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“The nation that destroys its soil destroys itself” 

(Franklin Delano Roosevelt 1935) 

“It is impossible to have a healthy and sound society without proper respect for the soil.” 

(Peter Maurin, 1933) 
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1. INTRODUCTION 

This chapter starts with the background and rationale of the study. It highlights the important soil 

functions and their linkages to the UN sustainable development goals. Efforts to provide soil 

information through development of soil information databases are discussed. An overview of 

the African context is provided. The research problem is then presented with objectives. The 

chapter ends with a justification of the study. 

1.1 Background and rationale  

Critical discussions and negotiations on soil resource have been on the international agenda and 

have elevated soil resources to a greater global awareness. Use of soil information to boost 

achievements of UN-Sustainable Development Goals (Keesstra et al., 2016) needs 

interdisciplinary approaches and active participation of soil scientists. Soil functions (listed 

below), defined by the European Commission (2006) have direct link to the ecosystem goods 

and services whose vigour guarantee provision of food, adequate and clean water, resilience to 

climate change shocks and an enhanced biodiversity. Environmental, social and economic 

challenges can be addressed if we follow the path to better management of soils (Brevik et al., 

2015, McBratney et al., 2014). However, human interventions while utilizing soil resources and 

climate change impacts are having unanticipated consequences. Soil degradation processes like 

soil compaction (Jones et al., 2003), soil erosion (Cerdàr & Doerr, 2005), loss of organic carbon 

(Bellamy et al., 2005) are happening at unsustainable rate compared to soil formation processes 

(Verheijen et al., 2009). This has resulted in limited soil capacity to perform important soil 

functions like: biomass production, nutrients recycling, carbon and water regulation. 

Soil functions as defined by the European Commission (2006). 

1. Biomass production, including agriculture and forestry 

2. Storing, filtering and transforming nutrients, substances and water 

3. Biodiversity pool, such as habitats, species and genes 

4. Physical and cultural environment for human and human activities 

5. Source of raw material 

6. Acting as carbon pool  

7. Archive of geological and archaeological heritage 
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1.2 Links of soil to the UN-Sustainable Development Goals (SDGs) 

Low soil fertility is currently a food security problem in many developing countries (UNDESA, 

2013). Some of the causes of low soil fertility are the following: soil degradation (Vlek et al., 

2008), limited access to important agricultural inputs (Tittonell, 2014), climate change shocks 

(Thornton et al., 2014) and competing demands for limited soil resources (Hooper et al., 2005). 

Soils affect human health directly and indirectly. Direct contact of soils with pathogens may 

cause skin lessons (Franz et al., 2008). Microbial communities are a useful source of antibiotics 

(Ling et al., 2015). Soil microbial community have been found to affect soil structure (Young 

and Crawford, 2004). This in return affects soil functional properties like water infiltration. The 

data on soil–health relationships are scarce and very much incoherent. Protecting and enhancing 

the ability of the Earth’s soils to provide clean water in sufficient quantities is a key element to 

the achievement of SDGs. In situ soil water influences ground and surface hydrology and besides 

it supports plants growth. An estimated 74% of freshwater sources come from soils (Hoekstra & 

Mekonnen, 2012). Soils are integral parts of several global nutrient cycles. Carbon and nitrogen 

in the soil are sources of green house gases. Soils contain three times as much carbon as the 

atmosphere (Smith, 2004). Small changes of soil carbon may have a huge impact on climate. 

This means of sequestering carbon into the soils is an important step to climate change 

mitigation. Soil biodiversity have been reported to increase resilience of soils to climate change 

(Bardgett & van der Putten, 2014). A study by Six et al. (2002) shows strong association 

between loss of biodiversity and poor soil physical properties. Global distribution of soil 

biodiversity is minimally understood due possibly to the inadequate global soil data inventories. 

The recently launched ‘Global Biodiversity Atlas’ (Orgiazzi et al., 2016) shows the potential of 

biodiversity living in the soil based on some proxy soil datasets. For example, microbial soil 

carbon distribution data that was developed by Serna-Chavez et al. (2013) was used as a proxy to 

map the soil microbial diversity. In summary, efforts to restore soil productivity require thorough 

understanding of soil properties. This cannot be possible without adequate and reliable soil data 

inventories.   

1.3 Some developments in soil information databases 

The first attempt to prepare a soil map of world with a uniform legend was through a joint 

project by FAO and UNESCO (FAO-UNSECO, 1974). This map has enabled correlation of soil 

units and the comparison of soils on a global scale making it useful in many global studies on 
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climate change, food production and land degradation. However it’s low resolution (1:5M scale) 

is not suitable for land management decisions at field or catchment scales. Recognising the 

importance of soil as a non renewable resource, there is a definite return of soil on the political 

and global research agenda (Hatermink, 2008). Efforts have been put to explore new techniques 

and methodologies (Hartemink & McBratney, 2008) aimed to provide updated high resolution 

soil information. Some example of projects that focused on methodology development include: 

iSoil (van Egmond et al., 2009), Digisoil (Grandjean, 2010), and e-SOTER (van Engelen, 2008). 

These developments resulted in the establishment of the Global Soil Partnership whose aim was 

to enhance use of knowledge of soil resources and also ensure standardization of methodologies. 

The GlobalSoilMap.net project (Sanchez et al., 2009a) and e-SOTER (van Engelen, 2008) were 

initiated to address large-scale environmental issues. The development of the World Soil 

Information Service (WoSIS) was a follow-up to earlier compilations of soil legacy data 

coordinated by ISRIC such as WISE (Batjes, 2009a), SOTER (van Engelen & Dijkshoorn, 

2013), and the Africa Soil Profiles database (Leenaars, 2013). The aim of WoSIS was to 

harmonise soil data (point, polygon and grids), from shared legacy data and soil spectral libraries 

(e.g. Viscarra Rossel et al., 2016; Shepherd & Walsh, 2002). However, these global soil 

databases are incomplete and only indirectly relate to the dynamic soil properties that are 

sensitive to soil management at relevant scales (Vagen et al., 2013). The limitation to most of 

these soil databases is the scale at which data is presented, lack of harmonized methodologies of 

data collection and laboratory analysis, that affect the accuracy and therefore fail to provide 

adequate information for soil management at farm or watershed scale.  

1.4 Overview of the African context 

Competing demand for natural resources result in overexploitation, making it a big challenge, yet 

very important to sustainably manage the natural resources for the survival of over one billion 

people (Jones et al., 2013).  Increased advocacy on the role of soils is essential in Africa, but 

important soil information on which policy and land management could be based is limited or 

even lacking in most areas. For this reason, the capacity of Africa to feed itself is held back by 

land degradation from both natural and anthropogenic causes. The available legacy soil 

information could not be well correlated between countries because of variable age, methologies 

and sometimes low quality. In view of this, the Joint Research Centre (JRC) of the European 

Commission and African experts worked together to produce the Soil Atlas of Africa (Jones et 

al., 2013). The data sources were from the Harmonized World Soil Database (HWSD), 

FAO/Unesco Digital Soil Map of the World (FAO/Unesco 1971-1981; FAO, 2003), the Soil and 
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Terrain database (SOTER) ,  from WISE databases (FAO/ISRIC, 2003; Batjes, 2007, 2008) and 

from national sources. The soil map of Africa (Figure 1.) demonstrates great soil diversity. The 

distribution of WRB reference soil groups (RSG) (IUSS Working Group, WRB, 2006) shows 

that over 60% of the soil types represent hot, arid or immature soil assemblages which include: 

Calcisols (5%), Leptosols (18%), Cambisols (11%), Arenosols (22%), Regosols (3%) and 

Solonchacks/Solonetz (2%). Then approximated 20% are soils of tropical or sub-tropical 

characteristics which include: Nitisols (2%), Plinthisols (5%), Ferralsols (10%), and Lixisols 

(4%). The distribution of soil forming factors has been noted to contribute to the distribution of 

soil types in Africa (Jones et al., 2013). The occurrence of Chernozems, Kastanozems and 

Phaeozems which are developed under steppe conditions is limited in Africa. 

 

Figure 1. The major soil types in Africa (Jones et al., 2013) 

Natural causes like low cation exchange capacity (CEC) of the soils, climate change impacts and 

low soil organic matter partly explain the reasons of low productivity of soils in the sub-Saharan 
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Africa (Shepherd & Walsh, 2007). Further decline in productivity is anticipated (AfSIS, 2013; 

Nziguheba et al., 2010; Shepherd & Walsh, 2007) because of limited investment into programs 

that can increase soil productivity. This worsens for small holder farmers who fully rely on what 

these poor soils can offer resulting in vicious poverty traps. The Alliance for a Green Revolution 

in Africa (AGRA) which was launched in 2007 scantly achieved its objectives. Inadequate soil 

data inventories for Africa that could support important decision making on soil resource 

management and increase agricultural productivity was identified as one of the major 

impediments (Nziguheba et al., 2010). Integrated soil fertility management has been suggested 

by Vanlauwe et al. (2015) as a better soil management approach for sub-Saharan Africa. 

European African partnership projects like the PROIntensAfrica (www.IntenseAfrica.org) under 

the Horizon 2020 framework are looking at agro-ecological pathways to sustainable 

intensification of the agri-food systems. The situation in Kenya is not any better. Kenya’s 

economy is agricultural based, currently contributing 24 percent to the Gross Domestic Product 

(GOK, 2009). Low soil fertility impedes productivity in many farming operations in Kenya 

(Okalebo et al., 2006). This is worsened by lack of cost efficient soil fertility diagnostic tools 

(Bekunda et al., 2010). To achieve the vision of the UN-SDGs 2015-2030, vision for Alliance 

for a Green Revolution in Africa (AGRA, 2013) and other ongoing and future projects will 

require up to date soil data inventories.  

1.5 Research problem 

The expected growth of population and the need of more food make the knowledge of soil 

properties essential to secure the successes of agricultural production on currently available land. 

Despite Kenya’s economy being agricultural based, existing soil inventories (i.e Legacy data) do 

not capture dynamic soil properties at scales that are sensitive to management. The high costs of 

soil surveys and laboratory measurements have partly contributed to the scarcity of soil data as 

very little is done to update soil information inventories. The inventories also lack a harmonized 

sampling design that satisfies data quality checks of repeatability, reproducibility and accuracy. 

The commonly used plot experiments in the study area are expensive and do not capture the 

geographical variability of soil properties over a wide area. Unfortunately findings from plot 

experiments are used to make soil management recommendations for areas or regions away from 

the plot locations not withstanding soil properties variability in a very short distance. Lack of soil 

monitoring networks makes it impossible to recommend and prioritise site specific soil 

management practices increasing vulnerability of the soils to further degradation. Without a soil 

monitoring network it’s difficult to report achievements made following any soil restoration 
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activities. This has continually deprived the already nourished soils of the capacity to optimally 

provide the much needed ecosystem services. Rapid methods to quantify soil properties and 

support national soil health surveillance systems urgently need to be adopted.  

1.6 Study objectives. 

Based on the problem statement I have identified the following objectives which are represented 

in a summarized format: 

1. To develop an optimized soil sampling scheme that preserves the natural distribution of 

soil forming factors in the study area, in the eastern slopes of Mt.  Kenya. 

2. To develop an ensemble model for predicting of important soil properties (i.e soil organic 

carbon, base cations, pH, aluminium and particle size distribution). 

3. To demonstrate the usefulness of the derived database for mapping soil properties for the 

study area. 

4. To classify the visited soils and validate the soil types in the KENSOTER soil units of the 

study area. 

5. To compare differences of soil properties in different WRB Reference soil groups and the 

implications of applications for management purposes in the study area. 

1.7 Justification of the study 

Maintenance of soil fertility is an important supporting service as it is necessary for the overall 

productivity of the agricultural systems. But this is only possible if reliable soil property 

information is available and can be accessed in good time to enable timely decision making. 

Winoweick et al. (2016) have pointed the need to understand soil properties in view of 

identifying limitations that hinder increased agricultural production. Conventional soil laboratory 

analytical procedures are costly and consume a lot of time (Shepherd & Walsh, 2002; McBratney 

et al., 2003). These cost prohibitive methods are ballooning the already existing soil data scarcity 

problem making it difficult for informative decisions on soil management. Traditional wet 

chemistry methods for quantifying soil properties are expensive because they take a long period 

of time and the chemicals required (Ludwig et al., 2002). In addition, these analytical methods 

are associated with generation of toxic wastes that must be properly disposed. Over nearly three 

decades, reflectance spectroscopy, near and mid infrared (NIR & MIR) has been used as a dry 

chemistry analytical tool to provide quantitative and qualitative data of soil properties in a much 

faster, non destructive, cost efficient and less hazardous way to the environment because few 

chemicals are required compared to wet chemistry laboratory measurements (Nocita et al., 2015, 
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Madari et al., 2006; Vagen et al., 2016). MIR is integrative making it a good soil health 

diagnostic tool (Shepherd & Walsh, 2002). Traditionally, farmers in this study area consider 

fields as uniform pieces of land and thus, farm inputs like fertilizers are applied without taking 

into account spatial variations in field characteristics. Adoption of poor soil sampling methods 

makes it worse as they conceal soil properties variability within fields. This may lead to fertilizer 

wastage in parts of the field that are well endowed with nutrients and under application in parts 

of the field with high nutrient deficiency. The consequence is imbalance in field productivity. 

Thus, there was need to design a soil sampling scheme that can ensure the area of interest is 

covered uniformly. Site specific management systems are possible to achieve with the input of 

geostatistical approaches that enable spatial mapping soil properties in unsampled locations 

(Saito et al., 2005; Behera & Shukla, 2015). This study targets to quantify soil properties using 

rapid and cost efficient MIR spectroscopy and predictive models to quantify soil properties. The 

predicted soil properties support development of spatial distribution maps using geostatistical 

techniques. This approach made it possible to provide the much needed spatial soil information 

at relevant management scales for the study area. The spatial information also forms a good basis 

to monitor soil fertility in the study area. 
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6.  

2. LITERATURE REVIEW 

The basis of this thesis requires knowledge about soil, infrared spectroscopy, multivariate 

statistics and geostatistical approaches for mapping soil properties. A quick overview of 

available soil information for Kenya and the eastern of Mount Kenya region are presented. The 

commonly used soil sampling techniques discussed with more details on Latin Hypercube 

Sampling. Spectroscopy and Digital Soil Mapping are discussed. Gaps are identified that support 

the choice of methods used in this study.  

2.1 Overview of some of available soil information for Kenya  

The Exploratory Soil Map of Kenya (ESMK) (Figure 2.) at the scale of 1:1M dated 1980 was the 

fourth attempt to present the soils of Kenya in a more comprehensive manner by the Kenya Soil 

Survey under the supervision of W. Sombroek.  (Ministry of Agriculture, 1980). The first 

provisional 1:2M soil map was included in the soil map of East Africa (Milnes, 1935). The 

second map at the scale of 1:3M was produced by Gethi Jones and Scott (1959) reprinted in 1962 

(2nd edition) and 1970 (3rd edition). Scott used the same information from the East Africa soil 

map (Scott, 1971). In all these soil maps the soils were surveyed and presented following the 

catena concept developed by Milnes (1935b). This concept was taken further into the land 

system approach which resulted in the preparation of land system atlas for the western part of 

Kenya at the scale of 1:5M (Scott et al., 1971). The compilation of the exploratory soil map of 

Kenya drew soil information from the Kenya Soil Survey (KSS) and exploratory pieces of 

fieldwork during the period 1973-1977. An inventory of all Kenya Soil Surveys that formed 

important source of data for the exploratory soil map of Kenya can be found in KSS publications 

(Siderius, 1979). The soil map of world (FAO-UNSECO, 1974) also derived soil information for 

Kenya from the KSS. The density of sampling or the number of profiles used during the 

compilations of the ESMK is however missing. 
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Figure 2. Exploratory soil Map of Kenya  

(Ministry of Agriculture, Kenya Soil Survey, 1980) 

Another important soil information source for Kenya is the KENSOTER database; it was 

developed by the Kenya Soil Survey (KSS) following the UNEP/ISRIC SOTER procedures 

(Kenya Soil Survey, 1996). The KENSOTER map is based on the ESMK at scale 1:1M 

(Ministry of Agriculture, Kenya Soil Survey, 1980). The delineations of the KENSOTER 
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mapping units largely coincide with the unit boundaries of the ESMK. The land surface of the 

republic of Kenya, excluding lakes and towns was characterised using 397 unique SOTER units 

corresponding with 623 soil components. The major soils were described using 495 soil profiles 

which included 178 synthetic profiles selected as representative for the units (Batjes & Gicheru, 

2004).  

Regarding data quality of the KENSOTER the following general remarks can be made: 

 Soil components in the KENSOTER are defined by a single reference profile. This makes 

information on soil variability scarcely available. 

 The information of over 40% of the soil components was found to be incomplete (Van 

Waveren, 1995). This missing information was mostly on soil classification and soil 

texture. 

 The total proportional area of the soil components in KENSOTER was not always 100% 

often due to undefined soil components (Van Waveren, 1995). 

 The soil classification of a number of profiles is not in accordance with profile 

information. 

 Classification of the parent material was inconsistent. For example basement system 

rocks were classified as granite instead of gneiss. 

The Africa Soil Information Service (AfSIS) library is another source of soil information for 

Kenya. Soil data were collected at over 9,000 locations from 60, 10 X 10 km sentinel sites in 

Africa stratified by the major Koppen-Geiger climate zones of Africa (Peel et al., 2007). This 

exercise excluded some of the African countries which were no-go zones due to security threats.  

The data were further combined with collated and harmonized soil legacy data from over 18,000 

locations in Africa. Each sentinel site was subdivided into 16 sampling units (clusters), each 

cluster was further split into 10 smaller sampling units (plots). The sampling plot was designed 

to sample approximately 30 x 30 m area. Only three sentinel sites were visited in Kenya (western 

parts of Kenya, rift valley and the coastal region). The sampling design and density was clustered 

and therefore did not capture important soil resource and land use variability in Kenya. Mount 

Kenya region (my study area) for example was not part of the sentinel sites for AfSIS in Kenya. 

The available data for eastern slopes of Mount Kenya is the Soil and Terrain (SOTER) database 

for the Upper Tana River catchment (SOTER_UT), at scale 1:250,000. This database was 

developed during the Green Water Credits (GWC) projects for hydrological studies in the Upper 

Tana catchment of Mount Kenya Region (Dijkshoorn et al., 2010). The SOTER_UT data was 
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extracted from the national KenSOTER database and updated with information from 

reconnaissance surveys (Kenya Soil Survey, 1975, 2000) at a scale of 1:1M and more detailed 

soil studies in the catchment (Kinyanjui, 1990; Njoroge & Kimani, 2000). The SOTER_UT 

provides data of 191 SOTER units using 109 representative soil profiles. It is evident that much 

of available soil data were compiled from the legacy soil data sources and little has been done to 

update these inventories.  

2.2 Overview of soil sampling methods. 

Reliable data sampling of spatially distributed data require use of appropriate statistical tools. It 

is a standard statistical procedure to use sampling techniques to improve the coverage of the 

sampling area, especially when the function being analysed is expensive like carrying out soil 

survey campaigns. There are two major types of sampling methods: probability sampling which 

utilizes some form of random selection. 

2.2.1 Probability sampling methods  

 Simple random sampling is the commonly used sampling method that provides 

independent estimates of the mean and variance but may require many samples to reduce 

prediction error. In addition, simple random sampling can sometimes leave large 

unsampled areas. Simple random sampling is not the most statistically efficient method 

of sampling because in many times it’s difficult to achieve good representation of the 

total population (Leornard & Anselm, 1973).  

 Systematic sampling is a statistical method involving the selection of elements from an 

ordered sampling frame. The most common form of systematic sampling is an 

equiprobability method. However, systematic sampling is only useful if the given sample 

population is logically homogeneous. Soil variability in a landscape is highly 

heterogeneous and therefore this method was not suitable for soil sampling in this study 

(Leornard & Anselm, 1973)  

 Stratified random sampling is also called proportional or quota random sampling and 

involves dividing the sample population into homogeneous subgroups and then taking a 

simple random sample in each subgroup. The requirement is that the strata or subgroups 

should be homogeneous. However, stratified sampling may not capture the continuous 

natural distribution of ancillary data (soil forming factors) as stratification results in 

discrete polygons. An example of stratified random sampling is the use of ‘catena’. This 

approach describes a grouping of different soils that occur together in the landscape 
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based on differing topographic attributes. However, topography cannot be completely 

isolated from other soil forming factors like parent material, climate, organisms and time 

(Jenny, 1941). This is a difficult task to delineate homogeneous landscapes in a highly 

heterogeneous landscape like Mount Kenya region. A good soil sampling scheme should 

take cognisant of all the soil forming factors.  

 Cluster sampling is a sampling plan used when mutually homogeneous yet internally 

heterogeneous groupings are evident in a statistical population. In this study the natural 

distribution of environmental variables that guided the sampling plan are continuous 

variables. Clustering continuous environmental variables may conceal information on its 

variability in the landscape (Paul & Stanely, 2011).  

 Multistage sampling involves a combination of sampling methods. This may help to 

address complex sampling questions like uniformity of sampling and increase coverage 

of the area of interest while addressing the heterogeneity of the subgroups. 

 Latin hypercube sampling (LHS) is an optimization procedure that picks sampling sites 

which can form a Latin hypercube in a feature space/landscape. The LHS method has so 

far been successfully applied in the design of soil sampling schemes (Worsham et al., 

2012; Taghizadeh-Mehrjardi et al., 2014). 

 Conditional Latin Hypercube Sampling is hybrid of LHS. The difference between CLHS 

and the LHS is the additional of field operation constraints to the objective function of 

LHS. Roudier et al. (2012) used CLHS to optimize the chances of sampling site 

accessibility. Mulder et al. (2013) successfully used CLHS in inaccessible field in 

Morocco to increase the probability of accessing sampling sites. CLHS was adopted for 

this study and is further explained in Chapter 3. 

2.2.2 Non- probability sampling methods  

 Convenience sampling is a sampling method that draws samples of the population that 

are close to hand or readily availability. This sampling is most useful for pilot testing. 

However, the results of convenience sampling cannot be generalized to the target 

population because of the potential bias (Bornstein et al., 2013). 

 Purposive sampling is a sampling technique in which researcher relies on own judgment 

when choosing samples of a population. This method is vulnerable to errors in judgment 

by the researcher, as low level of reliability, high levels of bias and inability to generalize 

research findings (Zhi, 2014). 
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 Quota sampling is based on the researcher’s judgment. The selection is not random and 

therefore selection bias is a big problem that can result in unrepresentative samples of the 

population (Cochran , 1977). 

2.3 Spectroscopy 

In this section Near-infrared (NIR), Mid-Infrared (MIR) and multivariate calibration of spectra 

data are discussed. 

2.3.1 Infrared spectroscopy (IR) 

Infrared (IR) spectroscopy offers a non-destructive means of measurement of soil properties 

based on reflectance spectra of illuminated soils. Near infrared (NIR; 25000-4000 cm-1 and mid 

infrared (MIR; 4000-400cm-1) regions are tools currently in use by soil scientist for acquiring 

soil properties information rapidly and cheaply (Nocita et al., 2015). Figure 3. shows different 

regions of the electromagnetic spectrum. 

 

Figure 3. The Electromagnetic spectrum. 

Source: http://www.geo.mtu.edu/rs/back/spectrum/ (Accessed 2016, October, 13). 

Infrared (IR) spectroscopy works based on absorption of electromagnetic waves in the infrared 

regions (Cécillon et al., 2009). All bonds have specific vibrational frequencies, and IR 

absorption can be used to describe (i) the location of absorption in terms of wave numbers, (ii) 

the amplitude of the absorption peak (relative intensity), and (iii) the width of the peak 
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describing its intensity-bandwidth (Cécillon et al., 2009). Near infrared (NIR) spectra results 

from overtones and combination bands; they are complex and not easily interpretable compared 

to other spectra like ones from mid infrared regions (MIR), which are mostly fundamental bands 

(Workman Jr. & Mark, 2004). Compared to the MIR, the NIR region is dominated by broader 

signals, rather than sharp peaks due to additive effects of two or more bonds (combinations of 

absorbance) at each wavelength (Workman Jr. & Mark, 2004). The fundamental absorption is 

the most intense absorption of energy and occurs in the mid-infrared. Each higher overtone and 

combination band is typically 10-100 times weaker than the fundamental bands (Sandorfy et al., 

2006). Vibrations of atoms of a molecule involve change in bond length (stretching) or bond 

angle (bending) (Stuart, 2004). Stretching vibration consists of symmetric and asymmetric 

stretching, while bending vibration are a result of wagging, twisting, rocking and deformation. 

Symmetric vibration is generally weaker than asymmetric vibration, because symmetrical 

molecules have fewer “infrared active” vibrations than asymmetrical ones (Stuart, 2004).  

Spectral pre-processing is important in spectra analysis. The goals of spectra data pre-processing 

are:  

 To improve the robustness and accuracy of subsequent quantitative or classification 

analyses  

 To improved interpretability: raw data transformed into formats that are better 

understandable  

 To enable detection and removal of outliers  

 To reduce dimensionality of the data  

 To remove overlapping of data and redundant information.  

A commonly used pre-processing method is Savitzky-Golay smoothing (Savirzky & Golay, 

1964).  In this method, a polynomial least-squares fit is performed on a spectral window. 

Savitzky-Golay filters are optimal in the sense that they minimize the least-squares error in 

fitting a polynomial to each frame of noisy data (Swierenga et al., 1999). 

2.3.2 Mid Infrared Spectroscopy (MIR) of soil properties 

MIR identifies the kind of molecular motions and bonds or functional groups present in a 

sample, because each frequency match a certain quantity of energy and unique molecular motion 

(e.g. stretching and bending). This concept allows the characterization of complex soil 

components. MIR spectroscopy has frequently been applied to investigate soil properties and soil 

organic matter (Viscarra Rossel et al., 2006). Currently, the combination of multivariate 
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statistical methods used for the Fourier Transform IR (FTIR) spectra analysis is a powerful 

diagnostic tool for identification and quantification of soil components (Viscarra Rossel et al., 

2006; Sila et al., 2016). 

MIR spectra can be divided into four regions (e.g., Shepherd and Walsh, 2007): (i) fingerprint 

(O–Si–O stretching and bending) from 1500 to 600 cm−1, (ii) double bond (C=O, C=C, and 

C=N) from 2000 to 1500 cm−1, (iii) triple bond (C≡C, C≡N) from 2500 to 2000 cm−1, and (iv) 

X–H stretching (O–H stretching) from 4000 to 2500 cm−1. FTIR spectra have made it possible 

to distinguish clay minerals from each other through the bands assigned to OH and Si–O groups. 

Clays or aluminosilicates show two sharp peaks at 3695 and 3622 cm-1 due to OH stretching 

(Janik et al., 2007b). Near 3400 cm-1 is a broad band associated with OH stretching (H bonded 

water); the strength and position of this band is affected by exchangeable cations. Its position 

decreases in the order K+ < Na+< Ca2+ < Mg2+. This is related to the increasing polarizing power 

(charge/radius) of the cations (Janik et al., 2007b). Weak bands at 1980, 1870 and 1790 cm−1 

are associated to quartz overtone (Janik et al., 2007b). Carbonates produce absorption at 2600 to 

2500 cm−1 with little interference from other minerals (Janik et al., 2007). Wavebands at 3683–

3639; 2580–2306–; 2137–2098; 1709–1689; 1556–1400 cm−1 are important for pH predictions. 

These bands are associated with hydroxyl stretching vibrations, alumino-silicate lattice 

vibrations and Al-OH deformation vibrations (Yitayesu et al., 2011). Wavebands at 2285–2025, 

1751–174 and 1423 cm−1 are important for sand prediction (Sila et al., 2016) and correspond to 

alumino-silicate lattice vibrations and Al-OH deformation vibrations (Yitayesu et al., 2011). Soil 

organic matter produces features across the entire spectral range, for example contributing to the 

broad absorption features near 3400, 1600, and 1400 cm-1 and due to absorption by aromatic 

structures, alkyls, carbohydrates, carboxylic acid, cellulose, lignin, C=C skeletal structures, 

ketones, and phenolics (Janik et al., 2007). 

2.3.3 Multivariate calibration of soil MIR spectra data  

Multivariate calibration is the collective term used for the development of quantitative models 

for prediction of soil properties. The goal of model calibration is to replace a measurement of the 

soil property by one that is cheaper, or faster, or better accessible, yet sufficiently accurate. 

Examples of multivariate methods include linear methods such as multiple linear regressions 

(MLR), principal component regression (PCR), partial least squares (PLS) and non- linear 

methods such as artificial neural networks (ANN), non-linear support vector machines (SVM) 

and random forest regression (RF). Principal Component Regression (PCR) and Partial least 

squares (PLS) regression are the most commonly used prediction methods in spectroscopy. A 
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combination of multivariate calibration methods with spectroscopic data has allowed the analysis 

of complex spectra libraries. Linear and non-linear calibration methods are used for modelling 

soil spectra data. The utility of Random Forest regression (RF) for quantifying soil properties 

from MIR spectra data has not been widely used as compared to other multivariate statistics like 

multiple linear regression (MLR), partial least squares (PLS) and Principal Component 

Regressions (PCR). A study by Ghasemi and Tavakoli (2013) on application of RF for 

multivariate calibration of MIR spectra, compared performance of PLS and RF on four varied 

spectra data sets.  The result indicated that RF had generally better performance than PLS on the 

noisy data set containing outliers which is a characteristic of soil spectra data measured using 

FTIR. McDowell et al. (2012) found no significant difference among PLS and RF ensemble 

regression trees to predict soil Total Carbon (TC) on Hawaiian soils. Minasny and McBratney 

(2008) and Minasny et al. (2009) used cubist regression approach and obtained excellent 

predictions for SOC. Vasques et al. (2010) identified SOC predictions made by ensemble 

regression trees as more accurate than those derived from PLS in an investigation in Florida. 

PLS and PCR are only useful in absence of non-linear variations (Brown et al., 2006). Non-

linear variations caused by temperature changes, light scattering, baseline drifts and 

multicollinearity are a common phenomenon in spectra data and have been reported in Fourier 

transform infrared spectroscopy (Hoffmann & Knözinger, 1987). The MLR model is simpler and 

easier to interpret, but is not capable of dealing with the multicollinearity of spectra data 

(Massart et al., 1998). In practice, the presence of non-linear influence (such as temperature 

variation, baseline drifts, light scattering effect and multicollinearity) on the spectra decreases 

the accuracy of linear methods. Thus, non- linear methods like artificial neural networks (ANN), 

support vector machines (SVM) and random forest regression (RF) have better predictions than 

linear methods. However, ANN is not efficient in modelling high-dimensional data and requires 

a dimension reduction (Anderson, 2009). SVM is capable of handling high-dimensional data but 

is not robust in the presence of noisy data which is a characteristic of soil spectral data. Among 

various regression methods, tree structured models, so-called decision trees, can model linear as 

well as non-linear relationships (Svetnik et al., 2003; Vega et al., 2009; Tan et al., 2010). They 

are easy to interpret, fast and non-parametric thus do not rely on assumptions about data 

distribution. However, they have low prediction accuracy especially for regression purposes 

(Lim et al., 2000). Based on its robustness, RF was used as the calibration method in this study. 
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2.4 Digital soil mapping 

Digital soil mapping (DSM) is an alternative to the conventional soil mapping (CSM) approach 

which has been found to have major limitations. Important limitation of CSM in large 

inaccessible areas is the dense sampling that is required for detailed soil maps (Bui et al., 1999). 

Other limitations include: lack of quantified measures of accuracy (Kempen et al., 2012) and 

lack of reproducibility because the mental soil landscape models used by surveyors are difficult 

to interpret. DSM offers a much flexible and quantitative approach to study soils and their 

relation to environmental factors (Pásztor et al., 2006; Dobos et al., 2006; Hartemink & 

McBratney, 2008). In DSM, field, laboratory and remotely sensed soil observations are 

integrated with multivariate statistics to infer spatial patterns of soils (Grunwald, 2011). The 

concept of pedometrics is applied in the state factor equation of soil formation (Jenny, 1941) in 

order to develop empirical models that relate observations of soil properties with environmental 

variables. This model is often known as CLORPT model. Refinements to CLORPT model 

include the SCORPAN (McBratney et al., 2003) framework which is spatially explicit 

(Grunwald, 2011). The environmental variables are data layers from digitized geological and soil 

maps, satellite images, digital elevation models (DEMs) and its derivatives. The success of DSM 

depends on the spatial autocorrelation of soil observations in a landscape (Grunwald, 2011). The 

sample size and the sampled variability determine the accuracy of soil prediction models 

(Vasques et al., 2012).  

Some of the guiding considerations for successful DSM 

 The choice of sampling method should be guided by how well the sampling procedure 

enhances coverage of the full extent of environmental variables needed as input data in 

the prediction models. Taking this conclusion into consideration, the Conditional Latin 

Hypercube Method (CLHS) was selected for this study.  Details of CLHS are explained 

in Chapter 3. 

 To optimize spatial prediction of soil properties, a good choice of geostatistical approach 

need to be considered. Details of how the geostatistical method was selected are also 

given in Chapter 3. 

 The approach methods should be both time and cost efficient. Rapid methods of soil 

properties measurements and multivariate statistics have been adapted for this study and 

are explained in Chapter 3. 
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3. MATERIALS AND METHODS. 

This chapter provides details of the study area, demographic and social economic activities 

design of the sampling frame, the methods used in the laboratory using conventional wet 

chemistry laboratory procedures and dry chemistry infrared spectroscopy techniques for soil 

analysis. The actual procedures for processing soil data and the applied multivariate models are 

discussed. Geostatistical approaches used to investigate the spatial dependence of data are 

discussed together with the spatial mapping of soil properties.  

3.1 Study area 

In this section, the location of the study area, soil forming factors, the dominant soils and the 

demographic and social economic characteristics are discussed.  

3.1.1 Location 

Soil sampling was conducted in Mt. Kenya region covering an area of 1200 km2 within latitudes 

370 36'E and 380 0' E and longitudes 00 6' N and 00 18' S (Figure 4.). The major land use is 

rainfed agriculture.  

 

Figure 4. The locations of study area in the eastern slopes of Mt. Kenya. 

3.1.2 Soil forming factors. 

Soil forming factors; climate, topography and geology influence distribution of the soil types. 

The altitude range was 700 m to 2000 m. The agro-climatic zone is humid in high altitudes and 

semi-arid in the lower altitudes (Jaetzold et al., 2007). The area has large rainfall differences, 
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with rainfall gradient increasing from east towards west. Annual rainfall is distributed in two 

major seasons between March to May and October to December. Amount of rainfall is 1500 mm 

in upper humid zones and 600 mm in the lower semi-arid zones. Temperature is correlated with 

altitude, warm parts in the eastern lowlands and cooler zones high up towards western parts. The 

annual average temperature is 10 0C to 35 0C.  

The geology is mainly volcanic rock and ash and some old metamorphic rocks (Schoeman, 

1952). The volcanic rocks in the area are related to the Rift Valley development during the 

Pliocene time and dated from 3.5 to 2 million years. Three phases of deposition by this 

volcanism can be distinguished. The first phase was during the main activity of Mt. Kenya. This 

phase took place during the upper Pliocene time. In this period phonolite flows and lahars were 

deposited in the area. These form the plateau level in the area which borders the basement 

system area. The second phase was during the activity of the parasitic cones in the north eastern 

side of Mt. Kenya during the Plio-Pleistocene time. Parasitic cones are cone-shaped 

accumulation of volcanic material forming from fractures on the side of volcano because the 

sides of the volcano are unstable. The lava flows during this time consisted of lahar and basalt. 

The third, recent phase was during the Pleistocene time and is also related to the activity of the 

parasitic cones of Mt. Kenya. Lahar, tuffs and volcanic ashes were deposited during the time 

especially in the river valleys. Therefore the volcanic rocks related to the Mt. Kenya series are 

mainly lahars, phonolites, tuffs, basalt and volcanic ashes. 

The rocks and/or rock groups were identified as the parent material of the soils in this study area 

from the digitized geology map of the study area.  Figure 5.  shows how these rocks are 

distributed in the study area. The presented geology map was derived from the ISRIC library KE. 

2002.02 document for this study area. This document was scanned, georeferenced to the World 

Geodetic System 1984 (WGS 84) and then polygons were digitized using ArcMap 10.5 software 

as part of my research work. 
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Figure 5. Spatial distribution of rocks identified as parent material of soils in the study area.  

Another important soil formation factor is the anthropogenic influence. Human populations can 

knowingly, or unknowingly, manipulate land conditions to the extent that they affect soil 

formation. Human activities like excavation act as external modifiers to soil formation processes. 

3.1.3 Dominant soil types of the study area 

For this study area, the dominating WRB (IUSS Working Group WRB, 2015) Reference soil 

groups (RSG) are:  Nitisols, Ferrasols, Regosols, Vertisols and Phaeozems (Figure 6.). This is 

according to the 1:1 M KENSOTER map and database (Dijkshoorn, 2007). Western part is 

relatively humid with lower temperatures. Low rate of mineralisation of organic matter, strong 

leaching and eluviation give rise to humic topsoils, and mostly acid soils with low base 

saturation like Andosols, Umbrisols and Alisols. Andosols which are mainly found in high 

elevation, humid zones of Mt. Kenya region are intermediary weathered compared to soil types 

in the middle and lower zones of the study area. 

In the middle elevation the rainfall and temperatures are moderate. Hence less leaching and 

moderate organic matter decomposition resulting in well structured, drained and deep soils 

evidenced by presence of Nitisols. Nitisols are deep, well-drained red tropical soils with diffuse 

horizon boundaries and a sub-surface horizon with more than 30 % clay and moderate to strong 

angular blocky structure elements that easily fall apart into characteristic shiny, polyhedric 

(‘nutty’) elements. The genesis of Nitisols includes ferralization which result in loss of silica 

(Si), formation of kaolinite and accumulation of sesquioxides. The angular shinny peds are a 
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result of nitidization caused by micro swelling and shrinking and pressure regulating clay 

particles in the form of ped faces. Bioturbation by ants and earth worms homogenises soils 

(Driessen et al., 2001). Rejuvenation of Nitisols through deposition and enrichment of volcanic 

ashes has been reported (De Wispelaere et al., 2015).  

Ferrasols are associated with high rainfall and very old (Tertiary) land surfaces (Jones et al., 

2013). They are strongly leached soils that have lost nearly all weatherable minerals over time. 

As a result they are dominated by stable products such as aluminium oxides, iron oxides and 

kaolinite which give Ferralsols strong red and yellow colours. Ferrasols are mainly found in the 

middle zones of the study area. The effect of past climate, alternating of dry and wet spells give 

rise to pisolithic material as evidenced by presence of Plinthosols in the lower semi-arid zones. 

Young soils like Cambisols show incipient subsurface soil formation on alluvial plains and 

shallow Leptosols are mainly found in areas with basement rock. Presence of Regosols in the 

eastern semi-arid zones is evident due to extensive erosion and accumulation especially in the 

mountainous terrain. Regosols are weakly developed mineral soils in unconsolidated medium 

and show only slight signs of soil development. They are commonly found in extensive eroding 

lands such as mountains or desert areas where soil formation is generally absent or moderate. 

Vertisols are mainly found in lower landscape positions that are periodically wet in their natural 

state. Vertisols are clayey soils that exhibit wide crack which open and close periodically upon 

drying and wetting. This is caused by the presence of montmorillonite clay mineral, which takes 

up water when it becomes wet (swells) and releases the water again upon drying  (shrinks).  

Phaeozems have a thick dark coloured surface layer which is rich in organic matter. This soil 

type was found mainly in the north eastern part of the study area where rainfall is adequate and 

grass for grazing livestock is the main land use practice. 
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Figure 6. KENSOTER soil units for the study area. 

KENSOTER soil units descriptions (indicated by the dominant soil types) 

ARo = Ferralic Arenosols; CMu = Humic Cambisols; CMx = Chromic Cambisols; FRr = Rhodic 

FERRALSOLS; LPq = Lithic Leptosols; LXh = Haplic Lixisols; NTr = Rhodic Nitisols; NTu = 

Humic Nitisols; PHI = Luvic Phaeozems; RGd = Dystric Regosols; VRe = Eutric Vertisols. 

3.1.4 Demographic and socioeconomic factors. 

The population density estimate according to Kenya population and housing census basic report 

of 31st August 2010 was 424 persons/km2. This huge population density derives their livelihoods 

from farming and has put a lot of pressure on land leading to overexploitation of natural 

resources and advanced land degradation. Rainfed agriculture is the major farming method. A 

variety of food crops that are grown in this region include: bananas, white corn, beans, potatoes, 

yams, arrow roots, sweet potatoes, peas cowpeas and a wide variety fruits and horticultural crops 

like avocadoes, mangoes, pineapples, flowers and vegetable farming. The region also produces 

the best coffee in Kenya and tea has the main cash crops. Livestock rearing includes dairy and 

beef cattle, sheep and goats and poultry. These are important for they provide a source of farm 
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yard manure. Donkeys and oxens are important means of transport and for land preparation. 

Lumbering is also a source of income where trees such as eucalyptus, cypress and gravillea 

robusta are the commonly planted trees for timber, charcoal and fuelwood. Connection to 

electricity is still poor, but some major have electricity connection. Access to adequate drinking 

water in some areas is a challenge because surface water is not evenly distributed and connection 

to piped water systems is still at its low levels. Irrigation methods include furrow and overhead 

irrigation where water is conveyed in open canals and pipes, respectively. Due to inefficient 

methods of irrigation there is a lot of wastage of water. Soil degradation processes like soil 

erosion by water and water logging are exacerbated through poor irrigation methods. Water 

pollution through agrochemicals is also an issue as effluents are directed to waterways without 

pre-treatment in most areas. Wildlife and tourism is also a major income source for the county at 

the Meru National Park.  

3.2 Soil sampling design   

To define the soil sampling locations, Conditional Latin Hypercube Sampling (CLHS) was 

performed. The reason of using CLHS in sampling site selection were the foreseen constraints 

(inaccessibility due to poor weather roads, very steep slopes, possibility of having sampling 

locations coinciding with water bodies, national parks or built environment) and the need to 

reduce the sample size yet cover a wide geographical area with limited budget was put into 

consideration. 

The need to input the distribution of environmental variables in our soil sampling scheme 

justified the use of CHLS. This method aims to pick sampling sites that form a Latin Hypercube 

feature space as demonstrated below: 

 Assuming K variables Xi…………………XK the array of each variable X is divided into 

n equal strata. 

 In this case K variables are: the environmental covariates (soil forming factor derivatives) 

 Then samples are picked randomly for every variable Xi…………………XK. 

 In total n samples covering n intervals are selected. [they can be randomly paired guided 

by some conditions (CLHS)] 

 Use of conditions involved addition of constraints to the objective function formally 

formulated by Minasny & McBratney (2006). 

 These constraints are based on field operation costs which are a function of time, sample 

size and accessibility to sampling locations.  
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 Finally addition of constraints to the objective function leads to equation (1) 

 

𝐽 = 𝑊1 ∗   𝑛𝑖𝑗 − 1 

𝑘

𝑖=1

𝑛

𝑖=1

+ 𝑊2 ∗  𝐶𝑃

𝑛

𝑃=1

 

 (1) 

n=samples; k= variables; nij =sampling frequency (where i= interval and j=variable); cp=cost 

associated with sampling. W1 & w2 are the weights.  

A comparison of CLHS and the commonly used Monte Carlo simple random sampling show that 

CHLS is superb in that it ensures a more even distribution of sampling points (Figure 7.).  

 

Figure 7. Comparison of the spread of sampling points in SRS & Latin Hypercube Sampling  

(Source, Matthieu et al., 2010). 

3.2.1 Assembly of variables for input into CHLS algorithm 

In this section environmental variable layers and operational cost layer were generated as input 

variables for the CHLS algorithm. Good expressions of soil forming factors in remote sensing 

data have been reported (Dobos et al., 2000, Vagen et al., 2013). Jenny’s (1941) state equation 

for soil formation: S=f (cl, o, r, p, and t) clearly outlines the influence of each soil forming factor 

in the soil forming matrix. Climate (cl) is the surrogate of rainfall and temperature and influences 

the rate of soil forming processes like humification processes (McBratney et al., 2003). 

Representatives of other soil forming factors and how they were generated are described below. 
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3.2.2 Calculating NDVI from LANDSAT 8 satellite image. 

Organisms (O) were represented using Normalized Difference Vegetation index (NDVI) derived 

from Landsat 8 satellite imagery with a resolution of 30 m for dry season from row/path 168/60 

from 15 September 2014. The NDVI is a Normalized Difference Vegetation Index which is the 

ratio of the near infrared (NIR) and red bands of multispectral image. NDVI is one of the most 

widely used multispectral indices and its suitable for vegetation monitoring because it takes care 

of changing illumination conditions, surface slope and aspect (Lillesand, 2004). NDVI value for 

water is < 0; bare soils between 0- 0.1 and vegetation over 0.1. Increase in the positive NDVI 

value means greener vegetation. NDVI is calculated as shown in equation 2. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅𝑏𝑎𝑛𝑑 − 𝑅𝐸𝐷

𝑁𝐼𝑅𝑏𝑎𝑛𝑑 + 𝑅𝐸𝐷
 

     (2) 

Where NIR =Band 5, wavelength 0.64-0.67 μm and RED=Band 4 wavelength 0.85-0.88 μm and 

a resolution of 30*30m. 

NDVI values ranged from 0.09 to 0.5 (Figure 8.). Increase in the positive NDVI value means 

greener vegetation. The value of 0.09 would mean almost bare soil especially towards the semi-

arid lower zones of the study area. The spatial distribution of the NDVI values reflect rainfall 

gradient that increases from east to west of Mt. Kenya region. This was also an important input 

variable representing vegetation/organism factor which is important for humification process and 

surrogate for soil organic matter. 
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Figure 8. NDVI layer generated from Landsat 8 satellite imagery  

3.2.3 Calculating terrain derivatives from DEM 

Relief (r) was represented by terrain derivatives (slope and topographic wetness Index). These 

were calculated from Digital Elevation Model (DEM), Advanced Space borne Thermal Emission 

and Reflection Radiometer (ASTER) with a resolution of 30 m. SAGA GIS 2.0.6 was used to 

generate these terrain derivatives.  

Topographic Wetness Index  

The Topographic Wetness Index (TWI) is also called Compound Topographic Index (CTI). It is 

defined as a steady state wetness index which is a function of both the slope and the upstream 

contributing area per unit width orthogonal to the flow direction (Equation 3). It’s also capable 

of predicting areas susceptible to saturated land surfaces and areas that carry the potential to 

produce overland flow. 

𝑇𝑊𝐼 = 𝑙𝑛  𝐴 tan𝛽   

 (3) 

Where A is the specific catchment area expressed as m2 per unit width orthogonal to the flow 

direction, and β is the slope angle in radians (Gessler et al. 1995). 

10.14751/SZIE.2017.065



 

27 

 

To create TWI grid from the DEM: go to SAGA GIS module > Terrain Analysis - Hydrology -> 

SAGA Wetness Index. The range of the TWI was 8.47 to 13.41(Figure 9.). TWI being a function 

of slope and the upstream contributing area perpendicular to the flow direction, it means that, the 

larger the value of TWI the higher the tendency of runoff. This fact has an important dimension 

on soil redistribution and soil water saturation in a landscape and therefore forms an important 

input variable into the CHLS algorithm.  

 

Figure 9. Topographic Wetness Index layer generated from DEM 

Slope  

For this study, slope was calculated as local slope around the pixel (Sorensen et al., 2005). Slope 

shows the minimum, mean and maximum slope around the pixel.  The slope function calculates 

the maximum rate of change from every cell to its neighbours. The function is calculated over a 

3x3 set of cells and can provide the slope in angular degrees (0-90) or in percent, which is a 

measure of vertical rise over horizontal run. Local slope was generated from the DEM using 

SAGA GIS >Spatial Analyst tools > Surfaces > slope.  

Slope percentage affects the amount of deposition or erosion of soil material and therefore an 

important input to the CHLS algorithm. A soil that is level is the most developed as there is no 
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loss or gain of material to slow the soil forming processes. The slope for this study area ranged 

between 5% and 40% (Figure 10.).  

  

Figure 10. Slope percentage layer generated from DEM 

3.2.4 Calculating the operational costs layer 

From the practical point of view of a soil scientist, operational cost can usually be defined 

according to the question like: “how long it will take to reach every intended soil sampling 

point?” slope data and vectorized road map were used to generate a “friction map” that described 

areas relatively easier to traverse, areas relatively difficult traverse or inaccessible areas with 

impassable features. The ‘ease of reach’ was determined by generating an arbitrary ‘cost of 

reach’ layer. Distance from road network and slope percentage “friction” was integrated into a 

model of travel time and implemented using r.walk in GRASS GIS (Neteler et al., 2012).The 

result of the friction map ‘cost of reach layer’ shows an arbitrary cost dependent on the distance 

from the road network (Figure 11.). This was an important input layer that aimed to ensure most 

of the sampling points were accessible at the least operational cost possible. Similar approach by 

Roudier et al. (2012) in Australia and Mulder et al. (2013) in Morocco reduced the working cost 
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of soil survey significantly by identifying easy to reach points yet covering the sampling area 

more uniformly. 

 

Figure 11. The cost of reach layer showing arbitrary cost units. 

Figure 12. shows an example of bad weather road conditions that I had to walk through during 

the soil sampling campaign. This road is already difficult to traverse and even more difficult for 

sampling points away from such bad road network. This necessitated development of a ‘cost of 

reach layer’ to increase the chances of accessible sampling points.  
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Figure 12. Difficult weather roads during wet season (Photo by Mutuma, 2015) 

KENSOTER soil units layer 

Dominant soils of the polygons of the KENSOTER units (Dijkshoorn, 2007) were used as 

categorical data to ensure sampling was done in every dominant soil type. R ‘CLHS’ algorithm 

(R Core Team, 2013), and Quantum GIS processing were used to design the sampling frame.  

Box plots were used for validation of the sampling scheme based on natural and sampled 

distribution of environmental variables. The spread of the sampling points in the study area 

(Figure 13.) satisfied the initial objective to preserve the natural distribution of environmental 

variables that were used as input layers for the CLHS algorithm. After evaluation of the 

sampling scheme I embarked on field work.  
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Figure 13. Comparison of the statistical distributions of the environmental covariates in the 

original GIS layers in selected sampling locations and sampled slope 
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3.3 Field work and soil description  

The developed sampling plan guided the locations to be visited. The soil sampling campaign 

commenced on 5th December 2015 and ended on 15th Jan 2016. The field work tools included: a 

navigation Garmin GPS, Munsel color charts, pH meters, 10% hydrochloric acid, spade, soil 

augering equipment, plastic sampling bags, labelling pens and the FAO Soil Description 

Guideline (FAO, 2006) and WRB guidelines (IUSS Working Group WRB, 2015). On arrival at 

each sampling site the following preliminary information were recorded: GPS coordinates, 

location name and land use. The slope percentages were not recorded because they were already 

generated from the digital elevation models while developing the sampling plan. A total of 77 

sampling sites were visited, out of this total, 28 were open profiles and 49 were augured profiles. 

The 28 open profiles were described based on genetic horizons. For each genetic horizon the 

following information was recorded: depth, pH, Munsell color, CaCO3 and structure for each 

master horizon, also and presence or absence of coatings (i.e clay, iron, and manganese), 

volcanic glass and pressure surfaces in the relevant horizons. A preliminary definition of 

diagnostics and classification was performed based on the WRB 2015. Similar procedures were 

carried for the 49 augured profiles except for the depths of sampling which was based on 0-20 

cm, 20-50 cm, 50-100 cm intervals. This choice of the sampling interval for this study was based 

on earlier sampling designs in Mount Kenya region (Gicheru & Kiome, 2000). All together a 

total of 269 soil samples were collected. Appendix 1 and 2 shows the data that was generated. 

3.4 Laboratory soil measurements  

This section explains methods used for analysing soil samples in the laboratory.  

The laboratory measurements were performed for supporting my objectives related to prediction 

of soil properties and also the objectives related to soil classification.  The section consists of two 

subsections for: (i) infrared measurements, and (ii) conventional measurements using wet 

chemistry methods. Sample pre-processing before analysis is explained. 

3.4.1 Mid-infrared (MIR) spectral-reflectance measurements 

The pre-processing of the total 269 samples involved air drying, crushing and sieving using a 2 

mm sieve, further crushing (< 100 μm) using agate pestle and mortal. Loading into A 752-96, 

Bruker Optics, Karlsruhe aluminium micro titer plates with wells measuring 6-mm diameter was 

done into four replications. MIR soil spectra measurements for the 269 samples were performed 
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using a Fourier-transform MIR spectrometer-FTIR.  Tensor 27. Liquid N2–cooled HgCdTe 

detector was used. Sample variability and differences in particle size and packing density were 

solved by averaging the four replicates. This work was performed at the soil-plant spectra 

laboratory of the World Agroforestry Centre (ICRAF) in Nairobi, Kenya. The first derivative of 

the reflectance spectra was computed based on Savitzky–Golay smoothing filters (Wand & 

Ripley, 2008). Figure 14. shows the absorbance spectra for all the 269 soil samples before (noisy 

spectra) and after pre-processing to 4000-400 cm-1.  

 
 

Figure 14. Unprocessed and processed MIR absorbance spectra to 4000-400 cm-1  

3.4.2 Calibration sample selection 

Selection of calibration samples with normal distribution were avoided because results of 

subsequent analysis degenerate towards the mean. Kennard-Stone algorithm (Kennard & Stone, 

1969) was a solution because it ensures that the selected calibration samples are uniformly 

distributed by choosing the samples that maximize the Euclidean distances between each other. 

This aspect complimented well with our sampling design (CLHS) that ensured the full range of 

sampling area was uniformly covered. Principal Component Analysis (PCA) that was computed 

on reflectance spectral matrix further reduced data overlap. The results of sample selection 

(Figure 15.) could explain 75.6% of the variations and the next step was to perform laboratory 

analysis of the calibration sample set as described in section 3.4.3.  Out of the 269 samples, only 

30 with tolerance of 2 were selected the tedious laboratory analysis. 

10.14751/SZIE.2017.065



 

34 

 

 

Figure 15. PCA for sample selection explains 75.6% of variations. 

3.4.3 Soil analysis for the calibration samples 

First all soil samples were air-dried then large clods were crushed and sieved using a 2 mm 

sieve. The samples were analysed for the following parameters with the respective methods 

following the recommendations of Van Reeuwijk, 2002. 

 pH –potentiometrically measured in the supernatant suspension of a 1:2.5 soil: liquid 

(H2O) mixture. 

 Cation Exchange Capacity (CEC)-Ammonium acetate method (Van Reeuwijk, 2002)  

   Na, K, Ca, Mg and Al following Mehlich 3 extraction (Mehlich, 1984).  

 Soil organic Carbon (SOC)  and total nitrogen (TN) following thermal oxidation 

(Skjemstad & Baldock, 2008) 

 Particle size distribution (PSD) using Laser Diffraction Particle Size Analyzer (LDPSA). 

 Free iron (Fedithionite) was analysed using the Holmgren procedure (Van Reeuwijk, 2002) 

and Active iron (Feoxalate) using acid ammonium oxalate solution (Van Reeuwijk, 2002). 
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The (Fedithionite) and (Feoxalate) were measured only for 5 selected samples from those that 

qualified the nitic horizon morphological characteristics (Appendix 3). 

3.4.4 Calibration of LDPSA using pipette method  

Conventionally, the PSD of soils is measured using sieve-sedimentation method (SSM). The 

sand fraction is separated first then a suspension is prepared from the finer fractions. After 

thorough mixing, the suspension is left for sedimentation. There are two major sedimentation 

based measurement methods: (1) Measuring the density of suspension using hydrometer 

(Molinaroli et al., 2011) and (2) Use of pipette to measure dry mass of a sample at a given height 

in a cylinder (Kuznetsova & Motenko, 2014). 

The LD method is based on measurements of the intensity of laser light scattered by high speed 

particles passing through a measuring cell; the smaller the particle, the larger the scatter angle. 

Mie or Fraunhofer approximation theory (Ma et al., 2001) is used to convert the light intensity to 

a PSD. Fraunhofer approximation is inappropriate for soil particles because its utility is limited 

for particles with a smaller wavelength than 0.05mm (International Organization of 

Standardization, 2009b). As a result, Mie theory is used to overcome the Fraunhofer 

approximation inability. Mie theory describes the scattering of light at a specific angle and 

intensity relative to an incident laser beam as it illuminates a particle. Multiple particles 

illuminated at the same time provide a light pattern representative of the summation of all the 

contributions of intensity by each particle at each angle (Ma et al., 2001). A study by Eshel et al. 

(2004), comparing PSD results of LDPA with pipette analysis reports an overestimation by 

LDPSA of the clay particles for samples of milled quartz as compared to the pipette method. 

Conversely, Loizeau et al. (1994) reported an underestimate of the clay particle fraction with an 

efficiency of detection of 36% to 70% proportional to the clay content resulting from pipette 

analysis. Additionally, Eshel et al. (2004) state that LD reports an underestimate of the clay 

fraction in 40 out of 42 samples when compared to pipette analysis. In this regard, Pipette 

method was superior but tedious and slow for measurement of large number of samples like in 

the case of this study.  

3.4.5 X-Ray Diffraction (XRD) 

XRD was performed to support soil classification (Appendix 3.). A total of 10 samples were 

selected based on the preliminary soil classification and soil color at the depth interval of 20-50 

cm (to minimise the effects of organic matter in the surface horizon and also the effects of the 

parent material in the lower depths). XRD analysis was carried out to support the classification 
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decisions, especially in case of soils with characteristic nitic horizons morphology. Mineral 

composition of selected soil samples was determined by X-ray powder diffraction (XRD) 

analysis at the Hungarian Academy of Sciences Institute of Geological and Geochemical 

Research. The equipment used was Rigaku Miniflex 600 diffractometer equipped with a graphite 

monochromator using Cu-Kα radiation at 45 kV and 35 mA with 1○ divergence slit and 1○ 

receiving slit. Scanning rate was 0,05○2Θ per minute from 3○ to 70○. Rietveld refinement method 

of Siroquant V4.0 software quantified the mineral constituents of the selected soil samples.  

The results of sampling scheme, the fieldwork, and MIR spectroscopic analysis provided input 

data for mapping and soil classification. 

3.5 Mapping of soil properties 

To allow estimation of soil properties at the unvisited locations, geostatistical approaches were 

used for spatial prediction. To decide the choice of the mapping method, the correlation between 

selected soil properties and the explanatory variables was analysed. Then the data was analysed 

for spatial autocorrelation. The selected soil properties were not significantly correlated with the 

input explanatory variables (Table 1.). The variables showed spatial autocorrelation using nugget 

to sill ratio (Table 2.).  Based on the results of Table 1 and Table 2, Ordinary Kriging (OK) was 

selected as the appropriate method for the spatial prediction. These results (Table 2. and Table 

3.) are presented in this chapter because they form part of the procedures that informed the 

selection of the mapping method.  
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Table 1. Explanatory variables were not significantly correlated with test soil variables 

 

Variables TWI SLOPE NDVI 

TN 

(%) 

SOC 

(%) 

P(mg/ 

kg)  pH H2O 

TWI 1 

      

SLOPE 
 

-0.492 1 

     

NDVI 

 

-0.117 0.240 1 

    

TN (%) -0.024 0.110 

-

0.001 1 

   

SOC (%) -0.021 0.117 

-

0.011 0.980 1 

  

P(mg/ kg) -0.069 0.150 

-

0.107 0.202 0.220 1 

 

pH H2O 0.060 -0.189 

-

0.308 -0.413 -0.375 -0.239 1 

Values in bold are different from 0 with a significance level alpha=0.05 

  

 

Table 2. Semivariogram parameters for the selected spherical model show moderate spatial 

dependence. 

 

Soil 

property 

N=232 

Model Nugget 

Variance(C0) 

Sill 

variance 

(C1) 

Nugget/sill 

ratio 

CO/ C1 

Range 

(Meters) 

Remarks 

SOC (%) Spherical 0.098 0.21 0.46 13576 M 

TN (%) Spherical 0. 556 0.9 0.61 13737 M 

Ph H2O Spherical 0.226 0.72 0.31 2142 M 

Extractable 

P (mg/kg) 

Spherical 2.31 3.7 0.62 12590 M 

M= Moderate spatial dependence, N= number of samples 

3.5.1 Evaluation of the spatial structure of the data using semivariograms 

Ordinary Kriging approach uses semivariogram to express spatial continuity of data (spatial 

autocorrelation). 

Kriging estimate z*(xo) was calculated as follows (Equation 4): 
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𝑧∗   𝑥0 =  𝑤𝑖  

𝑛

𝑖=1

𝑧 𝑥𝑖  

      (4) 

Where Wi is the weight and (x0, xi) are the corresponding distances (Agrawal et al., 1995). 

Semivariograms are useful for measuring data correlation as a function of distance. They 

evaluate the spatial structure of data. The common theoretical variogram models are outlined by 

Webster & Oliver (2001). The nugget is the value of the semivariogram as distance (h) 

approaches zero. The nugget effect is due to error in measurement, spatial variation that occurs 

within the sampling distance interval, and random events. Four parameters: range, sill, nugget 

and nugget to sill ratio are used to interpret a semivariogram. Range is defined by the distance 

beyond which data autocorrelation no longer exists. Sill is the value of the semivariogram 

beyond which no spatial dependence of data is exhibited. 

A semivariogram is expressed as follows (Nielsen & Wendroth, 2003): 

𝑆 𝐻 =
1

2𝑁(𝐻)
 [𝑍 𝑥𝑖 

𝑁(𝐻)

𝑖=1

− 𝑍(𝑥𝑖 + 𝐻)]2 

      (5) 

S(H) is the semivariance, N(H) is the number of pairs of locations separated by a lag distance H, 

h is the lag distance, Z is the parameter of the soil properties, Z(xi), and Z (xi + H) are values of Z 

at positions xi and xi + H . 

Spatial data dependence is defined by its Nugget to sill ratio. Three classifications of spatial 

dependence of data based on the nugget/sill ratios are described by Zuo et al. (2008). A nugget to 

sill ratio of < 25% means strong dependence, a proportion between 25% and 75% indicates a 

moderate spatial dependence and > 75% often signify weak spatial dependency of data. Usually 

high nugget to sill ratio is an indication that the spatial variability of data is not strongly 

influenced by the natural factors but rather by stochastic factors like land management practices. 

Low ratios of nugget to sill suggest that structural factors like soil forming factors influence 

spatial variability of data. 

Two concerns are important in the analysis of semivariograms 

1. Fitting the semivariogram to the experimental data requires careful choice of the total lag 

distance. This was addressed by setting conditions such that selection of the separation 

distance involved 95% pairs to fit the semivariogram model. 
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2. The choice of appropriate model to fit to the experimental semivariogram data is also a 

big concern. Spherical model was selected compared to exponential and Gaussian models 

based on analysis of our data (Table 2.).  

3.6 Soil Classification 

Soil classification systems help to identify differences among and between soils and their 

environments (Soil Survey Staff, 1999). Different classification systems have been applied. For 

example, Sanchez et al. (2003) used fertility capability classification system to help assess soil 

quality in the tropical Africa. Numerical approach to soil classification is evident following 

advances of computer aided techniques and multivariate statistics (Hughes et al., 2014). 

Increasingly, use of soil classification in journals has been discussed by Hartemink, (2015). In 

this study the World Reference Base of soil resources (WRB) classification system (IUSS 

Working Group WRB, 2015) was applied to characterize and classify soils of the visited sites. 

The WRB is based on a diagnostic approach defined in terms of diagnostic horizons, diagnostic 

properties and materials, that are measurable to the greatest extent possible and observable in the 

field. On the highest level 32 reference soil groups (RSG) are defined by the classification key 

based on the presence/absence of combination of the diagnostics.  Additional qualifiers are 

giving are added to the RSG name to provide further information on important soil properties.  

3.6.1 Data analysis 

Exploratory data analysis was performed using descriptive statistics and data normality testing 

using Shapiro-Wilk test at 5% significant level. Multiple pairwise comparisons using Dunn’s 

procedure (Dunn’s, 1964) was used to compare variability of soil properties in different WRB 

reference soil groups. Kennard- Stone algorithm (Kennard & Stone 1964) and Principal 

Component Analysis were used in the selection of calibration and prediction sample sets.  

Discriminant analysis (Carroll et al. 2006) was used to evaluate contribution of each soil 

property in the classification of reference soil groups. Random Forest (RF) Regression was used 

for the calibration of spectra data using the laboratory measurements of the calibration sample 

set. The utility of RF for regression and classification is described by Gislason et al. (2006). 

Cross validation was performed to evaluate the model performance based on the variations 

between the observed and the predicted values of soil properties. This was determined using 

coefficient of determination (r2), the Mean Error (ME), Root Mean Square Error (RMSE) and the 

Standardized Root Mean Square Error (SRMSE) using equations (6), (7) and (8) respectively.  
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𝑀𝐸 = 1/𝑛 (𝑂𝑏𝑠𝑖 − 𝑃𝑟𝑒𝑑𝑖)

𝑛

𝑖=1

 

    (6) 

 

𝑅𝑀𝑆𝐸 =  1/𝑛 (𝑂𝑏𝑠𝑖 − 𝑃𝑟𝑒𝑑𝑖)
2

𝑛

𝑖=1

 

   (7) 

 

𝑆𝑅𝑀𝐸 =  1/𝑛 (𝑂𝑏𝑠𝑖 − 𝑃𝑟𝑒𝑑𝑖)/𝑃𝑟𝑒𝑑 𝑣𝑎𝑟𝑖

𝑛

𝑖=1

 

   (8) 

Where n is the sample size, Obsi is observed values and Predi is modelled values at place i. 

Predvar is the variance of the prediction. The best model is one that has ME nearest zero, the 

smallest RMSE and SRME nearest to 1. For good predictive model the RMSE values should be 

low (<0.3).  

3.7 Summary of the research methodology 

The first step of this study was to develop a sampling scheme that could capture as much as 

possible the variability of the soil types and soil properties in the area of study. Variability of soil 

types reflects the natural distribution of soil forming factors and the soil forming processes. It is 

for this reason that I sought to develop a sampling scheme that would preserved the natural 

distribution of the continuous and categorical soil forming factors.  

The first step was to assemble the ancillary data for use in the sampling design process. The 

choice was based on Jenny’s (1941) state equation of soil formation. 

Continuous variables 

 Normalized Difference vegetation Index layer generated from Landsat 5 satellite image 

 Terrain attributes layers (Aspect, Elevation, Slope and Topographic Wetness index) 

generated from the Digital Elevation Model. 
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Categorical variables 

 Parent material layer (geology of the area) generated from a digitized ISRIC document of 

the study area. 

 KENSOTER soil units layer (to make sure all polygons were visited during the soil 

sampling activity.  

 The ancillary data formed the input layers for the conditional Latin Hypercube objective 

function equation in R programming platform and the result was visualized using GIS 

interface.  

 The sampling plan was evaluated to check if it conformed to the natural distribution of 

the selected ancillary data using box plots. 

The second step was field work and soil description. The field work was guided by the already 

developed sampling plan/scheme. Soil description was guided by the FAO 2006 guidelines for 

soil description. A total of 77 profiles were targeted with 28 open profiles, 2 in each 

KENSOTER polygon and 44 auguring distributed accordingly based on the designed sampling 

plan. 

The third step was sample pre-processing and MIR spectra measurements for all the samples. 

Sample selection to identify the calibration and prediction set and laboratory chemical analysis 

of the calibration set samples 

The fourth step was multivariate quantification of soil properties from MIR spectra using 

Random forest regression and the results of chemical laboratory analysis (calibration sample set). 

Validation of the results was done to check the accuracy of predictions using the coefficient of 

determination (r2) and root mean square error (RMSE). 

The fifth step was to develop a spatial distribution using geostatistical techniques. The process 

Involved selecting the model and selecting a semivariogram to use for the model. 

The sixth and final step was soil classification using the WRB classification system. The 

quantified soil properties and the field observations were used during the classification. 

Variability of soil properties in different WRB reference soil groups were analysed using Dunn’s 

pairwise comparison method.  

Below (Figure 16.) is the schematic representation summarising the methodology. 
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Figure 16. Methodology flowchart summarising this research work 
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4. RESULTS AND DISCUSSIONS 

4.1 Accuracy of soil property predictions 

In this section the accuracy of the soil properties predictions is presented (Table 3.) and 

discussed. The model performance was excellent when r2>0.90, good when 0.81<r2<0.90, 

moderately successful when 0.66<r2<0.80 and unsuccessful when 0.50<r2<0.65. This 

classification was adopted from Saeys et al. (2005).  

Table 3: Validation results of soil properties predictions 

Soil property  Coefficient of 

determination 

r2 

Root mean 

Square error 

(RMSE) 

SOC (%) 0.78 1.64 

pH H2O 0.88 0.63 

Exc Na cmol/kg 0.93 1.45 

Exc  Mg cmol/kg 0.88 1.60 

Exc  K cmol/kg 0.92 2.32 

Exc Ca cmol/kg 0.92 189 

Exc  Al cmol/kg 0.85 71.25 

Ext P mg/kg 0.78 0.51 

Clay (%) 0.59 9.9 

Silt (%) 0.63 7.3 

 

Moderately successful predictions were achieved for SOC % at r2=0.78 and RMSE=1.64 (Figure 

17.). Comparable accuracy (r2=0.77 and RMSE=1.64) for SOC has been reported by Terhoeven-

Urselmans et al. (2010). But my coefficient of determination (r2) was better. This can be 

associated to the use of different calibration statistics as the sample size and all other methods 

were similar. Terhoeven-Urselmans et al. (2010) used partial least squares regression (PLS) as 

the calibrating statistics while in my study I used random forest regression (RF) was used to 

calibrate the soil MIR spectra. This may be the source of the prediction accuracy differences. 

Higher accuracy of SOC prediction (r2 = 0.96) was achieved by McDowell et al. (2012), this 

may be attributed to high and wide range of SOC (%) of the calibration set (0.24 to 55.29%) 

compared to narrower SOC range (0.56 to 10.83%) in my soil samples.  
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The accuracy for the calibration of pH was good (r2 = 0.88 and RMSE = 0.48) and better in 

terms of r2 and RMSE compared to those achieved by Terhoeven-Urselmans et al. (2010) (r2 = 

0.81, RMSE = 0.63) and Shepherd & Walsh (2002) (r2 = 0.83, RMSE = 0.54) while analysing a 

spectral library of soils from Africa.  

Calibrations for Mehlich extraction of Na, Mg, K and Ca were excellent (r2=0.93 and 

RMSE=1.45; r2=0.88 and RMSE=1.60; r2=0.92 and RMSE=2.32 and r2=0.92 and RMSE=189.16 

respectively. The prediction of Ca was better than that of Sila et al. (2016) who reported r2=0.91 

for Ca. Again this could be associated with the efficiency of RF, a multivariate statistic that was 

used for the calibration of soil MIR spectra. The high RMSE values especially for Ca can be 

attributed to under prediction by MIR due to low calcium content in all my sampling locations. 

Calibration of Mehlich extraction of Al was good (r2=0.85 and RMSE=0.51).Calibration of P 

was satisfactory (r2=0.78 and RMSE=71.25).  

Calibration for clay (r2 = 0.59 and RMSE = 9.9); Silt (r2 = 0.63 and RMSE = 7.3) were low 

compared to other soil properties. The low calibration accuracy for sand (r2= 0.30 and RMSE=5) 

was because the soil samples were mainly clay dominated due to extreme weathering resulting in 

poor MIR absorbance. The percentage sand was calculated from of the cumulative percentages 

of clay and silt. 
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Figure 17. Linear regression of observed against predicted soil properties  
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4.2 Spatial interpolation of soil properties  

SOC, TN, pH and P were selected for spatial interpolation because they present important 

agronomic soil properties that can be restored through good soil management practices. 

Moderate spatial dependence was exhibited by all the soil properties (Table 2.). Spherical model 

and OK resulted in spatial distribution maps (Figure 18.). 

 

Figure 18. Maps of predicted spatial distribution of soil properties 

The performance of spatial prediction for TN and pH was satisfactory based on the cross 

validation results (Table 4.). Low accuracy was registered for P (RMSE=1.1). Soil type data 

layers and land management practices were not used as explanatory variables during the 

prediction process yet they influence P availability. Inventories for land management practices 

were unfortunately not available and soil type data layers are only available in the KENSOTER 

database with limitations highlighted earlier.  
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Important trends are visible from the spatial distribution of soil properties. The region with high 

SOC contents coincides with the region with very low pH values. The low pH values are a result 

of intense leaching caused by heavy rainfall in this humid high altitude part of the study area. 

The soil type in humid, high altitude is dominated by Umbrisols (by default Umbrisols are 

Dystric and have high organic matter). Low pH slows down the activity of microbes responsible 

for mineralisation of SOC resulting in its stabilization and accumulation. Litter from the tea 

plantations provide input material for humification. 

The trend for TN is similar to that of SOC because this is mainly organic nitrogen from soil 

organic matter. Therefore areas with high TN coincide with areas with high SOC. Fertilization 

using NPK resulted in high nitrogen in tea plantations. 

The trends for P are determined by soil types, rainfall intensity and management. High P values 

in the middle zone of the study area can be associated with tea plantations due to addition of 

NPK fertilizers, mineralization of SOC resulting in addition of organic phosphorus and less P 

fixation by the dominant soil types in this section of the study which were Umbrisols and 

Nitisols. Towards the far east of the study P increase as the pH increase due to less reaching 

occasioned by decreasing rainfall amounts towards the east. 

Table 4. Cross validation results of the prediction model. 

Soil property ME RMSE SRMSE 

SOC (%) 0.001 0.81 0.76 

TN (%) 0.0002 0.06 0.96 

pH -0.0006 0.13 0.98 

P (mg/kg) 0.006 1.11 0.77 

ME=Mean error, RMSE=Root Mean Square Error, SRMSE=Standardized Root Mean Square Error. 

Prediction of SOC (RMSE=0.81) was not as accurate compared to results by Wen et al.(2015). 

Based on Zuo et al. (2008) earlier mentioned guidelines for classifying spatial structure of data, a 

nugget to sill ratio of 0.46 (Table 2.) for SOC means a moderate spatial dependency of data. 

According to Kravchenko et al. (2006a), strong dependency of spatial data is a prerequisite for 

good performance of a spatial prediction model. Kravchenko et al. (2006a) reported strong 

spatial structure of data for SOC. But in his research samples were collected only 100 m apart. In 

our study the total sampling area was 1200 km2 and sampling distance was > 100 m. Differences 

in sampling distance affect the strength of association of soil properties between the sampling 
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points and ultimately influence the spatial structure of data. Land management practices 

influence the spatial structure of SOC data (Kravchenko et al., 2006a). Different land use 

practices were evident during the soil sampling campaign and these have strong influence on soil 

properties like SOC. Those areas with tea plantations had better nutrient management practices 

than in the areas on subsistence food crop farming. Absence of land management explanatory 

variables as an input to the model might have weakened our model for SOC spatial distribution 

prediction. 

Table 5. Statistics of predicted soil properties 

Variable Min Max Mean STD CV Skewness Shapiro-Wilk test 

TN (g/kg) 0.41 6.8 1.64 1.28 0.78 1.88 < 0.0001 

SOC (g/kg) 3.60 57.2 10.34 7.57 0.73 3.49 < 0.0001 

Clay (%) 36.37 58.71 46.26 3.04 0.07 0.43 < 0.0001 

Silt (%) 32.64 52.42 42.35 2.69 0.06 0.18 0.002 

Sand (%) 7.66 16.17 12.09 1.54 0.12 0.34 0.002 

P (mg/kg) 3.15 11.63 5.82 1.88 0.32 0.87 < 0.0001 

K (cmol/kg) 1.19 1.88 1.59 0.14 0.09 -0.56 0.000 

Ca (cmol/kg) 5.32 18.09 8.03 1.44 0.18 1.98 < 0.0001 

Mg (cmol/kg) 2.70 5.89 4.34 0.51 0.117 -0.265 0.174 

Al (cmol/kg) 3.17 5.39 4.08 0.51 0.12 0.27 < 0.0001 

Al (%)  42.9 73.1 55.0 6.87 0.12 0.26 < 0.0001 

Na (cmol/kg) 0.07 0.17 0.13 0.02 0.13 -0.65 < 0.0001 

pH H2O 3.9 5.3 4.7 0.2 0.05 -0.5  

4.3 Inferences for management from predicted soil properties 

The results of this study show the soils were acidic with pH range of 3.9 - 5.3 (Table 5.). The 

causes and effects of acidification on soils are well explained by Goulding (2016).  Spatial 

distribution of pH values (low to high values) shows a west- east tendency (Figure 18.). High 

rainfall events in high altitudes in the west result in high leaching and extremely low pH. The 

spatial distribution map shows that areas with Andosol Reference soil group were associated 

with extreme low pH except within the tea management areas.  

10.14751/SZIE.2017.065



 

49 

 

Strong soil acidity in Kenya has been associated with high leaching as a result of heavy rainfall 

amount, high aluminium (Al3+) ions, H+, iron (Fe) and manganese (Mn) saturation (Opala et al., 

2010). The soil pH affects the bioavailability of plant nutrients and so indirectly, crop plant 

growth. Low pH conditions reduce base saturation by replacing (Ca2+, Mg2+, K+ and Na+) from 

exchange sites with H+ and Al3+ ions. Al3+ ions > 2.0 cmolc /kg are considered toxic for many 

crops (Landon, 1984) while % Al saturation > 20% cannot be tolerated by most maize (Zea 

mays) germplasm in Kenya (Opala et al., 2010).  

There was no clear spatial tendency of P (Figure 18). The range for P (Table 5.) was 3.15 mg/kg 

and 11.63 mg/kg, where 43.7% of total samples did not meet the threshold of 5mg/kg (Okalebo 

et al., 2006).  The high phosphate retention may be due to the existence of andic material 

occasioned by presence of Andosol reference soil groups in higher altitudes. 

There was a west-east tendency of SOC and TN distribution in the study area (Figure 18.). Land 

management had significant contribution to the variations of SOC and TN with highest values in 

tea plantations. The minimum and maximum values were 3.6 g/kg and 57.2 g/kg (Table 5.) and 

93.07% did not meet the threshold of 20 g/kg using the assessment of Loveland & Webb (2003). 

TN results show a minimum 0.4 g/kg and Max 6.8 g/kg but only 15% of the total sampling area 

met the threshold of 2.0 g/kg based on suggestions from Ndakidemi & Semoka (2006).  

In general for all the soil observations, the textural classes were mainly clay, silt clay and silty 

clay loam. The ratio of sand in all the observations was less than 20 % while clay and silt were 

36-58 % and 32-52% respectively as shown in the ternary diagram (Figure 19.). 
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Figure 19. Ternary diagram for particle size distribution of the samples 

4.4 Results of soil classification 

The detailed results of soil classification show high variability of soil types in the study area 

(Appendix 1.). Figure 20 shows the most common diagnostic horizons that were identified. The 

Umbric horizon is a surface horizon which is relatively thick, dark-coloured with low base 

saturation and moderate to high content of organic matter  Cambic horizon is a sub-surface 

horizon showing evidence of pedogenetic alteration from weak to moderate. Mollic horizon just 

like the Umbric horizon is a surface horizon that is relatively thick, dark coloured but the 

different is that it has a high base saturation unlike the Umbric horizon. An Argic horizon is a 

subsurface horizon with distinctly higher clay content than the overlying horizon, either caused 

by illuvial accumulation of clay, predominant pedogenetic formation of clay, selective surface 

erosion of clay, upward movement of coarser particles due to swelling and shrinking, biological 

activity or a combination of two or more of these processes. Plinthic horizon is a subsurface 

horizon that is rich in Fe (in some cases also Mn) oxides or hydroxides. This is caused by 

repeated wetting and drying that result in irreversibly hard concretions or nodules (IUSS 

Working Group WRB, 2015). 
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Figure 20. The frequency of the identified diagnostic horizons 

The distribution of eight reference soil groups based on the identified diagnostic horizons was: 

Umbrisols > Cambisols >Andosols > Alisols > Phaeozems > Plinthsols > Regosols > Leptosols 

(Figure 21.). Umbrisols were characterised because of the presence of umbric horizon, 

Cambisols because of the presence of cambic horizon, Andosols were characterised on the basis 

of andic or/and vitric properties often in combination with the presence of a mollic or umbric 

horizons. Phaeozems were characterised on the basis of having a mollic horizon and high base 

throughout. Alisols are soils with argic horizon with low base saturation. Plinthosols were 

characterised on the basis of having a plinthic horizon. Leptosols are shallow soils with hard 

rock or coarse fragments close to surface, while Regosols are very weakly developed mineral 

soils in unconsolidated materials (IUSS Working Group WRB, 2015).  
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Figure 21. Representation of classified reference soil groups for the 77 soil profiles. 

The qulifiers identified for the studied soils are presented in Figure 22. Identification of all 

applying qualifiers is very important as they provide  information that is added to the reference 

soil groups (either as principal or supplimentary). They give very specific information that can 

support soil resource management.  
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Figure 22. The frequency of qualifiers in the visited sites 

My classification results at the RSG level were not fully matching the soil types of the 

associations of the relevant soil mapping units of the KENSOTER map units (polygons) (Table 

6).  

The polygons are indicated by the dominant soil, associations within the polygons are given in 

brackets with the proportions (Table 6.). 

It is apparent from Table 6. that there was gross mismatch at the reference soil group level. Even 

with dense sampling (28 profiles) at the Nitisols polygons, no profile was classified as a Nitisols. 

The KENSOTER humic Nitisols polygon had the majority number of the visited profiles and 

diverse soil classes. Based on the KENSOTER map units, Humic Nitisols have the highest 

association (60), followed by humic Andosols (16) and humic Cambisols (14). Matching 

associations with classified profiles in this polygon were identified. The 10 profiles classified as 

Andosols matched the humic Andosol association and 1 profile classified as Cambisol matched 

the humic Cambisol association in the humic Nitisol polygon. Umbrisols were represented by 10 

profiles, Alisols 5 profiles and Regosols by 1 profile.   
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Table 6. Matrix representation of soil classes in KENSOTER polygons.  

KENSOTER  

Polygons  

The classification of the profiles in the map 

unit (polygon) 

Profiles 

AN  UM Al  RG  CM  LP  PH  PT  

Humic Nitisols  

(NTu70:ANu16:CMu14) 

10  10 5  1  2  0  0  0  28 

Rhodic Nitisols  

(NTr60:NTu30:FRr10) 

0  19 2  0  5  1  0  0  27 

Luvic Phaeozems  

(PHl40:NTh30:CMx30) 

0  8 0  0  3  0  5  0  16 

Eutric Vertisols  

(VRe70:CMe30) 

0  0 0  0  0  0  1  1  2 

Lithic Leptosols  

(LPq60:PHl40) 

0  1 0  0  0  0  0  0  1 

Rhodic Ferrasols  

(FRr90:LXh5:ACh5) 

0  0 1  0  1  0  0  0  2 

Total RSGs  10  38  8  1  11  1  6  1  76 

Share of the RSG in the 

study area (%) 

13.3 50 10.5 1.3 14.4 1.3 7,9 1,3 100 

Where PH=Phaeozems, LP=Leptosols, AN=Andosols, UM=Umbrisols, CM=Cambisols, 

AL=Alisols, PT=Plinthosols, RG= Regosols, HS=Histosols, NT=Nitisols, VR=Vertisols, 

FR=Ferrasols, CMu=Humic Cambisols, NTu=Humic Nitisols, NTr=Rhodic Nitisols, 

FRr=Rhodic Ferralsols, VRe=Eutric Vertisols, LXh=Humic Lixisols, Ach=Humic Acrisols, 

LPq=Lithic Leptosols, CMx = Chromic Cambisols.  

 

The Rhodic Nitisol polygon had 27 profiles. The associations in this polygon based on the 

KENSOTER map units were Rhodic Nitisols (60), Humic Nitisols (30) and Rhodic Ferralsols 

(10). Cumulatively in this polygon Nitisols were 90% of all the associations in this polygon. No 
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profile was classified as a Nitisol even with dense sampling and the high chance (90%) of having 

a profile classified as Nitisols. Out of the 27 visited profiles, 19 profiles were classified as 

Umbrisols, 2 as Alisols, 5 Cambisols and 1 Leptosol. There were no matching associations with 

classified profiles in this polygon. 

The Luvic Phaeozem polygon had three associations based on KENSOTER map units as 

follows: Luvic Phaeozems (40), Humic Nitisols (30) and humic Cambisols (30) 

PHl40:NTh30:CMu30. Matching associations with 5 profiles classified as Phaeozems were 

identified. Umbrisols were represented by 8 profiles and Cambisols by 3 profiles out of the total 

16 profiles in the Luvic Phaeozem polygon. 

The Eutric Vertisols polygon had two associations, Eutric Vertisols (70) and Eutric Cambisols 

(30). Two profiles were visited in this polygon. One profile was classified as Phaoezem and 

another as Plinthosols. No matching associations with classified profiles was identified may be 

because this polygon was sparsely sampled. 

The Lithic Leptosol polygon has two associations based on the KENSOTER map units. Lithic 

Leptosols (60) and Luvic Phaeozems (40). Only one profile was visited and classified as 

Umbrisols.  

Two profiles were visited in the Rhodic Ferralsols polygon and classified as Alisols and 

Cambisols. This polygon had three association based on KENSOTER map units. Rhodic 

Ferralsos (90), Humic Lixisols (5), Humic Acrisols (5). This polygon was sparsely sampled 

reducing the chances for matching associations with classified profiles. 

 

Based on the KENSOTER map units (Dijkshoorn, 2000) and a soil survey by the Kenya Soil 

Survey report (Gicheru & Kiome, 2000) this is a Nitisol rich region (Figure 23.). Soil profiles of 

my study that satisfied the morphological characteristics of nitic horizon however failed the 

silt/clay ratio of <0.4 diagnostic criterion for the nitic horizon (Appendix 3.). Results of two 

sample soil profiles are provided to demonstrate the problem with Nitisols classification in the 

eastern slopes of Mount Kenya. 
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Figure 23. KENSOTER soil units and classified RSG of sampled soils  

10.14751/SZIE.2017.065



 

57 

 

4.4.1 Example profiles showing the classification problem of the nitic horizon and Nitisols 

Profiles ID M5 and 14 are presented to discuss the classification problem. Climatic 

Profile ID M 5 

Location: Nguruma 

GPS readings: latitudes 4188018,468 longitudes 3585, 04439  

KENSOTER map unit: NTU 

Climatic zone: Humid, Temperature regime: udic (DU) 

Parent material: Pyroclastic rocks (IP3) and Basalts (IB2)  

Macro relief:  Plains (these are flat land forms), LP. 

Percentage slope: 13,7% 

Vegetation and land use:  Agriculture= AA4, AP1 (Maize =CeMa, Bananas =FrBa,  

Coffee =LUCO, Agroforestry =MF) 

 

 

 

Ap 

0-20 cm, 2.5YR 3/3 moist  

SiC, SBK, sticky when wet. 

 

 

AB 

20-50 cm, diffuse boudary 

2.5YR3/3 moist 

SiC, SBK,  pressure faces 

sticky when wet 

 

B 

 

50- cm, diffuse boudary 

2.5YR 3/4 moist 

SiC, SBK,  

Pressure faces 

sticky when wet 

 

horizon depth OC pH CEC B Fedith Feox Silt Clay 

 cm %  cmol/kg % % % % % 

A 20 2,3 4,8 19,2 48,3   40,8 47,8 

AB 30 1,6 4,9 18,2 48,2 8,44 1,8 46,0 42,1 

Bw 50 1,1 4,9 17,5 47,5   41,4 47,7 
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Additional data: Mineralogy of AB: Kaolinite dominated (see Figure 24.). 

(Kaolinite/halloysite>>goethite, hematite>quartz>smectite, k-feldspar, gibbsite)  

 

 

Figure 24. XRD diffractogram for sample M14 shows 1:1 kaolinite dominance 

Diagnostic horizon: cambic and umbric  

Reference Soil Group: Umbrisols 

Principal qualifiers: Cambic 

Supplementary qualifiers: Aric, Clayic 

Soil name: Cambic Umbrisols (Aric, Clayic) 

Based on the WRB, 2015 classification system, the profile descriptions qualify the diagnostic 

criteria for ‘nitic horizon’ (Appendix 3.), except the silt to clay ratio which was >0.4. Without 

the silt to clay ratio of <0.4 diagnostic criteria, this profile would be classified as Dystric Rhodic 

Nitisol (Aric, Humic). Although the WRB RSGs are different, the full classifications of the two 

versions capture similar soil information (Table 7.). 
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Table 7:  The full classification of Profile M5 as function of the criteria silt/clay ratio <0.4 

With the current criteria silt/clay ratio <0.4 Without the current criteria silt/clay ratio <0.4 

Cambic Umbrisols  (Aric, Clayic) 

The default of Umbrisols  → Dystric and 

Umbric 

Dystric Umbric Nitisol (Aric, Humic) 

 

The default of Nitisol → Clayic 

 

The default information of the required diagnostics for the Reference Soil Group and qualifiers 

are building blocks that carry the information on the major soil properties that are important for 

management. As exemplified on profile M5, the low base (expressed in the Dystric qualifier), the 

clayey texture (expressed in the Nitisol RSG or the Clayic qualifier), the high OC status 

(expressed in Humic qualifier), are captured in both alternatives for the ploughed (Aric) M5 

profile, given in Table 7.  
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Profile ID M 14 

Location: Giaki  

GPS readings: latitudes 4203190.201 longitudes 3860.189111 

KENSOTER map unit: PHI 

Climatic zone: Sub-Humid, temperature regime: udic, FAO code: DU 

Parent material: Basalts, FAO Code (IB2)  

Macro relief:  Plains (these are flat land forms), FAO Code: LP 

Percentage slope: 4.2% 

Vegetation and land use:  Agriculture (Corn and coffee), FAO code: AA4, AP1, LuCo. 

 

 

 

Ap 

 

 

0-20 cm, 5YR 2.5/4 moist  

SiC, GR, sticky when wet. 

 

 

 

 

AB 

20-50 cm, diffuse boudary 

2.5YR2.5/4 moist 

SiC, SBK, shiny peds, 

pressurefaces 

sticky when wet 

 

 

 

Bw 

 

50- cm, diffuse boudary 

2.5YR 2.5/6 moist 

SiC, SBK, shiny peds 

Pressure faces 

sticky when wet 

horizon depth OC pH CEC B Fedith Feox Silt Clay 

 cm %  cmol/kg % % % % % 

A 20 2,0 4,8 16,8 48,7   41,6 46,8 

AB 30 1,2 4,9 16,9 48,7 8,69 1,17 41,7 45,8 

Bw 50 1,0 4,9 17,2 48,7   43,8 45,5 

 

Additional data: Mineralogy of AB: Kaolinite dominated (see Figure 25.). 

(Kaolinite/halloysite>>goethite, hematite>quartz>smectite, k-feldspar, gibbsite) 
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Figure 25. XRD diffractogram for sample M14 shows 1:1 kaolinite dominance 

 

Diagnostic horizon: Cambic  

Reference Soil Group: Cambisol 

Principal qualifiers: Rhodic, Dystric 

Supplementary qualifiers: Aric, Clayic, Humic  

Soil name: Dystric Rhodic Cambisols (Aric, Clayic, Humic). 

 

Based on the WRB, 2015 classification system, the profile descriptions qualify the diagnostic 

criteria for ‘nitic horizon’ (Annex 3.), except the silt to clay ratio which was >0.4. Without the 

silt to clay ratio of <0.4 diagnostic criteria, this profile would be classified as Dystric Rhodic 

Nitisol (Aric, Humic). Although the WRB RSGs are different, the full classifications of the two 

versions capture similar soil information (Table 8.). 
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Table 8:  The full classification of Profile M14 as function of the criteria silt/clay ratio <0.4 

With the current criteria silt/clay ratio <0.4 Without the current criteria silt/clay ratio <0.4 

Dystric Rhodic Cambisol (Aric, Clayic, 

Humic) 

Dystric Rhodic Nitisol (Aric, Humic) 

 

The default of Nitisol  Clayic 

 

The default information of the required diagnostics for the reference soil group and qualifiers are 

building blocks that carry the information on the major soil properties that are important for the 

management. As exemplified on profile M14, the low base (expressed in the Dystric qualifier), 

the clayey texture (expressed in the Nitisol RSG or the Clayic qualifier), the high OC status 

(expressed in Humic qualifier), the highly weathered, iron rich status (expressed in  the Rhodic 

qualifIer) are captured in both alternatives for the ploughed (Aric) M14 profile, given in Table 8.  

In both the two profiles, the WRB reference soil groups are different but the qualifiers are 

preserved in both cases. This demonstrates the applicability of the WRB classification elements 

(building blocks) to provide important information for soil management.  

However the Nitisol classification remains a problem, as Nitisols with their stable structure and 

high clay content are considered the best soils among highly weathered soils. It is important that 

on the highest level (RSG) soils with the nitic horizon are acknowledged. 

For further investigations of the problem, the ISRIC WISE (Batjes, 2009a) database was 

revisited.  In the data base 5054 profiles are classified as Nitisols (mostly Humic and Rhodic) 

.Although the silt to clay ratio of < 0.4 requirement for nitic horizon was introduced in 1998  

(FAO-ISRIC-ISSS, 1998) and some of the soils were surveyed before, a large number of the 

legacy profiles do not satisfy the criteria. (Figure 26.). 
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Figure 26. Evaluation of ISRIC WISE database for Nitisols classification 

The higher silt ratio might be related to rejuvenation of the Nitisols during Pleistocene eruption 

in the Mt. Kenya region or even in larger distance. Similar suggestions were made by De 

Wispelaere et al. (2015) based on observations in Ethiopia. Regardless of the cause, the current 

criterion makes soil with nitic horizon morphology excluded from the Nitisols, and also makes 

confusion in legacy data bases. Based on these conclusion suggestions have been made to the 

IUSS WRB Working Group to skip this criteria from the nitic horizon diagnostic criteria.  

4.4.2 Discriminant analysis results 

In view of the differences from earlier classifications (Figure 23.), I sought to evaluate the 

classification results based on the known soil types in the KENSOTER database for the same 

study area. Discriminant analysis (DA) provided results that showed the contribution of each soil 

property in the classification of WRB reference soil groups in the form of factor components 

(Table 9.). The first factor (F1) showed high loadings for SOC and Al showing a negative 

correlation with F1. Base saturation (BS) and pH were positively correlated with F1.  The second 

factor (F2) was associated strongly with Ca. The third factor (F3) loadings were mainly 

associated with silt, clay, sand, Fe and CEC.  

 

Nitic Non-Nitic 
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Table 9. Loadings of the first 5 factors for elemental compositions in the soil 

 F1 F2 F3 F4 F5 

SOC (%) -0.726 0.289 0.373 0.049 0.086 

Clay (%) -0.123 0.173 -0.406 0.192 0.189 

Silt (%) 0.305 0.007 0.443 -0.069 0.076 

Sand (%) -0.259 -0.175 0.243 -0.071 -0.227 

silt/clay 0.238 -0.111 0.477 -0.217 -0.067 

P (mg/kg) 0.045 -0.478 0.521 0.288 -0.141 

Ca (cmol/kg) 0.262 0.528 0.050 -0.016 0.365 

Mg (cmol/kg) 0.056 -0.105 -0.042 0.385 -0.170 

Al (cmol/kg) -0.596 -0.403 0.241 0.157 -0.289 

CEC (cmol/kg) -0.359 0.038 0.421 0.214 0.011 

BS (%) 0.544 0.535 -0.077 -0.019 0.195 

pH 0.704 0.257 -0.051 -0.084 0.569 

Eigen value 1.300 0.538 0.249 0.147 0.073 

Discrimination (%) 55.446 22.945 10.626 6.261 3.113 

Cumulative (%) 55.446 78.391 89.018 95.280 98.393 

 

Calculated centroids for the WRB reference soil groups (Table 10.) of all the visited sites show 

that the values of silt to clay ratio were greater than the requirement of <0.4 for ‘nitic horizon’ 

and this was the major reason why no profile was classified as a Nitisols. 

Table 10. Calculated centroids for classified WRB reference soil groups.   

RSGs SOC C Si S Si/C P Ca Mg Al CEC BS pH 

 % % % %  mg/kg cmol/kg cmol/kg cmol/kg cmol/kg %  

AL 1.2 45.1 42.5 12.3 0.9 6.2 7.9 4.32 17.7 18.0 43.1 4.6 

AN 3.5 46.6 41.4 12.7 0.8 5.6 7.5 4.26 19.8 20.6 40.7 4.4 

CM 1.2 46.1 42.3 12.2 0.9 6.4 7.7 4.45 17.8 19.1 44.4 4.7 

PH 1.3 46.8 43.1 11.1 0.9 4.5 9.2 4.37 13.8 18.1 53.8 5.0 

PT 1.4 43.5 45.4 12.1 1.0 9.5 7.6 4.64 18.4 19.8 43.2 4.8 

RG 0.6 42.5 47.2 12.1 1.1 6.3 10.8 3.90 12.6 18.2 55.4 5.3 

UM 1.3 46.5 42.1 11.9 0.9 5.5 8.0 4.32 16.2 18.7 45.3 4.8 

Important variables for the classification of Phaeozems were pH and BS (Figure 26). Phaeozems 

must have a mollic horizon with a base saturation ≥ 50% through out to the depth of 100 cm 

(IUSS Working Group WRB, 2015). Characterisation of Andosols (AN) was based on high 

SOC, clay and CEC. Stabilization of SOC in AN has been attributed to formation of organo-
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mineral complexes Al/Fe–humus (Neculman et al., 2013). Michéli et al. (2014) have 

demonstrated the importance of SOC as a major differentiation criterion in soil classification 

systems. Clay-size particles have been recognized as protecting SOC from microbial 

decomposition (Barré et al., 2014). Plinthosols (PT) are characterised by formation of (piso) 

Plinthic horizons containing concretions or nodules that are strongly cemented with Fe and in 

some cases with Mn hydroxides. Their formation is related to the past climate (alternating wet 

and dry conditions). Discriminant analysis identified Regosols (RG) on the basis of the pH, silt 

and silt/clay ratio. These are very weakly developed mineral soils forming on eroding and 

accumulation zones, most probably losing their buffering capacity. They are associated with 

incipient soil formation such as Entisols in the US Soil Taxonomy. Umbrisols, Cambisols and 

Alisols were characterised on the basis of silt and silt/clay ratios. However, the silt to clay ratio is 

a diagnostic criterion for nitic horizon. 
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Figure 27. Principal components (F1 versus F2) show contribution of soil properties in 

classification of RSGs. 

Overlap of soil properties in all the observations was evident (Figure 27.). Outliers were 

observed mainly due to high SOC in the case of Andosols and Alisols mainly due to high 

contents of silt. Overlap of centroids for Alisols, Umbrisols and Cambisols was also evident. 

Umbrisols observations dominated in all the centroids. This supports the classification results in 

Figure 21. that Umbrisols had the highest coverage based on the visited sites.  
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Figure 27. Principal components (F1 versus F2) show the distribution 

 of the actual RSG profiles “around” the centroids of their RSGs. 

 

4.5 Differences of soil properties in different RSGs and implications for 

management 

Selected soil properties that can be managed either by adding organic or inorganic inputs were 

considered. These included: SOC, TN, P, Ca, Mg, pH and K. Soil organic carbon (SOC) is fairly 

reliable and field-based soil quality indicator for assessing soil and ecosystem health (Lal, 2006; 

Vagen et al., 2005, Winowieck et al., 2016). Comparison of SOC (%) in all the RSGs reveals 

three distinct groups ‘A, AB and B’ (Table 12a.). Plinthosols at the transition and Andosols 

completely isolated from the other RSGs. The calculated centroids (Table 10.) show that 

Andosols had the highest value of SOC (%).  This is explained by Andosols ability to stabilize 

SOC through formation of SOC in organo mineral (Al/Fe) complexes (Rumpel et al., 2012), low 

activity of soil microorganisms due to extremely low pH, Al toxicity as indicated by high values 

of Al in the soil samples and low base saturation (Tonneijck et al., 2010). Physical protection of 

the SOC in stable microaggregates has been reported (Huygens et al., 2005). If the pH of 

Andosols is controlled, these soils can be very fertile and perform most of the important soil 
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functions. This could be the case in Plinthosols where SOC can be protected in the hard Fe or 

Mn concretions and nodules. In terms of management for SOC three clusters can be targeted: A, 

AB and B (Table 11a.). 

 

Table 11a. Multiple pairwise comparisons using Dunn's procedure / Two-tailed test for SOC 

RSG Frequency Sum of ranks Mean of ranks Groups 

RG 3 62.0 20.7 A   

AL 25 2428.0 97.1 A  

CM 34 3423.0 100.6 A  

PH 16 1612.0 100.7 A  

UM 116 12623.0 108.8 A  

PT 5 567.0 113.4 A B 

AN 32 6081.0 190.0   B 

 

Comparison of means within the RSGs for SOC (%) revealed similar information (Table 11b.). 

There was a significant difference between Andosols and all other RSGs except Plinthosols. 

  

Table 12b. Evaluation of the significant differences between RSGs for SOC 

RSG  AN UM CM AL PH PT RG 

AN No Yes Yes Yes Yes No Yes 

UM Yes No No No No No No 

CM Yes No No No No No No 

AL Yes No No No No No No 

PH Yes No No No No No No 

PT No No No No No No No 

RG Yes No No No No No No 

Significant level P<0.05 

 

Nitrogen (N) is the nutrient most often deficient for crop production in SSA and its use can result 

in substantial economic return for farmers (Chianu et al. 2012). However, when N inputs to the 

soil system exceed crop needs, there is a possibility that excessive amounts of nitrate (NO3-) may 

enter either ground or surface water. Managing N inputs to achieve a balance between profitable 

crop production and environmentally tolerable levels should be every farmer’s goal. The results 

of N were similar to those of SOC with three distinct groups ‘A, AB and B’ (Table 12a.). This is 

because SOC and TN were highly correlated (0.98) in the earlier results (Table 1.). Gains in SOC 

go along with increases in other elements including N (Hessen et al., 2004). Like SOC, three 

clusters can be used for N management. 
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Table 12a. Multiple pairwise comparisons using Dunn's procedure / Two-tailed test for TN 

RSG Frequency Sum of ranks Mean of ranks Groups 

RG 3 56.0 18.6 A   

PH 16 1530.0 95.6 A  

UM 116 11993.0 103.3 A  

CM 34 3647.0 107.2 A  

AL 25 2699.0 107.9 A  

PT 5 646.0 129.2 A B 

AN 32 6225.0 194.5   B 

There was significant difference between Andosols and all other RSGs except Plinthosols with 

regard to TN (Table 12b.).  

 

Table 12b. Evaluation of the significant differences between RSGs for TN. 

RSG  AN UM CM AL PH PT RG 

AN No Yes Yes Yes Yes No Yes 

UM Yes No No No No No No 

CM Yes No No No No No No 

AL Yes No No No No No No 

PH Yes No No No No No No 

PT No No No No No No No 

RG Yes No No No No No No 

 

Significant level P<0.05 

Kenyan soils, similar to other agricultural soils of the tropics, are generally low in available P 

attributable to low soil pH and oxides or/ and hydroxides of Al and / or Fe with high P-fixation 

capacities (Opala et al., 2010). Five distinct clusters A, AB, ABC, BC and C were generated and 

form important management zones for P (Table 13a.). The cluster with least mean of ranks was 

associated with Phaoezems. Phaeozems are soils with high base saturation and high pH thus with 

low P fixing capacity. The cluster with highest mean of ranks was C associated with Plinthosols. 

Plinthosols usually have has high Fe and Mn concentrations thus have high capacity of P fixing. 

Liming to reduce soil acidity can reduce P fixation and fertilization with phosphorus fertilizers 

like NPK can increase available P for the plants. 
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Table 13a. Multiple pairwise comparisons using Dunn's procedure / Two-tailed test for P 

RSG Frequency Sum of ranks Mean of ranks Groups 

PH 16 1090.0 68.1 A     

UM 116 12757.0 109.9 A B  

AN 32 3524.0 110.1 A B  

AL 25 3130.0 125.2 A B C 

CM 34 4750.0 139.7   B C 

RG 3 457.0 152.3   B C 

PT 5 1088.0 217.6     C 

 

Significant differences are observable between the following RSGs: PT & AN; PT & UM; PT & 

PH and PH & CM (Table 13b.). This may be explained by the variations of elements that 

enhance phosphorus fixation in different RSGs. 

 

Table 13b. Evaluation of the significant differences between RSGs for P 

RSG  AN UM CM AL PH PT RG 

 AN No No No No No Yes No 

UM No No No No No Yes No 

CM No No No No Yes No No 

AL No No No No No No No 

PH No No Yes No No Yes No 

PT Yes Yes No No Yes No No 

RG No No No No No No No 

Significant level P<0.05 

 

Calcium plays a very important role in plant growth and nutrition. It is found in many minerals 

in the soil, but is relatively insoluble in this state. High levels of other cations such as 

magnesium, iron, aluminium and especially potassium, will reduce the calcium uptake in some 

crops. The differences in the mean of ranks (Table 14a.) may be explained by the variability of 

Ca2+ among the RSGs. Andosols have the least mean of ranks; this can be explained by the fact 

that Andosols had the highest content of exchangeable Al . Al3+ replaces Ca2+ as the dominant 

exchangeable cations on the negatively charged surfaces of clay minerals and organic matter. 

Conversely, high mean of ranks of Ca for Phaoezems and Regosols are associated with low Al3+ 

and higher pH values in these RSGs. Four distinct zones can be identified for management A, 

AB, B and C. Addition of lime into the soil can increase lower increase Ph and at the same time 

increase calcium into the soil and fertilization with Calcium Ammonium Nitrate (CAN) 
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Table 14a. Multiple pairwise comparisons using Dunn's procedure / Two-tailed test for Ca 

RSG Frequency Sum of ranks Mean of ranks Groups 

AN 32 2565.0 80.2 A     

AL 25 2102.0 84.1 A B  

PT 5 449.0 89.8 A B  

CM 34 3562.0 104.8 A B  

UM 116 14216.0 122.6   B  

PH 16 3243.0 202.7    C 

RG 3 659.0 219.7     C 

 

Significant differences existed between RSGs with regard to Ca content. Observable differences 

were as follows: AN & UM; AN & PH; AN & RG; UM & PH; CM & PH; AL & PH; PT & PH 

and RG & AL (Table 14b.). 

Table 14b. Evaluation of the significant differences between RSGs for Ca 

RSG  AN UM CM AL PH PT RG 

AN No Yes No No Yes No Yes 

UM Yes No No No Yes No No 

CM No No No No Yes No No 

AL No No No No Yes No Yes 

PH Yes Yes Yes Yes No Yes No 

 PT No No No No Yes No No 

RG Yes No No Yes No No No 

Significant level P<0.05 

 

Magnesium (Mg) is the central atom of the chlorophyll molecule and is an important enzyme. It 

is very mobile in plants. Magnesium deficiency in plants causes yellowing between leaf veins. 

Low soil pH decreases the availability of magnesium to plants. The availability of Mg to plants 

depends on various factors: the distribution and chemical properties of the source parent material 

and its grade of weathering, site specific climatic and anthropogenic factors. The mean rank for 

Plinthosols was highest (Table 15a.). This can be explained by the fact that PT is associated with 

high Mn and Fe. High Mn has been reported to directly reduce Mg uptake resulting in increased 

Mg content in Plinthosols. In addition, in acidic soils, elements such as manganese and 

aluminium become more soluble and result in reduced magnesium uptake. Addition of liming 

material (i.e dolomitic lime) can reduce soil acidity and increase available magnesium. 

Dolomitic lime is calcium magnesium carbonate. It has about 50% calcium carbonate and 40% 

magnesium carbonate, giving approximately 22% calcium and at least 11% magnesium 

(Okalebo et al., 2006) 
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Table 15a. Multiple pairwise comparisons using Dunn's procedure / Two-tailed test for Mg 

Sample Frequency Sum of ranks Mean of ranks Groups 

RG 3 147.0 49.0 A 

AN 32 3213.0 100.4 A 

AL 25 2730.0 109.2 A 

UM 116 13425.0 115.7 A 

PH 16 1921.0 120.1 A 

CM 34 4556.0 134.0 A 

PT 5 804.0 160.8 A 

 

There was no significant difference between RSGs with regard to magnesium content (Table 

15b.). 

 

Table 15b. Evaluation of the significant differences between RSGs for Mg. 

RSG  AN UM  CM AL PH PT RG 

AN No No No No No No No 

UM No No No No No No No 

CM No No No No No No No 

AL No No No No No No No 

PH No No No No No No No 

 PT No No No No No No No 

RG No No No No No No No 

Significant level P<0.05 

 

Soil pH is a useful indicator of the relative acidity or alkalinity of a soil. All the soil samples 

were generally acidic. However, the severity of acidity differed in different RSGs forming five 

distinct management zones A, AB, B, BC and C (Table 16a.). However, it should be noted that 

this is just indicative as pH can change within a short span of time. Andosols had the least mean 

of ranks value based while Phaeozems and Regosols had higher mean of rank values. This was 

based on the variability of pH from low to high respectively. Liming to increase pH and 

availability of other important nutrients is necessary. 
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Table 16a. Multiple pairwise comparisons using Dunn's procedure / Two-tailed test for pH. 

RSG Frequency Sum of ranks Mean of ranks Groups 

AN 32 1990.0 62.1 A     

AL 25 2205.0 88.2 A B  

CM 34 3360.0 98.8 A B  

UM 116 14651.0 126.3   B  

PT 5 744.0 148.8   B C 

PH 16 3159.0 197.4    C 

RG 3 687.0 229.0     C 

 

Significant differences existed between RSGs with regard to pH content. These included: AN & 

UM; AN & PH; AN & RG, CM & PH; AL & PH; RG & CM and RG & AL (Table 16b.).  

 

Table 16b. Evaluation of the significant differences between RSGs for pH 

  AN UM CM AL PH PT RG 

AN No Yes No No Yes No Yes 

UM Yes No No No Yes No No 

CM No No No No Yes No Yes 

AL No No No No Yes No Yes 

PH Yes Yes Yes Yes No No No 

PT No No No No No No No 

RG Yes No Yes Yes No No No 

Significant level P<0.05 

 

Potassium (K) is highly mobile and is easily leached from leaves to be taken up in high 

quantities by soil microorganisms and roots. In soil, potassium may be found in minerals such as 

micas and feldspars, secondary aluminium silicates (e.g. illite). Potassium is available when 

attached to clay and humus colloids and easily available when in solution. Potassium dissolved 

in soil solution as an ion is highly leachable, although loses of potassium from runoff and erosion 

is not a significant problem. There were no differences in all the RSGs with regard K contents 

and one management group (A) could be considered (Table 17a.). 
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Table 17a. Multiple pairwise comparisons using Dunn's procedure / Two-tailed test for K. 

RSG Frequency Sum of ranks Mean of ranks Groups 

RG 3 246.0 82.0 A 

AN 32 3483.0 108.8 A 

PH 16 1794.0 112.1 A 

UM 116 13372.0 115.2 A 

AL 25 2884.0 115.3 A 

PT 5 628.0 125.6 A 

CM 34 4389.0 129.0 A 

 

There was no significant difference between RSGs with regard to K content (Table 17b.). 

Table 17b. Evaluation of the significant differences between RSGs for K 

  AN UM CM AL PH PT RG 

AN No No No No No No No 

UM No No No No No No No 

CM No No No No No No No 

AL No No No No No No No 

PH No No No No No No No 

PT No No No No No No No 

RG No No No No No No No 

Significant level P<0.05 

 

4.6 Summary of the suggested management options 

Soil erosion control and addition of soil organic matter into the soil. 

Colluvic qualifier (Figure 22.) is an indication of movement of soil material through erosion. 

Measures of erosion control like terraces, increasing cover crops, mulching, improving the soil 

structure through addition of soil organic matter need to be emphasized in this study area. Farm 

yard manure (FYM) is a good source of organic matter. A major challenge remains as these 

FYM are usually insufficiently available to provide the nutrients needed to maintain agricultural 

production at a desirable level. Composting and use of biochar technologies may also increase 

availability of OMs for soil amendments. 
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Liming and use of P fertilizers 

The Dystric qualifier (Figure 22.) show that the soils are mainly acidic with base saturation of 

<50%. Andic and Vitric qualifiers (refer Appendix1. and Appendix 2.) which were present in 

some of the sampling sites are good agents of P fixation. Application of agricultural lime 

containing Ca and/or Mg compounds increase Ca2+ and/or Mg2+ ions and reduces Al3+, H+, Mn4+, 

and Fe3+ ions. This leads to increase in soil pH and available P due to reduction in P fixation 

(Connor et al., 2011). Liming also increases earthworm activity and therefore macro porosity 

(Bolan et al., 2003). Bennett et al., (2014) found that lime applied at 5t/ha was improving 

aggregate stability, hydraulic conductivity, vegetation cover, total carbon and Nitrogen and 

respiration 12 years after application. However, high cost and inaccessibility of liming and 

fertilization inputs have been reported as key constraints in Kenya (Okalebo et al., 2006). Due to 

these challenges, alternative management options need be explored to provide a bigger matrix of 

options to the famers. 

 

Use of acid tolerant crops 

Using germplasm that is tolerant to low pH and Al toxicity (i.e tea, sorghum). Although the use 

of tolerant plant germplasm does not reverse soil acidity conditions, it minimizes the problems 

experienced by farmers, especially those who do not use lime.  
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5. CONCLUSION AND RECOMMENDATIONS 

Combining Conditional Latin Hypercube Sampling, Mid Infrared spectroscopy, and Random 

Forest Regression (RF), soil properties were satisfactorily predicted. The results of the linear 

regression show a strong relationship between the measured values and the predicted. Out of the 

269 samples, only 30 to 32 samples were selected for calibration and analysed through tedious 

and costly laboratory procedures. Laboratory measurements were calibrated to MIR spectra 

using RF regression and soil properties were simultaneously predicted with satisfactorily results. 

This supports the fact that our methodology is rapid, cost effective and environmentally friendly 

as compared to the dense sampling and intense wet chemistry laboratory procedures. 

Geostatistical analysis of our data revealed spherical model as the best fit for the semivariogram. 

Cross validations result show that TN and pH had excellent results compared to SOC and P. The 

low accuracy for SOC and P spatial predictions can be explained by lack of important input 

variables like land use/land management practices. Also the available KENSOTER database that 

represented soil types had its share of limitations that were discussed earlier in the introduction 

section and this may have affected the accuracy of the model. The maps of the predicted spatial 

distribution of the soil properties are a good demonstration of how a rapid and an accurate 

methodology of predicting soil properties can provide data to update legacy maps and databases 

in the study area. The scale for these developed maps can inform land management at watershed 

and farm level (resolution is 30 m by 30 m). Moreover, they form a good monitoring network 

that was not there before for planning, prioritizing and assessing soil management activities. 

 

The second part of my research involved soil classification using the predicted soil properties 

and morphological field observations. The results show that the difficulties of Nitisols 

classification were primarily caused by the failure of the profiles data to qualify the nitic 

diagnostic criterion of silt to clay ratio of < 0.4. Modification of the criteria was suggested by the 

author during the European Geosciences Union 2017 general assembly in Vienna on 28th April 

2014. This was through an oral presentation that I delivered ‘Classification problems of Mount 

Kenya soils with reference to Nitisols’ in the presence of IUSS WRB working Group. The 

diagnostic elements, principal and supplementary qualifiers made it possible not to loose soil 

information even when the reference soil groups were different. The building blocks of the 

system capture specific information important for soil management.   
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5.1 Recommendations 

 More intense soil survey and soil classification is suggested for this study area and other 

similar environments to validate the results of this study. This will help IUSS WRB 

Working Group to make an informed decision on whether or not to modify the silt to clay 

ratio criterion for nitic horizon.  

 Further work is required to understand the silt forming processes in the study area and 

similar environments. 

 Development of land management inventories is required to enhance predictions of soil 

properties for more informed land use decision making. 
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6. KEY SCIENCTIFIC FINDINGS AND 

IMPORTANT OUTPUT OF THIS RESEARCH 

 

1. In my doctoral research I have applied Conditional Latin Hypercube Sampling for optimising 

the sample size; Mid Infrared Spectroscopy for rapid scanning of soil samples to generate a soil 

spectra library and Random Forest Regression to calibrate the soil MIR spectra using reference 

soil properties. This combination was 1st time and successfully used in the eastern slopes of Mt. 

Kenya to generate soil properties data. I achieved better coefficient of determination (r2) for the 

prediction of SOC (r2=0.78 and RMSE=1.64) than (r2=0.77 and RMSE=1.64) by Terhoeven-

Urselmans et al. (2010). My accuracy for the pH was (r2 = 0.88 and RMSE = 0.48) and better in 

terms of r2 and RMSE compared to those achieved by Terhoeven-Urselmans et al. (2010) (r2 = 

0.81, RMSE = 0.63) and Shepherd & Walsh (2002) (r2 = 0.83, RMSE = 0.54). Excellent 

calibrations of Mehlich III extraction of Na, Mg, K and Ca were excellent (r2=0.93 and 

RMSE=1.45; r2=0.88 and RMSE=1.60; r2=0.92 and RMSE=2.32 and r2=0.92 and RMSE=189.16 

respectively better than Sila et al. (2016) with regard to Ca (r2=0.91). Calibration for clay (r2 = 

0.59 and RMSE = 9.9); Silt (r2 = 0.63 and RMSE = 7.3) were low compared to other soil 

properties. 

 

2. Based on the results of the Conditional Latin Hypercube Sampling I have developed the first 

spectral library representing the spectral variability of the Eastern Mt. Kenya soils. This database 

contributes to future soil sampling campaigns, and enables the efficient soil property prediction. 

 

3. The spatial density of available soils data in my study area is very low. The 77 georeferenced 

and fully described and analyzed profiles contribute to the understating of soil resources of the 

area. The investigated representative locations can serve for future monitoring of the determined 

soil parameters. Beside the point data I have compiled the spatial prediction map of the 

properties, which can support farmers in making soil management decisions in the area.  

 

4. In earlier surveys extended areas were mapped as Nitisols on Mt. Kenya. In my study I have 

not classified any of my profiles as Nitisols, although they satisfied the important morphological 
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criteria of Nitisols, the silt/clay ratio < 0.4 diagnostic criterion for nitic horizon (introduced in 

1998) was not satisfied. Nitisols that undergo rejuvenation, may lose this criterion but still fulfil 

all other requirements and the concept of the Nitisols. As shown in the thesis, the introduction of 

this criterion is creating confusion in legacy databases as well. My finding is that this criteria is 

not useful and should be removed from the diagnostic criteria of the nitic horizon in updated 

versions of the WRB. (This proposal was accepted by the IUSS WG WRB) 

 

5.The WRB proved to be a proper system to be applied for soil classification and soil 

characterization in the study area.  It was well demonstrated that the building blocks (diagnostic 

horizons properties, materials and the qualifiers) do carry the important information for 

management purposes on soils of the studied area. Although my profiles did not closely match 

the soil associations of the KENSOTER polygons on the highest level, the information content 

derived from the associations provided a better match with the classification building blocks of 

my profiles in the relevant polygons. This underlines the importance of the diagnostic approach 

in soil classification, mapping and validation processes. 
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7. SUMMARY 

The expected growth of population and the need of more food make the knowledge of soil 

properties essential to secure the successes of agricultural production on currently available land.  

The high costs of soil surveys and laboratory measurements, however have partly contributed to 

the scarcity of soil data. In this study a rapid, cost efficient method was experimented to produce 

the necessary soil data for proper land management on the Eastern slopes of Mt. Kenya. The full 

coverage of the input variables was enhanced by the application of Conditional Latin Hypercube 

Sampling (CLHS) approach. Terrain attributes, Normalized Difference Vegetation Index (NDVI) 

and soil types were derived from Digital Elevation Model (DEM), Landsat 8 imagery and the 

KENSOTER database respectively. An ensemble of QGIS and CLHS were used to define the 

‘ease of reach’ of each location in the landscape. The resulting soil sampling design preserved 

the distribution of environmental predictors. Reflectance spectra of the Mid-Infrared (4000–400 

cm–1) were recorded for 269 samples. Principal Component Analysis (PCA) and Kennard stone 

algorithm were used for calibration sample selection. Laboratory measurements were calibrated 

to first derivative spectra using Random Forest (RF) regression. Good predictions were achieved 

for SOC and N (r2 = 0.76 and RMSE=1.64 and r2=0.81 and RMSE= 0.09) as well for soil pH (r2 

= 0.88 and RMSE = 0.48). Mehlich extracted Na, Mg, Al, P, K and Ca were satisfactorily 

calibrated. Geostatistical analysis show moderate spatial dependency. Soil properties were 

quantified and now can support soil management decisions. 

The second part of the research involved soil classification using the predicted soil properties 

and morphological field observations. Soil classification was performed based on the World 

Reference Base (WRB) for Soil Resources 2014. Based on the earlier surveys, geological and 

environmental setting, Nitisols were expected to be the dominant soils of the sampled area. 

However, this was not the case. The major difference to earlier survey data (KENSOTER 

database) is the high silt content (range 32.6 % - 52.4 %) and silt/clay ratio (range of 0.6 - 1.4) 

that invalidates the silt to clay ratio criterion of < 0.4 in the WRB 2014 classification system. 

There was good accordance in the morphological features with the earlier survey but failed the 

silt/clay ratio criteria for Nitisols. This observation calls for attention to set new classification 

criteria for Nitisols and other soils of warm, humid regions with variable rate of weathering to 

avoid difficulties in interpretation. However, most of the diagnostic horizons, properties and 

materials (Table 7) represent useful information for land use and management.  
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8. ÖSSZEFOGLALÁS 

A várható népességnövekedés és élelmiszerigény szükségessé teszi a megfelelő talaj információ 

megteremtését a rendelkezésre álló mezőgazdasági területeken történő gazdálkodás sikerének 

biztosítására. A jelenlegi adathiányt a hagyományos módszerekkel történő adatgyűjtés költség és 

időigénye nagyrészt magyarázza. Munkám során új, gyors költséghatékony adatgyűjtési 

módszert dolgoztam ki, mely támogatja a gazdálkodást a Mt. Kenya keleti lejtőin.  

Input változók széles körét alkalmaztam a “Conditional Latin Hypercube Sampling (CLHS)” 

mintavételezési tervezés során. Domborzati adatok, NDVI, és talajadatok szerepeltek bemeneti 

adatokként, melyeket digitális domborzati modellből (DEM), Landsat 8 műholdképekből és a 

KENSOTER adatbázisból származtattam.  

A 77 mintavételi ponton gyűjtött, összesen 269 talajminta alapján a középső infravörös 

tartományban (4000 – 400 cm-1) végeztem spektrális méréseket. Főkomponens és Kennard-Stone 

analízis alapján választottam ki a – talajparaméterek spektrális alapú becslését lehetővé tevő – 

többváltozós modellek létrehozásához szükséges kalibrációs mintákat. A többváltozós 

kalibrációt Random Forest algoritmussal végeztem el a laboratóriumi referencia és spektrális 

mérési eredmények első deriváltjai alapján. Jó statisztikai mutatókkal rendelkező prediktív 

modellt kaptam a szerves szén (r2=0.76, RMSE=1.64), nitrogén (r2=0.81, RMSE=0.09), valamint 

a pH (r2=0.88, RMSE=0.48) esetében. Kielégítő mutatókat kaptam a kicserélhető Na, Mg, Al, P, 

K és K értékekre is. A geostatisztikai vizsgálatok e talajtulajdonság-értékek közepes mértékű 

térbeli függőségét mutatják. Ezek a számszerűsített talajtulajdonságok jelentős szerepet játszanak 

a területet talajhasználatát érintő döntéshozatali eljárásokban.  

A munka második része talajosztályozáshoz kapcsolódott a terepei felvételezési és a mért illetve 

becsült talajparaméterek alapján. A talajosztályozás alapjául a Világ Talajreferencia Bázis 

(World Reference Base (WRB) for Soil Resources) 2015-ös kiadása szolgált. A megelőző 

térképezési munkálatok alapján, a területen Nitisolok a várható domináns talajok. Saját 

felvételezésem más eredményeket hozott. Az osztályozási eredmény fő különbségét a 

(KENSOTER-hez képest) a nagy por frakció (32.6 % - 52.4 %) és por/agyag arány (0.6 - 1.4) 

okozta, amely nem felel meg a WRB (2015) jelenlegi por/agyag < 0.4 diagnosztikai 

követelménynek. A problémás talajok morfológiai és további tulajdonságai teljesen megfelelnek 

a Nitisolok koncepciójának, a fenti ok alapján kerültek más referencia csoportokba. A magas por 

arány e talajok szálló por frakció dúsulásával magyarázható. A tapasztalatok alapján szükséges 

felülvizsgálni a meleg, nedves területek mállott talajainak, különösen Nitisolok osztályozását és 

megszüntetni az tárgyalt diagnosztikai követelményt, a további besorolási és értelmezési 

nehézségek, valamint az archív adatok megőrzése érdekében. A Nitisol problémán túl, azonban a 

WRB kitűnően volt alkalmazható a területen. A diagnosztikai egységek és a minősítők hasznos 

és gyakorlat számára is értelmezhető információt hordoznak.  
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12. APPENDICES 

Appendix 1. Location, land use, slope and management data of the visited sites. 

 

ID/plot 

Code X_latitudes Y_Longitude 

SLOPE 

(%) Land use Location Name Manure use 

M1 4181879,198 4450,182538 6 Forest&grass Nkunga No 

M2 4182107,218 1472,756876 4 Nappier grass, corn/Maize Kathiranga/Munyeene Yes 

M3 4184798,552 4195,631911 6 Corn, Potatoes Mworoga No 

M4 4188761,897 3747,570873 3 Agroforestry, napier grass, corn Ngurumo NO 

M5 4188018,468 3585,04439 14 Corn Bananas, Coffee, Agroforestry Ngurumo NO 

M6 4189471,93 3514,17097 19 Corn Beans, Bananas, Coff) Ruiga Gatimbi NO 

M7 4195003,395 -334,51507 10 Coffee, Beans Corn, Banan) kirigara/ Gatimbi No 

M8 4193469,227 -3138,65317 1 Tea, Potatoes) Kamurita YES 

M9 4185420,457 -2421,384515 7 Tea, Mcadamia, Avocadoes & Agroforestry Uruku/Mwinkithia Charcoal Burining 

M10 4185403,388 -2436,59818 7 Coffee, Bananas Uruku/Kirumeene NO 

M10b 4182235,792 -4534,414307 8 Agroforestry Uruku/Kirumeene NO 

M11p 4189322,761 -5608,833267 11 Tea  Nyayo Tea Zone NO 

M12 4189347,623 -12332,16641 22 Tea and agroforestry Ngongo NO 

M13 4199912,77 4063,718286 4 Coffee and Maize Gitimeene/Gaatia YES 

M14 4203190,201 3860,189111 4 Maize and Beans Giaki NO 

M15 4207216,998 3119,357789 3 Maize/Corn Giaki/Kirimamuthua YES 

M16 4217274,529 1351,418628 12 Maize and Groundnuts Giaki/Thaamira YES 

M17 4216957,454 1357,726733 4 Water melons Kiorimba/ Giaki YES 

M17b 4213771,119 4198,229366 5 Furrow Kiorimba/Giaki NO 

M18 4209145,052 6597,536331 8 Beans and Maize Mulika Mikinduri NO 

M19 4195478,173 -11361,27324 16 Beans and Maize Mbeu NO 
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M19p 4198820,169 -11741,05886 4 Beans and Maize Mbeu NO 

M20 4198925,366 -10403,73869 2 Bananas, Yams Mukuu/Baranga NO 

M21 4203995,783 -10422,29196 4 Bananas, Tea Nkumari/Gaturi. Nkuene division 

M22 4203185,934 -9988,516459 7 Maize and Agroforestry Ndemeene/Kirimene/Mitunguu NO 

M23 4205454,996 -9739,346034 17 Beans, Maize Mitunguu NO 

M23p 4205170,019 -10570,53262 4 Maize and Beans Kiagu/Kiroone/Mitunguu NO 

M24 4205174,019 -10573,53262 4 Beans, Maize   NO 

M25 4210678,478 -2069,800435 10 Forest/ Shrubland/Thickets Kiija farm/Mitunguu NO 

M26 4206485,258 -5121,624789 14 Napier grass, Agroforestry Mitunguu/Thingithu river YES 

M27p 4207004,378 -4215,298358 4 Maize, Beans Sorghum Kathagarene/ Mitunguu NO 

M28 4201647,684 -1155,496321 6 Maize Chaaria/ Nkandone/Ndurumo NO 

M29 4201167,526 -715,4132623 7 Mangoes Muti Fram, Ndurumo/ Chaaria 

NO/ mulching was 

observed 

M30 4201161,96 -1508,008049 1 Maize and Beans Chaaria/Mwiti farm NO 

M31 4197359,658 1718,958491 12 Maize and Beans Chaaria NO 

M32 4209075,292 -14116,99275 7 Maize and Beans Runyeene/ Chaaria/ Gaitu NO 

M33 4211608,923 -16713,89854 5 Miaze, Beans Mangoes Kimate/ Gaitu NO 

M34 4214200,998 -23624,46189 5 Maize, Beans, Peas, Agroforestry Mati Road/Kamunandene 

YES/ terracing/ 

mulching observed 

M35p 4216575,814 -36041,73228 8 Corn, Beans & Sorghum Kaurone/Mitunguu NO 

M36 4213257,38 -34895,49487 6 Maize, Mangoes, Beans Tunyai Tharaka YES 

M37 4216357,442 -30701,10645 5 Agroforestry, Maize Beans Twambonki/Tunyai/Tharaka NO 

M38 4213555,716 -29547,82366 7 Agroforestry, Maize Beans Ciakariga/Tharaka NO 

M39 4211165,501 -24819,48524 3 Agroforestry Mutino/Igambany'ombe/ Chuka NO 

M40 4208859,332 -22151,32447 2 Maize, Beans Marindi/Igambany'ombe Chuka NO 

M41p 4207429,804 -18488,15245 0 Maize, Beans Magoes Mutonga/Tharaka NO 

M42 4195829,386 -16069,17103 5 Beans, Milliet, Blackbeans, Maize(katumani type) 

Gacheera/Nyakinjeru/River 

Mutonga/Tharaka YES 

M43 4197270,973 -15983,08368 9 Beans, Milliet, Blackbeans, Maize(katumani type) Kamujua/Tunyai/Tharaka NO 

M44 4197603,447 -16377,71255 4 Beans Maize Ngauru/Tharaka south NO 
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M45 4198094,737 -14113,65316 26 Beans and Maize Tharaka South NO 

M46 4200602,394 -13615,12619 2 Bananas coffee, Maize Beans Kangamari/ Kanyakine NO 

M47 4196265,572 -7590,506804 13 Bananas coffee, Maize Beans Kiringa/ Imenti South/ Abogeta  YES & Fertilizer 

M48 4193537,132 -33952,41951 22 Bananas Maize Beans, Coffee Kanyakine/ Abogeta East YES 

M49 4200095,52 -35433,54725 7 Bananas Maize Beans, Coffee Kithakanaro/Abogeta East YES 

M50p 4197140,915 -29156,16044 7 Bananas Maize Beans,  Mutiokiama/ Abogeta East YES 

M51p 4197698,996 -27182,26108 6 Bananas, Maize, Beans Mwanganthia/ Abothuguchi west NO 

M52 4190971,403 -26913,60762 13 Maize and Beans Karingani/Chuka/Tungu River NO 

M53p 4201094,612 -27490,43337 1 Beans, Maize Agroforestry Igandani/Karingani/Chuka NO 

M54 4200869,19 -26278,33887 1 Beans, Coffee, Maize, Agroforestry Kangani/ Chogoria YES/ Fertilizer 

M55 4200592,376 -24681,2625 4 Dairy Farming, Maize Benas Chogoria/ Igwanjau/Kiromi  YES/FYM 

M56 4196309,544 -24038,01668 6 Beans, Maize, Coffee Kathiru/Chogoria NO 

M57 4182968,459 -16754,34476 12 Maize, Beans, Coffee Ndigia/Mwimbi/Tharaka nithi YES 

M58 4183006,865 -16771,41381 15 Maize, Beans Coffee Magutuni/Mwimbi NO 

M59 4182862,891 -16810,74683 10 Beans, Maize Magutuni/ Mwimbi YES 

M61 4183774,784 -17375,88081 5 Tea Nyayo Tea zones/kiamweru/igoji NO 

M61b 4184752,354 -16676,23532 14 Tea Nyayo Tea zones/kiamweru/igoji NO 

M61c 4184702,075 -16592,55988 12 Tea Nyayo Tea zones/kiamweru/igoji NO 

M62 4189695,867 -21917,92321 2 Tea Kiamweri/Igoji NO 

M62p 4188555,585 -23416,84963 8 Tea Kamweri/Igoji NO 

M63 4190412,394 -24659,3695 9 Tea Kiamweri/Igoji NO 

M63p 4192366,607 -20683,38317 10 Tea Kiamweri/Igoji West NO 

M64 4190596,627 -19012,09845 13 Coffee and Maize Karia/ Igoji west NO 

M65p 4168759,64 -18312,82353 5 Coffee, Maize, Beans Karia/Igoji West NO 

M66 4169066,139 -18684,26112 11 Maize, Beans Thigaa/ Chogoria NO 

M67 4170118,479 -19653,4872 13 Maize Beans Coffee Koiri/Igoji East YES 

M68p 4170388,244 -20240,70039 15   Rwathene/ Igoji West YES 
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Appendix 2. Generated soil properties and classification database. 
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WRB RGS WRB Soil Name 

  cm cm % % % %   cmol/kg %   moist   %     list     

M1 0 20 3.3 50.4 39.4 12.3 C 22.9 54.7 5.1 5YR 3/3 GR >5%   A Mollic ANDOSOL Eurtic Mollic Vitric ANDOSOL (Clayic) 

M1 20 50 2.2 47.0 41.7 12.4 SiC 21.5 55.0 4.9 5YR 3/3 SB   Clay B Vitric   

M1 50 100 1.5 50.0 40.1 10.9 SiC 20.2 53.0 4.8 2.5YR2.5/3 SB   Fe Bt     

M2 0 20 2.4 44.7 46.3 10.9 SiC 18.6 48.1 5.1 7.5 YR 3/3 GR  >5%   Ap Umbric ANDOSOL Dystric Umbric Vitric ANDOSOL (Aric, Clayic) 

M2 20 50 1.5 48.3 40.3 13.5 SiC 18.4 48.9 5.1 5YR 3/3 GR     B Mollic   

M2 50 100 1.3 47.6 41.5 10.9 SiC 18.1 47.0 5.2 5YR 4/3 GR     CD     

M3 0 20 2.2 49.2 39.9 11.1 C 21.9 50.6 4.7 2.5 YR 3/3 SB     Ap Umbric UMBRISOL Cambic UMBRISOL (Aric, Clayic) 

M3 20 50 1.8 46.2 40.3 13.3 SiC 21.0 52.0 4.7 2.5 YR 2.5/3 SB     AB Cambic   

M3 50 100 1.7 46.1 40.5 13.8 SiC 21.5 49.2 4.8 2.5 YR 2.5/3 SB     2B2     

M4 0 20 2.0 47.0 41.8 11.2 SiC 20.2 44.0 4.7 5YR 3/4 SB     AP Cambic CAMBISOL Dystric CAMBISOL (Aric, Clayic, Humic) 

M4 20 50 1.9 44.5 44.5 11.7 SiC 19.3 40.7 4.6 2.5 YR 3/6 SB     AB     

M4 50 100 1.2 42.4 45.5 11.7 SiC 19.6 42.2 4.7 2.5 YR 3/4 SB     B     

M5 0 20 2.3 47.8 40.8 12.5 SiC 19.2 48.3 5.1 2.5 YR 3/3 SB     AP Umbric UMBRISOL Cambic UMBRISOL (Aric, Clayic) 

M5 20 50 1.6 42.1 46.0 13.4 SiC 18.2 48.2 5.1 2.5YR 3/3 SB     AB Cambic   

M5 50 100 1.1 47.7 41.4 11.4 SiC 17.5 47.5 5.1 2.5 YR 3/4 SB   Clay B     

M6 0 20 1.9 50.5 39.8 11.0 C 20.1 44.0 4.5 2.5 YR 3/4 SB     Ap Cambic CAMBISOL Dystric CAMBISOL (Aric, Clayic, Humic) 

M6 20 50 1.2 46.7 41.9 11.8 SiC 19.4 43.7 4.6 2.5 YR 3/6 SB     B     

M6 0 100 0.9 49.1 39.7 10.9 C 19.8 43.4 4.7 2.5 YR 3/6 SB     B1     

M7 0 20 1.8 46.4 41.5 12.0 SiC 20.8 44.6 4.6 2.5 YR 3/6 GR     A Cambic CAMBISOL Dystric CAMBISOL (Aric, Clayic, Humic) 

M7 20 50 0.7 48.4 41.3 11.3 SiC 20.1 46.6 4.8 2.5 YR 3/6 SB     B1     

M7 50 100 0.6 45.0 43.4 12.2 SiC 20.8 47.8 4.8 2.5YR3/6 SB     B2     

M8 0 20 2.4 46.9 41.2 11.4 SiC 17.7 39.6 4.5 5 YR 3/3 GR     AP Umbric UMBRISOL Cambic UMBRISOL (Aric, Clayic, Colluvic, 

Hyperhumic, Rhodic) M8 20 50 2.5 46.5 42.2 12.0 SiC 16.4 36.3 4.4 2.5 YR 2.5/3 GR     A2 Cambic   

M8 50 100 1.5 45.6 42.6 11.9 SiC 17.7 44.1 4.7 5YR 3/4 GR     2A 
Lithic 
discontinuity   

M9 0 20 4.0 43.4 43.9 12.3 SiC 19.1 41.3 4.7 2.5 YR 3/3 GR     Ap Cambic UMBRISOL Cambic UMBRISOL (Aric, Escaric, Hyperhumic, 

Siltic) M9 20 50 2.5 48.3 41.1 11.5 SiC 18.0 41.1 4.7 7.5 YR 3/3 GR     AB     

M9 50 100 2.0 47.5 41.0 11.6 SiC 17.2 42.2 4.7 2.5 YR 2.5/3 GR     BC     

M10 0 20 1.6 45.9 44.9 10.7 SiC 17.1 45.9 4.9 2.5YR 2.5/3 GR   clay  AP Umbric UMBRISOL Alic UMBRISOL (Aric, Clayic) 

M10 20 50 1.6 44.2 45.8 11.2 SiC 18.0 47.8 4.9 2.5 YR 3/3 GR   clay  A2 Argic   

M10 50 100 1.8 50.8 39.0 11.2 C 18.5 49.6 4.8 2.5 YR 3/3 GR     BC     
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WRB RGS WRB Soil Name 

  cm cm % % % %   cmol/kg %   moist   %     list     

M10b 0 40 1.9 43.1 41.9 11.7 SiC 17.9 48.0 4.8 2.5YR 3/3 SB   Clay  Ap   ALISOLS Rhodic ALISOL (Aric, Clayic, Humic) 

M10b 40 90 1.1 44.2 43.8 11.5 SiC 18.9 49.5 4.8 5 YR 3/3 AB     Bt1 Argic   

M10b 90 120 1.0 47.4 40.6 11.8 SiC 18.1 49.1 4.8 2.5 YR 2.5/3 AB     Bt2     

M10b 120 160 1.1 43.9 45.3 12.3 SiC 19.1 48.5 4.7 2.5 YR 2.5/3 AB     Bt3     

M11p 0 10 10.8 43.8 45.7 12.5 SiC 30.9 47.2 4.6 organic   <5   O Andic ANDOSOL Umbric ANDOSOL (Aric, Clayic) 

M11p 10 40 8.7 46.4 42.0 11.7 SiC 29.1 47.6 4.6 5YR 3/2 SB     Ap Umbric   

M11p 40 80 7.1 45.8 41.6 12.1 SiC 19.5 36.7 4.7 7.5 YR 3/2 SB     B     

M11p 80 140 6.0 43.9 44.7 12.0 SiC 18.0 38.0 4.8 2.5 YR 3/2 SB     BC     

M11p 140 160 5.6 48.3 42.0 13.0 SiC 17.7 38.5 4.9 2.5 YR 3/2 SB     C     

M12 0 20 2.9 46.5 42.2 12.9 SiC 14.3 31.0 4.0 5 YR 3/3 GR   Clay Ap Umbric UMBRISOL Acric UMBRISOL (Aric, Chromic, Clayic, 
Hyperhumic ) M12 20 50 2.5 45.6 42.6 13.0 SiC 13.8 31.0 4.3 2.5YR2.5/3 SB     B Argic   

M12 50 100 1.4 43.9 43.2 12.5 SiC 17.4 35.5 4.6 2.5 YR 2.5/3  SB     B2     

M13 0 20 1.9 42.7 44.6 13.4 SiC 20.2 46.0 4.6 5 YR 2.5/3 GR     Ap umbric UMBRISOL Alic UMBRISOL (Aric, Clayic, Rhodic) 

M13 20 50 1.5 44.1 44.1 12.3 SiC 19.6 51.8 4.7 2.5 YR 3/3 GR     AB     

M13 50 100 1.1 44.2 43.8 12.1 SiC 19.8 51.3 4.7 2.5 YR 2.5/3 SB   Clay  Bt Argic   

M14 0 20 2.0 46.5 41.6 13.1 SiC 16.8 48.7 4.8 2.5 YR 2.5/4 GR     AP Cambic CAMBISOL Dystric Rhodic CAMBISOL (Aric, Humic) 

M14 20 50 1.2 45.8 41.7 13.6 SiC 16.9 48.7 4.9 2.5 YR 2.5/4 SB   Clay PF  AB     

M14 50 100 1.0 45.5 43.8 11.1 SiC 17.2 48.7 4.9 2.5 YR 2.5/6 SB   Clay PF Bw     

M15 0 20 2.5 42.2 45.8 11.3 SiC 16.7 46.9 4.8 2.5 YR 2.5/2 GR     Ap Umbric UMBRISOL Cambic Alic UMBRISOL (Aric, Clayic) 

M15 20 50 2.2 45.5 44.3 11.1 SiC 16.0 43.7 4.8 2.5 YR 2.5/2 GR     A Argic   

M15 50 100 2.7 44.8 45.0 11.3 SiC 20.7 47.1 4.8 2.5YR 2.5/3 SB     ABt     

M16 0 20 1.1 43.4 46.6 11.4 SiC 16.9 47.5 4.9 2.5YR 2.5/2 GR     Ap Umbric UMBRISOL Acric UMBRISOL (Aric, Clayic, Rhodic) 

M16 20 50 2.3 46.9 43.0 11.6 SiC 20.9 46.5 4.7 2.5 YR 2.5/2 SB     B Argic   

M16 50 100 1.5 49.2 41.4 11.1 SiC 16.6 41.3 4.7 2.5YR 2.5/2 SB   Clay Bt     

M17 0 20 1.0 47.3 41.4 12.8 SiC 18.3 54.4 5.0 2.5YR 2.5/3 GR     Ap Mollic PHAEOZEM Haplic PHAEOZEM (Aric, Clayic, Rhodic) 

M17 20 50 0.8 48.0 41.4 12.7 SiC 18.2 54.3 5.0 2.5 YR 2.5/3 SB   Clay Skins B1     

M17 50 100 0.8 44.7 44.7 10.7 SiC 18.7 54.8 5.0 2.5 YR 2.5/3 SB     B2     

M17b 0 20 2.3 42.8 45.7 11.5 SiC 18.6 55.4 5.0 2.5 YR 2.5/3 SB   PF Aph Mollic PHAEOZEM Vertic Gleyic PHAEOZEM (Aric, Clayic, Pachic) 

M17b 20 50 2.3 46.4 44.4 10.6 SiC 17.8 53.7 4.9 5YR 2.5/2 SB     B     

M17b 50 100 2.3 47.0 44.7 10.8 SiC 18.1 52.8 4.9 5YR 2.5/2 SB     Bl     
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WRB RGS WRB Soil Name 

  cm cm % % % %   cmol/kg %   moist   %     list     

M18 0 20 1.0 46.5 44.5 10.7 SiC 18.3 51.7 5.0 5YR 2.5/2 GR   Clay Ap Mollic PHAEOZEM  Leptic PHAEOZEM (Aric, Clayic) 

M18 20 50 0.8 46.7 45.0 11.0 SiC 18.7 55.7 5.2 5 YR 2.5/2 AB   

Pressure 

surfaces B     

M18 50 65 0.6 49.8 40.6 10.0 SiC 18.5 55.7 5.2 5 YR 3/2 AB     C     

M19 0 20 2.1 49.3 41.7 10.0 SiC 21.0 48.5 4.8 5 YR 3/2 WSB   Clay Ap Umbric UMBRISOL Cambic UMBRISOL (Aric, Chromic, Clayic) 

M19 20 50 1.0 47.9 42.1 10.5 SiC 19.7 44.6 4.8 7.5 YR 3/3 SB     AB Cambic   

M19 50 100 0.6 46.3 43.6 11.1 SiC 20.3 48.2 4.8 5 YR 3/4 SB     B     

M19p 0 40 1.6 49.0 39.9 10.8 SiC 18.9 43.1 4.8 2.5 YR 3/2 WSB   Clay Ap Umbric UMBRISOL Cambic  UMBRISOL (Aric, Chromic, Clayic) 

M19p 40 60 1.5 48.3 40.0 11.1 SiC 20.6 45.7 4.7 5 YR 3/3 SB     AB Cambic   

M19p 60 100 0.8 49.6 39.9 11.6 SiC 20.6 47.5 4.8 5YR 3/4 SB     B     

M20 0 20 1.6 48.0 39.4 11.9 C 20.1 47.1 4.6 5YR 3/4 SB   Clay Skins AP Cambic CAMBISOL Dystric CAMBISOL (Aric, Clayic, Humic) 

M20 20 50 1.1 47.0 42.6 11.0 SiC 19.9 45.4 4.7 5YR 3/4 SB     B1     

M20 50 100 1.7 46.7 43.4 11.3 SiC 19.9 42.6 4.7 2.5 YR 3/4 SB     B2     

M21 0 20 2.3 46.1 40.2 10.0 SiC 19.6 46.0 4.6 2.5 YR 3/3 SB     AP Umbric UMBRISOL Acric UMBRISOL (Aric, Chromic, Clayic) 

M21 20 50 0.8 50.7 40.7 10.2 SiC 19.8 49.7 4.7 5 YR 4/3 AB     ABt Argic   

M21 50 100 0.7 42.8 46.5 11.8 SiC 19.3 49.5 4.8 5 YR 4/4 AB   Clay  B     

M22 0 20 0.9 42.5 46.9 11.9 SiC 18.7 41.7 4.6 2.5 YR 3/3 SB   Clay Ap   ALISOLS Rhodic ALISOL (Aric, Clayic, Humic) 

M22 20 50 0.7 43.9 46.0 11.1 SiC 18.5 43.6 4.6 2.5YR 3/6 AB     Bt1 Argic   

M22 50 100 0.8 43.3 46.9 11.2 SiC 18.5 43.0 4.7 2.5 YR 3/6 AB     Bt2     

M23 0 20 1.2 43.8 45.8 11.7 SiC 16.4 46.7 5.1 2.5 YR 3/3 GR     Ap Umbric UMBRISOL Skeletic Leptic UMBRISOL (Aric,Calyic) 

M23 20 50 0.8 42.7 46.2 12.0 SiC 17.6 47.5 5.1 5YR 3/3 GR     A/D     

M23 50 100 0.6 43.1 46.6 11.5 SiC 17.3 48.9 5.2 5YR 3/3 GR     D/A     

M23p 0 20 1.0 44.4 45.2 11.3 SiC 16.8 50.9 5.1 5 YR 3/3 GR     Ap Umbric UMBRISOL Haplic UMBRISOL (Aric, Loamic) 

M23p 20 30 1.0 49.8 40.3 11.6 SiC 18.0 52.1 5.1 2.5 YR 3/3 GR     B     

M23p 30 50 0.8 49.2 39.1 12.9 C 17.1 47.5 5.1 2.5 YR 3/4       D     

M24 0 20 0.9 48.4 41.9 10.4 5.0 5.0 46.1 5.1 2.YR 3/3 GR     Ap/D Umbric LEPTOSOL Dystric Umbric LEPTOSOL (Aric, Clayic, Humic) 

M25 0 20 0.9 46.6 43.3 10.9 SiC 17.3 49.2 5.2 2.5 YR 3/3 GR     Ap Umbric UMBRISOL Leptic skeletic UMBRISOL (Aric, Loamic) 

M25 20 50 0.9 44.2 46.1 11.0 SiC 17.8 46.7 5.2 2.5 YR 3/3 GR     A/D     

M25 50 100 0.8 45.1 44.3 11.0 SiC 18.4 48.5 5.3 2.5 YR 3/3 GR     D/A     

M26 0 20 3.1 44.5 45.8 11.1 SiC 20.0 48.8 4.9 2.5 YR 3/3 GR     Ap Umbric UMBRISOL Gleyic UMBRISOL (Aric, Clayic, Rhodic) 

M26 20 50 2.3 43.4 46.5 12.0 SiC 18.3 48.9 5.0 5YR 4/2 GR     A2     
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  cm cm % % % %   cmol/kg %   moist   %     list     

M27p 0 15 1.0 47.8 39.3 12.9 C 19.2 46.9 4.8 2.5 YR 2.5/2 GR     AP Umbric UMBRISOL UMBRISOL (Aric,Clayic, Rhodic) 

M27p 15 60 0.7 44.9 42.8 12.3 SiC 16.7 47.0 4.9 2.5 YR 2.5/2 SB   FE, Mg Bt Argic   

M27p 60 90 0.7 45.7 44.4 11.4 SiC 18.9 46.7 4.8 2.5 YR 3/3 SB     Bc     

M27p 90 150 0.7 44.7 45.3 11.1 SiC 17.1 46.0 4.8 2.5 YR 3/3 AB     Bc1     

M28 0 20 0.9 47.2 43.1 11.1 SiC 20.1 48.4 4.7 2.5 YR 3/4 GR   Clay Ap   CAMBISOL Dystric  Rhodic CAMBISOL (Aric, Clayic, 

Humic) M28 20 50 0.7 48.2 40.2 13.5 SiC 19.6 47.9 4.7 2.5 YR 3/4 WSB     AB     

M28 50 100 0.7 49.5 40.7 10.3 SiC 19.4 47.3 4.8 2.5 YR 3/4 SWB     B1     

M29 0 20 1.5 47.5 42.2 10.8 SiC 21.0 47.7 4.8 2.5 YR 3/2 GR     Ap/C Umbric UMBRISOL Skeletic Leptic UMBRISOL (Aric, Clayic) 

M29 20 50 0.9 47.3 42.4 11.1 SiC 21.3 48.8 4.8 2.5 YR 3/3 SB     C/A     

M29 50 100 0.6 44.5 44.3 11.9 SiC 19.1 48.3 5.3 5YR4/3       D     

M30 0 20 1.5 47.7 42.3 10.9 SiC 18.1 51.0 4.9 5YR 4/3 WSB     A Cambic CAMBISOL Dystric Leptic CAMBISOL (Aric, Clayic, 

Humic) M30 20 50 0.8 46.4 43.6 11.0 SiC 19.9 47.0 4.9 5 YR 3/3 SB     AB     

M31p 0 20 1.4 48.4 41.3 11.0 SiC 17.6 53.3 5.0 2.5 YR 3/2 GR     Ap Mollic PHAEOZEM Luvic PHAEOZEM (Aric, Clayic, Rhodic) 

M31p 20 50 0.7 47.1 43.3 10.9 SiC 17.5 51.1 5.0 2.5 YR 3/2 AB   clay B1 Argic   

M31p 50 80 0.7 49.2 39.9 10.4 SiC 17.6 51.5 5.0 2.5 YR 3/2 AB     B2     

M31p 80 120 0.7 46.9 42.6 11.1 SiC 18.4 51.1 4.9 2.5 YR 2.5/3 AB     B3     

M32 0 20 0.9 50.7 39.1 10.2 C 15.9 42.9 4.9 2.5 YR 2.5/3 GR     Ap Umbric UMBRISOL Alic UMBRISOL (Aric, Clayic, Rhodic) 

M32 20 50 0.8 56.2 35.4 9.6 C 17.9 48.8 4.8 2.5 yr 3/3 SB     Bt Argic   

M32 50 100 0.7 47.3 42.9 11.5 SiC 19.3 52.1 4.9 2.5 yr 3/3 SB   Clay B     

M33 0 20 1.4 45.1 44.1 12.0 SiC 16.6 47.4 5.0 2.5 yr 3/2 GR     Ap Umbric UMBRISOL Cambic UMBRISOL ( Aric, loamic, Rhodic) 

M33 20 50 0.8 50.1 39.8 10.6 C 16.6 49.0 4.9 2.5 YR 3/4 SB     BW Cambic   

M33 50 100 0.7 46.8 43.0 11.2 SiC 17.4 51.3 5.0 5 YR 3/4 SB     BC     

M34 0 20 1.0 46.2 44.4 11.5 SiC 19.2 53.8 5.1 2.5YR 3/2 GR     Ap Mollic  UMBRISOL Cambic UMBRISOL (Aric, Clayic, Colluvic, 

Raptic) M34 20 50 1.3 45.6 43.2 12.4 SiC 21.4 51.1 4.9 2.5 YR 3/4 SB     2B Cambic   

M34 50 100 2.1 43.3 45.9 12.6 SiC 21.5 48.3 4.9 2.5 YR 3/3 SB     3A     

M35p 0 20 2.3 41.9 47.0 12.0 SiC 20.4 46.6 4.8 2.5 YR 3/4 GR     Ap Plinthic PLINTHOSOL Umbric PLINTHISOL (Aric, Clayic, Dystric, 

Humic) M35p 20 30 2.0 42.3 46.8 12.5 SiC 19.9 42.4 4.9 2.5 YR 3/4 GR     B     

M35p 30 90 1.0 44.1 44.8 12.4 SiC 19.8 40.0 5.0 2.5 YR 3/4 SB     B/C     

M35p 90 110 0.8 41.8 46.7 12.8 SiC 19.1 44.4 4.7 2.5 YR 3/4 SB     C/B     

M35p 110 150 0.8 47.8 41.9 10.8 SiC 19.7 42.9 4.8 2.5 YR 3/6 SB     C     

M36 0 20 1.7 44.3 45.1 11.5 SiC 19.0 56.1 5.2 2.5 YR 3/3 WSB     Ap Mollic PHAEOZEM Haplic PHAEOZEM (Aric, Clayic, Colluvic, 

Novic, Rhodic) M36 20 50 2.2 48.3 42.6 10.6 SiC 19.0 55.2 5.1 2.5YR 3/2 SB     2A     

M36 50 100 2.2 46.6 42.8 11.5 SiC 18.7 54.8 5.1 5YR 3/2 SB     2AB     
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WRB RGS WRB Soil Name 

  cm cm % % % %   cmol/kg %   moist   %     list     

M37 0 20 1.2 50.1 40.3 10.1 SiC 19.3 57.0 5.2 5YR 3/2 GR     Ap Mollic UMBRISOL Cambic UMBRISOL (Aric, Chromic, Clayic) 

M37 20 50 1.8 44.6 43.7 11.6 SiC 20.6 46.7 4.8 5YR 3/2 SB     AB Cambic   

M37 50 100 0.9 51.0 39.7 10.1 C 19.1 42.1 4.7 2.5 YR 2.5/4 SB     B     

M38 0 20 1.0 45.7 44.3 11.1 SiC 19.5 42.2 4.7 2.5 YR3/4 GR     Ap Cambic CAMBISOL Leptic, Chromic, EpiDystric, EndoEutric 
CAMBISOL (Aric, Clayic, Colluvic, Escalic, 

Ochric) 
M38 20 50 0.9 46.3 42.8 11.2 SiC 21.7 54.4 5.0 2.5 YR 3/4       B/C1     

M38 50 100 0.7 43.9 44.6 12.0 SiC 21.1 55.7 5.0 2.5 YR 3/4       B/C2     

M39 0 20 0.9 48.3 41.5 10.9 SiC 18.8 54.9 5.4 2.5YR 3/4 GR     A Cambic CAMBISOL Eutric Rhodic Leptic CAMBISOL (Aric, Clayic, 

Colluvic, Escalic, Ochric) M39 20 50 0.7 43.5 46.0 12.2 SiC 18.7 56.1 5.2 2.5 YR 3/4 SB     B     

M40 0 20 0.6 44.9 44.2 12.0 SiC 19.2 55.6 5.3 2.5 YR 3/4       C   REGOSOL Eutric Regosol (Aric, Clayic) 

M40 20 50 0.6 45.1 45.2 11.8 SiC 18.8 55.5 5.4 2.5YR 3/4 GR     Ap     

M40 50 100 0.8 37.7 52.4 12.7 SiCL 18.5 55.2 5.3 5 YR 3/4       AB     

M41p 0 25 1.8 40.9 43.9 15.9 SiC 20.9 49.1 5.0 2.5YR 3/3 GR     A/C Umbric UMBRISOL Skeletic , Leptic UMBRISOL (Aric, Chromic, 

Chromic) M41p 25 40 1.0 46.2 40.0 13.9 C 20.0 45.5 4.9 5YR 3/4       AB/C     

M41p 40 70 1.0 45.9 40.3 13.9 SiC 20.0 42.7 4.9 2.5 YR 3/3       B/C     

M41p 70 90 0.7 43.1 41.7 15.7 SiC 20.1 46.7 4.9 2.5 YR 3/3       C/B     

M42 0 20 1.4 42.3 43.5 16.1 SiC 20.0 44.7 4.9 2.5YR3/3 GR     A/C Umbric UMBRISOL Skeletic  Leptic UMBRISOL (Aric, Calyic, 
Chromic) M42 20 50 1.1 43.4 42.9 15.4 SiC 19.9 43.2 4.9 2.5 YR3/4       AB/C Cambic   

M42 50 80 0.8 44.6 42.0 14.1 SiC 19.4 42.6 4.9 2.5YR 3/6       D     

M43 0 20 1.5 49.8 41.3 9.9 SiC 17.7 39.8 4.6 5YR 3/3 GR     Ap Umbric UMBRISOL Alic UMBRISOL (Aric, Clayic) 

M43 20 50 1.1 45.5 40.2 12.9 SiC 18.0 40.8 4.6 5YR 3/3 SB     A2 Argic   

M43 50 100 1.0 50.7 36.9 11.6 C 17.4 39.0 4.7 5 YR 3/3 SB     Bt     

M44 0 20 1.1 45.1 41.2 13.7 C 18.4 44.4 4.8 5YR 3/3 SB   Clay A Argic ALISOLS Chromic ALISOL (Aric, Clayic,Vitric) 

M44 20 50 0.9 48.2 39.5 12.4 C 17.5 41.7 4.7 5YR 3/4 SB     Bt     

M44 50 100 0.9 47.5 40.8 11.8 SiC 17.5 39.7 4.7 2.5YR 2.5/4 SB     B2     

M45 0 20 1.8 43.1 41.2 14.8 SiC 18.5 42.3 4.6 2.5 YR 2.5/4 SG     Ap Argic ALISOLS Chromic ALISOL (Aric, Clayic) 

M45 20 50 1.2 45.1 43.4 11.6 SiC 16.6 36.4 4.6 2.5 YR 2.5/4 GR     ABt1     

M45 50 100 0.9 45.6 40.3 13.8 SiC 18.2 40.9 4.7 2.5 YR 2.5/4 SB   Clay Bt2     

M46 0 20 1.2 44.3 41.3 13.8 SiC 17.0 34.2 4.5 2.5 YR 2.5/4 GR     Ap Cambic CAMBISOL Dystric CAMBISOL (Aric, Clayic, Humic) 

M46 20 50 1.3 47.0 41.2 13.4 SiC 17.5 35.6 4.5 2.5 YR 3/4 SB     B1     

M46 50 100 1.1 45.9 41.0 13.9 SiC 16.4 33.7 4.5 2.5 YR 3/4 SB     B2     
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  cm cm % % % %   cmol/kg %   moist   %     list     

M47 0 20 1.3 44.2 43.3 12.8 SiC 19.0 44.8 4.8 2.5 YR 3/3 SB     A   ALISOLS Rhodic ALISOL (Aric, Clayic, Humic) 

M47 20 50 0.8 45.9 43.3 10.2 SiC 18.3 42.0 4.8 2.5 YR 3/3 SB 
 

Clay  AB Argic   

M47 50 100 0.8 36.4 51.9 12.2 SiCL 18.7 43.4 4.8 2.5 YR 3/4 AB     B Umbric   

M48 0 20 2.0 47.1 41.8 10.8 SiC 20.0 44.3 4.6 2.5 YR 3/3 GR     Ap Umbric UMBRISOL Cambic UMBRISOL (Aric, Clayic, Rhodic) 

M48 20 50 1.7 43.4 44.6 11.8 SiC 19.7 45.1 4.6 2.5 YR 3/3 SB     A2     

M48 50 100 2.7 50.2 39.8 9.7 C 21.3 46.1 4.7 2.5 YR 3/2 AB     AB Cambic   

M49 0 20 1.9 50.1 40.5 10.5 SiC 19.4 41.2 4.5 2.5 YR 3/3 AB   Clay Ap Umbric UMBRISOL Alic UMBRISOL (Aric, Clayic, Rhodic) 

M49 20 50 0.8 45.4 41.4 13.8 SiC 18.1 41.1 4.7 2.5 YR 2.5/3 AB     AB Argic   

M49 50 100 0.8 48.1 39.0 12.0 C 18.4 42.3 4.7 2.5YR 2.5/4 AB     Bt     

M50p 0 15 1.9 41.6 42.4 16.0 SiC 21.9 52.6 4.9 2.5 YR 3/2 SB   Clay Ap/D Argic UMBRISOL Skeletic  Alic Leptic UMBRISOL (Aric, Clayic 
Rhodic) M50p 15 50 0.8 42.7 46.3 13.2 SiC 13.7 40.2 5.0 2.5 YR 3/3 SB     AB/C Mollic   

M50p 50 70 1.0 47.9 39.2 13.6 C 14.9 39.9 5.0 2.5 YR 3/3 SB     C/Bt     

M51p 0 35 0.9 43.5 46.8 11.9 SiC 13.5 37.7 4.9 5YR 3/2 GR   Clay Ap Umbric UMBRISOL Alic UMBRISOL (Aric, Clayic) 

M51p 35 60 1.6 48.3 40.2 12.6 SiC 13.5 37.4 4.9 5YR3/3       ABt Argic   

M51p 60 80 0.8 47.5 42.8 11.6 SiC 15.7 44.5 4.9 5YR 3/3       Bt/C     

M51p 80 100 0.7 50.1 37.4 12.8 C 16.7 46.8 4.9 5YR/3/4       C/Bt     

M52 0 20 0.7 46.9 39.2 13.2 C 16.8 47.0 5.0 5 YR 3/3 SB   Clay Ap Argic UMBRISOL Alic UMBRISOL (Aric, Chromic, Clayic, 

Colluvic) M52 20 50 0.7 44.3 49.2 7.7 SiC 16.3 42.1 4.9 5 YR 4/4 AB   Clay AB Umbric   

M52 50 100 0.9 56.9 34.5 8.0 C 15.7 37.0 4.9 5YR 4/4 AB   Clay Bt     

M53p 0 15 0.8 54.8 39.9 9.1 C 18.3 52.2 4.9 2.5 YR 3/2 GR   Clay  Ap Mollic UMBRISOL Alic UMBRISOL (Aric ,Chromic, Clayic) 

M53p 15 40 0.7 54.8 37.1 8.9 C 20.2 49.3 4.8 2.5 YR 3/4 AB     B1 Argic   

M53p 40 100 0.7 48.9 42.1 10.2 SiC 18.0 50.1 4.9 2.5 YR 3/4 AB     B2     

M54 0 20 1.8 45.8 41.0 11.4 SiC 20.3 41.7 4.5 5 YR 3/3 SB     Ap Umbric UMBRISOL Cambic UMBRISOL (Aric, Clayic, Rhodic) 

M54 20 50 1.9 46.3 40.4 12.3 SiC 20.4 46.6 4.6 2.5 YR 3/3 AB     AB1     

M54 50 100 1.6 45.6 41.6 13.6 SiC 19.8 46.5 4.6 2.5 YR 3/3 AB     AB2     

M55 0 20 1.3 46.9 40.7 12.6 SiC 18.8 37.7 4.6 2.5 YR 3/3 GR     Ap Umbric UMBRISOL Cambic UMBRISOL (Aric, Clayic Rhodic) 

M55 20 50 1.1 47.3 43.2 9.1 SiC 18.9 41.0 4.6 2.5 YR 3/3 SB     AB1     

M55 50 100 1.2 48.1 40.0 10.7 SiC 17.3 36.0 4.5 2.5 YR 2.5/3 SB     B2     

M56 0 20 1.9 51.2 42.3 9.2 C 16.4 30.6 4.4 2.5 YR 3/3 GR     Ap Umbric UMBRISOL Haplic UMBRISOL (Aric, Clayic, Rhodic) 

M56 20 50 0.9 51.0 41.8 9.9 C 19.7 45.7 4.7 2.5 YR 3/4 SB     B1     

M56 50 100 1.2 45.9 41.4 13.6 SiC 17.2 34.8 4.5 2.5 YR 3/6 SB   

  

 B2     
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  cm cm % % % %   cmol/kg %   moist   %     list     

M57 0 20 1.2 47.1 40.5 14.0 SiC 19.9 45.6 4.6 2.5 YR 2.5/3 GR     Ap Umbric UMBRISOL Haplic UMBRISOL (Aric, Clayic, Rhodic) 

M57 20 50 1.1 46.7 42.1 10.4 SiC 20.2 51.4 4.7 2.5 YR 2.5/3 SB     AB     

M57 50 100 0.9 48.3 39.9 11.6 C 20.0 48.8 4.7 2.5 YR 2.5/3 SB     B     

M58 0 10 0.9 50.1 37.5 12.2 C 19.5 45.5 4.7 2.5 YR 2.5/3 AB   Clay, PF  A Umbric UMBRISOL Haplic UMBRISOL (Aric, Chromic, Clayic) 

M58 10 60 0.8 43.2 42.1 15.2 SiC 19.7 47.9 4.7 2.5 YR 2.5/4 AB     B1     

M58 60 100 0.9 38.1 46.8 15.3 SiCL 19.6 47.0 4.7 2.5 YR 2.5/4 AB     B2     

M59 0 20 1.5 40.3 45.2 15.1 SiC 19.8 43.8 4.5 2.5 YR 2.5/2 SB     Ap Umbric UMBRISOL Haplic UMBRISOL (Aric, Clayic, Rhodic) 

M59 20 50 1.3 45.9 41.0 13.3 SiC 19.0 40.5 4.6 2.5 YR 2.5/3  AB     AB1     

M59 50 100 0.9 45.7 40.7 13.9 SiC 19.1 42.0 4.6 2.5 YR 2.5/3 AB     AB2     

M60 0 20 1.0 46.9 41.4 13.4 SiC 19.3 43.9 4.7 2.5YR 2.5/2 SB     Ap Umbric UMBRISOL Haplic UMBRISOL (Aric, Clayic, Rhodic) 

M60 20 50 1.4 46.4 41.5 13.5 SiC 19.3 41.4 4.5 2.5YR 2.5/2 SB     AB     

M60 50 100 0.8 46.3 41.4 13.4 SiC 19.4 44.5 4.7 2.5YR 2.5/2 SB     B1     

M61 0 20 3.2 46.6 41.0 13.1 SiC 19.1 33.5 4.2 5YR 2.5/2 GR >5 

 

Aph Mollic ANDOSOL Dystric Umbric Vitric ANDOSOL (Aric, Clayic, 

Hyperhumic) M61 20 50 2.6 47.7 39.2 12.5 SiC 19.2 36.7 4.2 5YR 2.5/2 GR     B1 Umbric   

M61 50 100 2.2 43.1 43.1 13.7 SiC 19.6 37.5 4.2 5YR 2.5/2 WSB     B2     

M61b 0 20 6.3 50.1 39.7 10.8 C 19.0 31.2 4.0 5YR 3/2 GR  >5 

 

Aph Umbric ANDOSOL Dystric Umbric Vitric ANDOSOL (Aric, Clayic, 
Hyperhumic) M61b 20 50 3.1 42.9 44.0 13.6 SiC 18.9 33.5 4.1 5YR 3/2 GR     B1     

M61b 50 100 2.3 49.7 39.5 13.0 C 19.6 37.9 3.9 5YR 2.5/2 WSB     B2     

M61c 0 20 6.8 48.4 39.8 13.9 C 21.6 34.8 4.4 5YR 2.5/2 GR >5  Ap   ANDOSOL Dystric Umbric Vitric ANDOSOL (Aric, Clayic, 

Hyperhumic) M61c 20 50 3.4 47.9 40.9 13.3 SiC 19.9 34.3 4.2 5YR 3/3 GR    AB1 Umbric   

M61c 50 100 2.3 46.7 41.7 13.1 SiC 20.0 38.5 4.0 5YR 2.5/2 WSB    B2     

M62 0 20 4.6 43.2 42.6 14.2 SiC 20.7 35.1 4.2 5 YR 2.5/2 GR  >5  A Umbric ANDOSOL Dystric Umbric Vitric ANDOSOL (Aric, Clayic, 
Hyperhumic) M62 20 50 4.2 43.8 42.5 13.7 SiC 20.9 37.5 4.1 5YR 3/2 SB    AB1     

M62 50 100 2.4 47.6 41.1 12.1 SiC 20.5 40.9 4.1 5YR 3/2      B2     

M62p 0 20 2.1 48.8 39.9 11.9 C 20.4 42.8 4.4 2.5YR 2.5/3 GR  >5  A Umbric ANDOSOL Dystric Umbric Vitric ANDOSOL (Aric, Clayic) 

M62p 20 50 0.8 47.0 39.9 12.9 C 19.5 44.2 4.4 2.5 YR 2.5/3 GR    AB1     

M62p 50 100 0.7 45.0 44.0 10.7 SiC 19.7 44.0 4.7 2.5 YR 3/3 WSB     B2     

M63 0 20 3.0 48.3 39.9 11.5 C 19.5 33.3 4.1 2.5 YR 3/2 GR  5   O Umbric ANDOSOL Dystric Umbric Follic ANDOSOL (Aric, Clayic, 
Hyperhumic) M63 20 50 2.4 45.1 39.0 16.2 C 19.4 35.2 4.2 2.5 YR 3/3 GR     A     

M63 50 100 1.6 45.1 41.7 14.7 SiC 18.9 38.8 4.5 5 YR 3/2 WSB     B     

M63p 0 30 5.2 42.9 42.3 15.8 SiC 20.3 35.3 4.2 5YR 3/3 SB  5   Ap Umbric ANDOSOL Dystric  Umbric ANDOSOL (Aric, Clayic, 

Hyperhumic) M63p 30 60 2.5 51.8 38.0 11.5 C 20.6 40.0 4.2 2.5 YR 3/3 SB     AB     

M63p 60 100 1.6 43.4 42.3 14.7 SiC 19.6 42.7 4.5 2.5 YR 3/3 SB     B1     
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  cm cm % % % %   cmol/kg %   moist   %     list     

M64 0 20 2.3 42.8 44.4 15.2 SiC 17.9 32.6 4.3 2.5 YR 3/6 SB     Ap Cambic CAMBISOL Dystric CAMBISOL (Aric, Clayic, Humic) 

M64 20 50 1.3 49.3 37.2 12.8 C 18.3 39.9 4.6 2.5 YR 3/6 SB     AB     

M64 50 100 0.9 43.6 44.4 14.4 SiC 18.4 39.7 4.6 2.5 YR 2.5/4 SB     B1     

M65p 0 20 1.2 43.1 44.7 14.6 SiC 18.8 41.8 4.7 2.5 YR 3/4 GR     O   ALISOLS Rhodic ALISOL (Aric, Clayic) 

M65p 20 80 0.7 42.5 43.5 15.8 SiC 18.6 44.7 4.7 2.5 YR 3/4 WSB   Clay A Argic   

M65p 80 120 0.6 43.9 43.6 14.2 SiC 17.9 45.7 4.8 2.5 YR 3/4 WSB     B     

M66 0 20 1.8 41.0 44.6 15.5 SiC 17.6 33.4 4.4 2.5 YR 3/4 GR     Ap Cambic CAMBISOL Dystric Rhodic CAMBISOL (Aric, Clayic, 

Humic) M66 20 50 1.1 43.8 44.2 14.3 SiC 17.7 36.8 4.6 2.5 YR 3/4 WSB     B1     

M66 50 100 1.0 44.9 41.6 14.4 SiC 17.8 37.5 4.6 5 YR 3/3 SB     B2     

M67 0 20 2.1 50.4 36.7 12.9 C 21.6 49.2 4.6 5YR 3/3 SB     Ap Argic ALISOLS Chromic ALISOL (Aric, Clayic, Humic) 

M67 20 50 1.0 51.6 40.5 10.3 SiC 19.2 46.8 4.7 5 YR 3/3 AB   Clay Bt1     

M67 50 100 0.9 58.7 32.6 8.2 C 19.2 46.3 4.7 2.5 YR 3/4 AB     Bt2     

M68p 0 30 2.4 38.7 48.2 12.4 SiCL 17.0 32.2 4.2 2.5 YR 3/4 GR     AP Argic ALISOLS Chromic ALISOL (Aric, Clayic, Humic) 

M68p 30 70 1.3 46.5 38.5 12.7 C 17.3 35.9 4.5 2.5 YR 3/4 SB   Clay Bt     

M68p 70 120 3.1 45.0 39.7 13.4 C 20.2 36.6 4.5 2.5 YR 3/6 SB     BC     
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Appendix 3. Additional Soil data (Fe, XRD) 

ID/plot 

Code 

Depth 

from 

Depth 

to FeO dith FeO Ox 

FeO dith/FeO 

ox XRD 

  cm cm (%) (%) Ratio   

M1 20 50 18,4 84,4 0,22 Kaolinite/halloysite>>goethite>illite>quartz, k-feldspar>smectite, hematite 

M5 20 50       Kaolinite/halloysite>>goethite>hematite, quartz>k-feldspar, gibbsite 

M10 20 50       Kaolinite/halloysite>>goethite>k-feldspar, quartz>illite, gibbsite, hematite>smectite 

M14 20 50 11,7 86,9 0,13 Kaolinite/halloysite>>goethite, hematite>quartz>smectite, k-feldspar, gibbsite 

M25 20 50 2,5 13,3 0,19   

M44 20 50 4,3 71,2 0,06 Kaolinite/halloysite>goethite, quartz>hematite>k-feldspar>gibbsite, plagioclase 

M48 20 50       Kaolinite/halloysite>goethite>hematite>quartz>k-feldspar 

M49 20 50 6 84,4 0,07 Kaolinite/halloysite>>goethite>hematite>quartz, smetcite, k-feldspar 

M59 20 50       Kaolinite/halloysite>goethite>quartz>hematite, k-feldspar 

M61 20 50       Kaolinite/halloysite>>goethite>illite>smectite, gibbsite, quartz, k-feldspar, hematite 
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Appendix 4. Changes in the definition of the Nitisols and the related nitic horizon.  

4.1. Soil map of the World, Revised Legend (FAO/UNESCO, 1988)  

NITISOLS (NT) 

Soils having an argic B horizon showing a clay distribution which does not show a relative decrease 

from its maximum of more than 20 percent within 150 cm of the surface; showing gradual to 

diffuse horizon boundaries between A and B horizons; having nitic properties in some 

subhorizon within 125 cm of the surface; lacking the tonguing which is diagnostic 

for Podzoluvisols; lacking ferric or vertic properties; lacking plinthite within 125 cm 

of the surface. 

 

Haplic Nitisols (NTh) Nitisols which are not strongly humic and have an argic B horizon that is 

not red to dusky red'. 

Rhodic Nitisols (NTr) Nitisols which are not strongly humic and have a red to dusky red' 

argic B horizon. 

Humic Nitisols (NTu) Nitisols having an umbric or a mollic A horizon, and which are 

strongly humic. 

 

NITIC PROPERTIES 

The term 'nitic properties' applies to soil material that has 30 percent or more clay, has a 

moderately strong or strong angular blocky structure which falls easily apart into flat 

edged ('polyhedric' or 'nutty') elements which show shiny ped faces that are either thin clay 

coatings or pressure faces. This soil structure is apparently associated with the presence of 

significant amounts of active iron oxides and is indicative of a high effective moisture 

storage and favourable phosphate sorption - desorption properties. 

Laboratory facilities permitting, the characterization of 'nitic properties' can be enhanced 

by the determination of Fe203 extractable from the fine earth by acid oxalate (AO iron) 

and the Fe e 03 extractable from the fine earth by dithionate-citrate-bicarbonate (DCB 

iron). Soil materials with nitic properties have more than 0.2 percent AO iron which 

moreover is at least 5 percent of the DCB iron.  
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4.2.World Reference Base for Soil Resources, FAO-ISRIC-ISSS, 1998) 

NITISOLS (NT) 

Diagnostic Criteria: 1. an argic horizon, which has a cation exchange capacity (by 1 M 

NH4OAc) of less than 24 cmolc kg-1 clay in some part, either starting within 100 cm from 

the soil surface, or within 200 cm from the soil surface if the argic horizon is overlain by 

loamy sand or coarser textures throughout, and 

2. a base saturation (by 1M NH4OAc) of less than 50 percent in the major part between 25 

and 100 cm. 

 

Nitic horizon 

General description. The nitic horizon (from L. nitidus, shiny) is a clay-rich subsurface 

horizon with as its main feature a moderately to strongly developed polyhedric or nutty 

structure with many shiny ped faces, which cannot or can only partially be attributed to clay 

illuviation. 

Diagnostic criteria. A nitic horizon must have: 

1. diffuse to gradual transitions to horizons immediately above and below (less than 20 

percent change in clay content, over at least 12 cm; no abrupt colour change); and 

2.  

a. more than 30 percent clay; and 

b. water-dispersible clay/total clay ratio less than 0.10 (unless there is more than 0.6 percent 

organic carbon); and 

c. silt/clay ratio is less than 0.40; and 

3. moderate to strong, nutty or polyhedric structure, with many shiny pedfaces, which cannot 

or can only partially be associated with illuviation argillans in thin sections; and 

4. Munsell colour value of 5 or less, and chrome of 4 or less, but no mottling of 

hydromorphic nature (gleyic or stagnic properties); and 

5. 

a. 4.0 percent or more citrate-dithionite extractable iron ("free" iron) in the fine earth fraction; 

and 

b. more than 0.20 percent acid oxalate (pH 3) extractable iron ("active" iron) in the fine earth 

fraction; and 

c. ratio between "active" and "free" iron of 0.05 or more; and 

6. minimum thickness of 30 cm, with gradual to diffuse transitions to horizons immediately 

above and below the nitic horizon. 
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3.3 World reference base for soil resources 2006 and 2015 (IUSS Working Group WRB. 2006, 

2015) 

NITISOLS (NT) 

Diagnostic Criteria: 

1. a nitic horizon starting ≤ 100 cm from the soil surface; and 

2. no petroplinthic, pisoplinthic, plinthic or vertic horizon starting ≤ 100 cm from the soil 

surface; and 

3. no layers with reducing conditions above or within the nitic horizon. 

 

Nitic horizon 

General description 

A nitic horizon (from Latin nitidus, shiny) is a clay-rich subsurface horizon. It has moderately 

to strongly developed blocky structure breaking to polyhedral, flat-edged or nutty elements 

with many shiny soil aggregate faces, which cannot or can only partially be attributed to clay 

illuviation. 

Diagnostic criteria 

A nitic horizon consists of mineral material and: 

1. has both of the following: 

a. ≥ 30% clay; and 

b. a silt to clay ratio < 0.4; and 

2. has < 20% difference (relative) in clay content over 15 cm to layers directly 

above and below; and 

3. has moderate to strong blocky structure breaking into polyhedral or flat-edged or nut-

shaped elements with, in moist state, shiny soil aggregate faces. The shiny faces are not, or 

are only partially, associated with clay coatings; and 

4. has all of the following: 

a. ≥ 4% Fedith (free iron) in the fine earth fraction; and 

b. ≥ 0.2% Feox (active iron) in the fine earth fraction; and 

c. a ratio between active and free iron of ≥ 0.05; and 

5. does not form part of a plinthic horizon; and 

6. has a thickness of ≥ 30 cm. 

10.14751/SZIE.2017.065


