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1. Introduction and objectives 

The expected growth of population and the need of more food make the knowledge of soil properties 

essential to secure the successes of agricultural production on currently available land. Despite 

Kenya’s economy being agricultural based, most of the existing soil inventories do not capture 

dynamic soil properties that are sensitive to management (Vagen et al., 2013). The major existing soil 

inventories for Kenya like the KENSOTER database is derived from the legacy Exploratory Soil Map 

of Kenya scale 1:1 M (Ministry of Agriculture, Kenya Soil Survey, 1980). The limitation to most of 

these soil databases is the scale at which data is presented, lack of harmonized methodologies of data 

collection and laboratory analysis, that affect the accuracy and therefore fail to provide adequate 

information for soil management at farm or watershed scale. The high cost of conventional methods 

of soil survey and laboratory analysis (Shepherd & Walsh, 2002) may partly explain why little has 

been done to update the existing legacy soil inventories in Kenya. 

To provide soil data for updating the existing soil inventories, rapid methods to quantify soil 

properties at large geographical coverage urgently need to be adopted. Over the past 30 years, visible, 

near and mid-infrared (Vis-NIR-MIR) reflectance spectroscopy has proved to be a fast, cost effective, 

environmental-friendly, non destructive, reproducible, and repeatable analytical technique of soil 

properties determination (Nocita et al., 2015). A single spectrum may contain comprehensive 

information on various soil properties, and can be used to predict these simultaneously. Lack of soil 

monitoring networks makes it impossible to recommend and prioritise site specific soil 

management practices increasing vulnerability of the soils to further degradation in this study 

area. Soil classification help to identify differences among and between soils and their 

environment is an important tool to inform soil management decisions. 

Based on the gaps identified with regard to the existing soil inventories in the study area, I 

have identified the following objectives:  

1. To develop an optimized soil sampling scheme that preserves the natural distribution 

of soil forming factors in the study area, in the eastern slopes of Mt.  Kenya. 

2. To develop an ensemble model for predicting of important soil properties (i.e soil 

organic carbon, base cations, pH, aluminium and particle size distribution). 

3. To demonstrate the usefulness of the derived database for mapping soil properties for 

the study area. 

4.  To classify the visited soils and validate the soil types in the KENSOTER soil units 

of the study area. 

5. To compare differences of soil properties in different WRB Reference soil groups and 

the implications of applications for management purposes in the study area. 



2. Materials and methods 

2.1 Study area. 

Soil sampling was conducted in Mt. Kenya region covering an area of 1200 km2 within latitudes 370 

36'E and 380 0' E and longitudes 00 6' N and 00 18' S (Figure 4.). The population density estimate 

according to Kenya population and housing census basic report of 31st August 2010 was 424 

persons/km2. The major land use is rainfed agriculture. The altitude range was 700 m to 2000 m. The 

agro-climatic zone is humid in high altitudes and semi-arid in the lower altitudes (Jaetzold et al., 

2007). Amount of rainfall is 1500 mm in upper humid zones and 600 mm in the lower semi-arid 

zones. The annual average temperature is 10 0C to 35 0C. The geology is mainly volcanic rock and ash 

and some old metamorphic rocks (Schoeman, 1952). The volcanic rocks in the area are related to the 

Rift Valley development during the Pliocene time and dated from 3.5 to 2 million years and parasitic 

cones during the Pleistocene time. The the dominating WRB (IUSS Working Group WRB, 2015) 

Reference soil groups (RSG) according to KENSOTER map and database (Dijkshoorn, 2007) are:  

Nitisols, Ferrasols, Regosols, Vertisols and Phaeozems. 

 

 2.2 Soil sampling design  

To define the soil sampling locations, Conditional Latin Hypercube Sampling (CLHS) was 

performed. The reason of using CLHS in sampling site selection were the foreseen constraints 

(inaccessibility due to poor weather roads, very steep slopes, possibility of having sampling locations 

coinciding with water bodies, national parks or built environment) and the need to reduce the sample 

size yet cover a wide geographical area with limited budget.  

2.2.1 Assembly of variables for input into CHLS algorithm 

Environmental variable layers and operational cost layer were generated as input variables for the 

CHLS algorithm. Good expressions of soil forming factors in remote sensing data have been reported 

(Dobos et al., 2000). Jenny’s (1941) state equation for soil formation: S=f (cl, o, r, p, and t) guided the 

choice of environmental variables. 

Organisms (O) were represented using Normalized Difference Vegetation index (NDVI) derived from 

Landsat 8 satellite imagery with a resolution of 30 m for dry season from row/path 168/60 from 15 

September 2014. NDVI is calculated as shown in equation 2. 

 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅𝑏𝑎𝑛𝑑 − 𝑅𝐸𝐷

𝑁𝐼𝑅𝑏𝑎𝑛𝑑 + 𝑅𝐸𝐷
 

     (1) 

Where NIR =Band 5, wavelength 0.64-0.67 μm and RED=Band 4 wavelength 0.85-0.88 μm and a 

resolution of 30*30m. 



Relief (r) was represented by terrain derivatives (slope and topographic wetness Index). These were 

calculated from Digital Elevation Model (DEM), Advanced Space borne Thermal Emission and 

Reflection Radiometer (ASTER) with a resolution of 30 m. SAGA GIS 2.0.6 was used to generate 

these terrain derivatives.  

The Topographic Wetness Index (TWI) is a steady state wetness index and is a function of slope and 

the upstream contributing area and is calculated as below. 

 

𝑇𝑊𝐼 = 𝑙𝑛  𝐴 tan𝛽   

 (2) 

Where A is the specific catchment area expressed as m2 per unit width orthogonal to the flow 

direction, and β is the slope angle in radians.  

Local slope was generated from the DEM using SAGA GIS >Spatial Analyst tools > Surfaces > 

slope.  

The ‘cost of reach layer’ was generating using r.walk in GRASS GIS (Neteler et al., 2012). Similar 

approach by Roudier et al. (2012) in Australia and Mulder et al. (2013) in Morocco reduced the 

working cost of soil survey significantly.  

Dominant soils of the polygons of the KENSOTER units (Dijkshoorn, 2007) were used as categorical 

data to ensure sampling was done in every dominant soil type. R ‘CLHS’ algorithm (R Core Team, 

2013), and Quantum GIS processing were used to design the sampling frame. 

  

Box plots were used for validation of the sampling scheme based on natural and sampled distribution 

of environmental variables. The spread of the sampling points in the study area (Figure 1.) satisfied 

the initial objective to preserve the natural distribution of environmental variables that were used as 

input layers for the CLHS algorithm. After evaluation of the sampling scheme I embarked on field 

work.  

 

  

 



 

 

Figure 1. Comparison of the statistical distributions of the environmental covariates in the original 

GIS layers in selected sampling locations and sampled slope. 

 

 



2.3 Field work and soil description  

The developed sampling plan guided the locations to be visited. The soil sampling campaign 

commenced on 5th December 2015 and ended on 15th Jan 2016. FAO Soil Description Guideline 

(FAO, 2006) and WRB guidelines (IUSS Working Group WRB, 2015) guided soil field soil sampling 

and classification respectively. A total of 77 sampling sites were visited, out of this total, 28 were 

open profiles and 49 were augured profiles. The 28 open profiles were described based on genetic 

horizons. For each genetic horizon: depth, pH, Munsell color, CaCO3 and structure for each master 

horizon, also and presence or absence of coatings (i.e clay, iron, and manganese), volcanic glass and 

pressure surfaces were recorded. Similar procedures were carried for the 49 augured profiles except 

for the depths of sampling which was based on 0-20 cm, 20-50 cm, 50-100 cm intervals. All together 

a total of 269 soil samples were collected. 

2.4 Laboratory soil measurements  

Mid infrared measurements and conventional measurements using wet chemistry methods were 

performed on the soil samples. The pre-processing of the total 269 samples involved air drying, 

crushing and sieving using a 2 mm sieve and further crushing to < 100 μm.  

2.4.1 Mid-infrared (MIR) spectral-reflectance measurements 

MIR soil spectra measurements for the 269 samples were performed using a Fourier-transform MIR 

spectrometer-FTIR, Tensor 27 with Liquid N2–cooled HgCdTe as the detector. The first derivative of 

the reflectance spectra was computed based on Savitzky–Golay smoothing filters (Wand & Ripley, 

2008). Figure 2. shows the absorbance spectra for all the 269 soil samples before (noisy spectra) and 

after pre-processing to 4000-400 cm-1.  

 
 

Figure 2. Unprocessed and processed MIR absorbance spectra to 4000-400 cm-1  

 



2.4.2 Calibration sample selection 

Kennard-Stone algorithm (Kennard & Stone, 1969) was used for the calibration and prediction sample 

selection. The results of sample selection (Figure 3.) could explain 75.6% of the variations and the 

next step was to perform laboratory analysis of the calibration sample set.  

  

 

Figure 3. PCA for sample selection explains 75.6% of variations. 

 

2.4.3 Soil analysis for the calibration samples 

The samples were analysed for the following parameters with the respective methods  

 pH –potentiometrically measured in the supernatant suspension of a 1:2.5 soil: liquid (H2O) 

mixture (Van Reeuwijk, 2002). 

 Cation Exchange Capacity (CEC)-Ammonium acetate method (Van Reeuwijk, 2002)  

   Na, K, Ca, Mg and Al following Mehlich 3 extraction (Mehlich, 1984).  

 Soil organic Carbon (SOC)  and total nitrogen (TN) following thermal oxidation (Skjemstad 

& Baldock, 2008) 

 Particle size distribution (PSD) using Laser Diffraction Particle Size Analyzer (LDPSA) and 

calibrated using pipette method (Van Reeuwijk, 2002). 

 Free iron (Fedithionite) was analysed using the Holmgren procedure (Van Reeuwijk, 2002) 

 Active iron (Feoxalate) using acid ammonium oxalate solution (Van Reeuwijk, 2002). The 

(Fedithionite) and (Feoxalate) were measured only for 5 selected samples from those that qualified 

the nitic horizon morphological characteristics. 



 X-Ray Diffraction (XRD) was performed on 10 samples based on soil color and at the depth 

interval of 20-50 cm.  

 

The (Fedithionite), (Feoxalate) and X-Ray Diffraction (XRD) data were not used for the calibration of MIR 

spectra but to give more details on soil samples to support classification. The results of sampling 

scheme, the fieldwork, and MIR spectroscopic analysis provided input data for mapping and soil 

classification. 

 

2.5 Mapping of soil properties 

Estimation of soil properties at the unvisited locations was performed using ordinary Kriging. The 

choice of this mapping method was based on my data as follows: 

1. The selected soil properties were not significantly correlated with the input explanatory 

variables (Table 1.). 

 

Table 1. Explanatory variables were not significantly correlated with test soil variables 

Variables TWI SLOPE NDVI TN (%) SOC (%) P(mg/ kg)  pH H2O 

TWI 1 

      SLOPE -0.492 1 

     NDVI -0.117 0.240 1 

    TN (%) -0.024 0.110 -0.001 1 

   SOC (%) -0.021 0.117 -0.011 0.980 1 

  P(mg/ kg) -0.069 0.150 -0.107 0.202 0.220 1 

 pH H2O 0.060 -0.189 -0.308 -0.413 -0.375 -0.239 1 

Values in bold are different from 0 with a significance level alpha=0.05 

 

 

 

 2. The variables showed spatial autocorrelation using nugget to sill ratio (Table 2.).  

 

Table 2. Semivariogram parameters for the selected spherical model show moderate spatial 
dependence. 

Soil property 

 

Model Nugget     Sill  

 

Nugget/sill ratio Range 

 

Remarks 

SOC (%) Spherical 0.098 0.21 0.46 13576 M 

TN (%) Spherical 0. 556 0.9 0.61 13737 M 

pH H2O Spherical 0.226 0.72 0.31 2142 M 

Ext P (mg/kg) Spherical 2.31 3.7 0.62 12590 M 

M= Moderate spatial dependence, N= number of samples 

 

 



2.6 Soil Classification 

The World Reference Base of soil resources (WRB) classification system (IUSS Working Group 

WRB, 2015) was applied to characterize and classify soils of the visited sites. The WRB is based on a 

diagnostic approach defined in terms of diagnostic horizons, diagnostic properties and materials, that 

are measurable to the greatest extent possible and observable in the field. On the highest level 32 

reference soil groups (RSG) are defined by the classification key based on the presence/absence of 

combination of the diagnostics.  Additional qualifiers are giving are added to the RSG name to 

provide further information on important soil properties. 

2.7 Data analysis 

Kennard- Stone algorithm (Kennard & Stone 1964) and Principal Component Analysis were used in 

the selection of calibration and prediction sample sets. Random Forest (RF) Regression was used for 

the calibration of spectra data using the laboratory measurements of the calibration sample set. The 

utility of RF for regression and classification is described by Gislason et al. (2006). Cross validation 

was performed to evaluate the model performance based on the variations between the observed and 

the predicted values of soil properties. This was determined using coefficient of determination (r2), the 

Mean Error (ME), Root Mean Square Error (RMSE) and the Standardized Root Mean Square Error 

(SRMSE). The best model is one that has ME nearest zero, the smallest RMSE and SRME nearest to 

1. For good predictive model the RMSE values should be low (<0.3). Exploratory data analysis for 

the quantified soil properties was performed using descriptive statistics and data normality testing 

using Shapiro-Wilk test at 5% significant level. Discriminant analysis (Carroll et al. 2006) was used 

to evaluate contribution of each soil property in the classification of reference soil groups. Multiple 

pairwise comparisons using Dunn’s procedure (Dunn’s, 1964) was used to compare variability of soil 

properties in different WRB reference soil groups. 

 

The schematic representation summarizing the methodology is given below (Figure 4.). 

 



 
 

Figure 4. Methodology flowchart summarising this research work 

 

  

 

 

 

 

  

 

 

 

 

 

 



3. Results and discussion 

3.1 Accuracy of soil property predictions 

The accuracy of the soil properties predictions is presented (Table 3.). The model performance was 

excellent when r2>0.90, good when 0.81<r2<0.90, moderately successful when 0.66<r2<0.80 and 

unsuccessful when 0.50<r2<0.65. This classification was adopted from Saeys et al. (2005).  

 

Table 3: Validation results of soil properties predictions 

Soil property  Coefficient of 
determination (r2) 

Root mean Square error 
(RMSE) 

SOC (%) 0.78 1.64 

pH H2O 0.88 0.63 

Exc Na cmol/kg 0.93 1.45 

Exc  Mg cmol/kg 0.88 1.60 

Exc  K cmol/kg 0.92 2.32 

Exc Ca cmol/kg 0.92 189 

Exc  Al cmol/kg 0.85 71.25 

Ext P mg/kg 0.78 0.51 

Clay (%) 0.59 9.9 

Silt (%) 0.63 7.3 

 

Moderately successful predictions were achieved for SOC % at r2=0.78 and RMSE=1.64 (Table 3.). 

Comparable accuracy (r2=0.77 and RMSE=1.64) for SOC has been reported by Terhoeven-Urselmans 

et al. (2010). But our coefficient of determination (r2) was better. This can be associated to the use of 

different calibration statistics (Terhoeven-Urselmans et al. (2010) used partial least squares 

regression) and I used random forest regression (RF) as the multivariate statistics to calibrate the soil 

MIR spectra. Higher accuracy of SOC prediction (r2 = 0.96) was achieved by McDowell et al. (2012), 

this may be attributed to high and wide range of SOC (%) of the calibration set (0.24 to 55.29%) 

compared to narrower SOC range (0.56 to 10.83%) in my soil samples. The accuracy for the 

calibration of pH was good (r2 = 0.88 and RMSE = 0.48) and better in terms of r2 and RMSE 

compared to those achieved by Terhoeven-Urselmans et al. (2010) (r2 = 0.81, RMSE = 0.63) and 

Shepherd & Walsh (2002) (r2 = 0.83, RMSE = 0.54) while analysing a spectral library of soils from 

Africa. Calibrations for Mehlich extraction of Na, Mg, K and Ca were excellent (r2=0.93 and 

RMSE=1.45; r2=0.88 and RMSE=1.60; r2=0.92 and RMSE=2.32 and r2=0.92 and RMSE=189.16 

respectively. The prediction of Ca was better than that of Sila et al. (2016) who reported r2=0.91 for 

Ca. Again this could be associated with the efficiency of RF, a multivariate statistic that was used for 

the calibration of soil MIR spectra. The high RMSE values especially for Ca can be attributed to 



under prediction by MIR due to low calcium content in all my sampling locations. Calibration of 

Mehlich extraction of Al was good (r2=0.85 and RMSE=0.51).Calibration of P was satisfactory 

(r2=0.78 and RMSE=71.25). Calibration for clay (r2 = 0.59 and RMSE = 9.9); Silt (r2 = 0.63 and 

RMSE = 7.3) were low compared to other soil properties. The low calibration accuracy for sand (r2= 

0.30 and RMSE=5) was because the soil samples were mainly clay dominated due to extreme 

weathering resulting in poor MIR absorbance. The percentage sand was calculated from of the 

cumulative percentages of clay and silt. 

  

3.2 Spatial interpolation of soil properties  

SOC, TN, pH and P were selected for spatial interpolation because they present important agronomic 

soil properties that can be restored through good soil management practices. Moderate spatial 

dependence was exhibited by all the soil properties (Table 2.). Spherical model and OK resulted in 

spatial distribution maps (Figure 5.). 

 

Figure 5. Maps of predicted spatial distribution of soil properties 

 

 



The performance of spatial prediction for TN and pH was satisfactory based on the cross validation 

results (Table 4.). The low accuracy SOC (RMSE=0.81) and P (RMSE=1.1) compared to TN and pH 

predictions. SOC was mainly influenced by land management and this input layer into the Conditional 

Latin Hypercube Sampling Algorithm was missing due to lack of data. P was influenced by soil type 

and land management as well. Inventories for land management practices were not available and soil 

type data layers were only available in the KENSOTER database with limitations highlighted earlier 

in the introduction section. 

 

Table 4. Cross validation results of the prediction model. 

Soil property ME RMSE SRMSE 

SOC (%) 0.001 0.81 0.76 

TN (%) 0.0002 0.06 0.96 

pH -0.0006 0.13 0.98 

P (mg/kg) 0.006 1.11 0.77 

ME=Mean error, RMSE=Root Mean Square Error, SRMSE=Standardized Root Mean Square Error. 

 

Important trends are visible from the spatial distribution of soil properties. The region with high SOC 

contents coincides with the region with very low pH values. The low pH values are a result of intense 

leaching caused by heavy rainfall in this humid high altitude part of the study area. The soil type in 

humid, high altitude is dominated by Umbrisols (by default Umbrisols are Dystric and have high 

organic matter). Low pH slows down the activity of microbes responsible for the mineralization of 

SOC resulting in its stabilization and accumulation. Litter from the tea plantations in this part of the 

study area provided input material for humification. 

 

The trend for TN is similar to that of SOC because this is mainly organic nitrogen from soil organic 

matter. Therefore areas with high TN coincided with areas with high SOC. Fertilization using NPK 

resulted in high nitrogen in tea plantation zones. 

 

The trends for P are determined by soil types, rainfall intensity and management. High P values in the 

middle zone of the study area can be associated with tea plantations due to addition of NPK fertilizers, 

mineralization of SOC resulting in addition of organic phosphorus and less P fixation because of the 

nature of the dominant soil types (i.e Umbrisols and Nitisols). Towards the far east of the study P 

increases as the pH increase due to less leaching occasioned by decreasing rainfall amounts towards 

the east. 

 

 



3.3 Results of soil classification. 

My classification results at the RSG level were not fully matching the soil types of the associations of 

the relevant soil mapping units of the KENSOTER map units (Table 5). The KENSOTER humic 

Nitisols polygon had 28 sampled profiles. Matching associations with classified profiles in this 

polygon were identified. The 10 profiles classified as Andosols matched the humic Andosol 

association and 1 profile classified as Cambisol matched the humic Cambisol association in the humic 

Nitisol polygon. Umbrisols were represented by 10 profiles, Alisols 5 profiles and Regosols by 1 

profile.   

 

Table 5. Matrix representation of soil classes in KENSOTER polygons.  

KENSOTER  

Polygons  

The classification of the profiles in the map unit 

(polygon) 

Profiles 

AN  UM Al  RG  CM  LP  PH  PT  

Humic Nitisols  

(NTu70:ANu16:CMu14) 

10  10 5  1  2  0  0  0  28 

Rhodic Nitisols  

(NTr60:NTu30:FRr10) 

0  19 2  0  5  1  0  0  27 

Luvic Phaeozems  

(PHl40:NTh30:CMx30) 

0  8 0  0  3  0  5  0  16 

Eutric Vertisols  

(VRe70:CMe30) 

0  0 0  0  0  0  1  1  2 

Lithic Leptosols  

(LPq60:PHl40) 

0  1 0  0  0  0  0  0  1 

Rhodic Ferrasols  

(FRr90:LXh5:ACh5) 

0  0 1  0  1  0  0  0  2 

Total RSGs  10  38  8  1  11  1  6  1  76 

Share of the RSG in the 

study area (%) 

13.3 50 10.5 1.3 14.4 1.3 7,9 1,3 100 

Where PH=Phaeozems, LP=Leptosols, AN=Andosols, UM=Umbrisols, CM=Cambisols, AL=Alisols, 

PT=Plinthosols, RG= Regosols, HS=Histosols, NT=Nitisols, VR=Vertisols, FR=Ferrasols, 

CMu=Humic Cambisols, NTu=Humic Nitisols, NTr=Rhodic Nitisols, FRr=Rhodic Ferralsols, 

VRe=Eutric Vertisols, LXh=Humic Lixisols, Ach=Humic Acrisols, LPq=Lithic Leptosols.  



The Rhodic Nitisol polygon had 27 profiles. No profile was classified as a Nitisol even with dense 

sampling and the high chance (90%) based on Nitisol association ratio in this polygon. Out of the 27, 

19 profiles were classified as Umbrisols, 2 as Alisols, 5 Cambisols and 1 Leptosol. Matching 

associations with 5 profiles classified as Phaeozems were identified in the Luvic Phaeozem polygon. 

Umbrisols were represented by 8 profiles and Cambisols by 3 profiles out of the total 16 profiles. One 

profile was classified as Phaoezems and another as Plinthosols in the Eutric Vertisols polygon. Only 

one profile was visited and classified as Umbrisols in the Lithic Leptosol polygon. Two profiles were 

visited in the Rhodic Ferralsols polygon and classified as Alisols and Cambisols. 

  

Based on the KENSOTER map units, this is a Nitisol rich region (Figure 6.). Soil profiles of my study 

that satisfied the morphological characteristics of ‘nitic horizon’ failed the silt/clay ratio of <0.4 

diagnostic criterion in the WRB classification system. The higher silt ratio might be related to 

rejuvenation of the Nitisols during Pleistocene eruption in the Mt. Kenya region. Similar suggestions 

were made by De Wispelaere et al. (2015) based on observations in Ethiopia. Regardless of the cause, 

the current criterion makes soil with nitic horizon morphology excluded from the Nitisols, and also 

creates confusion in legacy databases. Based on these conclusion suggestions have been made to the 

IUSS WRB Working Group to skip this criteria from the nitic horizon diagnostic criteria. 

 

 

 

Figure 6. KENSOTER soil units and classified RSG of sampled soils 

 



3.4 Inferences for management from predicted soil properties 

The results of this study show the soils were acidic with pH range of 3.9 - 5.3 (Table 6.). The causes 

and effects of acidification on soils are well explained by Goulding (2016). The soil pH influence the 

bioavailability of plant nutrients and so indirectly affect crop plant growth. The range for P (Table 6.) 

was 3.15 mg/kg and 11.63 mg/kg, where 43.7% of total samples did not meet the threshold of 5mg/kg 

(Okalebo et al., 2006).  The high phosphate retention may be due to the existence of andic material 

occasioned by presence of Andosol reference soil groups in higher altitudes. The minimum and 

maximum values were 3.6 g/kg and 57.2 g/kg (Table 6.) and 93.07% did not meet the threshold of 20 

g/kg using the assessment of Loveland & Webb (2003). TN results show a minimum 0.4 g/kg and 

Max 6.8 g/kg but only 15% of the total sampling area met the threshold of 2.0 g/kg based on 

suggestions from Ndakidemi & Semoka (2006). The textural classes were mainly clay, silt clay and 

silty clay loam. The ratio of sand in all the observations was less than 20 % while clay and silt were 

36-58 % and 32-52% respectively.  

 

Table 6. Statistics of predicted soil properties 

Variable Min Max Mean STD CV Skewness Shapiro-Wilk test 

TN (g/kg) 0.41 6.8 1.64 1.28 0.78 1.88 < 0.0001 

SOC (g/kg) 3.60 57.2 10.34 7.57 0.73 3.49 < 0.0001 

Clay (%) 36.37 58.71 46.26 3.04 0.07 0.43 < 0.0001 

Silt (%) 32.64 52.42 42.35 2.69 0.06 0.18 0.002 

Sand (%) 7.66 16.17 12.09 1.54 0.12 0.34 0.002 

P (mg/kg) 3.15 11.63 5.82 1.88 0.32 0.87 < 0.0001 

K (cmol/kg) 1.19 1.88 1.59 0.14 0.09 -0.56 0.000 

Ca (cmol/kg) 5.32 18.09 8.03 1.44 0.18 1.98 < 0.0001 

Mg (cmol/kg) 2.70 5.89 4.34 0.51 0.117 -0.265 0.174 

Al (cmol/kg) 3.17 5.39 4.08 0.51 0.12 0.27 < 0.0001 

Al (%)  42.9 73.1 55.0 6.87 0.12 0.26 < 0.0001 

Na (cmol/kg) 0.07 0.17 0.13 0.02 0.13 -0.65 < 0.0001 

pH H2O 3.9 5.3 4.7 0.2 0.05 -0.5  

 

 



3.5 Summary of the suggested management options  

Soil erosion control and addition of soil organic matter into the soil 

Colluvic qualifier (Figure 22.) is an indication of movement of soil material through erosion. 

Measures of erosion control like terraces, increasing cover crops, mulching, improving the soil 

structure through addition of soil organic matter need to be emphasized in this study area. Farm yard 

manure (FYM) is a good source of organic matter. A major challenge remains as these FYM are 

usually insufficiently available to provide the nutrients needed to maintain agricultural production at a 

desirable level. Composting and use of biochar technologies may also increase availability of OMs for 

soil amendments. 

Liming and use of P fertilizers 

The Dystric qualifier (Figure 22.) show that the soils are mainly acidic with base saturation <50%. 

Andic and Vitric qualifiers (refer Appendix1 and Appendix 2) which were present in some of the 

sampling sites are good agents of P fixation. Application of agricultural lime containing Ca and/or Mg 

compounds increase Ca2+ and/or Mg2+ ions and reduces Al3+, H+, Mn4+, and Fe3+ ions. This leads to 

increase in soil pH and available P due to reduction in P fixation (Connor et al., 2011). Liming also 

increases earthworm activity and therefore macro porosity (Bolan et al., 2003). Bennett et al., (2014) 

found that lime applied at 5t/ha was improving aggregate stability, hydraulic conductivity, vegetation 

cover, total carbon and Nitrogen and respiration 12 years after application. However, high cost and 

inaccessibility of liming and fertilization inputs have been reported as key constraints in Kenya 

(Okalebo et al., 2006). Due to these challenges, alternative management options need be explored to 

provide a bigger matrix of options to the famers. 

Use of acid tolerant crops 

Planting crops that are tolerant to low pH and Al toxicity like tea and sorghum. Although the use of 

tolerant plant germplasm does not reverse soil acidity conditions, it minimizes the problems 

experienced by farmers, especially those who do not use lime.  

 

 

 

 

 

 

 

 



4. CONCLUSION 

Combining Conditional Latin Hypercube Sampling, Mid Infrared spectroscopy, and Random Forest 

Regression (RF), soil properties were satisfactorily predicted. The results of the linear regression 

show a strong relationship between the measured values and the predicted. Geostatistical analysis of 

my data revealed spherical model as the best fit for the semivariogram. Cross validations result show 

that TN and pH had excellent results compared to SOC and P. The low accuracy for SOC and P can 

be explained is because important explanatory variables like land management were missing during 

the prediction procedure due to lack of data. Also the input variable KENSOTER database that 

represented soil types had its share of limitations that were discussed in the introduction and affected 

the accuracy of the model. The maps of the predicted spatial distribution of the soil properties are a 

good demonstration of how a rapid and an accurate methodology can provide data to update maps and 

legacy inventories in the study area. The scale for these maps can inform land management at 

watershed and farm level (30m*30m resolution). Moreover, they form a good monitoring network 

that has not been there before for this study area.  

 

The second part of my research involved soil classification using the predicted soil properties and 

morphological field observations. The results show that the difficulties of Nitisols classification are 

primarily caused by the failure of the profiles data to qualify the nitic diagnostic criterion of silt to 

clay ratio of < 0.4. Modification of the criteria was suggested by the author during the European 

Geosciences Union 2017 general assembly in Vienna on 28th April 2014. This was through an oral 

presentation that I delivered ‘Classification problems of Mount Kenya soils with reference to Nitisols’ 

in the presence of IUSS WRB working Group. The diagnostic elements, principal and supplementary 

qualifiers made it possible not to loose soil information even when the reference soil groups were 

different. The building blocks of the system capture specific information important for soil 

management.  

 

 

 

 

 

 

 

 

 

 



5. Key scientific findings and important output of this research 

1. In my doctoral research I have applied Conditional Latin Hypercube Sampling for optimising the 

sample size; Mid Infrared Spectroscopy for rapid scanning of soil samples to generate a soil spectra 

library and Random Forest Regression to calibrate the soil MIR spectra using reference soil 

properties. This combination was 1st time and successfully used in the eastern slopes of Mt. Kenya to 

generate soil properties data. 

  

2. Based on the results of the Conditional Latin Hypercube Sampling I have developed the first 

spectral library representing the spectral variability of the Eastern Mt. Kenya soils. This database 

contributes to future soil sampling campaigns, and enables the efficient soil property prediction. 

 

3. The spatial density of available soils data in my study area is very low. The 77 georeferenced and 

fully described and analyzed profiles contribute to the understating of soil resources of the area. The 

investigated representative locations can serve for future monitoring of the determined soil 

parameters. Beside the point data I have compiled the spatial prediction map of the properties, which 

can support farmers in making soil management decisions in the area.  

 

4. In earlier surveys extended areas were mapped as Nitisols on Mt. Kenya. In my study I have not 

classified any of my profiles as Nitisols, although they satisfied the important morphological criteria 

of Nitisols, the silt/clay ratio < 0.4 diagnostic criterion for nitic horizon (introduced in 1998) was not 

satisfied. Nitisols that undergo rejuvenation, may lose this criterion but still fulfil all other 

requirements and the concept of the Nitisols. As shown in the thesis, the introduction of this criterion 

is creating confusion in legacy databases as well. My finding is that this criteria is not useful and 

should be removed from the diagnostic criteria of the nitic horizon in updated versions of the WRB. 

(This proposal was accepted by the IUSS WG WRB) 

 

5. The WRB proved to be a proper system to be applied for soil classification and soil characterization 

in the study area.  It was well demonstrated that the building blocks (diagnostic horizons properties, 

materials and the qualifiers) do carry the important information for management purposes on soils of 

the studied area. Although my profiles did not closely match the soil associations of the KENSOTER 

polygons on the highest level, the information content derived from the associations provided a better 

match with the classification building blocks of my profiles in the relevant polygons. This underlines 

the importance of the diagnostic approach in soil classification, mapping and validation processes. 
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