
Efficient implementation of computationally intensive
algorithms on parallel computing platforms

Csaba Nemes

A thesis submitted for the degree of
Doctor of Philosophy

Scientific adviser:
Zoltán Nagy, PhD

Supervisor:
Péter Szolgay, DSc

Faculty of Information Technology And Bionics
Péter Pázmány Catholic University

Budapest, 2014

DOI:10.15774/PPKE.ITK.2014.001

mailto:nemes.csaba@itk.ppke.hu
http://www.itk.ppke.hu
http://www.ppke.hu

DOI:10.15774/PPKE.ITK.2014.001

Acknowledgements

First of all, I would like to thank my scientific advisor Zoltán Nagy and
my consultant Prof. Péter Szolgay for guiding and supporting me over the
years.

I am equally thankful to Örs Legeza and Gergely Barcza for teaching me
quantum physics. Furthermore, I would like to give an extra special thank
to Gergely Barcza for supporting me as a friend and as the godfather of
my son.

I am grateful to Prof. Tamás Roska, Prof. Árpád Csurgay and Judit
Nyékyné Gaizler, PhD for giving me encouragement and the opportunity
to carry out my research at the university.

Conversations and lunches with Balázs Varga and Ádám Balogh are highly
appreciated. Realistic thoughts from my ex-colleague and friend Tamás
Fülöp always helped me to accurately determine my position even without
a GPS. The cooperation of my closest colleagues András Kiss, Miklós
Ruszinkó, Árpád Csík, László Füredi, Antal Hiba and Endre László is
greatly acknowledged.

Most importantly, I am thankful to my family. I wish to thank my wife
Fruzsi and son Zente for their loving care and tolerating my frequent ab-
sence. Finally, I am lucky to have my parents, grandparents, and one great
grandparent sponsoring my never-ending studies.

DOI:10.15774/PPKE.ITK.2014.001

DOI:10.15774/PPKE.ITK.2014.001

Contents

1 Introduction 1

2 Parallel architectures 5
2.1 Field Programmable Gate Arrays . 7

2.1.1 The general structure . 8

2.1.2 The common peripherals . 11

2.1.2.1 General purpose I/Os 11

2.1.2.2 Transceiver I/Os 12

2.1.3 Xilinx Virtex-6 SX475T FPGA 13

2.2 Graphical Processing Units . 13

2.2.1 NVidia Kepler architecture 15

2.2.1.1 The general structure 15

2.2.1.2 CUDA programming 16

2.2.1.3 NVidia K20 . 18

3 Solving Partial Differential Equations on FPGA 21
3.1 Computational Fluid Dynamics (CFD) 21

3.1.1 Euler equations . 21

3.1.2 Finite volume method solution of Euler equations 22

3.1.2.1 Structured mesh 23

3.1.2.2 Unstructured mesh 25

3.2 Data structures and memory access patterns 27

3.3 Structure of the proposed processor 29

3.4 Outline of the multi-processor architecture 31

3.5 Analysis of the chosen design strategies 32

v

DOI:10.15774/PPKE.ITK.2014.001

vi CONTENTS

4 Generating Arithmetic Units: Partitioning and Placement 35
4.1 Locally distributed control of arithmetic unit 35

4.1.1 The proposed control unit 35

4.1.2 Trade-off between speed and number of I/Os 39

4.2 Partitioning problem . 40

4.2.1 Problem formulation . 40

4.3 Partitioning algorithms used in circuit design 43

4.3.1 Move-based heuristics . 44

4.3.1.1 The Kernighan-Lin algorithm 44

4.3.1.2 The Fiduccia-Mattheyses algorithm 45

4.3.2 Spectral partitioning . 46

4.3.2.1 Spectral bipartitioning 47

4.3.2.2 Spectral partitioning with multiple eigenvectors . . 48

4.3.3 Simulated annealing . 49

4.3.4 Software packages incorporating the multilevel paradigm . . . 50

4.3.4.1 Chaco . 51

4.3.4.2 hMetis . 52

4.4 Empirically validating the advantage of locally controlled arithmetic
units . 53

4.4.1 The proposed greedy algorithm 54

4.4.1.1 Preprocessing and layering 56

4.4.1.2 Swap-based horizontal placement 58

4.4.1.3 Greedy partitioning based on spatial information . . 59

4.4.2 The configuration of the hMetis program 59

4.4.3 Comparison and evaluation 61

4.5 Partitioning and placement together 65

4.5.1 Properties of a good partition 65

4.5.2 The proposed algorithm . 67

4.5.2.1 Preprocessing and Layering 67

4.5.2.2 Floorplan with simulated annealing 67

4.5.2.3 New representation for graph partitioning 69

4.5.2.4 Partitioning . 72

4.5.2.5 Outline of the full algorithm 74

DOI:10.15774/PPKE.ITK.2014.001

CONTENTS vii

4.5.2.6 Comparison to the terminal propagation technique . 74
4.5.3 Framework . 76
4.5.4 Results . 76

4.6 Summary . 77

5 Density Matrix Renormalization Group Algorithm 81
5.1 Previous implementations . 81
5.2 Investigated models . 82

5.2.1 Heisenberg model . 83
5.2.2 Hubbard model . 83

5.3 Symmetries to be exploited . 85
5.4 Algorithm . 86

5.4.1 LR strategy . 89
5.4.2 l-1-1-r strategy . 90

5.5 Parallelism and run-time analysis . 90
5.6 Limits of the FPGA implementation 93

6 Hybrid GPU-CPU acceleration of the DMRG algorithm 95
6.1 Accelerating matrix-vector multiplications 95

6.1.1 Architectural motivations . 97
6.1.2 gemv_trans() . 98
6.1.3 gemv() . 103

6.2 Accelerating projection operation . 103
6.2.1 Architectural motivations . 105
6.2.2 Scheduling strategies . 106

6.3 Implementation results . 110
6.4 Summary . 114

7 Summary of new scientific results 117
7.1 New Scientific Results . 117
7.2. Új tudomanyos eredmenyek (in Hungarian) 121
7.2. Application of the Results . 125

References 134

DOI:10.15774/PPKE.ITK.2014.001

DOI:10.15774/PPKE.ITK.2014.001

Structure of the dissertation

Chapter 1 introduces the motivation behind the scientific work presented in the disser-
tation.

In Chapter 2, frequently used parallel architectures are reviewed with emphasis on the
FPGA and GPU architectures, which were used during my research.

In Chapter 3, the numerical solution of partial differential equations on FPGAs is dis-
cussed including two complex test cases, the description of the proposed architecture,
and the analysis of the chosen design strategies. The chapter contains scientific results
which belong to the research group I worked in, and provides the background infor-
mation to the high-level design methodology (presented in the next chapter) which is
my scientific contribution.

In Chapter 4, a new high-level design methodology is presented to design high-per-
formance, locally controlled arithmetic units for FPGA. The chapter contains the sci-
entific work related to my first thesis group.

Chapter 5 provides the background information to the hybrid CPU-GPU acceleration
of the density matrix renormalization group algorithm (presented in the next chapter).
It contains the description of the algorithm and the investigated models, which are part
of the scientific literature, the run-time analysis of my CPU-only implementation, and
my estimation of the performance of a possible FPGA acceleration.

In Chapter 6 the first hybrid CPU-GPU acceleration of the density matrix renormaliza-
tion group algorithm is presented including a new scheduling for the matrix operations
of the projection operation and a new CUDA kernel for the asymmetric transposed
matrix-vector multiplication. The chapter contains the scientific work related to my
second thesis group.

Finally, in Chapter 7, the new scientific results of the dissertation are summarized, and
the possible application areas are enumerated.

DOI:10.15774/PPKE.ITK.2014.001

DOI:10.15774/PPKE.ITK.2014.001

List of Figures

2.1 Schematic view of a simplified FPGA 9

2.2 Schematic of a simplified logic cell 9

2.3 A schematic block diagram of the Kepler GK110 chip 17

3.1 A simulation of the airflow inside a scramjet engine 23

3.2 Interface with the normal vector and the cells required in the computation 26

3.3 An unstructured mesh and the corresponding descriptors 28

3.4 Block diagram of the proposed processor 30

3.5 Outline of the proposed architecture 32

4.1 Schematic of the control unit . 37

4.2 A partitioned data-flow graph and the corresponding cluster adjacency

graph . 38

4.3 Operating frequency of the proposed control unit. 40

4.4 Placed instances of a locally controlled AU produced with a naive par-

titioning technique . 55

4.5 A simple data-flow garph and its layered version 57

4.6 The structured CFD graph partitioned by the proposed algorithm . . . 60

4.7 Placed instances of the locally controlled AU produced with the pro-

posed partitioning . 62

4.8 A fragment of the first belt of Figure 4.9 is shown to demonstrate how

inheritance works. 70

4.9 The partitioned data-flow graph of the unstructured CFD problem . . 74

4.10 Operating frequency and area requirements of the AU as the maximum

number of I/O connections of a cluster is changing. 77

xi

DOI:10.15774/PPKE.ITK.2014.001

5.1 Exploiting the projection symmetry in the Heisenberg model 87
5.2 Exploiting the conservation of particle number in the spin-1

2
Hubbard

model . 87
5.3 Heisenberg model: The run-time analysis of the algorithm 91
5.4 Hubbard model: The run-time analysis of the algorithm 91

6.1 The memory request of gemv_trans() in case of the Heisenberg model 96
6.2 GTX 570: Performance of the presented gemv_trans() kernel 98
6.3 K20, no shuffle operation in the kernel: Performance of the presented

gemv_trans() kernel . 100
6.4 K20, shuffle operation enabled: Performance of the presented gemv_-

trans() kernel . 101
6.5 Similar to Figure 6.4 but for matrix height 5e5. 102
6.6 Similar to Figures 6.4 and 6.5 but for matrix height 1e6. 102
6.7 Performance of the gemv_normal() operation 103
6.8 GPU memory footprints of the two strategies are compared in case of

the Heisenberg model . 105
6.9 Interleaved operation records and the resulting parallel execution . . . 108
6.10 GTX 570, Heisenberg model: Performance of the two strategies is

compared. 109
6.11 Similar to Figure 6.10 but on K20 architecture. 109
6.12 GTX 570, Heisenberg model: Performance results of the hybrid CPU-

GPU acceleration of the projection operation. 111
6.13 Similar to Figure 6.12 but for the Hubbard model on GTX 570. 111
6.14 Similar to Figures 6.12 and 6.13 but for the Heisenberg model on K20. 112
6.15 Similar to Figures 6.12, 6.13 and 6.14 but for the Hubbard model on

K20. 112
6.16 K20, Heisenberg model: Acceleration of different parts of the algo-

rithm is compared for m = 4096. 114
6.17 K20, Hubbard model: Acceleration of different parts of the algorithm

is compared for m = 4096. 115

xii

DOI:10.15774/PPKE.ITK.2014.001

List of Tables

2.1 Virtex-6 FPGA Feature Summary 14
2.2 NVIDIA Tesla product line and the GTX 570 GPU 16

4.1 Implementation results of different partitioning strategies in case of the
32 bit structured CFD problem. 63

4.2 Comparing operating frequency of the 32 bit and the 64 bit AU in case
of the structured CFD problem. 63

4.3 Partitioning and implementation results of the structured CFD graph. . 78
4.4 Partitioning and implementation results of the unstructured CFD graph. 79

5.1 Virtex-7 XC7VX1140T FPGA feature summary 93

6.1 Runtime of the accelerated matrix-vector operations of the Davidson
algorithm . 104

6.2 Total time of strategies is compared 110
6.3 Heisenberg model: final timings compared 113
6.4 Hubbard model: final timings compared 113
6.5 Model comparison in case of Xeon E5 + K20. 113

xiii

DOI:10.15774/PPKE.ITK.2014.001

DOI:10.15774/PPKE.ITK.2014.001

List of Abbreviations

ASIC Application-specific Integrated Circuit

AU Arithmetic Unit

BLAS Basic Linear Algebra Subprograms

BRAM Block RAM

CFD Computational Fluid Dynamics

CLB Configurable Logic Blocks

CMOS Complementary metal–oxide–semiconductor

CNN Cellular Neural/Nonlinear Network

CNN-UM Cellular Neural/Nonlinear Network - Universal Machine

CPU Central Processing Unit

CRS Compressed Row Storage

CU Control Unit

CuBLAS CUDA BLAS

CUDA Compute Unified Device Architecture

DDR3 Double Data Rate type three SDRAM

DDR4 Double Data Rate type four SDRAM

DMA Direct Memory Access

xv

DOI:10.15774/PPKE.ITK.2014.001

xvi LIST OF ABBREVIATIONS

DMRG Density Matrix Renormalization Group

DSP Digital Signal Processing

EC Edge Coarsening

FIFO First In, First Out

FIR Finite Impulse Response

FM Fiduccia-Mattheyses algorithm

FPGA Field Programmable Gate Array

FPU Floating-point Unit

FVM Finite Volume Method

GDDR5 Graphics Double Data Rate type five SDRAM

GPU Graphical Processing Unit

HC Hyperedge Coarsening

I/O Input/Output

IDE Integrated Development Environment

IP Intellectual Property

KL Kernighan-Lin algorithm

LUT Look-up Table

MAC Media Access Control

MACC Multiply Accumulate

MADD Multiply Add

MHC Modified Hyperedge Coarsening

MKL Math Kernel Library

DOI:10.15774/PPKE.ITK.2014.001

LIST OF TABLES xvii

MPI Message Passing Interface

MUX Multiplexer

NIC Network Interface Controller

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PCI Peripheral Component Interconnect

PCIe PCI Express

PDE Partial Differential Equation

RAM Random-access Memory

RDMA Remote Direct Memory Access

RTL Register-transfer-level

SA Simulated Annealing

SATA Serial Advanced Technology Attachment

SDK Software Development Kit

SDRAM Synchronous Dynamic RAM

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SM Streaming Multiprocessor

SMX Kepler Streaming Multiprocessor

SoC System-on-Chip

SP2 Second-order Spectral Projection algorithm

SRAM Static RAM

DOI:10.15774/PPKE.ITK.2014.001

SRAM Static Random Access Memory

STL Standard Template Library

TPS Tensor Product States

UCF User Constraint File

VHDL VHSIC Hardware Description Language

xviii

DOI:10.15774/PPKE.ITK.2014.001

Chapter 1

Introduction

Computationally intensive simulations of physical phenomena are inevitable to solve

engineering and scientific problems. Simulations are used to test product designs with-

out fabrication or to predict properties of new physical or chemical systems. Computer

engineering has long since been dealing with the acceleration of simulations to de-

crease the development time of new products or to improve the resulting quality by

expanding the design space. Since clock frequency of processors reached the phys-

ical limits caused by power dissipation, processor designers are focusing on multi-

and many-core architectures to keep up with the predictions of Moore’s law. The goal

of high-performance computing is to answer how to exploit the computing potential of

these novel parallel architectures, such as GPU (Graphical Processing Unit) and FPGA

(Field Programmable Gate Array), to solve computationally intensive problems.

During my research I investigated the acceleration of two specific problems with

the following questions in mind: What is the best architecture for the given application?

How can the implementation methodology be improved? What performance can be

reached, and what are the implementation tradeoffs in terms of speed, power and area?

The first problem I investigated was the numerical solution of partial differential

equations (PDEs) on FPGAs. Nagy et al. demonstrated that the FPGA implementation

of the emulated digital CNN-UM (Cellular Neural Network - Universal Machine) can

be generalized to efficiently simulate various types of conservation laws via finite vol-

ume method (FVM) discretization of the given PDE with the Euler explicit scheme [9].

The mathematical expression (numerical scheme) which has to be evaluated for each

cell in each iteration can be represented with a synchronous data-flow graph. As the

1

DOI:10.15774/PPKE.ITK.2014.001

2 1. INTRODUCTION

goal is to design a high-performance pipelined arithmetic unit (AU), which can oper-

ate at high frequency, each mathematical operation, i.e., node of the graph, is imple-

mented with a dedicated floating-point unit (FPU). On recent high-end FPGAs, several

floating-point units can be realized, which can operate at high frequency, however, the

global control signals connected to each floating-point unit slow down the operating

frequency of the rest of the circuit.

My research goal was to develop a novel design methodology which constructs

high-performance, locally controlled AUs from synchronous data-flow graphs. My

questions were the following: How shall I partition the data-flow graph to obtain clus-

ters which can be controlled efficiently? How to control the clusters and how to connect

them to avoid synchronization problems? What is the price of the improved frequency

in terms of speed, power and area? Finally, how to automate the generation process of

the AUs to drastically decrease the development time of new numerical simulations?

The second problem I investigated was the Density Matrix Renormalization Group

(DMRG) algorithm [10]. The algorithm is a variational numerical approach, which

has become one of the leading algorithms to study the low energy physics of strongly

correlated systems exhibiting chain-like entanglement structure [11]. The algorithm

was developed to balance the size of the effective Hilbert space and the accuracy of

the simulation, and its runtime is dominated by the iterative diagonalization of the

Hamilton operator. As the most time-consuming step of the algorithm, which is the

projection operation of the diagonalization, can be expressed as a sequence of dense

matrix operations, the DMRG is an appealing candidate to fully utilize the computing

power residing in novel parallel architectures.

As the algorithm had not been accelerated on parallel architectures (to the best

of my knowledge), my research goal was to investigate on which architecture the

algorithm can be implemented most efficiently. My objective was to give a high-

performance, parallel and flexible implementation on the selected architecture, which

can deal with wide range of DMRG configurations.

In Chapter 2, modern parallel architectures are reviewed focusing on the architec-

tures utilized in the dissertation: the FPGA and the GPU. In Chapter 3, an FPGA

acceleration of the numerical solution of PDEs is presented including the numeri-

cal formulas of a Computational Fluid Dynamics (CFD) problem and the proposed

FPGA framework. In Chapter 4, the proposed design methodology for constructing

DOI:10.15774/PPKE.ITK.2014.001

3

high-performance, locally controlled AUs is described. This chapter contains the sci-
entific work related to my first thesis group. In Chapter 5, the DMRG algorithm is
summarized including a run-time analysis of the CPU-only code and an estimation of
the performance of a possible FPGA acceleration. In Chapter 6, a hybrid GPU-CPU
DMRG code is described including the acceleration of the projection operation and
some asymmetric matrix-vector operations of the diagonalization. This chapter con-
tains the scientific work related to my second thesis group. Finally, the new scientific
results of the dissertation are summarized in Chapter 7.

DOI:10.15774/PPKE.ITK.2014.001

DOI:10.15774/PPKE.ITK.2014.001

Chapter 2

Parallel architectures

Parallel architectures are being designed from the beginning of high performance com-

puting, however, since clock frequency reached the physical limits, they have got into

the primary focus of chip makers. At the current 20-30 nm technology, several pro-

cessing elements (cores) can be packed into one chip and the resulting parallel archi-

tectures can be used to continue the performance improvement of the CMOS chips

for some extra years. The demand for new parallel architectures raised several archi-

tectural questions which was answered differently by chip designers. Architectural

differences are also due to the different application areas that different chip makers

may target. Unfortunately, there is a very serious barrier in the way of packaging

many cores, that is, many transistors into a single chip: the power wall. As the power

consumption of a single transistor cannot be decreased below a physical limit, it is a

constant challenge for chip designers to pack more performance into a single chip by

designing more power efficient cores. (One possible way to decrease the power con-

sumption of a chip is to "turn off" the parts which are currently not used, however, in

high-performance applications, where all the resources are continuously utilized, this

cannot be exploited.)

Multicore processors can be grouped into traditional multicore processors, in which

a couple of heavy weight processing cores are glued on a single chip and to non-

traditional multicore processors, which represent all the other efforts to design novel

parallel architectures. The first group contains the traditional desktop and mobile CPUs

of Intel and AMD, while the second group includes parallel efforts, such as IBM

Cyclops-64 [12], IBM Cell [13], GPUs of NVidia and AMD, FPGAs of Xilinx and

5

DOI:10.15774/PPKE.ITK.2014.001

6 2. PARALLEL ARCHITECTURES

Altera, Intel Larrabee [14], Intel MIC [15], and Tilera Tile-Gx [16].

One of the main questions arising in the many-core architecture design is the ques-

tion of memory hierarchies and caches. At the dawn of novel parallel architectures

it was still an open question, how to supply program developers with expensive au-

tomated caching in complex systems. IBM chose a user-managed memory hierarchy

approach in its Cell and Cyclops-64 processors. Cell processor was originally designed

for Sony PlayStation 3 in the first half of 2000s, and it was reused in the IBM Road-

runner supercomputer which was the first computer breaking through the ”petaflop

barrier”. Cyclops-64 processor was also developed during the first half of 2000s and

was one of the first projects to pack dozens of cores into a single chip: it contained 80

cores reaching 80 GFlops performance. Despite the success they reached, the architec-

tures have been discontinued in the second half of 2000s. One of the main bottlenecks

of their widespread usage was that it was relatively hard to develop efficient programs

on them (compared to rivals) due to the user-managed memory hierarchy.

Graphical processing units (GPUs) entered the competition of general purpose par-

allel architectures in 2006, when NVidia introduced its first unified shader architecture.

The proposed architecture introduced an universal processing core (stream processor)

instead of vertex and pixel shader processors. The NVidia Geforce 8800 processor

(codename G80) consisted of 128 stream processors grouped into 8 blocks by 16 pro-

cessors. Each stream processor was a very simple, but universal processing core which

was capable of floating-point operations. From the aspect of memory hierarchy, they

took a middle course by implementing both automated and non-automated caches.

Nowadays, GPUs have an important role in high-performance computing, and the evo-

lution of the architecture has not stopped. To review some of the new features of the

modern GPUs, the NVidia Kepler architecture is presented in Section 2.2.

The success of GPUs inspired Intel to design its own GPU chip called Larrabee.

The idea behind the new architecture was to combine the advantages of CPUs and

GPUs. Larrabee was intended to use very simple, but x86 instruction set cores and au-

tomated cache mechanism across all the cores. The architecture was planned to contain

32 computing cores and to reach one TFlops performance in case of single precision.

Although the chip had some working copies, it was not commercially released, and

the architecture was replaced by the Intel Many Integrated Core (MIC) architecture.

The Intel MIC architecture was debuted under the brand name Xeon Phi in 2012. Intel

DOI:10.15774/PPKE.ITK.2014.001

2.1 Field Programmable Gate Arrays 7

Xeon Phi is basically a coprocessor, which can be connected to an Intel Xeon host

processor through a PCI express bus. The coprocessors of Intel Xeon Phi 7100 family

contain 61 x86 instruction set cores connected via a very high bandwidth, bidirectional

ring interconnect. Each core contains a vector processing unit with 512-bit SIMD in-

struction set, which can execute 32 single-precision or 16 double-precision floating

point operations per cycle (assuming multiply-and-add operation). In contrast with

the GPUs, all cache memories are fully coherent and implement the x86 memory or-

der model. Each core is equipped with a 32 KB L1 instruction cache, a 32 KB L1 data

cache, and a 512 KB unified L2 cache. In case of double precision, the theoretical peak

performance of the coprocessor is 1208 GFlops, while the peak memory bandwidth is

352 GB/s.

In 2007, Tilera Corporation entered the high-performance multiprocessor industry

with a novel many-core processors topology, in which the cores are interconnected via

a 2D non-blocking mesh, called iMesh, forming an on-chip network. The Tile-Gx72

chip contains 72 processing cores, each of which is a full-featured 64-bit processor

with fully coherent L1 and L2 caches. The chip integrates four DDR3 memory con-

trollers (up to 1TB memory with 60 GB/s) and several I/O controllers (e.g. 8 10 Gb/s

Ethernet, 6 PCI express ports), therefore, there is no need for a host CPU. The product

targets the cloud computing industry by being 3-4 times more energy efficient than

Intel’s x86 based servers [17].

The FPGA represents a broader class of architectures as it is an universal chip

which can be programmed to realize different types of architectures. However, as it

can realize high-performance and power efficient parallel architectures, which compete

with the previously mentioned chips, it can also be regarded as a highly customizable

parallel architecture.

In the following sections, the FPGA and the GPU, the two architectures which are

used in the dissertation, are presented in more detail.

2.1 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs), introduced by Xilinx Inc in 1985, are sil-

icon devices that can be electrically programmed to realize wide range of digital cir-

cuits. They were created to fill the gap between fixed-function Application Specific

DOI:10.15774/PPKE.ITK.2014.001

8 2. PARALLEL ARCHITECTURES

Integrated Circuits (ASICs) and software programs. From development aspects, they

are still between the two approaches and, sometimes, the only compromise for appli-

cations. In one hand, the fabrication time of ASICs cannot be compared to FPGAs

that can be configured in less than a second. On the other hand, the development of

an FPGA design usually takes significantly more time than a software development

process. The reverse can be observed in case of power consumption: ASICs have the

lowest power consumption, while FPGAs have lower power consumption than com-

mon CPUs running the software programs. The speed performance of an FPGA is

typically 3-4 times smaller than an ASIC [18], and the maximal operating frequency

of an FPGA is 5-6 times smaller than a high-end CPU. Comparing the overall perfor-

mance of FPGA and CPU is problematic because their performance is task dependent

and in specific computational domains the FPGA outperforms the CPU contrary to the

slower operating frequency.

2.1.1 The general structure

The schematic structure of an FPGA is illustrated in Figure 2.1. The main building

blocks are the generic logic blocks, the dedicated blocks (e.g. memory or multiplier),

the routing fabric, and the I/O blocks. During the implementation of a circuit, which

is designed for FPGA, the blocks and the routing resources are electrically configured

(programmed). The technology relies on electrically programmable switches which

select the proper operation in the configurable blocks or the interconnection topology

in the routing fabric. Currently, most FPGAs use static memory (SRAM) switches, but

special FPGAs are also built with flash or anti-fuse technology. The main advantage of

SRAM switches is the fast operation, however, they have to be reconfigured each time

they are powered on.

In the beginning, FPGAs contained only very simple logic blocks, however, nowa-

days, FPGAs contains complex logic blocks, which can be operated more efficiently

in general. As a representative example, the logic block of Xilinx Virtex-6 FPGAs,

also called Configurable Logic Block (CLB) is considered here. Each CLB contains

two smaller logic cells, called slices. Every Virtex-6 slice contains four logic-function

generators, also called look-up tables (LUTs), eight storage elements, wide-function

multiplexers (MUX), and carry logic, which connects neighboring slices. To illustrate

DOI:10.15774/PPKE.ITK.2014.001

2.1 Field Programmable Gate Arrays 9

Figure 2.1: Schematic view of a simplified FPGA containing only a few building blocks: con-
figurable logic (CLB), multiplier (MUL), memory (RAM), and I/O blocks.

Figure 2.2: Schematic of a simplified logic cell

the concept, a simplified logic cell containing one 6-input LUT, two multiplexers, and

one register is depicted in Figure 2.2. The 6-input LUT can be configured as a logic

function, a 32-bit shift register, or a 64 bit memory. The storage element can act as

a flip-flop or a latch. In case of Virtex-6, two types of slices are exist: SLICEL and

SLICEM. In the simpler SLICELs, the LUTs cannot be configured to shift register or

memory, consequently, they provide only logic and arithmetic functions. The more

complex SLICEM, in addition to these functions, can be configured to store data using

distributed RAM or to shift data with 32-bit registers.

The dedicated memory blocks are called block RAMs (BRAMs). They were in-

troduced to utilize chip area more efficiently in memory hungry applications.They are

usually placed in specific columns of the FPGA and can be used independently, or mul-

DOI:10.15774/PPKE.ITK.2014.001

10 2. PARALLEL ARCHITECTURES

tiple blocks can be combined together to implement larger memories. The blocks can

be used for a variety of purposes, such as implementing standard single- or dual-port

RAMs, first-in first-out (FIFO) functions, or state machines.

For some functions, like multipliers, which are frequently used in applications,

it is worth to create dedicated blocks as well. If these functions are implemented

via generic logic blocks connected together, the connections result in a significantly

lower frequency than in case of ASIC. By introducing hardwired solutions for the

most frequently used functions, the operating frequency can get one step closer to the

frequency used in ASIC.

In the Virtex-6 family the dedicated multipliers blocks are called DSP48E1 blocks

(here DSP stands for digital signal processing). These hardwired blocks are very flex-

ible and provide several independent functions, such as multiply, multiply accumulate

(MACC), multiply add, three-input add, barrel shift, wide-bus multiplexing, magnitude

comparator, bit-wise logic functions, pattern detect, and wide counter. Furthermore,

the architecture supports cascading multiple DSP48E1s to form wider math functions,

DSP filters, and complex arithmetic without the use of general FPGA logic.

The architecture also supports the so called System-on-Chip(SoC) solution at both

software and hardware level. Since the number of transistors in a single chip reached

a practical limit, complete systems can be realized on a single chip. At software level,

several off-the-shelf softcore processors are available, what an FPGA developer can be

include in the design if there are enough resources in the selected FPGA. At hardware

level, Xilinx launched the Zynq Family, in which a Dual ARM Cortex-A9 processor is

integrated into the FPGA chip itself.

The development flow of an FPGA-based design describes how an abstract tex-

tual Hardware Description Language (HDL) description of the design is converted to

the device cell-level configuration. In the presented work, the VHDL language was

used, and its name stands for Very High-Speed Integrated Circuit Hardware Descrip-

tion Language. The VHDL is a strongly typed, Ada-based programming language,

which provides a structural and a register-transfer-level (RTL) descriptions for circuits.

The structural description lets the programmer compose a design from sub-circuits,

while, in RTL, the logic of sub-circuits can be described as transformations on data

bits between register stages.

DOI:10.15774/PPKE.ITK.2014.001

2.1 Field Programmable Gate Arrays 11

The first step of a typical development process is the testbench creation, which

can also be described in VHDL and is used to simulate the operation of the design

at RTL level. If the design operates as desired, the synthesis process transforms the

VHDL constructs to generic gate-level components, such as simple logic gates and

registers. The next process is the implementation process, which consists of three

smaller processes: translate, map, and place-and-route. First, the translate merges

multiple design files into a single netlist. Next, the generic gates of the netlist are

mapped to logic cells and I/O blocks. Finally, the place-and-route process places the

cells into physical locations inside the FPGA chip and determines the routes for the

connecting signals. At the end of the development flow, static timing analysis can be

done to determine various timing parameters, such as maximal clock frequency, and

the configuration file is generated.

2.1.2 The common peripherals

One of the main strengths of the FPGA is that it can support wide range of peripherals.

In theory, the FPGA can be configured to handle any peripherals, however, in practice,

we usually rely on the peripherals what FPGA manufacturers already support (e.g. via

specific blocks or IP cores) and what FPGA board manufacturers place on the FPGA

boards.

The I/O blocks of a Virtex-6 FPGA can be grouped into general purpose and

transceiver I/O blocks.

2.1.2.1 General purpose I/Os

In Xilinx Virtex-6 FPGAs, general purpose I/O blocks are called Select I/O blocks and

support a wide variety of standard interfaces. The I/O blocks are grouped into I/O

banks, and blocks of the same bank usually implement the same standard, e.g. output

buffers within the same bank must share the same output drive voltage. In a typical

Virtex-6 FPGA, there are around 9-18 I/O banks and 360-1200 user-configurable I/O

blocks.

Onboard DDR memories are usually connected to FPGAs through the general pur-

pose I/O blocks. Their typical size is around 1-4 GB. In theory, larger memories could

also be connected to an FPGA, however, in practice, FPGA board manufacturers do

DOI:10.15774/PPKE.ITK.2014.001

12 2. PARALLEL ARCHITECTURES

not pack more memories into the boards because it is unprofitable. Virtex-6 FPGAs
support both DDR2 (800 Mb/s per pin) and DDR3 (1066 Mb/s per pin) interfaces.
Assuming an Alpha Data ADM-XRC-6T1 FPGA board as a target research platform,
the FPGA can be connected to 4 1GB memory modules. In this configuration, each
memory module is 32bit wide and connected to a separate channel, consequently, the
total memory throughput is 17.05 GB/s.

2.1.2.2 Transceiver I/Os

A transceiver is a combined transmitter and receiver for high-speed serial communica-
tion. In the investigated Virtex-6 family, two types of transceivers exist: GTX (6.6 Gb/s
per lane) and GTH (11.18 Gb/s per lane). In the newer Virtex 7 family even a faster
transceiver (GTZ) has been introduced with 28 Gb/s throughput per lane. These ex-
tremely fast transceivers make FPGA the only choice for some ultra-high bandwidth
wired telecommunication applications.

The PCI express communication is also established through the transceivers. The
PCI express throughput is very important in scientific applications because the CPU
and the FPGA communicate via this interface. (Usually, the FPGA board is inserted
into one of the PCI express slots of a host computer.) Virtex-6 family supports the first
(2.5 Gb/s) and the second (5 Gb/s) generation of the protocol, while the newer Vir-
tex 7 family supports the third generation (8 Gb/s) as well. Xilinx provides integrated
interface blocks for PCI express designs, which are dedicated hard IPs to help the im-
plementation of the protocol. Each block supports x1, x2, x4, or x8 lane configurations
and Virtex-6 FPGAs contains usually 1-4 blocks. Assuming the previously mentioned
Alpha Data board, the FPGA chip is connected to the PC via 4 lanes, which results
in a modest 2 GB/s throughput. In theory, significantly faster configurations are also
possible if more blocks and more lanes are utilized.

Transceivers enable communication through other interfaces as well, such as Serial
Advanced Technology Attachment (SATA) or Ethernet. All revisions of SATA inter-
face are supported by transceivers enabling 6 Gb/s throughput, however, some layers
of the protocol have to be implemented in the general FPGA logic via a soft IP core.
Ethernet communication is supported by a dedicated block called Tri-mode Ethernet
MAC (TEMAC) to save logic resources and design efforts. The maximal communica-
tion throughput supported by the Virtex-6 family is 2.5 Gb/s.

DOI:10.15774/PPKE.ITK.2014.001

2.2 Graphical Processing Units 13

2.1.3 Xilinx Virtex-6 SX475T FPGA

The Xilinx Virtex-6 SX475T FPGA with speed grade -1, which has been used in the

dissertation, is part of the Virtex-6 SXT subfamily, which was designed to deliver

the highest ratio of DSP and memory resources for high-performance applications.

The most important parameters of the Virtex-6 familiy are summarized in Table 2.1.

The chip contains 74400 slices, 2016 multiplier blocks (DSP48E1), 38304 Kb on-chip

memory (BRAM), 2 interface blocks for PCI express, 4 Ethernet MACs, 840 general

purpose I/O blocks and 36 GTX transceivers.

To estimate the computational performance of the selected FPGA, we can assume a

heavily pipelined architecture that is not memory bandwidth limited, e.g. dense matrix-

matrix multiplication. In this type of applications, the performance is only limited by

the number of operation units that can be implemented. To estimate the fixed point

performance, the Xilinx LogiCORE IP Multiplier soft IP can be assumed as the basic

operation unit. If it is configured to a fixed point 25x18 multiplier, it can be operated at

450 MHz and occupies 1 DSP48E1 blocks. In this configuration, 2016 multipliers can

be implemented, and each can start a combined multiply-and-add operation (MAD)

for every clock cycle resulting in 1814.4 giga operations per second. To estimate the

floating-point performance, the Xilinx LogiCORE IP Floating-Point Operator can be

used. In single precision case, it can operate at 429 MHz and occupies 3 DSP blocks.

In the selected FPGA, 672 multiplication units can be implemented and the remaining

logic still allows 509 adder units, which can be connected to the multipliers resulting

in 436.7 GFlops performance. In double precision case, the multiplication can operate

at 429 MHz and occupies 11 DSP blocks. There are enough resources for 183 multipli-

cation and adder units, however, the adder unit can operate at only 361 MHz resulting

in 132.1 GFlops performance.

2.2 Graphical Processing Units

After the introduction of the unified shader architecture, the fast development of the

GPU architecture has been continued. The next move toward general-purpose com-

puting happened in late 2007, when AMD introduced the double-precision support in

Radeon HD 3800 series and FireStream 9170. In 2008, the double-precision support

DOI:10.15774/PPKE.ITK.2014.001

14 2. PARALLEL ARCHITECTURES

Table 2.1: Virtex-6 FPGA Feature Summary

Device
Configurable Logic
Blocks (CLBs) DSP48E1

Slices
Block RAM
Blocks
(36Kb)

Maximum
Transceivers
GTX

Max
User
I/OSlices

Max Distributed
RAM (Kb)

XC6VLX75T 11,640 1,045 288 156 12 360
XC6VLX130T 20,000 1,740 480 264 20 600
XC6VLX195T 31,200 3,040 640 344 20 600
XC6VLX240T 37,680 3,650 768 416 24 720
XC6VLX365T 56,880 4,130 576 416 24 720
XC6VLX550T 85,920 6,200 864 632 36 1200
XC6VLX760 118,560 8,280 864 720 0 1200

XC6VSX315T 49,200 5,090 1,344 704 24 720
XC6VSX475T 74,400 7,640 2,016 1,064 36 840
XC6VHX250T 39,360 3,040 576 504 48 320
XC6VHX255T 39,600 3,050 576 516 24 480
XC6VHX380T 59,760 4,570 864 768 48 720
XC6VHX565T 88,560 6,370 864 912 48 720

also appeared at NVidia in the second generation of the unified shader architecture,

called Tesla architecture. Traditionally, the GPU cards containing the GPU chip were

connected to the host system via a PCI express slot and to the monitor via a video

display interface, however, starting from these new architectures, both GPU manufac-

turers started to offer special cards without video display for general-purpose high-

performance computing.

For programming GPUs, both manufacturers introduced their own development

platforms: CUDA SDK by NVidia and Stream SDK by AMD. In 2008, OpenCL,

a general framework for writing programs which can be executed on various parallel

architectures, was introduced. AMD decided to support OpenCL instead of its previous

framework, while NVidia decided to support both OpenCL and CUDA. Although the

OpenCL framework has the theoretical advantage that it can create universal program

code, the performance of the universal code is sometimes far behind the native solution.

Usually, even in OpenCL, some hardware specific adjustments have to be done in

the code to create a high-performance implementation, which leads to the following

questions: Is it possible to describe wide range of architectures without a significant

loss in the performance? Will OpenCL compilers be smart enough to compete with the

native SDKs?

In the dissertation the NVidia K20 GPU has been selected for the demonstration of

DOI:10.15774/PPKE.ITK.2014.001

2.2 Graphical Processing Units 15

the implemented DMRG program. The selected GPU is one of the leading GPUs pro-

viding more than one teraflops performance in double-precision and can be regarded

as an illustrative example representing the modern GPU architecture. In the following

section, the NVidia Kepler architecture, on which the K20 is based, is presented in

more detail. As the DMRG program was implemented via CUDA, the CUDA SDK is

also introduced.

2.2.1 NVidia Kepler architecture

The Kepler architecture was released in 2012 and it can be regarded as the 4th ma-

jor improvement of the GPU architecture since the introduction of the unified shader

architecture. Compared to the previous generation (called Fermi), the manufacturer

primarily focused on the minimization of the power consumption, and in the high-

performance GK110 chip the double-precision performance was also increased. The

main parameters of the NVIDIA Tesla products built upon the Kepler or the Fermi

architectures are summarized in Table 2.2. The new architecture was reported 3 times

more power efficient than the Fermi architecture [19] and introduced several new fea-

tures, such as Dynamic Parallelism or NVidia GPUDirect. Dynamic Parallelism en-

ables the programer to write smarter kernels which can dispatch new kernels with-

out host intervention. NVidia GPUDirect is a new communication way, in which the

GPU memory can be directly accessed via the PCI express interface eliminating CPU

bandwidth and latency bottlenecks. The GPU can be directly connected to a network

interface controller (NIC) to exchange data with other GPUs via Remote Direct Mem-

ory Access (RMDA). The GPU can also be connected to other 3rd party devices, e.g.

storage devices.

2.2.1.1 The general structure

A schematic block diagram of the Kepler GK100 chip is displayed in Figure 2.3. The

chip is associated with CUDA Compute Capability 3.5, which is the revision number

of the underlying architecture and determines the available CUDA features. The archi-

tecture contains 15 Streaming Multiprocessors (SMX) and 6 64bit memory controllers.

Each SMX contains 192 single-precision CUDA cores, 64 double-precision units, 32

special function units, 65356 32bit registers, 64 KB shared memory, 48 KB read-only

DOI:10.15774/PPKE.ITK.2014.001

16 2. PARALLEL ARCHITECTURES

Table 2.2: NVIDIA Tesla product line and the GTX 570 GPU, which was also tested in the
dissertation.

GTX 570 M2050
M2070/
M2075 M2090 K10 K20 K20X

Architecture
GF110
(Fermi)

2xGK104
(Kepler)

GK110
(Kepler)

Number of CUDA cores 448 448 448 512 2x1536 2496 2688
Core clock
frequency (MHz) 1464 1150 1150 1300 745 706 732

Onboard memory size
(GB) 1.3 3 6 6 8 5 6

Onboard memory
bandwidth (GB/s) 152 148 150 177 320 208 250

Peak double precision
floating point
performance (GFlops)

175 515 515 665 190 1170 1310

Peak single precision
floating point
performance (GFlops)

1405 1030 1030 1331 4580 3520 3950

Compute capability 2.0 2.0 2.0 2.0 3.0 3.5 3.5

data cache, and 4 warp schedulers. SMX supports the IEEE 754-2008 standard for

single- and double-precision floating-point operations (e.g. fused multiply-add) and

can execute 192 single-precision or 64 double-precision operations per cycle. Special

function units can be used for approximate transcendental functions such as trigono-

metric functions.

2.2.1.2 CUDA programming

The CUDA SDK, which was debuted in 2006, is a general computing framework and

a programing model that enables developers to program the CUDA capable devices of

NVidia. Programs running on CUDA capable devices are called kernels. Kernels are

programmed in CUDA C, which is a standard C with some extensions. Kernels can be

dispatched from various supported high-level programming languages such as C/C++

or Fortran, and there are also CUDA libraries, which collect kernels written for specific

applications (e.g. CuBLAS for Basic Linear Algebra Subroutines).

When a kernel is dispatched, several threads are started to execute the same kernel

code on different input. The mechanism is called Single Instruction Multiple Threads

(SIMT), and one of the key differences from Single Instruction Multiple Data (SIMD)

DOI:10.15774/PPKE.ITK.2014.001

2.2 Graphical Processing Units 17

Figure 2.3: A schematic block diagram of the Kepler GK110 chip. Image source: NVidia Ke-
pler Whitepaper [19]. The chip contains 15 Streaming Multiprocessors (SMX). Cache mem-
ories, single-precision CUDA cores, and double-precision units are indicated by blue, green,
and orange, respectively.

DOI:10.15774/PPKE.ITK.2014.001

18 2. PARALLEL ARCHITECTURES

is that threads can access input data via an arbitrary input pattern. Threads are or-

ganized into a thread hierarchy, which is an important concept in CUDA program-

ming. The programmer can determine the number and the topology (1D, 2D, or 3D) of

threads to form a thread block and several thread blocks can be defined to form a grid.

The total number of threads shall match to the size of the problem that the treads have

to solve. During execution the tread blocks are distributed among the available stream

processors.

The second important concept in CUDA programming is the memory hierarchy.

At thread level, each thread can use private (local) registers allocated in the register

file of SMX, which is the fastest memory. At thread block level, threads of a block can

reach a shared memory allocated in the shared memory of SMX. Finally, at grid level,

all threads can access the on-board DDR memory, which is the largest but slowest

memory on the GPU card.

When thread blocks are assigned to an SMX, the threads of the assigned blocks

can be executed concurrently; even execution of threads of different blocks can be

overlapped. The SMX handles the threads in groups of 32, called warps. The SMX

distributes the warps between its four warp schedulers, and each sheduler schedules

the execution of the assigned warps to hide various latencies. Each scheduler can issue

two independent instructions for one of its warps per clock cycles, that is, an SMX

can issue eight instructions per clock cycle if the required instruction level parallelism

and functional units are available. As a warp contains 32 threads, one instruction cor-

responds to 32 operations. To give an example, 6 single-precision instructions can

be executed on the 192 CUDA cores and 2 double-precision instructions can be exe-

cuted on the 64 double-precision computing units. As there is no branch prediction, all

threads of a warp shall agree on their execution path for maximal performance.

2.2.1.3 NVidia K20

The NVIDIA Tesla K20 graphics processing unit (GPU), which is utilized in the disser-

tation, is an extension board containing a single GK110 chip. The board is connected

to the host system via an x16 PCI Express Generation 2 interface, which provides 8

GB/s communication bandwidth. The board contains 5 GB GDDR5 memory, which is

DOI:10.15774/PPKE.ITK.2014.001

2.2 Graphical Processing Units 19

accessed through a 320-bit interface providing 208 GB/s memory throughput. The es-
timated power consumption of the full board during operation is approximately 225 W.

DOI:10.15774/PPKE.ITK.2014.001

DOI:10.15774/PPKE.ITK.2014.001

Chapter 3

Solving Partial Differential Equations
on FPGA

3.1 Computational Fluid Dynamics (CFD)

A wide range of industrial processes and scientific phenomena involve gas or fluid

flows over complex obstacles, e.g. air flow around vehicles and buildings, the flow of

water in the oceans or liquid in BioMEMS. In such applications, the temporal evolution

of non-ideal, compressible fluids is often modeled by the system of Navier-Stokes

equations. The model is based on the fundamental laws of mass-, momentum- and

energy conservation, including the dissipative effects of viscosity, diffusion and heat

conduction. By neglecting all non-ideal processes and assuming adiabatic variations,

we obtain the Euler equations.

3.1.1 Euler equations

The Euler equations [20, 21], which describe the dynamics of dissipation-free, invis-

cid, compressible fluids, are a coupled set of nonlinear hyperbolic partial differential

equations. In conservative form they are expressed as

∂ρ

∂t
+∇ · (ρv) = 0 (3.1a)

∂ (ρv)

∂t
+∇ ·

(
ρvv + Îp

)
= 0 (3.1b)

21

DOI:10.15774/PPKE.ITK.2014.001

22 3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON FPGA

∂E

∂t
+∇ · ((E + p)v) = 0 (3.1c)

where t denotes time, ∇ is the Nabla operator, ρ is the density, u, v are the x- and y-

component of the velocity vector v, respectively, p is the thermal pressure of the fluid,

Î is the identity matrix, and E is the total energy density defined by

E =
p

γ − 1
+

1

2
ρv · v. (3.1d)

In equation (3.1d) the value of the ratio of specific heats is taken to be γ = 1.4.

The quantities ρ, ρv, E can be grouped into the conservative state vector U =

[ρ, ρv, E]T , and it is also convenient to merge (3.1a), (3.1b) and (3.1c) into hyperbolic

conservation law form in terms of U and the flux tensor

F =

 ρv

ρvv + Îp
(E + p)v

 (3.2)

as:
∂U

∂t
+∇ · F = 0. (3.3)

The equation expresses the conservation of quantity U: the change of U equals to the

divergence of F which describes the transport mechanism of U.

3.1.2 Finite volume method solution of Euler equations

Finite Volume Method (FVM) is a frequently used discretization strategy to numeri-

cally solve the hyperbolic conservation laws expressed by the Euler equations [22]. To

illustrate a possible application, a simulation of the airflow inside a scramjet engine is

presented in Figure 3.1. During the discretization, a mesh is introduced for the compu-

tational domain where the PDE is studied. The idea behind the strategy is to integrate

Equation 3.3 for each element (cell) of the mesh. Using the divergence theorem, the

change of the quantity U inside each cell can be approximated via the fluxes going

through the border of the cell: ∫
T

∂U

∂t
+

∮
T

F · nT = 0. (3.4)

DOI:10.15774/PPKE.ITK.2014.001

3.1 Computational Fluid Dynamics (CFD) 23

Figure 3.1: A simulation of the airflow inside a scramjet engine. Colors represent the value of
the density (kg/m3) component of the state vector.

where nT is the outward pointing unit normal field of the boundary of cell T. As numer-
ical fluxes are locally conserved, flux computations can be reused in the neighboring
cells.

The temporal derivative is discretized by the first-order forward Euler method:

∂U

∂t
=

Un+1 −Un

∆t
, (3.5)

where Un is the known value of the state vector at time level n, Un+1 is the unknown
value of the state vector at time level n+ 1, and ∆t is the time step. In the current im-
plementation, constant time steps are used, however, a variable time step modification
of the framework is also possible.

In Chapter 4 the developed design methodology is presented via the solution of the
Euler equations in case of structured and unstructured space discretization. In both
cases the fluxes are computed similarly, however, in the unstructured case, extra rota-
tions are needed which makes the numerical scheme more complex. In the following
part both schemes are presented.

3.1.2.1 Structured mesh

Kocsardi et al. [23] showed that logically structured arrangement of data is a convenient
choice for an efficient FPGA-based implementation. Hereby I am shortly reviewing the

DOI:10.15774/PPKE.ITK.2014.001

24 3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON FPGA

numerical scheme because it is used as a test case to demonstrate the AU generation
capabilities of the presented framework.

The computational domain Ω is composed of n×m logically structured rectangles
(cells). The area of a cell T is denoted by VT, while a face f is described by the
vector nf which is normal to the face f and its size equals to the area of the face.
The flux tensor evaluated at a face f is denoted by Ff . Using the cell centered FVM
discretization, the governing equations (Equation 3.4) can be described as

∂UT

∂t
= − 1

VT

∑
f

Ff · nf , (3.6)

where the summation is meant for all four faces of cell T.
In order to stabilize the solution procedure, artificial dissipation has to be intro-

duced into the scheme. According to the standard procedure, this is achieved by re-
placing the physical flux tensor by a numerical flux function F̃ containing a dissipative
stabilization term. In the dissertation the simple and robust Lax-Friedrichs numerical
flux function is used, which is defined as

F̃ =
FL + FR

2
− (|ū|+ c̄)

UR −UL

2
(3.7)

where FL(UL) and FR(UR) is the flux at the left and right side of the interface,
respectively, |ū| is the average value of the velocity, and |c̄| is the speed of sound
at the interface.

Fixing the coordinate system for each cell in an east-south direction, the dot product
with the normal vector can be simplified to a multiplication by the area of the face. In
case of eastward and southward fluxes the first and second columns of the flux tensor
can be used, respectively:

F̃ ρ
east =

ρLuL + ρRuR
2

− (|ū|+ c̄)
ρR − ρL

2
(3.8a)

F̃ ρu
east =

(ρLu
2
L + pL) + (ρRu

2
R + pR)

2
− (|ū|+ c̄)

ρRuR − ρLuL
2

(3.8b)

F̃ ρv
east =

ρLuLvL + ρRuRvR
2

− (|ū|+ c̄)
ρRvR − ρLvL

2
(3.8c)

F̃E
east =

(EL + pL)uL + (ER + pR)uR
2

− (|ū|+ c̄)
ER − EL

2
(3.8d)

DOI:10.15774/PPKE.ITK.2014.001

3.1 Computational Fluid Dynamics (CFD) 25

F̃ ρ
south =

ρLvL + ρRvR
2

− (|ū|+ c̄)
ρR − ρL

2
(3.9a)

F̃ ρu
south =

ρLuLvL + ρRuRvR
2

− (|ū|+ c̄)
ρRuR − ρLuL

2
(3.9b)

F̃ ρv
south =

(ρLv
2
L + pL) + (ρRv

2
R + pR)

2
− (|ū|+ c̄)

ρRvR − ρLvL
2

(3.9c)

F̃E
south =

(EL + pL) vL + (ER + pR) vR
2

− (|ū|+ c̄)
ER − EL

2
(3.9d)

where L indicates the cell where the state vector is updated, while R indicates the
neighboring cell (e.g. east or south). In case of northward and westward fluxes, the
flux has already been computed at one of the neighboring cells and can be reused with
a minus sign. Applying time discretization and using the numerical fluxes the state
vectors can be updated according to the following formula:

Un+1
T = Un

T −
∆t

VT

∑
f

F̃f |nf |, (3.10)

3.1.2.2 Unstructured mesh

Structured data representation is not flexible for the spatial discretization of complex
geometries. One of the main innovative contributions of our paper [1] was that an
unstructured, cell-centered representation of physical quantities was implemented on
FPGA. In the following paragraphs the mesh geometry, the governing equations, and
the main features of the numerical algorithm are presented.

The computational domain Ω is composed of non-overlapping triangles. Each face
f of a triangle T is associated with a normal vector nf which points outward T and
is scaled by the length of the face. The volume of a triangle T is indicated by VT.
Following the finite volume methodology, the state vectors are stored at the mass center
of the triangles.

During flux computation the coordinate system is attached to the given face f such
a way that axis x is normal to f (see Fig. 3.2). The benefit of this representation is that
the Ff ·nf dot product equals to the first column of F multiplied by the area of the face.
The drawbacks of the representation are that the velocity vectors have to be rotated to
this coordinate system before the flux computation and fluxes have to be rotated back
to the global coordinate system before final summation.

DOI:10.15774/PPKE.ITK.2014.001

26 3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON FPGA

Figure 3.2: Interface with the normal vector and the cells required in the computation

Similarly to the structured case, the Lax-Friedrichs numerical flux function (Equa-
tion 3.7) is used to stabilize the solution, however, in this case, the normal component
of the numerical flux function has to be calculated for each interface:

F̃ ρ
f =

ρLuL + ρRuR
2

− (|ū|+ c̄)
ρR − ρL

2
(3.11a)

F̃ ρu
f =

(ρLu
2
L + pL) + (ρRu

2
R + pR)

2
− (|ū|+ c̄)

ρRuR − ρLuL
2

(3.11b)

F̃ ρv
f =

ρLuLvL + ρRuRvR
2

− (|ū|+ c̄)
ρRvR − ρLvL

2
(3.11c)

F̃E
f =

(EL + pL)uL + (ER + pR)uR
2

− (|ū|+ c̄)
ER − EL

2
(3.11d)

where L indicates the cell where the state vector is updated and R indicates the neigh-
boring cell.

Applying time discretization and using the numerical fluxes, the state vectors can
be updated according to the following formula:

Un+1
T = Un

T −
∆t

VT

∑
f

R̂nf
F̃f |nf |, (3.12)

where R̂nf
is the rotation tensor describing the transformation from the face-attached

coordinate system to the global one. Unfortunately, in the unstructured case, it is not

DOI:10.15774/PPKE.ITK.2014.001

3.2 Data structures and memory access patterns 27

worth to reuse the already computed neighboring fluxes because it doubles the on-chip

memory requirement of the implementation.

The AU is generated from Equations 3.11a to 3.11d and is designed to compute

the normal component of the numerical flux function for a new interface in each clock

cycle. Beside the AU an additional simple arithmetic unit is required to update conser-

vative state variables (ρ, ρu, ρv, E) using the flux vectors. As a cell has three interfaces,

three clock cycles are required for a complete cell update.

3.2 Data structures and memory access patterns

The data structures used in the presented architecture were designed to efficiently use

the available memory bandwidth during transmission of the unstructured mesh data

to the FPGA. In numerical simulations data is discretized over space and can be rep-

resented at the vertices of the mesh (vertex centered) or the spatial domain can be

partitioned into discrete cells (e.g. triangles) and the data is represented at the center

of the cells (cell centered). From the aspect of accelerator design both vertex and cell

centered discretization can be handled with a very similar memory data structure and

accelerator architecture. In both cases the data can be divided into a time dependent

(state variables) and a time independent part which contains mesh related descriptors

(e.g. connectivity descriptor) and physical constants.

In the solution of the CFD problem which is presented in the dissertation, the cell

centered approach is used, therefore the proposed data structures are explained for this

case. In Figure 3.3 an example of an unstructured mesh is shown, in which the cells

are ordered, and the computation of the new state values is carried out in an increas-

ing order. Already processed cells are indicated by underlined numbers, the currently

processed cell is encircled and squared cells are currently stored in the on-chip mem-

ory. On the right side of the figure, fragments of the appropriate data structures are

illustrated.

Time dependent variables are composed of the state variables associated to the

cells. When a cell is processed, the state variables are updated based on the state vari-

ables of the given cell and its neighborhood (discretization stencil). State variables are

transmitted to FPGA in processing order and can be stored in a fixed-size shift register

(on-chip memory). When a cell is processed, all the state variables of the cells from the

DOI:10.15774/PPKE.ITK.2014.001

28 3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON FPGA

11

8

20

14

5

15

3

16

18 19

22

23 25

27

2624

2117
13

10

7
4

1

12

9

6

2

S(3)

...

...

...

next node bit

Time dependent variables: state variables of the cells

Time independent variables: descriptors and physical constants

S(X) : State variables of cell X

S(4) S(5) S(6) S(7) S(8) S(9)

S(10) S(11) S(12) S(13) S(14)

S(2)

0 8 0 N1x(5) 1 V(5)0 N1y(5) 0 N2x(5) 0 N2y(5) 0 N3x(5) 0 N3y(5)0 60 3

0 9 0 N1x(6) 1 V(6)0 N1y(6) 0 N2x(6) 0 N2y(6) 0 N3x(6) 0 N3y(6)0 50 4

0 -1 0 N1x(7) 1 V(7)0 N1y(7) 0 N2x(7) 0 N2y(7) 0 N3x(7) 0 N3y(7)0 100 4 ...

V(Z) : Volume of cell Z
N1x(Z) : x component of the 1st normal

vector associated to cell Z
N2y(Z) : y component of the 2nd normal

vector associated to cell Z

Physical & grid constantsDescriptors

Figure 3.3: On the left, an unstructured mesh is shown to illustrate which cells are stored in
the on-chip memory. Indices of the cells indicate the order of computation. Already processed
cells are indicated by underlined numbers, the currently processed cell is encircled and squared
cells are currently stored in the on-chip memory. On the right, fragments of the appropriate
data structures are presented.

neighborhood stencil must be loaded into the on-chip memory, however, cells which

have no unprocessed neighbors can be flushed out. In the presented example, when

cell 6 is processed, all the necessary state variables are in the fast on-chip memory of

the FPGA. To process the next cell (7), a new cell (10) should be loaded, and cell 3

can be discarded from the on-chip memory. It is possible that multiple new cells are

required for the update of a cell, indicating that the on-chip memory is undersized. The

size of the required on-chip memory depends on the structure of the grid and the num-

bering of the cells, consequently, a great attention should be paid for the ordering of

the mesh points in a practical implementation. In the presented cell centered example

the neighborhood stencil is relatively simple, however, more complicated patterns can

be handled in the same way.

Time independent variables are composed of mesh related descriptors and other

physical constants which are only used for the computation of the currently processed

cell. They mainly differ from the time dependent variables because they are stored only

for the currently processed cell and they are not written back to the off-chip memory.

Consequently, time dependent and time independent data must be stored separately in

DOI:10.15774/PPKE.ITK.2014.001

3.3 Structure of the proposed processor 29

the off-chip memory, otherwise the updated state variables cannot be transferred back

to the off-chip memory in bursts.

Mesh related descriptors describe the local neighborhood of the cell (vertex) which

is currently processed. In unstructured grids, the topology of the cells (vertices) can

be described by a sparse adjacency matrix, which is usually stored in a Compressed

Row Storage (CRS) format [24]. As the matrix is sparse and the vertices are read in a

serial sequence (row-wise), the nonzero elements can be indicated by column indices

and a next node bit, which indicates the start of a new row (see Figure 3.3). In the 2D

cell centered case, the descriptor of a cell is a list, which contains the indices of the

neighboring cells, however, in others cases (e.g. vertex centered) additional element

descriptor may be required. Boundary conditions can be encoded by negative indices

in the connectivity descriptor as illustrated in case of cell 7. If the size of the descriptor

list is constant, the next node bit can be neglected.

Time independent data also contain physical constants which are needed for the

computation of the new state values. These constants can be appended after the de-

scriptors as shown in Figure 3.3. In case of the demonstrated CFD problem these

constants are the normal vectors indicating the edges of the cells (triangle) and the

volume of the cells.

3.3 Structure of the proposed processor

The processor were designed to efficiently operate on the input stream of the data of

the ordered mesh points. The two main parts of the processor are the Memory unit

and the Arithmetic unit (AU) as shown in Figure 3.4. The job of the Memory unit

is to prepare the input stream and generate the necessary inputs to the AU, which

should continuously operate and get new inputs in each clock cycle. The Memory unit

could be reused with little adjustments if an other PDE needed to be solved, however,

the AU would have to be completely reimplemented according to the new state equa-

tions. Consequently, the presented automatic generation and optimization of the AU

can drastically decrease the implementation costs of a new problem.

The Memory unit is built from dual ported BRAM memories and stores the state

variables of the relevant mesh points. The minimal size of the on-chip memory is

determined by the bandwidth of the adjacency matrix of the mesh. The bandwidth

DOI:10.15774/PPKE.ITK.2014.001

30 3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON FPGA

Memory unit

DIAAddrA DOA

AddrB DOB

Current node data Neighbor node data

Write Address

Node AddressA

Node AddressB

Connectivity descriptor &
physical constants

Local address
generator

State variables

Arithmetic unit

Updated state variables

Figure 3.4: Block diagram of the proposed processor

of a matrix is defined as the maximum distance of a nonzero element from the main

diagonal. The visiting order of the mesh points, that is, the rows and columns of the

adjacency matrix can be reordered to minimize the bandwidth via several methods such

as the widely used GPS algorithm [25] or the Amoeba1 algorithm presented in [1].

Offline reordering of the mesh points is a key step of the FPGA acceleration, because

if the Memory unit is too large for the FPGA chip, the proposed architecture cannot be

used.

In the unstructured CFD problem, each cell (triangle) has three interfaces, and the

state variables are updated based on a flux function computed at the three interfaces.

In each clock cycle, one interface of the given cell is evaluated by the AU, therefore,

the new state variables can be computed in 3 or 4 cycles in case of 2D or 3D cell

centered discretization, respectively. In the vertex centered discretization, the length

of the computation is determined by the degree of the given vertex.

Computation is started by loading serial sequence of state variables into the Mem-

ory unit until it is half filled. Global indices of the neighboring cells are translated

into addresses in the Memory unit by the Local address generator. In this phase the

state variables of the first cell are loaded into the Current node register and the Neigh-

borhood node register is filled by the state variables of the first neighbor using the

DOI:10.15774/PPKE.ITK.2014.001

3.4 Outline of the multi-processor architecture 31

incoming connectivity descriptor. When all neighbors of the first cell are sent to the

AU, the Node AddressA register is incremented and the state variables of the second

cell are loaded into the Current node register. During the next clock cycle, the state

variables of a new cell data can be written into the Memory unit and computation of

the second cell can be started. After an initial latency of the arithmetic unit, the up-

dated state variables are written back to the off-chip memory in the same sequential

order as they were loaded. The Memory unit is operating as a circular buffer; when

it is filled the oldest cell data is overwritten. This can be safely done because the size

of the memory is set to twice the bandwidth of the adjacency matrix, and the oldest

values will not be required during the update of the remaining cells.

Descriptors add an overhead for the off-chip memory requirements and increase the

memory bandwidth requirement of the processor. As the global index of the cells are

never required and the order of cell data are statically scheduled, the memory address

translation can be done offline. In this case the shorter local addresses can be stored

and transferred, which significantly decreases the memory bandwidth requirement of

the processor.

3.4 Outline of the multi-processor architecture

The high-level block diagram of the proposed architecture is shown in Figure 3.5.

The memory interface provides the physical interface for the off-chip memory and the

arbitration between the DMA engines competing for the memory. The sequential off-

chip memory access pattern is a great advantage of the architecture because the off-chip

memory can be accessed with optimal burst length, and the penalties of random access

patterns can be eliminated. The DMA engines load the time dependent (states) and

time independent (descriptors and constants) data into the corresponding input FIFOs

of the processor in long sequential bursts, and the computed new state values are also

written back to the off-chip memory in long sequential bursts.

The state of the system is usually saved after computing hundreds of explicit time

steps during the computation, therefore the results of the first iteration can be fed di-

rectly into a second processor which computes the second iteration. The second pro-

cessor must wait until its Memory unit is half filled to start computation. The results

of the second iteration can be either saved into the off-chip memory or fed into another

DOI:10.15774/PPKE.ITK.2014.001

32 3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON FPGA

FIFO
(for state values) DMA

Off-chip
memory

Memory
Interface

and
Arbitrer

Processor
FIFO

(for descriptors

& constants)

DMA

FIFO

DMAFIFO

ProcessorProcessor

FIFO

1st iterationnth iteration 2nd iteration

FPGA

Figure 3.5: Outline of the proposed architecture. The processors are connected to each other
in a chain to provide linear speedup without increasing memory bandwidth requirements. The
number of processors is only limited by the available resources on the given FPGA.

processor. As the time independent data do not change between the iterations, an addi-

tional FIFO is enough to store the previously loaded descriptors and constants between

the two computation stages. The depth of the FIFO is determined by the size of the

Memory unit and the length of descriptors. The number of implemented processors is

only limited by the available logic and memory resources on the FPGA. After a short

initial startup latency, which is negligible compared to the number of mesh cells, the

pipelined chain of processors can work in parallel providing linear speedup without

increasing memory bandwidth requirements.

3.5 Analysis of the chosen design strategies

To design a high-performance competitive accelerator, the special properties of FPGAs

have to be considered. In general, FPGAs are connected to a host PC through a rel-

atively narrow PCI express interface, the DDR3 memories of FPGA boards are sig-

nificantly slower than the GDDR5 memories of GPU boards, and also the operating

frequency of FPGA circuits is significantly lower than the typical CPU/GPU frequen-

cies. Due to these limitations, an FPGA acceleration of a computationally intensive

problem can outperform the CPU/GPU implementations only if it reaches significantly

better hardware utilization than the CPU/GPU implementations. As a consequence, for

FPGA accelerators, the streaming architectures are advantageous, in which a custom,

problem specific arithmetic unit can be designed, which utilizes all the FPGA resources

DOI:10.15774/PPKE.ITK.2014.001

3.5 Analysis of the chosen design strategies 33

and continuously processes the input data streamed into the FPGA chip.
On the one hand, the relatively narrow PCI express connection was not a limiting

factor in my case, as the results of each iteration were not required to be transferred
back to the host memory. On the other hand, the relatively slow onboard memories
affected the chosen design strategies and an architecture with high computation per
communication ratio had to be planned. These observations led to the presented so-
lution, in which a sufficiently large onchip cache memory is assumed and the grid
elements are visited in a specific order requiring each element to be loaded only once
per iteration. As there are plenty of grid elements to be processed in each iteration, an
arithmetic unit with a longer latency can be tolerated. As long as the accelerator is not
memory bandwidth limited, its performance is determined by the operating frequency
of the arithmetic unit. As a consequence, a pipelined arithmetic unit shall be imple-
mented, in which higher operating frequency can be reached in exchange for a modest
increase of the area and the latency.

In the proposed multi-processor configuration, the speed of the onboard memories
is the reason why the processors cannot process more than one grid element in the same
iteration. The memory throughput is not enough to supply more than one processor di-
rectly with grid element data. (On GPU, where the memory throughput is an order
of magnitude larger, multiple processing elements can work on computations which
belong to the same iteration.) In case of FPGA, if there are enough resources to imple-
ment more than one processor, they shall be connected after each other and work on
computations associated to consecutive iterations. In this configuration, the extra pro-
cessors do not require extra memory bandwidth as they process data which are already
in the onchip memory. (In the dissertation, an accelerator with one FPGA board was
considered, in which case the processor concatenation has no technical limitations.)

DOI:10.15774/PPKE.ITK.2014.001

DOI:10.15774/PPKE.ITK.2014.001

Chapter 4

Generating Arithmetic Units:
Partitioning and Placement

The demand for a high-performance arithmetic unit in the PDE solver, presented in the

previous chapter, motivated the improvement of the design methodology of pipelined

AUs and the automation of the mapping of mathematical expressions into FPGAs.

In Section 4.1, a locally distributed control unit is presented which can operate

at higher frequency than the global control unit. In Section 4.2, a graph partitioning

problem is proposed to determine the locally controlled parts of the arithmetic unit. In

Section 4.3, frequently used graph partitioners are reviewed, while the advantage of the

proposed control is empirically validated via a new greedy algorithm in Section 4.4.

In Sections 4.5, the partitioning objectives are improved and extended with placement

objectives. A simulated annealing based algorithm is given to address all the objec-

tives and to improve the operating frequency of the resulting circuit. A framework is

described, which was implemented in C++ to automatize the mapping procedure and

to test the partitioning algorithms. The section concludes with the evaluation of the

implementations results of the two CFD problems.

4.1 Locally distributed control of arithmetic unit

4.1.1 The proposed control unit

In the arithmetic unit the mathematical expression which describes the flux crossing

the interface between two adjacent cells is implemented. All input and output variables

35

DOI:10.15774/PPKE.ITK.2014.001

36 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

of the AU are stored in separate FIFO buffers. The AU is designed to operate indepen-

dently from the rest of the processor and start the computation of a new interface in

each clock cycle if all the inputs are available. To design an efficient control unit (CU)

to the AU, the fanout of the control signals and the LUT depth of the control logic shall

be minimized, otherwise the wire delays will hold down the operating frequency of the

whole AU [26].

One straightforward way to control the AU is to implement a global CU, which

checks the states of the input FIFOs and schedules the operation of the FPUs. In this

case every FPU is connected to the CU with a global enable signal, which can start

or stop the operation of the given FPU. Unfortunately, in this case the fanout of the

control signal and the complexity of the control logic are too high to reach the desired

operating frequency.

If the AU does not have feedbacks and accumulators, the enable signal can be

neglected to decrease the complexity of the CU. Instead of halting the FPUs, they are

let to operate in full time, and the valid results are filtered out at the outputs of the AU.

Filtering can be achieved by implementing an extra shift register, in which the pipeline

stages which hold valid data are marked. As the FPUs cannot be halted and the data

goes through the AU once it has been read, the output FIFOs have to be checked before

the AU reads the inputs whether they will be ready to store the results of the AU. This

can be solved by adding extra virtual FIFOs (one per each output FIFO) whose lengths

are set to the length of the corresponding output FIFO. The usage of extra shift register

and the virtual FIFOs are demonstrated in Figure 4.1.

Before the operation starts, the virtual FIFOs are empty, indicating all the corre-

sponding output FIFOs and the pipeline are empty. In every clock cycle if the inputs

are ready to be read and the virtual FIFOs are ready to be written, new input is read

from the input FIFOs and a bit is written to each virtual FIFO indicating the number

of occupied elements in the pipeline, and the corresponding output FIFO has been in-

creased by one. The bit remains in the virtual FIFO as long as the data is in the pipeline

or the corresponding result is in the corresponding output FIFO. This mechanism guar-

antees that every data which has entered the pipeline can be safely written out to the

output FIFOs. To be able to read input into the pipeline in every clock cycle the size

of the output and virtual FIFOs have to be at least the length of the pipeline.

DOI:10.15774/PPKE.ITK.2014.001

4.1 Locally distributed control of arithmetic unit 37

Figure 4.1: Usage of the shift register and the virtual FIFOs in case of a simple AU which
contains only one adder FPU. Shift register is used to mark pipeline stages which hold valid
data. In the example the first and second stages hold valid data. After 5 and 6 clock cycles the
output of the shift register will write the results of the FPU to the output FIFO. Virtual FIFO
#3 contains two elements indicating the two valid pipeline stages and will allow input data to
enter the pipeline four more times if the output FIFOs is not read.

Without enable signal, the complexity of the CU can be significantly decreased

and the fanout depends only on the number of I/O FIFOs of the AU. In case of simple

mathematical expressions, the fanout is low, and the FIFOs can be placed close to

one another and can be controlled at the desired frequency. However, in case of more

complex expressions, the area requirement of the AU significantly increases and the

fanout of control signals and the placement of the I/O FIFOs become critical. As the

area requirement of the AU is affected by the floating-point precision we choose, the

placement is even more challenging when 64 bit precision is applied (see results in

Section 4.4.3). To reach the desired operating frequency, the FPUs shall be partitioned

into separately controlled clusters which have smaller number of I/Os than the original

AU. The partitioning problem can be described as the partitioning of the data-flow

graph generated from the mathematical expression. If the arcs cut by the partitioning

are replaced by FIFO buffers, the previously presented CU can be used for controlling

each cluster. Unfortunately, the partitioning of the FPUs introduces other problems

which have effects on both the area and the operating frequency of the circuit.

First of all, the added synchronizing FIFOs explicitly increase the area requirement

of the circuit, which makes the efficient placement of the AU more challenging. To

minimize the area requirements, the number of cut arcs shall be minimized.

To explain the second problem, a partitioned data-flow graph and the correspond-

ing cluster adjacency graph are shown in Figure 4.2, where clusters are represented

DOI:10.15774/PPKE.ITK.2014.001

38 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

Figure 4.2: On the left a partitioned data-flow graph, while on the right the corresponding clus-
ter adjacency graph is shown. In the data-flow graph pipeline length of the FPUs is displayed
in brackets. In the cluster adjacency graph, a FIFO (indicated by rectangle) is added to every
cut arc. In cluster 1 an extra delay shift register has to be added to keep the proper data timing
inside the cluster. The length of the FIFO between cluster 2 and 3 has to be set to 18 instead of
2, otherwise cluster 2 cannot operate continuously.

by vertices and the connections between the clusters (cut arcs) are represented by arcs.

The position (level) of an arc in the pipeline is defined as the first clock cycle when

partial results computed from the first inputs reach the given arc. In the cluster adja-

cency graph, the levels of the arcs and the size of the added FIFOs are also displayed.

If a cluster (e.g. cluster 3) has two inputs (two inward cut arcs) which have different

levels, that is, the partial results reach the given cluster in two different routes, the data

arriving at the shorter route has to be stored until other parts of the input arrive. In

the presented example, if the length of the FIFO between cluster 2 and 3 was only 2,

the operation of cluster 2 would be paused after every 2 successful reads for 18 clock

cycles, which is the time needed for the data to reach cluster 3 via the other route.

The size of a FIFO at a given input arc shall be set at least to the level of the high-

est level input arc minus the level of the given arc to guarantee continuous operation.

The size of the introduced FIFOs and the overall pipeline length of the AU heavily

depend on the partitioning, therefore, an ideal data-flow graph partitioner shall avoid

clusters which have big differences in the levels of the incoming arcs. Unfortunately,

common partitioning algorithms, which minimize the number of cut arcs, cannot target

this objective. In the illustration, the minimum size of the FIFOs is given, however, in

practice, these values are rounded up to the nearest number which is integer power of

DOI:10.15774/PPKE.ITK.2014.001

4.1 Locally distributed control of arithmetic unit 39

2 because they can be implemented more efficiently in FPGA.

The third problem is that the partitioning can create directed cycles in the cluster

adjacency graph (mutually dependent clusters) even if the data-flow graph is acyclic.

As a cluster reads new input only if all of its input FIFOs are ready to be read, mutually

dependent clusters will never start reading, and cause a deadlock in the AU. Unfortu-

nately, common partitioning algorithms do not have the mechanism to avoid mutually

dependent clusters.

In the following sections, two partitioning algorithms are given to tackle these prob-

lems. The first one is a simple greedy algorithm (presented in Section 4.4), which ad-

dresses only the first problem, to validate the implementation benefit of the constrained

partitioning. The second one is a more complex algorithm (presented in Section 4.5)

which addresses all the problems and gives a robust solution from all aspects.

4.1.2 Trade-off between speed and number of I/Os

The maximum operating frequency of the proposed CU is affected by the fanout and

the LUT depth of the controlling signals. Consequently, it is determined by the number

of I/Os of the controlled cluster. There is a trade-off between the speed of the CU

and the number of the I/Os. In practice, the operating frequency of the slowest FPU

determines a minimum operating frequency demand for the CUs. It is not worth to

design a significantly faster CU, however, each CU should be able to operate at least at

this frequency. From an engineering point of view, the question is the following: what

is the maximum number of the I/Os that guarantees the desired frequency?

To be able to answer the above-mentioned question, I implemented the proposed

control unit with different number of FIFOs attached to it and with different seed pa-

rameters of the place-and-route process. The measurements were done for a Virtex-6

SXT FPGA, and for each number of I/Os the highest frequency was selected. Ac-

cording to the results, the control unit can handle 10 input/output FIFOs without ap-

proaching the 450MHz operating frequency of the multiplier unit (see Figure 4.3).

In the measurements, empty clusters were considered without real FPUs, however, in

practice, the FPUs affect the placement of the FIFOs resulting in smaller operating fre-

quencies. In my first experiments, for safety reasons, the I/O limit of the clusters was

DOI:10.15774/PPKE.ITK.2014.001

40 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

100

200

300

400

500

600

700

800

900

1000

Number of controlled FIFOs

O
p

er
a t

in
g

 f
re

q
u

e n
cy

 (
M

H
z)

Figure 4.3: Operating frequency of the proposed control unit. Red line indicates the operating
frequency of the multiplier unit.

chosen to 10, however, in case of the partitioning algorithm described in Section 4.5.2,

the effect of I/O limit was investigated for other values as well.

4.2 Partitioning problem

In the section, a high-level partitioning problem is described where the data-flow graph

representation of a mathematical expression is partitioned to determine the locally con-

trolled parts of the resulting arithmetic unit.

4.2.1 Problem formulation

After converting the mathematical expression into a data-flow graph (directed acyclic

hypergraph), the number of cut arcs can be minimized by graph partitioning tech-

niques, and the size and I/O connections of the clusters can also be balanced or con-

strained. The number of cut arcs shall be minimized to reduce the area requirements of

the circuit, while constraining the number of I/O connections of the clusters provides

high-speed control units. Mathematical foundation of the problem is established in the

DOI:10.15774/PPKE.ITK.2014.001

4.2 Partitioning problem 41

following paragraphs. Definitions are stated in accordance with [27].

Definition 1 A directed hypergraph denoted by G(V,E) is a pair < V,E >, where

V is a non empty set of nodes (vertices) and E is a set of hyperarcs (hyperedges);

a hyperarc e is an ordered pair < S, T >, with S ⊂ V , S 6= ∅, and T ⊂ (V \ S).

Elements of S and T are called the sources and targets of the arc, respectively. Sources

and targets of a hyperarc e is denoted by S(e) and T (e), respectively.

In a hypergraph G(V,E), a path pst between nodes s and t is an alternating se-

quence of distinct nodes and hyperarcs s = v0, e1, v1, e2ekvk = t such that vi−1 ∈ S(ei)

and vi ∈ T (ei) for all i = 1...k. A path pst is called a cycle if s = t. A directed hyper-

graph is called acyclic if there is no cycle in the hypergraph.

In our case, the data-flow graph of the high-level circuit can be mapped to a special

acyclic hypergraph, in which each hyperarc e has only one source: |S(e)| = 1. The

special property comes from the fact that every signal is driven by one source in the

design. The acyclic property comes from the assumption that we deal with a simple

evaluation of a mathematical expression which can be implemented without accumu-

lators or recursion.

Definition 2 Given a hypergraph G(V,E), a P decomposition of V into disjoint sub-

sets V1, V2, ..., Vn such that
⋃
i Vi = V is called a partitioning of G. The terms subdo-

main, cluster, or partition class are used to refer to each one of these Vi sets.

The proposed optimization can be described as a hypergraph partitioning with spe-

cial cost functions assigned to cut hyperarcs or partition classes. In the presented

model, an area cost is defined for each cut arc describing the number of required FI-

FOs:

fArea(e, P,G) := |{j : (S(e) ∪ T (e)) ∩ Vj 6= ∅}| − 1 (4.1)

Each cut arcs, which have targets in classes different from the source class, shall be

replaced by one FIFO for each target class. The area cost of a partition P can be

computed as the sum of the cost of the arcs.

FArea(P,G) :=
∑
e∈E

fArea(e, P,G) (4.2)

DOI:10.15774/PPKE.ITK.2014.001

42 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

To formulate the IO constraint, a control cost is defined for each arc and partition

class:

fControl(e, Vi, P,G) :=


0 if (S(e) ∪ T (e)) ∩ Vi = ∅
1 if S(e) 6⊂ Vi and T (e) ∩ Vi 6= ∅
fArea(e, P,G) if S(e) ⊂ Vi and T (e) 6⊂ Vi

(4.3)

If an arc is completely outside a class, the control cost for the class is zero. If an arc

has only targets in a class, the control cost for the class is one. Finally, if an arc has the

source in a class, the control cost equals the area cost, because all added FIFOs will

be controlled by the class. The control cost of a partition class can be computed as the

sum of the cost of the arcs:

FControl(Vi, P,G) :=
∑
e∈E

fControl(e, Vi, P,G) (4.4)

The relation FArea(P,G) ∗ 2 =
∑

Vi∈P FControl(Vi, P,G) can be concluded by ob-

serving the fact that every FIFO is connected to two control units. Hence, every FIFO

is computed twice in control cost computation. As a consequence of the relation, either

cost function can be minimized for our purposes, however, the constraining cannot be

skipped, otherwise the control costs of some classes may exceed the user defined limit.

The mathematical formulation of the proposed partitioning can be given as the

following constrained optimization:

Problem 1
minimize

P
FArea(P,G)

subject to FControl(Vi, P,G) ≤ c, Vi ∈ P,

V1 := global inputs,

V2 := global outputs

where c is an upper limit for the number of FIFOs controlled by one control unit (pro-

posed in Section 4.1.2). Note that two partition classes containing the global input

and output nodes of the data-flow graph are fixed to avoid a trivial solution in which

all vertices belong to the same partition class. Also note that the data-flow graphs

where the number of global I/Os is less than the previously described upper limit can

be implemented with one control unit efficiently, and there is no need for optimization.

DOI:10.15774/PPKE.ITK.2014.001

4.3 Partitioning algorithms used in circuit design 43

Digital circuits are usually described by netlists, which precisely enumerate the pin

connections of each net of the circuit. According to the objective functions used in the

partitioning, the netlist representation can be simplified to a more simple representa-

tion (e.g. hypergraphs, directed graphs). Netlists can be represented by hypergraphs if

vertices and hyperedges are assigned to circuit modules and nets, respectively. In this

case pins belonging to the same module are not distinguished and hyperedges naturally

represents nets, as they can connect more than two modules. Hypergraph representa-

tion can be further simplified to graphs, however, in this case hyperedges have to be

modeled by extra edges and vertices [28]. In the clique net model, each hyperedge is

replaced by edges connecting each pair of vertices incident to the given hyperedge. In

the directed graph model, each source vertex of a net/hyperedge is connected to each

target vertex of the hyperedge via a new edge. In the bipartite graph model, each hy-

peredge is replaced with a new vertex, and old and new vertices are connected if the

corresponding vertex was incident to the corresponding hyperedge. Unfortunately, in

case of most partitioning objectives, hyperedges cannot be equivalently replaced [28].

Similarly, in case of the FArea objective, I have not found such a replacement for hy-

peredges which does not alter the FArea objective function. From the aspect of the

proposed optimization problem, both the fan-out and the directions of nets are impor-

tant, which explains the application of the more complex hypergraph model.

Finding an optimal solution for Problem 1 is NP-complete because if we could

solve this problem in polynomial time, it would yield a polynomial algorithm for

the ”graph partitioning problem” (Problem ND15 in [29]), which is known to be NP-

complete. For a proof, note that any normal graph is also a hypergraph and the effects

of I/O constraints can be eliminated by selecting a very large upper limit.

4.3 Partitioning algorithms used in circuit design

As the partitioning problem is NP-complete, several heuristics have been proposed

over the last few decades. The first few heuristics (e.g. [30]) were motivated by circuit

design, however, later, the problem arose in several other research areas, such as un-

structured grid computations or sparse matrix operations. As the parallelization of the

most time-consuming applications produced larger and larger graphs, the partitioning

DOI:10.15774/PPKE.ITK.2014.001

44 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

programs started to focus on large-scale partitioning, which led to the introduction of

the multilevel paradigm.

Hereby, I review the most common heuristics, partitioning techniques, and software

packages in accordance with [31–33]. In Section 4.4 and 4.5, these works will be

related to the algorithms I propose in the dissertation.

The partitioning algorithms can be grouped into single- and multilevel algorithms.

In the beginning, single-level algorithms had been proposed, such as move-based and

spectral partitioning algorithms. Later, when multilevel paradigm arose, several mul-

tilevel algorithms were presented, which usually utilized some of the single-level al-

gorithms in a multilevel framework to reach better quality and higher speed for large

graphs. Nowadays, the multilevel paradigm is the de facto standard [32] even for

smaller problems, however, one of the main drawbacks of the technique is that it is

hard to integrate complex objective functions and constraints into the model. The ob-

jective functions and constraints used in the dissertation also belong to this category,

and their integration into the multilevel framework is not trivial (see Section 4.5.3 for

more details). Furthermore, as the relatively small size of the graphs generated from

mathematical expressions does not predict significant benefit, the multilevel approach

has not been addressed yet in my work.

4.3.1 Move-based heuristics

I shortly review two of the oldest heuristics, which are still frequently used in the state-

of-the-art partitioners. These algorithms originally focused on the rather simple cutnet

metric (see Equation 4.5), however, later several extensions [32] have been proposed

to handle very complex objectives, constraints and hypergraphs.

4.3.1.1 The Kernighan-Lin algorithm

The original Kernighan-Lin (KL) algorithm [30] is an iterative swap based heuristic to

2-way partition a graph with low number of cut nets. The cost of a cut net is calculated

according to Equation 4.5.

fcutnet(e, P,G) :=

{
0 if ∃i : e ⊆ Vi
1 otherwise (4.5)

DOI:10.15774/PPKE.ITK.2014.001

4.3 Partitioning algorithms used in circuit design 45

The algorithm starts with an initial partitioning and is executed through passes,

which consists of iterations. In each iteration, all the vertices which were not swapped

in the current pass are considered for swapping, and the pair with maximal gain is

swapped. Iterations of a pass end when all the vertices are swapped. At the end of

the pass, the sequence of swaps are revisited and some of the last swaps are reverted

to reach the state where the objective function was minimal. As swaps with negative

gain are also allowed in the iterations, the algorithm can escape from some of the local

minima.

The runtime of a pass of the algorithm has a complexity of O(n3), where n is the

number of the vertices of the graph. The runtime is typically dominated by the O(n2)

gain updates of the vertices, and the O(n3) comparisons of the vertex gains used to

determine the best pair for the swapping.

4.3.1.2 The Fiduccia-Mattheyses algorithm

The Fiduccia-Mattheyses (FM) algorithm [34] can be regarded as an improved KL al-

gorithm and has several features compared the original algorithm. The most important

difference is that instead of swapping of vertices one vertex is moved across the cut in

each iteration. The modification enables the algorithm to handle unbalanced partitions,

in which a desired ratio of the size of the clusters can be user-defined. Furthermore, a

straightforward k-way extension of the algorithm is possible [35] to partition the graph

into k subdomains directly. In recent modifications, both the data structure and the gain

computation are changed, however, the framework of the algorithms are the same.

In case of hypergraphs, the definition of critical nets can be introduced, which

simplifies the gain calculation for the vertices. A net is critical if the movement of

one of its vertices can change the cutnet metric, that is, the net has a vertex which is

associated to a cluster different from the ones containing the rest of the vertices. By

defining the FS() and TE() functions, the gain difference for the movement of vertex

v can be computed as

M gain(v) = FS(v)− TE(v) (4.6)

where FS(v) indicates the number of nets which include only v from the vertices

of its cluster, and TE(v) denotes the uncut nets connected to v. The positive gain

indicates the decrease of the overall cutnet metric, therefore, the vertex with the highest

DOI:10.15774/PPKE.ITK.2014.001

46 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

gain is the best candidate for movement, although the balance constraints shall also be

checked.

The runtime of a pass of the algorithm has a complexity of O(P), where P is the

total number of the pins, also known as the degrees of vertices. The linear complexity is

due to the so called bucket list representation and a very efficient neighborhood update

scheme. The special representation is the result of the fact that the gain of any move

is bounded between plus and minus the maximal vertex degree. As a consequence,

unvisited vertices can be stored in buckets and the gain updates are carried out by

moving vertices between the buckets in constant time. Finally, in case of the original

2-way partitioning, the number of vertices to be updated can be efficiently limited. In

the naive approach every neighbor of the moving vertex should be updated resulting

in O(P 2) complexity, however, if we update only those vertices where critical nets are

affected this reduces to O(P).

4.3.2 Spectral partitioning

Spectral partitioning methods are also termed as geometric representation methods,

because at first the graphs are converted into a geometric representation, then well-

known geometric heuristics are used to carry out the partitioning. Essentially, the

success of a spectral partitioning algorithm depends on the quality and speed of the

conversion and the geometric heuristic.

Hereby, I review the basic concepts of spectral partitioning by describing the orig-

inal spectral bipartitioning technique and one of its complex descendants, which can

handle multi-way partitioning of hypergraphs as well. Although, in the beginning, the

spectral partitioning attracted a lot of research efforts, its performance was not proved

to be superior to the alternative iterative techniques in case of large graphs [36]. Fur-

thermore, the spectral technique is not flexible enough for real word problems as it is

hard to integrate more complex objectives and constraints [37] into the geometric rep-

resentation. As a consequence, the multilevel move-based techniques are considered

better alternatives in modern circuit design technology.

DOI:10.15774/PPKE.ITK.2014.001

4.3 Partitioning algorithms used in circuit design 47

4.3.2.1 Spectral bipartitioning

The first spectral bipartitioning heuristics were motivated by the work of Fiedler [38]

and Hall [39] to partition ordinary graphs with the simple cutnet metric. The theory is

based on the special properties of the Laplacian matrix of a graph.

The Laplacian matrix of a G(V,E) graph is a matrix with |V |x|V | size and defined

as

L = D − A (4.7)

where D is the degree matrix of the graph containing the degrees of the vertices in its

diagonal, and A is the adjacency matrix of the graph. The degree of a vertex is defined

as the number of the incident edges, while the value of an aij element of the adjacency

matrix is the number of the edges connecting vi and vj vertices. The specialty of L

is that the sum of its rows is always zero. The lii diagonal element corresponding to

vertex vi contains the maximum cutnet which can be related to vi, while the other lij
elements in the row indicates the benefit of putting vi and vj to the same partition class.

The presented definitions can be naturally extended for weighted graphs as well.

The Laplacian quadratic form can be defined as

xTLx (4.8)

where is x is a vector of R|V |. In the original bipartitioning scenario, only one x vector

is considered, and it is imagined as a partitioning vector containing ones and zeros

to describe one of the two clusters of the partitioning. In this case the quadratic form

equals to the number of edges cut by the cluster (see Equation 4.9), as in the quadratic

form, the number of uncut edges inside the cluster are subtracted from the maximum

possible cutnet of the vertices residing in the cluster.

xTLx =
∑
e∈E

(x(u)− x(v))2 (4.9)

Observing Equation 4.9, it is obvious that it cannot be negative. Furthermore, for

all constant vectors (which contain the same constant for each of their entries) the

quadratic form equals to zero. In other words, the smallest eigenvalue of L is always

zero and constant vectors constitute the corresponding eigenspace. A constant vector

can represent a trivial solution, when we put all the vertices into the same cluster.

DOI:10.15774/PPKE.ITK.2014.001

48 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

For bipartitioning, the second smallest eigenvalue λ2 (also called algebraic con-

nectivity) and the corresponding eigenvector (also called Fiedler vector) is more inter-
esting. It is easy to see that the λ2 > 0 if and only if the graph is connected and the
x ∈ R|V | Fiedler vector gives a 1D representation of the vertices in which the squared
distance of the endpoints of the edges are minimized (see Equation 4.9). Consequently,
the representation can be used to split the graph e.g. at the largest gap between two ver-
tices, however, there is no guarantee that the continuous solution closely approximates
the solution of the x ∈ N |V | discrete case.

4.3.2.2 Spectral partitioning with multiple eigenvectors

In the last decades of the 20th century, several improvements and extensions of the
original spectral bipartitioning were proposed [28] to adapt the algorithm for multi-
way hypergraph partitioning. One of the most successful modification was the work
of Alpert [40] that proposed to use as many eigenvectors of the Laplacian as possible.
Hypergraphs were converted to ordinary graphs using the clique net model, in which
each hyperedge is replaced by weighted edges connecting each pair of the vertices
of the hyperedge, although it was proved earlier that there is no universal weighting
scheme for the clique net model that can perfectly realize the cutnet metric [28].

The k-way partitions were represented by the indicator matrix, which is a |V |xk
matrix containing the partitioning vectors mentioned before. Using the indicator ma-
trix in the quadratic form, the cutnet metric appears in the trace of the result, and the
following equation can be reached via the L = U∆UT eigenvalue decomposition of
L.

Fcutnet(G) = tr{XTLX} = tr{ΓT∆Γ} =
k∑
i=1

n∑
j=1

α2
ijλi (4.10)

where Γ = (αij) is defined as Γ := UTX .
One of the main discoveries used in the method was that the partitioning prob-

lem with the Fcutnet objective can be mapped to a max-sum vector partitioning prob-

lem. A k-way partitioning Sk = {S1, S2, ..., Sk} of n d-dimensional vectors Y =

{y1, y2, ..., yn} is defined as k disjoint subsets of Y , such that S1 ∪ S2 ∪ ... ∪ Sk = Y ,
while the max-sum objective is defined as

g(Sk) =
∑
Si∈Sk

‖Yi‖2 where Yi =
∑
yh∈Si

yh (4.11)

DOI:10.15774/PPKE.ITK.2014.001

4.3 Partitioning algorithms used in circuit design 49

If the yi vectors to be partitioned are the rows of the ∆
1
2U matrix, the two objectives

(Equation 4.10 and 4.11) are the same:

Fcutnet(G) = g(Sk) (4.12)

The proof can be constructed by observing the ‖Yi‖2 =
∑|V |

j=1(
√
λjU

T
j Xi)

2 equality,

where Uj is the jth column of matrix U , andXi is the ith column of the indicator matrix

X .

In [40] the standard k-means clustering method [41] was utilized to address the

max-sum vector partitioning, however, as it is a maximization procedure, the task was

reformulated to maximize the |V |λmax − Fcutnet objective.

4.3.3 Simulated annealing

The simulated annealing (SA) technique was first described by Kirkpatrick et al. [42]

in 1983. The technique quickly became a popular alternative to greedy algorithms as

it is capable of making uphill movements to avoid local minima. The technique starts

from an initial solution, and then, in each iteration, a random neighbor of the current

solution is picked for the evaluation of the cost function. Through the iterations, a

T temperature parameter is maintained and decreased continuously, which determines

the so called Boltzmann acceptance rule for uphill movements; SA accepts every uphill

movement of the cost with probability e−∆/T , where ∆ indicates the increase of the

cost.

One of the first works considering simulated annealing for partitioning was [43],

which found the technique competitive to move-based heuristics in random graphs.

On the one hand, the technique has several advantages. First, it is very flexibility

to integrate complex objectives and constraints. Second, it can be shown that SA

converges to the global optimum solution given an infinite number of moves if the

temperature is decreased sufficiently slowly [44]. On the other hand, the speed of its

convergence was turned out to be slower than rival heuristics in case of large graphs

required in real world applications [28], and consequently, the technique is not part of

the techniques currently used in circuit partitioning.

From the aspect of my research aims, the flexibility of the technique had a greater

significance than the speed of the convergence, because the relatively small size of

DOI:10.15774/PPKE.ITK.2014.001

50 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

the investigated graphs tolerates the slow convergence. The main challenge of parti-

tioning problem proposed in the dissertation is to balance between complex objective

functions and constraints, therefore, the simulated annealing is an appealing candi-

date to demonstrate an algorithm capable of handling all the required objectives and

constraints. The algorithm proposed in Section 4.5 successfully utilized the simulated

annealing technique to address all the objectives and constraints required to produce

high-performance locally controlled arithmetic on FPGA.

4.3.4 Software packages incorporating the multilevel paradigm

Inspired by the success of multigrid methods used in other research areas, the multi-

level paradigm for graph partitioning was introduced by Barnard et al. [45]. The first

multilevel implementation was a recursive spectral bipartitioning algorithm designed

for partitioning large unstructured meshes for distributed-memory architectures. The

first attempt was later followed by two famous software packages, Chaco [46, 47] and

Metis [48], which made the multilevel approach a quasi standard in graph partition-

ing. Although the two solutions differed in details, they shared the multilevel approach

and produced competitive results. Over the years, both software packages was fol-

lowed by new editions, and also the group of multilevel partitioners was extended with

new software packages (e.g. Scotch [49], JOSTLE [50], Parkway [51]). The research

group who developed the Chaco program created a more powerful software package,

called Zoltan [52], to support high-performance parallel partitioning, parallel graph

coloring and dynamic load balancing. The Metis software package was followed by

hMetis [53], which was designed for partitioning hypergraphs arising in VLSI circuits,

and ParMetis [54], which was created for MPI-based parallel execution of partitioning

of large graphs.

The focus of the partitioning programs moved to parallel execution to keep up with

the increasing size of the graphs challenging the modern computing architectures. As

the size of the graphs investigated in the dissertation is relatively small, the lack of

parallel execution can be tolerated. Hereby, I review the algorithms of the two most

famous software packages (Chaco and hMetis), which still provide the basis of more

complex parallel partitioning packages. To demonstrate the limitations of naive parti-

tioning for the problem proposed in the dissertation, hMetis was selected as a represen-

DOI:10.15774/PPKE.ITK.2014.001

4.3 Partitioning algorithms used in circuit design 51

tative multilevel algorithm and compared to the algorithm I proposed in Section 4.4.1.

From the aspect of combined partitioning and placement, the terminal propagation fea-

ture of Chaco is also noted, and the technique is related to the algorithm proposed in

Section 4.5.

4.3.4.1 Chaco

The Chaco [47] software package is based on the spectral bipartitioning technique I

reviewed in Section 4.3.2.1. The key contribution of the work is to apply the mul-

tilevel paradigm to spectral bipartitioning. As a typical multilevel algorithm, it has

three phases: coarsening, spectral partitioning, and uncoarsening with local refine-

ment. The key success of the algorithm is that the cost of both coarsening and uncoars-

ening phases is very low and proportional to the number of edges. During coarsening,

instead of eigenvectors, only the partition is transferred to the next level. The relatively

expensive spectral partitioning is carried out only on the coarsest graph, which has a

very limited size. To preserve constraints related to cluster size or weighted edges, the

weight of vertices and edges can also be adjusted at coarsening.

As the algorithm is designed for ordinary graphs, at coarsening, edges containing

only two vertices has to be contracted. When an edge is selected for contraction, the

incident two vertices are joined, and the weight of the new vertex equals to the sum

of the weights of the original vertices. Additionally, the edges, which connected the

original vertices to a common vertex, are joined, and the weight of the new edge equals

to the sum of the weights of the original edges.

In the beginning of each coarsening step, a maximal matching is generated to de-

termine the edges to be contracted. A maximal matching of a G(V,E) matrix is the

maximal subset of E edges, in which no two edges share a common vertex. In the

program, the maximal matching is generated via visiting the edges in a random order,

which requires a time proportional to the number of edges.

At the uncoarsening phase, both vertices and clusters are projected back to the pre-

vious level. As the back-projected partition is not necessarily at a local optimum, a

local refinement algorithm (Fiduccia-Mattheyses described in Section 4.3.1.2) is ap-

plied for fine-tuning.

DOI:10.15774/PPKE.ITK.2014.001

52 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

An interesting feature of the program is the terminal propagation. The terminal
propagation was originally proposed by [55] and later integrated into the spectral par-
titioning technique [56] as well. It was inspired by the problem of partitioning meshes
for parallel architectures with fixed topology (e.g. hypercube with different dimen-
sions). A special partitioning was required which discriminates against cut edges
(communications) that connect nonadjacent clusters (computing nodes). The idea was
to add virtual vertices to represent the already formed clusters of the recursive biparti-
tioning. For each unpartitioned vertex, a virtual edge was added to the graph connect-
ing the vertex with one of the virtual vertices. Via the virtual edges, the preference to
put a vertex close to an already formed cluster could be incorporated into the model
for the rest of the bipartitionings.

Chaco supports partitioning for two types of architectures: hypercube and grid. In
both cases, the possible dimensions are 1, 2, and 3. In case of grids, the exact size
of the grid has to be specified, that is, the number of clusters has to be known before
the partitioning. The terminal propagation is applied at both the recursive spectral
bipartitioning of the coarsest graph and the move-based local refinements.

The constraint of a fixed parallel architecture is partly similar to the problem pre-
sented in the dissertation. In both cases, the penalty of cut edges depends on the
topology of the clusters. The difference is that in my case the topology is not fixed.
For a given graph (mathematical expression), it is not known a priori how many clus-
ters it should contain or which cluster topology is the best for the maximum perfor-
mance. Leaving these parameters free in the optimization procedure, one can answer
these questions and reach better quality. In this sense, the algorithm proposed in Sec-
tion 4.5.2 can be regarded as smarter technique addressing the problem without com-
promise. Although, accepting these compromises, an algorithm could be designed
using the terminal propagation technique. A possible application of the technique is
discussed and related to my solution in Section 4.5.2.6.

4.3.4.2 hMetis

The hMetis [53] software package is one of the state-of-the-art partitioning programs
used for VLSI circuit partitioning. It is based on a multilevel hypergraph partitioning
scheme and it is capable of minimizing several objective functions. The multilevel idea
is to create a sequence of successive approximations of the original hypergraph and to

DOI:10.15774/PPKE.ITK.2014.001

4.4 Empirically validating the advantage of locally controlled arithmetic units 53

partition a small-sized approximating hypergraph instead of the original hypergraph.

The key contribution of the program is the approximation (called coarsening), when a

smaller hypergraph is created from a hypergraph, and the inverse of this process (called

uncoarsening), when a partition of an approximating hypergraph is projected back to

the original hypergraph and the partition in the original hypergraph is refined. The

partitioning of the approximating hypergraph can be done via a standard partitioning

algorithm like Kernighan-Lin (described in Section 4.3.1.1) or Fiduccia-Mattheyses

(described in Section 4.3.1.2).

For coarsening, uncoarsening, and refinement, several strategies are available in

the hMetis program. In each case the objective is to find and contract such vertices at

coarsening which would belong to the same partition class anyway. Common coarsen-

ing heuristics are Edge Coarsening (EC), Hyperedge Coarsening (HC) and Modified

Hyperedge Coarsening (MHC). In EC special weights are added to hyperegdes rank-

ing smaller sized edges higher, then pairs of vertices which are incident to hyperedges

with the largest weights are contracted. In HC hyperedges are sorted in a decreasing

weight order, and hyperedges of the same weight are sorted in a increasing size order,

then vertices of full hyperedges are contracted. MHC is an enhanced version of HC:

after contraction, the list of remaining hyperedges is traversed again and uncontracted

vertices of the same hyperedge are also contracted. Uncoarsening simply projects the

partition back to the original hypergraph, while refinement fine-tunes the quality of the

back-projected partition via another partitioning (e.g. FM again).

4.4 Empirically validating the advantage of locally con-
trolled arithmetic units

In the section, a greedy algorithm is given and the state-of-the-art hMetis algorithm

is also utilized to address the problem described in Section 4.2. Both algorithms are

tested via the presented structured CFD simulation. Vertices, representing the opera-

tors of the expression, are implemented via Xilinx IP cores, and clusters are controlled

via the control unit described in Section 4.1. The resulting VHDL representation of the

circuit is implemented with the standard Xilinx synthesis and place-and-route tools.

Partitioning in both cases improves the operating frequency, however, in case of the

DOI:10.15774/PPKE.ITK.2014.001

54 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

greedy algorithm, a straightforward manual tuning of the placement constraints, which

is not available in case of hMetis, produces a higher frequency.

4.4.1 The proposed greedy algorithm

The number of cut arcs can be minimized and the I/O connections of clusters can be

evenly distributed by traditional graph partitioning techniques, however, the resulting

operating frequency is far from the theoretical limits suggested by FPGA data sheets.

According to my measurements, during the synthesis of a locally controlled AU, which

was generated from a well-partitioned (see Problem 1) data-flow graph, high operating

frequency is estimated, however, at place-and-route phase the circuit cannot be placed

efficiently resulting in a significantly lower operating frequency.

The Xilinx place-and-route process gives the designer the ability to constrain the

physical position of parts of the circuit. In my experience, constraining the placement

of the partition classes and the synchronizing FIFOs indeed improves the operating fre-

quency. Unfortunately, in case of naive partitioning techniques, the manual placement

of the resulting classes and FIFOs is very challenging, and the operating frequency is

sensitive to the local connectivity. In Figure 4.4 manual placement constraints of a cir-

cuit, which was partitioned with a naive partitioning technique [3], are demonstrated.

Despite the fact that the partitioning limited the number of I/Os of each class, the poor

placement resulted in low frequency. In the figure, the critical net (also indicated by

red in Figure 4.6) explicitly limiting the operating frequency is colored by red. The

question is how to place all connected components close to one another to avoid long

interconnections. In the presented example the critical net is related to an input vari-

able, which is used in three different operations in the mathematical expression. The

three operations are associated to three different partition classes, therefore three extra

synchronization FIFOs are required and should be placed close to one another, as they

use the same input. (The phenomenon also exists at lower layers, see green vertices in

Figure 4.6.) A smart partitioning algorithm shall avoid multiway cutting of hyperarcs

and make the efficient placement possible.

The idea of the new algorithm, inspired by the previous problem, is to draw the

graph into the plane before the partitioning starts. If a representation of the graph

which minimizes the distance between the connected arcs is given, a simple greedy

DOI:10.15774/PPKE.ITK.2014.001

4.4 Empirically validating the advantage of locally controlled arithmetic units 55

Figure 4.4: Placement constraints (blue) and the placed instances (grey) of a circuit generated
from a partition which was created by a naive partitioning strategy. Connectivity of parti-
tion classes is indicated by orange while a timing critical net is indicated by red (also shown
in Figure 4.6). The figure was generated with the standard Xilinx place-and-route editor. It
demonstrates the challenges a developer has to solve during manual placement of circuit ele-
ments. In a high-performance implementation, connected elements shall be placed close to one
another.

DOI:10.15774/PPKE.ITK.2014.001

56 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

algorithm can provide a partitioning without long interconnections. Furthermore, the

placement becomes straightforward and placement constraints can be adjusted manu-

ally. The proposed strategy significantly differs from low-level partitioning and place-

ment techniques as we partition and place the circuit at the level of IP components.

The proposed algorithm is a two-step procedure preceded by a simple preprocess-

ing. During preprocessing, vertical coordinates of the vertices are fixed via a simple

method called layering. Next, in the first step, horizontal coordinates are calculated to

minimize the distance between the connected components. Finally, in the second step,

a greedy method is used to partition the graph based on the spatial information of the

vertices. The steps of the algorithm (also summarized in Algorithm 1) are described in

the following paragraphs.

Algorithm 1 Outline of the proposed greedy algorithm.
1: Add delay vertices to make the graph bipartite, and associate every vertex with a

level according to its distance from the global inputs (layering).
2: Place vertices randomly into the corresponding layer.
3: Create an initial horizontal placement of vertices by the barycentre heuristic.
4: Find the horizontal position of the vertices and a local minimum of the objective

function via a simple swap-based iterative algorithm.
5: Partition the graph according to the spatial positions of the vertices using a greedy

algorithm.

4.4.1.1 Preprocessing and layering

The mathematical expression to be implemented is described in a text file, where in-

puts, outputs and internal variables are also defined. The input file is parsed and a

data-flow graph representation of the mathematical expression is created. Every math-

ematical operator is represented by a vertex and has an associated delay which will be

the pipeline latency of the corresponding IP core in the implemented circuit.

In the next step a layering [31] is performed, in which the data-flow graph is con-

verted to a special bipartite graph. In this bipartite graph, every vertex is associated to

a layer and each arc directs immediately to the next layer.

DOI:10.15774/PPKE.ITK.2014.001

4.4 Empirically validating the advantage of locally controlled arithmetic units 57

Figure 4.5: A simple data-flow garph and its layered version

Definition 3 L = {l1, l2, ...} layering is a partition of the V vertices of the G(V,E)

directed graph such that

∀e ∈ E : S(e) ⊂ li and T (e) ⊂ li+1.

A layering can be generated via a breadth-first-search in linear time [31] by splitting
up the arcs which span more than one layer with extra delay vertices. An example lay-
ering is shown in Figure 4.5. The layering of the graph is an artificial restriction on the
placement and the partitioning of the graph. Vertices can only be moved horizontally
during the placement, and the representation of the clusters also depends on the struc-
ture of the layers. Evidently, this restriction can leave out the optimal solution from
the search space, however, it significantly decreases the representation costs. Unfortu-
nately, the complexity of the original problem requires some expandable restrictions,
otherwise the problem cannot be handled.

Fortunately, layering has several other benefits beside the simplification. First of
all, if the vertices had the same pipeline lengths, the horizontal cutting would guar-
antee that the incoming arcs of a cluster have the same pipeline level. Despite the
pipeline lengths are different in practice, horizontal cutting combined with the cut arcs
minimization produces acceptable results and does not increase the overall pipeline
length drastically (see Table 4.3). The second benefit of the layering is that a simple
and sufficient criterion can be formulated to check the existence of deadlocks during
the simulated annealing (see Lemma 2).

Finally, in physical implementation, extra delay vertices are implemented as shift
registers (extra vertices inside one cluster are joined), which hold the data for the proper
number of clock cycles. From the aspect of performance, it is advantageous because
smaller interconnections help to keep the timing requirements.

DOI:10.15774/PPKE.ITK.2014.001

58 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

4.4.1.2 Swap-based horizontal placement

Vertices get horizontal coordinates randomly, then the number of edge crossings is
minimized to create an initial solution. Minimal edge crossing objective does not
guarantee good placement but it was found to be a good initial solution for my ver-
tex swapping iterative algorithm.

Barycentre heuristic [57] is a fast and simple algorithm to minimize edge cross-
ings in layered directed graphs, however, various other min-crossing algorithms can be
applied for this purpose [58]. The minimization of the edge crossing is NP-complete,
even if there are only two layers [59]. The method operates layer-by-layer: in every
iteration one layer of the graph is fixed and the vertices of the next layer is arranged.
The horizontal coordinate (xA) of each vertex (A) is chosen to the barycentre of its
neighborhood from the fixed layer:

xA :=
1

|NA|
∑
v∈NA

xv

where NA denotes the set of vertices connected to vertex A from the fixed layer, and
xv denotes the horizontal coordinate of a vertex v.

For horizontal placement, an adapted KL algorithm is used to minimize the dis-
tance between the connected vertices. The objective function is defined as the sum
of the distance between the connected vertices. The distance between two vertices is
determined according to their horizontal coordinates:

distance(A,B) :=

{
(xA − xB)2 if A and B are connected
0 otherwise (4.13)

where xA and xB are the horizontal coordinates of vertex A and B, respectively. Both
horizontal and vertical coordinates are integer numbers. The physical size of the
floating-point units are not considered in this representation and set to one. Vertical
coordinates can be neglected as the graph is a layered graph.

In the adapted version of the KL algorithm, the objective function has been re-
placed by Equation 4.13. During iterations, instead of swapping vertices between
partition classes, the position of neighboring vertices are swapped. Similarly to the
original algorithm, it can escape some of the local minima, however, not all of them.
As it is very sensitive to the initial placement of the vertices, the previously described
Barycentre heuristic is used to initialize the placement of the vertices.

DOI:10.15774/PPKE.ITK.2014.001

4.4 Empirically validating the advantage of locally controlled arithmetic units 59

4.4.1.3 Greedy partitioning based on spatial information

The second step of the procedure is a greedy clustering method, which creates rect-
angular clusters based on the spatial information of the vertices. The height of the
rectangular domains can be chosen arbitrary, however, in the demonstrated CFD ex-
ample it was set to two. The clustering starts from the top left corner, and the largest
possible rectangular cluster is created which still meets the I/O constraint (defined in
Problem 1). Next, the algorithm moves right and the rectangular-based clustering is
continued on the unclustered vertices. If there are no more unclustered vertices in the
selected layers the algorithm moves down and continues with the lower layers.

In spite of the greedy nature of the clustering method, the decisions are made on
comprehensive information, as the vertices have been already positioned in such a
way that short interconnections will enforce locally coupled clusters during greedy
clustering. The resulting partitioning is shown in Figure 4.6.

4.4.2 The configuration of the hMetis program

Unfortunately, the FArea objective used in Problem 1 cannot be selected in the pro-
gram, therefore, a similar metric, the sum of external degrees (SOED), was chosen.
The subdomain degree of partition class Vi is equal to the sum of the weights of the
hyperedges that contain at least one vertex in Vi and one vertex from outside of Vi:

fD(Vi, P,G) :=
∑

e∈I(e,Vi)

w(e) (4.14)

where I(e, Vi) = {a ∈ E : fcontrol(a, Vi, P,G) 6= 0} and w(e) is the weight of an edge
e. Sum of external degree of a partition is the sum of the subdomain degrees:

FSOED(P,G) =
∑
Vi∈V

fD(Vi, P,G) (4.15)

In a hypergraph with edges of unit weight, FSOED can be related to FArea by the
following lemma:

Lemma 1
FSOED(P,G) = FArea(P,G) + FMinCut(P,G)

where FMinCut(P,G) is the standard metric measuring the number of cut hyperedges.

DOI:10.15774/PPKE.ITK.2014.001

60 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

Figure 4.6: Partition of the structured CFD graph created by the proposed algorithm. Inputs and
outputs of the mathematical expression are represented by small rectangles and diamonds, re-
spectively, while floating-point units are represented by circles. The clusters of the partitioning
are indicated by the transparent rectangles containing vertices. Vertical and horizontal posi-
tions of the vertices are determined in the first phase of the algorithm to minimize the distance
between the vertices. Given a smart placement of the vertices, a simple greedy mechanism can
generate locally coupled clusters which observe the I/O constraint needed for high-performance
operation. The figure illustrates how the data-flow graph representing the arithmetic unit looks
like after placement and partitioning. The key advantage of the proposed technique is that,
during implementation, the clusters can be easily mapped to the FPGA keeping the same rela-
tive positions as shown in Figure 4.7. Vertices coloured by red and green are typical examples
for vertices which should be placed close to one another because nets with larger fan-out and
distant terminals are less likely to be routed efficiently.

DOI:10.15774/PPKE.ITK.2014.001

4.4 Empirically validating the advantage of locally controlled arithmetic units 61

Proof 1 Basically, the three metrics differ only in how a cut hyperedge e is counted.

Let assume that a hyperedge e has vertices in k different partition classes. SOED,

Area, and MinCut objectives measure e with k, k − 1, and 1, respectively.

hMetis was instructed to compute direct k-way partitioning (FM) using the FSOED
cost function and balancing factor 10. (Balancing factor is a parameter used to specify
the allowed imbalance between the size of the partition classes.)

During operation, vertices corresponding to global input and output were fixed and
only the rest was partitioned. As a consequence of Lemma 1, FSOED efficiently mini-
mized the area requirements, however, the program could not handle the I/O constraint
defined on each class. To overcome the limitations, the program was placed in a frame-
work, where it was executed several times with different seed parameters. Finally, the
best candidate, in which the I/O connections of the classes were balanced and close to
the desired limit, was selected by hand.

4.4.3 Comparison and evaluation

Both partitioning algorithms have been tested in case of the structured CFD problem.
The generated VHDL descriptions of the AUs were implemented on a Xilinx Virtex-6
SXT FPGA (XC6VSX315T) with the standard Xilinx tools at speed grade −1. The
algorithms were compared based on the maximal operating frequency reached by the
place-and-route process.

This stage of my research can be regarded as an empirical study, which is focusing
on the practical implementation of the circuit, to validate the proposed optimization
problem (see Problem 1) and to give a greedy algorithm to demonstrate the improved
operating frequency of the partitioned AU. In this conceptual study, possible dead-
locks or the overall latency generated by the partitioning have not been considered,
however, they are all addressed and solved in a more complex algorithm presented in
Section 4.5. The solution of these problems requires only a few adjustments in the
objective functions, which do not alter the concepts validated in this section, but make
the design methodology applicable in real-world applications.

In the beginning of the investigation, I examined simpler data-flow graphs (e.g.
FIR filter, CNN state equation) in which case it was possible to manually sort out the
deadlock-free partitions from the generated results. In case of more complex data-flow

DOI:10.15774/PPKE.ITK.2014.001

62 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

Figure 4.7: Placement constraints (blue rectangles) and placed instances (grey areas) of the
arithmetic unit of the CFD problem. Orange lines indicates the connections of the different
parts of the circuit. The figure was generated with the standard Xilinx place-and-route editor.
In the editor I manually drew a placement constraint for each FIFO and each cluster using the
results of the greedy technique. The circuit elements were placed by the Xilinx place-and-route
tool keeping my constraints valid. Although the presented solution has more clusters and cut
edges than the results of other partitioning algorithms, its key advantage is that the mapping of
clusters into the FPGA is straightforward and can be automated using the spatial position of
the vertices. (To observe the similarity, rotate Figure 4.6 by −90◦.)

graphs, the manual sorting turned out to be impossible. Although neither the proposed
nor the reference algorithm cannot guarantee a deadlock-free practical solution, the
comparison of their results demonstrated the key requirements for high frequency oper-
ation in FPGA. With the greedy algorithm, I empirically showed that placement-aware
partitioning can lead to a higher operating frequency and common graph partitioning
algorithms can only partially address the placement objectives.

The arithmetic unit of the CFD problem consists of nearly 50 floating-point units,
which were partitioned into 17 locally controlled partition classes. Separate placement
constraint blocks (called pblocks) were created for each class and each synchronization
FIFO. According to my experiments, Xilinx place-and-route is likely to disperse the
registers of the FIFOs without placement constraints, however, floating-point units are
placed efficiently even without them.

The pblocks were placed manually with the help of a graphviz [60] plot depicting

DOI:10.15774/PPKE.ITK.2014.001

4.4 Empirically validating the advantage of locally controlled arithmetic units 63

Table 4.1: Implementation results of different partitioning strategies in case of the 32 bit struc-
tured CFD problem.

No partitioning hMetis Proposed algorithm*
Number of clusters - 7 16

Number of extra FIFOs 23 49 89
Number of Slice Registers 15,534 18,866 21,998

Number of Slice LUTs 12,084 14,275 16,883
Number of occupied Slices 4,039 4,284 5,751

Clock frequency (MHz) 293.97 325.627 369.959
* with manual placement constraints

Table 4.2: Comparing operating frequency of the 32 bit and the 64 bit AU in case of the
structured CFD problem. During placement no manual tuning was performed.

hMetis Proposed algorithm
32 bit 325.627 MHz 327.761 MHz
64 bit 301.205 MHz 295.596 MHz

difference 8.1% 10.8%

the connections between the clusters. In case of the proposed algorithm, the placement

was very straightforward and the resulting layout is shown in Figure 4.7. In case

of the reference algorithm, the placement of clusters to minimize the length of their

connection was very challenging, and the operating frequency could be improved only

slightly by manual tuning. In the configuration one pblock was created for each global

I/O FIFO and one for the rest of the circuit.

Partitioning results, resource utilization and operating frequency are compared on

Table 4.1 in case of the 32 bit structured CFD problem. The proposed algorithm has

reached 13% improvement in operating frequency compared to the naive partitioning,

and approximately 25% compared to the unpartitioned case. The price of the improve-

ment was a nearly 34% increase of the area requirements, which is acceptable in a

high-performance application.

As a consequence of probabilistic heuristics used in the Xilinx’s place-and-route

algorithm, the operating frequency of the final circuit is sensitive to the input seed

parameters. During the performance evaluation, the generated circuit was implemented

DOI:10.15774/PPKE.ITK.2014.001

64 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

with wide range of seed parameters and the highest frequency was selected.
To be able to compare the greedy algorithm with the algorithm described in Sec-

tion 4.5, the measurements were repeated for 64 bit case and without manual tuning
of placement constraints (see Table 4.2). As 64 bit FPUs have larger size and the
data-path is also doubled, the increased area requirement of the 64 bit circuit made the
interconnecting signals longer resulting in a decreased operating frequency (approxi-
mately 8-11%).

DOI:10.15774/PPKE.ITK.2014.001

4.5 Partitioning and placement together 65

4.5 Partitioning and placement together

Inspired by the success of the greedy algorithm presented in Section 4.4, a more com-

plex algorithm has been designed to address all the side effects of the partitioning

presented in Section 4.2. The algorithm solves fundamentally the same optimization

problem (see Problem 1) as the greedy one, however, some extra objective functions

are added to the optimization and the idea of placement aware partitioning is also de-

veloped further. The proposed design methodology can be regarded as a high-level

circuit partitioning strategy, in which the high-level placement (called floorplan) and

partitioning objectives are combined together to create a special partitioning of the

FPUs, where the FPUs are positioned and the clusters are locally coupled.

In Section 4.5.1, the necessary properties of the partitions that can be efficiently

mapped into FPGAs are enumerated and discussed. In Section 4.5.2, the proposed al-

gorithm, which is capable of handling all the objectives, is presented. In Section 4.5.3,

a framework is described, which was designed to test the partitioning algorithms and to

automate the mapping process of mathematical expressions. Finally, in Section 4.5.4,

the results of the new algorithm are presented including an experimental analysis of

how circuit performance is affected by the maximal number of the I/O connections of

the clusters.

4.5.1 Properties of a good partition

The primary aim of the partitioning of the data-flow graph is to find such a partitioning

of the FPUs where the clusters, after being implemented in FPGA, are only connected

locally. Unfortunately, partitioning can lead to several side effects (see Section 4.1),

which shall be addressed in a good partitioning to create a high-performance AU ap-

plicable in practice. Hereby, the properties of a good partition are enumerated and

explained.

1. The number of I/O connections of each clusters is bounded by a user defined
constant.
To implement a fast CU the complexity of the CU has to be decreased, which

depends on the number of I/O connections. See the definition of FControl in

Equation 4.4.

DOI:10.15774/PPKE.ITK.2014.001

66 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

2. The number of cut arcs is minimal.
Every cut arc is replaced by a synchronization FIFO, which increases the area

requirement of the circuit. See the definition of FArea in Equation 4.2.

3. The input arcs of each cluster are roughly on the same pipeline level.
Clusters which have input arcs on different pipeline levels require larger syn-

chronization FIFOs to guarantee the continuous operation and can increase the

overall pipeline length of the AU.

4. There is no directed cycle in the cluster adjacency graph.
Mutually dependent clusters never start to read input data and cause a deadlock

in the AU.

5. The clusters can be mapped to the FPGA without long interconnection be-
tween the clusters.
Mapping elements of a circuit description into FPGA is a 2D placement prob-

lem, where routing resources are limited. In the implemented circuit high fanout

and long interconnections should be avoided, otherwise they limit the operating

frequency of the whole circuit. To reach significant speedup in the operating

frequency of the AU, both the partitioning problem and the placement of the

clusters should be solved. The operating frequency could be further increased

if the placement of the clusters were explicitly set by using pblocks, however,

the partitioning should provide significant speedup even without the physical

constraints.

In the proposed algorithm, both steps (placement and partitioning) of the greedy

algorithm have been improved and replaced by simulated annealing. For the par-

titioning step, a new representation has been designed, in which a set of objective

functions can be easily defined to target the properties of a good partition. In-

stead of maximizing the speedup by using physical constraints, my motivation is

to investigate how the described properties of the circuit and the free parameters

of my algorithm affect the performance of the AU.

DOI:10.15774/PPKE.ITK.2014.001

4.5 Partitioning and placement together 67

4.5.2 The proposed algorithm

The main idea of the algorithm is to combine the partitioning and the placement ob-

jectives in a two-step procedure. In the first step, an initial and simplified floorplan

of the FPUs is created with simulated annealing to minimize the distance between the

connected FPUs. In the second step, the floorplanned FPUs are partitioned by another

simulated annealing to find a good partition with the previously described properties.

The resulting clusters can be easily placed on the FPGA and the lack of long intercon-

nections results in a high operating frequency.

4.5.2.1 Preprocessing and Layering

The same preprocessing and layering are applied as in the greedy algorithm (see Sec-

tion 4.4.1.1). The input is a mathematical expression described in a text file and the

output is a layered graph (see Definition 3), where all vertices have an initial spatial

position.

4.5.2.2 Floorplan with simulated annealing

During the floorplan, vertices are horizontally positioned to minimize the length of the

interconnections and to prepare the partitioning phase.

In the framework, a simplified homogeneous floorplan is used where every ver-

tex has a unit width, however, the principles used during partitioning can be adapted

to floorplans where the size of the different resource types are distinguished. The

blocks in one layer are represented by their sequence which is the 1D version of the

famous sequence pair representation [31]. This representation is appropriate for ASIC

floorplanning, however, in our case, empty spaces can be favorable inside the design,

therefore place holder (bubble) vertices have been introduced. To distinguish the bub-

ble vertices, they are indicated by negative indices. To limit the complexity of the

problem, the number of the bubble vertices on a layer is limited.

The pseudocode of the floorplan is summarized in Algorithm 2. Before the sim-

ulated annealing starts, the floorplan is initialized at the preprocessing phase by the

Barycentre heuristic [57]. During the simulated annealing, in each iteration, the se-

quence of the vertices of a random layer is perturbed. Layers are selected with proba-

bility proportional to the number of vertices (Nl) they contain. In the selected layer (l),

DOI:10.15774/PPKE.ITK.2014.001

68 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

a vertex is selected with probability (1/(Nl+1)) or a bubble is created with probability

(1/(Nl+1)). If a normal vertex is selected, it will be swapped with one of its neighbor.

If a bubble vertex is selected, its size will be increased or decreased by one. If a bubble

with size one is selected for decreasing, it will be deleted.

Algorithm 2 Pseudocode of the simulated annealing used for floorplanning
Require: Layered graph with pre-positioned vertices

1: while the stopping condition is not reached do
2: Randomly select a layer with probability proportional to its size.
3: Compute the cost related to the selected layer.
4: Perturb the layer by swapping two vertices, or create/increase, or de-

crease/delete a bubble vertex
5: Compute the new cost related to the selected layer.
6: Accept or reject the perturbation based on the cost difference and the simulated

temperature.
7: Update the stopping condition and the simulation temperature.

The linear combination of the following three objective functions is minimized

during the simulated annealing:

1. Total squared distance (TSD) of the connected vertices
This objective minimizes the distance between the connected vertices. As the

clusters are determined based on the position of the vertices, this objective auto-

matically avoids long interconnections between the clusters. Distance between

two vertices are determined according to their horizontal coordinates:

distance(A,B) :=

{
(xA − xB)2 if A and B are connected
0 otherwise

where xA and xB are the horizontal coordinates of vertex A and B, respectively.

Vertical coordinates can be neglected because the distance is always one as the

graph is layered.

2. Maximum distance (MDV) between connected vertices
This objective is used beside TSD to put an extra pressure on the longest in-

terconnection because usually the longest interconnection has the largest delay

limiting the operating frequency.

DOI:10.15774/PPKE.ITK.2014.001

4.5 Partitioning and placement together 69

3. Maximum distance (MDI) between vertices which get input from a common
vertex
If the fanout of the output data signal of a vertex is larger because the vertex

supplies data to several other vertices, it is practical to put the target vertices

close to one another. In this case, the fanout of the data signal can be tolerable

and the partitioning phase can put the target vertices into the same cluster to

decrease the number of the cut arcs.

The result of the simulated annealing in case of the presented CFD problem is shown

in Figure 4.9. In our experiments, the following coefficients were used in the global

objective function: TSD=0.2, MDV=3, MDI=6. To get a practical solution, usually,

1K-10K iterations have been executed.

4.5.2.3 New representation for graph partitioning

The input of the partitioning is a layered graph where the horizontal coordinates of the

vertices are already set. To force horizontal cutting, the user can group the layers into

belts before the partitioning starts and partitions on each belt are represented separately.

The height of the layers should be set according to the complexity and the pipeline

length of the given mathematical expression. In our experiments, the belts have been 2

or 3 layers high.

The main idea of the proposed representation is that vertices inherit their affilia-

tion (cluster ID) from a neighboring vertex or are assigned to a new cluster. Clus-

ters of partitions that can be represented this way automatically form continuous non-

overlapping regions. If vertices are already connected with short interconnections, a

new simulated annealing can be used to find a partition, where clusters are continuous,

non-overlapping and only connected to the neighboring clusters (locally connected).

To reach local connectivity, the length of the connections between the vertices shall be

shorter than the width of the clusters.

In our case, the vertices have uniform size and the direction of the inheritance

can be described with a spin associated to every vertex. In case of variable size ver-

tices, spins cannot describe all the possible partitions which have continuous clusters,

therefore, other descriptors should be used beside the spins (e.g. visiting order of the

vertices). The possible spin values are the following:

DOI:10.15774/PPKE.ITK.2014.001

70 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

Figure 4.8: A fragment of the first belt of Figure 4.9 is shown to demonstrate how inheritance
works.

• LEFT : Vertex will inherit cluster ID from the left neighbor.

• DOWN : Vertex will inherit cluster ID from the bottom neighbor.

• UP : Vertex will inherit cluster ID from the upper neighbor.

• RESET : Vertex will be assigned to a new cluster.

For an example how inheritance works, see thick arrows and cluster 2 in Figure 4.8.
The vertices of a belt are assigned to columns based on their horizontal position.

Two vertices are assigned to the same column if and only if they have the same hori-
zontal position. In a worst-case situation, the number of the columns in a belt is equal
to the number of the vertices of the belt.

When a partition is built up from a representation (see Algorithm 3), the columns
of the given belt are visited from left to right. In each step, all the vertices of a column
are assigned to clusters. First, the vertices of the given column are visited from top to
down and each vertex inherits its cluster ID according to its spin. If the inheritance is
ambiguous, the vertex is not clustered. If unclustered vertices remain in the column,
the vertices are revisited in bottom-up order. During the second visit of a vertex, the
IDs are also associated based on the spins, however, if the inheritance is ambiguous,
the vertex is associated to a new cluster. In worst case all the vertices are visited twice,
therefore the partition can be built up in O(N) steps, where N is the number of the
vertices on the given belt.

The representation is implemented via the following data structures. To associate
each cluster with a cluster ID and a spin, the map container from the C++ STL library
can be used. The column-based visiting order of the vertices can be realized with

DOI:10.15774/PPKE.ITK.2014.001

4.5 Partitioning and placement together 71

Algorithm 3 Build the partition described by the proposed representation
Require: Each vertex is associated with a spin.
Require: Vertices grouped into columns based on horizontal position.
Require: Spatial neighbors of each vertex is stored.

1: for each column c do
2: for each vertex v of c from top to down do
3: Assign cluster ID to v according to its spin, if it is possible.
4: for each unclustered vertex v of c from down to top do
5: Assign cluster ID to v according to its spin, if it is possible.
6: if v is unclustered then
7: Assign an unique cluster ID to v.

nested vectors. The spatial neighbors of the vertices can be described with a 2D array,
called the neighboring array, which size equals to the number of vertices multiplied
by the possible spin directions. Although regular vertices have unit width, the size of
bubble vertices are different. Thus the neighboring information cannot be concluded
solely from the column information. Before the iteration starts, the neighboring array
has to be computed based on the position and size of the vertices.

The representation could be extended for variable sized vertices in exchange for
additional columns in the neighboring array and a more complex visiting procedure. If
the size of the verices are different, the maximal number of possible neighbors can be
determined based on the ratio of the size of the smallest and the largest vertices. In this
case the spins would indicate the number of the neighbor from which the cluster ID is
inherited. In a practical implementation, the maximal number of the spatial neighbors
of a vertex, that is the ratio of the size of the smallest and the largest vertices, has to
be limited, and the neighboring array is allocated according to this limitation. With the
variable size vertices, a more realistic model of the floorplan of the floating-point units
can be given, however, in my experiments I found it less useful as the exact size of the
units has less relevance in high-level floorplans .

One of the main benefits of the layering and the belts is that directed cycles induced
by partitioning can only occur inside the belts, which can be eliminated by minimizing
the NCNN and the NMD objectives during partitioning as discussed in Section 4.5.2.4.

Lemma 2 Assuming a layered data-flow graph in which the belts are partitioned sep-

arately, if there is any directed cycle in the cluster adjacency graph all the vertices of

DOI:10.15774/PPKE.ITK.2014.001

72 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

the directed cycle must belong to the same belt.

Proof 2 In a layered data-flow graph (see Definition 3) an arc coming from a vertex

of layer i is always directed to a vertex residing in layer (i + 1). As belts are distinct

groups of consecutive layers, arcs crossing belt borders are always directed to the belt

containing the layers with higher IDs. Consequently, in the cluster adjacency graph if

a route leaves a belt, it cannot return and cannot form a cycle.

4.5.2.4 Partitioning

The pseudocode of the partitioning procedure is displayed in Algorithm 4. The initial

partition is built up based on random spins associated to every vertex. To avoid mean-

ingless spin directions, the spins of the vertices which are at the belt boundaries are not

allowed to direct outward the belt.

In each iteration of the simulated annealing, one belt is selected with a probability

proportional to the number of vertices it contains. In the belt one vertex is selected ran-

domly and its spin is perturbed, however, meaningless spin directions are not allowed.

In the next step, the partition on the selected belt is rebuilt and the linear combina-

tion of the following objective functions is used to compute the energy function of the

simulated annealing.

1. Total number of cut arcs (TNC)
According to the properties of a good partition, the number of cut arcs should be

minimized. See the definition of FArea in Equation 4.2.

2. Total control penalty of the clusters (TCP)
The control penalty of a cluster Vi is defined as

FCP (Vi) =

{
FControl(Vi)− Tuser if FControl(Vi) > Tuser

0 otherwise

where FControl was defined in Equation 4.4 and Tuser is the user defined threshold

to limit the controlling cost (also called as I/O cost) of each cluster.

3. Number of clusters (NC)

DOI:10.15774/PPKE.ITK.2014.001

4.5 Partitioning and placement together 73

4. Number of connections between non-neighboring clusters which are on the
same belt (NCNN)
To find a partition in which clusters are only connected to their neighbors NCNN

should be zero.

5. Number of mutual dependencies between neighboring clusters which are on
the same belt (NMD)
According to Lemma 2, partitioning can only introduce cycles (causing dead-

lock) inside the belts. On the other hand, if NCNN is minimized to zero, only

neighboring clusters can be connected inside the belts. Therefore, cycles can

only exits via the connections of neighboring clusters, if they mutually depend

on each other. I introduced the NMD objectives to count the mutual dependen-

cies between the neighboring clusters and if both NCNN and NMD are zero then

no directed cycle can be present in the belts.

If the new partition is not accepted, the perturbed spin is reverted and the partition on

the selected belt is rebuilt.

Algorithm 4 Pseudocode of the simulated annealing used for partitioning
Require: Layered graph with positioned vertices

1: Set the spin of each vertex randomly, but avoid meaningless directions.
2: while the stopping condition is not reached do
3: Compute the partitioning cost.
4: Randomly select a layer with probability proportional to its size.
5: Perturb the layer by altering the spin of a randomly selected vertex.
6: Rebuild the partitioning of the belt affected by the perturbation.
7: Compute the new partitioning cost.
8: Accept or reject the perturbation based on the cost difference and the simulated

temperature.
9: Update the stopping condition and the simulation temperature.

The result of the partitioning is shown in Figure 4.9. In our experiments the fol-

lowing coefficients were used to compute the energy function: CTNC = 1, CTCP = 5,

CNC = 2, CNCNN = 18, CMDI = 10. To get a practical solution, usually, 10K-100K

iterations have been executed.

DOI:10.15774/PPKE.ITK.2014.001

74 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

Figure 4.9: The partitioned data-flow graph generated from the numerical scheme of the un-
structured CFD problem. Bubble vertices are indicated by negative indices.

4.5.2.5 Outline of the full algorithm

The outline of the full algorithm is summarized in Algorithm 5. The input of the
algorithm is a mathematical expression which has to be evaluated by the arithmetic
unit. After the data-flow graph has been constructed, the graph is layered and each
vertex is associated with an initial coordinate the same way as in the greedy algorithm.
Next, the vertical coordinates of the vertices are finalized via the floorplan presented
in Section 4.5.2.2. To guarantee continuous and non-overlapping partitioning of the
positioned vertices, I proposed a new representation in Section 4.5.2.3. The final parti-
tion is created via a simulated annealing presented in Section 4.5.2.4 utilizing the new
representation.

4.5.2.6 Comparison to the terminal propagation technique

The terminal propagation technique described in Section 4.3.4.1 can be regarded as an
alternative technique to combine placement objectives into partitioning. Although it
assumes a priori knowledge of the number and the topology of clusters, which is an
obvious limitation compared to my solution, it may be extended to produce partitions

DOI:10.15774/PPKE.ITK.2014.001

4.5 Partitioning and placement together 75

Algorithm 5 Pseudocode of the full algorithm
Require: A mathematical formula described in a text file

1: Parse the mathematical formula and form the data-flow graph.
2: Perform layering on the graph; every vertex is associated with a vertical coordi-

nate. (Section 4.4.1.1)
3: Initialize the horizontal coordinates of the vertices via the Barycentre heuristic.

(Section 4.4.1.2)
4: Determine the final horizontal coordinates of the vertices via the simulated anneal-

ing described in Section 4.5.2.2.
5: Form the new graph representation presented in Section 4.5.2.3.
6: Using the new representation and another simulated annealing get the final parti-

tioning. (Section 4.5.2.4)

similar to ones presented in the dissertation. One can design a procedure, in which

the developer first describe a topology similar to the one presented in Figure 4.9, and

then the graph is recursively bi-partitioned to form clusters with the required topology.

To force the local connectivity of the clusters, the edges connecting the virtual ver-

tices with the unpartitioned vertices can be even weighted based on the distance in the

topology.

Due to the recursive partitioning nature of the terminal propagation, it has further

limitations. Compared to the simulated annealing, it can be regarded as a greedy ap-

proach, as the successive partitionings cannot improve the cluster boundaries of the

previous partitionings. Furthermore, complex objective functions cannot be precisely

evaluated until the last partitioning. During the previous partitionings, objectives and

constraints can only be estimated which makes the sharp approximation of constraints

like in Problem 1 very difficult.

Contrary to the limitations of the terminal propagation technique, similar charac-

teristics can also be observed. The belts defined in the proposed algorithm can be re-

garded as a special constraint on the topology of the clusters and are related to the fixed

topology used in terminal propagation. Furthermore, the movement of vertices toward

their neighbors during floorplan is similar to the effect of the virtual vertices which are

introduced to attract the unpartitioned vertices toward their partitioned neighbors.

DOI:10.15774/PPKE.ITK.2014.001

76 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

4.5.3 Framework

A framework has been implemented in C++ to automatize the generation of the AU

from a textual or a SystemC [61] description of the numerical scheme. In the frame-

work, the scheme is represented via a hypergraph, on which the proposed partitioning

algorithms can be tested. In case of SystemC, which is itself a C++ library for high-

level circuit description, only an extra header file has to be included in the project to

generate the hypergraph representation. The developed hypergraph library is inspired

by the Lemon graph library [62]: the hypergraph is stored internally via its sparse in-

cidence matrix and simple STL-like iterators are implemented for arc, vertex, source,

target or neighborhood traversals. The modification of the original library was neces-

sary to precisely represent high-level circuits.

The operators in the partitioned data-flow graph and the synchronization FIFOs are

implemented via Xilinx IP Cores [63]. The connecting signals, the control logic and the

mixer units, which supply the AU with data, are developed in VHDL with the Xilinx

ISE Design Suite 13.1 [64]. The placement constraints are defined in the Xilinx’s user

constraint file (UCF) and submitted at the place-and-route phase. If manual tuning

of placement constraints is chosen, the Xilinx PlanAhead [65] editor is used. Finally,

the generated AUs were implemented on a Xilinx Virtex-6 SX475T FPGA with speed

grade -1 (see Section 2.1 for more information).

4.5.4 Results

Using the VHDL generation feature of the framework, the effect of the Tuser parameter

of the partitioning, which limits the control cost of a cluster, has been investigated in

case of two CFD problems presented in Section 3.1.2. In both cases the unpartitioned

version and the fully partitioned version of the AU have been implemented as refer-

ences. In the unpartitioned version, one CU is assigned to the whole circuit, while

in the fully partitioned version each FPU is controlled by a separate CU. The result-

ing operating frequencies and area requirements are summarized in Figure 4.10, while

partitioning and implementation details are in Table 4.3 and 4.4.

In the structured CFD example, two interfaces can be computed in the AU requiring

23 input variables, 4 output variables and 44 FPUs (14 multipliers and 30 adders). The

large number of I/Os of the AU results in slow operating frequency in the unpartitioned

DOI:10.15774/PPKE.ITK.2014.001

4.6 Summary 77

not full 8 9 10 11 12 13 14 15
200

220

240

260

280

300

320

340

9000

11000

13000

15000

17000

19000

21000

23000

272 275

314
320 326

315 320 314 318
309

Unstructured CFD

Max I/O connection of a cluster

F
re

q
u

e
n

cy
 (

M
H

z)

O
cc

u
p

ie
d

 s
lic

e
s

not full 8 9 10 11 12 13
200

220

240

260

280

300

320

340

9000

11000

13000

15000

17000

19000

21000

23000

252

279

311
321 321

314
301

295

Structured CFD

Max I/O connection of a cluster

F
re

q
u

e
n

cy
 (

M
H

z)

O
cc

u
p

ie
d

 s
lic

e
s

Speed
Area

Figure 4.10: Operating frequency and area requirements of the AU as the maximum number of
I/O connections of a cluster is changing.

case, however, if the I/Os of the clusters are limited to 9 or 10, the operating frequency

can be improved by 15-27%.

In the presented unstructured CFD example, only one interface is computed in the

AU, requiring 15 inputs, 4 outputs and 64 FPUs (30 multipliers, 25 adders, 9 specials).

Special FPUs include FPUs which are used for negation or division by 2. The latter one

is implemented by modifying the exponent of the floating point numbers. Similarly to

the previous example, the largest speedup (18-19%) can be reached if the number of

I/O connections of the clusters is limited to 10, although clusters with slightly more

I/O connections can also run at high operating frequency.

In the measurements, the maximal frequency was determined via the same param-

eter sweep technique, which was described at the greedy algorithm in Section 4.4.1.

During place-and-route phase, only one pblock was created for the whole AU, and no

manual tuning was employed. All the generated circuits are dead-lock free, and the

increase of the overall pipeline length (latency) of the AUs is approximately 20−30%,

which is tolerable in high-performance applications. Compared to the greedy algo-

rithm, the operating frequency was increased by approximately 8%.

4.6 Summary

In the chapter a new high-level technique was proposed to design high-performance

arithmetic units for FPGA. The presented scientific results form the basis of my first

DOI:10.15774/PPKE.ITK.2014.001

78 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

Table 4.3: Partitioning and implementation results of the structured CFD graph.

Cluster I/O threshold (Tuser)
Unpartitioned Fully-partitioned 8 9 10 11 12 13

Num. of clusters 1 44 19 100 128 143 100 103
Extra delay vertex 26 0 33 32 32 37 28 31

Pipeline length 100 100 128 100 128 143 100 103
Max cluster cut 27 6 8 9 10 11 12 13

Cut arcs
Outside 27 46 39 38 38 35 35 35
Inside 0 46 56 56 52 52 49 49
Total 27 92 95 94 90 87 84 84

FIFO

32 23 68 63 72 60 47 65 60
64 0 18 26 22 27 36 19 24
128 4 6 6 0 3 4 0 0

TOTAL 27 92 95 94 90 87 84 84

Area
FF 41,664 48,591 51,544 51,137 50,775 50,787 49,641 49,783

LUT 31,384 37,297 40,022 38,337 38,869 39,387 36,583 37,397
DSP 244

Frequency (MHz) 251,889 279,33 311,139 321,44 321,44 313,775 301,114 294,638

Improvement 100% 110,89% 123,52% 127,61% 127,61% 124,57% 119,54% 116,97%
100% 111,39% 115,08% 115,08% 112,33% 107,80% 105,48%

thesis group.

I designed a new local control for arithmetic units generated from complex math-

ematical expressions to avoid global control signals, which are frequently the bottle-

neck of the overall performance (Thesis I.1). The floating-point units of the arithmetic

unit are partitioned into independently controlled clusters, which are synchronized via

FIFO buffers. The new feature of the proposed control is that instead of the floating-

point units only the input and the output FIFOs of the clusters are controlled. I pro-

posed a constrained optimization problem to find a partitioning of the arithmetic unit,

in which the number of synchronizing FIFOs is minimized while the number of I/Os

controlled by each control unit is constrained.

I created a new greedy algorithm for arithmetic unit partitioning to demonstrate

that locally coupled clusters with the proposed local control can outperform the un-

partitioned arithmetic units or the arithmetic units partitioned with standard algorithms

(Thesis I.2). The new feature of the algorithm is that the partitioning is carried out on a

high-level floorplan of the floating-points units to promote the local connectivity of the

clusters. I empirically showed that during FPGA implementation the maximal oper-

ating frequency depends on both the complexity of the control units and the topology

of clusters, therefore, naive partitioning algorithms, which cannot handle placement

objectives, produce less competitive results.

DOI:10.15774/PPKE.ITK.2014.001

4.6 Summary 79

Table 4.4: Partitioning and implementation results of the unstructured CFD graph.

Cluster I/O threshold (Tuser)
NP* FP* 8 9 10 11 12 13 14 15

Num. of clusters 1 64 32 26 21 20 19 17 14 13
Extra delay vertex 37 0 43 46 50 49 48 48 50 51

Pipeline length 165 165 179 198 201 199 199 183 183 197

Cut arcs
Outside 19 44 26 25 25 24 25 21 22 20
Inside 0 79 88 79 76 74 72 68 63 64
Total 19 123 114 104 101 98 97 89 85 84

Max cluster cut 27 6 8 9 10 11 12 13 14 15

FIFO

32 15 101 82 71 67 60 66 66 63 55
64 0 12 29 30 30 31 27 23 22 26
128 2 6 3 3 4 7 4 0 0 3
256 2 4 0 0 0 0 0 0 0 0

TOTAL 19 123 114 104 101 98 97 89 85 84

Area
FF 43,966 55,606 58,052 56,980 56,830 56,393 56,139 54,977 54,477 54,566

LUT 33,043 43,035 42,950 42,419 42,254 42,615 41,723 39,846 39,563 40,126
DSP 405

Frequency (MHz) 271,655 275,331 313,513 320,307 325,627 315,457 319,591 313,578 318,407 308,833

Improvement 100% 101,35% 115,41% 117,91% 119,87% 116,12% 117,65% 115,43% 117,21% 113,69%
100% 113,87% 116,34% 118,27% 114,57% 116,08% 113,89% 115,65% 112,17%

* where NP = not partitioned and FP = fully-partitioned.

Using the ideas demonstrated with the greedy algorithm, I developed a more com-

plex partitioning algorithm, which can generate high-performance deadlock-free arith-

metic units with moderate pipeline lengths (Thesis I.3). The new algorithm is similar

to the greedy one as both require an initial floorplan of the floating-point units, how-

ever, it has several new features, which make it superior and applicable in real world

problems. One of the most important feature is that instead of the greedy mechanism,

it is based on simulated annealing, which can handle a more complex objective func-

tion, with which mutual dependencies of the clusters can be eliminated. Furthermore,

it contains a new representation of the floorplanned vertices, which can narrow the

search space of the simulated annealing to the continuous and non overlapping clus-

ters. The algorithm has been demonstrated in case of two complex CFD problems

outperforming the unpartitioned case by 15-25%.

The primary application of the demonstrated technique is the acceleration of CFD

simulations via the Falcon architecture, however, as the Falcon architecture can be

adapted to other partial differential equations, the technique can be used for the accel-

eration of other type of simulations, e.g. seismic waves or electromagnetic fields.

The Virtex-7 FPGA familiy, which is already available on the market, has approxi-

mately 1.5 times more physical resources than the Virtex-6 family, while its operating

DOI:10.15774/PPKE.ITK.2014.001

80 4. GENERATING ARITHMETIC UNITS: PARTITIONING AND PLACEMENT

frequency remained in the same order of magnitude. By transferring the design to a
Virtex-7 FPGA, performance improvement can be realized if more Falcon processors
are implemented and connected into a chain. In this case roughly 1.5 times more per-
formance can be expected, although the overall pipeline length of the multi-processor
configuration will also increase. The generation after the Virtex-7 family is called Vir-
tex UltraScale, and it is manufactured at the 20 nm technology. It has roughly 1.5

times more physical resources than the Virtex-7 family, which predicts further perfor-
mance gain for the Falcon implementations. An important characteristic of the new
generation is that global clocking network was replaced by local networks forcing the
developers to design ASIC-like independent clock regions.

DOI:10.15774/PPKE.ITK.2014.001

Chapter 5

Density Matrix Renormalization
Group Algorithm

The DMRG is a variational numerical approach developed to treat low-dimensional in-

teracting many-body quantum systems efficiently [10, 66, 67]. In fact, it has become an

exceptionally successful method to study the low energy physics of strongly correlated

quantum systems which exhibit chain-like entanglement structure [11].

In Section 5.1, previous DMRG implementations and acceleration efforts are re-

viewed. Section 5.2 describes the models which are used as test cases to demonstrate

the operation of the algorithm. Symmetries, which can be exploited to decrease the

computational requirements of the algorithm, and the algorithm itself are presented

in Sections 5.3 and 5.4, respectively. Preparing for the acceleration of the algorithm,

its run-time analysis is given in Section 5.5. Finally, limits of an FPGA implemen-

tation are described in Section 5.6. Descriptions of the models, the algorithm, and

the symmetries are based on the literature, while the run-time analysis and the FPGA

estimation are my own work providing the foundation for the next chapter.

5.1 Previous implementations

The original DMRG algorithm [10] was introduced in 1992 by Steven R. White and

was formulated as a single threaded algorithm. In the past, various works have been

carried out to accelerate the DMRG algorithm on shared [68] [69] and distributed

memory [70–73] architectures, however, none of them took advantage of recent paral-

81

DOI:10.15774/PPKE.ITK.2014.001

82 5. DENSITY MATRIX RENORMALIZATION GROUP ALGORITHM

lel architectures: graphical processing unit (GPU) and field-programmable gate array

(FPGA).

One of the first parallelizations was [68] converting the projection operation to

matrix-matrix multiplications and accelerating them via OpenMP interface. In [72] a

similar approach was presented for distributed memory environment (up-to 1024 cores)

optimizing the communication between the cores, while in [73] the acceleration of the

computation of correlation function had been investigated. Recently, [69] presented an

acceleration on shared memory architectures exploiting SU(2) symmetries, while [74]

proposed a novel direction for paralellization via a modification of the original serial

DMRG algorithm.

The GPU architecture has been successfully employed in neighboring research ar-

eas to accelerate matrix operations. In [75] a GPU is used to accelerate tensor contrac-

tions in plaquette renormalization states (PRS), which can be regarded as an alternative

technique to tensor product states (TPS) or the DMRG algorithm. In [76] the second-

order spectral projection (SP2) algorithm has been accelerated, which is an alternative

technique to calculate the density matrix via a recursive series of generalized matrix-

matrix multiplications.

The work presented in the dissertation is the first attempt (to the best of my knowl-

edge) to investigate how the DMRG method can utilize the enormous computing capa-

bilities of recent parallel architectures (GPU, FPGA). I examined the theoretical per-

formance of both architectures in case of the critical operation of the algorithm. As I

found the GPU architecture superior to FPGA, I selected GPU to accelerate the DMRG

algorithm. In Section 5.6, the performance limits of a possible FPGA implementation

are estimated and discussed, while in Chapter 6, a smart hybrid CPU-GPU acceleration

is presented, which tolerates problems exceeding the GPU memory size. Contrary to

the previous acceleration attempts, not only the projection operation is accelerated, but

further parts of the diagonalization are also computed on the GPU.

5.2 Investigated models

In order to illustrate the underlying features of the algorithm, it is applied to the so-

called spin-1
2

Heisenberg model and the spin-1
2

Hubbard model. The selected models

describe how to compute the Hamiltonian of the system of interest, while the main task

DOI:10.15774/PPKE.ITK.2014.001

5.2 Investigated models 83

is to find some of the low-lying eigenvalues and eigenvectors of the Hamiltonian by
a diagonalization algorithm. In practice, instead of solving the problem for the com-
plete Hilbert space directly, various physical phenomena can be exploited to reduce the
complexity of the problem.

5.2.1 Heisenberg model

The Heisenberg model describes the physics of magnetic systems and provides the-
oretical description of various experimental measurements. In the model a magnetic
system is simulated on a lattice of interacting spins. A microscopic magnetic moment
(spin) is localized at each lattice site j and described by a quantized, two-valued vari-
able, σj ∈ {↑, ↓}, related to the two possible orientations of the spin. Limiting the
interactions to only neighboring spins – which is often a good approximation – the
Hamiltonian of the model is written as

H =
1

2

N−1∑
j=1

(
S+
j S
−
j+1 + S−j S

+
j+1

)
+ ∆

N−1∑
j=1

SzjS
z
j+1 (5.1)

where S+
j , S

−
j operators change, while Szj measures the orientation of the spin on lat-

tice site j. The overall behavior of the system can be tuned via the relevant parameter
∆. The explicit matrix representation of an operator Oj acting on site j of a chain with
N spins is given as

Oj =

j−1⊗
i=1

I⊗ O⊗
N⊗

i=j+1

I (5.2)

where I is the identity and O is one of the followings

S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
, Sz =

1

2

(
1 0
0 −1

)
. (5.3)

The Hamiltonian of N spins acts on the tensor product space of dimension 2N , that
is the dimension of the complete Hilbert space grows exponentially as the size of the
system increases.

5.2.2 Hubbard model

The Hubbard model was introduced to describe electrons in solids to characterize
the transition between insulating and conducting systems. The single-band Hubbard

DOI:10.15774/PPKE.ITK.2014.001

84 5. DENSITY MATRIX RENORMALIZATION GROUP ALGORITHM

model provides appropriate description of low temperature systems, where all particles
are in the lowest Bloch band and the long-ranged interactions between the particles
can be neglected due to strong screening effects [77]. More recently, various multi-
band Hubbard models have been applied to high-temperature superconductivity [78]
and systems of higher spin to understand the behavior of optically trapped ultracold
atoms [79].

In the general spin-F system, each lattice site is characterized by 2F + 1 two
dimensional vectors. Each vector is assigned with a distinct label (from {−F,−F +

1, ..., F − 1, F}) called spin polarization value (denoted by σ). A vector assigned to
a spin polarization σ describes two orthogonal states: the site is occupied ([0; 1]) by
the particle of spin polarization σ or not ([1; 0]). As a consequence, a lattice site of a
spin-F system possesses 22F+1 internal degrees of freedom.

The lattice model of interacting particles of spin-F consists of two competing
terms: the kinetic term, which describes the tunneling of particles between neighbor-
ing lattice sites, and the local potential term, which describes on-site density-density
interaction measuring the attraction or repulsion between the interacting particles. The
single-band, fermionic Hubbard model of spin-F is defined on a chain with N sites as

H = −t
N−1∑
j=1

F∑
σ=−F

(
c†j,σcj+1,σ + h.c.

)
+
U

2

N∑
j=1

∑
σ 6=σ′

nj,σnj,σ′ (5.4)

where t measures the hopping amplitude between neighboring sites and U is the inter-
action strength. Creation and annihilation operator acting on site j with spin polariza-
tion σ, denoted as c†j,σ and cj,σ, adds or removes a particle located on site j with spin
polarization σ. The particle density of spin polarization σ on site j is measured by
operator nj,σ = c†j,σcj,σ. The explicit matrix representation of an operator Oj,σ acting
on site j and polarization σ is constructed as

Oj,σ =

F ′(j−1)⊗
i=1

Φ⊗ Oσ ⊗
F ′N⊗

i=F ′(j+1)

I (5.5)

Oσ =
σ−1⊗
i=−F

Φ⊗ O⊗
F⊗

i=σ+1

I (5.6)

Φ =

(
1 0
0 −1

)
(5.7)

DOI:10.15774/PPKE.ITK.2014.001

5.3 Symmetries to be exploited 85

where F ′ = 2F + 1, I is the identity, Φ is the fermionic phase-factor and O is one of

the followings

c† =

(
0 0
1 0

)
, c =

(
0 1
0 0

)
. (5.8)

The Hamiltonian describing the spin-F system of N lattice sites acts on the tensor

product space of dimension 2F
′N , and similarly to the Heisenberg model, the dimen-

sion of the complete Hilbert space blows up exponentially. Comparing to the bosonic

operators of the Heisenberg model, the key differences in the construction of operators

are the appearance of internal quantum number, σ, and the presence of the phase-factor

describing the antisymmetric nature of fermionic systems. To ease the comparison of

the two models only the F = 1
2

case is presented, however, the observed tendencies

are valid for higher F values.

5.3 Symmetries to be exploited

In many systems the Hamilton operator does not change the value of a measurable

quantity, i.e., it commutes with the operator connected to that measurable quantity.

These operators are called symmetry operators and can be used to cast the Hilbert

space to smaller independent subspaces[80]. Consequently, instead of solving a large

matrix eigenvalue problem, the eigenvalue spectrum can be determined by solving

several smaller problems. In the Heisenberg model the total spin projection, Sz =∑N
j=1 S

z
j , is such a symmetry operator. Meanwhile, in the Hubbard model of spin-

F the total particle number associated to each spin polarization σ, Nσ =
∑N

j=1 nj,σ,

is conserved. Thus, the distinct quantum numbers helps to partition the Hilbert space

into multiple independent subspaces corresponding to a given combination of quantum

number values.

A given symmetry operator shares the same eigenvectors of the Hamiltonian, thus

the eigenstates of the Hamiltonian can be labeled by the eigenvalues of the symmetry

operator (quantum number, Q), and the Hilbert space can be decomposed into sub-

spaces (sectors) spanned by the eigenvectors of each quantum number value [81]. In-

troducing a quantum number based representation, the sparse operators (Eqs. 5.2, 5.5)

can be decomposed to a set of smaller but dense matrices, furthermore the Hamiltonian

operator (Eqs. 5.1, 5.4) becomes blockdiagonal.

DOI:10.15774/PPKE.ITK.2014.001

86 5. DENSITY MATRIX RENORMALIZATION GROUP ALGORITHM

5.4 Algorithm

The DMRG approach has two phases: in the infinite-lattice algorithm the approxi-

mated Hilbert space of a finite system of N interacting spins is built up iteratively,

while in the optional finite-lattice algorithm the number of the interacting spins is

fixed and further iterations are carried out to increase the accuracy of the computed

results. As in both cases the iterations are very similar, for the sake of simplicity, I

consider only the infinite-lattice algorithm. The detailed description of the algorithm

can be found in the original work [10] and various reviews [66, 67], here only the key

steps of an iteration of the infinite-lattice algorithm are summarized in Algorithm 6.

The techniques discussed in the section are not my scientific results, they are part of

the DMRG literature and provide the basis of my analysis and acceleration.

Algorithm 6 One iteration of the infinite-lattice algorithm
1: Load a left and a right block and enlarge each block with a site.
2: Form the superblock configuration.
3: Compute the lowest eigenstate of the superblock Hamilton HSB. (Davidson

method)
4: for each enlarged block do
5: Construct the density matrix for the given block from the lowest eigenstate.
6: Compute the eigenvalues of the density matrix. (Lanczos method)
7: Renormalize the basis of the block by keeping states with high eigenvalues.

In the two-site DMRG procedure four subsystems (left block describing l sites, 1

site, 1 site, right block describing r sites) compose the finite system of N = (l+ 2 + r)

sites called superblock. The sites contained in each block are described maximally

by m, optimally chosen states, which can be significantly smaller than the exactly

required ql or qr basis, where q is the degree of freedom of one site. As the central

sites of the superblock are represented exactly by q-q states, the size of the superblock

Hilbert space is q2m2. Considering, however, the symmetries mentioned above, the

problem can be restricted to a subspace of the superblock corresponding to a particular

Q value. For example, in case of Heisenberg and Hubbard models, the size of the

superblock Hilbert space can be reduced significantly as demonstrated in Figures 5.1

and 5.2, respectively. It is, however, clear that even using symmetry operators the

DOI:10.15774/PPKE.ITK.2014.001

5.4 Algorithm 87

dimension of the reduced space grows exponentially with the size of the lattice (if no
truncation is done).

Figure 5.1: Exploiting the projection symmetry in the Heisenberg model, the Hilbert space of
the superblock can be restricted to the subspace corresponding to Q = 0. The measurements
were produced via the CPU-only mode of the implementation presented in Chapter 6. At the
top of the chart, labels indicate the number of retained block states (m=4096).

Figure 5.2: Exploiting the conservation of particle number in the spin-1
2 Hubbard model, the

Hilbert space of the superblock can be restricted to the subspace corresponding to Q =[N2 ,N2].
The measurements were produced via the CPU-only mode of the implementation presented in
Chapter 6. At the top of the chart, labels indicate the number of retained block states (m=4096).

The infinite-lattice algorithm starts with the four site configuration, where each
block contains a single spin. In each iteration step, both blocks are enlarged by a single
site making the complete system increase by two until the desired system size, N , is
reached. In each iteration of the DMRG algorithm, the lowest-lying eigenvector of the

DOI:10.15774/PPKE.ITK.2014.001

88 5. DENSITY MATRIX RENORMALIZATION GROUP ALGORITHM

corresponding superblock Hamiltonian (HSB) is obtained by the iterative Davidson or

Lanczos algorithms. In the presented implementation the Davidson algorithm have

been considered. From the lowest eigenstate the density matrix is constructed, which

carry the information how to optimally truncate the basis of the enlarged block (m �

ql+1) in order to keep the problem size manageable [82].

The most time-consuming part of a full iteration is the step of the Davidson routine

which carries out the projection operation (X ′ = HSBX). Instead of constructing

and storing the enormous HSB matrix of size O (m4) explicitly, it is computationally

favorable to obtain the projected vector X ′ directly from the matrices of size O (m2)

composing HSB.

The HSB can be directly expressed by the operators of the original four subsys-

tems (l-1-1-r strategy) or by the operators of two intermediate systems (LR strategy),

so called enlarged blocks, which come from the contraction of each block with its

neighboring site. In the current implementation only the second strategy is investi-

gated, however, the first one is also straightforward and will be included in the near

future.

There are several practical benefits of these strategies. First of all, the memory

bandwidth limited matrix-vector multiplication (BLAS Level 2) is converted to matrix-

matrix multiplications (BLAS Level 3) which can be efficiently accelerated. (BLAS

stands for Basic Linear Algebra Subroutines, which is a standard interface for linear

algebraic operations.) Secondly, skipping of the explicit Kronecker multiplications not

only restructures the computation, but decreases the number of operations. Finally,

both strategies drastically decrease the size of the matrices which take part in the op-

erations and thus the memory footprint of the algorithm. In case of LR and l-1-1-r

strategies, the largest matrix has a size of O((mq)2) and O((m)2), respectively. The

second strategy is more favorable in extreme situations when the GPU memory is lim-

ited and q (internal degrees of freedom) is large (e.g. spin-F Hubbard model with

large F).

DOI:10.15774/PPKE.ITK.2014.001

5.4 Algorithm 89

5.4.1 LR strategy

In the LR strategy the HSB is expressed with operators A(L)
α and B(R)

α defined on the
left (L := l + 1) and right (R := r + 1) enlarged blocks, respectively, as

HSB =
∑
α

A(L)
α ⊗B(R)

α , (5.9)

where the index α iterates over the distinct operator combinations required to construct
the superblock Hamiltonian. Exploiting Kronecker multiplication properties, the pro-
jected vector X ′ can be computed by matrix-matrix multiplications as

X̃ ′ =
∑
α

A(L)
α X̃B(R)T

α , (5.10)

where vectorX of size [BcolAcol] is reshaped to matrix X̃ of size [Bcol, Acol] and vector
X ′ of size [BrowArow] is reshaped to matrix X̃ ′ of size [Brow, Arow].

Algorithm 7 The computation of the projected vector X ′ in case of l-1-1-r strategy
strategy.

Require: size(X) = [DcolCcolBcolAcol]
1: function PROJECTX_L11R(A,B,C,D,X)
2: X1=reshape(X) as size(X1)=[Dcol, Ccol, Bcol, Acol]
3: for each (i, j) do X ′1(:, :, i, j)=DX1(:, :, i, j)

4: for each (i, j) do X ′′1 (:, :, i, j)=X
′
1(:, :, i, j)C

T

5: X2=reshape(X ′′1) as size(X2)=[DrowCrow, Bcol, Acol]
6: for each (i) do X ′2(:, :, i)=X2(:, :, i)B

T

7: X3=reshape(X ′2) as size(X3)=[DrowCrowBrow, Acol]
8: X ′3=X3A

T

9: X ′=reshape(X ′3) as size(X ′)=[DrowCrowBrowArow]
10: return X ′

In a practical implementation, Equation 5.10 operates on even smaller matrices
as the operators are decomposed according to quantum numbers. Instead of a sparse
matrixA(L), several dense matricesA(L)

qi→qj are stored representing howA(L) transforms
the subspace (sector) corresponding to qi to the one corresponding to qj . To compute
X ′ in case of a givenA(L)

α , B
(R)
α operator pair, all possibleA(L)

α,qi→qj ,B(R)
α,qk→ql transition

pairs shall be submitted to Equation 5.10, and each time only the corresponding ik and
jl segments of X and X ′ shall be used as

X̃ ′jl+ = A
(L)
α,i→jX̃ikB

(R)T
α,k→l, (5.11)

DOI:10.15774/PPKE.ITK.2014.001

90 5. DENSITY MATRIX RENORMALIZATION GROUP ALGORITHM

where X̃ik and X̃ ′jl indicate the reshaped ik and jl segment of vector X and X ′, re-

spectively. Fortunately, the reshape operation has no computational cost as the data in

the memory is untouched and only the row/col sizes are changing.

5.4.2 l-1-1-r strategy

In the l-1-1-r strategy the HSB (see Equation 5.9) is expressed by the operators of the

four subsystems:

HSB =
∑
α

A(l)
α ⊗ aα ⊗ bα ⊗B(r)

α , (5.12)

where the index α again iterates over the distinct operator combinations required to

construct the superblock Hamiltonian.

Similarly to the LR strategy, Kronecker multiplication properties can be exploited

to compute the projected vector X ′ efficiently with matrix-matrix operations, however,

in this case a more complicated data storage and several tensor multiplications are

needed to avoid unnecessary memcopy operations. Using the procedure PROJECTX_-

L11R(), which computes the projected vector X ′ for one matrix quadruplet and is

described in Algorithm 7, the HSB can be calculated as

X ′ =
∑
α

PROJECTX_L11R(A(l)
α , aα, bα, B

(r)
α , X) . (5.13)

In the similar manner as shown in LR strategy, A(l), a, b and B(r) operators can

be decomposed according to quantum numbers and instead of large sparse matrix op-

erations several smaller dense matrix operations shall be submitted to Algorithm 7.

Furthermore, none of the reshape operations of Algorithm 7 involves practical data

movement, only the size descriptor variables are changing.

5.5 Parallelism and run-time analysis

For the Heisenberg and the Hubbard models, the run-time analysis of the DMRG al-

gorithm is shown in Figures 5.3 and 5.4, respectively. I created the measurements

with the CPU-only version of the implementation presented in Chapter 6 to investigate

which parts of the algorithm shall be accelerated. As the Davidson algorithm, which is

summarized in Algorithm 8, is the most time-dominant part and takes more than 97%

DOI:10.15774/PPKE.ITK.2014.001

5.5 Parallelism and run-time analysis 91

Figure 5.3: Heisenberg model: Run-time of the Davidson algorithm and its HSBV operation
compared to the total time of a DMRG iteration step as the number of retained block states
increases. CPU-only versions are indicated by Core-i7 and Xeon E5, while hybrid versions are
indicated by GTX 570 and K20. At the top of the chart, labels indicate the number of retained
block states (m=4096).

Figure 5.4: Similar to Figure 5.3 but for the Hubbard model.

of the total time, it has been chosen for acceleration. Unfortunately, the full David-

son algorithm cannot be implemented on the GPU as the problem size in real world

simulations usually exceeds the GPU memory size. Instead, a hybrid approach shall

be implemented, which can adjust the GPU workload according to the available GPU

memory and the CPU-GPU performance ratio.

In the Davidson algorithm inherent parallelism can be observed at two levels. First,

at low level, all the matrix and vector operations can be accelerated. Secondly, at

the level of projection computation (line 2 in Algorithm 8), which is the most time-

DOI:10.15774/PPKE.ITK.2014.001

92 5. DENSITY MATRIX RENORMALIZATION GROUP ALGORITHM

Algorithm 8 One iteration of the Davidson algorithm

Require: Previous (i− 1) basis vectors already computed.
1: function DAVIDSONITER(i)
2: W (:, i) = HSB · V (:, i) . BLAS-3: dgemm()
3: B(:, i) = V T ·W (:, i) . BLAS-2: dgemv_trans()
4: [λ, y]←− get smallest eigvalue and vector of B
5: x = V · y . BLAS-2: dgemv()
6: r = −λ · x+W · y
7: if norm(r) ≈ 0 then
8: return with x and success
9: else

10: correct r
11: // orthonormalize r against V :
12: s = V T · r . BLAS-2: dgemv_trans()
13: r = r − V · s . BLAS-2: dgemv()
14: normalize r and append to V
15: return without success

dominant part of the Davidson algorithm itself taking more than 75% of the total time,

the projection can be computed as a sum of independent (AX)BT operations (see

Equation 5.10).

At low level, the CPU part of the algorithm (regardless the GPU is enabled or not)

uses the Basic Linear Algebra Subroutine (BLAS) interface and the Intel MKL Li-

brary for algebraic operations including operator contractions, inner operations of both

Davidson and full diagonalization algorithms, and operator transformations. Unfortu-

nately, in the Davidson algorithm, all the operations except the projection are BLAS

level 2 matrix-vector multiplications, which are bandwidth limited and not ideal for

acceleration. There is a block extension [85] of the algorithm, the so called Davidson-

Liu, to determine a few of the lowest eigenvalues, where more than one candidate

vectors are added at once resulting in BLAS level 3 operations, however, in the current

DMRG implementation only the lowest eigenvalue is investigated. The remaining op-

tion is to store as much data in GPU memory as possible and execute the corresponding

operations on GPU.

At the level of projection operation, the independence of matrix multiplications

provides a straightforward hybrid parallelization and a future multi-GPU modification

DOI:10.15774/PPKE.ITK.2014.001

5.6 Limits of the FPGA implementation 93

of the current implementation. Acceleration can be improved by developing an appro-

priate scheduling of the matrix operations for different matrix sizes and architectures.

5.6 Limits of the FPGA implementation

To estimate the performance of an FPGA implementation of the DMRG method, the

acceleration of the projection operation expressed as a series of dense matrix multi-

plications (see Equation 5.11) shall be investigated. The floating-point matrix-matrix

multiplication was already implemented by Kumar et al. [86] on FPGA very efficiently

using the rank-1 update scheme. They demonstrated that the performance is not lim-

ited by the PCIe bandwidth, which connects the FPGA to the host CPU, and nearly full

utilization of the processing elements can be reached.

The idea behind the rank-1 update approach is that instead of inner products be-

tween the rows of the left matrix and the columns of the right matrix, outer products

between the columns of the left matrix and the rows of the right matrix are carried out,

and resulting matrices are summarized. The advantage of the approach is that, instead

of multiply–accumulate operations (MACCs), multiply-add operations (MADDs) are

used, which are independent from one another and can be pipelined to reach high pro-

cessing element utilization.

Using the rank-1 update approach, the processing elements can be fully utilized and

the following best-case estimations can be made according to the area requirements of

the floating-point units. Assuming a Virtex-7 XC7VX1140T FPGA (see Table 5.1

for details), which is one of the largest FPGA of the newest Xilinx family, approxi-

mately 193 multiply-add units can be implemented. The estimated clock frequency of

multipliers is 443.65 MHz, which results in 171.2 GFLOPS computing performance.

This performance achievement is similar to the performance of the mid-range GTX

570 GPU used in Section 5.4. As the development time (e.g. create the design, write

the source code) in case of FPGA is still much longer than in case of GPU and the

Table 5.1: Virtex-7 XC7VX1140T FPGA feature summary

Configurable Logic Blocks DSP
Slices

Block RAM
Blocks (36Kb)

GTH
Transceivers

Max
User I/OSlices Max Distributed RAM (Kb)

178,000 17,700 3,360 1,880 96 1100

DOI:10.15774/PPKE.ITK.2014.001

94 5. DENSITY MATRIX RENORMALIZATION GROUP ALGORITHM

high-end GPUs can significantly outperform the FPGA in this problem class, the GPU
architecture is the better candidate for the acceleration.

DOI:10.15774/PPKE.ITK.2014.001

Chapter 6

Hybrid GPU-CPU acceleration of the
DMRG algorithm

After investigating the performance capabilities of both FPGA and GPU architectures,

I chose the GPU architecture for acceleration and designed a hybrid GPU-CPU ac-

celeration of the DMRG algorithm, from which the scientific results described in my

second thesis group originate. As discussed in Section 5.5, parallelism can be ex-

ploited at various levels in the algorithm. In Section 6.1, a low level GPU acceleration

of some asymmetric matrix-vector operations of the Davidson algorithm is presented

describing the scientific work behind Thesis II.2. In Section 6.2, scheduling strategies

are investigated to accelerate the matrix-matrix operations of the projection operation

with GPU composing the scientific work related to Thesis II.1. Finally, the results of

the hybrid acceleration are discussed in Section 6.3.

6.1 Accelerating matrix-vector multiplications

Jacobi-Davidson version [87] of the original Davidson algorithm [88] is a precondi-

tioned subspace iteration technique (for more details see textbook [84]) aimed at com-

puting a few of the extreme eigenpairs of large sparse symmetric matrices and com-

monly used in the DMRG implementations [66, 67]. In the presented work, the [89]

version of the algorithm (available in Netlib [90]) is implemented.

In each iteration, the subspace is extended with a new basis vector (V (:, i)), which

is stored in the memory accompanied by its projection (W (:, i)). As the size of these

vectors can be very large (see Figures 5.1, 5.2) depending on the model and the number

95

DOI:10.15774/PPKE.ITK.2014.001

96 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

Figure 6.1: Available free GPU memory after the projection operation and the memory request
of gemv_trans() in case of the Heisenberg model. As the projection operation is the most time-
consuming step, its acceleration has a priority. To avoid unnecessary I/O communication, most
of the matrices required by the projection are held in the GPU memory during the Davidson
iterations. The acceleration of the matrix-vector operations of the Davidson algorithm can only
use the remaining memory. At the top of the chart, labels indicate the number of retained block
states (m=4096).

of retained block states (m), they cannot be fully stored in the GPU memory. However,

in order to accelerate a matrix-vector multiplication with GPU, at least the matrix shall

be stored in the GPU memory. In the current implementation the matrix of the basis

vectors (V), which is used four times (see comments in Algorithm 8 on page 92) in

BLAS level 2 operations, has been selected to be stored, although the storage of the

projected vector matrix (W) can be added later as well.

In the implemented version of the Davidson algorithm, the number of basis vectors

can be limited by a user-defined threshold to keep the memory requirements manage-

able. When the threshold is reached, the iteration is restarted and the previous estimate

vector (see line 5 in Algorithm 8) is used as the first basis vector. In our measurements

the threshold was set to 20, hence the width of matrix V was varying between 1 and

20.

In each iteration, the new basis vector is loaded to the GPU memory in the back-

ground (if there is available space) and the workload of the BLAS level 2 operations

is shared between the CPU and GPU: CPU process the new basis vector, while GPU

operates on the older ones. With this technique the power of both CPU and GPU can

be exploited and the transfer time of the matrix can be hidden. The implementation

DOI:10.15774/PPKE.ITK.2014.001

6.1 Accelerating matrix-vector multiplications 97

is flexible: if there is no more space on the GPU or the CPU performance justifies it,

more than one basis vector can be processed on the CPU leaving less work for GPU.

As shown in Figure 6.1, where the storage requirement of V is compared with the free

space available after the projection operation, V cannot be fully stored on a GTX 570

GPU even in case of the simple Heisenberg model (m = 4096).

There are two types of BLAS level 2 operations: V TX and V X indicated by

gemv_trans() and gemv() in Algorithm 8, respectively. In the first case, the multi-

plier vector can be loaded in, while, in the second case, the result can be written out in

smaller parts (∼5e5) to overlap with the computation.

6.1.1 Architectural motivations

To design an efficient acceleration of the gemv_trans() operation, the memory through-

put and the occupancy of the streaming processors had to be considered.

As matrix-vector operations are memory bandwidth limited, the primary goal was

to efficiently use the available memory bandwidth. First, to approximate the maximal

memory throughput given in the GPU data sheets, memory coalescing had to be uti-

lized, which means that simultaneously running threads have to read/write continuous

regions of the global memory. Second, to minimize the communication overhead of the

operation, the reloading of vector elements had to be minimized. If a sufficiently large

cache can be allocated in the shared memory, vector elements can be reused while the

different rows of the matrix are being processed. In an ideal case each vector element

has to be loaded only once, however, in this case the shared memory requirement can

be a critical if the number of the rows of the matrix is large.

The occupancy of the streaming processors depends on the (shared and register)

memory requirement of the thread blocks. If the requirements are relatively high com-

pared to the available resources, less thread blocks can be assigned to a streaming

processor. If less thread blocks are assigned to a streaming processor, less threads can

be scheduled to hide I/O latency and keep the cores busy. In the investigated cases,

if the occupancy of the streaming processors decreases below a limit, the computing

performance becomes the bottleneck of the overall performance instead of the mem-

ory throughput. In such cases the memory requirement of the thread blocks should be

decreased to increase the occupancy.

DOI:10.15774/PPKE.ITK.2014.001

98 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

6.1.2 gemv_trans()

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

Nvidia
CuBlas::dgemv()

Nvidia
CuBlas::dgemm()

Intel MKL on Core-i7

PCIe 2.0 limit

Kernel (belt width=4)

Kernel (belt width=8)

Kernel (belt width=16)

Width of the matrix

P
er

fo
rm

an
ce

 (
G

F
lo

p
s)

Figure 6.2: GTX 570: Performance of the presented gemv_trans() kernel with different belt
widths is compared to the performance of the available implementations in case of matrix
height 5e5. As the belt width determines both the shared memory requirement of a thread
block and the number of the reloads of the vector elements, the parameter can be used to
balance the occupancy of the streaming processors and the communication overhead to reach
high-performance. Additionally, the PCIe limit is displayed as PCIe throughput limits the
performance of the GPU acceleration if the transfer of the multiplier vector cannot be avoided.
Note that in the current design only the matrix elements have to be present in the GPU memory,
the position of the vector elements is optional. If the application requires, they can be loaded
overlapped with the computations.

In case of gemv_trans(), both MKL and CuBlas libraries give poor performance

for the special asymmetric matrix size (∼5e5x20) required in our application (see Fig-

ures 6.2, 6.3, 6.4, 6.5 and 6.6), therefore, I designed a new CUDA kernel for the

operation. The presented results are measured without data communication, as in case

of line 3 the multiplier vector is already in the GPU memory providing ideal acceler-

ation. To estimate the performance of line 12, where the multiplier vector has to be

loaded, the limiting factor of the PCIe 2.0 is also displayed. In this case the overall

performance cannot exceed the PCIe limit even with overlapped communication. In

both cases, the estimation of the overall acceleration shall be carried out in an integral

fashion as in each iteration the thickness of the matrix is increased by one until a user

defined limit (20 in the presented DMRG test-cases) is reached.

The basic idea of the new kernel (see Algorithm 9) can be summarized as fol-

lows. Each thread is associated with a column of the matrix. Each thread loads the

DOI:10.15774/PPKE.ITK.2014.001

6.1 Accelerating matrix-vector multiplications 99

corresponding vector element and multiplies the elements of the associated column.

As threads of a warp load consecutive elements of the vector and the matrix, the co-

alesced reading is obvious. If the number of threads (grid size * thread block size) is

less than the length of the matrix, each thread is associated with a new unprocessed

column (coalesced readings again) as long as there is any. After processing a new col-

umn each thread accumulates the results to the results of the first column. Finally, the

accumulated results shall be summed across the threads, which can be efficiently done

via a sum reduction [91] in shared memory. If the belt is smaller than the width of the

matrix, the whole procedure can be repeated (outer loop).

Algorithm 9 Pseudocode of the proposed kernel for asymmetric gemv_trans()
Require: thread_number is the global index of a thread

1: function GEMV_TRANS(MTX, MTX_WIDTH,
2: MTX_LEN, VEC)
3: Allocate shared memory for a thread block(s_block)
4: for each belt do
5: Fill s_block with zeros
6: for (i = thread_number; i < mtx_len;
7: i += num_of_threads) do
8: Load vec[i] to a private memory (p_vec)
9: for each element of ith column of belt do

10: Load element, multiply with p_vec and accumulate the prod-
uct to s_block

11: Sum reduction in s_block
12: if this is the first thread of the block then
13: Save first column of s_block

The size of the shared memory requirement of a thread block, which is equal to the

size of a thread block multiplied with the width of the belt, can be a limiting factor of

the performance because in case of large shared memory usage less thread blocks can

be assigned to one physical multiprocessor. In the presented measurements the opti-

mal width of the belt has been investigated, however, even with the optimal width the

performance decreases as the width of the matrix increases. For extreme, asymmetric

matrices, which are used in our application, significant speed-up (x4-5) can be reached

compared to the CuBlas library, however, as the matrix tends to be more symmetric the

DOI:10.15774/PPKE.ITK.2014.001

100 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

performance of the CuBlas::dgemm() operation (red line in Figures 6.2-6.6) increases

and exceeds the performance of the new kernel.

In case of the new Kepler architecture (K20), in which Streaming Multiprocessor

has significantly more CUDA Cores than the SM of Fermi GPUs (GTX 570), the per-

multiprocessor warp occupancy shall be increased to use all the available cores [92].

A new warp-level intrinsic called the shuffle operation can be used to decrease the

shared memory requirement of the sum reduction algorithm to increase the occupancy.

If shuffle operation is enabled, each thread accumulates the partial products (line 10 in

Algorithm 9) in a private memory, and the shuffle operation is used to summarize the

results of the threads of the same warp. Consequently, only one column per warp has

to be stored in the shared memory, which decreases the shared memory requirement to

the number of warps in a block multiplied with the width of the belt. In practice, the

cycle at line 9 is unrolled with macros as allocation of static arrays in private memory is

not possible. In Figures 6.4, 6.5 and 6.6 the results of the new kernel extended with the

shuffle operation are displayed. The width of the optimal belt is slightly increased as

the shared memory request is decreased. Unfortunately, the shuffle operation provides

only a small performance gain in case of our kernel (compare Figures 6.3 and 6.5).

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

Nvidia
CuBlas::dgemv()

Nvidia
CuBlas::dgemm()

Intel MKL on Xeon E5

PCIe 2.0 limit

Kernel (belt width=2)

Kernel (belt width=4)

Kernel (belt width=8)

Width of the matrix

P
er

fo
rm

an
ce

 (
G

F
lo

p
s)

Figure 6.3: K20, no shuffle operation in the kernel: Performance of the presented gemv_trans()
kernel with different belt widths is compared to the performance of the available implemen-
tations in case of matrix height 5e5. As the belt width determines both the shared memory
requirement of a thread block and the number of the reloads of the vector elements, the param-
eter can be used to balance the occupancy of the streaming processors and the communication
overhead to reach high-performance. Additionally, the PCIe limit is displayed as PCIe through-
put limits the performance of the GPU acceleration if the transfer of the multiplier vector cannot
be avoided.

DOI:10.15774/PPKE.ITK.2014.001

6.1 Accelerating matrix-vector multiplications 101

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

Nvidia
CuBlas::dgemv()

Nvidia
CuBlas::dgemm()

Intel MKL on Xeon E5

PCIe 2.0 limit

Kernel (belt width=4)

Kernel (belt width=8)

Kernel (belt width=16)

Width of the matrix

P
er

fo
m

an
ce

 (
G

F
lo

p
s)

Figure 6.4: K20, shuffle operation enabled: Performance of the presented gemv_trans() kernel
with different belt widths is compared to the performance of the available implementations in
case of matrix height 1e5. As the belt width determines both the shared memory requirement
of a thread block and the number of the reloads of the vector elements, the parameter can be
used to balance the occupancy of the streaming processors and the communication overhead to
reach high-performance. Additionally, the PCIe limit is displayed as PCIe throughput limits the
performance of the GPU acceleration if the transfer of the multiplier vector cannot be avoided.

With the experiments presented in Figures 6.2-6.6, the optimal belt width was in-

vestigated in the function of the matrix width in case of different problem sizes and

GPU version. As the belt width determines both the shared memory requirement of a

thread block and the number of the reloads of the vector elements, it should be set to

balance the occupancy of the streaming processors and the communication overhead.

The performance of the kernel is also affected by the width of the input matrix, which

is a consequence of a certain limitation of the CUDA environment. As kernels cannot

allocate static arrays in the private memory, the cycle at the 9th line of Algorithm 9

is unrolled with macros. Each macro has to check whether there is enough row in the

matrix to proceed with the computations. Each extra checking creates an overhead,

which becomes significant, when several matrix rows are missing, that is, when the

remainder after the division of the matrix width by the belt width is large.

The performance of the kernel is mainly dominated by the speed of the coalesced

reading of the matrix elements. The gemv_trans() operation is memory bandwidth

limited in both CPU and GPU architectures, but it is better to compute it on GPU

because the bandwidth on GPU (e.g. GDDR5 in GTX 570: 152GB/s or GDDR5

in K20: 208GB/s) is usually higher than on CPU (e.g. DDR3-1333 in dual channel

DOI:10.15774/PPKE.ITK.2014.001

102 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

Nvidia
CuBlas::dgemv()

Nvidia
CuBlas::dgemm()

Intel MKL on Xeon E5

PCIe 2.0 limit

Kernel (belt width=4)

Kernel (belt width=8)

Kernel (belt width=16)

Width of the matrix

P
er

fo
rm

an
ce

 (
G

F
lo

p
s)

Figure 6.5: Similar to Figure 6.4 but for matrix height 5e5.

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

Nvidia
CuBlas::dgemv()

Nvidia
CuBlas::dgemm()

Intel MKL on Xeon E5

PCIe 2.0 limit

Kernel (belt width=4)

Kernel (belt width=8)

Kernel (belt
width=16)

Width of the matrix

P
er

fo
rm

an
c e

 (
G

F
lo

p
s)

Figure 6.6: Similar to Figures 6.4 and 6.5 but for matrix height 1e6.

with Core-i7: 21.2GB/s or DDR3-1066 in quad channel with Xeon E5: 34.1GB/s).

The maximal memory throughput reached by the new kernel (measured with matrix

size 16 × 5e5) was 114.7GB/s, 134.8GB/s, and 143.7GB/s on GTX 570, on K20

without shuffle, and on K20 with shuffle, respectively.

In the presented DMRG implementation, the shuffle operation is enabled and the

kernel with the best belt width is invoked based on the matrix width. The results of the

acceleration of the selected BLAS level 2 operations of the Davidson algorithm on the

Xeon E5 + K20 architecture are summarized in Table 6.1. (On the GTX 570 card the

memory is too small to accelerate other operations besides the projection.) Line 3 is

accelerated well as no extra communication is needed while the other operations are

either limited by the PCIe or the DDR3 throughput.

DOI:10.15774/PPKE.ITK.2014.001

6.2 Accelerating projection operation 103

6.1.3 gemv()

The gemv() operation can be efficiently accelerated by the standard CuBlas library

even in case of asymmetric matrices (see Figure 6.7). Unfortunately, merging of CPU

and GPU results is slow on one CPU thread and is the bottleneck of the acceleration.

The implementation can be improved by multithreaded merging to enable quad channel

memory or by computing everything on the GPU, however, this is not always possible.

2 4 6 8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

CuBlas::dgemv

CuBlas::dgemm

Intel MKL Xeon
E5

DDR3 merge
limit

Width of the matrix

P
er

fo
rm

an
ce

 (
G

F
lo

p
s)

Figure 6.7: Performance of the gemv_normal() operation of the available implementations in
case of K20. Additionally, the DDR3 limit is displayed, because the merge operation is limited
by the DDR3 throughput in hybrid mode. The gemv() function of the CuBLAS library provides
acceptable acceleration compared to the CPU, however, the merging of the results of the two
architecture limits the final performance.

6.2 Accelerating projection operation

The acceleration of the independent (AX)BT operations is based on the observation

that A and B matrices are already available before the Davidson algorithm starts and

do not change during the Davidson iterations. The necessary (AX)BT operations are

described by a list of operation records, in which each record contains all the necessary

information to compute an operation like Equation 5.11. For example, it stores the

information from which segment of X (input) to which segment of X ′ (output) the

operation transforms.

The host side algorithm to handle the operation records is summarized in Algo-

rithm 10. During the construction of the operation records, the workload associated

DOI:10.15774/PPKE.ITK.2014.001

104 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

Table 6.1: Runtime of the accelerated matrix-vector operations of the Davidson algorithm in
seconds (see Algorithm 8 on page 92 for the line numbers). Lines 3 and 12 correspond to the
gemv_trans() operation. In case of line 3, the vector elements are already in the GPU memory,
therefore, the PCIe bandwidth is not a limiting factor. In case of lines 5 and 13, the poor
acceleration is due to the merging of results, which is limited by the DDR3 bandwidth.

Xeon E5 Xeon E5 + K20 speedup

Heisenberg
model

Line 3 20.21 4.64 4.36
Line 5 19.07 10.45 1.83
Line 12 20.05 5.94 3.38
Line 13 17.55 9.68 1.81

Hubbard
model

Line 3 113.80 22.66 5.02
Line 5 94.29 54.22 1.74
Line 12 114.00 37.67 3.03
Line 13 87.29 50.21 1.74

to each output is computed. (Multiple operations can use the same input or write the
same output segment.) Next, the operation records are partitioned between CPU and
GPU based on the performance ratio of the two architectures. To avoid merging of
outputs, all operation records corresponding to the same output shall be computed on
the same architecture, however, to create a balanced workload partitioning, this is not
always possible. During partitioning, the output associated to the largest workload is
selected for GPU iteratively as long as the desired workload ratio is not exceeded. If
the reached workload ratio is far from the desired, the operation records of the output
associated to the next largest workload are partitioned between the two architectures.

Algorithm 10 Host side algorithm to handle the operation records
1: Create operation records and determine the workload (FLOP) for each output.
2: Partition the operation records between CPU and GPU based on their performance

ratio and the output workload statistics.
3: Selects scheduling strategy for the operations to be computed on GPU.
4: Set-up the workload for GPU based on the selected strategy.

After partitioning, the proper scheduling strategy is selected based on the memory
requirements of the operation records. Three different strategies can be selected for
three different uses cases, however, currently only the first two, more complex strate-
gies have been implemented and tested. The first strategy (4Streams) is designed for
small problem size, when all A, B, X , X ′ matrices and temporary matrices T for

DOI:10.15774/PPKE.ITK.2014.001

6.2 Accelerating projection operation 105

Figure 6.8: GPU memory footprints of the two strategies are compared in case of the Heisen-
berg model. At the top of the chart, labels indicate the number of retained block states
(m=4096).

storing intermediate results can be held in the GPU memory. The second strategy

(NoStreams) is designed for medium-sized problems, where all A, B and X ′ matrices

can be stored in GPU memory, but from X and T only the processed matrices are al-

located. In case of extra-sized problems, a third strategy (NoStreamAndStorage) can

be designed, in which even A and B matrices cannot be fully stored in the GPU mem-

ory. The memory footprint of the matrices in case of different strategies are shown in

Figure 6.8. In the demonstrated examples the first strategy was available for all the

DMRG iterations as the GPU cards had enough memory.

6.2.1 Architectural motivations

To design efficient strategies for the different use cases of the (AX)BT operation,

the limitations of the CUDA kernel scheduling and the bandwidth of the PCI express

interface have to be considered. First, as smaller matrices do not provide enough com-

putation to keep all the GPU cores busy, more (AX)BT operations have to be executed

simultaneously to maintain high performance. Second, the operation records shall be

scheduled to hide the transfer time of matrices communicated through the PCI express

interface.

The (AX)BT operations are implemented using the CuBLAS libary [93], which is

a BLAS implementation dedicated for Nvidia GPUs. In the demonstrated strategies,

two important features of the GPUs are exploited, which are provided via the CUDA

DOI:10.15774/PPKE.ITK.2014.001

106 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

driver [94] and also accessible through the CuBLAS library. The first feature is that

multiple CUDA kernels can be executed simultaneously on the GPU, while the sec-

ond feature is that memory I/O operations can be executed in the background. From

the aspect of programming, both features can be accessed via the CUDA streams.

Streams are sequences of operations that execute in issue-order, but operations in dif-

ferent streams may run concurrently or interleaved.

Although the CUDA environment allow the parallel execution of kernels, it does

not guarantee the parallel execution unless the kernels are scheduled and issued in a

proper order by the programmer. To maintain the simultaneous execution of multiple

kernels, an extra scheduling of the operation records has to be done, which pays atten-

tion to the limited scheduling capabilities of the CUDA kernel dispatching mechanism

described in case of the 4Streams strategy.

6.2.2 Scheduling strategies

In the 4Streams strategy, there is enough GPU memory to execute several (AX)BT

simultaneously. One stream is created for each output and operations corresponding to

a given output are assigned to the same stream to avoid interference. For each stream,

a sufficiently large temporary matrix is allocated to store the temporary result of AX .

CUDA operations are dispatched to hardware queues in issue order [94]. To enable

asynchronous concurrent kernel execution in CUDA environment, memory transfers

and kernels shall be issued in a breadth-first order. Inside the engine (kernel) queue an

operation is dispatched if all preceding calls in the same stream have been completed

and all preceding calls of the same queue have been dispatched. Consequently, to

avoid blocking calls, kernels of the same streams shall not be issued immediately after

each other. As one (AX)BT operation consists of two kernels, the kernel calls shall

be separated and interleaved with kernels of operations of other streams. To reach four

parallel streams (hence the name of the strategy), kernels from four different streams

shall be interleaved. That is, if we have four operation records associated to different

streams, we have to issue the first kernel of each operation before we continue with the

second kernels.

Overlapping of the transfer time of input segments with kernel execution makes

further constraints on the order of the operation records: only those operation records

DOI:10.15774/PPKE.ITK.2014.001

6.2 Accelerating projection operation 107

Algorithm 11 Grouping operation records in case of 4Streams strategy
1: function ORDERANDGROUPRECORDS(records, maxstream)
2: Sort records by input frequency.
3: setVisitedRecords.clear()
4: for each record i do
5: if i.stream ∈ setVisitedRecords then
6: for each record j following i do
7: if j.stream 6∈ in setVisitedRecords then
8: swap(i,j) and break
9: if i.stream is 6∈ in setVisitedRecords then

10: vecGroup.last().insert(i)
11: setVisitedRecords.insert(i.stream)
12: if setVisitedRecords.size()=maxstream then
13: vecGroup.add(new Group)
14: setVisitedRecords.clear()
15: else
16: vecGroup.add(new Group)
17: vecGroup.last().insert(i)
18: setVisitedRecords.clear()
19: setVisitedRecords.insert(i)

return vecGroups

shall be issued which use already loaded input segments. To be able to interleave

different streams, it is favorable to load the input segment first which is used by the

most streams.

Algorithm 12 Dispatching operation records
1: for each group g do
2: for each record i in g do
3: Init copy of input segment Xi (when first used)
4: Init Ti = (AiXi)

5: for each record i in g do
6: Init X ′i = TiB

T
i

7: for each output segments of X ′ do Init copy back.

In case of 4Streams strategy the reordered operation records are grouped (see Al-

gorithm 11) such a way that the issuing of the kernels belonging to the same group can

be interleaved (see Algorithm 12). First, operation records are sorted to load the more

DOI:10.15774/PPKE.ITK.2014.001

108 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

frequently used input segments earlier. Then, records are iterated and each record is

potentially swapped backward to create groups of four consecutive operations belong-

ing to four different streams. In practice, some technical constraints have been added

to slightly alter the swapping behavior, however, it is not discussed here for the sake of

simplicity.

Figure 6.9: Interleaved operation records (on the left) and the resulting parallel execution (on
the right). Each record contains two kernel calls (see line 4 and 6 in Algorithm 12), which are
indicated by roman letters. The lth kernel of the ith record is named as R#i(j → k)/l, where
jth and kth indicate the affected input and output segments, respectively. The kernel queue
illustrates the issue order of the kernels. The kernels of the first group are colored by white,
while grey color indicates some of the kernels of the second group. A CUDA event is also
displayed to demonstrate that the first kernel does not start until the first segment is loaded.
Note that the 9th kernel cannot start until all the previously issued kernels have been started.

CUDA operations are launched according to the operation records as summarized

in Algorithm 12. For the sake of brevity, the synchronization between the streams is

not shown as it can be implemented with CUDA events in a straightforward way. (For

example, if each operation waits for the transfer event specific to the utilized input

segment and the operations are ordered properly, the transfer and computation time

can be overlapped.) The same code can be used for both strategies as the NoStreams

strategy can be represented by groups which contain only one operation record. In case

of NoStreams strategy, the preparation of the operation records is much simpler and

contains only the sorting by input frequency to reach I/O overlap with computation.

To illustrate the interleaved kernel calls, the overlapped I/O communication and the

parallel kernel execution, a schematic diagram of a simplified example is shown in

Figure 6.9.

DOI:10.15774/PPKE.ITK.2014.001

6.2 Accelerating projection operation 109

0 200 400 600 800 1000 1200 1400 1600
40

60

80

100

120

140

160

180

200

128

256

512

1024

2048
4096

Strategy
“4Streams”

Strategy
“NoStreams”

Intel Core-i7,
MKL::dgemm

GTX 570,
CuBlas::dgemm,
no streams

GTX570,
CuBlas::dgemm,
4 streams

Matrix size

P
er

fo
rm

an
c e

 (
G

F
lo

p
s)

Figure 6.10: GTX 570, Heisenberg model: Performance of the two strategies is compared.
Additionally, the performance of CuBLAS and MKL dgemm() in reference measurements is
displayed as the function of matrix size. Labels indicate the number of retained block states at
the displayed DMRG iterations.

0 200 400 600 800 1000 1200 1400 1600
50

150

250

350

450

550

650

750

850

950

1050

256

512

1024

2048

4096 Strategy
“4Streams”

Strategy
“NoStreams”

Intel Xeon E5,
MKL::dgemm

K20,
CuBlas::dgemm,
no streams

K20,
CuBlas::dgemm,
4 streams

Matrix size

P
er

fo
rm

an
c e

 (
G

F
lo

p
s)

Figure 6.11: Similar to Figure 6.10 but on K20 architecture.

The performance of the two strategies is compared in Figures 6.10 and 6.11. Sig-

nificant improvement can only measured at medium sized matrices (100-800 for GTX

570 and 100-1500 for K20), in which case several operations shall be executed con-

currently to keep all the CUDA cores busy. Slightly bigger gain can be observed in

case of K20 GPU, which has 2496 Kepler CUDA cores as opposed to GTX 570 having

only 480 Fermi CUDA cores. Operations on large matrices (∼1500 for GTX 570 and

∼3000 for K20) provide enough work for each CUDA core to approach the theoretical

maximum double performance (180 GFlops for GTX570 and 1.17 TFlops for K20)

without streams.

DOI:10.15774/PPKE.ITK.2014.001

110 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

Table 6.2: Total time of strategies is compared. Although, the 4Streams strategy produced
significant acceleration in case of smaller (400 ∼ 600) matrices, the total run-time of the
algorithm was not decreased significantly because the average matrix size was relatively large
in the investigated models. Two important tendencies can be observed even in the presented
run-times. First, on both GPUs larger acceleration was reached in case of the Heisenberg
model, which was due to the fact that the basis size scaled with a smaller exponent compared
to the other model. Second, in case of K20, which has significantly more computing cores,
both model profited more from the 4Streams strategy.

Model
NoStream
(sec)

4Streams
(sec) decrease

GTX570
Heisenberg 671.54 652.58 2.82%

Hubbard 2980.27 2957.82 0.75%

K20
Heisenberg 244.67 227.33 7.09%

Hubbard 1056.33 1012.56 4.14%

The two strategies are also compared by the run-time of the simulated models in

Table 6.2. In case of K20, the concurrent kernel execution has a slightly greater benefit,

however, in both models, operations on larger matrices, where concurrency has no

benefit, dominates the run-time. In models where more symmetries are enabled, the

size of the matrices tends to be smaller, consequently, in these models the concurrency

also tends to be more effective.

The performance results of the full projection computation including both CPU

and GPU computations are shown in Figures 6.12, 6.13, 6.14 and 6.15. The quality

of the acceleration is highly affected by the applied workload ratio, which depends on

the performance ratio of CPU and GPU at the given matrix size. In the configuration

file different ratios can be set for different matrix sizes and in each DMRG iteration

the user-defined ratio is selected according to the average matrix size of the operation

records. If the workload is properly distributed 257.8 GFlops (×3.2 speed-up) and

1071.1 GFlops (×6.1 speed-up) can be reached on GTX 570 and on K20, respectively.

6.3 Implementation results

The DMRG algorithm was implemented in C/C++ and can be complied in a CPU-

only and a hybrid CPU-GPU mode. In the CPU-only mode, all the basic linear al-

gebra subroutines (BLAS) are accelerated with the Intel MKL [83] library, while in

DOI:10.15774/PPKE.ITK.2014.001

6.3 Implementation results 111

Figure 6.12: GTX 570, Heisenberg model: Performance results of the hybrid CPU-GPU accel-
eration of the projection operation. Blue bars associated to the secondary vertical axis indicate
the ratio of the current GPU workload. At the top of the chart, labels indicate the number of
retained block states (m=4096).

Figure 6.13: Similar to Figure 6.12 but for the Hubbard model on GTX 570.

the hybrid mode some of the operations are executed on GPU using the CUDA 5.0

environment [94]. Matrix-matrix multiplications related to the projection operation of

the Davidson algorithm are executed via the NVidia CuBlas [93] library, while some

asymmetric matrix-vector multiplications are executed via the proposed CUDA ker-

nels.

The implementation has been tested both on a mid-range (Intel Core-i7 2600 3.4

GHz CPU + NVidia GTX 570 GPU) and on a high-end configuration (Intel Xeon E5-

2640 2.5 GHz CPU + NVidia K20 GPU); the results are displayed in Table 6.3 and 6.4,

respectively. All CPU-only measurements have been executed with multithreading

DOI:10.15774/PPKE.ITK.2014.001

112 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

Figure 6.14: Similar to Figures 6.12 and 6.13 but for the Heisenberg model on K20.

Figure 6.15: Similar to Figures 6.12, 6.13 and 6.14 but for the Hubbard model on K20.

enabled (4 threads on Core-i7 and 6 threads on Xeon E5). The mid-range configuration

with GPU is approximately 2.3-2.4 times faster than without GPU, while the high-end

configuration is accelerated by 3.4-3.5 times using the GPU. A change from a mid-

range, multithreaded CPU to a high-end CPU+GPU configuration can produce 6.5-7

times acceleration. The main parameters of the utilized GPU cards are summarized in

Table 2.2 on page 16.

To support the comparison of the results of the two investigated models, the key

parameters affecting computational complexity are summarized in Table 6.5. Using

the same number of retained block states, the Hubbard model has larger values for all

key parameters except the maximum sector size and the maximum matrix size. In case

of the Hubbard model, more symmetries are exploited, which results in smaller sectors

DOI:10.15774/PPKE.ITK.2014.001

6.3 Implementation results 113

Table 6.3: Heisenberg model: final timings compared

Time(sec)
Speed-up compared to
Core-i7 Xeon E5

Core-i7 1489.64 1 0.53
Core-i7 + GTX 570 652.58 2.28 1.21
Xeon E5 789.65 1.89 1
Xeon E5 + K20 227.33 6.55 3.47

Table 6.4: Hubbard model: final timings compared

Time(sec)
Speed-up compared to
Core-i7 Xeon E5

Core-i7 7210.72 1 0.48
Core-i7 + GTX 570 2957.82 2.44 1.16
Xeon E5 3433.16 2.10 1
Xeon E5 + K20 1012.56 7.12 3.39

Table 6.5: Model comparison in case of Xeon E5 + K20.

Heisenberg Hubbard ratio

Time(s) 244.67 1067.89 4.36

Flop 1.22E+014 4.89E+014 4.01

Max HSB size 12.24E+06 15.32E+06 1.25

Max Sector size 4.00E+06 3.47E+06 0.87

Average number of

sectors
9.36 50.71 5.42

Max matrix size 1704.23 1145.24 0.67

Peak GPU memory

footprint
950.47 1155.48 1.22

Average number of

Davidson iterations using

random starting vector

60.79 122.43 2.01

and, consequently, smaller matrices.

In case of K20, the acceleration of the projection and the matrix-vector opera-

tions is compared in Figures 6.16 and 6.17. The projection is accelerated by 5.7 times

DOI:10.15774/PPKE.ITK.2014.001

114 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

which is in accordance with the theoretical performance capabilities of the two ar-
chitectures. Currently on Xeon processor (see Figure 5.3) the projection operation
is only accounted for 75% of the total run-time, therefore, the overall acceleration is
also affected by the rest of the operations of the Davidson algorithm. Fortunately, as
the number of retained states (m) increases the time-dominance of the projection also
increases, which anticipates even better acceleration for real-world simulations with
large m.

As the acceleration of the full Davidson algorithm can be limited by the GPU
memory, an adaptive solution shall be implemented which accelerates as much of the
algorithm as possible. Currently four matrix-vector operations of the algorithm is ac-
celerated in case of sufficient GPU memory, however, acceleration of the rest of the
operations will also be implemented later.

Xeon E5 Xeon E5 +K20
0

100

200

300

400

500

600

700

Davidson H_SB*V

Davidson GEMV

Davidson rest

not DavidsonT
im

e(
s)

x5.7

x2.45
x1.04

x0.99

Figure 6.16: K20, Heisenberg model: Acceleration of different parts of the algorithm is com-
pared for m = 4096.

6.4 Summary

In the chapter the first hybrid CPU-GPU acceleration of the DMRG algorithm was
presented including the acceleration of the first and the second most time-consuming
part of the algorithm, the projection operation and some of the matrix-vector multipli-
cations of the Davidson iteration.

I proposed a new scheduling for the AXBT operations of the projection opera-
tion, from which Thesis II.1 originates. In the scheduling two strategies can be se-

DOI:10.15774/PPKE.ITK.2014.001

6.4 Summary 115

Xeon E5 Xeon E5 +K20
0

500

1000

1500

2000

2500

3000

Davidson H_SB*V

Davidson GEMV

Davidson rest

not DavidsonT
im

e(
s)

x5.69
x2.43

x0.92

x1.01

Figure 6.17: K20, Hubbard model: Acceleration of different parts of the algorithm is compared
for m = 4096.

lected based on the average size of the matrices constructing the AXBT operations.

I designed an algorithm for each strategy to order the operations: a simple ordering

to overlap computation and communication in the single-threaded strategy and a more

complex ordering (see Algorithm 11) to consider also the limitations of the CUDA ker-

nel dispatching mechanism in the multi-threaded strategy. The presented acceleration

is the first GPU-based acceleration of the projection operation. The significance of the

proposed solution is that the GPU can be operated with high utilization during the key

operation of the DMRG algorithm. The primary application of the scheduling is the

presented DMRG implementation, with witch the simulation time of certain quantum

chemical systems can be significantly shortened. Further applications are possible in

similar techniques, e.g. in Tensor Network (TN) methods [97], where multiplications

with a Hamilton operator defined on a contracted Hilbert space have to be computed.

I designed a new algorithm for GPU to accelerate asymmetric transposed matrix-

vector multiplication, which corresponds to Thesis II.2. The presented algorithm sig-

nificantly outperformed the reference libraries in the extremely asymmetric case re-

quired in the Davidson iteration of the DMRG algorithm. The key feature of the al-

gorithm is a flexible parameter allowing to find a practical balance between the com-

munication overhead and the shared memory requirement of the kernel. The primary

goal of the presented algorithm was to accelerate some of the matrix-vector operations

of the Davidson iteration of the DMRG algorithm, however, the proposed acceleration

can be used in any application where asymmetric matrix-vector operations have to be

DOI:10.15774/PPKE.ITK.2014.001

116 6. HYBRID GPU-CPU ACCELERATION OF THE DMRG ALGORITHM

computed on GPU.
The next NVIDIA GPU architecture is called Maxwell. Maxwell GPUs are cur-

rently not available in the high-performance Tesla product line, but based on the GeForce
products already using the Maxwell architecture, some observations can be made. The
new architecture is focusing on the power efficiency of streaming multiprocessors and
increases their occupancy even if less parallelism is available. Although the number
of cores per streaming processor has been reduced to a power of two, the number of
streaming processors has been increased and the total number of cores nearly doubled.
To increase the occupancy, the shared memory in each multiprocessor has been also
increased. In case of the acceleration of the projection operation, the 4Streams strategy
can produce better results as the number of cores has been further increased. Further-
more, as the performance of the current Tesla cards will be doubled, the current perfor-
mance advantage of the GPU compared to the CPU will remain for the next generation
as well. In case of the acceleration of the memory bandwidth limited matrix-vector op-
erations, no clear estimations can be given because the memory capabilities of the new
Tesla cards are still not known. On the one hand, the advent of the DDR4 memories
will double the memory bandwidth of CPUs, however, on the other hand, GPU manu-
factures are also searching the possibilities (e.g. using stacked DRAMs like Micron’s
hybrid memory cube) to improve their solutions.

DOI:10.15774/PPKE.ITK.2014.001

Chapter 7

Summary of new scientific results

7.1 New Scientific Results

The statements of the dissertation are grouped into two categories: the first group deals

with the construction of locally controlled arithmetic units from synchronous data-flow

graphs, while the second group is focusing on the first implementation of the DMRG

algorithm on modern parallel architectures.

Thesis I I designed a local control to improve the operating fre-
quency of the FPGA implementation of synchronous data-
flow graphs and gave a method to determine the number
and the topology of locally controlled components in the
design space of speed and area.

I.1 I designed and implemented a distributed local control to avoid global con-
trol signals and increase the operating frequency of the control unit at the
expense of a moderate area increase. [3]

I experimentally showed that global control signals of the arithmetic unit of syn-

chronous data-flow graph based FPGA implementations (e.g. numerical solution of

partial differential equations) are the bottlenecks of the operating frequency of the

whole circuit if the number of I/Os of the arithmetic unit is large. I designed and im-

plemented a locally distributed control for the arithmetic units of the aforementioned

applications to avoid the blocking global signals at the expense of a moderate area

increase.

117

DOI:10.15774/PPKE.ITK.2014.001

118 7. SUMMARY OF NEW SCIENTIFIC RESULTS

To investigate the trade-off between speed and the number of I/Os, I measured the

operating frequency of the proposed control logic without floating-point units in the

function of the number of I/Os. On a Virtex-6 FPGA, which is designed for high-

performance computations, a control restricted to maximally 10 I/Os can reach 510

MHz frequency, approximately 20% more than a control handling 20 I/Os. Assuming

450 MHz frequency for the rest of the circuit (e.g. floating-point units), the restricted

control can be operated without holding back the whole circuit. For the control, it

is worth to target a slightly higher theoretical frequency than the minimal 450 MHz

because operating frequencies are typically much lower in practical designs, where

floating-point units are also implemented.

I designed an optimization procedure to determine the locally controlled compo-

nents of the arithmetic unit by partitioning the data-flow graph, if the number of I/Os

exceeds the threshold required for fast operation. The resulting partition classes can

be controlled independently, however, extra synchronizing First-In-First-Out (FIFO)

buffers are required between the classes, which increase the number of utilized config-

urable logic blocks (area requirement of the circuit). I proposed a optimization problem

to minimize the number of extra FIFOs when the data-flow graph is partitioned to meet

the I/O constraints required for high performance operation.

I.2 I developed a greedy partitioning algorithm, which outperformed one of the
popular state-of-the-art partitioning algorithms in case of the proposed op-
timization problem. [4]

Regarding a computational fluid dynamics (CFD) application, I experimentally

showed that partitioning objectives alone are not sufficient to reach high operating

frequency, and placement objectives shall be considered as well. I designed a simple

greedy algorithm which takes placement objectives into consideration and supports the

manual tuning of the placement phase of high-level synthesis. Using the greedy algo-

rithm with manual placement constraints, the design reached approximately 370 MHz

operating frequency in case of a single precision CFD test case outperforming the re-

sults of the general-purpose hMetis [53] algorithm by approximately 13%. Without

manual placement constraints, the same design reached 328 and 296 MHz frequency

in case of single and double precision, respectively.

DOI:10.15774/PPKE.ITK.2014.001

7.1 New Scientific Results 119

I.3 I developed a new graph partitioning algorithm which incorporates both
partitioning and placement objectives to improve operating frequency even
without manual placement constraints. [1, 5–7]

I proposed a new high-level synthesis approach, which, contrary to the traditional

step-by-step strategy, incorporates placement information already at the partitioning

step, and designed a new partitioning algorithm implementing the approach using sim-

ulated annealing. I evaluated the algorithm in two complex CFD test cases by measur-

ing the operating frequency of the generated circuit in the function of the maximal I/O

connection of the clusters. Maximal speed-up (15-25%) compared to the unpartitioned

case was reached, when the maximal number of I/Os was set to 9 or 10. Both CFD

arithmetic units reached approximately 320-325 MHz in case of double precision.

Thesis II To improve the performance of the first hybrid CPU-
GPU implementation of the Density Matrix Renormal-
ization Group (DMRG) algorithm, I designed a schedul-
ing algorithm for the matrix-matrix multiplications of
the most time-consuming step, and developed a new al-
gorithm for asymmetric matrix-vector multiplication in
GPU.

I analyzed the runtime of the algorithm and found the projection operation of the it-

erative diagonalization method (Davidson) to be the most time-consuming step, which

can be rephrased as a sequence of dense matrix-matrix multiplications. I investigated

the performance of GPU and FPGA in case of matrix-matrix multiplication, and found

that the operation can be implemented on both architectures with high utilization, how-

ever, assuming full utilization of both architectures, the GPU is approximately 5 times

faster than the FPGA. I created a high-performance hybrid GPU-CPU acceleration of

the algorithm in CUDA environment, which is the first kilo-processor implementation

of the algorithm and is approximately 3.5 times faster than the high-end, CPU-only

version.

DOI:10.15774/PPKE.ITK.2014.001

120 7. SUMMARY OF NEW SCIENTIFIC RESULTS

II.1 I designed a new scheduling algorithm for the matrix multiplications of pro-
jection operation, which is the most time-consuming part of the DMRG al-
gorithm, to maintain high utilization of the GPU in case of different matrix
sizes. [8, 2]

I investigated the size of the matrices participating in the matrix-matrix multipli-

cations in case of the Heisenberg and the Hubbard models, which utilized different

number of symmetries. I found that the size of the matrices varies widely inside and

across the iterations of the algorithm, and the average matrix size is affected by the

model and the number of symmetries applied.

I measured the performance of CPU and GPU in case of matrix-matrix multiplica-

tion in the function of matrix size using the MKL and the CuBLAS libraries. I experi-

mentally showed that the utilization of GPU can be improved by parallel execution of

multiplications, which is supported by the CUDA environment and also possible in the

DMRG application.

To accelerate the projection operation, I proposed a hybrid implementation where

multiplications are distributed between the available computing architectures. To im-

prove the utilization of GPU during matrix multiplications, I designed a new schedul-

ing algorithm supporting two different strategies. I created a single-threaded schedul-

ing strategy for large matrices, in which case one multiplication can utilize all the GPU

cores, and a multi-threaded strategy for small matrices, in which case relatively more

memory is available and the parallel execution is advantageous. In the single-threaded

strategy, multiplications are only scheduled to overlap the communications and the

computations, however, for the multi-threaded strategy, I designed a complex algo-

rithm, which also takes the limitations of CUDA kernel scheduling into consideration.

On the high-end K20 GPU, the parallel kernel execution significantly (44%) ac-

celerated the multiplication of smaller matrices (range of 400-600), however, the total

runtime of the algorithm slightly decreased (5%) as the average matrix size was larger

in the investigated models. In practice, more complex models are investigated contain-

ing several symmetries which decrease the average matrix size and anticipate a higher

speed-up.

DOI:10.15774/PPKE.ITK.2014.001

7.2 Új tudomanyos eredmenyek (in Hungarian) 121

II.2 I developed a new algorithm for GPU to significantly increase the perfor-
mance of the computation of the extremely asymmetric matrix-vector mul-
tiplications used in the DMRG algorithm. [2]

To accelerate the extremely asymmetric matrix-vector operations composing the

second most time-consuming part of the DMRG algorithm, I designed a hybrid accel-

eration, in which the workload is distributed according to the available GPU memory

and the performance capabilities of the two architectures. To improve the performance

of the GPU part, I proposed a new algorithm to compute the transposed matrix-vector

multiplication in CUDA environment, which outperformed the NVidia CuBLAS li-

brary by 4-5 times in the DMRG use-cases, where the number of rows of the matrix

was in the range of 1-24. Overall acceleration of the matrix-vector operations including

the data transfer as well reached approximately 2.4 times speed-up.

7.2. Új tudomanyos eredmenyek (in Hungarian)

A disszertáció két téziscsoport köré szerveződik. Az első téziscsoport lokálisan vezé-

relt aritmetikai egységek adatfolyam gráf leírásból történő generálásával foglalkozik.

A második téziscsoport tárgya pedig a DMRG algoritmus első modern párhuzamos

számítógép-architektúrákon történő megvalósítása.

I. Tézis. Magas működési frekvenciájú lokális vezérlést terveztem
szinkron adatfolyam gráfok FPGA-n történő implementá-
ciójához, és módszert adtam a lokálisan vezérelt egységek
számának és struktúrájának meghatározására a sebesség
és a felület figyelembevételével.

I.1. Megterveztem és megvalósítottam egy lokálisan elosztott vezérlési módot,
mely segítségével elkerülhetőek a globális vezérlőjelek és a vezérlés működési
frekvenciája a felület mérsékelt növekedése árán növelhető. [3]

Kísérletileg megmutattam, hogy a szinkron adatfolyam gráfokból generált aritmetikai

egységek esetén (pl. parciális differenciálegyenletek numerikus megoldása) a globális

vezérlő jelek visszafogják az aritmetikai egység működési frekvenciáját, ha a ki- és

bemenetek száma meghalad egy határértéket. Megterveztem és megvalósítottam egy

DOI:10.15774/PPKE.ITK.2014.001

122 7. SUMMARY OF NEW SCIENTIFIC RESULTS

lokálisan elosztott vezérlési módot, amely lehetővé teszi, hogy a lassú globális vezér-

lést elkerüljük a felület mérsékelt növekedése mellett.

Megmértem a tervezett vezérlés működési frekvenciáját a műveletvégző egységek

nélkül, különböző számú ki- és bemenet esetén, hogy a vezérlés sebessége és a ki- és

bemeneteinek száma között fennálló kapcsolatot meghatározzam. A nagy teljesítmé-

nyű számításokhoz tervezett Virtex-6 FPGA esetén a maximálisan 10 ki- és bemenetet

kezelő vezérlés 510 MHz frekvenciát ért el, amely körülbelül 20%-os gyorsulás a 20

ki-és bementet kezelő referencia esethez képest. A méréssel igazoltam, hogy a ki- és

bemenetek számának korlátozásosával a vezérlés sebessége a szükséges mértékig nö-

velhető, és lényegesen meghaladja a 450 MHz működési frekvenciát, melyet az áram-

kör többi része esetén (pl. lebegőpontos műveletvégzők) feltételezhetünk. A vezérlés

esetén érdemes magasabb frekvenciát kitűzni célként, mivel gyakorlatban, amikor a

műveletvégző egységek is megvalósításra kerülnek, jóval alacsonyabb működési frek-

vencia érhető el.

Optimalizálási feladatot terveztem az áramkör lokálisan vezérelt komponenseinek

meghatározására, amely particionálja az adatfolyam gráfot, ha a ki- és bemenetek szá-

ma meghaladja a gyors működéshez szükséges határértéket. A létrejövő partíció osztá-

lyok egymástól függetlenül vezérelhetőek, az osztályok közötti szinkronizációt pedig

FIFO (First-In-First-Out) bufferek biztosítják, melyek növelik a felhasznált konfigurál-

ható logikai egységek számát (az áramkör felületigényét). A tervezett optimalizálási

feladat célja, hogy a lokális vezérlés miatt kialakuló felületnövekedést minimalizálja a

gyors működési frekvenciát biztosító particionálási feltételek mellett.

I.2. Kifejlesztettem egy mohó particionáló algoritmust, amelyik felülmúlta az egyik
leggyakrabban használt korszerű particionáló eljárást a megfogalmazott op-
timalizálási feladat esetén. [4]

Megmutattam egy komplex áramlástani feladat aritmetikai egységének a megvaló-

sításán keresztül, hogy a particionálás során megfogalmazható célkitűzések önmaguk-

ban nem elégségesek a magas órajel eléréséhez, és a generált áramkör elhelyezhető-

ségét is figyelembe kell venni. Terveztem egy mohó particionáló algoritmust, amely

figyelembe veszi az elhelyezhetőség szempontjait, és segítséget nyújt a műveletvégző

egység magas szintű manuális elhelyezéséhez. A mohó algoritmust és a Xilinx fejlesz-

tőkörnyezet nyújtotta manuális elhelyezési lehetőségeket felhasználva 370 MHz mű-

DOI:10.15774/PPKE.ITK.2014.001

7.2 Új tudomanyos eredmenyek (in Hungarian) 123

ködési frekvenciát értem el egyszeres pontosság mellett, felülmúlva a korszerű hMe-

tis [53] algoritmust körülbelül 13%-kal. A generált áramkör manuális elhelyezés nél-

kül 328 MHz-et ért el egyszeres pontosság, és 296 MHz-et dupla pontosság esetén.

I.3. Kifejlesztettem egy új particionáló algoritmust, amely mind a particionálás-
beli, mind az elhelyezésbeli szempontokat figyelembe veszi, és magas műkö-
dési frekvenciát eredményez manuális elhelyezés nélkül is. [1, 5–7]

Egy új, a magas szintű szintézis során alkalmazható megközelítést javasoltam,

mely a hagyományos, egymásra épülő lépésekből álló megközelítéssel szemben már

a particionálás során figyelembe veszi az elhelyezési szempontokat. Terveztem egy

szimulált lehűtésre épülő algoritmust a javasolt megközelítés bemutatására. Az algo-

ritmus működését két komplex áramlástani példán keresztül is megvizsgáltam, meg-

mérve a maximális működési frekvenciát a ki- és bementek számának függvényében.

A nem particionált áramkörhöz képest mért legnagyobb gyorsulást (15-25%) akkor

kaptam, amikor a partíció osztályok ki- és bemeneteinek a száma kisebb volt mint 9,

illetve 10. Mindkét áramlástani példa körülbelül 320-325 MHz működési frekvenciát

ért el dupla pontosság esetén.

II. Tézis. Az első hibrid CPU-GPU architektúrán megvalósított DMRG
(Density Matrix Renormalization Group) implementáció
hatékonyságának javítására ütemezőt terveztem a legidő-
igényesebb lépés mátrix-mátrix szorzásaihoz, és egy aszim-
metrikus mátrix-vektor szorzó algoritmust dolgoztam ki
GPU-hoz.

Elemeztem az algoritmus futásidejét, és az iteratív diagonalizáló eljárás (Davidson)

projekciós lépését találtam a legidőigényesebbnek, amely kiszámolható egy sor sűrű

mátrix-mátrix szorzás segítségével. Megvizsgálva a GPU és az FPGA architektúrák

teljesítményét a sűrű mátrix-mátrix szorzásokra nézve azt találtam, hogy kellően nagy

méretű mátrixok esetén a művelet mindkét architektúrán jó kihasználtság mellett elvé-

gezhető, ugyanakkor teljes kihasználtságot feltételezve a GPU architektúra körülbelül

5-ször nagyobb teljesítményre képes, mint az FPGA. A CUDA környezet segítségével

elkészítettem az algoritmus hibrid GPU-CPU implementációját, amely az algoritmus

első modern párhuzamos architektúrán történő gyorsítása. A hibrid megoldás körülbe-

lül 3.5-szörös sebességnövekedést ért el a csak CPU-t használó verzióhoz képest.

DOI:10.15774/PPKE.ITK.2014.001

124 7. SUMMARY OF NEW SCIENTIFIC RESULTS

II.1. Új ütemező algoritmust terveztem a DMRG legidőigényesebb lépéséhez, a
projekciós műveletet leíró mátrix-mátrix szorzásokhoz, amely alkalmazkod-
va a GPU architektúra limitációihoz biztosítja a GPU magas kihasználtságát
változó méretű mátrixok esetén. [8, 2]

Megvizsgáltam a projekciós operáció mátrix-mátrix szorzásaiban résztvevő mát-

rixok méretét a Heisenberg és a Hubbard modell esetén, melyek különböző számú

szimmetriát tartalmaztak. Az eredményeket kiértékelve azt találtam, hogy a mátrix

méretek széles skálán változnak mind az algoritmus iterációi között, mind magukon

az iterációkon belül, és a mátrixok átlagos mértét nagyban befolyásolja a választott

fizikai modell és a modellben szereplő szimmetriák száma.

Mérésekkel igazoltam a választott architektúrák teljesítménye és a mátrixok mérete

közötti összefüggést a CPU esetén az MKL, a GPU esetén pedig a CuBLAS függvény-

könyvtár segítségével. A méréseim alapján a GPU kihasználtsága hatékonyan növel-

hető több művelet párhuzamos végrehajtásával, amelyet mind a CUDA keretrendszer,

mind a DMRG algoritmuson belüli alkalmazás lehetővé tesz.

A projekciós művelet gyorsítására egy hibrid megoldást javasoltam, melyben a

szorzás műveletek szétosztásra kerülnek az elérhető számító egységek között. A GPU

kihasználtságának javítására a GPU-n végrehajtandó műveletekhez egy olyan új üte-

mező algoritmust terveztem, amely két stratégia szerint képes a műveleteket ütemezni.

Az egyszálú futtatáshoz szánt ütemezési stratégiát a nagyobb mátrixokhoz terveztem,

amelyeknél a GPU kihasználtsága egy művelet végrehajtása során is megfelelő. Ebben

a stratégiában a műveletek sorrendjét csak az határozza meg, hogy a kommunikáció és

a munkavégzés átlapolható legyen. A többszálú stratégiát a kisebb mátrixokhoz tervez-

tem, amelyek esetén relative több GPU memória áll rendelkezésre, de a párhuzamos

műveletvégzés indokolt. A többszálú stratégiához tartozó ütemezés megvalósítására

egy olyan algoritmust terveztem, amely nem csak a kommunikáció és a munkavégzés

átlapolását hanem a CUDA kernelek ütemezésének a korlátait is figyelembe veszi.

A felsőkategóriás K20 GPU esetén a többszálú stratégia a kisebb méretű (400-600)

mátrixok szorzását jelentős mértékben (44%) gyorsította, ugyanakkor az algoritmus

teljes futási idejét tekintve csak mérsékelt (5%) gyorsulást eredményezett, mivel az al-

kalmazott modellekben viszonylag nagy mátrixok szerepeltek. A gyakorlatban össze-

tettebb modellek is előfordulnak, melyekben több szimmetria szerepel, ami kisebb

átlagos mátrix méretet és nagyobb sebességnövekedést vetít előre.

DOI:10.15774/PPKE.ITK.2014.001

7.2 Application of the Results 125

II.2. Új algoritmust fejlesztettem GPU-ra, mely jelentősen megnövelte a GPU tel-
jesítményét a DMRG-ben szereplő speciális, aszimmetrikus mátrix-vektor
szorzások számítása során. [2]

Egy hibrid gyorsítást terveztem a DMRG algoritmus második legidőigényesebb
részét képező szélsőségesen aszimmetrikus mátrix-vektor szorzásokhoz, amelyben az
elvégzendő számítás az elérhető szabad GPU memória és az architektúrák teljesít-
ménybeli különbsége alapján kerül szétosztásra. A GPU-ra jutó rész hatékonyságának
növelésére egy új algoritmust terveztem a transzponált mátrix-vektor szorzás megva-
lósítására CUDA környezetben, amelyik a DMRG-s alkalmazás során, ahol a mátrix
sorainak száma 1 és 24 között változott, 4-5-ször gyorsabbnak bizonyult, mint az NVi-
dia CuBLAS könyvtár függvényei. A bemutatott gyorsítást a Heisenberg és a Hubbard
modell esetén mérésekkel ellenőriztem, és a CPU-GPU kommunikációt is figyelembe
véve körülbelül 2.4-szer gyorsabb aszimmetrikus mátrix-vektor szorzásokat eredmé-
nyezett az NVidia K20 esetén.

7.2. Application of the Results

Two different types of computationally intensive problems have been researched to
investigate the design methodology of the acceleration and to give a high-performance
implementation on parallel architectures. Each problem was accelerated via a different
architecture, and the results of the investigation were summarized in different thesis
groups.

The design methodology proposed in Thesis 1 can be applied during any type of
complex AU design when the AU has a significant number of I/Os and the performance
takes priority over the area requirements. In my research, the AU design was motivated
by the numerical solution of different conservation laws via the FVM discretization,
however, other applications require complex AU design as well, e.g. Monte Carlo
experiments requiring the computation of an expression with a lot of input variables.

Numerical solution of conservation laws was successfully demonstrated on FPGAs
in case of simulation of CFD [1], electromagnetics [95] or seismic waves [96]. Areas
profiting from the acceleration of these simulations include automotive, aircraft and
wind power industries, circuit design and seismology.

The idea to feedback the high-level floorplan information to high-level circuit de-
sign can also be generalized. In the proposed methodology, the partitioning of the

DOI:10.15774/PPKE.ITK.2014.001

126 7. SUMMARY OF NEW SCIENTIFIC RESULTS

FPUs can be altered freely to find a favorable floorplan, however, in theory, any free
design parameter could be tuned in a similar way. The proposed methodology can be
integrated into high-level synthesis tools at the AU generation step or at other parts of
the compilation process where a free parameter shall be optimized for speed.

The results of Thesis 2 were primarily applied in the GPU implementation of the
DMRG algorithm, however, they can be used in further applications where similar
challenges occur. The presented scheduling of matrix-matrix multiplications can be
applied in Tensor Network (TN) methods [97], which compose a broader class of al-
gorithms including DMRG as well, while the proposed kernel for asymmetric matrix-
vector multiplication can be applied in Davidson implementations frequently used in
quantum chemistry (e.g. [98]).

As the DMRG algorithm is one of the leading tools to study the low energy physics
of strongly correlated quantum systems exhibiting chain-like entanglement structure,
it can be applied to simulate anisotropic materials (e.g. polymers [99]) or to describe
accurately the electronic structure of open d shell molecules [100]. Furthermore, the
interacting system of atoms trapped in an optical lattice, proposed as physical imple-
mentation of quantum computer, is also tractable via DMRG [79].

DOI:10.15774/PPKE.ITK.2014.001

References

Journal Publications of the Author
[1] Z. Nagy, C. Nemes, A. Hiba, Á. Csík, A. Kiss, M. Ruszinkó, and P. Szolgay,

“Accelerating unstructured finite volume computations on field-programmable
gate arrays”, Concurrency and Computation: Practice and Experience, vol. 26,
no. 3, pp. 615–643, 2014.

[2] C. Nemes, G. Barcza, Z. Nagy, Ö. Legeza, and P. Szolgay, “The density matrix
renormalization group algorithm on kilo-processor architectures: implemen-
tation and trade-offs”, Computer Physics Communications, 2014. DOI: 10.
1016/j.cpc.2014.02.021.

Conference Publications of the Author
[3] C. Nemes, Z. Nagy, M. Ruszinkó, A. Kiss, and P. Szolgay, “Mapping of high

performance data-flow graphs into programmable logic devices”, in Proceed-
ings of the 2010 International Symposium on Nonlinear Theory and its Appli-
cations, 2010, pp. 99–102.

[4] C. Nemes, Z. Nagy, and P. Szolgay, “Efficient mapping of mathematical ex-
pressions to fpgas: exploring different design methodologies”, in Circuit The-
ory and Design (ECCTD), 2011 20th European Conference on, 2011, pp. 717–
720.

[5] C. Nemes, Z. Nagy, and P. Szolgay, “Automatic generation of locally con-
trolled arithmetic unit via floorplan based partitioning”, in Cellular Nanoscale
Networks and Their Applications (CNNA), 2012 13th International Workshop
on, 2012, pp. 1–5.

[6] Z. Nagy, C. Nemes, A. Hiba, A. Kiss, A. Csik, and P. Szolgay, “Fpga based
acceleration of computational fluid flow simulation on unstructured mesh ge-
ometry”, in Field Programmable Logic and Applications (FPL), 2012 22nd
International Conference on, 2012, pp. 128–135.

127

DOI:10.15774/PPKE.ITK.2014.001

http://dx.doi.org/10.1016/j.cpc.2014.02.021
http://dx.doi.org/10.1016/j.cpc.2014.02.021

128 REFERENCES

[7] Z. Nagy, C. Nemes, A. Hiba, A. Kiss, Á. Csík, and P. Szolgay, “Accelerating
unstructured finite volume solution of 2-d euler equations on fpgas”, in Con-
ference on Modelling Fluid Flow (CMFF’12), 2012.

[8] C. Nemes, G. Barcza, Z. Nagy, Ö. Legeza, and P. Szolgay, “Implementa-
tion trade-offs of the density matrix renormalization group algorithm on kilo-
processor architectures”, in Circuit Theory and Design (ECCTD), 2013 21th
European Conference on, 2013, pp. 100–104.

Related publications
[9] Z. Nagy, Z. Vörösházi, and P. Szolgay, “Emulated digital cnn-um solution of

partial differential equations”, International Journal of Circuit Theory and Ap-
plications, vol. 34, no. 4, pp. 445–470, 2006.

[10] S. R. White, “Density matrix formulation for quantum renormalization groups”,
Phys. Rev. Lett., vol. 69, pp. 2863–2866, 19 1992.

[11] Ö Legeza, R. Noack, J. Sólyom, and L. Tincani, “Applications of quantum
information in the density-matrix renormalization group”, in Computational
Many-Particle Physics, ser. Lecture Notes in Physics, vol. 739, Berlin Heidel-
berg: Springer-Verlag, 2008.

[12] J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Toward a software infrastruc-
ture for the cyclops-64 cellular architecture”, High Performance Computing
Systems and Applications, Annual International Symposium on, vol. 0, p. 9,
2006.

[13] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D.
Shippy, “Introduction to the cell multiprocessor”, IBM J. Res. Dev., vol. 49,
no. 4/5, pp. 589–604, Jul. 2005.

[14] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P.
Hanrahan, “Larrabee: a many-core x86 architecture for visual computing”, in
ACM SIGGRAPH 2008 Papers, ser. SIGGRAPH ’08, Los Angeles, California:
ACM, 2008, 18:1–18:15.

[15] R. Rahman, Intel R© Xeon PhiTM Coprocessor Architecture and Tools. Apress,
2013.

[16] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M.
Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip interconnec-
tion architecture of the tile processor”, IEEE Micro, vol. 27, no. 5, pp. 15–31,
Sep. 2007.

DOI:10.15774/PPKE.ITK.2014.001

RELATED PUBLICATIONS 129

[17] M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele, “Many-core key-
value store”, in Green Computing Conference and Workshops (IGCC), 2011
International, 2011, pp. 1–8.

[18] I. Kuon, R. Tessier, and J. Rose, “Fpga architecture: survey and challenges”,
Found. Trends Electron. Des. Autom., vol. 2, no. 2, pp. 135–253, Feb. 2008.

[19] NVidia Kepler GK110 Arhictecture Whitepaper, www.nvidia.com/content/
PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.
pdf, NVIDIA Corp, 2013.

[20] J. D. Anderson, Computational Fluid Dynamics - The Basics with Applica-
tions. McGraw Hill, 1995, ISBN: ISBN 2-930389-07-9.

[21] T. J. Chung, Computational Fluid Dynamics. Cambridge University Press,
2002.

[22] R. J. LeVeque, Finite-Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002.

[23] S. Kocsárdi, Z. Nagy, A. Csík, and P. Szolgay, “Simulation of 2D inviscid,
adiabatic, compressible flows on emulated digital CNN-UM”, International
Journal on Circuit Theory and Applications, vol. 37, no. 4, pp. 569–585, 2009.
DOI: DOI:10.1002/cta.565.

[24] I. S. Duff, R. G. Grimes, and J. G. Lewis, “Sparse matrix test problems”, ACM
Trans. Math. Softw., vol. 15, pp. 1–14, 1 1989, ISSN: 0098-3500.

[25] N. Gibbs, W. Poole, and P. Stockmeyer, “An algorithm for reducing the band-
width and profile of sparse matrix”, SIAM Journal on Numerical Analysis, vol.
13, no. 2, pp. 236–250, 1976.

[26] D. Matzke, “Will physical scalability sabotage performance gains?”, Com-
puter, vol. 30, no. 9, pp. 37–39, 1997.

[27] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen, “Directed hypergraphs and
applications”, Discrete Appl. Math., vol. 42, no. 2-3, pp. 177–201, Apr. 1993.

[28] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning: a sur-
vey”, Integration, the VLSI journal, vol. 19, no. 1, pp. 1–81, 1995.

[29] M. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[30] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning
Graphs”, The Bell system technical journal, vol. 49, no. 1, pp. 291–307, 1970.

[31] A. Kahng, J. Lienig, I. Markov, and J. Hu, VLSI Physical Design: From Graph
Partitioning to Timing Closure. Springer, 2011, ISBN: 0133016153.

DOI:10.15774/PPKE.ITK.2014.001

www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://dx.doi.org/DOI: 10.1002/cta.565

130 REFERENCES

[32] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of Algorithms for
Physical Design Automation, 1st. Boston, MA, USA: Auerbach Publications,
2008.

[33] B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel com-
puting”, Parallel Computing, vol. 26, no. 12, pp. 1519–1534, 2000.

[34] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for improving
network partitions”, in Proceedings of the 19th Design Automation Confer-
ence, ser. DAC ’82, Piscataway, NJ, USA: IEEE Press, 1982, pp. 175–181.

[35] L. A. Sanchis, “Multiple-way network partitioning”, IEEE Trans. Comput.,
vol. 38, no. 1, pp. 62–81, Jan. 1989.

[36] M. Sarrafzadeh, M. Wang, and X. Yang, Modern placement techniques. Springer,
2002.

[37] D. A. Papa and I. L. Markov, “Hypergraph partitioning and clustering”, Ap-
proximation algorithms and metaheuristics, pp. 61–1, 2007.

[38] M. Fiedler, “Algebraic connectivity of graphs”, Czechoslovak Mathematical
Journal, vol. 23, no. 2, pp. 298–305, 1973.

[39] K. M. Hall, “An r-dimensional quadratic placement algorithm”, Management
Science, vol. 17, no. 3, pp. 219–229, 1970.

[40] C. J. Alpert, A. B. Kahng, and S.-Z. Yao, “Spectral partitioning with multiple
eigenvectors”, Discrete Applied Mathematics, vol. 90, no. 1, pp. 3–26, 1999.

[41] G. Seber, “Multivariate observations john wiley & sons”, New York, 1984.

[42] S. Kirkpatrick and M. Vecchi, “Optimization by simmulated annealing”, sci-
ence, vol. 220, no. 4598, pp. 671–680, 1983.

[43] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization
by simulated annealing: an experimental evaluation; part i, graph partitioning”,
Operations research, vol. 37, no. 6, pp. 865–892, 1989.

[44] P. J. Van Laarhoven and E. H. Aarts, Simulated annealing. Springer, 1987.

[45] S. T. Barnard and H. D. Simon, “Fast multilevel implementation of recursive
spectral bisection for partitioning unstructured problems”, Concurrency: Prac-
tice and experience, vol. 6, no. 2, pp. 101–117, 1994.

[46] B. Hendrickson and R. W. Leland, “A multi-level algorithm for partitioning
graphs.”, SC, vol. 95, p. 28, 1995.

[47] B. Hendrickson and R. Leland, “The chaco user’s guide: version 2.0”, Techni-
cal Report SAND95-2344, Sandia National Laboratories, Tech. Rep., 1995.

[48] G. Karypis and V. Kumar, “Metis-unstructured graph partitioning and sparse
matrix ordering system, version 2.0”, 1995.

DOI:10.15774/PPKE.ITK.2014.001

RELATED PUBLICATIONS 131

[49] F. Pellegrini and J. Roman, “Scotch: a software package for static mapping
by dual recursive bipartitioning of process and architecture graphs”, in High-
Performance Computing and Networking, Springer, 1996, pp. 493–498.

[50] C. Walshaw and M. Cross, “Mesh partitioning: a multilevel balancing and re-
finement algorithm”, SIAM Journal on Scientific Computing, vol. 22, no. 1,
pp. 63–80, 2000.

[51] A. Trifunovic and W. J. Knottenbelt, “Parkway 2.0: a parallel multilevel hyper-
graph partitioning tool”, in Computer and Information Sciences-ISCIS 2004,
Springer, 2004, pp. 789–800.

[52] K. Devine, B. Hendrickson, E. Boman, M. S. John, C. Vaughan, and W. Mitchell,
“Zoltan: a dynamic load-balancing library for parallel applications; user’s guide”,
Sandia National Laboratories Tech. Rep, 1999.

[53] G. Karypis and V. Kumar, “HMETIS 1.5: A Hypergraph Partitioning Pack-
age”, Department of Computer Science, Tech. Rep., 1998. [Online]. Available:
http://www-users.cs.umn.edu/~karypis/metis.

[54] G. Karypis, K. Schloegel, and V. Kumar, “Parmetis: parallel graph partitioning
and sparse matrix ordering library”, Version 1.0, Dept. of Computer Science,
University of Minnesota, 1997.

[55] A. E. Dunlop and B. W. Kernighan, “A procedure for placement of standard
cell vlsi circuits”, IEEE Transactions on Computer-Aided Design, vol. 4, no.
1, pp. 92–98, 1985.

[56] R. Van Driessche and D. Roose, “A spectral algorithm for constrained graph
partitioning i: the bisection case”, TW Reports, p. 28, 1994.

[57] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for Visual Understanding of
Hierarchical System Structures”, Systems, Man and Cybernetics, IEEE Trans-
actions on, vol. 11, no. 2, pp. 109 –125, 1981.

[58] I. G. Tollis, G. Di Battista, P. Eades, and R. Tamassia, Graph Drawing: Algo-
rithms for the Visualization of Graphs. Prentice Hall, 1998, ISBN: 0133016153.

[59] P. Eades and N. C. Wormald, “Edge crossings in drawings of bipartite graphs”,
Algorithmica, vol. 11, pp. 379–403, 4 1994, ISSN: 0178-4617.

[60] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, “Graphviz
- Open Source Graph Drawing Tools”, Graph Drawing, pp. 483–484, 2001.

[61] P. R. Panda, “Systemc: a modeling platform supporting multiple design ab-
stractions”, in Proceedings of the 14th international symposium on Systems
synthesis, ser. ISSS ’01, Montreal, P.Q., Canada: ACM, 2001, pp. 75–80.

DOI:10.15774/PPKE.ITK.2014.001

http://www-users.cs.umn.edu/~karypis/metis

132 REFERENCES

[62] B. Dezs, A. Jüttner, and P. Kovács, “Lemon - an open source c++ graph tem-
plate library”, Electron. Notes Theor. Comput. Sci., vol. 264, no. 5, pp. 23–45,
Jul. 2011, ISSN: 1571-0661.

[63] Xilinx CORE Generator System, http://www.xilinx.com/tools/
coregen.htm, Xilinx Inc, 2013.

[64] Xilinx ISE Design Suite 13.1, http://www.xilinx.com/products/
design-tools/ise-design-suite/, Xilinx Inc, 2013.

[65] Xilinx PlanAhead User Guide 13.1, http://www.xilinx.com/support/
documentation/sw_manuals/xilinx13_1/PlanAhead_UserGuide.
pdf, Xilinx Inc, 2013.

[66] R. M. Noack and S. R. Manmana, “Diagonalization and Numerical Renormalization-
Group-Based Methods for Interacting Quantum Systems”, AIP Conf. Proc.,
vol. 789, pp. 93–163, 1 2004.

[67] U. Schollwöck, “The density-matrix renormalization group”, Rev. Mod. Phys.,
vol. 77, pp. 259–315, 1 2005.

[68] G. Hager, E. Jeckelmann, H. Fehske, and G. Wellein, “Parallelization strate-
gies for density matrix renormalization group algorithms on shared-memory
systems”, Journal of Computational Physics, vol. 194, no. 2, pp. 795 –808,
2004.

[69] G. Alvarez, “Implementation of the su(2) hamiltonian symmetry for the {dmrg}
algorithm”, Computer Physics Communications, vol. 183, no. 10, pp. 2226 –
2232, 2012, ISSN: 0010-4655.

[70] G. K.-L. Chan, “An algorithm for large scale density matrix renormalization
group calculations”, The Journal of chemical physics, vol. 120, p. 3172, 2004.

[71] Y. Kurashige and T. Yanai, “High-performance ab initio density matrix renor-
malization group method: applicability to large-scale multireference problems
for metal compounds”, J. Chem. Phys., vol. 130, 23 2009.

[72] S. Yamada, T. Imamura, and M. Machida, “Parallelization design on multi-
core platforms in density matrix renormalization group toward 2-d quantum
strongly-correlated systems”, in High Performance Computing, Networking,
Storage and Analysis (SC), 2011 International Conference for, 2011, pp. 1–
10.

[73] J. Rincón, D. J. García, and K. Hallberg, “Improved parallelization techniques
for the density matrix renormalization group.”, Computer Physics Communi-
cations, vol. 181, no. 8, pp. 1346–1351, 2010.

[74] E. M. Stoudenmire and S. R. White, “Real-space parallel density matrix renor-
malization group”, Phys. Rev. B, vol. 87, p. 155 137, 15 2013.

DOI:10.15774/PPKE.ITK.2014.001

http://www.xilinx.com/tools/coregen.htm
http://www.xilinx.com/tools/coregen.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/
http://www.xilinx.com/products/design-tools/ise-design-suite/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/PlanAhead_UserGuide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/PlanAhead_UserGuide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/PlanAhead_UserGuide.pdf

RELATED PUBLICATIONS 133

[75] J. Yu, H.-C. Hsiao, and Y.-J. Kao, “Gpu accelerated tensor contractions in the
plaquette renormalization scheme”, Computers & Fluids, vol. 45, no. 1, pp. 55
–58, 2011, ISSN: 0045-7930.

[76] M. J. Cawkwell, E. J. Sanville, S. M. Mniszewski, and A. M. N. Niklasson,
“Computing the density matrix in electronic structure theory on graphics pro-
cessing units”, Journal of Chemical Theory and Computation, vol. 8, no. 11,
pp. 4094–4101, 2012.

[77] F. Gebhard, The Mott Metal-Insulator Transition: Models and Methods. Springer,
1997.

[78] P. W. Anderson, The Theory of Superconductivity in the High-Tc Cuprate Su-
perconductors. Princeton University Press, 1997.

[79] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), and U.
Sen, “Ultracold atomic gases in optical lattices: mimicking condensed matter
physics and beyond”, Advances in Physics, vol. 56, no. 2, pp. 243–379, 2007.

[80] A. I. Tóth, C. P. Moca, Ö Legeza, and G. Zaránd, “Density matrix numeri-
cal renormalization group for non-abelian symmetries”, Phys. Rev. B, vol. 78,
p. 245 109, 24 2008.

[81] J. F. Cornwell, Group Theory in Physics, An Introduction. Academic Press,
1997.

[82] Ö. Legeza, J. Röder, and B. A. Hess, “Controlling the accuracy of the density-
matrix renormalization-group method: the dynamical block state selection ap-
proach”, Phys. Rev. B, vol. 67, p. 125 114, 12 2003.

[83] Intel Math Kernel Library 11.0, http://http://software.intel.
com/en-us/intel-mkl, 2013.

[84] Y. Saad, Numerical Methods for Large Eigenvalue Problems. Manchester: Manch-
ester University Press, 1992.

[85] B. Liu, “The simultaneous expansion for the solution of several of the lowest
eigenvalues and corresponding eigenvectors of large real-symmetric matrices”,
Numerical Algorithms in Chemistry: Algebraic Method, pp. 49–53, 1978.

[86] V. Kumar, S. Joshi, S. Patkar, and H. Narayanan, “Fpga based high perfor-
mance double-precision matrix multiplication”, International Journal of Par-
allel Programming, vol. 38, no. 3-4, pp. 322–338, 2010, ISSN: 0885-7458.

[87] G. G. Sleijpen and H. Van der Vorst, “A jacobi–davidson iteration method for
linear eigenvalue problems”, SIAM Journal on Matrix Analysis and Applica-
tions, vol. 17, no. 2, pp. 401–425, 1996.

DOI:10.15774/PPKE.ITK.2014.001

http://http://software.intel.com/en-us/intel-mkl
http://http://software.intel.com/en-us/intel-mkl

134 REFERENCES

[88] E. R. Davidson, “The iterative calculation of a few of the lowest eigenvalues
and corresponding eigenvectors of large real-symmetric matrices”, Journal of
Computational Physics, vol. 17, no. 1, pp. 87 –94, 1975.

[89] M. Sadkane and R. Sidje, “Implementation of a variable block davidson method
with deflation for solving large sparse eigenproblems”, English, Numerical Al-
gorithms, vol. 20, no. 2-3, pp. 217–240, 1999.

[90] Netlib repository, https://netlib.org, 2013.

[91] Cuda c programming guide 5.0, http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html, NVIDIA Corp, 2013.

[92] Kepler tuning guide 1.0, http://docs.nvidia.com/cuda/kepler-
tuning-guide/index.html, NVIDIA Corp, 2013.

[93] CUBLAS library 5.0, https://developer.nvidia.com/cublas,
NVIDIA Corp, 2013.

[94] CUDA library 5.0, http://www.nvidia.com/object/cuda, NVIDIA
Corp, 2013.

[95] J. Durbano and F. Ortiz, “Fpga-based acceleration of the 3d finite-difference
time-domain method”, in Field-Programmable Custom Computing Machines,
2004. FCCM 2004. 12th Annual IEEE Symposium on, 2004, pp. 156–163.

[96] H. Fu, W. Osborne, R. G. Clapp, O. Mencer, and W. Luk, “Accelerating seismic
computations using customized number representations on fpgas”, EURASIP
J. Embedded Syst., vol. 2009, 3:1–3:13, Jan. 2009.

[97] J. I. Cirac and F. Verstraete, “Renormalization and tensor product states in spin
chains and lattices”, Journal of Physics A: Mathematical and Theoretical, vol.
42, no. 50, p. 504 004, 2009.

[98] C. Vömel, S. Z. Tomov, O. A. Marques, A. Canning, L.-W. Wang, and J. J.
Dongarra, “State-of-the-art eigensolvers for electronic structure calculations
of large scale nano-systems”, J. Comput. Phys., vol. 227, no. 15, pp. 7113–
7124, Jul. 2008.

[99] W. Barford, Electronic and Optical Properties of Conjugated Polymers. Ox-
ford University Press, 2005.

[100] G. Barcza, Ö. Legeza, K. H. Marti, and M. Reiher, “Quantum-information
analysis of electronic states of different molecular structures”, Phys. Rev. A,
vol. 83, p. 012 508, 1 2011.

DOI:10.15774/PPKE.ITK.2014.001

https://netlib.org
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
https://developer.nvidia.com/cublas
http://www.nvidia.com/object/cuda

	1 Introduction
	2 Parallel architectures
	2.1 Field Programmable Gate Arrays
	2.1.1 The general structure
	2.1.2 The common peripherals
	2.1.2.1 General purpose I/Os
	2.1.2.2 Transceiver I/Os

	2.1.3 Xilinx Virtex-6 SX475T FPGA

	2.2 Graphical Processing Units
	2.2.1 NVidia Kepler architecture
	2.2.1.1 The general structure
	2.2.1.2 CUDA programming
	2.2.1.3 NVidia K20

	3 Solving Partial Differential Equations on FPGA
	3.1 Computational Fluid Dynamics (CFD)
	3.1.1 Euler equations
	3.1.2 Finite volume method solution of Euler equations
	3.1.2.1 Structured mesh
	3.1.2.2 Unstructured mesh

	3.2 Data structures and memory access patterns
	3.3 Structure of the proposed processor
	3.4 Outline of the multi-processor architecture
	3.5 Analysis of the chosen design strategies

	4 Generating Arithmetic Units: Partitioning and Placement
	4.1 Locally distributed control of arithmetic unit
	4.1.1 The proposed control unit
	4.1.2 Trade-off between speed and number of I/Os

	4.2 Partitioning problem
	4.2.1 Problem formulation

	4.3 Partitioning algorithms used in circuit design
	4.3.1 Move-based heuristics
	4.3.1.1 The Kernighan-Lin algorithm
	4.3.1.2 The Fiduccia-Mattheyses algorithm

	4.3.2 Spectral partitioning
	4.3.2.1 Spectral bipartitioning
	4.3.2.2 Spectral partitioning with multiple eigenvectors

	4.3.3 Simulated annealing
	4.3.4 Software packages incorporating the multilevel paradigm
	4.3.4.1 Chaco
	4.3.4.2 hMetis

	4.4 Empirically validating the advantage of locally controlled arithmetic units
	4.4.1 The proposed greedy algorithm
	4.4.1.1 Preprocessing and layering
	4.4.1.2 Swap-based horizontal placement
	4.4.1.3 Greedy partitioning based on spatial information

	4.4.2 The configuration of the hMetis program
	4.4.3 Comparison and evaluation

	4.5 Partitioning and placement together
	4.5.1 Properties of a good partition
	4.5.2 The proposed algorithm
	4.5.2.1 Preprocessing and Layering
	4.5.2.2 Floorplan with simulated annealing
	4.5.2.3 New representation for graph partitioning
	4.5.2.4 Partitioning
	4.5.2.5 Outline of the full algorithm
	4.5.2.6 Comparison to the terminal propagation technique

	4.5.3 Framework
	4.5.4 Results

	4.6 Summary

	5 Density Matrix Renormalization Group Algorithm
	5.1 Previous implementations
	5.2 Investigated models
	5.2.1 Heisenberg model
	5.2.2 Hubbard model

	5.3 Symmetries to be exploited
	5.4 Algorithm
	5.4.1 LR strategy
	5.4.2 l-1-1-r strategy

	5.5 Parallelism and run-time analysis
	5.6 Limits of the FPGA implementation

	6 Hybrid GPU-CPU acceleration of the DMRG algorithm
	6.1 Accelerating matrix-vector multiplications
	6.1.1 Architectural motivations
	6.1.2 gemv_trans()
	6.1.3 gemv()

	6.2 Accelerating projection operation
	6.2.1 Architectural motivations
	6.2.2 Scheduling strategies

	6.3 Implementation results
	6.4 Summary

	7 Summary of new scientific results
	7.1 New Scientific Results
	7.2 Új tudomanyos eredmenyek (in Hungarian)
	7.2 Application of the Results

	References

