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INTRODUCTION 

Fast, non-destructive and cost efficient analytical methods are 

frequently used in the area of food science and food industry. I used near 

infrared spectroscopy in my PhD work, which follows the above directive. Near 

infrared spectroscopy can be effectively used for the analysis of several food 

components. It can provide reliable quantitative and qualitative results as well. 

The quality control of food products is indeed important for both the producers 

and the consumers, because there is a huge competition on the market of food 

products, where the guarantee of quality is an essential condition. While the 

Hungarian standards and guidelines for food analysis are sometimes really 

outdated and recommend expensive procedures, the use of fast analytical 

techniques – such as NIR spectroscopy –opens a new way, which is 

economically more favorable and more efficient. 

Modern analytical chemistry together with food analytics have gained 

increasing importance since the last decades of the twentieth century. The 

appearance of faster and more modern computers had a huge impact in the 

improvement of analytical methods, especially in the field of spectroscopy, 

where we work with huge amount of data. With the “data explosion” of the past 

few decades the time demand for calculation processes decreased with the 

appearance of high performance supercomputers. Chemometrics, as the 

application of statistics to multidimensional chemical datasets has become more 

and more popular after the mid-20th century, but the huge breakthrough was in 

the 80’s – 90’s with the appearance of desktop computers. Most of the best and 

valuable basic chemometric tutorials and research articles were written at that 

time.  

We can find several applications of chemometric methods in food 

science as well. Dominant patterns, similarities and dissimilarities in the dataset 

can be revealed with the use of chemometric methods. Hidden connections come 

to light and help to make qualitative and quantitative analyses. Chemometrics is 

connected to spectroscopy, because a spectral dataset with the huge number of 

variables usually cannot be evaluated without special chemometric tools. Thus, 

chemometric analysis was essential for the evaluation of near infrared spectra, 

which were the most important and frequently used datasets in my doctoral 

work. Evaluation of the complex food analytical spectra can be carried out only 

with the help of chemometrics. 
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MAIN OBJECTIVES 

 My doctoral thesis can be decomposed to three larger parts according 

to the examined sample matrices: i) coenzyme Q10 dietary supplements ii) 

complex examination of energy drinks and iii) antioxidant capacities. 

Chemometric method developments are discussed separately in my thesis. 

The aims of my work for each separate section were the following: 

Chemometric method developments: 

- Development of a novel variable selection method and application to the FT-

NIR spectra of Q10 coenzyme dietary supplements. Increasing the goodness of 

models with variable selection (omitting thousands of variables). 

- Development of n-class ROC curves, which can be used for the evaluation of 

multi-class problems. Testing and validation of the developed method with the 

use of a dataset of energy drinks. Comparison of pattern recognition techniques 

with n-class ROC curves. 

- Optimization of the model building process for the random forest (RF) 

technique to increase the goodness of the models. 

- Comparison and ranking of the performance parameters in regression analysis. 

Coenzyme Q10 dietary supplements: 

- Examination of the coenzyme Q10 content in dietary supplements with FT-

NIR spectroscopy. 

- Building appropriate calibration models, which can be validated with cross-

validation and test samples as well.  

- Replacement of time-consuming and expensive HPLC and other commonly 

used techniques. 

- Comparison of the final PLS-R models with different variable selection 

techniques by sum of ranking differences (SRD). 
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Examination of energy drinks: 

- Development of an easy high-performance liquid chromatographic (HPLC-

UV) method using an international standard to provide a reference method for 

the determination of caffeine concentrations. 

- Determination of the sugar content of energy drinks with the Schoorl method. 

- Development of a novel, money- and time-saving method for the determination 

of caffeine and sugar concentration in energy drinks with FT-NIR spectroscopy. 

Internal and external validation of the final models. 

- Classification of energy drinks based on their FT-NIR spectra. Differentiation 

of the energy drinks with taurine content, arginine content and without taurine or 

arginine content. 

Examination of antioxidants: 

- Comparison of antioxidant capacity assays using statistical methods (HCA, 

PCA, SRD and GPCM) and selecting the most representative method or 

methods for the available datasets based on time and cost efficiency. 
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III. MATERIALS AND METHODS 

In my doctoral thesis chemometric analyses are usually based on FT-

NIR spectra and the use of classical and modern analytical techniques. 

Chemometric method developments were also carried out, but I discuss these 

methods in the Results section. 

3.1 FT-NIR spectroscopy 

A Bruker MPA™ Multipurpose Fourier-transform near-infrared 

spectroscopy (FT-NIR) analyzer (Bruker Optik GmbH, Ettlingen, Germany) was 

used for FT-NIR measurements. The device is equipped with a quartz beam 

splitter, an integrated Rocksolid™ interferometer, a thermostated sample 

compartment equipped with a flow-through cuvette, and a Te-InGaAs detector 

working in the 800–2500 nm wavelength range (12,500–4000 cm−1 

wavenumber). These parameters were used in transmission mode for the 

collection of absorption spectra for energy drinks. The solid coenzyme Q10 

samples were measured by a rotatable sample wheel and a PbS detector. The 

spectral resolution was 8 cm−1, the scanner speed was 10 kHz, and each 

spectrum was the average of 32 subsequent scans in both cases. 

 

3.2 HPLC measurements 

 For the determination of the total coenzyme Q10 content, an Agilent 

1200 HPLC (Agilent Technologies) system was used in isocratic mode on an 

Agilent Zorbax XDB C18 HPLC column (2.1 mm × 50 mm × 3.5 μm) followed 

by UV detection at 275 nm. The column temperature was set to 30 °C. The 

eluent consisted of the mixture of ACN:THF:water in 65:30:5 %v/v rate and the 

flow rate was 0.35 ml min−1. The injection volume was 10 μl. 

 The international standard for the determination of caffeine content in 

coffee and coffee products (ISO 20481:2008) was adapted for the energy drink 

samples. Briefly, an Agilent 1200 HPLC (Agilent Technologies, Santa Clara, 

CA, USA) system was used for the HPLC-UV-based quantification of caffeine. 

An Agilent Zorbax XDB C18 HPLC column (4.6 mm × 150 mm × 5.0 μm) was 

used in isocratic mode at 40 °C. The flow rate was 1 ml min−1, the injection 

volume was 20 μl, while the chromatographic run lasted for 18 min. UV 

detection was carried out at 273 nm, and additional peak purity measurements 

were executed at 260 nm in order to exclude samples containing impurities in 

the retention window of caffeine. 
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3.3 Sample preparation 

For the HPLC measurements in the case of coenzyme Q10 the 

procedure was based on the AOAC Official Method 2008.07 and later optimized 

by Vass et al. 

In the case of energy drinks for the HPLC-UV measurements, the 

samples were sonicated in an ultrasonic bath (type T2MODX; VWR) for 20 

min; then, 50 μl of them was diluted to 1600 μl with ultra-pure water in vials. 

External calibration with peak area integration was used for the quantification of 

total caffeine concentration in the energy drink samples. The calibration points 

were the following: 2.5, 5.0, 10.0, and 20.0 ppm (because of the 32-times 

dilution). Here the only sample pretreatment step was pouring the samples into 

10 ml vials for the FT-NIR analysis after the sonication. 

In the case of coenzyme Q10 the only sample pretreatment for FT-

NIRS analysis was the careful homogenization of tablets and the content of 

encapsulated products in a mortar. 

3.4 Classical analytical method – Schoorl method 

The Schoorl method was applied as the reference for the determination 

of sugar concentration in energy drink samples. This method is frequently used 

for the determination of sugar content in food analysis. In this method the 

reducing sugar components can be examined. The analysis is based on the OÉTI 

ÉLK 4.009 standard method. 

The sugar content of energy drinks was calculated for invert sugar, 

because the samples were inverted with acidic hydrolysis. It was the most 

appropriate solution, because the exact sugar compound is indicated rarely on 

the energy drink cans.  

3.5 Softwares and chemometric methods 

 FT-NIR spectra were evaluated with OPUS 6.5 (Bruker Optik GmbH, 

Ettlingen, Germany) and Unscrambler version 9.7 (CAMO Software, Oslo, 

Norway). In the pattern recognition section STATISTICA 12 (Statsoft Inc., 

Tulsa, OK, USA) with PCA (Principal component analysis), LDA (Linear 

discriminant analysis), RF (Random forest), BT (Boosted tree), PLS-DA (Partial 

least-squares discriminant analysis) methods were used. The SRD (Sum of 

ranking differences) and GPCM (General pair correlation method) techniques 

were connected to MS Excel as macros. A home-made Linux code was 

developed for calculating n-class ROC curves, which can be found in my 

doctoral thesis.  
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IV. RESULTS 

4.1 Chemometric method developments 

4.1.1 Interval selectivity ratio (iSR) 

 The basic idea of this method was developed by Rajalahti et al. The 

selectivity ratio can be calculated for each spectral variable with the following 

equation: 

(1) SR𝑖 = 𝜈𝑒𝑥𝑝,𝑖/𝜈𝑟𝑒𝑠,𝑖 , ahol i = 1, 2, 3 … m. 

Where vexp (R2) is the explained variance and vres (squared error of calibration, 

SEC) is the residual variance. The original equation of selectivity ratio was 

slightly modified, introducing a square root in the denominator. A simple 

algebraic transformation (square root or division by the same number — the 

degree of freedom) does not change the tendencies observed. I modified the 

equation for spectral intervals: 

(2) SR𝑖 = 𝑅𝑖
2/RMSEC𝑖, i = 1, 2, 3 … m. 

where i=1, 2, 3 … m (m is the number of intervals). In this study, interval SR 

was used for the same reasons as iPLS. In the latter equation, degree of freedom 

is not used for R2, but this equally influences all intervals. The higher the 

selectivity ratio, the higher the importance of the interval. 

4.1.2 n-class ROC curves 

My approach to the multi-class ROC (Receiver operating 

characteristic) analysis of the three-class classification problem presented in my 

thesis is based on the ‘one versus all’ method of Provost and Domingos. Thus, I 

calculated AUC values by taking each class as positives (and all the others as 

negatives) in turn. The weighted average of these AUC values gives the overall 

AUC of the given classifier method: 

(3) AUC̅̅ ̅̅ ̅̅ =
∑ 𝑁𝑖AUC𝑖
𝑛
𝑖=1

∑ 𝑁𝑖
𝑛
𝑖=1

  

The weights Ni-s are the number of samples of each class. We can visualize an 

overall ROC curve for a classifier method by plotting a “ROC-like” curve with 

the overall AUC value using the Hanley formula. The variance of the overall 

AUC value can be calculated with the law of error propagation: 

(4) 𝑉𝑎𝑟(AUC̅̅ ̅̅ ̅̅ ) =
∑ 𝑁𝑖

2𝑉𝑎𝑟(AUC𝑖)
𝑛
𝑖=1

∑ 𝑁𝑖
2𝑛

𝑖=1
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When comparing more classifiers, ROC-like curves with AUCs corresponding 

to either confidence limits or the mean ± one SD of the overall AUC can also be 

plotted to decide whether the performances of the methods differ significantly. 

In my doctoral work, I plot curves corresponding to the mean ± one SD for the 

comparison of the methods. 

 Four classification methods were compared using ROC curves to 

identify the best one: two common ones (linear discriminant analysis, LDA and 

partial least squares, PLS) and another two (random forest, boosted tree) that are 

not applied as frequently as LDA or PLS yet. Two datasets were applied for the 

further statistical analysis: the first one contained the 90 energy drink samples' 

spectral data and the second was calculated from the spectral data with principal 

component analysis. Both of the matrices had a categorical variable with the 

classes of the sugar contents. In the final step of the method comparison a 

comparative plot based on PCA scores with the average ROC curves of each 

classification model was plotted, which can be seen in Fig. 1. All classification 

methods have very high AUC values, but the best one is without doubt the 

boosted tree method. It was also the best one in the case of the spectral dataset. 

 

Figure 1: The final comparison of the four classification methods for the PCA 

scores dataset. The plot is the magnified version of the original one for better 

visualization. Dashed lines indicate ± 1 SD from the average. 
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4.2 Quantitative determination of coenzyme Q10 from dietary supplements 

 Initially, 52 dietary supplements were measured by FT-NIR 

spectroscopy in the range of 12,800–3,600 cm−1 (800– 2,700 nm). The average 

of each samples’ spectra was used for the further statistical analysis. The part of 

the spectra between 12,800 cm−1 and 9,000 cm−1 (800–1,111 nm) was cut 

because it did not carry any systematic information. The first step before the 

building of the calibration model is the outlier detection. There were two 

spectral outliers, which were clearly different from the average spectrum. 

Principal component analysis was used as a verification method in spectral 

outlier detection. The first model was made for the original dataset, which 

contains fifty samples and the whole spectrum range was between 9,000 and 

3,600 cm−1. Because the calibration model cannot be considered perfect, I 

wanted to improve it with the application of fewer variables. Different variable 

selection techniques (for instance interval PLS, interval selectivity ratio, genetic 

algorithm) were used for the improvement of the original PLS regression model. 

Derivation was used as data preprocessing method in each case, which gave the 

best result in the model building phase. Five-fold cross-validation and test 

validation sets were also applied in the validation process for each regression 

model. Table 1 contains the performance parameters for the best three regression 

models. The first row in the table contains the original PLS regression model 

without any data preprocessing and variable selection. 

Table 1: Performance parameters, scaling methods and number of latent 

variables of the best and original models 

R2: determination coefficient, Q2: determination coefficient for the cross-

validated model, RMSE: root mean squared error (C=for the calibration model, 

CV= for the cross-validated model, P= for the test validation) values. D is the 

shorter form of derivation data scaling method. 

R2 Q2 RMSEC RMSECV RMSEP Scal. 
Comp. 

number 

Var. 

select. 

0,85 0,71 11,26 15,74 - - 9 - 

0,92 0,87 8,16 10,58 8,82 D 7 iPLS 

0,90 0,87 8,90 10,85 13,74 D 6 iSR 

0,91 0,88 8,48 10,22 11,12 D 6 GA 

 The final models were compared with sum of ranking differences, thus 

I could select the best and most consistent model. Average was used as the 
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reference and the predicted values were compared to this. According to this 

comparison the best model was clearly the iPLS variable selected one. 

4.3 Quantitative determination and classification of energy drinks using 

near-infrared spectroscopy 

 In this part the results are discussed in two separate groups: i) the 

classification/pattern recognition models and ii) regression model building for 

the caffeine and sugar contents of energy drinks. 

4.3.1 Classification of energy drinks 

FT-NIR spectra of 108 energy drinks samples were evaluated with 

PCA and LDA. With the use of PCA as a data reduction technique, we could 

eliminate the limitation in the number of variables. The aim of the evaluation 

was to classify the energy drinks into three groups, based on whether (i) it 

contains arginine, (ii) it contains taurine, or (iii) no taurine and arginine are 

present in the samples. In the first step, the average spectra of the samples from 

12,500 to 4000 cm−1 were used for principal component analysis. 

Standardization (standard normal variate) was applied as data preprocessing. 

After that, the first 20 PCA scores were used for further analysis with LDA. 

Forward stepwise model building and three-fold cross-validation were applied in 

the evaluation. Proper validation is very important; it should be tested, whether 

the results are artefacts or not. For this purpose, as another validation method for 

the model, X-scrambling randomization test was used three times. Figure 2 

shows the final result with the comparison of a typical example for X-

scrambling validation model. The earlier mentioned three groups can also be 

clearly classified based on LDA and PCA analysis (and only FT-NIR spectra) 

and the validation of the model returned good results as well. 
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Figure 2: Classification model of the energy drinks: samples containing arginine 

are marked with pink circles, samples containing taurine are marked with green 

triangle and normal (without taurine and arginine) samples are marked with red 

squares. 

4.3.2 Determination of caffeine and sugar content of energy drinks 

Determination of caffeine content 

The 42 original energy drink samples were measured first with the 

HPLC-UV method. The other 33 mixtures were prepared from the original ones. 

Every sample was measured three times with HPLC-UV, and then the average 

of the calculated caffeine concentrations was used for the FTNIR measurements 

as reference values. The running time of the HPLC-UV analysis was 18 min. 

The retention time for the caffeine peak was around 9.5 min. Every sample was 

examined three times from 10 ml vials with a quartz flow cuvette with the FT-

NIR analyzer. Figure 2 shows an example of the measured spectra and its 

derivative form. 



 
 

14 
 

 
Figure 3: An example of the measured samples spectra and its derivative form. 

The original spectrum is marked with blue and the derivative is marked with red. 

The concentration range of caffeine was between 118 and 338 ppm, 

based on HPLC-UV determination. Principal component analysis was used for 

spectral outlier detection. There was no spectral outlier in our dataset, thus the 

final number of samples was 75. The applied data preprocessing methods were 

derivation and standardization (standard normal variate). The number of latent 

variables was eight, which was chosen based on the global minimum of the root 

mean squared error of cross-validation (RMSECV). Seven-fold cross-validation 

was used as validation of the PLS regression model. Finally a test validation 

with 13 new, commercial samples was also done. The performance parameters 

of the final model can be seen in Table 2. 

 

Determination of sugar content 

Seventy-one original and 20 mixed samples (91 in all) were used for 

the determination of sugar content in the energy drinks. The mixture samples 

were made from the original ones with the use of different mixing ratios. The 

Schoorl method was applied as the reference for the determination of sugar 

concentration. This method is frequently used for the determination of sugar 

content in food analysis. Seventy-five of the 91 samples were chosen and 

measured in this way. However, the method has a large bias and relatively large 

standard deviation (namely 12.4 %), especially in the range of small amounts of 

sugar (1–2 g/100 ml). Thus, I decided to use and compare both of the original 
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(indicated on the can) and the measured values, because the nominal 

concentrations have less error (based on a simple weighing). In this case, every 

sample was analyzed three times from 10 ml vials in a quartz flow cuvette with 

an FT-NIR analyzer, as well. The average of the spectra was used for further 

chemometric analysis.  

First, PCA was applied to detect spectral outliers. There were two 

spectral outliers in the dataset, which were omitted before the model building 

process. PLS regression was used for model building. The model optimization 

for the 89 samples was carried out with OPUS 6.5; first derivative and 

standardization were used for data preprocessing. The concentration range for 

sugar was between 0.0 and 14.9 g/100 ml. Six latent variables were sufficient for 

model building, based on the global minimum of the RMSECV curve. Model 

building was repeated with the reference dataset based on the sugar content 

measurements. The two spectral outliers (as in the previous case) were omitted 

from the dataset, thus the final number of samples was 73. In this case, the 

concentration range extends between 0.1 and 15.3 mg/100 ml. The model 

optimization processes were the same as in the previous case. Seven-fold cross-

validation was used in both cases. The performance parameters of the two 

models can be seen in Table 2. 

Table 2: Summary of the final regression models for caffeine and sugar content 

determination in energy drinks 

 N C R2 Q2
ext Q2 RMSECV RMSEP 

Caffeine 

model 
75 8 0,966 0,898 0,928 16,8 36,3 

Sugar model  

(Schoorl) 
73 6 0,943 0,935 0,919 1,13 1,23 

Sugar model  

(nominal) 
89 6 0,998 0,996 0,995 0,29 0,26 
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4.4 Comparison and ranking of antioxidant capacity assays with 

chemometric methods 

Antioxidant capacity values for thirteen berry genotypes and twelve 

sour cherry cultivars were measured by seven antioxidant capacity assays in 

total (FRAP, TPC, TRSC, DPPH, ACL, and ACW for the berry samples and 

FRAP, TPC, TEAC, ACL, and ACW for the sour cherry samples). Every sample 

had two duplicates and each duplicate was measured three times. The average 

value of the measurements for each sample was used for the further statistical 

analysis. The first matrix (13 × 6) contained the berry sample antioxidant 

capacity values for six determination techniques (FRAP, TRSC, TPC, DPPH, 

ACL, and ACW). The second data matrix (12 × 5) contained the sour cherry 

sample antioxidant activity values for five techniques (TPC, FRAP, TEAC, 

ACL, and ACW). Both datasets were standardized before statistical evaluation. 

First the comparisons and connections between the methods are shown 

in the results with PCA and HCA. Finally, the rankings produced by SRD and 

GPCM are presented. In the case of cluster analysis Euclidian distance and 

Ward's method were used as distance measure and linkage rule, respectively, for 

both datasets. In the evaluation of berry samples two groups were clearly 

separated, one contained the ACL and ACW techniques, and the other one 

contained the TRSC, DPPH and FRAP methods. In the case of sour cherry 

dataset also two clusters were observed. The ACW and ACL methods clearly 

form a distinct group and the other three are more closely connected to each 

other. The results were confirmed with PCA as well. With the use of the first 

two PCA loading vectors ACW, ACL and TPC were scattered, but DPPH and 

FRAP were in close proximity in the case of the berry dataset. In the case of the 

sour cherry dataset with the use of three PCA loading vectors the pattern could 

verify the results of cluster analysis (where ACW and ACL formed an individual 

cluster). 

Before the SRD evaluation, the data matrix had to be preprocessed to 

convert all variables to the same scale. In this case, the average was chosen as 

reference for all of the datasets. In the diagram (Figure 4) the scaled results are 

used, which makes the methods comparable. 
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Figure 4: Evaluation of six antioxidant capacity methods using sum of ranking 

differences (berries dataset). The right y axis shows the relative frequencies for 

the black Gauss-like curve with triangles (exact theoretical distribution). 

The lower the SRD value, the closer it is to the reference (to the 

average). Thus, FRAP can substitute all methods for antioxidant capacity with 

the smallest error. I have also plotted the random probability distribution curve 

(a Gauss like one), which helps to decide whether the applied method is better 

than or similar to the use of random numbers. All of the methods produce better 

results than random numbers, except for ACW. Validation of the ranking has 

been carried out using a randomization test and a seven-fold cross-validation. 

Nonparametric tests and t-test - based on the validation results - clearly indicated 

that SRDs for DPPH and ACL are derived from the same distribution. 

For the sour cherry dataset, SRD analysis was applied in the same 

manner as for the previous case. The SRD result suggests that TPC has the 

smallest error out of the five applied methods and hence it can be used to replace 

all of the other methods. ACL and ACW methods are outside the acceptable 

region of the graph. FRAP and TEAC had the same SRD value, and their 

medians are indistinguishable according to the Sign and the Wilcoxon matched 

pair tests. 

The general pair correlation method (GPCM) results were highly 

similar to the SRD results, but GPCM could even distinguish the methods DPPH 

and ACL in the first case, and FRAP and TEAC in the second case. 
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4.5 Comparison and ranking of the performance parameters in regression 

analysis 

 As an outlook in my PhD work I apply two QSAR (quantitative 

structure activity relationships) datasets as case studies for the comparison of 

model performance parameters. It was necessary, because with the use of these 

datasets, more general conclusions can be drawn and a lot of performance 

parameters could be calculated. The first dataset contained toxicity values of 

benzene derivatives as the Y variable, and the other contained biological activity 

values (IC50) of N-substituted maleimides. Multilinear regression (MLR) was 

used for the evaluation, which is a commonly used regression technique in 

QSAR analysis. For SRD analysis both Case studies’ dataset contained 20 

performance parameters in the columns and in the first case there were 60 

models in the rows. Row-average was used as the reference. Seven-fold cross-

validation was used for the verification of the analysis. Figure 5 shows the 

validation results on a Box & Whisker plot for the first case study. 

 

Figure 5: Comparison of performance parameters using seven-fold cross-

validation of scaled SRD values. On the box and whisker plot the horizontal 

dotted line shows the 5 % error limit for random ranking. Vertical dotted lines 

show the 5% error limit for the Wilcoxon matched pair test. 
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There were a few performance parameters (Q2-F1, Q2-F2, Q2-F3 and 

RMSEext) that overlap with random ranking, but most of the parameters are 

located between zero and the 5 % limit for random ranking. 

The same examination was carried out for Case study 2, where the 

number of the columns was 20 with the same performance parameters, but the 

number of the rows was 70 (since here the number of created models is 70). 

In summary I can conclude that the performance parameters connected 

to training (calibration) and cross-validation, were the most representative and 

consistent group. The best and most consistent performance parameters for both 

datasets were RMSECV, CCCcv, Q2
LOO and MAE. 
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V. NEW SCIENTIFIC ACHIEVEMENTS 

1. In my doctoral work I developed n-class ROC curves, which can be applied 

for the comparison and evaluation of models – including error estimation. 

Classification abilities of the models can be illustrated properly. Based on the 

FT-NIR spectra of energy drinks the different classification methods can be 

compared with n-class ROC curves. I also developed and used two parameter 

optimization processes for the random forest (RF) method. I verified that the 

boosted tree (BT) method has the best result for my datasets in classification. I 

used a home-made Linux code for the calculation of n-class ROC curves. 

2. I developed three regression models, which can be used for the determination 

of coenzyme Q10 concentration in dietary supplements from their FT-NIR 

spectra in a fast, easy and environmentally friendly way. The models were 

validated with internal and external validation. With the use of these models, the 

frequently used, but slow and expensive HPLC methods can be replaced.  

3. As a part of coenzyme Q10 concentration determination I also developed the 

interval selectivity ratio (iSR) method, which can be used for variable selection. 

I applied this method in an efficient way in the model building phase of the 

regression models. 

4. I also developed PLS regression models for the determination of sugar and 

caffeine concentration in energy drink samples based on their FT-NIR spectra. 

The models are properly accurate and robust. I used internal and external 

validation for the verification of the models’ goodness, thus these models can be 

used for sugar and caffeine concentration determination instead of the time 

consuming and expensive other techniques. On the other hand I can classify 

properly the taurine, arginine and normal (without the mentioned components) 

samples with my LDA classification model. This latter one can be good for 

quality control and identification of the energy drink samples’ origin. 

5. In the case of the comparison of different antioxidant capacity methods I 

found that the methods based on similar chemical backgrounds give more 

similar (unified) results in PCA and HCA analyses. ACW and ACL methods 

differed from the other techniques in the examination processes. The most 

consistent method based on chemometric evaluation were FRAP and TPC. They 

can replace the other ones, thus if we do not have enough time, these two 

method can give the best result with minimum error. 
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6. In the wide-spread comparison of performance parameters I found a big 

difference between the parameters based on internal and external validation. The 

performance parameters based on internal validation are usually better and more 

consistent ones. The most applicable ones can be: RMSECV, CCCcv and Q2
LOO. 

From the other point of view the external (test) validation performance 

parameters can carry interesting and useful information, because of their 

dissimilarity. 
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VI. CONCLUSIONS AND SUGGESTIONS 

 In my doctoral work I showed the useful opportunities of FT-NIR 

examinations and chemometric approaches with several examples. With my 

experiments and evaluations I have made gradual developments in the field of 

food science (food analytics) and chemometrics. 

 The market of coenzyme Q10 is nowadays still increasing, because 

lots of people believe in its health benefits. In the intense market competition, 

the quality control of these products plays and important role. In this segment 

my regression models can replace perfectly the commonly used, expenseive and 

relatively slow HPLC methods. On the other hand with the developed variable 

selection technique (iSR) I can give new opportunities for variable selection in 

chemometric analysis. The variable selection is a key step in the regression 

model building phase, which can be seen in the examination of coenzyme Q10 

dietary supplements. The iSR variable selection method – together with the other 

two applied methods - was efficient in the variable selection phase of coenzyme 

Q10 concentration regression models, thus its application can be proposed for 

further regression analyses. 

 In the field of energy drinks I recognized that these non-alcoholic 

drinks have a huge impact in the Hungarian market because of the number of 

consumers. As ten years earlier there were only a few brands in the Hungarian 

market, now the numbers of brands are more than a hundred. Unfortunately the 

biggest consumer group is the youth, which includes children as well. Because 

of this special consumer group the quality control of these samples is highly 

important, in particular the determination of caffeine and sugar content, because 

they can be exposed to health risks. In my doctoral work I successfully built 

regression models to the caffeine and sugar concentration of the samples, which 

provide a fast and environmentally friendly way to examine the caffeine and 

sugar concentration. Thus these models can be used instead of the other 

commonly used analytical techniques. I examined around a hundred of samples 

in my work, which means that it is optimized to all of the energy drinks in the 

Hungarian market. In the field of classification I developed a model for the 

differentiation of taurine, arginine and normal energy drink samples (without 

taurine and arginine). This classification model can be good for quality control 

and identification of the energy drink samples’ origin. With the use of the FT-

NIR spectra of energy drinks I developed and tested a novel form of n-class 

ROC curves. The n-class ROC curves are used for the comparison of several 

classification methods with a very attractive visual interpretation. The less 
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frequently used classification techniques had as good or even better 

classification ability as the old and commonly used ones. In my case the boosted 

tree method gave the best classification result, thus it can be a good opportunity 

for further analyses. 

 In the world of antioxidant capacity measurements several 

determination techniques were developed; thus, a decision to choose the best one 

for the examination is sometimes complicated. Usually the use of more 

techniques is recommended. In this part of my doctoral work I raised the 

question, which method can give us the least error and the most consistent 

results. In my examinations (with two datasets) FRAP and TPC techniques 

proved to be the most consistent ones, thus these methods can replace the others, 

if we do not have sufficient time or it is too expensive to measure antioxidant 

capacity in several ways.   

 In regression model building, the use of appropriate performance 

parameters is always a problem not just in the case of FT-NIR spectra but in the 

case of pharmaceutical and other datasets as well. The regression models are 

judged in different ways based on the different performance parameters, thus the 

question of ‘what should we use’ is very important. In my case studies the 

external validation parameters can give extra information about the models, the 

internal validation parameters such as RMSECV or CCCCV can give more 

consistent results. Based on my evaluations the results based on internal 

validation and cross-validation result should be emphasized in regression model 

building. 
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