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1 Introduction

Proteins belong to the most important biomolecules. They determine
cellular shape and motility, catalyze the reactions, which are most impor-
tant for life, make transport of materials possible between cells and their en-
vironments, and they have important roles in several other molecular pro-
cesses. Describing their functioning in a precise way is crucial for under-
standing processes of life and for designing their modulation for example
for therapeutic purposes.

Proteins can be divided into four groups based on their structure: glob-
ular, fibrillar, transmembrane and intrinsically disordered proteins. Proteins
having a well defined, stationary three-dimensional structure belong to the
first three groups. The local structure, so called secondary structure of the
globular proteins is versatile, they contain more α-helical and / or β-strand
regions, and their shape is approximately spherical. Proteins having long,
thread-like structures belong to the fibrillar type. The transmembrane pro-
teins are similar in many ways to the globular proteins, but their feature is,
that they reach through the biological membranes. The intrinsically disor-
dered proteins - opposite to the first three groups - have no single character-
istic structure, but due to their high degree of internal mobility, they are in
constant exchange between several conformations.

The diversity of protein shapes is crucial for the determination of the
versatile biological role of proteins. It is well known today, that all proteins,
not only the intrinsically disordered ones, are dynamic objects and their in-
ternal motions along with their structure organically contribute to the ful-
filling of their molecular function. Atomic level picture was obtained about
proteins with roentgen crystallography, which described a static structure in
a crystalline state. But later other experimental methods could be applied
to analyze proteins, such as liquid state NMR measurements. These experi-
ments reported about the internal dynamics, and motions, on many differ-
ent timescales. This internal dynamics can be described by a model consist-
ing of an ensemble of structures.

Because experimental discovering of the structure and internal dynam-
ics of proteins is time- and money exhaustive, in silico protein structure and
dynamics calculations are on the rise. But it is not neat, when they are not
connected to any experimental data, because it makes guaranteeing and
checking the accuracy - correspondence to reality - of the model hard. Be-
cuase of this, these days the combination of in silico modelling with experi-
mental data is an important trend. The models help to understand and cal-
ibrate experimental data, and in turn the experimental data make the mod-
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els more realistic. This computational modelling, which uses experimental
models to build up atomistic protein structural models is a state of the art
method is widely used since years. It can be remarked, that actually this
method is not new in the sense, that the traditional structure determina-
tion methods are data sparse, this means, that the number of coordinates
to be determined is significantly more than the number of experimentally
measured parameters, and hence they heavily rely on a priori knowledge,
primarily geometrical data (bond lengths, bond angles, etc.), which are built
into the protocol in a similar way as in the modelling procedures. This can be
catched out mostly in structur calculation protocols using NMR specroscopy
data. A feature of the nowadays trending "hybrid" procedures is that the
weights of the experimental data is less than the weight of the forcefield used
in the modelling, making its role more pronounced, and the experimental
data can be interpreted mostly in the case of already known structures. An
example used in this work is the S2 order parameter or the experimental re-
straints used in protein complex model building with docking approaches.

A model has two main criteria: precision and accuracy. Its accuracy is
expressing, how much the model corresponds to reality, and precision de-
scribes, how exact is the experimental data used, how much experimental
error is included. A model which is accurate, but not precise has a big stan-
dard deviation in its data, but their average corresponds to reality. In a pre-
cise, but not accurate model the standard deviation is small, but the average
is far from the real values. From these two cases, the accurate, but not precise
model can be used in a limited way, but the precise but not accurate model
is unfortunately useless. We can check the accuracy of a model, if we use
experimental data from multiple experimental methods, because it is very
unlikely, that the same error is made in different experiments. Also it can oc-
cur, that when building our model, experimantal data is misinterpreted or
it is processed the wrong way. In this case for example this mistake can be
spotted if our model corresponds to the data from one of the experiments,
but it does not correspond to the data from another experiment, so we have
problems with the accuracy of our model [1].

In the dissertation, I present the production and analysis of ensemble
models of three different kinds of proteins: the protein gastrotropin repre-
sents the group of globular proteins, the myosin VI singleα-helical (SAH) do-
main represents the fibrillar group and the cytoplasmic domain of Cd3ε be-
longs to the intrinsically disordered proteins. In the case of the gastrotropin
protein I performed restrained molecular dynamics simulations, whereas in
the case of the other two proteins I produced a preliminary conformer li-
brary, from which I produced a subensemble corresponding to the experi-
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mental data by selection. Production of the conformer libraries was made
with the program DIPEND (DIsordered Protein Ensembles from Neighbor-
dependent Distri-butions), which I developed. In the case of each protein
for the analysis of the correspondence of the ensembles to the experimen-
tal data was performed by CONSENSX+ program, which was developed by
other members of our research group.

The procedure of protein structure modelling employed in the case of
the myosin VI and cd3ε proteins has two steps. In the first step, an ensem-
ble of many members is made, which diversely covers a large part of the
conformational space using the DIPEND program. These has to evenly dis-
tribute along the conformational space, covering as much of it as possible. In
the second step we choose a subensemble from these with the CONSENSX+
program, which corresponds to the experimental data. Separating these two
steps is advantegous, because with this approach, both steps can be arbi-
trarily shaped, taking into consideration the properties of the protein to be
modeled.

In accordance with what is written above, along the course of this work,
experimental data derived from the scientific literature were used for the val-
idation of the structural models.

2 Methods

2.1 Components of the DIPEND program

I wrote the program mostly in Python3. This is a programming
language created by Guido van Rossum at the end of the eighties
(https://www.python.org/doc/). It is interpreted, high level and very pop-
ular. Object oriented, but supports other styles of programming as well. It
results in a well readable, transparent and development friendly code. Its
special feature is, that program blocks are separated with a different level of
indentation instead of brackets.

The Chimera molecule visualization and molecular modelling pro-
gram is developed at the UCSF university [2], its new version is ChimeraX
[3] (https://www.rbvi.ucsf.edu/chimerax/download.html) which is a well
maintained, continuously developed program, available free of charge upon
registration, and is versatile, excellently suitable for molecular modelling.
From the point of view of my program, its big advantage is, that it can be
called from the command line with parameters without any user interven-
tion. The DIPEND program uses the protein model building module, which
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builds based on the sequence and a given dihedral angle pair, it also uses the
dihedral angle setter module and the steric clash check module of ChimeraX.

The SCWRL4 program developed by the Dunbrack lab [4]
(http://dunbrack.fccc.edu/SCWRL3.php/) is free to use under a licence.
This enables the building of an atomic model of not sterically clashing
protein side chains for a fixed backbone. It can be called in the command
line, it is very fast and uses a PDB file as input, and likewise a PDB file for
output, keeping the chain and amino acid numbering. It uses a backbone
dependent rotamer library, for which it calculates energies based on their
frequency and closeness to the other sidechains. It avoids steric clashes
by using k-discrete polytopes, which are 3-dimensional shapes. It chooses
from the many possibilities with its own graph tree decomposition method
and makes the choice faster by applying heuristics, which always gives
results quickly, but it is not sure, that the conformer having minimal energy
is found.

2.2 Molecular dynamics simulations

We performed molecular dynamics calculations using GROMACS ver-
sion 4.5.5. [5], [6] modified to handle S2 order parameters as well as pair-
wise averaging of NOE distance restraints over replicas [7], as proposed
for the MUMO (Minimal Under-restraining Minimal Over-restraining) ap-
proach [8]. We used the OPLS-AA force field [9] and the TIP3P water model
[10] for all molecular dynamics simulations described below.

For modeling the apo structure of gastrotropin, we chose model 7 of
PDB entry 1O1U [11] based on its highest PRIDE-NMR score [12] among
the deposited models. The PRIDE NMR is a method developed in our
research group in 2007 [12] and it selects the structure from a struc-
tural ensemble having the best NOE correspondence by comparing the
distribution of the atomic distances with the NOE data using contin-
gency analysis. It derives a score in a 0 and 1 range, which is a similar-
ity probability. It regards the distribution of the experimental data and
based on our experience it reliably selects the starting model best rep-
resenting the experimental data. As an initial model of the holo struc-
ture we used model 1 of the PDB entry 2MM3. We generated ligand
topologies for glycocholic acid (GCA, PDB ligand ID: GCH) and gly-
cochenodeoxycholic acid (GCDA, PDB ligand ID: CHO) with the TopolGen
script (http://www.mdtutorials.com/gmx/complex/02_topology.html) and
corrected manually for atom types where it was necessary as well as with
an in-house Perl script to reassign hydrogen atoms to the charge groups de-
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fined by the heavy atoms they are connected to.

NOE restraints were only available for the holo protein (PDB ID: 2MM3).
For the apo form, we used restraints from the 2MM3 list that were unviolated
in the deposited 1O1U structure as checked with the CoNSEnsX server. Re-
straints were modified by the removal of stereospecificity and rounding the
restrained distance up to the next integer Å , creating 1Å wide ‘bins’ from 4
to 10 Å .

Chemical shifts for the apo structure were obtained from BMRB [13]
(BMRB ID: 19843) and for the holo structure directly from the authors. S2

values for the apo and holo structures measured at 283, 291, 298, and 313 K
were taken from [14].

After generating a topology using the OPLS-AA force field and TIP3P wa-
ter model, the molecule was put into a cubic box, followed by energy min-
imization with conjugate gradient method for 5000 number of steps with
0.001 ps step length. We set the maximum force to 200 kJmol−1nm−1. In
the next step we solvated the molecule and then replaced one of the water
molecules by a Na+ ion to ensure the neutrality of the system. After that, we
performed another energy minimization using the same parameters, but in-
cluding the water molecules. In the last step, a short MD simulation was per-
formed using position restraints of 1000 kJmol−1nm−2 on the heavy atoms
of the protein for 2500 steps with 0.002 ps step size using the LINCS algo-
rithm [15].

For the production runs, we simulated eight replicas in parallel with
the OpenMPI environment [16]. We applied backbone S2 order parame-
ter restraints on the full ensemble and NOE distance restraints were aver-
aged between neighboring replicas, as it is performed in the MUMO (Mini-
mal Under-restraining, Minimal Over-restraining) protocol [8]. we made the
simulations at four temperatures: 283 K, 291 K, 298 K, and 313 K using S2

restraints measured at the corresponding temperatures. With LINCS con-
straining on bond lengths, a timestep of 2 fs was used to generate runs of 2
ns and 6 ns, totaling 16 and 48 ns for the 8 replicas combined, respectively.
We performed control simulations with the same parametrization but with-
out restraints.

In order to generate a larger pool of possible conformations to further
explore the conformational space, we performed molecular dynamics sim-
ulations with only one type of restraint (NOE or S2) or without any restraints.
Accelerated Molecular Dynamics and short (500 ps) Targeted Molecular Dy-
namics simulations were also performed on the apo structure using the
chemical shifts of the holo structure and vica versa in order to achieve tran-
sition from one form to the other.
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We made 1 µs all-atom simulation on Cd3ε in an explicit SPC/E water
model with GROMACS (version 2020) using the Amber ff99SB forcefield. Af-
ter neutralization and a short energy minimization, the production run was
preceded by 1 ns NVT and NPT equilibrations. We run the simulation at 300
K using GPU acceleration. We used structures taken at every 50 ps to obtain
an ensemble with 20,001 conformers. we retained all structures in order not
to reduce conformational variability by omitting the more extended struc-
tures at the start of the simulation.

2.3 Principal Component Analysis

The Principal Component Analysis was performed with the Pythn mod-
ule named ProDy [17], visualization was made with the NMWiz module of
the VMD molecular visualization program [18].

2.4 Analysis of the S2 and chemical shift data of gastrotropin

In the case of the S2 parameters we compared the values of the PDB
small ensemble with our ensembles made with the MUMO approach. We
excluded points from the analysis where the difference was more than 0.2.
In the case of the MUMO simulations it was a maximum of 5 points.

Chemical shift values were back-calculated from the structures with the
Shiftx2 program [19].

2.5 Examination of the amide chemical shift differences be-
tween gastrotropin structures

For each structure, backbone 15N chemical shifts were estimated with
Shiftx [19]. For each conformation in the large conformer pool, the ab-
solute value of the difference of the predicted chemical shifts relative to
those in each calculated apo structure in the MUMO ensembles was cal-
culated. These differences were then compared to experimental |∆ω(15N)|
data derived from CPMG relaxation dispersion NMR measurements for each
residue for which it was available [14]. Both correlation and RMSD measures
were calculated after normalization to the 0–1 range. As there are |∆ω| val-
ues available for three temperatures and the conformational pool is of a het-
erogeneous source with no well-defined temperature, the correlation and
RMSD values were calculated for all three temperatures and then were aver-
aged for each structure investigated. The structures with highest correlation
and lowest RMSD values were selected for analysis.
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3 New scientific results

3.1 First thesis gorup

HD1 HD2 HD3

HD4 HD5

Figure 1: PCA scatter plot of the apo MUMO (red dots) and holo MUMO
(blue dots) ensembles along with the conformer pool (purple hollow
squares) used to select the structures best corresponding to the NMR-
derived invisible state. Structures with a mean correlation between 15N val-
ues and |∆ω(15N)| calculated chemical shift differences above a threshold
of 0.35 are shown with black dots (left panel). Structures with an RMSD be-
tween |∆ω(15N)| values and calculated chemical shift differences lower than
0.00603 are depicted with green dots (right panel). Selected structures are
also depicted and linked to their corresponding points in the PCA scatter
plots. These hidden conformations are termed HD1-HD5.

Thesis 1.1.A: I generated structural ensembles of the protein gastrotropin
with molecular dynamics simulations restrained by S2 and NOE parame-
ters using the MUMO approach on four temperatures, which ensembles
correspond to the chemical shift parameters not included in the model

Chemical shifts from the MUMO generated ensembles showed better
correspondence to the chemical shift parameters not included in the model,
compared to the small ensembles found in the PDB database (table 1).
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Thesis 1.1.B: I generated using different kinds of molecular dynamics
simulations a structural ensemble of many structures for modelling the
protein gastrotropin. By using Principal Component Analysis I demon-
strated that the ensemble comprises a big part of the conformational
space.

This ensemble is diverse and wanders along a big conformational space,
as it is shown in figure 1.

Thesis 1.2.A: I showed on the structural ensemble generated with S2 and
NOE restrained molecular dynamics simulations, that two kind of mo-
tions dominate in the apo and the holo form, both are resulting in the
opening of the barrel.

These motions take place along the first two modes of the Principal Com-
ponent Analysis (PCA) (figure 2), the E-F and G-H loops taking part mostly
in the first motion, while in the second motion the C-D loop and the helix
moves the most.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2

PC
2

PC1

313 K holo �

298 K holo

291 K holo

283 K holo �

313 K apo �

298 K apo

291 K apo

283 K apo �

2MM3 PDB
1O1V PDB

1O1U PDB

Figure 2: PCA (Principal Component Analysis) scatter plot of the simulated
and experimentally determined conformer pool.

Thesis 1.2.B: The group of amino acids taking part in the Type II motion
based on the PCA anslysis are are greatly overlapping with the group of
amino acids taking part in the slow timescale motion measured by Orsolya
Tőke and her research group.

See figure 3. We could not investigate this connection for every amino
acid, because they could not measure every single amino acid.
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Figure 3: Square fluctuation of Cα atoms in the two PCA modes: PC1 (Type
I motion, purple), PC2 (Type II motion, orange). The previously measured
experimental kex values indicating two distinct clusters of residues involved
in slow conformational exchange processes are depicted as different gray
areas corresponding to the three different temperatures (283 K, 287 K, 291 K)
of the measurements. As only about 30–40 amino acids have displayed ms
timescale motion with measurable kex values [14], a continuous depiction is
used to guide the eye to highlight the regional differences.
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Thesis 1.3: I determined a mechanism for the entry of the ligands into the
binding sites, in which the helical cap is partially unfolding.

Taking the chemical shift difference between each structure and the few
hidden energy state structures determined by Orsolya Tőke and her research
group, the most corresponding structures are half unfolded, mainly in the
helical cap (figure 4). Although the forcefield can contribute to this as well.

A B C

Figure 4: Secondary structure of the conformations inferred from our
simulations (rows). Each column represents one amino acid. Extended β-
strands are colored yellow, α-helices are brown, the rest of the residues are
colored black. (A) All of the conformations. (B) The high correlation con-
formations (subset of conformations of panel A). (C) Conformations with
lowest RMSD (another subset of panel A). The analysis was performed with
DSSPCont [20]. Note the shortening of secondary structure elements in
some structures, especially in B) and C).

3.2 Second thesis group

Thesis 2.1: I created the DIPEND program suitable for building an atomic
level ensemble model of protein segments

The program using a probabilistic neighbor depenent model solves the
problem of creating an ensemble of protein conformers, which is a good
sampling of the conformational space around relevant conformations of the
protein segment (figure 5). The additional distribution, which can be added
with a weight can mirror the a priori known conformational preferences.
The program can reliably build protein segments up to about 100 amino
acid length, the probability of steric clashes increases in the case of seg-
ments longer than 100 amino acids. Hopefully this can be extended using the
modes with custom weighting and the unknotting module, if the user gives
a distribution resulting in an extended conformation. But this increases the
running time. On the whole the program can generate a useful starting en-
semble, from which a subensemble can be selected using other programs
based on experimental data.
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Figure 5: Flowchart of the steps of the DIPEND (DIsordered Protein Ensem-
bles from Neighbor-dependent Distributions) program

Figure 6: Observed and calculated CA secondary chemical shifts for the CD3
ensemble.
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N-H RDC parameters CA secondary chemical shifts Main chain order parameters

Figure 7: Measured (red) and calculated (blue) values of some NMR param-
eters for the selected SAH ensemble. Calculated values were obtained with
CoNSensX+.

Thesis 2.2: I applyied the program to the intrinsically disordered region
of the CD3ε protein and I demonstrated that the conformational ensem-
ble gemerated by the DIPEND program covers greater part of the confor-
mational ensemble than the ensemble derived from other methods. I also
demonstrated that the DIPEND-generated ensemble corresponds better
to the experimental data.

See figure 6.

Thesis 2.3: I applied the DIPEND program to the SAH domain of the
myosin VI protein and I showed that the ensemble generated by the
DIPEND program is able to sample relevant parts of the conforma-
tional space also in the case of a protein having well defined previously
known structural preferences and from this conformational ensemble a
subensemble can be selected which corresponds to the experimental data.

The correlation of the correspondence of the generated ensemble is
greater than for the ensemble derived from the PDB database (figure 7).
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