only for special problem classes which are often inadequate to
model real-life problem instances.

Heuristic approaches are based on some good rule of thumb for finding solutions
of a problem. Optimality of the solution is not guaranteed in this case. The
effectiveness of a heuristic method is determined by how well the rule captures the
essence of finding better solutions. There are well-known general metaheuristics, for
example Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search (TS),
Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO). Note
that many other individual algorithms can be regarded as heuristic as well.

Mathematical programming techniques are another kind of approach widely
used. In a mathematical programming model, the freedom of decisions is expressed
as model variables. The restrictions determining acceptable solutions are formu-
lated as model constraints, which are usually equations and inequalities involving
the variables and parameters, while the objective of optimization is a function of
these variables and parameters. A great advantage of mathematical programming
is that attention can be focused on formulating the model itself, but the solution
procedure can be performed by some external software called solver, depending
on problem class. More general problem classes are applicable on a larger set
of problems, usually in exchange for a larger computational complexity. A good
compromise in between is the class of Mixed-Integer Linear Programming (MILP)

8



1.3. OVERVIEW OF THIS DOCUMENT

models, which is widely used in optimization problems. In MILP models, variables
may either have integer or real values, and constraints and the objective are all
linear in terms of the variables. Globally optimal solutions can be theoretically
guaranteed for MILP models, but in practice, computational complexity prevents
us from achieving it for larger problem instances.

The P-Graph framework is another effective solution method I particularly re-
lied on during my work. This is a technique capable of optimization at various
fields, published in 1992 by Friedler et al. [6]. The framework consists of the math-
ematical model of P-Graphs, algorithms and software tools to represent, formulate,
and solve Process Network Synthesis (PNS) problems. A P-Graph defines a process
as a directed bipartite graph, where the two partitions of nodes represent states
and operations, and arcs represent material flow. The aim of a PNS problem is to
determine a process network if its possible components and interactions are given.
Therefore, PNS covers the core decisions in optimization problems which can be
modeled by process networks. Accompanying the PNS problem with data like flow
rates, costs and capacities, and utilizing solution algorithms like the Accelerated
Branch and Bound (ABB) algorithm [7] make the framework a complete optimiza-
tion tool and alternative to other approaches.

The P-Graph Studio [8] is a demonstration software, which is freely available
and can be used to formulate PNS problems graphically and calculate solutions for
them with the ABB or apply other algorithms. This software was used to obtain
the results in this work for case studies where the P-Graph framework was used,
and notably the graphical representations of P-Graphs as well.

1.3 Overview of this document

In my PhD Dissertation, applications and extensions of the P-Graph framework,
MILP model-based and algorithmic methods are presented on multiple case studies
targeting energy supply, optimal transportation and workforce management. The
literature review of the applied tools, solution methods, similar and related case
studies is presented in Chapter 2. The main parts of my scientific contribution are
shown as three Theses, each detailed in the respective chapters.

In my first Thesis (Chapter 3), the optimization of the energy supply of a man-
ufacturing plant is presented. The P-Graph framework was used to formulate the
optimization model. This work is motivated by the opportunity to invest into re-
newable energy sources to satisfy the energy requirements of the plant. Heating
and electricity demands were estimated based on historical data. Different types
of biomass produced locally in the region were included in the model as possible
energy sources, from which biogas can be produced and used in a biogas furnace or
a Combined Heat and Power (CHP) plant. Solar panels were also considered, as
well as the business as usual method of purchasing natural gas from the provider
or electricity from the grid. The final version of the model utilizes the multi-period
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1. INTRODUCTION

modeling scheme for energy demands, which is a more precise representation than
the ordinary single period scheme. Additionally, the pelletizer and biogas plant were
modeled as flexible operating units, a method which was generalized afterwards.

In my second Thesis (Chapter 4), a general modeling method is described to
implement operations with flexible inputs in the P-Graph framework. The notion
of flexible inputs refer to scenarios where the ratios of input materials of an op-
eration are not fixed but variable. The presented method does not only support
the flexibility of inputs, but arbitrary linear constraints can be imposed on input
amounts. The novelty of this approach is that instead of manual workarounds,
the existing implementations for P-Graph framework, including the ABB algorithm
can be used to obtain this model, using operating units with fixed input ratios only.
The energy supply problem from Chapter 3 is revisited for the illustration of the
approach. The advantage of using flexible input models, and the demonstration of
the introduced P-Graph modeling technique are presented in another case study
involving the energy supply of a small rural region.

In my third Thesis (Chapter 5), a general MILP model-based solution approach
is presented for a mobile workforce management problem. This is a complex opti-
mization problem which involves an optimal assignment of a given set of spatially
distributed tasks among a given set of executing teams, with precise ordering and
timing. A slot-based MILP model is proposed, which takes a previously unmatched
variety of circumstances into account, including packing and unpacking times of
mobile teams, relative and absolute time windows of execution, consumable and
tool resources, and many kinds of pair-wise relationships between tasks. For larger
scale problems, an algorithmic framework is developed which is based on the MILP
model and provides heuristic solutions in acceptable computational time. The effec-
tiveness of both the standalone MILP model and the algorithmic framework were
tested on many different problem instances, from different aspects.
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Chapter 2

Literature Review

This chapter is structured as follows. In Section 2.1, the P-Graph framework is
presented in detail with the most important algorithms, extensions and applications,
as P-Graphs were a key tool for my results. In Section 2.2, a review of the literature
of mobile workforce management, related problems and approaches is presented.

2.1 The P-Graph framework

2.1.1 Fundamentals

The Process Graph, or P-Graph is a mathematical representation of process net-
works. It was first published in 1992 by Friedler et al. [6]. The advantage of a
P-Graph over other representations like flow sheets is that a process network can
be unambiguously described.

A P-Graph is a directed bipartite graph defined by a pair of node sets, (M,O),
and arcs in between these. The two sets have the following meaning.

• M is the set of material or M -type nodes. A material node can naturally
represent actual materials, but can have other more abstract meanings like
energy, other physical quantities, virtual resources, different states of a given
entity, and even the fulfillment of logical conditions.

• O is the set of operating unit or O-type nodes. An operating unit can represent
any transformation between the quantities represented by the material nodes,
most notably production, conversion or transfer between different states of
the same or different resources.

The arcs of the P-Graphs represent the direction of material flow in the process
network (see Figure 1).

• An arc from an M -type node to an O-type node indicates that the operat-
ing unit has the resource as its input. Therefore, the operation requires the
resource to be available for consumption.

11
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Figure 1: Operating unit node called OpUnit, which consumes three input materials,
numbered 1, 2 and 3, and produces two output materials, numbered 4 and 5.

• An arc from an O-type node to an M -type node indicates that the operating
unit has the resource as its output. Therefore, performing the operation
produces the resource, making it available for further consumption.

We also say that an M -type node has inputs and outputs: these are the O-type
nodes from which there is an arc to the M -type node, or to which there is an arc
from the M -type node, respectively.

To specify the boundaries of a process network, M -type nodes are further par-
titioned into three types.

• Raw material nodes are supposed to be available in the process network from
an external source, these are not produced. The set of raw materials is typi-
cally denoted by R.

• Product nodes represent the final products to be created in the process. These
must be produced by operating units of the process network. The set of
products is typically denoted by P . Note that product nodes may represent
arbitrary goals and results other than actual physical products, like energy,
logical conditions or byproducts.

• The rest of material nodes are intermediate material nodes. These materials
are produced, and are required for the production of other intermediate and
product materials. The set of intermediates can be denoted by I.

A Process Network Synthesis (PNS) problem is characterized by a (P,R,O)
triplet, where P is the set of products, R is the set of raw materials and O is the
set of available operating units. The goal of PNS is to identify solution structures,
as explained later. With the material nodes defined by P , R, and the inputs and
outputs of all operating units, a P-Graph representation is obtained.

The conventional graphical representation of a P-Graph, representing a PNS
problem, can be seen in Figure 2. A huge advantage of the P-Graph framework is

12
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that modeling process networks can be technically more straightforward than using
other approaches, like mathematical programming methods.

Figure 2: Example P-Graph with different material node types.

2.1.2 Basic algorithms

The solution structure of a PNS problem is a subgraph of its underlying P-Graph
which represents a feasible implementation of the process network. A selection of
operating units to be involved in the process is made, and all of their corresponding
input and output materials are included. A solution structure is itself a P-Graph.
The necessary and sufficient conditions for a P-Graph to be a solution structure of
a PNS problem can be expressed in the following five axioms [6].

S1. All final products P are included.

S2. An included material node m has no inputs if and only if m ∈ R.

S3. All included operating unit nodes o are defined in the PNS problem, which
means o ∈ O.

S4. All included operating unit nodes o must have a directed path within the
structure ending in some m ∈ P .

13
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S5. All included material node m is an input or the output of some included
operating unit o.

The Maximal Structure Generation (MSG) algorithm is an important step in
finding solution structures for a PNS problem [9]. The algorithm excludes parts of
the P-Graph which are unusable to obtain any solution structures. It can be proven
that the resulting maximal structure contains all solution structures as a subgraphs.
Note that the maximal structure is itself a solution structure.

The Solution Structure Generation (SSG) algorithm uses the concept of decision
mapping to systematically generate all solution structures of a PNS problem [10].
The number of solution structures can be exponential in the number of nodes of
the original P-Graph. For this reason, if the number of solution structures of a
P-Graph is large, then the running time of the SSG algorithm is high as well. On
the other hand, as solution structures capture the basic logical rules for a feasible
process network, the number of solution structures are still significantly smaller
than the total number of cases considered if the generation was done with some
naive, brute-force method instead.

The process network usually has accompanying numerical data of the materials
and operating units involved. Some of the most important for material nodes are
costs or revenues, minimum and maximum flows. For operating unit nodes, there
can be flow rates for each input and output material, minimum and maximum
capacities, and fixed and proportional investment and operating costs. An example
P-Graph with flow rates is depicted in Figure 3.

The resulting solution structures from the SSG algorithm can be individually
further investigated whether they correspond to actually feasible solutions for the
modeled real-world problem. This results in all structurally feasible solutions to
be taken into account. Note that being a solution structure is a necessary but
not sufficient condition of an actually feasible solution, because it is possible that,
for example, constraints like minimum production amounts, maximum operation
capacities and raw material availability cannot be simultaneously satisfied.

The real-world optimization problem a PNS problem represents is further char-
acterized by flow rates, capacities, costs and other data. This results in an optimiza-
tion model based on PNS. A possible procedure for solving such an optimization
model is the application of the Accelerated Branch and Bound (ABB) algorithm,
supported by the P-Graph Studio software. This algorithm, after simplifying the
process network with the MSG, takes into account all possible solutions structures,
although does not enumerate all of them as SSG does. Instead, a Branch and Bound
framework is used to find the solution structure with the optimal solution. The ob-
jective can be cost minimization or profit maximization, depending on context.

Another advantage of the P-Graph framework, particularly ABB in the current
implementation, is that the optimization procedure is directly capable of reporting
the N best (near-optimal) solution structures for some integer N , instead of just the
single optimal solution [11]. The same can be tedious to achieve with mathematical
programming tools. Reports suggest that P-Graphs can be useful for teaching
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Figure 3: P-Graph with flow rates, the structure is identical to the one in Figure 2.

purposes as well in the topic of system modeling and optimization [12], possibly
in complement with other mainstream techniques like mathematical programming
[13].

2.1.3 Extensions

The P-Graph Studio demonstration software [8] is available and still being devel-
oped, as new features are included and fine-tuning of the algorithms is taking place
to improve performance [14]. A review was made by Klemes and Varbanov about
the variety of problems that can be modeled and optimized with the P-Graph frame-
work [15], particularly mentioning possible extensions and future development. Note
that, the theoretical and software background had also been improved throughout
the years with several extensions.

The Time-Constrained PNS (TCPNS) problem formulation makes timing con-
straints possible for flows [16]. This effectively incorporates scheduling decisions in
the model. This makes it possible to address situations when a fixed set of tasks is
given and their order must be found [17]. Note that similar decisions had already
been modeled in certain circumstances, for example vehicle routing where deliveries
are fixed in time [18], before TCPNS was introduced. These methods demonstrate
that operating units in the P-Graph framework do not necessarily represent pro-
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duction steps, but possibly other abstract relationships like precedence.
Flexible inputs are an issue which arises when an operating unit should accept

a variable ratio of their input materials. The original implementations of a PNS
problem and solving algorithms only support constant value as flow rate for each arc,
which result in operating units with a fixed ratio of all of their input materials with
respective to each other. Recent results have shown that in this class of problems, if
the underlying MILP model is extended with additional constraints, PNS is capable
of modeling operating units with flexible inputs and constraints on these inputs [19].
Note that the extended model is not solvable directly with the original method, the
ABB algorithm. In Chapter 4, a method is presented to achieve the same result
but staying within the frames of the original framework. This scheme of flexible
inputs and constraints based on these inputs has a huge potential in applications,
for example, it was already used in input-output modeling [20].

Multi-period modeling is another extension of the P-Graph framework. Basi-
cally, for capacities and materials flows, only the total amounts are considered. A
P-Graph therefore captures structural feasibility and material balance, in a single
point of time or a given time horizon. This is sufficient for a working model as long
as the distribution of total flows among the total capacities represented this way
are not relevant. This is the case when practically unlimited storage is available
for the supplies or the demands, or production can be evenly distributed over time.
In some cases, however, either the supplies are available or the demands are re-
quired unevenly throughout a time horizon. For this purpose, the time horizon can
be separated into multiple different time periods with their own rates for supplies
and/or demands. This can be done within the P-Graph framework [21]. If there
are further constraints for production, for example minimal required flow for equip-
ment units, their modeling becomes more complicated. The multi-period modeling
scheme can be extended to such scenarios [22]. Although multi-period modeling
is a logical extension of the framework, which means it can be implemented with
existing techniques, there is software support for it in the P-Graph Studio software
[23].

2.1.4 Applications

Although P-Graphs were originally developed to model chemical processes, it is a
general modeling tool with a vast number of applications including PNS, reliability
engineering and systems analysis. Available tools and applications were described
in detail in a recent book [24]. Another review of applications was done by Lam
[25], which presents a collection of case studies involving single plant management,
whole supply chains, and transportation. Another review focuses on applications
where sustainability was a key motivation, involving processing facility and supply
chain optimization [26]. The review by Klemes and Varbanov mentions extensions
and emphasizes future applications [15].

The methodology in general is an alternative to the implementation of MILP
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models, or other solution methods. For example, pinch analysis [27] is a widely
used tool for system design. One possible application of pinch analysis is energy
sector planning with carbon emission constraints [28]. It was demonstrated that
this problem can be formulated and solved with the P-Graph framework [29].

There are also applications where the P-Graph framework is used in combi-
nation with other techniques. An example for this is when P-Graphs and con-
ventional mathematical programming tools were used simultaneously to obtain a
decomposition of the main problem [30]. Several types of biomass were considered
in connection with the palm oil industry, but the authors remark that their results
should be regularly revised to reflect rapidly changing circumstances. Another set
of biomass sources was inspected in a problem involving wood process residues [31].
A phenomenon could be observed in this case study: minor changes in the problem
data can result in significant changes in the order of optimality among the solution
structures. This makes the ability of the P-Graph framework to report multiple
near-optimal solutions a valuable feature. A possible solution strategy is identify-
ing a list near-optimal solutions as a first level of problem decomposition and using
it as a basis for further analysis and optimization [32].

Spatial distribution of biomass availability and demand points for them can be si-
multaneously taken into account, resulting in the optimization of a whole renewable
energy supply chain [33]. The authors in this case study also utilized mathematical
programming and the P-Graph framework together. The mathematical program-
ming tools were used to make clusters of the spatial points, then a PNS problem
was formulated to optimize material flows in between these clusters.

When energy requirements are considered in plant design, heat and electricity
are commonly addressed in a single model. The available biomass sources can be
considered in parallel to purchasing natural gas or electricity from the grid directly,
or maybe as a complete replacement [34]. The case study reported a possible 17%
decrease in total operating costs if biomass sources are integrated into the supply.
Other objectives like ecological footprint can also be taken into account [35]. The
P-Graph framework was also used to find bottlenecks in the supply chain of biomass
source utilization [36]. The approach relied on the near-optimal solution structures
which could be obtained with the appropriate tools. The method was used for the
improvement of sustainability indices in three different scenarios [37]. Case studies
may consider special biomass types, for example intercrops [38].

Separation Network Synthesis (SNS) arises in a production environment when
chemicals must be separated into their pure components, which can be done in
multiple possible paths. The number of possible resulting materials can be practi-
cally infinite, however, special types of SNS problems can be formulated as a PNS
problem and afterwards solved by the ABB algorithm [39].

Production line balancing is the problem of assigning productions steps to exe-
cuting staff or machines at an assembly line, in order to minimize bottlenecks and
maximize throughput of the line. The case when task order is fixed was presented
to be solved by either the P-Graph framework and ABB algorithm alone or a dedi-
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cated MILP model [40]. This application is rather special because only assignment
and ordering decisions are mapped to PNS instead of flow of actual materials. Sim-
ilar cases where assignment of resources is the key decision can be addressed, for
example workforce management [41].

Polygeneration plant modeling and optimization can also be achieved with P-
Graphs [42]. This particular case study involved multiple uncertain demands like
heating, cooling, water and electricity. Risks and possible reactions in case of an
equipment failure event is also a critical issue. This was also handled within the
same framework, as an alternative to MILP models [43]. In general, uncertainty in
supplies and demands, and risks of inoperability have a significant effect on supply
chains. The P-Graph framework can be used for considering reliability constraints
[44], or as a tool for risk analysis [45]. For this reason, it was also used to investigate
the effect of inoperability in the supply networks of bioenergy parks [46], and to
find optimal adjustments [47]. In the modeling point of view, a rather simple case is
when risks can be represented as parameters of the available options. This is the case
when the probability of losses can be estimated for each activity and penalty terms
can be assigned in the objective accordingly [48]. Authors aimed at minimizing
fatalities throughout the bioenergy supply chain in this example. It is also possible
to use P-Graph as a backbone of a fuzzy model instead of a deterministic one [49].

Synthesis of Carbon Management Networks (CMN) is a class of usually complex
problems important from the viewpoint of sustainability. The P-Graph framework
was utilized for the synthesis of a biochar-based CMN [50]. The proposed model
uses a set of sources of biochar and a set of sinks that can contain it. Operating
units represent transportation between any pairs of the possible sources and the
sinks. Another example for CMN addressed with the P-Graph framework used the
Monte Carlo simulation to test near-optimal solutions reported by the PNS solver
and test their robustness [51].

The multi-period modeling scheme in the P-Graph framework first appeared in
a case study where corn production was investigated [52]. Both the supply side and
the demand side were specific for each period. In another model formulation, annual
electricity production for varying sources and demands was optimized. Afterwards,
a case study was performed involving polygeneration, where steam, chilled and
treated water demands were addressed [53]. These scenarios demonstrate that the
multi-period modeling scheme can be applied independently on the raw materials
and on the final products of a supply chain, based on which of the two is fluctuating.

2.2 Mobile workforce management

The problem class of mobile workforce management is not a strictly defined term.
It can refer to a broad range of instances where tasks are performed at spatially
distributed places, which are visited by personnel, teams or machines which perform
these tasks. For this reason, mobile workforce management involves scheduling de-
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cisions. On the other hand, because the order in which tasks are visited involves
routing decisions, mobile workforce management is also strongly related to the Trav-
elling Salesman Problem (TSP), and more generally, the Vehicle Routing Problem
(VRP) when there are multiple actors and custom goals.

This section, dedicated to mobile workforce management, is therefore divided
into three parts: review on methods and some studies for scheduling, then for VRP
problems, and finally instances when these are in combination, which characterize
mobile workforce management problems.

2.2.1 Scheduling problems

A scheduling problem involves the timing and sequencing of tasks, and assigning
personnel, equipment units and other resources to these tasks if relevant. A com-
mon objective is the minimization of makespan, which is the time window for all
events taking place, but other goals like profit or throughput maximization, cost or
earliness and tardiness minimization can be considered. With the exception of a
couple of specific problem classes, scheduling can be an NP-hard problem. For ex-
ample, flow shop scheduling with multiple machines in general already falls into this
category [54]. More complex problem classes can be tackled by heuristic approaches
[55].

Many fundamentally different approaches like heuristics, combinatorial algo-
rithms, and mathematical programming models exist for scheduling. For example,
SA had been used for job shop scheduling [56], and GA have also been proposed
[57]. Solution algorithms can be fine-tuned in many different ways to obtain bet-
ter results [58]. Metaheuristic methods can cover a large search space of possible
solutions, but on the downside, can also be very specific to a particular problem
instance.

An example for combinatorial algorithmic approaches for scheduling is the S-
Graph framework [59], which uses a directed graph for representing precedence
relations and sequencing decisions to enumerate the search space of a scheduling
problem. S-Graphs can be used to schedule batch processes. The framework can
address different storage policies [60], or different timing constraints [61]. The ap-
proach can outperform mathematical programming methods [62], and is capable of
eliminating cross-transfers which are a critical modeling issue for batch processing
plants [63]. It is also possible to incorporate linear programming to the S-Graph
framework [64], and to handle uncertain data [65]. Particularly, the S-Graph frame-
work was also used to solve specific kinds of mobile workforce management problems
[66].

Mathematical programming approaches are very common, either as standalone
solutions or as part of some algorithmic framework - not only for scheduling, but a
much broader range of problems. MILP is a good compromise between the efficacy
of general solver tools and modeling power. Therefore, many approaches for spe-
cific scheduling problems are MILP models. A state-of-the-art review on different
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techniques was done by Mendez et al. [67]. One property of mathematical pro-
gramming approaches is that equivalent but technically easier model formulations
can be developed, which was demonstrated particularly for scheduling problems
[68]. Multiple techniques exist to model the same process, but the best choice from
these strongly depends on the actual problem and its size [69]. Note that although
the mentioned approaches focus on batch process scheduling, the techniques can be
adapted to general purposes.

Selection of the decision variables is the most important characteristic of an
MILP modeling technique. Several concepts are used for example discrete time
intervals [70], variable time points [71], unit-specific time points [72], time slots
[73], and precedence relationships between tasks [74].

Time slots establish an assignment of tasks to sequencing decisions. A slot-
based model had been proposed for multipurpose scheduling problems with different
storage methods [75]. The scheduling of domestic appliances with time-based energy
prices and subject to user preferences was solved by a slot-based MILP model [76].
These case studies suggest that time slots can provide a useful technique for other
purposes as well.

2.2.2 Vehicle Routing Problems

In a VRP problem, the main decisions are the assignment of available vehicles to
sites, and the order in which these sites are visited. Other constraints and options
can be involved, for example time windows for each task and/or vehicle, precedence
relationships between task executions, and multiple depots. A recent review of
real-life considerations of VRP problems was done by Vidal et al. [77]. Another
review from Moghdani et al. focuses on VRP problems involving green technology,
targeted at reducing greenhouse gas emissions [78].

Standalone MILP models had been developed for both TSP and the more gen-
eral VRP problems. Not only multiple vehicles, but multiple starting depots can be
considered [79]. Algorithmic improvements had been proposed for a faster traverse
of the search space of a VRP problem [80]. However, due to the complexity of the
problems, a more common approach is the combination of mathematical program-
ming tools with decomposition methods, metaheuristics, or some other algorithmic
framework. The hybridization of metaheuristics and mathematical programming is
referred to as matheuristics, which has a wide range of applications [81].

Transportation efforts, usually expressed as cost, distance or travelling time,
are key factors in VRP problems. These can be estimated a priori, and sometimes
depend on current vehicle load. An example is when travelled distances are weighted
by passenger count [82]. The authors for this example formulate an MILP model,
but solve it with a specific algorithm. In another instance, total mean time and their
variance for vehicles were minimized by an application of the ACO metaheuristic
[83]. Other goals were also formulated.

Time windows may exist for vehicles to arrive at certain sites. A possible sce-
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nario is when products have a limited lifespan, comparable to transportation times.
Then, production can reasonably be the part of the decision problem. For time win-
dows of perishable products, a nonlinear programming model was proposed, which
is then solved by an adaptation of the Nelder-Mead method [84]. For a similar prob-
lem, a GA solution was also presented [85]. An MILP model was formulated for
chemotherapy products and delivery [86]. Although a single vehicle was used mul-
tiple times, the computational complexity of the model turned out to be too high,
therefore the authors applied the Benders decomposition method to solve the prob-
lem [87]. A similar problem for nuclear medicine delivery was solved by an MILP
model, in this case, within a Large Neighborhood Search (LNS) framework [88]. A
stochastic programming approach was presented for VRP for the case of passenger
transport with airport buses, taking timing constraints for passenger groups into
account [89]. An application of the PSO metaheuristic for VRP with time windows
had also been proposed [90].

Another possible extension of VRP problems is vehicle capacity, which poses a
significant limitation on the possible routes. The TS metaheuristic was used for
an instance with vehicle capacities and timing constraints [91]. For larger problem
sizes, the authors suggested a Lagrangian relaxation method.

Electric Vehicles (EV) and in general, alternative transportation and delivery
technologies like drones are gaining increasing attention. Current EVs can usually
be only effectively applied on short routes. In some cases, This motivation had a
significant impact on the research of VRP problems. A variant of the LNS method
based on an MILP model was proposed for solving the VRP problem for a fleet
of EVs with time windows [92]. In another scenario, a standalone MILP model
was proposed which considers multiple vehicle depots, time windows and different
battery technologies as well [93], although this model was only tested on small scale
problem instances, few vehicles and sites. The VRP problem for available drones as
an alternative for delivery with trucks was also considered [94]. An MILP model had
been proposed, which was later used by a branch and price algorithmic framework
[95]. Solution methods were also proposed for scenarios were problem data contains
uncertainty [96].

2.2.3 General problem formulations

There are many areas where mobile workforce must be managed involving both
scheduling and routing decisions. Examples include the delivery of products, main-
tenance tasks at spatially distributed targets, or any kind of service requiring travel-
ling to clients. A survey on the common characteristics, and most popular solution
methods of mobile workforce management problems was done by Castillo-Salazar
et al. [97].

Dependency of tasks on each other is a common trait of problems involving
scheduling and routing of mobile workforce. Precedence relations are the most com-
mon example for such dependencies. Precedence requires that two events happen in
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a given order. This can be the execution of tasks, or more precisely, the completion
of a task and the beginning of another. A typical example is when a procedure con-
sists of multiple activities to be done in order. Then, there is a precedence relation
for each consecutive pair of tasks representing these activities. Precedence can ap-
pear as constraints in simpler problems like TSP as well [98]. The vast majority of
mathematical programming approaches fall into the category of precedence-based
models, which capture the decisions on precedence of tasks as actual decision vari-
ables. Standalone models are uncommon, mathematical programming techniques
are rather used in combination with some metaheuristic, resulting in matheuristic
approaches [99]. For a mobile workforce management problem involving precedence
relations, an approach using MILP modeling in an ACO framework was proposed
[100]. The authors remark the difficulty of applying neighborhood search tech-
niques when precedence relations as constrains are present in the problem. Other
metaheuristics had also been applied, even in a standalone way [101].

Time windows, when appearing as constraints, also significantly increase the
complexity of the problem. An MILP model was proposed to solve a workforce
scheduling problem with time windows and precedence relations [102]. Note that
the authors suggested an iterative solution algorithm.

Starkey et al. [103] solved a mobile workforce management problem where ge-
ographic places were grouped into worker areas, and then served independently
by travelling engineers. This case study was motivated by the telecommunications
field. The proposed solution methods was a GA framework involving fuzzy logic.
More recently, the exact conditions on rearrangement of existing worker areas were
investigated using a similar approach [104].

The mobile workforce can be grouped into teams, often it means a single vehicle
which is treated as a single unit in the model. Decision on how to form these
teams if the skills of the personnel are different is itself a difficult problem requiring
heuristic approaches [105]. A scenario with different skills, multiple vehicle depots
and the concurrent objectives of weighted total time and total cost was solved using
a multi-stage heuristic approach relying on an MILP model [106]. The tendency of
approaches shows that mathematical programming approaches are popular, but due
to problem complexity, these are usually included in some algorithmic framework.
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Chapter 3

Energy supply optimization with
P-Graphs

3.1 Overview

In this chapter, a new P-Graph model for energy supply optimization is presented
through a case study. The subject is a manufacturing plant for which heat and
electricity demand can potentially be supplied from biomass or solar energy. The
most profitable options for investment were to be determined. The novelty of the
proposed model is that it features two approaches. First, the operating units for
the pelletizer and biogas plant were modeled with flexible inputs, a technique which
provides a precise control over equipment capacity and energy throughput, inde-
pendent of each other. Second, the multi-period modeling scheme was applied to
parts of the supply side and the demand side of the model, which better reflects
total requirements than the corresponding single period counterpart. This model,
and the techniques presented in general can be used for similar scenarios for energy
supply optimization of a single facility.

The synthesis of supply chains of renewable energy sources, including solar,
wind, hydropower and biomass sources is a challenging task in general, and has
drawn attention in the recent years. A review by Nemet et al. focuses on energy
planning and corresponding optimization [107]. Another recent review was made
about system dynamics approaches for renewable supply chain management [108].
The complexity of these systems require the adequate modeling and optimization
tools, regardless of whether a single processing facility or a whole regional sup-
ply chain is in scope. Mathematical programming approaches are a conventional
and popular technique for this purpose, based on which many novel methods had
been proposed [109]. Sharma et al. published a detailed review of mathematical
programming models solely for the purpose of biomass supply chain modeling and
optimization [110].

Specific case studies where problems are too large or have special properties may
require other model developing techniques. The P-Graph framework has advantages
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over conventional approaches. Extending a P-Graph model with a new option can
be much easier than for a mathematical programming model. The N best solution
structures, which are supported by the current implementation, are also important
in the investigation of the results. For these reasons, the P-Graph framework was
chosen for modeling and optimization.

The work was published in two articles. The first article contains a basic P-
Graph model for the case study and its solution [S2]. The second article contains
the flexible input modification for the pelletizer and biogas plant equipment units,
the multi-period model extension, and a detailed analysis [S3].

In Section 3.2, the basic properties and components of the model are presented.
Section 3.3 is dedicated to the flexible input scheme and the multi-period extension
of the model. Results are presented and discussed in Section 3.4.

3.2 Basic model components

The following are given for a manufacturing plant.

• Annual heating and electricity demand.

• Possible energy sources, including direct purchase, solar power and different
types of locally available biomass, each with investment, operating and re-
source unit costs.

• The investment horizon.

The objective is the minimization of the total annual costs of the system, as-
suming that the annual heating and electricity requirements are met. The method
was the modeling of the system as a single PNS problem forming a P-Graph su-
perstructure of all energy options. This PNS problem was directly solved using the
ABB algorithm. Individual solution structures were manually inspected.

Due to the long time elapsed since the data collection phase of this case study,
some data could have become obsolete by now, especially energy prices and invest-
ment costs for each particular source. Other data are specific to this particular
case study, especially energy demands and raw material availability. However, the
proposed P-Graph model can be easily reused if supplied with the required data.
It can even be extended by other energy sources not covered in this work, without
tampering with the existing parts of the model.

First, the single period model is formulated, and then the extension into the
multi-period variant is detailed. This section only covers the single period case.

Monetary values are expressed in HUF currency. At the time of data collection,
1 EUR was between 300-330 HUF.
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Table 1: Available consumption data from the previous years for directly purchased
natural gas, the only energy source for heating the plant at that time.

Natural gas
(m3) 2009 2010 2011 2012 2013 2014

January 133,999 128,744 157,085 123,770 75,782 48,635
February 123,836 95,406 137,103 124,305 51,407 49,067
March 120,326 77,536 123,795 83,362 43,560 16,847
April 37,378 58,464 83,305 61,092 15,452 4,337
May 35,057 63,719 51,009 37,482 2,785 4,247
June 37,065 52,094 30,924 17,340 1,919 2,688
July 30,396 44,485 31,560 12,891 1,554 2,416
August 34,232 44,628 30,105 20,179 1,534 2,117
September 28,607 81,730 30,024 19,829 3,072 2,136
October 82,299 105,612 74,841 25,235 4,208 10,982
November 105,599 104,195 125,638 50,535 24,273 43,769
December 116,459 156,139 129,481 73,819 57,240 62,139

Total 885,253 1,012,752 1,004,870 649,839 282,786 249,380

Table 2: Available consumption data from the previous years for electricity directly
purchased from the grid, the only source for the plant at that time.

Electricity
(kWh) 2009 2010 2011 2012 2013 2014

January 905,533 796,117 993,044 788,703 453,838 255,517

February 1,128,039 715,508 926,508 769,565 382,042 270,539

March 1,328,232 809,142 1,074,706 736,811 359,696 217,190

April 1,076,030 787,400 963,416 624,634 310,077 176,142

May 1,142,927 918,350 890,317 862,085 228,225 200,673

June 1,176,784 1,021,286 843,147 327,853 251,323 191,459

July 1,215,169 1,170,359 871,462 502,244 254,907 270,710

August 1,281,732 1,089,277 928,240 327,853 241,197 414,119

September 1,183,526 983,531 872,692 454,764 201,446 425,678

October 1,002,034 989,398 868,299 923,389 211,333 439,628

November 926,870 969,743 880,829 346,867 248,156 439,837

December 872,000 901,317 856,199 399,713 289,379 502,415

Total 13,238,876 11,151,428 10,968,859 7,064,481 3,431,619 3,803,907
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3. ENERGY SUPPLY OPTIMIZATION WITH P-GRAPHS

3.2.1 Heating and electricity requirements

There are two demands that must be satisfied: annual heating and annual electricity
requirements. These types of demands are modeled by two final product nodes in
the P-Graph, each with a minimal inflow equal to the required amount. The actual
amounts are estimated based on previous years, with the data and method described
below.

Monthly consumption data for natural gas (see Table 1) and electricity (see Ta-
ble 2) were available from the previous years. These were the only sources used by
the plant to provide heating and electricity for production. The following observa-
tions can be made.

• Heating requirements are significantly higher in winter. This is not surprising
because indoors heating requirements are concentrated in this season. This
fact is a key motivation for the multi-period variant of the problem.

• Electricity consumption does not seem to depend on time, but rather on
production load or other factors which were unavailable in this case study.

• Energy usage decreased gradually throughout the years, most likely due to
the plant improving production efficiency. Note that this trend is not strict,
as for the last year, 2014, electricity consumption was actually more than in
2013.

For these reasons, annual heating and electricity needs were determined. In both
cases, Equation (3.1) shows the applied formula, which serves as a rough estimation
for future years. The weighted average of the last three years are multiplied by a
factor of 1.15 in case of a slight increase.

Sfuture =
0.8 · S2012 + 0.9 · S2013 + 1.0 · S2014

2.7
· 1.15 (3.1)

For the single period model, a heating requirement for 436,045m3 natural gas
was obtained. Assuming a heating value of 34MJ/m3 for natural gas, the total
energy amount is 4,118,206 kWh. The unit kWh was used throughout the model
for expressing not only electrical but heat energy amounts as well, for the sake of
uniformity of the model components. The electricity requirement calculated in the
same manner was 5,342,793 kWh. Note that other values are used by the multi-
period model variant, which is explained later.

The obtained amounts were assumed to be the fixed demands for each future
year. Note that the PNS problem can easily be resolved with different data if
needed. It is also possible to assume different demands each year, but this option
is not covered in this work.
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Table 3: Raw materials in the case study, with unit price and annual availability.

Energy source Unit price Available
Natural gas 114HUF/m3 unlimited
Electricity 38HUF/kWh unlimited
Solar energy free unlimited
Saw dust 24HUF/kg 150,000 kg
Wood chips 22HUF/kg 600,000 kg
Sunflower stem 5HUF/kg 500,000 kg
Vine stem 7HUF/kg 600,000 kg
Corn cob 6HUF/kg 1,200,000 kg
Energy grass 8HUF/kg 1,600,000 kg
Wood 20HUF/kg 2,000,000 kg

3.2.2 Energy sources

The following options were considered as energy sources.

• Purchasing natural gas from the provider and electricity from the grid directly.

• Solar power plant, which can contribute to both heating and electricity.

• Several types of biomass from local agriculture, from which biogas can be
produced and subsequently burnt in either a furnace or a Combined Heat and
Power (CHP) plant.

Based on these energy sources, raw materials are identified in the model, each
having a unit price and total availability (see Table 3). Each raw material in the
case study is represented by a raw material node in the P-Graph model. The current
implementation for PNS problems in the P-Graph Studio software directly supports
unit prices and maximum flows for raw materials.

The so-called business as usual solution for the problem consists solely of the
direct purchase of electricity and natural gas. The plant management required
these options to be available in the final solution as well, for safety reasons. There-
fore, it is always possible to satisfy remaining demands by additional purchase. In
the modeling point of view, even distribution is assumed for the supplies and the
demands. Note that there is no point in overproduction, because selling energy
surplus was not an option in the case study, although this could easily be modeled
in the P-Graph framework. Purchase prices of 114HUF/m3 for natural gas and
38HUF/kWh for electricity from the grid were assumed.

Solar power plants, in the modeling point of view, produce unlimited and free
energy. All costs associated with solar energy are rather attributed to the investment
and operating cost of the solar power plant instead.

Seven biomass types were available in the vicinity of the plant from agriculture.
Collection of biomass from further distances would have been problematic in both
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Table 4: Equipment units considered in the case study, each representing an invest-
ment with additional operating costs.

Investment costs Operating costsEquipment unit fixed proportional fixed proportional
Solar power plant 50M HUF 353.98HUF/kWh none 22.12HUF/kWh

Pelletizer 5M HUF 10HUF/kg none 4HUF/kg

Biogas plant 20M HUF 240HUF/kg none 10HUF/kg

Biogas furnace 10M HUF 20HUF/kWh 6M HUF 4HUF/kWh

Biogas CHP plant 20M HUF 36HUF/kWh 6M HUF 6HUF/kWh

the economical and the sustainability point of view. For each biomass type, unit
price is expressed per kg, and there is an annual maximum available amount. It is
assumed that there is no competition for these resources.

3.2.3 Possible investments

The main investments are equipment units for which decisions shall be made in
the model. These are shown in Table 4, and some explanation is provided below.
Investments represent the equipment units that make alternative energy sources
possible to exploit.

There are four kinds of costs associated with each equipment unit.

• Fixed investment cost is paid once if the equipment is utilized, regardless of
equipment capacity, and is divided equally in the whole investment horizon.

• Proportional investment cost is paid once, based on equipment capacity, and
is divided equally in the whole investment horizon.

• Fixed operating cost is paid yearly if the equipment is utilized, regardless of
equipment capacity.

• Proportional operating cost is paid yearly, based on equipment capacity.

The solar power plant had proportional cost data available in terms of pro-
duced kWh/y. The numbers shown are an estimation based on a single option,
which required a 400,000HUF investment cost, and 25,000HUF operating cost, per
1,130 kWh/y capacity.

The pelletizer and the biogas plant had proportional costs given in terms of
input material amount, expressed in kg/y, in contrast to the biogas furnace and
the biogas CHP plant, which had proportional costs given in terms of the heating
value of the biogas consumed, expressed in kWh/y.
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3.2.4 Operating unit models

All transformations occurring on the path between raw materials and the final
products are represented by operating units in the model. These include direct
purchase and the mentioned equipment units for solar power generation and the
biomass processing chain. Some equipment units in reality are modeled by multiple
operating units in the P-Graph, and vice versa, a single operating unit node in the
P-Graph may be a black box representation of multiple connected equipment units
in reality.

P-Graph models of the components are now shown and explained. Each operat-
ing unit node in the resulting PNS problem requires two key decisions to be made:
whether to use the operating unit in the solution structure, and if yes, what is the
activity (also named volume or capacity) for that unit. Material flows are linearly
scaled based on activity. Material balance constraints must hold for all material
nodes. These are the most important properties of the underlying optimization
model described below.

Figure 4: P-Graph model of the direct purchase of natural gas from the provider
and electricity from the grid.

The direct purchase operations are represented by operating units each having
one input and output (see Figure 4). The purchase of natural gas is implemented
as a sequence of two operating units, one consuming the raw material natural gas
and producing purchased gas, and the other representing the furnace in the plant
responsible for heating. In theory, the intermediate purchased gas could be used
for other purposes. The final product is the heating demand. The purchase of
electricity from the grid is represented by a single operating unit which produces
the electricity demand. Market prices are associated with the two raw materials.
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Figure 5: P-Graph model of the utilization of solar power in this case study.

Table 5: Biomass types available for energy production.

Biomass type Heating value
(kWh/kg)

Pelletizing
needed

Saw dust 4.50 yes
Wood chips 4.25 yes
Sunflower stems 3.75 yes
Vine stems 4.10 yes
Corn cobs 4.00 no
Energy grass 4.80 no
Wood 4.16 no

The solar power plant was one of the alternative energy supply options con-
sidered in the model (see Figure 5), consisting of solar cells. A single operating
unit is producing electricity from solar radiation. Flow rates for this unit, which
are 8,760 kWh and 1,130 kWh represent the efficiency of this particular technology.
Though, for the modeling point of view, the 8,760 kWh data is irrelevant, since so-
lar radiation is unlimited and all costs are associated with the operating unit itself.
Electricity produced this way can supply the electricity demand, or it can be used
for heating if needed, despite the latter being inefficient.

The other source of energy considered in the case study is biomass, from which
biogas is produced. This component is more complicated, because there are multiple
different types of biomass, but some of these must be pelletized first before being
fed into a biogas plant, while others can be directly fed. Data of the biomass types
are shown in Table 5.

The initial attempt at modeling the processing chain of biomass is detailed in
publication [S2], and can be summarized as follows (see Figure 6).
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• The pelletizer is represented by an operating unit. It consumes biomass types
requiring pelletizing and produces pellets.

• The biogas plant is represented by an operating unit. It consumes pellets and
biomass types not requiring pelletizing and produces biogas.

• An input material node is introduced for collecting all inputs of the pelletizer.
The same is done for the biogas plant.

• For each biomass type, a raw material node is introduced, which is consumed
by a logical operating unit transforming the biomass into the input materials
of the pelletizer and the biogas plant.

• All material nodes in this component, with the exception of the raw materials,
are expressed in final heating power, in kWh.

Figure 6: Initial model for the process of transforming the different biomass types
into biogas.

The biogas can be consumed in either a biogas furnace or a biogas CHP plant,
as modeled in Figure 7. The material node for biogas at this point expresses future
heating power. The flow rates in this part of the model represent the final efficiency
of the two technologies for satisfying heating and electricity demands. Note that
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3. ENERGY SUPPLY OPTIMIZATION WITH P-GRAPHS

energy losses are modeled in these flow rates, and can also be represented in the
transformation rates for each biomass type.

Figure 7: Model for utilization of biogas in a furnace or a CHP plant. Flow rates
are adjusted to represent the final conversion factors from raw material nodes rep-
resenting biomass amounts to the product nodes representing energy demands.

3.3 Specialties in the model

3.3.1 Inputs for biomass types

The initial model of the pelletizer and the biogas plant already makes flexibility
available in terms of their inputs. This means that each input amount can be
independently chosen, and be used in the same equipment unit. A single operating
unit node is not adequate for such a model, as the flow rates of the inputs would
force a fixed ratio on the input amounts. However, an operation with flexible inputs
can be modeled by using multiple operating unit nodes, as demonstrated later.

The problem with this model, shown in Figure 6, is that the capacity constraints
for both the pelletizer and the biogas plant should rather be expressed in terms of
total mass of the input consumed, instead total energy content. This was not a
serious modeling issue, for the following two reasons.

• Capacities, and implied operating costs are relatively low.

• The energy content of the considered biomass types are close in magnitude.

To make a more precise model, another approach was proposed instead, as
shown in Figure 8. This approach allows more flexibility in terms of the input
models. While arbitrary input ratios are still allowed, the constraints on the input
capacities are made independent of the output amounts. The approach can be
described as follows.
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• Input material nodes are introduced for the flexible pelletizer and biogas plant
models. For the flexible pelletizer model, 4 raw material input nodes are
introduced for the biomass types requiring pelletizing. For the flexible biogas
plant model, 7 input nodes are introduced: 3 raw material nodes for biomass
types not requiring pelletizing, and 4 additional intermediate material nodes
for the four types of pellets produced by the pelletizer.

• For each of the 4+7 input nodes, an operating unit node is introduced, which
produces the corresponding output node. These output nodes represent the
pellet types for the pelletizer, and the biogas for the biogas plant.

• All material nodes except the final biogas node represent amounts in terms of
total mass, not total energy content. The price and the total available amount
of each biomass type is associated with the corresponding raw material node.

• Flow rates for energy content per mass are all represented in the production
arcs starting from the operating unit nodes for each input, and ending in the
biogas material node. All other arcs have a flow rate of 1.

• For both the pelletizer and the biogas plant models, a capacity material node
is introduced which represents available input mass. This is consumed by all
the 4+7 input operating units with a flow rate of 1, or in other words, a flow
rate equivalent to the mass of the corresponding biomass type consumed.

• The capacity material nodes are produced by two logical operating unit nodes
representing the pelletizer and biogas plant. Production rates are equal to
the activity of the pelletizer and the biogas plant. All of the investment and
operating costs in the model are associated with these two logical operating
unit nodes.

In this design, the constraint on total inputs for both the pelletizer and the
biogas plant are expressed in terms of input mass, while output is expressed in
terms of heating value. It can be seen that, in general, any non-negative weighted
sum of the inputs could be used as a capacity constraint for total input amount.
It would also be possible for the same equipment unit to include multiple such
constraints, while the output also remains independent.

Further simplifications were made in the resulting model. Observe that the
only use of pellets in the model is subsequently feeding them into the biogas plant.
Therefore, the operating unit nodes producing the pellets were eliminated, and
the pelletizer capacity is then consumed by the appropriate operating unit nodes
representing the biogas plant inputs.

In this final design, depicted in Figure 9, there are seven raw material nodes, each
representing a biomass type, and have unit prices and total availability associated.
For each raw material node, there is a logical operating unit node creating biogas,
in an output ratio representing heating value and possibly energy conversion losses.
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Figure 8: Modified model of the biomass processing chain, which captures equip-
ment unit capacities more precisely. The blue parts represent the newly added
elements.

Figure 9: Simplified version of the biomass processing chain model, which is the
final form used in the case study. The blue arcs represent the simplification.

3.3.2 Multi-period extension

So far in this chapter, the components of the single period model have been pre-
sented. The final, single period P-Graph model is shown in Figure 10, which has
two issues significantly affecting the continuity of the demands or the supplies.
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Figure 10: Final form of the single period model for the energy consumption opti-
mization of the manufacturing plant.

• Heating demands become higher in the winter months.

• More solar energy can be collected in summer than in winter.

These can be addressed by dividing the single period, which is a year of oper-
ation, into smaller periods. Each of the periods has its own supply and demand
amounts. In this case study, the following two periods are introduced.

• The winter period consists of the months December, January and February.

• The mid-year period consists of the other months.

The months are assumed to be of the same length, which means that the ratio
of period lengths is exactly 1 : 3. Note that the winter period is split among two
calendar years.

Note that it would not be adequate to formulate and solve the model for the
periods separately, as investment decisions, particularly equipment sizing are shared
among all periods. Therefore, all periods should be considered in a single optimiza-
tion model.

These observations provide the main motivation to apply the multi-period mod-
eling scheme in this case study. The meaning of multi-period extension is that
instead of assuming a balanced supply and/or demand throughout a year, balance
throughout each of the periods is assumed. The rates can vary among periods,
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Table 6: Heating and electricity demands for the winter and the mid-year period,
calculated from natural gas (see Table 1) and electricity consumption (see Table 2),
using the formula shown in Equation (3.1).

Energy source Period Calculated demand
winter 187,585m3 ≈ 1,771,637 kWh
mid-year 248,460m3 ≈ 2,346,569 kWh

Heating
(natural gas) total 436,045m3 ≈ 4,118,206 kWh

winter 1,536,566 kWh
mid-year 3,806,227 kWhElectricity
total 5,342,793 kWh

which can be used to model supply and demand fluctuations. More periods could
lead to more accurate but also larger models.

Note that biomass availability is also typically fluctuating over the year, so
multiple periods could also be introduced for biomass distribution. This is not
considered in this case study. Instead, it is assumed that biomass supplies can be
distributed evenly for consumption (with the help of storage for example).

Although only heating is targeted, it is straightforward to also include the elec-
tricity demand into the multi-period scheme. Therefore, the total heating and
electricity demands are both split into winter and mid-year demands, resulting in
four distinct demands. The estimation values of these demands are calculated by
the same Equation (3.1) used for the single period case, but only for the data cor-
responding to the period. Values obtained are shown in Table 6. Note that the
sum of demands for the two periods are equal to the original, single period demand
for both heating and electricity. Also note that the heating demand in winter is
proportionally more than mid-year, although less overall, because winter is 3 times
shorter than the mid-year period.

Modeling production capacity of equipment units is a key factor in the multi-
period model. The pelletizer, biogas plant, biogas furnace and biogas CHP plant
all realize 1

4
of their capacity in winter and 3

4
of their capacity mid-year. This

corresponds to the ratio of periods lengths due to the fact that these equipment
units are uniformly productive throughout the year.

Different ratios should apply to the solar power plant. Solar radiation is where
the supply side is significantly different in the two periods. In the single period
model it was already assumed that in certain circumstances, solar supply can be
considered evenly distributed in the modeling point of view. This was a simplifica-
tion, which is now relaxed so that supply is assumed to be even in each of the periods
individually. The constant λ is introduced to express the ratio of the throughput
of the solar power plant in the mid-year and the winter periods, per unit time. As
a rough estimation, we use λ = 2.

All of these statements lead to the exact determination of how the solar power
plant realizes its capacity in the two periods, see Equation (3.2) and Equation (3.3).
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Winter has 3 months and the mid-year period has 9 months, these are weighted by
the productivity of the solar power plant, which is 1 in winter and λ in the mid-year
period. The total productivity is split in the obtained ratio. Therefore, the solar
power plant realizes 1

7
of its production capacity in winter and 6

7
of its production

capacity mid-year.

Ewinter = Eannual ·
3 · 1

3 · 1 + 9 · λ
=

1

7
· Eannual (3.2)

Emid−year = Eannual ·
9 · λ

3 · 1 + 9 · λ
=

6

7
· Eannual (3.3)

The meaning of this part of the multi-period extension can be translated as
follows: instead of assuming a 353.98HUF investment and 22.12HUF operating
costs per 1 kWh capacity throughout the year (as in Table 4), we assume the same
costs per 1

7
kWh capacity in winter and 6

7
kWh capacity mid-year, which can be

arbitrarily scaled but cannot be decoupled.
The final multi-period model, shown in Figure 11, is constructed as follows.

• The single-period model is duplicated, one instance is for each period.

• The raw material nodes and the capacity-producing logical operating unit
nodes for the pelletizer and biogas plant are kept common and not duplicated.
The logical operating unit nodes produce two logical capacity materials, one
for each period.

• For each of the biogas furnace, biogas CHP plant and solar power plant,
another capacity-producing logical operating unit node is introduced as a
common node for the two periods, which produce two different logical capacity
materials, one for each period.

• The common operating unit nodes produce their logical capacity materials for
the winter and mid-year periods in flow rates of 1

4
and 3

4
, with the exception

of the solar power plant, for which these rates are 1
7

and 6
7
.

• Raw material costs and availability are associated with the common raw ma-
terial nodes for biomass types.

• Investment and operating costs are associated with the common operating
unit nodes.

• The final heating demands in each period are represented by four product
material nodes with the flow requirements shown in Table 6.
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Figure 11: Final form of the multi-period model for the case study, which represents
heating demands and solar energy supplies more accurately.

3.4 Results and discussion

Both the single period and the multi-period models were implemented using the P-
Graph Studio software (version 5.2.3.1) as PNS problems. Although multi-period
models are now directly supported [23], the multi-period instance was manually
constructed. Both models were solved using the ABB algorithm, assuming first a
20 years long investment horizon, and then lower, 10 years long and 5 years long
horizons were set. Total annual costs were to be minimized.

The ABB algorithm ran on a Lenovo Y50-70 laptop with an Intel i7-4710HQ
processor and 8 GB RAM. Solution was almost instant, at most 1 s for the single
period, and at most 2 s for the multi-period model. This was as expected due to the
relatively small model sizes. The MSG algorithm did not exclude any part of the
PNS problem, since only relevant options were included in the first place. A couple
of the top reported solution structures were manually investigated. The results and
the most important findings are discussed below.

The PGSX files implementing the models, and all other materials regarding the
case study are available as supplementary materials in the main covering publication
[S3], and on the web [111].

3.4.1 Single period model

The 10 best solution structures for the single period model are shown in Table 7,
with utilized technologies and biomass types indicated. Note that the pelletizer and

38



3.4. RESULTS AND DISCUSSION

Table 7: Top 10 solution structures for the single period model, in order
of total costs, with biomass types and decisions on key investments shown.
Columns: Cc=corn cobs, Eg=energy grass, Wd=wood, Sd=sawdust, Wc=wood
chips, Ss=sunflower stems, Vs=vine stems, Eh=electric heating from solar power,
Et=electricity from solar power, Bf=biogas furnace, Bc=biogas CHP plant,
Pg=purchase of natural gas, Pe=purchase of electricity.

Total costs
M HUF/y

Cc Eg Wd Sd Wc Ss Vs Eh Et Bf Bc Pg Pe

1. 220.709 X X X X
2. 224.057 X X X X X
3. 224.325 X X X X X
4. 224.357 X X X X X
5. 224.496 X X X X X
6. 224.526 X X X X X
7. 225.895 X X X X X
8. 226.049 X X X X X
9. 226.380 X X X X

10. 226.723 X X X X X X

the biogas plant are omitted from the table, since the presence of these two units
are a direct consequence of the presence of their respective possible input materials.

The optimal solution is 220.709M HUF/y, relying on corn cobs and energy
grass, used in a biogas CHP plant, and purchasing the rest of the electricity demand
directly. There is a small jump in terms of objective to the second best structure,
but the difference between the 1st and 10th best structures is still below 2.72%.
The distribution of technologies in these solutions is the following.

• The biogas CHP plant seems to be the key decision leading to these solutions.
The biogas furnace does not appear, despite being cheaper. This suggests
that the ability of the CHP plant to produce electricity is valuable.

• All 7 biogas types are present, and each solution uses 2-4 of these. The total
availability, cost and pelletizing requirement cause the subtle differences in
the solution structures.

• Energy grass seems to be the best of the biomass types, because it is included
in all of the shown solution structures.

• In the 4th and 8th structures, natural gas is also purchased.

• The 9th structure is fundamentally different from all others, because solar
power is used here to cover the remaining electricity demand. In all other
solutions, purchase of electricity from the grid is used instead. This suggests
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Table 8: Top 10 solution structures for the multi-period model, in order
of total costs, with biomass types and decisions on key investments shown.
Columns: Cc=corn cobs, Eg=energy grass, Wd=wood, Sd=sawdust, Wc=wood
chips, Ss=sunflower stems, Vs=vine stems, Eh=electric heating from solar power,
Et=electricity from solar power, Bf=biogas furnace, Bc=biogas CHP plant,
Pg=purchase of natural gas, Pe=purchase of electricity. Cell values: W=winter,
M=mid-year, X=both periods.

Total costs
M HUF/y

Cc Eg Wd Sd Wc Ss Vs Eh Et Bf Bc Pg Pe

1. 228.942 X X X W X
2. 228.986 M X X W X
3. 229.205 W X X W X
4. 229.358 X X X W X
5. 229.362 W X M X W X
6. 229.363 W X M W X W X
7. 229.366 W X M X W X
8. 229.378 X W M X W X
9. 229.385 X X X W X

10. 229.391 X X X W X

that solar power is roughly as effective as purchasing electricity, provided that
the data in this case study are accurate.

It should be noted that due to a management requirement, natural gas and
electricity purchase from the grid are maintained anyway as options, to ensure
energy safety. This happens even if these units are not included in the optimal
solution. In the modeling point of view, this is not a problem. In fact, the practical
robustness of a solution structure is increased this way.

3.4.2 Multi-period model

Again, the 10 best solution structures for the multi-period model are presented in
Table 8. It is also shown whether an option is used in winter, mid-year or both.

The optimal solution for the multi-period model is depicted in Figure 12. The
activity of different energy sources according to the optimal solution is shown in
Table 9. The objective is 228.942M HUF/y. This best solution is similar to the
one obtained for the single period model: corn cobs and energy grass are consumed,
and a biogas CHP plant is utilized. The purchase of natural gas is needed, but only
in winter. The purchase of additional electricity is needed in both periods. The
following observations can be made about the top solutions.

• Despite the similarity in structure, the multi-period optimum is 3.73% worse.
This is expected, because the multi-period model is more restrictive. Demands
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Figure 12: Optimal solution structure for the multi-period model, assuming a 20
years long investment horizon.

are higher when must be met individually for each period, than only in total,
so more capacity is required.

• There is much less variability in the solution structures than in the single
period case. For example, the first three structures differ only in the decision
whether corn cobs should be used in both periods (1st), in mid-year only (2nd)
or in winter only (3rd). The difference between the 1st and 10th solutions is
minimal, 0.2%. The reason behind these phenomena is that the multi-period
model has combinatorially more options for small structural differences. If
more structures were investigated, the ones analogous to the first 10 solutions

Table 9: Overview of the energy supply distribution in the optimal solution of the
multi-period model.

ContributionPeriod Energy
source Usage (annual) Cost (annual) Heat Electricity
Corn cobs 8,869 kg 53,214HUF 0.80% 0.81%
Energy grass 400,000 kg 3,200,000HUF 43.35% 43.73%
Natural gas 104,765m3 11,943,200HUF 55.85% N/AWinter

Electricity 852,150 kWh 32,381,700HUF N/A 55.46%

Corn cobs 26,606 kg 159,636HUF 1.81% 0.98%
Energy grass 1,200,000 kg 9,600,000HUF 98.19% 52.97%
Natural gas 0m3 0HUF 0.00% N/AMid-year

Electricity 1,752,980 kWh 66,613,200HUF N/A 46.06%

41



3. ENERGY SUPPLY OPTIMIZATION WITH P-GRAPHS

of the single period model would be expected to turn up.

• Energy grass is still present in all cases, but only 4 other types of biomass
appear as well. It is also a general rule that additional electricity is purchased
in both periods, but natural gas is only purchased in winter.

Overall, the ability of the multi-period modeling scheme is demonstrated in these
solution structures for formulating accurate models and finding the best solutions.
The multi-period case is more restricted because constraints must hold in each
period individually, but there is also more flexibility, as resources might be used
independently in each period. It is also shown that the energy supply can be
fundamentally different in mid-year compared to winter, even though exactly the
same investments are available in both.

3.4.3 Investment horizon

The costs of the used technologies have two components: investment costs, which
are paid once, and operating costs, which are paid yearly. The investment horizon
is used to annualize the investment costs, by setting up a fixed time span in the
model for which the most profitable solution is to be found. Note that this is not
equivalent to the payback time of an equipment unit, since the investment horizon
is a single parameter considered for the whole model.

Since short-term investments are preferred, the value of the investment horizon
is a critical modeling parameter. Shorter horizons of 10 years and 5 years were also
investigated for both the single and the multi-period model. The objective values
for the two best solutions in each case are shown in Table 10. The main observations
are the following.

• For short horizons, the business as usual solution turns out to be the best.
This means purchasing natural gas and electricity from the grid and not doing
any investments. This particular structure results in exactly the same solution
in both the single period and multi-period case, with the same objective value
regardless of the investment horizon, which is 252.735M HUF/y.

• The second best solution for the 10 years long horizon is 6.15% worse than the
business as usual solution in the single period model, and 4.71% worse in the
multi-period model. These second best solutions are very similar to the best
ones observed for the 20 years case. The multi-period solutions are actually
equivalent: energy grass and corn cobs are used in a CHP plant, purchasing
additional natural gas in winter and electricity in both periods. The much
worse objective value is due to the decreased investment horizon.

• The situation is even worse for the 5 years long horizon. With respect to the
business as usual solution, the second best structure is 35.7% worse for the
single period model, and is 28.27% worse for the multi-period model. The
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Table 10: The two best solutions for different investment horizons assumed for the
single period and the multi-period model.

Investment
horizon Model Total costs

M HUF/y
Comment

1. 220.709 similar to multi-periodsingle
period 2. 224.057

1. 228.942 same as for 10 years, Solution 2
20

years multi-
period 2. 228.986

1. 252.735 business as usualsingle
period 2. 268.288 similar to multi-period, Solution 2

1. 252.735 business as usual
10

years multi-
period 2. 264.647 same as for 20 years, Solution 1

1. 252.735 business as usualsingle
period 2. 342.985 similar to multi-period

1. 252.735 business as usual
5

years multi-
period 2. 324.184 similar to single period

solutions in these cases are fundamentally different than reported for longer
horizons, because the biogas furnace is used here, relying on energy grass. The
interpretation of this result is that if we are forced to make some investment
(which is the case when not the business as usual solution is considered), the
most sensible option is the cheapest one, which is the biogas furnace.

These results show that the investment to sustainable energy sources makes sense
for a long investment horizon. In practice, much shorter investment horizons are
considered. However, this finding is for this particular case study only. The situation
can be different for other plants and systems, and in other environments. New
options may become available, existing technologies may significantly improve, and
new incentives can change the profitability of the same investment. Nevertheless, a
P-Graph model was developed for the purpose of accurately modeling such scenarios
and solving them to optimality, which is technically easy to be adapted to the
aforementioned situations.
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3.5 Thesis summary
Thesis 1. A P-Graph model was developed and its effectiveness demonstrated, for
the purpose of energy supply optimization involving several biomass types and solar
power generation as alternatives to purchasing natural gas and electricity, on the
scale of a manufacturing plant. The model can be easily adapted to similar energy
supply optimization problems.

Related publications: [S2], [S3].

T1.1. New operating unit models were proposed for the pelletizer and biogas plant
equipment units, which allow flexible, independent inputs of several biomass
types at the same time. In the PNS implementation of the models, capacity
is calculated based on mass, which is different than heating value. This
results in a more accurate model, which was demonstrated in the case study
of the manufacturing plant.

T1.2. A multi-period extension of the model was performed, which represents sea-
sonal solar power supply and energy demands more precisely, by the distinc-
tion of two periods: winter and mid-year. Results from solving this model
indicate that biomass and solar power utilization can be economical, but a
long investment horizon was needed in this particular case study.
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Chapter 4

Operations with flexible inputs

4.1 Overview

In this chapter, a general method is presented to model operations with flexible
inputs and arbitrary linear constraints on these inputs in the P-Graph framework.
This model can be used directly as part of a PNS problem for optimization with
already existing software like the P-Graph Studio and procedures like the ABB
algorithm.

In a P-Graph, the capabilities of an operating unit node are described by two
sets of material nodes: the inputs and the outputs of the operating unit. The
presence of the operating unit in a solution structure requires the presence of all
of its inputs, and establishes the presence of its outputs. A straightforward way
of using a P-Graph for optimization is by assuming two decision variables for an
operating unit in the model: a binary variable for deciding whether the operating
unit is included or not, and a continuous variable determining the activity of the
operating unit. The activity determines the consumption and production amounts
for each material if the unit is active. This is the model used by the current
implementation of the P-Graph Studio and corresponding solver with the ABB
algorithm for PNS problems. Note that the P-Graph framework itself can be used
with more complex, even nonlinear operating unit models.

The activity of the operating unit node in the aforementioned model determines
all input and output amounts, each with an individual scale factor. Consequently,
the ratio of the input material amounts for a single operating unit is fixed. This is
acceptable for modeling some processes, for example chemical reactions, material
transfers and conversion. But in some cases, the connection between inputs can
be more flexible. For example, a furnace producing heat can be fed with different
combustibles, and their ratio can be arbitrary. This phenomenon was also present
in the case study detailed in Chapter 3 for the pelletizer and the biogas plant [S3].
In fact, this was an ad-hoc application of the flexible modeling scheme, the general-
ization of which is shown in this chapter. The solution for the problem is that not
a single, but multiple operating unit nodes are used for modeling an operation with
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4. OPERATIONS WITH FLEXIBLE INPUTS

flexible inputs. In the new model the input amounts can be completely independent,
but are usually in relation by some constraint, for example a total capacity limit.
Besides, other constraints may exist which further limit feasible input amounts.

The goal in this chapter was to propose a general and systematic method for
modeling operations with flexible inputs in the P-Graph framework. There are
extensions of the P-Graph Studio software which support a particular modeling
scheme, for example the TCPNS for scheduling [17], or multi-period models [23].
In particular, there had been PNS models proposed containing operating units
with flexible inputs [19]. In this latter example, the authors manually extended the
underlying MILP model of a PNS problem to allow flexibility. The novelty of the
approach presented in this chapter is that the flexible modeling scheme is achieved
as part of an ordinary PNS problem. Consequently, the existing software tools and
algorithms, for example ABB can then be used on the resulting model formulation
without any further software support or manipulation of the optimization procedure.

The flexible modeling scheme is achieved in two steps. First, completely in-
dependent input amounts are allowed, and then a method is provided for includ-
ing arbitrary linear constraints for these amounts. In Section 4.2, P-Graph model
components are presented in logical order, leading to the general scheme. Some
additional approaches are also presented, and the behaviour of these model compo-
nents regarding solution structures is also analyzed. The case study from Chapter 3
is revisited for demonstrating how a flexible operating unit can be extended with
a linear constraint on the input biomass types. This demonstration is shown in
Section 4.3. The main publication for this chapter contains the flexible modeling
techniques and the demonstration [S4].

Another case study was made, for optimizing the transportation and processing
of biomass to produce heat and electricity in a small rural region. The basis of this
case study is an initial approach for the problem where fermenter units had fixed
input ratios. The solution is reproduced as both an MILP model and a PNS model,
where fermenters are modeled using the flexible input scheme. This case study does
not only show the advantage of a flexible operation model, but also demonstrate
the new technique introduced in this chapter. The case study is summarized in
Section 4.4, and a more detailed presentation is given in Appendix A. Most results
are already published [S6], but the PNS model formulation is to be published in the
future.

4.2 Flexible operating units

The flexible operating unit model is designed to be used within the linear opti-
mization model of a PNS problem, supported by the current implementation of the
P-Graph Studio software. The structure of this optimization model is described by
a P-Graph, which implies the solution structures. Additional data and constraints
are included in the optimization model, which determine exact material amounts in
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the process, define the objective, and may prevent solution structures from being
actually feasible.

These additional data and constraints are the following. Note that there are
more supported or possible features, but only the listed ones are relevant in the
flexible operating unit model.

• Each material may have a cost or value, associated with the material node.

• Material nodes may have material balance constraints. These may define
a minimum and maximum value for the difference between input flows and
output flows. Only raw materials may have a negative balance.

• Each arc in the graph has a flow rate, defining the input or output flow rate
for the corresponding operating unit and material node. A material flow is
obtained as the flow rate multiplied by the activity of the operating unit node.

• Operating unit nodes have fixed and proportional investment and operating
costs. The fixed costs arise if the operating unit node is used. The propor-
tional costs arise based on the activity of the operating unit node.

• Operating unit nodes also have a capacity associated, which is a constant
upper bound for activity.

• Determine a selection of operating unit nodes and their activity resulting in
optimal annual cost or profit.

The flexible operating unit is actually a model of an operation obtained as
a collection of operating unit nodes and material nodes in the P-Graph. This
model may represent a single equipment unit in reality which accepts an arbitrary
combination of its possible inputs. This flexible operating unit model, or flexible
operation in short, is now formally described.

Suppose that an operation has n input materials, named A1, A2, . . . , An, and k
output materials, named B1, B2, . . . , Bk. The total amount of materials consumed
are denoted by variables. For each input material Ai, the operation consumes the
exact amount of xi, and for each output material Bj, the operation produces the
exact amount of yj. Then, the operation can be modeled as a flexible operating
unit if the values xi and yj representing a feasible realization of the operation can
be characterized as follows.

• xi ≥ 0, ∀1 ≤ i ≤ n.

• yj ≥ 0, ∀1 ≤ j ≤ k.

• Constant coefficients νi,j ≥ 0 exist for all 1 ≤ i ≤ n and 1 ≤ j ≤ k such that:

yj =
n∑

i=1

νi,jxi ∀ 1 ≤ j ≤ k (4.1)
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• There can be constraints for the input amounts, each of the following form:

n∑
i=1

λixi ≤ C (4.2)

For the sake of simplicity, it is assumed that there is a single output material B
for the operation (k = 1). Then, νi denotes the coefficient regarding input material
Ai and B, and y denotes the total produced amount of B. Since each output is
independently determined by the input amounts and output amounts do not take
part in constraints, no generality is lost with this assumption.

Constraints on the input amounts are also linear. Note that λi and C are not
assumed to be nonnegative in Inequality (4.2). An equivalent formulation, using
only nonnegative coefficients CMIN and CMAX , and only positive coefficients λi is
shown in Inequality (4.3). Here L and R are disjoint index sets for the left-hand
side (LHS) and the right-hand side (RHS) of the inequality. Therefore, any input
can be present at either but not both sides. Also, at most one of CMIN and CMAX

needs to be positive, the other one can be assumed to be zero. This formulation
will be used later in the modeling procedure.

CMIN +
∑

i∈L λixi ≤
∑

i∈R λixi + CMAX

CMIN , CMAX ≥ 0, min {CMIN , CMAX} = 0
λi > 0 ∀ i ∈ L ∪R

(4.3)

In the following subsections, models for flexible operations are presented for
particular modeling goals. Since each model consists of multiple operating unit
nodes, it is important to determine what subset of these can be present in a solution
structure. A good feature of the model is when infeasible subsets are excluded
from solution structures early by the MSG algorithm, as it makes later steps of the
solution procedure faster. On the other hand, a model may result in multiple subsets
representing the same or very similar solutions as different solution structures. This
makes the model structurally redundant, which is a disadvantage.

A small list of symbols for the upcoming models is provided in Table 11.

4.2.1 Single operating unit node

As a starting point, consider an operation modeled by a single operating unit node.
Input materials are consumed in a fixed ratio. Therefore, input amounts xi and
the output amount y are all directly proportional to the single variable x repre-
senting the activity or volume of the operation performed, as shown in Equation
system (4.4).

xi = aix ∀ 1 ≤ i ≤ n

y = bx
(4.4)
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Table 11: Symbols used in the operation model descriptions.
ai Flow rate in a single operating unit node for input material Ai.
b Flow rate in a single operating unit node, for the single output material B.
λi Constant coefficient for input material Ai used in linear constraints.
n Number of input materials.
νi Linear contribution factor of input material Ai to the amount of the single

output material B.
x Activity or volume of a single operating unit node.
xi Activity or volume of the operating unit node introduced for input material

Ai, which determines the amount of material Ai consumed by the modeled
flexible operation.

y Amount of output material B produced.

Coefficients ai and b are not only constants describing the operation, but the
exact flow rates of the single operating unit used for modeling (see Figure 13).

Figure 13: Modeling inputs with fixed ratios by a single operating unit node.

A solution structure may either include this single operating unit node or not,
depending on whether the operation is included in the solution. Both options are
relevant, therefore no redundancy is introduced in the model.

4.2.2 Independent inputs

In some scenarios, there can be multiple input materials that are not subject to a
fixed ratio, but can be independently used. For example, a furnace may consume
different combustible materials Ai, each having a unique contribution νi to the total
heating power, which is the single output of the furnace.

The operation with multiple independent inputs can be described by Equa-
tion (4.5). Here, not a single variable x is used, but a variable xi for each indepen-
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dent input material. Inputs have different contributions νi to the output y.

y =
n∑

i=1

νixi (4.5)

An operation with multiple independent inputs can be modeled by introducing
an operating unit node for each input material Ai, which consumes the input ma-
terial and produces the common output B (see Figure 14). Flow rates can be 1 for
convenience from the inputs to the units, and νi from the units to the output.

It should be noted that capacities, investment and operating costs can be as-
sociated with each of the used operating unit nodes, resulting in more options for
each input.

Figure 14: Modeling an operation with three independent inputs, using three oper-
ating unit nodes.

There are 2n possible ways an operation with n independent inputs can be used
in a solution structure, if the aforementioned model is used. In 1 of the cases, the
operation is completely excluded, and in the 2n − 1 other cases, different subsets of
the input materials are used, while the others are not. The latter can result in a
large number of solution structures if n is large, while each can be a valid choice.

4.2.3 Output capacity with independent inputs

A possible extension of the case of independent inputs is the consideration of an
upper bound for the output, which is essentially a total capacity limit. For example,
the capacity of the furnace limits not only a single input material, but the total
from all inputs.

The output capacity constraint with independent inputs requires Equation (4.5)
for the independent inputs, and Inequality (4.6) for the new constraint, as shown
below.

y ≤ CMAX (4.6)
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The capacity CMAX can be a fixed constant, or can be linearly scaled with
proportional investment costs. These two cases are directly supported by the current
P-Graph Studio implementation. The problem is that this is possible for a single
operating unit node, not for the total of many.

The key observation for providing a valid model for this case is that the con-
straint on the total outputs does not require the knowledge of the inputs. Therefore,
a single operating unit node can be introduced after the original output, consuming
it, then producing the new, final output material (see Figure 15). Any parameters
related to the whole operation rather than a single input can be given for this single
operating unit node, including capacity limit, but investment and operating costs
can also be provided.

Figure 15: Addition of an output capacity constraint to an operation with inde-
pendent inputs can be achieved by the introduction of a single operating unit node
after the original output.

The solution structures in this case remain analogous to the case of independent
inputs. The newly added operating unit is used in 2n − 1 cases where any input
is used. Therefore, the number of solution structures remains the same after the
implementation of the y ≤ CMAX constraint.

4.2.4 Custom input capacity

The output capacity constraint can be viewed as an upper bound of a linear expres-
sion of the input material amounts, where the linear expression matches the output
amount. The case where the linear expression can be arbitrary is more difficult.

For example, a pelletizing operation may have an output like the total heating
power of the produced pellets, which is used by subsequent parts of a PNS model.
However, the capacity of the pelletizer operating unit is rather expressed as the
total mass or volume of materials involved, which are not necessarily proportional
to heating power.
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If a custom linear input capacity is imposed on an operation with indepen-
dent inputs, then Equation (4.5) is needed for the independent inputs, and a new
Inequality (4.7) is added to impose the constraint.

n∑
i=1

λixi ≤ CMAX (4.7)

Coefficients λi describe the custom linear capacity constraint, which are not
necessarily equal to the νi coefficients determining the output amount. Note that
λi ≥ 0 is assumed, therefore each input is accounted against the upper bound CMAX

if λi > 0, or is indifferent if λi = 0.
The model for a custom linear input capacity is shown in Figure 16. A new

logical operating unit is introduced with the sole purpose of producing a logical
capacity material in CMAX amount. This logical capacity material can be consumed
by the operating units introduced for each Ai input material, with flow rates λi > 0.
If λi = 0, no arc is introduced. As a result, if a composition xi of input materials are
consumed to produce an output amount y =

∑
νixi, the logical capacity material

would also be required in
∑

λixi total amount.

Figure 16: Modeling a custom linear input capacity for independent input materials,
by the introduction of a logical capacity material and the logical unit producing it.

The logical capacity material and the unit producing it is included in a solution
structure if and only if any input material Ai with λi > 0 is used for production.
Therefore, the number of solution structures is not increased by this implementation
of the constraint.

There is a notable alternative approach for modeling a custom linear input
capacity. Consider the logical capacity node as a product of the individual operating
units for each Ai instead, which can be drained by the logical operating unit node
(see Figure 17). The current P-Graph Studio implementation allows a maximum
net flow of input materials, which can be set to 0 for the logical capacity material,
while the operating unit can have a capacity CMAX for draining. The problem
with this seemingly equivalent approach is that solution structures do not reflect
the relevant situations. If algorithm MSG is applied, by Axiom (S4), the logical
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part is always excluded for not contributing to the production of a product node.
Consequently, the role of inputs and outputs are not perfectly interchangeable in
operating unit models. Another approach could be introducing a final product node
for the logical part, but on the other hand, that would make the original flexible
operation mandatory, because, by Axiom (S1), all product nodes must be included.

Figure 17: Wrong alternative approach for modeling a custom linear capacity.

4.2.5 Minimum input usage

There can also be a lower bound for the total input amounts instead of an upper
bound. This can be the case, for example, when some regulation requires specific
amounts of input materials to be consumed.

The same way as for upper bounds, Equation (4.5) is needed in this case, and a
new Inequality (4.8) is added as a constraint.

CMIN ≤
n∑

i=1

λixi (4.8)

It is again assumed that λi ≥ 0. To address this constraint a new logical
product node can be introduced to the P-Graph (see Figure 18). The operating
units associated with each input material Ai can produce this product node with λi

flow rates. If λi = 0, no arc is needed. The product node should have a minimum
flow of CMIN , which completes the model.

If a product node must have a CMIN > 0 inflow, a solution structure must
include at least one input with λi > 0. This is a favourable behaviour, because
this constraint does not only reduce the search space, but also the set of solution
structures a solution procedure must take into account. According to this model, the
flexible operation may not be omitted from any solution structure. If the constraint
must only be imposed if the operation takes place, that is a different situation not
covered here.

53



4. OPERATIONS WITH FLEXIBLE INPUTS

Figure 18: Modeling a minimum constraint on the total of inputs with the addition
of a single logical product node.

4.2.6 Ratio constraints

Until this point, all constraints consisted of a nonnegative weighted sum of inputs
bounded by a constant term. Consider the case without a constant term. Then a
constraint only makes sense if input amounts times their λi > 0 coefficients appear
on both sides of an inequality or equation. From now on, these constraints are
called ratio constrains, which can be expressed in the general form shown in
Inequality (4.9).∑

i∈L

λixi ≤
∑
i∈R

λixi, L ∩R = ∅, λi > 0 ∀ i ∈ L ∪R (4.9)

Note that any nontrivial linear inequality for variables xi without a constant
term can be arranged into the form shown in Inequality (4.9). Equations as ratio
constraints are not considered in this work, as an equation can possibly be mitigated
by alternative P-Graph models, or expressed with two inequalities. A key property
of ratio constraints is that xi can be scaled, which means that multiplying xi by the
same positive constant maintains feasibility.

As an example, a furnace may take coal and wood as combustibles, but the total
proportion of wood can be at most 20%, otherwise special maintenance would be
needed. This can be expressed as a ratio constraint.

There can be multiple ratio constraints defined for the same operation.

4.2.7 Convex sums for ratio constraints

One possible approach to model a set of ratio constraints simultaneously is using
convex sums. The set of possible input material compositions xi for n inputs in Rn

is a convex polytope, because all ratio constraints are linear. In certain situations,
the interior of this polytope can be described by a convex sum of a finite set of its
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vertices. In a vector space, a convex sum of vectors vi is of the form
∑

i wivi where
wi ≥ 0 are weights for which

∑
i wi = 1. Since in ratio constraints xi can be scaled,

the condition
∑

i wi = 1 is relaxed.
Two examples for convex sums are now shown below with corresponding P-

Graph models.
Suppose that there are two input materials A1 and A2 and it is a requirement

that none of the two can contribute by more than 80% to the total. This can be
a practical consideration, as relying dominantly on a single resource can be unsafe.
The input amounts are represented by x1 and x2. The required condition can be
expressed as two ratio constraints (see Inequality system (4.10)).

x1 ≤ 0.8 (x1 + x2)

x2 ≤ 0.8 (x1 + x2)
(4.10)

Note that these two constraints can be arranged into the form x1 ≤ 4x2 and
x2 ≤ 4x1, respectively. Observe that (x1, x2) = (1, 4) and (x1, x2) = (4, 1) are
the extreme cases for fulfilling these two inequalities. Therefore, without a precise
proof, any (x1, x2) satisfies Inequality system (4.10) if and only if there exist weights
w1, w2 ≥ 0 such that Equation (4.11) holds.

(x1, x2) = w1 · (1, 4) + w2 · (4, 1) (4.11)

This makes it possible to model the situation with just two operating unit nodes,
for each extreme case (see Figure 19). The units consume A1 and A2 in the flow
rates according to the corresponding extreme case, (1, 4) or (4, 1), and produce
the final product with the flow rates 4ν1 + ν2 and ν1 + 4ν2. The total output is
y = ν1x1 + ν2x2 as desired.

Figure 19: Modeling the first example: ratio constraints x1 ≤ 4x2 and x2 ≤ 4x1

with convex sums.

Solution structures for this model are now analyzed. If the operation is not used
at all, none of the two units are chosen. If the operation is used, exactly one unit
can be selected if the case is extreme, and both are needed if the composition is in
between the extreme cases. In this example, there is not much redundancy in the
model as there are only two input materials.
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Now consider another example with three input materials A1, A2 and A3, and a
requirement that none of them can contribute by more than 70% to the total. The
same design with convex sums can be applied. There are three ratio constraints,
xi ≤ 0.7 (x1 + x2 + x3), which could be arranged to different forms. There are six
extreme cases for (x1, x2, x3), which are (7, 3, 0), (7, 0, 3), (3, 7, 0), (0, 7, 3), (3, 0, 7)
and (0, 3, 7). The P-Graph model now requires six operating units (see Figure 20).

Figure 20: Modeling the second example: ratio constraints x1 ≤ 0.7 (x1 + x2 + x3),
x2 ≤ 0.7 (x1 + x2 + x3) and x3 ≤ 0.7 (x1 + x2 + x3) with convex sums.

In this case, the solution structure is again unique if the composition is an
extreme case. If not, however, any 3 of the 6 extreme cases can be used to sum
up to non-extreme ratios, which immediately results in

(
6
3

)
= 20 different, valid

solution structures. There are more, even for a fixed (x1, x2, x3), because expressing
it as a convex sum of the extreme cases can be ambiguous.

Therefore, this model has a lot of redundancy, which is not good if the solution
structures are to be enumerated. The technically same solution can even be repre-
sented in multiple solution structures. As a conclusion, using convex sums can be
effective for very small cases, but become inefficient for even a moderate number of
extreme cases.

4.2.8 Efficient ratio constraint implementation

Instead of relying on convex sums, a method is proposed to address one ratio con-
straint at a time. Recall Inequality (4.9) describing a ratio constraint.∑

i∈L

λixi ≤
∑
i∈R

λixi, L ∩R = ∅, λi > 0 ∀ i ∈ L ∪R

Consider the LSH and RHS of the inequality as two distinct logical materials
connected as follows (see Figure 21).

56



4.2. FLEXIBLE OPERATING UNITS

• The LHS is consumed by the operating unit nodes introduced for Ai, in flow
rates λi, for each i ∈ L.

• The RHS is produced by the operating unit nodes introduced for Ai, in flow
rates λi, for each i ∈ R.

• The two logical material nodes are connected by a logical operating unit,
consuming the RHS and producing the LHS in a 1 : 1 ratio.

Figure 21: Modeling a ratio constraint with two logical material nodes and a logical
operating unit node: example for λ1x1 + λ3x3 ≤ λ2x2 + λ4x4.

Observe that the loop of material flow in the introduced logical part starts from
the inputs involved in the RHS and ends in the materials involved in the LHS. The
inflow of the RHS material node equals the actual RHS in the ratio constraint, and
the outflow of the LHS material node equals the actual LHS in the ratio constraint.
Because the LHS material can only be obtained by producing it from the RHS
material, the constraint is satisfied. Note that there is no further, unnecessary
restrictions caused by this design.

This design with a logical operating unit allows additional features to be imple-
mented, for example minimum, maximum flows, fixed and proportional costs can
be associated with the logical operating unit. If this is not necessary, the model can
be further simplified by merging the logical parts into a single material node (see
Figure 22). This is considered as the final design for ratio constraints.

If the two designs are investigated in terms of solution structures, it can be
observed that if there is any input material Ai for which i ∈ L, then there must be
at least one input material Aj for which j ∈ R. The reason for this is that when
the logical material representing the LHS must be produced somehow, it is only
possible by using a material from the RHS. Therefore, some infeasible solutions
according to the ratio constraint are structurally excluded, which is again a good
behaviour.

It should be noted that the introduction of logical nodes can negatively affect the
readability of the graphical representation of the P-Graph model. One advantage of
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Figure 22: Simplified, final model of a ratio constraint with a single logical material
node: example for λ1x1 + λ3x3 ≤ λ2x2 + λ4x4.

the P-Graph framework over mathematical programming approaches is the easier
readability, especially for decision makers not familiar with optimization tools.

4.2.9 General constraints

Using the aforementioned modeling techniques, the general constraint formulation
described by Inequality (4.3) can be addressed at this point. A general P-Graph
model can be constructed for a flexible operation, characterized by independent
input amounts, restricted by constraints of the given form. It is assumed that the
constraint is not trivially redundant or infeasible in the context of the operation.
Recall the formulation in question as follows.

CMIN +
∑

i∈L λixi ≤
∑

i∈R λixi + CMAX

CMIN , CMAX ≥ 0, min {CMIN , CMAX} = 0
λi > 0 ∀ i ∈ L ∪R

The starting point of modeling is the n operating unit nodes introduced for each
of the independent input materials Ai. First the constant terms are addressed as
follows.

• If CMIN ̸= 0, a logical material node is introduced for the role of the RHS,
which is a final product node in the P-Graph, with minimum required flow
CMIN .

• If CMAX ̸= 0, a logical material node is introduced for the role of the LHS,
which is an intermediate material node in the P-Graph. Another, logical
operating unit is introduced, which produces the material in CMAX maximum
amount.
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• If CMIN = CMAX = 0, a single logical material node is introduced for the
roles of both the LHS and the RHS.

The material amounts as terms of the constraint are addressed as follows.

• For any input material Ai with i ∈ L, the operating unit node introduced for
Ai is connected to the logical material node for the LHS to consume it, with
flow rate λi.

• For any input material Ai with i ∈ R, the operating unit node introduced for
Ai is connected to the logical material node for the RHS to produce it, with
flow rate λi.

Note that either the longer or the simplified modeling version can be used for
ratio constraints. The simplified version means that the logical material nodes for
the LHS and RHS can be merged, effectively resulting in a single logical material
node for the constraint. Nevertheless, the logical operating units in this design,
either for CMAX or the longer version of the ratio constraint can be useful for
associating further parameters of the process, for example limits on material flows,
or investment and operating costs.

This method description was for flexible operations with a single output material
B. If there are multiple output materials, these can simultaneously be included in
the same model, where the operating unit nodes, common for each Ai are connected
to each Bj with flow rates νi,j.

4.3 Model examples
In this section, different instances of the aforementioned modeling techniques for
flexible operations with P-Graphs are presented on an example model. In Chapter 3,
the problem and its solutions are presented in detail, already utilizing some of
the techniques. This case study is revisited, and extended with a ratio constraint
to demonstrate how linear constraints can be imposed on the inputs of a flexible
operation.

The problem was first published with a simple model [S2], and later was ex-
tended with an ad hoc application of a different flexible operation technique for the
pelletizer and biogas plant operating units, and the multi-period modeling scheme
[S3].

The energy consumption optimization of a manufacturing plant is to be opti-
mized. Annual electricity and heating demands are given and must be satisfied
with minimal operating and annualized investment costs. The business as usual so-
lution is purchasing natural gas and electricity from the providers, but other energy
sources are considered. One alternative is a solar power plant for electricity and
possibly heat generation, with scalable size. The other, more important option is
using seven, locally available types of biomass to produce biogas, and then feeding a
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biogas furnace or biogas CHP plant. Some types of biomass must be pelletized first,
which is another production step in the chain. For further details of the problem,
see Chapter 3 or the most recent publication [S3].

4.3.1 Flexible modeling approaches

The initial modeling technique with P-Graphs for this problem [S2] was the utiliza-
tion of the technique which is termed in this chapter as output capacity with
independent inputs. The key observation was that all types of biomass will even-
tually end up as heating power of the biogas produced from them. For this reason,
all material nodes other than the raw material nodes were representing heating
power of the materials involved. The biomass types that requires pelletizing were
fed into the pelletizer, which produced one common output for pellets, which rep-
resented the total heating power of biomass involved. The other types of biomass,
together with pellets were fed into the biogas plant to produce biogas, again ex-
pressed in terms of final heating power. See Figure 23 for an overview of this initial
approach.

Figure 23: Initial approach for modeling the energy consumption optimization case
study, utilizing the technique of output capacity with independent inputs.

The capacity of both the biogas plant and the pelletizer operating units were
scalable in the model to fit annual production capacities. The more capacity an
operating unit has, the more proportional investment and operating costs are ac-
counted. The capacities of these units were expressed in terms of the total heating
power of the products involved.

The issue with this initial technique is that the capacity of the pelletizer and
biogas plant operating units should rather be expressed in terms of total mass of
the biomass types involved. Note that although heating powers could have been
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quite different for the seven investigated biomass types, they were not in this case
study. For this reason, the initial approach is also accurate to some degree.

The second, more precise P-Graph representation of the process is depicted in
Figure 24. Note that only the single period model is presented here for the sake
of simplicity. This is the technique termed custom input capacity for both the
pelletizer and the biogas plant operating units. In this implementation, there are
three different kinds of input materials for producing biogas:

• Ordinary raw material input nodes, representing the seven biomass types.

• Logical pelletizer capacity material node, which is produced by the logical
pelletizer operating unit node in the amount determined by pelletizer size,
and used up for each type of biomass requiring pelletizing, in amounts corre-
sponding to their mass.

• Logical biogas plant capacity material node, which is produced by the logical
biogas operating unit node in the amount determined by biogas plant size,
and used up for any of the seven biomass types, in amounts corresponding to
their mass.

The biogas is the output of all seven operating unit nodes introduced for each
biomass type. Therefore, this model is not only an instance of the custom input
capacity constraint for a flexible operation. This model incorporates two subsequent
flexible operations with a custom input capacity constraint into a single one. The
resulting flexible operation could be termed as biogas production in general, and
has two distinct custom input capacity constraints: one for pelletizer capacity and
one for biogas plant capacity. The investment and operating costs for these two
technologies are associated with the logical operating unit nodes producing the
capacity materials.

4.3.2 Extension with a ratio constraint

The problem is now extended by an additional constraint for demonstration pur-
poses. For safety reasons, it is a reasonable requirement not to rely dominantly
on a single resource, in case of unexpected changes in supply. One possible way of
mitigating such risks is to maintain a backup plan for energy production – as done
in the case study, by keeping the business as usual part of the structure, which is
natural gas and electricity purchase.

Another mitigation technique is by adding constraints on input material com-
position. The optimal solution for the single period variant of the second model
relied dominantly on energy grass, which made up to 72% of the total biomass used.
Therefore, three distinct scenarios were considered and compared:

• Original model, as shown in Chapter 3, where the optimal solution structure
used energy grass, and the mass of energy grass was 72% of the total for all
seven biomass types.

61



4. OPERATIONS WITH FLEXIBLE INPUTS

Figure 24: Improved model for the energy consumption optimization case study,
utilizing the technique of custom input capacity.

• Extension by a constraint allowing a total of 70% energy grass.

• Extension by a constraint allowing a total of 50% energy grass.

The extensions are performed according to the ratio constraints modeling
technique, without constant terms. First, the ratio constraint corresponding to the
70% limit is formulated as shown in Inequality (4.12).

xeg ≤ 0.7 (xwc + xsd + xss + xvs + xcc + xeg + xw) (4.12)

The variables represent input material amounts. Respectively, xwc is for wood
chips, xsd is for saw dust, xss is for sunflower stems, xvs is for vine stems, xcc is for
corn cobs, xeg is for energy grass, and xw is for wood.

The constraint can be arranged into the final form where each material appears
at most one of the sides, and with a positive coefficient, as shown in Inequal-
ity (4.13).

3xeg ≤ 7xwc + 7xsd + 7xss + 7xvs + 7xcc + 7xw (4.13)

If the constraint is formulated for the 50% limit instead, the original form of the
ratio constraint is the one shown in Inequality (4.14), and the final form is shown
in Inequality (4.15).

xeg ≤ 0.5 (xwc + xsd + xss + xvs + xcc + xeg + xw) (4.14)
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xeg ≤ xwc + xsd + xss + xvs + xcc + xw (4.15)

In both of the extension scenarios, the ratio constraint is implemented with
the addition of a single logical material node, see Figure 25. The seven operating
unit nodes responsible for the utilization of each biomass type are connected to
the logical material node. The operating unit node utilizing energy grass consumes
the logical material node. The other six operating unit nodes produce the logical
material node. The two scenarios differ only in the flow rates, which can be directly
read from the final forms of the ratio constraints as follows. Note that these flow
rates could be simultaneously scaled by any positive constant factor, but the values
shown are the most convenient choices.

• For the 70% constraint, the flow rate for energy grass is 3, and the flow rate
for all other biomass types is 7.

• For the 50% constraint, the flow rates are all 1.

Figure 25: Modeling a ratio constraint for energy grass in the energy consumption
optimization problem. Colors indicate direction of material flow.

All three scenarios were implemented as a PNS problem each, in P-Graph Studio
v5.2, and solved by the ABB algorithm on a Lenovo Y50-70 computer with Intel
i7-4710HQ CPU and 8 GB RAM. Also note that model sizes are not large, so the
solution of the models was performed in less than a second in all scenarios. The
optimal objectives for the 10 best solution structures are shown in Table 12.

Recall that the optimal solution for the original single period model version
resulted in an objective of 220.709M HUF/y. This solution structure involves corn
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Table 12: Top 10 solution structures in the three scenarios, ranked for each sce-
nario by total cost (shown in M HUF/y). Specialties of the solution structures:
E=electricity purchase, S=solar power plant, N=natural gas purchase, P=pelletizer.

Solution
structure No limit 70% limit 50% limit

1. 220.709 E 220.780 E 222.258 E
2. 224.057 E P 224.324 E P 227.928 S
3. 224.325 E P 224.890 E P 228.975 E P
4. 224.357 ENP 225.307 E P 229.391 E P
5. 224.496 E P 225.313 E P 229.404 E P
6. 224.526 E P 225.980 E P 230.529 ENP
7. 225.895 E P 226.451 S 231.749 P
8. 226.049 ENP 227.034 E P 232.308 P
9. 226.380 S 228.272 ENP 232.616 E P

10. 226.723 E P 228.284 ENP 232.667 P

cobs and energy grass, and a biogas CHP plant to provide heating and part of
the electricity demand, and then purchasing the rest of the required electricity.
This scheme is more or less true for the other solution structures as well. In some
structures, there is natural gas purchase. The 9th solution structure is special,
because a solar power plant substitutes electricity purchase.

Four solution structures for the 50% scenario are shown in Figure 26. It can
be concluded that the constraints work as desired, both for the logical pelletizer
and biogas plant capacity, and for the ratio constraint on energy grass composition.
The objective does not change much for the 10 first solutions throughout the three
scenarios, mainly because the energy grass can be substituted by the other biomass
types if needed. A slight and a bit larger increase can be observed as the constraint
is introduced for 70% and then decreased to 50%. This is natural, because the
search space shrinks as the limit is set lower.

The top solution structure is the same in all three scenarios. It should be noted
that this is the only structure in all three cases where neither pelletizing is needed
nor solar power is utilized.

In spite of these observations, the other solution structures do differ in the three
scenarios. Most of the variety of the structures result in selecting the set of biomass
types to work with. The ranking of these solution structures can be rearranged if
the availability of energy grass changes, since energy grass is dominant in all cases.

There are two major findings which worth attention.

• The special solution structure which does not require electricity purchase from
the grid, but utilizes a solar power plant is 9th in the original scenario, but
goes 7th in the 70% scenario, and 2nd in the 50% scenario. It seems that solar
power easily turns out to be favorable if a slight decrease occurs in biomass
availability. Note that this observation is specific to this case study.
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• The 7th, 8th and 10th solution structures in the 50% scenario show a new
possibility because no energy purchase is needed in these cases, and not even
the solar power plant is utilized. These structures were not in the top 10
without the 50% limit for energy grass, for being inefficient.

In general, a new constraint may vary the relative order of existing solution
structures, some may become infeasible.

The ratio constraint also has the advantage of excluding infeasible solution struc-
tures, in particular, where only energy grass is used but none of the other biomass
types. Note that these structures were simply not in the top 10 for the original
scenario without the ratio constraint for being relatively inefficient.

In this particular case study for energy consumption optimization, it turned
out that the changes in terms of the objective are not significant due to the ratio
constraint. However, the order of solution structures can be rearranged so that new
solutions become favorable, even if the change in the objective is minor.

The models presented demonstrate multiple techniques for modeling operations
with flexible inputs. Limitations on pelletizer and biogas plant capacity and the
ratio constraint for energy grass impose the desired restrictions on the search space,
and allow the seven types of biomass to vary, but under prescribed circumstances.
These techniques can be useful in the future if a process requiring different inputs
in arbitrary composition are to be modeled with the P-Graph framework. If such a
model is designed, it can be directly solved by already existing tools, for example,
using the P-Graph Studio software and the ABB algorithm.

4.4 Application case study

To demonstrate the advantage of flexible input models instead of fixed inputs, and
the P-Graph technique for doing so, another case study was performed. Due to
space limitations, only the important details are presented here. A more detailed
description can be found in Appendix A.

4.4.1 Problem description

The goal was the sustainable and economical utilization of locally available biomass
for a small rural region near the town of Bad Zell. The problem was originally
proposed and solved by Niemetz et al. [38] using a PNS formulation. Key model
components, also shown in Figure 27, are the following:

• Different types of biomass are available from local agriculture: manure, inter-
crops, grass and corn silage.

• Biomass can be transported to 3 possible processing locations.
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Figure 26: Solution structures for the 50% constraint, ranked by optimal objective
value: 1 (top left), 2 (top right), 3 (bottom left), 7 (bottom right). Unused parts
of the maximal structure previously shown in Figure 25 are grayed out.

• At each processing location, multiple fermenters can be built, in sizes 80 kW,
160 kW, 250 kW and 500 kWh, which produce biogas.

• At each processing location and the central town location, CHP plants can be
built in the same sizes as fermenters, producing heating and electricity, which
is sold.

• Supporting infrastructure must be built: biogas pipes, heat pipes, transform-
ers and silo plates (not depicted).

In total, 8 fermenter designs were used in the original model. Each design used
a fixed composition of the four available biomass types. The goal was to substitute
these fixed input models with fermenters having flexible inputs and observe how
the model and the optimal solution changes.

4.4.2 MILP model formulations

Although the case study was originally formulated as a PNS problem, the model
formulations were not available, only the problem data and the optimal solution.

66



4.4. APPLICATION CASE STUDY

Figure 27: Main components and material flows in the Bad Zell case study.

Therefore, the first phase of this work was the reproduction of the originally pub-
lished results. This was performed using MILP models first, to serve as a basis for
comparison with the PNS implementation later.

The reproduction with a MILP model provided the following optimal solution
for the problem, which was used as a basis for further models. One 160 kW and one
250 kW CHP plant at the central location, and one 80 kW CHP plant at processing
location L1 are built. These are supplied by two 250 kW fermenters at location L1,
with input ratios of 50 : 20 : 10 : 20 and 75 : 15 : 10 : 0 for the four biomass types,
respectively. These were two of the eight possible input ratios for fresh matter
input. According to this solution, 100% of manure, 75% of intercrops, 84% of grass
and 74% of corn silage was used from the total available amounts, resulting in a
234,544EUR/y profit.

The second phase of the work was expressing two key parameters: heating re-
quirement and investment cost, as a linear function of biomass inputs, which was
necessary for using flexible inputs. Note that other fermenter parameters were ei-
ther irrelevant or independent of inputs. A multiple linear regression was made
based on the available fermenter designs. The differences of the obtained linear
estimation data and original parameters for the fixed input fermenter designs were
between −7.8% and +6.5%. The optimal solution with the estimated data used
the same key decisions and slightly different material and monetary amounts, the
objective was 233,033EUR/y. Therefore, the linear estimations were considered
accurate.

The third phase of the work was using the same estimated data, but with a
flexible model instead of the fixed input model. Therefore, another MILP model was
developed, now with flexible input design for fermenters. The two MILP models,
representing the fixed and the flexible model could be directly compared on the
same problem data.

The MILP model with the flexible fermenters resulted in a significantly different

67



4. OPERATIONS WITH FLEXIBLE INPUTS

solution. Two 250 kW CHP plants at the central location and one 80 kW CHP
plant at processing location L1 is built. One 80 kW fermenter using only manure,
and one 500 kW fermenter using biomass types in roughly 39 : 31 : 17 : 13 fresh
matter input composition are built at L1. This solution results in a higher heat and
electricity throughput, better utilization of biomass (90% for corn silage, 100% for
all other types), and a 306,711EUR/y profit, which is 31% higher than the original.
The resulting MILP model was also smaller, requiring only 0.5 s instead of 3.9 s to
be solved with the GLPSOL MILP solver.

Concluding these results, it seems definitely better to use a flexible input model
for optimization, than using a set of fixed input compositions to choose from. Note
that the following assumptions must be made to use flexible inputs this way. First,
the data used in the model are linear estimations that should be accurate enough. If
a solution is reported for the flexible model, it should be verified whether the input
composition is feasible in reality, that is, whether a fermenter unit can actually be
built to work with the input amounts prescribed by the solution.

4.4.3 P-Graph implementation

The case study was also formulated as a PNS problem. The flexible input modeling
technique presented in this chapter was required for the fermenter units, which is
now shown in detail, see Figure 28.

Figure 28: P-Graph model of the fermenter with flexible inputs.

The black part models the independent inputs of the fermenter, which are the
four biomass types. Each input has its own operating unit node, which also play
a key role in other components of the design. Flow rates for inputs are all 1, and
flow rates for the output Biogas can be set according to the energy content of each
biomass type.
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The red part models fermenter heating. Since heating requirement is expressed
as a linear function of biomass inputs (without a constant term), flow rates can be
set according to each biomass type.

The blue part models the capacity of the fermenter. A single Fermenter oper-
ating unit produces the Hours_In material, in a maximum amount of 7800 hours,
which represents total working hours during the year. Flow rates can be set ac-
cording to the rule that a fully operating fermenter can exactly feed a CHP plant
with the same size, regardless of input type. Note that, counter-intuitively, working
hours are not really split among input types, but rather a mix of inputs is fed to
the fermenter in the composition described by the consumption rate of Hours_In.
This is only a modeling trick for implementing an upper bound for a weighted sum.
Fixed costs of the fermenter are associated with the Fermenter node.

The purple part was necessary for the investment costs. Since investment costs
are expressed as a linear function of biomass inputs (without a constant term), it
can be associated to the operating unit of each biomass type as a proportional cost.
The problem is that it is allowed (although discouraged) to use a fermenter below
full capacity, although the investment cost should not be scaled down in this case.
To preserve the linearity of both the MILP and the P-Graph approach, the following
estimation was made. Unused capacity contributes to the investment cost as if it
was spent for the most expensive biomass type regarding investment costs. This
biomass type is manure, for any fermenter size. The Slack_Hours operating unit is
introduced for consuming the remaining fermenter capacity, and has a proportional
cost equal to that of the operating unit for manure. All of Hours_In are reproduced
into Hours_Out, which is a new input for the Fermenter operating unit. Also, the
Fermenter node has a minimum production also set to 7800 hours. These ensure
that investment costs are always calculated for 7800 working hours.

The green part implements the constraint that at least 30% of input fresh matter
must be manure. The introduced material node is connected to the operating unit
of each biomass type. The operating unit of manure produces the material with a
flow rate of 7, all other operating units consume it with a flow rate of 3.

The final P-Graph consists of 147 material nodes, 319 operating unit nodes,
and 1144 arcs. These required 24 distinct fermenters (at three locations, in four
possible sizes, two allowed per size). Due to the model size, the problem was not
implemented using the GUI of P-Graph Studio, but solved by its underlying P-
Graph solver (v2.0.3) after generating the model programmatically.

The solver with ABB algorithm required 413.45 s to finish. The significantly
larger solution time can be attributed to the fact that in the MILP model, CHP
plants of the same kind are represented as integer variables instead of multiple
binary variables to decrease redundancy, while in the P-Graph implementation, each
CHP plant has its own operating unit node. The ABB algorithm itself could treat
redundancy better. Note that the MILP model which is also technically equivalent
to the PNS problem could be generated by the P-Graph solver, and solved by the
CBC MILP solver in 19.99 s, but the GLPSOL solver could not finish it in 1,000 s.
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Nevertheless, the exact same solution was obtained for the PNS problem as for
the MILP models. This holds for both the original MILP model implementation
solved by GLPSOL to optimality, and the generated version technically equivalent
to the PNS problem, solved to optimality by the CBC MILP solver.

This indicates that the P-Graph framework and its existing tools provide an
alternative to mathematical programming models, and can be extended by modeling
techniques.

4.5 Thesis summary
Thesis 2. A new modeling technique for the P-Graph framework was presented,
which allows operations with flexible inputs and arbitrary linear constraints on
input composition to be modeled purely as a PNS problem and solved directly by
existing algorithms like ABB for P-Graph models.

Related publications: [S4], [S6].

T2.1. Nine scenarios were considered, representing different modeling goals for in-
put composition and constraints. P-Graph models were provided, and pos-
sible solution structures were investigated. The final scenario allows inde-
pendent inputs with arbitrary linear constraints on the input amounts. The
importance of flexible inputs and the applicability of the proposed method
were demonstrated on two case studies involving pelletizer and biogas plant
models in a manufacturing plant, and fermenter models in a rural biomass
supply chain.
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Chapter 5

MILP model for mobile workforce
management

5.1 Overview

In this chapter, a solution method for mobile workforce management problems is
presented. Mobile workforce management focuses on the transportation of working
individuals or teams to various places. There are tasks to be performed at these
places, which can be delivery, on-demand or maintenance services, and may have
constraints in terms of exact timing, resources needed, or dependencies on each
other. In essence, both scheduling and vehicle routing is involved. Mobile workforce
management aims to optimize short-term operation, and the emphasis is on precise
sequencing and timing. This is in contrast to supply chain synthesis, where usually a
long-term, static solution is to be found, and material balance is the key which poses
the critical constraints. A common trait is that transportation may play a significant
role, and is generally wanted to be minimal, obviously because it consumes resources
and time.

It can be seen from the literature (see Section 2.2) that mobile workforce man-
agement problems are diverse in terms of the exact problem formulation. The re-
sulting optimization problem is usually difficult, for which various approaches had
been proposed. The goal in this work was to address the widest range of problem
features arising in mobile workforce management in a unified approach. Therefore,
an MILP model was formulated, and is presented in detail. A novelty of this model
is that it is a slot-based approach in terms of decision variables, in contrast to
literature models for which the precedence-based approach is generally used.

For larger problem instances, solving the proposed MILP model to optimality
as a standalone method would require too much time. For this reason, an algo-
rithmic solution framework was also designed to address larger problem instances.
This framework provides solutions based on a heuristic in acceptable time. Several
series of test problems were solved to demonstrate the applicability of the proposed
approach and to investigate the effect of certain problem and model parameters.
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First, the basics of the proposed algorithmic framework was published [S1]. A sub-
sequent publication includes the final version of the algorithm, the full MILP model
formulation, and various test results [S5].

Section 5.2 details the problem specification and shows an example problem and
solution. The MILP model is presented in Section 5.3, the algorithmic framework
is presented in Section 5.4, and computational results are shown in Section 5.5.

5.2 Problem specification
The mobile workforce management problem to be solved is now described. Each
component of the targeted real-world problem has its own assumptions, listed later.
The problem aims to execute a set of tasks given at various sites. An illustrative
real-world example for this scenario is a public service company which executes
maintenance and repair jobs on-demand, taking place at different points of the
infrastructure (e.g. the power grid).

The company has teams to which the tasks are assigned. Each team starts at its
depot at the beginning of the workday, then executes tasks one after the other, and
finally returns before the end of the workday. The exact timetables of all working
teams are to be found, subject to several constraints. An illustration of a potential
solution is shown in Figure 29.

5.2.1 Modeling assumptions

Objective and scope of optimization

The objective is cost minimization for a workday subject to all tasks being executed.
This excludes task selection from decision making. The rationale behind this is that
distinction of critical and non-urgent tasks for a workday could be made at a higher
level, but this is out of our scope. Nevertheless, cost parameters could be used to
manipulate task selection and execution.

Task scheduling

Each task must be assigned to exactly one team. Assignment is one of the key
decisions. The execution of tasks is subject to the following assumptions.

• Teams are fixed (forming and altering teams is out of scope).

• Execution is non-preemptive (task execution cannot be split in any way).

• Execution times and costs depend on the task and the team chosen.

Tasks are executed at different task sites. A team must travel from the depot
to its first task site, between different task sites, and from its last task site back to
the depot. The following assumptions are made about travelling.
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Figure 29: Illustration of a solution of the specified mobile workforce management
optimization problem: given a set of tasks, find the timetable of teams for a workday.
Note that this illustration is unrelated to the motivational example shown later.

• Each task is located at a single task site.

• Multiple (generally unrelated) tasks may be located at the same site.

• The distance of two sites is a fixed parameter, to which travelling times and
costs are proportional. Each team has its own moving speed and cost ratio as
parameters.

• Teams are allowed to be idle besides or instead of actually travelling.

• The total time travelled, total distance travelled, and total time spent by a
single team in duty each can have an upper bound.

Before and after executing a task, other activities are mandatorily or optionally
performed by a team, as shown in Figure 30, these are detailed later.

Packing and unpacking times

The problem formulation allows so-called packing and unpacking activities, rep-
resenting preparations and post-work when a team moves between sites, subject to
the following rules.
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Figure 30: Activities a team may perform before and after a task is executed.

• If a team arrives at a site, it performs an unpacking activity.

• If its previous task was on the same site, unpacking is not performed.

• If a team leaves a task site, it performs a packing activity.

• If its next task is at the same site, packing is not performed.

• Packing and unpacking have fixed costs and times for each team.

Absolute and expected time windows

Tasks are mandatory, but the exact time of their execution may be subject to further
restrictions and affect costs. For this reason, so-called absolute and expected
time windows are introduced as follows (also see Figure 31).

• Each task has its own absolute and expected time window, which are time
intervals during the workday.

• The absolute time window of a task must contain the beginning and the end
of execution.

• The expected time window of a task should contain the beginning and the
end of execution. Earlier beginning or later finishing incurs additional costs,
proportional to earliness or lateness. Cost factors are specific to the task.

Figure 31: Absolute and expected time windows.

74



5.2. PROBLEM SPECIFICATION

Consumable and tool resources

The problem formulation allows resources, which are required by task execution.
The rules governing resource usage are the following.

• Each task may have a requirement for each resource, the amount depending
on the task and the executing team.

• Each team has a carrying capacity for each resource, which cannot be refilled
during the workday.

• Each resource has a maximum available amount to be distributed among
teams, and a proportional usage cost.

Two kinds of resources are allowed: consumables and tools. Consumables are
used up in tasks, but tools persist. For that reason, the total amount of a resource
needed for a set of tasks is the sum of the individual requirements for consumables,
and the maximum of the individual requirements for tools (see Figure 32).

Figure 32: Consumable and tool resource needs of a single team.

Relationships between tasks

The following relationships are part of the problem specification, each introducing
an additional constraint for the execution of two tasks k1 and k2 (see Figure 33).

• Free precedence: k2 must start after k1 is finished.

• Same-team precedence: k2 must be done by the same team after k1.

• Protected precedence: free precedence plus additional security measures.
k1 and k2 may be done by two different teams, but leaving the site unattended
is hazardous (for example in case of roadworks, electric boxes), so two options
are available. The team executing k1 can wait for the team executing k2 to
arrive, or it can perform a closing activity on the site, and then the team
executing k2 will first perform an opening activity. Both opening and closing
activities require a given time and cost.
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• Mutual exclusion: execution of k1 and k2 must not overlap.

• Parallel execution: execution of k1 and k2 should be started and finished
simultaneously by two different teams. Slack time is introduced for the faster
team to wait for the slower one to finish.

Figure 33: Possible pairwise relationships between tasks.

5.2.2 Motivational example

A motivational problem is presented here to demonstrate all components of the
problem specification. A fictional company is responsible for the infrastructure of
public lighting.

There are 8 mandatory maintenance tasks reported by the beginning of the
workday: K1a, K1b, K1c1, K1c2, K1d, K2, K3a, K3b. These are located at three task
sites S1, S2 and S3, the index denoting the site of each task. Two working teams,
Team1 and Team2 start from a depot site D at 8:00, execute the tasks, and return
by 16:00. The sites are shown in Figure 34. Manhattan distances are used, which
are calculated as follows.

DP1,P2 = |x1 − x2|+ |y1 − y2| ∀ P1 (x1, y1) , P2 (x2, y2) (5.1)

Both Team1 and Team2 work for 60EUR/h. Team1 is lightweight, they move
with 75 km/h, for 0.4EUR/km, and do each task in 45min for 100EUR. Team2

operates with machinery and consequently works faster but their other traits are
worse: they move with 50 km/h, for 0.9EUR/km, and do each task in 30min for
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Figure 34: Position of task sites, with tasks in parentheses and depot with teams.

150EUR. Note that the problem specification would allow limits on total working
and travelling times, and also distinct execution times and costs for each pair of
task and team, but these are omitted here.

Packing and unpacking activities represent the teams preparing the site for work
and cleaning up afterwards. Both activities take 10min and cost 10EUR.

Absolute and expected time windows are allowed by the problem specification
for each task separately. In this example, only K1b has an absolute time window
from 10:00 to 13:00, and an expected time window from 11:30 to 12:30, and violat-
ing the expected time window in either the direction of earliness or lateness costs
600EUR/h. The reason for such constraints could be a client or co-operator only
available in the given intervals.

Resource utilization is also included. One consumable resource type and one
tool resource type is present, with usage costs of 15EUR/unit and 100EUR/unit.
Each task requires one unit of each, and each team can carry 5 of the consumable
and 1 of the tool resource.

There are also relationships between tasks, depicted in Figure 35, detailed below.

• Tasks at site S1 describe a complex procedure. K1c1 and K1c2 must be exe-
cuted in parallel. Otherwise, the order is K1a, K1b, K1c1 and K1c2, and finally
K1d, and the site cannot be left unsecured. Therefore, the following pro-
tected precedence pairs are included in the problem: (K1a, K1b), (K1b, K1c1),
(K1b, K1c2), (K1c1, K1d), (K1c2, K1d). Closing and opening a site to satisfy a
protected precedence relationship cost 30EUR and take 15min per occasion.

• Tasks at site S3 must be done in order K3a, K3b, and by the same team because
information is required from K3a to complete K3b. This is formulated as a
single task pair, as a same-team precedence relationship (K3a, K3b).

• Execution of K1a interferes with critical parts of the grid, so while it is exe-
cuted, neither K2 and K3a can be under execution. This is expressed as two
mutual exclusion relationships, as (K1a, K2) and (K1a, K3a).
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Figure 35: Relationships between tasks of the motivational problem.

Solely with the MILP model to be described in Section 5.3, this motivational
problem could be solved to optimality, almost instantly. The results are shown in
Table 13. The objective is 1,944EUR. Observe that all task relationship constraints
are satisfied, and K1b was scheduled in its expected time window, so there was no
penalty. All protected precedence relationships were satisfied without closing and
opening activities. The more expensive Team2 seems to be only used to reduce load
on Team1. For the parallel tasks, both teams are required, and also note that the
execution requires 45min for both teams, since they are synchronized and Team1

is slower.

5.3 MILP model formulation
An MILP model was developed to address the specified mobile workforce man-
agement problem. The model was implemented in the GNU MathProg modeling
language. A problem instance can be implemented and solved by a single call of an
ordinary MILP solver. This is called the standalone MILP solution method. The
MILP model is now presented. The used symbols are listed in the Nomenclature in
Appendix B.

5.3.1 Decision variables

A purely MILP modeling approach like the standalone MILP method can be ineffec-
tive for large instances. The focus was on the easier adaptability by the algorithmic
framework later presented in Section 5.4, instead of fast solutions by ordinary MILP
solvers.

The main novelty of the proposed approach is that a slot-based MILP model
was developed, in contrast to most literature approaches for VRP and mobile work-
force management where MILP models are usually precedence-based. The following
slot concepts are introduced, illustrated in Figure 36.

• A job slot is a placeholder for task assignment. Each team m has a predefined
sequence of its own job slots. A job slot may have a single task assigned, or
it can be unused which means no assignment.
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Table 13: Optimal timetables of the teams in the motivational problem.

Site From To Action of Team1

D 08:02 08:12 Packing.
D 08:12 08:36 Move from D to S3 (30 km).
S3 08:36 08:46 Unpacking.
S3 08:46 09:31 Execute task K3a.
S3 09:31 10:16 Execute task K3b.
S3 10:16 10:26 Packing.
S3 10:26 10:50 Move from S3 to S1 (30 km).
S1 10:50 11:00 Unpacking.
S1 11:00 11:45 Execute task K1c2 (parallel with K1c1).
S1 11:45 12:30 Execute task K1d.
S1 12:30 12:40 Packing.
S1 12:40 12:56 Move from S1 to S2 (20 km).
S2 12:56 13:06 Unpacking.
S2 13:06 13:51 Execute task K2.
S2 13:51 14:01 Packing.
S2 14:01 14:17 Moving from S2 to D (20 km).
D 14:17 14:27 Unpacking. (End of workday.)

Site From To Action of Team2

D 09:16 09:26 Packing.
D 09:26 09:50 Move from D to S1 (20 km).
S1 09:50 10:00 Unpacking.
S1 10:00 10:30 Execute task K1a.
S1 10:30 11:00 Execute task K1b.
S1 11:00 11:30 Execute task K1c1 (parallel with K1c2).
S1 11:30 11:45 Prolong execution by 15 minutes.
S1 11:45 11:55 Packing.
S1 11:55 12:19 Move from S1 to D (20 km).
D 12:19 12:29 Unpacking. (End of workday.)
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• A set of travelling slots is introduced for each team. There is a single
travelling slot before the first, after the last, and between two consecutive job
slots of the team. Travelling slots are used to represent the movement of a
team between sites.

• The concept of site slots is also used, which mean points in the schedule of
a team when its position is in question. Precisely, the beginning and the end
of the workday, and each job slot is a site slot. The purpose of site slots is
convenient modeling, as with these definitions, each job slot is surrounded by
two travelling slots, and each travelling slot is surrounded by two site slots.

Figure 36: Slots used in the MILP model. Team m has Nm predefined job slots,
and in the depicted assignment it executes L ≤ Nm tasks.

Let M , K, Jslots denote the set of teams, tasks and job slots, respectively. Job
slots are identified by an ordered pair (m, i), for each m ∈ M and index i. The
numbering denotes order in the job slot sequence of team m, starts with i = 1, and
ends with i = Nm, the total number of job slots of m.

In a feasible solution, the number L of tasks a team m actually executes ranges
between 0 and Nm. For a given L, always the first L job slots have tasks assigned,
the rest are unused. Job slots do not only define the assignment of tasks to teams,
but also the order of execution of tasks assigned to the same team.

Nm is a model parameter and must be decided a priori. Choosing values can
be done empirically. |K| ≤

∑
m∈M Nm is needed for feasibility, and |K| = Nm

guarantees including all theoretically possible solutions, although choosing such a
large Nm would result in a very large model.

The main binary decision variables in the MILP model are ak,m,i, for each k ∈ K
and (m, i) ∈ Jslots, and ak,m,i = 1 tells if task k is assigned to job slot (m, i).

An example shown in Figure 37 demonstrates the meaning of ak,m,i. Teams
Team1 and Team2 must execute tasks KA, KB and KC . The number of predefined
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job slots is 3 for each team. In the assignment shown, Team1 uses 1 and Team2

uses 2 job slots. Of the 18 binary variables in total, aKA,T eam2,1, aKB ,T eam2,2 and
aKC ,T eam1,1 are the three which are set to 1.

Figure 37: Example usage of the ak,m,i core decision variables.

5.3.2 Allocation constraints

Allocation constraints ensure the basic logic for the assignment of tasks to teams,
and also decide the exact site of each team during its schedule.

Task assignment

Task k is assigned to team m (indicated by ataskk,m ) if and only if k is assigned to any
job slot (m, i) of m. Since ataskk,m is binary, Constraint (5.2) also ensures that any
task k is assigned to at most one job slot (m, i) of any team m.

ataskk,m =
∑

(m,i)∈Jslots

ak,m,i ∀ k ∈ K,m ∈ M (5.2)

Any task k is assigned to exactly one team, which is ensured by Constraint (5.3).

1 =
∑
m∈M

ataskk,m ∀ k ∈ K (5.3)

Job slots are used consecutively starting from i = 1 without skipping. In other
words, a job slot (m, i) can only be used if the previous one, (m, i− 1) is also used,
if exists. This is expressed in Constraint (5.4).

∑
k∈K

ak,m,i−1 ≥
∑
k∈K

ak,m,i ∀ (m, i) ∈ Jslots : i ̸= 1 (5.4)
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Position of teams

Binary variable bpresentm,i,s indicates whether team m is at site s during its site slot
(m, i) ∈ Xslots. These are unambiguously calculated by the following constraints.

First, Constraint (5.5) states that any team m must be at exactly one site at
any time during its schedule, that is, in each of its site slots (m, i) ∈ Xslots. Note
that Sstart

m = Send
m is further assumed in the model.∑
s∈Stasksites∪{Sstart

m ,Send
m }

bpresentm,i,s = 1 ∀ (m, i) ∈ Xslots (5.5)

In the first site slot (i = 0), each team m is at its starting depot.

bpresentm,0,Sstart
m

= 1 ∀ m ∈ M (5.6)

In the last site slot (i = Nm + 1), each team m is at its final depot.

bpresent
m,Nm+1,Send

m
= 1 ∀ m ∈ M (5.7)

Finally, Constraint (5.8) ensures that in any job slot (m, i), a team m is at a
task site s if and only if a task k with Stask

k = s is assigned to (m, i).

bpresentm,i,s =
∑

k∈K:Stask
k =s

ak,m,i ∀ (m, i) ∈ Jslots, s ∈ Stasksites (5.8)

5.3.3 Travelling and continuity constraints

The following set of constraints expresses travelling rules, the connection between
subsequent slots, and some global limits for teams.

Changing sites

Variable bschm,i,s1,s2
indicates whether team m moves from site s1 to s2 during its

travelling slot (m, i) ∈ T slots, and btravel,move
m,i indicates whether there is a changing

in position at all. These are calculated in the following constraints.
Constraint (5.9) states that for any travelling slot (m, i) ∈ T slots, there is a

movement from a site s1 to a different site s2 if m is at s1 in site slot (m, i) ∈ Xslots,
and m is at s2 in site slot (m, i+ 1) ∈ Xslots.

bschm,i,s1,s2
≥ bpresentm,i,s1

+ bpresentm,i+1,s2
− 1 ∀ (m, i) ∈ T slots, s1, s2 ∈ S : s1 ̸= s2 (5.9)

Movement occurs in a travelling slot (m, i) ∈ T slots if and only if there are
two sites s1 and s2 for which travelling occurs from s1 to s2, this is captured in
Constraint (5.10). Note that there can only be one such pair.
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btravel,move
m,i =

∑
s1,s2∈S:s1 ̸=s2

bschm,i,s1,s2
∀ (m, i) ∈ T slots (5.10)

Distance moved in a travelling slot (m, i) ∈ T slots is calculated in a similar
manner, taking into account site distances, by Constraint (5.11).

dm,i =
∑

s1,s2∈S:s1 ̸=s2

bschm,i,s1,s2
Ds1,s2 ∀ (m, i) ∈ T slots (5.11)

Slot continuity

Constraint (5.12) ensures that any job slot (m, i) ∈ Jslots has a nonnegative length,
expressed by the ending time of the previous, and starting time of the next travelling
slot.

ttravel,endm,i−1 ≤ ttravel,startm,i ∀ (m, i) ∈ Jslots (5.12)

The nonnegative length of a travelling slot (m, i) ∈ T slots is ensured by its
calculation formula in Constraint (5.13). Travelling slot (m, i) ∈ T slots consists of
the travelling time of the team m depending on the dm,i distance and Vm travelling
speed, the packing and unpacking times, and idle times. Note that if there is no
movement, only the idle time can be nonzero.

ttravel,endm,i − ttravel,startm,i =
dm,i

Vm

+btravel,move
m,i

(
Upack
m + Uunpack

m

)
+uidle

m,i ∀ (m, i) ∈ T slots

(5.13)

Global team limitations

For each team m, the total travelling time is limited by U travel,max
m .∑

(m,i)∈T slots

(
ttravel,endm,i − ttravel,startm,i

)
≤ U travel,max

m ∀ m ∈ M (5.14)

The total working time for a team m is limited by Uwork,max
m .

ttravel,endm,Nm
− ttravel,startm,0 ≤ Uwork,max

m ∀ m ∈ M (5.15)

The total distance travelled by team m is limited by Dtravel,max
m .∑

(m,i)∈T slots

dm,i ≤ Dtravel,max
m ∀ m ∈ M (5.16)
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5.3.4 Execution constraints

Several activities take place in a job slot before, after or during a task is executed
(see Figure 38). The exact timings of these activities are calculated by the following
set of constraints, all formulated for each task k ∈ K. Time windows are also
addressed.

Figure 38: Variables denoting time points and durations of various activities.

Job slot sequencing

The start of presence of the executing team for any task k, indicated by tpresence,startk ,
coincides with the start of the job slot the task is assigned to. Constraint (5.17)
expresses this as a big-M constraint, with two inequalities.

tpresence,startk − ttravel,endm,i−1 ≥ −Uworkday (1− ak,m,i)

tpresence,startk − ttravel,endm,i−1 ≤ +Uworkday (1− ak,m,i)
∀ k ∈ K, (m, i) ∈ Jslots (5.17)

In a similar manner, the end of presence of the executing team for any task k,
indicated by tpresence,endk , coincides with the end of the job slot the task is assigned
to.

tpresence,endk − ttravel,startm,i ≥ −Uworkday (1− ak,m,i)

tpresence,endk − ttravel,startm,i ≤ +Uworkday (1− ak,m,i)
∀ k ∈ K, (m, i) ∈ Jslots (5.18)

In the presence of the executing team until the actual starting of the execution
of a task k, indicated by tstartk , nonnegative site opening and waiting times may
take place. These additional events are due to possible task relationships and are
discussed later.

tpresence,startk + popenk U open
k + uwait,before

k = tstartk ∀ k ∈ K (5.19)

Similarly, after the actual end of execution and the end of presence of the exe-
cuting team for a task k, waiting and site closing times may also take place.
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tendk + uwait,after
k + pclosek U close

k = tpresence,endk ∀ k ∈ K (5.20)

Finally, the net execution time of a task k depends on the executing team. If k
is in a parallel execution relation, slack time may be added.

tendk − tstartk = uslack
k +

∑
m∈M

ataskk,mU exec
k,m ∀ k ∈ K (5.21)

Time windows

Two kinds of time windows are supported by the model. Any task k must fit in
its absolute time window

[
T earliest
k , T latest

k

]
, but may be started earlier or finished

later than its expected time window
[
T expected,start
k , T expected,end

k

]
in exchange for a

penalty cost proportional to the extent of earliness or lateness.
Absolute time windows are implemented by the following two constraints.

T earliest
k ≤ tstartk ∀ k ∈ K (5.22)

T latest
k ≥ tendk ∀ k ∈ K (5.23)

The penalty for starting the task k earlier than its expected time window is
denoted by variable cpen,earlyk . Note that this penalty cannot be negative, but is
optimized to zero if the task is started in time. The cost factor is Cearliness

k .(
T expected,start
k − tstartk

)
Cearliness

k ≤ cpen,earlyk ∀ k ∈ K (5.24)

Similarly, the penalty for finishing a task k later than its expected time window
is denoted by variable cpen,latek . Again, this value is never negative, but is optimized
to zero if the task is finished in time. The cost factor is C lateness

k .(
tendk − T expected,end

k

)
C lateness

k ≤ cpen,latek ∀ k ∈ K (5.25)

Neither time window is mandatory. To effectively omit the absolute time win-
dow, T earliest

k = T day,start and T latest
k = T day,end can be set. To omit the expected

time window, T expected,start
k = T earliest

k and T expected,end
k = T latest

k can be set.

5.3.5 Resource constraints

Two types of resources are managed by the model: consumables, which are used up
at each task, and tools, which are needed by tasks but are kept.

In each job slot (m, i), the amount of resource r team m needs for task execution
is denoted by qreqr,m,i. To calculate qreqr,m,i, resource requirements Qreq

r,k,m for each possi-
bly executed task k are needed. From the values of Qreq

r,k,m, exactly one according to
task assignment is selected in Constraint (5.26), or none if the job slot is unused.
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qreqr,m,i =
∑
k∈K

ak,m,iQ
req
r,k,m ∀ r ∈ R, (m, i) ∈ Jslots (5.26)

For any consumable resource r, the amount a team m utilizes is calculated as
the sum of the required amounts for all job slots of m.

qcarryr,m =
∑

(m,i)∈Jslots

qreqr,m,i ∀ r ∈ Rcons,m ∈ M (5.27)

In contrast, for any tool resource r, the amount a team m utilizes is calculated as
the maximum of the required amounts for all job slots of m. This value, denoted by
qcarryr,m is optimized to the actual minimum, which is expressed in Constraint (5.28).

qcarryr,m ≥ qreqr,m,i ∀ r ∈ Rtool, (m, i) ∈ Jslots (5.28)

Each team m has a capacity limit Qmax
r,m for each resource r.

qcarryr,m ≤ Qmax
r,m ∀ r ∈ R,m ∈ M (5.29)

There is also a total availability Qcap
r individually for each resource r, which can

be shared among teams. ∑
m∈M

qcarryr,m ≤ Qcap
r ∀ r ∈ R (5.30)

5.3.6 Task relationship constraints

Each relationship is described by an ordered pair (k1, k2) of tasks, although the
order is not needed for all relationship types. The model considers precedence
relationships (P prec), which have three types: free precedence (P free), same-team
precedence (P same) and protected precedence (P prot). There are also mutual exclu-
sion (Pmtx) and parallel execution (P par) relationships.

Free and same-team precedence

For any precedence relationship (k1, k2) ∈ P prec, task k1 must be finished before
k2 is started. This is expressed in Constraint (5.31). Note that k2 can be done by
a different team, or the same one in a later job slot. This constraint is in effect
for all three types of precedence relationships. For free precedence, this is the only
constraint needed.

tendk1
≤ tstartk2

∀ (k1, k2) ∈ P prec = P free ∪ P same ∪ P prot (5.31)

For a same-team precedence relationship (k1, k2) ∈ P same, Constraint (5.32)
guarantees that tasks k1 are k2 are also executed by the same team.

ataskk1,m
= ataskk2,m

∀ (k1, k2) ∈ P same,m ∈ M (5.32)
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Protected precedence

Protected precedence relationships are more complex. For any (k1, k2) ∈ P prot,
Constraint (5.31) is imposed to ensure that k1 is executed before k2, but another
set of constraints is also required. In this description, the first team is the team
executing k1, and the second team is the team executing k2.

The intention of protected precedence is to model the case when leaving a site
unattended between two tasks would be hazardous. There are two options to avoid
this. The first option is that the first team may wait until the second one arrives.
Note that this automatically happens if k2 is executed by the same team as k1,
directly afterwards. The second option is that the first team secures the site by
a closing activity, then leaves. The second team must then perform an opening
operation when arrives. The model also allows the sites of the tasks, Stask

k1
and Stask

k2

to be different, although this did not find a viable use case for this.
The solution to choose between the two options is that a binary decision variable

pprotk1,k2
is introduced. The value pprotk1,k2

= 0 indicates that the first option, waiting is
chosen. The value pprotk1,k2

= 1 indicates that the second option, closing and opening
are chosen.

In case of pprotk1,k2
= 0, Constraint (5.33) ensures that the first team waits the sec-

ond one. This is a big-M constraint. Note that the teams themselves are not men-
tioned, tpresence,endk1

denotes the time point when the first team leaves and tpresence,startk2

denotes when the second team arrives.

tpresence,startk2
− tpresence,endk1

≤ Uworkdaypprotk1,k2
∀ (k1, k2) ∈ P prot (5.33)

Note that uwait,before
k from Constraint (5.19) and uwait,after

k from Constraint (5.20)
are the variables representing the waiting times taking place. Both are nonnegative
and count towards the presence of the executing team at the task site.

In case of pprotk1,k2
= 1, the binary variables pclosek1

and popenk2
indicate whether there

is a closing activity after k1 and an opening activity before k2, are set to 1.

pclosek1
≥ pprotk1,k2

∀ (k1, k2) ∈ P prot (5.34)

popenk2
≥ pprotk1,k2

∀ (k1, k2) ∈ P prot (5.35)

The following constraints also ensure that the closing and opening activities can
take place only if there is actually a relevant protected precedence relationship with
this option chosen.

pclosek1
≤

∑
(k1,k2)∈P prot

pprotk1,k2
∀ k1 ∈ K (5.36)

popenk2
≤

∑
(k1,k2)∈P prot

pprotk1,k2
∀ k2 ∈ K (5.37)
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Mutual exclusion

A mutual exclusion relationship (k1, k2) ∈ Pmtx means that k1 and k2 cannot be in
progress at the same time. The order of k1 and k2 is not important.

A binary decision variable pmtx
k1,k2

is introduced for the two possible ways this
relationship can be satisfied. The first option, indicated by pmtx

k1,k2
= 0, is that k2

must be finished before k1 is started. The second option, indicated by pmtx
k1,k2

= 1,
is the opposite, when k1 is finished before k2 is started. Two Big-M constraints
are formulated for this purpose. Constraint (5.38) covers the first option, and
Constraint (5.39) covers the second option.

tstartk1
− tendk2

≥ −Uworkdaypmtx
k1,k2

∀ (k1, k2) ∈ Pmtx (5.38)

tstartk2
− tendk1

≥ −Uworkday
(
1− pmtx

k1,k2

)
∀ (k1, k2) ∈ Pmtx (5.39)

Parallel execution

The parallel execution relationship models situations where two teams must simul-
taneously execute two different tasks in cooperation. In the modeling point of view,
for any parallel execution relationship (k1, k2) ∈ P par, it must be ensured that the
starting and ending times of k1 and k2 coincide, as follows.

tstartk1
= tstartk2

∀ (k1, k2) ∈ P par (5.40)

tendk1
= tendk2

∀ (k1, k2) ∈ P par (5.41)

Note that the individual net execution times of the two tasks is determined by
the parameter U exec

k,m , and therefore generally end up being distinct for k1 and k2.
In this case, the faster team adapts to the slower one. This is achieved by the
uslack
k variable introduced as an optional increasing term into the formula of the net

execution time, in Constraint (5.21). In short, the individual net execution times
can be prolonged to be equal. Note that optimization also seeks to minimize the
slack time, as it counts towards the working time of the executing team.

5.3.7 Objective function

The different cost components are listed here. Travelling costs are calculated for
each team by its distances travelled, moving speed and cost factor.

ctravel =
∑

(m,i)∈T slots

dm,i

Vm

Ctravel
m (5.42)

Packing costs are coming from packing and unpacking activities from all travel-
ling slots where moving actually takes place. This also applies to moving out from
or back into the depot.
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cpacking =
∑

(m,i)∈T slots

btravel,move
m,i

(
Cpack

m + Cunpack
m

)
(5.43)

Time window costs are composed of earliness and lateness penalties calculated
for expected time windows.

ctw =
∑
k∈K

(
cpen,earlyk + cpen,latek

)
(5.44)

Execution costs are based solely on the team each task is assigned to.

cexec =
∑
k∈K

∑
(m,i)∈Jslots

ak,m,iC
exec
k,m (5.45)

Resource costs are derived from the total amounts utilized by teams.

cres =
∑
r∈R

∑
m∈M

qcarryr,m Cres
r (5.46)

Opening and closing costs are incurred for opening and closing activities per-
formed due to protected precedence relationships.

copcl =
∑

(k1,k2)∈P prot

pprotk1,k2
Copcl

k1,k2
(5.47)

Working time costs for each team are proportional to the total time the team
spends in duty.

cwork =
∑
m∈M

(
ttravel,endm,Nm

− ttravel,startm,0

)
Cwork

m (5.48)

The objective is the total of the aforementioned components.

minimize: ctotal = ctravel + cpacking + ctw + cexec + cres + copcl + cwork (5.49)

5.4 Algorithmic framework

Although the standalone MILP solution method works well for small examples, it
can quickly become computationally too difficult. For this reason, an algorithmic
framework was also developed which offers heuristic solutions for larger problem
instances in an acceptable amount of time. Note that some problem features may
interfere with the algorithm, as detailed later.
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5.4.1 Algorithm description

For the sake of description, a schedule of a subset of tasks is defined as a proper
assignment of these tasks to job slots of teams according to assignment rules. Job
slots of the same team m are used from the first slot i = 1 without skipping an index,
this is the same logic as for the MILP model. Therefore, a schedule determines the
assignment of a subset of tasks to teams and the order each team performs the
task assigned to it, but nothing more specific. Particularly, a schedule does not
determine exact timings.

The algorithmic framework obtains a schedule incrementally, introducing new
tasks one by one and assigning them to teams. This can be concluded in five steps.

1. Start from the initial schedule with no tasks.

2. Choose a new task not in the existing schedule.

3. Put the new task into the existing schedule obtaining a new schedule.

4. Update decisions (timings, resource and cost calculations, and others) accord-
ing to the new schedule.

5. Repeat steps 2-4 until all tasks are schedule with all tasks is obtained.

Steps 2-4 together are called an iteration of the algorithm. An iteration starts
with a given schedule of tasks and ends with a new schedule with one more task.

The key idea of the algorithm is that an iteration is done by solving a single
instance of a modified MILP model, obtained from the standalone MILP model.
The key differences between the two models are the following.

• The existing schedule is an input for the modified MILP model, and is used
as a restriction on possible assignments.

• It is no longer required to assign all tasks. Instead, all tasks from the existing
schedule must be executed, and a single new, unscheduled task is to be selected
and executed.

• The result of the model is a new schedule with one more tasks than the existing
schedule, for which the total cost is minimal.

The existing schedule is maintained in a way that the assignment and relative
order of the already scheduled tasks cannot change. It is allowed for new tasks to be
inserted in between already scheduled tasks, pushing some scheduled tasks forward
by a single job slot. The complete iteration is illustrated in Figure 39.

Although the modified MILP model consists of more variables and constraints,
its search space is significantly reduced so it can be solved in an acceptable amount
of time. The algorithm solves the modified MILP model |K| times, adding a single
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Figure 39: Decision scheme of a single iteration of the solution algorithm.

task each time. Since all other constraints are also included, the last solution of
the modified MILP model eventually schedules all tasks, and is therefore a feasible
solution for the original problem.

The only feature of the standalone MILP method which is not supported by
the algorithmic framework are task relationships. The reason is that constraints,
including relationship constraints of unscheduled tasks are simply ignored. There-
fore, early decisions on tasks may easily turn out to be too restrictive. The efficient
management of relationships in the algorithmic framework is subject to future re-
search.

5.4.2 The modified MILP model

At the beginning of an iteration, the set of tasks, K is divided into the set of tasks
already scheduled, Kdone, and those not scheduled yet, Krem. Each task k ∈ Kdone

already scheduled has a job slot Hslot
k ∈ Jslots it is currently assigned to. The

predefined number of job slots Nm for team m is chosen in such a way that each
team has as many job slots as tasks already assigned to it in the existing schedule,
plus one. In this way, the newly selected task can be assigned to any team. These
conclude the additional input data required by the modified MILP model. Note
that slot sets Jslots, T slots and Xslots are also updated for each iteration based on
the current values of Nm.

The following decisions are made in the model.

• A single remaining task k ∈ Krem is selected, which is going to be included in
the new schedule. This decision is indicated by the new binary variable xtask

k ,
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for each k ∈ Krem, for which the value 1 means that the task k is selected.

• A single team is selected to which the selected task is assigned to. This
decision is represented by the new binary variable xteam

m , which is 1 when
team m is selected. The schedules of other teams remain unchanged.

• A single job slot (m, i) ∈ Jslots is selected where the selected task k is in-
serted into the schedule of the selected team m. The new binary variable
xslot
m,i represents this decision, a value of 1 means that the particular (m, i) is

chosen.

Note that xslot
m,i determines xteam

m , but for modeling purposes it is easier to in-
troduce both. Another unambiguously determined, new binary variable ym,i is
introduced, which takes the value 1 if and only if the new task is inserted before
travelling slot (m, i) ∈ T slots into the schedule of team m.

The key decision variables are illustrated in Figure 40. Team m already has
a schedule with tasks K1, K5 and K2 in this order. In the next iteration of the
algorithm, a new task K4 is selected, and is inserted in between K5 and K2. Note
that other teams may also be present.

Figure 40: Example usage of decision variables in the algorithmic framework.

Constraint (5.3) ensured that any task k is assigned to exactly one team. This
is the only constraint dropped in the modified MILP model. The other parts of the
original model, the existing schedule as input, and the newly introduced variables
xtask
k , xteam

m , xslot
m,i and ym,i together should determine the new schedule. To achieve

this, a new set of constraints is needed, presented below.
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No task can be inserted before the first travelling slot (m, 0) of any team m.

ym,0 = 0 ∀ m ∈ M (5.50)

Insertion of the selected task before a travelling slot (m, i) ∈ T slots is possible
in two mutually exclusive ways. Either it can be inserted just before, to job slot
(m, i) ∈ Jslots, or it can be inserted even earlier, before the previous travelling slot
(m, i− 1) ∈ T slots. Using this rule, Constraint (5.51) completes the definition of all
ym,i based on the other variables.

ym,i = ym,i−1 + xslot
m,i ∀ (m, i) ∈ T slots : i ̸= 0 (5.51)

Inserting the selected task before any travelling slot (m, i) ∈ T slots is only pos-
sible if team m is also selected.

xteam
m ≥ ym,i ∀ (m, i) ∈ T slots (5.52)

A new task k ∈ Krem is assigned to a job slot (m, i) ∈ Jslots if and only if k is the
selected task, and (m, i) is the selected job slot. The connection of the new decision
variables with the original ak,m,i is established in the following three constraints.

ak,m,i ≤ xtask
k ∀ k ∈ Krem, (m, i) ∈ Jslots (5.53)

ak,m,i ≤ xslot
m,i ∀ k ∈ Krem, (m, i) ∈ Jslots (5.54)

ak,m,i ≥ xtask
k + xslot

m,i − 1 ∀ k ∈ Krem, (m, i) ∈ Jslots (5.55)

Any task k ∈ Kdone already scheduled must be scheduled again, so they are
assigned to exactly one team. But any task k ∈ Krem not scheduled yet is scheduled
if and only if it is selected.

1 =
∑
m∈M

ataskk,m ∀ k ∈ Kdone (5.56)

xtask
k =

∑
m∈M

ataskk,m ∀ k ∈ Krem (5.57)

It is also ensured by the following constrains that exactly one task, one team
and one job slot is selected in total.

1 =
∑

k∈Krem

xtask
k (5.58)

1 =
∑
m∈M

xteam
m (5.59)
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1 =
∑

(m,i)∈Jslots

xslot
m,i (5.60)

Finally, the exact positions of already scheduled tasks k ∈ Kdone are also fixed.
Suppose that the original job slot for k was Hslot

k = (m, i). Then there are two
cases. First, if the selected task was inserted before travelling slot (m, i) ∈ T slots,
then the new job slot of k is (m, i+ 1). Second, if the selected task was not inserted
before travelling slot (m, i) ∈ T slots, then the job slot of k remains the same, (m, i).

ym,i = ak,m,i+1 ∀ k ∈ Kdone : (m, i) = Hslot
k (5.61)

1− ym,i = ak,m,i ∀ k ∈ Kdone : (m, i) = Hslot
k (5.62)

For already scheduled tasks k ∈ Kdone, other assignment variables can be explic-
itly set to zero. Although Constraint (5.63) is redundant with the previous ones, it
may help in MILP model preprocessing.

0 = ak,m,j ∀ k ∈ Kdone, (m, j) ∈ Jslots : (m, i) = Hslot
k , j /∈ {i, i+ 1} (5.63)

5.5 Computational results

To demonstrate the effectiveness of the proposed standalone MILP method and
the algorithmic framework, and to investigate how certain model elements affect
performance, several series of tests were performed.

All problem data and results to be presented here are available as supplementary
material in the main publication [S5], and also on the web [112]. This material in-
cludes the implementation of both the MILP model and the algorithmic framework,
and also the testing procedure itself in an executable format.

Note that a motivational problem was presented in Subsection 5.2.2, with its
full solution using the standalone MILP method. In this section, the focus is rather
on the obtained objective values, running times and some other statistics for the
two solution methods, but the solutions themselves are not represented in detail.
Also note that these tests are intended to give a glance, but are not exhaustive.

5.5.1 Overview of standalone MILP model testing

Three test series were performed with the standalone MILP method, each trying
to investigate the impact of a particular property of the problem instance on solver
performance. The three properties are the following.

• Number of different task sites,
∣∣Stasksites

∣∣.
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• Number of task relationships.

• Number of predefined job slots, which is the parameter Nm.

A set of mobile workforce management problem instances were constructed in
the following way. The basis is a single problem instance called the main problem
instance, with the following properties. Full details and description can be found
in the supplementary material.

• |M | = 3 teams must execute |K| = 18 tasks spread over
∣∣Stasksites

∣∣ = 4 sites.

• All teams have own constant travelling and execution times and costs, but all
have Nm = 6 predefined job slots.

• Task have absolute and expected time windows, which slightly reduce the
workday starting at 08:00 and ending at 16:00.

• There is a single consumable and a single tool resource.

• Five of the tasks mutually exclude each other, the others have all the sup-
ported other kinds of relationships.

A set of test instances for each test series was obtained by described, slight
modifications of the main problem instance, according to the property in focus,
resulting in a series of similar problem instances.

The MILP model was implemented in the GNU MathProg modeling language.
Solutions for all instances were obtained by the Gurobi 8.1 commercial MILP solver,
on a desktop PC with Ubuntu 18.04.1 LTS, Intel i7-4770 3.40 GHz CPU and 16
GB RAM. The time limit was one hour per test case.

The data obtained and presented from the test series are the optimal (or best)
objective reported (in EUR), and the running time of the solver. The number
of constraints (rows), variables (columns) are also shown, as well as the number
of integer (binary) variables. Note that these latter data should be interpreted
with caution, as preprocessing steps of an MILP solver can greatly reduce these
dimensions, and also there are some strong knapsack-type constraints for the binary
decision variables which can shrink model complexity well.

5.5.2 Number of task sites

In the first series, 9 problem instances were constructed as follows.

• Data are the same as for the main problem instance, except for task sites.

• Values of 3, 4 and 5 for
∣∣Stasksites

∣∣ was considered. Note that the main problem
instance has 4 task sites.
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Table 14: Effect of site count on solver performance for the standalone MILP model.
In all instances, the model has 3096 rows, 1794 columns and 337 integer variables.

Sites Variation Solver runtime Gap Objective
3 #1 593.33 s - 14,482EUR
3 #2 1,048.95 s - 15,020EUR
3 #3 1,015.77 s - 15,018EUR
4 #1 (main) 285.45 s - 13,842EUR
4 #2 2,348.23 s - 14,834EUR
4 #3 939.03 s - 14,844EUR
5 #1 977.29 s - 14,338EUR
5 #2 3,600.00 s 14.44% 16,286EUR
5 #3 3,600.00 s 13.00% 16,074EUR

• For each value of
∣∣Stasksites

∣∣, three variations were constructed, differing only
in site distribution, but the occurrence of sites among tasks remains well-
balanced, which means that the difference is at most 1. The main problem
instance is one of the variations.

Results obtained for these 9 problem instances are shown in Table 14.
It can be seen that site count has a huge impact on performance. The more sites

there are, the more difficult the model becomes to solve, although the objective
only changes slightly. The variations turned out to be more difficult than the
main problem instance, this was preserved even after changing the site count. Two
cases did not finish in one hour. However, a gap between the best found and the
possible best objectives can be given in such cases. It is also apparent that model
dimensions like row, column and integer variable counts are the same. This is due
to the fact that the unused task sites are still present in all problem instances, just
their corresponding variables are unused if a site does not appear among tasks,
resulting in a great effective reduction in complexity.

Overall, this slot-based standalone MILP approach seems effective, but only
when the number of different sites is small. The model works best for scenarios
with only a few sites and many tasks shared among these.

5.5.3 Number of task relationships

Relationships between tasks restrict the search space, although introduce more con-
straints and even variables in some cases, so their overall effect is in question.

In the second series, the effect of mutual exclusion and free precedence was
probed. The instance set was constructed as follows.

• From the main problem instance, which is also included in the set, 1, 2 and
3 of the existing free precedence relationships were excluded one by one, this
resulted in 4 test instances.
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Table 15: Effect of free precedence and mutual exclusion (mutex) relationships on
solver performance for the standalone MILP model. In all instances, the objective
was 13,842EUR.

Problem instance Rows Columns Integers Solver runtime
main instance 3096 1794 337 285.45 s
-1 free precedence 3095 1794 337 307.65 s
-2 free precedences 3094 1794 337 243.81 s
-3 free precedences 3093 1794 337 199.77 s
-1 mutex 3094 1793 336 119.57 s
-2 mutexes 3092 1792 335 208.87 s
-3 mutexes 3090 1791 334 125.90 s
-4 mutexes 3088 1790 333 258.38 s
-5 mutexes 3086 1789 332 236.65 s
-6 mutexes 3084 1788 331 242.69 s
-7 mutexes 3082 1787 330 392.80 s
-8 mutexes 3080 1786 329 165.05 s
-9 mutexes 3078 1785 328 256.34 s
-10 mutexes 3076 1784 327 338.31 s

• From the main problem instance, 1 to 10 of the existing mutual exclusion
relationships were excluded, this resulted in 10 more test instances.

Results obtained for these 14 problem instances are shown in Table 15.
The objective was the same in all cases. Row, column and integer variable

count only differs slightly, as expected by the removal of the specific constraints
and variables regarding the excluded relationships.

Removing the free precedence relationships seemingly made the model easier to
solve, except for the first removal. Removing mutual exclusion relationships one
by one made solver running times lower and higher. The were no differences in
magnitude in either case.

It seems like such a small test series is inadequate to show general tendencies
regarding these task relationships. The actual effect of a relationship constraint
might be difficult to predict, and depend on the instance as well.

5.5.4 Number of predefined job slots

One drawback of the standalone MILP approach is that the number Nm of prede-
fined job slots for each team m must be given as a parameter. Low values may
exclude valuable solutions from the search space, but high values may increase the
model size and its complexity.

The smallest values for Nm which theoretically guarantee the globally optimal
solution in all edge cases are very high, and it may be tedious to strengthen this
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Table 16: Effect of predefined job slot count and task count on solver performance
for the standalone MILP model.

Problem instance Rows Columns Integers Solver
runtime Objective

motivational problem 1208 669 135 0.73 s 1,944EUR
main problem instance 3096 1794 337 285.45 s 13,842EUR
-1 task 2992 1762 319 93.77 s 13,507EUR
-2 tasks 2889 1730 301 91.65 s 13,202EUR
-3 tasks 2785 1698 283 35.73 s 12,815EUR
-3 tasks, -1 job slot 2653 1627 268 21.74 s 12,815EUR
-3 tasks, -2 job slots 2521 1556 253 24.54 s 12,963EUR
-3 tasks, -3 job slots 2389 1485 238 13.40 s 13,133EUR
+1 job slot 3243 1868 355 225.96 s 13,664EUR
+2 job slots 3390 1942 373 479.66 s 13,664EUR
+3 job slots 3537 2016 391 725.77 s 13,664EUR

bound for a specific problem. Nm can be chosen empirically.
In this third series, task numbers as well as Nm are changed to obtain the

instance set, as follows.

• The motivational problem that was shown in full detail is also included to
illustrate problem sizes. Note that for the motivational problem, |M | = 2,
|K| = 8, and for both teams Nm = 8.

• The main problem instance is also included. Note that for the main problem
instance, |M | = 3, |K| = 18 and for all three teams Nm = 6.

• First, 1 to 3 tasks were excluded from the main problem instance to obtain 3
new instances.

• From the last instance where 3 tasks are missing, 1 to 3 job slots were further
removed by decreasing one of Nm for each team by 1. This resulted in 3 new
instances, the last one having |K| = 15 tasks and Nm = 5 for each team.

• Finally, based on the main problem instance again, 1 to 3 job slots were added,
giving 3 new instances, the last one having Nm = 7 for each team.

Results for these 11 instances altogether are shown in Table 16.
Decreasing the task count decreases the running time as well. It is not so obvious

that decreasing the number of job slots as well has the same effect, although it is
expected to be. The objective becomes worse by removing job slots, this indicates
that decreasing Nm actually excludes valuable solutions.

Adding the first job slot results in a better solution in less computational time.
But adding further job slots does not decrease the objective, indicating that there
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Table 17: Comparison of the standalone MILP solution and the algorithmic frame-
work. Objective values are in EUR.

standalone MILP algorithm FTask
count Objective Runtime Gap Objective Runtime

Difference of
objectives

5 1,604.13 0.31 s - 1,648.40 0.34 s 2.76%
6 1,812.05 0.63 s - 1,823.87 0.41 s 0.65%
7 2,192.30 1.39 s - 2,192.30 0.53 s 0
8 2,151.56 48.07 s - 2,269.55 0.75 s 5.48%
9 2,416.80 203.79 s - 2,518.08 0.79 s 4.19%
10 2,467.14 2,600.96 s - 2,607.26 1.31 s 5.68%
11 2,714.46 3,600.00 s 13.39% 2,875.99 1.59 s 5.95% – 20.14%
12 2,933.69 3,600.00 s 15.75% 3,130.61 1.88 s 6.71% – 23.52%
13 2,934.91 3,600.00 s 20.10% 3,076.68 2.09 s 4.83% – 25.90%
14 3,170.23 3,600.00 s 21.79% 3,385.92 2.10 s 6.80% – 30.08%
15 3,165.45 3,600.00 s 22.77% 3,378.81 2.69 s 6.74% – 31.05%

are no better solutions if other teams are also allowed to execute more tasks. The
problem size and the running time, however, increases significantly, as expected.
The last running time of 12min may suggest that this main problem instance is
roughly the practical limit for this approach. Larger problems could still be man-
aged, and MILP solvers can report useful suboptimal solutions and provide a lower
bound for the optimum.

5.5.5 Testing the algorithmic framework

To demonstrate the usability of the algorithmic framework relying on the modified
MILP model, and also a comparison with the standalone MILP approach, a different
series of tests was conducted. Instances were randomly generated for |M | = 3 teams
situated at different depots and

∣∣Stasksites
∣∣ = 6 sites, with gradually increased task

count and corresponding Nm, which is later explained. For a fair comparison,
smaller problems were actually a subset of larger ones in terms of problem data.

The formula shown in Equation (5.64) was used to determine Nm for the stan-
dalone MILP method. Note that in this way, there are at least 20% more job slots
in total than the number of tasks.

Nm =

⌊
1.2

|K|
|M |

+ 1

⌋
∀ m ∈ M (5.64)

The algorithmic framework uses the same Gurobi MILP solver for running the
modified MILP model |K| times. This gives the most of the running time of the
framework. File parsing can also be significant for smaller problems.

The results of this test series for 5 to 15 tasks is given in Table 17.
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|K| = 15 was the largest instance for which the standalone MILP model was
used. Running times increased rapidly with task count, from |K| = 11 the one hour
time limit was exceeded, and the gap also started to become worse. Nevertheless,
the Gurobi commercial MILP solver still managed to find suboptimal solutions.

The algorithmic framework finished very fast for the same problem sizes, in 2.69 s
for |K| = 15. Below |K| = 11, the reported objective was at most 5.68% worse
than the optimum found by the standalone MILP method. Notably, for |K| = 7
the algorithm succeeded to find the same solution as the standalone MILP method.

From |K| = 11, the solutions obtained by the algorithm are similarly worse as
for smaller |K|, by at most 6.80%. Note that in this case, if the MILP solver had
been allowed to complete the solution of the standalone MILP model, this gap could
theoretically be much higher, although this is impractical due to time requirements.

The series was continued for the algorithmic framework only, the results are
shown in Table 18 with jumps of five tasks until |K| = 130 where the one hour time
limit was exceeded.

The running time gracefully worsens as |K| increases and the size of the problem
explodes. The algorithmic framework finished in an hour for a magnitude larger
number of tasks, 125 compared to 10.

There was a special case for |K| = 80, where the very last task could not be
scheduled in a feasible way, so the final solution only executed 79 tasks. This is
possible due to the heuristic nature. Decisions made early may make the continu-
ation of the algorithm infeasible, and an existing schedule might be impossible to
continue and may need to be rescheduled. This is more likely when relationships
between tasks are allowed, but may happen due to other components like absolute
time windows, too large distances, too few job slots, or other parameters.

5.5.6 Concluding results

Both the standalone MILP method and the algorithmic framework are capable of
solving mobile workforce management problems. The problem specification sup-
ports a range of parameters including packing and unpacking times, time windows,
resource management and task relationship constraints.

The standalone MILP method can reach optimal solutions for small problem
instances. The advantage of this approach is that valuable suboptimal results are
obtained even before the optimum is found or proven, depending on the MILP
solver. The disadvantage of the approach is that the number of predefined job slots
Nm must be provided as a parameter, and solver performance is very sensitive to
changes in Nm. Also, the model works best for a small number of task sites.

The algorithmic framework is applicable on much larger instances and in the
tests performed, provided objective values not significantly worse than the ones
reported by the standalone MILP method, although this result can be specific to
this study. The values of Nm are also not required, but managed by the algorithm.
The downside of the algorithm is the heuristic nature which does not guarantee the
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Table 18: Performance of the algorithmic framework on larger instances. Note that
for |K| = 80, the algorithm failed to finish.

Task
count

Integers in
MILP model Objective Runtime

20 466 3,961.96EUR 4.87 s
25 706 4,740.18EUR 8.42 s
30 996 5,434.43EUR 13.66 s
35 1336 6,131.49EUR 20.59 s
40 1726 6,682.10EUR 31.74 s
45 2166 7,254.24EUR 44.82 s
50 2656 7,960.95EUR 68.37 s
55 3196 9,296.89EUR 119.25 s
60 3786 9,244.28EUR 186.19 s
65 4426 9,703.81EUR 182.64 s
70 5116 10,626.84EUR 212.01 s
75 5856 11,522.22EUR 429.95 s
80 * * 541.33 s
85 7486 12,741.65EUR 802.32 s
90 8376 13,032.99EUR 794.29 s
95 9316 13,892.74EUR 1,008.72 s
100 10306 14,056.89EUR 1,265.55 s
105 11346 14,776.31EUR 1,475.97 s
110 12436 15,753.90EUR 1,884.86 s
115 13576 15,713.98EUR 2,236.08 s
120 14766 16,363.13EUR 2,354.14 s
125 16006 17,057.40EUR 3,054.47 s
130 17296 17,387.84EUR 4,151.19 s

101



5. MILP MODEL FOR MOBILE WORKFORCE MANAGEMENT

optimal solution, may fail in some cases, and in its current form, unlike an MILP
solver, it cannot report suboptimal solutions or lower bounds before completion.

The performed tests can provide a glance at how these approaches work, al-
though more would be needed to measure their capabilities and make more general
claims. There are other strategies for choosing binary decision variables in the MILP
model which might worth trying. The algorithmic framework also has possibilities
for development. More sophisticated methods to avoid infeasible solutions even for
task relationships may be an option. The implementation can also be optimized, as
in the current form, the GNU MathProg language was used for the MILP model,
but management through an MILP solver API could be much faster.

5.6 Thesis summary
Thesis 3. A new method was developed and tested for solving mobile workforce
management problems. This approach can handle several problem characteristics
at once. The method is based on an MILP model which can be solved either in a
standalone way or as part of an algorithmic framework which is capable of providing
heuristic solutions for larger problem instances. The capabilities and limitations of
both methods were investigated through a set of tests.

Related publications: [S1], [S5].

T3.1. An MILP model was developed which solves the mobile workforce manage-
ment problem specification. The novelty is that a slot-based modeling tech-
nique was used, and a range of problem characteristics are covered including
packing and unpacking times, time windows, resource and task relationship
constraints.

T3.2. An algorithmic framework was developed which uses a modified version of
the MILP model to heuristically add tasks to the existing schedule until
a final solution is obtained. This method does not guarantee the optimal
solution unlike the standalone MILP approach, and has other limitations,
but succeeds in providing feasible solutions near the optimal in an acceptable
amount of time, even for large problem instances.
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Summary of accomplishments

In the recent years, I took part in multiple projects, different in goals and tools
used. My jobs in these projects resulted in new optimization models for particular
problems, general modeling techniques and case study evaluations.

The first presented result, from Chapter 3, involved the optimization of the
energy supply of a manufacturing plant. This problem motivated the development
of a new P-Graph model, which has two novelties. First, the pelletizer and biogas
plant equipment units were modeled in a special way, later called the flexible input
scheme. Second, a multi-period version of the P-Graph model was provided, which
separates the mid-year and winter periods. Both features aimed at obtaining a more
precise model of the real-world situation.

The pelletizer and biogas plant models motivated a generalization of the method.
This resulted in a general modeling technique of operations with flexible inputs,
presented in Chapter 4, which allows independent inputs and arbitrary linear con-
straints. This approach has an advantage of relying solely on the software tools and
solution algorithms of the P-Graph framework. A case study demonstration involv-
ing biomass-based energy production in a rural region was also given, for which the
developed P-Graph model is to be published in the future.

The mobile workforce management model and solution algorithm, which were
shown in Chapter 5, are the results of another research. This was not motivated by
a particular real-world problem. Instead, the intention was to provide a governing
approach for a range of different mobile workforce management problem features.
A slot-based MILP model was formulated, followed by an algorithmic framework
for larger problem instances. The key novelty of the algorithm is that the MILP
model itself is used by a greedy heuristic to construct a schedule.

Overall, these examples show that optimization is a topic where new results
can be obtained at different levels and with different tools. There are possible
future research directions based on these results as well. Even a particular model
as provided for the manufacturing plant can be reused in a similar case study
with relevant data. The P-Graph approach makes it convenient to introduce other
technologies. The flexible operation model can be used in future P-Graph models,
may become supported by software implementation, and other, similar P-Graph
„design patterns” could be invented. The mobile workforce management algorithm
could also be improved in many different ways to be faster, to consider more options,
and avoid bad decisions.
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Appendix A

Case study for fermenters with
flexible inputs

This appendix chapter presents further details of the case study summarized in
Section 4.4, and serves as a demonstration for the modeling technique.

The basis is the work published by Niemetz et al. [38] about a sustainable and
economical utilization of locally available biomass, near the town of Bad Zell. The
authors presented an optimization problem which was formulated as a PNS problem.
The problem data and optimal solutions in different scenarios were detailed in the
publication and a corresponding technical report.

The case study involved fermenter units which produce biogas from different
types of biomass. The published solution relied on a model of fermenters which
assumed a fixed input composition. Specifically, there were 8 available mixtures,
each determining a fresh matter input ratio for a fermenter. For example, the
50 : 20 : 10 : 20 mixture meant that 50% of fresh matter input was manure, 20%
was intercrops, 10% was grass and 20% was corn silage. The optimization assumed
that any fermenter to be built would use one of the given mixtures.

The question was that if we change the fixed input model of fermenters to a
flexible input model, how the overall performance of the whole model is affected.

A.1 Problem description

The most important components of the model are shown in Figure A1. The material
flow is the following.

• Four different types of biomass are produced by local agriculture: manure,
intercrops, grass and corn silage. Each biomass type has a purchase price per
unit of fresh matter. These are available for use from 8 different supplier sites.

• Transportation must be arranged for biomass to any of 3 possible processing
locations: L1, L2 and L3.
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A. CASE STUDY FOR FERMENTERS WITH FLEXIBLE INPUTS

Figure A1: Main components and material flows in the Bad Zell case study.

• At each processing location, multiple fermenters can be built, in sizes 80 kW,
160 kW, 250 kW and 500 kWh. Fermenters require heating, and produce bio-
gas based on input amounts.

• At each processing location and the central town location, CHP plants can be
built in the same sizes as fermenters, which produce electricity and heating.

• Supporting infrastructure must be built depending on investment choices:
transformer, silo plates, biogas pipes and heat pipes.

• Electricity and heating is sold, assuming no upper bound.

The objective is maximization of yearly profit. The key decisions to be made
are the exact amount of biomass to purchase and where to transport it, where to
build fermenters and CHP units, and in what sizes and input compositions.

The only loop in the material flow is due to the fact that fermenter heating
can partially come from CHP plants. Otherwise, heating of fermenters is done by
traditional wood chip furnaces for which only a material cost is assumed.

For a CHP plant, the size means electricity output. For a fermenter, the size
means that assuming the total 7800 working hours for the year, it can just feed a
CHP plant of the same size with full capacity. For example, an 80 kW fermenter can
produce just enough biogas for an 80 kW CHP plant if both operate at full capacity.
Note that this connection of fermenters and CHP plants is not at all mandatory,
any combinations and sizing of fermenters and CHP plants can coexist provided
that there is sufficient input. It is also possible to use a fermenter or a CHP plant
below full capacity, although it is discouraged due to investment costs.

There can be different feed-in tariffs for different CHP sizes. In particu-
lar, 185EUR/MWh for the 500 kWh CHP plant, but 205EUR/MWh for smaller
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sizes. This may contradict economies of scale. Heat sell price was assumed to be
22.5EUR/MWh.

The supporting infrastructure must be built in the following conditions.

• A transformer must be built if we want to sell electricity.

• A silo plate must be built per processing location if a fermenter is built there.

• A biogas pipe must be built between a processing location and the central
town, if the biogas produced by a fermenter at the processing location is used
up by a CHP plant at the central town. Note that only CHP plants are
allowed at the central town, fermenters are not.

• A heat pipe must be built between a processing location and the central town,
if heating produced by a CHP plant at a processing location is to be sold.

Pipes are not independent: a pipe from the processing location L3 to the center
consist of the pipe from L3 to L1, and from L1 to the center. Therefore, the pipe
segment for L1 is used for transportation from both L1 and L3.

Investment costs are associated with fermenters, CHP plants, biogas and heat
pipes, silo plates and the transformer. A 15 years long payoff period is assumed
for investments. Yearly operational costs are associated with fermenters, CHP
plants and silo plates, regardless of usage. Transportation costs have a fixed and
a proportional part for distance, for each unit of biomass transported. For heat
transfer between sites, a fixed heat loss and an operation cost proportional to the
transferred heat are also assumed.

The key point of importance was the choices for fermenters. In the report, 8
fixed input material compositions were considered for the fermenters. These are
shown with total raw material availability in Table A1. Any of these 8 fermenters
prescribed a fixed input ratio for the four biomass types. Parameters of the fer-
menters were calculated based on the input composition and the size, resulting in
8 · 4 = 32 designs in total. Therefore, at each of the three processing locations, any
number of fermenters of any of these 32 designs can be built. Note that for CHP
plants, there is no input composition distinction, simply any number of CHP plants
in any of the four sizes can be built at any of the three processing locations, or in
the central town.

There were also input composition restrictions for fermenters. These are implic-
itly ensured by fixed compositions, but for a model with flexible input compositions,
such constraints must be explicitly stated. The assumed constraint was that the
composition of manure is at least 30% for each fermenter.

A.2 Model formulations

This case study consisted of the following four phases, to be explained afterwards.
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Table A1: The 8 fixed fermenter input compositions considered in the original PNS
formulation. For each raw material (biomass) type considered in the model, the
total availability is also indicated.

Biomass Available F1 F2 F3 F4 F5 F6 F7 F8

Manure 15,501m3 30% 30% 50% 50% 75% 75% 75% 100%
Intercrops 5,300 t 70% 50% 20% 25% 15%
Grass 2,820 t 10% 10%
Corn 2,418 t 70% 20% 25%

1. Reproduction of the original results, as a MILP model using the fixed input
model for fermenters.

2. Calculation of linear estimations of fermenter parameters required by model-
ing flexible inputs for fermenters.

3. Formulation of the MILP model using flexible inputs for fermenters.

4. Formulation of the PNS model using flexible inputs for fermenters.

The original publication provided data for the problems and the optimal solu-
tions, even in different scenarios. However, the model formulations were unavailable.
Therefore, the first phase was the reproduction of the original results.

The reproduction was performed as an MILP model instead of a PNS problem.
The motivation of this choice was that the GNU MathProg modeling language
had some valuable features for debugging purposes, which was extensively needed
by the reproduction process. Also, the goal was to provide a supportive basis for
comparison with the PNS problem formulation afterwards.

The optimal solution reported by the MILP model using fixed inputs for fer-
menters is summarized as follows.

• One 160 kW and one 250 kW CHP plant is built in the central area and one
80 kW plant at processing location L1. All CHP plants work at full capacity.

• Two 250 kW fermenters are built at L1, using mixture 4 (50 : 20 : 10 : 20)
and mixture 7 (75 : 15 : 10 : 0). The ratios indicate fresh matter input ratios
for the fermenters. Both fermenters work at roughly 98% capacity. A biogas
pipe is installed from L1 to the central town.

• Revenue is 783,510EUR/y from electricity and 93,015EUR/y from heating.

• Operating costs are 460,928EUR/y, investment costs are 2,715,790EUR, re-
sulting in a total profit of 234,544EUR/y.

• 100% of manure, 75% of intercrops, 84% of grass and 74% of corn silage was
utilized from the total availability. 5 of the 8 main supplier sites contributed
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with their full availability. Note that this part of a solution can easily be
balanced in exchange for additional transportation costs.

It must be noted that there is a difference between this result and the
one reported by the original study, where the reported optimal solution was
196,351EUR/y. Although both solutions use the same fermenter compositions
and sizes, they are at different sites L1 and L3 in the original reported solution,
which also uses two 250 kW CHP plants instead. The main reason behind this
discrepancy is probably due to the calculation of transportation costs, which are
roughly 24,000EUR/y more in the original formulation, and were not modeled in
the same way in the reproduction.

In other terms, the model reproduction seems accurate. For this reason, this
MILP model reproduction from the first phase was used as a basis for comparison
with the further MILP and PNS model formulations.

A.3 Parameter estimation

There are two fermenter parameters which are relevant in the modeling point of
view and depend on input composition: heating requirement and investment cost.
Therefore, fermenter heating and investment costs should appear as variable quan-
tities in the decision problem, ensuring their correct values by constraints. The
problem is that the exact requirements are not known for an arbitrary fermenter
input composition, only for the given 8 fixed designs. Besides, the calculations
resulting in these data were unavailable.

To overcome this issue, the second phase was an estimation for both the heating
requirement and the investment cost of the fermenters, as a function of all four
input material amounts. The estimation was also required to be a linear function of
these amounts, because both the MILP modeling technique and PNS problems with
the current ABB algorithm implementation are capable of incorporating only linear
components. For this reason, a multiple linear regression was performed, based
on the data available for the 32 fixed fermenter designs, as follows. The obtained
coefficients are shown in Table A2.

• Investment costs are significantly different due to economies of scale: larger
sized fermenters are cheaper. For this reason, the regression was performed
for each of the four sizes independently.

• Heating requirements on the other hand seemed to depend linearly on sizing,
therefore a single regression was performed for all sizes.

As a result, the heating requirement and the investment cost of the fermenter
were expressed as a linear function of input material amounts, without a constant co-
efficient. Note that the estimations assume a 100% working capacity of fermenters.
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Table A2: Coefficients for input biomass amounts to determine fermenter param-
eters, obtained from multiple linear regression. Coefficients are interpreted as per
unit, where unit is m3 for manure and t for the other types of biomass. Heating
requirement is expressed in terms of fermenter size in kW.

Investment cost (EUR)Biomass Heating
(MW/kW) 80 kW 160 kW 250 kW 500 kW

Manure 0.041 59.30 55.95 47.67 47.19

Intercrops 0.035 187.12 152.03 122.09 103.17

Grass 0.016 246.84 196.98 153.48 88.59

Corn 0.042 267.47 210.54 178.78 134.87

Table A3: Comparison of the original and estimated problem data, showing the
effect of using the linear parameter estimations.

Data Fermenter heating Total investments Objective
1. Original 70.36MWh 2,715,790EUR 234,544EUR/y
2. Estimated 71.81MWh 2,737,360EUR 233,033EUR/y

The estimation data compared to the original 32 fixed input fermenter designs
varied by between −7.8% and +6.5%.

The MILP model using fixed inputs for fermenters was also solved with the esti-
mated data, and the resulting optimal solution involved exactly the same investment
decisions and transportation amounts. The only differences are due to the changed
investment costs and heating requirements, both reflected in the objective only.
These are shown in Table A3.

Overall, the linear parameters estimations are accurate for further use.

A.4 MILP model using flexible inputs

In the third phase, the MILP model using flexible inputs for fermenters was de-
veloped, and directly compared with the MILP model using fixed inputs. Note
that while the MILP model using fixed inputs can be used with the original and
estimated data, the MILP model using flexible inputs can only be used with the
estimated data. Some important details of the two models are shown below.

In the MILP model using fixed inputs, key decisions about the fermenters are
represented by integer variables uferm

k,m,l ≥ 0, where the index k is for fermenter size,
m is for the selected input composition, and l is the processing location. Variable
uferm
k,m,l denotes the number of fermenters of the kind described by the indices. This

is an integer variable, therefore multiple fermenters of the same kind are allowed,
the upper bound was 3 per kind.

In the MILP model with flexible fermenters, a binary variable vfermk,i,l is used
instead. Here, k is fermenter size and l is processing location. The index i ∈ I is
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introduced to allow multiple fermenters of the same kind, precisely at most |I|. In
the model, I = {1, 2} was chosen, therefore allowing two identical fermenters per
kind. This choice eventually turned out to be sufficient.

Comparing the number of the main decision variables, the index m for uferm
k,m,l

introduces a factor of 8 which is the number of fixed input compositions, while the
index i for vfermk,i,l introduces a factor of 2, which can be arbitrarily chosen. Therefore,
the flexible model has significantly fewer decision variables.

In the flexible model, heating requirements hreq
k,i,l for a particular fermenter are

calculated based on its total input amounts win
k,i,l,t with the use of coefficient Cheat,req

k,t

obtained from the estimation, where the index t is for the biomass type (see Ta-
ble A2). This calculation is shown in Equation (A1).

hreq
k,i,l =

∑
t

Cheat,req
k,t · win

k,i,l,t ∀ k, i, l (A1)

Investment costs of fermenters are more problematic, because those should not
be scaled down if the fermenter is not working at full capacity. Otherwise, economies
of scale could lead to, for example, using a 160 kW fermenter at 50% capacity instead
of a 80 kW fermenter at full capacity, which is clearly unwanted.

Modeling an unscalable but input-dependent investment cost precisely would
require nonlinear constraints. As a workaround, an upper bound for the investment
cost is used instead, which is calculated as follows. The most expensive biomass
type in terms of investment cost per biogas produced is manure, due to its low dry
matter content. The workaround is the following: the fermenter is assumed to be
working at full capacity, but a fifth virtual input material is introduced with the
following properties.

• The sum of input amounts of the five inputs is exactly the 100% capacity of
the fermenter.

• The fifth virtual input contributes to the investment cost of the particular
fermenter, as if it was substituted by manure.

• The fifth virtual input does not contribute to any other material flows and
calculations in the model, nor to operating costs and heating requirements.
In other words, the variable denoting its amount is used as a slack variable.

Due to the fact that the most expensive biomass type is used as a slack, which is
manure, the following can be stated about the calculation used in the MILP model
versus the original one obtained by the linear estimation.

• If the fermenter with flexible inputs uses only manure, then the investment
cost calculation is exact.

• If the fermenter operates at 100% capacity, there is no slack capacity, therefore
the investment cost calculation is also exact.
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• If the fermenter operates below 100% capacity and biomass types other than
manure are also used, then the investment cost estimates the original value
from above.

The constraint for the connection of the slack variable with the total input
amount is shown in Equation (A2). Here, M ferm,CH4

k denotes the total production
capacity of a fermenter with size k, regardless of input composition, and λCH4

t is a
conversion factor.

M ferm,CH4

k · vfermk,i,l = λCH4
Manure · w

slack
k,i,l +

∑
t

λCH4
t · win

k,i,l,t ∀ k, i, l (A2)

The investment cost calculation for fermenters is expressed in Equation (A3).
Here, cferm,inv

k,i,l is the variable introduced for the investment cost, and Cinv
k,t is the

coefficient obtained from the linear estimation (see Table A2).

cferm,inv
k,i,l = Cinv

k,Manure · wslack
k,i,l +

∑
t

Cinv
k,t · win

k,i,l,t ∀ k, i, l (A3)

There was also a regulation in the original case study: manure composition
was required to be at least 30%. This is implicitly satisfied if the fixed input
compositions are used, because each design uses at least 30% manure. In the flexible
input model, this constraint must further be explicitly stated, see Inequality (A4).

win
k,i,l,Manure ≥ 0.3

∑
t

win
k,i,l,t ∀ k, i, l (A4)

A.5 Results for MILP models
Both MILP models were implemented in GNU MathProg, and solved by GLPSOL
v4.65 on a ThinkCentre M83 desktop PC with i7-4770 CPU and 16 GB RAM, under
Ubuntu 18.04.5 LTS. Model and data files and obtained results are made publicly
available [113].

The comparison of the two results shows the impact of the flexible input model
on the results, see Table A4.

The solution obtained from the MILP model with flexible inputs is substantially
different from the previous ones. A key difference is that a 500 kW fermenter with
flexible inputs is more advantageous than two 250 kW fermenters within the fixed
designs. Utilization of the available biomass is also better, and consequently, 80 kW
more production capacity can be installed. This results in higher revenues, but only
slightly higher investment costs due to the economies of scale. The profit, assuming
the same 15 years long payoff period, is 31.62% better than for the optimal solution
obtained from the fixed input model.

Another observation is that in contrast to fermenters, the 500 kW CHP plant
is not used instead of the two 250 kW CHP plants. The reason behind this is the
feed-in tariff being higher for the smaller plants.
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Table A4: Comparison of the MILP models with fixed inputs and flexible inputs,
with the data obtained from the linear parameter estimation.

Scenario Fixed input model (2.) Flexible input model (3.)
Decisions two 250 kW fermenters and one

80 kW CHP plant at L1, one
160 kW and one 250 kW CHP

plant at the center

one 80 kW and one 500 kW
fermenter and one 80 kW CHP
plant at L1, two 250 kW CHP

plants at the center
from electricity: 783,510EUR/y from electricity: 927,420EUR/yRevenues from heating: 93,015EUR/y from heating: 105,300EUR/y

Investments 2,737,360EUR in total 2,770,220EUR in total
Profit 233,033EUR/y 306,711EUR/y

Material manure: 100%, intercrops: 75%, manure, intercrops, grass: 100%,
utilization grass: 84%, corn silage: 74% corn silage: 90%

Model 661 columns, 128 integer variables 301 columns, 56 integer variables
size 16 are binary, solved in 3.9 s 40 are binary, solved in 0.5 s

The flexible input model is also smaller, with fewer variables, which results in a
faster solution, 0.5 s instead of 3.9 s.

Overall, it can be concluded that the flexible input model performs better than
its fixed input counterpart, in terms of solution quality and also in model complexity.
A general observation is that it is more advantageous to assume equipment units
with flexible inputs, optimize among them and then design the equipment units
according to the solution, than first constructing some fixed input designs and
letting the optimization procedure choose from those. Note that this procedure
with flexible inputs is only possible if relevant model parameters can be expressed
in terms of the input amounts. In this instance, it could be done with an accurate
enough estimation of the heating requirement and investment cost parameters of the
fermenters, using multiple linear regression. The validity of this proposed method
relies on the condition of flexible input compositions obtained from model solution
being feasible in reality within a close proximity of the model parameters assumed.

A.6 PNS problem formulation
Finally, the fourth phase was the formulation of the problem as a PNS problem,
equivalent to the MILP model using flexible inputs for fermenters. This demon-
strates the application of the modeling technique presented in Chapter 4.

Due to problem size, this PNS problem was not implemented using the GUI of
P-Graph Studio, but was constructed programmatically, and solved directly by the
underlying PNS solver.

The material nodes are the following:

• The raw materials of the problem are the 4 types of biomass situated at 8 dif-
ferent supply locations, and also a single raw material representing fermenter

125



A. CASE STUDY FOR FERMENTERS WITH FLEXIBLE INPUTS

heating that can be purchased. These are 33 raw material nodes in total.

• There is only a single product node, for revenue. The reason for merging
heating and electricity into a single node is that in theory, neither heating nor
electricity is a mandatory output (although effectively they are), and there
are also different selling prices for electricity from different CHP plant sizes.

• All other material nodes are intermediate materials.

The implementation of most of the material flows is straightforward, using a
single operating unit node, consuming one input material node and producing one
output with some conversion factor. Cases are the following.

• Transportation of biomass types to each of the processing locations.

• Purchase of fermenter heating, which contributes to a heating balance material
node at that site.

• Transportation of biogas and heat from the processing locations to the central
location via pipes.

• Conversion of heating balance at the central location, and electricity produced
from each of the four CHP plant sizes to revenue.

Some infrastructural requirements were modeled using the same scheme as „cus-
tom input capacity”, but without an actual bound for capacity. This is illustrated
in Figure A2. The infrastructure needed is represented by an operating unit node.
It produces a capacity material with arbitrary flow. The capacity material is con-
sumed by the operating unit which requires the presence of the infrastructure. This
makes it possible to model dependencies of investments on each other, provided
that the cost of the required investment is fixed. This technique was used for the
transformer, the silo plates, biogas pipes and heat pipes.

Figure A2: P-Graph model of an investment required for other operations.

The fixed heat loss model for heat pipes required some additional workaround,
but this is not detailed in this work.
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The most difficult part was the model of the fermenter units using flexible inputs,
which is a great example for the application of ratio constraints, and lower and upper
bounds for a weighted sum of inputs. This fermenter model is now shown in detail,
see Figure A3.

Figure A3: P-Graph model of the fermenter with flexible inputs.

The black part models the independent inputs of the fermenter, which are the
four biomass types. Each input has its own operating unit node, which also play
a key role in other components of the design. Flow rates for inputs are all 1, and
flow rates for the output Biogas can be set according to the energy content of each
biomass type.

The red part models fermenter heating. Since heating requirement is expressed
as a linear function of biomass inputs (without a constant term), flow rates can be
set according to each biomass type.

The blue part models the capacity of the fermenter. A single Fermenter oper-
ating unit produces the Hours_In material, in a maximum amount of 7800 hours,
which represents total working hours during the year. Flow rates can be set ac-
cording to the rule that a fully operating fermenter can exactly feed a CHP plant
with the same size, regardless of input type. Note that, counter-intuitively, working
hours are not really split among input types, but rather a mix of inputs is fed to
the fermenter in the composition described by the consumption rate of Hours_In.
This is only a modeling trick for implementing an upper bound for a weighted sum.
Fixed costs of the fermenter are associated with the Fermenter node.

The purple part was necessary for the investment costs. The exact same prob-
lem described for the MILP model arises here as well, namely the fact that the
investment cost cannot be scaled down if the fermenter is not used at full capacity.
The same assumption was made here as well: unused fermenter capacity is assumed
to be spent on manure. The Slack_Hours operating unit is introduced for consum-
ing the remaining fermenter capacity, and has a proportional cost equal to that of
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the operating unit for manure. All of Hours_In are reproduced into Hours_Out,
which is a new input for the Fermenter operating unit. Also, the Fermenter node
has a minimum production also set to 7800 hours. These ensure that investment
costs are always calculated for 7800 working hours.

The green part implements the constraint that at least 30% of input fresh matter
must be manure. The introduced material node is connected to the operating unit
of each biomass type. The operating unit of manure produces the material with a
flow rate of 7, all other operating units consume it with a flow rate of 3.

The final P-Graph consists of 147 material nodes, 319 operating unit nodes, and
1144 arcs. These required 24 distinct instances of the fermenter models, since there
were 3 processing locations, 4 fermenter sizes, and two allowed per the same kind.

The solver with ABB algorithm required 413.45 s to finish, and the exact same
solution was reported as for the MILP model using flexible inputs. This was done
on a Dell Latitude E5470 laptop, having an Intel i7.6600U 2.60 GHz CPU and 16
GB RAM. The PNS solver version v2.0.3 was used, running on Windows 10.

The significantly larger solution time can be attributed to the fact that in the
MILP model, CHP plants of the same kind are represented as integer variables
instead of multiple binary variables to decrease redundancy, while in the P-Graph
implementation, each CHP plant has its own operating unit node. This redundancy
could be mitigated by introducing an artificial ordering of the interchangeable op-
erating unit nodes, but this was omitted from this work. The ABB algorithm itself
could treat redundancy better. The PNS implementation could also allow the de-
cision variable of an operating unit to possibly be an integer rather than a binary
variable.

Note that the PNS solver allowed to generate a ZIMPL implementation of a
MILP model „technically equivalent” to the PNS problem itself, used in the solution
procedure. This technically equivalent MILP model was further investigated.

First, this is not equivalent to the aforementioned MILP model for flexible in-
puts. This is due to several reasons, one is the aforementioned implementation of
multiple CHP plants of the same kind. Another reason is that material flows in
a P-Graph are represented by an operating unit node which introduces a binary
decision variable, while in MILP models the binary decision variable can possibly
be omitted.

The technically equivalent MILP model was transformed into CPLEX LP for-
mat, and then solved by the CBC and GLPSOL MILP solvers. The CBC solver
finished in 19.99 s reporting the same solution, which is still significantly more than
the initially formulated MILP model. The GLPSOL solver could not finish solving
the problem in 1,000 s.

Nevertheless, the fact that the same solution was reproduced as a PNS problem
indicates that the P-Graph framework and its existing tools provide an alternative to
mathematical programming models, and can be extended by modeling techniques.
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Appendix B

Nomenclature for MWM model

This appendix chapter provides the nomenclature for the mobile workforce man-
agement approaches presented in Chapter 5. Symbols used in the description of the
standalone MILP model the and algorithmic framework are listed here. Some sets,
parameters and variables are only relevant in the algorithmic framework. These are
explicitly mentioned.

Sets

Sets are given with the typical index symbols for their elements.
k ∈ K Set of tasks.
k ∈ Kdone Set of tasks already scheduled (algorithm only). Kdone ⊆ K

k ∈ Krem Set of tasks not scheduled yet (algorithm only). Krem = K \Kdone

m ∈ M Set of teams.
(m, i) ∈ Jslots Set of job slots. i ∈ [1, Nm]

(m, i) ∈ T slots Set of travelling slots. i ∈ [0, Nm]

(m, i) ∈ Xslots Set of site slots. i ∈ [0, Nm + 1]

(k1, k2) ∈ P prec Set of all precedence relationships. P prec = P free ∪ P prot ∪ P same

(k1, k2) ∈ P free Set of free precedence relationships. k1, k2 ∈ K

(k1, k2) ∈ P same Set of same-team precedence relationships. k1, k2 ∈ K

(k1, k2) ∈ P prot Set of protected precedence relationships. k1, k2 ∈ K

(k1, k2) ∈ Pmtx Set of mutual exclusion relationships. k1, k2 ∈ K

(k1, k2) ∈ P par Set of parallel execution relationships. k1, k2 ∈ K

r ∈ R Set of all resources.
r ∈ Rcons Set of consumable resources. Scons ⊆ S

r ∈ Rtool Set of tool resources. Stool = S \ Scons

s ∈ S Set of all sites.
s ∈ Sdepot Set of team depot sites. Sdepot ⊆ S

s ∈ Stasksites Set of task execution sites. Stasksites = S \ Sdepot
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Parameters

If a parameter is numeric, it is assumed to be nonnegative. The domain of indices is
by default always the largest possible set for which the symbol is used. For example,
the index k means the parameter is defined for all k ∈ K unless otherwise stated.
Ctravel

m Cost factor for the total travelling time of team m.
Cunpack

m Unpacking cost of team m upon arrival on a site.
Cpack

m Packing cost of team m before departure from a site.
Cearliness

k Penalty cost factor if task k is executed earlier than T expected,start
k .

C lateness
k Penalty cost factor if task k is executed later than T expected,end

k .
Cexec

k,m Cost of task k if executed by team m.
Cres

r Cost of utilization of one unit of resource r.
Copcl

k1,k2
Cost of protected precedence relationship (k1, k2) ∈ P prot if the
closing and opening option is chosen.

Cwork
m Cost factor for the total working time of team m.

Ds1,s2 Travelling distance from site s1 to site s2.
Dtravel,max

m Maximum total distance that team m may travel.
Hslot

k Job slot to which task k was assigned (algorithm only). k ∈ Kdone,
Hslot

k ∈ Jslots

Nm Number of predefined job slots for team m.
Qcap

r Total available amount of resource r.
Qreq

r,k,m Requirement of resource r for execution of task k by team m.
Qmax

r,m Maximal amount of resource r that team m is allowed to carry.
Sstart
m Starting position of team m. Sstart

m ∈ Sdepot

Send
m Final position of team m. For simplicity, Sstart

m = Send
m is assumed.

Stask
k Site of task k.

T earliest
k Start of absolute time window of task k.

T latest
k End of absolute time window of task k.

T expected,start
k Start of expected time window of task k.

T expected,end
k End of expected time window of task k.

T day,start Starting time of the workday.
T day,end Ending time of the workday.
U exec
k,m Net time spent by team m for executing task k if assigned.

Upack
m Packing time of team m before departure from a site.

Uunpack
m Unpacking time of team m after arrival on a site.

U close
k Site closing time after task k is executed, if k is first in a protected

precedence relationship.
U open
k Site opening time before task k is executed, if k is second in a

protected precedence relationship.
U travel,max
m Total time team m may spend travelling, (un)packing or being idle.

Uwork,max
m Total time team m may spend in duty during the day.
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Uworkday Length of workday. Uworkday = T day,end − T day,start

Vm Speed of team m for travelling between different sites. Vm > 0

Binary decision variables
Each binary decision variable represents a choice about a logical statement. The
value 1 means the statement is fulfilled, and the value 0 means it is not.
ak,m,i Task k is executed by team m in its job slot (m, i) ∈ Jslots.
ataskk,m Task k is executed by team m.
bpresentm,i,s Team m is present at site s during site slot (m, i) ∈ Xslots.
bschm,i,s1,s2

Team m moves from site s1 to site s2 in travelling slot (m, i) ∈ T slots.
s1 ̸= s2

btravel,move
m,i Team m changes site in travelling slot (m, i) ∈ T slots.
pclosek Site Stask

k of a task k first in a protected precedence relationship is
closed after executing task k.

popenk Site Stask
k of a task k second in a protected precedence relationship is

opened before executing task k.
pprotk1,k2

Task site closing and opening is chosen as part of a protected
precedence relationship (k1, k2) ∈ P prot between executing k1 and k2.

pmtx
k1,k2

Task k1 is chosen to be executed before k2 to fulfill a mutual
exclusion relationship (k1, k2) ∈ Pmtx.

xtask
k Task k ∈ Krem is the selected, newly assigned task (algorithm only).

xtask
m Team m is selected to execute the new task (algorithm only).

xslot
m,i The new task is assigned to job slot (m, i) ∈ Jslots of team m

(algorithm only).
ym,i The new task is assigned before travelling slot (m, i) ∈ T slots

(algorithm only).
Note that ak,m,i, pprotk1,k2

and pmutex
k1,k2

from the original MILP formulation, and xtask
k ,

xteam
k and xslot

m,i used by the algorithmic framework are required to be binary. The
constraints ensure that the values of all other variables shown here are unambigu-
ously determined by the values of the ones mentioned. Therefore, all other binary
decision variables can be continuous [0, 1] variables in the model implementation.

Continuous variables
Continuous variables are bounded by [0,∞[, except for variables representing time
points, which are bounded by

[
T day,start, T day,end

]
, unless explicitly stated otherwise.

cpen,earlyk Penalty cost for starting the execution of task k earlier than
T expected,start
k .

cpen,latek Penalty cost for finishing the execution of task k later than
T expected,start
k .
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ctravel Total cost of travelling.
cpacking Total cost of packing and unpacking at sites.
ctw Total cost of penalties for violating expected time windows.
cexec Total cost of task execution.
cres Total cost of resource utilization.
copcl Total cost of opening and closing activities for fulfilling protected

precedence relationships.
cwork Total cost of team working times.
ctotal Total of all costs.
dm,i Distance travelled by team m in its travelling slot (m, i) ∈ T slots

qreqr,m,i Amount of resource r used in job slot (m, i) ∈ Jslots.
qcarryr,m Amount of resource r carried by team m from its starting depot.
tstartk Starting time point of the execution of task k.
tendk Ending time point of the execution of task k.
tpresence,startk Starting time point of the job slot in which task k is executed.
tpresence,endk Ending time point of the job slot in which task k is executed.
ttravel,startm,i Starting time point of travelling slot (m, i) ∈ T slots.
ttravel,endm,i Ending time point of travelling slot (m, i) ∈ T slots.
uclose
k Time spent closing at site Stask

k of task k after its execution.
uopen
k Time spent opening at site Stask

k of task k before its execution.
uidle
m,i Idle time spent by team m in travelling slot (m, i) ∈ T slots.

uslack
k Amount of delay in the net execution time for task k.

uwait,before
k Waiting time spent by the team before executing task k.

uwait,after
k Waiting time spent by the team after executing task k.
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