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Abstract

This dissertation (i-i) describes frameless computing in the case of a CNN Wave
Computer extended with an infrared active sensor array, where the continuous pro-
cessing makes possible the detection of a spatial–temporal feature, (ii-i) uncovers
a locally adaptive, iterative algorithm to tune the depth measurement range of
a depth measuring sensor array, (ii-ii) presents two standard CNN algorithms to
detect different kinds of spatial movements in simulation; (iii-i) outlines numeri-
cal argumentations regarding the existence and strength of metastable oscillations
observed in one dimensional CNN arrays with periodic boundary condition, (iii-
ii) describes circuit measurements reproducing these oscillations on a laboratory
prototype circuit.
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region is called Region1). The subfigure on the left depicts the max-
imum value of the derivatives in every time step; while the subfigure
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Chapter 1

Introduction

In our everyday observations, a lot of recognition tasks are connected to the iden-
tification of spatial–temporal dynamics. Often it is not a characteristic figure that
we consider familiar, but a specific movement, series of actions or views. Tennis
game enthusiasts recognize their favourite player on the court from the backhand
movement, horse fans recognize their favourite breed of horse from the posture
and from the trot. Dance is also such an activity, whose type cannot be identified
from one or more still picture; however, if we consider the whole transient of the
movement, we can recognize without doubt which kind of folk or classical dance
we see.

By signal processing tasks, the audio signal processing is a good example of
one–dimensional temporal analysis. It can be either some kind of noise filtering,
or the cut of some frequency range, or other signal processing issues. In the case of
spatial (more precisely “planar”) analysis we can think of the simplest image pro-
cessing tasks, like a two–dimensional image from which we want to extract some
features, like edges, corners, specific kind of surfaces, big or small patches, or some-
thing else. If we take into consideration the combination of spatial and temporal
analysis, we reach the classical frame–by–frame processing of video analysis. The
“frameless” processing philosophy of Cellular Neural Networks (CNN) breaks with
this approach: not only the real hardware which represents the time and the sig-
nal as continuous (not discrete) quantities, but the whole input flow processing is
continuous, too. Although the consecutive, frame–by–frame (classical) processing
of the input pictures gives answer to every question, this needs appropriately built
processing unit and organized memory. In contrast to this, if some characteristics
of the evolving dynamics (for example, an output pattern temporarily becoming
stable) indicates some event taking place in time, then no further architecture–
extension is necessary. The time evolution of the dynamics provides itself alone

1
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2 1. INTRODUCTION

the recognition, which is significantly “cheaper” in computation complexity.
In one part of my doctoral work I dealt with the recognition of spatial–temporal

dynamics. I was looking for the answer to the following question: what
kind of recognition issues exist and how can they be solved in those
cases, when the continuity of the input flow is the quality difference
(compared to the separate processing of the individual still pictures)
that makes solvable a recognition problem.

In the case of engineering problems, stable solutions are welcome, which can
be robust in spite of the small environmental effects / changes. It can be a stable
constant value, or a regularly repeating change, a periodic oscillation. In general
it is a must to be reliable, robustly resisting measurement- and environmental
noise. Interesting and special case is the seemingly stable regular change in time
(metastable periodic oscillation). For a long time it seems ordinary periodic oscil-
lation, but after a point, through a short intermediate interval, it converges to a
stable point, settling down to a constant value. Often this transient happens with-
out any priori sign, just the last few cycles imply change in the behavior. As an
example, specific waves in the brain activity show similar phenomenon. According
to certain theories, these metastable periodic oscillations have functional role (for
example, recognition, understanding, association).

In the other part of my doctoral work I dealt with metastable periodic oscil-
lations. I have analyzed the phenomenon under specific architectural constraints
(one–dimensional CNN array with periodic boundary condition). I was look-
ing for the answers to the following questions: what kind of oscillations
exist in which region of some specific parameters? How do these param-
eters influence the length of the oscillation (strength of metastability)?
If there exist more different waveforms, what kind of connections are
there between them?

Both of my research fields can be informally interpreted as analog computa-
tions (in contrast to the digital, discretized ones). As a specific example to analog
computation, let me introduce a system, where the interaction of three different
dynamics realizes the computation itself. This example will be described in de-
tails in Chapter 2, here I would like only to emphasize the joint evolution of the
different continuous flows. Let me take a cellular array of computing elements
(analog processors), where every computing element has an optical input from the
environment. In addition to this, there are activation light sources located next to
every light-sensing element. These light sources are responsible for the lighting of
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1.1 Methods used in the experiments 3

the environment (or the lighting of the measured object), while the optical sensors
measure the reflected light from the environment. In this way we have a locally
connected array where in every cell we have a processor with optical input, and an
activating light source. The dynamics of the processor array can be characterized
by the continuous state-equation of Cellular Neural Networks as the self-dynamics
of this system. We can introduce other dynamics to the system through the light
sources, which directly influences the perception of the environment, in this case
the input flow. The interaction of these dynamics realizes the main computa-
tion itself, which can be quite efficient in some cases (eg. spatial-temporal event
detection).

The dissertation is organized as follows. Chapter 2 uncovers the details of my
frameless detection example. Not only the experiment, but a detailed, deeper anal-
ysis is presented to support the significance of this processing mode. In Chapter 3 I
describe further algorithms with the model of the infrared sensor array, simulation
results are also presented. Throughout Chapter 4 and 5 metastable oscillations
are analyzed. In the former one I describe these oscillations with simulation, and
present some numerical argumentation about the robustness of the phenomenon;
while in the latter one I demonstrate the suspected robustness of these long tran-
sient metastable oscillations with a paradigmatic circuit, made by means of discrete
components. Chapter 6 summarizes the main results and shows directions of ap-
plication, where the results of this dissertation could be utilized. The author’s
publications as well as other publications connected to this dissertation can be
found at the end of this document.

1.1 Methods used in the experiments

The considered objectives are strongly connected to the CNN Wave Computer’s
computing model. My results are based on simulations, but some of them are rely-
ing on real measurements, where the input flow is served by an infrared sensor array.
This array contains 8×8 distance measuring LED–phototransistor pairs, where the
sensors measure the LEDs’ reflected light from the environment / measured object.
Every LED can be controlled separately, and the readout of the phototransistors
can be in arbitrary order. There is a controlling and readout circuit connected to
the sensor array, in this way we can realize high level communication (via serial
line) with the simulator of the Wave Computer.
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4 1. INTRODUCTION

I have utilized morphological– and wave–operations in the frameless computa-
tion model. I have analyzed the effects of different wave propagating templates
on the continuously changing input flow. Throughout the analysis I leaned on an
earlier published template class, with fine–tuning of the elements I tried to achieve
the appropriate behavior. This template class is sign–antisymmetric, coupled, and
contains a few non–zero elements. Earlier it was considered due to its wave process-
ing behavior and due to the emerging state–transitions (stable equilibrium point
– periodic orbit – chaotic behavior). In the detailed analysis of the measurements
I examined the behavior of the system’s equilibrium points, the dependency be-
tween specific parameters and the evolving state, and the robustness of the whole
phenomenon.

These simulators were realized both in C++ language and in MATLAB envi-
ronment. It is easier to implement evaluating softwares in MATLAB environment;
however, in some cases I used a function library which is available only in C++
language. The microcontroller of the sensor array was programmed in C language.
The real measurement scenes were partially realized with an xyz table capable of
moving with 10µm precision.

By the metastable periodic oscillations, firstly I examined the details of the
phenomenon with the simulation of the dynamics; naively tried to discover the
characteristics of the transients and their parameter–dependencies. With numer-
ical evaluation of the data I predicted the results of the analytical eigenvalue–
analysis made by Professor Barnabás Garay, where the latter one is the rigorous
mathematical proof of the metastability in our example.

The simulations were realized both in C++ language and in MATLAB envi-
ronment. The built-in solver ode45 of MATLAB has stabilized unexpectedly the
solution in some cases (symmetrical initial conditions); but the self-made solvers
(MATLAB: Explicit Euler (EE) method; C++: EE, RK45) have shown the con-
vergence to the stable point in every case. Some of the parameter–changes and the
evoked bifurcations were analyzed with the AUTO bifurcation–analysis software.

Under the guidance of the italian cooperating research group (Mauro Forti,
Luca Pancioni, Mauro Di Marco, Massimo Grazzini) I have prepared a one–
dimensional, periodic CNN array from discrete components, on which platform
I experimentally examined the existence of metastable periodic oscillations.
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Chapter 2

Frameless detection with an infrared
sensor array

In this chapter I present the frameless detection method in the case of a CNN Wave
Computer interfaced to an infrared sensor array. The measurement system, the
computational environment and the key example demonstrating the advantage of
frameless processing are presented as well as those scenes and parameter regions,
where the frameless processing mode is unable to outperform the frame–by–frame
processing mode.

2.1 Review of the related literature

According to my best knowledge, detection on the basis of frameless processing
is a relatively new phenomenon. A slightly different version of it was introduced
in [14], where the authors uncover the details of the Proactive Adaptive Cellular
Sensory-Computer Architecture via extending the CNN Universal Machine. In this
case the evolving computation is influenced by proactive and adaptive methods.
A more recent, strongly coupled work is [15]. But before that work, I would like
to refer to wave computing in general, which is the base computing system in the
architecture I have used.

Inspecting wave-propagation, a distinction has to be made between classical
waves (propagating in conservative systems, behaving as a closed system) and
nonlinear (active) waves. In the case of active waves it has a great importance that
the propagation of the wave is supported by the media, from an energetic point
of view. Subsequently, the propagating wave does not decay nor the waveform
is distorted during the propagation. These waves cannot be reflected from the
boundaries, nor can they be interfered, but they can be diffracted. When they

5
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6 2. FRAMELESS DETECTION WITH AN IR SENSOR ARRAY

are colliding with each other, they annihilate each other (except a special kind of
them, the trigger wave: after some definition they can merge at collision).

Although in general the classical wave is associated with the word “wave”,
there are many well-described phenomena of active wave propagation. In chem-
istry, reaction-diffusion systems can produce waves [41]. Spiral waves are universal
form of patterns arising in dissipative media of oscillatory nature [42]. As examples
from biology, nerve impulse propagation shows a wave-process [43] and the com-
munication method of the amoeba [44], [45] is based on waves, too. Studying the
examples of nature, a unified paradigm has been developed by Chua [46], [47], [48],
[49], [50], [51]. Generally speaking, solving some of the computational problems
with a system utilizing active waves could be much more obvious [52].

As a strongly related work, I would like to refer to the doctoral theses of István
Petrás [17]. He analyzed in details a specific class of wave-propagating templates.
He extensively investigated the different parameter regions, the different forms of
the evolving patterns and oscillations. He processed only static input pictures, in
this way the most significat difference between his work and my work is in the
input of the systems (static input versus continuous flow). More details on his
work and the specific comparison with my work will be described in Section 2.3.

Compared to the conventional wave processing, the phenomenon of frameless
detection involves the detection of an appropriate spatial-temporal event by the dy-
namics itself, evolving on the computing array. In [15] the authors realize frameless
detection of spatial-temporal events with the use of delayed CNN template. In the
case of frameless processing, the detection is done by using continuous dynamics,
without cutting the input flow into frames.

In my dissertation, the frameless processing mode is connected to a depth
measuring sensor array, in this way it is necessary to review some relating depth-
sensing systems and sensor array constructions. The simplest case of depth sensing,
if we combine the pictures of more cameras (for example, three cameras in different
locations), like in the case of the off the shelf Leonar3Do system [53]. Another input
device is the LEAP Motion controller [54], which contains three IR LED and two
IR camera (unfortunately in this case the detailed working method is not specified
by the factory). The third solution on the market, with a bit different method is the
Kinect movement detector input device [55], belonging to Microsoft’s XBox system.
Here the depth sensor consists of an infrared laser projector and a monochrome
CMOS sensor. The laser projects a specific pattern to the environment/object, the
sensor records the image with the spatially distorted IR pattern, and an algorithm
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2.2 The measurement system setup 7

computes the body model behind the distortion. The fourth kind of solution can
be the time-of-flight computation, like in the case of the Canesta 101 chip [56]. In
this case, the CMOS chip records the reflected signal-fragments of a blinking IR
LED (blinking with 44 MHz), and on the basis of the time-of-flight, it computes
the distance of the observed object/environment.

Reviewing sensor array construtions, numerous publications deal with the sen-
sor model and measurement characteristics of IR emitter – diode pairs (in the
context of mobile robotics), without being exhaustive [57], [58], [59]. As very sim-
ilar constructions, I would like to highlight the doctoral work of Ákos Tar in [60]
and the paper [61]. In the former one, the author has an array with 8 IR LEDs
and 8 photodiodes alternately ordered in one row, meaning 15 measurement points
in front of the array. The drawback of this construction is that the scanning of a
two-dimensional surface needs movement during the measurement. On the other
hand, the measurement accuracy and the measurement speed is far more better,
than in the case of the array used by me. In [61], the authors describe an array
of size 3×3, where every cell of the regular grid contains an LED – PSD (position
sensitive detector) pair. Here the advantage is the fast and accurate measurement
in a wide depth range (between 20 and 150 cm), but the drawbacks are the limited
number of cells and the low spatial density of the sensing points (compared to my
array).

2.2 The measurement system setup

The measurement device contains 8×8 infrared distance measuring LED – photo-
transistor pairs (TCRT1000), whose packages are organized in a regular grid. The
complete architecture (schematic) can be seen in Figure 2.1. An 8–bit microcon-
troller (PIC 18f2321) controls the system on this peripherial board. There is a se-
rial link (MAX232) to the simulator running on the PC. The LED–phototransistor
pairs are arranged in row-wise order, each block contains eight elements. Every
block gets six input/control lines (signal, clock, clear, and three for address), and
has an output line. These output lines are collected in a multiplexer (4051D),
resulting in the use of one input analog channel of the microcontroller. In this way,
the hardware has serial execution, where the proper ordering and timing is defined
by the clock and the address lines.
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8 2. FRAMELESS DETECTION WITH AN IR SENSOR ARRAY

Figure 2.1: The architecture of the sensor array

Figure 2.2 depicts the schematic drawing of the architecture inside one block.
There is a shift register (74ACT164) which controls the light sources of the block, on
the basis of the stored pattern. Every anode is connected to the positive terminal
of the power supply, while every cathode is connected to the ground through a
Darlington array (ULN2803). The gates of the Darlington array is controlled by the
stored pattern of the shift register. The collector–emitter line of the photosensitive
phototransistor is serially connected to a resistor, between the positive terminal
of the power supply and the ground. In this way, the reflected light causing the
opening of the gate becomes a part of a voltage divider, meaning that, the potential
of the collector indicates the amount of the incoming / reflected light. The output
of every phototransistor is collected by a multiplexer (4051D), resulting in one
output line.
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2.3 Computational environment 9

Figure 2.2: The architecture inside a block (row) of the array

Although I can implement a simpler but autonomous measuring and computing
system on this microcontroller, due to the limitations of the inner memory and the
low processing speed it is more advantageous to run the complex computations
on a PC, leading to the utilization of the microcontroller as a low level controller
(direct control of the lightsources and readout of the sensors’ signal levels) and
communicator. I followed this hierarchical scheme in my measurements: the sim-
ulator of the Cellular Wave Computer runs on the PC, only the raw measurement
data are served by the sensor array.

2.3 Computational environment

The simulator on the PC realizes a standard, space-invariant CNN computational
model (Chua-Yang model) with one layer, as the state-equation of every cell is
shown in Equation 2.1. Here xij ∈R, ykl∈R, ukl∈R, z∈R are called the state, the
output, the input and the bias of cell (i, j) respectively. A and B are the feedback
and input synaptic operators. rd∈N is the radius of the sphere of influence of cell
(i, j). The dependence of the output on the state is characterized by the well-known
piecewise-linear function (Equation 2.2).

ẋij =−xij(t)+
∑

|k−i|≤rd

∑
|l−j|≤rd

A(i−k, j− l)ykl(t)+
∑

|k−i|≤rd

∑
|l−j|≤rd

B(i−k, j− l)ukl(t)+z (2.1)
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10 2. FRAMELESS DETECTION WITH AN IR SENSOR ARRAY

y = f(x) = fpwl(x) =
1

2
(|x+1|−|x−1|) (2.2)

The 19 numbers of the templates (A, B, z) determines the special task/function
that the CNN Wave Computer executes (for an extensive collection of these func-
tions the Reader is kindly referred to the Template Library [34]). The applied
template class was originally published in [17], an asymmetric template with few
non-zero elements. The template is given by Equations 2.3-2.4.

A=

0 0 0
s p q
0 r 0

 , B =

0 0 0
0 b 0
0 0 0

 , z = z (2.3)

s= 1.1, p= 1.0, q =−1.1, r =±0.7, b= 1.0, z = 0.0 (2.4)

Originally, this template needs the Full Signal Range (FSR) CNN model [38],
zero-flux type boundary condition, and the processed static, binary image should
be loaded to the input terminal (U(t)) and in the initial state (X(0)) as well.
In [17] the author has examined the behavior of the different parameter-regions
of this template: in some cases we can observe a stable pattern on the output,
while in other cases we can get periodic, or what is more: chaotic dynamics at
the output. One crucial thing is the sign of the template-element r: the positive
values result in a solid, homogenous black patch with oscillating right border, while
negative values result in a texture-like oscillating pattern. These outputs are easily
observable in the case of bigger arrays (several hundred computing cells). In [17]
the author used the size of 41×23 and 64×64 cells (simulations with the Full Signal
Range model and ACE4K chip measurements, respectively), however we used the
size of 8×8 cells (both the sensor array and the simulated computing array). For
comparison, the behavior-difference caused by the sign-difference of r can be seen
in Figure 2.3 and Figure 2.4. These figures represent different outputs (comparing
to the outputs of [17]): the main reasons are the small size of the computing array
and the different computation-model (Chua-Yang model, instead of the Full Signal
Range model). The actual values of the template-parameters were set according
to Equation 2.4.
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Figure 2.3: Snapshots of the array’s output: the spatial-temporal evolution of an
oscillating pattern, caused by the positive sign of the template parameter
r. With greater sizes of the computing array and with the Full Signal Range
model (not illustrated here, for details see [17]), the initial, thin rectangular form
transforms itself to an elongated patch into the North-East direction of the array.
The inner part of the new object is solid and homogenous, while the bordering-
region behaves as a waving contour. With this small size of the computing array
and with the Chua-Yang model (as depicted in this image-sequence), instead of the
slant waving contour we can observe detached parallel lines. The time resolution
of this image sequence (the elapsed time between the snapshots) is 1τ , where τ
means the cells’ time constant.

Figure 2.4: Snapshots of the array’s output: the spatial-temporal evolution of an
oscillating pattern, caused by the negative sign of the template parameter
r. With greater sizes of the computing array and with the Full Signal Range model
(not illustrated here, for details see [17]), the initial, thin rectangular form extends
itself to a texture-like oscillating pattern, either in still or as a constantly moving
texture from left to right. With this small size of the computing array and with the
Chua-Yang model (as depicted in this image-sequence), we can observe traveling
wavefronts from up to down. The time resolution of this image sequence (the
elapsed time between the snapshots) is 1τ , where τ means the cells’ time constant.
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12 2. FRAMELESS DETECTION WITH AN IR SENSOR ARRAY

2.3.1 General frames for multiple–wave computing

There are two (or three) dynamic waves combined:

– the dynamics of the spatial-temporal input flow (u – two dimensional),

– the self-dynamics of the computing cellular array (x (defined by F ) – two-
dimensional, the inner state of the cells),

– the dynamics of the activation strength of the light-sources (v (defined by G1

or G2) – two dimensional)

We are interested in their interaction in two cases:

– independent activation case, as described by Equation 2.5, Equation 2.6:

ẋ= F (x, f1(x), u) (2.5)

v = const. or v̇ =G1(v, f2(v)) (2.6)

– adaptive activation case, as described by Equation 2.7 and Equation 2.8:

ẋ= F (x, f1(x), u) (2.7)

v̇ =G2(v, f2(v), f1(x)) (2.8)

In Equation 2.5-2.8, f1 usually means fpwl (Equation 2.2) or a kind of a smooth
sigmoid function, while f2 can denote a kind of step function (e.g. a shifted Heav-
iside) referring to the two main working modes of our light sources (ON or OFF).
The self-dynamics is described in the same way in both cases (Equation 2.5 and
Equation 2.7), but the activation-dynamics of the latter case (Equation 2.8) covers
a wider set regarding the behavior of the system, than in the former case (Equation
2.6). According to Equation 2.6, the case of independent activation can gen-
erate only either constant or autonomous activation patterns on the light-sources
(like constant strength activation light, or some stroboscopic or periodic pattern).
On the contrary, as Equation 2.8 shows we are able to generate activation patterns
depending also on the inner state of the computing system. This means that the
activation somehow follows—or hopefully facilitates—the evolution and processing
of the input flow. For a recent result on adaptive activation, the Reader is kindly
referred to [10].
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The key example presented in this dissertation (as well as the different forms
of the deeper analysis) belongs to the independent activation case, since the
activation at every cell is the constant, maximal light strength.

In [1] we have changed the operation-condition of this class of templates: in-
stead of static input pictures, we “fed” the system with a continuous flow (image
sequence). We have analyzed the behavior of the output in different parameter-
regions, with different input-scenes. Our main aim was at the distinction of some
kind of spatial-temporal sign: which emerges only in the case of flow-processing,
and which is unrevealable during the individual processing of still input-pictures.
In the next section (Section 2.4) I present my main example, which is applica-
ble to identify a terrain bump. Then, in Section 2.5, I analyze this phenomenon
in a deeper context. In Section 2.6 I review those scenes and parameter-regions,
which led me to the “final” template and the key example; however, in those scenes
with the vast majority of those parameter values the frameless processing cannot
outperform the frame–by–frame processing mode.
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14 2. FRAMELESS DETECTION WITH AN IR SENSOR ARRAY

2.4 The key example

Figure 2.5: The upper part of the figure depicts the schematic drawing of the key-
measurement example. The sensor array passes over a terrain bump (horizontally
from left to right, as the arrow shows on the picture). The terrain bump consists of
three different regions: the uphill-, the plateau- and the downhill-regions (Region1,
Region2 and Region3, respectively). During the uphill- and the downhill-regions,
30-30 consecutive pictures were shot, while in the region of the plateau 38 pic-
tures. The bottom part of the figure shows three different output patterns (array
responses) of the system, each of them having the four top-right pixels marked with
dashed boundary. (The details of the measurement and the appropriate relations
between regions and output patterns are described in the main text.)

Figure 2.5 depicts the details of the measurement-setup. The size of the terrain
bump was approximately 3.5 times bigger, than the size of the scanning sensor
array itself. The sensor array passed over the bump from left to right, scanning the
underlying object. The total number of the input frames was 98, meaning that, the
one column wide shift of the sensor array was done during 3.5 input frame updates.
Both the uphill and the downhill regions were scanned with approximately 30

frames. During these computations, the values of Equation 2.4 were used with
r=−0.7. The boundary condition was zero-flux, the initial state of the computing
array was identical with the first input-frame.
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Different input pictures can result in different array responses: either stable ones
(like Pattern1 and Pattern3 in Figure 2.5), or oscillating ones (like the snapshot-
series shows in Figure 2.4). Even if we are inside the same region of the bump, we
can observe different outputs. The reason is that the qualitatively similar inputs
can result in qualitatively different outputs, depending on which basin of attraction
was reached during the evolution of the computation. This means we are not able
to identify a region of the bump only from individual snapshots.

The main achievement here, if the whole input flow is processed (they are sepa-
rate pictures, but the flow is handled as continuous in time at the input terminal),
the different regions exhibit different dominant patterns at the output, from which
one can identify the underlying regions. In the key example, Pattern1 belongs to
Region1, Pattern2 belongs to Region2 and Pattern3 belongs to Region3. Reading
out only the four marked pixels in the top-right corner (marked with dashed red
squares in Figure 2.5) one can unambiguously identify which part of the terrain
bump is scanned currently.

Figure 2.6: Comparison of the array responses of the frame–by–frame and frameless
case. Column A depicts the input pictures. Column B shows snapshots of the
outputs of the frame–by–frame computational mode. Column C shows the
snapshots of the outputs of the frameless computational mode. The numbers
before every row are the serial numbers of the appropriate input pictures in the
input flow. The four rows indicated with a brace are marked: this sub-region will
be analyzed with the derivatives of the state-variable; and also the selected frames
(6th and 7th) with deeper analysis in Section 2.5 are from this sub-region.

In Figure 2.6 we can see a summary made from snapshots of the different compu-
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16 2. FRAMELESS DETECTION WITH AN IR SENSOR ARRAY

tational modes. The main advantage of the frameless computation can be clearly
seen in the measurement-and-processing results of the first part of this terrain-
bump. This figure reviews the first forty input pictures, and the accompanying
output snapshots from the frame–by–frame and frameless computing modes. While
the frame–by–frame mode presents more different output-patterns, the frameless
mode remained in the same stable pattern. This is the same as Pattern1 in Figure
2.5. If we compute later phases of the input flow, we can observe Pattern2 during
the plateau (Region2) and Pattern3 during the downhill region (Region3). The
4th, 5th, 6th and 7th input frames and computing cases are marked with SR1:
this interval will be analyzed from the viewpoints of the different derivatives.

Analyzing the underlying dynamical system, we can derive the first and second
derivatives at every cell of the array. In this way not only the visual characterization
(image-flow at the output terminal, the response of the array) is available, but with
the help of the derivatives we can describe the attractive behavior of the dominant
patterns (“speed” and “smoothness” of the attraction). For the sake of simplicity,
I suppose f1 is the piecewise-linear output function (f = fpwl) in Equation 2.5-2.8
(as it was f = fpwl in the original example as well), meaning, the derivative of it
equals zero except region [−1, 1], where the value of the derivative equals constant
one.

ẋij =−xij(t)+
∑
|k−i|≤rd

∑
|l−j|≤rd

A(i−k, j− l)f(xkl(t))

+
∑
|k−i|≤rd

∑
|l−j|≤rd

B(i−k, j− l)ukl(t)+z
(2.9)

dẋij
dxij

=−1+A(0, 0)f ′(xij(t)) (2.10)

ẍij =
dẋij
dt

=
dẋij
dxij

dxij
dt

=−ẋij +A(0, 0)f ′(xij(t))ẋij =

= xij−
∑
|k−i|≤rd

∑
|l−j|≤rd

A(i−k, j− l)f(xkl(t))

−
∑
|k−i|≤rd

∑
|l−j|≤rd

B(i−k, j− l)ukl(t)−z

+A(0, 0)f ′(xij(t))

(
−xij(t)+

∑
|k−i|≤rd

∑
|l−j|≤rd

A(i−k, j− l)f(xkl(t))

+
∑
|k−i|≤rd

∑
|l−j|≤rd

B(i−k, j− l)ukl(t)+z

)
(2.11)
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2.4 The key example 17

Figure 2.7: Frame–by–frame case: when we process the recorded input pictures
in individual computations. The first (star, “*”) and second (circle, “o”) derivatives
of the state-variable are presented. The sub-region name SR1 refers to the 4th,
5th, 6th and 7th input frames, which can be found during the uphill-region of the
bump (the uphill region is called Region1). The subfigure on the left depicts the
maximum value of the derivatives in every time step; while the subfigure on the
right depicts the sum of all the derivatives throughout the whole array at every
time step.

Figure 2.8: Frameless case: when we process the recorded input pictures in
a computation continuous in time. The first (star, “*”) and second (circle, “o”)
derivatives of the state-variable are presented. The sub-region name SR1 refers to
the 4th, 5th, 6th and 7th input frames, which can be found during the uphill-region
of the bump (the uphill region is called Region1). The subfigure on the left depicts
the maximum value of the derivatives in every time step; while the subfigure on
the right depicts the sum of all the derivatives throughout the whole array at every
time step.
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In Figure 2.7 and Figure 2.8 we can see summing diagrams about the derivatives
(Figure 2.7 is related to frame-by-frame processing, while Figure 2.8 is related to
frameless processing). The first derivatives are computed according to Equation
2.9, while the second derivatives are computed according to Equation 2.11. In
both of the figures, the first derivatives are drawn with stars (“*”), while the second
derivatives with circles (“o”). The time-scale on axis x represents the interval when
the 4th, 5th, 6th and 7th input pictures are fed with the system (let me call this
sub-region1 (SR1) which is inside the uphill-region of the bump (Region1)). SR1
was chosen to contain at least two different stable output patterns in the case of
the frame–by–frame processing mode. On the basis of Figure 2.7 I can say that the
repeated restart of the computational system causes every time a smaller noise,
or temporary fluctuation in the computing array’s inner state. Especially in those
cases, when the system can have possibly more stable patterns at the output. On
the contrary, based on Figure 2.8, this kind of a continuous computation can remain
almost still, if the consecutive inputs are qualitatively from the same group.

2.5 Analysis of the key example

In the case of frame–by–frame processing, the suspected reason for the seemingly
random evolution of the output-patterns is the occasional occurrence of a differ-
ent stable equilibrium point, which naturally results in the rearrangement of the
basins of attraction. In this subsection, I will review the equilibrium points of
the whole system as well as the equilibrium points of a reduced system. With a
two-dimensional perturbation I will analyze in details the birth / death of equilib-
rium points simultaneously checking their validity. With a series of random-noise
simulations I will show an approximation on the size of the basins of attraction
regarding the different equilibrium points.

On the basis of these mentioned investigations, I hope that the surprising be-
havior of the frameless computing array will be more unambiguous.

2.5.1 Equilibrium points in the 64-dimensional system

In Table 2.1 we can see the number of equilibrium points, computed in the cases
of the first 20 frames of the input flow. Figure 2.9 shows the small pictures of the
stable equilibrium points for the first 40 frames.
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Table 2.1: In this table we can see the number of the equilibrium points at the
specified input frames. These frames are the first 20 frames of the input flow,
meaning, all of them belong to Region1 in Figure 2.5. Stable equilibrium points
are at most two, while saddles are born and die a lot of time.

Frame
index

Number of
stable eq.
points

Number of
saddles

Number of
unstable eq.

points

1 1 126 0
2 1 16 0
3 1 1172 0
4 1 150 0
5 1 108 0
6 2 6739 0
7 1 2838 0
8 1 7410 0
9 1 9942 0
10 1 508 0
11 1 7738 0
12 1 14368 0
13 1 3732 0
14 1 3998 0
15 2 16603 0
16 1 1780 0
17 1 1504 0
18 2 16301 0
19 1 1480 0
20 2 12778 0
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Figure 2.9: Stable output-patterns in the case of the first 40 input-frames. Column
A contains the input pictures, Column B-E contain stable equilibrium points, which
belong to the given input frame (if any). In accordance with Table 2.1, at the first
20 input frames only the 6th, 15th, 18th and 20th have two stable equilibria. In the
cases of frames 26 and 27 there is no stable equilibrium point. The small “+” sign
at the end of the 21st, 22nd, 23rd and 24th rows indicates that there are further
stable equilibria, only the lack of space limits us here.

In Figure 2.9 we can clearly see that, during the first 20 input frames I have
permanently one of the stable equilibrium points (of course they are 20 different
EPs, but qualitatively, from an engineering point-of-view, they are really similar).
In addition, at some input frames temporarily I have an other stable EP, which
seems qualitatively the complement/opposite-pattern of the permanent one. What
is more, on the basis of Table 2.1 I can observe that from frame-to-frame I have
a really high fluctuating rate in the number of saddle-points. What can be the
reason for this strange behavior? To uncover the details, first of all I would like to
present the way I have computed the equilibrium points.
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Figure 2.10: The schematic drawing of the 8× 8 sized computing array can be
seen on the left hand side. If we write down the equations of the underlying
system of ordinary differential equations, we can group the equations in different
dependence-ensembles. The bottom row works as an autonomous/independent
dynamical system: the cells in it are connected only with each other. We can call
it as the “master” of the system. The cells in the second row depend not only on
each other, but also on the output of the appropriate cells below themselves. In
this way we can say: the second row builds a “slave” system, depending on the
bottom row.

Due to the special structure of the templates (there are only zeros in the top
row of template A and template B), the cells are linked only with their left and
right neighbors, plus with the bottom neighbor. In this way, I get a multiple-times
repeating “master-slave” structure, as this dependence-relationship is depicted in
Figure 2.10.

From this special “master-slave” structure it follows, that the waves (“effects”)
are propagating from bottom to top. The bottom row has only 1 stable equilibrium
point (at least in the first 20 frames), the sometimes occurring duplication happens
in the second row of the array. (In a lot of cases, it seems so that there is an other
wave-direction on the computing array: from left to right.)

The basis of my equilibrium point computation is the division of the non-linear
output function to its linear regions. In this way, every cell has three separate
linear regions, resulting 3N separate linear equation-systems in the case of N cells.
In my case, every linear equation system has the form of Equation 2.12, where
the coefficients of the saturated cells are built in c, the coefficients of the linear
cells are in the matrix M . The solution (Equation 2.13) is based on the inversion
of matrix M , where I have to check the newly computed x vector, whether the
components of it get into the appropriate region (positively saturated, negatively
saturated, linear), which was assumed during the set-up of Equation 2.12.
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Mx+c= 0 (2.12)

x=M−1(−c) (2.13)

The stability of the solution can be defined with the eigenvalues of matrix M :

– if every eigenvalue has negative real part: the EP is stable (actually: attract-
ing, a sink),

– if some of the eigenvalues have negative real part, some of them have positive:
the EP is a saddle,

– if every eigenvalue has positive real part: the EP is unstable (actually: re-
pelling, a source).

To make the structure clearer, now I will analyze only the first two rows on the
bottom deeper. In this way I have a 16-dimensional system, but as I saw earlier:
the second row produces the two different stable equilibrium points. The detailed
description of my algorithm can be found in Appendix B.

2.5.2 Equilibrium points in the 16-dimensional system

In this subsection I will examine in details two input frames, the 7th and the 6th
ones. I would like to kindly remind the Reader that, in the former case I have one
stable EP, while in the latter case I have two stable EPs. (For the sake of simplicity,
only the upper row will be presented in numerical form, because it represents the
diversity on the top of the single stable equilibrium point of the bottom row.)

Figure 2.11: d1 and d2 as sweeping parameters throughout the detailed bifurcation-
search experiments. d1 and d2 were used as additive terms in the cells’ state
(Equation 2.1). Only the state values of the 7th row are printed in Table 2.2
and Table 2.3, because the 8th row can express 1 stable point in its 8-dimensional
subsystem.

DOI:10.15774/PPKE.ITK.2014.007



2.5 Analysis of the key example 23

To clarify the strange fluctuation in Table 2.1 (the sudden/surprising change
in the number of EPs), I have done some kind of smooth parameter sweeping to
find regular bifurcation-curves. As Figure 2.11 shows, we have two additions on
the positions (7; 1) and (7; 2) of the original array (in the following these additive
parameters will be called d1 and d2), which can be identified as the first and second
cells on the left hand side in the upper row of the 16-dimensional system. These
two additive terms essentially modify my system (see Equation 2.1, the second
double sum regarding Bu). The reason for choosing these two cells to modify is
the directions of wave propagation on the array. At these two points I can do much
smoother change in the values, than the difference between two captured images.

In the first case I would like to analyze the dynamics originating from the 7th
input frame. According to Figure 2.9 and Table 2.1 I know that, here I have only
one stable equilibrium point in the 64-dimensional system. Because the master-
slave structure of the system (Figure 2.10), now we will see the 7th row of the
64-dimensional system. The 8th row will be fixed in its unique stable EP, only the
emerging values in the 7th row will be shown. Table 2.2 and Table 2.3 summarize
the possible EPs in the 7th row if the parameters are inside the ellipse shown in
Figure 2.12, regarding the d1d2-plane. What we can see on the basis of Table 2.2
and 2.3 is the birth of a new stable equilibrium point. Figure 2.12 shows a clear
structure with easily separable regions, where inside one region I can observe the
same number of equilibria. This can be considered as a weak indication that the
system is structurally stable, and the reason for the surprising changes in Table 2.1
is the unsuspected significant / qualitative difference between the visually quite
similar input pictures. Furthermore, I can check the Euler-Poincare summation
with the even versus odd parity convention in counting (Equation 2.14; equilibria-
summation for differential equations, analogous to the Euler-formula for convex
polyhedra), provided that the point infinitely far away is repulsive. In this case
(eight-dimensional system) equilibria are classified according to the number of
eigenvalues with positive real parts: if it is even, then it counts as +1, but if
it is odd, then it counts as −1. I have checked Equation 2.14 along the whole
d1d2-plane, and I have not observed any contradiction with it. In addition to
this, I have checked the trajectories from the saddles in Table 2.3 with numerical
simulations: they are not connected with each other (the first 6 saddles converge
to the first stable equilibrium point, while the 7th saddle converges to the second
stable EP).
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#{sources}+#{sinks}+#{saddles}= 1 (2.14)

Figure 2.12: Bifurcation map regarding the 7th input frame. d1 and d2 were swept
on the range [0, 0.1]. Light gray means 5 EPs, middle gray means 7 EPs, and dark
means 9 EPs. There is only 1 stable equilibrium point on the plane, except those
places which are framed with a small square (which actually fully coincides with
the region where 9 EPs exist). The ellipse marks the place on the d1d2-plane, from
where I present the numerical data in Table 2.2 and Table 2.3 regarding the EPs.
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2.5 Analysis of the key example 25

Table 2.2: Equilibrium points, d1 = 0.07, d2 = 0.01 (see the ellipse in Figure 2.12).
The rows represent different equilibrium points, which belong to the upper row
of the 16-dimensional system (which is exactly the same as the 7th row of the
64-dimensional array, see Figure 2.10). The last column indicates the stability of
the appropriate EP. The saddles have two different categories, namely “odd” and
“even”, where these words refer to the parity of the number of eigenvalues with
positive real part. The boxes with light gray background mark the “together born”
pairs: new pairs are born on the two sides of separating planes (conjecture: via
saddle-node bifurcation).

-1.35272 -1.39692 -1.46778 -1.61709 -1.61327 -1.58997 -1.4613 -1.28179 stable

-0.679342 -1.04419 -1.46778 -1.61709 -1.61327 -1.58997 -1.4613 -1.28179 saddle, “odd”

-0.639166 -0.959824 -1.42358 -1.61709 -1.61327 -1.58997 -1.4613 -1.28179 saddle, “even”

-0.254091 -0.574749 -0.614925 -1.19351 -1.61327 -1.58997 -1.4613 -1.28179 saddle, “odd”

-0.078177 -0.398835 -0.439011 -0.824086 -1.41976 -1.58997 -1.4613 -1.28179 saddle, “even”

0.303424 -0.0172343 -0.0574105 -0.442485 -0.618399 -1.17021 -1.4613 -1.28179 saddle, “odd”

0.458162 0.137504 0.0973274 -0.287747 -0.463661 -0.845262 -1.29109 -1.28179 saddle, “even”

Table 2.3: Equilibrium points, d1 = 0.07, d2 = 0.0 (see the ellipse in Figure 2.12).
The structure of this table is the same as of Table 2.2. In this table we are on the
other side of a bifurcation curve, compared to Table 2.2. In the last two rows we
have two new EPs: one saddle with an odd number of eigenvalues with positive
real part; and one stable point.

-1.35272 -1.40692 -1.46778 -1.61709 -1.61327 -1.58997 -1.4613 -1.28179 stable

-0.679342 -1.05419 -1.46778 -1.61709 -1.61327 -1.58997 -1.4613 -1.28179 saddle, “odd”

-0.630075 -0.950733 -1.41358 -1.61709 -1.61327 -1.58997 -1.4613 -1.28179 saddle, “even”

-0.254091 -0.574749 -0.624016 -1.20351 -1.61327 -1.58997 -1.4613 -1.28179 saddle, “odd”

-0.069086 -0.389744 -0.439011 -0.814995 -1.40976 -1.58997 -1.4613 -1.28179 saddle, “even”

0.303424 -0.017234 -0.066501 -0.442485 -0.62749 -1.18021 -1.4613 -1.28179 saddle, “odd”

0.467253 0.146595 0.0973274 -0.278657 -0.463661 -0.836171 -1.28109 -1.28179 saddle, “even”

0.722789 0.402131 0.352864 -0.023120 -0.208125 -0.580635 -0.744464 -1.0007 saddle, “odd”

1.0007 0.678706 0.630075 0.253454 0.0690861 -0.30406 -0.467253 -0.723425 stable

In the second case, the dynamics originating from the 6th input frame will be
considered. Figure 2.13 shows the bifurcation map on the d1d2 plane. Here both
of d1 and d2 were in the range [−0.1, 0.1]. In this case I can observe also the well-
defined regions for different numbers of equilibria. With the slight modification
of d1 and d2 I can identify a region with only one stable equilibrium point. I
have also checked Equation 2.14 on the whole d1d2-plane and I have not observed
any contradiction with it. All of these arguments show in the same direction,
namely that, for almost all parameters, our system is structurally stable, and the
sudden/surprising changes in Table 2.1 are due to the differences between the
(seemingly similar) input pictures.

DOI:10.15774/PPKE.ITK.2014.007
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Figure 2.13: Bifurcation map regarding the 6th input frame. d1 and d2 were swept
on the range [−0.1, 0.1]. Light gray means 3 EPs, the lighter middle gray means 5
EPs, the darker middle gray means 7 EPs, and dark means 9 EPs. There is only
1 stable equilibrium point on the plane, where the dots are not closed in a square,
and there are 2 stable EPs where the dots are closed in a square.

2.5.3 Some numerical results on the basin of attraction

In the followings I will show some numerical results, which (according to my hope)
can indirectly indicate the size or extent of attractive regions around equilibrium
points. According to my opinion, the stable equilibrium point, which can appear as
a “second” stable EP, has smaller basin of attraction, than the “first” one (which is
present throughout the whole sequence). However, in the frame–by–frame case the
special place / localization of the initial states can be inside these smaller regions
resulting the convergence to these “second” stable EPs. This is really important,
if I want to make somehow clear the original, strange behavior that I can observe
in Figure 2.6.
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Two different cases will be investigated in the followings. In the first case, I use
the 6th input frame as a basis, without applying any additive terms in d1 or in d2.
In the second case, I will use the 7th input frame as a basis, with additive terms
d1 = 0.07, d2 = 0.0 (this is the case inside the ellipse, in Figure 2.12, which I have
carefully analyzed in the previous subsection from the viewpoint of EPs). In this
way, both cases will have two stable equilibria.

Going into the details, I have to clarify the parameters of these simulations.
Every time (in the simulations which will be referred in the rest of this subsection)
the length of a single simulation is 400 time steps (assuming the cell time constant
τ = 1, this means 400 seconds). In every case, the sample size is 1000. In both
of the main cases I will analyze the close (or not-so-close) vicinities of the input
frame, of the “first” stable EP and of the “second” stable EP. 8-dimensional balls
will be defined with different radii around these important points, and the initial
states will be chosen randomly on the surfaces of these balls (more specifically:
1000 sample points from every different ball, to every different important point).

Figure 2.14: In this picture I illustrated the ratio of leaving the original attractor in
the function of the increasing perturbation. Part A depicts the first main case (6th
input frame with d1 = d2 = 0.0), while part B illustrates the second main case (7th
input frame with d1 = 0.07, d2 = 0.0). The logarithmically scaled axes X indicates
the increasing perturbation, while axes Y indicates the percentage of the leaving
trajectories from their original attractor. Both in subfigure A and B, symbol ’x’
marks the case when the system starts from the close vicinity of the appropriate
input frame; symbol square marks the case when the system starts from the close
vicinity of the “first” stable EP; while symbol circle refers to the initial point near
to the “second” stable EP.

Figure 2.14 shows the leaving ratio of the original attractor in the function of
the increasing perturbation. The figure on the left (A) involves the cases belonging
to the 6th input frame, while the figure on the right (B) depicts the cases of the

DOI:10.15774/PPKE.ITK.2014.007



28 2. FRAMELESS DETECTION WITH AN IR SENSOR ARRAY

modified 7th input frame. Both of axes X show the increasing radii of the 8-
dimensional perturbation-ball, while the different symbols refer to the different
initial states. As we can see in the case of the unchanged 6th input frame (A),
both of the stable equilibrium points have similar sized basins of attraction. In
contrast to this, the modified 7th input frame (B) exhibits more asymmetrical
basins: it is quite easy to go beyond the newly born second stable equilibrium
point’s basin of attraction.

The details as separate tables, and further comments can be found in Appendix
C.

2.6 Other scenes and parameter regions

In this section I would like to describe a few scenes and parameter sets, which led
me to the “final” template and the key example; however, with the vast majority
of them the frameless computing mode was unable to outperform the frame–by–
frame processing mode. This section has demonstrative purposes only, it is not
a rigorous overview. I found a specific region in the parameter space, where the
frameless processing provides the desired benefits for us, but unfortunately an arbi-
trary (randomly selected) scene not necessarily can be identified by this technique.
Firstly I would like to show my initial template–values and describe the different
scenes I have tested, then (omitting some not so expressive data–series) I would
like to present the detailed data of a parameter-tuning experiment (which led me
to the desired parameter values). All the details of this part of my work were
published in [1].

T1: s= 1.1, p= 0.9, q =−1.1, r =−0.6, b= 1.0, z = 0 (2.15)

T2: s= 1.1, p= 1.2, q =−1.1, r =−0.6, b= 1.2, z = 0 (2.16)

T3: s= 1.1, p= 1.0, q =−1.1, r = 0.3, b= 1.2, z = 0 (2.17)

T4: s= 1.1, p= 1.4, q =−1.1, r =−0.35, b= 1.6, z =−0.2 (2.18)

On the basis of the presented parameter–regions in [17], I chose four parameter
sets, presented here as templates T1 – T4 (see 2.15 – 2.18).

The investigated scenes were the followings:

– scene 1: a plain surface (parallel with the sensor array) moving inward to
realize increasing covering rate with the panel. Other parts of the sensor
array see “infinite” distance. (The object is moved by hand - rough steps.)

DOI:10.15774/PPKE.ITK.2014.007



2.6 Other scenes and parameter regions 29

– scene 2: like the previous input, but there is a counterpart plain surface,
coming from the opposite side. Both of them move more and more under-
neath the sensor array. The area between them is seen as infinity by the
sensors. (The object is moved by hand - rough steps.)

– scene 3: there are two plain surfaces on two opposite sides as well: one of
them is still, the other one is moving more and more underneath the panel,
toward the still one. (The object is moved by hand - rough steps.)

– scene 4: on the left side, there is a still, plain surface, along the whole
width of the array, but on the opposite side, there is a narrow strip moving
underneath the panel. (The object is moved by hand - rough steps.)

– scene 5: there is a still, plain surface, with approximately 40% mask-
ing/covering rate with the sensor array. The sensor array approaches from
perpendicular direction to the scene. (The array is moved by machine - fine
steps.)

– scene 6: there is a still, convex surface under the sensor array. The sensor
array approaches from perpendicular direction to the scene. (The array is
moved by machine - fine steps.)

– scene 7: there is a still, convex surface, and the sensor array moves from
the margin to above it. (The array is moved by machine - fine steps.)

– scene 8: there is a still, concave surface, and the sensor array moves from
the margin to above it. (The array is moved by machine - fine steps.)

– scene 9: there is a still, concave surface under the sensor array. The sensor
array approaches from perpendicular direction to the scene. (The array is
moved by machine - fine steps.)

These scenes were processed both with the frame–by–frame and with the frame-
less method. To evaluate the differences between the two output dynamics, I in-
troduced four labels/measures and two derived ratio numbers. These were the
followings:

– [matching]: the output dynamics of the two different systems are the same,
when the frameless mode processes the next input frame of the frame–by–
frame processing;
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– [unsteady matching]: a case of [matching], the two different systems have
the same output dynamics; however, at the previous frame of the input flow
they had different output dynamics;

– [preservation]: this attribute is defined in connection with the frameless
method: the output dynamics does not change during the change of input
frames;

– [matching with preservation]: in this case, [matching] and [preservation]
occur at the same time: the output dynamics of the two different systems
are the same, and there was no change in the output of the frameless mode
during the update of the input frames;

– α: [unsteady matching] / [measurement case number], in my opinion this
ratio expresses the equivalence level of the two systems: if this number is
high, the frameless system is rather an input-dependent system;

– β: ([preservation] - [matching with preservation]) / [measurement case num-
ber], according to my opinion this ratio expresses the level of dependence
of the frameless system on the input: if this number is high, the frameless
system is rather an autonomous system.

Unfortunately the derived ratio numbers did not show any global, significant
pattern regarding specific template or specific scene. In the next step, I wanted to
find an equilibrium between the “input–dependent” and the “autonomous” behav-
ior. For this reason, I chose template T1, and swept the central element p of the
feedback matrix A in the range [0.8, 1.4] (the other parameter values in T1 remain
unchanged). As we can see on the results in Table 2.4, the lower p values resulted
in rather input–dependency, while higher p values showed rather autonomous be-
havior. The p= 1.0 value seems the most appropriate one, since in this case the α
and β ratios seem equalized.
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Table 2.4: Sweeping the central-element (p) of the feedback matrix (A) in the
case of template T1. The rows of the table denote the different measurement
environments, the columns denote the used p value during the measurement, each
of them is divided into two subsections to the index-numbers (α, β).

p= 0.8 p= 1.0 p= 1.1 p= 1.2 p= 1.3 p= 1.4
α β α β α β α β α β α β

scene 1 42% 16% 26% 37% 21% 42% 10% 74% 5% 89% 5% 89%
scene 2 43% 7% 36% 21% 29% 50% 14% 57% 7% 79% 7% 93%
scene 3 55% 10% 10% 55% 10% 45% 5% 5% 5% 0% 5% 0%
scene 4 63% 0% 6% 13% 6% 0% 6% 0% 6% 0% 6% 0%
scene 5 43% 11% 27% 24% 27% 27% 14% 30% 16% 43% 22% 54%
scene 6 33% 28% 18% 41% 21% 33% 15% 33% 15% 46% 10% 51%
scene 7 39% 11% 21% 34% 16% 37% 18% 39% 13% 45% 5% 68%
scene 8 68% 12% 32% 32% 24% 24% 20% 28% 16% 76% 12% 80%
scene 9 48% 15% 21% 27% 15% 30% 18% 48% 9% 45% 15% 55%

Throughout this section I presented different scenes and template parameter
sets, with which I tried to achieve qualitative benefits of the frameless processing
method. Later on, in the convex–bump identifying experiment I applied the p=1.0

value in T1, and I also changed the value of parameter r to −0.7, in which case I
was able to unambiguously solve that identification problem.

DOI:10.15774/PPKE.ITK.2014.007



DOI:10.15774/PPKE.ITK.2014.007



Chapter 3

Measurement range tuning and
complex movement detection with
the depth measuring sensor array

In this chapter I present firstly a locally adaptive algorithm for the tuning of the
measurement range of a depth measuring sensor array. Then, I would like to
uncover the details of two CNN algorithms developed for depth measuring sensor
arrays: one of them detects moving objects at constant speed but varying direction
in space, while the other detects objects performing tilting movement. All of these
algorithms were done only in simulation, in an environment differing (both in size
and in operation) from my real infrared sensor array.

3.1 Measurement range tuning

I would like to kindly remind the reader that, my measurement-composition is
interpreted in the depth-extension of the two-dimensional plane, assuming that
the quality of the surfaces and the reflection coefficients are the same everywhere.
The main goal is to adapt the different parts of the sensor array differently to make
measurable the too wide depth dynamic-range.

In the literature of image processing, mapping of high dynamic range scenes
is a well known problem. In the case of regular pictures, the different brightness-
conditions on the different parts of the pictures make difficulties: one part of the
pictures can be underexposed while the other part can be overexposed. There
are more solutions for this problem in the literature [39], which problem is highly
analogous to my depth-adaptation problem. Especially the doctoral work of Robert
Wagner is relevant, who has solved this problem on a very similar computational
architecture (CNN Wave Computer)[40]. In his work, the chip is a true vision chip,
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where the local adaptation is done by the fine tuning of the integration time of
every sensing pixel. In our case, the increase/decrease of the light power works
analogous to this.

The description of our algorithm:

– the increasing of the light power (I) can reduce the measured distance (dm)
of the farther objects

– the decreasing of the light power (I) can raise the measured distance (dm) of
the closer objects

Figure 3.1: Schematic drawing of measurement ranges. The diagonal-crossing
pattern denotes the measurement range with medium level light power, while the
dotted areas indicate the extended measurement range. The scales of dr and d̂r
stand for the real distance and the shifted real distance of the measured objects,
respectively.

In Figure 3.1 we can see the default measurement range, and the two new
regions obtained with light power increasing and decreasing. This measurement
range extension makes measurable the double size of the original measurement
range.

Notations:

– real distance: dr; dr ∈ [0, 4]cm (interpretation: 0-closest, 4-farthest).

– shifted real distance: d̂r; d̂r = dr−2cm; d̂r ∈ [−2, 2]cm

– light-power: I; I ∈ [−1, 1] (interpretation: -1-minimum light, 1-maximum
light). To set up appropriately the light-power on the hardware, we will use
the following procedure:
SetLightPower(I) – this procedure has not got any special role/function
in the simulation, it indicates only the point in the algorithm, where the light
power of the assumed sensor array should be modified.
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– measured distance: dm; dm ∈ [−1, 1] (interpretation: -1-closest, still mea-
surable, 1-farthest, still measurable). The measured distance depends on
the real distance and on the applied light-power (dm = dm(dr, I)). In this
characteristic-exploration simulation, I will use the following procedure:
dm = ReadSensorValues() = fpwl(d̂r−I) – this procedure assumes that
the applied light power and the measured distance have linear dependence
with each other (between the two saturation endpoints). Of course this is
not the real situation, but in a real measurement the nonlinear to linear cor-
rection can be wrapped in the voltage – light power characteristics of the
light-sources (not analyzed deeper here).

Algorithm 1 Measurement range alignment
1: procedure AdaptLocally(dm)
2: I(0)← Imax/2 . medium level light power, equals zero
3: SetLightPower(I(0))
4: dm(0)←ReadSensorValues(0)
5: m← 0.5 . slope multiplier in the characteristic; constant
6: th(0)← th(1)← 0.7 . threshold value in the characteristic; it will be

increased
7: iternum← 15
8: for i← 1, iternum do
9: if (dm(i−1)<−th(i)) then . too close

10: I(i)′← I(i−1)−m|dm(i−1)+ th(i)|
11: end if
12: if (−th(i)≤ dm(i−1)≤ th(i)) then
13: I(i)′← I(i−1)
14: end if
15: if (dm(i−1)> th(i)) then . too far
16: I(i)′← I(i−1)+m|dm(i−1)− th(i)|
17: end if
18: I(i)← fpwl(I(i)′)
19: SetLightPower(I(i))
20: dm(i)← ReadSensorValues(i)
21: th(i+1)← th(1)+(1− th(1))(i/iternum)
22: if (|dm(i)−dm(i−1)| ≤ 0.02 OR |I(i)−I(i−1)| ≤ 0.02) then
23: break
24: end if
25: end for
26: end procedure
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Figure 3.2: The successive change of the measured distance values as the iterative
algorithm goes on. The measured distance values (dm) belong to three different,
shifted, real distance values (d̂r = {1cm, 1.25cm, 1.5cm}). The measured distance
values (dm) are along axis y, while the iteration number along axis x. (The real
distance is measured perpendicularly from the sensor array, the zero point of the
linearly shifted scale (d̂r) is at the center point of the dynamics range measured
with medium light strength.)

As an illustrative picture of the algorithm see Figure 3.2. Here the measured
distance (dm) is plotted in the function of the iterations, in the case of three different
real distances (d̂r = 1cm, d̂r = 1.25cm, d̂r = 1.5cm). Starting from medium-level
light-strength, the points, which are closer to the maximal level of the measurable-
distance, can be reached with fewer iteration steps than the farther ones. The
purpose of this picture is to demonstrate the iterative approximation of the initially
unmeasurable distances.
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Figure 3.3: A) Light power characteristics during the progress of iterations; B)
Measured input distance characteristics during the progress of iterations.

Figure 3.3 depicts the evolutions of the characteristics. The whole real distance
(d̂r) is on axis x on both subfigures. The same colors on both subfigures belong to-
gether, representing the forthcoming iterations during the refinement algorithm (as
the number of the iterations gets higher, the color of the line gets lighter). On Sub-
figure A) we can see the iterative change of the light-power (I) while on Subfigure
B) we can observe the evolving measured distance (dm) belonging to the updated
light-strength. It is important to note that, I consider the measured input distance
(dm) as a dimensionless quantity. Although I can define an unambiguous corre-
spondence with the nonlinear characteristics of measured input distance(shifted real
input distance) (more precisely: dm(d̂r), as depicted on Figure 3.3/B); the aim of
this algorithm is at the extension of the sensing range, and not at the accurate
measurement on the extended sensing range. The algorithm stops the execution
either if we reached the maximal number of allowed iterations (in the pesudo code
above this means 15 iterations), or the last change of the measured distance or the
last change of the light power is less than 0.02. In this sense, the algorithm every
time converges to a specific value, which is either the nonlinearly mapped value of
the real input distance inside the measurement range, or the saturation threshold
itself. (The size of the measured distance refinement steps are higher rather than
the maximal number of steps would not be enough.)

3.2 Detection algorithms with delayed CNN

3.2.1 Computational environment

The algorithms presented in this Section are based on standard delay-type tem-
plates [32], [62]. Here, the detections are realized without the frameless processing
mode, just the appropriately chosen difference between the input frames which
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defines the temporal behavior. According to this, the delayed state equation (from
the CNN literature) is described by Equation 3.1.

ẋij =−xij(t)+
∑
|k−i|≤rd

∑
|l−j|≤rd

A(i−k, j− l)ykl(t)

+
∑
|k−i|≤rd

∑
|l−j|≤rd

Aτ (i−k, j− l)ykl(t−τ)

+
∑
|k−i|≤rd

∑
|l−j|≤rd

B(i−k, j− l)ukl(t)

+
∑
|k−i|≤rd

∑
|l−j|≤rd

Bτ (i−k, j− l)ukl(t−τ)+z

(3.1)

As extending the standard CNN state equation (Equation 2.1), we have here ad-
ditionally Aτ and Bτ as delayed feedback and delayed input synaptic operators,
respectively. In the following algorithms I highly relied on the Template Library
[34], only small modifications were necessary in some cases to achieve the results.

3.2.2 Simulation scene

The two algorithms will be presented in a common simulation scene. In this way I
can see the specificity of them: none of them will detect other forms of movement
except the desired one. The scene is built up of five objects, as depicted in Figure
3.4. The whole scene stands in front of the sensor array, which contains (in these
simulations) 55×55 cells. The sensor array does not move, only the objects carry
out different kinds of movements. The upper left rectangle presents the tilting
movement. Under it, on the left center there is a still object. On the right center
there are two rectangles: one of them is approaching the sensor array (from a
perpendicular direction), the other one is going away from the sensor array (in a
perpendicular direction). The object on the bottom moves at constant speed in
space, from the left to the right. If we see it from the viewpoint of the sensor array,
after a short parallel movement, first it increases its distance from the sensor array,
than preserves its higher distance, then decreases its distance back to the original
level. Finishing the excursion in the depth direction, the object turns back and
finally gets closer to the sensor array.
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Figure 3.4: Simulation scene to test the detection algorithms. In the scene we can
see a standing object, a tilting object, a perpendicularly moving pair of objects
(getting closer and going farther), and an object moving on a spatial trajectory at
constant speed.

In Figure 3.5 we can see the X, Y and Z position changes of the different objects
as functions of time.
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Figure 3.5: Different objects’ coordinates as functions of time. Figure A belongs to
the top left corner of the tilting object; Figure B and C belong to the approaching
- going away objects pair, respectively; Figure D belongs to the still object; Figure
E belongs to the object moving with constant speed. In every small figure, the
right directed triangle means coordinate X, the bottom directed triangle means
coordinate Y, and the symbol ’x’ means coordinate Z (depth).
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3.2.3 Detection of objects moving at constant speed but in
varying direction

In the followings my detection algorithm will be uncovered, which can recognize ob-
jects moving at constant speed in almost arbitrary direction. The scene, on which
the measurement is simulated, can be seen in Figure 3.4, the precise coordinate
functions in Figure 3.5.

The first step is the identification of the different base-components of the resul-
tant velocity-vector. In this way, taking the summed squares of them, I can check
whether the magnitude of the computed resultant is equal with the predefined
constant value or not. This is described formally by Equation 3.2.

vres =
√
v2x+v2y +v2z = const. (3.2)

Because our sensors measure in the depth-direction, I can measure the velocity
component in the “z” direction as easy as in the lateral directions (“x” and “y”).

Figure 3.6: UMF diagram of the constant speed detection algorithm. Horizontal
lines represent the different template-executions (subroutines) with the necessary
execution time (expressed in the unit of the cells’ time constant τ ; W and H means
the width and height of the processed image), while dots represent images/flows.
The numbers next to some flow-point are links to Figure 3.7, where the result
pictures of these stages are presented.
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Figure 3.7: Different stages of the constant speed detection algorithm. The stages
can be identified with the numbers in Figure 3.6, where the detailed processing-
algorithm is presented. The time resolution of this image (here I mean time dif-
ferences between the appropriate stages) can be expressed in the unit of the cells’
time constant τ , the different stages of Figure 3.6 call for different processing time.

The UMF diagram (Universal Machine on Flows diagram – a representation of
Virtual Cellular Machines) of the whole algorithm can be seen in Figure 3.6, while
some of the inner stages/output-flows in Figure 3.7. The three main branches of
the processing (measuring the depth-, the horizontal- and the vertical components
of the movement) can be separately seen in Figure 3.6. The individual steps of this
UMF diagram are coming either from the CNN Template Library [34] as a basic
operation, or are created by me denoting small subroutines to complete the whole
process. At the end of the three main branches I get two scalar values, which
express the magnitude of the appropriate velocity-components. Analyzing the
summed squares of them, I can state whether the object has the desired predefined
constant speed or not.

At this point, I have to mention two main drawbacks of this algorithm. The
first weakness is that the movement has to contain every time at least a minimal
planar component, the solely depth movements are lost in the first difference flow
computation. The other weakness is in connection with the propagation-type op-
erations (Propagate and Shadow on the UMF): this algorithm can handle only
one target in a given flow at the same time. Otherwise, during the propagation-
type operations the different waves are merging, leading the computing array to
confused projections. But, if the input flow contains only one moving object, the
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algorithm can detect it.
The speed-range of the detected moving object depends on different factors.

The Generate output routine does the fine-tuning, namely, it defines the ac-
ceptance level and the accepted variance of the magnitude of the computed re-
sultant. In this simulation, I leaned on the physical size and parameters of the
existing sensor array. This means 1cm planar resolution in front of the panel,
while the depth range is extended roughly between 1cm and 40cm (the existing
sensor array can measure with confidence between 1− 3cm). Currently this al-
gorithm detects the objects moving with the speed of 3cm/frame, but modifying
only theGenerate output routine this can vary in the same order (approximately
1−10cm/frame, assuming that the object displacement between two consecutive
frames is not larger, than the size of the object). Considering the small value of
the cells’ time constant, this can be really fast. This value can be decreased, if
the system omits regularly some of the input frames. Raising the delay (td) in the
case of the Movement detection templates can decrease the detected speed of
the moving object within limits.

The execution time of this algorithm can vary, depending on the underlying
real architecture. If the executing architecture can parallel compute the branches,
the whole algorithm takes 142τ (knowing that the size of the array is 55×55 cells).
Of course this value does not contain the memory access time and the boundary
row/column read-out time, and assumes some inner image memory, to store the
necessary intermediate steps. If the execution parallellism is not present (as this is
the case with the most sensor-processor arrays), we need more local image mem-
ories in order to store the partial results of the different branches. In this latter
case, the algorithm takes 276τ (again, the size is width=height=55) for the execu-
tion. It is hard to estimate the real running time of this algorithm: unfortunately
no such device exists, where a depth measuring sensor array is combined with a
cellular processor array; I can lean on the performance data of similar cellular
sensor-processor arrays only. For example, in Chapter 3 of [34] different types of
architectures (Texas DaVinci DSP, Spartan 3 FPGA, Q-Eye and Xenon chips, IBM
Cell, NVidia GTX280 GPU) are compared. On the basis of this comparison, I es-
timate the cells’ time constant τ of a theoretical depth measuring sensor-processor
array between 1− 20µs, resulting in (with an estimated array size of 128× 128)
(5+11+5+5+5+129+128+129+11+129+11)∗20µs= 568∗20µs= 11.36msec

execution time (approximately 88 fps). Of course these numbers are rough estima-
tions, without knowing any bottleneck or constraint of the real implementations

DOI:10.15774/PPKE.ITK.2014.007



44 3. MEASUREMENT RANGE TUNING; MOVEMENT DETECTION

of a depth measuring sensor-processor array.

3.2.4 Detection of tilting-movement

During an approaching / going-away movement, the gradient on the difference-
flow at the location of the moving object is uniform, only the edges produce salient
value. Unlike approaching / going-away movements, the tilting movement has non-
uniform surface on the gradient map of the difference flow (for the details: see the
first sub-figure in Figure 3.9). I can detect it easily (there are more options for it),
and I can use this attribute to identify tilting objects on the dynamically changing
scene.

The UMF diagram of the complete algorithm can be seen in Figure 3.8, and
snapshots from a running algorithm in Figure 3.9. The outputs of some processing-
stages can be identified with the numbers after them in Figure 3.8.

Figure 3.8: UMF diagram of the tilt-detection algorithm. Horizontal lines repre-
sent the different template-executions (subroutines) with the necessary execution
time (expressed in the unit of the cells’ time constant τ), while dots represent
images/flows. The numbers next to some flow-point are links to Figure 3.9, where
the result pictures of these stages are presented.
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Figure 3.9: Different stages of the tilt-movement detection algorithm. The stages
can be identified with the numbers in Figure 3.8, where the detailed processing-
algorithm is presented. The time resolution of this image (here I mean time dif-
ferences between the appropriate stages) can be expressed in the unit of the cells’
time constant τ , the different stages of Figure 3.8 call for different processing time.

The main advantage of this algorithm is that, it can detect multiple tilting
objects at the same time on the same flow. In addition to this, with the variation of
the delay-value in the case of the first template-execution, I can detect a wide-range
of rotating speed. Currently this algorithm detects approximately the rotations
around 5◦/frame, but considering the small value of the cells’ time constant this
can be really fast. We can either choose smaller delay in the first step (eg. td=1τ),
or we can left out regularly some of the input pictures to achieve slower rotation
speed detection.

The defined templates can be found in the Template Library [34], the three
exceptions are as follows:

– Modified movement detection (with delay):

A=

0 0 0
0 0 0
0 0 0

 ; Aτ =

0 0 0
0 0 0
0 0 0

 ; B=

0 0 0
0 1 0
0 0 0

 ; Bτ =

0 0 0
0 −1 0
0 0 0

 ; z=0

The boundary condition is fixed-zero.
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– Modified optimal edge detection (vertical):

A=

0 0 0
0 0 0
0 0 0

 ; B =

 −0.3 0 0.3
−0.75 0 0.75
−0.3 0 0.3

 ; z = 0

The boundary condition is zero-flux.

– Modified optimal edge detection (horizontal):
It has the same values as the vertical detection, except that the values of
matrix B are rotated around the central element with 90 degrees.

(Please note that none of these templates are delayed except the first one. This
template extracts the temporal characteristic of the input flow, all of the other
templates work either on simple images, or on the difference picture produced by
this delayed template (extracting spatial features in both of the latter cases). This
means, that Equation 3.1 is the general formula of the dynamics executed by my
template-sequences, in most cases the delayed feedback (Aτ ) and the delayed input
synaptic (Bτ ) operators are zero matrices.)

Execution time estimations of this algorithm can be also given. Fortunatelly
this algorithm does not contain propagation-type operations, meaning that the ex-
ecution time is independent from the size of the array. Assuming parallel execution
of the separate branches, the whole algorithm takes 84τ , but I have to emphesize,
this is not the realistic case by sensor-processor arrays. The serialized length of the
algorithm is 176τ , which corresponds to 176∗20µs=3.52msec theoretical execution
time (approximately 284 fps). At this point I would like to emphasize again, this
is just an estimation, on the basis of the performance of other sensor-processor
arrays.
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Chapter 4

Long transient metastable
oscillations

In this chapter I would like to present my simulation results and numerical com-
putations regarding the long transient metastable oscillations. As a first step after
the review of the literature, I will describe this dynamical system as well as the
characteristic oscillations arising in simulations. Then, I will show the details of
my numerical eigenvalue computations in the context of a robustness analysis.

4.1 Review of the related literature

According to my best knowledge, the observation and analysis of long transient
oscillations are relatively novel topics in the field of nonlinear dynamics and circuit
theory. As (probably) the most similar research, I would like to mention the
work of Yo Horikawa and Hiroyuki Kitajima (for example: [18],[19]), their study
is on long transient metastable oscillations in an experimental electrical ring of
oscillators. The authors have carefully analyzed the observed phenomenon in their
system, figured out the kinematical model of the arising oscillations, and described
heuristical estimations on the convergence of the waveforms and on the lengths
of the transients. They built several different laboratory circuit prototype (with
different cell activaton functions and interconnecting lines). The most significant
difference between their works and ours is the different kind of output function
at the elementary cells/neurons. More precisely, they apply (different kinds of)
smooth output functions, while in our system the cells have the piecewise linear
activation function.

The extensive studies (about the convergence properties of this system) of the
Circuit Theory Research Group in Siena are probably the most strongly connected
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publications with this part of my dissertation, see [21], [22], [23], [24] and [25].
As a very comprehensive study on some dinamical behaviors of one- and two-

dimensional CNN arrays, I would like to refer to Patrick Thiran’s doctoral work
[64]. The author carefully analyzes the arising, long lasting phenomena (for ex-
ample, the long transient formation of the shapes between different regions), and
analyzes the underlying dynamical system with current techniques (for example,
Harmonic Balance technique). There is no direct connection between the long
transient metastable oscillation and the work of Patrick Thiran, but some aspects
of the different problems are closely analogous to each other.

In the autumn of 2011, I have heard a fascinating lecture of Zachary Peter Kil-
patrick about dynamics in neural fields, where both the elementary mathematical
model of the structures, and the interaction of dynamics were presented (for more
details, please see [65]). In a rigorous sense, this work is really loosely coupled to
the long transient metastable oscillations, but the accurate and expressive descrip-
tion of some low-level neural structure and mechanism inspired my thoughts into
more biological (more bio-inspired) direction.

As an other long transient phenomenon, I would like to mention the work of
Mária Ercsey-Ravasz and her colleagues in [16]: they solve constraint satisfaction
problems with asymmetric continuous-time neural networks, where the inner state
of the system can stay quite a long time in a transient chaos, before converging to
an asymptotically stable equilibrium.

4.2 System description

The phenomenon is observed in a one-dimensinal CNN array with periodic bound-
ary condition (a ring). The cells have first order dynamics, as described earlier by
Equation 2.1, with the well known output function in Equation 2.2. In this case,
only the feedback template A contains elements different from zero, as described
by Equation 4.1.

A= [α 0 β], α > 0, β > 0, B = [0 0 0], z = 0 (4.1)

In the earliest experiments by Luca Pancioni and Tamás Roska, α = 3.5 and
β = 2.5 was chosen for the simulations, also with the initial condition N/2-times
{+1} and N/2-times {−1} (N is even). With this setup, in an array with the size
of 16 cells, the arising oscillation lasts hundreds of cycles, showing the waveform
depicted in Figure 4.1.
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Figure 4.1: A typical waveform of the first cell’s oscillation. The size of the array is
16, the coupling parameters are α=3.5, β=2.5, the initial state is N/2-times {+1}
and N/2-times {−1}. Please note that the height of the plateaus is approximately
±6 =±(α+β).

It turned out that, with a wide range of the coupling parameters and for a wide
set of initial conditions metastable periodic oscillations exist. This can be counted
as an interesting experimental finding from the viewpoint of monotone dynamical
systems. According to the Hirsch theorem (for the details the Reader is kindly
referred to [20]), an eventually strongly monotone semiflow (ESM) converges to
an equilibrium point, apart from a set of initial conditions with zero measure. Al-
though our system is only a monotone semiflow (not an ESM) due to the squashing
effect of the output function ([21]), the limit set dichotomy and most of the conver-
gence properties of the ESM semiflows are still valid ([22][23][24][25]), in this way
the “good” properties of the ESM semiflows are present here as well. This means
that, the system must converge to an asymptotically stable equilibrium point in
the long run, which can be actually observed in the experiments, too.

To remain at this example, the system has two asymptotically stable (AS) EPs
(+α+ β in all of the coordinates and −α− β in all of the coordinates) and a
saddle (0 in all of the coordinates). For the sake of simplicity, let me introduce
the notation {+1}p{−1}q, which means consecutively p-times +1, then q-times −1

(p+q =N , where N is the size of the array). With this notation, the AS EPs can
be written as {+α+β}N and {−α−β}N .
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Varying the size of the continuous positive and negative regions in the initial
condition (at fixed ring-size), the arising waveform will reflect the structure of the
initial condition. For two examples see Figure 4.2.

Figure 4.2: Different waveforms in the case of different initial conditions. In most
cases, the arising oscillation’s waveform follows the structure / combinatorics of
the initial state.

Until I have only 1 positive and 1 negative plateau, the oscillation will converge
to one of the AS EPs, on the way of the shorter plateau’s decrease. However,
if I have more positive and negative plateaus (meaning higher frequency in the
intuitive sense), I can observe metamorphoses, as the frequency of the oscillation
gradually decreases, up until I have 1 positive and 1 negative plateau, just before
one of the AS EPs (latter ones can be considered as final stations). For an example,
see Figure 4.3.

Figure 4.3: Metamorphoses of a waveform: different stages of an evolving oscilla-
tion. The coupling parameters are α= 3.5, β = 2.5, the size of the array is 22, the
initial state was {+1}5{−1}8{+1}4{−1}5.
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At this point I would like to mention a curious observation in the context of
the different solvers and platforms. By the MATLAB environment, if we start the
simulation from the symmetrical initial condition (eg. {+1}8{−1}8), the ode45
solver of the system does not leave the periodic orbit, the oscillation tends to last
forever. Implementing in MATLAB the Explicit Euler (EE) method, or in C++
language the EE or RK45 methods, all of them show the sharp attenuation and
the convergence finally. The reason of this “forever lasting” oscillation by ode45
should be some stabilizing mechanics/heuristics behind.

4.3 Robustness analysis with numerical eigenvalue
computation

To numerically prove the metastability of the sometimes seemingly never-ending
oscillations, I determined the Floquet eigenvalues and eigenvectors of the periodic
orbits. The algorithm is based on the Poincaré return map, where practically we
apply small perturbations on the trajectory, and observe the appearing deviation
after one period from the original oscillation’s trajectory. From these deviations
one can construct the geometric Jacobian matrix, whose eigenvalues express the
stability of the periodic orbit.

More precisely, I define a reference point and a reference section (called Poincaré
section) in the N -dimensional state space. At this reference point, I add little
perturbations to each coordinate separately, and measure the difference between
the reference point and the first recurrences on the Poincaré section. From these
difference vectors I can build the geometric Jacobian matrix, whose eigenvalues and
eigenvectors are the Floquet eigenvalues and eigenvectors of the periodic orbit. In
this case, the stability level is 1 (and not 0, as in the case of the stability of
equilibra of linear differential equations). If the moduli of all Floquet eigenvalues
— not counting the trivial Floquet eigenvalue which corresponds to perturbations
perpendicular to the Poincaré section (and is always one) — are less than 1, the
periodic orbit is stable. However, if any of them is slightly greater than 1 and
none of them is significantly greater than 1, then the periodic orbit and all the
neighboring oscillations are metastable.

Different kinds of tendencies and convergencies can be observed in connection
with the strength of metastability. The first (and probably the most important)
one comes from the size of the ring: fixing the parameter values, the metastability
of the periodic orbit increases in exponential order with the size of the array, as
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we can see this in Table 4.1. Professor Barnabás Garay has analytically proved
the existence of the periodic orbit and exponential asymptotics for the dominant
Floquet eigenvalue as a function of the number of cells.

Table 4.1: The exponential convergence of the dominant Floquet eigenvalue in the
function of the size of the array. The coupling parameters are α= 3.5, β= 2.5, the
initial condition is consecutively N/2–times {+1} and N/2–times {−1} (where N
is even). The main message of this Table is that the dominant Floquet eigenvalue
λ1 > 1 decreases sharply with N , resulting in seemingly stable, long transient
oscillations that change imperceptively on time intervals of order 1/(λ1−1).

N λ1
6 2.5883
8 1.0985

10 1.00917
12 1.00089
14 1.00014
16 1.000097
18 1.000044

An other interesting tendency in the metastability’s change can be observed,
if we vary the coupling parameters. But before this, let me introduce the α, β
parameter plane, as depicted in Figure 4.4.
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Figure 4.4: The existence of metastable periodic rotating waves on the parameter
plane α, β of the feedback template A (in the region α ≥ 1, −α+ 1 ≤ β ≤ α);
where the different shades of gray and the striped region indicate different types
of metastable rotating waves. There is no metastable periodic oscillation in the
white region.

The Figure is sketched on the coordinate system of the feedback template (A)
elements, where certain negative values of β (|β| ≤ α) are defined as well, in this
way – according to the author’s best knowledge – extending the cooperative region
analyzed in the literature so far. The different shades of gray indicate different
types of connections between the states of the neighbouring cells; darker gray means
“Type One”, lighter gray means “Type Two” oscillations. “Type One” and “Type
Two” oscillations on the parameter plane are separated by curve γ1,2 (whose exact
location actually depends on the number of cells (N) but, with N→∞, converges
exponentially to the curve γ1,2 depicted in Figure 4.4). Schematic drawings of
“Type One” and “Type Two” oscillations can be seen in Figure 4.5. The names
refer to the maximum number of cells simultaneously staying in the linear region
(xi ∈ [−1, 1]). The circuit measurements of the phenomenon are done in points
U = (3.5; 2.5) and V = (1.7; 1.2) of the parameter plane; while the vertical line l
marks the set of parameters, for which the dominant Floquet eigenvalues will be
presented in details (Figure 4.6).

The relationship between the neighboring cells’ states has further variations
in the striped region, approaching the line β = −α+ 1 for N large. In the close
vicinity of curve C (of equation β= 1+α2

1+α
, α>1, independently of N) the metastable
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Figure 4.5: A) Type One oscillation; B) Type Two oscillation. The maximum
number of cells simultaneously staying in the linear region (xi ∈ [−1, 1]) is 1 and
2, respectively. The line segments a and b denote the regular repetition in the
connection-structure of the neigboring cells’ states.

oscillations get slower and slower, and finally, on the curve C itself, they disappear
in a heteroclinic bifurcation.

Now consider the vertical line α=3.5 on the parameter plane for−2<β< 1+3.52

1+3.5
≈

2.9 . . .. The nearness of the dominant Floquet eigenvalue to 1 for 2.5<β<2.9 makes
possible the circuit measurement of the phenomenon of metastable oscillations,
even if I have a circuit built up of components with higher tolerances, as I will
describe it in the next chapter.
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Figure 4.6: The dominant Floquet eigenvalue (λ1) forN=8 andN=16 as a function
of beta (α = 3.5 is fixed). On the vertical axis I presented the value of λ1−1, in
order to appropriately separate the ending regions of the curves near β=2.9 on the
logarithmic scale. These data were recorded from numerical computations, where
the initial states were maximally symmetrical ({+1}4{−1}4 in the cases of N = 8
and {+1}8{−1}8 in the cases of N = 16). If β < 0, the N = 8 case becomes too
unstable, resulting in the fail of the dynamics simulation.
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Chapter 5

Metastable oscillations in circuit
experiments

In this chapter I will present the paradigmatic experimental circuit which is applica-
ble to produce long transient metastable oscillations. I use the coupling parameters
that turned to be the most appropriate on the basis of the numerical exploration
of the α, β parameter plane (Figure 4.4 and 4.6).

5.1 The circuit architecture

The circuit is built up by means of resistors, operational amplifiers and capac-
itances, the original version of the schematic was published in the Appendix of
[26]. Figure 5.1 depicts the structure of a cell. Altogether 16 cells were built on a
prototyping board, I could measure the phenomenon at different sizes of the array
via reconfiguring the inter–cell lines.

Figure 5.1: The schematic of a CNN cell built with the use of discrete components.
The cell’s functionality can be divided into four stages: summing amplifier (a),
voltage controlled current source (b), inner state (c), and the realization of the
piecewise linear output function (d) with a unity follower.

The architecture of a cell can be divided into four different stages, which will

57
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58 5. METASTABLE OSCILLATIONS IN CIRCUIT EXPERIMENTS

be described in the followings.

5.1.1 Summing amplifier

In the first step (part a) of Figure 5.1), I have an inverting adder implementing
the weighted sum of the inputs to the i-th neuron. These inputs are the output
voltages of the neighboring cells, Vα = fpwl(xi−1) and Vβ = fpwl(xi+1). Describing
the output of this stage,

Va =−Rc

Rα

Vα−
Rc

Rβ

Vβ =−αfpwl(xi−1)−βfpwl(xi+1) (5.1)

i.e., the dimensionless positive interaction parameters α, β are obtained as

α =
Rc

Rα

, β =
Rc

Rβ

. (5.2)

In the actual circuit I have chosen Rc = 560 Ω, so that the design equations for Rα

and Rβ are given as

Rα =
Rc

α
=

560

α
Ω, Rβ =

Rc

β
=

560

β
Ω. (5.3)

5.1.2 Voltage controlled current source

The second stage (part b) of Figure 5.1) implements a voltage controlled current
source (see Appendix of [26]), under the constraint

R2

R1
=
R4+R5

R3
(5.4)

that results in
I =− R2

R1R5
Va. (5.5)

In the actual circuit I have chosen, in accordance with (5.4), R1 = 1.8 kΩ, R2 = 2.7

kΩ, R3 = 1.8 kΩ, R4 = 1.2 kΩ and R5=1.5 kΩ, leading to

I =− 1

1000
Va =

α

1000
fpwl(xi−1)+

β

1000
fpwl(xi+1). (5.6)

5.1.3 The inner state of the cell

The third part (part c) of Figure 5.1) realizes the state xi of the i-th neuron, which
can be measured at the capacitor Cx. The time constant of the neuron is τ=RxCx.
By the Kirchhoff current law I obtain

I = Ic+Ir = CxV̇c(t)+
Vc(t)

Rx

= Cxẋi+
xi
Rx

. (5.7)
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I have chosen Rx = 1 kΩ, Cx = 680 nF, hence I have

680 ·10−9 ẋi =− xi
1000

+
α

1000
fpwl(xi−1)+

β

1000
fpwl(xi+1) (5.8)

which coincides with Equation 2.1 describing the dynamics of the i-th neuron with
a time constant τ = 6.8 ·10−4 sec.

5.1.4 PWL-output with unity follower

The fourth step (part d) of Figure 5.1) realizes the PWL output-function fpwl(xi)
of the i-th neuron. This stage contains an amplification-division pair. Due to
this overriding of the operational amplifier I am able to get the desired saturation-
regions of the PWL output-function. Property Vd=fpwl(xi) is ensured by constraint

R6+R7

R6
=

1
R9

R8+R9

. (5.9)

In the circuit, the parameter values are chosen as R6 = 1 kΩ, R7 = 18 kΩ,
R8 = 18 kΩ and R9 = 1 kΩ. Finally, the fourth operational amplifier implementing
a voltage-follower with Vo =Vd = fpwl(xi) is used for decoupling the voltage divider
from the input stages of each connected neuron.

The initial condition is set by a switch at every cell, which is connected to the
third stage’s Vc point. When the switch is set in “load” position, it disconnects
the third stage from the second one, moreover, it connects the third stage to the
voltage generator providing initial condition. In “run” position it sets the normal
setup, which is depicted on part c) of Figure 5.1. The evolving oscillations are
recorded at node Vc (inner state) and Vo (output) of the cell numbered one.
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60 5. METASTABLE OSCILLATIONS IN CIRCUIT EXPERIMENTS

Figure 5.2: Half of the built circuit’s 16 cells.

The implemented circuit took place on a breadboard, the half of it can be seen
in Figure 5.2. The used resistors have 5% tolerances, the capacitors have 10%
tolerances; the type of the operational amplifiers is TL084. The supply voltage for
the operational amplifier was set to ±20 V. The MAX333 IC was used as switch,
which has 130Ω series internal resistance.

5.2 Measurement results

In the circuit measurements, two different α, β pairs were tested, namely α= 3.5,
β = 2.5 and α = 1.7, β = 1.2 (see also points U and V points in Figure 4.4) .
By every example, the size of the array is 16. The results will be demonstrated
together with the simulation waveforms, emphasizing the similar behaviors. More
precisely:

– (a) waveform from MATLAB simulation of the theoretical model,

– (b) PSpice simulation of the circuit design,

– (c) waveform measured with oscilloscope on the built circuit.
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In general, as we will see in the figures, the transient length of the theoretical
model (a) is in good agreement with the predicted behavior on the basis of the
dominant Floquet eigenvalue in Table 4.1. In contrast to this, the circuit simulator
(b) takes into consideration the non–idealities of the different types of components;
while the real measurement contains all of the inaccuracies of the actual measure-
ment, especially the imprecise and asyncronous setup of the initial state.

Differing from the earlier presented simulation waveforms, now I changed the
time constant (τ) of the MATLAB simulator to 6.8 ·10−4 sec., in order to have the
same time-scale (time-scale resolution) on axis x.

Figure 5.3: The coupling parameters are α = 3.5, β = 2.5, the initial condition is
x(0) = {+1}8{−1}8. The MATLAB simulation (a) was stopped after 1000 periods
approximately; the PSpice simulation (b) was stopped after 74 cycles; the oscilla-
tion of the circuit (c) disappeared after 74 periods, and the dynamics converged
quickly to one of the asymptotically stable equilibria thereafter. The blue and the
red curves portray the inner state and the output of the first cell, respectively.

Figure 5.3 corresponds to point U in Figure 4.4. With this symmetrical ini-
tial condition and with this large size (N = 16) of the simulated ring, even the
PSpice simulation (knowing the non-idealities) can result more than hundred cy-
cles. However, the length of a PSpice oscillation will be every time shorter than
the length of the simulation of the ideal model in MATLAB, due to the inclusion
of non-ideal characteristics of the operational amplifiers and other “real” effects in
the circuit simulator. Actually, at this point the Reader is kindly reminded to the
aforementioned observation that the ode45 solver of MATLAB does not show any
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62 5. METASTABLE OSCILLATIONS IN CIRCUIT EXPERIMENTS

convergence in the cases of symmetrical initial conditions. Apart from this excep-
tion, all of the oscillations on every platform have to converge to one of the stable
equilibria, but they attenuate sharply, in the last few cycles only. Figure 5.3 em-
phasizes the similarity of the waveforms, the convergence of the PSpice oscillation
was not accurately measured.

Figure 5.4: The coupling parameters are α = 3.5, β = 2.5, the initial condition is
x(0) = {+1}4{−1}4{+1}4{−1}4. The waveform follows the combinatorical struc-
ture of the initial condition. The MATLAB simulation (a) was stopped at 1 sec.;
the PSpice simulation (b) converged to the negatively saturated AS EP after ap-
proximately 16 periods; the oscillation of the circuit (c) after 2.5 periods had a
metamorphosis to an other oscillation (probably the waveform belonging to the
initial condition {+1}10{−1}6), then had further 19 periods before converging to
the positively saturated AS EP. The difference between the behavior of (b) and (c)
is analyzed in the main text.

Figure 5.4 shows the second example corresponding also to point U in Figure
4.4 this time with initial condition x(0)={+1}4{−1}4{+1}4{−1}4. The MATLAB
simulation of the theoretical model seems to oscillate endlessly; while the other two
oscillations show qualitatively different waveforms. It seems to me that this is due
to the different directions of escapes: the PSpice simulator can be handled more
reliably about the exact waveform than the real oscillation of the experimental
circuit with components of higher tolerances. For a more exact answer, I made
small perturbation on the original waveform in MATLAB. The results are in Figure
5.5.
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Figure 5.5: Perturbation analysis of the oscillation arising from x(0)= {+1}4{−1}4
{+1}4{−1}4, α=3.5, β=2.5. (a) is the original oscillation; (b) shows the waveform
after perturbation into the direction of the first Floquet eigenvector; (c) shows the
waveform after perturbation into the direction of an element of the real eigenplane
corresponding to the complex conjugate pair of Floquet eigenvalues λ2,3. The small
circles mark the place of perturbation on the first coordinate-function.

I have computed the Floquet eigenvalues and eigenvectors of this oscillation,
when the first coordinate-function crosses the zero-level (at t = 0.03495 sec.): I
have three metastable eigenvalues, λ1 = 1.20665 and λ2,3 = 1.09632± 0.10317i.
The related eigenspaces can be handled as “escape” directions. I have added a
strong perturbation to the original oscillation at t= 0.03495 sec.: on subfigure (b)
– the fivefold of the first unit eigenvector, while on subfigure (c) – the fivefold
of a unit vector belonging to the real eigenplane of λ2,3 (the small black circles
show the point of perturbation in the figures). As I can see in the Figure, the
different directions lead to different forms of metamorphoses: the first one results
in equalized attenuations on both of the upper plateaus within one period, while
the second one suppresses only one of the plateaus within a period, resulting in
an asymmetric waveform. According to my opinion, the dynamics on the (c) part
of Figure 5.4 shows the “random way” during the convergence, due to the high
tolerances of the components and the inaccurate setup of the initial condition.
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Figure 5.6: Oscillations for coupling parameters α = 1.7, β = 1.2 and initial con-
dition x(0) = {+1}10{−1}6. The waveform follows the combinatorical structure of
the initial condition. The MATLAB simulation (a) was stopped at 1.5 sec.; the
PSpice simulation (b) was stopped after 40 cycles; the oscillation of the circuit (c)
converged to the positively saturated AS EP after 66 cycles approximately. Please
note in these figures the changed height of the plateaus: it is approximately ±2.9
which is equal to ±(α+β).

The third example is depicted in Figure 5.6. In this case, the initial condition
was x(0) = {+1}10{−1}6, the coupling parameters α= 1.7, β = 1.2 (point V of the
parameter plane in Figure 4.4).
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Chapter 6

Conclusions

The results of the research on detection with frameless processing are presented
in Chapter 2. It is shown by the deeper analysis of the phenomenon beyond
that the structure of equilibria and the changes of the basins of attractions are
the real causes of the first time seemingly strange behavior. Furthermore, it is also
demonstrated by the presented example how frameless processing can be efficiently
used as the detector of spatial-temporal events.

In Chapter 3, the details of a measurement range-tuning algorithm are un-
covered for the model of an infrared sensor array with activation light sources,
which can be used for the observation of scenes with higher depth-dynamic range
on the way of locally adaptive measurements. Also in this chapter, two standard
CNN-algorithms are presented for the detection of specific spatial movements.

In Chapter 4 and 5 long transient metastable oscillations are examined from
different points of view. In the former one, the existence and the different com-
binatorics of the oscillations’ waveforms are showed as well as the robustness of
them by numerical computations throughout the parameter-space of the coupling
parameters. In the latter one, the robustness of these oscillations is demonstrated
with a paradigmatic laboratory circuit, where the high tolerance of the components
and the inaccurate setup of the initial conditions meant in themselves the noisy
circumstances, which allow the existence of the more robust phenomena only.
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DOI:10.15774/PPKE.ITK.2014.007



Summary

6.1 New scientific results

1. Thesis: Recognition of a feature spanning frames (in space and/or in time) with
a CNN Wave Computer interfaced with a two–dimensional, depth measuring sensor
array equipped with own lightsources.

Our measurement and processing differs from the input recording and process-
ing method of the original CNN Wave Computer in two major points. In contrast
to the ordinary, passive input recording, the picture of the measured object is
produced actively by us: there is an LED next to every phototransistor, which
measures the reflected light of the LED from the environment. This measurement
method is novel in the sense that, the global solution evolving on the computing ar-
ray can be influenced during the transient of the computation (an earlier, inspiring
paper [14]). In the other hand, the process of the computation is continuous, not
discrete from frame to frame (frame–by–frame). The individual pictures are not
separately processed and evaluated, but a single, continuous processing flow exists,
which gets from time to time the appropriate input picture, and produces a static
or oscillating pattern at the output as the result of the computation. Another,
frameless processing example is [15], and an analogous example is [16].

We have used both of the above mentioned measurement and processing special-
ities for solution of detection problems, but in this dissertation I will present only
the results connected to the continuous processing method. We believe that these
computation methods have a key role in time–critical object and event recognition
tasks.

Published in: [3], [9], [10], [13].

1.1. Applying a specific coupled template class with few non–zero el-
ements on a CNNWave Computer interfaced with a two–dimensional,
depth measuring sensor array equipped with own lightsources, I
showed that, in contrast to the frame–by–frame input processing,
the continuous input flow makes possible to the evolving dynamics
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of the computing array the unambiguous identification of object–
or scene–properties spanning frames (in space and/or in time). I
provided a solution for detecting a given, oversized terrain feature;
I have verified the applicability of my method with measurements.

I was able to detect a property with frameless processing mode, which is far
more difficult when we process the input frame–by–frame. The sensor array was
passed over a terrain bump with size three and a half times larger, than the size
of the array itself (for the measurement setup the Reader is kindly referred to
Figure 2.5); the activation sources were constantly lighting. In the three main
regions of the bump (uphill, plateau, downhill) three different output patterns
became solely dominant, which were preserved till the end of the specific regions.
By the frame–by–frame processing of the input flow (instead of a long–continuous
computation, separate short ones), more different patterns (even oscillations) were
able to emerge in the different regions. This means that, from one / a few separate
input pictures we are unable to unambiguously decide over which region stands the
array. Although with a statistics of more still input pictures we could overcome
this problem, this needs additional memory and post processing routines. On the
other hand, in the case of frameless processing, the evolution and inner state of
the dynamics itself stands for the solution, it needs comparably less processing, it
is easier. The executing architecture “involves” this dynamics. If the inner state of
the computing is easily readable from outside, then the result of the computation
can be known without any special device during the computation itself.

On the computing array we applied the template–family according to Equation
(2.3), with the parameter values in Equation (2.4). In the literature, the templates
contain generally more values which are different from zero, the filling rate of this
template is sparse. The computing array had zero-flux boundary condition, the
initial state was the first input picture. This template appeared in István Petrás’s
PhD dissertation [17], where the Author processed only separate, still input pic-
tures. He discovered the different template–value regions according to different
output dynamics (stable equilibrium point, stable oscillation, chaotic behavior),
which results I used as initial values during parameter–tuning.

Measuring the performance of detection with this phenomenon is difficult, there
is no ready specific architecture which could run the computation in real time. But
if we consider that no read-out and memory moduls are necessary, we can assume
that this solution would outperform other, general systems in the context of time-
and energy-management.
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2. Thesis: Measurement range tuning and complex movement detection with a CNN
Wave Computer interfaced with a two–dimensional, depth measuring sensor array
equipped with own lightsources.

Published in: [1], [4], [5], [7], [11].

2.1. I presented a locally adaptive algorithm for the tuning of the
range of depth dynamics, in the proposed architectural setup where
a two–dimensional, depth measuring sensor array equipped with
own lightsources is interfaced to a CNN Wave Computer.

Current imaging sensors are unable to take a picture of scenes with high light
dynamic range. This is due to the linear relationship between the amount of the
incoming light and the amount of the recorded light. In this way only two or three
orders of magnitude can be covered. There are specific solutions, where either the
sensitivity of the sensor is logarithmic, or the light capture process happens on
an adaptive (or rather on a locally adaptive) way. These solutions can result in
that, there will not be any part of the picture in saturation. In the case of CNN
Wave Computer architecture, there exists already a locally adaptive solution in
the doctoral dissertation of Róbert Wagner, which solution is based on the locally
adaptive settings of the cells’ integrating time on the whole array.

The architectural difference and the depth range are the novelties in my solu-
tion. I work with the cells’ light activation strength of the depth measuring sensor
array in a frame–by–frame iterative algorithm. The integrating time of the sensing
cells is not varied. As an advantage, my method needs only the logical unit of the
cell (thinking in the architecture of the CNN-UM) to the adaptive calibration of
the light-conditions meaning that the analog unit has to take care of the “main” ob-
jective (CNN-algorithm) only. Because our sensor array supports binary activation
patterns (On / Off), this algorithm was implemented only in simulation.

2.2. I presented CNN–algorithms for the detection of moving ob-
jects with constant speed but varying direction, and for the detec-
tion of tilting movement, in the proposed architectural setup where
a two–dimensional, depth measuring sensor array equipped with
own lightsources is interfaced to a CNN Wave Computer.

There are already known algorithms in the literature to detect movement, or
to detect moving objects at a given speed. The basis of them essentially is the
difference computation of two consecutive frames with a specific delay–distance in
the input flow.
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Due to the speciality of our system (depth measurement) we are able to observe
the depth–displacement (getting closer or farther) of the moving object. In the
case of the first algorithm (detection of moving object at constant speed but varying
direction) we compute first the planar (in the plane of axes x–y) and the depth
(axis z) components, then we take the resultant of them.

The second algorithm detects the objects with tilting movement, when a surface
tilts around an axis. The plane of the axis and the surface of the sensor array must
be parallel. The algorithm begins with a difference computation on two images of
the input flow with specific delay between them. On the resulting image, a modified
edge–detecting method is run, which results in bigger patches at those places, where
the neighboring rows/columns are detected with continuously changing intensity
(due to the tilting movement).

Figure 3.4 shows a complex simulation scene of objects with different locomo-
tions. I tested the complex movement detection algorithms on this scene, analyzing
the specificity with counterexamples, too.
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3. Thesis: Long transient, metastable periodic oscillations in simulations and in
circuit experiments.

In the literature we can see qualitatively similar phenomena with other systems,
like those investigated in [18] and in [19].

In our case, the phenomenon is observed in a one–dimensional, autonomous
CNN array with periodic boundary condition. The cells are regular, first order ones.
The neighborhood connection is realized by the template according to Equation
4.1. The output function of the cells is the well known piecewise linear activation
function, described by Equation (2.2).

According to [20] an eventually strongly monotone semiflow (ESM) converges to
an equilibrium point, apart from a set of initial conditions with zero measure. Al-
though our system is only a monotone semiflow (not an ESM) due to the squashing
effect of the output function ([21]), the limit set dichotomy and most of the conver-
gence properties of the ESM semiflows are still valid ([22][23][24][25]), in this way
the “good” properties of the ESM semiflows are present here as well. This means
that the system must converge to an asymptotically stable equilibrium point.

In contrast to this, both in simulations and in circuit measurements we were
able to observe unexpectedly long oscillations (lasting even hundreds of cycles)
on a wide set of the coupling parameters (α, β). But these periodic oscillations
are not stable, I prove their metastability with the computation of their Floquet
eigenvalues.

Published in: [2], [3], [6], [8], [12].

3.1. I have numerically proven the existence of long transient metastable
periodic oscillations in the dynamics of a one–dimensional, coupled,
autonomous CNN Wave Computer with periodic boundary condi-
tion (ring). With the numerical eigenvalue computations I have
defined the region of the strongest metastability on the parameter
plane, where the phenomenon is certainly reproducible even with
an electrical circuit by means of higher tolerance components.

In the case of the periodic oscillations with stronger metastability, I determined
the Floquet eigenvalues and eigenvectors on the basis of the Poincaré return map.

Fixing the parameter values, the metastability (in Floquet–sense) of the peri-
odic orbit increases in exponential order with the size of the array, as we can see
this in Table 4.1. Professor Barnabás Garay has analytically proved both the real
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metastability and the asymptotical behavior of the metastability in the function
of the number of the cells.

Figure 4.4 depicts the parameter space of α and β from the feedback template
A, where certain negative values of β (|β|≤α) are defined as well, in this way – ac-
cording to the author’s best knowledge – extending the cooperative region analysed
in the literature so far. The waves evolving on the cells can differently connect to
each other. These different forms are indicated on the figure with different shades
of gray, γ1,2 is the borderline between them (the exact location of it depends on the
number of the cells (N), in the function of N it exponentially converges to the curve
indicated on the figure). The relationship between the neighboring cells’ waves has
further transformations in the striped region, approaching the line β=−α+1 (the
exact borderlines are known, this figure has only illustrative purposes). In the close
vicinity of curve C the oscillation gets slower and slower, on the curve it dies with
a heteroclinic bifurcation. The circuit measurements of the phenomenon are done
in points U = (3.5; 2.5) and V = (1.7; 1.2) of the parameter plane (see subthesis
3.2), in whose vicinity the metastability can be observed by means of an electrical
circuit.

3.2. I built a paradigmatic experimental electrical circuit with the
use of discrete components, which can realize the functionality of
a one–dimensional, autonomous CNN Wave Computer. Appropri-
ately connecting the cells I realized an electrical implementation,
which is applicable to reproduce the phenomenon of long transient
metastable oscillations. In this way I measured the phenomenon
in the electrical circuit as well, experimentally demonstrating its
robustness.

The circuit is built up by means of resistors, operational amplifiers and capaci-
tances, the original version of the schematic was published in the Appendix of [26].
Figure 5.1 depicts the structure of a cell. Altogether 16 cells were built on a pro-
totyping board, in this way we measured the phenomenon at different sizes of the
ring with the reconfiguration of the inter–cell lines. The initial states were set with
a switching circuit at every cell’s Vc node; the switching circuits were uniformly
controlled by a function generator. The resulting oscillation was recorded at node
Vc (inner state) and Vo (output) of the cell numbered one.
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6.2 Application of the results

The scope of the first and the second thesis group (object and event recognition,
detection of complex movement) covers a wide range of possible applications. In-
side mobile robotics, numerous unsolved (or just partially solved) problems exist,
where a more efficient solution (compared to classical image processing) could be
advantageous. Good examples are the tasks of the recent DARPA Challenge. In
the case of walking on a rough surface, if we could tell some critical features of
the ground just before putting the foot down, then we can stabilize the balance of
the robot itself. In the case of climbing up a ladder in an industrial environment,
a sensor array mounted on the foot can measure the outlines and characteristics
of the rungs (surface, slope, accurate position) just before the step, resulting the
reliable realization of the planned movement.

I have analyzed different situations in simulation as well as in real hardware
measurement, when a sensor array supposedly mounted on the foot of a robot
detects an unexpected salient object, or an unexpectedly steep slope, or an other
moving object. In these cases the system has notified the central movement con-
trolling unit with a “STOP” command. I have created a simulation environment, in
which an autonomous mobile robot tries to get a predefined point in the changing
environment with other moving objects. On the basis of the measurements of the
distance measuring infrared sensor array mounted on the front, the agent tries to
avoid adaptively the other objects in order to get the end point without collision.

In the case of the third thesis group (metastable periodic oscillation), beyond
the detailed analysis of the oscillation we can expect information representation
and processing (due to the biological motivation, for example [27], [28], [29]). Series
of different waveforms and/or frequencies could identify a (quasi-)periodic series
of phenomena/events; or a metastable oscillation could encode an engram in the
memory with appropriate architecture. These examples try to mimic the informa-
tion processing and representation observed or supposed in biology.

I have done other simulations with a slight modification of the computing ar-
chitecture presented in Thesis 3. The objective was the detection of periodic oscil-
lations with different patterns and speed (frequency): if the system got the desired
signal-sequence on its input terminal, then the metastable oscillation became sta-
bilized; however in the case of other sequences the waveform went wrong or the
inner state of the system converged to a stable equilibrium point.
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Appendix A

Terms, definitions, theorems
connected to the dissertation

For a more comprehensive and detailed overview, the Reader is kindly referred to
[66] and [20].

– Φ : T×Rn→ Rn dynamical system

I. Φ is continuous, jointly in both variables

II. Φ(0, x) = x ∀x ∈ Rn

III. Φ(t,Φ(s, x)) = Φ(t+s, x) ∀t∀s ∈ T, ∀x ∈ Rn

Here time T = R (continuous time) or T = Z (discrete time).

The basic example for a dynamical system is the solution operator Φ:R×Rn→
Rn of an autonomous differential equation ẋ = f(x) (f sufficiently smooth,
e.g., f ∈ C1).

– Eigenvalues and stability of an equilibrium point

ẋ= f(x) autonomous differential equation,
f(x0) = 0⇔ x0 is an equilibrium point.

The eigenvalues of the equilibrium point are the eigenvalues of the Jacobian
matrix J = f ′(x0) evaluated at x0 .
Notation: λ1, ..., λn for the eigenvalues, and vi for an eigenvector associated
to λi.
Stability criteria for equilibrium point x0:
∀i Re(λi)< 0⇒ x0 is exponentially stable;

73
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∃i Re(λi)> 0⇒ x0 is unstable (and then the direction of vi is repulsive);
maxRe(λi) = 0⇒ further investigations are necessary.

– Eigenvalues and stability of a periodic orbit

As before ẋ= f(x) denotes an autonomous differential equation,
and Φ : R×Rn→ Rn stands for the solution operator.
p0∈Rn point is a periodic point of Φ and τ0∈T, τ0>0 is the minimal period,
if Φ(τ0, p0) = p0 and ∀τ ∈ T, 0< τ < τ0: Φ(τ, p0) 6= p0.
The periodic orbit is Γ={Φ(t, p0)∈Rn|t∈T}={Φ(t, p0)∈Rn|t∈T, 0≤t≤τ0}.
The periodic solution is p : R→ Rn, p(t) = Φ(t, p0).
The Poincare section to Γ at p0 ∈ Γ is the codimension one hyperplane
Σ = {x ∈ Rn| 〈 x−p0, f(p0)〉= 0}.
The first return time function τ : Np0 → R is the local solution τ = τ(x) of
equation H(τ, x)=0 satisfying τ(p0)=τ0. Here Np0 is a neighborhood of p0 in
Σ and H(τ, x)= 〈Φ(τ, x)−p0, f(p0)〉, (τ, x)∈R×Σ. (Conditions H(τ0, p0)=0

and H ′τ (τ0, p0) 6= 0 of the implicit function theorem hold true.)
The Poincare return map is the operator π :Np0→Σ, x→ π(x) = Φ(τ(x), x),
which can be considered (via identifying the Poincare section Σ with the
subspace Rn−1) as an Rn−1→ Rn−1 mapping.
Eigenvalues κ1, κ2, ..., κn−1 of matrix π′(p0) do not depend on the choice of
p0 ∈Γ and are called the Floquet eigenvalues (sometimes also termed as Flo-
quet multipliers) of the periodic orbit. (The trivial Floquet eigenvalue is
κ0 = 1.) (In the main text, I termed π′(p0) as the geometric Jacobian.)
Stability criteria for periodic orbit Γ:
∀i, i > 0 |κi|< 1⇒ Γ is orbitally asymptotically stable;
∃i, i > 0 |κi|> 1⇒ Γ is orbitally unstable;
maxi|κi|= 1⇒ further investigations are necessary.
Roughly speaking, the periodic orbit Γ is metastable, if all Floquet eigenval-
ues satisfy |κi| < 1 + ε and most Floquet eigenvalues satisfy |κi| < ε for an
ε>0 very small. The precise definition we use is given for a family of periodic
orbits Γn ∈ Rn, n = 2,3, . . . . It concerns a sequence of differential equations
ẋ= fn(x) in Rn and requires that ε as a function of n is exponentially small
in n. It is usually also required that the number of the unstable Floquet
eigenvalues is one.

– The ω-limit set
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As before ẋ= f(x) denotes an autonomous differential equation,
and Φ : R×Rn→ Rn stands for the solution operator
From now on, we assume that ẋ = f(x) is dissipative in the sense that the
point at infinity is repulsive or, equivalently, we assume that all trajectories
enter a ball B and remain there for all time large enough.
x ∈ Rn

ω(x) = {y ∈ Rn | ∃ tn→∞ sequence, if n→∞ then Φ(tn, x)→ y}
Examples are: equilibrium point, limit cycle, heteroclinic cycle (these are the
only examples in R2), invariant tori, chaotic attractors (only in Rn, n > 2).
ω-limit sets are nonempty, closed, bounded, connected and invariant (i.e.,
the union of entire trajectories)

For different types of monotone dynamical systems, ω-limit sets have a partic-
ularly simple structure and, forgetting about a nowhere dense set of measure
zero, all the complicated possibilities are ruled out.

– ≤ closed partial order over Rn

I. x≤ x (reflexivity)

II. x≤ y and y ≤ z then x≤ z (transitivity)

III. x≤ y and y ≤ x then x= y (antisymmetry)

IV. (x≤ y and z ≤ u then x+z ≤ y+u)

V. (x≤ y and λ≥ 0 then λx≤ λy)

VI. ≤ (closedness) if xk ≤ yk, xk→ x and yk→ y then x≤ y

The basic example is the standard closed partial order defined by letting x≤y
if and only if xi ≤ yi for each coordinate i= 1,2, . . . , n. (Here the coordinate
notation x= (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) is used.)

– The Φ : T×Rn→ Rn dynamical system is

• monotone
if x≤ y then Φ(t, x)≤ Φ(t, y) ∀t≥ 0

• strongly monotone
if x 6= y and x≤ y then Φ(t, x)� Φ(t, y) ∀t > 0

where x� y means xi < yi i= 1,2, . . . , n
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• eventually strongly monotone
if x 6= y and x≤ y then ∃t0 > 0 such that Φ(t0, x)� Φ(t0, y)

– Hirsch theorem

Given ẋ= f(x) and the solution operator Φ : R×Rn→ Rn,
assume that

(i) Φ is eventually strongly monotone,

(ii) Φ ∈ C1 (this is implied by the property f ∈ C1),

(iii) Φ is dissipative in the sense that the point at infinity is repulsive.

Then

(1) for almost all x ∈ Rn, ω(x) is an equilibrium point of ẋ = f(x) (the
exceptional set is of measure zero and is nowhere dense),

(2) (1) is valid for all non-periodic points x with the property that x ≤
Φ(T, x) for some T > 0,

(3) periodic orbits cannot be asymptotically stable,

(4) if x≤ y then
either ω(x) = ω(y) = {e} (the same equilibrium point for x and y),
or z ≤ w for each z ∈ ω(x) and w ∈ ω(y) (and z 6= w for x 6= y),

(5) if y, z ∈ ω(x) and y 6= z then
y ≤ z fails.

– Application of Hirsch theorem

For parameters α, β>0, consider a bidirectionally coupled CNN ring of equa-
tions
ẋi =−xi+ασarctan(xi−1)+βσarctan(xi+1), i= 1,2, . . . , n.
The the conditions of Hirsch theorem are all satisfied.

Moreover, as proven by the Siena group (see [21], [22], [23], [24], [25]), all
conclusions of Hirsch Theorem remain valid if the smooth sigmoid function
σarctan is replaced by the piecewise linear and saturated sigmoid function σabs.
Note that this weakening of the assumptions on the sigmoid output function
implies that conditions (i)-(ii) of Hirsch Theorem are violated.
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– Perron-Frobenius theorem, a result related to Hirsch theorem

Let M = {mij}i,j be an n×n non-negative matrix: mij ≥ 0 i, j = 1,2, . . . , n.
If M is irreducible, there exists a dominant eigenvalue λ = λdom > 0 and
a dominant eigenvector s = sdom = (s1, s2, . . . , sn) with the properties that
λ≥|λ2|≥|λ3|≥ ...≥|λn| and si>0 for i=1,2, . . . , n. The dominant eigenspace
is one-dimensional.
If M is primitive,then the dominant eigenvalue satisfies λ> |λ2| ≥ |λ3| ≥ ...≥
|λn|.

A positive matrix is primitive and a primitive matrix is irreducible. Irre-
ducibility means that matrix M is not similar via a permutation to a block
upper triangular matrix (that has more than one block of positive size). Ir-
reducibility makes sense in graph theory, too: a directed graph is strongly
connected if and only if its adjacency matrix is irreducible. The non-negative
matrix M is primitive if its k-th power Mk is positive for some fixed k.

Recall the last sentences on “Eigenvalues and stability of a periodic orbit”.
In our application to the long-transient periodic orbit of CNN rings, the
dominant Floquet eigenvalue is metastable.

(Applications of Perron-Frobenius theorem to stochastic matrices (finite Markov
chains) are irrelevant.)
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Appendix B

Computation of equilibrium points

This appendix reviews in details the computations of equilibrium points, which
method was referred throughout Section 2.5.

The dynamics of every cell is according to the following equations (as earlier in
Equation 2.1 and in Equation 2.2):

ẋij =−xij(t)+
∑

|k−i|≤rd

∑
|l−j|≤rd

A(i−k, j− l)ykl(t)+
∑

|k−i|≤rd

∑
|l−j|≤rd

B(i−k, j− l)ukl(t)+z (B.1)

y = fpwl(x) =
1

2
(|x+1|−|x−1|) (B.2)

where (as in Equation 2.3 and in Equation 2.4):

A=

0 0 0
s p q
0 r 0

 , B =

0 0 0
0 b 0
0 0 0

 , z = z (B.3)

with
q =−s. (B.4)

Let us introduce the following notations

ξ = (ξ1, ξ2, . . . , ξ64), (B.5)

x = (x1, x2, . . . , x64), (B.6)

c = (c1, c2, . . . , c64), (B.7)

with the relation
M(ξ)x+c = 0. (B.8)
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Matrix M(ξ) contains the logical case-separation (later in details) and the bound-
ary conditions, while column vector c involves the measurement data. The coor-
dinates of the index vector ξ are

ξi =


−1 whenever xi ≤−1
0 whenever −1< xi < 1
1 whenever 1≤ xi

. (B.9)

Since xi is obtained as a coordinate of the solution of a linear algebraic equation
with real constant coefficients (vector c ∈ R64 in B.8 is given by the input), the
possibility of xi =±1 can be neglected. For the same reason, non-differentiability
of the piecewise-linear function (Equation B.2) does not make any complications.

Since our piecewise-linear function has three linear regions, this means 364 com-
binatorial cases to consider. However, the special structure of templates A and B
allows us to divide the system into smaller parts, according to the followings:

ξ = (ξ1, ξ2, . . . , ξ8), (B.10)

x = (x1,x2, . . . ,x8), (B.11)

c = (c1, c2, . . . , c8), (B.12)

where

ξ1 = (ξ1, ξ2, . . . , ξ8),

ξ2 = (ξ9, ξ10, . . . , ξ16),
...

ξ8 = (ξ57, ξ58, . . . , ξ64),

and the coordinates of x and c are defined on the same way. With this notation,
the linear algebraic system of equations can be rewritten in a lower triangular block
matrix form

M(ξ)x+c=0⇔



M1(ξ
1) 0 0 0 0 0 0 0

rI M2(ξ
2) 0 0 0 0 0 0

0 rI M3(ξ
3) 0 0 0 0 0

0 0 rI M4(ξ
4) 0 0 0 0

0 0 0 rI M5(ξ
5) 0 0 0

0 0 0 0 rI M6(ξ
6) 0 0

0 0 0 0 0 rI M7(ξ
7) 0

0 0 0 0 0 0 rI M8(ξ
8)





x1

x2

x3

x4

x5

x6

x7

x8


+



c1

c2

c3

c4

c5

c6

c7

c8


=



0
0
0
0
0
0
0
0


. (B.13)
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The solution coordinate octets can be computed as

x1 = −M−1
1 (ξ1)c1 (B.14)

x2 = −M−1
2 (ξ2)[c2 +rx1] (B.15)

x3 = −M−1
3 (ξ3)[c3 +rx2] (B.16)

x4 = −M−1
4 (ξ4)[c4 +rx3] (B.17)

x5 = −M−1
5 (ξ5)[c5 +rx4] (B.18)

x6 = −M−1
6 (ξ6)[c6 +rx5] (B.19)

x7 = −M−1
7 (ξ7)[c7 +rx6] (B.20)

x8 = −M−1
8 (ξ8)[c8 +rx7]. (B.21)

This structure is the reason why we can compute the solution in eight successive
cycles. It is even more important that the overwhelming majority of the 364 the-
oretical cases is automatically excluded, partly because Mi(ξ

i)’s are of rank < 8

and thus making the linear algebraic equation Mi(ξ
i)xi+ci = 0 unsolvable (vector

ci ∈ R8 is given by the input), partly because the xi’s computed (if computable)
conflict with preassumption B.9. Please see the actual numbers of such cases in the
numerical example given at the end of this Appendix. All in all, the probability
when the coordinate octets x1, . . . ,x8 of the state variable are actually computable
(i.e., if the Mi(ξ

i)’s are invertible, and preassumption B.9 is satisfied) is almost
zero.

Establishing the connection between the cell indexes and the position of the
pixels, the Reader is kindly reminded of Figure 2.10 and 2.11. The bottom row of
the sensor array (8th row in Figure 2.11) is indexed in this mathematical description
as x1 = (x1, . . . , x8); the positions of coordinates of ξ and c are similarly.

The four main steps of the equilibrium point (EP) computing algorithm are as
follows:

I. The initial step: generating all of the possible index vectors to the bottom
row of the sensor array (N = 8 cells in the bottom row, 3N index vectors):

ξ1, ξ2, ξ3, ..., ξ8 : ξi ∈ {−1; 0; 1}, ξi =


−1 whenever xi ≤−1
0 whenever −1< xi < 1
1 whenever 1≤ xi

II. Computations for every index vector (regarding the bottom row of the sensor
array) is as follows:
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1: M ← zeros(8, 8)
2: c← zeros(8, 1)
3: for i← 1, 8 do
4: Mi,i←−1
5: end for
6: for i← 1, 8 do
7: // . intentionally left blank
8: // . intentionally left blank
9: // . intentionally left blank

10: if ξi == 0 then
11: Mi,i←Mi,i+(p+r)
12: if i== 1 then
13: Mi,i←Mi,i+s
14: Mi+1,i←Mi+1,i+s
15: end if
16: if 1< i < 8 then
17: Mi−1,i←Mi−1,i−s
18: Mi+1,i←Mi+1,i+s
19: end if
20: if i== 8 then
21: Mi,i←Mi,i−s
22: Mi−1,i←Mi−1,i−s
23: end if
24: else
25: ci← ci+(p+r)ξi
26: if i== 1 then
27: ci← ci+sξi
28: ci+1← ci+1 +sξi
29: end if
30: if 1< i < 8 then
31: ci−1← ci−1−sξi
32: ci+1← ci+1 +sξi
33: end if
34: if i== 8 then
35: ci← ci−sξi
36: ci−1← ci−1−sξi
37: end if
38: end if
39: end for
40: for i← 1, 8 do
41: ci← ci+bui+z
42: end for
43: . at this point, matrix M and vector c are filled with the normal setup

Mx+c= 0
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44: M−1← invertmatrix(M) . ’rmatrixinverse’ routine in the ALGLIB package
45: for i← 1, 8 do
46: ci←−ci
47: end for
48: x′←M−1c . matrix-vector product
49: valid ← TRUE
50: for i← 1, 8 do
51: if (ξi == 1 AND x′i < 1) OR

(ξi ==−1 AND x′i >−1) OR
(ξi == 0 AND abs(x′i)> 1) then

52: valid ← FALSE
53: break
54: end if
55: end for
56: if NOT valid then
57: break . return to the beginning, to the next index vector
58: else
59: λ← eigenvaluecomp(M) . ’rmatrixevd’ routine in the ALGLIB package
60: save(λ) . permanently store these newly computed eigenvalues
61: x← x′

62: save(x) . permanently store this newly computed solution vector
63: end if

III. Similarly to Step I: generating all of the possible index vectors to the second
bottom row of the sensor array (in Figure 2.11 the 7th row). The indexes
will be reused (i : 1, 2, ..., 8) for x, ξ and u (as an example: the first pixel
of the 7th row in the input frame is u1). Until line 48, x′ will preserve the
coordinate octet of the EPs, previously computed to the underlying row.

IV. Considering every EP of the bottom row of the sensor array (8th row in Figure
2.11) as a boundary value from the viewpoint of the 7th row, we analyze the
newly generated index vectors. The computations are really similar to the
aforementioned procedure (in Step II), we have to modify only three different
parts of the procedure:

1. in the three blank line beginning with line 7, we have to insert the
following snippet:
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if x′i ≤−1 then ci← ci−r end if

if x′i ≥ 1 then ci← ci+r end if

if −1< x′i < 1 then ci← ci+rx′i end if

2. at line 11 we have to exclude parameter r from the summation, because
we inserted the bottom neighbor’s state earlier, as a constant. Namely,
we have

Mi,i←Mi,i+p

3. at line 25 we have to exclude parameter r, again. Namely, we have

ci← ci+pξi

The algorithm computes first the first octets of the EP vectors and eigenvalues.
These coordinates belong to the bottom row of the sensor array. Then, for every
octet (as boundary condition) the algorithm determines the possible next octets
(in the second bottom row of the sensor array). Repeating Step III and Step IV
together, we can compute the whole array (solution octet combinations from the
different rows, and their stability), from bottom to top.

The ALGLIB numerical library is available1 for C++ (among other platforms).
The mentioned ’rmatrixinverse’ routine indicates the singular cases of the orig-

inal matrix, in those situations I omitted the underlying ξ combination-vector.
Once again, I would like to emphasize that, matrix M does not depend on the
measurement data, only on the index vector ξ.

The ’rmatrixevd’ routine indicates, if the eigenvalue computation did not con-
verged, but during my simulations no such event occured. This routine is based on
the QR algorithm with multiple shifts; the implementation (in ALGLIB) is based
on the LAPACK 3.0 library.

As noted in Appendix A, the stability of an EP connected to an autonomous
differential equation is determined through the eigenvalues of its Jacobian ma-
trix J = f ′(x0) evaluated at x0. As mentioned above, in our case points of non-
differentiability can be neglected. In the followings I describe the Jacobian matrix

1 http://www.alglib.net/
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belonging to the index vector ξi = 0; i= 1, ..., 8 of the bottom row, when every cells
are in the interior of the linear region.

J(x0) =



−1+p+r+s −s 0 0 0 0 0 0
s −1+p+r −s 0 0 0 0 0
0 s −1+p+r −s 0 0 0 0
0 0 s −1+p+r −s 0 0 0
0 0 0 s −1+p+r −s 0 0
0 0 0 0 s −1+p+r −s 0
0 0 0 0 0 s −1+p+r −s
0 0 0 0 0 0 s −1+p+r−s


(B.22)

In the main diagonal, the r coefficients (regarding the bottom neighbors) are
represented due to the zero-flux boundary condition. Similarly, in the top-left and
bottom-right corners the virtual cells’ coefficients are also presented. If some of
the cells are assumed to be in the interior of the saturated regions of the output
function (abs(xi) > 1), the related coefficients must be replaced by zeros in the
matrix. Please note that matrix J(x0) can occure in any position of the diagonal
of the block matrix in B.13. In addition observe that the 8×8 Jacobian matrix
J is the same as matrix Mi(ξ

i), and also coincides with matrix M (without any
indices) in the pseudo-code above.

In the context of the bottom row, it is impossible to generate a singular matrix
M (thanks to the presence of parameter r and the given template values). However,
in the context of the remaining rows, 4593 out of 6561 (38) combinations resulted
in singular matrices at every row. As two other examples, I would like to show
the two main types of these matrices. In the first case, the index vector is ξ2 =

{−1;−1;−1;−1;−1;−1; 0;−1}, where the zero element between the two non-zero
elements generates the problematic part of the matrix. This index vector enforces
the following matrix:

M(ξ2) =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 −1.1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1.1 −1


. (B.23)

As we can see, the main problem here is the zero row, which leads to the zero
value of the determinant of matrix M(ξ2) automatically. At this point, I have to
mention that column vector c2 contains a nonzero element in its appropriate coor-
dinate (not counting the case with almost zero probability, when the appropriate
input pixel (belonging to this cell) is represented by 0 on the real-valued scale of
interval [−1; 1]).
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The other main type of the singular matrices can be enforced with the following
type of index vector pattern: ξ3={−1;−1;−1;−1; 0; 0; 0;−1}, where at least three
zero values follow each other. In this case the generated matrix is

M(ξ3) =



−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 −1.1 0 0 0
0 0 0 0 0 −1.1 0 0
0 0 0 0 1.1 0 −1.1 0
0 0 0 0 0 1.1 0 0
0 0 0 0 0 0 1.1 −1


. (B.24)

In this case, rows 5 and 7 of matrix M(ξ3) are linearly dependent, which leads
to the zero value of the determinant of matrix M(ξ3), again.

Closing this appendix I would like to review the numerical details of a specific
example. Throughout Section 2.4 and Section 2.5 I analyzed a specific measure-
ment in details. In the case of that measurement, the EP-computation at the 6th
input frame resulted the following numbers of combinatorial cases:

sensor array
Row 1 38 / 4593 / 1963 38 / 4593 / 1967
Row 2 38 / 4593 / 1967 38 / 4593 / 1963
Row 3 38 / 4593 / 1963 38 / 4593 / 1967
Row 4 38 / 4593 / 1967 38 / 4593 / 1963
Row 5 38 / 4593 / 1963 38 / 4593 / 1967
Row 6 38 / 4593 / 1967 38 / 4593 / 1963
Row 7 38 / 4593 / 1959
Row 8 38 / 0 / 6560

The left column symbolizes the rows of the sensor array. The triplets in each
row mean the following case-numbers: total number of index vectors / number of
singular matrices from M(ξi) / number of contradictions with preassumption B.9.
The columns should be read from bottom to top, from one row to the next level
only the stable EP coodinate octets are continued. In the 7th row of the sensor
array we get 2 stable octets and the right triplet column is also the continuation
of the first two triplets in the left triplet column. Both triplet columns lead to
one single equilibrium each. As it is seen, the maximal number of combinatorial
branches left at each row is 9 = 38−4593−1959.
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Appendix C

Detailed results on the basin of
attraction

This appendix overviews the numerical results of the basin-of-attraction exploration,
which results were briefly presented in Subsection 2.5.3.

Table C.1: Convergence results in the first main case (6th frame; d1 = 0, d2 = 0),
when the initial states are around the input frame.

radius 0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

went
away
from
the

“second”
stable
EP

0% 0% 0% 0% 0% 0.3% 9.3% 12.0% 12.4% 22.3% 31.1% 42.6% 42.4%

arrived
to the
“first”
stable
EP

0% 0% 0% 0% 0% 0.2% 8.0% 9.5% 9.1% 20% 29% 39.7% 40.4%

Table C.2: Convergence results in the first main case (6th frame; d1 = 0, d2 = 0),
when the initial states are around the “first” stable EP.

radius 0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

went
away
from
the

“first”
stable
EP

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 9.1% 15.6% 21.4%

arrived
to the

“second”
stable
EP

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 8.5% 14.0% 20.2%
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Table C.3: Convergence results in the first main case (6th frame; d1 = 0, d2 = 0),
when the initial states are around the “second” stable EP.

radius 0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

went
away
from
the

“second”
stable
EP

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6.9% 11.0% 17.9%

arrived
to the
“first”
stable
EP

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 6.0% 9.9% 16.4%

The results regarding the first main case — when the system is defined with
the 6th input frame, without any additive term (d1 = 0, d2 = 0) — are as follows:
Table C.1 summarizes the case, when the initial state is around the input frame.
In Table C.2 we can see the case, when the initial state is the “first” stable EP.
The results regarding the “second” stable EP are in Table C.3. Please remember
(on the basis of Figure 2.6), that normally (without any random noise) the system,
started from the input frame, converges to the “second” stable EP.

What I can see in Table C.2 and Table C.3: the attractive basins’ sizes of the
two different stable EPs are more or less similar. Maybe this ball-model around the
equilibrium points is rather unrealistic; however, due to the high number of sample
points on the surface I think this can be a measure of the basin of attraction.

From Table C.1 I know that the convergence from the input frame to the
“second” stable EP is not accidental, the size of the convergence-region around it
is acceptable.

The results regarding the second main case — when the system is defined
on the 7th input frame with additive terms d1 = 0.07, d2 = 0 — can be seen as
follows: Table C.4 summarizes the results, when the simulations are started from
the modified input frame. In Table C.5 we can see the convergence results, when
the initial states are around the “first” stable EP. Table C.6 shows those results,
when the initial states are around the “second” stable equilibrium point. Here I
have to mention a very important difference compared to the first main case (Table
C.1, C.2 and C.3): in this main case, the dynamical system converges to the “first”
stable EP, if I start it from the modified input frame. Although I have two stable
equilibria, this system does not follow the earlier observed behavior, which can be
read out from the combined (paired) rows of Figure 2.6, Figure 2.9 and Table 2.1.
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Table C.4: Convergence results in the second main case (7th frame; d1 = 0.07,
d2 = 0), when the initial states are around the modified input frame.

radius 0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

went
away
from
the

“first”
stable
EP

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.1% 0.3% 0%

arrived
to the

“second”
stable
EP

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.1% 0%

Table C.5: Convergence results in the second main case (7th frame; d1 = 0.07,
d2 = 0), when the initial states are around the “first” stable EP.

radius 0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

went
away
from
the

“first”
stable
EP

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

arrived
to the

“second”
stable
EP

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table C.6: Convergence results in the second main case (7th frame; d1 = 0.07,
d2 = 0), when the initial states are around the “second” stable EP.

radius 0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1

went
away
from
the

“second”
stable
EP

0% 0% 0% 0% 0% 6.2% 28.2% 39.1% 45.9% 88.8% 99.3% 99.9% 100%

arrived
to the
“first”
stable
EP

0% 0% 0% 0% 0% 6.2% 28.2% 39.1% 45.5% 68.6% 92.5% 98.6% 99.9%

What I can see on the basis of Table C.5 and Table C.6: the “second” stable
EP has a much smaller basin of attraction than the “first” stable EP. This is not
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so surprising, if I remember that the bifurcation curve is really near, where I loose
my “second” stable EP (see Figure 2.12). Using the input frame as initial state, I
was unable to reach the “second” stable EP (Table C.4), meaning that this input
frame is deeply inside the convergence region of the “first” stable EP.

I have to note one more indirect observation, regarding the combined (paired)
rows of Figure 2.6, Figure 2.9 and Table 2.1. The emerging “second” stable equi-
librium points can have enough large basin of attraction, in this way not just
“accidentally” influencing the outcome of the frame-by-frame simulation.
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