
Recognition of Objects and Their Defects

A Thesis Submitted for the Degree of Doctor

of Philosophy in Computer Science

Amr Mohamed Abdelhameed Nagy Abdo

Supervisor: Dr. László Czúni

Department of Electrical Engineering and Information Systems

Doctoral School of Information Science and Technology

University of Pannonia

Veszprém, Hungary

2022

DOI:10.18136/PE.2022.826



ii

RECOGNITION of OBJECTS and THEIR DEFECTS

Thesis for obtaining a PhD degree in the Doctoral School of Information Science
and Technology of the University of Pannonia

in the research field of Computer Sciences

Written by:
Amr Mohamed Abdelhameed Nagy Abdo

Supervisor(s): Dr. László Czúni

propose acceptance (yes / no)

............................
(supervisor/s)

As reviewer, I propose acceptance of the thesis:

Name of Reviewer: .................................................... ( yes / no)

..............................
(reviewer)

Name of Reviewer: .................................................... ( yes / no)

..............................
(reviewer)

The PhD-candidate has achieved ............. % at the public discussion.

Veszprém,

...............................................
(Chairman of the Committee)

The grade of the PhD Diploma .....................................(.......%)

...............................
(Chairman of UDHC)



Acknowledgments

First of all, all gratitude and thankfulness to ALLAH for guiding and aiding me

to bring this work out to light. I am deeply indebted to my supervisor Dr. László

Czúni for his kindness and scientific support throughout the period it took to

prepare this work in its final form. I would like to thank the Director of the

Doctoral School Prof. Ferenc Hartung and the former Director of the Doctoral

School Prof. Katalin Hangos for their help and support, also I wish to express

my deep gratitude to the staff of the Department of Electrical Engineering and

Information Systems, Faculty of Information Technology, University of Pannonia

for their guidance and moral support during the making of this work.

My deep thanks to the Egyptian Ministry of Higher Education and Scientific

Research and to the Hungarian Ministry of Higher Education for their cooperation

with Egypt to have my study in Hungary.

This work has been partly implemented by the TKP2020-NKA-10 project with the

support provided by the Ministry for Innovation and Technology of Hungary from

the National Research, Development and Innovation Fund, financed under the 2020

Thematic Excellence Programme funding scheme. We acknowledge the financial

support of the Hungarian Scientific Research Fund grant OTKA K 135729 and

OTKA K 120369.

We are grateful to the NVIDIA corporation for supporting our research with GPUs

obtained by the NVIDIA GPU Grant Program.

iii



iv

Many thanks to all my friends and colleagues in Veszprém, they played a very

important role in my life. The last, but the most important thanks to my family:

my father, my mother, my sisters, my wife, my sons for their love, also for keeping

me in their prayers and special thanks to my brother Dr. Abdelhameed Mohamed

Abdelhameed Nagy Abdo for his support.

Amr M.Nagy 2022



Kivonat

Az ipar 4.0 által megkövetelt technológia, a kültéri környezet nagy felbontású

térképei a járműipar számára, a gyárak digitális ikrei, vagy egyszerűen csak a

minőségbiztośıtási rendszerek a gyártási folyamatokban megb́ızható, pontos és gy-

ors objektum felismerést és vizuális ellenőrző technológiákat igényelnek, amelyek

gyakran az optikai információk folyamatos megfigyelésére támaszkodnak. Az ilyen

megoldások kialaḱıtásához hagyományos gépi tanulási módszereket és mély neurális

hálózatokat (DNN) alkalmaznak, de a t́ıpusaik, feléṕıtésük, paramétereik és tańıtási

folyamataik több éves kutatásokat igényelnek, hogy általános, széles körben al-

kalmazható modelleket kapjunk. Ez a disszertáció objektumfelismerő és vizuális

ellenőrző megközeĺıtéseket mutat be a tárgyak és hibáik felismerésére különösen

akkor, ha kevés felvétel áll rendelkezésünkre a tańıtáshoz. A disszertáció különböző

megoldásokat mutat be az objektumfelismerésre és ezen objektumok hibáinak a fe-

lismerésére. Első javaslatom egy keretrendszer annak kimutatására, hogy a rejtett

Markov modellek és az inerciális mérőegységek adatai kombinálhatók a neurális

hálózatokkal, annak érdekében, hogy jav́ıtsák a tárgyfelismerés és a pózbecslés tel-

jeśıtményét. Ezenḱıvül javasoltam egy keretrendszert, amivel az akt́ıv látást és

a rejtett Markov modellt kombináljuk, abból a célból, hogy jav́ıtsuk a felismerési

hatékonyságot (különösen, ha a tárgyak el vannak takarva). Ezután javasoltam

egy új konvolúciós sziámi neurális hálózati architektúrát a hibák felismerésére nagy

osztályszámú közlekedési táblák halmazára. Továbbá, javasoltam egy új mecha-

v



vi

nizmust is a több képen lefuttatott sziámi hálózatok konfidencia értékeinek SVM-

ekkel való kombinálására. Végül bemutattam egy új architektúrát, amellyel az Ef-

ficientNet és a randomizált osztályozókat kombináltam few-shots és inkrementális

tanuláshoz. Emellett bemutattam, hogy a sziámi hálózatok hogyan használhatók

a zero-shot tanuláshoz. A különböző megközeĺıtések teljeśıtményét több adathal-

mazon elemeztem. A kiértékelések eredményei azt mutatják, hogy a bemutatott

megközeĺıtések általában nagy pontosságot érnek el, versenyképesek a konkurrens

módszerekkel. Számos esetben a memória- vagy időigény is jobb mint a vizsgált

többi megközeĺıtéseké.



Abstract

The technology required by industry 4.0, high-definition maps of outdoor environ-

ments for the vehicle industry, digital twins of factories, or simply quality insurance

systems in manufacturing processes require reliable, accurate, and fast object recog-

nition and visual inspection technologies, often relying on continuous monitoring

of optical information. To construct such solutions, traditional machine learning

methods and deep neural networks are used, but the type, structure, parameters,

and training processes of them requires years of research to obtain general, widely

applicable models. This dissertation presents object recognition and visual inspec-

tion approaches to recognize different objects and to detect their defects, especially

when only few shots are available for training.

First, I proposed a framework to show that Hidden Markov Models and inertial

measurement units’ data can be combined with neural networks to improve the

performance for object recognition and pose estimation. Moreover, I proposed a

framework to combine active vision with the Hidden Markov Model to enhance the

recognition performance (especially when the objects are occluded). Next, I pro-

posed a new fusing convolutional siamese neural network architecture to recognize

the defects in case of large number of classes of traffic signs. I also proposed a

new mechanism to combine the confidence values of siamese networks, ran on sev-

eral images, with support vector machines. Finally, I presented a new architecture

to combine EfficientNet with randomized classifiers for few-shots and incremental

vii



viii

learning. Additionally, I showed how siamese networks can be utilized for zero-shot

learning.

I analyzed the performance of the different approaches on several datasets. The

evaluation results show that the presented approaches competitive and achieve high

accuracy. In several cases the memory or time requirements are also better than in

case of other existing approaches.



Contents

Acknowledgments iii

Kivonat v

Abstract vii

List of Abbreviations xiv

List of Figures xxi

List of Tables xxiii

1 Introduction 1

1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of Recognition Approaches . . . . . . . . . . . . . . . . . . 4

1.3.1 Traditional Approaches . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Deep Learning Approaches . . . . . . . . . . . . . . . . . . . . 6

1.4 Overview of Visual Inspection Approaches . . . . . . . . . . . . . . . 12

1.4.1 Low-Level Image Processing Approaches . . . . . . . . . . . . 13

1.4.2 High-Level Image Processing Approaches . . . . . . . . . . . . 14

ix



CONTENTS x

1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Author’s Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Object Recognition Techniques using Deep Neural Networks and

HMM 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 View-Centered Approach . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Hidden Markov Model Explanation . . . . . . . . . . . . . . . . . . . 24

2.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 COIL-100 Dataset . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 COIL-40 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 ALOI-1000 Dataset . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Improving Object Recognition of CNNs with Multiple Queries and

HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 HMM Object Models . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2 Object Views as States in a Markov Model . . . . . . . . . . . 30

2.5.3 State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.4 Recognition of Single Objects from Multiple Views . . . . . . 32

2.5.5 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Hidden Markov Models Based on Convolutional Neural Network for

Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.2 Tests and Evaluations . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Active Multiview Recognition with Hidden Markov Temporal Support 40

2.7.1 Recognition of Objects from Multiple Views by Weak Global

Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



CONTENTS xi

2.7.2 Active Recognition with HMM . . . . . . . . . . . . . . . . . 43

2.7.3 Experiments and Evaluations . . . . . . . . . . . . . . . . . . 45

2.7.4 About Space and Time Complexity . . . . . . . . . . . . . . . 48

2.7.5 An Alternative: ConvLSTM . . . . . . . . . . . . . . . . . . . 48

2.7.6 Comparison to LSTM . . . . . . . . . . . . . . . . . . . . . . 50

2.7.7 Comparison to LSTM with Explicit Orientation . . . . . . . . 51

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Detecting Traffic Sign Defects 54

3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Traffic Signs Distortion Dataset (TSD Version I) . . . . . . . . 56

3.1.2 Traffic Signs Distortion Dataset (TSD Version II) . . . . . . . 59

3.2 The Proposed Fusioning Convolutional Siamese Neural Network Ar-

chitecture (FCSNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 N-way One-Shot Classification . . . . . . . . . . . . . . . . . . 62

3.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Recognition of Traffic Signs Defects with SVM based on CNN Confi-

dence Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 66

3.3.2 Comparing FCSNN-SVM with Different DNNs Models . . . . 68

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Classification, Zero and Fast Few-Shot Learning of Steel Surface

Defects 72

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



CONTENTS xii

4.2.1 Detection and Classification of Steel Surface Defects . . . . . . 78

4.2.2 Zero-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 Few-Shot Learning . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 The Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Northeastern University Surface Defect Database (NEU) . . . 84

4.3.2 Xsteel Surface Defect Dataset (X-SSD) . . . . . . . . . . . . . 84

4.4 Zero-Shot Learning and Classification with Siamese Neural Network . 85

4.4.1 The Proposed Methods . . . . . . . . . . . . . . . . . . . . . . 86

4.4.2 Experiments and Discussion . . . . . . . . . . . . . . . . . . . 88

4.4.3 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Proposed Methods for Classification and Few-Shot Learning . . . . . 91

4.5.1 Classification of Defects with EfficientNet-B7 . . . . . . . . . . 91

4.5.2 Fast Few-Shot Learning of Steel Surface Defects with Ran-

domized Network . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6 Experimental Results of Classification and Discussion . . . . . . . . . 99

4.6.1 Classification Results on the NEU Dataset . . . . . . . . . . . 99

4.6.2 Classification Results on the X-SSD Dataset . . . . . . . . . . 100

4.7 Testing Few-Shot Learning with EffNet+RC . . . . . . . . . . . . . . 101

4.7.1 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusion 111

5.1 New Scientific Results . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Publications Related to this Thesis . . . . . . . . . . . . . . . 116

5.2.2 Publications not Related to this Thesis . . . . . . . . . . . . . 117

5.2.3 Other Presentations . . . . . . . . . . . . . . . . . . . . . . . 118



CONTENTS xiii

Bibliography 119



List of Abbreviations

6-DoF Six Degrees of Freedom

ACNN Adaptive Learning Rate of the Convolutional Neural Networks

ANN Artificial Neural Network

AV Active Vision

BB8 A Scalable, Accurate, Robust to Partial Occlusion Method for Predicting the

3D Poses of Challenging Objects without Using Depth

BSR Batch Spectrum Regularization

CAD Computer-Aided Design

CD-FSL Cross-Domain Few-Shot Learning

CEDD Color and Edge Directivity Descriptor

CIFAR Canadian Institute for Advanced Research

CNN Convolutional Neural Network

CPN Classification Priority Network

ConvLSTM Convolutional Long Short-term Memory

DA Domain Adaptation

DDN Defect Detection Network

DL Deep Learning

DNN Deep Neural Network

DeVGG19 Decode VGG19

EHD Edge Histogram Descriptor

xiv



CONTENTS xv

ELM Extreme Learning Machine

EffNet EfficientNet

EffNet+FtC Frozen EfficientNet Backbone with Back-Propagation Fine-Tuned

Weights

EffNet+RC EfficientNet-B7 Backbone and the Randomized Classifier (RC)

ExtVGG16 Extended VGG16

FCSNN Fusing Convolution Siamese Neural Network

Ft EffNet-Unbal Fine-Tuned EfficientNet-B7 with Unbalanced Data

Ft EffNet Fine-Tuned EfficienNet-B7

GCN Graph Convolution Network

GPU Graphical Processing Unit

GT Ground Truth

HMM Hidden Markov Model

HOG Histogram of Oriented Gradients

HSV (Hue, Saturation, Value) Color Space

IMUs Inertial Measurement Units

IoT Internet of Things

LSTM Long Short-term Memory Network

MB Motion Blur

MFN Multi-level Feature Fusion Network

MG-CNN Multiple Group Convolutional Neural Network

MMGCN Multiple Micrographs Graph Convolutional Network

MNIST Modified National Institute of Standards and Technology Database

NEU Northeastern University Surface Defect Database

PoseCNN A Convolutional Neural Network for 6D Object Pose Estimation in

Cluttered Scenes



CONTENTS xvi

R-CNN Region-Based Convolutional Neural Network

RC Randomized Classifier

RECOS REctified-COrrelations on a Sphere

RGB Red, Green and Blue

RN Relation Network

ROI Region of Interest

RVFL Random Vector Functional Links Network

RestNet Residual Neural Network

SIFT Scale Invariant Feature Transform

SLFN Single Layer Feed Forward-Neural Network

SNN Siamese Neural Networks

SSD-6D Making RGB-based 3D Detection and 6D Pose Estimation Great Again

SSIM Structural Similarity Index Measure

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

VGG16 Visual Geometry Group from Oxford 16

VGG19 Visual Geometry Group from Oxford 19

VSD VSD network

X-SSD Xsteel Surface Defect Data-set

YOLOv4 You Look Only Once Network Version 4

Yolo You Look Only Once Network

K-NN K-Nearest Neighbor

mAP Mean Average Precision



List of Figures

1.1 Neural network architecture with three layers. . . . . . . . . . . . . . 7

1.2 Feed forward neural networks architecture. . . . . . . . . . . . . . . . 8

1.3 General architecture of convolutional neural networks. . . . . . . . . . 9

1.4 Recurrent neural network architecture. . . . . . . . . . . . . . . . . . 10

1.5 Example for siamese neural network architecture. . . . . . . . . . . . 11

2.1 Model generation setup with target object in the centre. . . . . . . . 23

2.2 First two lines: Clear samples from COIL-100. 3rd line: Exam-

ple queries loaded with Gaussian additive noise. 4th line: Example

queries loaded with motion blur. 5th and 6th lines: Occluded examples. 26

2.3 Top line: example objects from the COIL-100 dataset. Bottom line:

objects with different backgrounds. . . . . . . . . . . . . . . . . . . . 27

2.4 First two lines: Clear samples from ALOI-1000. 3rd line: Exam-

ple queries loaded with Gaussian additive noise. 4th line: Example

queries loaded with motion blur. . . . . . . . . . . . . . . . . . . . . . 27

2.5 Geometrical explanation of transition probabilities. . . . . . . . . . . 31

2.6 Proposed architecture to combine CNNs with HMM model. . . . . . . 32

2.7 The average Hit-Rate for 40 objects with different number of queries. 34

2.8 Average orientation error at different number of queries for VGG16

only (orange) and VGG+HMM (blue). . . . . . . . . . . . . . . . . . 38

xvii



LIST OF FIGURES xviii

2.9 Average orientation error for each object, in case of two queries, for

VGG16 only (orange), VGG+HMM (blue), and VGG+mHMM with

constant transition probabilities (green dotted). . . . . . . . . . . . . 38

2.10 Mostly rotational invariant objects. . . . . . . . . . . . . . . . . . . . 39

2.11 Not rotational invariant objects. . . . . . . . . . . . . . . . . . . . . . 39

2.12 Average orientation error at different number of queries for

VGG+HMM with rotational invariant objects (blue) and

VGG+HMM without rotational invariant objects (Green). . . . . . . 40

2.13 Not completely rotational invariant objects with rotations resulting

in very similar views. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.14 Object is recognized continuously in a sequence of queries. New

queries (Q2 and Q3) are planned by the analysis of previous shot(s)

(Q1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.15 Overview of the proposed multiview method. . . . . . . . . . . . . . 43

2.16 Comparison of non-active and active recognition when all queries are

occluded. Top graph: COIL-100, bottom graph: ALOI-1000 datasets.

Continuous curves show the GT being in the top 10 items of the

retrieval list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.17 Comparison of active and non-active recognition on the distorted

COIL dataset. First graph: motion blur, second graph: Gaussian

noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.18 Comparison of active and non-active recognition on the distorted

ALOI dataset. First graph: images with motion blur, second graph:

images with Gaussian noise. . . . . . . . . . . . . . . . . . . . . . . . 47

2.19 Overview of the tested ConvLSTM framework in case of four sequen-

tial queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



LIST OF FIGURES xix

2.20 Comparison of active HMM and ConvLSTM on occluded queries. . . 51

2.21 LSTM architecture with explicit pose. . . . . . . . . . . . . . . . . . . 51

2.22 LSTM with explicit orientation results. . . . . . . . . . . . . . . . . . 52

3.1 Researchers at McAfee placed a two-inch long piece of electrical tape

horizontally across the middle of the ‘3’ on a 35 mph (left) speed

limit sign, causing the car’s camera system to misread it as 85 mph

(right) [62]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Traffic sings, as examples for the 7 distortion classes, under investi-

gation: faded, covered, scribbled, correct, covered and faded, covered

and scribbled, faded and scribbled. . . . . . . . . . . . . . . . . . . . 56

3.3 Traffic signs in the training dataset with their class codes. . . . . . . 57

3.4 Percentage of images for each defect class in the training dataset. . . 57

3.5 Distribution of traffic signs of the training data with each error class. 57

3.6 Examples images for the untrained traffic sign types. . . . . . . . . . 58

3.7 Distribution of the untrained traffic signs with each error class. . . . . 58

3.8 Examples for the 4 defect classes under investigation: (a) faded, (b)

covered, (c) correct,(d) scribbled. . . . . . . . . . . . . . . . . . . . . 59

3.9 The proposed fusioning convolutional siamese neural network archi-

tecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 Examples of training pairs with their labels. . . . . . . . . . . . . . . 61

3.11 An example for 5-way one-shot testing. Since the pair with the same

defect has the highest confidence, the network made a correct classi-

fication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.12 Combination of FCSNN with SVM in the training process. SVM is

trained on the confidence values and true labels of several comparisons

of training images and the elements of the support set. . . . . . . . . 65



LIST OF FIGURES xx

4.1 Examples for the six kinds of defect classes of the Northeastern Uni-

versity surface defect database (NEU) [73]: (a) crazing (Cr), (b)

inclusion (In), (c) patches (Pa), (d) pitted surface (Ps), (e) rolled-in

scale (Rs), (f) scratches (Sc). . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Examples for the seven kinds of defect classes of the Xsteel surface

defect dataset (X-SSD) [72]: (a) inclusion (Si), (b) red iron sheet

(Ri) , (c) iron sheet ash (Is), (d) scratches (Ss), (e) oxide scale of

plate system (Op), (f) finishing roll printing (Fr), (g) oxide scale of

temperature system (Ot). . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Proposed siamese architecture based on the fusing convolutional

siamese neural network (FCSNN). . . . . . . . . . . . . . . . . . . . . 87

4.4 Accuracy and Loss value curves when training classification on X-

SSD. First row: trainable layers of VGG16 backbone. Second row:

freezed VGG16 backbone. . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 The proposed architecture (EffNet+RC) for few-shot learning. In

phase 0, we train the backbone through a large number of samples

of base classes. In phase 1 (and further phases), we use features

extracted by the previously trained backbone. Here, only the weights

W are computed with the help of a few samples, while weights R are

random and fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 (Left) Confusion matrix of EfficientNet-B7 classification of the seven

error types of the X-SSD dataset. (Right) An example image of the

Si class and an Is defect wrongly classified as Si. . . . . . . . . . . . . 101

4.7 The illustration of the Effnet+RC and the EffNet+FtC networks.

While the structures are similar, there is a big difference as the former

should not be trained with backpropagation. . . . . . . . . . . . . . 103



LIST OF FIGURES xxi

4.8 The accuracy of the different classification models for all classes (base

and new). Ft EffNet: fine-tuned EfficienNet-B7; EffNet+RC: fixed

EfficienNet-B7 backbone plus randomized classifier; EffNet+FtC:

fixed EfficienNet-B7 backbone plus fine-tuned classifier; Ft EffNet

Unbal: fine-tuned EfficienNet-B7 with unbalanced dataset. . . . . . . 104

4.9 The accuracy of the different classification models for base classes. Ft

EffNet: fine-tuned EfficienNet-B7; EffNet+RC: fixed EfficienNet-B7

backbone plus randomized classifier; EffNet+FtC: fixed EfficienNet-

B7 backbone plus fine-tuned classifier; Ft EffNet Unbal: fine-tuned

EfficienNet-B7 with unbalanced dataset. . . . . . . . . . . . . . . . . 105

4.10 The accuracy of the different classification models for new classes. Ft

EffNet: fine-tuned EfficienNet-B7; EffNet+RC: fixed EfficienNet-B7

backbone plus randomized classifier; EffNet+FtC: fixed EfficienNet-

B7 backbone plus fine-tuned classifier; Ft EffNet Unbal: fine-tuned

EfficienNet-B7 with unbalanced dataset. . . . . . . . . . . . . . . . . 105

4.11 Elapsed training time of the different models under investigation. . . 108



List of Tables

1.1 Summarizing research questions and datasets information of Thesis I. 17

1.2 Summarizing research questions and datasets information of Thesis II. 18

1.3 Summarizing research questions and datasets information of Thesis III. 18

2.1 Average Hit-Rates (%) in case of different query distortions applying

8 sequential queries.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 Memory and running time requirements of the HMM and LSTM mod-

els.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Accuracy of three siamese networks on untrained traffic signs (TSD

version I) in three independent tests. . . . . . . . . . . . . . . . . . . 64

3.2 FCSNN-ResNet50-SVM evaluation on TSD version I. The accuracy

on the 490 test images of untrained classes of traffic signs was 77%. . 67

3.3 FCSNN-ResNet50-SVM evaluation on TSD version II. The accuracy

on the 669 test images of TSD was 88%. . . . . . . . . . . . . . . . . 68

3.4 Evaluation of SNNs and feature based classification approaches. In

case of four methods (first four lines) we could increase performance

by choosing the defect class with the highest average confidence on

the support support set. . . . . . . . . . . . . . . . . . . . . . . . . . 69

xxii



LIST OF TABLES xxiii

4.1 Comparison of accuracy values depending whether feature extraction

was using ImageNet weights (Freeze) or were optimized (Unfreeze). . 90

4.2 Running and testing environment. . . . . . . . . . . . . . . . . . . . . 99

4.3 Comparison of the classification accuracy of different models on the

NEU dataset. If not specified then information is based on [98].

Training/testing ratio is 80/20 in general. Best values are highlighted

in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Comparison of EfficientNet-B7 with other models on X-SSD (all data

are based on paper [72] except for ExtVGG16 [78] and EfficientNet-

B7). Best values are highlighted in bold.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 The distribution of original X-SSD images in the training and test-

ing datasets for few-shot learning. K is the number of shots in the

experiments. The real number of images fed to the network during

training is larger due to augmentation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 The accuracy and rank of the different classification models evaluated

on all classes (base and new). Best values are highlighted in bold . . 106

4.7 The weighted F1 score and rank of the different classification models

evaluated on all classes (base and new). Best values are highlighted

in bold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.8 Time spent for training at different number of k-shots. . . . . . . . . 108



Chapter 1

Introduction

In recent years, object recognition, as one of the most fundamental and demanding

topics in computer vision, has received great attention. It is considered as one of

the most important tasks that brings significant impacts to the society since many

applications are built upon object recognition techniques, such as object recognition

of traffic signs, shopping applications, human recognition in surveillance, road object

recognition in autonomous driving and daily object recognition in handheld devices

and robotics. Unfortunately, 3D object recognition remains one of the core prob-

lems in computer vision. 3D object recognition in case of real-life environments using

handheld devices or robots is a difficult task due to changing viewpoints, varying 3D

to 2D projections, possible different noises (e.g. motion blur, color distortion), and

the limited computational resources and memory. Also, often video-stream acquisi-

tion is crucial for many computer vision applications such as unmanned aerial vehicle

(UAV) applications, manufacturing industry or video surveillance. The objective of

object detection is to develop computational models and techniques that provide

one of the most basic pieces of information needed by computer vision applications:

What objects and where are they?

As one of the fundamental problems of computer vision, object recognition and

1



Chapter 1. Introduction 2

detection forms the basis of many other computer vision tasks, such as visual in-

spection [1], object tracking [2], instance segmentation [3], image captioning [4],

etc.

The next important step after recognizing the objects by machine is to detect

anomalies on it. Visual inspection technology allows differentiating anomalies in

objects mimicking human visual inspection. While it suggests monitoring with a

minimum amount of human activity, applying the same solution to a wide variety of

defect types is challenging. There is a wide field of such applications including traffic

signs defects, steel surface defects, solar panels, automated product manufacturing,

railway industry, casting or welding, and healthcare. In order to meet industrial

expectations, there is a strong need to achieve high performance in automated visual

inspection.

This work is concerned with research methods that can recognize objects with

traditional and deep learning approaches, building reliable solutions to recognize

different types of defects on recognized objects with high accuracy based on two

major approaches (feature detection with classification and siamese DNNs).

1.1 Basic Concepts

1.1.1 Object Recognition

Object recognition is a general term to describe a collection of related computer vi-

sion tasks that involve identifying objects in digital photographs or motion pictures.

Image classification involves predicting the class of objects in an image. Object lo-

calization refers to identifying the location of one or more objects in an image and

drawing a bounding box around their extent. Object detection combines these two

tasks and localizes and classifies one or more objects in an image.



Chapter 1. Introduction 3

When a user or practitioner refers to object recognition, they often mean object

detection.

1.1.2 Visual Inspection

Visual inspection means observation of the same type of objects repeatedly to detect

anomalies. Visual inspection systems have been purpose-built for the production en-

vironment and addresses a wide range of use cases across the automotive, electronics,

semiconductor, and other industrial sectors.

One of the most challenging and time-consuming processes in the production pro-

cess is product inspection, particularly visual inspection. The importance of the

inspection process has been heightened by the demands of today’s manufacturing

environment [5]. These include:

• Quality levels are so high that sampling inspection is not applicable.

• Production rates are so high that manual inspection is not feasible.

• Tolerances are so tight that manual visual inspection is inadequate.

These are a few of the reasons why visual inspection will dominate quality control

in the future manufacturing arena.

1.2 Motivation

Technology required by industry 4.0 in manufacturing processes requires reliable, ac-

curate, and fast object recognition and visual inspection technologies, often relying

on continuous monitoring of optical information. Additionally, lightweight methods

for object recognition may be very useful for a variety of applications such as drones



Chapter 1. Introduction 4

or wearable computing. Moreover, as automation is wide-spreading in manufactur-

ing processes, the need for automatic anomaly detection is growing. That is, if we

trained our machine intelligence for a given task, there is always a non-zero prob-

ability that unseen events might happen that the system is not trained to handle.

A part of this problem is few-shot learning, where new kinds of errors appear to

be classified as soon as possible, typically with a very low number of training sam-

ples. We have to carry out incremental learning, since previously trained knowledge

should not be forgotten. Moreover, the re-training of the whole architecture would

be resource demanding: the large amount of time, memory, and processing power is

typically not available on site or in time.

1.3 Overview of Recognition Approaches

The evolution of object recognition and detection has usually gone through two

historical periods in the last two decades: Traditional object detection period (before

2014) and deep learning-based detection period (after 2014).

1.3.1 Traditional Approaches

Traditional object detection and recognition methods are built on handcrafted fea-

tures, shallow trainable architectures and mainly start from extracting these features

by traditional image processing methods. These feature descriptors are generally

combined with traditional machine learning classification algorithms. Some of the

used popular feature extraction techniques, includes:

• General Hough transform [6] (proposed by Ballard H. in 1981) can be regarded

as a good approach to complete geometric feature extraction. The Hough

transform is a technique for separating characteristics of a specific shape inside



Chapter 1. Introduction 5

an image. The classical Hough transform is most typically employed for the

detection of regular curves such as lines, circles, ellipses, because it requires

the desired features to be provided in some parametric form. The generalized

Hough transform can be used to detect arbitrary shapes (i.e., shapes having

no simple analytical form).

• Harris corner detector [7] proposed in 1988, extracts objects features by de-

tecting corners. This method extracts corner features from two images and

calculates the correlation degree between their points to detect objects. The

above two methods are sensitive to the features transformation of the image,

i.e the change of the image size, rotation and grey value affects the final results.

• The scale invariant feature transform (SIFT) [8] method was proposed by Lowe

in 2004. The SIFT algorithm is used to detect and describe local features of

images commonly known as the ‘key-points‘ of the image. These keypoints

are scale and rotation invariant and can be used for various computer vision

applications, like image matching, object detection, scene detection, etc.

• Histogram of oriented gradients (HOG) [9] is basically a feature descriptor that

is utilized to detect objects. The histogram of oriented gradients descriptor

technique includes occurrences of gradient orientation in localized portions of

an image, such as a detection window, the region of interest (ROI), among

others. One advantage of HOG-like features is their simplicity, and the easy

understanding of information they carry.

• The Viola-Jones algorithm [10], is named after two computer vision researchers

who proposed the method in 2001: Paul Viola and Michael Jones. It is the

first framework for object detection which gives viable results for real-time

situations on many platforms. It aims to target the problem of face detection



Chapter 1. Introduction 6

but can be trained to detect different object classes. The Viola-Jones algorithm

has 4 main steps: selecting Haar-like features, creating an integral image,

running AdaBoost training, and creating classifier cascades.

• The color and edge directivity descriptor (CEDD) [11] was found to be one

of the most robust, fast and compact among those. CEDD is a block-based

approach where each image block is classified into one of 6 texture classes

(non-edge, vertical, horizontal, 45-degree diagonal, 135-degree diagonal, and

non-directional edges) with the help of the MPEG7 Edge Histogram Descriptor

(EHD). Then for each texture class a 24 bin color histogram is generated

where each bin represents colors obtained by the division of the HSV (Hue,

Saturation, Value) color space. Values of the generated histogram of length

6×24 are then normalized and quantized to 8 bits.

Since features were manually designed in traditional object detection and recog-

nition methods, which are not adaptive to various circumstances and patterns, deep

learning methods have appeared.

1.3.2 Deep Learning Approaches

Artificial neural networks (ANNs) are biologically inspired computational networks.

It is a group of multiple perceptrons/neurons at each layer. ANNs were mostly

limited to three layers until the 1990s, with one input, one hidden layer, and one

output layer, as you can see in Figure 1.1. The input layer accepts the inputs, the

hidden layer processes the inputs, and the output layer produces the result. Essen-

tially, each layer learns certain weights. ANNs are capable of learning any nonlinear

function. Activation functions introduce nonlinear properties to the network. This

helps the network learn the complex relationship between input and output. In



Chapter 1. Introduction 7

Figure 1.1: Neural network architecture with three layers.

2009 parallelization of ANNs training using Graphical Processing Units (GPUs)

was demonstrated in [12]. Subsequently, ANNs have been successfully extended

to so-called deep learning models, extending to 100s of hidden layers. It is useful

to consider that each neuron in the network transforms the incoming data into a

distinct output signal. As the depth of the ANNs is increased the network can trans-

form the data in more complex manners, effectively adding variables to the learned

relationship between inputs and outputs. Mathematics may be key to assessing how

confident we can be about deep learning. Inspired by the structure of our brains,

each ”neuron” is a simple mathematical calculation, taking numbers as input and

producing a single number as an output. Deep learning usefulness has been proven,

but there still are a lot of unanswered questions about the theory of why such deep

learning approaches work. There are different techniques such as (explainable AI

and graph knowledge representation) which try to simplify the rules, understand the

mathematical foundations of deep learning and visualize what is happening inside

deep learning. [13] presents a summary of current research in the area and makes

a plea for more interpretability in artificial intelligence. Furthermore, it presents

two approaches to explain predictions of deep learning models, one method which



Chapter 1. Introduction 8

computes the sensitivity of the prediction with respect to changes in the input and

one approach which meaningfully decomposes the decision in terms of the input

variables. In [14], a mathematical model called the “REctified-COrrelations on a

Sphere” (RECOS) is proposed to answer these two questions: (1) why a nonlinear

activation function is essential at the filter output of all intermediate layers? (2)

what is the advantage of the two-layer cascade system over the one-layer system?

With the rapid development in deep learning, more powerful tools, which are

able to learn semantic, high-level, deeper features, are introduced to address the

problems existing in traditional architectures. These models behave differently in

network architecture, training strategy, and optimization function. Here is list of

different common types of neural networks that exists:

Figure 1.2: Feed forward neural networks architecture.

• Feed Forward Neural Networks

– A feed forward neural network is an artificial neural network in which the

connections between the nodes do not form a cycle, (see Figure 1.2). It is

the basic type of neural networks where input data travels in one direction



Chapter 1. Introduction 9

only, passing through artificial neural nodes and exiting through output

nodes. While feed forward neural networks are fairly straightforward,

their simplified architecture can be used as an advantage in particular

machine learning applications. But there are challenges with feed forward

neural networks, while solving an image classification problem: the first

step is to convert a 2-dimensional image into a 1-dimensional vector prior

to training the model. This has two drawbacks: The number of trainable

parameters increases drastically with an increase in the size of the image

and it loses the spatial features of an image. Spatial features refer to the

arrangement of the pixels in an image and the relationship between them.

• Convolutional Neural Networks (CNNs)

Figure 1.3: General architecture of convolutional neural networks.

– CNNs are very popular in the deep learning community right now. These

CNNs models are being used across different applications and domains,

and they’re especially prevalent in image and video processing projects.



Chapter 1. Introduction 10

CNNs capture the spatial features from an image. They help us in iden-

tifying the object accurately, the location of an object, as well as its

relationship with other objects in an image. CNNs consist of two parts,

feature extraction and classification. Consequently, there are three main

types of layers to build CNNs architectures, convolutional layer, pooling

layer and fully connected layer, (see Figure 1.3). The convolutional layer

parameters consist of a set of K learnable filters (i.e., kernels), where

each filter has a width and a height, and are nearly always square. The

advantages of CNNs is that it learns the filters automatically without

mentioning it explicitly. These filters help in extracting the right and

relevant features from the input data. Additionally, CNNs follow the

concept of parameter sharing. A single filter is applied across different

parts of an input to produce a feature map.

Figure 1.4: Recurrent neural network architecture.

• Recurrent Neural Networks (RNNs)

– RNNs were created because there were a few issues in the feed-forward

neural network: cannot handle sequential data, considers only the current

input, and cannot memorize previous inputs. RNNs work on the principle



Chapter 1. Introduction 11

of saving the output of a layer and feeding this back to the input to help in

predicting the outcome of the layer, (see Figure 1.4). The advantages of

RNNs is capturing the sequential information present in the input data.

• Siamese Neural Networks (SNNs)

Figure 1.5: Example for siamese neural network architecture.

– SNNs [15] are neural networks containing two or more sub-networks that

are connected by a layer which is typically responsible for the comparison

of the features of the branches. The sub-networks are identical: they

have the same parameters and weights trained simultaneously. The main

idea behind siamese networks is to learn the proper similarity function

needed for the efficient comparison of input images in a specific task, (see

Figure 1.5).



Chapter 1. Introduction 12

1.4 Overview of Visual Inspection Approaches

Visual inspection is the oldest and most basic method of inspection. In its sim-

plest form, visual inspection is the process of examining a component or piece of

equipment using one’s naked eye to look for defects or anomalies. In order to meet

industrial expectations, there is a strong need to achieve high performance in au-

tomated visual inspection. Image processing and computer vision techniques can

be used to achieve these goals and enhance the capabilities of visual inspection.

There is a wide field of such applications including automated product manufactur-

ing, railway industry, casting, welding, and healthcare. A general taxonomy of the

different defects was presented in [16]: those detectable by only visual methods (e.g.

contamination, color or shape errors) and palpable (detectable by touch and vision,

e.g. cracks, bumps). The defect detection process can be formulated as either an

object detection or a segmentation task. In the object detection approach the goal

is to detect each defect in the image and classify it into one of the predefined classes.

In the image segmentation approach the problem is essentially solved by pixel wise

classification, where the goal is to classify each image pixel as part of a defect or

not. In general, object detection and instance segmentation are difficult tasks, as

the number of instances in a particular image is unknown and often unbounded.

Additionally, due to a wide range of products to be assembled, sensors cannot easily

adapt to different materials and shapes of the products to be inspected, variations

in the object’s position, lighting, and background cause additional challenges.

It is possible to classify the visual inspection approaches into low-level image pro-

cessing approaches such as statistical [17], structural [18], filter-based [19], model-

based [20], and high-level image processing approaches such as supervised [21] un-

supervised or semi-supervised classifiers [22].



Chapter 1. Introduction 13

1.4.1 Low-Level Image Processing Approaches

1.4.1.1 Statistical Methods

Statistical methods concentrate on analyzing the spatial distribution of pixel values

in an image. In [17], authors proposed a new algorithm by combining the autocor-

relation function with the grey level co-occurrence matrix. First, an autocorrelation

function is used to determine the pattern period then the size of the detection win-

dow can be obtained thus co-occurrence can be computed. In order to distinguish

defective and defect-free images, Euclidean distance is computed between templates

and queries.

1.4.1.2 Structural Approaches

Structural approaches primarily concentrate on finding texture primitives of tex-

ture images and they are especially suitable for textures with obvious structural

attributes. Such elements can be extracted from the texture and defined as tex-

ture primitives. Simple grey-scale areas, line segments are often the texture primi-

tives. [18] deals with fabric defect inspection: they propose a prior knowledge guided

least squares regression to combine the global structure of texture feature space and

the prior from local similarity. This combination helps to generate a more clear

irregularity map and to identify various defects accurately and robustly.

1.4.1.3 Filter-Based Approaches

Filter based methods aim to describe textures in a transformed domain using spatial

transformations, filters, or filter banks. They are the most widely used approaches

for texture analysis, description and inspection. In [19] a banknote defect detection

algorithm is presented to detect cracks and scratches on banknote images using a



Chapter 1. Introduction 14

quaternion wavelet transform and edge intensity. The banknote image is first reg-

istered using the least squares method under the quaternion wavelet decomposition

framework. The defective features are extracted using the edge difference between

the reference image and the test image.

1.4.1.4 Model-Based Approaches

Model-based algorithms describe texture patterns by modelling special distributions

or other attributes with certain models. In [20], a differential filter is used to distin-

guish the defect among the textures, but here a quantitative model characterizing the

impact of illumination on the image is developed, based on which the non-uniform

brightness in the image can be effectively removed. By comparing the model output

against the captured image, the illumination effect can be successfully removed.

1.4.2 High-Level Image Processing Approaches

Although good results may be achieved with low-level methods on the description of

defect features and the detection of defects, most of them are application dependent.

Recently, with the development of deep learning technology, methods that use deep

neural networks are gradually rising in the industrial defect inspection field. We can

classify deep learning algorithms into supervised and unsupervised classifiers.

1.4.2.1 Supervised Classifiers

In [21], a framework called classification priority network (CPN) was described for

the detection and classification of defects. In CPN, the image is first classified by

a multi-group CNN, training different groups of convolution kernels separately to

extract the feature map groups of different types of defects. Then, according to

the classification result, the feature map groups (named multiple group CNN, MG-



Chapter 1. Introduction 15

CNN) that may contain defects are separately input into another neural network,

to regress the bounding boxes of the corresponding defects.

1.4.2.2 Unsupervised Classifiers or Semi-Supervised Classifiers

Automated defect inspection has long been a challenging task especially in indus-

trial applications, where collecting and labeling large amounts of defective samples

are usually harsh and impracticable. In [22], they proposed an approach to de-

tect and localize defects with only defect-free samples for model training. This

approach is carried out by reconstructing image patches with convolutional denois-

ing autoencoder networks at different Gaussian pyramid levels, and synthesizing

detection results from these different resolution channels. Reconstruction residuals

of the training patches are used as the indicator for direct pixel-wise defect predic-

tion, and the reconstruction residual map generated in each channel is combined to

generate the final inspection result. This method has two prominent characteristics,

which benefit the implementation of automatic defect inspection in practice. First,

it is absolutely unsupervised that no human intervention is needed throughout the

training process. Second, a multi-modal strategy is utilized in this method to syn-

thesize results from multiple pyramid levels. This approach is capable of improving

the robustness and accuracy of the method.

1.5 Research Questions

Deep learning (DL) is used in the domain of digital image processing to solve diffi-

cult problems (e.g. image colourization, classification, segmentation and detection).

DL methods such as CNNs mostly improve prediction performance using big data

and plentiful computing resources and have pushed the boundaries of what was



Chapter 1. Introduction 16

possible. Problems that were assumed to be unsolvable are now being solved with

super-human accuracy. Image classification is a prime example of this. Since ap-

pearing by [23] in 2012, DL has dominated the domain due to substantially better

performance compared to traditional methods. Additionally, DL is not going to

solve all CV problems [24]. There are some problems where traditional techniques

with global features are a better solution. [24], authors analyzed the benefits and

drawbacks of both approaches. [25], analyzed the performance between several clas-

sic hand-crafted and deep keypoint detector and descriptor methods such as LF-Net

and SuperPoint. According to the results, some classic detector-descriptor combina-

tions can outperform pretrained deep models while other classic and deep techniques

are still equivalent. [26], compared the differences of traditional and deep learning

algorithms to learn more about which is better suited for a certain application. The

two difficult ill-posed problems that were investigated are multispectral image reg-

istration and faint edge recognition.

Main questions, this thesis is dealing with, are summarized in the following tables:

Table 1.1 shows the problems, datasets and results related to improving multi-view

object recognition.

Table 1.2 shows the problems, datasets and results related to detection of defects of

traffic signs.

Table 1.3 shows the problems, datasets and results related to steel surface defect

detection.



Chapter 1. Introduction 17

Table 1.1: Summarizing research questions and datasets information of Thesis I.

Thesis Task to be solved Proposed solution Dataset Advantages

1.1 - How can we

improve the perfor-

mance of single shot

CNN detectors in

multiple view tasks?

- HMMs can be used to

combine the CNNs and

IMUs data for object

recognition and roughly

pose estimation.

- We use pre-trained

CNNs.

COIL-40 Dataset

- 40 objects

- Each object divided into 8

subclasses (8 poses) by sectors

of 45◦

- 200 random images for aug-

mentation

- 14400 images, 80% with

changing backgrounds

- 75 % for training and 25%

for testing

- Improved the

performance of

object recognition

and roughly pose

estimation com-

pared to CNN such

as VGG16

1.2 - How can we

improve the perfor-

mance of the HMM

for object recogni-

tion?

- What happens

if we trained the

model on a clear

dataset and tested

on noisy dataset

such as occlusion?

- HMM can be improved

by integrating it with

the active vision (AV-

HMM-CEDD).

- We use pretrained

CEDD descriptor

COIL-100 Dataset

- 100 objects

- 72 images (5◦ at the same el-

evation)

- LSTM was trained on

the whole COIL dataset and

tested its recognition perfor-

mance on the partially COIL

occluded dataset

ALOI-1000 Dataset

- 1000 different small objects

- 72 images (5◦ at the same el-

evation)

- Lightweight solu-

tion

- Improved the per-

formance of HMM

- Handle noisy test-

ing images



Chapter 1. Introduction 18

Table 1.2: Summarizing research questions and datasets information of Thesis II.
Thesis Task to be solved Proposed solution Dataset Advantages

2.1 - How can we rec-
ognize the defects
of traffic signs with
high accuracy?

- A new siamese neu-
ral network architecture
called fusioning convo-
lutional siamese neural
networks (FCSNN), was
proposed to recognize
the defects of a large
number of classes of
traffic signs.

Traffic Signs with Defects
(TSD Version I)
- Collected real world images
captured from dash car
- 21 different traffic signs
- 7 different defect classes
- Dataset contains 6016 im-
ages used for training
- For testing, a dataset con-
taining 490 images of un-
trained new traffic signs was
used.

- Good recognition
rate for faded de-
fect class
- Generalize the
performance for
the new traffic
signs never seen by
the network

2.2 - How can we
improve the perfor-
mance of siamese
neural networks?

- A new mechanism to
combine the confidence
values of siamese net-
works with SVM with
the help of support set
images.

Traffic Signs with Defects
(TSD Version II)
- Collected real world images
- 66 different traffic signs
- 4 different defect classes
- 3792 for training and 669
for testing

- Better perfor-
mance compared
to FCSNN.

Table 1.3: Summarizing research questions and datasets information of Thesis III.
Thesis Task to be solved Proposed solution Dataset Advantages

3.1 - Visual inspection
is a key component
in automated pro-
duction industry for
recognizing surface
defects.
- In case of very few-
shots for the new
classes, incremental
learning becomes
even more difficult.
- Catastrophic for-
getting problem
- Time and memory
complexity require-
ments

- A new architecture
to combine Efficient-
Net with Randomized
Networks (EffNet+RC)
for classification and
few-shot learning ap-
proaches, as well as
the issue of continuous
learning for steel surface
defects

NEU surface defect
database
- 6 different surface defect
classes
- Images size 200x200 pixels
- Collected from hot-rolled
steel strips
- 1800 images and 300 sam-
ples per class
- 80% for training and 20%
for testing
Xsteel surface defect
dataset (X-SDD)
- Data-set contains 1360
images
- 7 different defect classes
- Image size 128x128 pixels
- 70% for training and 30%
for testing

- One model to
handle the prob-
lems of the low
number of avail-
able shots of new
classes, the catas-
trophic forgetting,
and the long train-
ing time required
for re-training.
- In case of clas-
sification of steel
surface defects out-
performs all other
known approaches,
with an accuracy
100%

3.2 - How can we uti-
lize the siamese neu-
ral network for zero
shot learning in case
of steel defects?

- A deeper architec-
ture of FCSNN pro-
posed and utilized for
zero-shot learning.

Zero shot in case of NEU
dataset
- 3 classes used for training
and 3 classes used for testing
Zero shot in case of X-
SSD dataset
- 4 classes used for training
and 3 classes used for testing

- Could be ap-
plied to new classes
never seen for the
network



Chapter 1. Introduction 19

1.6 Author’s Contributions

This dissertation focuses on introducing different approaches to solve the problem of

recognizing objects and their defects. The main contributions and their associated

scientific results are presented below:

• Presented a novel idea to integrate neural networks with hidden Markov models

(HMM) and inertial measurement units (IMUs) data to improve the perfor-

mance for multi-view object recognition and pose estimation, (see Chapter

2).

• Improved the performance of the HMM based solutions by integrating active

vision (AV) and information fusion from sequential multiple shots in a frame-

work called AV-HMM-CEDD. This helps the recognition of 3D objects even

if they are partially occluded. Additionally, the proposed AV-HMM-CEDD

framework is computationally lightweight, requires limited memory and can

incorporate other classifiers, not only the presented CEDD, (see Chapter 2).

• Proposed a new siamese neural network architecture called fusing convolu-

tion siamese neural network FCSNN, to recognize the defects of traffic signs.

Moreover, it is possible to use it to recognize defects in untrained traffic signs

classes, (see Chapter 3).

• Introduced a new mechanism to improve the performance of FCSNN by com-

bining the output confidence values of siamese networks with a support vector

machine (SVM) with the help of support set images. The advantage of our

approach, compared to the concept of an ensemble of networks, is that only

one network is to be trained and maintained, (see Chapter 3).

• Proposed a new architecture to combine EfficientNet deep neural networks



Chapter 1. Introduction 20

with randomized classifiers for the solution of the following problems: few

shots learning especially for new classes, catastrophic forgetting of known in-

formation when tuning for new artifacts and the long training time required for

re-training or fine-tuning existing models. Additionally, to deal with zero shot

learning, I proposed deeper architecture of the siamese network and utilized it

for zero-shot learning, (see Chapter 4).



Chapter 2

Object Recognition Techniques

using Deep Neural Networks and

HMM

2.1 Introduction

While there is a long history of optical object recognition only in the last few years,

we have seen significant improvements with the evolution of neural networks. Recent

developments in deep learning frameworks based on deep neural networks (DNN)

significantly increased the accuracy of machine learning algorithms. However, the

benefits of DNN-based DL are significantly diminished when there are severe data

limitations and/or when there are no relevant problems for transfer learning. In [27]

as an example, pure data-driven auto-encoders dealing with high-dimensional raw

input data would require significant amount of data for effective operation even

when stacked shallow auto-encoders are employed.

Real-world data are usually collected from diverse domains or obtained from

various feature extractors. This data can be utilized to improve the performance

21



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 22

of recognition. Multi-view object recognition focuses on using several images

from different views for performance improvement. But, the question is, how

can we integrate these data effectively? Statistical models such as HMMs are

one of the techniques that could handle this problem. HMMs are frequently

utilized in a variety of recognition issues, such as speech, musical sound, human

activity, or object recognition. The barrier to use HMMs in object recognition was

always the real lack of ordered sequential information. It is a natural assumption

that multiple shots can decrease ambiguity and if those shots are from different

directions, the amount of information gathered from the object also increases. In

this later case, we soon arrive at relative pose estimation where the appearance

of the 3D object corresponds to its relative pose. Due to natural ambiguities,

such as noise, occlusion and geometrical distortions, this estimation can be ill-posed.

Current multi-view approaches comprise conventional computer vision (CV) or

DNNs methods such as [28, 29]. LSTM (long short-term memory) networks are pop-

ular techniques to include temporal domains in the deep neural network frameworks.

Additionally, many hybrid approaches try to combine the best features of traditional

computer vision techniques with statistical models and DNNs rather than choosing

just one of them. In [30], two alternative vision techniques (traditional machine

vision and modern deep learning techniques) were utilized for the problem of object

recognition for a mobile robot in an indoor environment. The first approach uses

HOG descriptor with SVM classifier as a traditional machine vision model while the

second approach uses Tiny-YOLOv3 as a modern deep learning model.

Unfortunately, when considering lightweight solutions, which can be crucial for

mobile wearable technology, the temporal combination of multiple views is much

less investigated.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 23

In this chapter, we present a new approach to combine the output of the CNN

(confidence values) with HMM. HMM and IMUs data are used to improve the

performance of the convolutional neural networks for object recognition and roughly

pose estimation. Additionally, we propose a lightweight variational approach, which

can be combined with any single shot detection technique, including DNNs. The

proposed models also implement information fusion since besides 2D images they use

IMUs sensors for the estimation of change in the relative orientation of the camera

and active vision to improve the performance of HMMs.

2.2 View-Centered Approach

Figure 2.1: Model generation setup with target object in the centre.

View-centered representations model the outlook of objects as captured from

different viewpoints. Figure 2.1 illustrates the view-centered approach where multi-

view object models are built up from 2D images taken from different orientations,

being the object of interest in the focus of the camera. To get a complete object

model a larger number of different azimuth and elevation angles are required. How-



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 24

ever, for average applications the elevation can be limited (in our tests we used only

one elevation angle typical for an object placed on the table).

2.3 Hidden Markov Model Explanation

Hidden Markov Models are statistical frameworks in which the system being modeled

is assumed to behave as a Markov process with directly unobservable (hidden) states.

HMM can be considered as the simplest dynamic Bayesian network. The logic

behind HMMs was already introduced in the late 1960s and early 1970s in the

works of [31, 32]. HMM is a probabilistic model, which originates from discrete

first-order Markov processes.

In this section, we briefly overview the theoretical background of HMMs and

some related problems. Let S = {S1, · · ·, SN} denote the set of N hidden states

of the model. In each t index step this model is described as being in one qt ∈ S

state, where t = 1, · · ·, T . Between two steps the model undergoes a change of

state according to a set of transition probabilities associated with each state. The

transition probabilities have first-order Markov property, i.e.

P (qt = Si|q1, · · ·, qt−1) = P (qt = Si|qt−1) (2.1)

Furthermore, we only consider the processes, where the transitions of equation

2.1 is independent of time. Thus, we can define the set of transition probabilities in

the form

aij = P (qt = Si|qt−1 = Sj) (2.2)

where i and j indices refer to states of HMM, aij ≥ 0, and for a given

state
∑N

j=1 aij = 1 holds. The transition probability matrix is denoted by A =



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 25

{aij}1≤i,j≤N . We also define the initial state probabilities:

πi = P (q1 = Si) (2.3)

and π = {πi}1≤i≤N . Now we extend this model to include the case, where the

observation is a probabilistic function of each state. Let O = {o1, o2, · · ·, oT} denote

the set of observations. The emission probability of a particular ot observation for

state Si is defined as

bi(ot) = P (ot|qt = Si) (2.4)

B = bi(ot), 1 ≤ i ≤ N is a sequence of observation likelihoods, also called emis-

sion probabilities, each expressing the probability of an observation ot being gener-

ated from a state i. The complete set of parameters of a given HMM is described

by λ = (A,B,π). A more comprehensive tutorial on HMMs can be found in [33].

2.4 Datasets

The following datasets were used to train convolutional neural networks, generate

the HMM models and run the different tests.

2.4.1 COIL-100 Dataset

The COIL-100 dataset [14] includes 100 different objects each with 72 images taken

by 5◦ at the same elevation. We evaluated retrieval with clear and heavily distorted

queries using Gaussian noise and motion blur. The imnoise function of Matlab,

with standard deviation sd = 0.012, was used to generate additive Gaussian noise

(GN) while motion blur (MB) was made by fspecial with parameters len = 15, and



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 26

Figure 2.2: First two lines: Clear samples from COIL-100. 3rd line: Example queries
loaded with Gaussian additive noise. 4th line: Example queries loaded with motion
blur. 5th and 6th lines: Occluded examples.

angle θ = 20◦. Some examples of the queries are shown in Figure 2.2. To simulate

real-life scenarios, we created the occluded COIL-100 dataset containing the same

100 objects, but with partial occlusion over the object areas (for illustration see

Figure 2.2).

2.4.2 COIL-40 Dataset

We have chosen 40 objects from the COIL-100 dataset for one of the experiments, see

Figure 2.3, for sample images. Each object was represented with 8 poses by sectors

of 45◦. Images are originally with black background but to be more realistic we

have given different backgrounds, selected from 200 random images, so the original

COIL image covers around 25% of the area of 128 × 128 pixels, (see Figure 2.3

bottom line). We believe that a small adjacent black area around the objects does

not distort the results since it appears in all objects and gives no advantage to any



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 27

Figure 2.3: Top line: example objects from the COIL-100 dataset. Bottom line:
objects with different backgrounds.

of the methods. Thus, we got 2880 images (40 × 72) directly from COIL-100 and

11520 from augmentation. The dataset was cut into training and testing parts so

no queries of the experiments could exactly match those images used to train the

CNN. Dataset was divided into 75 % for training and 25% for testing.

2.4.3 ALOI-1000 Dataset

Figure 2.4: First two lines: Clear samples from ALOI-1000. 3rd line: Example
queries loaded with Gaussian additive noise. 4th line: Example queries loaded with
motion blur.

The ALOI-1000 dataset includes 1000 different small objects recorded against a

black background. Each object was recorded by rotation in the plane at 5◦ steps. For



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 28

evaluation under different conditions, we used the same distortion settings, including

occlusions, as described for the COIL-100 dataset. Please note, that while the

resolution of images in COIL is 128× 128 it is 384 × 288 for ALOI. (This explains

the less visible Gaussian noise and motion blur in Figure 2.4).

2.5 Improving Object Recognition of CNNs with

Multiple Queries and HMMs

There are clear trade-offs between traditional CV and deep learning-based ap-

proaches. Classic CV algorithms are well-established, transparent, and optimized

for performance and power efficiency, while DL offers greater accuracy and ver-

satility at the cost of large amounts of computing resources. Hybrid approaches

combine traditional CV and deep learning approaches and offer the advantages of

both methodologies. Also, the fusion of machine learning algorithms and deep neural

networks have become very popular.

In this section, we combine neural networks with hidden Markov models for

multiview object recognition. While convolutional neural networks are very efficient

in object recognition there is still a need for improvements in many practical cases.

For example, if the performance from single images is not satisfactory or the object

localization is not solved with the neural network then information fusion from

several images and from inertial sensors can still help a lot to improve the recognition

rate. In our use case, we are to recognize objects from several directions with the

VGG16 network. We assume that no localization of objects is possible on the images

due to the lack of bounding box annotations, we have to recognize the objects even

if they occupy only about 25% of the field of view. To overcome this problem,

we propose to use a HMM approach where the consecutive queries, shots taken



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 29

from different viewing directions, are first evaluated with VGG16 and then with the

Viterbi algorithm. The role of the later is to estimate the most probable sequence of

poses of candidates (from the predefined 8 horizontal views in our experiments), thus

we can select the most probable object. The approach, as evaluated with different

numbers of queries over a set of 40 objects from the COIL-100 dataset, can result in

a significant increase of hit rate compared to one-shot recognition or to combining

individual shots without the HMM model.

2.5.1 HMM Object Models

An HMM is defined by:

• the set of N possible hidden states S = {S1, ..., SN},

• transition probabilities between states Si and Sj, (see Eq. 2.2),

• emission probabilities based on observations, P (o), (see Eq. 2.4),

• initial state probabilities πi.

The observation of objects with multiple views is a process where in each tth

step this model is in one qt ∈ S state, where t = 1, ..., T . To achieve object retrieval

will need to build HMM models for all elements of the set of objects (M) where the

states correspond to different poses. Then, based on the sequence of observations,

we find the most probable state sequence for all object models. The state sequence

among these objects, which has the maximum probability, will belong to the object

being retrieved.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 30

2.5.2 Object Views as States in a Markov Model

[34] showed that the states can be considered as the 2D views (poses) of a given

object model. Observations of these (hidden states) can be easily imagined as the

camera is targeting towards an object from a given elevation and azimuth. In

the experiments, they used static subdivision of the circle of 360◦ into 8 uniform

sectors 45◦ each at the same elevation. The initial state probabilities was defined

by π = {πi}1≤i≤N based on the opening angle of the views:

πi = P (q1 = Si) =
ψ(Si)

360
(2.5)

where ψ(Si) is the angle interval (given in degree) of the aperture of state Si.

2.5.3 State Transitions

Between two steps the model can undergo a change of states according to a set of

transition probabilities associated with each state pair. In general, the transition

probabilities are defined in Eq. 2.2.

The transition probability matrix is denoted by A = {aij}1≤i,j≤N , where aij ≥ 0,

and for a given state
∑N

j=1 aij = 1 holds.

Building a Hidden Markov Model means the definition of hidden states and learn-

ing its parameters (π, A, and emission probabilities introduced later) by examining

typical examples. However, the problem doesn’t allow such a training process: the

probability of going from one state to another severely depends on the user’s be-

havior. Contrary, [34] computed transition probabilities directly based on geometric

probability as follows.

First define ∆t−1,t as the orientation difference between two successive observations



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 31

(ot and ot−1) where α defines the orientation of the current observation:

∆t−1,t = α(ot)− α(ot−1). (2.6)

Now define Ri as the aperture interval angle belonging to state Si by borderlines:

Ri = [Smin
i , Smax

i [. (2.7)

where Smin
i and Smax

i denote the two (left and right) terminal positions of state Si.

The back-projected aperture interval angle is the range of orientation from where

the previous observation could originate:

Lj = [Smin
j −∆t−1,t, S

max
j −∆t−1,t). (2.8)

Now, to define the transition probability of coming from state Si, they computed

the ratio of opening angles of the intersection Lj and Rj and of the opening of Lj:

aij = P (qt = Sj|qt−1 = Si) =
α(Lj ∩Ri)

α(Lj)
. (2.9)

For illustration, see Figure 2.5.

Figure 2.5: Geometrical explanation of transition probabilities.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 32

2.5.4 Recognition of Single Objects from Multiple Views

Let O = {o1, o2, · · ·, oT} denote the set of observations. The emission probability of

a particular observation ot for state Si is defined in Eq. 2.4.

[35] showed that the CEDD (Color and Edge Directivity Descriptor) [36] is a robust

low dimensional descriptor for object recognition, where the Tanimoto coefficient can

be used to generate simultaneously values interpreted as probabilities. In our use

case, we utilized VGG16 as a global object classifier instead of CEDD’s and used

confidence values extracted from VGG16 as probabilities.

2.5.5 Proposed Method

Figure 2.6: Proposed architecture to combine CNNs with HMM model.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 33

Our proposed architecture consists of two stages, (see Figure 2.6). In stage one,

we used the COIL-40 dataset for training VGG16. Dataset was divided into 75 %

for training and 25% for testing. In stage two, the states can be considered as the

2D views (poses) of a given object model. Figure 2.6 shows that, for each view, we

compute the confidence values from the pre-trained VGG16 model on the COIL-40

dataset. These confidence values will be integrated in HMM. The initial probabilities

of these states were computed by Eq. 2.5 and the transition probabilities computed

by Eq. 2.9. The emission probability of a particular observation ot for state Si is

defined by Eq. 2.4.

Now, we use VGG16 as a global object classifier. We can run the same CNNs

for all queries generating confidence values where we can run the Viterbi algorithm

to combine the values of 2.4, 2.5 and 2.9 to get the most probable state sequences.

Then we choose the object with the highest probability value as the winner.

2.5.6 Experimental Results

A single VGG16 network was used to recognize the 320 (40 × 8) classes: the network

was pre-trained with ImageNet [17] images. We did not refine the feature extraction

layers of the network, only the 4 end layers, responsible for classification, were

replaced and re-trained. During training image rotation, shift, shear, zoom, and

horizontal flip were applied as further augmentation.

To illustrate the gain achieved with the HMM models we also computed the hit

rate for the method where the multiple queries were analyzed independently, and the

results were ranked according to the average probabilities by objects (averaging the

highest probability of each object for the given number of queries). This method is

referred to as the average of multiple CNN detections. We evaluated the hit rate for

1, 2, 3, and 4 queries; the average results for the 40 objects are shown in Figure 2.7



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 34

Figure 2.7: The average Hit-Rate for 40 objects with different number of queries.

based on several random tests with each object as a query. It is not surprising that

as we increase the number of queries the Hit-Rate increases monotonically. It is

clearly visible that for multiple queries the proposed method outperforms the other,

although neither of them could reach 100%.

2.6 Hidden Markov Models Based on Convolu-

tional Neural Network for Pose Estimation

The recognition of 3D objects is an elementary problem in many application fields

such as robotics, autonomous vehicles, or augmented reality. However, to interact

with the objects of the environment, not only specific or generic object recognition

is inevitable, but the determination of their pose is also essential. Pose estimation

is also a fundamental problem in computer vision and a large number of algorithms

have been proposed for the various conditions and applications. In recent years, the

state-of-the-art of convolutional neural networks, like Regional CNNs [37], Yolo [38],

Mask R-CNN [39] and Single Shot Detectors [40], have been proven to be very effi-



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 35

cient for object detection and recognition in RGB and depth images, however these

CNNs do not provide us with straightforward object pose estimation. The prob-

lem of the estimation of the 6-DoF object pose was recently attacked by different

CNN approaches. Classical approaches can be grouped [41], as direct linear trans-

formation, Perspective n-Point, and a priori information estimators; they all suffer

from the problem of efficient feature selection, correspondence generation and out-

lier filtering. Contrary, CNNs based methods have the great advantage to learn the

combination of the best possible features and classifiers or regressors. Partially as a

result of the Amazon Picking Challenge [42], the interest in object manipulation has

increased recently leading to the development of several 6-DoF object estimation

methods. Many of these methods, such as PoseCNN [43], SSD-6D [44], Real-Time

Seamless Single Shot 6D Object Pose Prediction [45], BB8 [46], use CNNs to es-

timate pose with high accuracy of known objects in cluttered environments. It is

well-known that the general disadvantage of neural network-based methods is the

dependency on the training data and the utilized training methods. For example, in

paper [47], the performance drop caused by missing object labels is analysed. Unfor-

tunately, the generation of training data is typically costly whether it is based on real

or synthetic data, especially if the pose is to be represented [48]. We have previously

shown that HMMs can improve the recognition of objects from a sequence of images

when global classifiers are utilized [49]. Since our proposal utilized orientation sen-

sors it is straightforward to investigate whether we can improve object recognizers

(such as CNNs) in pose estimation. In this section, we show that using a general

object classification network (namely VGG16), the temporal inference generated by

the HMM can significantly increase the roughly pose estimation possibilities.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 36

2.6.1 Proposed Method

We followed the approach in Section 2.5.5, A single CNN is to recognize an object

and its pose through several observations then a statistical framework is applied

to evaluate the result of inferences and to make the final object recognition and

pose estimation [50]. We have chosen a well-known neural network, often used as a

backbone of more complex architectures, namely VGG16 [51]. We don’t deal with

the localization of the object within the image frame. I.e., it gives no big stress for

the annotation procedure to generate training data but makes it hard work for the

processing framework to achieve good pose estimation.

During the recognition of consecutive queries, shots taken from different viewing

directions are first evaluated by VGG16 inference resulting in confidence values.

We assume that the relative pose changes between the shots are recorded by easily

available IMUs sensors (such as those built into most mobile phones).

Using the image shots, the pre-built object models, the trained VGG16 networks,

and the change in orientation between shots we use an HMM framework to evaluate

the image sequences and to determine the most probable object and its pose series

generating the observations. Since the order of sequential poses (the actual changes

of relative viewing directions) is determined by the behavior of the camera (or with

other words by the user) it cannot be generally modelled in the model to determine

the actual transition probabilities. What we can do is to measure the real change

in relative poses query by query, with the help of IMUs sensors, and use geometric

probabilities to evaluate the chance of going from one state to another. For this

resolution of the problem of computing state transitions, please see subsection 2.5.3.

To compute the orientation error, we summarized the steps in Algorithm 1.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 37

Algorithm 1: Pose estimation based on CNN with HMM and IMUs Data

Input: Sequence of observations

Output: Pose estimation computed based on most probable sequence

obtained from viterbi algorithm

1 Each object is divided into 8 subclasses by sector of 45◦

2 Trained CNN model (VGG16) on 8 subclasses for each object

3 Run Viterbi algorithm for each object based on the confidence values

extracted from VGG16

4 If object not recognized go to END

5 while Object is recognized do

6 Compute orientation for each view in the most probable state sequence

7 Compute the smallest orientation difference of sectors for each view

8 Pose estimation (Pe) ≡ Average the smallest orientation difference of

the most probable state sequence

9 return Pe

10 END

2.6.2 Tests and Evaluations

A single VGG16 network was used to recognize all 320 (40 objects × 8 poses)

classes. We follow the same setting and architecture as in Section 2.5.3. To get

a general overview of the performance we computed the pose error by averaging

the orientation error for each object and each pose estimated in 8 independent

random experiments. As one could expect the error may depend on the number

of observations (i.e. the number of queries). As Figure 2.8 shows, increasing the

number of queries results in the decrease of average pose error from 67.18◦ to 44.78◦.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 38

As a reference, we computed the average error of the VGG16 network illustrated by

orange in Figure 2.8. These values are ranging from 67.18º to 63.59º significantly

higher than the VGG+HMM technique.

Figure 2.8: Average orientation error at different number of queries for VGG16 only
(orange) and VGG+HMM (blue).

Figure 2.9: Average orientation error for each object, in case of two queries, for
VGG16 only (orange), VGG+HMM (blue), and VGG+mHMM with constant tran-
sition probabilities (green dotted).



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 39

To highlight the information added by the orientation sensor we made tests where

the transition probabilities were set constant and computed the orientation error for

each object, in case of two queries. This is named VGG+mHMM and is shown by

green dotted lines in Figure 2.9. There is no significant difference between VGG16

and VGG+mHMM as expected.

Figure 2.10: Mostly rotational invariant objects.

Figure 2.11: Not rotational invariant objects.

2.6.2.1 Orientation Error without Rotational Invariant Objects

The COIL-40 dataset contains rotational invariant and not rotational invariant ob-

jects as appeared in Figures 2.10 and 2.11, respectively.

When we computed the rough estimation for the pose estimation without the

rotational invariant objects, the error decreased from 45º to 40º, (see Figure 2.12).

Additionally, Figure 2.13, shows that for some not rotational invariant objects, there



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 40

Figure 2.12: Average orientation error at different number of queries for
VGG+HMM with rotational invariant objects (blue) and VGG+HMM without ro-
tational invariant objects (Green).

are still some views from different sectors that seem to be very similar affecting the

estimation of the pose.

Figure 2.13: Not completely rotational invariant objects with rotations resulting
in very similar views.

2.7 Active Multiview Recognition with Hidden

Markov Temporal Support

To improve the performance of HMM, active multiview object recognition focusing

on the directional support of sequential multiple shots will be utilized. Inertial

sensors were used to estimate the orientation change of the camera and thus to



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 41

estimate the probability of relative poses similar to Section 2.5.3. With the help of

relative orientation change, we can compute transition probabilities between possible

poses and can use a hidden Markov model to evaluate state (pose) sequences.

Furthermore, we can plan our next viewing position to minimize the risk of

misclassification, resulting in higher overall recognition rates. Besides giving the

theoretical details, we use two datasets to illustrate the performance of our model

through several tests including occlusion, blur, Gaussian noise, and to compare to

a solution with a long short-term memory network (LSTM).

2.7.1 Recognition of Objects from Multiple Views by Weak

Global Classifiers

To create the HMM models for all elements of the set of objects (M) and evaluate

the state transition between the states we follow the same strategy in Section 2.5.3.

The emission probability of a particular observation ot for state Si is defined by

Eq. 2.4.

But now to show the universally of the framework, we use the combination of

the CEDD descriptor [36] and Tanimoto coefficient to approximate the emission

probabilities of states. CEDD’s advantage is that it uses only a short vector (length

of 144) as a descriptor, but it is global and less robust considering its recognition

abilities under various circumstances. More sophisticated (but also computationally

expensive) single shot recognition techniques can also be used within our frameworks

such as VGG [51], SSD [40], or Yolo [52].

Emission probability of Eq. 2.4 can be given as:

bi(ot) =
T (C(Si), C(ot))∑N
j=1 T (C(Sj), C(ot))

(2.10)



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 42

where C stands for the CEDD descriptor generating function and T stands for the

Tanimoto coefficient. Since each state of the object models can cover a large di-

rectional range, we will use the average CEDD vector, of available model samples

within, to represent the whole state with a single descriptor. The sequence of re-

trieval lists, generated by independent queries, is evaluated by the Viterbi algorithm

to combine the values of Eq. 2.5, Eq. 2.9, and Eq. 2.10 to get the most probable

state sequences. To achieve object retrieval, we have to find the most probable state

sequence Ŝk with the above steps for all possible candidate objects. To select the

winner object k̂, we have to compare the observations with the most probable state

sequence:

k̂ = arg max
∀k∈M

(

∑T
i=1 T (C(oi), C(Ŝk,i)

T
) (2.11)

where k denotes object k in M .

Figure 2.14: Object is recognized continuously in a sequence of queries. New queries
(Q2 and Q3) are planned by the analysis of previous shot(s) (Q1).



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 43

Figure 2.15: Overview of the proposed multiview method.

2.7.2 Active Recognition with HMM

The overview of our algorithm is shown in Figures 2.14 and 2.15. An object is being

captured by several shots from different directions. These different views can be

also considered as different relative poses. As the camera moves, we get the change

of relative pose (∆αi) by the IMUs sensors. Each captured image is independently

evaluated, and the probability of all possible objects is estimated.

Active recognition is a relatively old idea in pattern recognition, and it is typical

to extend non-active methods. Without discussing such techniques, we refer the

reader to the survey in [53]. Active vision systems can be classified, according to

their next view planning strategy, into two groups:

1. systems that take the next view to minimize an ambiguity function;

2. systems incorporating explicit path planning algorithms.

We have chosen the first strategy and here we discuss a method that is very close to

human’s behavior to move around an object to become acquainted with its appear-



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 44

ance from different directions. Based on a rapid evaluation of the first observations,

we hypothesize which objects have high probability and we plan the following move-

ments to find those views that can reduce ambiguity. Now, based on the preliminary

models, each object k will be represented with Nk descriptors computed as the av-

erage of descriptors within a given viewing range:

c̃k,i = 1/N i
k

N i
k∑

l=1

ck,l (2.12)

where ck,l stands for the descriptors of object k within the interval i. The similarity

between these average views can be computed with the Tanimoto coefficient and

can be stored in a matrix S of size NNk × NNk. After making the very first

observations, we are to evaluate the retrieval list(s) L, and as α(c̃k,i) provides the

estimate of orientation for the most probable object k in state i, we can also compute

the similarity of object views to the left (and to the right accordingly):

Sleft =
∑

c̃j ,c̃l∈L,j 6=l

T (c̃j,left, c̃l,left) (2.13)

where c̃j,left and c̃l,left are the next views left to the most similar views to the query

being in the already existing retrieval list L.

Finally, we should move the camera either to the left or to the right depending

on the similarity of views of the possible candidates:

Decision =


Move to left if Sleft ≤ Sright

Move to right if Sleft > Sright

(2.14)

resulting in the more discriminating direction. The performance of this active ap-

proach will be compared to the non-active recognition in Section 2.7.3.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 45

2.7.3 Experiments and Evaluations

Variations in the datasets (see Figures 2.2 and 2.4) were used to show how our tem-

poral methods can improve the performance of the weak classifiers under different

circumstances. Since CEDD mainly relies on edge-like features, strong additive noise

or (motion) blur can influence result.Charts are generated by taking the average of

10 experiments with randomly generated queries with all 100 and 1000 objects of

COIL and ALOI datasets, (That is the total number of queries was the multiple of

11000).

Figure 2.16: Comparison of non-active and active recognition when all queries are
occluded. Top graph: COIL-100, bottom graph: ALOI-1000 datasets. Continuous
curves show the GT being in the top 10 items of the retrieval list.

In all measurements, we see the advantage of using multiple queries: all curves

monotonically increase as the number of queries increases. The first two charts



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 46

of Figure 2.16 help the understanding of our idea for active vision on some test

data where all queries were occluded. The continuous curves show whether the

ground truth (GT) objects are within the top 10 candidates of the retrieval lists

(L). Since our next view planning makes its decision based on the 10 most probable

candidates of the first two retrieval lists, we expect to get results below this curve but

above the non-active approach. We could measure performance gain over non-active

recognition between 6.2% and 13.8% in these experiments.

Figure 2.17: Comparison of active and non-active recognition on the distorted COIL
dataset. First graph: motion blur, second graph: Gaussian noise.

Figure. 2.17 and Figure 2.18 show other experimental results regarding the COIL

and ALOI datasets respectively. In these tests either all queries were loaded with

Gaussian noise (GN) or motion blur (MB), or the first two queries were partially

occluded while the remaining ones were loaded with MB and GN (these are denoted

with 2O MB and 2O GN). In all cases the increase of the number of queries resulted



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 47

Figure 2.18: Comparison of active and non-active recognition on the distorted ALOI
dataset. First graph: images with motion blur, second graph: images with Gaussian
noise.

in higher Hit-Rate and active vision outperformed the non-active.

Table 2.1: Average Hit-Rates (%) in case of different query distortions applying 8
sequential queries.

COIL-100 ALOI-1000

AV NAV AV NAV

All queries occluded (AO) 95.5 87.7 81.9 70.2
2 qrs. occ. oth. GN (2O GN) 75.1 69.6 72.9 71.4
All queries GN (AGN) 76.1 72.1 76.7 73.5
2 qrs. occ. oth. MB (2O MB) 87.6 77.9 96.2 94.2
All queries MB (AMB) 88.5 79.7 97.5 95.5

For an alternative presentation of some parts of the above data we included a

table (Table 2.1) of results for the 8 queries cases. It is clear to see that while in the

case of the smaller dataset (COIL-100 with 100 object classes) there is a significant

advantage of the active method, contrary, in case of a large number of object classes



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 48

in case of ALOI dataset, this decreased to around 1% in general. While this effect is

natural, it is less significant in the case of good quality images as we can read from

Figure 2.16 where only occlusion happened but no other type of noise.

2.7.4 About Space and Time Complexity

While any single shot feature extraction technique can be applied in the proposed

framework, in this section, we used the very compact CEDD descriptor. It occupies

144 Bytes per image, while the orientation information requires not more than 4

Bytes. Running on plain CPUs (Intel Core i7 × 4MHZ), the memory and running

time requirements are given in Table 2.2.

Table 2.2: Memory and running time requirements of the HMM and LSTM models.

Number of queries 2 4 6 8

Method AV-HMM-CEDD
Memory 30 KB 60 KB 89 KB 120 KB
Time (sec) 0.0127 0.0288 0.0385 0.0512

Method ConvLSTM
Memory 392 MB 787 MB 1.2 GB 1.6 GB
Time (sec) 0.0263 0.0422 0.0598 0.0751

2.7.5 An Alternative: ConvLSTM

Although traditional RNNs can easily learn short-term dependencies; they have

difficulties to learn long-term dynamics as the gradients which are back-propagated

can vanish or explode. Gradients are values used to update a neural network’s

weight. [54] LSTM is a type of RNN addressing these problems as the LSTM cells

allow gradients to flow unchanged, to avoid the gradient vanishing problem during

training, while learning both long-and short-term dependencies. LSTM solved this



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 49

problem by using three gates (Forget gate, Input gate and Output gate) to decide

which data in a sequence is important to keep or throw away. LSTMs are efficient

techniques for the sequential linkage of observation data. In computer vision they

are mostly utilized for the processing of dynamically changing data such as motion

behavior [55] and tracking of objects [56]. Not only temporal data can be processed

by LSTMs: in [57], apple diseases and pests are detected. Here the purpose of LSTM

was to combine the features of three deep models namely AlexNet, GoogleNet and

DenseNet201. [58] applies a much more interesting approach to address action-driven

weakly supervised object detection. The proposed temporal dynamic graph LSTM

architecture recurrently propagates the temporal context on a constructed dynamic

graph structure for each frame. That is, temporal action information patterns can

help the recognition of visual objects. Similarly, approach [59] combines the output

of independent detection but not with HMMs but with LSTMs called Association

LSTM.

Figure 2.19: Overview of the tested ConvLSTM framework in case of four sequential
queries.

To compare our active vision HMM model with one of the best known DNNs for

time series, we implemented a so-called ConvLSTM network accepting several query



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 50

frames based on the technique given in paper [60]. The overview of the framework,

after our modification, is illustrated in Figure 2.19. It can process query frames in

a directional sequential order (either left or right), the 10 convolution kernels have

size 3 by 3. It is known that DNNs are sensible for the training: high numbers of

sample images are required under similar viewing conditions to those at inference.

To accomplish this, either sophisticated augmentation techniques are required or

large synthetic datasets are used relying on the CAD model of the objects.

For each view in the sequence of query, we created a ConvLSTM cell. ConvLSTM

layers will do a similar task to LSTM but instead of matrix multiplications, it does

convolution operations and retains the input dimensions. The extracted features

from each cell were integrated in a flatten layer followed by a fully connected layer.

Finally, a Softmax layer was applied to perform classification.

2.7.6 Comparison to LSTM

In our experiments, we trained the ConvLSTM on the whole COIL-100 dataset

(7200 images divided into number of sequences of length N , N = 2, 4, 6, 8) and

tested its recognition performance on the partially occluded version. We already

showed the Hit-Rates of our proposed framework in Figure 2.16. For comparisons

with LSTM Figure 2.20 gives the mAP (mean average precision) values. It can be

interpreted that the HMM can handle the untrained occluded queries much better.

The running time and memory usage of the LSTM model is given in Table 2.2.

Please, also consider that the training took about half an hour for 100 epochs with

an NVIDIA Quadro P6000 GPU with 24 GB RAM.



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 51

Figure 2.20: Comparison of active HMM and ConvLSTM on occluded queries.

Figure 2.21: LSTM architecture with explicit pose.

2.7.7 Comparison to LSTM with Explicit Orientation

HMM with active vision utilized the pose explicitly to have the ability of choosing

the most discriminant view for recognition (left or right). To compare our proposed

method with LSTM with explicit pose, we created a new architecture for LSTM to

accept two inputs (one for sequence of images and the other for explicit orientation

pose). Figure. 2.21 illustrates this architecture. We used the same settings as in

Section 2.7.6. Figure. 2.22 shows that mAP values at different numbers of queries (2,



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 52

4, 6, 8). It is obvious that LSTM with explicit orientation pose gives better results

than LSTM with implicit orientation pose, but AV-HMM-CEED still overcomes

both of them.

Figure 2.22: LSTM with explicit orientation results.

2.8 Summary

First, we combined neural networks with hidden Markov models for Multi-view ob-

ject recognition. Our main contribution is to show that even if the neural networks

could not be optimally trained and region-based detection is not possible, they can

still be used for multiple-view object recognition with the help of information fusion.

We show that relative pose changes can give enough information for the HMMs

to estimate the most probable state sequences and thus finding the most probable

object visible on the images. Consequently, we could recognize the object and

roughly estimate its orientation. The performance improvement via information

fusion is significant as shown in our experiments. The advantage of the method is

that it can be used with any single shot recognition technique (not only the tested

VGG16 network) and the usage of the IMUs information can easily support the

HMMs which thus do not require any training. Second, we showed how active vision

and information fusion can help the recognition of 3D objects in a HMM framework



Chapter 2. Object Recognition Techniques using Deep Neural Networks
and HMM 53

if only weak classifiers are applied. The possible application of such approaches

can be important in embedded systems or if sensors with limited resources are

to be used for example in future’s autonomous, wearables or IoT devices. The

proposed AV-HMM-CEDD technique is computationally lightweight, requires small

memory and can incorporate other classifiers, not only the presented CEDD. The

effectiveness of the method was tested with a large number of experiments in

various conditions and with comparisons with LSTM implementations.

This chapter was summarized in Thesis I, please see Chapter 5, Section 5.1.



Chapter 3

Detecting Traffic Sign Defects

The automotive industry is undergoing a paradigm change from human-driven ve-

hicles to self-driving vehicles powered by artificial intelligence. A self-driving car

(sometimes called an autonomous car or driver-less car) is a vehicle that uses a com-

bination of sensors, cameras, radar, and artificial intelligence (AI) to travel between

destinations without a human operator. To be considered as fully autonomous, a

vehicle must be able to go to a predefined location without the assistance of humans

on roads that have not been adapted for its use.

AI technologies power self-driving car systems. Developers of self-driving cars

use vast amounts of data from image recognition systems, along with machine learn-

ing and neural networks, to build systems that can drive autonomously. The neural

networks identify patterns in the data, which are fed to the machine learning al-

gorithms. These data include images from cameras on self-driving cars from which

the neural network learns to identify traffic lights, trees, curbs, pedestrians, street

signs, and other parts of any given driving environment. We are a long way away

from having a completely self-driving car. [61] discussed different types of phantom

attacks that causes the advanced driving assistance systems (ADASs) and autopilots

of semi/fully autonomous vehicles to consider depthless objects (phantoms) as real.

54



Chapter 3. Detecting Traffic Sign Defects 55

In another example, a Tesla vehicle has been tricked into spontaneously accel-

erating over the speed limit with just sticking two inches of tape on a speed limit

sign [62]. As we can see in Figure 3.1, McAfee security researchers placed a stripe

of black electrical tape over part of a 35mph speed limit sign to slightly extend the

middle of the “3”. This tiny alteration made the car’s camera misread the sign as

85 mph. The cruise control system then immediately accelerated towards this speed

until the driver hit the brakes.

Figure 3.1: Researchers at McAfee placed a two-inch long piece of electrical tape
horizontally across the middle of the ‘3’ on a 35 mph (left) speed limit sign, causing
the car’s camera system to misread it as 85 mph (right) [62].

There is no doubt that traffic signs are very important parts of the road infras-

tructure considering either human drivers, driver assistance systems, or autonomous

vehicles. Thus it is natural that traffic sign detection and classification [63, 64] have

a huge attention from researchers. Contrary to the public perception, the detection

and recognition of traffic signs with high accuracy is still an unsolved problem, espe-

cially in real-life conditions [63]. The challenges and difficulties of traffic sign/light

detection can be summarized as follows: Illumination changes: The detection will be

particularly difficult when driving into the sun glare or at night. Motion blur: The

image captured by an on-board camera will become blurred due to the motion of the

car. Bad weather: In bad weather, e.g., rainy, and snowy days, the image quality

will be affected. Real-time detection: This is particularly important for autonomous



Chapter 3. Detecting Traffic Sign Defects 56

driving.

Figure 3.2: Traffic sings, as examples for the 7 distortion classes, under investigation:
faded, covered, scribbled, correct, covered and faded, covered and scribbled, faded
and scribbled.

Besides unfavourable weather, lighting, and imaging conditions the unwanted

defects of traffic signs may heavily affect the accuracy of such systems, (see Fig-

ure 3.2). It is inevitable to develop systems to monitor the state of traffic signs, by

detecting the different errors and supporting their maintenance. For this purpose,

we proposed and compared different deep learning strategies for traffic sign defects

in this chapter.

3.1 Datasets

3.1.1 Traffic Signs Distortion Dataset (TSD Version I)

There are several traffic sign datasets available but those contain no information

about distortions. Our training traffic signs dataset includes 21 different types of

traffic signs, see Figure 3.3 for sample images. The dataset, named Traffic Signs

with Defects (TSD version I), contains 6016 images captured by dashboard cam-

eras. We classified the dataset into 8 defect classes (Faded, Covered, Scribbled,

No error, Covered & Faded, Covered & Scribbled, Faded & Scribbled, Covered &

Faded & Scribbled). Each defect class contains a different number of traffic signs see,

Figures 3.4 and 3.5 for the exact number in each defect class. This dataset was used

for training. For testing we used a separate dataset introduced in Section 3.1.1.1.



Chapter 3. Detecting Traffic Sign Defects 57

Figure 3.3: Traffic signs in the training dataset with their class codes.

Figure 3.4: Percentage of images for each defect class in the training dataset.

Figure 3.5: Distribution of traffic signs of the training data with each error class.



Chapter 3. Detecting Traffic Sign Defects 58

3.1.1.1 Untrained Classes of Traffic Signs for Testing (TSD Version I)

Figure 3.6: Examples images for the untrained traffic sign types.

Traffic signs could be considered as good test objects since we have lots of types

of them. Unfortunately, it is not easy to collect a large number of real traffic sign

images with different defects. We created a testing dataset with 25 traffic sign classes

that were not used in the training. This dataset contains 490 images loaded with

one of the following 4 defects: faded, covered, scribbled and errorless. See Figure 3.6

for examples of the new object classes and Figure 3.7 for the number of images in

each defect class.

Figure 3.7: Distribution of the untrained traffic signs with each error class.



Chapter 3. Detecting Traffic Sign Defects 59

3.1.2 Traffic Signs Distortion Dataset (TSD Version II)

Figure 3.8: Examples for the 4 defect classes under investigation: (a) faded, (b)
covered, (c) correct,(d) scribbled.

Because our previous dataset was heavily unbalanced and contains only 24 differ-

ent traffic signs classes for training, we created a new dataset, Figure 3.8 shows some

sample images of our collection, captured by dashboard cameras. In this dataset,

we collected all traffic signs in our previous datasets for training and testing and

added more traffic sign images. Additionally, we removed the mixture of classes to

make the new dataset more balanced. The dataset, named Traffic Signs with Defects

(TSD version II), contains 3792 images for training and 669 images for testing in 66

sign classes and 4 defect classes (faded: 1723, covered: 418, scribbled: 421, correct:

1899).



Chapter 3. Detecting Traffic Sign Defects 60

3.2 The Proposed Fusioning Convolutional

Siamese Neural Network Architecture (FC-

SNN)

Recently, the combination of deep learning algorithms with visual inspection tech-

nology allows the differentiating anomalies in objects mimicking human visual in-

spection. In this chapter, a new convolutional siamese neural model is presented to

recognize different types of defects. We propose to train special SNNs to predict

if the pairs of the images belong to the same defect class or not. We assume that

in case of satisfactory training data, our network can generalize the visual appear-

ance of visual defects, thus we can apply the same network for new object classes

without retraining. The main contribution of this chapter is a siamese type network

which, beside computing the difference of the features, contains the concatenation

and further processing of these features. In the section, we refer to it as fusioning

convolutional siamese neural network (FCSNN).

Figure 3.9: The proposed fusioning convolutional siamese neural network architec-
ture.



Chapter 3. Detecting Traffic Sign Defects 61

For feature extraction, we used the ImageNet pretrained VGG16 model [65] as

the parallel sub-networks as shown in Figure 3.9. The pair of input images (Xi,a and

Xi,b) are passed through the VGG16 networks to generate the fixed length feature

vectors, then we added a fully connected classifier type layer to each branch to learn

how to interpret the extracted features on our dataset. Thus we have two vectors of

length 4096. We utilized these vectors in two different ways. First, we computed the

absolute difference between the two feature vectors by L1 distance. In the second

branch, we concatenated the two feature vectors into one vector and fed it to three

fully connected layers and two dropout layers with a dropout ratio of 0.2. At the

end, we concatenate the two branches into one vector and feed it to a fully connected

sigmoid layer to generate the similarity score output. The model was compiled using

the Adam optimizer and the binary cross entropy loss function. The learning rate

was set to 0.0004.

Figure 3.10: Examples of training pairs with their labels.



Chapter 3. Detecting Traffic Sign Defects 62

3.2.1 Training

To train a siamese network, we must create pairs of images: there can be pairs

where both images are from the same error class and others where the two images

are from different error classes. Figure 3.10 shows a few examples of how these pairs

can look, good pairs (pairs with identical defect attributes) will be given label 1

and distinct pairs are labelled 0. We will generate these pairs randomly from all the

defect classes in the training data, thus the dataset contains pairs of (Xi, Yi) where

Yi is the required output (1 or 0). Recall that the input to our system will be a pair

of images and the output will be a similarity score between 0 and 1.

3.2.2 N-way One-Shot Classification

We will perform N -way one-shot classification [66] as a strategy in order to evaluate

the models. In one-shot classification, the query image in the test setXqj , 1 ≤ j <∞

(the queries) is compared with each elements of the support set Xsi , i = 1, ...N . We

tested the model with N = 20 (20-way one-shot classification).

If we consider the set pairs of images is P = {(Xsi , Xqj), i = 1, ...., N} and by

ordering it in decreasing order, then the class of the first element of P with high

confidence, CXsi , is considered as the decision of the network:

CXsi = C(argmax
CPi

Confidence(Pi)) (3.1)

In case of correct prediction, the elements of the pair with the maximum confi-

dence value, will be from the same error class. During testing, the generation of the

support set, and the evaluation of the prediction is repeated k times:

CorrectPercentage = 100× ncorrect/k (3.2)



Chapter 3. Detecting Traffic Sign Defects 63

where k is total number of trials and ncorrect equals the number of correct predictions.

Figure 3.11: An example for 5-way one-shot testing. Since the pair with the same
defect has the highest confidence, the network made a correct classification.

In Figure 3.11, we show an example of a 5-way one-shot classification. It is

expected that the pair of images in the first line will have the highest confidence

since they have identical defects.

3.2.3 Experimental Results

We evaluated the proposed method on two different datasets: our own traffic signs

dataset and a dataset with disk castings1 from the Kaggle website2.

1We have tested the proposed approach on different datasets. In case of a casting dataset, we
could achieve 99.60% accuracy. For more details, please check our paper [67].

2https://www.kaggle.com/ravirajsinh45/real-life-industrial-dataset-of-casting-product



Chapter 3. Detecting Traffic Sign Defects 64

The proposed FCSNN architecture was used to estimate whether two images are

from the same error class or not. The testing method itself is quite strict since in

the case of 20-way one-shot classification the recognition is evaluated as correct if

the right pair has the highest confidence from the 20 comparisons.

Table 3.1: Accuracy of three siamese networks on untrained traffic signs (TSD
version I) in three independent tests.

Test cases (distribution of images) SNN [68] SNN [68] with
VGG16 Features

FCSNN

12 traffic sign classes, 66 faded and 162 errorless 43.3% 80.6% 92%

21 traffic sign classes, 92 covered and 195 errorless 7.5% 27.9% 28.9%

6 traffic sign classes, 34 scribbled and 54 errorless 9.4% 11.5% 25.8%

Weighted average accuracy 22.32% 43.12% 52.81%

The testing dataset introduced in Section 3.1.1.1 was used for testing. It contains

25 traffic sign classes that were not used in the training of the FCSNN. We evaluated

the defect classification accuracy of SNN [68], SNN with VGG16, and FCSNN with

the 20-way one-shot classification technique. The average results of 10 experiments

are given in Table 3.1. Three test cases, for the error classes faded, covered, and

scribbled, were evaluated independently and their weighted average is also given.

The performance of SNN is the lowest. To be able to measure the contribution of our

proposal we replaced the feature extraction part of [68] with VGG16. This modified

network gave significantly better results. Our proposed FCSNN outperformed this

variation with circa 9.5% in average. The results of the proposed method are good

only for the faded class, but for the rest of the defect classes, the performance needs

more improvement. In the following section, we introduced a new method to handle

this problem.



Chapter 3. Detecting Traffic Sign Defects 65

3.3 Recognition of Traffic Signs Defects with

SVM based on CNN Confidence Values

In the previous section, the idea was not only to differentiate but also to fuse in-

formation from the twin branches. For faded signs, measured on untrained traffic

sign classes, 92% accuracy was reached by the method denoted as FCSNN, but other

types of defects were much less successfully recognized. To enhance the performance

of DNNs, it is a common way to use an ensemble of classifiers. The drawback of

such solutions is the increase of computational resources (time and memory) during

training and also in testing the queries with a set of networks. Contrary, we propose

to use only one FCSNN but we compare the query image to many support images

(in our test 5, from each defect class, chosen randomly). In this concept the support

images are considered as reference images and the task of the SVM is to learn how

the confidence of the decisions of the FCSNN can help in the recognition of defects.

Figure 3.12: Combination of FCSNN with SVM in the training process. SVM is
trained on the confidence values and true labels of several comparisons of training
images and the elements of the support set.



Chapter 3. Detecting Traffic Sign Defects 66

In previous section, to estimate the defect type, a random pair of images (the

query image and one image from the support set) were evaluated by the FCSNN to

judge the defect similarity. Now, instead of one image from each defect type, we

use multiple images from each defect classes as support and train a SVM on the

obtained confidence values of decisions of several comparisons of the same query

with different support images. The new idea of our approach is to learn from the

’imperfections’ of inferences of the DNNs: the SVM has the ability to make better

decisions by observing how the trained DNN behaves when it compares different

queries to different support images. This information is represented in the vectors

of confidence values. See Figure 3.12 for the illustration of the proposed combination

of the FCSNN and SVM.

First, FCSNN was trained with 3792 images from TSD version II dataset. The

pretrained FCSNN is used to compute the confidence values of the query image

paired with each image in the support set. Second, to train the SVM, we used

the pre-trained FCSNN model to create matrix of confidence values of size M ×K,

where M equals the number of images in the training set (in our case 3792 )and K

equals the total number of images in all support set for all classes. For testing, the

pre-trained SVM will recognize the defect class.

3.3.1 Experiments and Discussion

To evaluate the new concept we made experiments with the TSD datasets; training

and testing subsets were introduced in Section 3.1.2. Additionally, we introduced

our new dataset (TSD dataset3) of over 4000 traffic signs in 66 classes and 3 types of

defects (covered, faded, and scribbled) on 2562 images (plus 1899 error-free images).

3https://keplab.mik.uni-pannon.hu/images/tsd/



Chapter 3. Detecting Traffic Sign Defects 67

The structure of the FCSNN was identical to [67], training used the Adam optimizer,

batch size 32, 150 epochs, with a learning rate 0.0001. For base models we have

chosen VGG16 and ResNet50.

The SVM and the FCSNN were trained independently. The SVM was using the

radial basis function as the kernel and the classes were balanced during its training.

3.3.1.1 Experimental Results on TSD Version I

Table 3.2: FCSNN-ResNet50-SVM evaluation on TSD version I. The accuracy on
the 490 test images of untrained classes of traffic signs was 77%.

Defect Metrics
class Precision Recall F1 score # of queries

Covered 0.64 0.59 0.61 92
Faded 0.82 0.91 0.86 66

Correct 0.89 0.82 0.85 298
Scribbled 0.35 0.53 0.42 42

Weighted avg. 0.80 0.77 0.78 490

We tested the performance of the proposed method on the dataset introduced in

Section 3.1.1. Here the SVM is trained with confidence vectors of length 7 × 5 (as

we have 7 defect classes and 5 support images from each class) and the defect labels

(from l1 to ln). Table 3.2 shows the results precision 0.80, recall 0.77 and F1-Score

0.78. The weighted accuracy is 77%.

3.3.1.2 Experimental Results on TSD version II

We tested the performance of the proposed method on the dataset introduced in

Section 3.1.2. Here the SVM is trained with confidence vectors of length 4 × 5 (as

we have 4 defect classes and 5 support images from each class) and the defect labels

(from l1 to ln).



Chapter 3. Detecting Traffic Sign Defects 68

Table 3.3: FCSNN-ResNet50-SVM evaluation on TSD version II. The accuracy on
the 669 test images of TSD was 88%.

Defect Metrics
class Precision Recall F1 score # of queries

Covered 0.84 0.86 0.85 258
Faded 0.91 0.90 0.90 63

Correct 0.86 0.92 0.89 285
Scribbled 0.87 0.62 0.72 63

Weighted avg. 0.88 0.88 0.88 669

For performance evaluation precision, recall, and F1 score were computed for

each defect class and the average accuracy for the whole test set.

Table 3.3 shows that there is a large difference between the different error classes.

For fading we could achieve 0.90 F1 score, while for scribbled traffic signs we could

reach 0.72. The average F1 score is 0.88 and the average accuracy is also 88%.

3.3.2 Comparing FCSNN-SVM with Different DNNs Mod-

els

In this section, we discuss different neural network approaches to find various errors

on already detected traffic signs. Two major approaches are investigated: convo-

lutional neural networks to learn the features of defects, and siamese convolutional

neural networks to compare traffic signs with others with known distortions. While

the former models are known for their good performance in object recognition in

general, the later networks are often used for the detection of defects of objects.

Neither approach requires information about the type of the traffic sign itself.

To get a more comprehensive overview of the ability of DNNs for our task, and

to compare siamese and feature-based classification DNN approaches we tested 9

models. Six of them contain siamese structure [69]:



Chapter 3. Detecting Traffic Sign Defects 69

SNN of [68], SNN with VGG16 backbone, FCSNN with VGG16 backbone [67],

FCSNN with ResNet50 backbone, FCSNN with VGG16 backbone plus SVM clas-

sification, FCSNN with ResNet50 backbone plus SVM classification and VGG16,

ResNet50 [70], EfficientNet-B6 [71].

Table 3.4: Evaluation of SNNs and feature based classification approaches. In case
of four methods (first four lines) we could increase performance by choosing the
defect class with the highest average confidence on the support support set.

F1 score
Method Top-1 Class average
SNN [68] 0.833 0.844

SNN-VGG16 0.861 0.863
FCSNN-VGG16 [67] 0.868 0.870
FCSNN-ResNet50 0.869 0.870

FCSNN-VGG16-SVM 0.870
FCSNN-ResNet50-SVM 0.880

VGG16 0.860
ResNet50 0.860

EfficientNet-B6 0.890

In Table 3.4 we list the test results: column ’Top-1’ gives F1 score values based

on the decisions of the SVMs (fifth and sixth lines), on the highest confidence values

of the SNNs (first four lines), or of the classification networks (last three lines);

column ’Class average’ is based on the average of confidence values of each defect

class of the support images.

The difference among them, in average F1-score, is between 0 and 0.057. The

difference between the best and 2nd is 0.01. The advantage of the proposed siamese

network (FCSNN) is that starting from the base models (VGG16 and ResNet50)

and applying FCSNN+SVM resulted in 0.01 and 0.02 F1 score improvements, re-

spectively. Another contribution is that SVMs can further improve the performance:

FCSNN-VGG16 → FCSNN-VGG16-SVM: 0.002 (improvement), FCSNN-Resnet50



Chapter 3. Detecting Traffic Sign Defects 70

→ FCSNN-Resnet50-SVM: 0.011 (improvement). EfficientNet [71] is a promising

family of models (from B0 to B7) which can balance between accuracy and the nec-

essary resources (memory and computation time). The largest variant (B7) achieved

state-of-the-art 84.4% top-1 accuracy on ImageNet in 2019, and it could reach the

same performance as the previous state-of-the-art model but being 8.4x smaller and

6.1x faster on inference [71]. We used the smaller B6 member of the family, reaching

the best top-1 accuracy. Our technique can use any backbones, but we didn’t test

EfficientNet as backbone as it is the task of the future.

3.4 Summary

We proposed a new siamese neural network architecture (FCSNN) to recognize the

defects of different objects. The previously proposed networks were extended by sev-

eral layers and the original features, besides computing the difference, were retained

for fully connected layers. Two datasets were used for evaluation with 20-way one-

shot testing. These tests show that the proposed architecture performs significantly

better than previous solutions for such cases. Moreover, we test the generalization

properties of our network to learn the latent defect-specific features by predicting

the errors of new untrained object classes with a different appearance.

We introduced two datasets (TSD versions I and II) of defected traffic signs that

can be very useful for evaluating anomaly detection (e.g. for maintenance purposes)

and for the research community to test the error-prone abilities of traffic sign recog-

nition methods. We proposed a new mechanism to combine the output confidence

values of siamese networks with SVM with the help of support set images. Com-

pared to the VGG16 and ResNet50 base models the achievement of the proposed

FCSNN-VGG16-SVM and FCSNN-ResNet50-SVM models is 0.01 and 0.02 in F1



Chapter 3. Detecting Traffic Sign Defects 71

score on TSD version II, respectively. Overall, we compared 9 different DNN ap-

proaches on the introduced TSD version II dataset.

The advantage of this approach, compared to the concept of an ensemble of net-

works, is that only one network is to be trained and maintained (one model can

handle many traffic sign and error classes).

This chapter was summarized in Thesis II, please see Chapter 5, Section 5.1.



Chapter 4

Classification, Zero and Fast

Few-Shot Learning of Steel

Surface Defects

4.1 Introduction

There is a variety in the appearance of surface defects in industry, for example,

hot-rolled steels, solar panels, electronic commutators, steel rails, fabrics, printed

circuit boards, magnetic tiles, and more. Steel is the most important metal in

terms of quantity and variety of applications in the modern world. Surface defects

in hot-rolled steel can be associated with the steel production process, its casting,

deformation conditions, crystallization of the ingot, etc. They have a considerable

impact on the metal’s technological qualities during future processing as well as

on its operational features. Due to the manufacturing process and environmental

conditions, steel surfaces can have a variety of defects. The non-uniform surface

brightness and the variety of shapes of defects make their detection challenging.

Additionally, new defects, which have never been seen before, may arise throughout

72



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 73

the manufacturing process. In the beginning, these new defects may have few-shots,

so we have to go through fast incremental learning to incorporate them into the

classification model as soon as possible.

Steel surface defects show various random patterns, which are good targets for the

testing and comparison of concurrent classification methods. Figure 4.1 and Fig-

ure 4.2 illustrate samples of the two popular benchmark datasets: the Xsteel surface

defect dataset (X-SSD) [72] and the Northeastern University surface defect database

(NEU) [73]. There are six categories in NEU and seven in X-SSD, with two types

of defects present in both. Since the two common artifacts (inclusion and scratches)

look somewhat different, we handle them independently.

Figure 4.1: Examples for the six kinds of defect classes of the Northeastern Uni-
versity surface defect database (NEU) [73]: (a) crazing (Cr), (b) inclusion (In), (c)
patches (Pa), (d) pitted surface (Ps), (e) rolled-in scale (Rs), (f) scratches (Sc).

The image processing methods dealing with steel surface defects can be classified

into two main categories:

• Detection: The task is to decide whether the image patch has any errors,



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 74

Figure 4.2: Examples for the seven kinds of defect classes of the Xsteel surface
defect dataset (X-SSD) [72]: (a) inclusion (Si), (b) red iron sheet (Ri) , (c) iron
sheet ash (Is), (d) scratches (Ss), (e) oxide scale of plate system (Op), (f) finishing
roll printing (Fr), (g) oxide scale of temperature system (Ot).

sometimes the error should be localized (segmented) and also classified [21,

74, 75, 76, 77].

• Classification: In case of classification, the image patches should be labelled

according to the visible defect type. Training examples are available to learn

the visual features of known classes [78, 79, 80].

Surface defect detection can be considered as a typical problem in visual quality

inspection thus it is related to many areas of pattern recognition, machine learning,

image processing, and computer vision. In most applications, beside the questions

of detection and classification, the following key problems are to be answered [81]:

• The real-time problem: The detection time should be fast enough to support

the undergoing (production) process without significant loss in accuracy;



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 75

• Small target problem: Often the absolute or the relative (to the image) size

of the defect is small. In this chapter, we do not have to face this problem

directly since we use benchmark datasets, however, in a real-life application,

the size can have an indirect effect on the real-time problem;

• The small sample problem: The number of defect images, used either in manual

parameter tuning or in automatic learning mechanisms, is often very limited;

• Unbalanced sample problem: This problem mainly exists in the task of super-

vised learning and relates to the previous one. Often the number of normal

samples forms the majority, while the amount of defected samples only ac-

counts for a small part. The few-shot learning problem means that we have a

very unbalanced set;

• Domain shift [77]: When the dataset used in training and the dataset in

practice are captured under different conditions, it can result in poor detection

performance.

In incremental learning, new data (i.e. new shots of previously seen or unseen

classes) arrive in phases over time and we have to extend our classification model

to include these new classes or new samples of classes. In general, in the literature

different synonyms are used for this problem, such as continual learning [82, 83],

lifelong learning [82, 84], or incremental learning [85, 86, 87, 88, 89, 90]. The three

major challenges in these scenarios are:

• Catastrophic forgetting: It was already investigated in the early 1990s [91] that

a neural network is going to have a lower performance of previously trained

classes when re-trained or tuned with new ones in focus. The problem is

most serious if we have no training data for the already trained classes, or



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 76

the dataset for re-training is unbalanced due to the missing samples from old

classes. There are several approaches to avoid this case by methods such as

scaling the weights of trained classifiers [92], using dual memories for storing

old images and their statistics [93], or progressive incremental learning [94]

where sub-networks are added incrementally to previous ones as the task is

growing with new classes;

• Low number of representatives of new classes: In practical applications there

is a data collection period when lots of samples are collected about the possible

artifacts and used for model building. In contrast, when the system is in use

for long periods, the undergoing background manufacturing processes (changes

in the environment, or other influences) can result in new defect classes, which

might appear in very few samples initially. In general, solutions are catego-

rized into three main sets: using prior knowledge to augment the supervised

experience (in our case data augmentation of the available few shots); modify-

ing the model, which uses prior knowledge of known classes; and algorithmic

solutions to alter the search for the best hypothesis in the given hypothesis

space [95]. In extreme cases, we talk about zero-shot learning: when a new

type of defect appears, it is a question whether we are able to classify it as a

new class or if it will fall into an existing category. We would like to avoid this

later case and thus we have to create a new category and be able to tune the

existing model to consider it [78, 96, 97].

• Complexity of updating the classifiers: It is a practical problem during the

application of deep learning models that the re-training or fine-tuning of new

or updated models can be time consuming or computationally very complex.

A fast adaptation to the extended set of classes and easy training procedures



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 77

are needed for real-life applications.

Typically, the above three problems appear simultaneously. The advantage of

our proposed solution is that it addresses all of them with one architecture, in-

stead of attacking the problems independently with different methods. The main

contributions are the following:

• Instead of re-tailoring old models or defining new deep neural architectures,

we show that a well-proven and efficient deep neural network (EfficientNet-B7

[71]) can give the best known accuracy for the classification of steel surface

defects on two major benchmark datasets.

• We propose a novel architecture designed for incremental learning with the

following features: it avoids the catastrophic forgetting of old classes, it has

good performance in case of very few shots, and it can be trained very fast for

new classes. To achieve this, we apply randomized networks concatenated to

the feature extraction of a pre-trained DNN. The computation of its weights

can be done very efficiently by the Moore–Penrose generalized inverse.

4.2 Related Works

Surface defect detection methods can be classified into traditional feature-based

machine vision algorithms and deep learning algorithms [81]. Since all of the latest

papers belong to the later set, our review contains such approaches. We review

related papers in three groups: steel surface classification methods, zero-shot learn-

ing approaches, and few-shot learning approaches (with some particularly tested on

steel surface defects).



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 78

4.2.1 Detection and Classification of Steel Surface Defects

In [76], authors introduced an improvement of the YOLOv4 architecture by adding

a feature pyramid network module after sampling, on the so-called neck part of

the network. Enhancing the feature information this way, the experimental results

showed a better average detection accuracy (92.5%) than the original network. Tests

were carried out only on three defect types of the NEU dataset (crazing, patches,

scratches) and more improvements were expected by the authors if larger training

sets could be involved. In [75], an improved faster R-CNN model was proposed by

using deformable convolutions instead of conventional convolutions to get complex

features for the detection of the various artifacts. Moreover, the RestNet backbone-

based network was enhanced by multi-level feature fusion. By these techniques, the

detection rate could be enhanced by approximately 0.13 mAP. In [21], a framework

called CPN (classification priority network) was described for the detection and clas-

sification of defects. In CPN, the image is first classified by a multi-group CNN,

training different groups of convolution kernels separately to extract the feature

map groups of different types of defects. Then, according to the classification result,

the feature map groups (named multiple group CNN, MG-CNN) that may contain

defects are separately input into another neural network, to regress the bounding

boxes of the corresponding defects. The detection rate reached 96% and the recog-

nition rate 98.3% on their own dataset. These seem to be good results; however, the

zero-shot possibilities were not mentioned. In paper [74] proposed an end-to-end

defect detection network (DDN). First, ResNet is used to generate feature maps of

the input images. Then, these feature maps are fed into the proposed multi-level

feature fusion network (MFN). MFN generates one feature vector from the lower-

level and higher-level features. A region-proposal network is used to generate regions

of interest (ROIs) based on these hierarchical features. Finally, a detector, which



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 79

consists of a classifier and a bounding box regressor, is used to produce the final de-

tection results for each ROI. DDN results, when using ResNet50 as backbone, show

that it could achieve 99.67% accuracy for defect classification and 82.3 mAP for

defect detection. We note that the former value is equivalent to the plain ResNet50

according to paper [98].

[77] attacks the classification problem when there are changes in the features

of the patterns, for example, the appearance of steel surface defect changes during

long production intervals. Their framework is called DA-ACNN, since it combines

domain adaptation (DA) and the adaptive learning rate of the convolutional neural

networks (ACNN). To enable cross-domain and cross-task recognition, they included

an additional domain classifier and a constraint on label-probability distribution to

account for the lack of labels in a new domain. Additionally, to increase network per-

formance, the normal distribution and a quadratic function are utilized to optimize

the loss.

In [79], authors proposed a steel surface defection classification technique

fine-tuned with the help of a feature visualization network. The proposed model

consists of two main components: the VGG19 network, trained, fine-tuned, and

later used for the classification of surface defects, and a decoding part (DeVGG19).

The feature maps of the decoding part are used to find the best settings of VGG19

using image and feature map comparisons with the structured similarity index

measure (SSIM), and while it is an interesting approach, it is not obvious for the

reader why the aspects of the decoded visual appearance could have a positive

feedback on the parameters of the network used purely for classification. This

interesting approach could reach 89.86% on the NEU dataset, which is below the

state-of-the-art (see VSD in Section 4.6, Table 4.3 ).



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 80

In paper [80], different versions of ResNet were investigated to classify three kinds

of defects on metal surfaces (scratches, scrapes, abrasions, and normal samples).

The best results were achieved with ResNet152, with a classification accuracy of

97.1% on their own collection of images (including images of NEU). This paper is

a good illustration that properly trained off-the-shelf networks can reach a good

performance on steel surfaces. Another example is a modified AlexNet for feature

extraction, where the classification was solved with a support vector machine [99].

Performance on all classes of NEU showed 99.70% accuracy. The highest known

performance is published in paper [78] where VGG16 was extended with several

layers for classification (ExtVGG16) and could reach 100% on the six classes of

NEU, (see Figure 4.3).

4.2.2 Zero-Shot Learning

Zero-shot learning can be considered as a special case of few-shot learning, when

there are no samples at all from some of the classes. In general, it models learned

parameters for seen classes together with their class representations and rely on the

representational similarity among class labels. Semantic attributes can represent the

characteristics, as latent attributes, of samples. The success of zero-shot learning

thus depends on the quality of semantic attributes: whether they have sufficient

discrimination and expressiveness. However, semantic attribute annotations are

very hard to get in industrial applications. One example of the usage of such an

approach for surface defects is in paper [97] where the so-called GloVe model [100]

was used to extract word vectors as the auxiliary knowledge source (since they used

a different dataset, the results are not comparable to the others involved in our

article). If no such kind of semantic attribute annotations are available, then still-

clustering-type approaches can work. In [96], authors show a method in which zero-



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 81

shot learning may be used to detect steel surface defects with a siamese network.

The network is to learn whether two input samples belong to the same class or

not. In experiments, three defect classes were trained from the NEU dataset, and

the siamese-based clustering was run on the other three classes, which were never

shown to the network during training. The accuracy of this task, reaching 83.22%,

could be surpassed in Section 4.4, where also a siamese network was used. This later

approach uses a slightly more complex structure and there are also differences in

dropouts and regularization, which may all play an important role to reach better

accuracy (85.8%) at the same testing and training conditions.

4.2.3 Few-Shot Learning

A learning model fed with sufficient and high-quality data is more likely to yield

more-or-less accurate results. However, sometimes it is difficult to collect enough

defect samples to achieve a good training model based on traditional learning struc-

tures. This can be the case in the production of steel strips, where steel surface

defects are scarce and hard to collect. To overcome this problem, special approaches

appeared, which can efficiently learn from a very small number of training data.

[101] shows a simple approach for few-shot learning of steel surface defects.

Three feature extraction networks (ResNet, DenseNet, and MobileNet) are com-

pared and two kinds of feature transformations are tested (mean subtraction and L2

normalization). For one-shot learning, classification is accomplished by choosing the

nearest neighbor, whereas for the multi-shot setting, the average value of the known

sample feature vectors of each class is used as a class prototype to compute the near-

est neighbor for the query. For the one-shot case, MobileNet reached the highest

accuracy with 87.3%, while for five shots 92.33% was achieved by DenseNet121 on

the NEU dataset.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 82

In [102], a more sophisticated semi-supervised learning model is described, which

learns from both labeled and unlabeled samples. They use graph convolutional net-

works (GCN) [103], naming their model multiple micrographs graph convolutional

network (MMGCN). GCNs construct graphs where the images are represented by

nodes and their relationships by edges. Feature information propagates between con-

nected nodes, and the distance of connected nodes is closer than the distance of the

disconnected ones. MMGCN performs graph convolution by constructing multiple

micrographs instead of a large graph, and labels unlabeled samples by propagating

label information from labeled samples to unlabeled samples in the micrographs to

obtain multiple labels, while final labels are obtained by weighting the labels. The

experimental results demonstrate that the proposed MMGCN can achieve a lower

computation complexity and practicality, and a higher accuracy than GCN. In fully

supervised mode, MMGCN could reach 99.72% accuracy, while when the ratio of

known labels was only 25%, accuracy was 98.06%.

Another approach for label propagation is in paper [104], where defects on the sur-

face of lithium batteries are to be found. Training images were used to fine-tune a

pre-trained ResNet10 model, then a k-NN graph was built to evaluate the distance

between samples, including both the labeled and the unlabeled ones. To refine the

scoring of samples, the label propagation method of paper [105] was used. Unfor-

tunately, while classification accuracy on their own dataset was good, the effect of

label propagation was not analyzed in the article.

Few-shot learning can be interpreted as the problem of unbalanced training sets. Ar-

ticle [106] proposes a meta-training approach to handle the unbalanced data caused

by the newly arriving error classes having only few shots. Each training epoch is

composed of so-called episodes and sub-sets of training data are called support sets.

At the end of the episodes, the classification performance of a query set, based



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 83

on knowledge gained from the respective support set, is evaluated to fine-tune the

model parameters. The tuning of DNN parameters is solved by a prototypical ap-

proach. Each class is represented by a prototype feature vector and the weights of

the feature extractor DNN will be tuned to separate the sample features from other

prototypes the most. The superiority of this training approach is compared to other

traditional classification models by evaluations on a textile dataset.

4.3 The Benchmark Datasets

There are several steel surface defect datasets available for the benchmarking of

algorithms. First, we mention GC10-DET [107], which contains 3570 gray-scale

photos of steel surfaces, including 10 kinds of defects. Another new dataset, pub-

lished in paper [108], consists of 21853 RGB images showing areas with and without

failures called pitting, while in paper [108] , only two classes are specified—this

dataset shows the progression of failures at different time moments, which can be

very useful for those who want to detect failures as soon as possible.

To test EfficientNet-B7, we used the two benchmark datasets already illustrated

in Figures 4.1 and 4.2, and described in the following subsections. The reason for

choosing them, beside the relatively large number of classes and large variance in

appearance of these errors, is the wide availability of the concurrent methods used

in the evaluations. Since we found X-SSD more challenging (see the experimental

section below), we analyze our few-shot learning technique only on the X-SSD.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 84

4.3.1 Northeastern University Surface Defect Database

(NEU)

NEU [73] consists of six different kinds of surface defects. Images, with resolutions

of 200 × 200 pixels and having only one channel, were collected from hot-rolled

steel strips. It contains 1800 images: each defect class has 300 samples. The classes,

illustrated by Figure 4.1, are: crazing, inclusion, patches, pitted surface, rolled-in

scale, and scratches. Unfortunately, paper [73] does not contain information about

how the defects are generated during the production of the hot-rolled steel strips.

The dataset was divided randomly into 80% for training and 20% for testing. Beside

NEU, there is a dataset called NEU-DET [74] with the annotated bounding boxes of

defects. This is out of focus from our perspective now. In the tests of EfficientNet-

B7, images were resized to 128 × 128 pixels (without a loss of accuracy, as will be

shown later).

4.3.2 Xsteel Surface Defect Dataset (X-SSD)

The work [72] introduced a dataset for hot-rolled steel surface defects with 1360

images. Each image has a resolution of 128× 128 pixels and has three color channels.

This dataset, as illustrated in Figure 4.2, consists of seven different defect classes:

397 red iron sheet (Ri), 122 iron sheet ash (Is), 238 inclusions (Si), 134 surface

scratches (Ss), 203 finishing-roll printing (Fr), 63 oxide scale-of-plate system (Op),

and 203 oxide scale-of-temperature system (Ot). Paper [72] gives some information

how the different defects are generated during the production of the hot-rolled steel

strips:

• Red iron sheet: high silicon content in steel and high heating temperature of

slab;



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 85

• Iron sheet ash: accumulated contamination (e.g., dust, oil) falls onto the sur-

face;

• Inclusions: inclusion of slags in the steel;

• Surface scratches: hot-rolling area with projections—dead or passive rolls can

cause friction on the surface;

• Finishing-roll printing: the slippage between the work roll and the support

roll can result in dot and short-strip damages on the surface of the work roll;

• Oxide scale-of-plate system: if the roller table is damaged it can also damage

the surface of the rolled piece where the iron oxide particles can accumulate

and they can be rolled into the steel in the subsequent rolling process;

• Oxide scale-of-temperature system: it can be caused by many things, such

as improper temperature settings, high carbon content, and unwanted intense

oxidation.

4.4 Zero-Shot Learning and Classification with

Siamese Neural Network

Developing machine learning models that can perform predictive functions on data

it has never seen before has become an important research area called zero-shot

learning. Human are pretty good at recognizing objects in the world we’ve never

seen before, and zero-shot learning could replicate that amazing human talent. Zero-

shot learning aims to predict the correct class without being exposed to any examples

belonging to that class in the training dataset.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 86

We propose neural networks for the recognition of new defect classes and also

for the classification of known types. For the former a zero-shot approach, based on

a siamese network, is used learning features to classify unseen classes without a sin-

gle training example. Additionally, we can utilize one branch of the same network

for the classifications of previously trained defects. For performance evaluations,

experiments were carried out on two benchmark datasets: the Northeastern Univer-

sity [72] and the Xsteel surface defect datasets [73] (see Figures 4.1 and 4.2). Our

method is compared to the paper [96], which demonstrates the efficiency of siamese

technology in detecting various defects in steel surfaces while minimizing the amount

of training data required. The method was trained on three defect classes from the

NEU dataset and was tested on the other three classes which were never seen to the

network and achieved accuracy of 83.22%.

4.4.1 The Proposed Methods

4.4.1.1 Zero-Shot Learning to Detect New Types of Anomalies

In Section 3.2 to identify the defects of different objects, we proposed a siamese

neural network architecture where, besides computing the difference of the features

of the two inputs, the features are also concatenated and further processed. This

gives the ability to the network to analyze the differences of features in the light of

other features of the images.

In comparison of our previous proposal in Section 3.2, we made the following mod-

ifications:

• fully connected layers are added at the back end to increase the classification

abilities;

• to prevent overfitting of the network with higher complexity, we added more



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 87

dropout layers and used l2 regularization at each fully connected layer except

the last one, (see Figure 4.3).

Figure 4.3: Proposed siamese architecture based on the fusing convolutional siamese
neural network (FCSNN).

4.4.1.2 Classification of Known Classes

If new, unknown patterns are not expected then we have to solve the classifica-

tion problem based on available training data. To solve this task we propose the

truncated versions of our siamese network: only the upper part in Figure 4.3 is kept

without computing the difference vector and removing the middle layer of 4096+256

length, we call it extended VGG16 (ExtVGG16). All training parameters are the

same as for the siamese version. As we will detail in the experimental ExtVGG16

architecture is able to outperform all previous DNNs attempts.

The model was compiled using the Adam optimizer and the learning rate was

set 0.0005. For training, a binary cross-entropy loss function was used.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 88

4.4.2 Experiments and Discussion

We present experimental results on the two benchmark datasets, and we also give

the results of concurrent recent methods where available.

4.4.2.1 Results on the NEU Dataset

To evaluate the performance of zero-shot learning, we followed the method of [96],

thus we can give a direct comparison of results. The training dataset contains

images of three defect classes: rolled in scale, inclusion, and patches. The test-

ing dataset contains the other three remaining classes (scratches, crazing, and

pitted-surface), which were never seen by the network. The training dataset was

augmented by random rotations between 0◦ and 30◦, vertical filliping, horizontal

flipping, and zoom in the range equal to 0.2. To decide if the two images are from

the same class, we threshold the confidence value for each pair at 0.5. Accuracy was

measured on a large number of experiments. For all six possible pairings of the three

untrained defect classes we formed 22,500 different pairs. Our siamese DNN model

achieved accuracy equal to 85.80% (when VGG16 backbone was frozen during

training) which is higher than the 83.22%, published in [96], as highest known value.

To evaluate the performance of classification, we compared the proposed method

with the state-of-the-art algorithms; the best known accuracy on NEU was previ-

ously achieved by SBF-NET [98]. The dataset was divided randomly into 80% for

training and 20% for testing. Images were resized to the size of 128x128, for aug-

mentation we applied the same transformations as detailed before, and the training

was running for 300 epochs. Optimizing all parameters of the network we obtained

100% accuracy, while if the layers of the VGG16 backbone were frozen accuracy

reached 99%. Table 4.3 shows the comparison of all known alternatives (data of



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 89

other algorithms are taken from [98]).

4.4.2.2 Results on X-SDD

To test the ability to cluster unseen defects by our siamese approach the dataset

was divided into training with four classes (finishing roll printing, oxide scale of

temperature system, red iron sheet, and inclusion) and testing with the remaining

three (iron sheet ash, scratches, oxide scale of plate system). Augmentation was

identical to the above described, as well as other parameters of the training process.

In these experiments, we achieved 61.55% accuracy. We found no reference data

for X-SSD for such an experiment in other articles.

Contrary, many other methods are there to classify the defect classes of X-SSD.

We found the best result in [72]. For training, we followed the same steps as described

in [72], the dataset was divided randomly into 70% for training and 30% for testing,

thus the training set contains 952 images, whereas the testing contains 408. All

parameters of training are identical to our other procedures.

Beside accuracy Table 4.4 shows the computed macro-precision, macro-recall and

Macro-F1 score values for 13 different methods, including ours (source of data is [72]).

Macro values refer to the averaging of class averages. Our network outperformed

all previous approaches, only the technology introduced in the later section reached

higher results.

4.4.3 Further Discussion

Our proposed DNN solution is the result of the evaluation of settings and parame-

ters of a large number of experiments with both datasets. We achieved very good

results in classification with the VGG16 backbone of siamese network, thus we found



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 90

Table 4.1: Comparison of accuracy values depending whether feature extraction was
using ImageNet weights (Freeze) or were optimized (Unfreeze).

NEU Data-set X SSD Data-set

Zero-shot Classification Zero-shot Classification

Freeze Unfreeze Freeze UnFreeze Freeze Unfreeze Freeze UnFreeze

85.80% 83.42% 99% 100% 61.55% 60.59% 94% 98%

Figure 4.4: Accuracy and Loss value curves when training classification on X-
SSD. First row: trainable layers of VGG16 backbone. Second row: freezed VGG16
backbone.

it interesting why VGG16 [51] network showed moderate performance in the classi-

fication of X-SSD samples, see Table 4.4. We could reproduce similar results if the

weights of VGG16 were frozen (and using the ImageNet weights) but for classifi-

cation we think this is not reasonable. In contrast, for the discovery of new defect

classes the adaptation of weights to the few known classes can be disadvantageous.

This hypothesis is supported by Table 4.1 and the curves of Figure 4.4.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 91

4.5 Proposed Methods for Classification and Few-

Shot Learning

What we have learnt in the previous section is that different ideas were implemented

to improve the performance of DNNs for the detection of defects. Such were: feature

pyramids [76], deformable convolutions [75], separated multiple classifiers for classes

(MG-CNN) [21], SVMs for classification of DNN features [99]. Few-shot learning

was attacked by label propagation [102, 104] and prototyping approaches [101, 106].

Now we show that state-of-the-art deep neural networks are capable of an almost-

perfect classification of steel surface defects on the two benchmark datasets. Then,

we discuss the problem of few-shot learning and introduce our proposed architecture.

4.5.1 Classification of Defects with EfficientNet-B7

There is a large number of DNNs for object recognition or classification and to

compare their performance different benchmark datasets are created, such as

ImageNet [65], MNIST [109], CIFAR-10, and CIFAR-100 [110]. If one network has

high performance on some dataset it has high-probability for good performance on

others, however, the different characteristics of data from different domains does not

guarantee this. In 2019, Google Brain published open source EfficientNet [71], as a

family of image classification models to achieve state-of-the-art accuracy, yet still

being an order-of-magnitude smaller and faster than previous models. The members

of the family are the differently scaled versions (from B0 to B7) of a base model.

The largest variant (B7) achieved state-of-the-art top-one accuracy on ImageNet

in 2019, and it could reach the same performance as the previous state-of-the-art

model but being 8.4 times smaller and 6.1 times faster during inference. In [71], a

compound scaling method was introduced to scale the depth (number of layers),



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 92

the width (number of kernels in a layer), and resolution (size of input image) of an

existing model and a baseline network with fine-tuned layers in a balanced manner

considering the computation limits. They followed the idea that a small model can

be easily fine-tuned on a small problem, and that a systematic scaling, changing

only the dimensions but not the main structure and operation of layers, should

result in an efficient network. Compound scaling proposes the right ratio between

dimensions, while the baseline network (EfficientNet-B0) was designed with the

help of optimization [111] considering both accuracy and computational cost on

ImageNet.

The building blocks of the base EfficientNet model, obtained through a neural archi-

tecture search, are the so-called mobile-inverted bottleneck [112] layers, originally

developed to be used as mobile-size networks (networks able to operate in mobile

and embedded devices). These blocks use well-proven existing techniques, such as

residual connections and depth-wise separable convolutions, and on the other hand

also apply the special-techniques-inverted residuals and a linear bottleneck. The

interested readers can find details about these in paper [112].

Since its introduction, there is a very wide range of applications where Efficient-

Net or its variants showed very good accuracy, e.g., mushroom recognition [113],

skin disorder recognition [114], iris recognition [115, 116], forest fire detection [117],

steganalysis [118], or plant disease detection [119], just to mention a few recent

articles. Our experiments, detailed in Section 4.6, show that EfficientNet-B7 out-

performs all previously published architectures for both NEU and X-SSD datasets.

Moreover, in the next subsection we use EfficientNet-B7 (pre-trained on ImageNet)

as the backbone of our proposed architecture for few-shot learning.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 93

4.5.2 Fast Few-Shot Learning of Steel Surface Defects with

Randomized Network

As automation is spreading widely in manufacturing processes, the need for auto-

matic anomaly detection is growing. However, if we trained our machine intelligence

for a given task, there is always a non-zero probability that unseen events might hap-

pen that the system is not trained to handle yet. A part of this problem is few-shot

learning, where new kinds of errors appear to be classified as soon as possible, typi-

cally with a very low number of training samples. We have to carry out incremental

learning, since previously trained knowledge should not be forgotten. Moreover, the

retraining of the whole architecture could be resource-demanding: the large amount

of time, memory, and processing power is typically not available on site or in time. In

a new approach, we answer these challenges by the combination of two very efficient

neural network architectures. The solution, illustrated by Figure 4.5, is composed

of two parts :

1. The backbone is a deep neural network with an output feature vector of rel-

atively large dimension (1024). We have chosen EfficientNet-B7 for this task

due to its design for optimal size, structure, and accuracy. The task of the

backbone is to adapt from ImageNet weights to steel surface defects with high

accuracy with conventional training;

2. The back-end structure, for the further processing of extracted features, is a

two-layer neural network where the first layer contains random weights. Since

the backbone is previously fine-tuned to a set of known classes of steel surface

defects, the task of this back end is to quickly learn the new classes based on

the features of the backbone.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 94

The reasoning of using this architecture is as follows:

• EfficientNet-B7 is very efficient for the classification of steel surface defects

(see Section 4.6). Near its output, it still has a lengthy (hopefully rich) feature

vector used by our back end;

• The back-end has a random layer responsible for the generalization of fine-

tuned feature values suitable for learning unseen classes;

• Since the back-end has only one layer to be trained, it can be explicitly

computed with algebraic computations without a lengthy backpropagation

method. These computations give optimal solutions in the least-squares sense.

4.5.2.1 Randomized Weights for Generalization and Fast Tuning

It is well known that randomizing weights in neural networks can result in improved

accuracy. In paper [120], the input data of a single (hidden)-layer feed-forward

neural network (SLFN) were weighted with random weights. Then, in the output

layer, a fully connected network with bias was applied, where its weights could

be calculated by solving a linear set of equations by standard numerical methods.

In [121] the random vector functional links network (RVFL) was proposed, where

beside the input patterns, their randomized version is also generated and fed to

the output using the standard weighted connections. Extreme learning machines

(ELM) [122] have subtle variations to these randomized networks (no direct con-

nection between inputs and outputs like RVFL, other usage of bias than in [120])

but became more popular recently, in spite of reports that RVFL gives better

performance than ELM in some cases [123]. For more information we propose to

read [124], a review on neural networks with random weights.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 95

Figure 4.5: The proposed architecture (EffNet+RC) for few-shot learning. In phase
0, we train the backbone through a large number of samples of base classes. In
phase 1 (and further phases), we use features extracted by the previously trained
backbone. Here, only the weights W are computed with the help of a few samples,
while weights R are random and fixed.

A formal description of the applied randomized back-end network follows. Con-

sider a set of N distinct training samples (xi, yi), i = 1, ..., N . Then, a SLFN with

L hidden neurons has the following output equation:

t(xi) =
L∑

j=1

wjφ(rjxi + bj), (4.1)

where φ is a sigmoid function, rj are the random and fixed-input weight vectors, bj

are the biases, wj are the output weight vectors to be tuned, and t is the target

vector (the outputs for the different classes). R and W in Figure 4.5 correspond

to the weights here. Now, let us see how to compute W if R is set randomly. In

practice, closed-form solutions are used to find wj in a matrix form. Thus, we can

shorten the equation:

T = HW, (4.2)



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 96

as the outputs of all hidden neurons are gathered into the matrix H:

H =


φ(r1x1 + b1) · · · φ(rLx1 + bL)

...
. . .

...

φ(r1xN + b1) · · · φ(rLxN + bL)

, (4.3)

given W =
(
wT

1 · · ·wT
L

)T
, and T =

(
tT1 · · · tTC

)T
.

A unique solution for this system can be given by using the Moore–Penrose

generalized inverse (pseudoinverse) [125] of the matrix H, denoted as H†. From

Equation 4.2:

W = H−1T. (4.4)

To find the “best fit” (least squares) solution to the system of linear equations the

pseudoinverse is computed [125]:

H† = (HTH)−1HT . (4.5)

Finally, we get the weights:

W := H†T. (4.6)

This explicit calculation of weights enables us to achieve an instantaneous fine-

tuning of the architecture for new incoming classes in incremental learning.

4.5.2.2 Randomizing EfficientNet Features

Unfortunately, a neural network with only one hidden layer cannot cope with deep

learning networks regarding accuracy. Besides, we would like to solve the problem

of few-shot learning, where we have not enough information to train our network

to the new classes. What we can do, is to transfer some information from the

same domain, generalize it, and use this information for the classification of the new



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 97

classes. For this transfer, we propose to use the randomized back-end network to

generalize previously learnt information (indirectly the feature extractors) stored in

a deep backbone network.

Basically, this can be considered as a multi-phase incremental learning mecha-

nism. In phase 0, we fine-tune a large network (based on EfficientNet-B7) with lots

of samples of the base classes. This backbone network is constructed by leaving the

classification block of EfficientNet-B7, adding a global max-pooling layer, and two

fully connected layers. The first has 1024 neurons, the second is the fully connected

output layer with the number of classes to be trained. After training it with the

available samples, this network, without the output layer, is frozen and used in the

next phase as the backbone. Phase 1 is an incremental step, where we fine-tune only

the back-end randomized network given the 1024 feature vectors as input. Naturally,

phase 1 can be repeated many times, as new shots (or classes) appear.

More formally, suppose we have the set of classes C = {CB, C1, ...., CP}, where

Ci denotes the new classes (or equivalently class labels) appearing at step i, P is

the maximum number of steps in incremental learning, and B denotes the base

classes with lots of samples available (CB = C0, and preferably ||CB|| � ||Ci||,

for i 6= B). Correspondingly, DB, D1, ..., DP represent the training datasets, where

Di = (xis, y
i
s) (s = 1, ..., N i), and xis is the s-th example in training phase i, and yis

is its corresponding class label.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 98

Algorithm 2: Incremental training with few shots with randomized Effi-

cientNet features.
Input: Training data in phases: D0, D1, D2, ..., DP ; EfficientNet-B7

network; randomized SLFN classifier

Output: Trained backbone and back-end randomized classifier models

1 i = 0

2 Phase i: Train EfficientNet-B7 for base classes Ci by samples in Di

3 Cut top layer from EfficientNet-B7 to create backbone

4 while i ≤ P do

5 i = i+ 1

6 Randomly sample Di and make the augmentation of samples

7 Use the pre-trained backbone to extract latent features for xis

8 Train the randomized SLFN as given in Equation (4.6)

In phase 0, we train the backbone model for classes CB. In later phases, we

create a support set Di = (xis, y
i
s), such that yis ∈

⋃
{C l}, l ≤ i.

While Algorithm 2 gives the pseudo-code of this process, parameters are given

in Section 4.7. Please note that the incremental phase (or phases) can introduce

new classes, not only shots.

The combination of EfficientNet-B7 backbone and the randomized classifier (RC)

is named EffNet+RC in this chapter.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 99

4.6 Experimental Results of Classification and

Discussion

In case of both datasets we used the same hyper-parameters: The training was

running for a maximum of 200 epochs, and we used early stopping to avoid over-

fitting. For the loss function we have chosen categorical cross-entropy, the learning

rate was set to 0.0001 in all cases.

To enrich the dataset we applied traditional augmentation by applying the following

online image transformations:

• random rotations between 0◦ and 30◦;

• vertical flipping;

• horizontal flipping;

• zooming randomly between 0 and 20% in size.

The description of our hardware and software configuration is given in Table 4.2.

Table 4.2: Running and testing environment.

OS CPU GPU Keras Python

Ubuntu 18.04 Intel(R)
Xeon(R) Gold
5115 CPU @

2.40 GHz

NVIDIA
Quadro P6000
GPU with 24

GB RAM

2.3.0 3.6.9

4.6.1 Classification Results on the NEU Dataset

To evaluate the performance of classification, we compare EfficientNet-B7 with sev-

eral state-of-the-art algorithms. Training and testing sets were defined as given in



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 100

Section 4.3. Previously, the best known accuracy on the NEU dataset was achieved

by our variant of VGG16 [78], denoted as ExtVGG16, see Section 4.4. Table 4.3

shows the comparison of all known alternatives. All results are very close to perfec-

tion: EfficientNet-B7 resulted in 100% accuracy, as well as ExtVGG16. Although,

the number of parameters of ExtVGG16 is 53 million compared to the 66 million of

EfficientNet-B7.

Table 4.3: Comparison of the classification accuracy of different models on the NEU
dataset. If not specified then information is based on [98]. Training/testing ratio is
80/20 in general. Best values are highlighted in bold.

Model MMG
-CN1 [102]

SBF
-Net

ResNet50
+MFN

Res-
Net50

MVM
-VGG

Res-
Net34

Decaf VSD2 [79] ResNet43
+MFN

AECLBP OVER
-FEAT

Classic
ResNet50

BYEC ExtVGG
-16 [78]

Efficient
-Net-B7 [71]

Accuracy 99.72% 99.72% 99.67% 99.67% 99.5% 99.33% 99.27% 89.17% 99.17% 98.93% 98.7% 98.67% 96.3% 100% 100%

1 A quantity of 40% of images used for testing, 60% for training. 2 A total of 50 images per class

used for testing, remaining images for training.

4.6.2 Classification Results on the X-SSD Dataset

In the case of X-SSD, we followed the same steps as described in papers, [72, 78],

regarding the division for training and testing: 70% (952) images were used for

training and the remaining 30% (408) for testing. The augmentation was identical

to the above described, as well as other parameters of the training process.

The best previous results were also produced by ExtVGG16 [78], (a little below

100%), and could be now beaten slightly with EfficientNet-B7. Table 4.4 shows,

beside accuracy, the computed macro-precision, macro-recall, and macro-F1 values

for 14 different methods, including EfficientNet-B7. Macro-values refer to the aver-

aging of class averages. We also included the confusion matrix and a misclassified

example for EfficientNet-B7 in Figure 4.6.

We can conclude that the NEU dataset seems to be too easy since many methods

reached over 99% accuracy and both ExtVGG16 and EfficientNet-B7 could result

in perfect classification. There is a larger gap between the accuracy of the different



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 101

Table 4.4: Comparison of EfficientNet-B7 with other models on X-SSD (all data are
based on paper [72] except for ExtVGG16 [78] and EfficientNet-B7). Best values
are highlighted in bold.

Model Esp

-Net-v2

Ghost

-Net

Shuffle

-Net

Squeeze

-Net

Xception VGG16 [51] ResN

-et50

ResN

-et101

ResNe

-et152

RepVGG

B1g2

RepVGG

B3g4

RepVGG

B3g4+SA

ExtV

-GG16

Efficient

-Net-B7

Accuracy 89.95% 88.72% 87.50% 91.42% 90.44% 92.65% 93.87% 87.01% 92.16% 88.97% 91.67% 95.10% 99.00% 99.26%

Macro-Recall 84.19% 87.87% 85.84% 83.21% 87.39% 90.46% 89.41% 88.30% 89.41% 82.04% 85.28% 93.92% 98.00% 98.71%

Macro-Precision 88.28% 86.93% 84.83% 90.36% 89.41% 91.70% 93.45% 88.18% 91.41% 90.79% 88.46% 95.16% 99.00% 99.14%

Macro-F1 score 84.28% 87.07% 84.68% 84.15% 88.25% 90.92% 90.02% 87.05% 89.92% 81.58% 84.94% 93.25% 98.57% 99.00%

Figure 4.6: (Left) Confusion matrix of EfficientNet-B7 classification of the seven
error types of the X-SSD dataset. (Right) An example image of the Si class and
an Is defect wrongly classified as Si.

methods on X-SSD, where EfficientNet-7 showed the best accuracy.

4.7 Testing Few-Shot Learning with EffNet+RC

In these experiments we are implementing two phases of class increments. In

phase zero, we train four classes of artifacts (finishing-roll printing, oxide scale-

of-temperature system, red iron sheet, inclusion), then, in phase one, we are testing



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 102

both the four base and the three new classes (iron sheet ash, scratches, oxide scale-

of-plate system). In further phases we do not increase the number of classes, only

the number of shots (K). When configuring the datasets for training and testing the

few-shot incremental models, we had to make a different setup than for the previous

classifications. Since in one-shot learning there is no sample for the validation of

the learning process, so we cannot apply an early stopping mechanism, we run each

process for 100 epochs, and alternatively, for 200 epochs. Table 4.5 summarizes how

X-SSD was cut into parts for training and testing purposes for the 4 base and the 3

incremental classes.

Table 4.5: The distribution of original X-SSD images in the training and testing
datasets for few-shot learning. K is the number of shots in the experiments.
The real number of images fed to the network during training is larger due to
augmentation.

Model

All Images of X-SSD: 1360

Training: 1092 Testing: 268

Base Classes: 835 New Classes: 257 Bases Classes: 206 New Classes: 62

EffNet backbone All None None None
EffNet+RC K shots K shots All All
EffNet+FtC K shots K shots All All
Ft EffNet K shots K shots All All
Ft EffNet Unbal All K shots All All

When training any variant of EfficientNet we applied the same random augmen-

tation of images in each epoch as it was described before. Since EffNet+RC does

not have epochs we applied augmentation to have 700 extra training images to build

up the matrix H in Eq. 4.3. Additionally, we tried different numbers for hidden neu-

rons for randomizing the network, we found that the optimal hidden neurons was

20,000.

To evaluate the accuracy of the proposed architecture (EffNet+RC), we compared

it with different alternatives. Since EfficientNet-B7 showed the highest accuracy for

the classification of the seven classes, it was natural to use it as a reference. The



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 103

following variations are compared:

Figure 4.7: The illustration of the Effnet+RC and the EffNet+FtC networks.
While the structures are similar, there is a big difference as the former should not
be trained with backpropagation.

• EffNet+RC: Fixed EfficienNet-B7 backbone (in phase zero, see Figure 4.5)

plus randomized classifier. To train this network we can use the explicit for-

mula of Eq. 4.6;

• EffNet+FtC: This network only differs from EffNet+RC in that instead of

random weights, backpropagation fine-tuned weights are used in the classifier,

and the backbone is still frozen see Figure 4.7. The purpose of this network

is to learn the effect of randomization (when compared to EffNet+RC). We

ran the training for 100 and 200 epochs;

• Ft EffNet: Fine-tuned EfficienNet-B7 by a few shots (being augmented). To



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 104

keep the fine-tuning dataset balanced the ratio of base classes is the same as

of the new ones;

• Ft EffNet Unbal: Fine-tuned EfficientNet-B7 with unbalanced data. The

same as above, but possibly all samples from the base classes were used in

fine-tuning. This means unbalanced training, since new classes were sampled

only by a few shots.

The accuracy, measured on all (base and new), and also separately on base and

new classes, are shown in Figures 4.8, 4.9, and 4.10, correspondingly. To investigate

the effect of increasing the number of shots, K was set to 1, 3, 5, 10, 15, and 20.

All experiments were repeated five times, randomly choosing the training shots, and

averaging the results. All test images were used in the accuracy measurements (as

indicated in Table 4.3).

Figure 4.8: The accuracy of the different classification models for all classes (base
and new). Ft EffNet: fine-tuned EfficienNet-B7; EffNet+RC: fixed EfficienNet-B7
backbone plus randomized classifier; EffNet+FtC: fixed EfficienNet-B7 backbone
plus fine-tuned classifier; Ft EffNet Unbal: fine-tuned EfficienNet-B7 with unbal-
anced dataset.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 105

Figure 4.9: The accuracy of the different classification models for base classes. Ft
EffNet: fine-tuned EfficienNet-B7; EffNet+RC: fixed EfficienNet-B7 backbone plus
randomized classifier; EffNet+FtC: fixed EfficienNet-B7 backbone plus fine-tuned
classifier; Ft EffNet Unbal: fine-tuned EfficienNet-B7 with unbalanced dataset.

Figure 4.10: The accuracy of the different classification models for new classes. Ft
EffNet: fine-tuned EfficienNet-B7; EffNet+RC: fixed EfficienNet-B7 backbone plus
randomized classifier; EffNet+FtC: fixed EfficienNet-B7 backbone plus fine-tuned
classifier; Ft EffNet Unbal: fine-tuned EfficienNet-B7 with unbalanced dataset.



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 106

When talking about few-shot incremental learning, in some scenarios, only few

samples from the new and base classes are available for re-training. In our tests,

except for Ft EffNet Unbal, the same number of shots were used from all classes

for re-training. One would first expect that Ft EffNet could have the highest

accuracy, since the whole network is re-trained, but this is not the case. While it

can quickly adapt to the new classes, it gives the worst performance for the old ones

(see corresponding curves in Figures 4.9 and 4.10). This is similar to catastrophic

forgetting, and the drop from almost 100% to 87.5–93% is significant and the worst

among all. Contrarily, if we involve more samples from the base classes to the re-

training (and thus generate an unbalanced training dataset), the performance on old

classes remains almost 100% but gives quite bad results for one to three shots of the

new classes. It is illustrated by the green curve (Ft EffNet Unbal) in Figure 4.10.

Now, compare the proposed EffNet+RC with EffNet+FtC. These two networks

are similar, except for the fact that the later does not have a randomized fully

connected layer, but all of its weights are trained by backpropagation (see Figure 4.7

for illustration). As can be read out from Table 4.6 and Figure 4.8, EffNet+RC

outperformed not only EffNet+FtC (100) and EffNet+FtC (200) but all other

models at K = 1, 3, 10. At a higher number of shots, it still remained in the

mid-range. Our proposed randomized model behaved quite well for the old classes;

meanwhile, it could nicely follow the best curve of the fine-tuned EfficientNet-B7

(Ft EffNet) for the new ones.

Table 4.6: The accuracy and rank of the different classification models evaluated on
all classes (base and new). Best values are highlighted in bold

Method
1 Shot 3 Shots 5 Shots 10 Shots 15 Shots 20 Shots

Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank Accuracy Rank

EffNet+RC 82.75% 1 88.50% 1 90.39% 2 92.14% 1 92.62% 3 93.31% 3
EffNet+FtC (100) 78.13% 4 80.29% 5 81.56% 5 83.50% 5 84.92% 5 85.89% 5
EffNet+FtC (200) 76.94% 5 83.95% 4 85.97% 4 89.25% 4 90.82% 4 92.31% 4

Ft EffNet 79.40% 2 85.51% 3 85.24% 3 89.62% 3 93.35% 2 94.62% 2
Ft EffNet Unbal 78.58% 3 87.83% 2 91.56% 1 91.63% 2 95.81% 1 97.01% 1



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 107

Beside the accuracy values in Table 4.6, we included the weighted F1 score and

rank of the different classification models evaluated on all classes (base and new)

in Table 4.7. The position of the proposed approach remained the same as was in

Table 4.6.

Table 4.7: The weighted F1 score and rank of the different classification models
evaluated on all classes (base and new). Best values are highlighted in bold

Method
1 Shot 3 Shots 5 Shots 10 Shots 15 Shots 20 Shots

F1 Score Rank F1 Score Rank F1 Score Rank F1 Score Rank F1 Score Rank F1 Score Rank

EffNet+RC 82.4% 1 87.00% 1 89.20% 2 92.20 % 1 92.20% 3 92.6 % 3
EffNet+FtC (100) 76.8 % 4 77.4 % 5 78.6 % 5 82.4 % 5 84.6 % 5 85.6 % 5
EffNet+FtC (200) 78.75 % 2 86.00 % 3 85.5 % 3 90.5 % 3 91.5 % 4 92.5 % 4

Ft EffNet 78.20 % 3 85.8 % 4 83.4 % 4 89.8 % 4 92.6 % 2 94.80 % 2
Ft EffNet Unbal 70.8 % 5 86.2 % 2 90.8 % 1 90.8% 2 95.8 % 1 96.8 % 1

4.7.1 Time Complexity

While the average inference time for an image of size 128 × 128 is around 0.06 s,

the time complexity of re-configuring, re-training, or fine-tuning the classification

methods can still cause problems in industrial applications. Stopping the production

while waiting for adaptation to avoid new defects, or continuing the production with

an increased ratio of false products, can both result in high costs. Due to these

reasons, the extremely fast re-tuning of our model has a significant advantage over

others. Table 4.8 and Figure 4.11 both contain the training times of the different

models. EffNet+RC has constantly very low time requirements, independently

from the number of shots, at least one order faster than EffNet+FtC (100), the

next fastest. The reason why Ft EffNet Unbal seems to be so slow is due to the

large number of training images in each epoch (835 + k(shots) × 3(new classes)),

while in case of Ft EffNet, the training set contained far less images (since it was

balanced).



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 108

Table 4.8: Time spent for training at different number of k-shots.

Method 1 shot 3 shots 5 shots 10 shots 15 shots 20 shots

EffNet+RC 2.80s 3.01s 3.03s 3.04s 3.30s 3.50s
EffNet+FtC (100) 29.24s 29.49s 45.67s 53.9s 67.41s 78.09s
EffNet+FtC (200) 39.53s 39.83s 69.70s 88.29s 114.18s 136.35s
Ft EffNet 151.80s 159.80s 193.43s 243.85s 293.50 347.23s
Ft EffNet Unbal 1408.10s 1429.50s 1443.30s 1473.20s 1489.10s 1496.60s

Figure 4.11: Elapsed training time of the different models under investigation.

4.8 Summary

In this chapter we showed that state-of-the-art DNNs (namely EfficientNet-B7) can

solve the classification of steel surface defects, of the two often used datasets, almost

perfectly and superior to other made-to-measure techniques. Besides, we have given

a technique to handle common but inconvenient problems such as incremental and

few-shot learning. Regarding very few-shots (1-3), our model outperformed other

variants when classifying both old and newly appearing classes of steel surface de-

fects, while it showed good performance for higher number of shots. Regarding the

base classes, catastrophic forgetting could also be avoided. An important practical

feature is that the fine-tuning for new classes or shots is significantly faster than the

fine-tuning of any conventional DNNs. Our statements are validated with thousands



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 109

of experiments on steel surface defects. In the future, we plan to further improve

the model by sub-network extensions, similarly to [94], and to investigate the model

using other kinds of data.

We can summarize the main contributions of this chapter in the following points:

1. We showed that state-of-the-art DNNs (namely EfficientNet-B7) can solve the

classification of steel surface defects of the two often-used datasets almost

perfectly, and that they were superior to other made-to-measure techniques;

2. We applied randomized networks, concatenated to the feature extraction of

a pre-trained DNN, to give a solution for the few-shot problem. Since the

computation of its weights can be done very efficiently by the Moore–Penrose

generalized inverse, the solution has the following advantages:

• Regarding very few-shots (one to three), our model outperformed other

variants when classifying both old and newly appearing classes of steel

surface defects;

• Regarding the base classes, catastrophic forgetting could be avoided;

• The fine-tuning for new classes or shots is significantly faster than the

fine-tuning of any conventional DNNs.

3. Additionally, we proposed a zero-shot approach based on the siamese network

for the recognition of new defect classes and also for the classification of known

types appearing on steel surfaces. We utilized one branch of the siamese

network for the classifications of previously trained defects. For performance

evaluations, experiments were carried out on two large benchmark datasets.

Our architectures outperformed all previously tasked techniques and reached

almost 100% accuracy on the NEU dataset and 98% accuracy on the X-SDD



Chapter 4. Classification, Zero and Fast Few-Shot Learning of Steel
Surface Defects 110

dataset. For zero-shot learning the accuracy is 85.80% and 61.55% respectively

on both datasets.

This chapter was summarized in Thesis III, please see, Chapter 5, Section 5.1.



Chapter 5

Conclusion

This chapter aims to discuss and draw conclusions from the results in order to answer

the stated research questions.

In this thesis we dealt with the recognition of objects and detection of their de-

fects. By using statistical models such as HMM and IMUs data, we could improve

the convolutional neural networks performance for object recognition and pose es-

timation. We show that even if the neural networks could not be optimally trained

and region-based detection is not possible, they can still be used for multiple-view

object recognition with the help of information fusion. We show that relative pose

changes can give enough information for the HMMs to estimate the most probable

state sequences and thus finding the most probable object visible on the images.

Additionally, we showed how active perception and information fusion can help the

recognition of 3D objects and partially occluded objects in a HMM framework if

only weak classifiers are applied. The possible application of such approaches can

be important in embedded systems or if sensors with limited resources are to be

used for example in future’s autonomous, wearables or IoT devices. The proposed

HMM technique is computationally lightweight, requires limited memory and can

incorporate other classifiers, not only the presented CEDD.

111



Chapter 5. Conclusion 112

Additionally, we dealt with two common domains in visual inspection to identify

faults in objects (traffic signs and steel surface defects).

We investigated different methods to recognize defects of traffic signs. First, a new

siamese neural network architecture (FCSNN) was proposed to recognize the defects

of different objects. The previously proposed networks were extended by several lay-

ers and the original features, besides computing the difference, were retained for fully

connected layers. Moreover, we test the generalization properties of our network to

learn the latent defect specific features by predicting the errors of new untrained

object classes with different appearance. Second, we proposed a new mechanism to

combine the output confidence values of FCSNN siamese networks with SVM with

the help of support set images to improve the recognition accuracy. The advantage

of our approach, compared to the concept of ensemble of networks, is that only one

network is to be trained and maintained (one model can handle many traffic sign

and error classes.) Moreover, we introduced a new data-set (TSD) of defected traffic

signs that can be very useful for evaluating anomaly detection (e.g. for maintenance

purposes) and for the research community to test the error prone abilities of traffic

sign recognition methods.

For steel surface defects, we showed that state-of-the-art DNNs (namely EfficientNet-

B7) can solve the classification of steel surface defects of the two-benchmark used

data-sets, almost perfectly and superior to other made-to-measure techniques. Be-

sides, we have given a technique (based on EfficientNet with Randomized Classifier)

to handle common but inconvenient problems such as incremental and few-shot

learning. Regarding very few-shots (1-3), our model outperformed other variants

when classifying both old and newly appearing classes of steel surface defects, while

it showed good performance for higher number of shots. Regarding the base classes,

catastrophic forgetting could also be avoided. An important characteristic from



Chapter 5. Conclusion 113

practicality, that the fine-tuning for new classes or shots is significantly faster than

the fine-tuning of any conventional DNNs. Finally, for a zero-shot learning, an ap-

proach based on a siamese network, was proposed.

Below, besides the scientific results, we also give the list of journal and conference

publications related to this work.

5.1 New Scientific Results

In this thesis, we have studied different solutions to solve the problem of recognizing

objects and their defects. The following theses summarize the new scientific results

in three main points. We also give the corresponding chapters and publications.

Thesis I: Object Recognition Techniques using Deep Neural Networks

and HMMs

Object recognition only in the last few years has made a significant improve-

ment with the evolution of neural networks. While convolutional neural net-

works are very efficient in object recognition there is still need for improve-

ments in many practical cases. For example if the performance from single

images is not satisfactory, natural ambiguities (such as noise, occlusion and

geometrical distortions) and the requirements of the computational and mem-

ory are high. Additionally, to interact with the objects of the environment, not

only specific or generic object recognition is inevitable, but the determination

of their pose is also essential.

1. I proposed a framework to show that HMMs can be used to

combine the data of CNNs and IMUs for object recognition

and pose estimation. I showed that relative pose changes can give

enough information for the HMMs to estimate the most probable state



Chapter 5. Conclusion 114

sequences and thus find the most probable object visible on the images

and improve the performance. To show the efficiency of the proposed

method, we compared the results with VGG16 network.

2. HMM based knowledge can be improved by integrating it with

an active vision approach, the proposed framework is called AV-

HMM-CEDD. I showed that how active perception and information fu-

sion from sequential multiple shots can help the recognition of 3D objects

even if the objects are occluded. Experimental results shows that our pro-

posed method can handle much better the untrained occluded queries if

we compare it with DNNs. Moreover, the proposed AV-HMM-CEDD

framework is computationally lightweight, requires limited memory and

can incorporate other classifiers, not only the presented CEDD.

This thesis is explained in detail in Chapter 2 and the related publications are

AM1, AM2, AM3.

Thesis II: Detection of Traffic Sign Defects

There is no doubt that traffic signs are very important parts of the road infras-

tructure for vehicles. However, detection and recognition of traffic signs with

high accuracy is still an unsolved problem, especially in real-life conditions.

Beside unfavorable weather, lighting, and imaging conditions the unwanted

defects of traffic signs may heavily affect the accuracy of such systems. It

is inevitable to develop systems to monitor the state of traffic signs, by the

detection of the different errors, supporting their maintenance.

1. I proposed a new siamese neural network architecture to rec-

ognize the defects of a large number of classes of traffic signs.

The previously proposed networks were extended by several layers and



Chapter 5. Conclusion 115

the original features, besides computing the difference, were retained for

fully connected layers. Experimental results show that this approach can

be applied to recognize anomalies in images with better performance for

well-known feature learning approaches. Additionally, it is possible to

use it to recognize defects in untrained types of objects.

2. To improve the performance, I proposed a new mechanism to

combine the confidence values of siamese networks with SVM

with the help of support set images. The advantage of our approach,

compared to the concept of ensemble of networks, is that only one network

is to be trained and maintained.

This thesis is explained in detail in Chapter 3 and the related publications are

AM4, AM5.

Thesis III: Classification, Zero and Fast Few-Shot Learning of Steel Sur-

face Defects

Steel is the most important metal in terms of quantity and variety of appli-

cations in the modern world. Due to the manufacturing process and envi-

ronmental conditions, steel surfaces can have a variety of defects. In most

applications, beside the questions of detection and classification, the following

key problems are to be answered: real-time problem, small target problem,

small sample problem, unbalanced sample problem. Moreover, in incremental

learning, new data (i.e. new shots of previously seen or unseen classes) arrive

in phases over time and we have to extend our classification model to include

these new classes or new samples of classes.

1. I proposed a new architecture to combine EfficientNet with ran-

domized networks (EffNet+RC) for classification and few-shot



Chapter 5. Conclusion 116

learning, as well as for continuous learning of steel surface de-

fects. This architecture achieved an effective training time at least an

order of magnitude smaller than that of other classifiers. Moreover, it

classifies defects with a good performance for a few shots.

2. To deal with zero shot learning, I proposed a deep architecture

of siamese network. This network is useful for learning features to

classify defects or to cluster unseen classes without a single training.

This thesis is explained in details in Chapter 4 and the related publications

are AM6, AM7.

5.2 Publications

Publications of Amr Mohamed Nagy Abdo are listed below.

5.2.1 Publications Related to this Thesis

AM1. Czúni László and Amr M. Nagy: Improving object recognition of CNNs

with multiple queries and HMMs. In Twelfth International Conference on

Machine Vision (ICMV), pages 1143310, 2020.

AM2. Czúni László and Amr M. Nagy: Hidden Markov Models for pose esti-

mation. In 15th International Conference on Computer Vision Theory and

Applications (VISAPP), pages 1143310, 2020.

AM3. Amr M. Nagy, Metwally Rashad and Czúni László: Active multiview

recognition with hidden Markov temporal support. In Signal, Image and Video

Processing,pages 315–322, 2021 (2020-IF: 2.157).



Chapter 5. Conclusion 117

AM4. Amr M. Nagy and Czúni László: Detecting object defects with fusioning

convolutional siamese neural networks. In 16th International Joint Conference

on Computer Vision, Imaging and Computer Graphics Theory and Applica-

tions (VISAPP), pages 157–163, 2021.

AM5. Amr M. Nagy and Czúni László: Deep neural network models for the

recognition of traffic signs defects. In 11th IEEE International Conference on

Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications (IDAACS), pages 725-729, 2021.

AM6. Amr M. Nagy and Czúni László: Classification and fast few-shot learn-

ing of steel surface defects with randomized network. Applied Sciences;

12(8):3967, 2022. (2020-IF: 2.67).

AM7. Amr M. Nagy and Czúni László: Zero-shot learning and classification

of steel surface defects. In 14th International Conference on Machine Vision

(ICMV), pages 386 - 394, 2021.

5.2.2 Publications not Related to this Thesis

A1. Alejandro R. Rodriguez, Amr M. Nagy, Zsolt Vörösházi, György Bereczky,

László Czúni: Segmentation and Error Detection of PV Modules, In 27th

International Conference on Emerging Technologies and Factory Automation,

2022.

A2. Amr M. Nagy, Ali Ahmed and Hala Helmy Zayed: Hybrid iterated Kalman

particle filter for object tracking problems. In 8th International Joint Con-

ference on Computer Vision, Imaging and Computer Graphics Theory and

Applications (VISAPP), pages 375–381, 2013.



Chapter 5. Conclusion 118

A3. Amr M. Nagy, Ali Ahmed and Hala Helmy Zayed: Particle filter based

on joint color texture histogram for object tracking. In International Image

Processing, Applications and Systems Conference,pages 1–6, 2014.

5.2.3 Other Presentations

P1. Czúni László, Amr M. Nagy, M. Rashad: About the temporal support of

active object recognition, Pannonian Conference on Advances in Information

Technology (PCIT 2020), Veszprem, Hungary.

P2. Czúni László, Amr M. Nagy, M. Rashad: Low complexity 3D object recog-

nition for mobile devices based on Markovian framework (HMM), in: 12th

Conference of Hungarian Association for Image Processing and Pattern Recog-

nition (KÉPAF-2019), Debrecen, Hungary.

P3. Czúni László, Amr M. Nagy, M. Rashad: Temporal models for 3D object

recognition, in: World Congress on Artificial Intelligence and Machine Learn-

ing, (WCAIML-2019), Spain.



Bibliography

[1] Andrew DH Thomas, Michael G Rodd, John D Holt, and CJ Neill. Real-time

industrial visual inspection: A review. Real-Time Imaging, 1(2):139–158, 1995.

[2] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection

in 20 years: A survey. ArXiv Preprint ArXiv:1905.05055, 2019.

[3] Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation

via multi-task network cascades. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3150–3158, 2016.

[4] Qi Wu, Chunhua Shen, Peng Wang, Anthony Dick, and Anton Van Den Hen-

gel. Image captioning and visual question answering based on attributes and

external knowledge. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(6):1367–1381, 2017.

[5] Joseph W Foster, G Kemble Bennett, and Paul M Griffin. Automated visual

inspection: Quality control techniques for the modern manufacturing environ-

ment. In Proc. 1987 IIE Integrated Systems Conf, pages 135–140, 1987.

[6] Dana H Ballard. Generalizing the hough transform to detect arbitrary shapes.

Pattern Recognition, 13(2):111–122, 1981.

[7] Chris Harris, Mike Stephens, et al. A combined corner and edge detector. In

Alvey Vision Conference, volume 15, pages 10–5244. Citeseer, 1988.

119



BIBLIOGRAPHY 120

[8] David G Lowe. Distinctive image features from scale-invariant keypoints. In-

ternational Journal of Computer Vision, 60(2):91–110, 2004.

[9] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[10] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade

of simple features. In Proceedings of the 2001 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition. CVPR 2001, volume 1,

pages I–I. Ieee, 2001.

[11] Savvas A Chatzichristofis and Yiannis S Boutalis. CEDD: Color and edge

directivity descriptor: A compact descriptor for image indexing and retrieval.

In International Conference on Computer Vision Systems, pages 312–322.

Springer, 2008.

[12] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsu-

pervised learning using graphics processors. In Proceedings of the 26th Annual

International Conference on Machine Learning, pages 873–880, 2009.

[13] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable ar-

tificial intelligence: Understanding, visualizing and interpreting deep learning

models. ArXiv Preprint ArXiv:1708.08296, 2017.

[14] C-C Jay Kuo. Understanding convolutional neural networks with a mathe-

matical model. Journal of Visual Communication and Image Representation,

41:406–413, 2016.



BIBLIOGRAPHY 121

[15] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak

Shah. Signature verification using a siamese time delay neural network. In

Advances in Neural Information Processing Systems, pages 737–744, 1994.

[16] Tamás Czimmermann, Gastone Ciuti, Mario Milazzo, Marcello Chiurazzi, Ste-

fano Roccella, Calogero Maria Oddo, and Paolo Dario. Visual-based defect

detection and classification approaches for industrial applications— A SUR-

VEY. Sensors, 20(5):1459, 2020.

[17] Dandan Zhu, Ruru Pan, Weidong Gao, and Jie Zhang. Yarn-dyed fabric

defect detection based on autocorrelation function and glcm. Autex Res. J,

15(3):226–232, 2015.

[18] Junjie Cao, Jie Zhang, Zhijie Wen, Nannan Wang, and Xiuping Liu. Fab-

ric defect inspection using prior knowledge guided least squares regression.

Multimedia Tools and Applications, 76(3):4141–4157, 2017.

[19] Shan Gai. New banknote defect detection algorithm using quaternion wavelet

transform. Neurocomputing, 196:133–139, 2016.

[20] Jiaqi Xi, Lifeng Shentu, Jikang Hu, and Mian Li. Automated surface in-

spection for steel products using computer vision approach. Applied Optics,

56(2):184–192, 2017.

[21] Di He, Ke Xu, and Peng Zhou. Defect detection of hot rolled steels with a new

object detection framework called classification priority network. Computers

& Industrial Engineering, 128:290–297, 2019.

[22] Shuang Mei, Hua Yang, and Zhouping Yin. An unsupervised-learning-based

approach for automated defect inspection on textured surfaces. IEEE Trans-

actions on Instrumentation and Measurement, 67(6):1266–1277, 2018.



BIBLIOGRAPHY 122

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Advances in Neural Information

Processing Systems, 25, 2012.

[24] Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli,

Gustavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan, and Joseph

Walsh. Deep learning vs. traditional computer vision. In Science and Infor-

mation Conference, pages 128–144. Springer, 2019.

[25] David Bojanić, Kristijan Bartol, Tomislav Pribanić, Tomislav Petković,

Yago Diez Donoso, and Joaquim Salvi Mas. On the comparison of classic and

deep keypoint detector and descriptor methods. In 2019 11th International

Symposium on Image and Signal Processing and Analysis (ISPA), pages 64–69.

IEEE, 2019.

[26] Nati Ofir and Jean-Christophe Nebel. Classic versus deep learning approaches

to address computer vision challenges. ArXiv Preprint ArXiv:2101.09744,

2021.

[27] Jonas Gehring, Yajie Miao, Florian Metze, and Alex Waibel. Extracting deep

bottleneck features using stacked auto-encoders. In IEEE International Con-

ference on Acoustics, Speech and Signal Processing, pages 3377–3381, 2013.

[28] Muhammad Attique Khan, Kashif Javed, Sajid Ali Khan, Tanzila Saba, Us-

man Habib, Junaid Ali Khan, and Aaqif Afzaal Abbasi. Human action recog-

nition using fusion of multiview and deep features: an application to video

surveillance. Multimedia Tools and Applications, pages 1–27, 2020.

[29] Muhammad Sharif, Muhammad Attique Khan, Farooq Zahid, Jamal Hussain

Shah, and Tallha Akram. Human action recognition: a framework of statistical



BIBLIOGRAPHY 123

weighted segmentation and rank correlation-based selection. Pattern Analysis

and Applications, 23(1):281–294, 2020.

[30] Sumaira Manzoor, Sung-Hyeon Joo, and Tae-Yong Kuc. Comparison of ob-

ject recognition approaches using traditional machine vision and modern deep

learning techniques for mobile robot. In 19th International Conference on

Control, Automation and Systems (ICCAS), pages 1316–1321, 2019.

[31] Leonard E Baum and Ted Petrie. Statistical inference for probabilistic func-

tions of finite state markov chains. The Annals of Mathematical Statistics,

37(6):1554–1563, 1966.

[32] Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A maximiza-

tion technique occurring in the statistical analysis of probabilistic functions of

markov chains. The Annals of Mathematical Statistics, 41(1):164–171, 1970.

[33] Lawrence R Rabiner. A tutorial on hidden markov models and selected appli-

cations in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[34] László Czúni and Metwally Rashad. The fusion of optical and orientation

information in a markovian framework for 3D object retrieval. In International

Conference on Image Analysis and Processing, pages 26–36. Springer, 2017.

[35] László Czúni and Metwally Rashad. Lightweight active object retrieval with

weak classifiers. Sensors, 18(3), 2018.

[36] Savvas A Chatzichristofis, Konstantinos Zagoris, Yiannis S Boutalis, and

Nikos Papamarkos. Accurate image retrieval based on compact composite

descriptors and relevance feedback information. International Journal of Pat-

tern Recognition and Artificial Intelligence, 24(02):207–244, 2010.



BIBLIOGRAPHY 124

[37] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-

ture hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 580–587, 2014.

[38] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages 779–788, 2016.

[39] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-

CNN. In Proceedings of the IEEE International Conference on Computer

Vision, pages 2961–2969, 2017.

[40] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multibox detector.

In European Conference on Computer Vision, pages 21–37. Springer, 2016.

[41] Tobias Nöll, Alain Pagani, and Didier Stricker. Markerless camera pose

estimation-an overview. In Visualization of Large and Unstructured Data Sets-

Applications in Geospatial Planning, Modeling and Engineering (IRTG 1131

Workshop). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2011.

[42] Nikolaus Correll, Kostas E Bekris, Dmitry Berenson, Oliver Brock, Albert

Causo, Kris Hauser, Kei Okada, Alberto Rodriguez, Joseph M Romano, and

Peter R Wurman. Analysis and observations from the first amazon pick-

ing challenge. IEEE Transactions on Automation Science and Engineering,

15(1):172–188, 2016.



BIBLIOGRAPHY 125

[43] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox.

Posecnn: A convolutional neural network for 6d object pose estimation in

cluttered scenes. ArXiv Preprint ArXiv:1711.00199, 2017.

[44] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir

Navab. Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great

again. In Proceedings of the IEEE International Conference on Computer

Vision, pages 1521–1529, 2017.

[45] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time seamless single

shot 6d object pose prediction. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 292–301, 2018.

[46] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate, robust to partial

occlusion method for predicting the 3d poses of challenging objects without us-

ing depth. In Proceedings of the IEEE International Conference on Computer

Vision, pages 3828–3836, 2017.

[47] Mengmeng Xu, Yancheng Bai, Bernard Ghanem, Boxiao Liu, Yan Gao, Nan

Guo, Xiaochun Ye, Fang Wan, Haihang You, Dongrui Fan, et al. Missing

labels in object detection. In CVPR Workshops, volume 3, 2019.

[48] Colin Rennie, Rahul Shome, Kostas E Bekris, and Alberto F De Souza. A

dataset for improved rgbd-based object detection and pose estimation for

warehouse pick-and-place. IEEE Robotics and Automation Letters, 1(2):1179–

1185, 2016.

[49] László Czúni and Amr M Nagy. Improving object recognition of CNNs with

multiple queries and HMMs. In Twelfth International Conference on Machine

Vision (ICMV 2019), page 94, 01 2020.



BIBLIOGRAPHY 126

[50] László Czúni and Amr M Nagy. Hidden markov models for pose estimation. In

15th International Conference on Computer Vision Theory and Applications

(VISAPP), pages 598–603, 2020.

[51] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. ArXiv Preprint ArXiv:1409.1556, 2014.

[52] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. ArXiv

Preprint ArXiv:1804.02767, 2018.

[53] Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee. Ac-

tive recognition through next view planning: a survey. Pattern Recognition,

37(3):429–446, 2004.

[54] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[55] J. Tang, X. Shu, R. Yan, and L. Zhang. Coherence constrained graph LSTM

for group activity recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligences, 2019.

[56] P. Kulkarni, S. Mohan, S. Rogers, and H. Tabkhi. Key-track: A lightweight

scalable LSTM-based pedestrian tracker for surveillance system. In In-

ternational Conference on Image Analysis and Recognition, pages 208–219.

Springer, Cham, 2019.

[57] M. Turkoglu, D. Hanbay, and A. Sengur. Multi-model LSTM-based convolu-

tional neural networks for detection of apple diseases and pests. Journal of

Ambient Intelligence and Humanized Computing, pages 1–11, 2019.



BIBLIOGRAPHY 127

[58] Y. Yuan, X. Liang, X. Wang, D. Y. Yeung, and A. Gupta. Temporal dynamic

graph LSTM for action-driven video object detection. In Proceedings of the

IEEE International Conference on Computer Vision, pages 1801–1810, 2017.

[59] Y. Lu, C. Lu, and C. K. Tang. Online video object detection using association

LSTM. In Proceedings of the IEEE International Conference on Computer

Vision, pages 2344–2352, 2017.

[60] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong,

and Wang-Chun Woo. Convolutional LSTM network: A machine learning

approach for precipitation nowcasting. In Advances in Neural Information

Processing Systems, pages 802–810, 2015.

[61] Ben Nassi, Dudi Nassi, Raz Ben-Netanel, Yisroel Mirsky, Oleg Drokin, and

Yuval Elovici. Phantom of the adas: Phantom attacks on driver-assistance

systems. Cryptology ePrint Archive, 2020.

[62] Trivedi S. Povolny, S. Model hacking ADAS to save safer roads for autonomous

vehicles, February 2020. [Online; posted 4-May-2022].

[63] Dogancan Temel, Tariq Alshawi, Min-Hung Chen, and Ghassan AlRegib.

Challenging environments for traffic sign detection: Reliability assessment un-

der inclement conditions. ArXiv Preprint ArXiv:1902.06857, 2019.

[64] Zhongbing Qin and Wei Qi Yan. Traffic-sign recognition using deep learning. In

Geometry and Vision: First International Symposium, ISGV 2021, Auckland,

New Zealand, January 28-29, 2021, Revised Selected Papers 1, pages 13–25.

Springer, 2021.

[65] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-



BIBLIOGRAPHY 128

stein, et al. Imagenet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, 2015.

[66] Brenden M Lake, Russ R Salakhutdinov, and Josh Tenenbaum. One-shot

learning by inverting a compositional causal process. In Advances in Neural

Information Processing Systems, pages 2526–2534, 2013.

[67] Amr M Nagy and László Czúni. Detecting object defects with fusioning con-

volutional siamese neural networks. In 16th International Conference on Com-

puter Vision Theory and Applications (VISAPP), pages 157–163, 2021.

[68] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural

networks for one-shot image recognition. In ICML Deep Learning Workshop,

volume 2. Lille, 2015.

[69] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun,

Cliff Moore, Eduard Säckinger, and Roopak Shah. Signature verification us-

ing a siamese time delay neural network. International Journal of Pattern

Recognition and Artificial Intelligence, 7(04):669–688, 1993.

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 770–778, 2016.

[71] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convo-

lutional neural networks. In International Conference on Machine Learning,

pages 6105–6114. PMLR, 2019.

[72] Xinglong Feng, Xianwen Gao, and Ling Luo. X-SDD: A new benchmark for

hot rolled steel strip surface defects detection. Symmetry, 13(4):706, 2021.



BIBLIOGRAPHY 129

[73] Kechen Song and Yunhui Yan. A noise robust method based on completed

local binary patterns for hot-rolled steel strip surface defects. Applied Surface

Science, 285:858–864, 2013.

[74] Yu He, Kechen Song, Qinggang Meng, and Yunhui Yan. An end-to-end steel

surface defect detection approach via fusing multiple hierarchical features.

IEEE Transactions on Instrumentation and Measurement, 69(4):1493–1504,

2019.

[75] Weidong Zhao, Feng Chen, Hancheng Huang, Dan Li, and Wei Cheng. A

new steel defect detection algorithm based on deep learning. Computational

Intelligence and Neuroscience, 2021, 2021.

[76] Haili Zhao, Zefeng Yang, and Jia Li. Detection of metal surface defects based

on YOLOv4 algorithm. In Journal of Physics: Conference Series, volume

1907, page 012043. IOP Publishing, 2021.

[77] Siyu Zhang, Qiuju Zhang, Jiefei Gu, Lei Su, Ke Li, and Michael Pecht. Vi-

sual inspection of steel surface defects based on domain adaptation and adap-

tive convolutional neural network. Mechanical Systems and Signal Processing,

153:107541, 2021.

[78] Amr M. Nagy and László Czúni. Zero-shot learning and classification of steel

surface defects. In Fourteenth International Conference on Machine Vision

(ICMV 2021), volume 12084, pages 386 – 394. International Society for Optics

and Photonics, SPIE, 2022.

[79] Shengqi Guan, Ming Lei, and Hao Lu. A steel surface defect recognition

algorithm based on improved deep learning network model using feature visu-

alization and quality evaluation. IEEE Access, 8:49885–49895, 2020.



BIBLIOGRAPHY 130

[80] Ihor Konovalenko, Pavlo Maruschak, Vitaly Brevus, and Olegas Prentkovskis.

Recognition of scratches and abrasions on metal surfaces using a classifier

based on a convolutional neural network. Metals, 11(4):549, 2021.

[81] Yajun Chen, Yuanyuan Ding, Fan Zhao, Erhu Zhang, Zhangnan Wu, and

Linhao Shao. Surface defect detection methods for industrial products: A

review. Applied Sciences, 11(16):7657, 2021.

[82] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in gen-

erative adversarial nets. ArXiv Preprint ArXiv:1705.08395, 2017.

[83] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning

with deep generative replay. ArXiv Preprint ArXiv:1705.08690, 2017.

[84] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan

Wermter. Continual lifelong learning with neural networks: A review. Neural

Networks, 113:54–71, 2019.

[85] Eden Belouadah and Adrian Popescu. Deesil: Deep-shallow incremental learn-

ing. In European Conference on Computer Vision, pages 151–157. Springer,

2018.

[86] Francisco M Castro, Manuel J Maŕın-Jiménez, Nicolás Guil, Cordelia Schmid,

and Karteek Alahari. End-to-end incremental learning. In European Confer-

ence on Computer Vision (ECCV), pages 233–248, 2018.

[87] Chen He, Ruiping Wang, Shiguang Shan, and Xilin Chen. Exemplar-supported

generative reproduction for class incremental learning. In BMVC, page 98,

2018.



BIBLIOGRAPHY 131

[88] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H

Lampert. iCarL: Incremental classifier and representation learning. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 2001–2010,

2017.

[89] Yong Luo, Liancheng Yin, Wenchao Bai, and Keming Mao. An appraisal of

incremental learning methods. Entropy, 22(11):1190, 2020.

[90] Ghouthi Boukli Hacene, Vincent Gripon, Nicolas Farrugia, Matthieu Arzel,

and Michel Jezequel. Transfer incremental learning using data augmentation.

Applied Sciences, 8(12):2512, 2018.

[91] Roger Ratcliff. Connectionist models of recognition memory: constraints im-

posed by learning and forgetting functions. Psychological Review, 97(2):285,

1990.

[92] Eden Belouadah and Adrian Popescu. Scail: Classifier weights scaling for

class incremental learning. In IEEE/CVF Winter Conference on Applications

of Computer Vision, pages 1266–1275, 2020.

[93] Eden Belouadah and Adrian Popescu. Il2m: Class incremental learning with

dual memory. In IEEE/CVF International Conference on Computer Vision,

pages 583–592, 2019.

[94] Zahid Ali Siddiqui and Unsang Park. Progressive convolutional neural network

for incremental learning. Electronics, 10(16):1879, 2021.

[95] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing

from a few examples: A survey on few-shot learning. ACM Computing Surveys

(csur), 53(3):1–34, 2020.



BIBLIOGRAPHY 132

[96] Aditya M Deshpande, Ali A Minai, and Manish Kumar. One-Shot recognition

of manufacturing defects in steel surfaces. Procedia Manufacturing, 48:1064–

1071, 2020.

[97] Yibo Guo, Yiming Fan, Zhiyang Xiang, Haidi Wang, Wenhua Meng, and

Mingliang Xu. Zero-sample surface defect detection and classification based

on semantic feedback neural network. ArXiv Preprint ArXiv:2106.07959, 2021.

[98] Tobias Schlagenhauf, Faruk Yildirim, Benedikt Brückner, and Jürgen Fleis-

cher. Siamese basis function networks for defect classification. ArXiv Preprint

ArXiv:2012.01338, 2020.

[99] Adel Boudiaf, Said Benlahmidi, Khaled Harrar, and Rachid Zaghdoudi. Clas-

sification of surface defects on steel strip images using convolution neural net-

work and support vector machine. Journal of Failure Analysis and Prevention,

pages 1–11, 2022.

[100] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:

Global vectors for word representation. In Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[101] Shiqing Wu, Shiyu Zhao, Qianqian Zhang, Long Chen, and Chenrui Wu. Steel

surface defect classification based on small sample learning. Applied Sciences,

11(23):11459, 2021.

[102] Yucheng Wang, Liang Gao, Yiping Gao, and Xinyu Li. A new graph-

based semi-supervised method for surface defect classification. Robotics and

Computer-Integrated Manufacturing, 68:102083, 2021.

[103] Lei Yang, Xiaohang Zhan, Dapeng Chen, Junjie Yan, Chen Change Loy, and

Dahua Lin. Learning to cluster faces on an affinity graph. In IEEE/CVF



BIBLIOGRAPHY 133

Conference on Computer Vision and Pattern Recognition, pages 2298–2306,

2019.

[104] Ke Wu, Jie Tan, Jingwei Li, and Chengbao Liu. Few-shot learning approach

for 3D defect detection in lithium battery. In Journal of Physics: Conference

Series, volume 1884, page 012024. IOP Publishing, 2021.

[105] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard

Schölkopf. Learning with local and global consistency. Advances in Neural

Information Processing Systems, 16, 2003.

[106] Zhu Zhan, Jinfeng Zhou, and Bugao Xu. Fabric defect classification using

prototypical network of few-shot learning algorithm. Computers in Industry,

138:103628, 2022.

[107] Xiaoming Lv, Fajie Duan, Jia-jia Jiang, Xiao Fu, and Lin Gan. Deep metallic

surface defect detection: The new benchmark and detection network. Sensors,

20(6):1562, 2020.

[108] Tobias Schlagenhauf, Magnus Landwehr, and Jürgen Fleischer. Industrial

machine tool element surface defect dataset. 2021.

[109] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998.

[110] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. Department of Computer Science, University of Toronto,

2009.



BIBLIOGRAPHY 134

[111] George Kyriakides and Konstantinos Margaritis. An introduction to

neural architecture search for convolutional networks. ArXiv Preprint

ArXiv:2005.11074, 2020.

[112] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. MobileNetV2: Inverted residuals and linear bottlenecks. In

IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–

4520, 2018.

[113] Norbert Kiss and László Czùni. Mushroom image classification with CNNs:

A case-study of different learning strategies. In 12th International Symposium

on Image and Signal Processing and Analysis (ISPA), pages 165–170. IEEE,

2021.

[114] Rashidul Hasan Hridoy, Fatema Akter, and Aniruddha Rakshit. Computer

vision based skin disorder recognition using EfficientNet: A transfer learn-

ing approach. In 2021 International Conference on Information Technology

(ICIT), pages 482–487. IEEE, 2021.

[115] Mohd Nadhir Ab Wahab, Amril Nazir, Anthony Tan Zhen Ren, Mohd

Halim Mohd Noor, Muhammad Firdaus Akbar, and Ahmad Sufril Azlan Mo-

hamed. EfficientNet-lite and hybrid CNN-KNN implementation for facial ex-

pression recognition on raspberry pi. IEEE Access, 9:134065–134080, 2021.

[116] Hitendra Garg, Bhisham Sharma, Shashi Shekhar, and Rohit Agarwal. Spoof-

ing detection system for e-health digital twin using EfficientNet convolution

neural network. Multimedia Tools and Applications, pages 1–16, 2022.

[117] Renjie Xu, Haifeng Lin, Kangjie Lu, Lin Cao, and Yunfei Liu. A forest fire

detection system based on ensemble learning. Forests, 12(2):217, 2021.



BIBLIOGRAPHY 135

[118] Yassine Yousfi, Jan Butora, Jessica Fridrich, and Clément Fuji Tsang. Improv-

ing EfficientNet for JPEG steganalysis. In ACM Workshop on Information

Hiding and Multimedia Security, pages 149–157, 2021.

[119] Fei Gao, Jiming Sa, Zhuoer Wang, and Zhongyu Zhao. Cassava disease de-

tection method based on EfficientNet. In 7th International Conference on

Systems and Informatics (ICSAI), pages 1–6. IEEE, 2021.

[120] Wouter F Schmidt, Martin A Kraaijveld, Robert PW Duin, et al. Feed forward

neural networks with random weights. In International Conference on Pattern

Recognition, pages 1–1. IEEE Computer Society Press, 1992.

[121] Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic. Learning and gener-

alization characteristics of the random vector functional-link net. Neurocom-

puting, 6(2):163–180, 1994.

[122] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning

machine: theory and applications. Neurocomputing, 70(1-3):489–501, 2006.

[123] Ponnuthurai N Suganthan and Rakesh Katuwal. On the origins of

randomization-based feedforward neural networks. Applied Soft Computing,

105:107239, 2021.

[124] Weipeng Cao, Xizhao Wang, Zhong Ming, and Jinzhu Gao. A review on neural

networks with random weights. Neurocomputing, 275:278–287, 2018.

[125] Eliakim H Moore. On the reciprocal of the general algebraic matrix. Bull.

Am. Math. Soc., 26:394–395, 1920.


	Acknowledgments
	Kivonat
	Abstract
	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Basic Concepts
	1.1.1 Object Recognition
	1.1.2 Visual Inspection

	1.2 Motivation
	1.3 Overview of Recognition Approaches
	1.3.1 Traditional Approaches
	1.3.2 Deep Learning Approaches

	1.4 Overview of Visual Inspection Approaches
	1.4.1 Low-Level Image Processing Approaches
	1.4.2 High-Level Image Processing Approaches

	1.5 Research Questions
	1.6 Author's Contributions

	2 Object Recognition Techniques using Deep Neural Networks and HMM
	2.1 Introduction
	2.2 View-Centered Approach
	2.3 Hidden Markov Model Explanation
	2.4 Datasets
	2.4.1 COIL-100 Dataset
	2.4.2 COIL-40 Dataset
	2.4.3 ALOI-1000 Dataset

	2.5 Improving Object Recognition of CNNs with Multiple Queries and HMMs
	2.5.1 HMM Object Models
	2.5.2 Object Views as States in a Markov Model
	2.5.3 State Transitions
	2.5.4 Recognition of Single Objects from Multiple Views
	2.5.5 Proposed Method
	2.5.6 Experimental Results

	2.6 Hidden Markov Models Based on Convolutional Neural Network for Pose Estimation
	2.6.1 Proposed Method
	2.6.2 Tests and Evaluations

	2.7 Active Multiview Recognition with Hidden Markov Temporal Support
	2.7.1 Recognition of Objects from Multiple Views by Weak Global Classifiers
	2.7.2 Active Recognition with HMM
	2.7.3 Experiments and Evaluations
	2.7.4 About Space and Time Complexity
	2.7.5 An Alternative: ConvLSTM
	2.7.6 Comparison to LSTM
	2.7.7 Comparison to LSTM with Explicit Orientation

	2.8 Summary

	3 Detecting Traffic Sign Defects
	3.1 Datasets
	3.1.1 Traffic Signs Distortion Dataset (TSD Version I)
	3.1.2 Traffic Signs Distortion Dataset (TSD Version II)

	3.2 The Proposed Fusioning Convolutional Siamese Neural Network Architecture (FCSNN)
	3.2.1 Training
	3.2.2 N-way One-Shot Classification
	3.2.3 Experimental Results

	3.3 Recognition of Traffic Signs Defects with SVM based on CNN Confidence Values 
	3.3.1 Experiments and Discussion
	3.3.2 Comparing FCSNN-SVM with Different DNNs Models

	3.4 Summary

	4 Classification, Zero and Fast Few-Shot Learning of Steel Surface Defects
	4.1 Introduction
	4.2 Related Works
	4.2.1 Detection and Classification of Steel Surface Defects
	4.2.2 Zero-Shot Learning
	4.2.3 Few-Shot Learning

	4.3 The Benchmark Datasets
	4.3.1 Northeastern University Surface Defect Database (NEU)
	4.3.2 Xsteel Surface Defect Dataset (X-SSD)

	4.4 Zero-Shot Learning and Classification with Siamese Neural Network
	4.4.1 The Proposed Methods
	4.4.2 Experiments and Discussion
	4.4.3 Further Discussion

	4.5 Proposed Methods for Classification and Few-Shot Learning
	4.5.1 Classification of Defects with EfficientNet-B7
	4.5.2 Fast Few-Shot Learning of Steel Surface Defects with Randomized Network 

	4.6 Experimental Results of Classification and Discussion
	4.6.1 Classification Results on the NEU Dataset
	4.6.2 Classification Results on the X-SSD Dataset

	4.7 Testing Few-Shot Learning with EffNet+RC
	4.7.1 Time Complexity

	4.8 Summary

	5 Conclusion
	5.1 New Scientific Results
	5.2 Publications
	5.2.1 Publications Related to this Thesis
	5.2.2 Publications not Related to this Thesis
	5.2.3 Other Presentations


	Bibliography

