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Chapter 1

Introduction and open questions

The use of a prosthetic arm in modern days have become an accessible and useful
tool for people who have lost their upper limbs due to an accident or different
diseases. Technology leads to development of more comfortable and suitable
equipment, helping the user in every-day life. Our vision is to further enhance
the quality of the prosthetic arm using primary visual information. Our visual
controlling mechanism must be suitable to wear and allow real-time processing
while does not limit the mobility of the artificial limb. Carefully examining these
requirements, we have decided to develop the controlling mechanism on FPGA.
However, this is an open problem and there are intensive research activities in
this area.

The controlling program has several individual parts running on a computer.
Our goal is to accelerate the algorithms to achieve the real-time processing speed.

It is a complex computer vision, image processing and a robotic problem,
because we have to find the object, which the user wants to grasp. This part is a
computer vision and image processing task. We also want to control the robotic
arm to help the user to grasp this object.

Figure 1.1: The prosthetic arm visually guided system.
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To control a prosthetic arm for the amputees, we proposed a hybrid hardware-
software solution. The system is in the Figure 1.1, which is showing the main
components: Record the frames and gaze points with Tobii eye-tracker, gaze
points alignment, gaze points noise reduction, bounding boxes generation around
the noise reduced gaze points, object detection with the Gaze Driven CNN.

Tobii eye-tracker, which record the user gaze points (the point where the user
is looking currently). The gaze points have 3 coordinates, x, y, gamma. Where
gamma is the depth of gaze point. The Tobii eye-tracker also record an egocentric
view video. The recorded video resolution is 1920 px x 1080 px (Full HD) and
the framerate is 25 fps.

The next step is the gaze points alignment to extract the Scale-Invariant
Feature Transform (SIFT) keypoints of every consecutive frames in a video. Our
measurements show that SIFT [1] was one of the slowest part in our flow of
algorithms.

SIFT is a widely used and implemented keypoint detector. There are CPU[2,
3], GPU[4, 5] and FPGA implementations[6, 7, 8, 9, 10, 11]. The OpenCV SIFT
library[2] and the OpenSIFT[3] are popular frameworks for SIFT keypoint extrac-
tion and descriptor computation on a CPU. However the runtime of these CPU
implementations are too slow for real-time image processing on light-weight de-
vices. Computation can be accelereted by using GPUs, for example: CudaSIFT[5]
can process a 1280px × 960px image in 12.7 ms, i.e. 78.74 frames per second
(fps) on the NVIDIA GeForce GTX 580 GPU. However, its power consumption
is 244W, which is too high for a wearable application. HartSIFT[4] can extract
features within 3.14∼10.57ms (94.61-318 fps) depending on the input image size
on the NVIDIA GeForce GTX TITAN Black. The power consumption of this
GPU is 250W, which is also very high for a portable device.

The most computationally intensive operation in SIFT keypoint extraction is
the computation of the Gaussian pyramids as it requires multiplication of coeffi-
cients of Gaussian filters with scale-space images. For this step, an analog solution
is developed by Rodríguez-Vázquez et al. [12, 13] where the Gaussian pyramid
is computed by an analog CMOS circuit and exhibits very low dissipated power.
The inherent parallel processing exhibits high computational power of the analog
VLSI implementations. However, the size of the array is small [12, 14, 13]. In [13],
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the analog sensor/processor implementation has 88x60 processing elements, and
each processing element has 4 photo-diodes. The computation unit is connected
to the vision sensor unit of the camera. The vision sensor array has 176x120
pixels only and the system is implemented by using a 0.18 µm CMOS technology.
This solution has proper processing power but the resolution of the analog sensor
is not sufficiently high for our application, since our method use larger areas in
video frames and it needs 480px × 480px image as input.

Several different SIFT implementations on FPGA are published such as the
system designed by Doménech-Asensi et al.[6], which is a simplified version of the
algorithm. It is assumed that each feature point has two main orientations at
most, the orientation histogram uses 8 bins instead of 36 bins. Thus complexity
is reduced but precision of orientations less with regard to the original SIFT[1].
The system can process 640px × 480px sized input images at 99 fps processing
speed on Xilinx Virtex-5, and it uses fixed point representation.

Having the SIFT keypoints the next step is the FLANN matching. There is a
reference image which we compare the reference image-10, reference image- . . . .,
reference image-1 images and put them in the same plane. After that we can
compute the homography matrix, and with that we can estimate the gaze points
place in the reference frame plane.

In the gaze point noise reduction, the goal is to filter out the outlier gaze
points. The outlier gaze points caused by the saccades, and the head movements,
when the user try to find to object or get distracted during the process of grasp-
ing. The Density-based spatial clustering of applications with noise (DBScan)
clustering removes the outlier gaze points and the Kernel Density Estimation
(KDE) uses the remained aligned gaze points and estimate the location of the
gaze point.

Bounding boxes generated around the fixated gaze point. Nine bounding
boxes generated with different scale and size where the center point is the fixated
gaze point.

The Gaze Driven CNN is predicted the object type and the object location.
Inputs of this CNN is the 9 bounding boxes and the current frame. The object
type and location are needed to better controlling the prosthetic arm.



Chapter 2

Research methodology

Our goal is to find a device which can control a robotic arm. It has to be low
weight equipment with low power consumption. On the other hand, it should
work efficiently, and the whole system has to work almost in real-time, in order
to process the data quickly.

The Field Programmable Gate Arrays (FPGA) has been chosen, because it
has low energy dissipation therefore, it is good for prototyping a wearable device.
In that case, the user wanted to wear our application, so a light-weight device is
mandatory. The FPGA has the required computational power to accelerate the
chain of algorithms to make it real-time processing. The real-time processing is
required in this case, since the goal of this research to use the system in every-day
life.

The Xilinx Xilinx Zynq UltraScale+ MPSoC ZCU102 [15] has been used.
The XCZU9EG FPGA device on the ZCU102 board has a Processing System

(PS) and a Programmable Logic (PL) part. The PS part has a quad-core Arm
Cortex-A53, dual-core Cortex-R5F real-time processors, and a Mali-400 MP2
graphics processing unit. The Cortex-A53 is an Application Processing Unit
(APU) to run OS and general purpose applications. The ZCU102 has a Zynq
UltraScale+ XCZU9EG-2FFVB1156 MPSoC chip. The Cortex-A53 is an Arm
v8 architecture-based 64-bit quad-core multiprocessing CPU. The Cortex-R5 is
a Real-time Processing Unit (RPU) and based on an Arm v7 architecture 32-
bit RPU with a dedicated tightly coupled memory (TCM). The Mali-400 is a
graphics processing unit with pixel and geometry processor and 64 KB L2 cache.
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Table 2.1: Xilinx Zynq UltraScale+ ZCU102 programmable logic resources.
Resource type Available

BRAM 912
DSP 2,520
FF 548,160

LUT 274,080

The PL resources of the ZCU102 has been shown in Table 2.1. It has 912 block
RAM (BRAM), 548160 flip-flops (FF), 2520 digital signal processing (DSP) units,
and 274080 Look-up tables (LUT).

Vitis HLS (formerly Vivavo HLS) is a high-level synthesis tool that allows com-
pilation of C, C++, and OpenCL functions to hardware modules using the device
logic fabric and RAM/DSP blocks. Vitis HLS supports to develop a Register-
transfer level (RTL) Intellectual Property (IP) for Xilinx devices in C/C++ pro-
gramming languages.

Vitis HLS generate automatically the optimization in the C/C++ code. To
achieve the best optimized RTL code that, it is necessary to add some directives
to the code. The directives help the compiler to optimize design, reduce latency,
I/O ports usage, and resource usages. Directives can be added in the Vivado HLS
using the pragma keyword.

After synthesis is done, a report generated in the Vitis HLS. This report con-
tains the generated RTL design modules, resource usages, and the computational
cost.

If the synthesis was successful, then an IP block can be generated in the
IP flow. After the IP is generated, an embedded system can be created in the
Vivado IP integrator. That means the generated digital circuit connected to the
other parts of the system via AXI4 buses such as memories, CPUs, other IPs,
and peripheries. The bit stream file is generated based on the created embedded
system in the Vivado IP integrator.

PYNQ is a platform which is running on the Xilinx ZCU102 FPGA board. Af-
ter the Vivado IP integrator generated the circuit, this platform make it possible
to call it as a function in Python language and run the implemented algorithms.
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Vitis AI [16, 17] can accelerate AI inference on Xilinx hardware platforms
such as FPGAs, SoCs, and Versal Adaptive Compute Acceleration Platforms
(ACAP). The development environment includes of optimized IP cores, tools,
libraries, models, and example designs. It makes possible to accelerate a Neural
Network on FPGA without special FPGA knowledge.

The Tobii Pro Glasses 2 eye tracking system [18] has been used to record the
videos and the gaze points during the experiments. The system has a lightweight
Tobii Pro Glasses Head Unit, a wearable Tobii Pro Glasses Recording Unit and
Tobii Glasses Controller (running on Windows 7, 8 or newer operating system) or
Tobii Pro Glasses 2 API which is running on any devices. The Tobii Pro Glasses
Recording unit can be worn as a glass.

The Tobii Pro Glasses Recording Unit can record an egocentric video 1920px
× 1080px size with 25fps. It can also record the user’s gaze point location and
the distance between the glass and the looked object in millimeter.

In this research, Grasping in the Wild (GITW) [19] dataset has been used.
This contains 404 short egocentric videos about a person, who want to grasp
different objects namely, for example a bowl, or a coke can, or a pan in a kitchen.



Chapter 3

Contributions of the PhD research

In this chapter, I will present my main results and outline the perspectives of this
work.

In this PhD research, I have developed a full solution for object recognition
with Deep NNs in ego-centered video on a hybrid architecture using FPGA. The
solution is guided by eye-tracker gaze fixations recordings and is designed for
visual servoing of upper limb neuroprostethic arms. In the following, I summarize
my contributions.

3.1 New scientific results

My scientific results are two-fold:

• 1. I have developed a hybrid solution: FPGA-CPU - for object recognition
in ego-centered video by a Gaze-Driven CNN.

• 2. As a re-usable part of it I have implemented, on FPGA, a new SIFT
detector for pre-processing of gaze data, namely their alignment in the
current video frame.

I present my contributions in the following theses.
Thesis 1: A hybrid solution for Gaze-Driven CNN. [J1]
The backbone of the solution is ResNet50 [20]. A Reduction Layer has been

introduced to accelerate computations. Faster R-CNN [21], is implemented for
classification of object proposals, i.e. candidates bounding boxes in the current
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frame fitting the object of interest. Multiple Instance Learning (MIL) aggregation
is applied for fusion of individual classification results to get the overall object
score and position in the current frame. The recognition of an object type and
object localization in a current video frame is running almost in real-time.

Thesis 1.1 Based on a critical analysis of computation complexity
hybrid implementation of building blocks are proposed.[J1]

I have conducted a detailed computational time analysis of software imple-
mentation of object detection and localization method proposed by LaBRI, [22].
I have partitioned the system between the FPGA fabric and the ARM Cortex
A53 processors of the Xilinx ZCU102 development board, based on the comput-
ing speed measurements of the building blocks. As a reference, the computing
time of each image processing step was measured on a laptop microprocessor and
its power dissipation was estimated.

The gaze point alignment is fast enough according to my measurements on the
ARM Cortex A53 [23]-embedded CPU, except the SIFT [1] point extraction step.
Therefore, I have implemented the SIFT detection module on the programmable
logic part of the Xilinx ZCU102 [15] FPGA board

The gaze-driven CNN is built on four different modules: ResNet50 [20], Re-
duction Layer, Faster R-CNN [21], and Multiple Instance Learning (MIL) ag-
gregation. I accelerated the ResNet50 [20] on FPGA with Vitis AI because the
measured computational speed on the ARM Cortex A53 processor was only 0.55
fps. I have improved it to 37.23 fps due to this implementation.

Thesis 1.2: I proposed a new Reduction Layer between ResNet50
and Faster R-CNN in the original algorithm to reduce the number of
input channels for the Faster R-CNN block. [J1]

The frame rate can be increased to 25 fps when the number of input channels
for the Faster R-CNN is reduced to 128 by the Reduction Layer. The experi-
ments show that the accuracy using only 128 channels is still high enough for the
bounding box classification.

Thesis 1.3: My hybrid FPGA + ARM solution show that a wear-
able device is achievable with low power dissipation and with real-time
processing speed. [J1]
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My experimental setup, with the whole chain of modules, ensures the com-
putational speed of 117.175 ms on average per video frame. That is, the compu-
tational frame rate is approximately 8.5 fps. It is yet not suitable for real-time
processing, as the required video frame-rate for servoing of a prosthetic arm is
10 fps. However, this computing time can be improved by pipelining the system.
Because each block of the system can finish processing of a video frame within
40 ms, according to our measurements. This means that we can achieve a frame
rate of 25 fps. However, the latency of the system will be increased to 117.175
ms, which is still affordable in this scenario.

Thesis 2: I have developed a hybrid solution with a 32 bit floating
point computations for SIFT keypoint extractor. It runs on FPGA and
generates the same results as the OpenSIFT software implementation.
[J2]

In the overall system SIFT [1] point detection is used for the alignment of gaze
points. It is a critical block according to our computation time measurements,
because the processing time of a frame was 72.407 ± 3.349 ms on Intel i5 7300HQ
CPU. Therefore, we have designed, optimized and implemented it on FPGA.

Thesis 2.1: My proposed FPGA solution for the SIFT point detector
can be implemented on Xilinx ZCU102 FPGA-board. [J2]

I have implemented a FPGA-optimizied SIFT keypoint detector on Xilinx
ZCU102. The designed digital circuit has been used 117,620 of the 274,080 avail-
able LUTs resources, 157,946 of the 548,160 available FFs resources, 416.5 of the
912 available BRAMs resources and 938 of the 2,520 available DSPs resources.
There are enough free resources left on the Xilinx ZCU102 to develop more com-
puter vision algorithms on FPGA.

Thesis 2.2: In the proposed FPGA SIFT implementation, I have
made a simplification in the keypoint localization step. The FPGA
optimzed SIFT which gives close results to the reference SIFT point
detector. [J2]

Instead of computing Taylor expansion for precise SIFT point localization,
keypoints too close to each other are filtered using Non-maximum Supression.
This approach is not changing the accuracy of the original algorithm accordingly
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to our comparison. I have compared my hardware/software solution to other
hardware or hybrid implementations of the SIFT algorithm and with the baseline
software detector OpenSIFT. I have conducted computational experiments on a
large set of 3860 video frames to validate the implemented detector. My algorithm
implemented on FPGA is giving an average precision of 0.84 and the average recall
of 0.94 in SIFT-point detection compared to the baseline OpenSIFT.

Thesis 2.3: I have experimentally shown that the proposed FPGA
SIFT implementation is time-efficient and the power consumption is
low. The processing rate of the implemented SIFT detector is 135
images per second, when the input image resolution is of 480px ×
480px, and it is running on Xilinx ZCU102 FPGA board. The total
power consumption of my FPGA SIFT implementation is 5.6W, which
is suitable for wearable devices. [J2]

I used these results in Thesis 1, because in one of the steps, namely in gaze
point alignment the SIFT keypoint extraction is a crucial step.

3.2 Perspectives

The system integration is possible, because the obtained accuracy is high enough
for real world demonstration. Currently, the visual block is accelerated on FPGA,
but it is necessary to implement the system servoing steps on an embedded hybrid
system.

The algorithm can also be developed further. The current algorithm is ex-
tracting objects in video frame by frame. However, it is possible to achieve higher
accuracy with tracking. In that case, faster processing time is also achievable.
Another possible future work will be to use move-to-data incremental learning
method [24]. With this method, it is possible to adapt this system for a changing
living environment of a person. It will also be adaptable for a different environ-
ment.

A wearable device is required in that case to control a prosthetic arm. To
do that, a technology needed has to have a low power consumption and a high
computational speed. It is feasible, as my experiments have shown.
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It is possible to increase the computational speed with pipelining. Pipelining is
a method when a step finishes, for example gaze-point alignment of a frame, then
it is possible to start gaze-point alignment on the next frame and the gaze-point
noise reduction can be done on the original frame at the same time. However, this
would increase the latency of the system. The current system latency is around
117.175 ± 6.8 ms, which is the accepted latency allowed by the control of the
robotic arm (∼100 ms).
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