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Title

Recognition of objects to grasp and Neuro-Prosthesis control

Abstract

The goal of the present PhD research is to provide assistance to upper-limb amputees
wearing robotic prosthetic arms. Classical myoelectric control of neuro-prostheses
is limited in case of severe amputation. Computer vision approach and gaze infor-
mation can provide a valuable indication for prosthetic arm control identifying and
localizing an object to grasp.

The prosthetic arm controlling mechanism has to be wearable, fast enough for
real-time processing, and mobile. Thus we propose an embedded Hardware-Software
FPGA implementation of the gaze-driven object recognition method with a Gaze-
Driven CNN developed for natural cluttered video scenes.

To achieve the research goal, we propose different algorithmic solutions adapted
to FPGA. The whole embedded system allows for recognition and localization of
the object-to-grasp in the 3D space.

To decide which block in the whole algorithmic chain needs to be accelerated
on FPGA, and which can be processed by an embedded CPU, we first conduct
complexity analysis in terms of computational time for the hybridization choices.

The acquisition device is Tobii eye-tracker glasses which the amputee is supposed
to wear in an ergonomic scenario of vision-assisted neuroprosthetic control. Due to
the distractors, filtering of gaze points with motion compensation from the past
to the present frame is needed. To do this, the Scale Invariant Feature Transform
(SIFT) keypoints are extracted in every frame and serve for homography estimation
between frames. However, our measurements show that SIFT computational time is
too high using just an embedded CPU. So we adopted a SIFT keypoint extractor to
an FPGA having proposed a simplified SIFT extractor due to the FPGA resource
restrictions. Our solution was compared to the fully SW implemented OpenSIFT.
The experiments show that the two implementations yield practically the same
result. Our implementation can process a 480px x 480 px image at 135 frames/second
on the Xilinx ZCU 102 FPGA board.

To eliminate the outlier gaze points corresponding to distractors which are pro-
jected to the current frame with the estimated homography, DBScan clustering is
used. The fixated gaze point on the object to grasp is predicted with the Kernel
Density Estimation. The estimated gaze point and the current frame are the input
of the Gaze Driven CNN. Its goal is to recognize the object and precisely localize it
in the video frame. The original CPU implementation of it contains three modules:
Resnet50, Faster R-CNN and Multiple Instance Learning. Our Complexity analysis
shows that the Resnet50 computational time is too high for the embedded CPU.
Gaze-Driven CNN FPGA optimized version is thus built in the following modules:
the Resnet50 (FPGA), which extracts the features from a frame, the Reduction
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layer (CPU) to simplify the feature tensor, the Faster R-CNN (CPU) to estimate
the grasped object location, and the Multiple Instance Learning (CPU) to predict
the grasped object type. The FPGA accelerated Resnet50 can process more than
30 fps on ZCU102.

The depth is estimated based on the plane equation of the 3 closest gaze points
to the current frame gaze point.

To validate our approach we have conducted our experiments on a real-world
Open Source cluttered Grasping-in-the-Wild (GITW) dataset recorded in kitchens.
The subjects are grasping common objects such as a pan, a bowl, etc. The dataset
contains 16 different objects in 7 kitchens and 404 egocentric videos.

Our experiments show that the proposed hybrid solution allows achieving 8.5 fps
frame rate without losing the accuracy of the original CPU implemented approach.
Further acceleration by pipelining is achievable and remains in the perspective of
the present work.
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deep learning, FPGA, Object Recognition
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Titre

Reconnaissance des objets à saisir et contrôle d’un bras robotique pour l’assistance
aux porteurs des neuro-prothèses

Résumé

L’objectif de la recherche doctorale est de fournir une assistance aux amputés des
membres supérieurs portant des prothèses robotisés. Le contrôle myoélectrique clas-
sique des neuro-prothèses est limité en cas d’amputation sévère. L’approche de la
vision par ordinateur et les informations sur le regard peuvent fournir une indication
pour le contrôle de la prothèse en identifiant et en localisant un objet à saisir.

L’outil de contrôle doit être portable, suffisamment rapide pour un traitement
en temps réel, et mobile. Nous proposons donc une implémentation matérielle et
logicielle FPGA de la méthode de reconnaissance d’objets, avec un CNN guidé par
le regard, développée pour les scènes vidéo naturelles encombrées.

Pour atteindre l’objectif de recherche, nous proposons différentes solutions algo-
rithmiques adaptées au FPGA. L’ensemble du système embarqué permet la recon-
naissance et la localisation de l’objet à saisir dans l’espace 3D.

Pour décider quel bloc de la chaîne algorithmique doit être accéléré sur FPGA, et
lequel reste sur le CPU embarqué, nous effectuons d’abord une analyse de complexité
en temps de calcul.

Le dispositif d’acquisition est constitué des lunettes eye-tracker Tobii que l’amputé
est censé porter dans un scénario ergonomique de contrôle neuroprothétique as-
sisté par la vision. En raison des distracteurs, il est nécessaire de filtrer les points
de regard avec une compensation de mouvement des images antérieures à l’image
courante. Pour ce faire, les points clés SIFT (Scale Invariant Feature Transform)
sont extraits dans chaque image et servent à l’estimation de l’homographie entre les
images. Cependant, nos mesures montrent que le temps de calcul de SIFT est trop
élevé sur le CPU embarqué. Nous avons donc adapté un extracteur de points clés
SIFT sur un FPGA en proposant un algorithme simplifié en raison des restrictions de
ressources du FPGA. Notre solution a été comparée à l’implémentation entièrement
logicielle d’OpenSIFT. Les expériences montrent que les deux implémentations don-
nent pratiquement le même résultat. Notre implémentation peut traiter une image
de 480 px x 480 px à 135 images/seconde sur la carte FPGA Xilinx ZCU 102.

Pour éliminer les points de regard aberrants correspondant aux distracteurs,
le clustering des points (DBScan) est appliqué. Le point de fixation du regard
sur l’objet à saisir est prédit à l’aide de l’estimateur à noyau. Le point de regard
estimé et l’image courante constituent l’entrée du CNN piloté par le regard. Son
objectif est de reconnaître l’objet et de le localiser précisément dans l’image vidéo.
L’implémentation originale du CPU contient trois modules : Resnet50, Faster R-
CNN et Multiple Instance Learning. Notre analyse de la complexité montre que
le temps de calcul de Resnet50 est trop élevé pour le CPU embarqué. La version
FPGA optimisée du CNN est donc construite dans les modules suivants : le Resnet50
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(FPGA), qui extrait les caractéristiques d’une image, la couche de réduction (CPU)
pour simplifier le tenseur de caractéristiques, le Faster R-CNN (CPU) pour estimer
la localisation de l’objet, et le Multiple Instance Learning (CPU) pour prédire le
type d’objet saisi. Le Resnet50 accéléré par FPGA peut traiter plus de 30 images
par seconde sur ZCU102.

La profondeur est estimée sur la base de l’équation du plan des 3 points de regard
les plus proches du point de regard de l’image actuelle.

Pour valider notre approche, nous avons mené nos expériences sur un ensem-
ble de données Open Source, Grasping-in-the-Wild (GITW), enregistrées dans des
cuisines. Le jeu de données contient 16 objets différents dans 7 cuisines et 404 vidéos
égocentriques.

Nos expériences montrent que la solution hybride proposée permet d’atteindre
une fréquence d’images de 8,5 fps sans perdre la précision de l’approche originale
implémentée sur CPU. Une accélération supplémentaire par pipelining est réalisable
et reste dans la perspective du présent travail.

Mots-clés

l’apprentissage en profondeur, FPGA, reconnaissance d’objet
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Chapter 1

Introduction

One of the problems assistive robotics addresses is the production of upper limb

prostheses for amputees. Despite great progress in upper limb bionic prostheses,

allowing for object-of-interest reaching and grasping, the key remaining issues relate

to their control by the operator. To overcome the limitations of traditional control

solely based on the electromyographic (EMG) activity of the remaining muscles,

promising alternatives consider hybrid systems combining noninvasive motion cap-

ture and vision control mentioned in Kanishka Madusanka et al. (2017); Mick et

al. (2021). They include camera vision modules that allow for recognition of the

subject’s intention to grasp an object and assist visual control of prosthetic arms

for object reaching and grasping (Han et al., 2020).

The computer vision algorithms which are implemented in these systems com-

prise the latest object recognition approaches, such as deep neural network (DNN)

classifiers and regressors (González-Díaz et al., 2019).

Despite the fact that the visual servoing of robotic arms has been a highly re-

searched area (Hussein, 2015), the application to arm neuroprostheses implies sup-

plementary constraints. The whole control device has to be lightweight and worn

by the subject. Hence, it is necessary first to minimize the equipment and second to

propose efficient, lightweight solutions for visual scene analysis by the camera worn
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by the subject. So it has to be a wearable device.

Real-time performance is also a mandatory requirement for our target application

(Mick et al., 2019, 2021). As the fastest visuomotor response to a perturbation

takes about 90 ms (Scott, 2016), and feedback delays of 100 ms or more are known

to deteriorate the performance of online feedback control (Miall et Jackson, 2006).

Therefore, computation time should remain as low as possible, and below 100 ms.

Field-Programmable Gate Array (FPGA) do fulfil those requirements, because

they are lightweight, mobile, and also efficient accelerators for computer vision al-

gorithms (Qasaimeh et al., 2019; Yu et al., 2020).

When speaking about the state-of-the-art (SOTA) family of computer vision

algorithms allowing for object recognition and localisation, we have to remember

that our environment is very much cluttered and various objects are present in

it. In such real-world scenarios, we cannot reasonably hope that the SOTA object

detection algorithm could perform well to identify the object-to-grasp. They are

usually designed for much less cluttered scenes. External information is needed.

The most natural way to introduce this information into prosthesis control consists

in measuring user’s intention by external tools and incorporating these measures

into artificial vision approach to recognize and localize the object to grasp in the

visual scene. A natural way to do it consists in measuring visual intention of the

amputee with an eye-tracker (Mick et al., 2021). In this case, the gaze fixations

on the images of a video recorded with scene view camera could guide the whole

recognition system towards the object to recognize and localize.

Nevertheless, as shown in de San Roman et al. (2017), this information is noisy.

First of all, when the person realises an initial visual search for object, gaze fixations

are scattered in the scene, then some highly contracted visual distractors can disturb

the subject in his visual search for the object. Hence, these information has to be
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filtered from the past (initial observation) - to the current moment, estimating the

gaze fixation on the object-to-grasp.

Filtering of gaze points with motion compensation from the past to the present

frame is needed. To do this, the Scale-Invariant Feature Transform (SIFT) (Lowe,

2004) keypoints can be extracted in the images to compute the global motion model

after matching of keypoints, to collect all gaze points in the current frame. This

redundant information can then be used to estimate a smooth position of a gaze

fixation in the current frame. Hence, in our work, we study and propose a solution

for SIFT detector implementation on FPGA.

The most efficient solution for object recognition and localisation of it in the

frames of video scene are convolutional neural network (CNN)s or recently pro-

posed transformers such as Deformable Transformer for End-to-End Object detec-

tion (DETR) (Zhu et al., 2021). In our case, for object detection and localization

we adapt and implement in hybrid FPGA - embedded CPU solution the gaze-driven

DNN approach, previously developed in software in González-Díaz et al. (2019).

We present our work in the following chapters of the manuscript.

Chapter 2 contains the state-of-the-art (SOTA) in our problem, namely the

Neuroprosthesis control, the object recognition and the FPGA implementation of

visual scenes analysis methods.

Chapter 3 is devoted to the analysis of the algorithm developed in LaBRI for

Object-to-grasp recognition (González-Díaz et al., 2019; Buzási, 2018; Poursanidis

et al., 2020), which we have adapted for FPGA implementation (Fejér et al., 2019,

2021a,b, 2022). We supply the complexity analysis in terms of computational time

for the hybridization choices.

Chapter 4 presents our solution for SIFT characteristic point detection (Lowe,

2004) on FPGA. We first detail the regular SIFT algorithm and its software im-
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plementation reported by Hess (2010). Then we analyse the constraints for its

implementation on FPGA and possible available solutions. Finally, we present our

solution of accelerated SIFT approach adapted for FPGA implementation (Fejér et

al., 2021a).

Chapter 5 contains the preprocessing steps of the Gaze-Driven CNN(González-

Díaz et al., 2019). The preprocessing process has two steps: the gaze point alignment

and the gaze point noise reduction. The gaze point alignment step contains the SIFT

point extraction, the keypoint matching with the FLANN matcher (Muja et Lowe,

2009), and the homography estimation. The gaze point noise reduction has two

steps: clustering the gaze points and elimination of the outliers, and the Kernel

Density Estimation (KDE) (Pedregosa et al., 2011) estimation of the smoothed

position of the gaze point in the current frame.

Chapter 6 presents the Gaze-Driven CNN originally proposed for computation

on CPU (González-Díaz et al., 2019) and its FPGA optimized implementation (Fejér

et al., 2022). The Gaze-Driven CNN FPGA optimized version (Fejér et al., 2022)

is built in the following modules: the ResNet50 (He et al., 2016) which extracts the

features from a frame, the Reduction Layer to change the size of the input layer of

further network to a smaller one, the Faster R-CNN (Girshick, 2015) to estimate

the grasped object location, and the Multiple Instance Learning (Amores, 2013) to

predict the grasped object type.

Chapter 7 provides a conclusion of this research and outlines its perspectives.
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Chapter 2

State-of-the-Art in visual scene anal-

ysis for neuroprostheses controls and

FPGA implementation

2.1 Introduction

The neuroprosthetic arm is a great tool for helping disabled people who lost their

arm due to a disease, an accident, or war injury. However, those robotic arms could

be expensive and uncomfortable for the wearer. Nowadays, an intensive research is

being conducted on how to achieve an affordable and comfortable, wearable robotic

prosthetic arms.

In this Chapter 2 we first review the available methods for controlling a neuro-

prosthetic arm such as myoelectric control with elements of vision. Then we present

an overview of the state-of-the-art for object recognition in visual scenes targeted

to our application. Finally, we analyse the FPGA-based implementations of visual

scene analysis methods as our goal is to propose such methods for prostheses control

on hybrid architectures.

The researchers in assistive robotics and re-habilitation medicine state such as

28

DOI:10.15774/PPKE.ITK.2022.006



2. State-of-the-Art in visual scene analysis for neuroprostheses controls and FPGA
implementation

Parker et al. (2006) that the myoelectric control only has its limitations. First of

all the information measured as electrical signals of muscles is noisy and difficult

to interpret. Second, the remaining muscles are not necessary the muscles which

should control the missing joints. Some solutions have been proposed studying

the co-contraction mechanisms in Parker et al. (2006), but this control remains

quite sequential and unnatural. The behaviour pattern is difficult to learn by the

amputee. Finally, the neuroprostheses with myoelectrical control could be invasive.

Some of them require a surgery called "osseointegration" whereas the other surgery

is the “targeted muscle re-innervation” (Farina et al., 2021). The latter improves

the myoelectric control as it allows for activation of the nerve which controlled the

missing muscles. But even in the case of myoelectric control of prostheses, with

surface myo-sensors on the remaining part of the arm, that is without the surgery,

they are not very comfortable for the amputees. They also do not ensure a perfect

recording of myoelectric signals to control the artificial arm (Mereu et al., 2021).

The virtual reality (VR) (Karrenbach et al., 2022; Mick et al., 2021) and aug-

mented reality (AR) (Shi et al., 2022b,a) have been already used for training am-

putees for neuroprosthesis control. The solutions based on deep learning (Karren-

bach et al., 2022) or the regular feature extraction algorithms (Krausz et al., 2020)

have been proposed. The AR can be used in the future for the prosthesis control,

helping the amputee to select a good movement pattern to grasp an object. The AR

or mixed vision-perception and myoelectrical control require understanding of the

natural visual scene the amputee faces and, specifically, recognition and localization

in it of the object that the person wishes to grasp;

In our case, it is important to know the type of the object and the location of the

object in an image. The type is important because every object has a different shape,

which requires a different grasp type. The location and distance are also important
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for servoing the prosthetic arm. There are several methods for object recognition

based on deep learning. For feature extracting there are VGGnet (Simonyan et

Zisserman, 2015), Mobilnet (Howard et al., 2017), or ResNet (He et al., 2016).

Faster R-CNN Ren et al. (2017) can use those feature extractors to recognize the

object. There are also reviewed other object recognition methods such as Single-

Stage Object Detection (SSD) (Liu et al., 2016) and YOLO (Redmon et al., 2016).

The developed device has to be wearable. This means that it has to be lightweight,

and the device has to be portable, which means that it has to have low power

consumption. FPGA has fulfilled those requirements, and it is also a powerful

platform because there are methods to accelerate the algorithm. To accelerate a

deep learning algorithm for a FPGA different tools are available: Vitis AI (Kathail,

2020), Apache TVM VTA (Moreau et al., 2019), Brevitas (Pappalardo, 2021), and

FINN (Umuroglu et al., 2017). In the last part of Chapter 2 the different FPGA

deep learning accelerators are reviewed and compared to each other.

2.2 Neuroprosthesis control based on visual and gaze

information

Neuroprostethis control with visual and gaze information is a quickly developing

research area. In this section, we will give a brief overview of the SOTA approaches.

Karrenbach et al. (2022) implemented a data-driven predictive control strategy in

object grasping tasks performed in virtual reality for wrist prediction to improve the

performance of basic prostheses. Their method has two phases: in the first phase,

data was captured for pregrasp hand poses, stopping at the point of contact to

collect only relevant data for training. A set of eye-tracked gaze and hand kinematic

data from a subject during an object reaching task in a virtual environment was
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generated. The generated dataset is used during their CNN training. In the second

phase, they implemented a user study with a full pick-and-place task to emulate a

real use case and investigate the amount of compensation and effort that the user

required in virtual reality. The evaluation was that the wrist prediction model was

implemented in a virtual prosthesis and compared to a wrist-locked prosthesis. This

method leads to a decrease in compensatory movement in the shoulder, as well as

to a decrease in task completion time.

Mouchoux et al. (2021) developed a man-machine interface that endows a my-

oelectric prosthesis (MYO) with artificial perception, estimation of user intention,

and intelligent control (MYO–PACE) to continuously support the user with automa-

tion while preparing the prosthesis for grasping. The Creative SR300 camera is on

the glasses, which provides the camera looking the same scene as the user. It simul-

taneously acquires colour and depth (RGB-D) images at a resolution of 1920 × 1080

pixels and 640 × 480 pixels. Their method uses sEMG signals and Creative SR300

frames and depths to predict the right movements of the prosthetic arm and wrist.

Mouchoux et al. (2021) system integrates a classification-based myoelectric control

(MYO; implements the Linear Discriminant Analysis algorithm (LDA) (Englehart

et Hudgins, 2003)) with a novel interface for comprehensive artificial exterior and

proprioception and autonomous adaptive prosthesis control (PACE). Mouchoux et

al. (2021) demonstrate that the implementation of advanced perception, context in-

terpretation, and autonomous decision-making into active prostheses improves con-

trol dexterity. Moreover, it also effectively supports the user by speeding up the

pre-shaping phase of the movement and decreasing muscle use.

Fukuda et al. (2021) proposed a novel control scheme for a vision-based prosthetic

hand, which fuses bimodal information to achieve human-like hand movements.

Their methods combine the sEMG signals and the visual information of the object
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Figure 2.1: The bimodal information architecture (Fukuda et al., 2021).

to achieve control. It uses a deep convolutional network for servoing. In both the

training and the recognition phase, the network uses the sEMG signals and the visual

information of the object, called bimodal information. Fukuda et al. (2021) deep

learning network has 3 subnetworks as a CNN for the frame input and an LSTMN

for the sEMG signals and those are concatenated in the connection network and the

result of this network is a class label. They assume only 1 object exists in a frame

during the measurements. The camera (Microsoft LifeCam Studio for Business) is

mounted on the prosthetic arm.

Shi et al. (2022b) designed a prosthetic arm control system based on eye-tracking.

Their system is called i-MYO, and it uses EMG signals and the AR information from

Microsoft HoloLens 2. The Microsoft HoloLens 2 is an AR helmet. The user wears

this AR helmet and can switch the type of grasp with his eyes. It has 6 different

grasp types: Cylindrical, Spherical, Tripod, Pinch, Lateral, and Hook. The user has

to look at the selected grasp type for 200 ms. This grasp-type switching is called

i-GSI (Shi et al., 2022a). After the selection, the system is used the EMG signals to

get the intention of the user to control the prosthetic hand opening or closing.

Krausz et al. (2020) made a system for controlling a prosthetic arm which fused

EMG and gaze data predict the desired end-point for full arm prosthesis, which

could drive the forward motion of individual joints. The image processing algorithms
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have been used to resolve the concurrent head motion in gaze tracking. The image is

processed from the front-facing camera to project the gaze position into a global 2D

space (using the first recorded frame as a reference). The ORB (Rublee et al., 2011)

features and the BRIEF (Calonder et al., 2010) descriptors are extracted in each

image, and the extracted descriptors are matched with the FLANN-based matcher

(Muja et Lowe, 2009) in all consecutive frame pairs. Then RANSAC (Fischler et

Bolles, 1981) was used to estimate the homography transformation matrix to project

each pixel from the head-frame to the global frame, and produce gaze coordinates

independent of head motions and solely dependent on the distance between targets

in the global frame. This gaze fixations result has been fused with the EMG data

using a Kalman filter (Kalman, 1960).

Mick et al. (2021) proposed a system which fuses the myoelectric and kinematic

information with the gaze information. The gaze tracked information is good to get

contextual information about the target’s location and orientation. To do that they

are using computer vision algorithm such as Neural network. Mick et al. (2021) also

used virtual reality. They are created in a virtual environment which was scaled to

match the real-world dimensions. The subjects used HTC Vive Pro virtual reality

headset and HTC Vive Tracker motion tracker. The subject’s goal is to grasp and

move a bottle.

The problem with VR (Karrenbach et al., 2022; Mick et al., 2021)) and AR

(Shi et al., 2022b,a) based solution is that it could cause visual fatigue and motion

sickness as mentioned by Chang et al. (2020); Park et al. (2014); Lambooij et al.

(2009). The symptoms include but are not limited to eye fatigue, disorientation,

and nausea. Today is a big research area to solve the caused problems of the VR

and AR (Kramida, 2016), however it is still an open question. So VR and AR

are not good for real clinical research which is available in the outside world, but
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it is good for getting proper data for the training (Mick et al., 2021). In the real-

world environment, the visual scene analysis tools have to be sufficiently advanced to

recognize and localize, in a cluttered environment, the object the prosthesis wearer

needs to grasp. In the follow-up of this chapter we will review popular methods

from the state-of-the-art (SOTA) for object recognition.

2.3 Object recognition in visual scenes

In recent years, in the field of computer vision, the most popular algorithms for

object detection are deep convolutional neural network, such as Fast Region-based

Convolutional Neural Network (R-CNN) (Ren et al., 2017), You Only Look Once

(YOLO) (Redmon et al., 2016), and Single-Stage Object Detection (SSD) (Liu et

al., 2016). These detectors are based on deep Residual Network (ResNet) (He et

al., 2016), Visual Geometry Group Net (VGGnet) (Simonyan et Zisserman, 2015),

Alexnet (Krizhevsky et al., 2017), MobileNet (Howard et al., 2017), GoogleNet

(Szegedy et al., 2015) and on older Alexnet (Krizhevsky et al., 2017).

ResNet (He et al., 2016) was proposed by He et al. and uses residual blocks,

which are illustrated in Figure 2.2.

Weight Layer Weight Layer
RELUx

F(x)
F(x)+x

RELU
+

Figure 2.2: Example of the residual block in the ResNet.

Its principle is based on the optimizing a residual mapping instead of direct

mapping.
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Let us denote the desired underlying mapping as H(x). Then the new mapping

F (x) is introduced as

F (x) := H(x)− x

where we let the non-linear stacked layer fit F (x). The original mapping is recast

into F (x) + x. It is easier to optimize the residual mapping than to optimize the

original mapping. F (x) + x can be realized by feedforward neural networks with

shortcut connections, as illustrated in Figure 2.2. Shortcut connections can skip one

or more layers. In ResNet (He et al., 2016), the outputs of the shortcut connections

are simply added to the outputs of the stacked layer.

The computational cost of ResNet (He et al., 2016) is high, which makes real-

time implementation difficult. However, there are methods that can accelerate the

computational speed.

VGGNet (Simonyan et Zisserman, 2015) is a simple deep convolutional neural

network, where depth refers to the number of layers. The VGG-16 consists of 13

convolutional layers and 3 fully connected layers. The convolutional layers are simple

because they use only 3 × 3 filters and pooling layers. This architecture has become

popular in image classification problems.

Faster R-CNN was proposed by Ren et al. (2017). This architecture has gained

popularity among object detection algorithms. Faster R-CNN (Ren et al., 2017) is

composed of the following four parts:

• feature extraction module; this can be a VGGnet (Simonyan et Zisserman,

2015), Mobilenet (Howard et al., 2017), or ResNet (He et al., 2016);

• region proposal module to generate the bounding boxes around the object;

• classification layer to detect the class of the object—for example, cat, dog,

etc.;
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• regression layer to make the prediction more precise.

The computational speed of the network depends on the feature extraction mod-

ule and the size of the region proposal module.

Both SSD (Liu et al., 2016) and YOLO (Redmon et al., 2016) are single-stage

detectors. They are significantly faster than two-stage detectors (region-based meth-

ods), such as Faster R-CNN (Ren et al., 2017). However, in cases when the objects

have not so much variability, neither interclass nor intraclass Faster R-CNN (Ren

et al., 2017) is a well-suited network. In our problem, we are interested in natu-

rally cluttered home environments, where the subject intends to grasp an object,

such as in kitchens. The vision analysis system we propose has to be designed

to recognise objects to grasp in the video, similar to the Grasping In The Wild

(GITW) dataset (LaBRI, 2016). This dataset was recorded in natural environments

by several healthy volunteers and made publicly available on the CNRS NAKALA

platform. The objects here, seen from the glass-mounted camera, are quite small.

Their surface merely represents 10% of the whole video frame. For more informa-

tion on this dataset, see Chapter 3.3.2. Hence, Faster R-CNN (Ren et al., 2017) is

a better choice than the SSD (Liu et al., 2016) and YOLO (Redmon et al., 2016).

This is due to the fact that Faster R-CNN (Ren et al., 2017) achieves higher mean

average precision (mAP) than them, as reported by Huang et al. (2017) for small

objects.

The original Faster R-CNN (Ren et al., 2017) uses VGGnet (Simonyan et Zisser-

man, 2015) as a feature extractor. However, the mAP is higher when ResNet (He

et al., 2016) is used as a backbone (Redmon et Farhadi, 2016). When the object is

small, the mAP of the backbone with ResNet (He et al., 2016) is higher than the

backbone with MobileNet (Howard et al., 2017), as reported in Huang et al. (2017).
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2.4 FPGA implementation of visual scenes analysis

methods

There are several possible ways to accelerate an algorithm, as described in Fejér

et al. (2019). In our case, the FPGA was chosen in the interest of developing a

lightweight and portable device (Fejér et al., 2021b). In the first part of the section,

the different CNN accelerations on the FPGA are discussed. These approaches

have been implemented as tools available today to accelerate a network on different

FPGAs.

The second part of this section is about the acceleration of the SIFT (Lowe,

2004) algorithm on different hardware architectures. The main parameters of various

architectures will be discussed from the point of view of the wearable device.

2.4.1 CNN acceleration on FPGA

If speaking of one of possible realistic scenarios for a prosthetic arm control, the

DNN for object detection and recognition can be trained off-line. The real-time

constraints are imposed only at the inference stage. Neural network inference can be

very efficiently accelerated on Field-Programmable Gate Array (FPGA). The most

important frameworks and development environments are Vitis AI (Kathail, 2020),

Apache TVM Versatile Tensor Accelerator (VTA) (Moreau et al., 2019), Brevitas

(Pappalardo, 2021), and FINN (Umuroglu et al., 2017).

Due to large computing and memory bandwidth requirements, deep neural net-

works are trained on high-performance workstations, computing clusters, or GPUs

using floating-point numbers. The memory access pattern of the inference step of

a trained network is different, offering more data reuse and requiring smaller mem-
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ory bandwidth. It makes FPGAs a versatile platform for acceleration. Computing

with floating-point numbers is a resource-intensive process for FPGA in terms of

digital signal processing (DSP) slices and logic resource usage. Memory bandwidth,

required to load 32-bit floating point state values and weights, can be still high

compared to the capabilities of low-power FPGA devices. Additionally, a signifi-

cant amount of memory is required for buffering state values and partial results in

the on-chip memory of the FPGA. One possible solution would consist of using the

industry-standard bfloat, 16-bit, floating-point representation, which can improve

the inference speed of an FPGA. Observations show (Umuroglu et al., 2017) that

the value of weights, state values, and partial results during the computation usually

fall in a relatively small range and the 8-bit exponent range of the bfloat type is

practically never used. If the range of values during the computation is known in

advance, then fixed-point numbers can be used. One of the major application areas

of FPGAs is signal processing; therefore, DSP slices are designed for fast, fixed-point

Multiply-ACcumulate (MAC) or Multiply-ADD (MADD) operations, which can be

utilized during neural network inference.

Converting a neural network model trained with floating-point numbers to a

fixed-point FPGA-based implementation usually requires an additional step, called

quantization. Here, a small training set is used to determine the fixed-point weights

and optimize the position of the radix point in each stage of the computation.

The common bit width for quantization is 16 or 8 bits, where the accuracy of the

network is slightly reduced. In some cases, even a binary representation is possible

(Umuroglu et al., 2017), eliminating all multiplications from the computation, which

makes FPGA implementation very efficient while the accuracy is decreased slightly.

For latency-sensitive applications, this fixed-point model can be implemented on

a streaming architecture, such as FINN (Umuroglu et al., 2017), where layers of
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the network are connected directly on the FPGA. Using this structure, loading and

storing state values can be avoided. In an ideal case, when the number of weights

is small enough, they can be stored in the on-chip memories, further reducing the

memory bandwidth requirements of the system. This also results in lower dissipated

power due to the high energy requirement of off-chip data movement. Another

approach used in Vitis AI (Kathail, 2020) and Apache TVM VTA (Moreau et al.,

2019) is to divide the computation into a series of matrix-matrix multiplications and

create a customized ISA (Instruction Set Architecture) to execute these operations

efficiently. The resulting system might have higher memory bandwidth requirements

and longer latency, but can be easily reprogrammed to infer a different network

during different steps of an image processing application.

Apache TVM VTA (Moreau et al., 2019) is an open, generic, and customizable

deep learning accelerator with a complete TVM-based compiler stack. It is an

end-to-end hardware-software deep learning system stack that combines TVM and

VTA. It contains the hardware design drivers, a Just-In-Time (JIT) runtime, and

an optimizing compiler stack based on TVM.

The main advantages of quantization are reduced circuit complexity, efficient use

of dedicated hardware resources, reduced on-chip memory requirements, reduced off-

chip memory bandwidth, and smaller power dissipation. Therefore, for a lightweight

body-worn device, Vitis AI (Kathail, 2020) is a good choice, because it can accelerate

the network with minimal loss of accuracy.

2.4.2 SIFT acceleration on FPGA

Detecting SIFT key-points is a part of the whole vision assistance for prosthesis

control and also is one of the bottlenecks in computational speed. Computing power

is a multi-parameter vector: any algorithm solving a problem will have a speed-
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power-area-bandwidth-accuracy metric. In the follow-up of this section, a review of

available solutions is being presented based on this multi-criteria point of view.

First of all, detecting keypoints in images for matching them in mosaicking or mo-

tion compensation is a very well studied problem. There are several keypoint detec-

tors existing in computer vision such as Oriented FAST and Rotated BRIEF (ORB)

(Rublee et al., 2011), Speeded-Up Robust Features (SURF) (Bay et al., 2008), and

the most widely used is SIFT (Lowe, 2004). The previously mentioned detectors

differ in the following way, one of which is the technique by which keypoints are

extracted and also by the process the descriptors are computed and matched. ORB

uses two main steps: an oriented Features computation from Accelerated Segments

Test (FAST) (Rosten et Drummond, 2006) which extracts the keypoints location

and orientations of the keypoint combined with Binary Robust Independent Ele-

mentary Feature (BRIEF) (Calonder et al., 2010). The latter calculates the binary

descriptors around extracted points. The SURF (Bay et al., 2008) uses integral im-

ages and box filtering to extract the keypoints and descriptors computation. Both

SURF (Bay et al., 2008) and ORB (Rublee et al., 2011) require less computational

time than SIFT (Lowe, 2004). All these detectors were proposed to accelerate and

simplify the original SIFT detector proposed in (Lowe, 2004). Nevertheless, we have

chosen the SIFT algorithm to implement on FPGA because Karami et al. (2017)

showed that in different kinds of transformations and deformations such as scaling,

rotation, noise, fish-eye distortion, and shearing SIFT outperformed other methods

in precision.

SIFT is a widely used and implemented keypoint detector. There are CPU

(Bradski, 2000; Hess, 2010), GPU (Li et al., 2017; Björkman et al., 2014) and FPGA

implementations (Ginés et al., 2020; Pablo et al., 2018; Vourvoulakis et al., 2017,

2016; Chang et al., 2013; Shao et al., 2015). The OpenCV SIFT library (Bradski,
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2000) and the OpenSIFT (Hess, 2010) are popular frameworks for SIFT keypoint

extraction and descriptor computation on CPUs. This is partially due to their

flexibility, as the input image resolution can be modified easily. However, the run-

times of these CPU implementations are too slow for real-time image processing on

lightweight devices.

Computation of SIFT can be accelerated by using GPUs, for example: Cud-

aSIFT (Björkman et al., 2014) can process a 1280px × 960px image in 12.7 ms, i.e.

78.74 frames per second (fps) on the NVIDIA GeForce GTX 580 GPU. However, its

power consumption is 244W, which is too high for a wearable application. HartSIFT

(Li et al., 2017) can extract features within 3.14∼10.57ms (94.61∼318 fps) depend-

ing on the input image size on the NVIDIA GeForce GTX TITAN Black. The power

consumption of this GPU is 250W, which is also very high for a portable device.

da Costa Barreiros (2020) implemented a SIFT Lowe (2004) on GPUs. da Costa Bar-

reiros (2020) tested the implemented SIFT on different GPUs like NVIDIA GTX

1060, NVIDIA GTX TITAN Black, and the embedded system NVIDIA Jetson TX2.

The power consumption of the NVIDIA Jetson TX2 is 7.5W-15W, which is ideal for

a portable device. da Costa Barreiros (2020) SIFT can process a 2560 × 1920px im-

age 1142.56ms on NVIDIA Jetson TX2. It can compute the Scale-Space in 411.32ms,

the Difference of Gaussians in 11.43ms, the extrema detection in 262.79ms, the ori-

entation histogram in 68.55ms and the feature descriptor step in 388.47ms. So it

can compute the KP extraction step in 685.54ms.

The most computationally intensive operation in SIFT keypoint extraction is

the computation of the Gaussian pyramids, as it requires the multiplication of coef-

ficients of Gaussian filters with scale-space images. For this step, an analog solution

is developed by Rodríguez-Vázquez et al. (2009); Suárez et al. (2014) where the

Gaussian pyramid is computed by an analog CMOS circuit and exhibits very low
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dissipated power. One of the advantages of the inherent parallel processing is the

high computational power of the analog VLSI implementations. However, the size

of the array is small (Rodríguez-Vázquez et al., 2009; Toshiba, 2019; Suárez et al.,

2014). In Suárez et al. (2014), the analog sensor/processor implementation has

88x60 processing elements, and each processing element has 4 photo-diodes. The

computation unit is connected to the vision sensor unit of the camera. The vision

sensor array has 176x120 pixels only and the system is implemented using a 0.18

µm CMOS technology. This solution is satisfactory from a computational point of

view. However, it is not flexible with regard to increasing the video resolutions on

wearable cameras. The resolution of the analog sensor is not sufficiently high for our

application, since our method uses larger areas in video frames and it needs 480px

× 480px image as input at least, if the resolution of video frames is HD or Full HD,

which is a case of many commercial video cameras on glasses or on other wearable

devices.

Several different SIFT implementations on FPGA are published, such as the sys-

tem designed by Ginés et al. (2020), which is a simplified version of the algorithm.

It is assumed that each feature point has two main orientations at most, the orienta-

tion histogram uses 8 bins instead of 36 bins. Thus, complexity is reduced, but the

precision of orientations drops with regard to the original SIFT (Lowe, 2004). The

system can process 640px × 480px sized input images at 99 fps processing speed on

Xilinx Virtex-5, and it uses fixed-point representation.

Pablo et al. (2018) implemented the subpixel refinement stage of the SIFT algo-

rithm. They used a ZedBoard (Xilinx Zynq7020) FPGA board and the rest of the

algorithm was computed on the CPU.

Vourvoulakis et al. (2017, 2016) implemented an FPGA accelerated SIFT match-

ing with RANSAC support. The architecture includes 1 octave and 4 scales. The
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Gaussian kernel computation is optimized to reduce the logic and memory resource

requirements on the FPGA. Size of the circuit is further reduced by using 14bit

fixed-point numbers during the Gaussian filter computation. In order to evaluate

the first derivatives of the Difference of Gaussian images, Prewitt mask has been

used. This step is required to remove the keypoints on the edges. Their system

was implemented using VHDL on an Intel DE2i-150 board and can process 640px

× 480px input video at 81 fps.

Chang et al. (2013) proposed an architecture, where the Scale-space extrema are

calculated on the FPGA and the rest of the algorithm on the CPU. The scale-space

extrema detection uses a separable kernel, which requires reduced logic and memory

resource usage on the FPGA. Their implementation runs in a Xilinx Virtex II Pro

FPGA, with a configuration of three octaves and six scales, and with a 145 MHz

clock frequency. An image of 320px × 240px is processed in 1.1 ms (900 fps).

Shao et al. (2015) implemented the SIFT algorithm on a Virtex-5 FPGA board,

the input image has 292px × 520px resolution. The system can process images at

38 fps. They changed the Gaussian pyramid building, instead of filtering in parallel

with different size filters they cascaded several smaller size Gaussian kernels. The

design of the system is simplified but requires more memory resources.

There also exists an FPGA implementation which handles the descriptor match-

ing part after the keypoint extraction (Daoud et al., 2020). The architecture is fully

pipelined and uses a 16-bit fixed-point number representation.

Hence, the efficient SIFT implementation on FPGA still remains an open re-

search question.

In Chapter 4.3, we propose an FPGA solution which is developed in a high-level

language. Therefore, it is easier to modify some parameters such as the number of

Gaussian layers compared to VHDL or Verilog-based SIFT implementations.
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2.5 Comparing different hardware for an embedded

system from computer vision point of view

For controlling prosthetic arm a wearable, lightweight device is mandatory. There

are two ways to implement a wearable device. One possible solution to use an IoT

device which contains one or more sensors and a small micro-controller for network

communication, data recorded by the sensors being processed by a remote server.

Another possibility is to design an embedded system where both data recording

and processing is performed by the same place. Both of the solutions are good for

creating a lightweight and portable device. We are decided to design an embedded

system.

For creating an embedded system there are different hardware architectures such

as Microcontrollers, Microprocessors (Raspberry Pi), Nvidia Jetson and FPGA SoC.

All of them have a low power consumption however the Microcontrollers and Mi-

croprocessors do not have enough computing power.

Qasaimeh et al. (2019) compared ARM57 CPU, Jetson TX2 GPU, and ZCU102

FPGA to each other. They used publicly available computer vision and image

processing libraries such as OpenCV, Nvidia VisionWorks and xfOpenCV, without

adding any special platform specific code. Qasaimeh et al. (2019) experiments show

that simple and easy-to-parallelize kernels perform on GPUs (1.1-3.2x energy/frame

reduction). FPGAs outperform GPUs and CPUs (1.2-22.3x energy/frame reduction)

in more complete vision pipelines. Thus, FPGAs perform better if the complexity

of vision pipelines grows.

Yu et al. (2020) implemented an FPGA-based Overlay Processor for Lightweight

convolutional neural network namely Light-OPU on Xilinx XC7K325T FPGA board.

They compared different hardware such as Intel(R) Core(TM) i7-8700K CPU @
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3.70GHz and Nvida Jetson TX2 GPU. Inferences on GPU use batch = 1 mode

for latency dominating evaluation, with power consumption all averaged over 500

runs. Yu et al. (2020) present a comprehensive evaluation of eight lightweight CNNs

such as MobileNetV1 (Howard et al., 2017), MobileNetV2 (Sandler et al., 2018),

MobileNetV3 (Howard et al., 2019), SqueezeNet (Iandola et al., 2016), DenseNet

(Iandola et al., 2014), Xception (Chollet, 2017) and ShuffleNet (Zhang et al., 2017).

They also experimented with different kernel sizes (1×1, 3×3, 5×5, 7×7), strides

(1×1, 2×2), layer types (Conventional-CONV, DW-CONV, group-CONV) and re-

port these results. Irregular operations such as channel shuffle, residual addition and

dense block concatenation are also included. Yu et al. (2020) solution performed

5.5× better latency and 3.0× better power efficiency compared with edge computing

targeted GPU Jetson TX2.

Based on Qasaimeh et al. (2019); Yu et al. (2020) FPGAs compared to GPUs

are powerful and more power-efficient so in our case, it is an ideal choice to create

an FPGA-based embedded system.

2.6 Existing hybrid HW/SW solutions on FPGA

In the variety of proposed hybrid solutions today, there exist FPGA boards with

system on chip (SoC) such as Zynq UltraScale+ MPSoC ZCU102 (Xilinx, 2019).

The features of those boards are that a direct connection between an embedded

CPU and the FPGA blocks is ensured. This is a good feature of such boards, as

the implementation of a complex algorithm can be realized in a hybrid way : low-

level signal processing operations necessary for image analysis algorithms can be

implemented in FPGA blocks, while more sophisticated parts of them, which does

not require purely hardware acceleration can be fulfilled on the embedded CPU.
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Nowadays, the acceleration of computer vision algorithms is necessary not only in

assistive robotics, but also in industrial robotics and UAV embedded video analysis

Kóta et al. (2019), scene understanding for self-driving car guidance Han et Oruklu

(2014). The implementation has to be lightweight and with a high computational

power, as in our case.

Thus, Kóta et al. (2019) proposed a hybrid solution for a collision avoidance

system based on visual detection, for Unmanned Aerial Vehicles (UAVs). The whole

algorithmic chain of the solution comprises two parts:the preprocessing algorithms

which crop the horizon, and the clouds, and a neural network, that identifies the

approaching object. Some parts of image processing algorithm at the pre-processing

step are accelerated on FPGA, such morphological operations (erosion, dilation),

Gaussian blurring, and adaptive thresholding. The neural network and the contour

search algorithm for obstacle avoidance run on the embedded processor.

Han et Oruklu (2014) developed a hybrid HW/SW system for real-time traffic

sign detection and recognition. The hue calculation and the morphological filter

are running on FPGA, while the filtering for good points and the other part of the

decision is running on the embedded ARM processor. Their results show that the

HW/SW solution is faster than the soft-core CPU implemented version.

Sun et al. (2018) designed a Zynq-7020 based system for multi-axis motion con-

trol and motor drive of robotic arms. The embedded CPU realizes advanced servoing

algorithm, and accomplishes multi-axis trajectory planning, while the FPGA realizes

the Multi-axis pipeline current loop controller. Their results show that controlling

a robotic arm on FPGA is achievable.

Hence, Kóta et al. (2019); Han et Oruklu (2014) have shown that for computer

vision and image processing problem a hybrid HW/SW embedded system could be a

good solution for creating a portable, low-power consumption and wearable device.
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Sun et al. (2018) demonstrated that the hybrid FPGA embedded system is also

good for just controlling the motors of the robotic arm.

2.7 Conclusion

Hence, in this chapter we have presented a focused SOA analysis for our target

task: real-time implementation of the object-to-grasp detection and localization on

a light-weight wearable device from ego-video and gaze fixations information in view

of prosthetic arm control.

Summarising different research contributions, we can state the following.

Mouchoux et al. (2021) used gaze tracking devices to control a robotic arm.

Fukuda et al. (2021) are also controlling a robotic arm with visual guidance and

they are using deep learning methods. Therefore controlling a robotic arm with

visual guidance is possible.

The FPGA-based solution is ideal for controlling a robotic arm based on visual

information, because it is a good accelerator for computer vision and image pro-

cessing (Qasaimeh et al., 2019; Yu et al., 2020). FPGA also outperformed GPU in

power efficiency and latency (Yu et al., 2020). The FPGA has direct I/O access

which GPU does not have.

Kóta et al. (2019); Han et Oruklu (2014) showed that a hybrid embedded system

is feasible for implementing computer vision and image processing algorithms and

accelerating them for a real-time processing. They also showed that those embedded

systems are energy efficient and wearable, which is necessary in our case to control a

robotic arm. Sun et al. (2018) showed that a hybrid HW/SW system is convenient for

controlling the robotic arm motors. Hence, the whole end-to-end implementation

for visual control of a robotic prosthetic arm can be done on the same wearable
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device.

Coming to the methodological tools of the whole algorithmic chain to implement,

we first have compared different keypoint extractors such as SURF (Bay et al.,

2008), ORB (Rublee et al., 2011) and SIFT (Lowe, 2004). SIFT has been chosen

to implement to an FPGA, because Karami et al. (2017) showed that in different

kinds of transformations and deformations such as scaling, rotation, noise, fish-eye

distortion, and shearing SIFT outperformed other methods in precision.

For the choice of object-to-grasp recognition framework, we found our decision

on the real-world video corresponding to the ecological situation of the prostheses

wearers, namely the GITW LaBRI (2016) dataset. In case of the camera-on-glasses

setting the objects are small, their surface merely represents 10% of the whole video

frame. In that case, Faster R-CNN (Ren et al., 2017) is a better choice than the

popular SSD (Liu et al., 2016) and YOLO (Redmon et al., 2016) due the fact that

Faster R-CNN (Ren et al., 2017) achieves higher mAP as it was reported by Huang

et al. (2017) for small objects.

The original Faster R-CNN (Ren et al., 2017) implementation uses VGGnet

(Simonyan et Zisserman, 2015) as a feature extractor. Redmon et Farhadi (2016)

showed that the mAP is higher when ResNet (He et al., 2016) is used as a backbone.

Huang et al. (2017) reported that when the objects are small the mAP is higher when

ResNet (He et al., 2016) has been used as backbone compare to MobileNet (Howard

et al., 2017).

Finally, we did analysed different CNN accelerators on FPGA. And we come to

the conclusion, that Vitis AI (Kathail, 2020) is a good choice for accelerating a CNN,

because it quantizes the network. The advantages of quantization are reduced circuit

complexity, efficient use of dedicated hardware resources, reduced on-chip memory

requirements, reduced off-chip memory bandwidth, and smaller power dissipation.
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Vitis AI (Kathail, 2020) can accelerate a CNN with minimal loss of accuracy. Also

the Vitis AI is suitable for creating a wearable device.

In the next Chapter 3, we will analyse the full algorithmic chain of object to

grasp recognition in view of FPGA based implementation.
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Chapter 3

Analysis of object-to-grasp recognition

in view of FPGA based implementa-

tion

3.1 Introduction

The vision analysis part is the most critical in the entire chain of prosthetic arm

control. In fact, errors in visual recognition and object localization would yield the

wrong prosthetic arm servoing and would require corrective actions from the pros-

thesis wearer. Obviously, none of the automatic systems gives an ideal solution of

100% accuracy, one of the best reported results are as low as of MSE = 52.14 ±

7.72 cm2 accuracy (Krausz et al., 2020), but corrective actions, induced by wrong

recognition and localization, have to be as rare as possible. Therefore, regardless

of the algorithmic complexity of the approach, the first goal of vision-guided pros-

thesis systems is to ensure the best possible success rate. However, Ortiz-Catalan

et al. (2015) has demonstrated that quantitative evaluation metrics used to assess

a control’s correctness under laboratory circumstances are poor indicators of actual

clinical results. Therefore, we cannot reduce the performance, but need to accelerate
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the computations in a lightweight framework of a wearable device.

The complexity of visual recognition algorithms today, in particular object recog-

nition, is such that we can not reasonably hope to implement all the processing chain

on FPGAs. Filtering, or other low level image processing algorithms (Zarándy et

al., 2016) can be easily implemented as we reviewed it in Chapter 2. Today many

components to build object recognition systems have been already made available in

FPGAs implementation such as CNNs (Fan et al., 2018). Therefore, the goal is not

to implement the whole approach for object recognition in FPGAs, but to propose

a flexible solution which would allow for:

• fast adaptation to new achievements in object recognition;

• be compatible with real time for prosthetic arm control;

• ensure low dissipation of power for wearable devices;

Therefore, we have to identify the most critical components of the algorithm in

terms of

• computational power required,

• availability of component implementations

• inter changeability of components

In this Chapter 3 we analyze the full chain of the system, we present the GITW

(LaBRI, 2016) dataset which was recorded for the object grasping scenario, the

target FPGA board. We finally analyze the computational complexity of the system

for object-to-grasp recognition in view of its hybrid implementation.
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3.2 Visual servoing of upper-limb prosthesis scenario

In our vision servoing scenario, the prosthesis wearer is supposed to wear glasses

with a scene camera and an eye tracking device. Hence, to elaborate our solution,

we have used a set of video pre-recorded with such a setting.

The Tobii Pro Glasses 2 eye tracking system (AB, 2016) has been used to record

the videos and the gaze points during the experiments. The system comprises a

lightweight Tobii Pro Glasses Head Unit, a wearable Tobii Pro Glasses Recording

Unit and Tobii Glasses Controller (running on Windows 7, 8 or newer operating

system) or Tobii Pro Glasses 2 API which is running on any devices. The Tobii Pro

Glasses Recording unit can be worn as a glass as shown in Figure 3.1.

Figure 3.1: Example of the Tobii 2 glass camera usage.
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Before starting an experiment, the system must be calibrated for each partici-

pant. During the calibration process, the user should look at the calibration card

held in front of him for a few seconds. When the system is calibrated, the recording

can be started.

The Tobii Pro Glasses Recording Unit can record an egocentric video 1920px

× 1080px size with 25fps. It can also record the user’s gaze point location in the

video frame and the distance between the glass and the foveated object with mil-

limeter precision. The gaze point data are stored in JSON file format, and it can be

accessible via the API or with the Tobii Glasses Controller.

The Tobii Pro Glasses Recording Unit has four API interfaces, the POST API,

the REST API, the Livestream API, the Discovery API.

• POST API: The API is stored on the SD card and contains all scene camera

and gaze data stored during recording and calibration.

• REST API: This API is used to control the Tobii Pro Glasses Recording

Unit, e.g. to create projects, start and stop calibrations and recordings, but

it can also be used to retrieve Tobii Pro Glasses Recording Unit status and

information of the Tobii Pro Glasses Recording Unit and its head unit.

• Livestream API: This API can be used to get live data and video in real time.

• Discovery API: This API can be used to discover a Tobii Pro Glasses Recording

Unit over the network.

3.3 Object-to-grasp recognition approach

The vision analysis part, which is the most critical in the whole chain of prosthesis

servoing, is presented in Figure 3.2. The underlying hypothesis for the function-
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ing of vision-guided neuroprostheses is that the upper limb amputees wearing the

neuroprostheses are first looking at the object they wish to grasp.

Figure 3.2: The prosthetic arm visually guided system.

The subject is wearing a Tobii glasses device, which acquires an ego-visual scene

and records gaze fixations of the subject in their coordinate system—see the left-

most block in Figure 3.2. The recorded gaze fixations allow for roughly localizing

the object of interest in video frames.

Nevertheless, visual saccades to the distractors in a visual scene, microsaccades,

and initial scene exploration before the subject finds the object make these measure-

ments noisy. Hence, two blocks of the system—gaze point alignment and gaze point

noise reduction—serve to estimate the position of the gaze fixation on the object in

the current ego-video frame.

The gaze-point alignment module aims at estimating and compensating for the

ego-motion between the past frames and the current frame. For more details, see

Section 5.2.

The goal of the gaze point noise reduction module is to reduce the noise in

the current frame. This noise can be a head motion, or a product of the user

being distracted and looking at another object for a moment. For more details, see

Section 5.3.

Then, the video frame is cropped around the estimated gaze point to limit the

area of the object search. Finally, different object proposals bounding boxes (BBs)

at different scales are generated around the point for object localization. The gaze
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point-centred image and the set of BB coordinates are then submitted to the gaze-

driven CNN—see the right-most block in Figure 3.2.

The gaze-driven CNN (González-Díaz et al., 2019) is pre-trained on the taxonomy

of objects to detect. It outputs the best score for the object class and the best-scored

bounding box. When the object is localized in a video frame, the 3D position of

it for prosthesis servoing can be estimated from eye tracker depth measures of gaze

fixation and the coordinates of the centre of the best-scored bounding box.

The resolution of the Tobii first-person view camera is full HD (1920 × 1080 px),

with a frame rate of 25 frames per second (fps). More information about Tobii can

be found here in Chapter 3.2

The real-time requirement for the system in our case means that each processing

step of the localization of the object of interest in the glasses-mounted camera in

a current video frame has to be lower than 40 ms (the video acquisition rate), and

the latency of the whole system should be lower than 100 ms to leave the place for

mechanical servoing of the prosthetic arm (Mick et al., 2019).

In this work, we do not consider depth estimation, which is a simple regression

from eye tracker gaze fixation measures—our focus is on object detection. In the

following passages, we present each system block in detail.

3.3.1 Object recognition scenario

González-Díaz et al. (2019) proposed a Gaze-Driven Faster R-CNN, which can pre-

dict an object type and location in an image. Their input is the Tobii (AB, 2016)

eyetracker camera frame and the recorded gaze point, more information about Tobii

camera can be found here in Chapter 3.2.

González-Díaz et al. (2019) system has a preprocessing part, which is built upon

two different modules, see the upper part of Figure 3.3: the geometric alignment and
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the gaze point noise reduction. The geometric alignment module aims at estimating

and at compensating the ego-motion between the past frames and the current frame.

This step is necessary to project all collected gaze points into the current frame.

These gaze points will be used to estimate a smoothed position of the gaze point

in the current frame, as the real gaze point coordinates can be noisy due to the

distractors and micro-saccades. Our solution is using the same preprocessing steps.

For more information, see Chapter 5.2.

The gaze point noise reduction aims at reducing the noise caused by a head

motion, or produced by the user being distracted and looking at another object for

a moment. González-Díaz et al. (2019) used the Kernel Density Estimation (KDE)

algorithm to do that. The input was the geometrically aligned gaze points and the

KDE searched in the whole image. The output is the estimated fixated gaze point.

For more information about KDE, see Chapter 5.3.2.

Figure 3.3: Gaze-driven CNN for object recognition. Upper part: Preprocessing pipeline.
Lower part: the Gaze Driven CNN on object proposals (González-Díaz et al., 2019).

To localize the object more precisely, González-Díaz et al. (2019) proposed to

generate a certain number of object proposals, such as bounding boxes of different

scales and aspect ratios around the estimated gaze point in the current frame. In
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the original work González-Díaz et al. (2019) the number of different BBs was 9.

We keep it in our hybrid implementation.

So the Gaze-Driven Faster R-CNN (González-Díaz et al., 2019) inputs are

• the 9 bounding boxes around the estimated gaze point;

• the current frame;

As feature extractor from the current frame, we use ResNet (He et al., 2016)

subnet. Note that González-Díaz et al. (2019) once the gaze fixation is estimated,

there is no need to search for the object in the whole frame. In González-Díaz et

al. (2019) an input crop of 300×300px (centered on the estimated gaze point) is

performed and submitted to ResNet. The resulting generated feature tensor is of

size 19×19×2048, with a reduced spatial dimension (19×19) and an extended set of

2048 high-level feature channels.

Then the individual representation is generated for each considered candidate

region of interest (ROI)/bounding box (BB). The Multi-scale ROI Align pooling (Lin

et al., 2016) was used to generate the individual representations, and it produces

a set of bounding boxes 14x14x2048 tensors associated to each of the candidate

ROIs as shown in Figure 3.3. When an independent representation of each ROI

is computed, then the next step is to calculate the detection score for each object

category with the detection layer. The detection layer is a fully-connected layer that

transforms the 14x14x2048 tensor into a 1x1x17x9 (1x1xCxB) length tensor where

C is the class number and B is the bounding boxs around the object of interest. The

class number is 17 as the taxonomy comprises 16 object classes plus the background.

In the final step the vectors of all ROIs, are concatenated in a matrix and the matrix

of scores {fc,b} for ROIs is generated.

From this ROI score matrix, a vector of frame-level predictions is generated with
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Multiple Instance Learning (MIL). It is assumed that at least one bounding box is

corresponding to the object of interest. Log-Sum-Exp (LSE) aggregation (Ren et al.,

2017) has been used to calculate the class score vector. This vector is transformed

to probabilities with softmax operator.

González-Díaz et al. (2019) CNN can predict if the user is currently grasping the

object or not. It is a multi-class classification problem with C+1 action classes, c=0

is the "No Grasp", and c=1...C for the actions of "Grasp of object c". A Long-Short

Term Memory cells (LSTM) (Gers et al., 2000; Hochreiter et Schmidhuber, 1997)

CNN have been used and the input of this network was created of consternation of

four features: Magnitude of the gaze motion vector, magnitude of the ego-motion,

distance of the gaze point to the center of the image, and vector of active object

scores.

The input vector feeds a bottom LSTM layer with 256 units. The hidden state

cells of this last layer are passed to a fully connected layer. The output is sn ∈

R(C+1)x1 and this vector is converted to vector of probabilities with softmax layer.

Also, a dropout layer with a factor of 0.5 has been used during the learning to reduce

the overfitting.

This is an interesting exploratory research, nevertheless in our hybrid implemen-

tation we limit ourselves to the object to grasp detection and localization.

3.3.2 Dataset

The Grasping In The Wild (GITW) (LaBRI, 2016) dataset was recorded in the

scenario of object-to-grasp recognition in prosthesis control by healthy volunteers.

It is freely available for research at NAKALA CNRS server 1. The GITW contains

egocentric videos recorded by a camera on the eye tracker glasses. It includes the

1https://www.labri.fr/projet/AIV/graspinginthewild.php
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gaze points of where the person was looking at each moment. The videos were

recorded in the wild, in real kitchens, by different subjects. Every video corresponds

to the situation in which the subject looks for an object and grasps it.
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Figure 3.4: Examples of objects of the GITW(LaBRI, 2016) dataset.
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Figure 3.4: Example object of the GITW LaBRI (2016) dataset.

The acquisition device used was Tobii Glasses 2 (eye tracker) with an egocentric

scene camera. The Tobii Glasses video resolution is HD (1280 pixels × 720 pixels),

and the video frame rate is 25 fps. The gaze point fixations are recorded at 50Hz

frequency. The 16 different kitchen objects categories in the videos are: bowl, plate,

wash liquid, vinegar bottle, milk bottle, oil bottle, glass, lid, saucepan, frying pan,

and mug. Examples of these objects are presented in Figure 3.4. Different subjects

recorded the dataset in five different kitchens. The videos were short, around 10 s

long, as shown in Table 3.1 for the objects of bowl category.
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Table 3.1: Bowl subdataset overview.

Number Folder name Duration (s) Number bounding box
of frames objects

1 BowlPlace1Subject1 8.72 219 117

2 BowlPlace1Subject2 7.12 179 165

3 BowlPlace1Subject3 5.48 138 27

4 BowlPlace1Subject4 5.64 142 59

5 BowlPlace4Subject1 7.12 179 34

6 BowlPlace4Subject2 12.48 313 188

7 BowlPlace4Subject3 12.36 310 151

8 BowlPlace4Subject4 7.84 197 107

9 BowlPlace5Subject1 5.76 145 98

10 BowlPlace5Subject2 9 226 124

11 BowlPlace5Subject3 8.16 205 154

12 BowlPlace6Subject1 11 276 144

13 BowlPlace6Subject2 8.4 211 60

14 BowlPlace6Subject3 12.08 303 64

15 BowlPlace6Subject4 6.72 169 63

16 BowlPlace7Subject1 11.44 287 89

17 BowlPlace7Subject2 9.48 238 58

18 BowlPlace7Subject3 4.88 123 38

Total N/A 153.68 3860 1740

The GITW (LaBRI, 2016) dataset contains 404 videos overall.

We carried out the time measurements on a subset of the GITW dataset, contain-

ing eighteen videos of “grasping a bowl" actions, recorded by four different subjects.

The kitchen environments are of different complexity, from a scene with just a

few objects, such as the Can of Cola Place 2 Subject 3 videos (see Figure 3.6 a), to

a highly cluttered scene, such as BowlPlace4, see figure 3.6 b).
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Figure 3.5: Example of the Bowl subset. It contains different bowls in different kitchens.

The "Bowl" subset illustrated in Figure 3.5 has been used in SIFT measurements.

The reason was that this subset is very much representative of real-world scenes

and diverse with light changes, cluttered and non-cluttered scenes, different object

materials. Moreover, sometimes, we obtained strong blurring effects due to the

camera motion, which was worn on the person’s body.

Figure 3.5 shows that the materials and the colours of the objects are different.

The first two kitchens have red and blue bowls, there are glass bowls in the third

and the last kitchen. In the fourth kitchen there is a ceramic white bowl.
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Figure 3.6: Example of non-cluttered and cluttered environment.

Figure 3.7: Basic FPGA architecture.

3.4 Target FPGA board

In the 1980s, the FPGA industry has been born and Xilinx introduced their first

FPGA in 1984 (Trimberger, 2015), however the name FPGA was introduced later

in 1988 after Actel popularized the term.

Application-Specific Integrated Circuit (ASIC) companies built-to-order custom

integrated circuits in the 1980s. But those devices were just programmable one time.

The big advantage of FPGA is that it can be reprogramable “infinite” number of

times. That is a huge favor for FPGA because if something went wrong after the
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ASIC chip was created, it has to start from the beginning. The FPGA just has to

be reprogrammed, which is cheaper, and it is faster from a time point of view. So

basically FPGA is a device where the engineer can create a new digital circuits just

programming the device.

Xilinx XC2064 was the first FPGA, it contained only 64 logic blocks, each of

which held three-input lookup table (LUT) and one register (flip-flop (FF)). Today,

FPGAs, for example, Xilinx ZCU 102, which is described briefly in Chapter 3.4.1

contains 600K logic blocks. A general FPGA is shown in Figure 3.7. It contains

logic blocks which can be further divided to LUTs and flip-flop (FF), programmable

I/Os, dedicated memory modules (Block RAMs), digital signal processing (DSP)

blocks, and direct multipliers. During the decades, the general architecture does

not changed significantly. However, because of the improvement of the production

technology, nowadays advanced DSPs and more logic blocks can be found in an

FPGA chip.

A lot of different FPGA providers do exist in the world. Popular are AMD -

Xilinx, Intel - Altera, Lattice, and Microsemi. The Xilinx has different types of

FPGA families. The cheapest FPGA device families are the Spartans, the mid-class

boards are the Zynq, and the high-end boards are the UltraScale, and many others.

In the next part of this Chapter 3.4.1 we will introduce the Xilinx ZCU102 and

the Xilinx development software (in Chapter 3.4.2) and describe why we chose it for

this research.

3.4.1 Xilinx Zynq UltraScale+ MPSoC ZCU102

During this research, the Xilinx Zynq UltraScale+ MPSoC ZCU102 (Xilinx, 2019)

has been used. This device is suitable for accelerating computer vision and image

processing algorithms.
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The XCZU9EG FPGA device on the ZCU102 board has a processing system (PS)

and a programmable logic (PL) part. The PS part has a quad-core Arm Cortex-A53,

dual-core Cortex-R5F real-time processors, and a Mali-400 MP2 graphics processing

unit. The Cortex-A53 is an Application Processing Unit (APU) to run OS and

general purpose applications. The ZCU102 has a Zynq UltraScale+ XCZU9EG-

2FFVB1156 MPSoC chip. The Cortex-A53 is an Arm v8 architecture-based 64-

bit quad-core multiprocessing CPU. The Cortex-R5 is a Real-time Processing Unit

(RPU) and based on an Arm v7 architecture 32-bit RPU with a dedicated tightly

coupled memory (TCM). The Mali-400 is a graphics processing unit with pixel and

geometry processor and 64 KB L2 cache.

The device PS also has four high-speed serial I/O (HSSIO) interfaces. SATA 3.1

interface, source-only DisplayPort interface with video resolution up to 4K x 2K-30

(300 MHz pixel rate), USB 3.0 with 5 Gb/s line rate, Serial GMII interface-supports

a 1 Gb/s SGMII interface, and Integrated block for PCI Express interface (PCIe)

version 2.1.

Table 3.2: Xilinx Zynq UltraScale+ ZCU102 programmable logic resources.

Resource type Available
BRAM 912
DSP 2,520
FF 548,160

LUT 274,080

The PL resources of the ZCU102 has been shown in Table 3.2. It has 912 block

RAM (BRAM), 548,160 flip-flop (FF), 2,520 digital signal processing (DSP) units,

and 274,080 lookup table (LUT).

The ZCU102 has other ports too. There are communication & networking ports

such as RGMII communication 10,100 or 1000 MB/s, a serial GMII interface sup-

ports a 1 Gb/s SGMII interface, 4x SFP+ cage, SMA GTH, UART to USB bridge
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RJ45 Ethernet connector Sata, PCIe Gen2x4 Root port. Those ports help the device

communicate with other devices.

The ZCU102 has also some display port such as HDMI video input/output,

External Retimer device driving an HDMI output connector, 9x GPIO user LEDs

(8x PL 1x PS), VESA DisplayPort 1.2 source-only.

The PS and PL can be combined with multiple interfaces and DSP blocks to

effectively integrate user-created hardware. They can also access memory resources

in the processing system. The PS I/O peripherals, including the static/flash memory

interfaces, share a multiplexed I/O (MIO) of up to 78 MIO pins. Zynq UltraScale+

MPSoCs can also use the I/O in the PL domain for many of the PS I/O peripherals.

This is done through an Extended Multiplexed I/O interface (EMIO).and boots at

power-up or reset.

The dissipation of the FPGA chip on the board is 20W maximum based on the

thermal properties of the device package and heat sink installed on the chip (Xilinx,

2022a).

The ZCU102 can be used as an embedded device, because it can be booted from

an SD card and can work in a standalone mode. A possible operating system is

PetaLinux made by Xilinx. The PetaLinux has different packages such as Vitis and,

Python. The Xilinx has created a software platform which is ideal for this project.

In Vitis HLS the FPGA can be programmable in the high-level language C. More

information about Vitis HLS can be found in Chapter 3.4.2.

3.4.2 Vitis HLS, IP and Kernel Flow

Vitis HLS (formerly Vivavo HLS) is a high-level synthesis tool that allows compila-

tion of C, C++, and OpenCL functions to hardware modules using the device logic

fabric and RAM/DSP blocks. Vitis HLS supports to develop a register-transfer level
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(RTL) IP for Xilinx devices in C/C++ programming languages.

Vitis HLS automatically does the optimization in the C/C++ code. The code

should not contain any recursion, because the compiler cannot synthesize that to a

digital circuit. Thus, to achieve the best optimized RTL code, it is necessary to add

some pragmas to the code. The pragmas help the compiler to optimize design, reduce

latency, I/O ports usage, and resource usages. The pragmas are called directives in

Vivado HLS.

The optimal process to design a logical circuit in the Vitis HLS (Xilinx, 2022b):

1. Compile, simulate, and debug the C/C++ algorithm.

2. View reports to analyze and optimize the design.

3. Synthesize the C algorithm into a RTL design.

4. Verify the RTL implementation using RTL co-simulation.

5. Package the RTL implementation into a compiled object file (.xo) extension,

or export to an RTL IP.

It is possible to create different projects called “solutions” in Vitis HLS. The

solutions are good for creating a digital circuit for different boards, or try different

directives.

Advanced eXtensible Interface (AXI) 4 (Xilinx, 2017)is a part of ARM AMBA,

a family of microcontroller buses. The first version of AXI was introduced in 1996.

The current AXI4 was introduced in 2010.

It can handle 32-64 bit addresses, and the bus width is between 32-1024 bit.

It has separate write address channel, read address channel, read data channel,

write data channel and write response channel. The read and write channels are

independent and transactions can be executed in parallel.
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All AXI4 has a Master interface and a Slave interface. Xilinx implemented the

AXI4 protocol as an IP.

The C/C++ codes are synthesized in the following way to a RTL description:

• The Top-level function and the sub-functions from this top-level function are

designed the digital circuit. The top-level function arguments can be mapped

with the directive (#pragma INTERFACE) to the I/O ports and communicate

the PL and PS part using the AXI bus (for more information, please see

Chapter 3.4.1).

• The sub-functions of the top-level function are synthesized into blocks in the hi-

erarchy of the RTL design. The RTL design and the original top-level function

hierarchy of modules will be identical after the synthesis. The #pragma IN-

LINE directive can disable the automatic inlineing of the selected sub-function.

If the Vitis HLS compiler thinks inlineing a sub-function will cause better per-

formance, then the automatically generated version The #pragma ALLOCA-

TION directive

• Loops in the top-level and sub-functions are kept rolled and are pipelined by

default to improve the performance. The #pragma UNROLL directive can

unroll the loops manually, the compiler will unroll the loops if it improves the

performance of the RTL design, for example unrolling nested loops. Loops

can be pipelined with a finite-state machine fine-grain implementation (loop

pipelining with #pragma PIPELINE directive) or with a more coarse-grain

handshake-based implementation (dataflow with the #pragma DATAFLOW

directive).

• Arrays in the C/C++ code are synthesized into memory such as block RAM

(BRAM), lookup table (LUT) RAM, or UltraRAM in the RTL design. With
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directives for example #pragma ARRAY_PARTITION or #pragma ARRAY_RESHAPE

it, the type of memory or the read/write memory transfers per clock cycle can

be changed. If an array is a part of the top-level function interface, then the

array is implemented as ports with access to a block RAM outside the design.

After synthesis has been done, a report is generated in the Vitis HLS. This report

contains the generated RTL design modules, resource usages, and the computational

cost. The different solution results can also be compared to each other in the Vitis

HLS.

If the synthesis was successful, then an IP block can be generated in the IP

flow. After the IP is generated, an embedded system can be created in the Vivado

IP integrator. That means that the generated digital circuit is connected to the

other parts of the system via AXI4 buses such as memories, CPUs, other IPs, and

peripheries. The bit stream file is generated based on the created embedded system

in the Vivado IP integrator.

The generated bitstream alone is not enough for running on the Xilinx device.

An application is required to control the operation of the system, which is running

on the Xilinx SoC embedded Arm CPU. For this application, there are two solutions:

Vitis SDK and PYNQ. Vitis SDK supports C/C++, while PYNQ supports Python.

The operating system of the embedded system can be selected in Vitis SDK. The op-

erating system can be standalone, Linux or FreeRTOS. The other method (PYNQ)

will be introduced briefly in the Chapter 3.4.3.

3.4.3 PYNQ

PYNQ (Xilinx, 2018a) is a Xilinx open-source project. PYNQ (Xilinx, 2018a) offers

a Jupyter notebook based framework with Python APIs for using Xilinx platforms.

It is supported by several platforms such as Zynq and Zynq UltraScale+, Zynq RF-
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SoC, Alveo and AWS-F1 instances. It allows for designing embedded systems to use

Zynq devices, without having to use ASIC-style design tools to design programmable

logic circuits.

The FPGA part of the Zynq devices is called programmable logic (PL). In PYNQ,

the logic circuits in the PL are presented as hardware libraries called overlays. These

overlays act in the same manner as regular software libraries. The overlays can be

used as a black box and accessed through a Python API. The overlays are reusable

and reconfigurable, just like regular software libraries. However to create a new

overlay the knowledge of designing porgrammable logic circuits is still required.

The ZYNQ SoC embedded processors and the PL are programmed in with

Python in PYNQ. PYNQ uses CPython which is written in C, and integrates a

large amount of C libraries. It can be extended with optimized code written in C

as well. It is possible to use C programming language if it is more suitable for the

task in PYNQ.

PYNQ is a web-based architecture that is also browser-independent. The built-

in Jupyter notebook runs an Interactive Python (IPython) kernel and a web server

directly on the ARM processor of the Zynq devices. The web server brokers access

to the kernel via a suite of browser-based tools that provide a dashboard, bash

terminal, code editors, and Jupyter notebooks.

We choose PYNQ because during our embedded system design, it is possible to

use a high-level language such as Python. The implemented overlay is used as a

hardware library. The web-based architecture from the embedded processors makes

it possible to create an embedded system easily.
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3.4.4 Vitis AI

Vitis AI (Kathail, 2020; Xilinx, 2022c) can accelerate AI inference on Xilinx hard-

ware platforms such as FPGAs, SoCs, and Versal Adaptive Compute Acceleration

Platforms (ACAP). The development environment includes of optimized IP cores,

tools, libraries, models, and example designs. It makes possible to accelerate a

Neural Network on FPGA without special FPGA knowledge.

Vitis AI supports different deep learning frameworks such as PyTorch and Ten-

sorFlow.

The Vitis Model Zoo contains the optimized deep learning models, which are

usable on Xilinx platforms. The models include different fields of computer science

such video surveillance, robotics and data center. From an accelerated network point

of view, there are 4 different types:

• Classification: VGGnet, ResNet, Inception, Mobilenet

• Detection: Light head R-CNN, SSD, YOLO V2, YOLO V3

• Segmentation: Enet, Segnet, ESpnet, FPN, Deeplab V3+

• Pose estimation: Openpose, Coordinates regression

The Vitis Model Zoo also contains some information about the model:

• backbone, the name of the network, for example ResNet

• Input size, the size of the required data

• FLOPs number of floating-point operation in a second

• Parameters, i.e. the parameters of the network
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and training set, validation set, platform, the accuracy of the floating- and fixed-

point models.

Deep Learning Processor Unit (DPU) is a programmable engine optimized for

deep neural networks. It is built up from different parameterizable IP cores. For

those IP cores, no place and route are required. It can accelerate different kind

of algorithms such as computer vision for example classification or detection. The

DPU has a Vitis AI specialized instruction set. This is facilitating the efficient

implementation of deep learning networks.

The DPU allows accelerating several networks such as VGGnet, ResNet and

SSD, among others. The DPU is scalable to fit Zynq UltraScale+ MPSoCs (like

ZCU 102) and other Xilinx products.

Quantization and channel pruning techniques are suitable in reducing the amount

of computation and required memory bandwidth. This is ideal for an embedded

system that has limited resources. It also helps to achieve low-latency and high-

throughput. Quantization and channel pruning cause very little effect on accuracy.

Neural networks use 32-bit floating-point weights and activation values during

training. The Vitis AI converts those 32-bit floating-point to 8-bit integer (INT8)

to reduce the computational complexity without losing prediction accuracy. The

Vitis AI quantizer supports quantizing the convolution, pooling, fully connected

layer operations, and batch normalization Xilinx (2022c). The generated fixed-

point network compared to the floating-point network has better computational

performance, higher power efficiency, and it needs less memory bandwidth.

Post-training quantization (PTQ) is possible, and it requires a small set of unla-

belled images to analyze the distribution of activations. PTQ causes little accuracy

drop after quantization. Nevertheless, PTQ causes a higher accuracy loss in Mo-

bileNet as reported in Xilinx (2022c).
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Figure 3.8: Vitis AI quantization process Xilinx (2022c).

Figure 3.8 shows the chain of the quantization in Vitis AI. The input of the

Vitis AI quantizer is a floating point network. After the preprocessing the Vitis AI

quantizes the weights and biases and activations to the given bit width.

There is an optional step before quantization, the inspector. The information

partition tells which operators will run on DPU and which one should run on CPU.

To improve the accuracy of the network Vitis AI quantizer must run several iter-

ations of inference to calibrate the activations. After that calibration, the quantized

model is transformed into a DPU deployable model.

3.5 Critical analysis of computation complexity

In the first half of this section, the computational time measurements of the exist-

ing software solution will be shown.The results were analysed to show whether the
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module was suitable for real-time processing or not.

The second half of the section contains our proposals to accelerate the software

solution.

3.5.1 Time measurement of the whole system

Our goal is to build up a real-time neuroprosthetic arm control. In our case, that

means the whole system should process a frame in less than 100ms. There is another

constraint, namely, all the module should process the data in less than 40ms (25fps).

The Tobii eyetracker can record 25 frames per a second, which means that we can

use pipeling technique to accelerate the system.

Table 3.3 illustrates the average computational time of the system in milliseconds.

The first column contains the module name, and the second column contains the

Intel i5 7300HQ (Intel, 2017) CPU results. In the third column, the ARM A53

(Xilinx, 2021a)-embedded CPU results are given.

The Intel i5 7300HQ CPU can compute the following modules less than 40ms:

FLANN matcher, Homography estimation, Gaze point projection, bounding box

generation, Faster R-CNN and the MIL Aggregation. The SIFT keypoint extraction

takes 72.407 ± 3.349 ms, which is too much computation time for a module. The

Intel i5 can compute the KDE estimation on a frame in 12.477 ± 23.306ms. The

variance of the KDE estimation is too much (23.306 ms), it is more than the average

computation time (12.477 ms). The computation time of the ResNet50 is higher

(89.952 ± 2.568ms), than the required 40ms. The total computation time is 202.521

± 29.966 ms in the Intel i5 7300HQ, which is 4.93 fps. This is higher than the

maximum allowed 100ms computational time of the system.

The Intel i5 7300HQ power consumption is 45W. This is too high for a wearable

device. Because of that, the system also tested it on an ARM A53 embedded CPU,
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Table 3.3: The average computational time measurement of the whole system on a regular
computer and an embedded system. The goal is a system which can process a frame less
than 100ms and each module maximum computation time should be less than 40ms. The
SIFT, KDE estimation, ResNet50, and the Faster R-CNN computation times are too high
for real-time processing.

Computational time / frame (ms)

Module name Intel i5 7300HQ CPU ARM A53

SIFT Lowe (2004) 72.407 ± 3.349 865.499 ± 8.437

FLANN matcher 3.094 ± 0.638 18.223 ± 3.867

Homography estimation 0.270 ± 0.075 2.359 ± 0.778

Gaze point projection 0.015 ± 10−4 0.089 ± 0.003

KDE estimation 12.477 ± 23.306 126.672 ± 238.900

bounding box generation 0.424 ± 0.020 2.659 ± 0.027

ResNet50 (He et al., 2016) 89.952 ± 2.568 1800.327 ± 17.915

Faster R-CNN Ren et al. (2017) 23.718 ± 0.010 285.121 ± 0.002

MIL Aggregation 0.164 ± 10−6 0.727 ± 10−6

Total time (ms) 202.521 ± 29.966 3099.017 ± 269.927
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which has a low 5.6W power consumption.

The bottleneck modules of the whole chain of the system are the SIFT, KDE

estimation, ResNet50 and the Faster R-CNN computation on the ARM53. To ex-

tract the SIFT keypoint takes 865.499 ± 8.438ms on the ARM A53 CPU. The KDE

estimation takes 126.672 ± 238.900ms, the high variance is also a problem, simi-

larly to the other experiment on the Intel i5 7300HQ CPU. The ResNet50 feature

extraction takes 1800.327 ± 17.915ms on an ARM A53 CPU, which is too slow for

our target computational time. The Faster R-CNN module computation time for a

frame is 285.121 ± 0.002 ms and this should be accelerated for real-time processing.

The processing speed of the ARM A53 (Xilinx, 2021a) embedded CPU is slower

(3099.017 ± 269.927 ms) than the Intel i5 7300HQ (202.521 ± 29.966 ms), however

it is more suitable for a wearable device platform.

The measurements show that the current setup with the whole chain of modules is

not yet suitable for real-time processing. However, there are methods to accelerate

the slow modules with optimization of the algorithms. Thus, accelerating some

modules on FPGA and with pipelining the modules, with some delays, the real-

time processing speed is achievable. A hybrid HW/SW solution of this system is

introduced in the next subsection, based on the computational time measurement.

3.5.2 System hybridization

To propose a hybridization of the system, compatible with real-time performance,

we have conducted thorough time measurements on different CPUs to identify the

most time-critical modules, see in Table 3.3.

Kóta et al. (2019); Han et Oruklu (2014) showed that a hybrid embedded system

is good to solve computer vision and image processing algorithms and to accelerate

the algorithm for real-time processing speed. They also showed that these embedded
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systems are energy efficient and wearable, which is necessary in our case to control

a robotic arm.

Our measurements show, that one the bottleneck is the Scale-Invariant Feature

Transform (SIFT) detector, which is required in our system for geometric align-

ment of gaze points—see Figure 3.2. The main steps of the SIFT are the following:

scale-space extrema detection, keypoint localization, orientation assignment, and

descriptor generation. For hardware acceleration, we have chosen Xilinx UltraScale

ZCU102 (Xilinx, 2019) FPGA as it supports the parallel execution, and the energy

consumption is very low.

The gaze point noise reduction module is based on the KDE estimation. The

variance of the computational time is too high for the KDE estimation, as Table 3.3

shown. To reduce the required computation time, the outlier gaze point should be

eliminated with a clustering algorithm like the Density-Based Spatial Clustering of

Applications with Noise (DBSCAN).

The other complex module is the CNN for object recognition. Nevertheless,

CNN is pre-trained offline for a given set of object categories. The spatial regularity

of the CNN inference makes it ideal for FPGA implementation, and hundreds of

papers have been published in this area in recent years. The proposed solutions can

be divided into two classes: streaming architectures and parametrizable blocks.

The structure of the streaming architectures closely follows the data flow of the

given network by connecting templated processing blocks in a pipeline. Input and

output of the blocks are data streams (FIFO interfaces) and each operation in the

network—e.g., convolution, pooling, nonlinear response, etc.—has a dedicated block

for FPGA implementation (Blott et al., 2018).

The usual template parameters in the case of a convolution block are the number

of input and output layers and the size of the convolution window. The input image

78 Attila Fejér

DOI:10.15774/PPKE.ITK.2022.006



3. Analysis of object-to-grasp recognition in view of FPGA based implementation

is fed into the system in a row-wise order, which makes it possible to connect the

network directly to a camera input. The latency of the resulting system is low

because the convolution blocks can start processing as soon as the first rows required

for the computation are available.

The main drawback of the streaming architecture is that all the weights for the

computation must be stored on-chip, which is not possible for large networks. In

addition, the computation load of the layers is very different. Therefore, different

design optimization strategies must be used for each layer, which makes the design

process complicated.

Another approach is to use a compiler to break down the entire CNN computation

into a series of tensor operations and create parametrizable hardware blocks to

efficiently execute them (Xilinx, 2021b; Moreau et al., 2019). The fundamental

building block of these architectures is a matrix–matrix multiplication block, which

is usually extended by an additional functional unit to efficiently carry out other

operations, such as max pooling and nonlinear transformation. The matrix–matrix

multiplication is usually carried out by a systolic array of Multiply–Accumulate

(MAC) units. A critical part of the system is the compiler, which is also responsible

for the optimal scheduling of the tensor operations. The input image, network

weights, and partial results are stored in off-chip memory, so the network size is not

limited by the size of the FPGA device. On the other hand, the latency of the CNN

computation is higher in this case because the entire image frame must be captured

and stored in the memory before processing is started. Performance of the system

might be also limited by the available off-chip memory bandwidth.

Taking into account the real-time constraints and also the power dissipation, we

implement a hybrid solution both for the preliminary processing steps before feeding

gaze-driven CNN and the CNN as well. Referring to Figure 3.2, the hybridization
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of the preliminary steps is given in Table 3.4.

Table 3.4: Hybridization of preliminary steps in the pipeline, which contains two main
blocks: Gaze Point Alignment Block and Gaze Point Noise Reduction Block and its sub-
modules.

Module CPU FPGA

Gaze-Point Alignment Block

SIFT Detection Fejér et al. (2021a) - X

SIFT Matching X -

Homography estimation X -

Gaze-point projection X -

Gaze-Point Noise Reduction Block

KDE estimation X -

As for the gaze-driven CNN implementation, accordingly with the time measures

for real-time compatibility and simplification of R-CNN input by channel number re-

duction we proposed—see Section 3.3.1—only the ResNet backbone is implemented

on FPGA; as depicted in Figure 6.1. The details of all modules from the input of

CNN to the final aggregation of decisions by MIL are given in Table 3.5 below.

Table 3.5: Hybridization of the gaze-driven CNN.

Module CPU FPGA

ResNet50 - X

Reduction Layer X -

Faster R-CNN X -

MIL aggregation X -

The reference software implementation of the system was executed on a four-core

Intel i5 7300HQ (Intel, 2017) laptop CPU running at 2.5 GHz. This software system

is also compiled for the four-core ARM Cortex A53 (Xilinx, 2021a) processing system

(PS) of the Xilinx Zynq UltraScale+ XCZU9EG device on the ZCU102 development
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board. Based on these measurements, we propose a system was partitioned between

the PS and the PL parts of the device. Specialized accelerator circuits were designed

for the modules of the proposed system, which cannot be executed fast enough

on ARM Cortex A53 processors. A traditional register-transfer-level (RTL)-based

design of a digital circuit is time-consuming; therefore, the Xilinx Vitis HLS system

was used to create the FPGA-based circuits from a high-level C/C++ description.

3.6 Conclusion

Hence, in this Chapter 3 we have presented the whole approach for recognition of

the object-to-grasp in the ego-centric camera view for prosthesis servoing scenario.

We have introduced the GITW video dataset which was recorded for this purpose

and is used in our work.

Xilinx Zynq UltraScale+ MPSoC ZCU102 FPGA board has been described,

and we choose this research, because the FPGA is a good choice for accelerating

computer vision algorithm. It has low power consumption too, which is good for

creating a wearable device. Xilinx created a development environment (Vitis HLS,

Vitis AI, PYNQ) to accelerate the time-critical algorithms.

We have introduced the Gaze Driven Faster R-CNN that can predict the object

location, type. It can also predict if there is a grasping action or not.

We have analyzed time complexity of each block of the whole object recognition

chain.

And finally, we have proposed the hybridization scheme.

In the following chapters we will describe implementation, either on FPGA or

on embedded CPU, of each block of the chain.

In the next Chapter 4, we will focus on the implementation of SIFT point de-
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tector.
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Chapter 4

Hybrid solutions for SIFT detector im-

plementation

4.1 Introduction

In computer vision and image processing, it is important to extract the character-

istic keypoints in an image in different image analysis tasks. It is useful for object

matching for finding an object in an image like a banknote recognizer (Solymár et al.,

2011), or scene matching in stereo vision as for example in a real-time multi-camera

vision system for UAV collision warning and navigation (Zarándy et al., 2016). In

our case, we want to match the consecutive frames to project the gaze points to the

actual frame and estimate a smooth position of a gaze point on the object.

Several keypoint detectors of keypoints do exit today such as SIFT (Lowe, 2004),

SURF (Bay et al., 2008), ORB (Rublee et al., 2011) (please find a detailed com-

parison of those algorithms in Chapter 2.4.2). We have chosen the SIFT algorithm

to implement on FPGA because Karami et al. (2017) have shown that in different

kinds of transformations and deformations such as scaling, rotation, noise, fish-eye

distortion, and shearing SIFT outperformed other methods in terms of precision.

However, our experiments for computational time measurement, Table 3.3, show
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that the SIFT CPU implementation is not fast enough for real-time processing of

egocentric video. It is necessary to accelerate this algorithm for controlling a robotic

arm in real-time. Without that, the controlling algorithm will be too slow and cause

discomfort for the user.

Different hardware accelerators do exist in the market like GPU and FPGA. We

compared these accelerators in Chapter 2.5 and we have decided to accelerate SIFT

algorithm on FPGA. It is a good solution for creating a wearable device with high

computational speed.

Our first scientific contribution consists in accelerating the SIFT algorithm on

FPGA. Obviously, FPGA SIFT has to be fast enough for real-time processing, but

it is also important to get low energy usage. As far as the accuracy of the solution

is concerned, it has to give the same result as the CPU version.

4.2 Base-Line SIFT algorithm

In the first half of this section, we will discuss and describe the steps of the original

SIFT (Lowe, 2004) algorithm. The second half of this section is about the solution

and limitations of the FPGA SIFT (Lowe, 2004) implementation.

4.2.1 SIFT algorithm

Scale-Invariant Feature Transform method was proposed by Lowe (2004) and origi-

nally developed for image stitching to solve the problem in rotation-, scaling-, affine

deformation-, viewpoint change-invariant way, remaining robust to noise, and illumi-

nation changes when different images of the same scene are matched. It is therefore

useful for matching of video frames in order to estimate transformation parameters

between current frame and previous frames in our problem.
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The SIFT algorithm has two main steps: i) the keypoint detection and the

ii) descriptor computation. The keypoints are extracted from images to match

first. Then invariant descriptors are computed for detected points and the matching

process consists in comparison of descriptors. Keypoint detection and descriptor

computation comprise several sub-steps, which are depicted in Figure 4.1. These

steps are:

1. Scale Space Extrema Detection

2. Keypoint Localization

3. Orientation Assignment

4. Descriptor Computation

Input Image

Scale Space Extrema Detection

Keypoint Localization

Orientation Assigment

Descriptor Generation

Keypoint and Descriptor list

Figure 4.1: The main steps of the SIFT(Lowe, 2004) algorithm.

Next subsections contain the detailed description of the SIFT algorithm.
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Scale Space Extrema (SSE) detection

The Input Image denoted by I(x, y) is convolved by a Gaussian kernel G(x, y, σ)

resulting in the image of the scale-space L(x, y, σ).

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (4.1)

where * is the convolution operator in x and y, and G(x, y, σ) is defined by the

following equation:

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 (4.2)

Here σ is the scale parameter. The next step is to detect candidate keypoint lo-

cations. The scale-space extrema in the Difference of Gaussians (DoG) functions

denoted by D(x, y, σ). The DoG is computed as the difference of two consecutive

scales, which are separated by a constant factor k in a scale space, see equation 4.3.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)

(4.3)

The scale space is split into octaves. After all the scale-space images have been

computed in one octave, the scale-space image of the first scale of the next octave

is calculated as a sub-sampled version of the last scale-space image in the previous

octave.

For computing the local maximums and local minimums in a scale-space, three

consecutive DoG images in an octave are needed. As illustrated in Figure 4.4 a pixel

in a DoG image, marked by X is compared to its 3 × 3 × 3 neighbourhood in the

current and two neighbouring scales. If the pixel is a maximum or a minimum, then
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the pixel is considered as a candidate keypoint.

The original SIFT implementation (Lowe, 2004) used the following hyperparam-

eters in the scale-space extrema detection part: initial σ was set to 1.6, the number

of octaves was 4, the number of intervals (scales) in each octave was 5, and the

parameter k was set to
√
2.

Keypoint localization

In this stage, the candidate keypoints localization is determined and a set of key-

points is filtered by eliminating the parasitic keypoints with low contrast or points

on edges.

In Lowe (2004) Taylor series expansion has been used to get a more accurate lo-

calization of the candidate keypoint. The expansion of the function D(x,y,σ) is com-

puted around the (x, y) candidate keypoint. The precise position of the extremum

(DoG position) is then calculated from the derivative of this Taylor expansion.

To filter our parasite keypoints candidates keypoint DoG response is compared to

a threshold. If the magnitude of the maximum or minimum of DoG function in the

keypoint is smaller than the given threshold (e.g. 0.03 as in reference implementation

(Lowe, 2004)), then the candidate keypoint is rejected.

The DoG response is also strong on the image edges. Candidate keypoints situ-

ated on an edge should be removed, as the edges often have aliasing effects and these

keypoints are not stable. To discard those candidates keypoints Hessian matrix H

is used to determine the principal curvature around the given DoG point.

H =

Dxx Dxy

Dxy Dyy

 (4.4)

Here D are 2nd order partial derivatives. The curvature is computed considering
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the eigenvalues of the Hessian matrix. Let α and β be the two eigenvalues of the

matrix. In that case, the sum and the product of the eigenvalues are:

Tr(H) = Dxx +Dyy = α + β

Det(H) = DxxDyy − (Dxy)
2 = αβ

(4.5)

If the determinant of H is less than 0, then the curvatures have different signs,

so the point is a parasite keypoint and has to be discarded.

Supposing that α is the largest magnitude eigenvalue and denoting by r the ratio

between the largest magnitude eigenvalue and the lower one, then α = rβ, in that

case:

Tr(H)2

Det(H)
=

(α + β)2

αβ
=

(rβ + β)2

rβ2
=

(r + 1)2

r
(4.6)

Now we can check the ratio of principal curvatures if it is below some threshold

or not:
Tr(H)2

Det(H)
<

(r + 1)2

r
(4.7)

If the ratio is larger than the given threshold, the point is a parasitic keypoint

on the border and is discarded. In original implementation (Lowe, 2004) r=10 was

used.

The last two steps concern SIFT descriptor computation. The first step consists

in assignment of the orientation to the keypoint to further use it in the rotation-

invariant descriptor computation. The last one is the descriptor computation per

see, which represents a histogram of orientations of gradients in the vicinity of a

detected point, weighted by the magnitude of the gradient. In our solution, these

two steps are implemented with a reference software on a host computer accordingly

to the original algorithm, and we do not detail them here.
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4.2.2 Constraints for FPGA implementation

A FPGA board has limited available resources. Because of that, it is possible to

implement just the time-consuming parts of the algorithm to an FPGA, and the

other parts of the algorithm can run on the embedded CPU as an embedded HW/SW

system. For example Chang et al. (2013) proposed an embedded HW/SW system,

where the Gaussian Pyramid is computing on the FPGA part, and the rest of the

algorithm in the embedded CPU.

It is another solution to reduce the FPGA resource usage is to simplify the

SIFT algorithm. Shao et al. (2015) changed the Gaussian pyramid building, instead

of filtering in parallel with different size filters they cascaded several smaller sizes

Gaussian kernels. The design of the system is simplified but requires more memory

resources.

The required resource demand on FPGA can be reduced to change the number

representation from floating-point to fix-point (Vourvoulakis et al., 2017, 2016).

For more details of the different FPGA SIFT implementation please find in

Chapter 2.4.2.

We have decided to simplify the SIFT algorithm, for reducing the resource de-

mand of our implementation. Instead of the Taylor expansion for better key-point

localization, we remain with the original precision of localization, but remove par-

asite key-points. Hence, we implemented a Non-maximum Supression algorithm.

Indeed, the Taylor expansion hardware solution would require divider circuits which

have a high FPGA resource demand.
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4.3 Hybrid SIFT implementation

In this section, we present our hybrid hardware/software implementation of SIFT

detector and descriptor computation and focus on the parts which have been imple-

mented in FPGA.

First of all execution time of the SIFT algorithm using the GITW dataset

(LaBRI, 2016) was measured on the ARM Cortex-A53 CPU of the Xilinx ZCU102

board and on an Intel Xeon E5-2620 server CPU for reference. Average execu-

tion time for the SIFT keypoints detection part was 193ms and 46ms on the ARM

Cortex-A53 CPU and the Intel Xeon E5-2620 CPU respectively. The descriptor

computation part can be performed faster. It is executed in 62ms and 17ms on the

CPU architectures. Based on the time required to execute different steps of the

algorithm the system was partitioned between the FPGA and the embedded micro-

processor. Considering these experimental results the bottleneck of the algorithm is

the keypoints detector part, therefore it is selected for acceleration on the FPGA as

it is illustrated in Figure 4.2.

Figure 4.2 shows our solution. The first four steps: Gaussian Filtering and

Difference of Gaussians computation (GFDG), Scale-Space Extrema Search (SSE),

Non-maximum Supression (NMS), filtering out points on edges, which we call "Edge

Detection" for simplification (ED). These four steps constitute the SIFT point de-

tection part. It is running on the FPGA. The SIFT descriptor generation part is

running on the CPU. The CPU and the FPGA SIFT module are communicating

using the Advanced Microcontroller Bus Architecture Advanced eXtensible Interface

4 (AMBA AXI4) (Xilinx, 2017) protocol.

The development of our FPGA based SIFT implementation is founded on two

open source solutions: the OpenCV SIFT function (Bradski, 2000) and the Open-
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Figure 4.2: The block diagram of our proposed architecture. The SIFT detector part
contains the GFDG computation, SSE, NMS and Edge Detection modules. The SIFT
descriptor part contains the orientation assignment and other descriptor computation steps.

SIFT library (Hess, 2010). They were used as a reference code.

4.3.1 GFDG computation module

This module computes the Gaussian filtered images (see eq. 4.1) and the DoG (see

eq. 4.3) in an octave. Also handling of the border extension (padding) is performed

here. It comprises delay arrays which are required for the synchronization of partial

results.

The initial scale parameter σ in a Gaussain filter (see eq. 4.2) is a predefined

value and from this the weights of the Gaussian kernel are computed. The Gaussian

kernel size is the size of the convolution kernel, of 5 × 5 in our case. During the

Gaussian computation the method proposed by Shao et al. (2015)is used. Several

Gaussian kernel computations are cascaded in a pipeline and each stage is working

on the result of the previous stage. Thus, the main input of each pipeline module

is the image filtered in the previous stage (or the original image in case of the first

stage). For synchronization purposes the results of the previous stages (Gaussian

filtered images, DoG images) are also loaded and buffered. The outputs of the

module are: the filtered image, the DoG between the image filtered in the previous

and the current stage. The buffered results from the previous stages are also sent to

the next stage. After the GFDG module all these results will be processed by the
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SSE module. The results computed by the different stages of the GFDG module

can be synchronized utilising this structure.

The border adder/padding adds a frame around the input image. This is nec-

essary for convolution computation at border pixels. One of the OpenCV (Brad-

ski, 2000) border padding is called BORDER_REFLECT_101 and performs the

padding by a mirror reflection which is used in our reference OpenSIFT (Hess,

2010) implementation.

In that case, if the input image is abcdefgh then the output is: gfedcb|0abcdefgh|0gfedcba.

Therefore, the implementation uses 5 × 5 kernel in the Gaussian convolution, two

extra rows and columns are added around the image. In our FPGA implementation

we also perform the same mirror padding.

The GFDG computation module can convolve an input image with a given Gaus-

sian kernel and subtract the result from the input image to compute the Difference

of Gaussians (DoG). To utilize the computing power of the FPGA the 2D sliding

windows technique is used similarly as in Vörösházi et al. (2008). In a general case

when the size of the window is N ×N and the size of the image is W ×H, the last

N − 1 rows from the image must be stored on the FPGA in an (N − 1)×W sized

array. The process is illustrated in Figure 4.3 where the kernel size is N = 3, and

the image width W = 5 and height H = 6 for the sake of simplicity.

In a single clock cycle a new pixel data can be written into and an old pixel data

can be read from the row memory in parallel with the computation of a new result.

This memory arrangement makes feasible pipeline processing of the image.

The input image data of the Gaussian filter is stored in input image window

which reads data from the temporary memory as shown in Figure 4.3. The resulting

array can be found below the Gaussian filter. The green squares indicate the data

which will be read next time, the red square indicates the being currently processed
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and written data and the blue squares indicate the currently read data.

Figure 4.3: Gaussian Filtering and Difference of Gaussians computation (GFDG).
The red rectangle is the current computed pixel. The green rectangle is the current input
pixel from the input stream. Neighbours of the currently computed pixel are stored in
the input image window. Two lines of the most recently used pixels are stored in the
"temporary row delay arrays". Gaussian blurred image and the Difference of Gaussian
image are the outputs of the module.

4.3.2 Scale Space Extrema search module

The Scale Space Extrema detection module works in the following way. The current

pixel absolute value in 3 × 3 × 3 volume (showed in Figure 4.4) is checked if it is

higher than a predefined contrast threshold (see section 4.4). If the pixel value is

greater than the threshold then the next step is to check that the given point is

higher or smaller than 0. If it is larger than 0 and the pixel is a maximum in the
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given range of 3× 3× 3, then the point is a candidate keypoint. If the given pixel is

less than 0 than the current pixel is checked whether it is a minimum or not. If it

is the minimum then the point is a candidate keypoint. If the given point is neither

the maximum nor the minimum, the candidate point is rejected.

Similar 2D windowing technique is used in this module as in the GFDG module

(see Figure 4.3) to efficiently generate the neighbourhood of a pixel. Synchronized

results of the preceding three DoG computations are stored in a 2 × 3 × W row

buffer to generate the 3× 3× 3 window around each processed pixel. The Gaussian

filter computation is replaced by the threshold detection circuit to mark candidate

keypoints.

Figure 4.4: Calculate the local extremas in one scale (Lowe, 2004).
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4.3.3 Non-Maximum Suppression module

In this subsection the simplification of the SIFT point detection algorithm is pre-

sented that is proposed for the FPGA. It consists of the choice of location of a rele-

vant keypoint by a Non-maximum Supression (NMS). Instead of computing Taylor

expansion (in keypoint localization step) in our FPGA implementation a NMS is

proposed. The principle is based on the experimental analysis of detected keypoints

with standard settings. It has been shown that many parasitic points have been

detected despite filtering in the vicinity. This filtering was done at important (in

the sense of magnitude value) SIFT points situated on the details of images. Fur-

thermore, for matching of video frames, we do not need sub-pixel accuracy which is

proposed by Lowe (2004) when computing Taylor expansion of the DoG and search-

ing for its extrema. NMS can be computed by using absolute value and comparison

operations only and no multipliers are required as in the case of Taylor series ex-

pansion. This simplification reduces the number of FPGA resources required to

implement this part of the algorithm. We can simply express this algorithm as fol-

lows.

Lets us consider a given detected point xdp on a discrete scale-image grid and its

DoG Response value D(xdp). Let us consider Ω(xdp) a n× n neighbourhood of xdp

in the current octave. We call it NMS kernel. Let us denote with thDoG a threshold

value which suppress low activation value. Let us introduce a function f : Ω −→ R:

f(xdp) =


1 if ∀x ∈ Ω ⇒ |D(xdp)| ≥ |D(x)|

∩|D(xdp)| > thDoG

0 otherwise

(4.8)

So the keypoint is rejected if it is not an absolute maximum in magnitude of
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response in its scale-space neighbourhood at a given scale. Hence instead of shifting

the keypoints by Taylor Expansions, we keep them and remove parasitic keypoints

with lower absolute response situated too close to the keypoints with stronger re-

sponses.

Therefore, at this step we need two parameters:

• the size n of the neighbourhood Ω(xdp) and

• the threshold thDoG value

In our work we use n = 5 and the thDoG is set to 0.01 and different values were also

tested as it will be presented in results section.

The module uses 2D sliding window technique, to reduce the number of off-chip

memory accesses and to make pipelining possible on the FPGA. The input of the

module is: The given DoG image. The output of the module is: List of Candidate

keypoints.

4.3.4 Edge detector module

This module checks if a candidate keypoint is situated on an edge or not. In the

former case it is removed from a list of candidate points. Accordingly to the SIFT

approach Hessian matrix (eq. 4.4) is calculated in the vicinity of the given point.

The elements of the Hessian matrix are computed as follows, here we denote by

DoG the array containing the DoG values D(x, y), see eq. 4.3 of the given scale and

interval:

Dxx = DOG[1][2] +DOG[1][0] − 2×DOG[1][1]

Dyy = DOG[2][1] +DOG[0][1] − 2×DOG[1][1]

Dxy =
DOG[2][2] +DOG[2][0] −DOG[0][2] +DOG[0][0]

4

(4.9)
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To store the required DoG elements around the candidate keypoint a 2D sliding

window temporary memory is used in the module. The determinant of Hessian

matrix calculated and if the determinant greater than 0, and the Hessian matrix

trace sum squared is less than a predefined ϵ value the candidate keypoint still

remains a candidate keypoint accordingly to the SIFT algorithm, see section 4.2.1.

The ϵ value is calculated from the curvature threshold.

ϵ =
(curvature threshold + 1.0)2

curvature threshold
× det(H) (4.10)

In other case the candidate keypoint is removed from the keypoint list, as belonging

to a border and not to a corner.

Inputs of this module are: DoG image at the given candidate keypoint, list of

the candidate keypoints, the previous results. Outputs of this module are: filtered

list of the candidate keypoints.

4.4 Experiments and results

In this section the implementations are compared in terms of precision of detection

of keypoints, processing speed and dissipation power. The baseline for validation

of different modules developed was the OpenSIFT implementation (Hess, 2010).

The experiments were conducted on the "Grasping In The Wild (GITW) dataset

(LaBRI, 2016)" freely available for research at NAKALA CNRS server 1. The

dataset is described it in the Chapter 3.3.2.

1https://www.labri.fr/projet/AIV/graspinginthewild.php
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4.4.1 GFDG module validation

To validate the GFDG module we focus on the comparison of the Gaussian fil-

tering implemented in FPGA with regard to the reference software. The GFDG

module was compared to the OpenCV 2.4.13.7 cvSmooth function. This function

is convolving an image with a Gaussian kernel and the output of the function is a

Gaussian-convolved image. On the FPGA board OpenCV 4 has been used and the

cvSmooth function renamed to GaussianBlur. This result and the module result

are compared to each other and if the absolute difference between the two results

is less than a predefined threshold ϵ1 the module is validated. Hence for each frame

Im,m = 1, ..,M in our dataset the first computation is the the maximal value MDm

of the absolute pixel values difference between the two results dIm:

MDm = max
(x,y)

(|OCVG(Im(x, y))− FPGAG(Im(x, y))|) (4.11)

Here OCVG is the OpenCV cvSmooth function, FPGAG is the GFDG module. Then

the mean maximal absolute difference on the whole dataset MMD is computed:

MMD =
1

M

M∑
m=1

MDm (4.12)

with M is the number of video frames in the whole dataset.

In the simulation of the Vivado HLS 2018.3 (Xilinx, 2018b) shows, the MMD

between the GFDG module and the OpenCV 2.4.13.7 cvSmooth function are smaller

than ϵ1 = 1× 10−5 in the whole bowl dataset.
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Figure 4.5: Comparison between the OpenSIFT (Hess, 2010) and the FPGA implemen-
tation detected keypoints. Y-axis is the number of the extracted keypoints, X-axis is the
frame number. FPGA-detected keypoints are in blue, CPU-detected keypoints are in red.

Figure 4.6: Visual comparison of detected sets of keypoints. On the left: OpenSIFT (Hess,
2010) extracted keypoints. On the right: the FPGA result.

4.4.2 Comparison of the CPU implementations with FPGA

implementations

To illustrate the behavior of our simplified SIFT detector implementation in FPGA

and in comparison with OpenSIFT (Hess, 2010) we present the number of detected

points on each frame of one sequence from our dataset in Figure 4.5 for both detec-

tors. As we expected, the FPGA implementation detects more keypoints.

The video sequence in this experiment is the BowlPlace6Subject2 glass video.
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During this experiment, the default parameters (Table 4.1) have been used. In Fig-

ure 4.6 an example is given which show the detection for one frame of a video for

the seek of visual comparison both by OpenSIFT (Hess, 2010) and the FPGA im-

plementations. One can see that the keypoint sets are quite similar. The difference

is coming from the fact that Hess (2010) uses Taylor expansion in the keypoint lo-

calization step, and the FPGA implementation uses the Non-Maximum Suppression

only, see section 4.3.3.

4.4.3 The FPGA keypoint detection module assessment

Here we compare the overall results of detection of SIFT keypoints by our FPGA so-

lution with detection by the reference software OpenSIFT (Hess, 2010). We consider

that two keypoints (FPGA-detected and OpenSIFT-detected) coincide if the Man-

hattan distance between them is less than a predefined threshold ϵ2. As a threshold

value, we have taken 2. Hence:

True Positive: xCPU∃xFPGA : ∥ xCPU − xFPGA ∥< ϵ2

False negative: xCPU ∩ (xFPGA = ∅)

False positive: xFPGA ∩ (xCPU = ∅)

True negative: ∅ CPU and ∅ FPGA

(4.13)

where xCPU is a keypoint in Hess (2010) and xFPGA is a keypoint in the FPGA

implementation. True positive (TP) is the case when the distance between the

xCPU and xFPGA is less than a predefined threshold ϵ2. False negative (FN) is when

no xFPGA points in a radius ϵ2 circle in a center xCPU . False positive (FP) is when no

xCPU points in a radius ϵ2 circle in a center xFPGA. True negative (TN) corresponds

to the case when there is no keypoint in both of the implementations.

100 Attila Fejér

DOI:10.15774/PPKE.ITK.2022.006



4. Hybrid solutions for SIFT detector implementation

Precision (P) and recall (R) are calculated accordingly.

P =
TP

TP + FP

R =
TP

TP + FN

(4.14)

Table 4.1: The default parameter list in experiments.

name value

image size 480px × 480px

octave 3

scale 6

Gaussian kernel size 5 × 5

initial σ 1.6

contrast threshold 0.04

curvature threshold 10
FPGA only parameters

NMS kernel size 5 × 5

thDoG 0.01

Table 4.2 illustrates the results when default parameters have been used, see

Table 4.1. The first column contains the name of the video sequences. The second

column depicts the average number of OpenSIFT (Hess, 2010)-extracted keypoints

in the frames of a video sequence and the standard deviation. The average per/frame

number of our FPGA-extracted keypoints and the standard deviation are given in

the first column. The final two columns are the average precision and the average

recall. It can be seen that the numbers of recall are quite high – up to 0.97 while

precision is lower – from 0.77 up to 0.91. This confirms the general trend that

FPGA based implementation with a simplified algorithm increases the number of

supplementary detections.
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Table 4.2: Comparison of the number of keypoints in case of OpenSIFT (CPU)(Hess, 2010)
and our FPGA implementations. P is the Precision and R is the Recall.

Name CPU FPGA P R

BP1S1 37.08 ± 25.42 41.21 ± 27.51 0.79 ± 0.24 0.93 ± 0.11

BP1S2 41.66 ± 32.40 46.63 ± 34.39 0.77 ± 0.24 0.92 ± 0.12

BP1S3 29.02 ± 16.96 32.62 ± 18.03 0.81 ± 0.21 0.92 ± 0.15

BP1S4 48.61 ± 30.85 53.67 ± 32.95 0.83 ± 0.17 0.93 ± 0.08

BP4S1 13.99 ± 16.67 15.49 ± 17.62 0.85 ± 0.25 0.9 ± 0.21

BP4S2 11.21 ± 7.80 11.94 ± 8.25 0.86 ± 0.21 0.93 ± 0.16

BP4S3 38.54 ± 24.42 42.39 ± 26.54 0.86 ± 0.16 0.94 ± 0.08

BP4S4 3.92 ± 8.13 4.25 ± 9.33 0.89 ± 0.25 0.92 ± 0.23

BP5S1 17.43 ± 18.12 19.09 ± 18.92 0.83 ± 0.24 0.93 ± 0.14

BP5S2 9.27 ± 11.01 10.29 ± 11.93 0.83 ± 0.24 0.93 ± 0.15

BP5S3 20.59 ± 15.46 22.54 ± 16.91 0.86 ± 0.16 0.94 ± 0.11

BP6S1 73.51 ± 45.45 83.12 ± 51.17 0.85 ± 0.12 0.94 ± 0.06

BP6S2 105.92 ± 56.04 120.64 ± 65.22 0.85 ± 0.07 0.93 ± 0.06

BP6S3 77.79 ± 48.74 88.50 ± 55.44 0.84 ± 0.16 0.95 ± 0.06

BP6S4 22.70 ± 46.15 26.05 ± 52.62 0.77 ± 0.23 0.92 ± 0.11

BP7S1 2.48 ± 4.22 2.61 ± 4.45 0.91 ± 0.22 0.91 ± 0.22

BP7S2 4.38 ± 7.14 5.00 ± 8.04 0.84 ± 0.27 0.95 ± 0.14

BP7S3 4.55 ± 8.22 5.10 ± 8.99 0.84 ± 0.29 0.97 ± 0.09

Different parameters have been tested too. The thDoG has been set to 0, 0.008,

0.009, 0.01, 0.011, 0.012. In those cases, the recall and the precision were lower then

in the experiment with 0.01 value. When the initial scale parameter σ was set to

0.45 the average number of extracted keypoints was higher (OpenSIFT (Hess, 2010)

167.73, in our FPGA implementation 102.60). The distances between the keypoints

are small, and the NMS removed them. That is why the OpenSIFT (Hess, 2010)

extracted more keypoints than our FPGA implementation in that case. The aver-
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age recall was 0.58, which is lower when the initial σ was set to 1.6. The average

precision was 0.88, which is the same as when initial σ is set to 1.6.

Now we trace the behaviour of our FPGA implementation in different octaves.

In case when the initial σ was set to 1.6 the average number of extracted keypoints

in the 1st octave was 15.93 with OpenSIFT (Hess, 2010) and 18.83 with our FPGA

implementation on the whole bowl subset.

For the second octave, OpenSIFT (Hess, 2010) has extracted an average num-

ber of 11.72 keypoints and our FPGA implementation 12.28 respectively on the

whole bowl subset as well. There are some cases when in the second octave more

keypoints have been found than in the first octave, like BowlPlace1Subject2 and

BowlPlace6Subject1. However, the extracted keypoints number decreased in the 3rd

octave (OpenSIFT (Hess, 2010) 3.61 keypoints in average and our FPGA implemen-

tation 3.96 keypoints in average respectively) compared to the 1st and 2nd octaves.

Thus, the behaviour of our SIFT detector implemented in FPGA is generally the

same: it gives more points than reference OpenSIFT implementation in different

octaves.

These results showed that our FPGA and the full-software OpenSIFT (Hess,

2010) keypoints are almost equivalent. In that case, equivalent means that the

keypoints in the reference images are really close to each other and situated at a

distance less than the predefined threshold of 2 pixels.

Test of different NMS thresholds

In this subsubsection it will be shown why we decided to set the NMS threshold to

0.01.

Table 4.3 shown the average recall of the different NMS threshold. It can be
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Table 4.3: The average recall in case of different NMS threshold values. The red column is
when the NMS threshold was set to 0.01. The average recall is higher than 0.9 when the
threshold is 0.01.

NMS threshold
R 0 0.008 0.009 0.01 0.011 0.012 0.02

BP1S1 0.93 ± 0.06 0.93 ± 0.06 0.93 ± 0.06 0.92 ± 0.07 0.73 ± 0.13 0.57 ± 0.15 0.1 ± 0.08
BP1S2 0.95 ± 0.06 0.95 ± 0.06 0.95 ± 0.06 0.91 ± 0.12 0.74 ± 0.15 0.6 ± 0.19 0.13 ± 0.09
BP1S3 0.94 ± 0.07 0.94 ± 0.07 0.94 ± 0.07 0.91 ± 0.14 0.66 ± 0.18 0.46 ± 0.21 0.04 ± 0.05
BP1S4 0.96 ± 0.06 0.96 ± 0.06 0.96 ± 0.06 0.94 ± 0.07 0.71 ± 0.14 0.55 ± 0.17 0.11 ± 0.09
BP4S1 0.98 ± 0.06 0.98 ± 0.06 0.98 ± 0.06 0.93 ± 0.16 0.74 ± 0.22 0.6 ± 0.26 0.2 ± 0.28
BP4S2 0.97 ± 0.08 0.97 ± 0.08 0.97 ± 0.08 0.93 ± 0.13 0.55 ± 0.26 0.34 ± 0.28 0.1 ± 0.19
BP4S3 0.97 ± 0.07 0.97 ± 0.07 0.97 ± 0.07 0.93 ± 0.09 0.64 ± 0.23 0.45 ± 0.22 0.08 ± 0.1
BP4S4 0.94 ± 0.21 0.94 ± 0.21 0.94 ± 0.21 0.9 ± 0.22 0.57 ± 0.39 0.38 ± 0.39 0.08 ± 0.21
BP5S1 0.96 ± 0.09 0.96 ± 0.09 0.96 ± 0.09 0.94 ± 0.11 0.73 ± 0.24 0.58 ± 0.27 0.12 ± 0.19
BP5S2 0.96 ± 0.08 0.96 ± 0.08 0.96 ± 0.08 0.93 ± 0.16 0.72 ± 0.26 0.57 ± 0.28 0.07 ± 0.11
BP5S3 0.97 ± 0.11 0.97 ± 0.11 0.97 ± 0.11 0.93 ± 0.13 0.64 ± 0.23 0.47 ± 0.24 0.07 ± 0.13
BP6S1 0.95 ± 0.06 0.95 ± 0.06 0.95 ± 0.06 0.93 ± 0.08 0.81 ± 0.11 0.71 ± 0.13 0.22 ± 0.19
BP6S2 0.94 ± 0.03 0.94 ± 0.03 0.94 ± 0.03 0.93 ± 0.04 0.79 ± 0.08 0.66 ± 0.1 0.14 ± 0.1
BP6S3 0.96 ± 0.04 0.96 ± 0.04 0.96 ± 0.04 0.95 ± 0.04 0.8 ± 0.15 0.7 ± 0.17 0.2 ± 0.12
BP6S4 0.96 ± 0.05 0.96 ± 0.05 0.96 ± 0.05 0.95 ± 0.06 0.71 ± 0.24 0.57 ± 0.25 0.09 ± 0.1
BP7S1 0.96 ± 0.11 0.96 ± 0.11 0.96 ± 0.11 0.87 ± 0.29 0.66 ± 0.38 0.52 ± 0.4 0.11 ± 0.19
BP7S2 0.97 ± 0.15 0.97 ± 0.15 0.97 ± 0.15 0.96 ± 0.15 0.67 ± 0.36 0.44 ± 0.34 0.05 ± 0.11
BP7S3 0.97 ± 0.09 0.97 ± 0.09 0.97 ± 0.09 0.95 ± 0.11 0.71 ± 0.36 0.57 ± 0.37 0.11 ± 0.21
Total 0.96 ± 0.08 0.96 ± 0.08 0.96 ± 0.08 0.93 ± 0.12 0.7 ± 0.23 0.54 ± 0.25 0.11 ± 0.14

Table 4.4: The average precision in case of the different NMS threshold values. The red
column is when the NMS threshold was set to 0.01. The average precision is higher than
0.81 when the threshold 0.01.

NMS threshold
P 0 0.008 0.009 0.01 0.011 0.012 0.02

BP1S1 0.3 ± 0.12 0.54 ± 0.13 0.66 ± 0.12 0.8 ± 0.1 0.8 ± 0.11 0.81 ± 0.11 0.81 ± 0.27
BP1S2 0.25 ± 0.1 0.49 ± 0.13 0.63 ± 0.13 0.77 ± 0.14 0.77 ± 0.16 0.76 ± 0.19 0.76 ± 0.28
BP1S3 0.33 ± 0.13 0.54 ± 0.14 0.64 ± 0.13 0.8 ± 0.09 0.8 ± 0.11 0.78 ± 0.14 0.79 ± 0.34
BP1S4 0.24 ± 0.09 0.49 ± 0.12 0.63 ± 0.11 0.8 ± 0.12 0.8 ± 0.13 0.8 ± 0.13 0.81 ± 0.26
BP4S1 0.18 ± 0.12 0.42 ± 0.19 0.57 ± 0.17 0.79 ± 0.21 0.8 ± 0.23 0.81 ± 0.21 0.83 ± 0.33
BP4S2 0.11 ± 0.08 0.34 ± 0.25 0.54 ± 0.25 0.8 ± 0.24 0.82 ± 0.28 0.82 ± 0.34 0.81 ± 0.37
BP4S3 0.14 ± 0.08 0.37 ± 0.17 0.55 ± 0.21 0.78 ± 0.17 0.78 ± 0.19 0.78 ± 0.22 0.83 ± 0.3
BP4S4 0.05 ± 0.09 0.33 ± 0.31 0.57 ± 0.36 0.89 ± 0.24 0.86 ± 0.27 0.9 ± 0.23 0.93 ± 0.16
BP5S1 0.13 ± 0.09 0.44 ± 0.17 0.63 ± 0.21 0.79 ± 0.18 0.79 ± 0.21 0.79 ± 0.25 0.71 ± 0.39
BP5S2 0.12 ± 0.11 0.41 ± 0.25 0.58 ± 0.28 0.82 ± 0.19 0.82 ± 0.2 0.83 ± 0.22 0.86 ± 0.29
BP5S3 0.14 ± 0.09 0.42 ± 0.18 0.58 ± 0.2 0.8 ± 0.14 0.81 ± 0.16 0.81 ± 0.17 0.8 ± 0.39
BP6S1 0.29 ± 0.11 0.54 ± 0.15 0.67 ± 0.14 0.78 ± 0.15 0.78 ± 0.15 0.78 ± 0.15 0.8 ± 0.19
BP6S2 0.36 ± 0.16 0.55 ± 0.17 0.65 ± 0.15 0.79 ± 0.06 0.79 ± 0.06 0.79 ± 0.06 0.8 ± 0.14
BP6S3 0.33 ± 0.14 0.54 ± 0.12 0.66 ± 0.11 0.79 ± 0.1 0.79 ± 0.12 0.79 ± 0.1 0.78 ± 0.17
BP6S4 0.11 ± 0.16 0.41 ± 0.23 0.55 ± 0.25 0.79 ± 0.17 0.77 ± 0.17 0.77 ± 0.17 0.8 ± 0.25
BP7S1 0.06 ± 0.09 0.28 ± 0.26 0.53 ± 0.3 0.84 ± 0.26 0.88 ± 0.2 0.87 ± 0.24 0.79 ± 0.38
BP7S2 0.09 ± 0.13 0.33 ± 0.35 0.57 ± 0.36 0.81 ± 0.27 0.82 ± 0.28 0.85 ± 0.25 0.91 ± 0.19
BP7S3 0.1 ± 0.12 0.48 ± 0.29 0.65 ± 0.32 0.85 ± 0.24 0.86 ± 0.26 0.87 ± 0.26 0.93 ± 0.26
Total 0.18 ± 0.11 0.44 ± 0.2 0.6 ± 0.21 0.81 ± 0.17 0.81 ± 0.18 0.81 ± 0.19 0.82 ± 0.27

104 Attila Fejér

DOI:10.15774/PPKE.ITK.2022.006



4. Hybrid solutions for SIFT detector implementation

Table 4.5: The average number of KPs extracted in case of different NMS threshold values.
The red column shows when the NMS threshold is set to 0.01. The number of extracted
KPs are computed just using the first octave of the Gaussian pyramids.

NMS threshold
# of KP CPU 0 0.008 0.009 0.01 0.011 0.012 0.02
BP1S1 24.1 ± 10.4 76.7 ± 26 40.8 ± 15.8 33.5 ± 13.4 27.4 ± 11.9 22.2 ± 10.2 17.7 ± 8.8 3 ± 2.4
BP1S2 20.3 ± 12 73.4 ± 28 37.4 ± 18 29.5 ± 16.1 23.7 ± 13.6 19.7 ± 11.9 16.1 ± 10.1 3.5 ± 2.9
BP1S3 17.3 ± 8.8 51.8 ± 24.2 29.4 ± 11.9 25.1 ± 11.5 20 ± 10 14.8 ± 8.6 10.7 ± 7.2 0.9 ± 1
BP1S4 20.9 ± 12.6 86.3 ± 42.6 40.1 ± 21 31.4 ± 17.5 24.4 ± 14.7 19.1 ± 12.5 15 ± 10.4 3.2 ± 3
BP4S1 8.6 ± 12.2 36.5 ± 23.5 16.6 ± 17.4 13.1 ± 15.1 10.1 ± 13.4 8.1 ± 12 6.7 ± 10.8 1.7 ± 3.9
BP4S2 4 ± 2.7 41.8 ± 25.8 13.9 ± 9.9 7.6 ± 5.1 4.6 ± 2.9 2.7 ± 1.8 1.5 ± 1.2 0.4 ± 0.7
BP4S3 12.4 ± 11.1 74.2 ± 39.3 29.1 ± 22.4 20.6 ± 16.6 14.8 ± 13 10.4 ± 9.6 7.7 ± 7.5 1.6 ± 2.4
BP4S4 1.6 ± 3.3 24.8 ± 22.9 4.4 ± 6.8 2.7 ± 5.2 1.7 ± 3.8 1.2 ± 2.9 0.8 ± 2.3 0.2 ± 0.7
BP5S1 6.9 ± 6.8 44.2 ± 18.6 13.9 ± 11.7 10.4 ± 9.6 8.1 ± 7.9 6.3 ± 6.4 5.3 ± 5.8 1.2 ± 1.7
BP5S2 3.7 ± 4.6 23.6 ± 20.6 7.3 ± 7.9 5.5 ± 6.4 4.2 ± 5.2 3.4 ± 4.3 2.7 ± 3.6 0.4 ± 0.7
BP5S3 8.2 ± 6.7 52.9 ± 23 18 ± 11.8 13.2 ± 9.6 9.8 ± 7.9 7.1 ± 6.2 5.5 ± 5.2 0.6 ± 1
BP6S1 32.9 ± 22.2 97.1 ± 55.3 55.7 ± 37 46.1 ± 31.1 39.1 ± 26.1 33.7 ± 21.9 29 ± 19.2 7.8 ± 5.8
BP6S2 64.3 ± 35.3 150.6 ± 66.5 101.6 ± 51.9 88.7 ± 47.2 76.7 ± 42.6 65.6 ± 37.2 55.2 ± 31.8 10.8 ± 7.8
BP6S3 40.7 ± 25.5 103.6 ± 46.3 66.1 ± 36.9 56.7 ± 34.2 49.5 ± 31.7 43.8 ± 28.7 38.6 ± 25 10.1 ± 7.2
BP6S4 12.8 ± 26 39.9 ± 58.8 21.9 ± 41.4 18.2 ± 36.1 15.2 ± 31.1 12.7 ± 26.6 10.5 ± 22.2 2.1 ± 5.4
BP7S1 1.3 ± 2 14.6 ± 12 4.1 ± 4.8 2.4 ± 3.2 1.4 ± 2.3 1.1 ± 1.9 0.9 ± 1.6 0.2 ± 0.6
BP7S2 2.1 ± 3.4 17.3 ± 16.7 5.3 ± 7 3.4 ± 5.1 2.5 ± 4 1.9 ± 3.2 1.5 ± 2.7 0.2 ± 0.6
BP7S3 2.6 ± 4.8 16 ± 20.1 4.7 ± 7.7 3.7 ± 6.6 3 ± 5.3 2.3 ± 4.3 1.8 ± 3.4 0.3 ± 0.6
Total 15.8 ± 11.7 57 ± 31.7 28.4 ± 19 22.9 ± 16.1 18.7 ± 13.7 15.3 ± 11.7 12.6 ± 9.9 2.7 ± 2.7

seen the average recall is higher when the NMS threshold is set to less than 0.011.

Table 4.5 indicates, the number of extracted keypoints is higher when the NMS

threshold set to low value (0, 0.008, 0.009, 0.01). The rate of the false negative

keypoints are less when the NMS threshold value is set between 0 and 0.01. However,

if the NMS threshold set too low there are too many false positives extracted KP

as Table 4.4 shown. The precision is low when the NMS threshold set to 0, 0.08,

0.09. The precision is higher when the NMS threshold was set to 0.01, 0.011, 0.012,

and 0.02. Thus, the NMS threshold set to 0.01 was selected as the default value

because the recall and precision ratio was the highest to compare to the other NMS

thresholds.

4.4.4 Used resources

The resource usage of the complete system is presented in Table 4.6. The implemen-

tation is based on the Vivado 2018.3 (Xilinx, 2018b) software, which can report the
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Table 4.6: 1 octave resource usages on Xilinx ZCU102 FPGA Board from Vivado 2018.3
(Xilinx, 2018b) when the default parameters in Table 4.1 has been used.

Resource # Full System SIFT computation
module Available

LUT 143,667 117,620 274,080

FF 189,944 157,946 548,160

BRAM 461.5 461.5 912

DSP 938 938 2,520

Table 4.7: Resource usage estimation of the main modules of the system based on the
Vivado HLS report.

Resources #
Gauss filter and

Difference of Gaussian
(GFDG)

Scale Space
Extrema
(SSE)

Non-Maximum
Suppression

(NMS)

Edge
Detection

(ED)
Total

FF 17810 5569 9314 6630 219243

BRAM 15 6 6 3 1011

DSPs 127 0 0 44 938

LUT 17572 7255 19026 6160 276366

hardware requirements and clock frequency of the circuit. Here, the default param-

eters presented in Table 4.1 have been used. The results show that around 50 % of

the resources have been used on the Xilinx ZCU 102 FPGA board. Therefore, there

are enough resources to implement other steps of the prosthetic arm controlling

algorithm.

The system is implemented in Vivado HLS as a single IP block. The Vivado

toolchain does not hold the details of this block’s exact inner structure during the

implementation step. Therefore, the area requirements of the submodules are sum-

marized using the Vivado HLS area report as shown in Table 4.7. The complete

system is build up using six GFDG modules, four SSE modules, four NMS modules
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and four ED modules. The most resource-consuming part is the GFDG computa-

tion module, where the majority of the BRAM and DSP slices are used. The area

requirements of the SSE and NMS units are dominated by the logic resources (FFs

and LUTs).

4.4.5 Discussion

In this section, we compare our method with other platforms and previous solutions.

Comparison of FPGA implementation with other platforms

Table 4.8 shows how many frames can be processed on the given hardware per sec-

ond. Our FPGA solution is reported in the column 1 (Xilinx UltraScale+ ZCU102).

The result shows FPGAs, Intel Xeon E5-2620 server CPU, GPU, and the CMOS

Vision Sensor can process more than 70 frames per second. Our FPGA implementa-

tion used the default parameters in Table 4.1. The Intel Xeon E5-2620 server CPU

and the ARM Cortex-A53 were measured with the OpenSIFT (Hess, 2010) SIFT im-

plementation with the same parameters as our FPGA implementation. The analog

solution (CMOS Vision Sensor) computed just the first step of the SIFT algorithm,

the Gaussian pyramid calculation. However, energy consumption of the Intel Xeon

E5-2620 server CPU, NVIDIA Jetson TX 2, and the NVIDIA GeForce GTX 580

GPU are higher than the FPGAs. The CMOS Vision Sensor solution only handles

176× 120 pixels images, which is much smaller than the FPGAs.

The power dissipation of the proposed SIFT module is relatively low, just 5.6W.

The CMOS Vision Sensor has the lowest energy consumption 70mW, however, the

input resolution (176px × 120px) and the numbers of pixels being processed (2.6

million px) are lower than in the FPGAs.

Comparison of the power consumption shows that the Intel Xeon E5-2620 server
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Table 4.8: Comparison of SIFT keypoint extraction in different platforms. The Intel Xeon
E5-2620 and ARM Cortex-A53 are used the OpenSIFT(Hess, 2010) to extract the key-
point. The Xilinx UltraScale+ ZCU102 are used our FPGA implementation to extract the
keypoint. All three platform which used OpenSIFT are used with the default parameters
(Table 4.1). On the CMOS Vision Sensor, only the time for Gaussian Pyramid calculation
is reported. In the case of NVIDIA Jetson TX 2 the computation time is based on the
report of da Costa Barreiros (2020).

Xilinx UltraScale+
ZCU102

Our solution

Intel Xeon
E5-2620

ARM
Cortex-A53

CMOS Vision
Sensor

NVIDIA GeForce
GTX 580

NVIDIA Jetson
TX2 2

implemented OpenSIFT OpenSIFT OpenSIFT Gaussian Pyramid CudaSift da Costa Barreiros (2020)
algorithm (FPGA version) (Hess, 2010) (Hess, 2010) (Rodríguez-Vázquez et al., 2009) (Björkman et al., 2014)

resolution (px) 480 x 480 480 x 480 480 x 480 176 x 120 1280 x 960 2560 x 1920

frames / second 135 21 5 125 78.74 1.45

dissipated power 5.6W 80W 2.5W 70mW 244W 7W-15W

CPU, and that the GPU, are using too much energy for a wearable device. In

contrast, the power consumption of the FPGA, the analog CMOS Vision Sensor,

the NVIDIA Jetson TX 2, and the ARM Cortex-A53 CPU, are sufficiently low for

our application. However, the processing speed of the ARM Cortex-A53 CPU and

the NVIDIA Jetson TX2 is too low and does not fulfil our demands for real-time

processing. The Intel Xeon E5-2620 CPU, FPGA, NVIDIA GTX 580 GPU, and

CMOS Vision sensor are capable of real-time processing. The analog solutions can

only process small input images, whereas the FPGA, GPU, and both of the CPUs

can handle sufficiently high image resolution which is higher than Full HD. The

FPGA solution is equivalent to the full software implementation OpenSIFT (Hess,

2010) in terms of proximity and number of detected keypoints.

The disadvantage of the FPGA solution is that the input image size is small

480px × 480px, due to the limited 32.1Mb internal memory of the Xilinx UltraScale+

ZCU102. The CPUs and the GPU’s solutions can process higher-resolution input.

Nevertheless, for controlling the robotic arm, this resolution is sufficient.

Comparison of the power consumption, processing speed and input image size

for the different architectures shows that the FPGA is the best choice for creating

a wearable device, as Table 4.8 shows.
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The latency of the system is 238390 clock cycles for the input image size of 480px

× 480px this is based on the Vivado HLS 2018.3 report (Xilinx, 2018b). The current

implementation is running on 200MHz clock frequency according to the post routing

timing analysis in Vivado 2018.3 (Xilinx, 2018b), so it can process 135 full 480px ×

480px images per second, which is higher than the current input video frame rate.

Therefore, a real-time processing is achievable.

Comparison of the different FPGA implementations

In this part, we compared our implementation to the state-of-the-art FPGA solu-

tions. As Table 4.9 indicated, we used a different FPGA board (Xilinx UltraScale+

ZCU102) from that used in previous studies. Ginés et al. (2020) and Shao et al.

(2015) use Xilinx Virtex-5. Pablo et al. (2018) implementation run on Zedboard,

and Vourvoulakis et al. (2017, 2016) developed their solution on Intel DE2i-150.

Chang et al. (2013) developed their solution for a Xilinx Virtex II Pro. Our solution

can process a 480px × 480px resolution image which has a higher resolution com-

pared to the Chang et al. (2013) and Shao et al. (2015), but Ginés et al. (2020) and

Vourvoulakis et al. (2017, 2016) implementations can process images with higher

resolution of 640px × 480px. Our proposed architecture can compute 135 frames

per second, which is higher than both Ginés et al. (2020) and Vourvoulakis et al.

(2017, 2016) and Shao et al. (2015) In comparison, Chang et al. (2013) solution

can process 900 frames per second, however, it uses lower image resolution. Our

implementation is a software/hardware solution similarly to Pablo et al. (2018), and

Chang et al. (2013), and Shao et al. (2015). Other papers such as Ginés et al. (2020)

and Vourvoulakis et al. (2017, 2016) use solutions that are a hardware but simplified

implementation of the SIFT, which impacts the algorithm accuracy. Our solution is

using a float number representation instead of the fixed-point representation. This
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causes a higher resource demand, but it also provides better accuracy.

Table 4.9: Comparison of our work with different FPGA implementations.

Our implementation Doménech-Asensi Rubio-Ibáñez Vourvoulakis Chang Shao

board ZCU102 Xilinx Virtex-5 ZedBoard Intel DE2i-150 Xilinx Virtex II Pro Xilinx Virtex-5

resolution
(px)

480 x 480 640 x 480 - 640 x 480 320 x 240 292 x 520

frames/second 135 99 - 81 900 38

architecture HW/SW HW HW/SW HW HW/SW HW/SW

number repre-
sentation

float fixed-point fixed-point fixed-point fixed-point fixed-point

4.5 Conclusion

We created a 32 bit floating point SIFT keypoint extractor hybrid solution, which is

running on FPGA and can generate the same results as the software implementation

of OpenSIFT (Fejér et al., 2021a).

We have made some simplification like Non-Maxima Suppression, which is not

changing the accuracy of the original algorithm (Fejér et al., 2021a).

Computing time of our implementation is 7.407ms (135fps), which is fast enough

for real-time computing (Fejér et al., 2021a).

The total power consumption of the proposed system is 5.6W, which is suitable

for wearable devices (Fejér et al., 2021a).

In the next Chapter 5 we will focus on the Gaze-Driven CNN (González-Díaz et

al., 2019) preprocessing algorithms and discuss the possible acceleration steps.
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Chapter 5

Optimized implementations of prepro-

cessing steps

5.1 Introduction

This chapter is about the preprocessing steps of the Gaze Driven CNN. The pre-

processing is necessary to improve the accuracy and the computational speed of the

algorithm. For the object recognition and localization the sources of the most an-

noying noise are: i) the scattered eye-movement, in which case the gaze fixation is

not on the object to grasp, ii) the head movement of the user, which also affects the

localization of the gaze point. There are two steps of the preprocessing: the gaze

alignment step and the gaze point noise reduction. We present the gaze alignment in

the subchapter 5.2. The gaze point noise reduction is presented in subchapter 5.3.

The gaze alignment module is aimed to register the gaze points from consecu-

tive frames to the reference frame’s plane. To achieve that, first, it is necessary to

extract some features from the reference frame and the other frames. In our work,

we proposed the usage of SIFT (Lowe, 2004) keypoint key points and described its

hybrid implementation in Chapter 4. In the subchapter 5.2 we will present the usage

keypoint in matching frames. The keypoint descriptors of the reference frame and
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the other frames are compared in the FLANN matcher (Muja et Lowe, 2009), which

is described in the subchapter 5.2.1. The homography estimation with RANSAC

iteration (Fischler et Bolles, 1981) is made on the paired SIFT (Lowe, 2004) key-

points to find the homography matrix which is able to transform the other frame

gaze point to the reference frame’s plane. The homography estimation is described

in subchapter 5.2.2 and the RANSAC algorithm is described in the subchapter 5.2.

When all the gaze points are in the reference frame’s plane, the gaze point noise

reduction module removes the outlier gaze points. DBSCAN (Ester et al., 1996)

is used to cluster the gaze points, this can remove the noisy gaze points which

are caused by the scattering and the head movements of the user. The DBSCAN

(Ester et al., 1996) algorithm is described in subchapter 5.3.1. The biggest cluster

of gaze points is used to estimate the position of the gaze points with the KDE

(Pedregosa et al., 2011). The KDE (Pedregosa et al., 2011) algorithm is described

in subchapter 5.3.2.

5.2 Gaze point alignment

The Tobii glass camera and eye tracker system output the coordinates of gaze fixa-

tions in each video frame of the first-person integrated camera.

Even if the subject is looking at the same object to grasp during the object

reaching, the projected gaze points will vary between two consecutive frames because

of the body and ocular movements. Furthermore, saccades provoked by distractors

can deviate from the fixation on the object. Hence, the first step consists in the

estimating a gaze fixation in the current video frame using all the gaze fixations

from the past frames. It is necessary to estimate and compensate the ego-motion

between the past frames and the current frame to collect all gaze points in the same
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frame. We show an illustration of such a collection in Figure 5.1, where the lightest

is the gaze fixation point in the current frame, and the more distanced are the gaze

points from the current timestamp, the darker they are.

Figure 5.1: Example of bowl place 4 subject 2 gaze point alignment. The points are the
gaze points.

Motion compensation from the past frames to the current frame is realized by a

sequential homography transformation computed between consecutive frames.

Suppose a video sequence given with N frames and a list of gaze points, gn =

{(gxn, gyn), n = 1...N}. Note that generally with the video frame rate and eye-tracker

acquisition rate we have, only one gaze point recorded for each frame. Hence, for

simplicity in our notations we put one gaze point by frame, without loosing generality

of the method. The system operates as follows: for each pair of consecutive frames,

it extracts the characteristic keypoints and local features. In our case, the keypoint

extractor is the Scale-Invariant Feature Transform (SIFT) (Lowe, 2004) (SIFT). To

compute the geometric transformation of frames, the key points have to be matched.

Matching of SIFT points is a well studied problem. Therefore, we take an already
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available solution. A Fast Library for Approximate Nearest Neighbours (FLANN)-

based matcher (Muja et Lowe, 2009) is used to find the good matches between the

SIFT descriptors of the two frames.

The final step is to estimate the homography transformation matrices, Hn, n =

1, .., N , with N , the number of the current frame, based on the good matches.

Then, the gaze fixations can be projected from all frames into the current frame

by a composition of homographies Hn. In this projection, we use a sliding window

of duration, ∆t = 10, frames which correspond with 400 ms time interval, with

the scene apprehension time by the subjects in our experiments. Therefore, for the

current frame, N , the collected gaze points are ĝN,n, n = N −∆t, .., N .

5.2.1 Fast Library for Approximate Nearest Neighbors-based

matching

Fast Library for Approximate Nearest Neighbours (FLANN) (Muja et Lowe, 2009)

is an image matching algorithm for fast approximate nearest neighbour searches

in high dimensional spaces. These methods project the high-dimensional features

to a lower-dimensional space. After that, the compact binary code is generated.

Benefiting from the produced binary code, a fast image search can be performed via

binary pattern matching or Hamming distance measurement, dramatically reducing

the computational cost and further optimizing the efficiency of the search.

There are several implementations of the FLANN algorithm in OpenCV (Brad-

ski, 2000).

• FLANN_INDEX_LINEAR = 0

• FLANN_INDEX_KDTREE = 1

• FLANN_INDEX_KMEANS = 2
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• FLANN_INDEX_COMPOSITE = 3

• FLANN_INDEX_KDTREE_SINGLE = 4

• FLANN_INDEX_HIERARCHICAL = 5

• FLANN_INDEX_LSH = 6

• FLANN_INDEX_SAVED = 254

• FLANN_INDEX_AUTOTUNED = 255

In this research, the randomized kd-tree algorithm has been used. The tradi-

tional kd-tree technique (Friedman et al., 1977) performs well in low dimensions,

but rapidly worsens in high dimensions. In our research, to achieve the real-time

processing speed, it becomes required to settle for an approximative nearest neigh-

bor in order to gain a speed-up over linear search. The algorithm may not always

yield the precise nearest neighbors, but this speeds up the search process. So, near-

est neighbors algorithm can cause accuracy loss, but their processing speed is faster

than a brute force method.

Silpa-Anan et Hartley (2008) proposed an improved version of the kd-tree al-

gorithm in which multiple randomized kd-trees are created. The original kd-tree

approach divides the data in half on the dimension with the highest variance at

each level of the tree. The split dimension for the randomized trees, in contrast, is

randomly selected from the top D dimensions on which the data has the highest vari-

ance. Muja et Lowe (2009) uses the fixed value D = 5 (it is called trees in OpenCV

(Bradski, 2000)). D = 5 performs well in Muja et Lowe (2009) datasets and also

in GITW (LaBRI, 2016) datasets and does not significantly benefit from further

adjustment. So we decided to use trees = 5 parameter. A single priority queue is

kept across all the randomized trees when searching them, allowing the search to
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be sorted by increasing distance from each bin boundary. A fixed number of leaf

nodes are examined to determine the degree of approximation, at which time the

search is stopped, and the top candidates are returned. In the Muja et Lowe (2009)

approach, the user simply selects the level of search precision they want, which is

utilized to determine how many leaf nodes will be investigated to obtain this level

of precision during training.

In the OpenCV (Bradski, 2000) implementations of FLANN, there is one more

other parameter, the checks, which specifies the number of times the trees in the

index should be recursively traversed. Higher values give better precision, but also

take more time. In our case, we used 50 after some preliminary tests.

To filter out the outliers, Lowe (2004) proposed a distance ratio test, which

eliminates bad matches. A good match is found when the distance ratio between

two closest matches of a keypoint under consideration is less than a predetermined

value. For example, the two descriptors are n and m and m.distance < threshold *

n.distance. In our case, this threshold is 0.8.

5.2.2 Homography estimation

Homography matrix (Szeliski, 2011) is used to project a pixel from one image to

another image. The homography relates to the transformation between two planes.

Besides, it is a linear transformation, because the coordinates vector is multiplied

by a transformation matrix.

The formula of the homography estimation is the following:

s×


x′

y′

1

 = H ×


x

y

1

 =


h11 h12 h13

h21 h22 h23

h32 h32 h33

×


x

y

1

 (5.1)
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where H is the transformation (homography) matrix and (x, y, 1) are the ho-

mogeneous pixel coordinates which will be transformed to a new plane (x′, y′, 1).

The H matrix is a 3x3 matrix, but with 8 degrees of freedoms, as it is esti-

mated up to a scale. The homography matrix is normalized with h33 = 1 or

h2
11 + h2

12 + h2
13 + h2

21 + h2
22 + h2

23 + h2
31 + h2

32 + h2
33 = 1.

The homography estimation is good to create panoramas, 3D reconstruction,

and preprocess images for OCR and self-driving cars, find a predefined object.

To calculate a proper homography matrix, the outliers need to be eliminated.

It can be done with the RANSAC iteration (Fischler et Bolles, 1981) or the Least-

Median robust method (Rousseeuw, 1984) or the PROSAC-based robust method

(Chum et Matas, 2005).

5.2.3 RANSAC algorithm

The RANdom SAmple Consensus (RANSAC) algorithm (Fischler et Bolles, 1981) is

a general parameter estimation approach designed to cope with a large proportion of

outliers in the input data. Unlike many of the common robust estimation techniques

such as M-estimators and least-median squares that have been adopted by the com-

puter vision community from the statistics literature, RANSAC was developed by

the computer vision community.

RANSAC is a re-sampling technique that generates candidate solutions by using

the minimum number of observations (data points) required to estimate the under-

lying model parameters. Unlike conventional sampling techniques that use as much

of the data as possible to obtain an initial solution and then proceed to prune out-

liers, RANSAC uses the smallest set possible and proceeds to enlarge this set with

consistent data points (Fischler et Bolles, 1981). The basic algorithm is summarized

as follows:
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1. Select randomly the minimum number of points required to determine the

model parameters.

2. Solve for the parameters of the model.

3. Determine how many points from the set of all points fit to a predefined

tolerance τ .

4. If the fraction of the number of inliers over the total number of points in the

set exceeds a predefined threshold τ , re-estimate the model parameters using

all the identified inliers and terminate.

5. Otherwise, repeat steps 1 through 4 (maximum of N times).

The number of iterations, N , is chosen high enough to ensure that probability p

(usually set to 0.99) that at least one of the sets of random samples does not include

an outlier. Let u represent the probability that any selected data point is an inlier

and v = 1− u the probability of observing an outlier. K iterations of the minimum

number of points denoted k are required, where 1− p = (1− uk)K and thus we can

deduce that K = log(1−p)
log(1−(1−v)k)

Thus, after matching the key-points in the two consecutive frames and estimating

homography we can successively project by the composition of at most N −m− 1

homographies with N the number of the current frame and N −m the number of

the reference frame, the gaze points from previous frames into the current frame.

5.3 Gaze point noise reduction

The goal of this module is to reduce the noise of the gaze fixations projected into

the current frame. It has two steps: the DBSCAN (Ester et al., 1996) clustering

(see Chapter 5.3.1) and the KDE (Pedregosa et al., 2011) (see Chapter 5.3.2).
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The DBSCAN (Ester et al., 1996) removes the outlier gaze points, which are

caused by the saccades to the distractors. The Kernel density Estimator (KDE)

(Pedregosa et al., 2011) is applied to estimate the smoothed gaze point position in

the current frame.

5.3.1 Density-Based Spatial Clustering of Applications with

Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et

al., 1996) is a non-parametric algorithm, so the target number of the clusters is

not predefined, but obtained accordingly to the density of the data and parameter

settings of the algorithm. It is clustering a given set of points in some representation

space. Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

groups together points that are closely packed together and marks, as outliers, points

that lie alone in low-density regions.

The DBSCAN has two parameters: the minimum number of points or samples

(minPts), and the ϵ.

• The minPts is the number of samples (or total weight) in a neighbourhood for

a point to be considered as a core point. This includes the point itself.

• The ϵ specifies how close points should be to each other to be considered a

part of a cluster. Thus, if the distance between two points is less or equal to

this value ϵ, these points are considered neighbours.

Figure 5.2 shows how the clustering is done. In this example the minPts=3 so

there are 3 core points (squares), as in their ϵ-neighbourhood at least three points

can be found. The three circles (core points and their neighbours) create a cluster,

and the noise points are the outliers.
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Figure 5.2: Chain of the DBSCAN algorithm. The two parameters are the ϵ and the
minPts.

The DBSCAN algorithm is the following:

1. Identify the core points with more than minPts neighbors and the points in

each point’s epsilon neighborhood.

2. Find the connected parts of the neighbor graph’s core points while disregarding

all other nodes.

3. If the cluster has an epsilon radius, allocate each non-core point to it; if not,

assign it to noise.

The goal of this module is to eliminate the saccades which caused by the user

looking elsewhere but not at the object of interest. Figure 5.3 shows a visual example

of the DBSCAN results. The green dots are the outliers, for example the user get

distracted and looks elsewhere from the object, and the blue dots are the good gaze

points on the object.
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Figure 5.3: Bowl Place 5 Subject 2 DBSCAN parameters: ϵ = 0.01, min_samples = 3,
good gaze points colour blue, outlier gaze points: green.

5.3.2 Kernel Density Estimation

The list of the aligned gaze fixations, ĝN,n, n = N − ∆t, .., N , is the input of the

Kernel Density Estimation (KDE) with Gaussian kernel (Pedregosa et al., 2011),

which predicts the most probable location of the gaze fixation in the current frame.

The KDE estimates the values as described in the following equation:

ρK(y) =

LN∑
i=1

K(y − ĝN,n,i;h)

where a kernel, K(x, h), is a positive function that is controlled by the bandwidth

parameter, h. In our case, the bandwidth, h, parameter of the Gaussian kernel was

set to 1, as default. LN is the number of gaze points projected in the current frame

N . The maximum of the estimated density surface is considered as a predictor of the

gaze fixation point in the current frame. The search for the maximum is realized
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inside a bounding box which encompasses all projected gaze fixations ĝN,n, n =

N − ∆t, .., N , using full search method with pixel accuracy. An example of an

estimated gaze point in a frame is presented in Figure 5.4, depicted as the bright

disk of the largest diameter.

Figure 5.4: Example of bowl place 4 subject 2 KDE gaze point estimation. The points are
the gaze points and the white point is the estimated gaze point.

5.4 Depth estimation

For servoing the prosthesis arm towards the object-to-grasp, we need to compute

the depth of the estimated gaze point. Depth extraction from monocular video or

introduction of a supplementary depth sensor (a supplementary stereo camera, RGB

depth sensor, etc.) into the system requires further investigation both in bio-physics

and vision algorithms. Hence, in our work we propose an initial estimation of the

depth of the gaze point from Tobii eye-trackers (AB, 2016) measures.

The depth estimation process is the following.
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Figure 5.5: Depth estimation chain.

The Tobii eye-tracker recorded consecutive frames and gaze points, as Figure 5.5

shows. The recorded gaze points have 3 coordinates where x, y are the coordinates

of location of the gaze points in a video frame and z is the distance between the

recording unit and the object in millimeters. During the Geometric Alignment

process (for more information see Chapter 5.2) the past aligned frame gaze points

lost the depth information. So during the homography estimation just the location

in the image coordinate system can be estimated, but not the depth.

The noise reduction step (for more information, see Chapter 5.3) has predicted

frame gaze point location (x, y) in the current frame, just as depicted in Figure 5.5.

For the gaze points originally recorded by eye-tracker system, the depth information

z is known. Therefore, we propose to estimate the depth of the predicted gaze point

in the current frame based on the equation of a plane through 3 points. The three

points are the nearest gaze points in time to the predicted gaze points, with known

depth information. The distance between these three points and the estimated gaze

point in the current frame has to be small enough to ensure sufficient precision in
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this solution, which uses a simple linear model. A plane is defined as:

ax+ by + cz = d (5.2)

where a, b, c, d are the coefficients. Let us consider the vectors V1 and V2:

V1 = P3 − P1

V2 = P2 − P1

(5.3)

where P1, P2, P3 are the 3 closest gaze points to the predicted gaze point. Then

V1 = v11i+ v12j + v13k

V2 = v21i+ v22j + v23k

M = V1 × V2 =

∣∣∣∣∣∣∣∣∣∣
i j k

v11 v12 v13

v21 v22 v23

∣∣∣∣∣∣∣∣∣∣
= (v12v23 − v13v22)i+ (v13v21 − v11v23)j + (v11v22 − v12v21)k

a = (v12v23 − v13v22)

b = (v13v21 − v11v23)

c = (v11v22 − v12v21)

d = M · P3 =
3∑

n=1

mipi =

= (v12v23 − v13v22)p31 + (v13v21 − v11v23)p32 + (v11v22 − v12v21)p33

(5.4)

The a, b, c coefficients are obtained from a vector normal to the plane, which is

calculated as the cross-product of two vectors connecting the points. The d is from

the dot product of the normal vector with any of the point position vectors.
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The estimated gaze points depth is predicted based on the obtained plane equa-

tion.

z =
ax+ by − d

−c
(5.5)

where z is the depth and the a, b, c, d coefficients are calculated as in 5.4.

5.5 Results

In this section, results are presented. The first part explains the gaze point geometric

alignment time measurements. The second part of this section is the gaze point noise

reduction, which are the DBSCAN clustering and the KDE. In Chapter 5.5.3 the

parameters were defined and justified for the DBSCAN clustering. It also contains

our time measurements.

5.5.1 Geometric alignment measurements

The time measures of the geometric alignment module are given in Table 5.1. The

OpenCV (Bradski, 2000) library 4.5.5 version was used during this experiment.

The geometric alignment consists of an SIFT (Lowe, 2004) keypoint extractor, a

FLANN matcher (Muja et Lowe, 2009), and a homography estimator. In the first

part of Table 5.1, we give measures on embedded mobile ZCUs. The left-most

column of Table 5.1 contains the name of the video file. The SIFT points have been

detected in the mask, centred on the estimated gaze fixation point in each frame.

The radius of the mask was chosen to encompass approximately 100 points. The

second column contains the mean mask radius with standard deviation. For the

geometric alignment by homography, we detected keypoints in two video frames:

the current and previous reference frames. In the next columns, we give time figures

on ARM A53 processors for keypoint (KP) computation on one frame, the matching
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time, and homography computation time.

In Table 5.1, the second column contains the number of detected SIFT points

with the corresponding mask radius. We also present it as the mean and standard

deviation on the whole video. The time figures are given for general purpose Intel

processors.

The matcher, the homography estimator, and the gaze projection on ZCU102

are fast enough for real-time processing, as illustrated in Table 5.1. The worst-case

scenario was 0.024 s, for the FLANN matcher (Muja et Lowe, 2009), which means

that the frame rate does not exceed 40 fps. This speed is enough for controlling a

robotic arm.

However, the SIFT keypoint extractor was slower than the required processing

time. While the worst-case scenario on the Intel i5 7300HQ CPU took 0.072 s, which

is around 13.81 fps, on the ARM A53, it took 0.866 s, which is around 1.15 fps. For

real-time processing, a rate of least 10 fps is required.
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Table 5.1: Comparison between the Intel i5 7300HQ and the Xilinx ZCU102 ARM COR-
TEX A53 in the whole gaze alignment chain.

Xilinx ZCU102 ARM CORTEX A53

Video File Name Mask Radius SIFT KP Matcher (ms) Homography (ms) Gaze
Extractions (ms) Projection (ms)

BowlPlace1Subject1 119 ± 25 875.504 ± 12.123 23.471 ± 5.203 2.200 ± 0.540 0.089 ± 0.004

BowlPlace1Subject2 106 ± 16 875.282 ± 9.504 20.036 ± 3.704 1.900 ± 0.398 0.088 ± 0.001

BowlPlace1Subject3 153 ± 50 873.072 ± 7.283 17.626 ± 3.276 2.539 ± 0.621 0.089 ± 0.001

BowlPlace1Subject4 120 ± 25 873.545 ± 9.062 22.244 ± 5.938 2.160 ± 0.464 0.092 ± 0.009

BowlPlace4Subject1 158 ± 55 855.947 ± 6.583 16.011 ± 3.053 2.883 ± 1.188 0.088 ± 0.001

BowlPlace4Subject2 117 ± 24 861.933 ± 5.821 16.276 ± 2.623 1.997 ± 0.449 0.089 ± 0.004

BowlPlace4Subject3 108 ± 19 867.649 ± 8.894 15.679 ± 4.620 2.136 ± 0.350 0.089 ± 0.005

BowlPlace4Subject4 147 ± 49 857.271 ± 9.468 16.762 ± 4.186 2.240 ± 0.516 0.088 ± 0.001

BowlPlace5Subject1 120 ± 33 861.481 ± 8.012 17.875 ± 2.176 2.018 ± 0.505 0.088 ± 0.001

BowlPlace5Subject2 133 ± 42 858.547 ± 6.232 17.944 ± 3.024 2.354 ± 0.880 0.088 ± 0.001

BowlPlace5Subject3 126 ± 33 859.774 ± 6.384 15.742 ± 2.836 2.007 ± 0.524 0.087 ± 0.001

BowlPlace6Subject1 120 ± 25 867.344 ± 10.950 19.026 ± 3.862 1.965 ± 0.306 0.088 ± 0.001

BowlPlace6Subject2 129 ± 35 862.750 ± 9.731 19.737 ± 4.973 3.681 ± 3.456 0.090 ± 0.008

BowlPlace6Subject3 127 ± 31 864.429 ± 6.931 17.555 ± 3.806 2.588 ± 0.823 0.087 ± 0.001

BowlPlace6Subject4 112 ± 22 867.962 ± 9.579 17.368 ± 4.725 2.710 ± 0.649 0.089 ± 0.004

Intel i5 7300HQ

Video File Name Number of SIFT KP Matcher (ms) Homography (ms) Gaze
Extracted KP Extractions (ms) Projection (ms)

BowlPlace1Subject1 151 ± 67 74.205 ± 5.611 3.891 ± 0.853 0.259 ± 0.051 0.015 ± 10−4

BowlPlace1Subject2 156 ± 37 75.062 ± 5.640 3.304 ± 0.579 0.228 ± 0.040 0.014 ± 10−4

BowlPlace1Subject3 86 ± 50 72.217 ± 2.572 3.011 ± 0.476 0.282 ± 0.055 0.014 ± 10−4

BowlPlace1Subject4 138 ± 69 72.979 ± 2.853 3.717 ± 0.940 0.252 ± 0.044 0.015 ± 0.002

BowlPlace4Subject1 94 ± 50 70.068 ± 2.405 2.747 ± 0.565 0.313 ± 0.113 0.014 ± 10−4

BowlPlace4Subject2 121 ± 28 72.280 ± 3.538 2.778 ± 0.407 0.233 ± 0.040 0.015 ± 10−4

BowlPlace4Subject3 126 ± 39 73.402 ± 3.406 2.678 ± 0.728 0.256 ± 0.047 0.014 ± 10−4

BowlPlace4Subject4 95 ± 50 70.394 ± 2.349 2.872 ± 0.695 0.259 ± 0.051 0.014 ± 10−4

BowlPlace5Subject1 129 ± 39 71.990 ± 2.691 3.027 ± 0.369 0.244 ± 0.050 0.015 ± 10−4

BowlPlace5Subject2 120 ± 56 71.587 ± 2.526 3.077 ± 0.573 0.272 ± 0.087 0.014 ± 10−4

BowlPlace5Subject3 108 ± 36 71.359 ± 2.500 2.684 ± 0.448 0.234 ± 0.049 0.015 ± 0.001

BowlPlace6Subject1 132 ± 48 72.150 ± 2.891 3.213 ± 0.645 0.237 ± 0.031 0.015 ± 10−4

BowlPlace6Subject2 129 ± 59 71.790 ± 3.934 3.348 ± 0.823 0.390 ± 0.316 0.015 ± 10−4

BowlPlace6Subject3 114 ± 47 72.042 ± 2.883 2.976 ± 0.617 0.287 ± 0.076 0.015 ± 0.001

BowlPlace6Subject4 138 ± 44 74.585 ± 4.431 3.089 ± 0.849 0.303 ± 0.075 0.015 ± 10−4
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5.5.2 Kernel Density Estimation without clustering and gaze

points reduction window

Table 5.2 illustrates a comparison of the estimated time of KDE computation be-

tween the Intel i5-7300HQ and the Xilinx ZCU102 ARM Cortex A53. The second

column contains the available number of gaze points during a frame gaze point esti-

mation. The Intel i5-7300HQ (Intel, 2017) computes the KDE at 80 fps on average,

and the ARM A53 (Xilinx, 2021a) computes the KDE at 7.9 fps on average. In

some critical cases, when the scattering of the subject’s gaze fixations is too strong,

then the computation time is higher than in real-time, and is 3.9 s per frame, see the

“Lid” sequence. Evidently, in such a case of highly cluttered scenes and problems of

ocular movements, our system shows its limits.

Table 5.2: Comparison in processing time of kernel density estimation module between the
Intel i5 7300HQ and the Xilinx ZCU102 ARM CORTEX A53.

Xilinx ZCU102 ARM CORTEX A53 Intel i5 7300HQ

Video File Name Gaze Points Time (ms) Max Time (ms) Time (ms) Max Time (ms)

Bowl 22 ± 8 49.27 ± 82.83 307.34 4.94 ± 7.68 27.90

CanOfCocaCola 26 ± 11 75.54 ± 95.89 395.08 7.46 ± 8.80 36.70

FryingPan 24 ± 9 59.09 ± 50.06 206.76 5.86 ± 4.51 18.98

Glass 29 ± 10 148.22 ± 265.60 943.19 14.89 ± 26.23 92.21

Jam 27 ± 12 132.75 ± 319.01 1365.65 13.34 ± 31.39 134.68

Lid 29 ± 16 247.21 ± 718.32 3835.30 23.92 ± 70.97 379.64

MilkBottle 28 ± 10 114.95 ± 148.60 647.86 11.20 ± 13.99 61.92

Mug 28 ± 11 109.88 ± 218.40 1087.39 11.03 ± 21.26 106.63

OilBottle 30 ± 12 235.15 ± 477.79 2117.26 22.86 ± 46.23 205.83

Plate 32 ± 14 203.39 ± 406.91 1837.70 19.59 ± 39.46 178.97

Rice 29 ± 13 90.34 ± 95.16 372.93 8.64 ± 8.92 35.80

SaucePan 25 ± 12 139.07 ± 261.08 1286.11 13.68 ± 25.82 126.92

Sponge 24 ± 10 50.05 ± 49.79 207.89 5.10 ± 4.76 20.46

Sugar 27 ± 14 146.60 ± 271.58 1165.44 14.46 ± 26.70 117.57

VinegarBottle 28 ± 13 122.32 ± 178.37 683.56 12.23 ± 17.71 70.01

WashLiquid 28 ± 12 102.93 ± 183.02 880.47 10.42 ± 18.45 89.25

The problem is caused by outlier gaze fixation points, which fall far away from
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the majority, increasing the KDE search area. The solution might be to use a

simple clustering algorithm to find the outlier gaze fixation points and discard them.

Practically, we use only the last, 10 gaze fixation points. Thus, we believe that this

clustering can be carried out in a short time.

However, if the projected gaze fixations in the current frame are sufficiently close

(in the radius of 10 pixels approximately accordingly to our observations, which is

the “normal case"), the ARM A53 (Xilinx, 2021a) can compute the KDE in real

time.

5.5.3 Kernel Density Estimation with DBSCAN clustering

and Gaze Points reduction window

First, it has to estimate the maximum area of the KDE. Table 5.3 shows the results

of the experiment of a reduced number of gaze points (10) on a Xilinx ZCU 102

embedded ARM CPU. When the maximum area set to 400 px the computational

time was 7.68 ms. If the area is bigger, then more computational time is needed.

This experiment proved that the 4900 px area size hits our target for real-time

processing, because the DBSCAN clustering algorithm runs in 28.88 ms. This is

34.72 fps which is enough computational speed for us.

Table 5.3: Average computational time of the KDE after 100 iterations on the Xilinx ZCU
102 Embedded ARM CPU. The gaze points number is 10 and the size of the area is given.

10 Gaze Points measured on arm CPU after 100 iterations
Area (px) 400 900 1600 2500 3600 4900
avg time (ms) 7.68 10.14 13.4 18.3 22.96 28.88

After the maximum area size is estimated, the next step is to find the best

parameters for min_samples and ϵ for the DBSCAN clustering. They should be

such that the area for KDE occupy a rectangle area of 4900 pixels or fewer.
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Table 5.4: DBSCAN without setting the gaze point maximum number to 10.

ϵ min_samples good videos
0.005 3 0.79
0.005 4 0.75
0.005 5 0.71
0.01 3 0.87
0.01 4 0.86
0.01 5 0.85
0.05 3 0.54
0.05 4 0.54
0.05 5 0.54
0.1 3 0.51
0.1 4 0.51
0.1 5 0.51

The Table 5.4 shows our experiments when all the gaze points are used in a given

GITW (LaBRI, 2016) video sequence. When the DBSCAN clustering is used with

ϵ=0.01 and min_sample=3 parameters, 87% of the gaze points are clustered in a

rectangular area smaller than 4900 px on the GITW dataset.

Table 5.5: DBSCAN with gaze point maximum number set to 10.

ϵ min_sample good videos
0.005 3 0.91
0.005 4 0.9
0.005 5 0.9
0.01 3 0.95
0.01 4 0.94
0.01 5 0.92
0.05 3 0.94
0.05 4 0.95
0.05 5 0.96
0.1 3 0.89
0.1 4 0.89
0.1 5 0.89

When the number of gaze points was fixed to maximum 10, the Table 5.5 shows

the results. The best result is when the DBSCAN parameters are ϵ=0.05 and
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min_sample = 5. In that case, the DBSCAN clusters 96% of the gaze points in

a 4900 px area or less window on the GITW dataset. The ϵ=0.01, min_sample = 3

and the ϵ=0.05, min_sample=4 are also giving a promising result, in that case the

95% of the gaze points are clustered in a 4900 px area or less window on the GITW

dataset.

In our case, the number of gaze points (GPs) was fixed to maximum 10, so the

best parameters for the DBSCAN are the ϵ=0.05 and min_sample = 5.

Table 5.6: KDE + DBSCAN with removed outliers (Gaze Points area size <4900 px),
DBSCAN parameters: ϵ=0.05, min_samples=5.

Name Number of GP before Number of GP after Computational Max computational Area of the Max
the KDE + DBSCAN the KDE + DBSCAN time (ms) time (ms) BBs Area

Bowl 10.000 ± 0.000 8.765 ± 1.888 8.499 ± 3.520 18.614 614.6 ± 1032.6 3456
CanOfCocaCola 10.000 ± 0.000 7.500 ± 2.007 6.828 ± 0.929 9.773 206.1 ± 237.4 990

FryingPan 9.920 ± 0.277 7.320 ± 2.249 7.468 ± 3.127 18.154 384.2 ± 844.2 3337
Glass 9.962 ± 0.196 7.615 ± 2.155 6.725 ± 0.931 10.442 197.7 ± 255.9 1248
Jam 9.882 ± 0.485 8.529 ± 1.940 7.166 ± 2.242 15.672 312.5 ± 638.1 2745
Lid 9.964 ± 0.189 8.036 ± 2.219 8.225 ± 4.261 22.438 620.3 ± 1256.4 4753

MilkBottle 10.000 ± 0.000 7.955 ± 1.558 6.763 ± 0.681 8.640 207.8 ± 183.9 744
Mug 10.000 ± 0.000 8.214 ± 2.007 7.127 ± 2.126 17.385 314.1 ± 617.3 3312

OilBottle 10.000 ± 0.000 8.154 ± 2.034 7.104 ± 1.592 14.249 304.1 ± 470.6 2460
Plate 10.000 ± 0.000 7.667 ± 2.148 7.519 ± 2.538 16.518 435.1 ± 768.5 3344
Rice 9.808 ± 0.981 7.962 ± 2.163 7.508 ± 3.252 21.239 428.4 ± 969.0 4440

SaucePan 9.778 ± 0.847 7.148 ± 1.975 6.887 ± 0.965 9.683 254.0 ± 252.6 990
Sponge 10.000 ± 0.000 7.960 ± 2.111 6.817 ± 0.701 8.332 225.5 ± 177.4 624
Sugar 9.913 ± 0.417 7.826 ± 1.922 8.716 ± 4.707 23.154 752.2 ± 1340.0 4736

VinegarBottle 10.000 ± 0.000 7.321 ± 2.195 7.202 ± 1.468 11.697 346.8 ± 442.5 1840
WashLiquid 9.955 ± 0.213 8.545 ± 1.993 6.888 ± 0.973 10.202 254.0 ± 274.1 1224

Table 5.6 shows the computational time of the KDE + DBSCAN algorithm

when the number of gaze points is fixed to 10, the DBSCAN was used with ϵ = 0.05

and min_sample=5 and the maximum area of the gaze points after the DBSCAN is

4900px. The results show that in every subdataset the maximum time is low enough

for real-time processing. Thus, the Computational time (ms) column indicates that

the variance is low, that is the time measurements are stable through video sequences

and therefore the proposed parameter values are acceptable in a variety of situations

for arm prosthesis control.
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5.5.4 Bounding Box generation time measurements

The bounding box generation is fast on the Intel i5 7300HQ CPU. On average, 1

frame is processed in 0.42351 ± 0.01991 milliseconds, which is more than 2500 fps.

The embedded ARM A53 processor is also fast enough to generate bounding boxes

in real time. The average computation time was 2.659 ± 0.027 milliseconds, which

is more than 376 fps.

5.6 Conclusion

Hence, in this chapter, we have described the pre-processing steps of the whole

process of object recognition and localization for prosthesis control. Furthermore,

we have proposed a simple solution for depth estimation of the predicted gaze point

on the object, which is necessary for servoing of the prosthetic arm towards the

target object to grasp.

We have measured computational time and optimized the pre-processing steps.

The geometric alignment time measurements show that the bottleneck of this step is

the SIFT (Lowe, 2004) keypoint extraction. Our FPGA SIFT implementation, see

Chapter 4, allows to drastically reduce the computation time. The other parts of the

gaze geometric alignment such as FLANN matching, homography estimation with

RANSAC and gaze projection are fast enough for the Xilinx ZCU 102 embedded

ARM CPU.

The gaze point noise reduction algorithm such as KDE and DBSCAN can also

compute in real-time. Our experiments show that the best parameters for the GITW

dataset are the ϵ = 0.05 and min_sample = 5. In that case, the DBSCAN can

cluster 96% of the gaze points on all videos in our rich in-the-wild data set correctly.

We remind that for computation time constraints we consider the gaze points well
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clustered in a video sequence if the maximum area of the rectangle covering the

cluster remains less than 4900px. If the DBSCAN clustering is used, then the KDE

computation cost is low and make it possible for creating a real-time application.

The bounding box generation around the gaze point is fast enough for the em-

bedded Xilinx ZCU 102 ARM CPU. It can generate the bounding boxes with 376

fps.

The measurements show that the gaze point alignment steps are fast enough

on the ARM Cortex A53 (Xilinx, 2021a)-embedded CPU, except the SIFT (Lowe,

2004) point extraction step. Therefore, the SIFT (Lowe, 2004) detection module is

implemented on the programmable logic part of the Xilinx ZCU102 (Xilinx, 2019)

FPGA board. (Fejér et al., 2022)

In the next Chapter 6 we will focus on the Gaze-Driven CNN (González-Díaz et

al., 2019) algorithms and based on our measurements we propose a hybrid hardware-

software solution for the acceleration.
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Chapter 6

Hybrid solutions for object recogni-

tion with Gaze-Driven CNN

6.1 Introduction

Finding an object in an image is a computationally complex process. There are

several methods to do that such as YOLO (Redmon et al., 2016), SSD (Liu et al.,

2016), and Faster R-CNN (Ren et al., 2017). For more information about those

object recognition methods, see subchapter 2.3. We have chosen the Gaze Driven

CNN (González-Díaz et al., 2019), which is based on the Faster R-CNN (Ren et al.,

2017).

González-Díaz et al. (2019) has proposed a system, which can recognize the

object of interest in an image based on the user gaze. The Gaze-Driven CNN

however is not running fast enough for real-time computing in an embedded CPU.

In this Chapter 6 we discuss an optimized Gaze-Driven CNN implementation

we propose to achieve a real-time processing. We have decided our optimization

steps based on our measurements, you can see them in Chapter 3.5.1 and our new

measurements on an embedded CPU which you can find in section 6.3.4. Based on

those experiments, we have decided which part of the network has to run on the
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FPGA, and which one can run on the embedded CPU.

González-Díaz et al. (2019) system contains three different modules: the ResNet50,

the Faster R-CNN and the MIL Aggregation. We have proposed a new layer to

make the original architecture from González-Díaz et al. (2019) lighter, the Reduc-

tion Layer. It will be presented in section 6.2. We compared our solution with other

object recognition methods in section 6.3.3

6.2 Gaze-Driven CNN implementation

This module recognizes the object type (e.g., bowl, pan, etc.) and localizes it in

a first-person video frame. A limited number of bounding boxes of different scales

is generated around the estimated gaze fixation point to localize an object. The

module’s input is thus the estimated gaze fixation point ĝn, the cropped frame

around the estimated gaze fixation, and the possible bounding boxes which are

generated around the estimated gaze point on the object ĝn-(–see the second block

in Figure 3.2).

Accordingly, to González-Díaz et al. (2019) nine bounding boxes (BBs) have been

generated with different scale and shape factors. The size of a cropped frame is 300

px × 300 px (González-Díaz et al., 2019). For the selection of the size of BB, we have

considered the typical object size in accordance with the frame resolution, types of

objects the person manipulates in the kitchen environment and the geometry of our

visual scenes. Thus, the size in pixels of bounding boxes with different scales and

shapes is chosen between 67 px and 223 px.

Recognition of the object is carried out by a CNN classifier applied to each of

the generated bounding boxes. The BB with the maximum score is considered as

object location.
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Figure 6.1 shows the structure of the gaze-driven CNN. The backbone is a

ResNet50 in the first four layers, see the block on the left in Figure 6.1. These

layers serve as feature extractors from the input image. The input of the backbone

is a cropped video frame of size 300 px × 300 px × 3. The output is a 1024 × 19 ×

19 feature tensor. For more information about the ResNet50 see Chapter 6.2.1.

Figure 6.1: Gaze-driven, object-recognition CNN, where CH is the number of output
channels of the Reduction Layer.

Not all feature channels are equally important for object classification when using

the backbone. To select the most important ones, and to reduce the computational

burden of the remaining part of the network, we introduce a Reduction Layer (RL).

It reduces the number of channels in the input tensor to a given channel number

CH (in our case, CH can be: 32, 64, 96, 128, 256, 512, 1024). For more information

about the RL see in section 6.2.2.

bounding boxes generated around the estimated gaze fixation point, and feature

tensor with the reduced number of channels (CH× 19 × 19) are the inputs of the

Faster R-CNN module (Girshick, 2015) (ROI Heads). The module predicts the

object type and location as a 17 × 9 tensor as we have 9 BBs (see Figure 6.2 and

work with a 17-class taxonomy comprising 16 object classes and a rejection class, as

in González-Díaz et al. (2019). We present this par of our paper line in more details

in section 6.2.3.

The class scores of bounding boxes are aggregated, as in González-Díaz et al.
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(2019), by Multiple Instance Learning (MIL) (Amores, 2013). The module predicts

the class of the object.

Figure 6.2: Example of “Bowl place 1, subject 1", (GITW) generated bounding box. The
bounding boxes are generated around the red bowl.

6.2.1 Resnet50 implementation

The ResNet50 (He et al., 2016) is the backbone of the Faster R-CNN module of our

implementation. The goal of this unit is to create a representative feature map from

the object of interest.

Figure 6.3: ResNet50 res4f architecture, shown with the residual units, the size of the filters
and the outputs of each convolutional layer. Downsampling is performed by conv2_1,
conv3_1, and conv4_1 with a stride of 2.
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Figure 6.3 illustrates the architecture of the ResNet50 (He et al., 2016). The

layers after res4f are discarded, and the network is initially established with its

original weights up to that layer. The input of the backbone is a cropped video

frame of size 300 px × 300 px × 3. The center of this cropped video frame is the

estimated gaze point.

The Residual blocks are also shown in Figure 6.3. The output is a 1024 × 19 ×

19 feature tensor.

6.2.2 Reduction layer

When using the ResNet50 backbone, not all feature channels are equally crucial

for object classification. We thus developed the RL to prioritize the most crucial

ones and lessen the computational cost on the remaining portion of the network. It

reduces the number of channels in a given input tensor to a target channel number

CH. We have experimented with the following channel numbers CH: 32, 64, 96,

128, 256, 512, 1024.

The input of RL is the backbone output tensor of dimension 1024 × 19 × 19.

The RL applies a 2D convolution (Paszke et al., 2019) over the input tensor. Assume

that the input is of dimension (Cin, H, W) and the output is (Cout, Hout, Wout), then

the RL can be precisely described as follows:

out(Coutj) = bias(Coutj) +

Cin−1∑
k=0

weight(Coutj , k) ⋆ input(k) (6.1)

where ⋆ is the 2D cross-correlation operator, C denotes the number of channels, H

is the height of input planes in pixels, and W is the width in pixels.
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6.2.3 Faster R-CNN

The Faster R-CNN module’s (Girshick, 2015) (ROI Heads) inputs are bounding

boxes constructed around the estimated gaze fixation point and a feature tensor

with reduced channels (CH × 19 × 19) by the RL. The module uses a 17-class

taxonomy made up of 16 object classes and a rejection class, as in González-Díaz et

al. (2019), to estimate the item type and position as a 17 × 9 tensor because there

are 9 BBs. This tensor contains the probability of each bounding box for each class.

outputROIheads =



P11 P12 P13 ... P1B

P21 P22 P23 ... P2B

...

PC1 PC2 PC3 ... PCB


(6.2)

Equation (6.2) is the output tensor of the ROI heads (Faster R-CNN (Girshick,

2015)), where Ci are the categories and B are the bounding boxes.

In the network for “object proposals” or the ROIs the Multi-scale ROI Align

pooling (Lin et al., 2016) is used on the Feautre Pyramid (FP). They assign ROIs

of different scales to the FP levels, number by k. To compute the level index k the

equation is the following:

k = ⌊k0 + log2(

√
wh

s
)⌋ (6.3)

Here k0 is the target level on which a ROI with the size wxh = 2242 should be

mapped to. It is called “canonical level”. In our experiments, the k0 (canonical_level)

was set to 4, and the s (canonical scale) was set to 224, which is the same as in Lin

et al. (2016).

In the FPN, a 3 x3 convolution filter is applied over the feature maps for each

scale level, then a separate 1x1 convolution is done for objectness predictions and
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border box regression. The Region Proposal Network head refers to these 3x3 and

1x1 convolutional layers. All Pyrk scale levels of feature maps are applied with the

same head.

6.2.4 Multiple-Instance Learning implementation

The class scores of bounding boxes (Eq. 6.2 are aggregated, as in González-Díaz et

al. (2019), by Multiple Instance Learning (MIL) (Amores, 2013). The input of the

MIL aggregation is the output tensor of the Faster R-CNN (Girshick, 2015). The

module predicts the class of the frame, i.e. of the object. The frame-level score

(ŷ(f, c)) is calculated as shown in Equation (6.4).

ŷ(f, c) =
1

γ
log(

BBf∑
b=1

eγy(b,c)) (6.4)

Here, f is the frame, c is the class, b is the bounding box, and y(b, c) is the score

of the bounding box. γ is a normalization factor.

MIL aggregation will produce the vector of the frame-level scores for the ob-

ject categories. This vector can be finally transformed into the vector of object

probabilities using a simple softmax operator: p(f, c) = softmax(ŷ(f, c)).

6.3 Results

In this section, we discuss the measured computing time of the different steps of the

proposed algorithm.
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6.3.1 Dataset

The GITW (LaBRI, 2016) dataset contains egocentric videos recorded by a camera

on the eye tracker glasses. It includes the gaze points of where the person was

looking at each moment. The videos were recorded in the wild, in real kitchens, by

different subjects, and every video was recorded by a subject who grasped a kitchen

object.

The acquisition device used was Tobii Glasses 2 (eye tracker) with an egocentric

scene camera. The Tobii Glasses video resolution is HD (1280 pixels × 720 pixels),

and the video frame rate is 25 fps. There are 16 different kitchen objects in the

videos: bowl, plate, wash liquid, vinegar bottle, milk bottle, oil bottle, glass, lid,

saucepan, frying pan, and mug. Different subjects recorded the dataset in five

different kitchens. The videos were short, around 10 s long. The GITW (LaBRI,

2016) dataset contains 404 videos overall. The dataset is freely available for research.

We carried out the time measurements on a subset of the GITW dataset, con-

taining fifteen videos of “grasping a bowl“ actions, recorded by four different sub-

jects. The kitchen environments are of different complexity, from a scene with just

a few objects, such as the BowlPlace1 videos, to a highly cluttered scene, such as

BowlPlace4. The class bowl object had a strong inner variance: different colours,

the material of the bowl object, and even a transparent one. The lighting conditions

and the visibility are different. Moreover, sometimes, we obtained strong blurring

effects due to the camera motion, which was worn on the person’s body.

6.3.2 Gaze-Driven Object-Recognition CNN time measure-

ments

Here, all measurements were taken by PyTorch. 1.6. (Paszke et al., 2019).
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The measurements in Table 6.1 show that the most time-consuming part of the

CNN is the ResNet50 backbone. In every case, the backbone can process a frame in

0.09 s on Intel i5 7300 CPU, which is equal to 11 fps. On the ARM A53 processor, see

Table 6.2, this time, presented in the second column, is even higher. It is about 1.8 s,

thus giving 0.5 fps. This is below the required computational speed. Higher channel

number causes larger computational complexity in the Reduction Layer and the

region of interest (ROI) heads, as shown in Tables 6.1 and 6.2. Nevertheless, with a

reasonable number of channels after the reduction, not exceeding 128, these blocks

run in real-time, with 82 fps for channel reduction and 25 fps for ROI heads.

Table 6.1: Measurements of the gaze-driven, object-recognition CNN in the Intel i5 7300
CPU. The first column contains the reaming number of channels after the Reduction Layer.
Each column shows the elapsed time during the computation in milliseconds.

Number of Channel Backbone (ms) Reduction Layer (ms) ROI Heads (ms) Aggregation (ms)

32 90.000 ± 0.250 0.336 ± 10−4 1.107 ± 10−4 0.137 ± 10−6

64 97.307 ± 1.613 0.531 ± 0.002 2.262 ± 0.004 0.138 ± 10−6

96 87.441 ± 0.508 0.557 ± 0.003 2.956 ± 0.003 0.241 ± 10−4

128 89.952 ± 2.568 0.646 ± 0.001 3.356 ± 0.001 0.142 ± 10−6

256 85.287 ± 0.375 0.908 ± 10−4 6.592 ± 0.002 0.150 ± 10−5

512 94.505 ± 2.100 2.485 ± 0.002 12.276 ± 0.002 0.159 ± 10−6

1024 95.515 ± 7.285 3.204 ± 0.007 23.718 ± 0.010 0.164 ± 10−6

The slowest part of the system was, thus, the backbone; therefore, it was imple-

mented in FPGA. The accelerated ResNet50 CNN on ZCU102 can process an image

in 0.02686 s, which is 37.23 fps. This is high enough for real-time processing.
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Table 6.2: Measurements of the gaze-driven, object-recognition CNN in the ARM A53
CPU. The first column contains the remaining number of the channels after the Reduction
Layer. Each column shows the elapsed time during the computation in milliseconds.

Number of Channel Backbone (ms) Reduction Layer (ms) ROI Heads (ms) Aggregation (ms)

32 1863.300 ± 11.433 6.949 ± 0.001 13.843 ± 0.002 0.643 ± 0.001

64 1768.616 ± 15.615 8.156 ± 0.001 21.859 ± 0.006 0.708 ± 10−4

96 1787.737 ± 15.903 10.178 ± 0.001 30.705 ± 0.001 0.758 ± 10−6

128 1800.327 ± 17.915 12.140 ± 0.001 39.371 ± 0.002 0.727 ± 10−5

256 1797.798 ± 16.372 22.061 ± 0.011 73.750 ± 0.002 0.714 ± 10−4

512 1733.458 ± 14.429 33.723 ± 0.001 142.231 ± 0.001 0.752 ± 10−6

1024 1761.748 ± 16.305 63.319 ± 0.001 285.121 ± 0.002 0.714 ± 10−6

The measurements in Table 6.2 show the results of the ARM A53 CPU.

6.3.3 Gaze-Driven Faster R-CNN accuracy

As Table 6.3 and Figure 6.4 show, the proposed architecture with reduction layer can

perform sufficiently well on our real-world data. Reducing the number of channels

to 128 does not impoverish the classification accuracy too much, compared with the

initial 1024 feature channels of the backbone, as we can see from Table 6.3. The

average accuracy and loss are computed per class of objects.
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(a) Number of channels is 32 (b) Number of channels is 64

(c) Number of channels is 96 (d) Number of channels is 128

(e) Number of channels is 256 (f) Number of channels is 512

(g) Number of channels is 1024

Figure 6.4: Training accuracy (in red) and loss (in blue) during 30 epochs with different
number of channels due to Reduction Layer.
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Table 6.3: The results of the training and testing after 30 epochs.

Number of Channel 32 64 96 128 256 512 1024

avg loss on training set 7.235 6.318 6.642 4.778 3.920 3.115 2.623

avg acc on trainig set 0.815 0.877 0.827 0.963 0.988 1.000 1.000

avg acc on test set 0.793 ± 0.261 0.926 ± 0.120 0.853 ± 0.161 0.952 ± 0.083 1.000 1.000 1.000

avg ap on test set 0.978 ± 0.043 0.985 ± 0.030 0.964±0.041 0.995 ± 0.012 1.000 1.000 1.000

Table 6.4: Comparison of different object recognition CNNs. All the measurements were
taken by Vitis AI 1.4. The gaze-driven, object-recognition CNN used 128 channels in the
Reduction Layer.

Name Gaze-Driven, Object-Recognition CNN SSD Mobilnet V2 YOLO V3

Dataset GITW COCO VOC

Framework Pytorch Tensorflow Tensorflow

Input size 300 × 300 300 × 300 416 × 416

Running device ZCU 102 + ARM A53 ZCU 102 ZCU 102

fps 12.64 78.8 13.2

Table 6.4 shows a comparison between different object recognition methods

from the state-of-the-art methods and our method. The SOTA methods, such as

lightweight YOLO V3 (Redmon et Farhadi, 2016) and SSD Mobilnet V2 (Liu et

al., 2016), are trained on the COCO and VOC datasets. We have a specific and

very cluttered kitchen environment. For this reason, we do not think that these

object detectors are suitable in our case. From the computational time point of

view (Xilinx, 2021c), implemented on the same architecture, they are a bit faster:

13.2 fps object recognition for YOLO V3 (Redmon et Farhadi, 2016) and 78.8 fps

for SSD Mobilnet V2 (Liu et al., 2016). In our work, we take profit from the avail-

ability of gaze fixations in real-time, which can drive object localization. However,

the actual implementation of KDE on CPU makes the system slower. We have 12.64

fps for object recognition and its localization. The bottleneck is the KDE estima-

tion, which we are now improving. Nevertheless, our actual computation times are
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compatible with real-time prosthesis control.

6.3.4 Time measurement of the whole system

Table 6.5 illustrates the average computational time of the system in milliseconds.

The first column contains the module name, and the second column contains the

Intel i5 7300HQ (Intel, 2017) CPU results. In the third column, the ARM A53

(Xilinx, 2021a)-embedded CPU results are given. The fourth column contains the

hybrid (ZCU102 (Xilinx, 2019) and the ARM A53 (Xilinx, 2021a)) results.

Table 6.5: The average computational time measurement of the whole system on different
hardware. The ResNet50 number of channels is 128.

Computational Time (ms)

Module name Intel i5 7300HQ CPU ARM A53 FPGA + ARM A53

SIFT (Lowe, 2004) 72.407 ± 3.349 865.499 ± 8.437 7.407 (Fejér et al., 2021a)

FLANN matcher 3.094 ± 0.638 18.223 ± 3.867 18.223 ± 3.867

Homography estimation 0.270 ± 0.075 2.359 ± 0.778 2.359 ± 0.778

Gaze point projection 0.015 ± 10−4 0.089 ± 0.003 0.089 ± 0.003

DBSCAN + KDE estimation 0.013 ± 0.003 7.34 ± 2.122 7.34 ± 2.122

bounding box generation 0.424 ± 0.020 2.659 ± 0.027 2.659 ± 0.027

ResNet50 (He et al., 2016) 89.952 ± 2.568 1800.327 ± 17.915 26.860

Reduction Layer 0.645 ± 0.001 12.140 ± 0.001 12.140 ± 0.001

Faster R-CNN (Ren et al., 2017) 3.356 ± 0.001 39.371 ± 0.002 39.371 ± 0.002

MIL Aggregation 0.142 ± 10−6 0.727 ± 10−6 0.727 ± 10−6

Total time (ms) 170.298 ± 6.654 2748.734 ± 33.152 117.175 ± 6.8

The total computation time is 170.298 ms in the Intel i5 7300HQ, which is

5.872 fps. The ARM 53 (Xilinx, 2021a)-embedded CPU is the slowest because it is

needed 2748.734 ms per frame, which is 0.364 fps. The hybrid embedded solution

is computed in a frame of 117.175 ms, which is 8.534 fps. The hybrid embedded

solution is faster than the Intel i5 7300HQ (Intel, 2017). The power consumption

of the hybrid embedded solution is 5.6 W, which is less than the Intel i5 7300HQ

(Intel, 2017) CPU 45 W.
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The measurements show that the current experimental setup with the whole

chain of modules is not yet suitable for real-time processing. However, with pipelin-

ing the modules, the real-time processing speed is achievable, but the latency will

be higher.

6.4 Conclusion

In this Chapter 6, we have proposed a hybrid implementation of a visual analysis

part for visual servoing of a prosthetic arm. The system was partitioned between

the FPGA fabric and the ARM Cortex A53 processors of the Xilinx ZCU102 devel-

opment board, based on the computing performance measurements of the building

blocks. As a reference, the computing time of each image processing step was also

measured on a laptop microprocessor and its power dissipation was estimated. (Fejér

et al., 2022)

The gaze-driven CNN is built on 4 different modules: ResNet50 (He et al., 2016),

Reduction Layer, Faster R-CNN (Ren et al., 2017), and Multiple Instance Learning

(MIL) aggregation. ResNet50 (He et al., 2016) was accelerated on FPGA because

the measured computational speed on the ARM Cortex A53 processor was only 0.55

fps, which was improved to 37.23 fps. The Faster R-CNN is also slow, providing

only 3.5 fps when the number of input channels is 1024. We thus proposed a new

Reduction Layer between the ResNet50 (He et al., 2016) and the Faster R-CNN

(Ren et al., 2017) to reduce the number of input channels for the latter block. The

frame rate can be increased to 25 fps when the number of input channels of the

Reduction Layer in the Faster R-CNN is reduced to 128. The experiments show

that the accuracy using only 128 channels is still high enough for the bounding box

classification. (Fejér et al., 2022)
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The experimental setup, with the whole chain of modules, is not suitable for real-

time processing (117.175 ms on average, or approximately 8.5 fps). However, this

computing time can be improved by pipelining the system and processing different

frames at each stage, because each block can finish processing an image within 40

ms. The drawback of pipelining is increased latency.

The power consumption and processing speed for the different architectures show

that the embedded system, accelerated with FPGA, is a feasible solution for creating

a wearable device. (Fejér et al., 2022)
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Chapter 7

Conclusion

In this chapter, I will present my main results and outline the perspectives of this

work.

In this PhD research, I have developed a full solution for object recognition with

Deep NNs in ego-centered video on a hybrid architecture using FPGA. The solution

is guided by eye-tracker gaze fixations recordings and is designed for visual servoing

of upper limb neuroprostethic arms. In the following, I summarize my contributions.

7.1 New scientific results

My scientific results are two-fold:

• 1. I have developed a hybrid solution: FPGA-CPU - for object recognition in

ego-centered video by a Gaze-Driven CNN.

• 2. As a re-usable part of it I have implemented, on FPGA, a new SIFT detector

for pre-processing of gaze data, namely their alignment in the current video

frame.

I present my contributions in the following theses.

Thesis 1: A hybrid solution for Gaze-Driven CNN. (Fejér et al., 2022)
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The backbone of the solution is ResNet50 (He et al., 2016). A Reduction Layer

has been introduced to accelerate computations. Faster R-CNN (Ren et al., 2017),

is implemented for classification of object proposals, i.e. candidates bounding boxes

in the current frame fitting the object of interest. Multiple Instance Learning (MIL)

aggregation is applied for fusion of individual classification results to get the overall

object score and position in the current frame. The recognition of an object type

and object localization in a current video frame is running almost in real-time.

Thesis 1.1 Based on a critical analysis of computation complexity hy-

brid implementation of building blocks are proposed.(Fejér et al., 2022)

I have conducted a detailed computational time analysis of software implementa-

tion of object detection and localization method proposed by LaBRI, González-Díaz

et al. (2019). I have partitioned the system between the FPGA fabric and the ARM

Cortex A53 processors of the Xilinx ZCU102 development board, based on the com-

puting speed measurements of the building blocks. As a reference, the computing

time of each image processing step was measured on a laptop microprocessor and

its power dissipation was estimated.

The gaze point alignment is fast enough according to my measurements on the

ARM Cortex A53 (Xilinx, 2021a)-embedded CPU, except the SIFT (Lowe, 2004)

point extraction step. Therefore, I have implemented the SIFT detection module

on the programmable logic part of the Xilinx ZCU102 (Xilinx, 2019) FPGA board

The gaze-driven CNN is built on four different modules: ResNet50 (He et al.,

2016), Reduction Layer, Faster R-CNN (Ren et al., 2017), and Multiple Instance

Learning (MIL) aggregation. I accelerated the ResNet50 (He et al., 2016) on FPGA

with Vitis AI because the measured computational speed on the ARM Cortex A53

processor was only 0.55 fps. I have improved it to 37.23 fps due to this implemen-

tation.
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Thesis 1.2: I proposed a new Reduction Layer between ResNet50 and

Faster R-CNN in the original algorithm to reduce the number of input

channels for the Faster R-CNN block. (Fejér et al., 2022)

The frame rate can be increased to 25 fps when the number of input channels

for the Faster R-CNN is reduced to 128 by the Reduction Layer. The experiments

show that the accuracy using only 128 channels is still high enough for the bounding

box classification.

Thesis 1.3: My hybrid FPGA + ARM solution show that a wear-

able device is achievable with low power dissipation and with real-time

processing speed. (Fejér et al., 2022)

My experimental setup, with the whole chain of modules, ensures the computa-

tional speed of 117.175 ms on average per video frame. That is, the computational

frame rate is approximately 8.5 fps. It is yet not suitable for real-time processing,

as the required video frame-rate for servoing of a prosthetic arm is 10 fps. However,

this computing time can be improved by pipelining the system. Because each block

of the system can finish processing of a video frame within 40 ms, according to our

measurements. This means that we can achieve a frame rate of 25 fps. However,

the latency of the system will be increased to 117.175 ms, which is still affordable

in this scenario.

Thesis 2: I have developed a hybrid solution with a 32 bit floating

point computations for SIFT keypoint extractor. It runs on FPGA and

generates the same results as the OpenSIFT software implementation.

(Fejér et al., 2021a)

In the overall system SIFT (Lowe, 2004) point detection is used for the alignment

of gaze points. It is a critical block according to our computation time measurements,
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because the processing time of a frame was 72.407 ± 3.349 ms on Intel i5 7300HQ

CPU. Therefore, we have designed, optimized and implemented it on FPGA.

Thesis 2.1: My proposed FPGA solution for the SIFT point detector

can be implemented on Xilinx ZCU102 FPGA-board. (Fejér et al., 2021a)

I have implemented a FPGA-optimizied SIFT keypoint detector on Xilinx ZCU102.

The designed digital circuit has been used 117,620 of the 274,080 available LUTs

resources, 157,946 of the 548,160 available FFs resources, 416.5 of the 912 available

BRAMs resources and 938 of the 2,520 available DSPs resources. There are enough

free resources left on the Xilinx ZCU102 to develop more computer vision algorithms

on FPGA.

Thesis 2.2: In the proposed FPGA SIFT implementation, I have made

a simplification in the keypoint localization step. The FPGA optimzed

SIFT which gives close results to the reference SIFT point detector. (Fejér

et al., 2021a)

Instead of computing Taylor expansion for precise SIFT point localization, key-

points too close to each other are filtered using Non-maximum Supression. This

approach is not changing the accuracy of the original algorithm accordingly to our

comparison. I have compared my hardware/software solution to other hardware

or hybrid implementations of the SIFT algorithm and with the baseline software

detector OpenSIFT. I have conducted computational experiments on a large set

of 3860 video frames to validate the implemented detector. My algorithm imple-

mented on FPGA is giving an average precision of 0.84 and the average recall of

0.94 in SIFT-point detection compared to the baseline OpenSIFT.

Thesis 2.3: I have experimentally shown that the proposed FPGA

SIFT implementation is time-efficient and the power consumption is low.

The processing rate of the implemented SIFT detector is 135 images per
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second, when the input image resolution is of 480px × 480px, and it is

running on Xilinx ZCU102 FPGA board. The total power consumption

of my FPGA SIFT implementation is 5.6W, which is suitable for wearable

devices. (Fejér et al., 2021a)

I used these results in Thesis 1, because in one of the steps, namely in gaze point

alignment the SIFT keypoint extraction is a crucial step.

7.2 Perspectives

The system integration is possible, because the obtained accuracy is high enough

for real world demonstration. Currently, the visual block is accelerated on FPGA,

but it is necessary to implement the system servoing steps on an embedded hybrid

system.

The algorithm can also be developed further. The current algorithm is extracting

objects in video frame by frame. However, it is possible to achieve higher accuracy

with tracking. In that case, faster processing time is also achievable. Another pos-

sible future work will be to use move-to-data incremental learning method (Pour-

sanidis et al., 2020). With this method, it is possible to adapt this system for a

changing living environment of a person. It will also be adaptable for a different

environment.

A wearable device is required in that case to control a prosthetic arm. To do that,

a technology needed has to have a low power consumption and a high computational

speed. It is feasible, as my experiments have shown.

It is possible to increase the computational speed with pipelining. Pipelining is

a method when a step finishes, for example gaze-point alignment of a frame, then it

is possible to start gaze-point alignment on the next frame and the gaze-point noise
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reduction can be done on the original frame at the same time. However, this would

increase the latency of the system. The current system latency is around 117.175

± 6.8 ms, which is the accepted latency allowed by the control of the robotic arm

(∼100 ms).
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Appendix A

Summary of the PhD dissertation in

English

Today, the use of a prosthetic arm has become an accessible and convenient tool for

people who have lost their upper limbs due to an unfortunate accident. Technological

advancements lead to the development of more comfortable and suitable prosthetic,

making the user life easier and more convenient. Our vision is to further enhance

the quality of arm prosthetic using visual information which aids its performance

tackling everyday problems. In order to keep the lightweight of this system, our

visual controlling mechanism must be suitable to wear and allow real-time processing

while it should not limit the mobility of the artificial limb. Carefully examining these

requirements, we have decided to develop the controlling mechanism in FPGA. This

is an open problem and there are intensive research activities in this area.

The visual control program was proposed in previous works of LABRI and has

several individual parts. It works on a regular computer. Our goal is to accelerate

those algorithms to achieve the real-time processing speed.

It is a complex computer vision, image processing and a robotic problem, because

we have to find the object, which the user wants to grasp. This part is the computer

vision and image processing task. We also want to control the robotic arm to help
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the user to grasp this object, which is the robotic problem.

In this dissertation, we discuss the State-of-the-art methods (SOTA) of the

visual-guided neuroprostheses control, the object recognition and the FPGA im-

plementation of visual scenes analysis methods. Thus, our system is compared to

other SOTA solutions.

Hence, we propose a visual guided system to help control a neuroprosthesis arm.

The Tobii eye-tracker camera is the acquisition device. The user can wear this

camera as a glass. The device can record an egocentric view video. The recorded

video resolution is Full HD (1920 × 1080) with 25 fps. It can also record the user

gaze fixations showing the location of the user’ gaze looking in a frame, and the

distance between the object of interest and the camera in millimeter precision.

"Grasping-in-the-wild" dataset developed in LABRI was used in our research.

This dataset contains real-world video recordings in different kitchens, so the record-

ings vary. It is an Open dataset freely available for research at Nakala CNRS server.

The videos are recorded in an egocentric view when a user is grasping a kitchen

equipment. There are 16 different kinds kitchen equipment/objects in this dataset

such as bowl, can of coke, milk bottle, and so on. The dataset contains 404 videos

with the average duration around 10 seconds. The videos have different complexity

from the computer vision point of view, but all remain "natural" and thus complex

for an automatic analysis. The environment can be cluttered, because there are

multiple objects in a real-world kitchen. Thus, the equipment can be transparent,

such as a glass or bottle. The dataset contains the egocentric view videos and the

user gaze fixation coordinates.

Our experiments show that a pure software implementation of algorithms is not

fast enough to control a neuroprosthetic arm in real time. An ideal solution for this

problem should be able to process the data in real-time. The power consumption of
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A. Summary of the PhD dissertation in English

the device has to be very low, as the user has to wear it during his natural activities.

The Field-Programmable Gate Arrays (FPGA) satisfy those requirements.

The Xilinx Zynq UltraScale+ MPSoC ZCU102 board has been chosen as a target

development device. This board is ideal to accelerate computer vision algorithms.

The XCZU9EG FPGA device on the ZCU102 board has a Processing System

(PS) and a Programmable Logic (PL) part. The PS part has a quad-core ARM

Cortex-A53, dual-core Cortex-R5F real-time processors, and a Mali-400 MP2 graph-

ics processing unit. The Cortex-A53 is an Application Processing Unit (APU) to

run OS and general purpose applications. The ZCU102 has a Zynq UltraScale+

XCZU9EG-2FFVB1156 MPSoC chip. The Cortex-A53 is an ARM v8 architecture-

based 64-bit quad-core multiprocessing CPU. The Cortex-R5 is a Real-time Pro-

cessing Unit (RPU) and is based on an ARM v7 architecture 32-bit RPU with a

dedicated tightly coupled memory (TCM). The Mali-400 is a graphics processing

unit with pixel and geometry processor and 64 KB L2 cache.

PL resources of ZCU102 are the following: it has 912 Block RAM (BRAM),

548160 flip-flops (FF), 2520 digital signal processing (DSP) units, and 274080 Look-

up tables (LUT).

To control a prosthetic arm for the amputees, we proposed a hybrid hardware-

software solution. The system main components are the following: Recording the

frames and gaze points with Tobii eye-tracker, gaze points alignment, gaze points

noise reduction, bounding boxes generation around the noise reduced gaze points,

object detection with the Gaze Driven CNN. More information about each compo-

nent could be found in the next paragraphs.

The Tobii eye-tracker records the user gaze points and an egocentric video.

User gaze points can contain noise due to the distractors and microsaccades.

Thus we wish to collect amm the gaze points in the current frame and estimate the
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smooth position of the gaze fixation in the current video frame. Thus the next step

is the gaze points alignment. We wish to perform it with a homography model; The

latter can be built by matching characteristic points of the visual scene. Thus, first

we need to extract the Scale-Invariant Feature Transform (SIFT) keypoints of every

consecutive frames in a temporal window we wish to use for estimation of smoothed

gaze point position in the current frame. Our measurements show that SIFT Lowe

(2004) was one of the slowest parts of our method for the experimental system.

Having the SIFT keypoints the next step is the FLANN matching. There is

a reference image which we compare the reference image-10, reference image- . . . .,

reference image-1 images and put them in the same plane. After that we can compute

the homography matrix with matched key-points, and project all the gaze points

from the temporal window in the current video frame.

In the gaze-point noise reduction, the goal is to filter out the outlier gaze points.

The outlier gaze points may be caused by the saccades, and the head movements,

when the user tries to find to object or get distracted during the process of grasping.

The DBScan clustering removes the outlier gaze points and the Kernel Density

Estimation (KDE) uses the remained aligned gaze points and estimate the smoothed

location of the gaze point.

Bounding boxes are then generated around the estimated gaze point. The clas-

sification of these bounding boxes accordingly to our object taxonomy will give a

precised location of the object-to-grasp and its type. There are 9 bounding boxes

generated with different scales and sizes where the center point is the estimated gaze

point.

The Gaze Driven CNN is predicting the object type and the object location.

Inputs of this CNN are the nine bounding boxes and the current video frame.

The object type is necessary. Indeed, in grasping process, it is important to know
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the shape and the surface quality of the object. In our current work we have not

studied the palm opening control as a function of the object shape, but prepared a

good basis for this next step of the prosthesis control.

To summarize, in this PhD research, we have developed a full solution for object

recognition with Deep NNs in ego-centered video on a hybrid architecture using

FPGA. The solution is guided by gaze fixation recordings from the eye-tracker and is

designed for visual servoing of the upper limb neuroprostethic arms. In the following,

we summarize the contributions.

My scientific results are two-fold:

• 1. I have developed a hybrid solution: FPGA-CPU - for object recognition in

ego-centered video by a Gaze-Driven CNN.

• 2. As a re-usable part of it I have implemented, on FPGA, a new SIFT detector

for pre-processing of gaze data, namely their alignment in the current video

frame.
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Appendix B

Résumé de la thèse de doctorat en

français

Aujourd’hui, l’utilisation d’un bras prothétique est devenue un outil accessible et

pratique pour les personnes qui ont perdu leurs membres supérieurs à la suite d’un

accident malheureux. Les progrès technologiques conduisent au développement de

prothèses plus confortables et plus adaptées, rendant la vie de l’utilisateur plus facile

et plus pratique. Notre vision est d’améliorer encore la qualité des prothèses de bras

en utilisant des informations visuelles qui aident leurs performances à résoudre les

problèmes quotidiens. Afin de conserver la légèreté de ce système, notre mécanisme

de contrôle visuel doit être adapté au port et permettre un traitement en temps réel,

sans pour autant limiter la mobilité du membre artificiel. En examinant attentive-

ment ces exigences, nous avons décidé de développer le mécanisme de contrôle en

FPGA. Il s’agit d’un problème ouvert et unhe recherche intense est menée dans ce

domaine.

Une approche de contrôle visuel a été proposé dans des travaux précédents du

LABRI. Elle comporte plusieurs étapes. L’implantationfonctionne sur le CPU/GPU

d’un ordinateur banalisé. Notre objectif est d’accélérer ces algorithmes pour attein-

dre la vitesse de traitement en temps réel.
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C’est un problème complexe de vision par ordinateur, de traitement d’image et

de robotique, car nous devons reconnaître et localiser dans la vidéo, l’objet que

l’utilisateur veut saisir. Cette partie est la tâche de vision par ordinateur et de

traitement d’image. Nous voulons également contrôler le bras robotique pour aider

l’utilisateur à saisir cet objet, ce qui constitue le problème robotique.

Dans cette thèse, nous discutons des méthodes de l’état de l’art (SOTA) du

contrôle des neuroprothèses guidées visuellement, de la reconnaissance des objets

et de l’implémentation FPGA des méthodes d’analyse des scènes visuelles. Ainsi,

notre système est comparé à d’autres solutions SOTA.

Nous proposons donc un système à guidage visuel pour aider à contrôler un bras

robothique de neuroprothèse.

La caméra de l’eye-tracker Tobii est le dispositif d’acquisition. L’utilisateur peut

porter cette caméra sur les lunettes. L’appareil peut enregistrer une vidéo en vue

égocentrique. La résolution vidéo enregistrée est Full HD (1920 × 1080) avec 25 fps.

Il peut également enregistrer les fixations du regard de l’utilisateur en montrant

l’emplacement du regard de l’utilisateur dans l’image vidéo, et la distance entre

l’objet d’intérêt et la caméra avec la précision millimétrique.

Le jeu de données "Grasping-in-the-wild" développé au LABRI a été utilisé dans

notre recherche. Ce jeu de données contient des enregistrements vidéo des scènes

réelles dans différentes cuisines, les enregistrements varient. Il s’agit d’un jeu de don-

nées ouvert disponible librement pour la recherche sur le serveur Nakala du CNRS.

Les vidéos sont enregistrées dans une vue égocentrique lorsqu’un utilisateur saisit

un ustensile de cuisine. Il y a 16 différents types d’ustensiles/objets de cuisine dans

ce jeu de données, comme un bol, une canette de coca, une bouteille de lait, etc.

L’ensemble de données contient 404 vidéos d’une durée moyenne d’environ 10 sec-

ondes. Les vidéos ont une complexité différente du point de vue de la vision par
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ordinateur, mais toutes restent "naturelles" et donc complexes pour une analyse au-

tomatique. L’environnement peut être encombré, car il y a de multiples objets dans

une cuisine dnas la vie quotidienne. Ainsi, l’obet peut être transparent, comme un

verre ou une bouteille. Le jeu de données contient les vidéos de la vue égocentrique

et les coordonnées de fixation du regard de l’utilisateur.

Nos expériences montrent qu’une implémentation purement logicielle des algo-

rithmes n’est pas assez rapide pour contrôler un bras neuroprothétique en temps

réel. Une solution idéale pour ce problème devrait être capable de traiter les don-

nées en temps réel. La consommation d’énergie du dispositif doit être très faible,

car l’utilisateur doit le porter pendant ses activités naturelles. Les réseaux de portes

programmables en champ (FPGA) répondent à ces exigences. La carte Xilinx Zynq

UltraScale+ MPSoC ZCU102 a été choisie comme dispositif de développement cible.

Cette carte est idéale pour accélérer les algorithmes de vision par ordinateur.

Le FPGA XCZU9EG de la carte ZCU102 comporte un système de traitement

(PS) et une partie logique programmable (PL). La partie PS comprend un processeur

quadricœur Arm Cortex-A53, des processeurs en temps réel Cortex-R5F à double

cœur et une unité de traitement graphique Mali-400 MP2. Le Cortex-A53 est une

unité de traitement d’application (APU) pour exécuter le système d’exploitation et

les applications générales. Le ZCU102 est équipé d’une puce MPSoC Zynq Ultra-

Scale+ XCZU9EG-2FFVB1156. Le Cortex-A53 est un processeur multiprocesseur

quadricœur 64 bits basé sur l’architecture ARM v8. Le Cortex-R5 est une unité

de traitement en temps réel (RPU) et est basé sur une architecture ARM v7 RPU

32-bit avec une mémoire dédiée à couplage serré (TCM). Le Mali-400 est une unité

de traitement graphique avec un processeur de pixels et de géométrie et un cache

L2 de 64 Ko.

Les ressources PL du ZCU102 sont les suivantes : il dispose de 912 Block RAM
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(BRAM), 548160 flip-flops (FF), 2520 unités de traitement numérique du signal

(DSP) et 274080 Look-up tables (LUT).

Pour contrôler un bras prothétique pour les amputés, nous avons proposé une

solution hybride matériel-logiciel. Les principaux composants du système sont les

suivants : Enregistrement des images et des points de regard avec l’eye-tracker

Tobii, alignement des points de regard, réduction du bruit des points de regard,

génération de boîtes de délimitation autour des points de regard réduits en bruit,

détection d’objets avec le Gaze Driven CNN. De plus amples informations sur chaque

composant sont disponibles dans les paragraphes suivants.

L’eye-tracker Tobii enregistre les points de regard de l’utilisateur et une vidéo

égocentrique.

Les points de regard de l’utilisateur peuvent contenir du bruit dû aux distracteurs

et aux microsaccades. Nous souhaitons donc collecter tous les points de regard

dans l’image actuelle et estimer la position lissée de la fixation du regard dans

l’image vidéo actuelle. L’étape suivante est donc l’alignement des points de regard.

Nous souhaitons l’effectuer à l’aide d’un modèle d’homographie ; ce dernier peut

être estimé en faisant correspondre des points caractéristiques de la scène visuelle.

Ainsi, nous devons d’abord extraire les points caractéristiques SIFT (Scale-Invariant

Feature Transform) de chaque image consécutive dans une fenêtre temporelle que

nous souhaitons utiliser pour estimer la position du point de regard dans l’image

actuelle. Nos mesures montrent que la transformation SIFT est l’une des parties les

plus lentes de notre méthode pour le système expérimental. Après avoir obtenu les

points clés SIFT, l’étape suivante est la correspondance FLANN. Il y a une image

de référence que nous comparons avec l’image de référence-10, l’image de référence-

...., l’image de référence-1 et nous les porjetons dans le même plan. Ensuite, nous

pouvons calculer la matrice d’homographie avec les points caractéristiques appariés,
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et projeter toutes les fixations de regard de la fenêtre temporelle dans l’image vidéo

actuelle.

Dans la réduction du bruit des points de regard, l’objectif est de filtrer les points

de regard aberrants. Les points de regard aberrants peuvent être causés par les

saccades et les mouvements de la tête, lorsque l’utilisateur essaie de trouver un

objet ou est distrait pendant le processus de saisie. Le l’algorithme de clustering

DBScan élimine les points de regard aberrants. Ensuite l’estimation de la densité

par une méthode à noayaux(KDE) utilise les points de regard alignés et estime

l’emplacement lissé du point de regard dasn l’image courante.

Des boîtes englobantes sont ensuite générées autour du point de regard estimé.

La classification de ces boîtes englobantes selon notre taxonomie d’objets donnera

une localisation précise de l’objet à saisir et de son type. Neuf boîtes englobantes

sont générées à différentes échelles et tailles, le point central étant le point de regard

estimé.

Le CNN piloté par le regard prédit le type et la localisation de l’objet. Les

entrées de ce CNN sont les neuf boîtes englobantes et l’image vidéo actuelle.

Le type d’objet est nécessaire. En effet, dans le processus de préhension, il est

important de connaître la forme et la qualité de la surface de l’objet. Dans notre

travail actuel, nous n’avons pas étudié le contrôle de l’ouverture de la paume en

fonction de la forme de l’objet, mais nous avons préparé une bonne base pour cette

prochaine étape du contrôle de la prothèse.

Pour résumer, dans cette recherche doctorale, nous avons implementé, sur une

architecture hybride qui comprend les FPGA, une solution complète pour la re-

connaissance d’objets avec des réseaux profonds dans une vidéo égocentrée. La

solution est guidée par les enregistrements de fixation du regard de l’eye-tracker

et est conçue pour l’asservissement visuel des bras neuroprosthiques des membres
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supérieurs. Dans ce qui suit, nous résumons les contributions de notre travail.

Mes résultats scientifiques sont de deux ordres :

• 1. J’ai développé une solution hybride : FPGA-CPU - pour la reconnaissance

d’objets dans une vidéo égocentrique par un CNN guidé par le regard.

• 2. Comme partie réutilisable, j’ai implémenté, sur FPGA, un nouveau dé-

tecteur SIFT pour le prétraitement des données du regard, à savoir leur aligne-

ment dans l’image vidéo courante.
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