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Abstract

There are several types of dynamical systems that can be described as networks. It is
also known, that graph-based system description is a powerful tool to represent networked
system structures on different levels of abstraction.

As the focus of the research of networked systems shifted towards the large-scale networks
constructed from real-life data, the importance of highly effective computational methods
applicable for the analysis and control of these systems increased. Due to the rapid devel-
opment of computer technology and the underlying computational and analytical methods,
optimization methods became an important tool in system theory, applied also for the optimal
control of complex, networked systems.

The work summarized in this thesis focuses on the application of centralized, but par-
allelizable optimization-based methods in the analysis and control of networked systems
having nonlinear dynamics. Two classes of networked systems are investigated because they
come from basically different approaches of networked system description, while they can be
handled with similar mathematical tools.

Firstly, new methods for the structural and dynamical analysis of kinetic reaction networks
are proposed. With the help of the introduced algorithms, the search for different alternative
realizations of dynamically equivalent or linearly conjugate reaction networks can be completed
while considering dynamical and/or structural constraints. Moreover, most of the algorithms
have polynomial time complexity enabling us to handle large scale, biologically relevant
networks, too. Extensive simulations are completed to evaluate the performance and the
correctness of the proposed methods.

Secondly, optimal rescheduling method for the control of railway networks in case of
delayed operation is proposed. The presented controller is capable to generate new timetables
for the network in order to minimize the sum of the train delays along the prediction horizon.
Moreover, with the help of the proposed framework the sensitivity of the railway network can
be measured in case of single delays. Additionally, a new model formulation is introduced
having an advantageous constraint structure, which gives the opportunity of the deeper
analysis of the dependencies between events and control actions in the network. The proposed
methods are tested on the model of the Dutch railway network.
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Összefoglalás

A hálózatos formában történő reprezentáció gyakran hasznos eszköz bizonyos dinamikus
rendszerek működésének megértésében és leírásában. Ismert tény, hogy a gráf alapú leírás
hatékony eszköz a hálózatos struktúrájú rendszerek különböző absztrakciós szinten történő
leírására.

Ahogy a hálózatos struktúrájú rendszerek kutatásának fókusza az adat-alapú, nagy méretű
hálózatok vizsgálata felé tolódik, úgy nyernek egyre nagyobb teret az ilyen típusú rendszerek
analízisére és irányítására alkalmazható, hatékony számítási módszerek. A számítógépes tech-
nológiák és a segítségükkel alkalmazott számítási és analitikai megoldások gyors fejlődésének
köszönhetően az optimalizációs módszerek igen fontos eszközzé váltak a rendszerelméletben,
melyeket gyakran alkalmaznak a komplex, hálózatos rendszerek optimális irányítására is.

A jelen dolgozatban összefoglalt munka fókuszában a nagyméretű, nemlineáris dinamikával
rendelkező hálózatos struktúrájú rendszerek centralizált, de párhuzamosítható optimalizálási
módszereken alapuló analízise és irányítása áll. Két hálózatokon alapú modellosztályt vizs-
gáltam, amelyek leírásai alapvetően más megfontolásokból származnak, ám mégis hasonló
matematikai módszerekkel kezelhetők.

Egyrészről új módszereket adtam kinetikus reakcióhálózatok strukturális és dinamikus
tulajdonságainak analízisére. A bemutatott módszerek segítségével dinamikusan ekvivalens ill.
lineárisan konjugált alternatív reakcióhálózatok határozhatók meg dinamikus és/vagy struk-
turális korlátozások figyelembe vétele mellett. A javasolt algoritmusok legtöbbje polinomiális
időbeli komplexitással rendelkezik, ami lehetővé teszi azt, hogy nagy méretű, biológiailag
releváns hálózatokat kezeljünk segítségükkel. A bemutatott módszerek helyességét és teljesít-
ményét kiterjedt szimulációkkal vizsgáltam.

Másrészről optimális újraütemezésen alapuló irányítási módszert javasoltam késéses
esetek kezelésére vasúti hálózatokban. A bemutatott szabályzó új menetrendeket állít elő
olyan módon, hogy a predikciós horizont mentén minimális legyen a vonatok késésének
összege. Emellett a módszer lehetőséget ad a vasúti hálózat érzékenységének vizsgálatára
vonatok egyedi késése esetén. Új, előnyös korlátozás-struktúrát mutató problémaalakot
javasoltam, melynek segítségével a hálózatban történő események és a kontrollváltozók
közötti kapcsolatok könnyen vizsgálhatók. A bemutatott módszereket a holland vasúti
hálózat modelljén szimuláltam.
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Chapter 1

Introduction

Dynamical models have central role in several fields of science and technology. With
them we can describe the operation of production processes, power generation systems,
transportation networks and individual vehicles, agent-based systems etc. Besides models
applied in traditional engineering fields, numerous biological processes and phenomena can
also be understood and explained by creating their dynamical model. Dynamical modeling
becomes necessary if the state of the investigated system, namely the quantities describing
the properties of the system, evolves in time and/or space [96].

As a complex system we mean large-scale dynamical systems with complex structure
containing nonlinearities. An important requirement in the modeling of complex systems
is simplification: the model should most importantly describe only those phenomena and
processes which have significant effect on the dynamics of the system. Using a dynamical
model, the future behavior of the system can be predicted with respect to a given initial
state, thus the analysis and simulation of the system is possible. These are crucial steps
towards the controlling of the given system which is essential to achieve desired operation.
The understanding and targeted manipulation of these kind of models are the main topics of
system and control theory.

In order to describe a large scale, complex system having many components proper
structuring of the model should be applied [15]. A modular and clean model formulation
helps to capture and understand the most important properties of the investigated system.
To accomplish this, a widely used and straightforward way is to separate the dynamics of
the individual parts/elements and the connections between them leading to a description
with networked structure. A deeply investigated and well known example of this phenomena
is the theory of linear networks [42]. A more detailed review of the networked systems can
be found in Sec. 1.1.

Nonlinearities in a system can be incorporated into the system model through several
ways. Using continuous models, the simplest case is to introduce smooth nonlinearities
optionally extended with discrete variables to describe switching-type events. In case of
applying discrete models, the theory of discrete event systems [102, 7] is able to handle many
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important phenomena.
From these theories, it is known, that we can classify dynamical models based on different

points of view [91]. By determining the model class corresponding to the investigated system,
we are able to determine the set of applicable methods and techniques for the analysis and
control of the given system.

Because of the complex nature of many practically relevant control problems, the methods
applicable for nonlinear systems with a networked structure are especially important, but
they present challenges at the same time. This thesis focuses on the optimization-based
solutions of the control problems related to complex systems having networked structure.

1.1 Networks in system modeling

There are several types of dynamical systems that can be described as networks. Supply
chains, transportation and public transport networks, in-cell reaction systems, genetic reg-
ulatory networks are some of the widely investigated systems having networked structure.
Basically, networks consist of two main elements: a set of nodes and a set of links connecting
the nodes to each other. Both the nodes and the links can be static or dynamic elements,
depending on the properties of the system described by the network [15].

Usually, to describe the structure of networks in a mathematical framework, graph theory
is used where nodes and links in the network are corresponding to vertices and edges in the
graph, respectively. The way, how graphs can describe dynamical systems can have multiple
interpretation: e.g. in case of transportation networks a topographical layout of vertices
and edges can be handful, representing junctions and sections of the network. Meanwhile, a
more abstract, graph-based description of a system is also possible, e.g. in case of discrete
event systems, where vertices are standing for the different states of the system while edges
represent possible state transitions. As it can be seen from these examples the graph-based
system description is a powerful tool to represent several system structures on different levels
of abstraction.

If we investigate a static system a graph-based representation of the system can describe
structural dependencies between the components of the system where both the vertices and
edges are static or passive. If the dynamics is also incorporated into the system description, the
following setup is usual. The vertices represent the individual components of the system, while
the edges between them set constraints on the behavior of the dynamics. The quantitative
properties of the constraints usually appear as edge weights in a weighted, directed graph.

The topic of combining several, individual dynamical systems into a complex, networked
system is elaborated in the theory of interconnected subsystems in systems and control theory.
In [36] mathematical tools are provided to analyze the connectability of composite systems,
which property ensures the controllability and observability of the complex system. The fact,
that the controllability and observability of a networked system depends on the properties of
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the linkages between the components leads to the concept of structural controllability and
observability [78]. These ideas are further developed in [79] showing the crucial properties
of a relatively small number of driver nodes while controlling the dynamics of a complex
networked system.

The importance of the quality and quantity of the connections in the graph is emphasized
by the research of the dynamics appearing in extreme large networks, such as social networks
[14]. The statistical analysis of the behavior patterns in these kind of networks enables us to
understand the significance of weak connections in social communities, the reordering patterns
in such systems etc. As several databases became available containing data about large-scale
networks, the techniques to analyze the data moved towards fractal-based description [113],
graph-focused data mining techniques [66] and other improved techniques, which instead of
analyzing the individual elements of the network, focus on the graph-theory based description
of the representing structures.

The work summarized in this thesis focuses on the application of optimization-based
methods in the analysis and control of networked systems. Two classes of networked systems
are investigated because they come from basically different approaches of networked system
description, while they can be handled with similar mathematical tools. In case of a reaction
network, the model is translated into a network by describing the relations between the
terms of the underlying differential equations as links between the nodes of a network that
represent the elementary nonlinearities. In contrast with this, in transportation networks
(in this particular case, in railway networks) both the nodes and the links are passive, they
are only a topological mapping of the routes, junctions and/or stations. Nonlinearities are
introduced into this model by the absolute values appearing in the basic system model. Both
system classes are nonnegative [60], and can be handled as smooth nonlinear systems (by
incorporating vehicle dynamics into the microscopic modeling of the system).

1.2 Aim and structure of this thesis

The aim of the present thesis is to develop optimization based methods applied to the
analysis and control of specific, practically important dynamical systems having complex
networked structure. By analyzing the structure of the original, networked system and the
structure of the emerging optimization problem, problem-specific improvements are proposed
to decrease the complexity of the computational tasks, thus they become applicable on large
scale networks, too. Generally, these tasks are formulated as MILP problems, but in several
cases, they can be simplified to Linear Programming (LP) tasks.

In this thesis, two different system classes are examined having networked structure:
kinetic reaction networks and railway networks. In both cases, we will use optimization-
based techniques to solve problems in the field of system analysis and control. In case of
reaction networks, structural (parameter-independent) system analysis and the computation
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of alternative reaction networks will be completed using optimization based methods.
In case of the railway networks control actions are going to be computed for optimal

rescheduling in order to minimize the sum of the delays of the trains. By applying optimization
based control methods, our aim is to decrease the sensitivity of the railway network against
small appearing delays and by reducing the delay propagation effect. To accomplish this, a
model formulation is needed which enables us to simplify the analysis of the effect of the
dispatching actions with respect to the individual delays of the trains. It is also desired,
that formulated optimization problems should be solvable in a reasonable time, thus the
possibility to handle large-scale networks with algorithms using them is present.

The structure of the thesis is the following. In Chapter 2 the basic notions and the
mathematical tools are introduced, which serve as a basis of the methods presented in the
further parts of this work. Chapter 3 introduces the Kinetic Reaction Networks in details,
summarizes the results known from the literature and the corresponding results of the author.
In Chapter 4 the topic of railway networks are investigated, presenting the different model
formulations, the proposed new methods and the simulation results. In Chapter 5 the main
scientific contributions of the presented work are briefly summarized and the possible further
developments are enumerated.

1.3 Optimization in system analysis and control

As it is detailed in [24], optimization problems play an important role in several fields of
system theory. In particular, any controller design problem is in fact a constrained optimization
problem with the control aim as loss function and the system model as a constraint.

Due to the rapid development of computer technology and the available computational and
analytical methods, several new application area of optimization methods appeared in system
theory. Two application domains have become particularly important: the computational
methods themselves and those conceptual developments which make it possible to implement
the developed methods in real-life applications (e.g. Model Predictive Control framework
[53]). Considering the underlying computational methods, it can be said, that most of the
formulated optimization problems can be traced back to mathematical programming problems
which are able to handle cost functions and constraints on the variables.

With the help of the tools emerging from optimization several different tasks in system
analysis and control can be solved: identification problems, parameter estimation tasks
and control problems can also be formulated in such a framework [80]. Identification and
parameter estimation form a closely inter-related set of problems where the application of
optimization methods focuses on the computation of system parameters using the presented,
usually noisy and limited measurement data [126]. Several methods applied in the control of
dynamic systems can also be traced back to optimization: e.g. the method of Linear Matrix
Inequalities [23] to design robust controllers, decentralized control [54] to deal with systems
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incorporating multiple decision maker units, Linear-Quadratic (LQ) control problems [83] in
classical control theory or state estimation [112].

Techniques applied in optimal control were further developed to the control of networked
systems, where the entities of the system are connected to each other via links, altogether
considered as a graph structure as it is detailed before. Optimization tasks are formulated from
the coordinated control task of the entities in case of different connectivity properties [68],
synthesis of complex process plants with a networked structure [50] satisfying different type
of constraints and having objective functions with multiple components etc. Also, methods
are developed to compute different properties and representations of a given system having
networked structure, such as minimal representation, identifying key connections etc. One of
the developed methods is capable of computing a maximal superstructure corresponding to
a given process network in polynomial time [49] in a centralized way. From the computed
superstructure, with the help of additionally applied constraints all possible solutions of
the original problem can be extracted enabling us to analyze the properties of the solutions
with high computational efficiency. As the focus of the research of networked systems shifted
towards the large-scale networks constructed from real-life data, the importance of the
highly effective computational methods applicable for the solution of optimization problems
increased.

Problem formulation in an optimization framework has a great conceptual importance:
in case of a properly formulated problem its feasibility can be checked, meaning that the
existence of at least one solution can be shown even if the underlying problem is hard to
solve. The fact, that infeasibility (non-existence of a solution) can be explicitly detected has
great importance both in theory and in application.

The aim of the present thesis is to investigate the analysis and control of complex nonlinear
dynamical systems having networked structure using optimization-based techniques. This
topic is examined through two problems, namely the structural and dynamical analysis of
kinetic reaction networks and the dynamical rescheduling problem of railway networks. In
case of both problems, we formulate the dynamical model of the corresponding networked
system and the solutions of the examined tasks are derived to a mathematical optimization
problem. In case of reaction networks a structural analysis has been completed and alternative
realizations are computed, while in case of railway networks, the effect of delay propagation
is reduced by applying optimal control actions in the schedule of the trains.

1.4 Networks and dynamics

The research of systems composed by a large number of interconnected dynamical units
gained increased attention recently. The analysis and modeling of large scale coupled systems
from the field of biology, chemistry, transportation, logistics, social sciences etc. became an
important topic in science as the computational performance of the computer systems grows
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and the detailed processing of huge amount of data is possible. This gives us the opportunity
to shift our attention from the investigation of individual properties of small-scale networks
towards the analysis of large scale systems with complex interconnection patterns, sometimes
by focusing only on the statistical properties of the modeled system. Some important results
about these topics are summarized in [89].

The two main issues while investigating a complex coupled system are the following:
firstly, to identify the structure of the connections between the actors of the system in order
to describe the system with the help of phenomena known from classical network theory. Here
the central task is to properly define the nodes in the network and the links in between them,
which usually considered as vertices and edges in the graph corresponded to the network,
respectively. Secondly, the type and behavior of the interactions should be identified with
respect to the formulated structure. These can be described as the properties of the edges in
the graph of the network. The obtained network models can be applied to analyze and if it is
needed, to control the underlying dynamics. A detailed review of the possible model classes
and their applications can be found in [19].

Among many others, complex networked systems can be classified based on the role of
the nodes in the network. In one hand, there are model types where the nodes have active
role in the dynamics of the network (they have some generalized computing task), and the
network can be considered as a set of agents connected to each other as it is defined by
the structure of the network. On the other hand there are models where nodes are only
interconnecting elements in the network connecting different edges, but they do not have
specific ”computational” tasks. These kind of models are similar to pipeline networks, where
nodes are created at the junctions of pipe sections.

Let us shortly review some system classes that can be modeled with the previously
introduced, agent-based network formulation.

Artificial neural networks are motivated by biological neural networks, and their aim was
to create a computational method that has as strong learning capabilities as the biological
neural networks have. The proposed perceptron model [106] is based on strong simplifications
of the biological neurons but still tried to capture their main properties. The artificial
neural network is defined as a set of processing nodes which have similar role than the cell
body of neurons while weighted edges connect the processing nodes as the axons connect
neurons. The connectivity pattern strongly influences the behavior of the network and some
classical configuration of artificial networks emerged such as feed-forward networks and
Hopfield-networks [64].

The phenomena of individual processing nodes connected by weighted edges further
developed leading to the appearance of Cellular Neural Networks (CNN) [31]. CNNs are
a general framework to build parallel processing units with nonlinear dynamics arranged
topographically in a grid. The connections between the nodes are local: only neighboring
processing units can communicate with each other, thus the behavior of the whole network
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is characterized by the local connections. The obtained architecture called CNN Universal
Machine is capable to combine analog array operations with local logic. The application areas
of these kind of spatio-temporal universal machines are very wide and they have interesting
connections with the state-of-the-art supercomputers and many-core computational devices
[107].

Another interesting example of this field is the (bio-)chemical reaction networks. In [63] it
has been expressed that modern biology should not only describe the function of individual
cellular components but their interconnections and interactions should also be explained, as
a complex network of biochemical elements. Thus, computer-aided investigation of genetic
regulator networks, intracellular signaling pathways and in-vivo reaction cascades is one
of the main topics of computational biology. The nonlinear dynamics appear in these kind
of networks can be captured with several mathematical model classes. In this work, we
focus on the application of Chemical Reaction Network Theory (CRNT) to describe and
analyze (bio-)chemical reaction networks. In these models, the nodes of the network are the
chemical complexes (consisting of different chemical substances) and they are interacting with
each other in chemical reactions described by the edges. CRNT can be further generalized
leading us to a set of mathematical problems which can produce several complex dynamical
phenomena as it is detailed in Chapter 3.

Behavioral patterns in systems consisting of living entities such as animals or humans can
also be described with the help of networks. A.-L. Barabási and T. Vicsek investigate these
topics in details, while uncovering several manifestation of complex network-based dynamics
in living systems. As it is detailed in [14], several very complex phenomena appearing in the
human society (e.g. scale-free properties of social networks, importance of weak links between
people in the society) can be explained with the help of mathematical tools known from
network and graph theory. The fundamental importance of network theory-based analysis of
behaviors in living communities is also emphasized in [132, 131], where both the events in the
groups and the evolution of the group are explained with the help of relatively small changes
in a scale-free networked structure. The phenomena learned from living communities often
applied in robotic systems consisting of several robots, networked sensors or cooperative
components [94, 129]. In [90] a wide variety of graph-theory based mathematical constructions
modeling epidemiological processes are summarized. It has also been shown that the spreading
of several diseases can be efficiently simulated with network theory based models.

As it was mentioned, besides of networks having so-called agents in the nodes, there
are several types of networks, where the nodes are just meeting points of edges. Let us
now examine a subclass of these pipeline-like networks, namely the class of transportation
networks. In transportation networks, the nodes are usually considered as junctions, crossings
or stations and the edges are routes or tracks. Vehicles are moving along the edges towards a
pre-defined target node or along a pre-defined route while following some type of scheduling
and considering safety constraints. It can be seen that transportation networks usually can
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be depicted as topographically ordered graphs. Analysis of transportation networks (e.g.
traffic flow analysis on highways, train traffic analysis in railway networks) can have several
different aims: to find the most sensible parts of the network (e.g. with respect to accidents,
delays, traffic jams etc.), find parts of the network which are suboptimally used etc. It is
known that vehicles in the network can have complex dynamics (see e.g. [70]) emerging from
the properties of the network and the presented constraints. To control these behaviors, the
tracking and control of individual vehicles is needed [130]. Controlling traffic has extreme
importance in case of railway networks, because of the increased load on the tracks and the
fact that delays can be quickly propagated all over the network due to the limited rerouting
capability and the lack of overtaking. To overcome these issues several railway control method
were developed [133] to increase throughput of railway networks, to limit delay propagation,
to minimize passenger delays etc. A control method to minimize delays in a railway network
is proposed in Chapter 4.

Considering these, it can be said that the network-based analysis and control of large
size, interconnected systems is a widely investigated but still current topic in science. The
complex dynamics that can be modeled within this framework can describe a large variety of
real-life phenomena, and the understanding and control these kind of systems can have huge
impact on several problems both in science and everyday life, too.

1.5 Kinetic reaction networks as unified models of smooth
nonlinear systems

Nonnegative systems are dynamical systems having the property that all state variables
stay nonnegative if the system is started from the nonnegative orthant. If none of the states
of a nonnegative system can reach zero, than we speak about a positive system. Nonnegative
systems appear in several fields of science, usually in cases where there are physical constraints
on the nonnegativitiy of the states, such as population dynamics or (bio-)chemistry. It should
be noted that with the help of proper coordinate transformation, many systems can be
transformed to be nonnegative. These transformations usually consist of two parts: the first is
the shifting of the coordinates into the nonnegative orthant, then the second is a time-scaling
[120] ensuring that the trajectories of the system remain in the desired operation domain.

An interesting nonnegative system class is the class of kinetic systems, which are closed
thermodynamic systems under isobaric and isothermal conditions. Kinetic systems can be
interpreted as an extension of chemical reaction systems, where the system contains chemical
species reacting with each other influencing the evolution of the system over time. The
extension involves the relaxation of some of the assumptions, such as mass conservation,
naturally present in chemical reaction systems thus enabling complex nonlinear behavior of
the kinetic system class.

The state vector of kinetic systems is formulated from the concentration of the species,
which are nonnegative by nature. Kinetic systems can have smooth nonlinearities, and by
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considering the special structure of the system model some advantageous dynamic properties,
such as global asymptotic stability may be ensured. Usually, these systems are described
by a set of ordinary differential equations (ODEs) with polynomial right-hand sides. The
appearing polynomials describe the elemental nonlinearities in the system model. The
underlying dynamics can be characterized by different considerations, such as mass-action
kinetics, Michaelis-Menten kinetics [85], Hill-kinetics [41] in (bio)chemical applications, etc.
Due to the similarity of infection processes to chemical reactions, a wide variety of epidemic
spreading models are also based on kinetic models. In this work, we are considering only
kinetics systems with mass-action kinetics.

A subclass of nonnegative systems with nonlinear dynamics is the class of kinetic systems
obeying the mass-action law [67]. This law is originated from the molecular collision picture of
chemical reactions. In this phenomenon, a reaction occurs if two molecules which are able to
react with each other collide. Hence, the probability of reaction depends on the probability of
the collision, which is proportional to the concentration of the reactant species. Systems with
mass-action kinetics are able to produce several important dynamical properties which are in
the focus of nonlinear system analysis, such as different equilibria, oscillatory behavior etc.
Deterministic positive polynomial systems with mass-action kinetics are called as Chemical
Reaction Networks (CRNs) [48]. With CRNs many (bio-)chemical reaction structure can
be described and because the strong descriptive capabilities of this system class, they are
applied in numerous other fields such as physics or nonlinear control theory. A generalization
of CRNs, namely the Kinetic Reaction Networks (KRNs) are introduced in details in Chapter
3.

Since KRNs gained increased attention recently due to their wide application area as
detailed above, their analysis is an interesting and important topic. There are several cases,
where some dynamical properties produced by a KRN can be predicted just from the structure
of the graph independently from the actual parameter values appearing in the network model
[47]. Considering this, the capability to analyze large-scale biochemical reaction networks
depends only on the computational complexity of the available algorithms dealing with the
structural analysis of KRNs.

In this thesis several new algorithms are presented to compute KRNs with preferred
dynamical and/or structural properties. Some of the presented methods are computationally
improved: by substituting the former NP-complete method with algorithms having polynomial
complexity the proposed framework is now capable of handling large size networks, too.
Moreover, a new method is presented which is able to incorporate new type of constraints
corresponding to prescribed properties while computing alternative reaction networks.

14

DOI:10.15774/PPKE.ITK.2014.002



1.6 Transportation networks

Transportation networks are interesting and widely investigated examples of networks
with complex dynamics. The main components of these networks are the topological network
of routes (air corridors, railway tracks, highways, streets) and the vehicles moving along
them. If any disturbance (accident, route blocking etc.) appear in the traffic, the capacity
of the network can be reduced dramatically leading to unsatisfied passengers, increased
transportation costs or other inconveniences. To avoid these problems traffic control methods
are applied to reschedule or reroute vehicles if it is needed. While controlling a transportation
network in such a way, a control aim is targeted (minimizing delays w.r.t. a predefined
schedule, maximizing throughput of the network etc.) while important safety measures should
also be considered.

The ever increasing load on the railway networks in recent years poses serious challenges
for network managers. To ensure the smooth operation of the network especially in case
of delayed operation, a lot of research effort has been put in the topic of timetable design.
Delays can be caused by technical failures, accidents, weather conditions or other unexpected
situations. Because in most cases a delayed train obstructs a whole track and through this
the following and connecting trains will also be affected, delays can quickly propagate all over
the network [33]. To avoid such a large scale interruption in the network stable and robust
timetables [58] are designed. But in case of large delays modification of the schedule, such as
rerouting or reshuffling trains or breaking connections can be necessary to minimize the effect
of the disturbance. Proper rescheduling of the trains give us the opportunity to limit the
propagation of the delay and recover the nominal operation of the network as soon as possible
[69]. However, breaking connections can lead to high passenger delays while keeping train
delays low [125]. From a computational point of view, the solution of scheduling problems
boils down to mathematical programming problems. A comprehensive survey of scheduling
methods used in railway management can be found in [136].

A delay-management problem handled as mixed-integer programming first appeared in
[110] and more recently in [124]. In [20, 21] a permutation-based methodology was proposed
which uses max-plus algebra to derive a Mixed Integer Linear Programming (MILP) to find
optimal rescheduling patterns [65]. These control methods have the advantage against greedy
algorithms (e.g. [127]) that they can guarantee an optimal control action with respect to the
performance index, but on the other hand they could have issues regarding the computational
time.

In this thesis, we propose new model formulations for model predictive controllers applied
to the control of railway networks. The rescheduling problem is traced back to the solution
of a MILP problem, but in case of large and dense networks the increase of solution speed is
needed. With the help of the proper restructuring of the MILP problem, significant speedup
is achieved. Also, a new model formulation is proposed which can lead to the development of
problem-specific analytic tools and solution methods.
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Chapter 2

Basic tools and notations

In this Chapter, we will introduce the main concepts and tools used in this work. We will
shortly review the theory of optimization and some classes of optimization problems used in
the methods presented in Chapters 3-4. Also, the main ideas behind the applied solution
methods of these type of optimization problems are introduced. Moreover, we will summarize
some results corresponding to the topic of dynamical systems represented by networks.

2.1 Convex optimization

A mathematical optimization problem has the following form [24]:

min f0(x)

w.r.t. fi(x) ≤ bi i = 1, ..., ω.

where the vector x = (x1, ..., xk) contains the so-called optimization variables, the function
f0 : Rk → R is the objective function and functions fi : Rk → R, i = 1, ..., ω define the
constraints. Constants bi, i = 1, ..., ω are the limits for the constraints. A vector x∗ is called
optimal solution if it has the smallest objective value from the set of vectors satisfying all the
constraints. An optimization problem is a convex optimization problem if both the objective
function and the constraint functions are convex, meaning that they satisfy the following
inequality:

fi(αx+ βy) ≤ αfi(x) + βfi(y)

for i = 0, ..., ω and for all x, y ∈ Rk, α, β ∈ R+
0 where α+ β = 1.

Among many other subclasses of convex optimization, we will shortly introduce two widely
used special subclasses: linear optimization and least-squares. An optimization problem is
linear, if the following holds:

fi(αx+ βy) = αfi(x) + βfi(y)
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for i = 0, ..., ω and for all x, y ∈ Rk, α, β ∈ R. It can be seen that if an optimization problem
is linear, than it is convex, too. An optimization problem is called as a least-square problem
if it contains no constraints but the objective function has a special form aTi x− bi:

min f0(x) = ‖Ax− b‖22 =
k∑
i=1

(aTi x− bi)2

where A ∈ Rω×k, ω ≥ k, the rows of A denoted as aTi and again, x stands for the vector of
the optimization variables.

Both can be solved numerically very efficiently while they have a fairly complete theory
and they are used in a wide variety of applications, too. However, recently several related
important developments have appeared. The interior-point methods [77] developed in the
1980s are able to solve linear programming problems and in general, convex optimization
problems as well. Besides of these, convex optimization became a central topic in the area of
automatic control systems, estimation and signal processing, communications and networks,
data analysis and modeling etc. as the techniques based on Linear Matrix Inequalities (LMIs)
[23] earned more and more attention in the recent years. Convex optimization is also widely
applied in combinatorial optimization and global optimization problems to find optimal
solutions, approximate them or find bounds on them.

Considering these, it can be advantageous to formulate a given problem in the convex
optimization framework, because it is proven that convex optimization problems can be
solved (meaning that a solution can be found or it can be proven that no solution exists),
moreover, reliable and efficient methods are present to compute the solution. Also it should
be noted, that in general the formulation of a convex optimization problem has serious effect
on the complexity and computational difficulty of the solution. Hence, the investigation of
the problem structure and the methods applied during the solution are important in order
to achieve advantageous problem formulation to avoid unnecessary computational issues.
With the help of the theoretical results on convex optimization, a model form applicable
for distributed solution can be obtained, or sometimes a formulation with advantageous
properties is achievable.

There are several available software packages [139, 59, 140] that implement different
solution methods and processing techniques for convex optimization problems and specially,
linear optimization problems. The methods applied by the solvers are different, therefore
solver selection can have serious effect on the computational complexity of the solution in
case of a given optimization problem.

2.2 Linear Programming

Linear Programming (LP) is perhaps the most successful discipline of the field of operations
research [104]. A linear program is a constrained convex optimization problem, where a linear
function of the real-valued optimization variables is minimized (or maximized) with respect
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to linear equality and inequality constraints.
Application fields of linear programming are very wide. From mathematical economics

to linear algebra there are several topics in which linear programming plays a central role.
Linear programs can be formulated to incorporate problems like portfolio optimization tasks,
manufacturing and transportation problems, routing and network design methods in the field
of telecommunication, traveling salesman-type of problems used for vehicle routing or VLSI
chip board design etc.

In the following we will define the LP problem itself and then the main ideas of the
solution methods are summarized.
2.2.1 Problem formulation

A standard LP problem is formulated as follows:


min
x
cTx

Ax ≤ b
xi ∈ R, i = 1, ..., k

(2.1)

where x is the k-dimensional vector of decision variables consisting of real valued elements.
The collection of ω linear inequality constraints are defined by matrix A ∈ Rω×k called as
constraint matrix and vector b ∈ Rk. With the above formulation, equality constraints can
also be treated by rewriting the problem to contain purely inequality constraints [30]. The
linear function cTx with c ∈ Rk is the objective function to be minimized. This formulation
describes a simplex in Rk where the given constrains define the bordering hyperplanes. It is
known that the optimal solution of the LP has to be in one of the corners of the simplex,
although there may be multiple alternative optimal solutions.

Let us note that this formulation defines the so-called primal LP. For each primal LP
there exists a dual LP, which can be obtained from the primal problem directly by proper
algebraic transformations. The dual problem of the LP defined in eq. (2.1) can be expressed
as: 

min
y
bT y

AT y ≥ c
yi ∈ R, i = 1, ..., k

(2.2)

As it can be seen, the problem formulations of the primal and dual LPs are connected to each
other, moreover, it can be said that if a linear program has an optimal solution x∗, then so
does its dual (let us denote it as y∗) and their objective values are equal: cTx∗ = bT y∗ [24].
These problem formulations have different properties exploited in the solution methods, too.

The solution of linear programs is a widely investigated topic because of it’s crucial
importance in several application areas. Both the theoretical and implementational part of
the methods have a wide literature: we suggest to review for example [88, 95].
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2.2.2 Solution methods

The main tool for solving LP problems in practice is the class of simplex algorithms
proposed by Dantzig [34]. While considering the issue of computational complexity, the
practical performance of the simplex algorithm is satisfying, because in case of a wide class
of LPs the number of iterations during the solution seemed polynomial or even linear in the
dimensions of problems being solved. Although, examples having exponential complexity
were constructed few decades later then the original publications about the simplex method
appeared. However, methods derived from nonlinear programming techniques, based on
Karmarkar’s work [77] can also handle certain classes of linear programming problems with
outstanding efficiency while ensuring polynomial computational complexity in general [88].

In the following, we will shortly review these methods in order to introduce the main
elements of the algorithms. A comprehensive survey of the LP solution methods can be found
in [72].
2.2.2.1 Simplex method

The simplex method is the most widely used method to solve LPs, originally proposed
in [34]. Recall that any LP problem having a solution must have an optimal solution that
corresponds to a corner of the simplex corresponding to the LP. Hence, the method iterates
over these corners while trying to move towards the optimal solution. The simplex method is
based on a tableau formulation which allows us to evaluate various combinations of decision
variables to determine how to improve the solution. A specific simplex tableau describes a
given corner of the simplex corresponding to the problem.

Let us summarize the main points of this method based on [105].

1. Formulate the LP and construct a simplex tableau. Add slack variables, if it is needed
(e.g. because of the reformulation of inequalities into equalities). Select the initial set of
the basic variables and set the other variables to 0.

2. Find the sacrifice and improvement rows. These rows indicate what will be lost and
gained in the cost function by making a change in the decision variables.

3. Select an entering variable, which is a currently non-basic variable that will most
improve the objective if its value is increased from 0.

4. By applying a selection method (e.g. random selection, selecting the most limiting
decision variable etc.), pick a basic variable (different from the currently entering
variable) that will be excluded from the basic set. Mark it as the exiting variable.

5. Construct a new simplex tableau. Replace the exiting variable in the basic variable
set with the new entering variable and change the corresponding rows in the tableau
properly.

6. Repeat steps 2 through 5 until you no longer can improve the solution.
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Step No. 5. (namely the change of the basic variable set) is called as pivot operation. As
it can be seen, the simplex method is basically a sequence of pivot operations. Note that
the selection method applied to pick the entry and exit variables determines the number
of iterations needed to find the solution. Hence, this basically determines the (worst-case)
behavior of the solution method in terms of computational complexity [84].

2.2.2.2 Interior Point Methods

There are at least three major types of interior point methods (IPMs): the potential
reduction algorithm which most closely embodies the constructs of Karmarkar (see [77] for
details), the affine scaling algorithm which is perhaps the simplest to implement, and path
following algorithms which combine the excellent behavior of the above two in theory and
practice. Because of its advantageous properties, the third method-family (namely the path
following methods) is implemented in the state-of-the art solvers.

Let us summarize the main points of the IPM method based on [72]. For a detailed
explanation of the appeared concepts see [88], too.

The primal-dual path following algorithm is an example of an IPM that operates simul-
taneously on the primal and dual linear programming problems. The use of path following
algorithms to solve linear programs is based on three ideas [72]:

• the application of the Lagrange multiplier method of classical calculus to transform an
equality constrained optimization problem into an unconstrained one;

• the transformation of an inequality constrained optimization problem into a sequence
of unconstrained problems by incorporating the constraints in a logarithmic barrier
function that imposes a growing penalty as the boundary defined by the constraints in
the model is approached;

• the solution of a set of nonlinear equations using Newton’s method, thereby arriving at
a solution to the unconstrained optimization problem.

As it is detailed in [72], the steps of the IPM can be summarized as follows:

1. Look for feasible initial solutions for the primal and dual problem.

2. Test optimality by computing the optimality gap. If the gap is under the prescribed
threshold, the solution is found, return with it.

3. Compute the direction of the next step for Newton’s method.

4. Compute the step size for Newton’s method.

5. Take a step in the Newton direction as the update of the solution.

6. Repeat steps 2-5.
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Note that during solution process, it is assumed that the constraint matrix A from eq. (2.1)
has full rank. This is usually achieved by some preprocessing of the presented constraint set.
From an implementational point of view, the main issue is performing the matrix inversions
needed to compute the Newton directions, which is usually handled by implementing a proper
factorization instead of direct inversion.

2.2.3 Comparison of solution methods

In the following, we will shortly compare the two main solution methods of the Linear
Programming problem, namely the Simplex Method and the Interior Point Method.

Simplex Method Interior Point Method

Theoretical

(worst-case)

complexity

NP P

Practical complexity P P

Interpretation
clear geometrical: visiting the

vertices

complex exploration of the feasible

region

Best applicable for small problems large, sparse problems

Generalizable to

non-linear problems
no yes

2.3 Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP) is a special case of linear programming,
where some of the decision variables are integer valued. A MILP can be treated as a class
of combinatorial constrained optimization problems with continuous and integer decision
variables, where the objective function and the constraining linear inequalities are linear.
Some optimization problems having nonlinear constraints and/or nonlinear cost functions
can be transformed to MILP problems: some nonlinear constraints can be handled as a set
of linear constraints (where the introduction of auxiliary variables can be necessary), and
some nonlinear cost functions can be approximated by piecewise linear functions [28, 111].

A wide variety of real life problems boil down to an MILP problem. In problems, where
some of the resources (represented by the decision variables) are quantized and solutions
containing non-integer values for these are meaningless, the application of integer valued
decision variables is inevitable. MILP problems arise in the field of logistics, economics and
social science. Moreover, the combinatorial problems, like the knapsack problem, warehouse
location problem, machinery selection problem, set covering problems and many scheduling
problems can also be solved as MILPs.

In this Section the problem formulation of the MILP problem and its main solution
techniques are reviewed.
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2.3.1 Problem formulation

An MILP problem can be stated as follows [25]:
min
x
cTx

Ax ≤ b
xi ∈ R, i = 1, ..., k
xj ∈ Z, j = k + 1, ..., l

(2.3)

where, similarly to the LP problem (see eq. (2.1)), x is the l-dimensional vector of decision
variables consisting of k real and l−k integer elements. Note that those constraints that define
that some of the decision variables should be integer valued, called integrality constraints.
Matrix A ∈ Rω×l and vector b ∈ Rl define the set of linear inequality constraints containing
ω constraints. Equality constraints can also be treated by rewriting the problem to contain
purely inequality constraints [30]. The linear function cTx with c ∈ Rl is the objective
function to be minimized. As it can be seen, if all decision variables are real (i.e. k = l), then
eq. (2.3) defines a standard LP problem. If all the decision variables are integer valued (i.e.
k = 0), than the obtained problem is called as an Integer Program (IP).
2.3.2 Solution methods

The solution methods of MILPs have some similarities with the ones used to solve pure
LPs. Again, the linear constraints define a simplex in an l-dimensional space, but in this
case, the optimal solution is searched on a lattice of feasible integer points instead of the
corners of the simplex. The integer programming problems can have multiple local optima
and finding a global optimum is ensured if and only if it is shown that the given solution
has better objective value than all the other feasible points. In other words, it means that
MILP problems do not scale very well w.r.t. the size of the original problem. It has been
shown that MILP problems are generally NP-hard [93], hence they are usually solved by
computationally very intensive heuristics-driven techniques which are sometimes unreliable
in case of a large-scale problem.

The three main classes of MILP solution methods are shortly reviewed in the following.
As an LP relaxation of a MILP problem we mean the LP problem obtained from the MILP
by excluding the integrality constraints. For further details about the presented methods, see
e.g. [81, 115, 51].
2.3.2.1 Cutting plane method

Cutting plane method are based on polyhedral combinatorics. These methods can be
shortly summarized as follows. The algorithm is looking for parts of the simplex defined by
the LP relaxation of the MILP problem, which can be excluded from the search space by
introducing extra constraints while the remaining space still includes the integer solution.
New constraints are introduced until the obtained LP-solution (restricted by the original
and the added constraints) fulfills the integrality constraints, too. It is shown in [55] that
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the cutting plane method presented by Gomory [56] is finitely convergent. Several different
methods are known to compute proper cuts [92].

Due to the great variety of the possible techniques of cut generation this method can
have increased impact on the solution process. A bunch of different cut generation techniques
are included in the available solvers (e.g. using the CGL library [137]).

2.3.2.2 Tree-search-based methods

By solving the LP relaxation of the original MILP problem, a solution can be obtained
which contains at least one variable which takes real value but its domain is restricted to
integer values by the integrality constraints, and rounding it to an integer results in the
violation of at least one constraint. In this case, auxiliary constraints can be added to the
relaxed LP guiding the solution away from the current non-integer value, towards the fulfilling
of the integrality constraints required by the original MILP.

Considering these, searching for the optimal solution ends up in a tree-search between
possible (MI)LP problems (called partial solutions) that fulfill some of the integrality con-
straints, but not necessarily all of them. Heuristics-driven tree search exploration techniques
are used to build up, handle and explore the search tree emerging during the solution of a
MILP [101]. The efficient exploration of the emerging large size search tree is necessary for
the solution of the MILP problem.

As the solution process progresses, the new nodes are introduced into the search tree
representing new problems generated from the original LP by adding extra constraints
to it. This process called branching. Some of the nodes will be thrown away, because the
problem represented by them can not have better solution than other, already examined
node. This step is called as bounding. By the combination of these two steps, the so-called
branch-and-bound method is created.

The main steps of the branch-and-bound technique applied for MILP solution are the
followings:

1. Relax the integrality constraints from the original problem. Solve the resulting LP to
obtain a global upper bound on the MILP objective function value. If the LP solution
has integer values for those variables that were defined as integers in the original MILP,
the optimal solution is present.

2. Branching: (Otherwise,) there should be a variable defined as discrete but having real
value. Choose a non-discrete variable and branch on it: create new nodes, one for each
rounded value of the variable (e.g. two node for the down- and up-rounded values).
Insert the nodes into the search tree.

3. Select a node from the tree which will be expanded later on. It should be noted that
several sophisticated algorithms and heuristics are available for node selection, e.g.
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depth-first logic (select a partial solution with most fixed variables), best-first (select a
partial solution having with best parent bounds and heuristic values) etc.

4. Bounding: Create an LP relaxation of the problem represented by the selected node
and solve it. If the LP is infeasible or the obtained objective value exceeds the current
upper bound, prune the node. If the solution is lower than the current lower bound and
feasible to the MILP mark it as the new incumbent solution. The incumbent solution is
the currently best (w.r.t. the objective value) feasible solution known up to this point.

5. If there is no remaining node, mark the current incumbent solution as final solution. If
there is at least one unvisited node, jump to Step 2.

Naturally, there are several modification and extension of this general technique, which mainly
address the issue of the computational effort needed to explore the tree (see e.g. [18, 17, 101]).
In general, one should note that heuristics applied during the branch-and-bound process
have enormous impact on the solution speed and the quality of the solution. Each solver has
its own implementation which makes them suitable for different type of problems. A deeper
analysis of the solvers’ performance can be found in [143].

2.3.2.3 Decomposition algorithms

Decomposition algorithms are trying to isolate sets of constraints from the original problem
to generate multiple separated, smaller size (thus easy to solve) optimization problems.
Auxiliary variables are introduced to link the otherwise independent subproblems. Then
the results of the subproblems are combined properly to obtain the solution of the original
problem. The main decomposition techniques are summarized in [99, 100], and reviewed in
details in [51]. All of these methods can be interpreted as polyhedral approximations of the
optimal solution and they can be handled in a common framework, as it has been done in
[51].

In general, there are two main decomposition techniques: the Dantzig-Wolfe method [35]
(denoted as DWD) and the Lagrangian method [108] (denoted as LD).

The LD method works as follows. Some constraints are selected to be omitted from
the constraint set and introduced into the cost function together with the multiplicators
introduced in a Lagrangian fashion. Also, auxiliary constraints generated from the dual of
the LP relaxation of the original problem are introduced into the model, and the model is
split into two separate parts one for the original constraints and one for the dual constraints.
The solution of the dual problem helps to improve the bounds on the original problem which
can eliminate possible solutions from the search space.

The key idea of DWD is to reformulate the original problem by substituting its variables
with a convex combination of the extreme points of the polyhedron corresponding to a
substructure of the formulation. The problems generated for the substitutions are solved as
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independent subproblems (similarly to the column-generation methods [9]) and a coordinating
program generates the result of the original problem based on the sub-results.

A common property of the decomposition methods is that their computational effectiveness
strongly depends on the structure of the original problem, namely the the structure of the
constraint matrix. The most advantageous formulation is when matrix A from eq. (2.3) has
a block-angular form, meaning that the nonzero elements are ordered into non-overlapping
blocks while the constraints connecting these blocks are also grouped together. There are
automatic processes (some of them are included into state-of-the-art solvers as preprocessors)
which try to reorder the constraint matrix to obtain this form [16], but in general, a well-
formulated constraint set based on problem-specific knowledge outperforms these methods.
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Chapter 3

Applying optimization methods to
find kinetic reaction networks with
preferred structural and dynamical
properties

The analysis of the structural properties and dynamical behavior of biologically motivated
kinetic systems is a quickly developing field. The rigorous structural and dynamical analysis
of biologically motivated kinetic systems such as intracellular signaling pathways and gene
regulation networks has gained an increased attention. Meanwhile, the amount and quality
of experimental data are continuously improving due to the fast development of sensors and
computer systems. Determining the structure and the exact parameters in such a network
can be difficult due to the complexity of the described system or imperfect data. It is known
that there are several important properties that only depend on the structure of the model,
while the reaction graph structure corresponding to a given kinetic dynamics is generally
non-unique.

These facts motivate us to construct algorithms that can compute kinetic systems with
preferred structures (e.g. weakly reversible, minimal or maximal number of reactions, etc.)
that may provide useful information about the dynamical behavior of the system. The
motivation behind the parallel improvement of modeling and computational methods is clear,
to be able to handle the growing amount of data and to analyse more complex, possibly
biologically relevant processes and networks. By using optimization based methods, a clear
framework can be built to handle the emerging computational tasks. The advanced methods
implemented in the state-of-the-art solvers enable us to solve large optimization problems in
parallel which results in relatively moderated solution times.

By Kinetic Reaction Networks (KRNs) we mean deterministic kinetic systems obeying
the mass action law. Some of the assumptions, however, that are natural for chemical reaction
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systems, such as mass conservation, are relaxed when considering the mathematical structure
of KRNs that enables us to use them as an important general descriptor class in dynamic
system theory. It is known that such systems form a wide class of smooth nonlinear systems
that are able to produce all important qualitative phenomena in nonlinear dynamics such
as oscillations, multiplicities and even chaos [43]. Thus, the kinetic system form can be
useful for the description of nonnegative models outside of (bio)chemistry, e.g. for epidemic,
transportation or economic models as well [60, 109].

The general applicability of kinetic models is definitely extended by the strong results of
Chemical Reaction Network Theory (CRNT). CRNT was initiated in the 1970’s and 80’s with
the first publications about the relations between the structure and qualitative dynamics of
CRNs treated as a general nonlinear system class [67, 47, 46]. Since then, numerous deep and
useful results have been published in this continuously developing field (see, e.g. [43, 12, 114]).

In this Chapter, the description of dynamical systems with the help of Chemical Reaction
Network Theory and the corresponding concepts are described. In Section 3.2 two new
LP-based algorithms are presented to compute dynamically equivalent realizations containing
minimal and maximal number of reactions. In Section 3.3 a new LP-based method is
proposed to find dynamically equivalent, weakly reversible realizations while in Section 3.4 a
MILP-based method is introduced to compute dynamically equivalent realizations with mass
conservation.

3.1 Kinetic Reaction Networks

In this Section, the structural and dynamical description of KRNs are introduced based
on [118, 121, 122]. Besides the notations, some important properties are also recalled related
to the scope of the current work.
3.1.1 Describing a kinetic system as a KRN

The set S = {Xi, . . . , Xn} represents the n (chemical) species contained in a given KRN.
The concentrations of the species denoted by xi = [Xi], i = 1, . . . , n form the state vector
x ∈ Rn of the system. The whole system obeys the mass action law and, therefore, all the
values of the states are nonnegative [60]. Complexes are formally represented as nonnegative
linear combinations of the species:

Cj =
n∑
i=1

αi,jXi for j = 1, . . . ,m, (3.1)

where m is the number of the complexes in the network, and αi,j for i = 1, . . . , n, are the
nonnegative integer stoichiometric coefficients of the jth complex. An elementary reaction
step, where the source complex Cj =

∑n
i=1 αi,jXi is transformed into the product complex

Cl =
∑n
i=1 βi,lXi is denoted by

Cj → Cl (3.2)
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The reaction rate corresponding to reaction (3.2) can be written according to the mass
action law as:

ρj,l(x) = kj,l

n∏
i=1

x
αi,j

i , (3.3)

where kj,l > 0 is the reaction rate coefficient.
If for any i 6= l both reactions Ci → Cl and Cl → Ci are present in the network (i.e.

we have a reversible reaction), they are handled as separate elementary reactions. It is also
required from the above model class that Ci 6= Cj for i 6= j, i, j = 1, . . . ,m, and self-reactions
(i.e. loop edges) of the form Ci → Ci are not allowed for i = 1, . . . ,m.
3.1.1.1 Dynamical description with ODEs

In the literature dynamical systems representing chemical reaction networks are usually
described by the state vector x containing the concentrations of the species (or chemical
components), the stoichiometric matrix S and the vector-valued function R(x) representing
the reaction rates as follows [71]:

ẋ = SR(x). (3.4)

The stoichiometric matrix S is a constant matrix containing structural information about
the network. The matrix is composed as follows: each row of the matrix corresponds to a
specie, each column of the matrix corresponds to a reaction in the network, positive values
appear for products and negative values for reactants. Thus, the rank of the stoichiometric
matrix equals to the number of independent reactions in the network [13]. This formulation
serves as a base of many methods formulated to compute reaction networks with special
properties, such as minimal networks, identifying key reactions etc. [76].

This framework can be further generalized by the introduction of kinetic reaction networks
which have dynamics obeying the mass action law can be described by a set of polynomial
differential equations. In this case, chemical reaction networks can be considered as a subclass
of kinetic reaction networks.

From the several different possibilities, we will use the following computationally advan-
tageous factorization of the right hand side of the kinetic ODEs describing the dynamics of
the concentrations (see, e.g. [48, 118]):

ẋ = Y ·Ak · ψ(x) (3.5)

where x ∈ Rn is the vector of specie concentrations. Y ∈ Rn×m is the complex composition
matrix in which the jth column contains the stoichiometric coefficients of complex Cj , i.e.
Yi,j = αi,j . The vector mapping ψ = [ψ1 . . . ψm]T ∈ Rn → Rm is defined as:

ψj(x) =
n∏
i=1

x
Yi,j

i , j = 1, . . . ,m (3.6)
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Matrix Ak describes the reaction graph as follows:

[Ak]i,j =
{
kj,i, if i 6= j and reaction Cj → Ci is present in the CRN
0, if i 6= j and Cj → Ci is not present in the CRN

(3.7)

Moreover, the non-positive diagonal elements of Ak are given by

[Ak]i,i = −
m∑

l = 1
l 6= i

[Ak]l,i. (3.8)

Hence, Ak is a Metzler-type column conservation matrix (that is actually the negative
transpose of the Laplacian matrix of the reaction graph), often called the Kirchhoff matrix
of the KRN [86, 87].

A set of polynomial ODEs is called kinetic, if it can be written in the form eq. (3.5),
where Y contains pairwise different columns of nonnegative integers, eq. (3.6) holds, and
Ak is a Kirchhoff matrix. Necessary and sufficient conditions of the kinetic property for
polynomial systems with a constructive proof were first given in [62] (see also [27]). Let us
introduce the matrix M for the monomial coefficients of the model eq. 3.5, i.e.

M = Y ·Ak. (3.9)

Using the above notation, eq. (3.5) can be written as

ẋ = M · ψ(x). (3.10)

3.1.1.2 Graph representation

A KRN can be represented as a weighted, directed graph D = (Vd, Ed) called reaction
network or simply reaction graph, consisting of a finite nonempty set Vd of vertices and a
finite set Ed containing ordered pairs of distinct vertices called directed edges. The complexes
are represented by the vertices, i.e. Vd = {C1, . . . Cm}, and the edges stand for the reactions:
(Cj , Cl) ∈ Ed if complex Cj is transformed to Cl in one of the reactions in the network. The
weight of the edge (Cj , Cl) is the reaction rate coefficient kj,l. A reaction network is called
reversible, if whenever the reaction Cj → Cl exists, then the reverse reaction Cl → Cj is also
present in the network. By the structure of a KRN we mean the unweighted directed graph
of the reaction network.
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3.1.2 Dynamical equivalence and linear conjugacy of KRNs

It is known that the polynomial differential equations of a given kinetic system can have
multiple different reaction graph structures. Considering that in this thesis we use the form
eq. (3.9), still several (Y, Ak) pairs can be found which can describe the same dynamical
behavior. In this present work, we limit the set of complexes to a fixed set (generated using
the method described in [62]), hence matrix Y is fixed.

The matrix pair (Y, Ak) is called a realization of a KRN described by M if eq. (3.9) holds,
all the elements of Y are nonnegative integers, and Ak is a Kirchhoff matrix. It follows from
the structural non-uniqueness that many important structural properties are not encoded
uniquely in the polynomial differential equations of a kinetic system i.e. they are realization
properties. In the following two Subsections, two phenomena are introduced corresponding
to the explained non-uniqueness of the realizations.

3.1.2.1 Dynamical equivalence

Since the factorization eq. (3.9) is generally not unique (even if Y is fixed), the KRNs
defined by the pairs (Y (1), A

(1)
k ) and (Y (2), A

(2)
k ) are called dynamically equivalent realizations

of the kinetic system in eq. (3.10) (or that of each other) if Y (i) are valid complex composition
matrices (a complex composition matrix is called valid if it contains nonnegative integer
elements and there are no identical columns in it), A(i)

k are Kirchhoff for i = 1, . . . , 2, and

Y (1) ·A(1)
k = Y (2) ·A(2)

k = M. (3.11)

In general the alternative realizations may contain complexes that do not appear in the
original network. In this work we restrict the focus of our search to alternative KRNs where
the set of complexes are the subset of the set of complexes of the original network.

Considering the above facts, it is possible to determine different realizations for the same
dynamics for which the reaction graph has prescribed structural properties. Let us introduce
the following notations: we call a realization sparse if the number of the non-zero elements
in matrix Ask is minimal. A realization is called dense if it contains the maximal number of
non-zero elements in matrix Adk. It was shown in [118] that the dense realization is a unique
superstructure containing all mathematically possible reactions, i.e for a given complex set,
it contains all possible other realization structures as sub-graphs of the dense one. It should
be noted that while the dense realization is necessarily unique the sparse realization may not
be unique: possibly several different sparse structures and/or parameter set can represent
the same dynamical behavior.

Example. To illustrate the notion of dynamical equivalence on a small-scale example, we
will use a classical 3-dimensional kinetic Lorenz system that was introduced in [128]. The
classical Lorenz system can be transformed to kinetic form through coordinates-shifting and an
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appropriate time-scaling (see [128] for the computation details). After these transformations,
the kinetic ODEs of the system are

ẋ1 = σx1x
2
2x3 − σx2

1x2x3 + σ(w1 − w2)x1x2x3

ẋ2 = (ρ+ c3)x2
1x2x3 + (w2 − w1ρ− w1w3)x1x2x3 − x1x

2
2x3 − x2

1x2x
2
3 + w1x1x2x

2
3(3.12)

ẋ3 = x2
1x

2
2x3 − w2x

2
1x2x3 − w1x1x

2
2x3 + (w1w2 + βw3)x1x2x3 − βx1x2x̄

2
3

where σ = 10, ρ = 28, β = 8/3, and W = [w1 w2 w3] = [24 25 26]. It is shown in [128] that
using these parameters, eq. (3.12) shows chaotic behavior with an attractor that is very
similar to the attractor of the classical non-kinetic Lorenz system.
The complex composition matrix of the system is given by:

Y l =


1 0 2 1 2 1 1 1 2 2 2 1 2
1 1 1 2 2 0 1 2 1 0 1 2 2
1 1 1 1 1 1 2 2 2 2 0 0 2

 ,
where the ith column contains the composition of complex Ci (i.e. C1 = X1 + X2 + X3,
C2 = X2 +X3 etc.). The non-zero off-diagonal elements of the network’s Kirchhoff matrix
Alk are the following:

[Alk]2,1 = 679.3324, [Alk]6,1 = 1940.3342, [Alk]13,1 = 669.3342, [Alk]11,3 = 59, [Alk]12,3 = 10,

[Alk]13,3 = 44, [Alk]10,4 = 0.5, [Alk]12,4 = 34, [Alk]13,4 = 9.5, [Alk]13,5 = 1, [Alk]8,7 = 22.6666,

[Alk]12,7 = 1.3334, [Alk]10,9 = 1.

Then the monomial coefficient matrix can be written as

M = Y l ·Alk =


−10 0 −10 10 0 0 1 0 0 0 0 0 0
−1271 0 54 −1 0 0 24 0 −1 0 0 0 0

669.3342 0 −25 −24 1 0 −2.6667 0 0 0 0 0 0

 . (3.13)
The graph representation of this network can be seen in Fig. 3.1a. Alternative realizations
containing minimal and maximal number of edges can be seen in Figs 3.1a and 3.1b,
respectively. The reaction rates of the sparse realizations are depicted as edge weights in Figs
3.1a and 3.1b. In Fig. 3.1c, the structure of the reaction graph can be seen, while the non-zero
off-diagonal elements of the corresponding Kirchhoff matrix Adk (containing 51 reactions) are
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the following:

[Adk]2,1 = 679.6342, [Adk]3,1 = 0.1, [Adk]4,1 = 0.1, [Adk]5,1 = 0.1, [Adk]6,1 = 602.3658, [Adk]7,1 = 0.1,

[Adk]8,1 = 0.1, [Adk]9,1 = 0.1, [Adk]10,1 = 669.1342, [Adk]11,1 = 0.1, [Adk]12,1 = 0.1, [Adk]13,1 = 0.1,

[Adk]1,3 = 0.1, [Adk]2,3 = 0.1, [Adk]4,3 = 0.1, [Adk]5,3 = 44.6, [Adk]6,3 = 0.1, [Adk]7,3 = 0.1,

[Adk]8,3 = 0.1, [Adk]9,3 = 0.1, [Adk]10,3 = 0.1, [Adk]11,3 = 16.2, [Adk]12,3 = 9.3, [Adk]13,3 = 0.1,

[Adk]1,4 = 0.1, [Adk]2,4 = 0.1, [Adk]3,4 = 0.1, [Adk]5,4 = 9.6, [Adk]6,4 = 0.1, [Adk]7,4 = 0.1,

[Adk]8,4 = 0.1, [Adk]9,4 = 0.1, [Adk]10,4 = 0.1, [Adk]11,4 = 0.1, [Adk]12,4 = 24.4, [Adk]13,4 = 0.1,

[Adk]13,5 = 1, [Adk]1,7 = 0.1, [Adk]2,7 = 0.6, [Adk]3,7 = 0.1, [Adk]4,7 = 0.1, [Adk]5,7 = 0.1,

[Adk]6,7 = 0.1, [Adk]7,7 = −25.4, [Adk]8,7 = 23.2166, [Adk]9,7 = 0.1, [Adk]10,7 = 0.1, [Adk]11,7 = 0.1,

[Adk]12,7 = 0.68335, [Adk]13,7 = 0.1, [Adk]10,9 = 1.1, [Adk]13,9 = 0.1.

3.1.2.2 Linear conjugacy

It is known from the literature that the kinetic property of a system of ODEs is generally
preserved up to the re-ordering and positive scaling of the state variables [45]. Therefore,
in [73] the notion of linear conjugacy was introduced, where two KRNs are called linearly
conjugate if (in the case of appropriate initial conditions) there is a positive linear diagonal
mapping between the solutions of the corresponding kinetic ODEs. In order to explain this,
let us consider the kinetic systems defined by (Y,Ak) and (Y,A′k):

Σ1 : ẋ = Y ·Ak · ψ(x)

Σ2 : ˙̄x = Y ·A′k · ψ(x̄),

where x, x̄ ∈ R̄n+, Y ∈ Rn×m and Ak, A
′
k ∈ Rm×m are Kirchhoff matrices and ψ(x) =

[ψ1(x) ψ2(x) . . . ψm(x)]T as it is defined in eq. (3.6). Now Σ1 and Σ2 are called as linearly
conjugate kinetic systems if there is a vector d ∈ Rn+ for which T = diag(d) and in case of
x(0) = T x̄(0) the following holds:

x(t) = T x̄(t) ∀t > 0.

Let’s assume that Σ1 and Σ2 are linearly conjugate. Than the following can be derived:

˙̄x = T−1ẋ = T−1Y Akψ(x) = T−1Y Akψ(T x̄) = T−1Y Ak · diag(ψ(d)) · ψ(x̄).

Considering this and the definition of Σ2 we can conclude that

T−1Y Ak · diag(ψ(d)) = Y A′k,
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(a) A possible KRN structure realizing eq. 3.12.
The corresponding matrices are (Y l, Al

k). Reac-
tion rates appear as edge weights.

(b) Another possible KRN structure containing mini-
mal number of edges realizing eq. 3.12. Reaction rates
appear as edge weights.

(c) A KRN structure containing maximal number
of edges, realizing eq. 3.12. Edge weights are listed
in Ad

k.

Figure 3.1: Alternative realizations of a KRN. Ci refers to the complex defined in the ith
column of Y . Example appears in Subsection 3.1.2.1.

which leads us to the following result:

Y Ak = TY A′k · (diag(ψ(d)))−1 = TY Ab, (3.14)

where Ab = A′k · (diag(ψ(d)))−1, so A′k = Ab ·diag(ψ(d)). It can be seen that Ab is a Kirchhoff
matrix which is structurally equivalent with A′k (meaning that the indices of the zero and
non-zero elements are the same in these matrices), because Ab is computed from A′k by
multiplying its columns with positive scalar values.

From the above detailed results the following can be concluded. Let us consider a kinetic
system denoted by Σ1. Also, let’s assume that there is a Kirchhoff matrix Ab and a vector
d ∈ Rn+ that Y Ak = TY Ab, where T = diag(d). Than, there exists a kinetic system Σ̄
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described by (Y, Āk) such as Σ1 and Σ̄ are linearly conjugate and

Āk = Ab · diag(ψ(d)). (3.15)

Also, considering eq. (3.14), eq. (3.5) can be formulated as follows:

M = TY Ak (3.16)

As it can be seen, linear conjugacy can be considered as an extension of dynamical
equivalence. The two phenomena meet by taking the transformation to be the identity. It is
also clear that the qualitative properties of the solutions (number and stability of equilibrium
points, persistence/extinction of species, dimensions of invariant spaces etc.) of two linearly
conjugate KRNs are always the same.

Example. In the following example originally appeared in [75] two linearly conjugate
reaction networks are shown. The network is characterized by

Y =


1 2 2 2 1 2 1 2 1 1
2 2 1 0 0 0 0 0 1 0
0 0 0 0 0 1 2 2 2 1


and the Kirchhoff matrix A

(1)
k containing the following non-zero off-diagonal elements:

[A(1)
k ]2,1 = 1, [A(1)

k ]4,2 = 0.5, [A(1)
k ]5,4 = 1.5, [A(1)

k ]7,4 = 0.5, [A(1)
k ]1,7 = 0.5, [A(1)

k ]4,7 = 1. The
corresponding reaction graph can be seen in Fig. 3.2a.

A linearly conjugate realization can be described with the following non-zero off-diagonal
elements in the matrix A(2)

k : [A(2)
k ]2,1 = 0.001, [A(2)

k ]4,2 = 0.005, [A(2)
k ]7,4 = 0.002, [A(2)

k ]1,7 =
0.005, [A(2)

k ]4,7 = 0.001 and linear conjugacy matrix T = diag([ 1
0.001 ,

1
0.001 ,

1
0.004 ]). The

corresponding reaction graph can be seen in Fig. 3.2b. For these values, the equation for
linear conjugacy Y ·A(1)

k = T · Y ·A(2)
k holds (see eq. (3.16)).

3.1.3 Known methods to compute dynamically equivalent KRNs

The original method of computing alternative realizations is based on the natural formu-
lation of the problem as a MILP problem [25]. However, some alternative LP-based methods
(see e.g. [119] or [135]) have also been published in the literature recently. We will shortly
review these known solutions to be able to compare them with our new methods detailed in
Section 3.2.
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(a) Reaction graph of the KRN described by
(Y, A

(1)
k ).

(b) Reaction graph of the KRN described
by (Y, A

(2)
k ).

Figure 3.2: Linearly conjugate realizations of a KRN. Ci refers to the complex defined in the
ith column of Y . Isolated complexes are omitted from the figure. Reaction rates appear as
edge weights. Example appears in Subsection 3.1.2.2.

3.1.3.1 Computing dynamically equivalent realizations with MILP

Let us formulate the KRN alternative realization problem as an MILP. This formulation
has also a crucial role in one of the new LP-based methods presented later on. We will
represent the Kirchhoff matrix defined in Subsection 3.1.1 as:

Ak =


−a11 a12 . . . a1m

a21 −a22 a2m
...

...
am1 am2 . . . −amm

 . (3.17)

The Kirchhoff property of Ak can be expressed by the following linear constraints:

m∑
i=1

[Ak]i,j = 0, j = 1, . . . ,m (3.18)

[Ak]i,j ≥ 0, i, j = 1, . . . ,m, i 6= j (3.19)

Let us call eq. (3.9) and eqs. (3.18)-(3.19) altogether as kinetic constraints because they
clearly characterize the kinetic system structure of the model, and they can be considered as
a constraint set in an optimization problem.

To formulate a MILP structure, where the real-valued decision variables correspond to
the off-diagonal elements of Ak, the following additional bounds for these elements are given:

[Ak]i,j ≤ li,j , i, j = 1, . . . ,m, i 6= j (3.20)

li,i ≤ [Ak]i,i, i = 1, . . . ,m. (3.21)
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where li,j for i, j = 1, . . . ,m are appropriately chosen bounds (with sufficiently large absolute
values). Then the nonzero property of the individual reaction rate coefficients can now be
written as

δi,j = 1↔ [Ak]i,j > ε, i, j = 1, . . . ,m, i 6= j. (3.22)

where δi,j are binary decision variables, ↔ denotes the ’if and only if ’ relation, and ε is a
small positive number used for distinguishing between practically zero and non-zero values.

The linear constraints in eq. (3.22) can be translated to the following linear inequalities
[25]

0 ≤ [Ak]i,j − εδi,j , i, j = 1, . . . ,m, i 6= j (3.23)

0 ≤ −[Ak]i,j + li,jδi,j , i, j = 1, . . . ,m, i 6= j. (3.24)

From now, the constraint matrix can be formulated (see eq. (2.3)), while the minimization or
maximization of the objective function

c(δ) =
m∑

i, j = 1
i 6= j

δi,j (3.25)

leads to the computation of sparse or dense realizations, respectively.

3.1.3.2 Computing sparse realizations with an iterative LP-based technique

In [135] an LP-based algorithm is presented to search for sparse linear models of gene
regulation networks. The algorithm uses an iterative method to approximate the elements
of the Ak matrix. The approach is quite efficient: as it is mentioned in [135], the method
usually doesn’t need more than a few (less than 10) iterations to converge.

We briefly describe how to apply this method for the computation of sparse KRN
realizations. Let Apk denote the Ak in the pth step. Firstly set all off-diagonal elements of
A0
k to 1. Let us define a weight wpi,j for each off-diagonal element of Apk and initialize them

as w0
i,j = 1 for each i, j = 1, . . . ,m, i 6= j. In the pth iteration step, let us recalculate the

weights wpi,j as follows:

wpi,j = β

β + |[Ak]p−1
i,j |

for i, j = 1, . . .m, i 6= j (3.26)

for an appropriate β > 0 value. The off-diagonal elements of Apk are obtained by solving a
linear programming problem constrained by eq. (3.9) and eqs. (3.18)-(3.70) with the following
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objective function:

J = min
m∑

i, j = 1
i 6= j

wpi,j [Ak]
p
i,j (3.27)

The incorporated kinetic constraints (see eqs. (3.18)-(3.19)) ensure that in each iteration the
obtained matrix Apk represents a dynamically equivalent realization and it has the Kirchoff
property. The algorithm repeats eq. (3.27)-(3.26) until the objective value J will not change
significantly between two successive steps. At the end of the iteration process the algorithm
returns with Apk obtained in the last iteration step as a sparse realization of the network. In
the following, we will refer to this algorithm as Iterative LP.

3.1.3.3 Computing dense realizations using multiple LP steps

This method was published in [119] and it can find dense realizations in polynomial time.
The method uses m · (m− 1) LP computation steps to generate the result. We will use the
method for comparison with our new approach, therefore we summarize it for convenience
(more details can be found in [119]).

For each p, q = 1, . . .m, p 6= q, solve the optimization problem:

max cpq = [Ak]p,q (3.28)

with respect to the eq. (3.9) and eqs. (3.18)-(3.19) together with appropriate bounds eq.
(3.20)-(3.21).

The reaction Cq → Cp is present in the dense realization only if max cpq > 0. Let us
denote the solution corresponding to (p, q), p 6= q by Āpqk . Now we will use these solutions
to compute the final optimization step to generate the dense realization using the following
quantities:

εij =


1

m(m− 1)

m∑
p, q = 1
p 6= q

Āpqk


i,j

, i 6= j (3.29)

As we can see, εi,j ≥ 0 ∀i 6= j and εi,j > 0 iff the reaction Cj → Ci is in the dense realization.
By solving the following LP feasibility problem for Ak with arbitrary linear cost function,
the dense realization can be obtained:
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Y ·Ak = M∑m
i=1[Ak]i,j = 0 j = 1, . . .m

εi,j ≤ [Ak]i,j ≤ UBi,j i, j = 1, . . .m, i 6= j

[Ak]i,i ≤ 0 i = 1, . . .m

(3.30)

where UBi,j are proper upper bounds with sufficiently large positive value. In the following,
we will refer to this algorithm as Element-wise LP.

3.1.4 Weak reversibility

The existence of a dynamically equivalent or linearly conjugate weakly reversible KRN
realization can be useful in the analysis of the qualitative dynamical properties of the system
[74]. This property has a crucial role in the theory of KRNs, since it connects structural
properties of the reaction graph to qualitative features of the dynamical behavior of the
reaction network which is especially useful in the deficiency zero and deficiency one cases.
The deficiency of a reaction network can be defined as follows [47, 48]: for each reaction
Ci → Cj in the network we can define the reaction vector ek = [Y ]·,j − [Y ]·,i, k = 1, ..., r
where [Y ]·,i stands for the ith column of matrix Y . From the set of the reaction vectors the
stoichiometric subspace can be defined as S = span{e1, ..., er}. The positive stoichiometric
compatibility class containing a concentration x0 is the following set: (x0 +S)∩Rn+ where Rn+
denotes the positive orthant in Rn. The deficiency δ of a reaction network is calculated as:
δ = m− l − rank({e1, ..., er}), where m is the number of the complexes, l is the number of
linkage classes in the reaction graph. As it is formulated in the Deficiency Zero Theorem [46]
for a KRN having zero deficiency and a weakly reversible structure, there exists precisely one
asymptotically stable equilibrium point in each stoichiometric compatibility class. According
to the Boundedness conjecture for which no counterexamples have been found, the solutions
of any weakly reversible KRN are bounded. The conjecture was proved in [11] for the single
linkage class case. Moreover, there exist important general results about the existence of
equilibrium points in weakly reversible reaction networks [37, 22].

From a graph-theoretic point of view, weak reversibility holds if and only if all components
(i.e. linkage classes) of the reaction graph are strongly connected components (i.e. if there
exists a directed path between nodes Ci and Cj then there exists a directed path from Cj to
Ci).

As an example, let us consider a KRN having the following complex set:

Y =
[

1 2 1 2 1
0 0 1 1 2

]
(3.31)

and a reaction graph depicted in Fig. 3.3a. The dynamics of this reaction network can be
seen in Fig. 3.3b. Later on, the reaction graph has been extended to contain addition edges
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(a) Reaction graph. (b) Dynamics of the system.

Figure 3.3: Structure and dynamics of a reaction network. Complexes are from eq. (3.31).

(a) Reaction graph. (b) Dynamics of the system.

Figure 3.4: Structure and dynamics of a weakly reversible reaction network obtained by
extending a non-reversible network (see Fig. 3.3a.). Complexes are from eq. (3.31).

as it can be seen in Fig. 3.4a. The obtained network is weakly reversible. The corresponding
(stable) dynamics can be seen in Fig. 3.4b.

Additionally, it is known that a KRN with a Kirchhoff matrix Ak is weakly reversible if
and only if there exists a strictly positive vector in the kernel of Ak [74], i.e.

Ak · h = 0 (3.32)

hj > 0, j = 1, . . . ,m (3.33)

where h = [h1 . . . hm]T .
For simplicity, we introduce the following notions. A Kirchhoff matrix is called weakly

reversible if the corresponding reaction graph is weakly reversible. A vector p ∈ Rn is called
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strictly positive if it is element-wise strictly positive, i.e. pi > 0 for i = 1, . . . , n. Two n× n
matrices V and W are called structurally equal if the following is fulfilled: Vi,j 6= 0 if and only
if Wi,j 6= 0 for i, j = 1, . . . , n. (Therefore, two structurally equal Kirchhoff matrices encode
the same unweighted reaction graph structure.)

It can be seen that eq. (3.32) itself is a nonlinear constraint if both Ak and h are unknowns.
In order to formulate it as set of linear constraints, we can introduce a scaled Kirchhoff
matrix Ãk as follows:

[Ãk]i,j = [Ak]i,j · bj , i, j,= 1, . . . ,m (3.34)

Now, Ak corresponds to a weakly reversible KRN if and only if 1(m) = [1 1 . . . 1]T ∈ Rm is
an element of ker(Ãk). Moreover, it is trivial that Ãk is weakly reversible if and only if the
original Kirchhoff matrix Ak is also a weakly reversible one. Based on these facts, the linear
constraint set for weak reversibility can be formulated as follows:

m∑
i=1

[Ãk]i,j = 0, j = 1, . . . ,m
m∑
i=1

[Ãk]j,i = 0, j = 1, . . . ,m

[Ãk]i,j ≥ 0, i, j = 1, . . . ,m, i 6= j,

(3.35)

where Ak and Ãk are structurally equal.
3.1.4.1 The dense weakly reversible realization forms a super-structure for a

fixed complex set

It was shown in [118] that the dense realization is a unique superstructure containing all
mathematically possible reactions. In the following, we will prove that a dense and weakly
reversible realization contains all possible weakly reversible realizations if the complex set is
fixed.

Theorem 1. Consider a kinetic system Σ : ẋ = M · ψ(x). Suppose that (Y,Ak) is a weakly
reversible dynamically equivalent realization of Σ that contains the maximal number of nonzero
elements in Ak. Then, for any weakly reversible Kirchhoff matrix A′k for which Y ·Ak = Y ·A′k
the following holds: [A′k]i,j > 0 implies [Ak]i,j > 0 for any i 6= j.

Proof. (by contradiction) Consider a weakly reversible Kirchhoff matrix A′k for which Y ·Ak =
Y · A′k. Suppose that there exists 1 ≤ i, j ≤ m, i 6= j for which [A′k]i,j > 0, but [Ak]i,j = 0.
Let us define the matrix Ãk as

Ãk = Ak +A′k
2 (3.36)

Clearly, Y · Ak = Y · Ãk, and [Ãk]i,j > 0. It follows from the weak reversibility of Ak that
there exists a strictly positive vector p ∈ Rm such that Ak · p = 0. Similarly, there exists a
strictly positive vector p′ in the kernel of A′k, too. Let us define the following scaled Kirchhoff

40

DOI:10.15774/PPKE.ITK.2014.002



matrices: Āk = Ak · diag(p), Ā′k = A′k · diag(p′). Then Āk and Ā′k are Kirchhoff, and they are
structurally equal to Ak and A′k, respectively. Moreover, Āk ·1(m) = Ā′k ·1(m) = 0, where 1(m)

denotes the m dimensional column vector composed of ones. Let Âk = Āk + Ā′k. Then Âk is
a weakly reversible Kirchhoff matrix, since Âk · 1(m) = (Āk + Ā′k) · 1(m) = 0. It is also clear
that Âk is structurally equal to Ãk. This implies that Ãk is a weakly reversible Kirchhoff
matrix containing more non-zero off-diagonal elements than Ak, which is a contradiction.

To briefly illustrate the above theorem, consider a kinetic system Σ : ẋ = M · ψ(x)
characterized by the following matrices:

Y =
[

1 2 1 1
2 1 3 1

]
, M =

[
0 −2 0 2
−3 2 −2 0

]
(3.37)

This kinetic system was studied before in [73] and in [123]. A possible dense weakly reversible
realization (Y,A(1)

k ) of Σ is given by the Kirchhoff matrix:

A
(1)
k =


−3.2 1.8 0.1 0

0 −2 0 2
0.1 0.1 −1.05 0
3.1 0.1 0.95 −2

 . (3.38)

On the other hand, the following Kirchhoff matrix encodes a complex balanced and thus
weakly reversible realization (Y,A(2)

k ) of Σ (see [123]):

A
(2)
k =


−3 1.5 0 0

0 −2 0 2
0 0.25 −1 0
3 0.25 1 −2

 . (3.39)

Finally, a sparse weakly reversible realization containing only 5 reactions (Y,A(3)
k ) is defined

by:

A
(3)
k =


−3.2 2 2 0

0 −2 0 2
0.1 0 −2 0
3.1 0 0 −2

 . (3.40)

It can be easily checked that all (Y,A(1)
k ), (Y,A(2)

k ) and (Y,A(3)
k ) are dynamically equivalent

weakly reversible realizations of Σ. The reaction graph structures of the three realizations are
depicted in Fig. 3.5. It is clearly visible from the figure that the unweighted reaction graphs
of (Y,A(2)

k ) and (Y,A(3)
k ) are indeed proper subgraphs of the unweighted reaction graph of

(Y,A(1)
k ).
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(a) Dense weakly reversible struc-
ture defined by A

(1)
k .

(b) Weakly reversible structure of a
complex balanced realization given
by A

(2)
k .

(c) Sparse weakly reversible
structure with 5 reactions de-
fined by A

(3)
k .

Figure 3.5: Possible dynamically equivalent weakly reversible reaction graph structures of
the kinetic system eq. (3.37).

3.1.5 Known methods to compute dynamically equivalent, weakly reversible
KRNs

In this Subsection a short review of several different existing algorithms to find dynamically
equivalent weakly reversible realizations of a KRN can be found. Besides of two MILP-based
methods, an LP-based method has been described, too. Later on, these methods will be
compared in terms of computational time to the proposed LP-based methods (see Sec. 3.3.2).

3.1.5.1 One-step MILP procedure to compute weakly reversible realizations
with additional preferred structural properties

First, we briefly recall the part ensuring the structural equality of Ak and Ãk of the
algorithm presented in [75]. In that paper, a set of boolean decision variables are introduced
and used as follows:

[Ak]i,j > ε↔ [Ã]i,j > ε, i, j = 1, . . . ,m, i 6= j, (3.41)

where again, ↔ means the ’if and only if ’ relation from classical binary logic and ε is a
small fixed positive threshold value to distinguish between practically zero and nonzero
edge weights in the reaction network. This logical condition can be expressed in the form of
equivalent linear constraints (for the general framework, see e.g. [103]):

0 ≤ [Ak]i,j − εδi,j , i, j = 1, . . . ,m, i 6= j,

0 ≤ −[Ak]i,j + pu · δi,j , i, j = 1, . . . ,m, i 6= j. (3.42)

0 ≤ [Ãk]i,j − εδi,j , i, j = 1, . . . ,m, i 6= j

0 ≤ −[Ãk]i,j + pu · δi,j , i, j = 1, . . . ,m, i 6= j,
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where δi,j , i, j = 1, . . . ,m, i 6= j are boolean decision variables and pu is the upper bound
for the elements of Ak and Ãk.

Due to the introduction of the δ variables, the resulting problem could be solved in the
framework of MILP, making the handling of larger networks difficult. On the other hand,
these boolean variables can be used to keep track of the presence of individual reactions, and
by minimizing or maximizing the sum

∑m
i,j=1 δi,j in the objective function of the optimization

problem, a sparse or dense realization (containing the maximal or minimal number of reactions,
respectively) can be obtained [118]. It should be noted that this method do not scale up very
well with the size of the network due to the integer variables in the optimization.

3.1.5.2 Graph-theory inspired, iterative procedure to find dense weakly re-
versible realizations

In [123] a completely different, graph-theory motivated method is presented (only for
the case of dynamical equivalence) which leads to an iterative MILP-based algorithm. The
algorithm requires Y and M as inputs, and computes an initial dense realization for them.
Afterwards, it determines all the edges in the network that connect different strong components.
In the next step, by solving an MILP problem a valid dense realization is determined without
these edges (if it exists). These steps are repeated until the reaction graph of the resulting
KRN is found to be weakly reversible. The algorithm ends with failure if there does not
exist any dynamically equivalent realization that does not contain the directed edges to be
excluded.

In the original publication, an MILP problem is solved in each iteration step. Fortunately,
as it is described in [1], the MILP problem for the computation of dense reaction structures
can be safely replaced with a purely LP-based algorithm. This enables us to significantly speed
up the solution process of the original method published in [123]. Therefore, we implemented
and used the LP-based modified version of this graph-theory inspired algorithm for the
present work to compare its performance to our new methods. This algorithm will be shortly
called the graph-based-LP method in this work.

3.1.6 Mass conservation in KRNs

During the mathematical generalization of mass-action KRN systems the mass conserva-
tion assumptions which are present in classical chemical theory were usually omitted, because
this property is not essential for the kinetic representation of general nonlinear systems.
However, mass conservation is an important constraint when modeling physically plausible
reaction sets [61].

In [61] (stoichiometric) mass conservation is formulated as follows. Let us define gv as the
scaled molecular weight of the species Xv with strictly positive value. If reaction Ci → Cj is
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present in the network, the following can be written:

n∑
v=1

αvigv =
n∑
v=1

αvjgv = cs. (3.43)

where cs is a strictly positive scalar value. Let us define vector g ∈ Rn+ as a row vector
formulated from the scaled molecular weights. Now eq. (3.43) can be rewritten as g ·Y (·, i) =
g · Y (·, j) = cs where Y (·, i) refers to the ith column of matrix Y . Finally, it can be said that
a reaction is mass conservative if the following holds:

g · ρ(i,j) = 0 (3.44)

where ρ(i,j) = Y (·, i)−Y (·, j) is the reaction vector and g is strictly positive. In [61] the mass
conservative reaction set is defined as a set of the reactions having the above property. It
should be noted that a given KRN is called mass conservative if all of its reactions are in the
mass conservative reaction set and a common strictly positive g can be determined for them.

In Section 3.4, an algorithm will be defined to compute dynamically equivalent realizations
which are mass conservative in the above defined sense.

3.2 Finding dynamically equivalent realizations with LP

In Subsection 3.1.2 it has been mentioned that in case of a specific KRN with given
dynamics and fixed complex set, different (Y,Ak) pairs can fulfill eq. (3.9). Based on these,
one can define structural properties such as minimal or maximal number of nonzero elements
in matrix Ak and search for alternative representations of the given network which fulfill
these criteria. In this particular case, we want to determine the sparse and dense realizations
denoted by (Y s, Ask) and (Y d, Adk), respectively.

Using the 3-dimensional Lorenz system introduced in Subsection 3.1.2, the validation
of the proposed methods on a small-scale KRN has been completed. The comparative
performance analysis of the presented methods on large random networks is detailed in
Subsection 3.2.3. Let us note that it is known from [128] that this system can be represented
by KRNs having 3 species and 13 complexes with sparse realizations containing 13 off-diagonal
non-zero elements, and its dense realization contains 51 off-diagonal non-zero elements.

In this Section, the results corresponding to Thesis I. (see 4.3.3) are detailed.
3.2.1 Finding sparse realizations

The results in [38] show that in the case of large size, under-determined system of linear
equations (even in the case of non-negative decision variables) formulated as Ax = b, the
l1-norm based minimization can produce a sparse solution out of the infinitely many possible
solutions of the problem. Furthermore, in [39] it has been shown that similar technique can be
used to find sparse nonnegative solutions for these kind of problems. In this context, sparse

44

DOI:10.15774/PPKE.ITK.2014.002



solution means that the given x vector contains the minimal number of non-zero elements. In
other words, under specific conditions, the combinatorial optimization problem of finding the
sparse realization can be efficiently approached as a convex optimization problem. This is
possible if the solution vector x with length n is sparse enough: it should not have more than
ρ · n nonzero elements. In [38] an empirical limit ρ = 0.3 is suggested, we also used this value.

The l1 minimization method is applied in our case as follows. Recall that in a given KRN
there are n species and m complexes. The equality constraints of the optimization problem
are the kinetic constraints (see eq. (3.9) and eqs. (3.18)-(3.70)). For a single column of Ak
containing m elements, the number of kinetic constrains will be n + 1. Hence, in case of
n+ 1 < m the emerging equality-type constraints as a system of linear equations remains
under-determined. Therefore, a column-wise l1-norm based minimization is completed and
the resulting vectors are considered as the column vectors of the sparse realization of the
KRN:

min
m∑
i=1

abs([Ak]i,j) for ∀j = 1, . . .m, i 6= j (3.45)

Let us denote the ratio of non-zero and zero elements in [Ak]·,j as τ . If τ < ρ ·m, then the
minimization successfully finds the sparse solution. In the following, we will refer to this
algorithm as the l1-norm based algorithm.

Computing the sparse realization of the 3-dimensional Lorentz system took 17.172 seconds
in case of the MILP based method. Iterative LP were able to find a valid sparse realization
in 0.0144 seconds while the proposed l1-norm based sparse search can complete this task in
0.0166 seconds.

The above presented results are summarized in Thesis I.a. Detailed computational results
can be found in Subsection 3.2.3. These results were originally published in [1].
3.2.2 Finding dense realizations

The proposed method is based on the construction of the MILP problem formulation
given in Subsection 3.1.3. The main idea was to formulate the problem by relaxing the
integrality constraints and then solve the remaining LP problem. By maximizing the sum of
the relaxed auxiliary variables, the number of directed edges (i.e. the number of non-zero
off-diagonal elements of Ak) is maximized, too, in the reaction graph of the KRN.

The constraint matrices were built up again using the kinetic constraints (eqs. (3.18)-
(3.19)). Similarly to the MILP case, a set of auxiliary variables were defined: a σi variable for
each decision variable ai (recall that each decision variable represents an off-diagonal element
of the Ak matrix). All these auxiliary variables are real valued. The constraints keeping track
of nonzero reaction rate coefficients are given by

σi = 1←→ ai > εe (3.46)

where εe is a minimal (naturally positive) edge weight under which the edge is excluded from
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the network (i.e. the corresponding reaction rate coefficient is considered zero). After the
relaxation of the integrality constrains the relation in eq. (3.46) becomes:

ε · σi ≤ ai (3.47)

where σi ∈ [0; 1] and ε > 0 is a sufficiently small number, but ε > εe. By considering ε as a
scaling factor, after short reformulation we obtain:

−ai + σi ≤ 0 (3.48)

σi ∈ [0; ε] (3.49)

where ineq. (3.48) is formulated as a constraint and eq. (3.49) is formulated as lower and
upper bounds in the LP problem.

Now the optimization problem is defined as follows:

max
m∑
i=1

σi (3.50)



Y ·Ak = M∑m
i=1[Ak]i,j = 0 j = 1, . . .m

0 ≤ σi ≤ ε i = 1, . . .m

−ai + σi ≤ 0 i = 1, . . .m

(3.51)

Let us show that the solution of the above optimization problem indeed determines the
dense network: suppose that a given edge (corresponding to the decision variable ai) can be
present in the network which means that there is no such kinetic constraint which forbids
that ai could be larger than zero. In this case, according to the constraint formulated in ineq.
(3.48), σi > 0 will occur which yields ai ≥ ε. Because of ε > εe, the edge will be present in
the network. In the opposite case, when the edge represented by ai should be excluded from
the network according to the kinetic constraints, ai = 0 leading to σi = 0 according to ineq.
(3.48). As a result of the maximization, a dense realization with edge weights larger than εe
is obtained. In the following, we will refer to this algorithm as the LP-MAX algorithm.

Computing the dense realization of the 3-dimensional Lorentz system was also successfully
computed by all three algorithms. The original MILP based algorithm completed it in 5.3477
seconds, Element-wise LP consumed 0.2524 seconds, and the LP-MAX algorithm needs
0.0446 seconds to compute the solution.

The above presented results are summarized in Thesis I.b. Detailed computational results
can be found in Subsection 3.2.3. These results were originally published in [1].
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3.2.3 Comparative study of the presented algorithms

Both the l1-norm based search and the LP-MAX methods were involved in a comparative
study in which extensive simulations were completed to evaluate the performance of the
proposed methods. Large scale problems were investigated to present the capability of dealing
with biologically relevant problems, too. The MILP-based methods and the LP-based methods
presented in Subsection 3.1.3 were used as a basis of comparison. These results were originally
published in [1].

To solve the LP problems, we used the CLP solver [138] from the COIN-OR community.
The formulated MILP problems were solved by the DIP solver [52] from the COIN-OR
community [139] because it can solve these type of problems very efficiently. All the simulations
were done on a 8-core 3.0GHz computer. The computational problems were handled in
MATLAB environment with the help of the CRNReals Toolbox [117] and YALMIP Toolbox
[82].

All the methods were tested on several large, randomly generated KRNs to be able to
test their performance and time consumption of the solution. The methodology of generating
the random kinetic systems was the following. n as the number of species and m as the
number of complexes were defined as parameters. First, a polynomial representation of the
system with the given parameters was generated. Then a kinetic polynomial system of the
form eq. (3.10) was generated where the elements of M were uniformly distributed random
real numbers from the interval [10, 110]. The exponents of the monomials of ψ were chosen
as uniformly distributed random integers from the interval [0, 5]. This kinetic polynomial
system was converted to a so-called canonical KRN representation (Y,Ak) as it is described
in [62].

Altogether more than 100 different scenarios were used to examine the performance of
the proposed algorithms. The networks used during these tests were different both in their
structure and in their size. In the following, the numerical results of some scenarios are
presented. More results can be found in an electronic supplement at
http://daedalus.scl.sztaki.hu/PCRG/works/CRN_Alter_Struct.zip.

In all cases the following numerical values were used: reactions having reaction rate
smaller than 10−6 were handled as zero in the networks. Let us consider two different
realizations of the same KRN, namely (Y,A1

k) and (Y,A2
k) and define the R matrix as follows:

R = abs(Y ·A1
k − Y ·A2

k). These two realizations were considered as dynamically equivalent
representations if R < 10−3.

In Table 3.1, the summary of the search for the sparse realization can be found. Each row
represents a different problem size: the number of species was fixed to 10 but the number
of complexes was increased to enlarge the computational task. In the first row block the
number of off-diagonal non-zero elements can be found in the resulting Ak matrices. One
can see the match in the values which implies that all the algorithms successfully found the
realization containing the minimal number of reactions. In the second row block, the running
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Number of complexes Number of reactions in the sparse realization
l1-norm based MILP-based Iterative LP

220 200 200 200
330 300 300 300
440 400 400 400
550 500 500 500

Computational time (s)
220 0.49 603.32 29.16
330 1.55 1597.21 134.17
440 3.35 2784.53 447.85
550 4.22 4330.62 1028.59

Table 3.1: Comparing the LP- and MILP-based methods while searching for the sparse
realization. The size of the computational problem grows as the number of complexes
increases.

Number of complexes Number of reactions in the dense realization
LP-MAX MILP-based Element-wise LP

220 4380 4380 4380
330 10528 10528 10528
440 18438 18438 18438
550 30936 30936 30936

Computational time (s)
220 6.25 1413.16 156.41
330 35.53 2251.98 703.77
440 66.71 3828.73 1736.76
550 304.75 5422.87 4093.58

Table 3.2: Comparing the LP- and MILP-based methods while searching for the dense
realization. The size of the computational problem grows as the number of complexes
increases.

time of the algorithms can be seen while evaluating the previously presented scenarios. In
Table 3.2, the result of the search for the dense superstructure is summarized. The structure
of the table is similar to Table 3.1. To summarize the above presented results we can say
that the presented new, LP-based algorithms successfully compute both the dense and sparse
realizations while outperform all the previously presented methods. With the help of these
methods the computation of the alternative realizations of biologically relevant, large size
networks can be done efficiently.

3.2.4 Possible parallelization of the proposed algorithms

As the size of the emerging computational problem grows during the search for the
alternative realizations, the need for possible parallelization is increasing. Fortunately, as
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the reader can notice, all the proposed algorithms can be parallelized easily because all the
optimization problems are built up by taking the Ak matrix column-wise. Moreover all the
results of the optimizations are incorporated into the final result independently of each other.

This means that in case of having an Ak matrix with size m × m the search for the
alternative realizations (both in case of sparse and dense realizations) can be split up into
m independent, parallelly solvable problems. This gives the opportunity to gain even more
speedup in the solution process.

3.2.5 Finding sparse/dense realizations in case of large kinetic reaction
networks

As it was mentioned before, we would like to use our methods to study the possible
structures of large scale, biologically relevant networks. As a case study the ErbB network
described in [29] was investigated and the obtained results were originally published in [1].
The ErbB signaling pathways regulate several physiological responses such as cell survival,
proliferation and motility. The malfunction or hyperfunction of these pathways are involved
in the explanation of various types of human cancers. These types of pathways are under
active examination as possible drug targets.

In our representation the ErbB signaling pathway model consists of 504 species, 1082
complexes and 1654 reactions. The model description was originally a sparse representation.
With the help of the LP-MAX algorithm the dense realization is computed. The algorithm
using the MILP approach was unable to complete the optimization within reasonable time.
The resulting dense realization contains 1683 reactions: 29 mathematically possible extra
reactions originating from 15 different complexes compared to the published model. The
overall computational time was 4993 seconds. The extra reactions introduced into the network
can be seen in Fig. 3.6. The list of the extra reactions can be found in Table 3.3. The notations
of the complexes in Table 3.3 are the same as in the original model description published at
[141].

The sparse realization was also extracted from the dense realization with the help of the
l1-norm based sparse search. The resulting network had the same structure as the original
sparse representation. The computational time was around 430 seconds.

3.3 Finding dynamically equivalent weakly reversible realiza-
tions with LP

In the following, new, LP-based methods will be introduced to compute weakly reversible
realizations of KRNs. The presented methods are compared to the previously enumerated
methods known from the literature (see Subsection 3.1.5 for details) in terms of computational
time while trying to find weakly reversible realizations of large-size KRNs.
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Figure 3.6: Structure of the Ak matrix representing the dense realization of the ErbB network.
The differences between the sparse and dense realizations are colored and marked by the
arrows.

3.3.1 Introduction of new algorithms to compute weakly reversible real-
izations

The algorithms to compute weakly reversible realizations of KRNs presented in the
literature are based on MILP, which makes them computationally hard. Thus, the analysis
of large scale networks is practically impossible. Besides of that, these algorithms are unable
to handle the phenomena of linear conjugacy.

In the following, two LP-based methods are introduced. The first can compute dynamically
equivalent, weakly reversible realizations of KRNs while the other is able to extend the search
to linearly conjugate networks.
3.3.1.1 New, LP-based method to compute dynamically equivalent weakly re-

versible realizations

In [2] a new, LP-based method appeared to compute dynamically equivalent, weakly
reversible realizations of KRNs. In the following this algorithm, shortly referred to as WR-LP1
in the rest of the thesis, is briefly introduced.

Let us denote the ith column of Ak and M with zi and mi, respectively. Then eq. (3.9)
can be written as

Y zi = mi, i = 1, . . . ,m (3.52)

It is well-known from linear algebra that all solutions for eq. (3.52) can be characterized as the
sum of particular solutions and the linear combinations of the solutions of the homogeneous
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Starting complex → ending complex
1. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K + PIP3

→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2
2. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2

→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2

3. PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2

4. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2

5. PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3

6. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3

7. PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4

8. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4

9. PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)5

10. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)5
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4
→ PIP3 + (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)5

11. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K + PIP2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2 + PIP2

12. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2 + PIP2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:PIP2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2 + PIP2

13. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2 + PIP2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3 + PIP2

14. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3 + PIP2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)3
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4 + PIP2

15. (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4 + PIP2
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)4
→ (ErbB3:ErbB2)_P:GAP:Grb2:Gab1_P:PI3K:(PIP2)5 + PIP2

Table 3.3: List of all the extra reactions in the dense realization of the ErbB signaling pathway
network. 29 mathematically possible extra reactions originating from 15 different complexes
were found.
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system that can be written as

zi = z(p)
i +

r∑
j=1

κi,jz(f)
j , i = 1, . . . ,m (3.53)

where κi,j ∈ R, r is the nullity (i.e. kernel dimension) of Y , z(p)
i is a particular solution for

(3.52), and z(f)
j is the jth kernel base vector of Y . Since Y and M are given, z(p)

i and z(f)
j

are known for i = 1, . . . ,m and j = 1, . . . , r. Thus, the unknowns in the problem will be the
coefficients κi,j .

Recall eq. (3.32), namely that a KRN is weakly reversible if and only if there is a strictly
positive vector h = [h1 . . . hm]T in the kernel of the matrix Ak. Then the condition eq.
(3.32) is given by

m∑
i=1

zihi = 0. (3.54)

Substituting eq. (3.53) into eq. (3.54) gives

m∑
i=1

z(p)
i hi +

m∑
i=1

r∑
j=1

hiκi,jz(f)
j = 0 (3.55)

Let us introduce the following new variables

vi,j = hiκi,j , i = 1, . . . ,m, j = 1, . . . , r (3.56)

Using this notation, eq. (3.55) reads

m∑
i=1

z(p)
i hi +

m∑
i=1

r∑
j=1

vi,jz(f)
j = 0 (3.57)

that is now linear in the variables hi and vi,j .
We are in a lucky situation considering the sign constraints of the elements of the original

matrix Ak, since h is element-wise strictly positive (i.e. multiplying with h does not alter
the signs of the elements in Ak). Let us denote by z(p)

i,j and z(f)
i,j the jth scalar elements of

the vectors z(p)
i and z(f)

i , respectively. Then we can set the following constraints:

z
(p)
i,k hi +

r∑
j=1

vi,jz
(f)
j,k ≥ 0, i, k = 1, . . . ,m, i 6= k (3.58)

z
(p)
i,i hi +

r∑
j=1

vi,jz
(f)
j,i ≤ 0, i = 1, . . . ,m. (3.59)

For convenience and easy implementation, the steps of the WR-LP1 algorithm are
summarized in Table 3.4, where the input data are Y and M , and the output is the Kirchhoff
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Ak=WR-LP1(Y ,M)
1 Ak:=0 ∈ Rm×m

2 Determine the particular and homogeneous solutions z(p)
i

for i = 1, . . .m, and z(f)
j for j = 1, . . . , r from eq. (3.52).

3 Check the feasibility of eq. (3.55) and eqs. (3.58)-(3.59) with variables h and v
as a linear programming problem with arbitrary linear objective function.

4 If there exists a feasible solution:
5 Determine κi,j from eq. (3.56).
6 Compute the values of the original variable Ak according to eq. (3.53).
7 return Ak;
8 Else
9 return 0;

Table 3.4: Steps of the method WR-LP1 for finding weakly reversible, dynamically equivalent
realization.

matrix of the computed weakly reversible dynamically equivalent realization if such exists, or
0 if the problem is infeasible.

3.3.1.2 New, LP-based method to compute linearly conjugate weakly reversible
realizations

In this Subsection, we are going to present a new algorithm which is related to the MILP-
based method briefly summarized in Subsection 3.1.5. The presented results correspond to
Thesis II. (see 4.3.3). The mentioned method is now extended to be able to deal with linear
conjugacy and is also modified to eliminate the boolean decision variables from the model to
obtain an LP-based algorithm. This algorithm originally appeared in [2].

Let us assume that the matrix M defined in eq. (3.9) containing the monomial coefficients
of a kinetic system is given. It is known from [74] that linear conjugacy between two KRN
models can be expressed by the following constraints:

M = T · Y ·Ak (3.60)
m∑
i=1

[Ak]i,j = 0, j = 1, . . . ,m (3.61)

[Ak]i,j ≥ 0, i, j = 1, . . . ,m, i 6= j, (3.62)

di > 0, i = 1, . . . , n, (3.63)

where the unknowns are the parameters of the positive diagonal transformation T = diag(d),
and the off-diagonal elements of the Kirchhoff matrix Ak. The actual Kirchhoff matrix A′k of
the KRN realization that is linearly conjugate to the original kinetic system eq. 3.10 defined
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by M and Y , can be computed from Ak and d using the following scaling (see for [74] the
details):

A′k = Ak · diag(ψ(d)). (3.64)

Additionally, we use the auxiliary variable Ãk defined in eq. (3.34) and constraints (3.35) to
ensure weak reversibility, where again, Ak and Ãk are structurally equal.

Using the fact that the off-diagonal elements of Kirchhoff matrices are non-negative,
we can enforce the structural equality of Ak and Ãk in our improved method using linear
constraints without integer variables. Similarly to the solution in [74] (the constraints of which
were summarized in eqs. (3.41)-(3.42)), we consider an off-diagonal element of a Kirchhoff
matrix practically nonzero if it is greater than an appropriately chosen small positive value
pl such that 0 < pl � 1. (This means that off-diagonal elements less than pl are truncated to
zero in Ak and Ãk.) Moreover, the following upper bounds are assumed for the off-diagonal
elements of Ak and Ãk with pu = 1

pl
.

[Ak]i,j < pu and [Ãk]i,j < pu for i, j = 1, . . . ,m, i 6= j. (3.65)

Now we set the following constraints for ensuring the structural equality of Ak and A′k.

[Ak]i,j − p2
u · [Ãk]i,j ≤ 0, i, j = 1, . . . ,m, i 6= j (3.66)

−[Ak]i,j + p2
l · [Ãk]i,j ≤ 0, i, j = 1, . . . ,m, i 6= j (3.67)

Let us examine the correctness of the constraints (3.66)-(3.67). For this, we have to take into
account the upper bounds in eq. (3.65), too.

• If [Ak]i,j > pl and [Ãk]i,j > pl then one can see that [Ak]i,j < p2
u · [Ãk]i,j so ineq. (3.66)

is fulfilled. Moreover, because [Ak]i,j > p2
l · [Ãk]i,j , ineq. (3.67) holds, too.

• If [Ak]i,j = 0 and [Ãk]i,j = 0 then ineqs. (3.66) and (3.67) are trivially fulfilled.

• If [Ak]i,j > pl and [Ãk]i,j = 0 then ineq. (3.66) is violated.

• Similarly, if [Ak]i,j = 0 and [Ãk]i,j > pl then ineq. (3.67) is violated.

In summary, the linear constraint set containing only continuous variables to find weakly
reversible linearly conjugate KRN realizations is the following: eq. (3.60) stands for the linear
conjugacy, (3.61)-(3.62) encode the Kirchhoff property of Ak, and ineq. (3.63) ensures the
positivity of the linear conjugacy transformation T . Constraints (3.35) introduce a scaled
auxiliary Kirchhoff matrix Ãk that is weakly reversible, and finally, (3.66)-(3.67) ensure
the structural equality of Ak and Ãk. The input data of the method are Y and M and the
decision variables are the matrix elements [Ak]i,j , [Ãk]i,j for i, j = 1, . . . ,m, i 6= j, and the
scaling factors dk for k = 1 . . . , n for the transformation T . Clearly, the feasibility of the
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constraints can be checked within the framework of linear programming. In this case, the
objective function can be utilized to prescribe certain additional properties of the solution (if
it exists). For example, to obtain a sparse weakly reversible realization of the studied kinetic
system, the l1-norm of the elements of Ak can be minimized, provided that the number of
complexes in the KRN is large enough [40, 1].

Later on, we will refer to this method as the WR-LP2 algorithm.

3.3.2 Performance analysis of the different methods

The capabilities of the above presented algorithms are illustrated through three examples.
The presented results originally appeared in [2]. In the first example a dynamically equivalent
weakly reversible realization does not exist but interestingly, a linearly conjugate, weakly
reversible one does exist, and both cases are handled correctly by the applied computational
method. The second example highlight a case where the algorithms are able to show the
non-existence of a dynamically equivalent weakly reversible realization of a given KRN, as it
is previously expected. Finally, the algorithms are compared in terms of computational time.
All the computations were performed in the same environment described in Subsection 3.2.3.
The CLP solver [138] was used to solve the LP problems, while the GLPK solver [142] was
used to compare the results with the previously published MILP-based method [74]. The
threshold to discriminate between zero and nonzero rate coefficients was set to 10−3.
Example 1. In this example which originally appeared in [75], a reaction network is
shown which doesn’t have a dynamically equivalent weakly reversible realization, but it has
a linearly conjugate weakly reversible one. The network is characterized by

Y =


1 2 2 2 1 2 1 2 1 1
2 2 1 0 0 0 0 0 1 0
0 0 0 0 0 1 2 2 2 1


and the Kirchhoff matrix Ak containing the following non-zero off-diagonal elements: [Ak]2,1 =
1, [Ak]4,2 = 0.5, [Ak]5,4 = 1.5, [Ak]7,4 = 0.5, [Ak]1,7 = 0.5, [Ak]4,7 = 1. One can see that this
(Y,Ak) realization is non-reversible.

Firstly, while applying the presented WR-LP2 algorithm on the above described system,
we have fixed the T matrix as an identity. This means that instead of looking for linearly
conjugate realizations during the search, only the dynamically equivalent realizations were
considered. The algorithm found the constraint set infeasible as expected.

Then, by relaxing the fixed value of the matrix T we enabled the search for linearly
conjugate realizations, too. Now the algorithm succeeded, determining a linearly conjugate
weakly reversible realization with the following non-zero off-diagonal elements in the matrix
A

(2)
k : [A(2)

k ]2,1 = 0.001, [A(2)
k ]4,2 = 0.005, [A(2)

k ]7,4 = 0.002, [A(2)
k ]1,7 = 0.005, [A(2)

k ]4,7 = 0.001
and linear conjugacy matrix T = diag([ 1

0.001 ,
1

0.001 ,
1

0.004 ]). For these values, the equation for
linear conjugacy Y ·Ak = T · Y ·A(2)

k holds (see eq. (3.60)).
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Example 2. Let us consider the KRN representation of the classical 3-dimensional kinetic
Lorenz system as it is described in Subsection 3.1.2.1. The system is characterized by the
matrices (Y l, Alk) from eq. 3.13.

The WR-LP2 algorithm found the problem infeasible during the search for dynamically
equivalent and linearly conjugate weakly reversible realization. This coincides with the results
of [128], where several thousand dynamically equivalent sparse realizations were computed
with an efficient method, but none of them was weakly reversible.

Example 3. In this example containing several randomly generated KRNs, the results
of the performance comparison of the presented algorithms are summarized while dealing
with large scale networks. As it was shown, all three algorithms, namely the graph-based
method and the WR-LP1 method presented in Subsection 3.1.5, and the WR-LP2 method
from Subsection 3.3.1.2 are purely LP-based algorithms. To be able to compare the three
methods, only dynamically equivalent realizations were searched for.

All the algorithms were tested on a set of randomly generated KRNs. All the networks
were built up from 10 species but contained different number of complexes: scenarios with 9,
30, 56, 90 complexes were set up, respectively. The methodology of generating the random
kinetic systems was the same as in Subsection 3.2.3. The obtained random KRN was extended
with additional directed edges (if needed) to ensure that the resulting reaction graph is
weakly reversible. This step was solved as an unweighted graph augmentation task [44, 98].
The Kirchhoff matrix of the augmented weakly reversible network is denoted by A′k. The
inputs for the realization computation algorithms were the matrices Y and M ′ = Y ·A′k.

The evaluation of the effectiveness of the algorithms - i.e. how the solution time is changing
as the size of the computational task is growing - can be found in Table 3.5. The columns
of the table show the size of the matrix Ak (i.e. the number of complexes in the network)
which basically determines the number of variables and constraints (depending also on the
individual method). For each problem size, 10 different random KRNs were tested. In some
cases the solver was unable to solve the problem in the given time limit (300s), these were
considered as unsuccessful solution attempts. For any method, no incorrect solutions were
obtained. Only the successful solutions were taken into account during the calculation of the
average solution times. One can find the number of successful solutions (out of the original
10 problems for each problem size) in the corresponding rows of Table 3.5. In the remaining
rows, the averaged solution times and the sizes of the generated LPs can be found for each
algorithm.

One can note, that despite of the fact that both the WR-LP1 and the WR-LP2 algorithms
solve a single LP problem, there is a significant difference between the solution times. This is
caused by the different structure of the problem generated by the two algorithms. Although
the number of variables and constraints is higher, the algorithm WR-LP2 generates a clear
and sparse structure both for the equality and inequality constraints as it can be seen in
Fig. 3.8, while WR-LP1 generates a nearly full coefficient matrix to describe the equality
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Network size (m) 9 30 56 90
Graph-based-LP

time (s) 0.04 0.77 4.26 18.98
success 10/10 10/10 10/10 10/10

# of optim. vars * 14 37 65 101
# of eq. constr. * 4 6 8 10
# of ineq. constr. * 14 37 65 101

WR-LP1
time (s) 0.001 2.04 5.98 -
success 10/10 10/10 4/10 0/10

# of optim. vars 63 780 2800 7380
# of eq. constr. 9 30 56 90
# of ineq. constr. 81 900 3136 8100

WR-LP2
time (s) 0.003 0.23 1.62 11.28
success 10/10 10/10 10/10 10/10

# of optim. vars 162 1800 6272 16200
# of eq. constr. 45 210 504 990
# of ineq. constr. 324 3600 12544 32400

Table 3.5: Comparison of the presented algorithms in terms of computational time while
dealing with KRNs having different sizes. WR-LP2 algorithm outperforms all the other
methods. All the compared methods are based on LPs as the constrained dense search is
also implemented with LP for the graph-based method. The size of the generated LPs also
appear in the table. *: the graph-based method calculates m2 LPs with the given size.

constraints (see Fig. 3.7). This fact has a serious effect on the computational time of the
solution of the corresponding LP problems causing that WR-LP1 can not complete the
computation within the predefined time limit in the case of larger networks.

3.4 Finding dynamically equivalent realizations with mass
conservation

In this Section, we introduce additional constraints into the optimization problem originally
defined in [118] to ensure that the resulting realizations, besides other requirements, also
fulfill the mass-conservation property. The resulting computation method of the realizations
leads to an MILP problem. The presented results correspond to Thesis II. (see 4.3.3) and
originally presented in [4].

Recall that the linear constraints corresponding to the mass action dynamics and the
Kirchhoff property can be originated from eq. (3.9) and (3.8) leading to the form defined in
eqs. (3.18)-(3.19).

Considering eq. (3.44) in order to ensure the mass-conservation property, a reaction
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(a) Structure of the matrix describing the equality
constraints in the LP problem. The size of the matrix
is 9 × 63.

(b) Structure of the matrix describing the inequality
constraints in the LP problem. The size of the matrix
is 81 × 63.

Figure 3.7: Structure of the constraint set in case of the WR-LP1 algorithm. Rows and
columns represent constraints and variables, respectively. The original KRN contains 2 species
and 9 complexes. Non-zero elements of the matrices are marked. It can be seen that that the
equality constraints formulate a nearly full matrix.

(a) Structure of the matrix describing the equality
constraints in the LP problem. The size of the matrix
is 45 × 162.

(b) Structure of the matrix describing the inequality
constraints in the LP problem. The size of the matrix
is 324 × 162.

Figure 3.8: Structure of the constraint set in case of the WR-LP2 algorithm. Rows and
columns represent constraints and variables, respectively. The original KRN contains 2
species and 9 complexes. Non-zero elements of the matrices are marked. As one can note,
the algorithm generates sparse constraint matrices with clear structure.

between complex i and j can be present if and only if g · ρ(i,j) = 0 where g is the vector of
scaled molecular weights and ρ(i,j) = [Y ]·,i − [Y ]·,j is the reaction vector [10]. This constraint
is formulated for each (i, j) pair i, j = 1, . . . ,m, i 6= j in the following way:

g · ρ(i,j) = 0 ⇒ [Ak]i,j + [Ak]j,i ≥ 0 (3.68)

where ⇒ stands for the logical implication operation. To keep track of which complexes are
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able to react with each other (while preserving the mass-conservation) we introduced an
auxiliary binary valued decision variable δl, l = 1, . . . ,m · (m− 1)/2 for each constraint in
the following way:

g · ρ(i,j) = 0 ⇒ δl = 0
g · ρ(i,j) 6= 0 ⇒ δl = 1

(3.69)

δl = 0 ⇒ [Ak]i,j + [Ak]j,i ≥ 0 (3.70)

δl = 1 ⇒ [Ak]i,j + [Ak]j,i = 0 (3.71)

where eq. (3.70)-(3.71) control the reaction graph structure: if reaction Ci → Cj is forbidden
then [Ak]i,j is forced to be 0, otherwise it has a non-negative value. After proper reformulation,
these constraints can be incorporated into the MILP problem.

The proper bounds for the elements of g is introduced to ensure that g is a strictly
positive vector. Also, if the problem in question dictates it, it is possible to exclude isomers
(i.e. species with the same scaled molecular weights) by adding the following constraint:
g(i) 6= g(j), i, j = 1, . . . , n, i 6= j.

Finally, a KRN which fulfills all the constraints is obtained by evaluating arbitrary
objective function with respect to the above listed constraints, where the optimization
vector consists of the elements of matrix Ak and vector g as real-valued variables, and
m · (m− 1)/2 binary valued variables obtained from eqs. (3.68)-(3.71). It should be noted
that specific objective functions can lead to realizations having further special properties, e.g.
minimal/maximal number of reactions etc.

The size of the emerging MILP problem is mainly determined by the number of appearing
auxiliary binary variables which has the magnitude O(m2).
Example. Let us consider the following kinetic ODEs:

ẋ1 = −2x2
1x2 + 4x2

2 − 2x4
1

ẋ2 = x2
1x2 − 2x2

2 + x4
1 (3.72)

The so-called “canonical” reaction graph of eq. (3.72) can be formulated with the help of the
algorithm described in [62]. The resulting reaction network is depicted in Fig. 3.9a where the
complex composition matrix is the following:

Y =
[

2 1 0 1 4 3 2 0 4
1 1 2 2 0 0 2 1 1

]
(3.73)

The non-zero off-diagonal elements of the matrix Ak describing the reaction graph are the
following: Ak(2, 1) = 2, Ak(7, 1) = 1, Ak(4, 3) = 4, Ak(8, 3) = 2, Ak(6, 5) = 2, Ak(9, 5) = 1.
Based on eq. (3.5) the algebraic structure of the system can be characterized by the following
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(a) Canonical realization of eq. (3.72). (b) A mass conservative realization of
eq. (3.72).

Figure 3.9: The canonical and an alternative, dynamically equivalent mass conservative
realization of the dynamical system described in (3.72) In both subfigures, node numbers
refer to the columns of Y from eq. (3.73). Elements of Ak and Amck appear as edge weights
on the proper subfigures.

matrix:

Y ·Ak =
[
−2 0 4 0 −2 0 0 0 0
1 0 −2 0 1 0 0 0 0

]

It can be seen that this realization is not mass conservative because in each linkage class at
least one semi-positive reaction vector can be found.

By applying the proposed algorithm with the maximization of the cost function, a
dynamically equivalent reaction network was found, which fulfills the mass-conservation
property. The resulting reaction graph is presented in Fig. 3.9b. Isolated complexes (i.e. those
complexes which do not react with any other) were omitted. By looking at the reaction
vectors in the reaction graph and the obtained vector of scaled molecular weights g = [1 2],
the presence of the mass-conservation property can be seen. The resulting reaction graph
is described by matrix Amck in which the non-zero off-diagonal elements are the following:
Amck (3, 1) = 1, Amck (1, 3) = 2, Amck (1, 5) = 1. For this system the complex composition matrix
Y is still the one from eq. (3.73). It can be seen that Y · Ak = Y · Amck . Therefore the two
systems are dynamically equivalent based on eq. (3.11).

3.5 Summary

In this Chapter a set of new algorithms were proposed to compute alternative realizations
of KRNs with prescribed structural/dynamical properties. By analyzing the properties of the
system model and the classical MILP-based description, simplified algorithms were developed
which have polynomial complexity. Also, it has been shown that new, physically meaningful
phenomena (such as mass conservation) can be incorporated into an optimization-based
framework applied to the computation of alternative realizations.

Two new algorithms were introduced to compute dynamically equivalent realizations of
reaction networks having minimal and maximal number of reactions in Sections 3.2 and
3.3, respectively. The algorithms formulate the problems in an LP-framework, thus they are
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capable to deal with large-scale, biologically meaningful reaction networks. The algorithms
replace the previously published MILP-based methods which have complexity issues if the
size of the network is increased. The correctness of the new algorithms has been shown. They
were compared to the classical, combinatorial optimization based techniques with respect to
the solution time in case of several reaction networks having different sizes. The algorithms
can be easily applied in a parallel framework, too.

Also, linear programming based methods were have developed and analyzed to compute
dynamically equivalent weakly reversible realizations of kinetic systems. Similarly to a result
published in [122], it was shown that the dense dynamically equivalent weakly reversible
realization structure of a kinetic system contains all other possible dynamically equivalent
weakly reversible structures as proper subgraphs if the complex set is fixed. Based on the
author’s results on the LP-based computation of dense realizations, a previously published
graph-theory-based method was re-implemented without integer variables. In addition, two
new computation methods were also proposed, having polynomial time complexity, too. The
implemented methods were tested on examples taken from the literature, and then they
were compared from the point of view of computational performance on reaction networks of
increasing size. The numerical tests showed that the LP-based methods solve the problems
correctly, while avoiding the complexity issue which emerges during the solution of the former
MILP-based problems. It was also shown that the structure of the constraint set in the LP
problems has serious impact on the solution time of the problem.

During the development of the above mentioned method, it has been concluded that an
interesting research direction would be the inclusion of certain conservation laws into the
LP-structure. These requirements can be any structural or parametrical properties which
can be formulated as linear constraints. Such developments would support the elimination of
physically infeasible reaction networks from the set of mathematically possible solutions.

This leads us to the formulation of the third method introduced in this Chapter. This
MILP-based method is able to compute dynamically equivalent realizations of KRNs with
mass conservation property. The correctness of the proposed method has been shown with
the help of examples taken from the literature. By extending the proposed method a large
set of network properties could be investigated, too, e.g. linear conjugate KRNs with mass
conservation, structural/parametrical uniqueness of mass conservative networks etc. Also,
by improving the proposed methods, controller design methods can be implemented to find
stabilizing controllers for dynamical systems represented with KRNs [116].

The results described in this Chapter are summarized in Thesis I. and II. (see Subsection
4.3.3 and 4.3.3, respectively). The corresponding publications are [1, 2, 4].
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Chapter 4

Efficient scheduling of railway
networks using optimization

The increasing load on transportation networks, especially on railway networks motivate
us to develop new network controlling methods. With the help of them, the throughput of
the railway network can be kept on the maximal level in case of disturbances, too. In this
work, we focus on the case when the disturbances are delays, no track blocking or loss of
trains are considered. As it is known, delays can quickly propagate all over a railway network
due to the nearly impossible overtake of the delayed train [33]. Hence, to recover a network
from a delay as soon as possible, the rescheduling of the trains is inevitable.

In this Chapter, we address the problem of the rescheduling of a railway network in
case of delayed operation. This problem is also known from the literature as the dispatching
problem of railway networks (see e.g. [26, 32]), where a train dispatcher tries to react to
delays during operations.

The scheduling problem in railway networks is investigated in a model predictive control
framework, formulated as an MILP problem. Using dynamic traffic management we develop
and study techniques that minimize the total delay over the prediction horizon by changing
the order of the trains in an optimal way. The formulation of the optimization problem is
described in Section 4.1.

By exploiting the structure of the problem we show that a problem-specific reordering of
the constraints in the model results in a significant speedup in the solution time compared
to the built-in methods of the MILP solvers. Moreover, with proper reformulation of the
constraints the dependence between the events in the network and the control variables
becomes easy to analyse. The proposed formulation enables the future development of
a problem-specific solution method to replace the general purpose MILP solvers in the
solution process. The advantages of the resulting model formulations are detailed and the
computational efforts needed to find the optimal solution are compared using each forms of
the model. The simulation results confirm the effectiveness of the proposed control technique
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in case of complex delay scenarios, too. Furthermore, we show that the formulated model is
applicable to find the most delay-sensitive parts of the network. The algorithm is applied on
the model of the Dutch railway network.

The results presented in the current Chapter are summarized in Thesis III., see Subsection
4.3.3 and originally appeared in [5, 3].

4.1 Optimization-based control of railway networks to mini-
mize total delays

Delay management is a topic having crucial importance in case of railway networks. Due
to the fact that overtaking is nearly impossible in railway networks, the delay propagation is
very fast and a small disturbance in the prescribed schedule can cause large delays all over
the network.

Recently, several methods were proposed to help the recovering of the network from a
delay scenario. Robust timetables were designed [58], rescheduling methods and connection
breaking rules were introduced to minimize the effect of the disturbance on the network [69].
The model-based control of the railway networks give us the opportunity to apply proper
rescheduling actions and improve the robustness of the network against delays.

A railway network can be modeled using the so-called microscopic approach, where a
lot of infrastructural elements are contained in the model [97]. These elements include all
tracks, points, signals, stop boards, speed indicators, platforms, and other elements required
for mapping a rail network in deep details. However, due to the extremely large size of
these models, long computation times can appear for large and highly utilized networks.
The macroscopic approach used in this thesis gives us the opportunity to handle large size
(country-wide) networks by omitting some details from the network description [57]. In this
thesis, only stations and tracks are modeled together with the trains running on them.

In this Section we show how to design a feedback controller that is able to predict the
future behavior of the railway network with a cyclic timetable and reorder the trains using the
same track in an optimal way to minimize the total secondary delay in the network [21]. The
control problem is formulated as a MILP problem [25] in a model predictive framework using
the switching control methodology. In this approach each operation mode of the network is
modeled and can be selected by choosing the appropriate combination of control variables.
In this particular setup control variables are binary valued. During the optimization this set
of binary control variables is determined while minimizing the given cost function, namely
the total secondary delay over the prediction horizon. The solution of the emerging MILP
problems can lead to computational difficulties since integer programming is known to be
NP-hard (see Subsection 2.3.2 and [93]).
4.1.1 Basics of the model formulation

The general structure of the control architecture can be seen in Fig. 4.1. The railway
network is affected by delays shifting the departure and arrival times away from their nominal
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Figure 4.1: Structure of the railway traffic management system. In this work, the algorithm
used in the Model Predictive Controller is detailed.

values. The controller reads the departure and arrival times of each train from the monitoring
system and - by considering the nominal timetable and the network model - an actual
timetable is generated, which can be used to generate optimal trajectories and routes for
the trains. The calculation of a new actual timetable can be completed every time when an
event (departure or arrival) is captured by the monitoring system.

Let us consider a railway network scheduled by a periodic timetable having cycle time Tc.
The timetable is repeated every Tc minutes. In one cycle all trains departing in one period of
the nominal timetable are modeled. Periodic timetables ensure the stability of the schedule
in such a way that if a delay of a given train exceeds the cycle time, then that specific train
is omitted from the schedule and the train from the next cycle will run instead of it. This
means that the delays are upper bounded with the value of Tc.

Generally, the network has three main operation mode. During nominal operation trains
depart and arrive according to the original timetable following a pre-determined route. In
this mode of operation, the order of the trains on the tracks is defined by the timetable itself.
In perturbed operation the timetable is corrupted by an emerging delay, causing the deviation
of the network from the nominal operation. Every change from the nominal schedule can
be associated with a perturbed mode. In order to recover the network from delays, control
actions are taken to formulate a schedule which can decrease the effect of the delays on the
network. This mode of operation is called controlled operation. In this work, control actions
are narrowed down to the reordering of the trains on a track and breaking up connections.
The aim of the controlled operation is to find a schedule which has minimal deviation from
the nominal timetable. The measure of the deviation from the nominal timetable is the sum
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of the secondary delays. Note, that early arrivals are not considered in the delay calculation.
The model presented in [20, 21] is further extended in this work to handle double tracks with
a controlled track selection, and joint trains with controlled breakup if needed.

The operation of the railway network is described as a set of train runs. Train runs
always start and end in a (virtual) station meaning that departures and arrivals denote the
beginning and the end of the runs. Virtual stations are formulated where a track ends but no
station is present, e.g. at crossings and junctions. Note, that virtual stations also have infinite
capacity because there is no dwelling time at these type of stations, meaning that trains do
not stop at virtual stations, they serve only as place for possible track change operation. A
set of train runs can formulate a line if the same physical train moves along them. In the
remainder of this thesis we will simply refer to a ’train run’ as a ’train’.

In this work we consider a model which can handle two parallel tracks between stations,
where each track has a dedicated direction. If between two stations only a single track is
present, overtaking is only possible at stations. It should also be noted that we consider the
capacity of the stations as infinite meaning that each station can host an unlimited number
of trains at the same time. Also, we assumed that the order of departures from stations can
be arbitrarily chosen. Although it should be noted, that limiting the capacity of the stations
to a finite value and the exclusion of certain order of train departures can be formulated as
linear constraints. Hence, the inclusion of these constraints can be easily completed using the
proposed framework.

4.1.2 Constraint set formulation

In the following, we will define the constraint set describing the dependency between the
events in the railway network. All the constraints are linear inequality constraints containing
continuous and integer-valued variables.

The departure and arrival times of the trains are defined by the following constraints. A
train is allowed to depart as soon as all of the corresponding constraints are satisfied.
• Timetable constraint: the timetable constraint should be satisfied which means that a

departure di(k) may not occur before its scheduled departure time

di(k) ≥ rdi (k) (4.1)

where rdi (k) is the scheduled departure time for the ith train in the kth cycle. A similar
constraint is formulated for the arrival time ai(k):

ai(k) ≥ rai (k). (4.2)

This constraint formulation enforces the trains to accomplish the given run with a
nominal running time which is usually greater than the minimal running time. Note
that the arrival constraints can be omitted by setting rai (k) to −∞.
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• Running time constraint: let ti(k) be defined as the minimum running time of the ith
train. Then the running time constraint is formulated as follows:

ai(k) ≥ di(k − δii) + ti(k) (4.3)

where δii = 0 if the departure time and the arrival time are in the same cycle and
δii = 1 if there is a cycle difference between departure and arrival.

• Dwell time constraint (or continuity constraint): in the model formulation, a physical
train moving across the network through several stations is divided into several train
runs, one between each two successing (virtual) stations. Dwell time constraints are
formulated to order these train runs after each other enabling the model to simulate
the move of the physical train. Let us denote a train run and its preceding train run
by i and pi, respectively. Let spi(k) be the minimum dwell time between arrival of the
train run pi and the departure of train run i, then the dwell time constraint which has
to be satisfied is the follows:

di(k) ≥ api(k − δipi) + spi(k) (4.4)

where δipi = 0 if in cycle (k) train pi arrives and proceeds as train i in the same cycle,
and δipi = 1 otherwise.

• Headway constraints: let us collect those trains which are moving over the same track in
the same direction as train i and are scheduled before train i in the nominal operation
mode into the set Hi(k). Let us define hdij and haij as the minimum headway times for
departure and arrival, respectively, between train j and train i where j ∈ Hi(k). For
each train j the headway constraints are defined for both departure and arrival:

di(k) ≥ dj(k−δij) + hdij + uij(k)β, ∀j ∈ Hi(k)
dj(k−δij) ≥ di(k) + hdji + (1−uij(k))β, ∀j ∈ Hi(k)

(4.5)

ai(k) ≥ aj(k−δij) + haij + uij(k)β, ∀j ∈ Hi(k)
aj(k−δij) ≥ ai(k) + haij + (1−uij(k))β, ∀j ∈ Hi(k)

(4.6)

where β is a large negative number (β � 0) and uij(k) is a binary control variable used
to determine the order of the trains through manipulating the values in the constraints.
Note that for uij(k) = 0, the first constraints of ineq. (4.5) and ineq. (4.6) will be
active, and for uij(k) = 1, the second constraints of ineq. (4.5) and ineq. (4.6) will
be active. Note, that the constant β is incorporated into the right hand side of the
constraints as a lower bound in order to implement the capability to select the proper
constraints corresponding to the value of the given control variable. If β is active in
a constraint (meaning it is multiplied with a non-zero valued control variable), that
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specific constraint will become meaningless because a stricter constraint will be present
in the system.

• Meeting constraints: similarly to the headway constraints, let us collect those trains
which are moving over the same track in the opposite direction as train i, and are
scheduled before train i in the nominal operation mode into the set Mi(k). Let us
define wij as the minimum separation time between arrival of train j and departure of
train i where j ∈Mi(k). For each train j the separation constraint is defined as

di(k) ≥ aj(k−δij) + wij + uij(k)β, ∀j ∈Mi(k)
dj(k−δij) ≥ ai(k) + wji + (1−uij(k))β, ∀j ∈Mi(k)

(4.7)

where the roles of β and uij(k) are similar to the roles they have for the headway
constraints.

• Double tracks: there are parts of the railway network where two parallel tracks are
present in the same direction. In this case not only the order of the trains can be
changed by the controller but they can be reallocated to an another track. The headway
constraints introduced between trains running on different tracks should be deactivated
but they should be active if the trains are allocated onto the same track. Let us denote
the set of trains that move over a double track in the same direction as train i, and
scheduled before i in the nominal operation as Di(k). Now the headway constraints are
modified in the following way to handle double tracks:

di(k) ≥ dj(k − δij) + hdij + uij(k)β + utij(k)β, ∀j ∈ Di(k)
dj(k − δij) ≥ di(k) + hdji + (1− uij(k))β + utij(k)β, ∀j ∈ Di(k)

(4.8)

ai(k) ≥ aj(k − δij) + haij + uij(k) + utij(k)β, ∀j ∈ Di(k)
aj(k − δij) ≥ ai(k) + haij + (1− uij(k))β + utij(k)β, ∀j ∈ Di(k)

(4.9)

where uti and utj are binary control variables denoting which track is selected for train i
and j, respectively, and utij = uti ⊕ utj where ⊕ stands for the classical xor operation
(logical exclusive OR operation). All other notations are the same as in the case of the
headway constraints.

• Joint trains: in a railway schedule it can occur that two trains are coupled, which
means that they are running together through some part of the network. These trains
are called joint trains. If one of the trains is heavily delayed then the controller should
be able to break up the coupling connection and run the two train parts separately. We
can assume that if train i and j are coupled, they are in the same cycle which means
that δij = 0 in all cases.

In case of a joint train the headway constraints in between the two train parts should
be deactivated while in case of splitting up the coupling they should be reactivated.
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Let us denote the set of trains that move on the same track in the same direction as
train i, and are scheduled before it in the nominal operation as Ji(k). To handle joint
trains, the headway constrains are formulated as follows:

di(k) ≥ dj(k) + ucij(k)β, ∀j ∈ Ji(k)
di(k) ≥ dj(k) + (1− ucij(k))β + hdij + uij(k)β, ∀j ∈ Ji(k)

dj(k) ≥ di(k) + ucij(k)β, ∀j ∈ Ji(k)
dj(k) ≥ di(k) + (1− ucij(k))β + hdij + (1− uij(k))β, ∀j ∈ Ji(k)

(4.10)

ai(k) ≥ aj(k) + ucij(k)β, ∀j ∈ Ji(k)
ai(k) ≥ aj(k) + (1− ucij(k))β + haij + uij(k)β, ∀j ∈ Ji(k)

aj(k) ≥ ai(k) + ucij(k)β, ∀j ∈ Ji(k)
aj(k) ≥ ai(k) + (1− ucij(k))β + haij + (1− uij(k))β, ∀j ∈ Ji(k)

(4.11)

where ucij is a binary control variable which equals to 0 if train i and j are coupled and
1 otherwise. All the other notations are the same as in case of the headway constraints.

It should be noted that for the logical variables uti, utj , uti, ucij the following statement
should hold: ¬(utiūtj ūcij∨ūtiutj ūcij) for all joint train i for all the trains in the corresponding
Ji(k). This can be turned to linear constraints as follows:

(1− uti) + utj + ucij > 0
uti + (1− utj) + ucij > 0

(4.12)

These constraints ensure that no infeasible control input combination can appear,
namely that the two parts of a joint train would be allocated to different parallel tracks.

In order to simplify the understanding of the above described constraints, we collected the
notations of the introduced control variables into the following table:

Notation Meaning

uij(k) controls the order of the ith and jth train in the kth cycle
ucij(k) connects the ith and jth trains if they are coupled trains
uti(k) controls the track-selection of the ith train in case of double tracks

The above defined constraints defines the time-evolution of the system during operation,
thus eqs. (4.1)-(4.12) can be considered as a dynamical model of the system.

Note that in case of nominal operation all δij values are equal to zero or one. In case
of perturbed operation other values are also possible. For sake of simplicity, we will only
consider the case when δij = {0, 1}.

4.1.3 MILP problem formulation

In order to reformulate the above presented model as an MILP problem which were
detailed in Section 2.3, the following steps should be taken.
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Let us consider a network having n train runs (or shortly trains) as it has been defined
before, and define the following vectors for the kth cycle:

x̄(k) =



di(k)
...

dn(k)
a1(k)

...
an(k)


∈ R2n; r̄(k) =



rd1(k)
...

rdn(k)
ra1(k)
...

ran(k)


∈ R2n. (4.13)

Besides of these, the elements of uij(k) and ucij(k) with j ∈ {Hi(k),Mi(k),Di(k),Ji(k)}, i =
1...n and variables uti(k), utj(k) for i, j = 1...n are collected in one column vector ū(k) ∈ Rm

where m is the total number of control variables in the model for one cycle. Due to the
fact that only two events (departure and arrival) is connected to a given train run, but it is
controlled by several control variables (e.g. to control the order of the trains running on the
same track in the same direction in the given cycle), in case of real-life network models the
following relation holds: m� 2n.

The exact state equation of the model can be defined in a description form using the
tools from max-plus algebra, as it is detailed in [21]. In our model the time index k runs for
the cycles, and the state variable x̄(k) contains the occurrence times of the lower level events
within one cycle. Therefore, there are two time evolutions described in two time scales, the
optimization is concerned with the time evolution of the upper (cycle) time scale. The lower
level dynamics itself is a discrete event system with pure time delays.

The goal of the model predictive controller is to minimize the sum of the delays over
the prediction horizon, which can be calculated as the sum of the deviation of the current
model from the reference model. Hence, the objective function (or performance index) can
be formulated as

J(k) =
Np∑
j=0

( n∑
i=1

σi
(
x̄i(k + j)− r̄i(k + j)

)
+

m∑
l=1

ρlūl(k + j)
)

(4.14)

where Np is the prediction horizon, and vectors σ ∈ Rn and ρ ∈ Rn are containing non-
negative weighting scalars. The objective function eq. (4.14) can be interpreted as follows:
the first term penalizes the predicted departure and arrival delays while the second term
is related to the changes in the order of the trains during cycle k + j. Note that due to
constraints (4.1)-(4.2) there holds x̄i(k + j)− r̄i(k + j) ≥ 0, ∀j and so J(k) ≥ 0. During this
work, vectors σ and ρ are considered as uniform valued constants. Although they give the
possibility to classify the trains and penalize the delays or schedule modifications of given
train types on different levels.
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By defining the extended vectors

x̃(k) =


x̄(k)

x̄(k + 1)
...

x̄(k +Np)

 ∈ R2nNp

ũ(k) =


ū(k)

ū(k + 1)
...

ū(k +Np)

 ∈ RmNp

(4.15)

the objective function is expressed as:

J(k) =
[
cx cu

]T [ x̃(k)
ũ(k)

]
(4.16)

where cx contains σ and cu contains ρ. Also the constraints (4.1)-(4.7) defining the events in
the network can be formulated as a constraint matrix, by using the vectors x̃ and ũ:

[
Ax Au

] [ x̃(k)
ũ(k)

]
≤ b(k) (4.17)

where k = 1, . . . , Np and the following holds: [Ax]ij ∈ {−1, 0, 1} and [Au]ij ∈ {−β, 0, β}, ∀i, j.
The matrix A = [ Ax Au ] is called the constraint matrix. Vector b(k) is determined as
follows:

b(k) = b0 + b1 x(k − 1) + θ(k) (4.18)

where [b0]i ∈ {0, β}, [b1]i ∈ {0, 1}, x(k − 1) is the past value, and θ(k) is a vector containing
the schedule times rd(k), ra(k), the minimum running time t(k), the minimum dwell times
s(k), the minimum heading times h(k) and the minimum separation times w(k).

Considering the definition of an MILP problem from Section 2.3, we have now all the
ingredients to recast the model predictive control problem into a MILP structure, where eq.
(4.16) defines the objective function and ineq. (4.17) defines the constraints.

Note that for every delay scenario a feasible solution can be found. But, not every possible
control combination results in a feasible timetable.
4.1.4 Introducing delays into the model

Let us consider a delay scenario defined by the parameter vector θ containing containing
all the deviations from values in the original schedule described by θ0 (see eq. (4.18)). With
other words, a delay scenario is a specific realization of delays in the network. The parameter
set of the delayed model is obtained as the element-wise sum of the two vectors: θ + θ0.
Numerical details about the θ0 vectors used during simulations can be found in Section 4.3.
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To be able to simulate the perturbed operation, delays should be introduced into the
model. Practically this is done by increasing the values corresponding to the dwell time or
running time in case of departure or arrival delay, respectively. Let us detail an example in
case of an arrival delay. Consider train j scheduled as a train run in the kth cycle by variables
dj and aj referring to the departure and arrival time, respectively. The correspondence
between the two values are given by ineq. (4.3) as follows: aj ≥ dj + t where t stands for the
running time defined for the given train run. Considering ineq. (4.17) this will be reformulated
as

aj − dj ≥ t (4.19)

where variables dj and aj are the elements of vector x̃, their coefficients (signs) are incorporated
into Ax and t is the element of b corresponding to the specific constraint. Let us assume that
t′ delay is detected during train run j causing an increased running time. In this case ineq.
(4.19) is modified as follows:

aj − dj ≥ t+ t′ (4.20)

by introducing t′ into θ and through it into the new b vector. Obtaining a new b vector
triggers the re-computation of the MILP task resulting a new, feasible schedule which now
incorporates the increased running time of train j and proper control actions if they are
needed.

In case of dependent model formulation, the model corresponding to the given delay
scenario can be computed by building up the whole constraint set from scratch. In case of
the independent model the constraints depend only the on the structure of the network:
once the constraint set is generated for a given railway network, the delay scenarios can be
incorporated into the right-hand side of the constraints, namely into vector b. This means
that in case of the independent model the regeneration of the whole model is unnecessary
until the structure of the network is unchanged, only the parameter vector describing the
delay scenario should be plugged into the model.

4.2 New solution methods of the railway scheduling problem
to increase solution efficiency

In Subsection 4.1.2 a detailed description of the constraint set is presented which describes
the correlations between the departure and arrival events in the network, considering the
given references and the control inputs. In the following, two different transformation methods
are proposed which lead to simplified constraint structures in the MILP model. The new
constraint structures form the basis of the new efficient solution methods for the underlying
MILP problem. The first method reorders the constraints so the the solution speed of
the emerging MILP problem significantly improves. The second method reformulates the
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(a) Randomly ordered constraint matrix. (b) Constraint matrix after the track-based or-
dering. Borders of the blocks are marked.

Figure 4.2: Structure of the constraint matrix where the variables are on the x-axis and the
equations are on the y-axis. Non-zero elements of the matrices are marked. As it can be seen
in Fig. 4.2b. the result of the track-based ordering is a clear block-angular structure.

constraints in a way that the dependence of the delays and the applied control actions can
be easily computed. This formulation gives the opportunity to develop a problem-specific
solution method in order to replace the general MILP solvers in the solution process.
4.2.1 Track-based transformation of the problem matrix

From the constraint formulations it can be seen that the order of the trains on two
different tracks are independent from each other. To exploit this property, the reordering
of the constraint matrix is completed on a per-track basis: all the constraints and control
variables corresponding to a given track has been collected into one block [5]. The constraints
in the different blocks are independent of each other and the blocks themselves (each
corresponds to a track), and they are connected via the continuity constraints.

Let us recall that in Subsection 2.3.2.3 it is detailed that the computational effort needed
to solve a given MILP problem strongly depends on the structure of the constraint matrix
[51]. By investigating the corresponding methods it can be seen that a constraint matrix
A with a clear block-angular structure has the most advantageous properties in terms of
the complexity of the solution process. In case of the constraint set described in Subsection
4.1.2 and considering the results of [5], a proper reordering of the rows and columns of the
constraint matrix can lead to a block-angular structure.

In Fig. 4.2 one can see the result of the track-based reordering method. The formulated
blocks can be seen clearly. It should be noted that there could be other reordering methods
which result a constraint set with block-angular structure, but the track-based method seems
to be a quite straightforward approach. The increase in solution speed gained by the proposed
reordering is detailed in Subsection 4.3.2.1. Note that the proposed reordering method still
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decreases the solution time while the preprocessor of the solver is also used.
4.2.2 Transformation of individual constraints

Let us refer to the constraints which depend on two different continuous variables as
dependent constraints while those which depend only on one continuous variable as independent
constraints. Note that both the dependent and the independent constraints can depend on
multiple control variables.

The proposed algorithm transforms the dependent constraints into independent ones
leading to a quite clear problem structure. The main advantages of the new structure are the
following: firstly, the constraint matrix of a model containing purely independent constraints
is independent of the given delay scenario. Hence, the formulation of the MILP problem
corresponds to a given delay scenario requires only the computation of the vector b(k), while
the constraint matrix A remains the same, instead of computing new A matrix for every
delay scenario as it is needed in case of dependent constraints are present. Note that this
holds until the structure of the railway network remains unchanged (no blocked track etc.).
Secondly, in case of independent constraints one specific event in the system - out of the
binary control variables - has a direct dependence on only one other event. This fact gives
the opportunity to investigate deeper the model structure which was not possible in case of
the presence of dependent constraints.

We will exploit the special properties of the constraint set described in Subsection 4.1.2.
Namely, the coefficients corresponding to the continuous variables can have only {−1, 0, 1}
values, and for each constraint only one 1 and one −1 value can be present. Furthermore, it
is known that if a 1 appears, a −1 value is also present in that given constraint.

As it is mentioned before, the proposed algorithm transforms the dependent constraints
into independent ones. This means that the Ax matrix from ineq. (4.17) is transformed to
a matrix that will only contain {0,−1} values and only one non-zero coefficient for each
constraint.

The proposed model transformation method - which will be introduced next - is based
on an iterative substitution of the constraints into each other resulting in new constraints.
The procedure continues until the expected constraint structure is achieved. A procedural
description of the proposed method is presented in Sec. Appendix C. To ease the understanding
of the procedure, an illustrative example is also presented.
4.2.2.1 Reformulation of the model for the substitution

The model described in ineq. (4.17) is reshaped into an other form in order to ease the
understanding the proposed procedure. Let us use the following notations: xi refers to an
event in the network represented by a continuous variable. The sign of xi is related to the
corresponding elements of Ax. rj is a reference time of the jth event. Elements of τ are
referring to numerical values calculated from the running times, dwell times, headway times
and separation times and related to the elements of b(k). ul is a binary control variable and
β is a large negative value appearing in Au. 1̄m refers to a full-one vector having m rows,
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matrices denoted by letter E have a block structure while matrices denoted by letter A contain
non-zero elements without specific pattern. Operation ⊗ refers to the Kroenecker-product.

The constraint set of the given model is ordered in two different ways resulting different
model formulations. These formulations can be used implement the substitution of the
constraints to formulate the iterative method. In the following, we define the two model
formulations and the substitution procedure.

Model formulation 1 Let us order the constraints in the model based on the variables
on their left-hand side. Now the following structure can be obtained:

E1
...
En

 x ≥

A1
...
An

 x+


B1
...
Bn

 u+


c1
...
cn

 (4.21)

which can be read as
E x ≥ Ax+B u+ c (4.22)

where mi is the number of constraints in the model having xi in their left-hand side,
Ei ∈ {0, 1}mi×n, Ai ∈ {0, 1}mi×n, Bi ∈ {−β, 0, β}mi×n, ci ∈ Rmi and i = 1...n.

It should be noted that this model formulation is related to the original model, it will
not change during the substitution process.

Model formulation 2 During the iteration, constraints emerged from the model are
ordered based on the right-side of the inequality constraints. Let us describe the model
formulation in the ` = 0 case where ` is the iteration counter. Now, the sub-matrices are
denoted as follows: 

Ā`0
Ā`1
...
Ā`n

 x ≥

Ē`0
Ē`1
...
Ē`n

 x+


B̄`

0
B̄`

1
...
B̄`
n

 u+


c̄`0
c̄`1
...
c̄`n

 (4.23)

which can be rewritten as
Ā`x ≥ Ē`x+ B̄`u+ c̄` (4.24)

where Ā`i ∈ {0, 1}m̄
`
i×n, Ē`i ∈ {0, 1}m̄

`
i×n, B̄`

i ∈ {−β, 0, β}m̄
`
i×n, c̄`i ∈ Rm̄`

i , i = 0...n. Note that
in the `th iteration step m̄`

0 and m̄`
i equals to the number of the independent and dependent

constraints corresponding to xi, respectively.
Let us note that this kind of model formulation groups the independent constraints

together leading to the appearance of the sub-matrices indexed by 0 (namely A`0, E`0, B`
0

and c`0). In Model formulation 1, these constraints are incorporated into the Ei, Ai, Bi, ci
(i = 1...n) matrices, too. Also, it can be seen that a permutation matrix P exists for which
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the following holds: P · E = Ā`, P ·A = Ē`, P ·B = B̄` and P · C = C̄`.

4.2.2.2 Substitution procedure

Now using the two forms of the model presented previously, an iterative substitution
process is proposed to achieve a model structure containing only independent constraints.

It is known that for i > 0:
1̄mi ⊗ Ē`i = 1̄m̄`

i
⊗ Ei

Use Model formulation 2 :
Ā`0

1̄m1 ⊗ Ā`1
1̄m2 ⊗ Ā`2
1̄m3 ⊗ Ā`3

 x ≥


Ē`0
1̄m1 ⊗ Ē`1
1̄m2 ⊗ Ē`2
1̄m3 ⊗ Ē`3

 x+


B̄`

0
1̄m1 ⊗ B̄`

1
1̄m2 ⊗ B̄`

2
1̄m3 ⊗ B̄`

3

 u+


c̄`0

1̄m1 ⊗ c̄`1
1̄m2 ⊗ c̄`2
1̄m3 ⊗ c̄`3


By using ineq. (4.22) we find

Ē`0
1̄m1 ⊗ Ē`1
1̄m2 ⊗ Ē`2
1̄m3 ⊗ Ē`3

 x+


B̄`

0
1̄m1 ⊗ B̄`

1
1̄m2 ⊗ B̄`

2
1̄m3 ⊗ B̄`

3

 u+


c̄`0

1̄m1 ⊗ c̄`1
1̄m2 ⊗ c̄`2
1̄m3 ⊗ c̄`3



=


Ē`0

1̄m̄`
1
⊗ E1

1̄m̄`
2
⊗ E2

1̄m̄`
3
⊗ E3

 x+


B̄`

0
1̄m`

1
⊗ B̄`

1

1̄m2 ⊗ B̄`
2

1̄m3 ⊗ B̄`
3

 u+


c̄`0

1̄m`
1
⊗ c̄`1

1̄m2 ⊗ c̄`2
1̄m3 ⊗ c̄`3



=


Ē0 x

1̄m̄`
1
⊗ E1 x

1̄m̄`
2
⊗ E2 x

1̄m̄`
3
⊗ E3 x

+


B̄`

0
1̄m1 ⊗ B̄`

1
1̄m2 ⊗ B̄`

2
1̄m3 ⊗ B̄`

3

 u+


c̄`0

1̄m1 ⊗ c̄`1
1̄m2 ⊗ c̄`2
1̄m3 ⊗ c̄`3



≥


Ē`0 x

(1̄m̄`
1
⊗A1)x+ (1̄m̄`

1
⊗B1)u+ (1̄m̄`

1
⊗ c1)

(1̄m̄`
2
⊗A2)x+ (1̄m̄`

2
⊗B2)u+ (1̄m̄`

2
⊗ c2)

(1̄m̄`
3
⊗A3)x+ (1̄m̄`

3
⊗B3)u+ (1̄m̄`

3
⊗ c3)

 +


1̄m0 ⊗ B̄`

0
1̄m1 ⊗ B̄`

1
1̄m2 ⊗ B̄`

2
1̄m3 ⊗ B̄`

3

 u+


1̄m0 ⊗ c̄`0
1̄m1 ⊗ c̄`1
1̄m2 ⊗ c̄`2
1̄m3 ⊗ c̄`3



=


Ē`0

(1̄m̄`
1
⊗A1)

(1̄m̄`
1
⊗A2)

(1̄m̄`
1
⊗A3)

 x+


B̄`

0
(1̄m1 ⊗ B̄`

1) + (1̄m̄`
1
⊗B1)

(1̄m2 ⊗ B̄`
2) + (1̄m̄`

2
⊗B2)

(1̄m3 ⊗ B̄`
3) + (1̄m̄`

3
⊗B3)

 u+


c̄`0

(1̄m1 ⊗ c̄`1) + (1̄m̄`
1
⊗ c1)

(1̄m2 ⊗ c̄`2) + (1̄m̄`
2
⊗ c2)

(1̄m3 ⊗ c̄`3) + (1̄m̄`
3
⊗ c3)
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which results in the new inequality:

Â` x ≥ Ê` x+ B̂` u+ ĉ` (4.25)

where

Â` = P


Ā`0

1̄m1 ⊗ Ā`1
1̄m2 ⊗ Ā2

1̄m3 ⊗ Ā`3

 Ê` = P


Ē`0

(1̄m̄`
1
⊗A1)

(1̄m̄`
1
⊗A2)

(1̄m̄`
1
⊗A3)



B̂` = P


B̄`

0
(1̄m1 ⊗ B̄`

1) + (1̄m̄`
1
⊗B1)

(1̄m2 ⊗ B̄`
2) + (1̄m̄`

2
⊗B2)

(1̄m3 ⊗ B̄`
3) + (1̄m̄`

3
⊗B3)

 ĉ` = P


c̄`0

(1̄m1 ⊗ c̄`1) + (1̄m̄`
1
⊗ c1)

(1̄m2 ⊗ c̄`2) + (1̄m̄`
2
⊗ c2)

(1̄m3 ⊗ c̄`3) + (1̄m̄`
3
⊗ c3)


where P is again a proper permutation matrix such that Ē` has the correct structure.

After computing ineq. (4.25), those inequalities, which contain terms uiβ and (1− ui)β
for the same i should be removed from the constraint set. Furthermore, the constraints with
the following form

xi ≥ xi +Bi u+ ci

can be replaced with the following inequalities:

Bi u+ ci ≤ 0.

Some of these inequalities can be removed immediately, because they lead to a control
combination corresponding to an infeasible series of events. This is caused by the fact that
in case of n control variables the number of possible combinations (2n) is larger than the
possible valid control input combinations. A simple example is the following: consider three
trains running on the same track, ordered by three control variables. The number of possible
control combinations is 23 = 8 but there are only 6 feasible train orderings. For example,
an infeasible train order appears if the first train is scheduled before the second, the second
is scheduled before the third and the third is scheduled before the first. To overcome on
this problem, the proposed algorithm filters out those constraints which contain infeasible
control combinations. Note, that the reachability set of the system is not changed because
only infeasible control combinations are removed.

Now an iteration step can be formulated as follows. In the `th step we consider ineq.
(4.24) and ineq. (4.22) and obtain ineq. (4.25). Initialize the next step by letting Ā`+1 = Â`,
B̄`+1 = B̂` and c̄`+1 = ĉ`. It can be seen that for each iteration step the following inequality
holds: row(Ā`0) ≤ row(Ā`+1

0 ), where row stands for the number of rows in the given matrix.
For each event there exists at least one independent constraint in the starting model (e.g.
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the timetable constraint), hence the process will finish with the elimination of the dependent
constraints in finite steps: ∃` : m̄`

i = 0 where i > 0 and ` ≤ n.
As it is shown, the main purpose of this algorithm is to transform the originally dependent

constraints into independent ones. It differs from other matrix decomposition or factoring
methods because of its capability to handle the strongly over-determined constraint set with
the restricted set of allowed operations on the constraints.

4.2.2.3 Example

Let us consider a small model containing three events. xi denotes the time of a specific
event while ri denotes the reference time of the given event. τij is a headway time defined
between events xi and xj . Control variables are denoted by uk and β is a large negative
number.

x1 ≥ r1

x2 ≥ r2

x3 ≥ r3

x2 ≥ x1 + τ21 + (1− u1)β

x3 ≥ x1 + τ31 + (1− u3)β

x1 ≥ x2 + τ12 + u1β

x3 ≥ x2 + τ32 + (1− u2)β

x1 ≥ x3 + τ13 + u3β

x2 ≥ x3 + τ23 + u2β

(4.26)

This constraint set will be reformulated with the proposed transformation and the resulting
new constraint set is presented, too.

Model formulation 1 :

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1



x ≥



0 0 0
0 1 0
0 0 1
0 0 0
1 0 0
0 0 1
0 0 0
1 0 0
0 1 0



x+ β



0 0 0
1 0 0
0 0 1
0 0 0
−1 0 0
0 1 0
0 0 0
0 0 −1
0 −1 0



u+



r1

τ12

τ13

r2

τ21 + β

τ23

r3

τ31 + β

τ32 + β
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Model formulation 2:

1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
1 0 0
0 0 1
1 0 0
0 1 0



x ≥



0 0 0
0 0 0
0 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1



x+ β



0 0 0
0 0 0
0 0 0
−1 0 0
0 0 −1
1 0 0
0 −1 0
0 0 1
0 1 0



u+



r1

r2

r3

τ21 + β

τ31 + β

τ12

τ32

τ13

τ13



Using the above introduced transformation procedure, the constraint set defined in ineq.
(4.26) turned into the following set:

x1 ≥ r1

x2 ≥ r1 + τ21 + (1− u1)β

x2 ≥ r1 + τ23 + τ31 + u2β + (1− u3)β

x3 ≥ r1 + τ31 + (1− u3)β

x3 ≥ r1 + τ32 + τ21 + (1− u1)β + (1− u2)β

x2 ≥ r2

x1 ≥ r2 + τ12 + u1β

x1 ≥ r2 + τ13 + τ32 + u3β + (1− u2)β

x3 ≥ r2 + τ32 + (1− u2)β

x3 ≥ r2 + τ31 + τ12 + u1β + (1− u3)β

x3 ≥ r3

x1 ≥ r3 + τ13 + u3β

x1 ≥ r3 + τ12 + τ23 + u1β + u2β

x2 ≥ r3 + τ23 + u2β

x2 ≥ r3 + τ13 + τ21 + (1− u1)β + u3β

0 > u1β + u2β + (1− u3)β

0 > (1− u1)β + (1− u2)β + u3β

(4.27)

As it can be seen, ineq. (4.27) contains only independent constraints: on the right-hand
side only control variables, reference times and headway times can be found (denoted by ui,
ri and τij , respectively).
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4.2.2.4 Partial transformation of the model

The advantageous property of the model achieved by the procedure described in Subsection
4.2.2 - namely that all constraints are independent constraints - has the drawback that the
number of the constraints in the model is increased dramatically. This has also effect on the
running time of the transformation.

To overcome this, the algorithm is modified to process the constraint set on an iterative
way. In one iteration a subset of events are selected and only those constraints are processed
which correspond to these events in the network. By limiting the size of this subset, the
computational requirements of an iteration and the resulting model size can be limited, too.

This kind of modification also means that the final model will contain some dependent
constraints. These could not be translated into independent ones because some of the
constraints needed for the substitution were out of the processed constraint set having limited
size. Hence, the resulting model can be regarded as a partially independent model.

The partial transformation can preserve the advantageous properties of the model having
only independent constraints (e.g. the dependencies between the events can keep a clear
structure) while it overcomes the problems emerging if the constraint set is enlarged. It
should be noted that the ratio of the remaining dependent constraints can be controlled by
changing the size of the subset containing the events processed in one iteration step.

Computational results and comparisons between the original and transformed models
can be found in Subsection 4.3.2.

4.2.2.5 Structure of the transformed constraint set

The constraint set composed in Subsection 4.1.2 can be transformed into a new constraint
matrix by using the previously detailed algorithm. The resulting problem containing indepen-
dent constraints shows a clear connection between the events in the network through solely
the control variables.

As an example, a constraint set containing 23278 dependent constraints and 4769 variables
(from which 1930 are continuous variables, the others are binary control variables) is converted
to contain independent constraints. The number of the constraints increased to 520194. The
structure of the constraint set can be seen in Fig. 4.3. The running time of the transformation
algorithm was around 4300 seconds. Note, that this is an off-line transformation meaning
that it should be completed once for each model until the model structure (the structure of
the railway network and the routes and number of trains in it) is unchanged. An estimation
for the number of the constraints in the independent model is possible but would take serious
computational efforts, hence it strongly depends on the structure of the dependent model.

4.3 A case study

Simulations were done using the model of the Dutch railway system (see Fig. 4.4), with a
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Figure 4.3: Structure of the constraint matrix containing independent constraints. Blue and
green marks are for positive and negative values in the matrix, respectively. Red marks are
for values corresponding to control variables. In this particular case the track-based ordering
has not been used. The total size of the matrix is 520194 rows and 4769 columns.
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Figure 4.4: The Dutch railway network.

timetable having cycle time Tc = 60 min. The network model consists of 66 stations and
191 tracks. In the timetable the international, interregional and most of the local trains
are included, but freight trains and some smaller lines that are not connected to the main
network are excluded. For the simulations Np = 2 is selected, so the prediction is done for
2 hours in the future. A new schedule is generated if any of the trains have more than 2
minutes of delay. The generated problem originally has 54090 constraints and 13136 variables
from which 3860 are continuous variables (departure and arrival times) and the remaining
9276 are binary control variables. The time constants in the model are set as follows: headway
times haij = hdij = 3min, dwell time spi(k) = 2min and separation time wij = 3min.

The computations were completed on a personal computer equipped with a Pentium
IV CPU having 4 cores, running on 3.4GHz. Model generation and transformations were
done in MATLAB. To solve the generated MILP problem, the Gurobi 5.50 [59] solver was
used with enabled multi-threaded solution capability. It should be mentioned that during
the computations the default parameter settings of the solver were used in order to ensure
the comparability of the results.

The delay scenarios were introduced into the model as it is described in Subsection 4.1.4.
Each delay scenario contains several, individual initial delays, representing the time-shifting
of an event (departure or arrival) from its reference time. The sum of the introduced initial
delays by a given scenario is referred as the total initial delay. It is shown in [134] that the
distribution of delays appearing in a train network follows a Weibull distribution. In our
case the delays were generated randomly, according to a Weibull-distribution having shape
parameter 0.8 and scale parameter 5. The maximum amount of an individual delay event was
set to 10 min and the average introduced delay to 3 min. During the scenario generation a
predefined percentage of the trains were selected to be delayed: the delay values were added
to their departure and arrival data. In general, using the previously parametrized Weibull
distribution, delaying 7% of the events ends up in a realistic delay scenario considering the
absolute values and distribution of the delays. This means that 260 events were delayed over
the prediction horizon, leading to 130 delayed event in an hour. Note that according to the
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infrastructure manager company of the Dutch Railways, in the first nine months of 2012,
10.5% of the trains in the Netherlands had 3 minutes or more delay.

The aim of the controller is to minimize the sum of the secondary delays over the prediction
horizon. This is calculated as the sum of the deviations from the predefined timetable and
referred as total secondary delay in case of a given delay scenario.
4.3.1 Performance analysis of the proposed control technique

The performance of the proposed control technique is showed by comparing the open loop
and closed loop (uncontrolled and controlled, respectively) behavior of the railway network.
The simulations were completed on 45 scenarios. In case of these scenarios, the average of the
total initial delay was 3448.2 min with s = 146.1 min, where s stands for standard deviation.

The open-loop simulation is done by setting all control inputs to zero. This means that
neither the order of the trains, nor the selected tracks or the coupled runs were changed.
By simulating the operation of the network over the prediction horizon, the total secondary
delay appeared during the uncontrolled behavior can be computed. The obtained values are
the following: 4264.2 min total secondary delay in average, with s = 549.7 min.

In controlled mode the previously introduced control method was applied on the railway
network. Again, at the end of the prediction horizon the difference between the actual
timetable and the reference schedule is calculated as the total secondary delay. It is turned
out that by applying the proposed control method the average total secondary delay has
been reduced to 2164.2 min with s = 238.6 min.

The simulations showed the effectiveness of the proposed control technique as it can be
seen in Fig. 4.5. The controller can decrease the the total secondary delay with approximately
48.9% in average compared to the uncontrolled case. In average, 48 control actions were
applied.

Note, that considering a given delay scenario, selecting longer prediction horizons will
increase the difference between the sum of the total secondary delays of the network in uncon-
trolled and controlled modes. Although, the computational time needed for the optimization
process will increase, too. It should be also noted, that from a practical point of view and
considering the frequency of unexpected events in the network, it does not worth to deal
with prediction horizons longer than 3 hours.
4.3.2 Comparison of time consumption of solutions in case of different

model formulations

Due to the large size of the emerging MILP problems in case of a busy railway network
and long prediction horizon, time consumption of the rescheduling become a crucial problem.
In the following, the model formulations detailed in Subsection 4.2.1 and 4.2.2 are compared
in terms of the solution time.
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Figure 4.5: Effect of the proposed control technique while minimizing the total secondary
delays. The optimal reordering of the trains can significantly reduce the total delay over the
control horizon.

4.3.2.1 Effect of constraint reordering on the solution time

It is known that proper restructuring of an MILP problem can have serious impact on
the solution time [51]. In the present work a track-based ordering is proposed (see Sec. 4.2.1)
which results in a clear block-angular structure in the constraint matrices. The following
results verify that even in the presence of the solver’s preprocessor serious gains can be
achieved using this specific ordering of the constraints.

During the generation of the constraint matrices, two different methods were compared.
First the columns and rows of the formulated matrices were generated in a random order
resulting an unordered matrix structure. In the other case we built up the matrices of the
same problem with track-based ordering.

The solution times in both cases for several different scenario can be seen in Fig. 4.6. for
30 different scenarios. The average solution time was 53.763 sec (s = 43.194 sec) without
and 29.674 sec (s = 27.703 sec) with reordering which means an average speedup ratio
1.813. It should be noted that according to the simulations larger problem sizes lead to
larger speedup ratio. This emphasizes the importance of the structured problem formulation
based on problem-specific knowledge. Note, that this reordering method outperforms all the
preprocessing methods implemented in the applied solver meaning that the built-in methods
were not as effective in the formulation of the block-diagonal structure as the proposed
method was.

4.3.2.2 Effect of constraint reformulation on the solution time

In Subsection 4.2.2 a model transformation method is proposed. Now the effect of this
transformation on the solution time is detailed. As it was mentioned before, the reformulation
of the constraints from dependent to independent ones enlarges the problem matrix by
increasing the number of constraints. This naturally causes some overhead during the
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Figure 4.6: Solution times in case of a random constraint matrix structure and in case of
the track-based reordering. The simulation results show that even in the presence of the
preprocessor of the solver proper reordering can yield to significant speedup. Scenarios are
plotted in an increasing order w.r.t. the solution time in case of track-based ordering.

optimization process. Hence, we expected that in case of a (partially) transformed model the
solution will be slower than the original model.

In order to test the proposed methods in scenarios which can be considered as realistic
ones, the following computations were completed. The dependent and independent models
of 50 different, randomly generated scenarios were solved. In each scenario 7% of the trains
were delayed which means that the average introduced total initial delay was 2790 min

(s = 108.8 min). The average solution time in case of the dependent model was 853.91 sec
(s = 975.91 sec) while in case of the independent model 1676.06 sec (s = 2292.92 sec) was
achieved. The resulting solution times can be seen in Fig. 4.7. Due to the larger size of the
independent model, in several cases it is slower to solve it than the dependent one. On the
other hand, in case of some delay scenarios the dependent model can be solved slowly and
the solution of the independent model (even its larger size) can gain on it. It should be also
noted, that the solution speed of the independent model strongly depends on the number of
redundant or unnecessary constraints which can be eliminated from the model by the solver’s
preprocessor, which is influenced by the values effected by the given delay scenario.

Further analysis were completed to investigate the changes in the solution time if the delay
scenarios become more complex. 45 different, randomly generated scenarios were created
while the percentage of the delayed trains was enabled to grow up to 15% (affecting 260
events per hour). This means that in average 3394 min (s = 1702 min) total initial delay was
added to the models. From the 45 scenarios, 36 and 39 were solved successfully in case of the
dependent and independent model formulation, respectively. In case of the remaining ones
the solution process was run out of memory. The dependence between the introduced total
initial delay and the solution times can be seen in Fig. 4.8. To ease the understanding of the
results, trend lines were inserted into the diagram using power regression. The comparison
of the solution times in case of the dependent and independent model formulation can be
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Figure 4.7: Solution times in case of models containing dependent and independent constraints.
Scenarios are plotted in an increasing order w.r.t. the solution time in case of dependent
models.

seen in Fig. 4.9. Note, that as the complexity of the delay scenarios are increasing (denoted
by the increasing amount of primary delays) the effectiveness of the solver’s preprocessor
decreases. This means that less size reduction can be achieved in case of the independent
model, resulting larger problem sizes and increased solution times.

It can be said that despite the fact that the independent model contains a lot more
constraints than the dependent one, the solution times are in the same range in case of
complex scenarios, too.

The main advantage of the formulated model is that it expresses the dependence of the
events and the control variables in a very clear and simple way (see ineq. (4.27)): every
continuous variable depends only on precomputable scalars and binary control variables.
This also means that the dependence between the delays and the control variables can be
directly formulated, by substracting the reference times from the time of the events, thus the
effect of a given control variable on the evolution of the delays can be directly computed.
By considering these, a problem-specific solution method can be developed to replace the
general methods of the MILP solvers, which could have serious impact on the performance
of the solution process. The development of this solver is out of the scope of this work but
seems to be a very promising future work.

4.3.3 Sensitivity analysis based on single delays

It is known that in a railway network the change of the departure or arrival time of one
train can a have small effect, but the change of the parameters of other trains can lead to an
immense effect on the whole system. In the following it is shown that the proposed model
structure is capable of showing the most delay-sensitive parts of the network.

To investigate the effect of a given train’s delay on the network, the following setup was
used. Two different cases were examined introducing 5 and 10 minutes of individual initial
delay to a given train, respectively. Note that in case of this special setup the introduced total
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Figure 4.8: Dependence between the introduced total initial delays and the solution times in
case of dependent and independent model formulation. The power regression lines has the
following parameters and correlation coefficients. In case of the dependent model: 5 ·10−9x3.18,
R2 = 0.831, in case of the independent model: 4.155 · 10−6x2.43, R2 = 0.809.

Figure 4.9: Comparison of the solution times of the dependent and independent model
formulation in case of several different delay scenarios. Scenarios are plotted in an increasing
order w.r.t. the solution time in case of dependent models. As it is shown in Fig. 4.8, this
has a strong correlation with the total initial delay introduced into the given scenario.
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Figure 4.10: Result of delay-sensitivity tests in case of uncontrolled mode. Both the scenarios
having 5 and 10 minutes initial delay are presented.

initial delay is equal to the individual delay of the given train. The whole network model with
Np = 2 was generated and simulated over the prediction horizon. Both uncontrolled case and
controlled case were evaluated. This procedure was iterated over all trains in the network.

This setup enables us to analyze the effect of delay on a given train. If the selected train
is a bottle-neck node in the network, then the introduced initial delays will end up in high
secondary delay values, showing that many other trains are effected by the delay of this
specific train.

The generated results can be seen in Fig. 4.10 and in Fig. 4.11. In case of the 5 min initial
delay, the average of secondary delay in uncontrolled mode is 778.37 min (s = 11.95 min)
while in controlled mode 413.96 min (s = 10.37 min) is achieved. In case of 10 min initial
delay, the average of the secondary delays is 800.99 min (s = 39.65 min) and 430.49 min
(s = 27.08 min) in uncontrolled and controlled case, respectively. The results are concurring
with the expectations, namely that the effect of a relatively small delay (5 min) can be
handled more effectively than the effect of a larger delay (10 min) because of the larger scale
of delay propagation. These results also confirm that the proposed control technique can
effectively reduce the amount of the delay in the network.

It should be noted that this algorithm works with the train runs in the model. As it
is introduced in Subsection 4.1.1 a train run is a representation of a specific train over a
given track. Handling train runs brings the advantage that besides being able to analyze the
delay-sensitivity of a train we can also determine the most delay-sensitive track in the train’s
route.

4.4 Summary

In this Chapter a railway scheduling problem is formulated as an MILP and solved in an
MPC architecture. The model is based on the one presented in [21]. The aim of the control
method is to minimize the total delay of the trains over the prediction horizon. Due to the
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Figure 4.11: Result of delay-sensitivity tests in case of controlled mode. Both the scenarios
having 5 and 10 minutes initial delay are represented. Delay values are clearly smaller than
in Fig. 4.10.

computational complexity of the emerging MILP problem and the need of an algorithm
which can solve the rescheduling in a reasonable time limit, it was necessary to speed up the
solution with proper handling of the original problem. Hence, the obtained constraint set
has been reformulated on two different ways, resulting in different model structures. The
time consumption of the solutions have been compared to each other in case of both model
forms, having different delay scenarios. The performance of the proposed control technique
to minimize total secondary delays has been analyzed.

The main contributions presented in this Chapter and summarized in Thesis II. are
the following: using a track-based ordering a significant speedup can be achieved during
the solution process. By replacing the dependent constraints with independent ones, a
much simpler constraint structure has been obtained which gives the opportunity of the
deeper analysis of the dependencies between events and control actions in the network. The
effectiveness of the proposed control technique is shown by extensive simulations: an average
of 48.9% reduction can be achieved in the sum of delays. The proposed method is capable to
simulate the effect of individual initial delays which enables us to determine the most critical
parts of the railway network in terms of delays.

The general approach - namely the formulation of a scheduling problem as a MILP
problem in an MPC framework - could be utilized in other control problems, e.g. the optimal
control of complex nonlinear systems by using the piecewise affine approximation of the
nonlinear system model.
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Chapter 5

Conclusions

In this thesis, optimization based methods were used to analyze and control networked
systems in large scale, with complex nonlinear dynamics. New methods were presented both
in the topic of the structural analysis of the Kinetic Reaction Networks and the solution of
the scheduling problems of traffic networks.

The main effort has been focused on the analysis of the structure of the investigated
problems. It has been shown that a proper problem representation can be obtained by
exploiting the special structure of problem itself, which leads to the simplification of the
emerging optimization problems (e.g. see Figs. 3.7-3.8 and Fig. 4.2 and their interpretation).
In some cases LP problems can be formulated to substitute the original MILP problems and
in other cases the MILP structure is transformed resulting in computational tasks that can
be solved in reasonable time. Also, it has been shown that the methods can be applied on a
parallel architecture.

5.1 New scientific contributions of the work (thesis points)

The new scientific results presented in this work are summarized in this Section. They
are arranged in three thesis points as follows.

Thesis I. Numerically efficient algorithms to find sparse and dense realiza-
tions of kinetic reaction networks.

I have proposed two algorithms both based on linear programming (LP) having polynomial
time complexity to compute dynamically equivalent alternative realizations of a kinetic reac-
tion network (KRN). I have showed that with the help of the proposed methods alternative
realizations of large scale, biologically motivated KRNs can be computed, too. The algorithms
are compared with the mixed-integer linear programming (MILP) based algorithm available in
the literature and the correctness of the solutions is shown. I have also concluded that the
introduced new methods outperform the MILP-based solution in terms of the time consumption
of the solution. (Section 3.2)

Corresponding publications: [1, 6]
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Thesis I.a

I have proposed an LP-based algorithm to compute dynamically equivalent realizations
of a KRN containing minimal number of reactions. The so-called sparse realization of the
reaction network is computed via the column-wise L1-norm minimization of the off-diagonal
elements of the Kirchhoff-matrix. (Section 3.2.1)

Thesis I.b

I have proposed an LP-based algorithm to compute a dynamically equivalent realization
of a KRN containing maximal number of reactions which is proven to contain all possible
realizations of the reaction graph as a subgraph. The method to compute the so-called dense
realization of the reaction network is based on the relaxation of the MILP-based method known
from the literature: the column-wise sum of the introduced real-valued auxiliary variables
corresponding to the off-diagonal elements of the Kirchhoff-matrix has been maximized.
(Section 3.2.2)

Thesis II. New methods to compute weakly reversible and mass conserving
realizations of kinetic reaction networks.

I have proposed new methods to compute dynamically equivalent and linearly conjugate
alternative realizations of a kinetic reaction network while constraints in terms of the structural
properties of the reaction graph and/or dynamical properties of the described system are
present, too.

Corresponding publications: [2, 4]

Thesis II.a.

A new, linear programming-based method with polynomial time complexity is proposed
to compute linearly conjugate, weakly reversible realizations of a kinetic reaction network
(KRN). I have compared the method to other linear programming- and mixed-integer linear
programming-based algorithms from the literature and it is shown that it outperforms all the
others in terms of computational time, hence the algorithm is capable to handle large scale
KRNs, too. (Section 3.3)

Thesis II.b.

I have proposed a mixed-integer linear programming-based algorithm to compute dynami-
cally equivalent realizations of a kinetic reaction network with mass-conservation property.
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The correctness of the results was shown through examples taken from the literature. (Section
3.4)

Thesis III. New solution methods of scheduling problems in traffic networks.

I have proposed a model formulation method for model-predictive controllers which aim
to deal with the scheduling problem of railway networks in case of delayed operation. The
controller reorders the trains in order to minimize the total delay in the network over the
prediction horizon. The model is described with the help of linear constraints. Thus, the
controlling problem is formulated as a mixed-integer linear programming (MILP) problem. I
have showed the effectiveness of the proposed control technique and a method is proposed for
the sensitivity analysis of the model in case of single delays. (Chapter 4)

Corresponding publications: [5, 3]

Thesis III.a.

I have proposed a reordering method of the constraint matrix that can speed up the solution
of the MILP problem in the presence of the solver’s preprocessor, too. The method is based
on the track-based reordering of the constraint matrix. The track-based reordering means that
the constraints corresponding to a given track are collected into one block resulting that the
constraint matrix of the emerging MILP problem has a clear block-angular structure. (Section
4.2.1)

Thesis III.b.

I have proposed an algorithm to reformulate the constraints in order to achieve a more
simple model formulation. The resulting model shows a clear and simple correspondence
between the continuous variables describing the schedule of the events in the network and the
binary control variables. Considering these, further analysis of the internal relations of the
network model can be done, while problem-specific solution methods can be developed instead
of the application of the general-purpose MILP solvers. (Section 4.2.2)

5.2 Utilization of the presented results, further work

In this thesis the topic of the analysis and control of complex, nonlinear dynamical
systems with networked structure has been investigated through two open problems. Namely,
in Chapter 3 a set of new or improved methods were presented to compute dynamically
equivalent or linearly conjugate KRNs with additional structural or dynamical constraints.
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The introduced algorithms give us the opportunity to analyze large scale, biologically relevant
networks, too. In Chapter 4 new model formulations were proposed for the dynamical railway
scheduling problem in case of delayed operation. Moreover, a model predictive controller-
based framework was formulated to generate timetables corresponding to delay scenarios in
order to minimize the total secondary delay in the network. New timetables are obtained
from the nominal one by swapping trains, splitting joint trains or move them onto alternative
parallel tracks. It has been shown, that by applying the presented model formulations, in
one hand, the solution speed of the emerging optimization problems can be increased. On
the other hand, with proper reformulation, a very clean model structure can be obtained
which can serve as a basis of the development of problem-specific solvers.

There are several fields where the results of the presented work can be further developed.
The implementation of the applied methods on many-core computing devices can lead to
massive improvement in solution time which further extends the applicability of the introduced
methods. It should be noted, that each presented algorithm can be embedded into a parallel
framework: during the problem formulation parallelly solvable problems can be generated or
the solution process of the underlying optimization problem (e.g. the tree-exploration phase
of the MILP solution) can be parallelized.

A possible further work can be the application of problem-specific decomposition methods
on the given optimization problems. As an example, a topographical decomposition method
can be mentioned in case of the railway networks: if the original, large scale railway network
would be split into several, weakly connected parts, the MILP problem having huge size
would also be split into smaller problems connected to each other via boundary conditions.
The emerged set of smaller size MILPs can be solved parallelly, leading to decreased solution
time.

From a modeling point of view, both topics offer several possible directions of development:
in case of KRNs the search for realizations with further structural and dynamical constraints
can be implemented, such as realizations with minimal/zero deficiency, computing all possible
dynamically equivalent realizations etc. Also a controller design method with static or
dynamic extension of the network could be possible using the presented framework.

In the railway scheduling topic further extensions of the model describing the events in
the railway network would be useful, introducing capacity limits of the stations, priorizing
trains based on their types, handling track blocking etc. Moreover, it would be interesting to
modify the framework to control passenger delays instead of train delays leading to a more
passenger-friendly rescheduling method.

In general, it could be said that the optimization based control of analysis and control of
complex dynamical systems having networked structures can be an interesting research topic
in the future, too, leading to the deeper understanding of the behavior of large-scale systems
incorporating many interconnected units.
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Appendix

A. List of abbreviations

The abbreviations used in this thesis are listed below.

Notation Meaning
KRN Kinetic Reaction Network
CRN Chemical Reaction Network
LP Linear Programming

MILP Mixed Integer Linear Programming
MPC Model Predictive Control
WR Weak Reversibility
LC Linear Conjugacy
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B. List of notations

The most important notations used through the thesis are listed below.

Notation Meaning
A constraint matrix of an optimization problem
b right-hand side of an optimization problem
c cost function in an optimization problem
ε small positive value (ε� 1)
n number of species in a given KRN
m number of complexes in a given KRN
xi concentration of the ith specie
x state vector of a KRN containing all xi, i = 1, . . . , n
Cj jth complex, j = 1, ...,m
αi,j stoichiometric coefficient of the jth complex, i = 1, . . . , n
kj,l reaction rate coefficient
Y complex composition matrix Y ∈ Rn×m

Ak Kirchhoff matrix of a KRN, Ak ∈ Rm×m

D weighted, directed graph representing a KRN
Vd set of vertices in the weighted, directed graph of a KRN
Ed set of edges in the weighted, directed graph of a KRN
Ãk scaled Kirchhoff matrix of a KRN
d scaling vector for linear conjugacy, d ∈ Rn

T diagonal transformation for linear conjugacy, T = diag(d)
h a strictly positive vector from ker(Ak)
pu an upper bound
pl a lower bound
g vector of scaled molecular weights
Tc cycle time of a timetable of a railway network
Np prediction horizon in a model predictive framework
β large negative number, e.g. β = −200

di(k), ai(k) departure and arrival times of the ith train in the kth cycle
rdi (k), rai (k) reference times for the departure and arrival of the given train

u a binary valued control variable
J(x) value of the objective function (performance index)
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C. Procedural description of the transformation method pre-
sented in Sec. 4.2.2

The substitution method presented in Subsec. 4.2.2.2 can be described in a procedural
way as follows. Note, that Ax(i, j) refers to the element of Ax in the ith row and jth column.

Procedure 1 for generating independent constraints

1. Pick the lth row from Ax so that Ax(l, j) = 1.

2. Let i is the position of a −1 in the lth row.

3. Search for all dependent constraint which has −1 in the jth column and collect
them in set S.

4. If set S is non-empty, than

4.1. Let us iterate over the rows in S with index m.

4.2. Select mth row from the set S having a 1 element at the position k

and substitute it into the constraint in the lth row of [AxAu]. Set the
corresponding element of b to the proper value calculated from b(m) and
b(l).

4.3. If the new constraint emerged from the substitution contains infeasible
control combination, remove it.

5. Else

5.1. Select an independent constraint having a −1 in the jth column and
substitute it into the lth constraint. Adjust the coefficients of Au and
value of b properly. Put the resulting constraint back to the constraint set.

6. Remove the lth row from Ax and Au.

7. If there is at least one 1 element in Ax then

7.1. If a 1 can be found in the jth column than jump to (1).

7.2. If there is no 1 in the jth column than let us pick a new j value and jump
to (1).

8. If there is no any 1 element left in Ax then let Ā = [AxAu] and b̄ = b and
terminate.
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