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Abstract

As most of the energy production and transformation processes are

safety-critical, it is vital to develop tools that support the analysis

and minimisation of their reliability-related risks. The resultant op-

timisation problem should reflect the structure of the process which

requires the utilisation of flexible and problem-relevant models.

Process graphs (P-graphs) have been proven to be useful in identifying

optimal structures of process systems and business processes. The pro-

vision of redundant critical units can significantly reduce operational

risk. Redundant units and subsystems can be modelled in P-graphs

by adding nodes that represent logical conditions of the operation of

the units. In Chapter 2 it is revealed that P-graphs extended by logi-

cal condition units can be transformed into reliability block diagrams,

and based on the cut sets and path sets of the graph a polynomial risk

model can be extracted. Since the exponents of the polynomial repre-

sent the number of redundant units, the cost function of the reliability

redundancy allocation problem as a nonlinear integer programming

model can be formalised, where the cost function handles the costs as-

sociated with consequences of equipment failure and repair times. The

applicability of this approach presented in Chapter 3 is illustrated in

a case study related to the asset-intensive chemical, oil, gas and en-

ergy sector. The results show that the proposed algorithm is useful for

risk-based priority resource allocation in a reforming reaction system.

Chapter 4 of my dissertation deals with the optimisation of quality

assurance processes. Testing is an indispensable process for ensuring

product quality in production systems. Reducing the time and cost
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spent on testing whilst minimising the risk of not detecting faults is

an essential problem of process engineering. The optimisation of com-

plex testing processes consisting of independent test steps is considered.

Survival analysis based models of an elementary test to efficiently com-

bine the time-dependent outcome of the tests and costs related to the

operation of the testing system are developed. A mixed integer non-

linear programming (MINLP) model to formalize how the total cost of

testing depends on the sequence and the parameters of the elementary

test steps is proposed.

To provide an efficient formalization of the scheduling problem and

avoid difficulties due to the relaxation of the integer variables, the

MINLP model as a P-graph representation-based process network syn-

thesis problem is considered. The applicability of the methodology is

demonstrated by a realistic case study taken from the computer manu-

facturing industry. With the application of the optimal test times and

sequence provided by the SCIP (Solving Constraint Integer Programs)

solver, 0.1-5% of the cost of the testing can be saved.



Chapter 1
Introduction

1.1 Optimisation issues of the Industry 4.0 con-

cept

The world is increasingly struggling with traditional manufacturing trends and

ever-evolving digitalization. Companies’ manufacturing processes need to change

very rapidly to keep pace with competitors in their sectors. Digital technology

transforms manufacturing in a big way nowadays. The fourth industrial revolution

means that machines and production systems are connected to the information net-

work, which are also integrated into an intelligent information system. Industrial

revolutions have always radically changed production and manufacturing. The

fourth industrial revolution is first and foremost a revolution of efficiency. With

the emergence of new technologies, such as artificial intelligence, smart devices,

and IoT tools, the main objective has become to integrate the latest achievements

in IT with the previous achievements of the industrial revolution, thus forming a

whole. Since the 1950s, the variety of products has been steadily increasing. Cus-

tom manufacturing and regionalization have become key issues. Also at the end

of the 1950s, mass production reached its peak, and since then fewer and fewer

versions of a particular product have been sold. For consumers, uniqueness has

become an increasingly important value [21].

According to experts, digitalization will change production management at a fun-

damental level to develop production capacity that grows in line with customer
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demand and accelerate logistics services. Technological advances will also reform

supply chain management. The spread of Industry 4.0 will lead to a larger product

portfolio and an increased need for capacity. Related to manufacturing, there will

be a need for greater speed and increasing demand for quality products. Industry

4.0 has brought and will continue to bring significant changes to the small and

medium-sized enterprises (SME), depending on how well prepared SMEs are and

how well they are able to keep pace with large enterprises in terms of technological

innovation. They will either acquire new markets or, due to a lack of capital and

knowledge, their infrastructural and economic backwardness will increase and they

will not be able to integrate.

When smart manufacturing systems, which link smart factories and smart prod-

ucts in series, are combined with smart logistics processes, it encompasses a com-

plex manufacturing process, together with marketing activities and smart services.

Thus, a strong customer-centric and demand-oriented production management can

be created, meeting specific needs. This is vertical integration, in which, however,

there is a strong focus on how real-world elements are represented in a system that

can be interpreted by information systems. This type of integration describes five

levels [98] by the ISA-95 standard [85]. At the lowest level 0 is the actual produc-

tion phase that is implemented. The first and second levels are where the process

is manipulated, controlled, and changes are made. The third level is where pro-

cess analysis, detailed scheduling, reliability issues, and continuous availability

are performed. At the fourth level, enterprise logic, planning, and logistics are

implemented (Fig. 1.1).

This is also where decisions are made on the number of raw materials. Horizontal

integration follows the product throughout its life cycle. Starting with the de-

sign, through sourcing of raw materials and manufacturing, to delivery. A tool is

therefore needed that can manage and optimize these processes in parallel. Both

suppliers and customers are part of the chain [11].

The four pillars of Industry 4.0 are interconnectivity, decentralized decision-making,
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Figure 1.1: The structure of the ISA-95 standard for constructing vertical integ-
ration [20]

information transparency, and technical backup. However, these are not enough

on their own and additional elements need to be introduced. Examples include

smart factories, smart manufacturing, product customization, agility, autonomy,

modularity, and flexibility [50]. Of these, smart factories, virtualization, flexibility,

sustainability, and real-time availability have the greatest impact on optimisation.

Digital twins have a key role to play in Industry 4.0 [80]. A digital twin is a

computer program that uses real-world data to create simulations that calculate

the operation and performance of a product or process. It requires data from a

real-life object to develop a model that can simulate the original item. The re-

sulting virtual replica of the physical object can provide feedback on the original

version using a variety of sensors and data collection devices. Industry 4.0 is the

most complex model ever. A lot of data is being fed into large databases every day.

Processing it is a big challenge, which is where big data systems come in. Previous

database management tools would have faced considerable difficulties in solving

these problems, as the type of data is not only large in number but also arriving

at high speeds and is very diverse. Another critical element is decentralization to

ensure that problems are addressed at the right place/level. In addition, Industry

4.0 is also committed to the idea that if a problem can be broken down into sub-

problems, then let’s do it. Particular attention needs to be paid to overlapping
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problems that are located between layers. Furthermore, the issue of sustainability

has become critical [20].

With the increase in production, there is a need for rapid changeover of production

lines to enable the manufacture of small, one-off products. In the past, it was only

economical to mass-produce a large number of items in series, but new designs

can now meet the ever faster-changing needs of individual customers (Fig. 1.2).

Figure 1.2: The evolution of industry and the change in drivers [20]

By analyzing these processes to optimize production, it is possible to eliminate

the production of rejects and reduce costs. In addition, the positive environmental

impact of Industry 4.0 can be a positive factor. With new and green technologies,

production will produce fewer defective products, thus reducing the number of

rejects, which will reduce waste. There will be companies that will not be able to

keep up with digitalization, which will not only cause problems for that company,

but also for other companies further down the supply chain, as they may or may

not be integrated into the supply chains, and their exit will reorganize the supply

chains and may lead to a reorganization of the supply chains. The primary barriers

to digital technology connectivity are:

• huge investment costs,
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• lack or inappropriate allocation of resources,

• or increasingly stringent regulatory compliance.

Businesses without sufficient capital cannot make these investments on their own.

For small and medium-sized enterprises, only state aid is likely to help, as they

face financial, technological, and human resource challenges that are more difficult

to overcome than multinationals.

The changes that have been initiated so far will continue to evolve in the com-

ing period, providing opportunities to optimize complex manufacturing processes

through simulation. This requires production data from sensors. Production mod-

els that are trained using data from real production can be repeated until the

production process outlined is the most efficient. The data, software, and network

technologies, the operation, management, and optimisation of the manufacturing

facilities, allow for the consideration of individual needs in mass production and

the optimisation of processes. Production lines can be designed to adapt to both

current orders and specific customer needs. In addition, data collected by the

company’s order processing systems can be transmitted to workstations in the

manufacturing facility. In the future, the manufacturing process can be automat-

ically adapted to the urgency of incoming orders in the production network, from

order receipt to material and tool ordering, through to production and delivery.

This will enable adaptive manufacturing. In this system, orders will be processed

in a process-coupled manner and can be passed on to the purchasing and logistics

systems. The network linking the departments will ensure the optimal flow of

materials and energy along the entire value chain. In such production processes,

it is now possible to know exactly which parts are needed wherein a given opera-

tion and which machining operation will be next. The system checks the quality

standards to be met by the finished product and analyses where potential bottle-

necks in the process are based on the defects detected. To make this process work,

machines, handling equipment, and warehouses or warehouse gates communicate

independently with each other via networks using many sensors. In such a set-up,
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the design of the manufacturing environment needs to identify potential existing

sources of information, process them and then model them before going live. This

will require a combination of technologies that can filter, analyze and integrate

data from different sources with existing IT systems.

In smart factories with cyber-physical systems [50, 28], real operational processes

are mapped into a virtual world where production processes can be monitored and

interactive intervention points can be created, enabling production optimisation

and automated decision-making. Networked production will ensure a continuous

flow of information and optimized production by managing data from various

sensors, and will be linked to the intelligent workpiece, which will also tell the

machine how to machine using a built-in sensor. To do this, each workpiece will

be equipped with a digital identifier (e.g. RFID) containing all specifications and

production parameters. The five essential elements of networked manufacturing:

• digital workpieces,

• intelligent machine,

• vertical networking,

• horizontal networking,

• smart workpiece.

Unconstrained problems are the simplest, and the easiest to solve, but they are the

rarest. The next in terms of complexity is the so-called linear problem, where both

the objective function and the constraints are linear. This is much more common

and, in general, a significant proportion of the more complex optimisation prob-

lems can be decomposed into linear problems. A typical example is when one needs

to calculate how much of a given product to produce with different constraints on

the raw materials. More complex is the so-called quadratic programming. Here

the constraints are still linear, but the objective function is complicated. More

serious is the problem where both the constraints and the objective function are

non-linear. These are called non-linear models or NLP, such as the calculation of
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preventive maintenance, taking into account energy efficiency. If our variables are

integers, we are talking about integer programming. If the work to be done has to

be paired with the workers, that is a good example of this kind of problem. And

if you have a mixture of integers and continuous variables, that’s MIP (Mixed-

Integer Programming). In practice, a company may have more than one objective.

For example, to maximize revenue and minimize the number of workers. If there

is more than one objective function, it is called a multi-objective task. Finally,

we may also need to introduce certain probabilities, stochastic elements, into the

model. Risk tolerance and uncertainty factors associated with different elements

may be introduced into the system. This further complicates the mathematical

model and stochastic problems are typically solved in a two-stage system. In addi-

tion, there is the issue of so-called fuzzy programming. The main difference with

respect to the former is that here the objectives, constraints and various parame-

ters are ambiguous. There is also stochastic dynamic programming, in which the

problem is built up from subproblems, and iteratively, as each state is run, it in-

fluences the next state. It is important to note that in the industrial environment

we do not always need the exact outcome, often a good approximation can be

sufficient, it is worth going in this direction if the model is too complex.

Size, modularity, complexity, adaptability, and quality of the solution are the most

important properties of an optimisation model [22]. Size describes the size of the

task, and how many variables and constraints there are. Modularity describes the

extent to which the task can be decomposed, often individual components can be

solved in parallel, which can significantly speed up the solution time of the overall

task. And complexity can mean many things. It can mean static complexity,

dynamic complexity, detail, and manufacturing complexity. The most important

is mathematical or computational complexity. This is where the step size of the

algorithm becomes important, what is the time step of the algorithm. The two

most important categories are NP-hard and non NP-hard problems. Problems

in the former category can often not be solved in the real environment (where

there are many input parameters) in a reasonable time. Here also exist additional
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categories like factorial or exponential. The quality of the solution is how accurate

the solution is, and how close it is to reality. An exact solution often is not required

if it would take a too long time to calculate it, a good approximation may be

sufficient. In general, the more accurate or precise the model, the more accurate

the solution.

Among the areas of Industry 4.0, optimisation tasks are located at the fourth level

of the ISA model. These tasks include maintenance management, ensuring reli-

able system operation, solutions to reduce the human resources used, streamlining

quality assurance processes, and various scheduling tasks. In my dissertation, I in-

vestigate the optimisation of these areas and provide novel models and algorithms

for their efficient management. The focus of the investigations is on the so-called

P-graph based problem representation, so the following subsection describes the

most important basic concepts of this area.

1.2 Fundamentals of the P-graph methodology

The goal of a process network synthesis is to create products from raw materials

through various transformations (e.g., activities, physical reactions, etc.). Sev-

eral methods have been developed for handling process network synthesis tasks,

since the combinatorial complexity of these problems can grow rapidly resulting in

the calculations more difficult. An efficient approach based on P-graphs (process

graphs) has been published by Friedler et al. in the early 1990s as an algorithmic

aid for delineating the structures of PNS problems [38]. A PNS problem is defined

by the products, raw materials and intermediate materials, as well as the oper-

ating units with the parameters (maximal amount of the raw materials, required

amounts of the products, capacity, fix and proportional costs of the operating

units, etc.). Two types of nodes are depicted in a P-graph: nodes for materials by

circle, and nodes for operating units by rectangle.

For a set M of entities, a PNS problem can be given as a (P,R,O) triplet, where

P ⊆ M and R ⊆ M are special material sets for product and raw type materials,
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Figure 1.3: A simple P-graph representation

while O ⊆ ℘(M) × ℘(M) is the set of the operating units. Fig. 1.3 represents a

simple P-graph with one operating unit (O = ({A,B,C}, {D,E})), three input

(A, B, and C) and two output nodes (D, E). This illustrative example converts

two parts of A, three parts of B, and four parts of C into one part of D and five

parts of E. The constant ratios can be replaced by any functions which allow to

describe more complex transformation steps between input and output quantities

of the materials.

Although the process-network synthesis problem involves a mathematically diffi-

cult family of optimisation problems, the P-graph-based methodology and related

algorithms can handle it efficiently. While the SSG (Solution Structure Genera-

tor) algorithm has been developed to automatically generate the possible solution

structures [39], the ABB (Accelerated Branch-and-Bound) algorithm has been

published to efficiently identify the best or n-best solution in terms of cost [36].

P-graph-based solutions have been applied in recent years in many areas, includ-

ing optimal workflow generation, supply chain optimisation, and even efficient

management of product supply problems [37].
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1.3 Mathematical model of cost based synthesis

problems using P-graphs

Creating the optimal structure of a system based on processes is called process

synthesis. In practice, the problem definition used in process synthesis includes

the definition of the available raw materials, the possible equipment (operating

units), the products to be produced and the associated price, cost and constraint

parameters. The objective of the optimisation task is to obtain the desired product

using the raw materials and possible operating units so that the given objective

function is minimised/maximised while considering all fixed constraints.

The purpose of this subsection is to present a mathematical model that describes

a general process network synthesis problem. Several aspects can be given that

can be the goal of the optimisation, so it can be about the shortest execution time,

finding the most reliable process, but also cost/profit minimisation/maximisation

can be crucial.

In the following, l present a mixed-integer linear programming model that can

determine the optimal solution structure for manufacturing products from raw

materials using operating units where profit maximisation is the objective function.

First, let us see the general notations:

Let M be the set of materials M = R∪ I ∪P , where R is the set of raw materials,

I is the set of intermediate materials, and P is the set of products. Let also denote

the set O of the operating units and use the following two sets to define precisely

the constraints:

φ−(m): the set of operating units that can produce material m

φ+(m): the set of operating units that use m as their input

The following parameters are introduced for the operating units:

For each o ∈ O:

• co: capacity value,
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• a fixo: fixed cost, and

• a propo: proportional cost.

For each r ∈ R known:

• pricer: the price of the given raw material r, and

• an upper bound maxr represents that which is the available quantity of the

present raw material.

For each intermediate material i ∈ I , we can specify

• its pricei selling price;

• a maxi upper bound that controls the amount of material that can be re-

tained in the considered material point;

• a penali penalty value, which defines the penalty rate that appears as a cost

if all the quantities in the considered material point are not consumed by an

operating unit.

For each p ∈ P there may exist

• a pricep parameter that gives the revenue received per unit of product sold;

• a minp which sets a lower bound on the quantity of product to be produced;

• a maxp value, which gives an upper bound on the market demand.

For the material balance, the following parameters are given: For each o ∈ O and

m ∈M

• iro,m is the ratio of the material m to the input of the operating unit o;

• oro,m is the ratio of the material m to the output of the operating unit o.

The decision variables of the mathematical model are the following: for each o ∈ O

there is a continuous variable xo ∈ R+
0 and an existence variable yo ∈ {0, 1}. These

represent the amount of material flowing through the operating unit, as well as,
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the state of the operating unit, depending on whether the unit is involved in a

given structure or not. The constraints of the model are as follows:

For each operating unit (∀o ∈ O):

xo ≤M0 · yo, (1.1)

where M0 represents the „Big-M” (upper bound of the capacity of the operating

unit o).

For each raw material (∀r ∈ R):

∑
o∈φ+(r)

iro,r · xo ≤ maxr (1.2)

For all intermediate materials (∀i ∈ I):

∑
o∈φ−(i)

oro,i · xo −
∑

o∈φ+(i)

iro,i · xo ≤ maxi (1.3)

For each product (∀p ∈ P ):

minp ≤
∑

o∈φ−(p)

oro,p · xo −
∑

o∈φ+(p)

iro,p · xo ≤ maxp (1.4)

As indicated above, the objective in general is to maximize profit, so the objective

function can be written in the following form:

z =
∑
p∈P

(pricep(
∑

o∈φ−(p)

oro,p · xo −
∑

o∈φ+(p)

iro,p · xo))+

∑
i∈I

((pricei − penali)(
∑

o∈φ−(i)

oro,i · xo −
∑

o∈φ+(i)

iro,i · xo))−

∑
r∈R

(pricer ·
∑

o∈φ+(r)

iro,r · xo)−
∑
o∈O

fixo · yo + propo · xo

(1.5)

The expression above includes the revenue from the sales of the products, the profit
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from the sales of intermediate materials and the difference between the penalties

imposed, and the cost items arising from the purchase of raw materials and use of

products. An important factor is also the weight of fixed and proportional costs

which may result from the operation of the operating units.

1.4 Time-constrained process network synthesis

The lifecycle of a process lasts until the predefined goal or activity is achieved.

Obviously, the aim is to finish the task as quickly as possible so that we can move

on to the next phase as quickly as possible. A production process can be well

defined using the process network synthesis method. In the previous sections, I

introduced the analogy between the general producing processes and the P-graphs.

If time also needs to be considered, the established methodology needs to be

extended with time variables in the model [54]. The availability of resources can

be limited, and all end states can be demanded to be reached. To obtain a suitable

mathematical model, some other parameters have to be included. Therefore, fixed

times and proportional times are required. The former is denoted by tfi whilst

the latter by tpi.

It is also necessary to be able to specify the deadlines for the achievement of

each target. This is denoted by Utj, and the time at which each resource will be

available as soon as possible must also be known. These times are described by

parameters Ltj. A material mj is only available at a time tmj that is not smaller

than its earliest availability (Ltj), but not more than the defined deadline (Utj).

That is:

∀mj ∈M : Ltj ≤ tmj ≤ Utj (1.6)

The start time toi of activity oi ∈ O cannot precede the time tmj of any precon-

dition mj, i.e:

oi = (α, β) ∈ O, ∀mj ∈ αi : toi ≥ tmj (1.7)

The availability time tmj of any mj consequence of an activity oi must not precede
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the completion of the duration tfi + xi · tpi from the start time toi of the activity,

i.e:

oi = (α, β) ∈ O, ∀mj ∈ βi : tmj ≥ toi + tfi + xi · tpi (1.8)

1.5 Applications of the P-graph methodology, re-

search trends

The P-graph methodology has recently been widely used to study and optimise

production systems under different conditions. Friedler et al. have defined the

application areas as follows [37]: (1) industrial applications: PNS, process inte-

gration, and improvement; (2) supply chains, logistics, and production scheduling;

(3) sustainability assessment and circular economy; (4) reliability, resilience and

risk assessments; (5) non-conventional applications; (6) extension of the model

and software implementation; (7) novel directions. Some of the work published

in recent years is mentioned below, illustrating each area of research. A more

detailed overview can be found in [37], which provides an up-to-date summary of

the different research directions.

One of the main advantages of the P-graph framework is that it provides the

best or N -best solutions based on the structural properties of the problem to be

optimised. Many scientific papers have been published in this area since the 1990s.

The framework has also been applied in automated synthesis of process-networks

by the integration of P-graph with process simulation, which enhances the accuracy

of the physicochemical models [77]; in wastewater analysis and synthesis [102]; in a

study how to start a reaction pathway with synthesis technique [65]; in connection

with the synthesis of heat exchanger networks [75, 73, 72], and also in renewable

energy storage and distribution scheduling [14].

Most applications can be found in supply chains, logistics and scheduling. Several

works have been published addressing energy consumption in production systems
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[66, 31]; dealing with scheduling field service operation and custom printed napkin

manufacturing [42, 41].

Sustainability is another critical topic to be considered in process synthesis, and

when considering the connectivity of energy, water and food [15, 47].

Another exciting line of research – and this is the focus of my dissertation – concen-

trates on how the reliability of complex systems and processes can be calculated

algorithmically and integrated into optimization models [74, 60].

Several extensions of the traditional P-graph technique have appeared in recent

years. Kalauz et al. have extended the mathematical model to handle time-

dependent activities [54]. Nagy et al. [71] and Ercsey et al. [33] studied the

bus transport process network synthesis problem and presented interesting real-

world results in this area. Bartos and Bertok have investigated the possibilities of

parallelising the developed solving algorithms and have supported their accuracy

with case studies and analyses [9], while Heckl et al. have provided a modelling

technique for operating units with flexible input ratios [32].

In addition to the research mentioned above, new extension opportunities have

emerged, which foresee several future-oriented results.



Chapter 2
P-graph-based reliability optimisation:

Redundancy allocation in energy

systems

As most of the energy production and transformation processes are safety-critical,

it is vital to develop tools that support the analysis and minimisation of their

reliability-related risks. The resultant optimisation problem should reflect the

structure of the process which requires the utilisation of flexible and problem-

relevant models. This chapter highlights that P-graphs extended by logical con-

dition units can be transformed into reliability block diagrams, and based on the

cut and path sets of the graph a risk model can be extracted which opens up new

opportunities for the definition optimisation problems related to reliability redun-

dancy allocation. Risk models can be formalised by polynomials (polynomial risk

model), where the exponents of the polynomial represent the number of redundant

units, the cost function of the reliability redundancy allocation problem as a non-

linear integer programming model can be formalised. The cost function handles

the costs associated with consequences of equipment failure and repair times. The

applicability of this approach is illustrated in a case study of the chapter related

to the asset-intensive chemical, oil, gas and energy sector. The results show that

the proposed algorithm is useful for risk-based priority resource allocation in a re-

forming reaction system. In the second part of the chapter a novel multi-objective

optimisation based method is developed to evaluate the criticality of the units and

subsystems. The applicability of the proposed method is demonstrated using a

18
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real-life case study related to a reforming reaction system. The results highlight

that P-graphs can serve as an interface between process flow diagrams and poly-

nomial risk models and the developed tool can improve the reliability of energy

systems in retrofitting projects.

2.1 Review of redundancy allocation in energy

systems

Retrofitting in the energy industry is important to improve the efficiency of power

plants [93], increase energy production [5] and reduce emissions [104]. As safety-

critical systems are retrofitted, optimisation demands a critical degree of atten-

tion [35]. Moreover, both in terms of design and retrofit of new technologies, a

highlighted goal is to increase reliability and reduce maintenance costs, e.g. by

increasing the maintenance cycle time. Therefore, operational excellence in the

asset-intensive chemical, oil, gas as well as energy sectors should also be ensured

by risk-based optimal design and maintenance planning. Redundancy allocation

is widely used to identify critical elements where the reliability of the system at

minimum cost can be maximised by redundancy. [76]. Many scientific articles

highlight the importance of reliability-based studies. Such scientific results can

also be found in graph-based environments [60].

In the present section, an overview of recent developments, trends and challenges

in the synthesis, design and operation optimisation of energy systems with special

attention paid to uncertainty, reliability, maintenance and social aspects. The most

important modelling techniques and algorithms of recent years and decades are

presented and typical structures described that are the starting points for designing

and operating safety-critical systems. Moreover, motivated by deficiencies and

current research trends, a novel multi-objective integer nonlinear optimisation

method for minimising cost whilst maintaining a determined level of reliability

is presented. The model of the reliability-based redundancy allocation problem

is based on a polynomial risk model extracted from the path and cut sets of
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the flexible P-graph representation of process optimisation problems [38]. The

main benefit of the P-graph based technique is that the polynomial risk model

can be generated algorithmically based on the cut and path sets of the P-graph

representation.

In the next section, first, the P-graph-based design of energy systems is described

in Section 2.1.1. This is followed by a brief introduction to the literature review

of redundancy allocation in energy systems in Section 2.1.2.

2.1.1 P-graph-based design of energy systems

Several articles have been published in recent years to design optimal energy sys-

tems based on P-graph methodology, e.g. synthesis of chemical and energy conver-

sion systems, supply chains, waste and resource management, modelling chemical

reactions, and discrete event simulation-based decision-making [94].

In a P-graph, the input and output elements, as well as the technological units of

the energy system must be identified where the relationships between the subsys-

tems and material flows provide a high-level representation of the processes. By

visualising the P-graph representation of a process, the horizontal bars represent

the operating units, while the solid circles indicate the material streams. A group

of papers that focus on P-graphs support the system and supply chain design,

redesign and optimisation problems [90, 58] and also very specific part of the field

such as the asset management and retrofitting problem, in which an analysis of

the investment planning concepts is provided [95].

In the case of energy systems, the process flow diagram of a power plant can be

conveniently transformed into a P-graph, thus, the total site heat integration [99],

carbon footprint targets and other technological aspects can be handled via mixed-

integer linear programming (MILP) models. Related to the P-graph representation

and methodology, the criticality analysis based system design is demonstrated by

Benjamin et al. [12] using a risk-based matrix of the integrated bioenergy systems.

The methodology applied combines the original approach of criticality analysis
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and advantage of the algorithmic characteristics of the P-graph framework and the

methodology is represented by a bioenergy park and a palm oil-based integrated

biorefinery case study.

Moreover, this methodology also allows for the handling of such cases where the

demand for outputs and the availability of inputs are not constants and can change

over time. This is a typical requirement of energy systems which can be managed

by introducing new variables and constraints. Based on the defined superstructure,

the mathematical model of the problem can be written and the solutions are

generated automatically. The described P-graph-based methodology for the design

and optimisation of power systems is well represented via the optimal planning of

carbon capture and storage deployment in the power generation sector [19] and

the case study of an energy system where the heating requirements of a farm using

alternative inputs are taken into account [91].

In some special cases, the superstructure can be omitted and superstructure-free

synthesis and optimisation conducted as the real-life case study of distributed

energy supply systems presented [97], where in contrast to the traditional MILP

solver, heuristics and evolutionary algorithms support the identification of the best

solutions. In many cases, problems related to synthesis are subject to uncertainties,

where the product demands and/or availability of raw materials are not exact

values. The various extensions of the P-graph also provide a technique to handle

such cases, e.g. fuzzy constraints and ranges [7] as well as random variables [90]

are able to handle uncertainty events.

However, due to the safety-critical nature of energy systems, reliability is of crucial

importance and a need for a systematic P-graph-based methodology explicitly for

the reliability-based analysis and optimisation of such systems is present. In this

chapter such a methodology is presented.
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2.1.2 Literature review of redundancy allocation in energy

systems

Before going into detail, an overview of redundancy allocation in energy systems

is provided. For mapping the literature, I searched for publications related to

the topic on Scopus with properly chosen keywords yielded 168 papers. Off-topic

results were filtered whilst the remaining themes were separated considering the

properties of how they connect to energy systems, how practical they are, and what

are the benchmark topics. The results of text mining highlight the frequently co-

occurring keyword pairs in the analysed abstracts of these selected publications

as depicted in Figure 2.1. The nodes represent the keywords of each abstract and

two nodes are connected by a link if they frequently co-occur among the keywords

of abstracts. The size of the nodes is proportional to the frequency of occurrence

of the related keyword, while the thickness of the edge is proportional to the

frequency of co-occurrence of the keywords. The year of publication is indicated

by the colour of the node.

Several types of redundancy strategies can be found in the literature. Hot redun-

dancy is applied, when each component operates simultaneously, although only

the primary is required. Nowadays this is almost the exclusive method in the

safety-related processes. In the case of warm redundancy, the redundant element

has a low load until the failure of the operating element. Passive redundancy is

considered when the redundant element does not carry any load until the failure

of the operating element. Finally, we talk about a hot-standby strategy, when the

redundant element does not carry any load, but in case of a failure of the primary

element, the operation can be switched to the redundant one to keep the system

operational.

A general additional feature to the redundancy of structural schemes is the def-

inition of a k-out-of-n system (hereinafter referred to as koon system) having n

components and failing if and only if at least k component fails. This structure

has the benefit of having the opportunity of tuning the parameters k and n, where
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Figure 2.1: A network representing the topic of redundancy allocation in the
literature. Each node represents a keyword of the abstracts and two nodes are
connected by an edge if the words frequently co-occur in the abstracts. The
colours of the nodes indicate the year of publication

k and n are the number of operating and the number of the overall components,

respectively.

The provision of redundant critical process units/components can significantly re-

duce the operational risk of these systems. As such modifications of the technology

require additional investment and maintenance costs, it is beneficial to formalise

the reliability redundancy allocation problem as an optimisation task. The optimi-

sation of a boiler-feed water treatment plant, where the maximisation of reliability

with cost constraint was considered [55]. The mathematical model of the problem

is given as a k-out-of-n system. The publication incorporated the identification of

the components of the system including the weak links where the application of

redundancy would be appropriate and useful. A P-graph based nonlinear integer

programming model of the reliability-redundancy allocation problem was intro-

duced in [88] where the reliability of the given system was maximized subject to
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some cost constraints. The redundant process units were represented by logical

nodes in the P-graphs and Mesh Adaptive Direct Search (NOMAD) black-box

algorithm was used to solve the developed mathematical model.

Due to the optimal redundancy allocation is an NP-hard problem, most research

concerns the development of genetic algorithms and partical swarm optimisation-

based solutions.

The non-linear integer programming problems are often formalised and solved by

genetic algorithms (GAs). E.g. GAs were successfully applied for the optimisation

of active and standby redundancy strategies [76] and redundancy allocation in a

multi-state power system based on cost and availability requirements [34].

Redundancy allocation in energy systems has become a widely applied benchmark

problem for the development of particle swarm optimisation (PSO) [68] and ant

colony optimisation (ACO) solutions [79]. In these works, the total system relia-

bility is maximised while total system cost and weight are constrained [70].

The original idea to take into consideration multiple objectives during the redun-

dancy allocation problem dates back to the 1970s. A multi-objective formulation

of a reliability allocation problem to maximize system reliability and minimize

system cost was first formulated by Sakawa [84], while Inagaki et al. used an in-

teractive optimisation approach to design a system with minimal costs and weight

[53]. Moreover, multi-objective optimisation can also be applied to determine

the optimal replacement age in the presence of competing criteria [52]. A multi-

objective reliability allocation problem for a series system with time-dependent

reliability was first presented in [25]. A novel multi-objective particle swarm op-

timisation algorithm and a multi-objective mathematical method were proposed

by Dolatshahi-Zand and Khalili-Damghani for the optimisation of a SCADA wa-

ter resource management control center [27]. A meta-heuristic particle swarm

optimisation-based strategy is applied to optimise the redundancy allocation prob-

lem of multi-state systems with bridge topology in the case of a coal conveyor

multi-state system with limited system availability and a limited budget [100].
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The ant colony technique can also be applied to solve a multi-objective optimisa-

tion problem in the context of the redundancy and maintenance of a multi-state

koon system [1]. Recently de Paula et al. proposed a solution for the redundancy

allocation problem by applying a stochastic Markov Chain-based approach using

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [23].

The redundancy allocation problem frequently occurs in energy systems. Recently

the problem was investigated in terms of generators and transformers in power

systems [64]. With an ever-increasing emphasis on renewable energy systems,

the reliability of wind farms has also become a cardinal issue [34, 1, 2]. The

redundancy allocation of turbocharger overspeed protection has become a widely

applied benchmark problem [101, 46, 30, 29] similar way to the integrated design

of a steam turbine configuration for a biomass-based tri-generation system [4].

Moreover, the redundancy of brake lining [81], a coal conveyor belt system in a

power system [100] and a pressurized water reactor cooling loop system [3] are

also taken into consideration.

The previously presented overview highlighted that in a sophisticated model-based

optimisation methodology, the costs associated with maintenance and the conse-

quences of equipment failure should be structured according to the hierarchy of

the assets, and the time-dependence of the failure probabilities as well as mainte-

nance activities should also be considered. In the following, a method that meets

these requirements will be presented.

2.2 Description of reliability-focused structural

characteristics of complex systems using clas-

sical frameworks

Fault tree analysis is the most commonly used method in risk and reliability cal-

culation. This technique can be successfully applied in many fields, whether engi-

neering or IT systems, but it is also an essential methodology for performing risk



Chapter 2. P-graph-based reliability optimisation:
Redundancy allocation in energy systems 26

analysis tasks [63, 82].

The analysis starts from a hypothetical system failure, a TOP event, and pro-

gressively identifies the component and subsystem failure modes that lead to the

occurrence of that event.

The methodology is supported by a tree structure-like graphical representation

(fault tree), which can complement reliability calculations.

During the analysis, the methodology aims to identify all failures and combinations

of failures leading to the TOP event and their causes; to detect particularly critical

events and event chains; to calculate reliability figures along the branches of the

fault tree; to identify failure mechanisms.

In principle, fault tree analysis involves four main steps: Formulate the problem

and select the TOP event; Prepare a fault tree describing the problem; Analyse

the fault tree; finally, evaluate the results.

Fault trees are constructed with various event and gate logic symbols. Although

many events and gate symbols exist, most fault trees can be built using TOP or

Intermediate event, inclusive OR gate, AND gate, and basic event.

Figure 2.2 illustrates the fault tree itself and its elements.

A fault-tree-based representation can be used to quantify the risk analysis. The

risk of a TOP event occurring can be characterised using probability tools. This

step requires identifying the so-called cut sets of the fault tree. A cut set is any

group of events that will cause the TOP event to occur if they all happen. The

minimum cut set is the set of cut sets with the smallest number of elements.

Assume that the minimal cut set is unique. In this case, if the probabilities

of occurrence of the events in the minimal cut set are p1, p2, . . . , pn, then the

probability of occurrence of the TOP event is the product of these probabilities,

i.e. p1 ∗ p2 ∗ . . . ∗ pn. It implies that the probability that the TOP event does not

occur can be easily computed, and the procedure can be generalized to cases with

several minimal cut sets.
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Figure 2.2: Elements of a fault tree

A model describing the desired system state or event can be written on the analogy

of a fault tree. The success tree can be generated from the fault tree by simple

transformation steps. The way to do this is to replace all OR gates with AND

gates, all AND gates with OR gates, and the TOP event reflects the desired success

state.

In addition, other system description methodologies exist; the reliability block

diagram (RBD) Fig. 2.3 represents the contribution of subsystems of complex

systems to the overall system. It describes the connections between the elements;

thus, the method can be used to predict the system’s availability and analyse the

criticality of the subsystems.

In Chapters 2 and 3, the methodology presented here will be adapted to those cases

where P-graph-based models describe the structural characteristics of a system.

For example, details of fault-tree and success-tree-based risk analysis can be found,
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among others, in [43, 82].

Figure 2.3: Example of a Reliability Block Diagram

2.3 Notations

To summarize, the list of functions, variables, and parameters are as follows:

Functions:

φ – system structure function

PUB – upper bound of reliability of the system

PLB – lower bound of reliability of the system

Variables:

e – vector, representing the functioning-or-failed condition
of components

ei – represents condition of ith component

di – number of redundant i units

o∗ – set of materials and operating units in the optimal solu-
tion

z∗ – optimal value of the objective function

Parameters:

c – number of the components

Cfm – fixed cost of maintenance

CV – variable cost of maintenance per day
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DT – downtime

M – set of materials

O – set of operating units

P – set of products

R – set of raw materials

(P,R,O) – PNS problem

LimitUpper
risk – Upper bound of the acceptable risk

LimitUpper
component – number of spare components

M – materials

MC – maintenance cost

πi – minimal path i

PL – production loss

PLPD – production loss per day

np – number of minimal paths

ϑi – cut set i

nc – number of cut sets

2.4 P-graph based representation of energy sys-

tems

The focus of this chapter is the safety-critical optimal design of complex process

systems. For this purpose, the reliability-redundancy allocation task is interpreted

as a process network synthesis (PNS) problem and a widely applicable method is

proposed for the evaluation of the reliability of systems represented by P-graphs.

Most business, manufacturing and technological processes can be depicted by P-

graphs. Although this representation was primarily used to describe production

processes in the early 1990s [38], nowadays, several applications are known that

consider energy technology networks and many other problems, e.g. the design

process of wastewater treatment systems [13] and development of production pro-
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cesses [10].

In early P-graph studies only material transformation steps were symbolised by

an operating unit, recently the whole concept has been extended to include the

modelling and analysis of workflows. Accordingly, the logical connections between

the elements (logical ’AND’, logical ’OR’) can be represented by the operating

units and material-type nodes (see Figure 2.4). The transformation between suc-

cess trees, reliability block diagrams and P-graphs can easily be given since the

operating units of a P-graph represent the functionalities of the components, and

materials are used to introduce elementary faults into the model, as represented

in Figure 2.5.

Figure 2.4: Representation of (a) AND and (b) OR dependencies as well as (c)
the redundancy of activities as OR connections

The path and cut sets identified in a P-graph provide the opportunity to perform

reliability-based analyses and extend previous cost/profit optimisation procedures.

Note, that in complex systems it is expedient to construct a P-graph by defining

subsystems because a clear representation can be given. Furthermore, any part of

the P-graph can be examined separately, thus, further reliability analyses can be

executed to improve redundancy and reliability even more.

The algorithms that support the structural analysis of P-graphs are extended in

the next subsection and a reliability-based technique will be constructed using cut

and path sets of P-graphs.
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Figure 2.5: Example of a (a) Reliability block diagram, (b) Fault tree, (c) Success
tree, and (d) P-graph representation. As can be seen, P-graphs can represent both
reliability block diagrams and success trees

2.5 Reliability analysis for time-independent case

based on the cut and path sets of P-graphs

The focus is the safety critical optimal design of complex process systems. For

this purpose, the reliability-redundancy allocation task is interpreted as a process

network synthesis problem and a widely applicable method is proposed for the

evaluation of the reliability of systems represented by P-graphs.

2.5.1 Mathematical background

It is assumed that the system is built from c components. Due to failures, some of

these components do not perform their required functions within specified perfor-

mance requirements, which can result in the whole system losing its functionality.
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The functioning-or-failed condition of components is represented as an

e = [e1, . . . , ei, . . . , ec]
T

vector, where ei = 1 represents that the i -th unit is functioning, while ei = 0

represents the failure of the i-th component. The system structure function is

a Boolean function that maps {0, 1}c into {0, 1}, which represents e0 = φ (e) ,

assuming the whole system is functioning correctly. When the components of the

system are in series then

φ (e) = e0 = e1 · . . . · ec,

but when in parallel

φ (e) = e0 = 1− (1− e1) · ... · (1− ec) .

The reliability of the system is equivalent to the probability of the system prop-

erly functioning, P (φ (e) = 1) . The structure function is usually represented as

reliability block diagrams.

The reliability block diagram of the system is a labeled random graph, where

the nodes ei represent the nodes of random variables indicating the i-th node is

present in the graph. A path in a graph is a sequence of alternating adjacent

nodes and the links joining them, beginning and ending with a node. Therefore,

when a path to the end of the reliability block diagram exists through the sets of

operating nodes/units, then the system is working properly. A path is referred to

as minimal if it contains no proper subset that is also a path connecting the same

two nodes. As a result, the set of minimal paths defines the set of operating units

that ensure the operation of the whole system. Since there can be several minimal

paths, π1, . . . , πnp , the system functions when at least one path is available, so the

(upper bound of) reliability of the system is:
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PUB (φ (e)) = 1−
np∏
k=1

[
1−

∏
i∈πk

P (ei = 1)

]
(2.1)

A cut is a set of nodes and links whose removal from the graph disconnects the

beginning and ending nodes, so the sets of minimal cuts connect the sets of units

whose failure results in the failure of the whole system. Namely, the system fails

if at least one of the minimal cuts consists entirely of non-functioning units. Since

several cut sets can exist, ϑ1, . . . , ϑnc , therefore, the lower bound of the reliability

of the system is:

PLB (φ (e)) =
nc∏
k=1

[
1−

∏
i∈ϑk

[1− P (ei = 1)]

]
(2.2)

A path in the P-graph defined between a raw material flow and a product is a

sequence of alternating adjacent material and operating unit nodes and the links

joining them, beginning and ending with a material node. The analogy between

a P-graph and a success tree can easily be realised since the operating units of

a P-graph can represent the functionalities of the components, and the materials

denote the faults in the model. In order to illustrate the analogy the following

simple example should be considered. Since an operating unit represents a device

to which an activity is associated, a heat exchanger corresponds to an operating

unit in a P-graph model. Representing the temperature exchange of the air flowing

through the heat exchanger from cold to hot or vice versa this unit requires input

material to be transformed into another output material corresponding to the cold

and hot air.

All the feasible solution structures can be generated automatically based on the

initial P-graph according to the SSG algorithm [40], which also defines paths from

the raw materials to the products. The elements of a feasible solution structure

ensure the uninterrupted operating status of the system, and the set of the oper-

ating units provides one element of the path set at the same time. All elements
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of the path set can be obtained by producing all the feasible solution structures.

In order to determine the reliability of a system, the minimal path sets are re-

quired, so a novel algorithm is needed to generate the elements of this set based

on the initial structure. A minimal path set is a minimal set of components whose

simultaneous work ensures that the system works properly. The set of minimal

path sets which are required for the analysis of the reliability of the system can be

given by the Path Set Generator Algorithm (2.1). The input of Algorithm 2.1 is

a graph defined by (m, o), where m denotes the set of materials and o represents

the set of operating units. The algorithm produces a minimal path set by exam-

ining sub-problems starting with the products represented by P . The bottom-up

construction of the algorithm results in possible feasible solution structures that

are also part of the minimal path set. Since an operating unit is defined by its

input (α) and output (β) material sets, the minimal path set is also given by a

set of (m, o) pairs.

Such a P-graph is shown in Figure 2.6 where the set of materials isM = {A, . . . , F},

the raw materials are R = {A,B,C,E}, and the set of products is represented

by a single element in P = {F}. The operating units are as follows: O =

{O1, O2, O3, O4}, where O1 = ({A}, {D}), O2 = ({B}, {D}), O3 = ({C,D}, {F})

and O4 = ({B,E}, {F}). There are 7 different feasible solution structures which

can easily be seen: Str1 = {O1, O3}, Str2 = {O2, O3}, Str3 = {O1, O2, O3}, Str4 =

{O4}, Str5 = {O1, O3, O4}, Str6 = {O2, O3, O4} and Str7 = {O1, O2, O3, O4}; only

three of which, namely Str1, Str2, and Str4, are the elements of the minimal path

set.
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Algorithm 2.1: Path Set Generator

Input : (m, o): P-graph
Output : minimal path sets

1 begin

2 min-path-sets := ∅

3 subproblems := (P,∅,∅, (O \ o))

4 while subproblems ̸= ∅ do
5 let (p, p+, o+, o−) ∈ subproblems , where |(o+)| is minimal
6 subproblems := subproblems \(p, p+, o+, o−)
7 if {(m, o) ∈ min-path-sets |o ⊆ o+} = ∅ then
8 if p = ∅ then
9 ψ := ∪(α,β)∈o+(α ∪ β)

10 min-path-sets := min-path-sets ∪{(ψ, o+)}
11 else
12 let x ∈ {x̂|x̂ ∈ p and |(α, β) ∈ o : β ∩ x̂ ̸= ∅| is minimal}

13 ox := {(α, β) ∈ o : β ∩ x ̸= ∅} \ o−

14 oxb := ox ∩ o+

15 C := ℘(ox \ oxb)

16 if oxb = ∅ then
17 C := C \ {∅}
18 end
19 for all c ∈ C do
20 p̂ := ((∪(α,β)∈cα) \ p+ \ {x} \R

21 p̂+ := p+ ∪ {x}

22 ô+ := o+ ∪ c

23 ô− := o− ∪ (ox \ oxb \ c)

24 subproblems := subproblems ∪{(p, p+, o+, o−)}
25 end
26 end
27 end
28 end
29 return min-path-sets

30 end
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Algorithm 2.2: Structural Reliability Calculator

Input : (m,o): P-graph, po: set of reliability of operating units, where
poi gives the reliability of the operating unit i

Output : reliability of the whole system

1 begin mint-path-sets:=Path Set Generator ((m, o))

2 return 1− (
∏min−path−sets

k=1 (1−
∏

i∈
∏

k
poi)) end

Figure 2.6: Illustrative example of a P-graph representing the minimal path and
cut sets.

By applying the elements of the minimal path set, the reliability of the system

can be calculated by Algorithm 2.2. Although the complexity of the Algorithm

2.1 is exponential, it is essential to emphasize that practical experience shows that

the procedures developed for P-graph-based solutions are complete in polynomial

time. Friedler and colleagues gave an example of this in their earlier work [38].

Algorithm 2.1 is able to determine path sets even if several TOP events exist, in

contrast to the traditional fault tree and success tree techniques where exactly one

TOP event is determined. In the case of multiple TOP events, in the representation

of the P-graph an operating unit can symbolize the ’AND’ relationship between

these events.
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A close relationship exists between minimal path and minimal cut sets: the former

defines the operational probability of the overall system, while the latter indicates

its complementarity, i.e. the risk of failure. The system fails if at least one of the

minimal cuts consists entirely of non-functioning units. The minimal cut sets are

created in such a way that all logic gates are exchanged, i.e. each AND becomes

OR and vice versa, thus, the P-graph can be constructed accordingly. Note that

the minimal path set of the example shown in part d of Figure 2.5 is

{{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}},

while the minimal cut set is

{{1}, {2}, {3}, {4, 5, 6}}.

The reliability of the entire system can be characterised by a polynomial expres-

sion, as the reliabilities are multiplied when the elements are connected by AND

connections, while logical OR connections aggregate the different sets. As an in-

crease in the reliability of the system by introducing redundant elements is desired,

the above equations can be written as follows:

PUB (φ (e)) = 1−
np∏
k=1

[
1−

∏
i∈πk

1− [1− P (ei = 1)]di

]
(2.3)

PLB (φ (e)) =
nc∏
k=1

[
1−

∏
i∈ϑk

[1− P (ei = 1)]di

]
(2.4)

where di represents the number of units. The evaluation of the risk associated with

the failure of the system requires the calculation of the economic consequence of

equipment failures. In our study, the cost of the required maintenance cost (MC)

and the cost of the production loss (PL) were calculated:
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MC = Cfm+DT · CV (2.5)

PL = DT · PLP (2.6)

where cfm stands for the fixed cost of maintenance ($), DT denotes the downtime

(number of days), CV represents the variable cost of maintenance per day ($ day-1),

and PLPD is the production loss per day ($ day-1). The risk of each subsystem

is the product of its failure probability and consequences of failure. Based on

this loss function and the polynomial reliability of the model, the following risk

function can be determined, where o∗ represents the set of materials and operating

units involved in the optimal solution:

∑
(α,β)=oi∈o∗

(cfmi +DTi · CVi) (1− P (ei = 1))+

+ (DTi · PLPDi) (1− P (ei = 1))di ≤ LimitUpper
risk

(2.7)

whose risk is inversely proportional to the reliability of the system:

z∗ = PUB (φ (e)) = 1−
np∏
k=1

[
1−

∏
i∈πk

1− [1− P (ei = 1)]di

]
(2.8)

The risk always decreases by increasing the redundancy. However, the installation

of additional components requires investment costs, resources for which are limited.

As detailed information concerning the investment costs of the components is

unavailable, the number of spare components is constrained:

n∑
i=1

di ≤ LimitUpper
component (2.9)

Based on these variables, a nonlinear integer programming model was defined,

where the z∗ objective function is maximised under the constraints related to
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the upper bound of the acceptable risk, LimitUpper
risk , and the number of spare

components (available investment costs) LimitUpper
component .

2.5.2 Case Study

The applicability of the proposed methodology is demonstrated using data from a

real-life case study related to the reforming reaction system in Sinopecs Luoyang

Petrochemical Plant ([51]), which describes a real chemical system, where the

authors provide the relationships between the system and its subsystems, as well

as the reliability values of the subsystems.

The reliability and cost parameters of the subsystems of the process are given

in Table 2.2. Instead of solving a process synthesis problem, in this study the

P-graph of the process is obtained based on the success tree of the system (see Fig.

2.7). Since the data is aggregated to the subsystems, the reliability-redundancy

allocation problem is also defined at this level (see Figure 2.8).

Based on the P-graph, the path sets were determined by the proposed min-

imal path set generation algorithm. Because of the specific topology of the

graph, the minimal path set contains all the activities in the graph, therefore,

PUB (φ (e)) =
∏

i∈πk
P (ei = 1) = 0.009 . The Nonlinear optimisation by Mesh

Adaptive Direct Search (NOMAD) black-box algorithm is used to solve this devel-

oped mathematical model. The algorithm defines a mesh with the discretisation

of the space of variables and performs an adaptive search while the refinement

of the mesh is also controlled ([6]). The solutions are verified by BARON ([83])

which is a computational system for solving nonconvex optimisation problems to

global optimality. The reliability of optimal solutions for different constraints is

presented in Table 2.3. The results show that by increasing the available budget,

the reliability of the system is also increased, however, the number of redundant

elements comprehensively determines the total cost and reliability. The results il-

lustrate that the proposed methodology is applicable with regard to the risk-based

resource allocation in the design of process systems.
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Table 2.2: Reliability and cost parameters of subsystems (n=9)

# Subsystem Reliability
(P (ei = 1))

cfmi ($) DTi (day) CVi ($) PLPDi ($)

1 1st compressor subsystem 0.4208 2,173.9 1.5 144.93 43,478

2 Heating-reaction subsystem 0.4011 7,246.4 5.0 289.86 43,478

3 Heat exchanger subsystem 0.6088 2,898.6 3.0 289.86 43,478

4 Cooler subsystem 0.6801 1,449.3 2.0 289.86 43,478

5 Separation subsystem 0.9907 2,898.6 4.0 289.86 21,739

6 Pump subsystem 0.5722 724.6 1.0 72.464 0

7 2nd compressor subsystem 0.7874 1,449.3 1.0 144.93 0

8 Absorber subsystem 0.6984 1,449.3 4.0 144.93 14,493

9 Instrument subsystem 0.4141 724.6 1.0 72.464 0

Table 2.3: Results of optimisation

# LimitUpper
risk LimitUpper

component d = (d1, d2, ..., d9) Reliability of the system

1 110,000 15 (2,4,2,2,1,1,1,1,1) 0.0568

2 150,000 15 (2,3,2,1,1,2,1,1,2) 0,0879

3 180,000 15 (2,2,2,2,1,2,1,1,2) 0,0947

4 35,000 25 (5,6,4,3,1,1,1,3,1) 0,1514

5 50,000 25 (3,6,3,3,1,2,2,2,3) 0,3922

6 70,000 25 (4,4,3,2,1,3,2,2,4) 0,4563

2.6 Major results and related publication

In this section, a novel approach for safety-critical optimisation of process systems

was presented. To represent redundant process units and to calculate the relia-

bility of the system logical nodes to P-graphs were added. It was demonstrated

that P-graphs extended by these logical condition units can be transformed into

reliability block diagrams, and based on the cut sets and path sets of the graph
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Figure 2.7: Success tree of reaction system published in [51]

Figure 2.8: P-graph representing the subsystems of the reaction system. The
figure also illustrates how redundancy is handled in the proposed framework

a polynomial risk model can be extracted. The cost function in terms of the

reliability redundancy allocation problem was formalised as nonlinear integer pro-

gramming model, where the integers are the exponents of the polynomial model

that represent the number of redundant units. With the help of the NOMAD al-

gorithm, the reliability under the constraints related to the investment costs and

the acceptable risks associated with the consequences of equipment failure and

repair times was maximised. The applicability of this approach was illustrated by

a case study related to a reforming reaction system. In the next section, how the

time-dependent reliability of the units will be incorporated into the model and

how the proposed toolset can be used for the prioritisation of the maintenance

work will be focused on.
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Related publication

Süle Z., Baumgartner J., Abonyi J., 2018, Reliability - redundancy allocation in

process graphs , Chemical Engineering Transactions, 70, 991-996 DOI:10.3303/

CET1870166, Rank: Q3

2.7 Thesis 1

I have adapted the fault- and success tree-based methodology of reliability calcu-

lation to the P-graph framework. The developed approach allows the algorithmic

reliability-based analysis of processes given by P-graph descriptions.

• I have developed an algorithm for generating minimal path sets of P-graph

processes, which allows the calculation of process reliability.

• I have built a P-graph-based optimisation model to solve the reliability–re-

dundancy allocation problem. The evaluation of the objective function in

the implemented model is calculated by computing the minimal path sets of

P-graphs.

• I have validated the results of the P-graph-based mathematical model by

solving a real case study of the literature. Based on the success tree of a

real reaction system, a polynomial risk model has been developed, and relia-

bility optimisation, as well as, computation of the number of the redundant

elements has been performed.



Chapter 3
P-graph-based risk analysis of k-out-of-n

configurations

The design, operation and maintenance processes of safety-critical energy systems

require careful planning, modelling and optimisation steps [57]. As is depicted in

Figure 3.1, the proposed P-graph based method also follows a similar structure.

In the following, the details of these steps will be presented. Because of unified

terminology, we note that a system is a set of components that together perform

specific objectives. The overall system consists of components, one element of

which is referred to as a subsystem. These two terms are used in this sense

hereinafter.

Figure 3.1: Steps of the proposed methodology of P-graph based risk analysis
and redundancy allocation

43
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3.1 Methodology

1. Identification of losses and risks: Identifying the relevant risk(s) of the overall

system, where the value of a risk is (1 − p) × L, where p represents the

reliability of the system related to the TOP event (in other words p is the

probability that the system is operational), and L shows the loss when the

system fails.

2. Build the P-graph description of the system which presents the subsystems

and relationships. In terms of integrated optimisation, the process has al-

ready been represented by a P-graph, but in retrofit cases, the P-graph

structure has to be given.

3. Based on the structure of the system, efficient algorithms generate the min-

imal path and cut sets. As a result, the bottlenecks in the system become

visible, as well as the role and dominance of the subsystems. The complexity

of the algorithm is theoretically exponential but because it depends strongly

on the system structure, practically results can be achieved in reasonable

time.

4. Determine the criticality of the subsystems and components or the criticality

of the initiating events, i.e. the value of criticalities constrain the optimisa-

tion within limits.

5. Determine the maximum acceptable failure probability of the system: RiskMax

L
,

where RiskMax is the maximum acceptable risk.

6. Identify the critical units where redundancy can or should be applied: re-

dundancy or load sharing can be applied at certain points of the system,

which have to be given as inputs.

7. Estimate the risk that may result from the failures: the acceptable risks are

given as constraints in the mathematical model.

8. Perform a life cycle analysis: the time-dependent fault probabilities can be

calculated for the overall system and each subsystem.
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9. Formulate a multi-objective optimisation problem: in general, a mixed-

integer non-linear mathematical model is created and solved by heuristic

algorithms.

10. Evaluate the results: The genetic/heuristic algorithm gives the optimal or

a near optimal solution to the redundancy allocation and load-sharing prob-

lems.

A fault tree analysis-based methodology can also be useful for determining the

reliabilities of the subsystems [56], [89]. A P-graph based model allows for many

TOP events in the representation and reliability calculation, generation of the

mathematical model and model solution can be performed algorithmically.

3.2 Notations

To summarize, the list of functions, variables, and parameters are as follows:

|.| – cardinality of a set

α – input set of materials of an operating unit

β – output set of materials of an operating unit

e(t) – vector represents the functioning-or-failed condition of
components

ei(t) – vector represents the functioning-or-failed condition of
component i

e0(t) – vector represents the functioning-or-failed condition of
the whole system

fi(x) – objective function i

ici – investment and maintenance costs of the i-th component

Ie(t) – importance function of an elementary event e at time t

Ik(t) – importance function of the cut set ϑk at time t

k – number of operating elements in a koon system

Li – loss when subsystem i fails

M – set of materials in the PNS problem
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(m, o) – P-graph given by sets m ∈M and o ∈ O

N – number of types of components

n – number of overall elements in a koon system

nc – the total number of minimal cuts

np – the total number of minimal paths

Ngen – number of generations in the genetic algorithm

Npop – population of the genetic algorithm

O – set of operating units in the PNS problem

P – set of products in the PNS problem

ϕ(.) – Boolean system structure function

πi – minimal path set i

R – set of raw materials in the PNS problem

Ri(t) – reliability function of component i

R∗
i (t) – reliability function of the individual component i in a

koon system

R0(t) – reliability function of the whole system

℘(M) – the power set of set M

S – set of feasible solutions

t – time

T – lifespan

ϑi – minimal cut set i

× – Cartesian product

x – decision vector containing the decision variables

3.3 Reliability analysis for time-dependent case

based on the cut and path sets of P-graphs

One of the objectives of this chapter is to generalise the mathematical model and

approach presented in the previous chapter. This chapter of the thesis focuses

on the time-dependent aspects of reliability calculation, which will provide us
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with more accurate analyses for the risk assessment of complex systems. The

analysis will continue to be performed for systems written in P-graphs since this

guarantees the algorithmic generation of the cut sets that form the basis of the

reliability calculation in our models.

It is assumed that the system is built from N different types of components that

deliver different degrees of reliability. Due to the complex interdependence of the

elements when some of these components do not perform their desired functions

within specified performance requirements, the whole system loses its functional-

ity. Based on the time-independent methodology presented in Chapter 2, in the

following I introduce the model of the time-dependent reliability. The functioning-

or-failed condition of components is represented as an

e(t) = [e1(t), . . . , ei(t), . . . , eN(t)]
T

vector, where ei(t) = 1 represents that the i-th unit is functioning at instance of

time t, while ei(t) = 0 represents that the i-th component at the instance of time

t is not functioning properly.

The reliability

P (ei(t) = 1)

of the components is represented by the reliability functions Ri(t), ∀i = 1, . . . , N .

In the case of complex systems the probability of the whole system R0(t) =

P (e0(t) = 1) functioning properly should be calculated based on the internal

functional dependency of the components which is usually represented by the

e0(t) = ϕ(e(t)) Boolean function concerning the structure of the system that is an

N dimensional binary vector ({0, 1}N) in order that the functionality of the whole

system be e0(t) ∈ {0, 1}, so P (e0(t) = 1) = P (ϕ(e(t)) = 1).

Since several minimal paths, π1, . . . , πnp can exist, the system functions when at

least one path is available, so (the upper bound of) the reliability of the system is:
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R0(t) = P (ϕ(e(t))) = 1− Π
np

k=1 [1− Πi∈πk
Ri(t)] (3.1)

as the i ∈ πk components of the path πk are logically connected in series and the

paths are logically connected in parallel to each other. This polynomial expression

of the reliability of the entire system reflects that reliabilities are multiplied when

the elements are connected by AND connections, while logical OR connections

aggregate the different sets.

3.3.1 Identification of the critical elements in P-graphs

Since several minimal cut sets can exist, namely ϑ1, ϑ2, . . . , ϑnc , the probability of

the occurrence of a given cut set may be an important issue [43]. If all the events

in the cut set ϑk occur, the TOP event is also produced, so the occurrence of the

TOP event is mapped by an AND gate, where the events from the cut set ϑk are

the inputs. Accordingly, the probability that the cut set ϑk occurs at time t is:

P (ϑk occurs at time t) =
∏
i∈ϑk

P (ei(t) = 1) (3.2)

A minimal cut set defines a number of important features of the whole system.

Namely,

• a cut set with many elements indicates low risk for the overall system;

• a cut set with few elements indicates high risk for the overall system;

• many cut sets indicates high risk for the overall system;

• a few cut sets indicates low risk for the overall system;

• a cut set with only one element indicates a single point of failure which means

that activation of a single elementary fault may result in system failure.

Let Ik be the importance of the cut set ϑk at time t. Assuming the cut set ϑk

occurs at time t, the probability that ϑk induces the TOP event at time t is:
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Ik(t) =
P (ϑk occurs at time t)

P (TOP event occurs at time t)
. (3.3)

The importance of the elementary events of the cut set needs to be measured,

since it can provide some useful information when the aim is to design a redundant

system for maximising its reliability with a given budget. The probability that

event e contributes to the TOP event at time t if it occurs is:

Ie(t) =
∑

k∈{i|e∈ϑi,i=1,...,nc}

Ik(t). (3.4)

Note that when calculating the middle and TOP event reliabilities, the indepen-

dence of vulnerabilities of the elementary events is assumed. Otherwise, the cal-

culated reliability may be significantly in correct.

3.3.2 Multi-objective formulation of the koon redundancy

allocation problem

In critical cases, the components should be more reliable than is achievable by

frequent maintenance of the equipment. In this case, the reliability of the system

should be improved by applying a set of redundant elements. The most robust and

flexible solution is the k-out-of-n configuration (”koon”) that consists of n compo-

nents and fails if and only if at least a single k component fails. This structure

has the benefit of having the opportunity to capacity among the k components

and the quick repair of critical system failures that have been detected without

stopping the operational process (online repair).

When R∗
i (t) represents the reliability of the individual components, and ki and ni

denote the numbers of operating and overall elements, respectively, the reliability

of the redundant component is calculated based on the combination of the faultless
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operating paths given by the following equation:

Ri(t) =

ni∑
l=ki

(
ni

l

)
(R∗

i (t))
l (1−R∗

i (t))
ni−l (3.5)

if ki = 1 then just one component is sufficient enough to fulfil the requirements,

so the above equation simplifies to:

Ri(t) = 1− (1−R∗
i (t))

ni . (3.6)

By inserting the equation above into the path set-based polynomial reliability

model of the whole system, the following model is produced which describes the

redundancy of the entire system with ki, ni, ∀ i = 1, . . . , N parameters:

R0(t) = 1− Π
np

k=1

[
1− Πi∈πk

ni∑
l=ki

(
ni

l

)
(R∗

i (t))
l (1−R∗

i (t))
ni−l

]
(3.7)

The goal of the multi-objective redundancy allocation problem is to maximise the

reliability over a given lifespan t = T and meanwhile minimise the additional

investment cost related to the redundant components.

The multi-objective optimisation problem that consists of n objective functions,

fi(x), i = 1, . . . , n can be presented in the form:

min
x∈S

{f1(x), f2(x), . . . , fn(x))} (3.8)

subject to

S = {x|gk(x) ≤ 0, k = 1, 2, . . . ,m} (3.9)

where S denotes the set of feasible solutions defined by a set of gk(x) ≤ 0 nonlinear

constraints and x represents a decision vector that contains the decision variables

as x = [k , n], where k = [k1, . . . , kN ] and n = [n1, . . . , nN ].

At least two objective functions should be defined to maximize the reliability func-
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tion f1(x) = 1−R0(x, T ), and minimize the installation (and maintenance) costs

f2(x) = C(x) of the redundant components as the number of installed units deter-

mines the investment cost, C(x) =
∑N

i=1 niici, where ici denotes the investment

cost or the investment and maintenance cost-related weight of the i-th component.

The most often realised and standardised variants of koon are 1oo2, 2oo2 and

2oo3 (triple modular redundancy), where the number of operating units should be

smaller than the number of installed units, i.e. the equation

1 ≤ ki ≤ ni ≤ 3 , ∀i = 1, . . . N (3.10)

should be fulfilled.

In order to obtain information about how the objectives conflict with each other

and let safety engineers select according to the extracted trade-off between risk

and reliability, the aim of the proposed optimisation-based sensitivity analysis is

to identify a set of Pareto optimal solutions where a decision xi is a Pareto optimal

solution if both conditions are true:

• xi is no worse than xj: ∀kfk(xi) ≤ fk(xj)

• xi is strictly better than xj in terms of at least one objective: ∃k : fk(xi) <

fk(xj)

As the problem is NP-hard, recently several metaheuristic algorithms have been

developed to obtain the Pareto fronts of complex optimisation problems. Among

these, the most widely applied NSGA-II is utilised [24], which is a multiple-

objective optimisation algorithm and its applicability will be demonstrated in the

following section.

3.3.3 Case study

The applicability of the proposed methodology is demonstrated using a real-life

case study related to the reforming reaction system at Sinopec Luoyang Petro-
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chemical Plant [51] (see Figure 3.2). As high production losses and maintenance

costs cannot be tolerated, a risk-based maintenance strategy has been developed

to reduce economic risk due to unexpected failures. In contrast to Chapter 2, the

case study is now being used for validating the time-dependent model, and thus,

Weibull parameters are used.

Figure 3.2: The nine subsystems of the studied reforming reaction system

Besides the application of a suitable maintenance methodology, the introduction

of redundant processing units can decrease reliability-related risks. Thanks to

the well-documented and realistic maintenance costs and production losses as well

as the identified reliability models (shown in Tables 3.2 and 3.3), this risk-based

maintenance problem can be extended to serve as an excellent demonstration of

the proposed redundancy allocation method.
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Table 3.2: The risk of subsystems is calculated based on the maintenance cost
MCi = cfmi + DT · CVi which consists of the fixed costs cfmi (e.g. inspection,
component replacement) and variable costs CVi (e.g. costs of labour) associated
with the downtime DTi. The effect of the production loss PLi = DTi · PLPDi

calculated based on downtime DTi and daily production loss PLPDi is also ac-
counted by the risk, so Riski =MCi + PLi [51]

.

# Subsystem Reliability
(P (ei = 1))

cfmi ($) DTi (day) CVi ($) PLPDi ($)

1 1st compressor 0.4208 2, 173.9 1.5 144.93 43, 478

2 Heating-reaction 0.4011 7, 246.4 5.0 289.86 43, 478

3 Heat exchanger 0.6088 2, 898.6 3.0 289.86 43, 478

4 Cooler 0.6801 1, 449.3 2.0 289.86 43, 478

5 Separation 0.9907 2, 898.6 4.0 289.86 21, 739

6 Pump 0.5722 724.6 1.0 72.46 0

7 2nd compressor 0.7874 1, 449.3 1.0 144.93 0

8 Absorber 0.6984 1, 449.3 4.0 144.93 14, 493

9 Instrument 0.4141 724.6 1.0 72.46 0

Table 3.3: Parameters of the F ∗
i (t) = exp

−
(

t
βi

)αi

Weibull probability distribu-
tions describing the reliability of the units in the reforming reaction system [51].

# Subsystem Equipment Scale parameter
β/month

Shape parameter
α

Improvement
factor ρ

Cumulative fail-
ure probability
F (t) (over 1 year)

1 1st compressor Steam turbine
(T201)
Hydrogen com-
pressor (K201)
Steam feed
pipeline

19.001
17.711
120.000

2.713
1.895
1

0.822
1
N/A

0.24979
0.38011
0.09516

2 Heating-reaction Reactors (R201
/ R202 / R203 /
R204)
Combined fur-
nace (H201 ABC)
Solo furnace
(H201B)
Refining gas feed
pipeline

40.181
18.842
20.774
150.000

3.154
1.833
2.147
1

0.897
0.917
0.815
N/A

0.02187
0.35426
0.26495
0.07688

3 Heat exchanger Heat exchangers
(E201A / E201B)

22.802 2.171 0.770 0.21977

4 Cooler Air cooler (A201)
Heat exchanger
(E202)

40.574
19.546

2.835
2.129

1
1

0.03114
0.29807

5 Separation Separators
(D201/D202)

45.285 4.038 0.823 0.00468

6 Pump Pumps (P201A /
P201B)

12.329 1.772 0.604 0.24354

7 2nd compressor Hydrogen com-
pressors (K202A
/ K202B)

15.068 2.307 0.727 0.11265

8 Absorber High pressure
absorber (D204)
Heat exchanger
(E204)

33.083
25.139

2.100
1.929

1
0.781

0.11209
0.21348

9 Instrument Control
valves&Detecting
Instruments

N/A N/A N/A 0.58590

Instead of solving a process synthesis problem, in this study, the P-graph of the

process was obtained based on the process flow diagram of the system (see Figure

3.3). As all the elements of the R and P sets of the P-graph are represented by
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Figure 3.3: P-graph of the reforming reaction system highlighting the different
subsystems

elementary reliability functions, with the help of the path set generation algorithm

the fault tree of the process can also be generated. Given the strong dependency

among the components, only one path set was identified which was decomposed

according to the hierarchy of the technology (see Figure 3.4).

The failure probabilities of subsystems are calculated using the polynomial model

(see Equation 3.5). The risks can be evaluated by multiplying the fault probabili-

ties by the production losses due to downtimes as well as fixed and variable costs
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Figure 3.4: Fault tree of the reforming reaction system

of maintenance activities. As Table 3.2 in the appendix shows, the effects of fail-

ures and production losses are different in the subsystems, so the risk is calculated

as Risk =
∑

i (1−Ri(T )) ∗ Li, where Ri(T ) represents the reliability of the i-th

subsystem at the end of the planning period and Li stands for the loss when the

i-th subsystem fails. According to this interpretation, the risk is the expected loss

(expressed in $) over the time period T .

The time-varying risks of equipment failures were calculated and summarised ac-

cording to the hierarchy of the technology as is shown in Figure 3.5, 3.6, and

3.7.
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Figure 3.5: Reliability of the individual components

Figure 3.6: Risk of the subsystems
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Figure 3.7: % of the total risk of the subsystems as a function of time

The result of this risk evaluation can be used to measure the importance of the

units and subsystems. The Pareto diagram of this analysis is shown in Figure 3.8.

The comparison between the risks after the first month and first year confirms the

importance of the time-dependent analysis. The main conclusion from this plot is

that the relative importance of the subsystems varies over time so time-variation

should be taken into account not only during the design of maintenance periods

but also in terms of redundancy allocation. Both short- and long-term aspects of

reliability should be taken into account as it is necessary to ensure reliability over

time intervals shorter than the maintenance period and also over more extended

periods in process units in which the improvement factor of maintenance conducted

is small.

The primary goal is to identify the safety-critical units and determine what kind

of redundancy is worth applying to increase their reliability even when specific in-

formation about the cost of the units is not available. This challenge is handled by

formalising the risk-based redundancy allocation problem as a multi-objective op-

timisation task that simultaneously minimises risk and the numbers of redundant

units.
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Figure 3.8: Pareto analysis of the risk (the expected loss in US $) after the a.)
first month and b.) first year

It has to be noted that although this methodology should be primarily considered

as a sensitivity analysis when much more accurate information about the capital

costs of the redundant elements and the effect of their maintenance is proposed,

optimisation can serve as an advanced design tool.

To determine the non-dominated set of optimal solutions, the widely applied

NSGA-II was used. A detailed flowchart of the algorithm is shown in Figure 3.9.

According to the nature and complexity of the mathematical model, a complex

nonlinear optimisation problem is given, thus the global optimum is not guaran-

teed in all cases. As this genetic algorithm-based tool utilises a stochastic meta-

heuristic search, ten independent runs were performed on a large population and

generations, Npop = 100 and Ngen = 100, respectively. The mutation, crossover

rates, etc. parameters have been remained unchanged, default values have been

applied. As is shown in Figure 3.10 the algorithm yielded consistent results when

koon-type of redundancy was optimised when kmax = 2 and nmax = 3 and the

sum of additional redundant elements was constrained as
∑
ni ≤ 10. Note that

in this case, the maximum number of units at a subsystem is at most 3, as it can

be shown that greater redundancy is usually not economical [16].
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Figure 3.9: The flowchart of the utilised NSGA-II optimisation algorithm

As is shown Figure 3.10, the risk can be significantly reduced by adding redundant

components. The main benefit of the proposed multi-objective optimisation-based

sensitivity analysis is that it is unnecessary to define a detailed cost function for

screening the redundancy strategies, the analysis of the resultant Pareto front

already highlights how risk can be reduced by the utilisation of koon redundancy.

The importance of the units can be calculated based on how frequently they are

selected as redundant elements in the Pareto fronts of the ten independent opti-

misations. The consistency of the selection is visualised in box plots that were

also aggregated according to the hierarchy of the technology to evaluate the risk-

improvement potential of the subsystems (see Figure 3.11). The selection-based

importance of the individual units of the system is illustrated by the top part,

while in the bottom part it can be seen that their importance is aggregated into

the defined subsystems.

It should be noted that although the results are similar to the risk-based Pareto
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Figure 3.10: The results of ten independent runs of multi-objective optimisation-
based redundancy allocation using NSGA-II. The similar Pareto fronts confirm
the consistency of the meta-heuristic search. As can be seen, the increase in
redundancy significantly decreases the risk (the expected loss in US $)

analysis presented in Figure 3.8, the proposed multi-objective optimisation-based

analysis highlights the risk-improvement potential of the components and subsys-

tems based on the prior knowledge of the safety and process engineers concerning

the costs of making the units redundant.

When investment costs related to the building up of the redundant elements are

taken into account; the results imply first that the reliability of Heat exchangers

(E201A/E201B) in the third subsystem should be improved. Since the reliability

of these units improved by only 77% following their maintenance (see the Improve-

ment Factor in Table 3.2), it is worth investigating the economic benefits of the

implementation of the suggested redundancy in more depth.
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Figure 3.11: a.) The importance of the units and b.) subsystems is evaluated
based on the results of the multi-objective optimisation. The frequency of the
selection of the redundant elements is evaluated by box plots.

3.4 Major results and related publications

As P-graphs are widely used in terms of the optimisation of energy transformation

as well as production systems and the optimisation of these systems should often

handle risk-related aspects, the objective of the proposed research was to present

a method for P-graph-based risk and reliability analysis.

It was determined that P-graphs also represent the logical dependencies between

the availability of raw materials and the operating units, moreover, these models

can be extended to incorporate additional logical conditions/dependencies in order
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that the path and cut sets of P-graphs represent the logical conditions of the

operation of the whole process are ensured.

The path sets lend themselves to the extraction of reliability block diagrams and

polynomial risk models from the P-graphs. It has been demonstrated that the

hierarchy of the technology can be used to partition the optimisation model. This

transparent representation is beneficial as it can be easily used to calculate of

risks related to the malfunction of the subsystems and determine the risk-based

evaluation of the importance of the process units.

The proposed approach has proven to be useful in terms of redundancy allocation

formulated by multi-objective optimisation tasks. The methodology developed

can be applied in all cases where the relationships between a given system and

its subsystems can be formally described and the target of the investigations is

in connection with reliability. These questions can of course be extended by fur-

ther constraints and new optimization models can be derived accordingly. The

applicability of this approach was validated by a case study related to a reform-

ing reaction system. The results confirm that the main benefit of the proposed

scheme is that even if detailed information concerning investment costs is unavail-

able, the method is still an excellent tool for the evaluation of the criticality of the

components and comparison between different redundancy strategies.

According to these, the main contributions of the work were as follows:

• Overview of recent efforts concerning the P-graph based optimisation of

energy systems and redundancy allocation in these processes which proves

the importance of the research.

• Path-set based automatic extraction of polynomial risk models from P-

graphs.

• Time-varying risk analysis and the importance with regard to the evaluation

of the units of P-graphs.

• Statistical evaluation of a set of independent multi-objective optimisation
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runs is used for the evaluation of the importance of the safety-criticality of

the components and subsystems.

• A case study based on industrial data demonstrated that the methodology

is applicable to risk-based resource allocation.

• Comparison with classical risk-priority based Pareto analysis shows the ben-

efits of the proposed approach.

The incorporation of the proposed methodology in the P-graph based design of

energy systems is not only recommended but the improvement in the reliability

of safety-critical systems in retrofitting studies should also be taken into account

as an objective. The methodology is flexible as P-graphs are excellent for the

modelling of process systems so with the help of the proposed method it can serve

as an interface between process flow diagrams and polynomial risk models.

The importance of taking into account the time-variance of risks in terms of the

allocation of redundant components was also highlighted by the results.

Related publications

• Süle Z., Baumgartner J., Dörg Gy., Abonyi J., 2019, P-graph-based multi-

objective risk analysis and redundancy allocation in safety-critical energy

systems, Energy, 179, 989-1003, DOI:10.1016/j.energy.2019.05.043, IF: 6.947,

Rank: D1

• Süle Z., Baumgartner J., Abonyi J., 2018, Reliability - redundancy allo-

cation in process graphs, Chemical Engineering Transactions, 70, 991-996,

DOI:10.3303/CET1870166, Rank: Q3

3.5 Thesis 2

I have generalized the methodology of P-graph-based reliability calculation to the

time-dependent case and k-out-of-n (koon) configurations. The developed model



Chapter 3. P-graph-based risk analysis of k-out-of-n
configurations 64

can be easily applied to calculate risks related to the malfunction of the subsystems

and determine the risk-based importance of the process units.

• I have defined cut set-based metrics for the identification of the critical

elements in a system.

• I have developed a multi-objective formulation of the koon redundancy al-

location problem, where time dependent reliability of a given system, the

degree of the redundancy, and the related costs can be optimized.



Chapter 4
Test sequence optimisation by survival

analysis

Testing is an indispensable process for ensuring product quality in production

systems. Reducing the time and cost spent on testing meanwhile minimising the

risk of not detecting faults is an essential problem of process engineering. In the

following, the method for optimisation of complex testing processes consisting of

independent test steps is considered. Survival analysis based models of the el-

ementary test are developed to efficiently combine the time-dependent outcome

of the tests and costs related to the operation of the testing system. A mixed

integer non-linear programming (MINLP) model is proposed to formalize how the

total testing cost depends on the sequence and the parameters of the elementary

test steps. To provide an efficient formalization of the scheduling problem and

avoid difficulties due to the relaxation of the integer variables the MINLP model

is considered as a P-graph representation based process network synthesis prob-

lem. A realistic case study taken from computer manufacturing demonstrates the

applicability of the methodology. With the application of the optimal test times

and sequence provided by the SCIP (Solving Constraint Integer Programs) solver

0.1–5% of the testing cost can be saved.

4.1 Introduction

In the chapter I am focusing on the optimisation of modular, replaceable unit

based production systems. The modular production involves distributors and

65
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suppliers in the manufacturing process [87], which increased integration improves

responsiveness to customers and efficiency [92]. Industry 4.0 is a strategic approach

to design optimal production flows by leveraging the interconnectivity to reach the

goal of intelligent, resilient and self-adaptable manufacturing systems [67].

Testing is an indispensable process in production systems. Usually, the almost

independently operating modules of modular products are tested as a sequence of

independent test steps related to testing the independent units. The primary focus

of the test steps is to identify the faulty modules rather than the individual faults

within the modules. When a test step fails, the defective unit will be removed and

replaced, and the product is retested.

The aim is to determine the test sequence which minimizes the expected cost.

The sequencing problem initially focused to the optimisation of the diagnostic

and fault isolation functions of electronic products. Troubleshooting built-in test

sequence optimisation is a classical problem in the design of automatic systems

[86].

The diagnosis is often integrated with two types of repair: Type 1 repair wherein a

module is repaired after complete diagnosis, and a Type 2 repair where a module

suspected to be faulty is replaced after partial diagnosis. For systems during

operation the integration of these repair strategies into the problem of which tests

must be executed in what sequence was already solved by Pattipati [78].

Test sequencing problems during manufacturing require a different approach than

test sequencing problems during operation [18]. Contrary to previous works orig-

inated from the analysis of fault probabilities, we aim to build a detailed cost

function of the testing procedure and give a sophisticated solution to the problem.

Test prioritization algorithms for fault localization are based the diagnostic infor-

mation gain per test to enhance the rate of fault detection [44].

The traditional test-sequencing problem includes asymmetrical tests where the

next test to execute depends on the results of previous tests. Hence, the test-
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sequencing problem can naturally be formulated as a decision tree construction

problem, whose solution is known to be NP-hard [62]. In this chapter, I highlight

that in manufacturing although we have to test all the components, the total

costs of the sequence depends on the test sequence, since the number of the tested

products is influenced by the results of the previous tests.

In most of the cases, the tests have fixed time interval. The decision of when to

stop testing is often difficult to make because less testing may leave critical faults

in the system, while more testing increases the costs and the time-to-market. A

risk-based stopping criterion of deciding when to stop testing has been introduced

for test sequencing in [17].

The aim is to build a complete test time cost and risk cost model based on the

survival analysis of the historical data of the test process and use the resulted

model for rescheduling of the test sequence.

Although I study a different problem than maintenance optimisation, at the de-

velopment of the model, several elements can be utilized from this field. In the

context of risk-based maintanance optimisation failure history and lifetime distri-

bution function based optimisation of inspection periods was already examined

in 1972 by Zacks and Fenske [103]. Detailed optimisation models of periodically

inspected preventively maintained units take into account finite repair and main-

tenance durations as well as costs due to testing, repair, maintenance and lost

production [96]. Repair-time limit replacement problem with the imperfect repair

was also studied in [26].To predict the number of spare components required to

maximize the availability of a system a non-linear integer programming problem

was defined [61]. The optimisation model uses exponential, gamma, normal and

Weibull distributions to represent how the probability of failures vary in time. The

risk model plays an essential role in these optimisation problems. In advanced so-

lutions to describe the failure rate, Cox’s proportional hazards models and Weibull

hazard functions with time-dependent stochastic covariates are used, and the pa-

rameters of the hazard functions were estimated using maximum-likelihood and



Chapter 4. Test sequence optimisation by survival
analysis 68

Quasi-Newton methods [8].

In this chapter, a risk-based test sequencing optimisation algorithm is developed

based on the techniques learned from risk-based maintenance optimisation. I

apply of survival analysis and hazard functions to formalize a sophisticated test

cost model; we optimise the lengths of the tests steps and formalize the integrated

sequencing task as a Mixed Integer Nonlinear Problem.

The mathematical model of the test sequencing optimisation problem can be con-

structed as a traditional scheduling problem formulated as standard mixed integer

mathematical programming. This formulation represents the ordering of the tests

as a set of constraints defined on integer variables. Problem specific simplifica-

tions of the testing process can hardly taken into account in such models, thus the

optimisation process can take a long time for a large number of test steps.

The fundamental idea is that the benefits of the algorithmic superstructure gen-

eration and P-graph framework are used initially introduced for process network

synthesis PNS problems [38] to generate a mathematical model which exploits the

structural properties of the testing process.

The analogy between the separation network synthesis and test sequencing optimi-

sation problems is that items failed in a test step are separated from items which

passed the test. Separation network synthesis problems (SNS) aim is to design

an optimal separation structure that separates the components of input streams

into outlet streams of specific composition. The algorithmic generation of rigor-

ous super-structure that includes this optimal structure is an efficient approach to

solve these problems [59]. An algorithm for the generation of a problem-specific

reduced super-structure with minimal complexity has been developed and applied

in [48, 49]. The main contribution of this chapter is that the detailed cost model

of a test sequencing problem is formalised and the SNS based representation to

generate its parsimonious MILP model is used. The demonstration of the appli-

cability of this approach is made by a realistic case study taken from computer

manufacturing.
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4.2 Notations

The functions, variables and parameters required for the test sequence optimisa-

tion problem are listed below:

Functions:

C i(t) - Total cost function of test step i

C i
f (t) - Fix and amortization cost function of test step i

C i
p(t) - Proportional cost function of test step i

C i
r(t) - Repair cost function of test step i

C i
w(t) - Warranty cost function of test step i

Si(t) - Survival function of test step i

W i(t) - Weibull distribution function of test step i

Variables:

π - Vector representing the order of test steps

t - Variable representing time

ti - Length of the ith test step

t̄ - Vector of the times of activities

xi - Volume of activity i

x̄ - Vector of the volumes of activities

yi - Existential (binary) variable representing the status of
activity i (works or not)

ȳ - Vector of existential (binary) variables representing the
status of activities

Z - n× n matrix representing test orders

Parameters:

cif - Constant fix and amortization cost of test step i for one
item

cip - Constant proportional cost of test step i for one item

cir - Constant repair cost of test step i for one item

ciw - Constant warranty cost of test step i for one item

Exl - set representing the mutually exclusive activities

ei - ith unit vector



Chapter 4. Test sequence optimisation by survival
analysis 70

ki - Shape parameter of Weibull distribution W i(t)

λi - Scale parameter of Weibull distribution W i(t)

Lpj - Lower bound for mj final target (product)

N - Number of test steps

N i
in - Number of items involved in test step i

Nin - Number of items entering the testing process

M - Set of entities in PNS problem

℘(M) - Cartesian product of set M

M̄ - Sufficiently large number

P - Set of product in PNS problem

R - Set of entities in PNS problem

ratioji - Function representing the difference between the produc-
tion and

consumption rate of entity mj by activity oi
O - Set of operating units in PNS problem

O1 - Set of operating units representing test steps in the pro-
cess

O2 - Set of operating units representing logical (not test
steps) activities in the process

T i
max - Maximum length of test step i

Ucj - Upper bound for mj resource

4.3 Formulation of the test sequence optimisa-

tion problem

The studied test process consists of i = 1, . . . , N test steps. The time dependent

costs of the test steps are represented by the C i(t) functions. The costs are linearly

proportional to the number of items passing through the test steps, C i(t)N i
in,

where N i
in represents the number of items involved in the test step i .

The studied test process is linear. The order of the test steps is represented by a
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π vector, as i = πj denotes that the jth element of the sequence is the ith test

step.

The applied Si(t) survival functions are represented by W i(t, ki, λi) Weibull distri-

bution to determine the ratio of items that successfully pass a test step i

Si(t) = 1−W i(t, ki, λi) = e−(t/λi)
ki , for t ≥ 0. (4.1)

Items failed in a test step are not included in the further test steps, so

N
πj+1

in = N
πj

in S
πj(tπj

) = Nin

j∏
l=1

Sπl(tπl
) (4.2)

where Nin is the number of items entering the testing process and tπj
represents

the length of the πjth element of the sequential test process.

Thus, the total cost of the testing process can be formalized as follows:

min
N∑
i=1

C i(ti)N
i
in =

N∑
i=1

C i(ti)N
πi−1

in Sπi−1(tπi−1
), (4.3)

where N0
in ≡ Nin, π0 ≡ 0 and S0(t0) ≡ 1.

In more compact and transparent form the optimisation problem is defined as

determining the order of the test indexes represented by the π vector and the tπ
vector that consists of the time lengths of the test steps:

min
π,tπ

C(π, tπ) = Nin

N∑
j=1

(
Cπj(tπj

)

j−1∏
l=1

Sπl(tπl
)

)
(4.4)

The C i(t) function of the test steps is introduced to represent the fix, proportional,

repair and warranty cost elements:

C i(t) = C i
f (t) + C i

p(t) + C i
r(t) + C i

w(t) (4.5)
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where C i
f stands for the fix and amortization costs:

C i
f (t) = cif t (4.6)

and C i
p the proportional cost elements:

C i
p(ti) = cip

∫ ti

0

Si(t)dt . (4.7)

The parameters cif and cip give the constant fix and amortization as well as the

proportional costs of test step i for one item.

Wrong items discovered during the testing process will be repaired in a later work-

ing phase. The 1−Si(t) function gives the ratio of the failures at time t, thus the

repair cost function is

C i
r(ti) = cir

(
1− Si(ti)

)
, (4.8)

where cir defines the repair cost for one item.

Some failures remain hidden despite of testing steps, thus these items must be

repaired during the warranty period. The last cost function represents this cost

element, where ciw shows the warranty cost for one item and T i
max is the maximum

length of the test step i:

C i
w(t) = ciw(S

i(t)− Si(T i
max)). (4.9)

The goal of the test sequence optimisation problem is to minimise the overall cost

representing Eq. 4.4 with the constraints of the mathematical model come from

the sequence search problem, where each test must be executed exactly once in a

given order. Thus, we get such a scheduling problem, where the objective function

can be evaluated only if a feasible test order is available since the binary variables

which determine the optimal order can not be relaxed during the optimisation

steps.
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4.4 Test sequence optimisation as a process net-

work synthesis problem

In a test sequence optimisation problem the optimal test order and test durations

have to be given, where the constraints guarantee the right permutation of test

steps and the minimisation steps give the optimal test times. The general math-

ematical model can be formalised as a Mixed Integer Nonlinear Programming

problem:

minπ,tπ C(π, tπ) = Nin

∑N
j=1

(
Cπj(tπj

)
∏j−1

l=1 S
πl(tπl

)
)

s. t. vector π represents the permutation of N test steps

where

ti ≥ 0, 1 ≤ πi ≤ N integer,

i = 1, 2, . . . , N

(4.10)

The objective function of the problem (4.10) can be evaluated only if feasible order

of test steps is known.

Although the problem to be solved can be described by several optimisation mod-

els, in my dissertation, the test-sequence optimisation task is investigated using

process network synthesis-based formalisation. One of the advantages of the ap-

proach is that the mathematical model can be easily generated as the structure

of the task changes, and the P-graph framework provides several algorithms for

optimisation and analysis of the task that can even produce all feasible solutions.

Considering the test sequence optimisation problem as a process network synthesis

(PNS) task, the relaxation of the binary variables does not cause any difficulty.

The goal of a process network synthesis is to create products from raw materials

through various transformations (e.g., activities, physical reactions, etc.). The
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aim of this chapter is to adapt the process network synthesis problem to the test

sequence optimisation task.

Each test step in the test sequence optimisation problem is represented by op-

erating unit, which can be characterized by some cost parameters such as fix,

proportional, repair and warranty costs. The total cost of a test step depends on

the entering number of items and the length of the test thereby determined the

number of passed and failed tests. Non-negative continuous variable ti shows the

duration of test step i, and xi non-negative continuous variable gives the quantity

of produced items by the operating unit in test step i.

The initial structure or superstructure involves each candidate N test represented

by operating units, as well as, the N(N−1) potential changeovers from each test to

any other tests. Since test executions are not parallel, but sequential, each test i1 is

followed by at most one test i2 as the forthcoming test. Consequently, changeovers

from test i1 to any other test i2 where i2 = 1, . . . , N, i1 ̸= i2 are mutually exclusive,

i.e., at most one of changeovers ∀i1 ∈ N : {chi1,i2 : i2 = 1, . . . , N, i1 ̸= i2} can be

included in a feasible test process. Thus, the sum of the corresponding existence

variables does not exceed 1:

∀i1 ∈ N :
∑

i2∈{1,...,N},i1 ̸=i2

ychi1,i2
≤ 1 (4.11)

Note that the binary variable yi does not appear in the objective function directly,

but its value impacts the capacity of the operating unit i: xi ≤ M̄yi, where M̄ is

a sufficiently large number, and yi = 1 if and only if, the assigned operating unit

works.

Consequently, the objective function of the optimisation problem can be given as

min
N∑
i=1

[
cif ti +

(
cip ·
∫ ti

0

Si(t)dt+

+cir ·
(
1− Si(ti)

)
+ ciw ·

(
Si(ti)− Si(T i

max)
))

· xi
]

(4.12)
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While operating units are characterized by capacity, cost parameters and functions,

the material type nodes are characterised by mass-balance constraints. Some

quantitative limits are given for raw materials and products:

• the lower bounds Lpj for each mj final target:

Lpj =

> 0, ∀mj ∈ P

0, otherwise

• the upper bounds Ucj for each mj resource:

Ucj =

> 0, ∀mj ∈ R

0, otherwise

In the P-graph describing a testing process there is only one raw material which

represents the computers waiting for testing. The activities linked to the raw ma-

terial are mutually exclusive, and depicted all the activities as operating units. In

the solution structure one activity must be selected among them which determines

the first test step. Further parts of the graph describe the test steps and the next

possible test steps for each of them. All the test step activity nodes have three

outputs: the first shows the number of failed items, the second one is an artificial

node with a positive lower bound, which forces the operation of the activity, and

the last node represents the items passed the test.

Fig. 4.1 illustrates a structure with three test steps. Using the labels of the figure:

R = {m1}, P = {m6,m9,m12,m15},M = {m1,m2, . . . ,m15},

O = {O1, O2, . . . , O18},
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Figure 4.1: Sample P-graph describing a three test steps case.

Exl = {{O1, O2, O3}, {O8, O9, O10}, {O12, O13, O14}, {O16, O17, O18}} .

Level 1 in the P-graph helps to identify the first test step of the process, therefore

only one activity can be chosen from the set {O1, O2, O3}. The graph elements on

Level 2 give the test steps with their cost functions. All the operating units will

be part of the solution structure, since all tests must be executed. Finally, the

elements of Level 3 help to give a right order of test steps, since structurally all

possible connections are represented in the graph. The output of O7, O11, and O15

activities at Level 3 represent the failed items in test step 1, 2, and 3; exactly one

activity is chosen from the set {O8, O12, O16}, that one, which belongs to the last

step element. The O9 and O10, the O13 and O14, as well as the O17 and O18 give

the next test steps. For example, if the test order is 3, 2 and 1, then O18, O13 and

O8 activities are in the solution structure.

Formally, in the optimisation problem let M be the set of materials, O the set

of activities, x̄ the vector of the volumes of activities, ȳ the vector of the exis-

tence variables to the activities, t̄ the vector of the times of activities, and set
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Exl represents the mutually exclusive activities. Relations between entities and

activities are described by function ratioji(t) which gives the difference between

the production and consumption rate of entity mj by activity oi.

Let O split into two parts: O = O1 ∪ O2, where O1 ∩ O2 = ∅, O1 contains those

operating units which represent test steps in the process, while O2 = O \ O1. In

this special PNS problem the set R contains only one element, since there is one

starting point of the process.

The aim is to satisfy the following constraints and let z be minimal:

∀oi = (αi, βi) ∈ O1 : mj ∈ αi ↔ ratioji = −1 and mj ∈ βi ↔ ratioji > 0 (4.13)

∀oi = (αi, βi) ∈ O2 : mj ∈ αi ↔ ratioji = −1 and mj ∈ βi ↔ ratioji = 1 (4.14)

x̄ = [x1, x2, . . . , x|O|]
T , ȳ = [y1, y2, . . . , y|O|]

T and t̄ = [t1, t2, . . . , t|O1|]
T (4.15)

∀xi ≥ 0, ∀yi ∈ {0, 1}, and ∀tk ≥ 0, i = 1, . . . , |O|, k = 1, . . . , |O1| (4.16)

mj ∈ R : −Ucj ≤
∑
oi∈O2

ratiojixi ≤ 0 (4.17)

∀mj ∈ P : Lpj ≤
∑
oi∈O2

ratiojixi (4.18)

∀mj ∈M \ P \R :
∑
oi∈O

ratiojixi = 0 (4.19)

∀exl ∈ Exl :
∑
oi∈exl

yi = 1 (4.20)

∀oi ∈ O : xi ≤ M̄yi (4.21)

z =
∑
oi∈O1

[
cif ti +

(
cip ·
∫ ti

0

Si(t)dt+

+cir ·
(
1− Si(ti)

)
+ ciw ·

(
Si(ti)− Si(T i

max)
))

· xi
]

(4.22)

In the mathematical model Eqs. (4.13)-(4.14) show the different ratios between
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materials and activities; the output ratios of the material type nodes are equal to

-1, while the input ratios depend on the type of connected activity. The positive

ratioji values in Eq. (4.14) are as follows: for each activity oi ∈ O1 has three

outputs with the following properties:

• output m1i represents the failed items with ratio1i = 1− Si(ti).

• output m2i ensures that the activity i works with ratio2i = Lp2i > 0.

• output m3i gives the successfully passed items with ratio3i = Si(ti).

Eq. (4.17) gives the upper bound to the entering number of items, while (4.18)

fixes the required leaving number of items at different points in the process. The

(4.19) expresses the law of mass-balance, e.g. the entering number and the leaving

number of items are equal at any intermediate point of the process. Due to the

nature of the given scheduling task, some activities can not be performed concur-

rently; the set Exl contains these exclusions which are represented in Eq.(4.20) by

the sum of binary variables.

4.5 Case study

To demonstrate the applicability of the proposed methodology an illustrative ex-

ample is presented related to the optimisation of the sequence of functional tests

of computers in a computer assembling process. In this example Nin = 20, 000

computers are tested in a sequence of 12 test steps detailed in Table 4.2.

As discussed in the previous section, the failure events are characterised by survival

functions which are derived from Weibull distribution. The Weibull parameters

determine the failure rates of the test steps with parameters ki and λi, and the

cost properties are characterized using the parameters cif , cip, cir, and ciw.

Before solving the general optimisation problem, some specific types of test se-

quence problem will be described.

First, consider that case when the costs of each test step are equal but the reliabil-
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Table 4.2: Description of the functional test steps

# Name Description

#1 Sleep Testing the PC can resume normal operation after sleeping
for an extended amount of time

#2 Hibernation Testing the operating system’s ability to hibernate and the
recovery from hibernation

#3 Restart Testing the PC’s ability to successfully restart the PC and
the OS

#4 OS Testing the operating system whether it can boot up or not

#5 HDD Testing the HDD for bad sectors

#6 MemCheck Running a memory checker to find faulty memory slots or
RAM

#7 VGA Testing the VGA if it sends out the display data properly

#8 USB Testing of the USB ports with preinstalled USB simulators

#9 BIOS Performing a BIOS power-on self-test (POST)

#10 CPU Checking the temperature of the CPU under different load
levels

#11 Power Testing of the supplied voltage levels

#12 Stress Testing the computer with multiple tasks at once

ities are different. Formally, providing that C1(t1) = C2(t2) = . . . = CN(tN) = C,

the objective function can be simplified to the following form, while the constraints

are unchanged:

min
π,tπ

NinC

N∑
j=1

(
j−1∏
l=1

Sπl(tπl
)

)
(4.23)

It can easily be verified that the Eq. (4.23) is minimal when Sπi(tπi
) ≤ Sπj(tπj

) for

all i ≤ j, where i, j ∈ {1, 2, . . . , N}, i.e., the optimal solution is given by ascending

order of reliability of test steps.

As an analogy to the former case let the reliabilities be the same while the costs
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be different. Formally, providing that S1(t1) = S2(t2) = . . . = SN(tN) = p, the

objective function is the following:

min
π,tπ

Nin

N∑
j=1

(
Cπj(tπj

)pj−1
)

(4.24)

It can be seen that Eq. (4.24) is minimal if Cπi(tπi
) ≤ Cπj(tπj

) for all i ≤ j,

where i, j ∈ {1, 2, . . . , N}, i.e. the cheapest step is the first in the sequence and

the others follow in ascending order.

The parameters of the model and the survival functions can be determined based

on log files of testing processes by fitting the parameters of the survival functions

to the available data sets. Table 4.3 summarises the parameters of the problem:

the qualities of test steps are characterised by survival functions with parameters

λi and ki. The survival functions describing each test step are represented in

Figure 4.2.

Table 4.3: The values of parameters in the optimisation problem

Step’s name λi ki cif ($) cip($) cir($) ciw($)

#1: Sleep 5× 108

0.5

4.5× 10−9 3× 10−5 10 100

#2: Hibernation 7.8× 1010 1.5× 10−10 2× 10−6 9 91

#3: Restart 9.9× 109 1.5× 10−9 10−5 7 170

#4: OS 1010 1.5× 10−10 10−5 8 117

#5: HDD 2.9× 1011 4× 10−10 2× 10−6 9 163

#6: MemCheck 1.9× 108 10−9 6× 10−5 7 87

#7: VGA 7.3× 107 10−9 2× 10−4 14 146

#8: USB 1.6× 109 5× 10−9 9× 105 8 139

#9: BIOS 7.4× 107 10−10 10−4 11 133

#10: CPU 2.7× 109 5× 10−10 3× 10−5 11 128

#11: Power 2× 1012 1.5× 10−10 6× 10−7 6 101

#12: Stress 2.7× 108 2× 10−9 6× 10−5 6 152
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Figure 4.2: Survival functions of each test step

The parameters cif , cip, cir, and ciw determine the characteristics of unit cost func-

tions which are shown in Figure 4.3. It can be seen that the „BIOS” test results

the greatest ratio of failed elements, whilst the „Power” test is the most reliable

considering it outputs the least failures among all the steps.

To solve the scheduling problem, a mixed-integer non-linear mathematical solver is

required. SCIP [69] [45] is currently one of fastest non-commercial solver for mixed

integer programming and mixed integer nonlinear programming. It allows total

control and access to detailed information about the solver. The optimisation steps

of the given mathematical model were performed using the SCIP solver (Solving

Constraint Integer Programs) on the NEOS server (https://neos-server.org/neos/),

which is a free internet-based service for solving numerical optimisation problems.

The solution of the optimisation task Eqs. (4.13)-(4.22) is presented in the rest of

the section using four special cases.
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Figure 4.3: Cost functions of each step (line with ∗ marker: total cost function;
dashed: fix cost function; dotted: proportional cost function; dash-dot: repair cost
function; solid line: warranty cost function)

Case 1:

Let the vector representing the order of the test steps be π = [1, 2, 3, . . . , 11, 12],

and t1 = t2 = . . . = t11 = t12 = 3600 (the middle of the [0, 7200] interval).

In this case, we only need to evaluate the objective function (Eq. (4.22)), since the

value of each variable is determined. Table 4.4 shows the results of the evaluation:

at the end of the testing process, 97.15% of the input items passed the tests with

total cost $78,181. The most expensive test step is #7: VGA checking, where

138 failed items were found. The high cost of this test step is due to its survival

function with „relatively” low value of λ7 and the high-cost parameters.

Case 2 allows modifying the testing time of each test step, while the testing order

is still fixed.
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Table 4.4: The result of Case 1 with Nin = 20000

Test step
Position in

the test
order

Duration
of the test
step (ti)

Total cost
of the test

step

Nr. of
elements

leaving the
test step

#1 1 3,600 4,908 19,946

#2 2 3,600 344 19,942

#3 3 3,600 1,648 19,930

#4 4 3,600 1,392 19,918

#5 5 3,600 313 19,916

#6 6 3,600 8,003 19,829

#7 7 3,600 24,503 19,691

#8 8 3,600 8,307 19,661

#9 9 3,600 16,040 19,524

#10 10 3,600 3,549 19,502

#11 11 3,600 82 19,501

#12 12 3,600 9,092 19,430

Total cost: 78,181

Case 2:

Let the order vector of the test steps be

π = [1, 2, . . . , 11, 12], and t1 = min0<t≤7200C
1(t), t2 = min0<t≤7200C

2(t), t3 =

min0<t≤7200C
3(t), . . ., t11 = min0<t≤7200C

11(t), t12 = min0<t≤7200C
12(t).

Although the value of the objective function is not independent of the number of

tested items, the minimums of the C i(t) functions can be useful for estimating

the test durations. As shown in Table 4.5, the minimum time of each total cost

function was determined, and the objective function was evaluated. As a result

of this modification, the total cost of the testing process decreased by 7.5% even

though the test sequence was still fixed.
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Table 4.5: The result of Case 2

Test step
Position in

the test
order

Duration of the
test step (ti =
min0<t≤7200C

i(t))

Total cost
of the test

step

Nr. of
elements

leaving the
test step

#1 1 4,500 4,878 19,940

#2 2 5,388 336 19,935

#3 3 6,708 1,552 19,918

#4 4 2,971 1,385 19,908

#5 5 5,111 308 19,905

#6 6 2,340 7,837 19,835

#7 7 1,493 22,709 19,746

#8 8 332 5,228 19,737

#9 9 5,029 15,868 19,575

#10 10 1,409 3,261 19,561

#11 11 3,134 82 19,560

#12 12 5,483 8,889 19,472

Total cost: 72,334

Case 3:

Contrary to the cases before, the order of the test steps is optimized in Case

3, but test durations are still fixed; the time minimums are chosen as follows:

t1 = min0<t≤7200C
1(t), t2 = min0<t≤7200C

2(t), . . . , t11 = min0<t≤7200C
11(t), t12 =

min0<t≤7200C
12(t). By fixing the continuous variables in connection with the

durations of a step, we get a linear objective function. The solution got is a cost

of $72.091, which is a further 3.35% improvement compared to the result of Case

2. Solving the problem with SCIP optimiser the suggested optimal sequence is

given as π = [11, 2, 1, 12, 5, 9, 3, 4, 6, 10, 8, 7] where the most expensive step is #7

and it is the last in the sequence.
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Table 4.6: The result of Case 3

Test step
Position in

the test
order

Duration of the
test step (ti =
min0<t≤7200C

i(t))

Total cost
of the test

step

Nr. of
elements

leaving the
test step

#1 3 4,500 4,877 19,934

#2 2 5,388 337 19,994

#3 7 6,708 1,532 19,663

#4 8 2,971 1,367 19,652

#5 5 5,111 307 19,841

#6 9 2,340 7,738 19,583

#7 12 1,493 22,394 19,472

#8 11 332 5,181 19,560

#9 6 5,029 15,953 19,679

#10 10 1,409 3,263 19,569

#11 1 3,134 84 19,999

#12 4 5,483 9,059 19,844

Total cost: 72,091

Case 4:

In the last scenario the order and the duration of the test steps are also optimized,

where 0 < ti ≤ 7200 (i = 1, . . . , 12).

When also time and test step order optimisation is done, the optimal sequence is

π = [2, 11, 5, 4, 9, 3, 12, 1, 10, 6, 8, 7], which differs from the solution got in Case 3.

The optimal cost obtained is $72.062, which is a 0.04% and a 0.376% improvement

compared to Case 3 and Case 2. When solving Case 4 it is worth to start the

optimisation method from the initial feasible solution of Case 3.

Notice that, the optimal duration of the test step i is close to the minimum of

C i(t) function, thus the results of special cases of the optimisation problem can
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Table 4.7: The result of Case 4

Test step
Position in

the test
order

Optimal
duration of the
test step (ti)

Total cost
of the test

step

Nr. of
elements

leaving the
test step

#1 2 4,840 4881 19,932

#2 1 5,869 338 19,995

#3 3 6,980 1,552 19,916

#4 9 3,057 1,362 19,574

#5 8 5,219 303 19,585

#6 7 2,437 7,741 19,588

#7 11 1,498 22,394 19,472

#8 12 331 5,155 19,463

#9 4 5,236 16,016 19,749

#10 10 1,442 3,261 19,560

#11 6 3,268 82 19,658

#12 5 5,637 8,976 19,659

Total cost: 72,062

be an appropriate starting point to the Eqs. (4.13) -(4.22). In lack of the results

of special cases, the optimisation method works in a larger searching space, which

results in longer running time of the algorithm. However, the results show that

the optimisation can improve both the reliability of quality control process and

cost efficiency factors.

The realistic case study taken from computer manufacturing demonstrated 0.1-

5% cost reduction thanks to the optimal re-ordering of the test sequence. The

methodology can be extended to a wide range of risk-based process optimisation

tasks, like scheduling maintenance, medical diagnostic, or quality checking tasks.
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4.6 Major results and related publication

In modular, replaceable unit based production systems, complex testing processes

should be synthesised from independent test steps to ensure the desired product

quality with minimum average cost. To reduce the time and cost spent on testing

whilst minimising the risk of not detecting faults, a survival analysis-based cost

models for elementary tests to combine the time-dependent outcome of the tests

and costs related to the operation of the testing system were proposed. A mixed

integer non-linear programming model to formalize how the total cost of testing

depends on the sequence and parameters of the elementary test steps was intro-

duced. To provide an efficient formalization of the scheduling problem and avoid

difficulties due to the evaluation of an objective function during the relaxation of

the integer variables, the MINLP was formulated as a process network synthesis

problem. A P-graph, as stated above giving the structure and the mathemati-

cal model of a considered test process, consisting of three levels was constructed

involving all the feasible test sequences as its substructures, while the cost pa-

rameters and functions efficiently represented the objectives. The mathematical

model was automatically generated from the structural representation, and the

SCIP (Solving Constraint Integer Programs) solver was applied to provide the

optimal solution for the test-sequence problem. A realistic case study taken from

the computer manufacturing industry demonstrated a cost reduction of 0.1-5%

thanks to the optimal re-ordering of the test sequence. This methodology can be

extended to a wide range of risk-based process optimisation tasks, like scheduling

maintenance, medical diagnostics, or quality control.
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Related publication

János Baumgartner, Zoltán Süle, Botond Bertók, János Abonyi: Test-sequence op-

timisation by survival analysis, Central European Journal of Operations Research,

27(2), 357-375, 2019. IF=2.23, Rank: Q2

4.7 Thesis 3

I have developed a survival analysis-based cost model to formalize how the total

cost of testing depends on the sequence and parameters of the elementary test steps.

I have constructed a P-graph consisting of three levels involving all the feasible test

sequences as its substructures, while the cost parameters and functions efficiently

represented the objectives.

• I formalized the test-sequence optimisation problem as a process network

synthesis problem which gives the optimal order and duration of the tests

have to be determined, where the constraints should guarantee the right

ordering of test steps.

• For a P-graph-based description of the order of the test steps, I have ex-

tended the mathematical model where three levels of operating units and

survival function-based malfunctions illustrate the feasible test sequences.

• To demonstrate the applicability of the proposed methodology, I have intro-

duced an illustrative example related to the sequence optimisation problem,

where survival functions represented by Weibull distribution describe the

ratio of items that successfully passed and failed the test steps. The method

has resulted in a cost reduction of 0.1–5% through the optimal rescheduling

of test series.



Chapter 5
Summary

In my dissertation, I have investigated optimisation tasks related to Industry 4.0,

which, in my opinion, can further increase the efficiency and reliability of manufac-

turing processes. Today’s economic environment increasingly requires a reduction

in the use of human resources and a continuous increase in the efficiency of man-

ufacturing processes. Modern IT tools, large data sets generated in real-time and

their rapid processing allow us to have up-to-date information on the internal

processes of the industrial environment and to intervene appropriately when neg-

ative trends are detected in the achievement of short or long-term objectives. All

this intervention and planning can be effectively supported by optimisation, which

provides a wide range of algorithms and methods to achieve efficiency gains.

I have provided new methods and scientific results focusing on Industry 4.0 and

optimisation in my work. In an industrial environment, ensuring the continuous

operation of equipment is of essential importance. This topic raises many issues

in reliability theory. In the industrial environment, the success or failure of the

processes under investigation is often supported by success tree and fault tree de-

scriptions and related computational methods. The drawback of these methods is

that, in most cases, they are much less effective in supporting the answering of opti-

misation questions. Therefore, it is helpful to develop a framework algorithm that

can automatically determine the reliability of a process or system topology using

P-graphs and algorithmic solutions while allowing for several other constraints. In

this context, I have investigated the reliability redundancy allocation problem and

adapted the methodology for calculating reliability to the P-graph methodology.
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For this purpose, I determine the path set and cut set elements by my developed

algorithm for P-graph problems, which allows me to study both reliability and cost-

based optimisation issues. The use of redundancy is a trivial way to increase the

reliability of systems, but determining the right degree of redundancy can depend

on many aspects. In my thesis, I have also shown that the time-dependent charac-

teristic of reliability should be given maximum consideration in optimisation, and

I have defined a set of measures that can be used to classify the subsystems of a

system related to reliability. All these results are illustrated by real case studies

from the literature and their computational results.

Effective planning of quality assurance tasks can further increase the effectiveness

of a company. For example, efforts should be made to identify most potential

customer complaints before delivery. For this reason, the testing steps for these

manufactured products define a scheduling task. My aim in this context was

to plan the sequence and timing of the tests that optimally determine quality

assurance, thus ensuring a cost-effective operation. To study this task, I adopt a

novel approach by describing the variation of the failure over time using Survival

functions in the P-graph environment. This solution leads us to a non-linear

optimisation problem analysed and solved in several fundamental requirements.

The mathematical model I have developed is based on the testing practice of a

real Hungarian manufacturing company, where my developed procedure was able

to improve the time to identify defective products to a large extent. The results

have been presented in the last part of my dissertation.

I have summarised the results of my research in this dissertation and three the-

sis points. The novel solutions developed have been published in international

journal papers and conference proceedings and cited by the international research

community in 26 scientific publications.
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Summary in Hungarian (Összefoglalás)

Disszertációmban olyan Ipar 4.0-hoz kötődő optimalizálási feladatok vizsgálatá-

val foglalkozom, amelyek tovább növelhetik a gyártási folyamatok hatékonyságát

és megbízhatóságát. Napjaink gazdasági környezete egyre inkább megköveteli az

emberi erőforrások felhasználásának mérséklését, valamint a gyártási folyamatok

hatékonyságának folyamatos növelését. A korszerű IT eszközök, a valós időben

előálló nagy méretű adathalmazok és gyors feldolgozásuk lehetővé teszik azt, hogy

naprakész információval rendelkezzünk az ipari környezet belső folyamatairól, és

megfelelő módon avatkozzunk be akkor, amikor negatív tendenciát észlelünk a

rövid, vagy éppen hosszútávú célok elérése kapcsán. Mindezen beavatkozást és ter-

vezést hatékonyan tudja támogatni az optimalizálás, amely algoritmusok és mód-

szerek széles tárházát biztosítja a hatékonyságnövelés elérése érdekében. Munkám-

ban ilyen, Ipar 4.0 és optimalizálás fókuszú tématerületek kapcsán adok meg új

módszereket és tudományos eredményeket. Ipari környezetben kiemelten fontosak

a munkamenet-folytonosságot garantáló berendezések folyamatos működéseinek

biztosítása. E témakör a megbízhatóságelmélet számos kérdését veti fel. Ipari

környezetben a vizsgált folyamatok sikeres vagy sikertelen lefutását sok esetben

a sikerfa és hibafa leírásokkal, valamint az ezekhez kapcsolódó számítási mód-

szerekkel támogatják. A módszerek hátránya legtöbb esetben az, hogy az opti-

malizálási kérdések megválaszolását sokkal kevésbé támogatják hatékonyan, ezért

indokolt egy olyan keretalgoritmus kidolgozása, amely képes automatikusan, al-

goritmikus eszközök felhasználásával meghatározni egy gráfok segítségével felírt

folyamat vagy rendszertopológia megbízhatóságát, miközben számos egyéb korlá-
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tozó feltétel figyelembevételére is lehetőség adódhat. E témakörhöz kapcsolódóan a

rendszermegbízhatóság növelésének módjaként a redundancia szerepét vizsgálom

meg, és adaptálom a megbízhatóság számítására alkalmas metodikákat P-gráf

környezetbe. Ehhez az ún. vágat halmazok elemeit határozom meg saját algo-

ritmussal egy P-gráffal megadott feladatra, amely lehetőséget ad mind a meg-

bízhatóság, mind a költség alapú optimalizálási kérdések vizsgálatára. A redun-

dancia alkalmazásával triviális módon növelhető a rendszerek megbízhatósága,

viszont a megfelelő mértékű redundancia meghatározása sok szemponttól függ-

het. Dolgozatomban rámutatok arra, hogy a megbízhatóság időfüggő jellemzőjét

érdemes az optimalizálás során maximálisan figyelembe venni, és olyan mértékeket

is definiálok, amelyek egy rendszer alrendszereit képesek megbízhatóság szempont-

jából minősíteni. Mindezen eredményeimet valós, irodalomból vett esettanul-

mányokkal és azok számítási eredményeivel támasztom alá.

A minőségbiztosítási feladatok hatékony tervezése tovább növelheti egy vállalat

eredményességét. A vevői kiszállítást megelőzően arra kell törekednünk, hogy

a legtöbb lehetséges vevői kifogást már a kiszállítás előtt azonosítsuk. Éppen

ezért a gyártott termékek kapcsán azok tesztelési lépései egy ütemezési feladatot

határoznak meg. Célom ennek kapcsán az, hogy a minőségbiztosítást meghatározó

tesztelések sorrendjét és idejét optimális módon tervezzem meg, ezáltal biztosítva

a költséghatékony működést. A feladat vizsgálatára egy újszerű megközelítést

alkalmazok, hiszen P-gráf környezetben túlélési függvények segítségével írom le

a meghibásodás időbeli változását. Mindez egy nemlineáris optimalizálási fe-

ladatot eredményez, amelyet több, valós követelmény szempontjából elemzek, és

oldok meg. A kidolgozott matematikai modell alapját egy valós, Magyarorszá-

gon működő gyártóvállalat tesztelési gyakorlata adta, amely során a kidolgozott

eljárás segítségével nagy mértékben csökkenthető a hibás termékek azonosítására

fordított idő.
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Kutatómunkám eredményeit disszertációmban és három tézispontban foglalom

össze. A kidolgozott újszerű megoldásokat nemzetközi folyóiratcikkekben és kon-

ferenciakötetekben publikáltam, melyekre a nemzetközi kutatói közösség már szá-

mos alkalommal hivatkozott.
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(Zusammenfassung)

In meiner Dissertation untersuche ich Optimierungsaufgaben im Zusammenhang

mit Industrie 4.0, die meiner Meinung nach die Effizienz und Zuverlässigkeit von

Fertigungsprozessen weiter steigern können. Das heutige wirtschaftliche Umfeld

erfordert zunehmend eine Reduzierung des Personaleinsatzes und eine kontinuier-

liche Steigerung der Effizienz von Fertigungsprozessen. Moderne IT-Werkzeuge,

groSSe, in Echtzeit generierte Datensätze und deren schnelle Verarbeitung er-

möglichen es uns, über aktuelle Informationen über die internen Prozesse des

industriellen Umfelds zu verfügen und angemessen einzugreifen, wenn negative

Trends bei der Erreichung kurz- oder langfristiger Ziele festgestellt werden. All

diese Eingriffe und Planungen können durch diese Optimierungen wirksam un-

terstützt werden, da sie eine breite Palette von Algorithmen und Methoden zur

Erzielung von Effizienzgewinnen bietet.

In meiner Arbeit stelle ich neue Methoden und wissenschaftliche Ergebnisse zum

Thema Industrie 4.0 und Optimierungen vor. In einem industriellen Umfeld ist

die Sicherstellung des kontinuierlichen Betriebs von Anlagen von wesentlicher Be-

deutung. Dieses Thema wirft viele Fragen der Zuverlässigkeitstheorie auf. Im in-

dustriellen Umfeld wird der Erfolg oder Misserfolg der zu untersuchenden Prozesse

oft durch Erfolgs- und Fehlerbaumbeschreibungen und damit verbundene Berech-

nungsmethoden unterstützt. Der Nachteil dieser Methoden ist, dass sie in den

meisten Fällen bei der Beantwortung von Optimierungsfragen weit weniger effek-
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tiv sind. Daher ist es hilfreich, einen Rahmenalgorithmus zu entwickeln, der die

Zuverlässigkeit einer Prozess- oder Systemtopologie mit Hilfe von P-Graphen und

algorithmischen Lösungen automatisch bestimmen kann und dabei verschiedene

andere Einschränkungen berücksichtigt. In diesem Zusammenhang untersuche

ich das Zuverlässigkeits-Redundanz-Zuordnungsproblem und passe die Methodik

zur Berechnung der Zuverlässigkeit an die P-Graphen-Methodik an. Zu diesem

Zweck bestimme ich die Pfad- und Schnittmengenelemente mit dem von mir en-

twickelten Algorithmus für P-Graphen-Probleme, der es mir ermöglicht, sowohl

Zuverlässigkeits- als auch kostenbasierte Optimierungsfragen zu untersuchen. Die

Verwendung von Redundanz ist ein trivialer Weg, um die Zuverlässigkeit von Sys-

temen zu erhöhen, aber die Bestimmung des richtigen Redundanzgrades kann von

vielen Aspekten abhängen. In meiner Arbeit zeige ich, dass die zeitabhängige

Eigenschaft der Zuverlässigkeit bei der Optimierung maximal berücksichtigt wer-

den sollte und ich eine Reihe von MaSSnahmen definiere, die zur Klassifizierung

der Teilsysteme eines Systems in Bezug auf die Zuverlässigkeit verwendet werden

können. Alle diese Ergebnisse werden durch reale Fallstudien aus der Literatur

und deren Berechnungsergebnisse illustriert.

Eine effektive Planung von Qualitätssicherungsaufgaben kann die Effektivität eines

Unternehmens weiter erhöhen. So sollte beispielsweise versucht werden, die meis-

ten potenziellen Kundenreklamationen vor der Auslieferung zu erkennen. Aus

diesem Grund stellen die Prüfschritte für diese hergestellten Produkte eine Pla-

nungsaufgabe dar. In diesem Zusammenhang ziele ich darauf ab, die Reihenfolge

und den Zeitpunkt der Tests so zu planen, das die Qualitätssicherung optimal

bestimmt wird und somit ein kosteneffizienter Betrieb gewährleistet werden kann.

Um diese Aufgabe zu untersuchen, wähle ich einen neuartigen Ansatz, indem ich

die Variation des Fehlers über die Zeit mit Hilfe von Survival-Funktionen in der

P-Graph-Umgebung beschreibe. Diese Lösung führt mich zu einem nichtlinearen

Optimierungsproblem, das in mehreren grundlegenden Anforderungen analysiert

und gelöst wird. Das von mir entwickelte mathematische Modell basiert auf der

Prüfpraxis eines realen ungarischen Fertigungsunternehmens, in dem das von mir
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entwickelte Verfahren die Zeit bis zur Identifizierung fehlerhafter Produkte in ho-

hem MaSSe verbessern kann.

Ich fasse die Ergebnisse meiner Forschung in meiner Dissertation in drei The-

sen zusammen. Die entwickelten neuartigen Lösungen wurden in internationalen

Zeitschriften und Konferenzberichten veröffentlicht und von der internationalen

Forschungsgemeinschaft in mehreren wissenschaftlichen Publikationen zitiert.



Chapter 8
New Scientific Results

Thesis 1

I have adapted the fault- and success tree-based methodology of reliability calcu-

lation to the P-graph framework. The developed approach allows the algorithmic

reliability-based analysis of processes given by P-graph descriptions.

• I have developed an algorithm for generating minimal path sets of P-graph

processes, which allows the calculation of process reliability.

• I have built a P-graph-based optimisation model to solve the reliability-

redundancy allocation problem. The evaluation of the objective function in

the implemented model is calculated by computing the minimal path sets of

P-graphs.

• I have validated the results of the P-graph-based mathematical model by

solving a real case study of the literature. Based on the fault- and success

tree of a real reaction system, a polynomial risk model has been developed,

and reliability optimisation, as well as, computation of the number of the

redundant elements has been performed.

Thesis 2

I have generalized the methodology of P-graph-based reliability calculation to the

time-dependent case and k-out-of-n (koon) configurations. The developed model
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can be easily applied to calculate risks related to the malfunction of the subsystems

and determine the risk-based importance of the process units.

• I have defined cut set-based metrics for the identification of the critical

elements in a system.

• I have developed a multi-objective formulation of the koon redundancy al-

location problem, where time dependent reliability of a given system, the

degree of the redundancy, and the related costs can be optimized.

Thesis 3

I have developed a survival analysis-based cost model to formalize how the total

cost of testing depends on the sequence and parameters of the elementary test steps.

I have constructed a P-graph consisting of three levels involving all the feasible test

sequences as its substructures, while the cost parameters and functions efficiently

represented the objectives.

• I formalized the test-sequence optimisation problem as a process network

synthesis problem which gives the optimal order and duration of the tests

have to be determined, where the constraints should guarantee the right

ordering of test steps.

• For a P-graph-based description of the order of the test steps, I have ex-

tended the mathematical model where three levels of operating units and

survival function-based malfunctions illustrate the feasible test sequences.

• To demonstrate the applicability of the proposed methodology, I have intro-

duced an illustrative example related to the sequence optimisation problem,

where survival functions represented by Weibull distribution describe the

ratio of items that successfully passed and failed the test steps. The method

has resulted in a cost reduction of 0.1–5% through the optimal rescheduling

of test series.



Chapter 9
New Scientific Results in Hungarian

Új tudományos eredményeim:

1. Tézis

Adaptáltam a hiba- és sikerfa alapú hagyományos megbízhatóságszámítási eljárá-

sokat a folyamathálózat-szintézis feladatok optimalizálására alkalmas P-gráf ke-

retrendszerbe. A kidolgozott megközelítés algoritmikusan lehetővé teszi a P-gráf

leírásokkal definiált folyamatok megbízhatóság alapú elemzését és optimalizálását.

• Kidolgoztam egy algoritmust P-gráffal leírt folyamathálózat-szintézis felada-

tok minimális vágat halmazainak generálására, amely lehetővé teszi a tekin-

tett feladat megbízhatóság alapú vizsgálatát és annak optimalizálását.

• Matematikai modellt adtam meg, amely P-gráf alapú optimalizációs felada-

tok esetén redundancia alkalmazásával írja le a rendszermegbízhatóság növe-

lését célzó követelményeket, ahol a modell célfüggvénye az általam kidol-

gozott minimális vágatokat előállító halmazok eredményire támaszkodva

minősíti a lehetséges megoldásokat.

• A P-gráf alapú optimalizációs modell eredményeit valós szakirodalmi eset-

tanulmány megoldásával validáltam. Egy valós kémiai folyamatok működését

bemutató rendszer hiba- és sikerfája alapján polinomokkal leírt kockázati

modellt dolgoztam ki, és elvégeztem a megbízhatóság optimalizálását, vala-

mint a redundáns elemek számának meghatározását.
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2. Tézis

A P-gráf alapú megbízhatóságszámítás módszertanát általánosítottam időfüggő e-

setre, valamint a k-out-of-n (koon) konfigurációkra. A kidolgozott modell könnyen

alkalmazható a különféle rendszerek hibás működésével kapcsolatos kockázatok

számszerűsítésére, és azok kockázatalapú fontosságának meghatározására

• A P-gráf leírással adott műszaki rendszerek kritikus elemeinek azonosítására

és számszerű jellemzésére metrikákat vezettem be, amelyek alapját a mini-

mális vágat halmazok elemei adják.

• Többcélú optimalizálást biztosító matematikai modellt dolgoztam ki a k-out-

of-n típusú redundancia meghatározására, ahol a tekintett rendszer időfüggő

megbízhatósága, a redundancia mértéke, és a kapcsolódó költségek együtte-

sen vehetők figyelembe az optimalizálás során.

3. Tézis

Kidolgoztam egy túlélés elemzésen alapuló költségmodellt elemi tesztelési lépéseket

tartalmazó minőségbiztosítási folyamatok optimálására, ahol a költségelemek csak

az elemi vizsgálati lépések sorrendjétől és paramétereitől függenek. A kidolgo-

zott P-gráf alapú modell minden lehetséges tesztelési sorozatot tartalmaz, a be-

menetként megadott költségparamétereket és költségfüggvényeket adaptáltam a

folyamathálózat-szintézis alapú reprezentációhoz.

• A tesztsorozat-optimalizálási problémát folyamathálózat-szintézis feladatként

formalizáltam, amely megadja a tesztek költségoptimális sorrendjét és időtar-

tamát, valamint a modellben alkalmazott megkötések garantálják a tesztlé-

pések helyes permutációját.

• A tesztlépések optimális jellemzőinek és sorrendjének felírásához egy három

szintű P-gráf reprezentációt dolgoztam ki, ahol a műveleti egységekre felírt

korlátozások, és a túlélési függvény alapú meghibásodási arányok modellbe

illesztése biztosítja az optimális tesztsorozatokat.
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• A javasolt módszertan gyakorlati hasznosítását egy valós példán szemléltet-

tem, ahol Weibull-eloszlással írtam le azon túlélési függvényeket, amelyek

a tesztlépéseken sikeresen átment és sikertelenül megbukott elemek arányát

írják le az idő függvényében. A módszer a költségek 0.1-5%-os csökkentését

eredményezte a tesztsorozatok optimális újraütemezése által.
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